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Preface

This volume contains the papers presented at the 13th Scandinavian Sympo-
sium and Workshops on Algorithm Theory (SWAT 2012), held during July 4–6,
2012, in Helsinki, Finland, co-located with the the 23rd Annual Symposium on
Combinatorial Pattern Matching (CPM 2012).

A total of 127 papers were submitted, out of which the Program Committee
selected 34 for presentation at the symposium. Each submission was reviewed by
at least three members of the Program Committee. In addition, invited lectures
were given by Joseph S.B. Mitchell, from State University of New York at Stony
Brook and Roger Wattenhofer from ETH Zürich. The program of the co-located
CPM 2012 included a further 33 contributed papers and two invited lectures, by
Ron Shamir from Tel Aviv University and by Gonzalo Navarro from University
of Chile in Santiago.

This year, the Steering Committee decided to initiate the Best Student Paper
Award. The Program Committee decided to grant the award to Marek Cygan
for the paper titled “Deterministic Parameterized Connected Vertex Cover.”

SWAT is held biennially in the Nordic countries; it alternates with the Algo-
rithms and Data Structures Symposium (WADS) and is a forum for researchers
in the area of design and analysis of algorithms and data structures. The call
for papers invited submissions in all areas of algorithms and data structures,
including but not limited to approximation algorithms, parameterized algo-
rithms, computational biology, computational geometry, distributed algorithms,
external-memory algorithms, exponential algorithms, graph algorithms, online
algorithms, optimization algorithms, randomized algorithms, streaming algo-
rithms, string algorithms, sublinear algorithms, and algorithmic game theory.
Starting from the first meeting in 1988, previous SWAT meetings have been held
in Halmstad, Bergen, Helsinki, Aarhus, Reykjav́ık, Stockholm, Bergen, Turku,
Humlebæk, Riga, Gothenburg, and Bergen. Proceedings of all the meetings have
been published in the LNCS series, as volumes 318, 447, 621, 824, 1097, 1432,
1851, 2368, 3111, 4059, 5124, and 6139.

We would like to thank all the people who contributed to making SWAT
2012 a success. We thank the Steering Committee for selecting Helsinki as the
venue for SWAT 2012, and for their help and guidance in different issues. The
meeting would not have been possible without the considerable efforts of the
local organization teams of SWAT 2012 and CPM 2012. We thank Aalto Uni-
versity, University of Helsinki, and the Federation of Finnish Learned Societies
(Tieteellisten seurain valtuuskunta) for their financial and organizational



VI Preface

support. The EasyChair conference system provided invaluable assistance in co-
ordinating the submission and review process. Finally, we thank the members of
the Program Committee and all of our many colleagues whose timely and metic-
ulous efforts helped the committee to evaluate the large number of submissions
and select the papers for presentation at the symposium.

April 2012 Fedor V. Fomin
Petteri Kaski
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Invited Talks

Visibility Coverage Tours

Joseph S.B. Mitchell
Department of Applied Mathematics and Statistics

State University of New York at Stony Brook
Joseph.Mitchell@stonybrook.edu

The watchman route problem is a classic optimization problem in computational
geometry: Determine a shortest path/tour for an observer to be able to view all
points within a given geometric domain. The problem combines aspects of the
traveling salesperson problem and the set cover problem. While some special
cases have polynomial-time exact solutions, most versions of the problem are
NP-hard, so attention focuses on approximation algorithms. The problem comes
in many varieties, depending on the nature of the domain being searched, as-
sumptions about the searcher(s), and the objective function. We briefly survey
the research area of visibility coverage tours and describe some recent advances
in approximation algorithms.

Think Global, Act Local

Roger Wattenhofer
Distributed Computing (DISCO)

ETH Zurich, 8092 Zurich, Switzerland
wattenhofer@ethz.ch

The title of my presentation is a motto originally coined in urban design about
100 years ago, but used in various different contexts since. The motto can also be
applied to many areas in computer science. For instance, in computational game
theory, each agent tries to maximize his/her own (local) benefit, and we analyze
the (global) social welfare. Also, computer architecture is designed for locality of
reference. Recently, the distributed computing community has made tremendous
progress towards understanding the complexity of distributed message passing
algorithms. In networks, a rich selection of upper and lower bounds regarding
how much time it takes to solve or approximate a problem have been established;
we now have a good understanding how local actions and global goal influence
each other. This distributed complexity theory may ultimately help to give the
“think global, act local” motto a mathematical foundation. In my talk I will
introduce the message passing model, present a few selected results, mention
prominent open problems, and discuss some of the most exciting future research
directions. Upcoming applications may not necessarily lie in computer science
but rather in other areas that deal with networked systems, e.g. biology or social
sciences.
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α-Visibility�

Mohammad Ghodsi1,3,��, Anil Maheshwari2, Mostafa Nouri1,
Jörg-Rüdiger Sack2, and Hamid Zarrabi-Zadeh1

1 Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran

{ghodsi,zarrabi}@sharif.edu, nourybay@ce.sharif.edu
2 School of Computer Science, Carleton University, Ottawa, ON K1S 5B6, Canada

{anil,sack}@scs.carleton.ca
3 Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Abstract. Westudy a new class of visibility problems based on the notion
of α-visibility. Given an angle α and a collection of line segments S in the
plane, a segment t is said to be α-visible from a point p, if there exists an
empty triangle with one vertex at p and the side opposite to p on t such
that the angle at p is α. In this model of visibility, we study the classical
variants of point visibility, weak and complete segment visibility, and the
construction of the visibility graph. We also investigate the natural query
versions of these problems, whenα is either fixed or specified at query time.

1 Introduction

The study of visibility is at least 99 years old, when in 1913 Brunn [5] proved
a theorem about the kernel of a set. By now, visibility has become one of the
most studied notions in computational geometry. The reasons are two-fold: 1)
such problems arise naturally in areas where computational geometry tools and
algorithms find applications. 2) their solutions are required, or serve as building
blocks in the development of solutions to other problems, such as motion plan-
ning problems. Many natural problem instances arise and have been extensively
studied in two and higher dimensions. The reader is referred to [3,8].

Previous Work: Given a polygonal scene S, the visibility polygon of a point p,
denoted by VP(p), is the set of all points inside the scene that are visible from p.
When the scene is a simple polygon or a polygonal domain, several algorithms
exist to compute the visibility polygon of a point with/without preprocessing.
Previous results for point-visibility inside a scene are summarized in Table 1.

Given a segment s, the weak visibility polygon VP(s) of s is the set of points in
the scene that are visible from at least one point on s. Guibas et al. [11] showed
how to compute the weak visibility polygon of a segment inside a simple polygon
in O(n) time. Suri and O’Rourke [22] established that the weak visibility polygon
of a segment inside a polygon with holes has size Θ(n4), but can be represented

� Research supported by NSERC, HPCVL and SUN Microsystems.
�� This author’s research was partially supported by IPM under grant No: CS1389-2-01.

F.V. Fomin and P. Kaski (Eds.): SWAT 2012, LNCS 7357, pp. 1–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 M. Ghodsi et al.

Table 1. Summary of the previous work on point-visibility. Here, n is the total
complexity of the scene, h is the number of holes, mp is the complexity of VP(p)
for a query point p, and |E| is the number of edges in the visibility graph of the scene.

Scene Prep. Time Space Query Time Ref.

polygon — O(n) O(n) [3],[7],[15]

polygon O(n3 log n) O(n3) O(log n+mp) [4]

polygon O(n3) O(n3) O(log n+mp) [12]

polygon O(n2 log n) O(n2) O(log2 n+mp) [1]

polygonal domain — O(n) O(n log n) [22]

polygonal domain — O(n) O(n+ h log h) [13]

polygonal domain O(n2) O(n2) O(n) [2]

polygonal domain O(n2 log n) O(n2) O(mp log(n/mp)) [23]

polygonal domain O(n3 log n) O(n3) O(min {h,mp} log n+mp) [24]

convex polygons O(n log n+ |E|) O(|E|) O(mp log n) [20]

by a set of O(n2) triangles. They also gave an algorithm for computing the weak
visibility polygon of a segment inside a polygon with holes in O(n4) time.

The visibility graph of a polygon is the undirected graph of the visibility rela-
tion on the vertices of the polygon. Optimal algorithms for computing visibility
graphs exist. Ghosh and Mount [9] established its construction in O(n log n+|E|)
time for a polygon with holes. Here, |E| is the number of edges in the resulting
visibility graph.

The weak visibility graph of a set of segments is defined as the graph, with
a node for each segment and an edge between any pair of weak visible seg-
ments, that have at least two mutual visible points. Ghosh and Mount [9] and
Keil et al. [14] computed the weak visibility graph in O(n log n + |E|) time.
Nouri et al. [19] demonstrated how to detect the visibility relation between two
query segments in O(n1+ε) time, using O(n2) space and O(n2+ε) preprocessing
time, for any fixed ε. Gudmundsson and Morin [10] obtained similar results for
testing weak visibility relation between a query point and a segment.

New Model: Let S be a set of n line segments in the plane, which are non-
intersecting except possibly at their end-points. Since each polygonal scene is
composed of a set of segments, S can model polygonal scenes as well. Let α be a
positive real number. In this paper, we study a new class of visibility problems
based on the notion of α-visibility as follows:

Point-visibility: A segment t ∈ S is said to be α-visible from a point p, if p can see
t with an angle at least α; that is, if there exists an empty triangle with one vertex
at p and side opposite to p on t such that the angle at p equals α (Fig. 1.a).
Segment-visibility: A segment t is said to be weakly α-visible from a segment s,
if there is a point on s from which t is α-visible (Fig. 1.b). A segment t is said
to be completely α-visible from s, if for all points on s, t is α-visible (Fig. 1.c).
Visibility Graph: We define the weak (respectively complete) α-visibility graph
of S as a directed graph Gα whose vertices are the segments of S, and for any two
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t
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Fig. 1. (a) Segment t is α-visible from p. (b) Segment t is weakly α-visible from
segment s. (c) Segment t is completely α-visible from segment s.

segments s, t ∈ S, there is a directed edge from s to t if t is weakly (respectively,
completely) α-visible from s.

The notion of α-visibility appears to be natural. Typically, all optical/digital
imaging devices have limitations, quantified by their resolutions. Our α-visibility
model is capable of capturing this limitation, and provides a more realistic al-
ternative to the classical visibility models studied in the literature. The value
α could be also employed to approximate the inaccuracy of a device used to
provide visibility-related measurements. E.g., laser rangefinders do not return
any data when they are too far off in angle from the surface normal. In gen-
eral, there is a wealth of literature on approximation algorithms for geometric
shortest path problems, and there is a close connection between visibility and
shortest path problems, but still there are essentially no results on the notion of
approximate visibility. This paper lays down a foundation in that respect, and
will likely inspire further study of the notion of approximate visibility.

Our Results: In this paper, we present the first results for several variants of
the point/segment visibility problems in the α-visibility model. The main idea
that we use is to group the set of all possible visibility directions into O(1/α)
directions, provide insights into α-visibility, and then employ a combination of
geometric tools, such as trapezoid diagrams, shortest path maps, ray shooting,
range searching, etc., to solve the visibility problem in each group of directions.
In the following, S denotes the scene, i.e., the set of input segments in the plane.

In Section 3, we present efficient data structures that enable answering queries
of the form “Is segment t ∈ S α-visible from a query point p in the plane?”. When
α is fixed, we preprocess S in O(n log n) time into a data structure of size O(n)
that answers aforementioned point-visibility queries in O(log n) time1. We also
provide data structures for answering point-visibility queries when α is specified
at the query time.

In Section 4, we show that the (weak and complete) α-visibility graph of S
has linear size (in n), and that it can be computed in O(n logn) time. Once
the graph has been computed in O(n log n) time, queries of the form “Is t ∈ S
weakly/completely α-visible from s ∈ S?” can be answered in O(1) time. Then,

1 The running times and space bounds of the data structures presented in this paper
involve a factor 1/α, which is omitted when α is assumed to be a fixed constant.
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we show how to preprocess S in O(n logn) time into a data structure of size
O(n) such that queries of the form “Is segment t ∈ S weakly α-visible from a
query segment s in the plane?” can be answered in O(log n) time.

Note that one of the key differences between standard visibility (i.e., when
α = 0) and α-visibility lies in the size of the weak/complete visibility graph of
the line segments in the plane. While the former has quadratic size, the latter is
linear in size, which makes it appealing both theoretically and from an applied
perspective especially when dealing with large data sets.

2 Preliminaries

Ray Shooting: A typical range shooting problem in the plane has the following
form: given a set of n segments in the plane, build a data structure that, for any
query ray r, report the first segment intersected by r quickly.

Theorem 1 (Chan [6]). Given a set of n line segments in the plane, there is
a data structure requiring O(n log3 n) preprocessing time and O(n log2 n) space,
such that we can find the first point of intersection between a query ray and the
set in O(

√
n log2 n) expected time.

Splinegons (or informally curved polygons) are defined as generalizations of poly-
gons [21]. A splinegon S is formed from a polygon P by replacing one or more
edges of P with curved edges such that the region bounded by each curved edge
and the segment joining its end-points is convex.

Theorem 2 (Melissaratos and Souvaine [17]). Given a simple splinegon S
with n edges, there is a data structure requiring O(n) preprocessing time and
O(n) space, such that, for any query point p and a ray r emanating from p, the
first intersection of r with the splinegon can be reported in O(log n) time.

Simplified Trapezoidal Diagram: Given a set S of segments in the plane
and a direction d, we define a subdivision of the plane such that, each region in
the subdivision is the maximal region with the property that all points in that
region see the same segment in direction d. We can construct this subdivision
by drawing a line in the reverse direction of d, from each end-point of all the
segments of S, until it meets another segment. We call this subdivision, the
simplified trapezoidal diagram of S in direction d, and denote it by Td(S).
Theorem 3. Given a set S of n segments in the plane and a direction d, we
can construct the simplified trapezoidal diagram Td(S) by a plane-sweep in the
direction perpendicular to d in O(n log n) time and O(n) space.

Shortest Path Maps: For a point s in a simple polygon P , the shortest path
map, SPM(s), is a partition of P into cells such that for all points t in a cell,
the sequence of vertices of P along the shortest path from s to t is fixed. It is
well-known that the complexity of SPM(s) is O(n) and it can be built in O(n)
time, where n is the number of vertices in P . If we preprocess SPM(s) for point
location, for a query point p we can find in O(log n) time, the last vertex of P
in the shortest path from s to p, which can be thought of as the root associated
to the cell containing p.
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3 Point Visibility

In this section, we show how to build data structures that efficiently determine,
for a query point p in the plane and a query segment t ∈ S, whether t is α-visible
from p. First, let α > 0 be a fixed constant.

Visibility testing for fixed α:

Theorem 4. We can preprocess S into a data structure of sizeO(n) in O(n log n)
time, such that α-visibility testing can be carried out in O(log n) time.

p

α

r

t

s1 = t

s2

s3

d

s4

s5

s6

c

p

Fig. 2. (a) Segment t is α-visible from p, and r intersects t. (b) A trapezoidation of a
set of segments in direction d.

Proof. Assume that we have a set of � 2πα � rays emanating from p, as in Fig. 2a,
so that the angle between any two consecutive rays is α (except possibly between
a pair, where it is � α). Let D denote the set of directions of these rays. If t is
visible from p with an angle at least α, t must intersect one of the rays drawn
from p as in Fig. 2a. Let r be a ray that intersects t and let d be the direction of r.
Consider the trapezoidal diagram of S in direction d, as in Fig. 2b. Observe that
p lies inside the trapezoid that sees t in direction d. Therefore, if t is α-visible
from p, p must be inside a trapezoid that sees t, in the trapezoidal diagram
drawn for S, based on directions in D.

It remains only to be checked whether p sees t with an angle of at least α.
Consider the simplified trapezoidal diagram Td(S) in direction d. Note that p
is inside a region c, whose visible segment in direction d is t (see Fig. 2b)2.
For a point p in c, the shortest paths from p to the end-points of t, inside c,
consist of two convex chains. The maximum visible part of t from p, including
the intersection point of r with t, is determined by extending the first edge of
each of the shortest paths. Therefore, to compute the maximum visible part of t
from p, it is sufficient to find the first turning points on the shortest paths from
p to the end-points of t, in c.

2 Note that the region c is essentially a simple polygon.
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The complexity of the trapezoidal map in direction d is O(n) and can be
computed in O(n log n) time. We can use the trapezoidal map to locate the
trapezoid containing p and find the visible segment in direction d. The shortest
path map of the end-points of each segment t, in the corresponding cell c, has
complexity proportional to the size of c. Since, the sum of the complexities of
cells in the simplified trapezoidal map is O(n), all the shortest path maps can
be computed in O(n log n) time using O(n) space. We repeat this construction
for all directions of D. To answer a query, for each direction d, we locate the
trapezoid in which p lies, in the trapezoidal map of S. This can be done in
O(log n) time. The trapezoid gives us a segment that is visible in direction d.
If the segment is not t we proceed to the next direction. Otherwise, based on
the shortest path map associated to the cell of the simplified trapezoidal map,
we can find the maximum portion of t that is visible from p, and check if that
portion forms an angle of at least α with t. If so, we report ”yes”, otherwise
we check the next direction. The first turning point in the shortest path from p
to the end-points of t can be located in O(log n) time, and since the number of
directions is O(1/α) (a constant), the total query time is O(log n). �

Visibility Testing for Non-fixed, Constant α: Our objective here is to
build a data structure, such that given a query point p, and a query segment
t ∈ S and an angle α > 0, we need to determine if t is α-visible from p.

Theorem 5. We can preprocess S, in O(n log3 n) time, into a data structure
of size O(n log2 n), such that we are able to detect α-visibility of query segment
t ∈ S from a query point p in O(

√
n log3 n) expected time.

Proof. Assume that we have a set of � 2πα � rays emanating from p, so that the
angle between any two consecutive rays is at most α (Fig. 2a). If t is α-visible
from p, then it is visible from p along at least one of these rays. Let r be such
a ray. To check if the visible part around the intersection point of r with t
constitutes an angle � α, we need to find the maximum visible part of t from p
around that intersection point. If the visible part forms an angle � α, we answer
to the visibility query affirmatively. Therefore, we need to solve the following
two sub-problems: i) What is visible from p along r? ii) If we rotate r around
p, when does the visibility from p along r change?

Problem (i) is ray shooting among segments, which has already been discussed
in Theorem 1. We use range searching to solve problem (ii) as follows. Preprocess
the end-points of segments in S, for the two level half-plane range searching
problem, and for each canonical subset of the result, we compute the convex hull
of its points. Without loss of generality, assume that we want to find the first
visibility change when we rotate r counterclockwise. The result has O(

√
n log2 n)

canonical sets, and for each canonical set we have pre-computed the convex hull
of its points. Hence, for each canonical set, we can find the first point visited
from that set, while we rotate r counterclockwise around p. The final result is
the point that is visited first among all such points. Therefore, it can be found
in O(

√
n log3 n) expected time. The total complexity is now derived from the

complexities of the two sub-problems. �
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Remark: Using techniques introduced by [16], one can achieve a space/query-
time tradeoff for the problem. Using O(m) space, for any n log2 n � m � n2,
one obtains a query time of O((n/

√
m) polylogm).

4 Segment Visibility

The weak α-visibility graph, Gα, for S is defined as follows. Each segment of
S is associated to a unique vertex in Gα. Furthermore, for any two segments
s, t ∈ S, if t is weakly α-visible from s, then there is a directed edge in Gα from
the vertex corresponding to s to the vertex corresponding to t.

Lemma 1. The weak α-visibility graph Gα of S has linear size.

Proof. Fix a set of O(1/α) directions, D, such that the angle between any two
adjacent directions is at most α. Assume that t ∈ S is weakly α-visible from
s ∈ S. Then, there is a point p ∈ s that sees t with an angle at least α. Observe
that there exists a direction d ∈ D that is inside the angle of view from p. Let
r be the segment connecting p to t in direction d. Clearly, r does not intersect
any other segment of S. Now slide r in the direction perpendicular to d, while
it still connects s to t, until r meets an end-point of a segment in S. One of
two cases may arise: (i) r reaches an end-point of s or t, or (ii) r reaches an
end-point of a segment other than s or t. In the first case, an end-point of s
sees t in direction d, or an end-point of t sees s in the direction opposite to d.
In the second case, a segment exists in S for which one of its end points sees t
in direction d. Hence, segment-to-segment weak α-visibility can be mapped to a
unique point-to-segment α-visibility. The number of directions is constant, and
the number of end-points of segments in S is O(n). The total number of distinct
segment pairs (s, t), such that t is weakly α-visible from s, is O(n). �

Theorem 6. S can be preprocessed into a data structure of sizeO(n) inO(n log n)
time, so that weak α-visibility testing for any two query segments s, t ∈ S can be
carried out in O(1) time.

Proof. Firstly, we compute Gα. Recall the set-up in the proof of Lemma 1.
Assume that t ∈ S is weakly α-visible from s ∈ S and p ∈ s sees t with an angle
of at least α. Let d be the direction in D, that is inside the angle of view of p.
Assume that the segment r connects p to t in direction d. Now slide r without
changing its direction until it meets an end-point of a segment. The region so
swept is a strip w,in which every point on s, on one side of w, sees a point on t,
on the opposite side of w, in direction d. Thus, w is a trapezoid in the trapezoidal
map of S, in direction d. We denote the nodes associated with s and t in the
weak α-visibility graph by s∗ and t∗, respectively. Therefore, the first condition
that must be met for an edge from s∗ to t∗ is that s and t are two facing (i.e.,
opposite) edges of a trapezoid in one of the trapezoidal maps constructed for
directions in D.

While this condition is necessary, it is not sufficient. To check whether t is
actually weakly α-visible from s, we need to find a point on s that can see t with
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Fig. 3. (a) Segment s is partitioned into sub-segments. (b) The α-visibility region in
direction d for t ∈ S is shaded.

an angle � α. We do so by partitioning s into sub-segments, such that for each
sub-segment, the shortest paths are combinatorially identical (i.e., the shortest
paths to the end-points of t have the same set of turning points). This can be
done by computing the shortest path map of the endpoints of t inside its adjacent
region in the simplified trapezoidal map, as in the previous section, and finding
the intersection points of s with the edges of the shortest path maps. Assume
that s is partitioned into such subsegments. Let e be one of the subsegments (see
Fig. 3a). We now want to determine the point on e which has the greatest view
angle to t. Since all points on e have the same combinatorial shortest paths, the
largest angle of view from each point on e towards t is determined by the two
fixed points. These are the first turning points, say p1 and p2, in the shortest
paths from any point in e to the end-points of t. The problem thus reduces to
finding a point on e with the maximum view through p1 and p2. This point is
on the intersection of the smallest circle through p1 and p2 that intersects e.
Therefore, if the circle through p1 and p2 which is tangent to the supporting
line of e, is incident on the segment e itself, then that supporting point on e will
have the largest view. Otherwise, it will be one of the end-points of e. If the view
angle is � α, then add the edge from s∗ to t∗ in Gα. The above procedure is
repeated for each sub-segment of s.

The complexity of shortest path map is O(n) and each edge in the map can in-
tersect at most one segment from S. Therefore, the total number of sub-segments
is O(n). For each sub-segment, the first turning points on the shortest paths to
the end-points of a visible segment can be found in O(log n) time. Given the
turning points, the point with the greatest angle of view can be determined in
O(1) time. Therefore, Gα can be computed in O(n log n) time. For each direction
d ∈ D, let Gd = (V,Ed) be the subgraph of Gα with only edges (s∗, t∗) ∈ E such
that s and t are two facing edges in Td. Obviously Gd is planar and can thus be
stored using O(n) space. Checking whether a pair of vertices is connected by an
edge takes constant time [18]. In order to determine if t is weakly α-visible from
s, we need to verify the existence of edge (s∗, t∗) in Gd for each d ∈ D. This
requires O(1/α) time, which is a constant. �
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4.1 One Arbitrary Query Segment

Next, we want to build a data structure, such that given two query segments
s �∈ S and t ∈ S, we can determine if t is weakly α-visible from s. As part of
the preprocessing, we compute, for each segment t ∈ S, the set of all points in
the plane from which t is α-visible. If t is weakly α-visible from s, then s must
have a point in this set. First, we define the α-visibility region in direction d for
t, as the region containing the points from which t is α-visible and d is inside
the angle of view (see, Fig. 3b).

Lemma 2. For any direction d and the segment t, the boundary of the α-
visibility region, say rt, in direction d for t consists of two monotone curves
with respect to the direction perpendicular to d.

Corollary 1. The α-visibility region for any t ∈ S and for any direction d, does
not contain a hole.

Lemma 3. The total complexity of the α-visibility regions, in direction d, for
all the segments in S, is linear.

Proof. Let c denote the cell in Td associated to t, and let rt denote the α-visibility
region in direction d for t. Obviously, rt ⊆ c. Construct shortest path maps from
the end-points of t inside c. Our first claim is that the boundary of rt intersects
each edge of the shortest path map at most once. By contradiction, as shown
in Fig. 4a, assume that for an end-point of t, say t0, there is an edge e in the
shortest path map of t0, such that the boundary of rt intersects e at least twice.
We can choose two points p, q ∈ e, such that p ∈ rt and q �∈ rt and −→pq points
towards t. Let p1 and p2 be the two extreme points on t visible from p through
its angle of view. Let p1 be closer to t0 than p2. Because p and q are on an edge
of the shortest path map of t0, both are visible from p1. Moreover, p1 is defined
by the intersection of t and the supporting line of e. We know that ∠p1pp2 � α.
Now observe that ∠p1qp2 is greater than ∠p1pp2 and is empty. Therefore, q can
see t with angle � α, and because q ∈ c, it is also in rt, which contradicts the
assumption that q �∈ rt. Therefore, the boundary of rt intersects each edge of
the shortest path map at most once.

s1 = t

s2d

p1 p2

pq

s3

t0 t1

e

r

s1 = t

s2
s3

d

cSPM

p1 p2
s4

s5

i1 i2

Fig. 4. (a) Points p and q are two points on e. p is in the α-visibility region in direction
d for segment t while q is outside the region. (b) Points i1 and i2 are two consecu-
tive points which are the intersections of the α-visibility region, in direction d for the
segment t, with cSPM .
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Consider next the example shown in Fig. 4b. Let i1 and i2 be two consecutive
intersection points of the boundary of rt with the two shortest path maps of
the end-points of t. Then, i1 and i2 are two points on the boundary of a cell,
cSPM , in the overlay of the two shortest path maps. Our second claim is that
the boundary of rt between i1 and i2 has complexity proportional to the size
of cSPM . This holds because there is a combinatorially unique shortest path in
cSPM towards the end-points of t. Therefore, for all points on the boundary of
rt, between i1 and i2, the largest view to t is determined by two fixed points,
say p1 and p2. The set of all points which can see t through p1 and p2, with an
angle � α, are inside, or on the boundary of, the circle through p1, p2 having
inscribed angle α lying on p1p2 clipped by segment p1p2. Hence, the boundary of
rt between i1 and i2 is determined by the intersection of that circle with cSPM .
This intersection has complexity at most 2 ∗ |cSPM | because any edge in cSPM

can be intersected by the circle at most twice. The complexity of rt is equal to
the number of intersections of its boundary with the shortest path maps and
segments of S. Thus, the size of rt is O(|c|). The total complexity of the cells in
Td is linear. Therefore, the total complexity of the α-visibility regions in direction
d, for all the segments, is O(n). �

Lemma 4. The α-visibility region in direction d, for all segments in S, can be
computed in O(n logn) time using O(n) space.

Proof. Let rt denote the α-visibility region in direction d for t. We first compute
Td for S. For each segment t ∈ S, we construct the two shortest path maps
of the end-points of t in the cell c associated to t in Td. Let t0 and t1 be the
end-points of t; let SPM(t0) and SPM(t1) denote the shortest path maps of the
end-points, respectively. By definition, the end-points of t are in rt. We compute
the boundary of rt, by traversing the boundary of c from t0 until we reach t1.
The events are the intersection points of rt with SPM(t0) and SPM(t1) and
the boundary of c. In the first part of rt, the shortest paths to t0 and t1 are two
direct segments. The set of points with this property that can see t with angle at
least α lies inside or on the boundary of a circle through t0 and t1 and on one side
of t. We need to compute the intersections of this circle with c, SPM(t0) and
SPM(t1). The first intersection point with SPM(t0) and SPM(t1) affects one
of the shortest paths. For this shortest path, the last turning point is changed.
Therefore, the circle needs to be updated so that it passes through this point and
the last turning point of the other shortest path. After this update, we continue
with updated paths in a similar manner until we reach t1.
Td can be computed in O(n logn) time. SPM(t0) and SPM(t1) can be com-

puted in O(n) time. Computing the first intersection point of the current circle
with SPM(t0) and SPM(t1) takes time proportional to the complexity of the
current cells in SPM(t0) and SPM(t1). This yields a total time of O(|c|) for all
circles. Computing the intersection points of each circle with c can also be done
in O(|c|) total time as well. Therefore, the α-visibility regions in direction d for
all segments can be computed in O(n logn) time using O(n) space. �
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Theorem 7. We can preprocess S into a data structure of sizeO(n) in O(n log n)
time, such that given two query segments s /∈ S, t ∈ S, their weak α-visibility can
be tested in O(log n) time.

Proof. As before, we first fix a set D of O(1/α) directions with the property
that the angle between any two adjacent directions is at most α. If t is weakly
α-visible from s, then there is a direction d in D, and a point q on s from which
t is α-visible, and q can see t in direction d inside its angle of view. It is easy to
see that q is in the α-visibility region in direction d for t. So the problem reduces
to checking the intersection of s with each of the α-visibility regions computed
for t, with respect to all directions in D.

We compute the α-visibility regions in all directions d ∈ D for all segments
t ∈ S and preprocess each region for ray shooting queries. An α-visibility region
is a bounded, hole-free region and its boundary consists of straight line segments
and circular arcs. Therefore, it is a splinegon and we can use Theorem 2 for ray
shooting queries. Given two query segments s �∈ S and t ∈ S, we first find rt
(the α-visibility region in direction d for t). We need to know if s has any point
in rt. Let s0 and s1 be the end-points of s. We first check whether s0 ∈ rt, but
because the ray shooting algorithm [17] has point location as a basis, we can use
it and determine if s0 ∈ rt. If this is the case, t is α-visible from s0 and weakly
α-visible from s. If s0 �∈ rt, shoot a ray in rt (the splinegon) to find the first
intersection point of the ray originating from s0 in the direction towards s1. If
the intersection point is on s itself, then s intersects rt and therefore t is weakly
α-visible from s, otherwise it is not.

Computing the α-visibility regions for S takes O(n log n) time andO(n) space.
Preprocessing the α-visibility regions for ray shooting queries takes the same time
and space. Point location and ray shooting queries can be performed in O(log n)
time. This estalishes the bound claimed in the theorem. �

4.2 Complete α-Visibility

We want to build a data structure such that given two query segments s, t ∈ S,
we can determine if t is completely α-visible from s. A segment t is completely
α-visible from another segment s if and only if t is α-visible from all points on s.
Note that the complete α-visibility graph is a subgraph of the weak α-visibility
graph, and hence its size is linear. We follow a scheme similar to that in Theorem
6. Here, we need to ensure that the collection of all the points on s that can see
t, with respect to α-visibility, cover whole of s. For this, we employ shortest path
maps of end-points of t. The details are similar to that in Theorem 6.

Theorem 8. We can preprocess S into a data structure of sizeO(n) in O(n log n)
time, such that we can answer complete α-visibility testing queries in O(1) time.
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Abstract. Computing the Fréchet distance for surfaces is a surprisingly
hard problem. We introduce a partial variant of the Fréchet distance
problem, which for given surfaces P and Q asks to compute a surface
R ⊆ Q with minimum Fréchet distance to P . Like the Fréchet distance,
the partial Fréchet distance is NP-hard to compute between terrains
and also between polygons with holes. We restrict P , Q, and R to be
coplanar simple polygons. For this restricted class of surfaces, we develop
a polynomial time algorithm to compute the partial Fréchet distance and
show that such an R ⊆ Q can be computed in polynomial time as well.
This is the first algorithm to address a partial Fréchet distance problem
for surfaces and extends Buchin et al.’s algorithm for computing the
Fréchet distance between simple polygons.

Keywords: Computational Geometry, Shape Matching, Fréchet Dis-
tance.

1 Introduction

The Fréchet distance is a similarity metric for continuous shapes such as curves
and surfaces. It is defined via continuously mapping points between the shapes
while minimizing the maximum distance between mapped points. For two curves,
a popular illustration is to consider a man and a dog continuously walking on one
of the curves each, while being connected by a leash. They can vary their relative
speeds but cannot move backwards. The distance of the curves is the minimum
leash length required for both to walk along these curves. For surfaces, one can
intuitively consider continuously morphing one surface to the other. The “leash”
required by a particular morphing is the maximum distance from any point in
one surface to its morphed image in the other surface. The Fréchet distance is
the smallest leash required by any possible morphing between the surfaces.

While the Fréchet distance between polygonal curves can be computed in
polynomial time [2], computing it between surfaces is much harder. It has been
shown that it is NP-hard to compute the Fréchet distance between a triangle and
a self-intersecting surface [9], as well as between terrains and between polygons
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R

P
Q

Fig. 1. Partial
Fréchet distance
example

with holes [3]. And while in [1] it was shown to be upper semi-
computable, it remains an open question whether the Fréchet
distance between general surfaces is even computable. On the
other hand, in [5] a polynomial time algorithm was given for
computing the Fréchet distance between two simple polygons.
This was the first paper to give any algorithm for computing
the Fréchet distance for a nontrivial class of surfaces and re-
mains the only known approach. This approach has recently
been generalized to folded polygons [6].

While the Fréchet distance compares the entirety of two
surfaces, it is natural to also consider matching all of one sur-
face to some part of the other one. This yields a partial variant
of the Fréchet distance. The notion of partial Fréchet distance
between curves was introduced in [2]. For surfaces, however, partial Fréchet dis-
tance has not been considered to date. We introduce the following partial Fréchet
distance computation problem for simple coplanar polygons. See Section 2 for a
formal definition of partial Fréchet distance for surfaces.

Our definition of partial Fréchet distance is an extension to surfaces of the
one introduced for curves in [2]. Our algorithm is based on the algorithm for
simple polygons [5]. We first identify a set of polygons in Q which are similar to
P but possibly not homeomorphic to it, see Section 3. We next prove that we
can always generate a polygon in this set with Fréchet distance at most ε to P ,
and we give a polynomial time algorithm to find such a polygon, see Section 4.

2 Preliminaries

Let P andQ be two simple coplanar polygons withm and n vertices, respectively.
The Fréchet distance is defined as

δF (P,Q) = inf
σ : P→Q

sup
p∈P

‖p− σ(p)‖

where ‖·‖ is the Euclidean norm and σ ranges over orientation-preserving home-
omorphisms that map each point p ∈ P to an image point q = σ(p) ∈ Q. We
assume that a triangulation for P is given. We refer to the interior triangulation
edges of P as diagonals. We denote the boundary of a simple polygon R by ∂R.
In this work we give a polynomial time algorithm to solve the following partial
Fréchet decision variant.

Definition 1. (Partial Fréchet distance) Given two coplanar triangulated simple
polygons P and Q and some ε > 0, decide whether there exists a simple polygon
R ⊆ Q such that δF (P,R) ≤ ε.

Deciding if a polygon R ⊆ Q exists which P can be mapped to within Fréchet
distance ε requires considering many mappings of the points in P . A natural ap-
proach to decide whether such a mapping exists is to use the free space diagram.
This data structure was introduced to decide if two polygonal curves are within
Fréchet distance ε [2].
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For curves f, g : [0, 1] → Rd and ε ≥ 0, free space is defined as FSε(f, g) =
{(s, t) ∈ [0, 1]2 | ||f(s) − g(t)|| ≤ ε}. The partition of [0, 1]2 into free space
and non-free space is the free space diagram. A monotone path, starting at the
bottom left corner of the free space diagram and traveling entirely through free
space to the top right corner, exists if and only if δF (f, g) ≤ ε.

3 Computing a Valid Set of Neighborhoods

In this section we present an algorithm based on the one by Buchin et al. to
compute the Fréchet distance between simple polygons [5]. Specifically, given
two simple coplanar polygons P and Q and some ε, our algorithm computes
what we refer to as a valid set of neighborhoods which encodes many candidate
polygons in Q to map P to. In Section 4 we prove that among these many,
possibly self-intersecting, polygons there is a simple one which is within Fréchet
distance ε to P .

3.1 Valid Set of Neighborhoods

The simple polygons algorithm uses the free space diagram to map ∂P to ∂Q [5].
All possible mappings can thus be checked with a 2D free space diagram of the
boundary curves, while performing additional checks to ensure that the diagonals
of P are mapped correctly. In our case, ∂P can be mapped to the interior of Q
as well. Therefore, a simple extension to the previous algorithm would be to use
a 3D free space diagram [0, 1] ×Q, in which the x-axis corresponds to ∂P and
the (y, z)-axes correspond to the entire polygon Q, see Figure 2 for an example.
With this modification, the free space diagram once again can account for all
possible mappings of the vertices in ∂P . Let Dε(p) represent the closed L2-disk
of radius ε centered at p.

(a) (b) (c)

QQ

P

p1 p2 p3 p4 p1

d1

Q

(d)

p1 p2 p3 p4 p1

d1

Q

∂P
p4

p1

p2

p3

Fig. 2. (a) Example simple polygons P and Q. (b) There are two neighborhoods around
the vertex p4 but only one around p1. (c) Example 3D free space diagram between ∂P
and Q. (d) Associated with each vertex along ∂P are several neighborhoods in Q.
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Definition 2. (Neighborhood) For a vertex p ∈ P its image point p′ ∈ Q must
be in Dε(p) ∩ Q. We define a neighborhood of a vertex p ∈ P as a maximal
connected subset of Dε(p) ∩Q, see Figure 2(b).

Let SPQ(a, b) denote the shortest path in Q between a and b.

Definition 3. ((Q, ε)-valid set of neighborhoods) Let S = {p1, p2, . . . , pm} be
a sequence of vertices along the boundary of a simple polygon P . Let N =
{N1, N2, . . . , Nm} be a set of neighborhoods where Ni is the chosen neighbor-
hood for vertex pi. Every sequence of vertices S′ = {p′1, p′2, . . . , p′m} with p′i ∈ Ni

defines a mapping from S to S’ by mapping each pi ∈ S to p′i ∈ S′.
The set of neighborhoods N is (Q, ε)-valid if and only if every S′ defines

a mapping such that for all line segments pipj in the triangulation of P the
δF (pipj, SPQ(p

′
ip

′
j)) ≤ ε.

While this definition uses all combinations of points in the set of neighborhoods
the following lemma states that it suffices to check only one set of image points
S′. It follows from the same argument used by Buchin et al. [5] to prove Lemma
11 for diagonals and hourglasses. Instead of having hourglasses between curves
we now have hourglasses between two-dimensional connected sets of points. Due
to lack of space the proof of this is deferred to the full version of the paper.

Lemma 1. The set of neighborhoods N is (Q, ε)-valid if and only if there exists
some S′ which defines a mapping such that for all line segments pipj in the
triangulation of P the δF (pipj , SPQ(p

′
ip

′
j)) ≤ ε.

Given a (Q, ε)-valid set of neighborhoods for a simple polygon P , consider each
triangle T in the triangulation of P . The vertices of T are mapped to points in
Q by some S′ associated with the (Q, ε)-valid set of neighborhoods. Connecting
each pair of mapped vertices with shortest paths in Q yields an image polygon
T ′ in Q. By the definition of a (Q, ε)-valid set of neighborhoods it must be the
case that δF (T, T

′) ≤ ε. Ideally, the union of all such T ′ would yield a polygon
R ⊆ Q such that δF (P,R) ≤ ε. Unfortunately, a pair of image polygons T ′

1 and
T ′
2 in Q may overlap. In such a case the mapping between P and R is not a

homeomorphism and the Fréchet distance of R and P would not be defined.
In Section 4 we show, given a (Q, ε)-valid set of neighborhoods, how to find a
polygon R′ ⊆ Q such that δF (P,R

′) ≤ ε.

3.2 Algorithm and Runtime Analysis

In this section we prove the following theorem.

Theorem 1. Given some ε ≥ 0 and two simple coplanar polygons P and Q
we can compute a (Q, ε)-valid set of neighborhoods in P if such a set exists in
O(m3n) time.

Proof. For all p ∈ P we compute FSε(p,Q). We refer to this as a slice of
FSε(P,Q). A slice consists of all of the neighborhoods of a vertex. Since Q
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contains n vertices, each vertex p ∈ P has at most O(n) neighborhoods associ-
ated with it. We can compute Q ∩Dε(p) in time O(n) for a total of O(mn) for
all of the O(m) slices.

Next, we test whether there exists a path in the free space diagram which
is monotone along ∂P and which starts and ends at the same point in Q. We
do this by repeatedly computing the reachability between pairs of slices of the
free space diagram. This yields a graph which encodes the reachability informa-
tion for the entire free space diagram, specifically, the reachability between the
neighborhoods of the slices. Note that the path through the free space diagram
does not have to be monotone along Q, so reaching any point in a neighborhood
is the same as reaching all points. Thus, a neighborhood is reachable from an-
other neighborhood if and only if some pair of points in them are connected by
a shortest path with Fréchet distance ε to the original line segment in P . We
can decide if the Fréchet distance between a line segment and polygonal curve
is at most ε in O(n) time. To compute the reachability between a pair of slices
we need to do this for all O(n2) pairs of their neighborhoods. We refer to this
as merging slices. In each step we only need to consider the two consecutive
slices being merged, see Figure 3(a),(b). It takes O(m) merges to propagate the
reachability information across the entire free space diagram. Thus the run time
to find a monotone path through the free space diagram is O(n3m).

P

p1

p2 p3

d1

Q

p1

Q

p2

Q

p3

d1

(b)(a)

p2

p4

p1 p2 p3 p4

d1 d3

d5

d2

d4

p5 p6 p7 p8

p6

p8

d1

p1 d2
d4

p5

d5

p7

p3
d3

(d)(c)

Fig. 3. (a) Example portion of a simple polygon P . (b) We examine the slices associated
with each vertex and propagate reachability between the neighborhoods and perform
additional checks for the diagonals. (c) Example simple polygon P . (d) This is the
nesting structure of the diagonals of P where ∂P has been cut open along the line
segment p8p1.

A monotone path through the free space diagram is not sufficient to find a
valid set of neighborhoods since we must also check that the diagonals of P are
within Fréchet distance ε to their respective shortest path image curves. This
adds some additional dependency between the slices of the free space diagram
which we must account for, see Figure 3(b). We account for this in the same way
as Buchin et al. by carefully choosing which order to merge the slices. Specifically,
consider cutting the polygon ∂P open at a point, see Figure 3(c). This yields
a nesting structure for the diagonals of P , see Figure 3(d). Instead of simply
merging the slices left to right along ∂P we merge them from the bottom to the
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top of the nesting. This does not significantly increase the number of merges or
their complexity. Thus the run time is O(n3m). ��

4 Computing a Simple Polygon

In this section we prove that P has a (Q, ε)-valid set of neighborhoods if and
only if there exists a simple polygon R ⊆ Q with δF (P,R) ≤ ε. In particular, we
prove the following theorem.

Theorem 2. There exists a simple polygon R such that δF (P,R) ≤ ε if and
only if P has a (Q, ε)-valid set of neighborhoods. We can compute such a simple
polygon R in time O(m2n).

It is trivial to see that if there exists a simple polygon R ⊆ Q such that
δF (P,R) ≤ ε then P and Q must have a (Q, ε)-valid set of neighborhoods.
By definition, the points in such a simple polygon R would be associated with
a (Q, ε)-valid set of neighborhoods. However, the other direction is non-trivial
to prove and is stated and proven as Theorem 4 in Section 4.2. Interestingly,
proving this requires solving a variant of the constrained embedding problem, the
general version of which was shown to be NP-hard [8,9]. Due to lack of space,
description of our variant as well as the original problem are omitted.

As seen in Section 3.2, we can check whether two simple polygons, P and
Q, have a (Q, ε)-valid set of neighborhoods in time O(m2n). To compute the
partial Fréchet distance of P and Q we need to find the minimum ε such that a
(Q, ε)-valid set of neighborhoods exists. Similar to [5], we can find a set of critical
values for ε and then perform a binary search on them to find the optimal value
of ε. Due to lack of space, discussion of the critical values is deferred to the full
version of the paper. This yields the following theorem.

Theorem 3. The partial Fréchet distance can be computed between simple copla-
nar polygons P with m vertices and Q with n vertices in time O(mn3 log(mn))
where P is mapped to Q.

4.1 Theorem 4 and Related Lemmas

Let Pk be a triangulated planar graph of k vertices in P where a pair of vertices, a
and b, are connected in Pk if and only if the line segment ab is in the triangulation
of P . Let polygon(Pk) be the simple polygon defined by the graph Pk. Let
σ : polygon(Pk) → Q be a mapping and σ[polygon(Pk)] be the resulting image
of polygon(Pk) in Q. In this section we prove the following theorem which yields
the missing direction of Theorem 2 with R = σ[polygon(Pm)].

Theorem 4. Let P and Q be simple coplanar polygons with m and n ver-
tices respectively and for which there exists a (Q, ε)-valid set of neighborhoods.
There exists a homeomorphism σ : polygon(Pk) → Q such that δF (polygon(Pk),
σ[polygon(Pk)]) ≤ ε. We can compute such a mapping in time O(k2n).
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To prove this theorem we use an inductive proof on k. This yields a polynomial
time algorithm to construct σ[polygon(Pm)] iteratively. We map each of the
vertices of P within the neighborhood associated with it in the given (Q, ε)-
valid set of neighborhoods. Thus, at each iteration we map a vertex a in P
to a point a′ in the neighborhood Na. The mapped image, σ[polygon(Pk)], of
polygon(Pk) influences this choice of a

′ since it partially covers Na. Specifically,
the point a′ must be chosen in Na ∩ σ[polygon(Pk)]. We refer to a maximal
connected subset of Na ∩ σ[polygon(Pk)] as region. A neighborhood is divided
into multiple regions and we must choose one region to map a vertex in P to.

Unfortunately, in some cases there are multiple, viable, choices for which re-
gion to map a. The choice of region cannot be made arbitrarily since an image
polygon may be added later which completely covers the chosen region. Natu-
rally, it is computationally expensive to just consider all combinations of regions
for all neighborhoods. Fortunately, we can identify a unique region of a neighbor-
hood which we call the original region and prove the following lemma about it.
The intuitive idea of the original region is that Dε(a) is divided by spikes of ∂P
into multiple preimage regions. The original preimage region is the one which
contains a, see Figure 4(a). The original region is the one which is bounded by
the images of the spikes which bounded the original preimage region, see Figure
4(b). By mapping each point to an image point in its associated original region
we maintain the relative order of points in P in R. Due to lack of space the proof
of this lemma and formal definition of the original region are deferred to the full
version of the paper.

Lemma 2. Given some Pk and image σ[polygon(Pk)]. Let R be the original
region of a vertex a ∈ P . The set R \ σ[polygon(Pk)] is non-empty.

(a)

PREIMAGE:

(b)

IMAGE:

a a
P

R

s1

s′1

O.R.

s2

s′2

Fig. 4. (a) The spike s2 bounds the original preimage region. (b) Likewise the spike s′2
bounds the original region.

In addition, the following lemma restricts the cases which we must consider in
proving Theorem 4. Due to lack of space the proof of this lemma is omitted.

Lemma 3. (Crossing Lemma) Let Q be a simple polygon and let a1b1 and a2b2
be non-crossing line segments embedded in same plane as Q. Let f ′

1 and f ′
2 be

shortest paths in Q such that δF (a1b1, f
′
1) ≤ ε and δF (a2b2, f

′
2) ≤ ε. We refer to

Dε(a1) ∪Dε(b1) as the endpoint portion of a1b1.
If f ′

1 and f ′
2 cross, then either f1 intersects the endpoint portion of a2b2 or f2

intersects the endpoint portion of a1b1.
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4.2 Proof of Theorem 4

The proof proceeds by induction on k. For the base case, choose three vertices
which form a triangle T in P . Add these vertices to Pk. Connect the image points
of the vertices of T in Q by shortest paths in Q. Because they are shortest paths
it must be the case that none of them cross and the image T ′ of T is a simple
polygon. By the definition of a valid set of neighborhoods, the Fréchet distance
between T and the new image polygon T ′ is less than or equal to ε.

For the inductive step, we assume the theorem statement is true for k. We then
show it holds for k+1 by adding a vertex a ∈ P to Pk which forms a triangle in
P with two vertices in Pk. Other than this, the choice of a is arbitrary. We must
choose some vertex a′ in Q to map a to. For every vertex b ∈ Pk where a and b are
adjacent in Pk, we must add an image curve from a′ to b′. It may be that some
these added image curves cross the existing image curves in σ[polygon(Pk)]. Let
d be a line segment whose image curve d′ crosses image curve from a′ to b′. From
Lemma 3, we know one of two cases has occurred. Either the endpoint portion of
ab was crossed by d′ or the endpoint portion of d was crossed by the image curve
from a′ to b′. Because both d′ and b′ were present in σ[polygon(Pk)] which is
assumed to be a simple polygon we do not need to consider the case that Dε(b)
is crossed by d′. In the following two sections we outline a method for avoiding
such crossings. We first describe how to place the point a′. This yields an image
curve from a′ to b′. We next show how to update image curves such as d′ where
the endpoint portion of its preimage d are crosses by the image curve from a′

to b′. By avoiding these two cases we ensure that no crossings occur. Note that
we preprocess Q in time O(n) to allow for shortest path queries in log(n) time
[10,11].

Placement of the New Image Point. We now define how this new image
point a′ of a should be placed. As discussed in Section 4.1, we map a to a point
in the original region. From Lemma 2 we know that a can be mapped to a point
a′ in Q which is not already in σ[polygon(Pk)]. In the worst case σ[polygon(Pk)]
contains O(k) shortest paths each with complexity O(n) for a total complexity
of O(kn). Intersecting Dε(a) with each line segment in each shortest path in
σ[polygon(Pk)] takes time O(kn). Choose a′ in the portion of Dε(a) not covered
by σ[polygon(Pk)]. We then compute the shortest path in Q from a′ to each
point b′ where b′ is the image of some vertex b ∈ Pk and a and b are adjacent in
Pk. In the worst case we compute O(k) shortest paths each of complexity O(n)
for a total of O(kn) time.

Modification of Old Image Points. A new image curve, f , may yet cross the
neighborhoods of other vertices in P . The image points of these vertices need to
be updated if their associated image curves cross the newly added ones. We map
each of these to an image point on the part of f which crosses their neighbor-
hood. Therefore the new image point will also be in the original neighborhood
associated with its preimage by the (Q, ε)-valid set of neighborhoods.

Moving these points changes their shortest paths and thus their associated
image curves. This in turn could cause additional image points to need to be
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updated if they were crossed by the these moved image curves. To avoid this
cascading effect we only update the portion of the old image curve that crosses
f into T ′ while the rest of it remains in place. The point that the old image
curve crossed f serves as a meeting point for these two paths. For an example
see Figure 5. A new image curve f is added and the image curve d′1 for ac = d1
must be collapsed to f . b is the vertex on d which is mapped to the intersection
of d′1 and f . The vertex a is now mapped to a point a′′ on f . The line segment
ab is now mapped to the shortest path between a′′ and b′. The line segment bc
is mapped to the shortest path between b′ and c′. This effectively splits the line
segment d1 into two distinct parts. Fortunately, we can show that each original
line segment in P can be split into at most three pieces. Due to lack of space
the proof of this is deferred to the full version of the paper.

d1
a b c

f
d′1

a′

c′ d′′1a′′

b′

c′

T ′ T ′ T ′

(d)

f

(c)(b)(a)

T ′
b′

Fig. 5. (a) d1 is a line segment of a triangle in Pk. f is an image curve of the new
triangle. (b) d1 was originally mapped to d′1 but after adding the image curve f1 we
need to update its mapping. (c) The part of d′1 crosses f into T ′ can be mapped to f
and the remainder left unchanged to form d′′1 . (d) The portion of σ[polygon(Pk)] that
crosses f into T ′ is collapsed to lie along f .

This method also leads to the portion of σ[polygon(Pk)] which crosses f into
T ′ being collapsed to f while the remainder remains the same. We want it to be
the case that by making arbitrarily small perturbations to all of the moved image
points the associated image curves can made non-intersecting. This is sufficient
since the Fréchet distance is defined as the infimum across all homeomorphisms
and the sub-polygon R can be made into a simple polygon with arbitrarily small
perturbations to its points.

Specifically, we map each vertex a to the point in the intersection between its
neighborhood and f which has the minimum shortest path distance to a from its
previous mapping a′. We can prove that this point is unique. This follows from
simple shortest path properties but due to lack of space the proof is deferred to
the full version of the paper. Likewise, because of the properties of shortest paths
the mappings of these vertices cannot be out of order along f , see Figure 5(d).
This method of morphing along shortest paths is similar to the one explored
in [7].

For every vertex a in σ[polygon(Pk)] we must compute the intersection of the
new curve f with Dε(a). In the worst case the curve f has complexity O(n)
and σ[polygon(Pk)] contains O(k) vertices, all of which need to be updated. The
intersection for a single vertex can be computed in time O(n). As mentioned
before, if a was previously mapped to a′ we want to remap it to the unique point
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a′′ ∈ (f ∩Na) with the minimum length shortest path to a′. We can compute the
length of the shortest path in Q from a′ to some point on f in O(log(n)) time
[10,11]. We can then compute the optimal point a′′ ∈ f in O(log(n)) steps using
binary search for a total runtime of O(log2(n)) with an additional factor O(n)
time to compute associated shortest path in Q between a′ and a′′. Thus a single
point can be updated in time O(n + log2(n) + n) or, more simply, time O(n).
Therefore all O(k) points in σ[polygon(Pk)] can be updated in O(kn) time.

From Lemma 3 we see that if two image curves cross one of their neighbor-
hoods must be crossed by the other image curve. Thus the above update accounts
for all crossings between existing image curves and the added curves. In addition,
since the end points of a line segment, d ∈ P , are still mapped in their original
neighborhoods its shortest path, d′, it must be the case that δF (d, d

′) ≤ ε. Thus,
for some mapping τ , it is the case that δF (polygon(Pk), τ [polygon(Pk)]) ≤ ε.
Following the steps outlined in the above inductive proof yields an algorithm to
compute such a τ in time O(kn). This completes the proof of Theorem 4.

Running the algorithm for allm vertices in P yields a total runtime ofO(m2n).
This completes the proof of Theorem 2.

5 Future Work

For simple polygons not in the same plane it seems like the partial matching
problem could be shown to be approximately decidable by carefully choosing
the distance function used. It would be interesting to see if this method can
be extended to more general settings or classes of surfaces such as those in
[6]. Likewise it may be worth considering different variations of partial Fréchet
distance between surfaces.
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Abstract. We give a polynomial-time approximation scheme for the
unique unit-square coverage problem: given a set of points and a set of
axis-parallel unit squares, both in the plane, we wish to find a subset
of squares that maximizes the number of points contained in exactly
one square in the subset. Erlebach and van Leeuwen (2008) introduced
this problem as the geometric version of the unique coverage problem,
and the best approximation ratio by van Leeuwen (2009) before our work
was 2. Our scheme can be generalized to the budgeted unique unit-square
coverage problem, in which each point has a profit, each square has a
cost, and we wish to maximize the total profit of the uniquely covered
points under the condition that the total cost is at most a given bound.

1 Introduction

Let P be a set of points and D a set of axis-parallel unit squares,1 both in the
plane R2. For a subset C ⊆ D of unit squares, we say that a point p ∈ P is
uniquely covered by C if there is exactly one square in C containing p. In the
unique unit-square coverage problem, we are given a pair 〈P ,D〉 of a set P of
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(b)(a)

Fig. 1. (a) An instance 〈P ,D〉 of the unique unit-square coverage problem and (b) an
optimal solution to 〈P ,D〉, where each square in the optimal solution is hatched and
each uniquely covered point is drawn as a white circle

points and a set D of axis-parallel unit squares as input, and we are asked to find
a subset C ⊆ D that maximizes the number of points uniquely covered by C. For
example, Fig. 1(b) illustrates an optimal solution to the instance in Fig. 1(a).

In a more general setting, in addition to an instance 〈P ,D〉 of the unique unit-
square coverage problem, we are given a non-negative real number B, called the
budget, a non-negative real number profit(p) for each point p ∈ P , called the profit
of p, and a non-negative real number cost(S) for each square S ∈ D, called the
cost of S. In the budgeted unique unit-square coverage problem, we are asked to
find a subset C ⊆ D of total cost at most B such that the total profit of points in
P uniquely covered by C is maximized. The unique unit-square coverage problem
is a specialization of the budgeted unique unit-square coverage problem. To see
this, set profit(p) = 1 for all p ∈ P , cost(S) = 0 for all S ∈ D, and B = 0.

1.1 Past Work and Motivation

Demaine et al. [6] formulated the non-geometric unique coverage problem in
more general setting. They gave a polynomial-time O(log n)-approximation al-
gorithm2 for the non-geometric unique coverage problem, where n is the number
of elements (in the geometric version, n corresponds to the number of points).
Guruswami and Trevisan [10] studied the same problem and its generalization,
which they called the 1-in-k SAT. The unique coverage problem appears in sev-
eral situations. The previous papers [6,10] provide a connection with unlimited-
supply single-minded envy-free pricing. The maximum cut problem can also be
modeled as the unique coverage problem. For detail, see their papers.

The parameterized complexity of the unique coverage problem has also been
studied. Moser et al. [16] proved that the problem is fixed-parameter tractable
when the optimal value is taken as a parameter. Misra et al. [15] later improved
the running time.

2 For notational convenience, throughout the paper, we say that an algorithm for a
maximization problem is α-approximation if it returns a solution with the objective
value APX such that OPT ≤ αAPX, where OPT is the optimal objective value, and
hence α ≥ 1.



26 T. Ito et al.

Motivated by applications from wireless networks, Erlebach and van Leeuwen
[8] studied the geometric versions of the unique coverage problem especially
on unit disks. In the context of wireless networks, each point corresponds to a
customer location, and the center of each disk corresponds to a place where the
provider can build a base station. If several base stations cover a certain customer
location, then the resulting interference might cause this customer to receive no
service at all. Ideally, each customer should be serviced by exactly one base
station. This situation corresponds to the unique unit-disk coverage problem.
They showed that the problem on unit disks is strongly NP-hard, and gave
a polynomial-time 18-approximation algorithm; for the budgeted unique unit-
disk coverage problem, they provided a polynomial-time (18+ ε)-approximation
algorithm for any fixed constant ε > 0 [8].

The unique unit-square coverage problem is an 	∞ variant (or an 	1 variant) of
the unique unit-disk coverage problem. Erlebach and van Leeuwen [8] introduced
the budgeted unique unit-square coverage problem, and gave a polynomial-time
(4+ε)-approximation algorithm for any fixed constant ε > 0. Later, van Leeuwen
[18] gave a proof that the problem on unit squares is also strongly NP-hard, and
improved the approximation ratio to 2 + ε.

Optimization problems on axis-parallel unit squares and unit disks have been
thoroughly studied since Huson and Sen [13]. A seminal paper by Hochbaum
and Maass [11] established the shifting strategy, which has been used to give
a polynomial-time approximation scheme (PTAS) for a lot of problems on unit
squares and unit disks (see [12] for example). However, some problems such as
coloring [5] and dispersion [9] (see also [7]) are APX-hard already for unit disks.
The unique coverage problem is one among the problems for which we know the
NP-hardness, but neither APX-hardness nor a PTAS was known. The existence
of a PTAS for unit squares has been asked by van Leeuwen [18].

1.2 Contribution of the Paper

In this paper, we give the first PTAS for the unique unit-square coverage prob-
lem, and hence we improve the approximation ratio to 1+ε for any fixed constant
ε > 0. The algorithm is generalized to give a PTAS for the budgeted unique unit-
square coverage problem, too.

We employ the well-known shifting strategy, developed by Baker [1] and applied
to the geometric problems by Hochbaum and Maass [11]. Namely, we partition
the whole plane into “ribbons” of height one, and delete the points in every 1 +
�1/ε� ribbons. Then, the instance is divided into several subinstances in which
all points lie in a rectangle of height �1/ε�. We compute optimal solutions to such
subinstances, and take their union. The best among all choices of possible deletions
will be a (1 + ε)-approximate solution. On the other hand, van Leeuwen [18] was
only able to solve a subinstance in a rectangle of height one, and thus only gave a
2-approximation since he removed the points in every two ribbons.

By the strong NP-hardness, we can conclude that there is no fully polynomial-
time approximation scheme unless P = NP [17]; in this sense, a PTAS is the best
approximation algorithm for the problem.
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Due to the page limitation, all proofs are omitted from this extended abstract.

2 Main Result

The following is the main result of the paper.

Theorem 1. For any fixed constant ε > 0, there is a polynomial-time (1 + ε)-
approximation algorithm for the unique unit-square coverage problem.

We are given an instance 〈P ,D〉. Our algorithm consists of two parts. In the
first part, we partition the plane into horizontal ribbons of height 1, and show
that if there is a polynomial-time exact algorithm for the problem restricted
to a constant number of ribbons, then the problem on 〈P ,D〉 admits a PTAS.
As the second part, Section 3 will be devoted to such a polynomial-time exact
algorithm.

A rectangle is axis-parallel if its boundary consists of horizontal and vertical
line segments. Let RW be an (unbounded) axis-parallel rectangle of width W
and height ∞ which properly contains all points in P and all unit squares in D.
We fix the origin of the coordinate system on the left vertical boundary of RW .
For a square S ∈ D, we define the (x, y)-coordinates of S as the coordinates
of the top right corner of S. We can assume without loss of generality that no
horizontal (or vertical) side of a square is on the same line as the horizontal
(resp., vertical) side of another square; otherwise, we can scale and translate the
squares in polynomial time so that this condition is satisfied [18].

We partition the rectangle RW into ribbons Ri = [0,W ]× [i, i+1), i ∈ Z, that
is, each ribbon is a rectangle of width W and height 1. We may assume without
loss of generality that no point in P and no horizontal side of a square in D
is on the same line as the horizontal boundary of any ribbon [18]. Therefore,
every unit square of side length 1 intersects exactly two (consecutive) ribbons.
We may assume that each ribbon in RW contains at least one point in P and
intersects at least one square in D; otherwise, we can simply ignore such ribbons.
We thus deal with only a polynomial number of ribbons. For a set G of ribbons,
we denote by P ∩G the set of all points in P contained in the ribbons in G.

As the first part of our algorithm, we give the following lemma, by applying
the well-known shifting strategy [8,11].

Lemma 1. Let k = �1/ε� be a fixed constant, and suppose that we can obtain an
optimal solution to 〈P ∩ G,D〉 in polynomial time for every set G consisting of
at most k ribbons. Then, we can obtain a (1+ ε)-approximate solution to 〈P ,D〉
in polynomial time.

3 Algorithm for a Constant Number of Ribbons

The following lemma completes the proof of Theorem 1.

Lemma 2. The unique unit-square coverage problem on 〈P ∩ G,D〉 can be op-
timally solved in polynomial time for a set G consisting of at most k ribbons,
where k is a constant.

The proof of Lemma 2 is constructive, namely, we give such an algorithm.
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3.1 Basic Idea of Our Algorithm

Our algorithm employs a dynamic programming approach based on the line-
sweep paradigm. Namely, we look at points and squares from left to right, and
extend the uniquely covered region sequentially. However, adding one square S
at the rightmost position can influence a lot of squares that were already chosen,
and can change the situation drastically (we say that S influences a square S′ if
the region uniquely covered by S′ changes after the addition of S). We therefore
need to keep track of the squares that are possibly influenced by a newly added
square. Unless the number of those squares is bounded by some constant (or
the logarithm of the input size), this approach cannot lead to a polynomial-
time algorithm. Unfortunately, new squares may influence a super-constant (or
super-logarithmic) number of squares.

Instead of adding a square at the rightmost position, we add a square S such
that the number of squares that were already chosen and influenced by S can be
bounded by a constant. Lemmas 3 and 4 state that we can do this for any set of
squares, as long as a trivial condition for the square set to be an optimal solution
is satisfied. Furthermore, such a square can be found in polynomial time.

3.2 Basic Definitions

We may assume without loss of generality that the set G consists of consecutive
ribbons, forming a group; otherwise we can simply solve the problem for each
group, because those groups have pairwise distance more than 1. Suppose that
G consists of k consecutive ribbons Rj+1, Rj+2, . . . , Rj+k in RW , ordered from
bottom to top, for some integer j. If a square can cover points in P ∩G, then it
is totally included in ribbons Rj , Rj+1, . . . , Rj+k+1. For notational convenience,
in the remainder of this section, we assume j = 0 without loss of generality. Note
that the two ribbons R0 and Rk+1 are not in G.

Since no horizontal side of a square is on the same line as the horizontal
boundary of any ribbon, if a square in D intersects G, then it intersects the lower
boundary of exactly one ribbon Ri, i ∈ {1, . . . , k+1}. For each i ∈ {1, . . . , k+1},
we denote by Di ⊆ D the subset of all squares in D intersecting the lower
boundary of Ri. Note that the square sets D1,D2, . . . ,Dk+1 form a partition of
the squares intersecting G. No square in Di intersects any square in Dj with

Ri-1

Ri

Fig. 2. A set C of squares in Di, together with A1(C) (gray), the upper envelope (red)
and the lower envelope (blue). The dotted lines show the lower boundaries of Ri−1, Ri

and Ri+1.
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j ≤ i− 2 or j ≥ i+2. Furthermore, if a square Si in Di intersects a square Si+1

in Di+1 (or a square Si−1 in Di−1), then the intersection Si ∩ Si+1 must be in
Ri (resp., Si−1 ∩ Si must be in Ri−1).

For a square set C ⊆ D, let A0(C), A1(C), A2(C) and A≥3(C) be the areas
covered by no square, exactly one square, exactly two squares, and three or
more squares in C, respectively. Then, each point contained in the area A1(C) is
uniquely covered by C.

3.3 Properties on Square Subsets of Di

In this subsection, we deal with squares only in a set C ⊆ Di and the region
uniquely covered by them. Of course, squares in Di−1 ∪ Di+1 may influence
squares in C; this difficulty will be discussed in Section 3.4.

[Upper and lower envelopes]
Let C ⊆ Di be a square set. Since no horizontal (or vertical) side of a square

is on the same line as the horizontal (resp., vertical) side of another square, we
can partition the boundary of the closure of A1(C) into two types: the boundary
between A0(C) and A1(C); and that between A1(C) and A2(C). We call the former
the outer boundary of C. In Fig. 2, the outer boundary of C is illustrated as (red
or blue) thick lines. We call the outer boundary in Ri (or Ri−1) the upper (resp.,
lower) envelope of C. We say that a square S forms the boundary of an area A
if a part of a side of S is a part of the boundary of the closure of A. Let UE(C)
and LE(C) be the sequences of squares that form the upper and lower envelopes
of C, from right to left, respectively. Note that a square S ∈ C may appear in
both UE(C) and LE(C). An example is shown in Fig. 2.

Consider an arbitrary optimal solution C∗ ⊆ Di to 〈P ∩ (Ri−1 ∪ Ri),Di〉. If
there is a square S ∈ C∗ that is not part of A1(C∗), i.e., S ∩ A1(C∗) = ∅, then
we can simply remove it from C∗ without losing the optimality. Thus, hereafter
we deal with a square set C ⊆ Di such that every square S in C forms the outer
boundary of C, that is, S ∈ UE(C) or S ∈ LE(C) holds. This property enables
us to extend the upper and lower envelopes sequentially.

[Top squares and the key lemma]
When we add a “new” square S to the current square set C \ {S}, we need

to know the symmetric difference of A1(C) and A1(C \ {S}): the area A1(C) \
A1(C \ {S}) ⊆ A1(C) is the uniquely covered area obtained newly by adding S,
and the area A1(C \ {S}) \A1(C) ⊆ A2(C) is the non-uniquely covered area due
to S. However, it suffices to know A1(C \ {S}) \ A1(C) and its boundary since
the boundary of A1(C) \ A1(C \ {S}) is formed only by S and squares forming
the boundary of A1(C \ {S}) \A1(C).

For a square S in a set C ⊆ D, let Δ(C, S) be the area A1(C \ {S}) \ A1(C),
and Δ(C, S) be the set of all squares in C that form the boundary of Δ(C, S).
An example is shown in Fig. 3. Clearly, every square in Δ(C, S) has non-empty
intersection with S. We denote by UΔ(C, S) the set of all squares that form
the boundary of Δ(C, S) ∩Ri, and by LΔ(C, S) the set of all squares that form
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S

Fig. 3. The gray region shows Δ(C, S) for the thick square S

the boundary of Δ(C, S) ∩ Ri−1. As we mentioned in Section 3.1, Δ(C, S) may
contain a super-constant (or super-logarithmic) number of squares if we simply
choose the rightmost square S in C. We will show that, for any square set C ⊆ Di,
there always exists a square S ∈ C such thatΔ(C, S) contains at most 16 squares,
called top squares, and S itself is a top square.

For a square set C ⊆ Di, a square S ∈ C is called a top square of C if one of
the following conditions (i)–(iv) holds:

(i) S is one of the first six squares of UE(C);
(ii) S is one of the first six squares of LE(C);
(iii) S is one of the first two squares of UE(LE(C) \ UE(C)); and
(iv) S is one of the first two squares of LE(UE(C) \ LE(C)).

An example is given in Fig. 4. Remember that the squares in UE(C) and LE(C)
are ordered from right to left. We denote by Top(C) the set of top squares of C.
Note that a square may satisfy more than one of the conditions above; indeed,
there is no square set C ⊆ Di such that |Top(C)| = 16 since the rightmost square
in C always satisfies both (i) and (ii).

A square set T ⊆ Di is feasible on Di if Top(T ) = T . For a feasible square
set T ⊆ Di, we denote by Ci(T ) the set of all square subsets of Di whose top
squares are equal to T , that is,

Ci(T ) = {C ⊆ Di | Top(C) = T }.

(i) (ii)

(iii) (iv)

Fig. 4. An example of top squares. The (blue) thick squares are top squares, and the
numbers correspond to the conditions in the definition.
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A top square S in a feasible set T is said to be stable in T ifΔ(C, S) consists only
of top squares in T for any square set C ∈ Ci(T ). Indeed, stable top squares will
be crucial to our algorithm: if a top square S is stable in a feasible set T ⊆ Di,
then Δ(C, S) contains at most 16 top squares in T for any square set C ∈ Ci(T );
and hence we can compute Δ(C, S) in polynomial time. Therefore, below is the
key lemma for our dynamic programming algorithm.

Lemma 3. For any feasible square set T ⊆ Di, there always exists a top square
K(T ) which is stable in T . Moreover, K(T ) can be found in polynomial time.

Proof (Sketch). We first claim that a square S ∈ T is stable in T if and only if
S′ �∈ Δ(T ∪{S′}, S) holds for every square S′ ∈ Di\T such that Top(T ∪{S′}) =
T . This claim implies that we can check in polynomial time whether a square
S ∈ T is stable in T .

Let S1 be the square in T with the largest x-coordinate. If S1 is stable in T ,
we set K(T ) = S1. Otherwise, the first or the second square in LE(T ) \UE(T )
or in UE(T ) \ LE(T ) is stable in T .

More specifically, consider the case where S1 is not stable in T . Then, there
exists a non-top square S′ ∈ Di \ T such that S′ ∈ Δ(T ∪ {S′}, S) and Top(T ∪
{S′}) = T . If S′ ∈ UΔ(T ∪{S′}, S), then let S2 and S3 be the first and the second
squares in LE(T ) \ UE(T ), respectively. (The case for S′ ∈ LΔ(T ∪ {S′}, S) is
symmetric.) If S3 is in UE(LE(T )\UE(T )), then S2 is stable in T and hence we
set K(T ) = S2. Otherwise, S3 is stable in T and hence we set K(T ) = S3. ��

3.4 Properties on Square Subsets of D
Remember that the ribbons R0, R1, . . . , Rk+1 are ordered from bottom to top,
and that Di is the set of all squares in D intersecting the lower boundary of Ri

for each i ∈ {1, . . . , k + 1}. For a square set C ⊆ D, let Ci = C ∩ Di for each
i ∈ {1, . . . , k+1}. Then, these square sets C1, C2, . . . , Ck+1 form a partition of C.

A square set T ⊆ D is feasible on D if Top(T ∩ Di) = T ∩ Di for each
i ∈ {1, . . . , k + 1}. For a feasible square set T on D and i ∈ {1, . . . , k + 1}, we
denote by Ti = T ∩ Di, and let

C(T ) = {C ⊆ D | Top(Ci) = Ti for each i ∈ {1, . . . , k + 1}}.

We say that Ti is safe for T if Δ(C,K(Ti)) ⊂ T for any square set C ∈ C(T ),
where K(Ti) is the stable top square in Ti which is selected as in the proof of
Lemma 3.

Lemma 4. For any feasible square set T on D, there exists an index q ∈
{1, . . . , k + 1} such that Tq is safe for T .

Proof (Sketch). Let T be a feasible square set on D. Then, for each i ∈ {2, . . . , k},
Ti−1, Ti and Ti+1 are feasible square sets on Di−1, Di and Di+1, respectively.
We say that Ti is safe for Ti+1 if Δ(Ci ∪ Ci+1,K(Ti)) ⊂ Ti ∪ Ti+1 for any square
set C ∈ C(T ). Similarly, we say that Ti is safe for Ti−1 if Δ(Ci−1 ∪ Ci,K(Ti)) ⊂
Ti−1∪Ti for any square set C ∈ C(T ). For notational convenience, let D0 = ∅ and
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Dk+2 = ∅; T1 is always safe for T0; and Tk+1 is always safe for Tk+2. Since each
ribbon is of height 1 and each square is of side length 1, the square K(Ti) ∈ Di

intersects only squares in Di−1 and Di+1. Therefore, for i ∈ {1, . . . , k + 1}, Ti
is safe for T if and only if Ti is safe for both Ti−1 and Ti+1. Thus, it suffices to
show that one of Ti and Ti+1 is safe for the other for each i ∈ {1, . . . , k}. Then,
there exists an index q ∈ {1, . . . , k + 1} such that Tq is safe for both Tq−1 and
Tq+1.

Let C be a square set in C(T ). For each i ∈ {1, . . . , k + 1}, let ux(Ci) be the
x-coordinate of the leftmost point of the area Ri ∩K(Ti) ∩

(
A1(Ci) ∪ A2(Ci)

)
,

while let lx(Ci) be the x-coordinate of the leftmost point of the area Ri−1 ∩
K(Ti) ∩

(
A1(Ci) ∪ A2(Ci)

)
. Since A1(Ci) ∩ S �= ∅ for every square S ∈ Ci, both

ux(Ci) and lx(Ci) are well-defined. Since K(Ti) is stable in Ti, we see that ux(Ci)
is invariant under the choice of C ∈ C(T ). Thus, we also write ux(Ti) to mean
ux(Ci) for any set C ∈ C(T ). The same applies to lx(Ti). We claim that

(a) Ti is safe for Ti+1 if lx(Ti+1) < ux(Ti); and
(b) Ti+1 is safe for Ti if ux(Ti) < lx(Ti+1).

Since no vertical side of a square is on the same line as the vertical side of another
square, ux(Ti) �= lx(Ti+1) for each i ∈ {1, . . . , k}. Therefore, at least one of Ti
and Ti+1 is safe for the other. ��

3.5 Algorithm for the Problem on 〈P ∩ G,D〉
We are now ready to describe our algorithm for the problem on 〈P ∩G,D〉.

For a feasible square set T on D, let f(T ) be the maximum number of points
in P ∩G uniquely covered by a square set in C(T ), that is,

f(T ) = max{profit(P ∩G, C) | C ∈ C(T )},

where profit(P∩G, C) is the number of points in P∩G that are uniquely covered
by C. Then, the optimal value OPT(P ∩G,D) for 〈P ∩G,D〉 can be computed
as

OPT(P ∩G,D) = max{f(T ) | T is feasible on D}.
Since |T | < 16(k + 1), this computation can be done in polynomial time if we
have the values f(T ) for all feasible square sets T on D.

We thus compute f(T ) in polynomial time for all feasible square sets T on
D, according to the “parent-child relation.” For a square set C ⊆ D, we denote
simply by Top(C) =

⋃
1≤i≤k+1 Top(Ci). For a feasible square set T on D, let

K(T ) = K(Tq) where Tq = T ∩ Dq is safe for T . For two feasible square sets T
and T ′ on D, we say that T ′ is a child of T if there exists a square set C ∈ C(T )
such that Top(C \ {K(T )}) = T ′.

Lemma 5. The parent-child relation for the feasible square sets on D can be
constructed in polynomial time. Furthermore, the parent-child relation is acyclic.

We finally give the algorithm that solves the problem on 〈P ∩G,D〉.
For each i ∈ {1, . . . , k + 1}, let D0

i be the square set consisting of the first 16
squares in Di having the smallest x-coordinates. Let D0 =

⋃
1≤i≤k+1D0

i , then
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|D0| ≤ 16(k+1). As the initialization, we first compute f(T ) for all feasible sets
T on D0. Since |D0| is a constant, the total number of feasible sets T on D0 is
also a constant. Therefore, this initialization can be done in polynomial time.

We then compute f(T ) for a feasible square set T on D from the values
f(T ′) for all children T ′ of T . Since the parent-child relation is acyclic, we can
find a feasible square set T such that the values f(T ′) are already computed
for all children T ′ of T . By Lemma 4 there always exists a feasible square set
Tq = T ∩Dq on Dq which is safe for T , and hence by Lemma 3 we have a stable
top square K(T ) = K(Tq) in polynomial time. For a square set C ⊆ D and a
square S ∈ C, we denote by z(C, S) the difference of the number of uniquely
covered points in P ∩ G caused by adding S to C \ {S}, that is, the number of
points in P∩G that are included in S∩A1(C) minus the number of points in P∩G
that are included in S ∩A1(C \ {S}). Since Tq is safe for T and K(T ) = K(Tq),
we have z(T ,K(T )) = z(C,K(T )) for all square sets C ∈ C(T ). Therefore, we
can correctly update f(T ) by

f(T ) := max{f(T ′) | T ′ is a child of T }+ z(T ,K(T )). (1)

This way, the algorithm correctly solves the problem on 〈P∩G,D〉 in polynomial
time.

This completes the proof of Lemma 2. ��

4 Budgeted Version

In this section, we give the following theorem.

Theorem 2. For any fixed constant ε > 0, there is a polynomial-time (1 + ε)-
approximation algorithm for the budgeted unique unit-square coverage problem.

We give a sketch how to adapt the algorithm above to the budgeted unique
unit-square coverage problem. To this end, we first describe the adaptation to
give an optimal solution to 〈P ∩G,D〉 in pseudo-polynomial time when budget,
cost, and profit are all integers.

We keep the same strategy, but for the dynamic programming, we slightly
change the definition of f . In the budgeted version, profit(P , C) means the total
profit of the points in P that are uniquely covered by C, and cost(C) means the
total cost of the squares in C. Let X =

∑
p∈P profit(p), then profit(P , C) ≤ X

for any square set C ⊆ D. For a feasible square set T ⊆ D and an integer x ∈
{0, . . . , X}, let g(T , x) be the minimum total cost of squares in a set C ∈ C(T )
such that the total profit of uniquely covered points in P ∩G by C is at least x,
that is,

g(T , x) = min{cost(C) | C ∈ C(T ) and profit(P ∩G, C) ≥ x}.

If there is no square set C ∈ C(T ) such that profit(P ∩ G, C) ≥ x, then let
g(T , x) = +∞. Then, the optimal value OPT(P∩G,D) for the budgeted version
on 〈P ∩G,D〉 can be computed as

OPT(P ∩G,D) = max{x | 0 ≤ x ≤ X, g(T , x) ≤ B}.
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We proceed along the same way as the algorithm in Section 3.5, except for the
update formula (1) that should be replaced by

g(T , x) :=min{g(T ′, y) | T ′ is a child of T , y + z(T ,K(T )) ≥ x}+ cost(K(T )),

where z(T ,K(T )) means the difference of the total profit of uniquely covered
points in P ∩G caused by adding the square K(T ) to T \{K(T )}. This way, we
obtain an optimal solution to 〈P ∩ G,D〉 for a group G consisting of at most k
consecutive ribbons. Note that the blowup in the running time is only polynomial
in X .

Let R1, R2, . . . , Rt be the ribbons in RW ordered from bottom to top. For each
j ∈ {0, . . . , k}, let Rj

W be the set of groups G1, G2, . . ., each of which consists of
at most k ribbons, obtained from RW by deleting the ribbons Ri if and only if
i = j mod k + 1. We now explain how to obtain a solution to the problem on
〈P ∩Rj

W ,D〉. The adapted algorithm above can solve the problem on each group

Gl in Rj
W , and hence suppose that we have computed g(T , x) for each group Gl

and all integers x ∈ {0, . . . , X}. Then, obtaining a solution to 〈P∩Rj
W ,D〉 can be

regarded as solving an instance of the multiple-choice knapsack problem [4,14].
The multiple-choice knapsack problem can be solved in pseudo-polynomial time
which polynomially depends on X [4,14], and hence we can obtain an optimal
solution to 〈P ∩Rj

W ,D〉, 0 ≤ j ≤ k, in pseudo-polynomial time.
Then, by the standard scale-and-round technique (as used for the ordinary

knapsack problem) [4,14], for any fixed constant ε′ > 0, we obtain a (1 + ε′)-
approximate solution to 〈P ∩ Rj

W ,D〉 for each j ∈ {0, . . . , k}. Overall, we can
obtain such an approximate solution to each of the k + 1 subinstances 〈P ∩
Rj

W ,D〉, 0 ≤ j ≤ k, in polynomial time, and taking the best one gives a PTAS
for the budgeted unique unit-square coverage problem on 〈P ,D〉.

5 Conclusion

The PTAS in this paper combines the well-known shifting strategy [1,11] and a
novel dynamic programming algorithm to solve the problem restricted to regions
of constant height, and answers a question by van Leeuwen [18]. The generality
of the approach enables us to solve the budgeted version, too.

The running time of our PTAS is a polynomial of degree depending on ε. It
is desirable to obtain a PTAS such that the degree of its polynomial running
time does not depend on ε: such a PTAS is called an efficient PTAS (EPTAS).
The existence of an EPTAS would be excluded by showing W[1]-hardness (unless
FPT =W[1]) [2,3], but the unique coverage problem is fixed-parameter tractable
[15,16], thus unlikely to be W[1]-hard. The existence of an EPTAS is left open.
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Abstract. Given a set L of non-parallel lines, a watchman route (tour)
for L is a closed curve contained in the union of the lines in L such that
every point on any line is visible (along a line) from at least one point of
the route; similarly, we define a watchman route (tour) for a connected
set S of line segments. The watchman route problem for a given set of
lines or line segments is to find a shortest watchman route for the input
set, and these problems are natural special cases of the watchman route
problem in multiply connected polygonal domains.

In this paper, we show that the problem of computing a shortest
watchman route for a set of n non-parallel lines in the plane is poly-
nomially tractable, while it becomes NP-hard in 3D. Then, we reprove
NP-hardness of this problem for line segments in the plane and provide
a polynomial-time approximation algorithm with ratio O(log3 n). Addi-
tionally, we consider some special cases of the watchman route problem
on line segments, for which we provide improved approximation or exact
algorithms.

1 Introduction

In 1973, Victor Klee asked for the minimum number of stationary guards that
can watch over all the paintings that hang in a gallery with n walls. The first
answer was given by Chvátal [4], who proved that �n3 � guards are always sufficient
and sometimes necessary to cover a polygon with n vertices. Over the last few
decades, numerous variations of the above art gallery problem have been studied,
including mobile guards, guards with limited visibility or mobility, guarding
special classes of polygons, etc.; see O’Rourke’s monograph [17] and the survey
articles [19,25].

The watchman route problem for polygons has been introduced in [2,3]. A
watchman route in a polygon is a closed curve inside the polygon such that
every point in the polygon is visible from at least one point of the route. For
simple polygons, the shortest route can be found in O(n4 logn) time [5,21],
and a 2-approximation can be computed in linear time [22]. For polygons with
holes the problem is NP-hard [3,7]. An O(log n)-approximation algorithm for the
special case of orthogonal polygons (and orthogonal visibility) has been reported
in [14]. No approximation algorithms are known for the general watchman route
problem in polygons with holes.

F.V. Fomin and P. Kaski (Eds.): SWAT 2012, LNCS 7357, pp. 36–47, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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In this paper, we study a natural special case of the watchman route problem
in polygons with holes. We consider watchman routes for a collection of lines or
for a collection of line segments. One can view the lines or the line segments to be
streets in a city. A watchman route is constrained to lie on the road network, i.e.,
the union of the lines or line segments. A line (or a line segment) can be “seen”
in both directions from any point incident to it, in particular, from any such
vertex of the arrangement of lines (or line segments). Consequently, a watchman
route for a collection of lines (or line segments) is a polygonal route. See Fig. 1
for an illustration.

Fig. 1. A watchman route (in bold) for a set of seven lines (or line segments)

A set of lines L is said to be connected if there exists a path ξ ⊂ ∪l∈Ll from
any point p ∈ l to any other point p′ ∈ l′, for any l, l′ ∈ L. Similarly, we define a
connected set of segments. Observe that a set of lines L is connected if and only
if not all lines are parallel (i.e., there exist two non-parallel lines in L). Formally,
the watchman route problem for lines or line segments in the plane is defined as
follows.

The watchman route problem for lines (WRL): Given a set L of non-
parallel lines in the plane, find a shortest watchman route for L.

The watchman route problem for segments (WRS): Given a connected
set S of line segments in the plane, find a shortest watchman route for S.

To the best of our knowledge, only the WRS problem has been previously consid-
ered for arrangements of axis-aligned segments, so-called grids [26]; this variant
has been introduced by Frank Hoffmann and so has become known as “Frank’s
problem” [12]. Xu and Brass [26] prove the NP-hardness of the WRS problem
by a reduction from the connected vertex cover problem in planar graphs with
maximum degree four. Other variants of the art gallery problem for line segments
have been studied in [1,11,13,16,17,23,24], to mention just a few.

Our Results. In Section 2, we provide a polynomial-time algorithm for comput-
ing a shortest watchman route for a set of n non-parallel lines in the plane, and
show that the watchman route problem for orthogonal lines in 3D is NP-hard.
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Next, in Section 3, we show that the watchman route problem for axis-aligned
line segments in the plane is also NP-hard (with a simpler proof than [26]), and
give an approximation algorithm with ratio O(log3 n) for the case of any con-
nected set of segments in any dimension. Additionally, we then show that an
approximation algorithm with a constant ratio exists for certain special cases
of the watchman route problem for segments, and discuss how to compute an
optimal watchman route for “simple arrangements” of segments and for “almost
simple grids.”

A connected set of lines or segments can be thought of as a polygon with
holes, consisting of very thin corridors. Thus in particular, our result for lines
provides a polynomial time optimal algorithm for the watchman route problem
in a restricted subclass of polygons with holes, while the result for line segments
provides a polynomial time O(log3 n)-approximation algorithm for another wider
subclass of polygons with holes; recall that the approximation algorithm in [14]
applies only to orthogonal polygons with holes, under orthogonal visibility. In
addition, our result for lines shows that some instances of TSP with neighbor-
hoods (TSPN) and with obstacles are polynomially solvable (the obstacles are
the open faces of the input line arrangement), while obviously TSPN with ob-
stacles is generally NP-hard. It is worth mentioning that TSPN for a set of lines
in the plane (with no obstacles) is solvable in polynomial time [6].

Notation. Throughout this paper we use the following notations. If G is a graph
drawn in the plane, and s, t ∈ V (G), let π(s, t) = πG(s, t) denote a shortest path
connecting s and t in G, and let |π(s, t)| denote its length. Next, for a set of
lines L (resp. a set of line segments S), let V (A(L)) (resp. V (A(S))) denote the
set of vertices of the arrangement A(L) (resp. A(S)) formed by the lines in L
(resp. line segments in S). Let G(L) (resp. G(S)) denote the weighted planar
graph with vertex set V (A(L)) (resp. V (A(S))) whose edges connect successive
vertices on the lines in L (resp. the line segments in S); the weight of an edge is
the Euclidean distance between the corresponding vertices along the connecting
line (resp. segment). Finally, for a set of lines L (resp. a set of line segments S),
let OPT (L) (resp. OPT (S)) denote an optimal watchman route for L (resp. S),
and OPT = |OPT (L)| (resp. OPT = |OPT (S)|) be its length.

2 The Watchman Route Problem for Lines

In this section, we first provide a polynomial-time algorithm for computing a
shortest watchman route for a set L of n lines in the plane. Our approach is
based upon a dynamic programming technique. At the end of this section we
shortly discuss the 3D case, namely, we show that the watchman route problem
for lines in 3D becomes NP-hard, even for axis-parallel lines.

2.1 Lines in the Plane

The input is a set L of n lines, not all parallel to each other; otherwise, the line
arrangement is not connected, and no watchman route exists. We can assume
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w.l.o.g. that no line in L is horizontal. Our algorithm is based on the following
crucial observation: Since a watchman route is connected, a line 	 ∈ L intersects
a watchman route R if and only if it intersects the convex hull of R. Thus,
in order to compute an optimal watchman tour OPT (L) for L, we only need
to compute the convex hull of OPT (L). This is done by solving the minimum
convex hull problem, defined as follows (see Fig. 2).

The minimum convex hull problem (MCH): Given a setL of n lines in the
plane, not all parallel, compute a minimum-length cyclic sequence (v1, . . . ,
vh, v1) of vertices vi ∈ V (A(L)) in convex position, such that every line in L
intersects the convex polygon v1, . . . , vh, where the length of (v1, . . . , vh, v1) is

defined to be
∑h

i=1 |π(vi, vi+1)|, with vh+1 = v1.

a) b) c)

Fig. 2. The MCH problem. Observe that there may be two or more optimal solutions
of MCH (left, middle) yielding the same optimal watchman tour (right).

The following lemma formalizes the relationship between the MCH problem and
the watchman route problem for lines (the WRL problem).

Lemma 1. For a set L of (non-parallel) lines in the plane, a solution to the
MCH problem for L yields a solution to the WRL problem for L.

Proof. Let (v1, . . . , vh, v1) be an optimal solution to the MCH problem for L.
Consider the route R that results from the concatenation of the shortest paths
π(v1, v2), . . . , π(vh−1, vh), and π(vh, v1). We claim that R is a shortest watchman
route for L.

First, since each line 	 ∈ L intersects the convex polygon v1, . . . , vh, each line
	 ∈ L must intersect the route R. (Otherwise, a line 	 would separate some
vertex vi from some other vertex vj , without intersecting R — a contradiction
to the connectedness of R.) Thus, R is a watchman route for L.

Note that a cyclic sequence C = (v1, . . . , vh, v1) optimizing MCH, i.e., the
convex polygon Q = v1, . . . , vh, may be strictly contained in the convex hull Q′

of the corresponding route (obtained by using shortest paths to link the vertices
of C); however, in this case, there are multiple optimal solutions to the MCH
problem — Q′ also induces a solution to the MCH problem, with the same
length as C.

Next, consider an optimal route OPT (L), which is a solution to the WRL
problem for L. Since the vertices of OPT (L) are vertices of the arrangement
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A(L), we know that the convex hull CH(OPT (L)) of the route has vertices in
the set V (A(L)). Since each 	 ∈ L intersects the route OPT (L), we know that
each 	 ∈ L also intersects CH(OPT (L)). Thus, the vertices of CH(OPT (L))
form a cyclic sequence of vertices in V (A(L)) that is feasible for the MCH
problem, and the length of this cyclic sequence is exactly the length of OPT (L),
since OPT (L) must use a shortest path to link any two consecutive vertices of
CH(OPT (L)) (otherwise, the route could be shortened while still visiting every
line of L). ��

Observe that there may be several optimal solutions to the MCH problem, all
having the same length but having different sequences of vertices in convex
position, that all correspond to the same optimal tour OPT (L).

Dynamic Programming for the MCH Problem. The goal is to find a
minimum-length cyclic sequence C = (v1, . . . , vh, v1), in convex position, whose
vertices are in V (A(L)), such that every line 	 ∈ L intersects the convex polygon
Q = v1, . . . , vh; recall that the length of (v1, . . . , vh, v1) is defined as∑h

i=1 |π(vi, vi+1)|, with vh+1 = v1.
First, we handle the trivial cases h = 1, 2. It may be that Q is a single point

(h = 1), a vertex of A(L); this is trivial to check, since this happens only if
all lines of L pass through one point. It may be that Q corresponds to a line
segment (h = 2). This case is also trivial to check, since we can enumerate all
pairs {v1, v2} of vertices in V (A(L)), check for each choice whether it is the case
that every 	 ∈ L intersects the (closed) line segment v1v2, and report a pair
having the shortest length |π(v1, v2)|+ |π(v2, v1)| = 2|π(v1, v2)|.

Assume now that h ≥ 3. The algorithm examines all possible choices of the
lowest (minimizing the y-coordinate) vertex of C. Let v1 be such a lowest vertex,
let l1 be the horizontal line through v1, and let h1 be the horizontal half-plane
above l1. Since no line in L is horizontal, l1 /∈ L and all lines in L intersect
the half-plane h1. Next, let m = |V (A(L)) ∩ h1| + 1, and set vm = v1. Let
V1 = (V (A(L)) ∩ h1) ∪ {vm}, and let the vertices v2, . . . , vm−1 ∈ V1 be ordered
according to increasing angle with respect to the leftwards (horizontal) ray from
v1 (in clockwise order around v1). In case of ties, we order vertices by increasing
distance from v1. For this ordering scheme, if C = (v1, vi2 , vi3 , . . . , vm) is a
solution to MCH, we have 1 < i2 < i3 < · · · < m. Consequently, only ordered
pairs (vj , vk) of vertices, where 1 ≤ j < k ≤ m and either j �= 1 or k �= m,
are candidate hull edges for this solution; furthermore, for 1 < j < k < m, we
can restrict ourselves to pairs (vj , vk) for which vj and vk are not collinear with
v1 = vm.

For 1 ≤ j < k ≤ m and either j �= 1 or k �= m, let lj,k denote the oriented
line through vj and vk (oriented from vj to vk), let hj,k denote the (closed) half-
plane on the right of lj,k, and let Cj,k = h1 ∩ hj,k denote the cone that is the
intersection of h1 and hj,k. Finally, let R1,k = {v1} for 1 < k ≤ m, and let Rj,k,
for 1 < j < k ≤ m, denote the (possibly unbounded) closed triangular region
Cj,k ∩ hj,m; see Fig. 3.
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Depending on whether the slope of vjvk is positive or negative, the apex of
the cone Cj,k will lie to the left or to the right, respectively, of v1; the figure
illustrates both cases. Clearly, both Cj,k and Rj,k depend also on the choice of v1;
however, for notational convenience, we omit showing the explicit dependence
— and for the remainder of our algorithm description, we fix a particular choice
of v1; the outer loop of the algorithm iterates over all O(n2) choices of v1.

v1 = vm

vj

vi

vk

h1

hj,k

Rj,k

v1 = vm

vk

vi

vj

h1

hj,k

Rj,k

Fig. 3. SubProblem(v1, vj , vk), 1 ≤ j < k ≤ m, either j �= 1 or k �= m; vi ∈ Rj,k

We say that an (ordered) pair (vj , vk) of vertices in V1, for 1 ≤ j < k ≤ m
and either j �= 1 or k �= m, is eligible if every line 	 ∈ L intersects the cone Cj,k.
If (vj , vk) is not eligible, it does not need to be considered as a candidate edge
of the convex polygon Q that is the desired solution to the MCH problem: there
is some line in L that does not intersect the cone Cj,k, and therefore does not
intersect any convex polygon Q having the edge vjvk, since Q ⊂ Cj,k.

For each eligible pair (vj , vk), SubProblem(v1, vj , vk) is defined as follows (re-
call that 1 ≤ j < k ≤ m and either j �= 1 or k �= m).

SubProblem(v1, vj , vk): Compute a minimum-length convex (right-turning)
chain from v1 to vj such that the chain lies within the region Rj,k and
it intersects every line 	 ∈ Lj,k, where Lj,k denotes the subset of lines 	 ∈ L
that intersect Rj,k but do not intersect the (closed) line segment vjvm. (The
lines in Lj,k are the responsibility of the subproblem to visit; recall that
vm = v1 and notice that L1,k = ∅.)

Next, for an eligible pair (vj , vk), let f(j, k) denote the minimum length of a
chain from v1 to vj that solves SubProblem(v1, vj , vk); if (vj , vk) is not eligible,
then we set f(j, k) =∞. Note that f(1, k) = 0 if (v1, vk) is eligible. Our overall
problem is to find an eligible pair (vj , vm) such that f(j,m) + |π(vj , vm)| is
minimized over all eligible pairs (vj , vm); in such a case, vjvm = vjv1 is the last
edge of the convex polygon Q formed by an optimal cyclic sequence, starting at
v1 and going in the clockwise manner around Q, returning to vm = v1.

The dynamic programming recursion (Bellman equation) is defined as follows.
The base of the recursion is f(1, k) = 0, if (v1, vk) is eligible, and f(1, k) = ∞,
if (v1, vk) is not eligible. Next, for an eligible pair (vj , vk), 1 < j < k ≤ m,

f(j, k) = min
i∈Ij,k

(f(i, j) + |π(vi, vj)|),
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where Ij,k is the set of all indices i with 1 ≤ i < j such that (i) vi ∈ Rj,k

(which enforces convexity of the chain), (ii) (vi, vj) is eligible, and (iii) each line
	 ∈ Lj,k \ Li,j intersects the segment vivj . In particular, note that f(j, k) =
|π(v1, vj)| if Lj,k = ∅ (and (v1, vj) is eligible), so that a one-edge chain from v1
to vj suffices to meet all lines that are the responsibility of the subproblem. And,
if Ij,k = ∅, then f(j, k) = ∞; recall too that we defined f(j, k) = ∞, if (vj , vk)
is not eligible.

We tabulate the values f(i, j) in the clockwise angular order around v1, so
that the values f(i, j), for 1 ≤ i < j < k ≤ m, are known by the time they are
needed to compute f(j, k).

Testing Conditions (i)-(iii). Clearly, condition (i) for our Bellman recursion
can be easily checked in O(1) time per candidate vi. Next, condition (ii) can be
also checked in O(1) time by first pre-computing and tabulating eligibility for
all pairs of vertices (and a fixed choice of v1); for each of the O(n6) choices of
v1, vj , vk, eligibility of (vj , vk) is determined in time O(n) time by testing each
of n lines in L for intersection with Cj,k.

For efficient testing condition (iii) — in O(n2) total time (O(1) time per
candidate vi) — some additional preprocessing must be done (details omitted).

Correctness of the Approach. The correctness proof is based upon the fol-
lowing claim.

Claim. The values of f(j, k) tabulated in solving the recursion are the lengths of
optimal solutions to the corresponding subproblems SubProblem(v1, vj , vk).

This claim follows by induction on the index j < k, for any primarily fixed
1 < k ≤ m. Namely, the claim holds trivially for j = 1, by our definition of
f(1, k). Next, the induction hypothesis is: assume that f(j′, k′) is the minimum
length of a chain solving SubProblem(v1, vj′ , vk′) for all values of 1 ≤ j′ < k′ < k,
having a finite-length solution. Consider now the SubProblem(v1, vj+1, vk), for
j + 1 < k, and let (v1, vj1 , vj2 , . . . , vjN , vj+1) be an optimal (minimum-finite-
length) chain solving the subproblem. In the recursion, we must have consid-
ered the choice vi = vjN , jN ≤ j, the next-to-last vertex on the optimal
chain, and vi must have satisfied conditions (i-iii) in our Bellman recursion.
The subchain (v1, vj1 , vj2 , . . . , vjN ) must be optimal and finite-length for the
SubProblem(v1, vjN , vj+1), and so f(j + 1, k) = f(jN , j + 1) + |π(vjN , vj+1)| —
otherwise, if a shorter feasible chain existed, we could improve upon the chain
(v1, vj1 , vj2 , . . . , vjN , vj+1). Consequently, since 1 ≤ jN < j + 1 < k, the value
f(vjN , vj) for SubProblem(v1, vjN , vj+1) has been correctly computed by the in-
duction hypothesis, and thus the hypothesis continues to hold, and so the claim.
Thereby we have the following theorem.

Theorem 1. The watchman route problem for n lines in the plane can be solved
in O(n8) time.

Proof. We have already given the algorithm and proved correctness above. It
remains to argue that the algorithm can be implemented to run in time O(n8).
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For each of the O(n2) choices of v1, we sort the vertices in O(n2 logn) time, and
then we evaluate f(j, k) for O(n4) pairs (vj , vk). Each evaluation requires consid-
eration of O(n2) choices of vi in evaluating the recursion, with conditions (i)-(iii)
determining Ij,k checkable in time O(1) per vi, after O(n7)-time preprocessing
for computing the lengths of all paths π(vi, vj), determining eligible pairs, and
some additional data (details omitted), yielding overall time O(n8). ��

Half-Lines in the Plane. A natural question arises whether the above ap-
proach can be extended to the watchman route problem for half-lines in the
plane. And, an example depicted in Fig. 4 shows that we cannot simply reduce
this watchman route variation to the problem of determining the minimum-
length cyclic sequence (v1, . . . , vh, v1) such that the convex polygon v1, . . . , vh
intersects all half-lines (and then to concatenate the shortest paths π(v1, v2), . . . ,
π(vh−1, vh), and π(vh, v1)): in this example, while the line segment v1v2 inter-
sects all of the half-lines, the shortest tour π(v1, v2) ∪ π(v2, v1) visiting v1 and
v2 misses the half-line h.

v1

v2

h

Fig. 4. The line segment v1v2 intersects all half-lines, but the shortest tour π(v1, v2)∪
π(v2, v1) visiting v1 and v2 misses the half-line h. The endpoints of the half-lines are
marked with small empty circles.

2.2 The Watchman Route Problem for Lines in 3D

We relate our watchmen route problem to the Geometric Traveling Salesman
Problem (GTSP) [10,18], which can be formulated as the following decision
problem: Given a set of n lattice points in the plane, and a positive integer m,
does there exists a tour of total length at most m that visits all the points? GTSP
is known to be NP-hard with respect to both the L1 and the L2 metric [9,18],
and based upon this result, we obtain the following.

Theorem 2. The watchman route problem for lines (or line segments) in 3D is
NP-hard. The problem remains so even for orthogonal lines (or line segments).

In the next section we consider the watchman route problem for line segments
in the plane. We provide a polylogarithmic approximation algorithm for the
WRS problem, running in polynomial time. The algorithm also applies to the
watchman route problem for lines in 3D.
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3 Segments in the Plane

In this section, we discuss the watchman route problem for line segments in the
plane. In particular, we show the WRS problem to be NP-hard even if segments
are restricted to be axis-aligned (with a simpler proof than [26]). Then we provide
an approximation algorithm with ratio O(log3 n) for the case of any connected
set of segments in any dimension, and show that an approximation algorithm
with a constant ratio exists for certain special cases of the watchman route
problem for segments. Next, we extend our dynamic programming approach
for the watchman route problem for lines in the plane to compute an optimal
watchman route for simple connected sets of line segments in the plane. Finally,
we provide a faster exact algorithm for the WRS problem in almost simple
grids.

3.1 NP-Hardness

Theorem 3. The watchman tour problem for segments in the plane is NP-hard.
The problem remains so even for axis-aligned line segments.

Proof. We adapt the NP-hardness proof of computing a shortest watchman tour
in a polygon with holes [7]; we omit the details.

3.2 Approximation Algorithm

We apply the polylogarithmic approximation algorithm for the group (or “one-
of-a-set”) Steiner tree problem [15]: Given an undirected graph G = (V,E)
with weighted edges and n vertices, and given k subsets of V (called groups
of vertices), find a minimum-weight tree that has at least one vertex from
each of the groups. Fakcharoenphol et al. [8] gave an approximation algorithm
with ratio O(log2 n log k) for general graphs, and to apply this approximation
result to our problem, the graph G = (V,E) is set to the weighted planar
graph G(S) (see Section 1), and groups of vertices correspond to the sets of
intersection points along each of the n input segments; thus, there are k = n
groups. Observe that any watchman route contains a group Steiner tree of lesser
weight; conversely, any group Steiner tree yields (by doubling) a watchman route
for the segments in S. So our algorithm finds a group Steiner tree of small
weight in the planar graph G with respect to the above groups. By doubling
the edges of the resulting tree, a watchman route for S is obtained. Hence,
the approximation algorithm of Fakcharoenphol et al. [8] yields an approxima-
tion ratio O(log2 |V | log k) = O(log3 n); we point out that it applies to any
dimension.

Theorem 4. There is an approximation algorithm with ratio O(log3 n) for com-
puting a shortest watchman route for a connected set of n line segments in Rd,
for any dimension d.
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3.3 Light Segments

In the special case that each line segment s ∈ S has at most a constant number
of intersection points (with other line segments) on s, we apply the result of
Slavik [20]: the group TSP (what Slavik called the “errand scheduling problem”)
has a 3c

2 -approximation algorithm, where c is the maximum size of a group.
(Notice that we do not require that at most a constant number of line segments
may have a point in common).

Theorem 5. Suppose that for each line segment s ∈ S, there are at most c
intersection points on s. Then, there is a polynomial time algorithm for the
watchman route problem with an approximation factor of 3c

2 .

3.4 Simple Arrangements

An arrangement A(S) of line segments is called simple if all the endpoints of the
segments in S lie on the outer face of the arrangement and there exists ε > 0
such that if each segment is extended by ε in both directions, its new endpoints
still lie on the outer face. For example, the arrangement shown in Fig. 5(a) is
simple, while the arrangement shown in Fig. 5(b) is not. Guarding problems on
simple arrangements restricted to axis-aligned segments, called grids, has been
studied in [11,13].

a) b)

s

Fig. 5. (a) A simple arrangement. (b) An arrangement that is not simple, since the
segment s cannot be extended without losing the property that its endpoints lie on the
outer face.

An arrangement A(L) of lines can be thought of as the simple arrangement
of line segments that results from cutting off all the crossings of A(L) (and the
respective subsegments of lines) by a large enough disk. Our dynamic program-
ming extends to the case of simple arrangements of line segments (of arbitrary
orientations).

Theorem 6. The watchman route problem for a simple arrangement of n line
segments in the plane can be solved in polynomial time.
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3.5 Almost Simple Grids

A grid is almost simple if for every grid segment at least one of its endpoints lies
on the outer face of the planar subdivision formed by the grid. Clearly, a simple
grid is almost simple.

Restricting segments to be axis-aligned allows a faster algorithm that com-
putes an optimal watchman route for almost simple grids. Namely, we obtain
the following.

Theorem 7. The watchman route problem for an almost-simple grid with n
segments can be solved in O(n log n) time.

4 Concluding Remarks

We conclude with a few open problems concerning watchman routes in line/half-
line/segment arrangements:

(i) Can the running time of our algorithm for the watchman route problem for
lines in the plane be substantially improved?

(ii) What is the complexity of the watchman route problem for half-lines (rays)
in the plane?

(iii) Can the O(log3 n) approximation factor for segments in the plane be re-
duced?

(iv) What is the complexity of the watchman route problem for an arrangement
of planes in 3D?
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4. Chvátal, V.: A combinatorial theorem in plane geometry. Journal of Combinatorial
Theory, Series B 18, 39–41 (1997)

5. Dror, M., Efrat, A., Lubiw, A., Mitchell, J.S.B.: Touring a sequence of polygons.
In: Proc. 35th Symposium on Theory of Computing, pp. 473–482 (2003)



Watchman Routes for Lines and Segments 47

6. Dumitrescu, A., Mitchell, J.S.B.: Approximation algorithms for TSP with neigh-
borhoods in the plane. Journal of Algorithms 48(1), 135–159 (2003)
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23. Tóth, C.D.: Illumination in the presence of opaque line segments in the plane.
Computational Geometry: Theory and Applications 21(3), 193–204 (2002)
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Abstract. We construct a new proximity graph, called the Pie Delau-
nay graph, on a set of n points which is a super graph of Yao graph
and Euclidean minimum spanning tree (EMST). We efficiently maintain
the Pie Delaunay graph where the points are moving in the plane. We
use the kinetic Pie Delaunay graph to create a kinetic data structure
(KDS) for maintenance of the Yao graph and the EMST on a set of n
moving points in 2-dimensional space. Assuming x and y coordinates of
the points are defined by algebraic functions of at most degree s, the
structure uses O(n) space, O(n log n) preprocessing time, and processes
O(n2λ2s+2(n)βs+2(n)) events for the Yao graph and O(n2λ2s+2(n))
events for the EMST, each in O(log2 n) time. Here, λs(n) = nβs(n)
is the maximum length of Davenport-Schinzel sequences of order s on
n symbols. Our KDS processes nearly cubic events for the EMST which
improves the previous bound O(n4) by Rahmati et al. [1].

Keywords: Euclidean minimum spanning tree, Yao graph, Pie Delau-
nay triangulation, kinetic data structures.

1 Introduction

Investigating geometric problems on moving points, known as kinetic geometric
problems, has been studied extensively in the past decade [2, 3, 4, 5]. In this
setting, the points are moving in the plane and our goal is to show a data
structure maintaining the combinatorial structure of a special attribute during
the motion. We assume that the trajectory of the point pi at time t (pi(t)) is
defined by two polynomial functions of maximum degree s for x and y coordinates
of pi (pi(t) = (xi(t), yi(t))).

In this paper, we present a simple kinetic data structure for maintenance of the
following proximity problems. In Euclidean space, for a set P = {p1, p2, . . . , pn}
of n points, there exists the complete graph G(V,E) where V = P and E is the
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set of edges in the graph such that the weight of each edge is the Euclidean dis-
tance between its two endpoints. An Euclidean minimum spanning tree (EMST)
of G is a connected sub-graph of G where the sum of the weights of its edges
is the minimum possible. The Yao graph [6] of P can be constructed by par-
titioning the plane, for each point, into k wedges with equal angles 2π/k and
connecting each point to the closest point in each of its k wedges. In the rest of
the paper when we talk about the Yao graph it means that k = 6.

We present a KDS for the Yao graph and a new KDS for the EMST which is
an improvement of the previous EMST KDS by Rahmati et al. [1] (our KDS pro-
cesses nearly cubic events but the KDS in [1] processes O(n4) events). Guibas et
al. [7] presented aKDS for Delaunay triangulation based on a circle, and Abam et
al. [2] presented a KDS based on a diamond. There we partition a disk into six
wedges with equal angles which creates six convex shapes; a Delaunay triangu-
lation is then constructed based on each of these wedges. The union of all these
triangulations is a sparse proximity graph. This new proximity graph, which we
call Pie Delaunay graph, is a super graph of the Yao graph and the EMST.

Notation. λs(n) is the maximum length of Davenport-Schinzel sequences of order
s on n symbols. Intuitively, if we have a set of n moving points where the
trajectory of each point is an algebraic function with at most degree s then
the number of changes for the lowest point along the y-axis is λs(n). Here,

βs(n) =
λs(n)

n and α(n) is the Inverse Ackermann function.

Related work. Fu and Lee (1991) [8] proposed the first algorithm for maintenance
the EMST on a set of moving points. The algorithm uses O(sn4 logn) prepro-
cessing time where s is the maximum degree of the algebraic functions defining
the trajectory of the points and uses O(m) space where m is the maximum
number of the changes of the EMST from time t = 0 to t = ∞. At any given
time, the algorithm constructs the EMST in linear time. Agarwal et al.(1998) [9]
proposed an algorithm for a restricted kinetic version of the EMST over a graph
where the distance between each pair of points in the graph is defined by linear
function of time. Processing time of the algorithm for each combinatorial change

of the EMST is O(n
1
2 log

3
2 n).

The kinetic data structure (KDS) framework was introduced by Basch
(1999) [10]. To maintain a special attribute of a set of moving points, a KDS
defines a set of certificates which certify the correctness of the attribute. During
the time when a certificate fails, one must update the value of the attribute and
then, build the new set of certificates to satisfy the correctness of the attribute.
Therefore, it suffices to compute the failure times of these certificates, events,
and put them in an event queue. Whenever the time of the next event in the
queue is equal to the current time, one invokes a repair mechanism to update
the value of the attribute and replace the failed certificate(s) with new valid
one(s). The set of data structures and the update mechanism used to update
these certificates and maintain the attributes is called a KDS. The kinetic data
structure framework has been used for solving many of the geometric problems
in kinetic environments.
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Basch et al. (1999)[11] presented an approximation algorithm for (1 + ε)-

EMST. Their KDS uses O(ε
−(d−1)

2 n logd−1 n) space, O(ε
−(d−1)

2 n logd−1 n) prepro-
cessing time, and processes O(ε−(d−1)n3) events, each in O(logd n) time where d
is the dimension of the points. Recently, Rahmati et al. (2011)[1] improved the
previous result by Fu and Lee [8]. They presented the exact KDS for maintenance
of the EMST on a set of n moving points in 2-dimensional space. They build
a KDS of space O(n) in O(n logn) preprocessing time and their KDS processes
O(n4) events, each in O(log2 n) time.

Our Results. We introduce the Pie Delaunay graph which is a super graph
of Yao graph. Since the set of EMST edges is a subset of the set of
Yao graph edges the Pie Delaunay graph includes the EMST. We maintain
the Pie Delaunay graph which enables us to maintain Yao graph and EMST.
Our KDS uses O(n) space, O(n log n) preprocessing time, and processes
O(n2λs(n)βs+2(n)) events for the Yao graph and O(n2λ2s+2(n)) events for the
EMST, each in O(log2 n) time.

We describe our KDS in two sections. Section 2 contains the construction
of the Pie Delaunay graph and its KDS; the KDS in this section maintains the
Pie Delaunay graph during the motion. Next, we show the application of the
Pie Delaunay graph in Section 3: first we construct the Yao graph and the EMST
and then in Subsection 3.2, we maintain the Yao graph based on the kinetic
Pie Delaunay graph and in Subsection 3.3, we present the kinetic EMST based
on the kinetic Yao graph.

2 Pie Delaunay Graph

In this section, we summarize the construction of the Pie Delaunay graph and
then we present a KDS for it.

2.1 The Construction of the Pie Delaunay Graph

Partition a disk into six wedges σ0, ..., σ5, each of angle π/3 and the origin as
their common apex, where σi spans the orientation [iπ/3, (i + 1)π/3], and call
any translated and scaled copy of σi an i-pie—see Fig. 1. Let P be a set of points
in the plane. We denote the constructed Delaunay triangulation of the point set

Fig. 1. Partitioning a circle into six pies and the 0-pie
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P based on σi by DT i(P ) and define it as follow: For two points p, q ∈ P , the
edge pq is an edge in DT i(P ) if and only if there is an i-pie where p and q
are on its boundary and it does not contain any other points from P . Fig. 2
shows DT 0(P ). In this figure, pq, qr, rp and s1s2 are the edges of DT 0(P )
because for each of these edges there is a 0-pie which dose not contain any other
point from P . The Pie Delaunay graph (DG(P )) is the union of all DT i(P ) for
i = 0, ..., 5. We denote the set of DG(P ) edges by E(DG(P )). Then, pq is an
edge of DG(P ) if and only if it is an edge in DT i(P ) where 0 ≤ i ≤ 5. Each
wedge σi is a convex shape and so, using the approach of [12], its corresponding
Delaunay triangulation DT i(P ) can be constructed (based on σi) in O(n log n)
time. Therefore, we can construct the Pie Delaunay graph in O(n logn) time.

Fig. 2. Delaunay Triangulation based on 0-pie

2.2 Kinetic Pie Delaunay Graph

Given E(DG(P )), we show how to maintain the Pie Delaunay graph with pro-
cessing time O(log n) for each certificate failure.

In our KDS we define two certificates NotInPie and NotInCone. Call the edges
on the boundary of DT i(P ) i-hull edges. Every interior edge pq, which is not an
i-hull edge, is incident to two triangles. Call the two triangles a quadrilateral,
and let r and s be the two other vertices of the quadrilateral. For the convex
shape i-pie that passes through p, q, and r, we have a NotInPie certificate which
certifies that point s is outside of the pie, as shown in Fig. 2. When the certificate
fails, we replace pq by rs. In general, when a corresponding certificate of each
quadrilateral fails, we perform an edge flip.

Each i-pie has three edges. By removing one of the edges and extending the
other two edges a cone can be created, call these cones i-cones, see Fig. 3(a).
An edge pq is an i-hull edge if and only if there exists an i-cone such that p and
q are on its boundary and the i-cone does not contains any other points—see
the edge pq in Fig. 3(b). Each edge pq of the i-hull is incident to at most four
other i-hull edges, call them by ps1, ps2, qs3, qs4, and incident to at most one
triangle. Let r be the third vertex of this triangle if it exists; r can be one of the
si where 0 ≤ i ≤ 4. For the i-cone passing through p and q, we maintain at most
five NotInCone certificates certifying that r and si’s are outside of the i-cone.
Whenever a NotInCone certificate fails we either delete or insert a vertex into
the i-hull and then, we delete or insert an edge into the triangulation.

Thus, when a NotInCone certificate or a NotInPie certificate fails we replace
the invalid certificates with the new valid ones which causes a constant number
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Fig. 3. (a) An i-pie and the three types of cones defined by it. (b) A hull edge pq
corresponds to an i-cone.

of changes to the data structure, because the number of the invalid certificates
is constant. After the updating, we also have to calculate the next failure times
of the new valid certificates and place them in the queue which takes O(log n)
time; the first element of the queue shows the next time that a certificate will
be invalid. Thus, the following lemma results from the above discussion.

Lemma 1. A change in the Pie Delaunay graph happens when a NotInPie cer-
tificate or a NotInCone certificate is invalid. The Pie Delaunay graph can be
maintained kinetically in O(log n) time per event.

Proof. Each edge of the Pie Delaunay graph is either an interior edge or an
external (i-hull) edge. For the interior edge pq there exists an i-pie which p and
q are on its boundary and it does not contain any other points. If we scale the
i-pie such as p and q are on its boundary then a new point (r) will be incident to
the boundary of the i-pie. In this case we need to define a certificate certifying p,
q, and r are on the boundary of the i-pie and it does not contain any other points
from P (NotInPie certificate). Similarly, for the external edge p′q′, we define a
certificate certifying p′ and q′ are on the boundary of an i-cone and it does not
contain any other points (NotInCone certificate). Thus, it satisfies our definition
of the Pie Delaunay graph and for maintenance of the Pie Delaunay graph and
we just need to define two certificates NotInPie and NotInCone.

When one of these events happens we apply a constant number of edge inser-
tions and edge deletions into the Pie Delaunay graph and a constant number of
changes in the event queue. So, we maintain the Pie Delaunay graph kinetically
in O(1) time per each of these events, plus O(log n) time to update the event
queue. �
For a set of n points in the Euclidean plane, Guibas et al. [7] have shown that
the number of the combinatorial changes in the Delaunay triangulation based
on circle is O(n2λs(n)). We have the following theorem about the number of the
combinatorial changes of the DG(P ) which is based on the i-pie.

Theorem 1. The number of all changes (edge insertions and edge deletions) of
the Pie Delaunay graph on a set of n moving points with trajectory of algebraic
function with at most degree s is O(n2λ2s+2(n)).

Proof. The number of convex-edge changes is O(n3) as three points are involved
in any convex change. Since n3 = O(n2λ2s+2(n)), we focus on the number of
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triangle changes in DT i(P ). For each edge pq of a triangle, four different cases
are imaginable as shown in Fig. 4. It is easy to see for any triangle Δ, the case
(a) of Fig. 4 happens to one of its edge. We charge any change to Δ to this edge.
Therefore, we consider the number of the combinatorial changes of DT i(P ) for
an arbitrary edge pq that satisfies case (a) of Fig. 4.

Two edges of an i-pie are line segments and one of them is an arc; call the
line segments by ow1 and ow2. Let Wi be a wedge whose sides are created by
removing the arc w1w2 of i-pie and extending the two line segments; the wedge
Wi is the area between two half-lines −−→ow1 and −−→ow2. Let V(Wi) be the set of all
points in the wedge Wi. In Fig. 4(a), a change for triangle pqr corresponding to
pq happens when for some t ∈ V(Wi), the length of the edge ot becomes smaller
than the length of the edge or.

Note that since the degree of each function describing each point’s motion
is at most s, each point of P except p and q, can be inserted inside the wedge
Wi s times. Summing over all points in P there are O(sn) insertion into V(Wi).
The distance of these points from the apex o creates O(sn) partial functions
with at most degree 2s. The number of the combinatorial changes corresponding
to an arbitrary edge pq equals λ2s+2(sn) which is equal to the number of the
breakpoints in the lower envelope of sn partial functions of at most degree 2s
(Theorem 2.5. [13]). Since the maximum degree s is a constant, λ2s+2(sn) =
O(λ2s+2(n)).

The number of all possible edges is O(n2) and therefore, the number of the
combinatorial changes corresponding to all edges is O(n2λ2s+2(n)).

Besides the above changes for the edge pq, there exist other changes that hap-
pen when a point, such as s passes through the segment op or the segment oq and
enters inside the area opq, see Fig. 4(a). Map each point p = (xp(t), yp(t)) to a
point p′ = (up(t), vp(t)) in a new parametric plane where up(t) = xp(t)+

√
3yp(t)

and vp(t) = xp(t)−
√
3yp(t). Passing the point s through the segment op or the

segment oq means that the point s′ changes its u-coordinate or its v-coordinate
with the u-coordinate or v-coordinate of p′ or q′, call these changes swap-changes.
That is, the number of all swap-changes for all possibles is bounded with the
number of all swaps between points in their ordering with respect to u-axis and
v-axis. The number of the all u-swaps and v-swaps between points is O(sn2). �

Fig. 4. Combinatorial changes for an arbitrary edge pq
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From this discussion, Lemma 1, and the Theorem 1:

Theorem 2. For a set of n points in the plane with the trajectories of algebraic
functions with maximum degree s, the kinetic Pie Delaunay graph uses linear
space and processes O(n2λ2s+2(n)) events, each in O(log n) time.

3 The Applications

In this section we introduce new constructions for the Yao graph and the EMST
and then, we consider the kinetic version of them.

3.1 The Constructions

For each point p ∈ P , partition the plane into k wedges W0(p), ...,Wk−1(p)
of angle 2π/k where p is origin of the wedges and Wi spans the orientation
[2πi/k, 2π(i + 1)/k]. The Yao graph can be constructed by finding the closest
point to p inside the wedge Wi(p) where 0 ≤ i ≤ k − 1. For constructing the
EMST, a version of the Yao graph where k = 6 is needed—we denote it by
YG(P ) and the set of its edges by E(YG(P )). The following lemma shows that
the Pie Delaunay graph is a super graph of the Yao graph.

Lemma 2. E(YG(P )) ⊆ E(DG(P )).

Proof. Let Wi be a wedge whose sides are parallel to the sides of σi. For each
point p, qp is an edge of YG(P ) where q is the closest point to p inside Wi(p),
see Fig. 5. This means that, there is an i-pie where p and q are on its boundary
and it dose not contain any other points of P . Therefore, pq ∈ E(DG(P )) and
so, the Pie Delaunay graph includes the Yao graph. �

Fig. 5. An edge of a Yao graph is an edge of the Pie Delaunay Graph

Denote the EMST edges by E(EMST ). In previous section, we noticed, using the
approach of [12], DG(P ) can be constructed in O(n logn) time. Cardinality of
the E(DG(P )) is O(n) and so, by a trace over the edges incident to each point of
DG(P ), we can construct the YG(P ) in O(n) time. E(EMST ) ⊆ E(YG(P )) [6]
and since the number of edges in E(YG(P )) is linear, the EMST can be con-
structed in O(n log n) time using the Prim or Kruskal algorithm [14, 15] and so,
the following lemma results.

Lemma 3. Using linear space, the Yao graph and the EMST can be constructed
in O(n logn) time.
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3.2 Kinetic Yao Graph

Now, assume the points start moving. To maintain YG(P ) during the motion
we introduce the kinetic tournament tree [4] which is a preliminary tool in the
kinetic data structure framework.

Using a kinetic tournament tree, we can maintain the lowest point among a
set of n moving points along the y-axis. The tournament tree on a set of n points
is a balanced tree with the points stored at its leaves (in an arbitrary order).
An internal node of the tournament tree maintains the lowest point between
two children; the root of the tournament tree maintains the lowest point among
all points. This tournament tree is known as kinetic tournament tree and the
number of changes to the value at the root of the kinetic tournament tree is
λs(n) [3, 10]. We use a kind of tournament structure which supports insertions
and deletions of points (dynamic kinetic tournament tree) [3]. The following
theorem can be concluded from the Theorem 3.1. in [3] and it bounds the total
number of events that may occur while inserting and deleting at most m points,
at arbitrary locations, into a dynamic kinetic tournament.

Theorem 3. A dynamic kinetic tournament, with a sequence of m insertions
and deletions whose maximum size at any time is n (assuming m ≥ n), generates
at most O(mβs+2(n)) events at the root. Processing an update or a tournament
event takes O(log2 n) worst-case time; the tournament on n elements can be
constructed in O(n) time.

Let E(Wi(p)) be the set of edges of the DG(P ) inside the wedge Wi(p) and
incident to the point p. For each wedge Wi(p), we have to maintain the closet
point to p and so, corresponding to each Wi(p) we construct a dynamic kinetic
tournament (DKTi; i = 1, ..., 6n) whose elements are E(Wi(p)). Therefore, at any
time, the root of all dynamic kinetic tournaments are the edges of the Yao graph
and so, the following theorem is resulted.

Theorem 4. The KDS for maintenance of the Yao graph uses O(n) space
with preprocessing time O(n log n), and processes O(n2λ2s+2(n)βs+2(sn)) events,
each in O(log2 n) time.

Proof. We know that Pie Delaunay graph can be constructed in O(n log n) time
and the cardinality of E(DG(P )) is O(n). Each edge of the DG(P ) is inserted
into at most two of the DKTi’s which i = 1, ..., 6n. Let ni be the number of
elements in DKTi. From Theorem 3, the construction time of DKTi on O(ni)
elements is O(ni) and so the construction time over all DKTi’s is O(n). Thus,
the KDS uses linear space with preprocessing time O(n log n).

Let mi be the number of insertions/deletions into the DKTi. From The-
orem 1 we know that Σ6n

i=1mi = O(n2λ2s+2(n)). According to the Theo-
rem 3, the number of all changes at the root of all DKTi for i = 1, ..., 6n is
Σ6n

i=1O(miβs+2(n)) = O(βs+2(n)Σ
6n
i=1mi) = O(n2λ2s+2(n)βs+2(n)) which each

one can be handled in O(log2 n) time. �
In our algorithm, we processed a nearly cubic number of events for maintenance
of the Yao graph but the exact number of changes to the Yao graph is nearly
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square. For linearly moving points in the plane, Katoh et al. [16] showed the
changes to the Yao graph is O(nλ4(n)). In the following theorem we bound the
number of the combinatorial changes of the Yao graph of a set of moving points
with the trajectory of algebraic function of at most degree s.

Theorem 5. The number of all changes in the Yao graph, when the points move
with polynomial trajectory of at most degree s, is O(nλ2s+2(n)).

Proof. For an arbitrary point p ∈ P , each of other points of P can be inserted
inside the wedge Wi(p) s times and so, there exist O(sn) insertion into the wedge
Wi(p). The distance of these points from p creates O(sn) partial functions with
at most degree 2s; the lowest envelope of these partial functions corresponds to
the closest point to p inside the wedge Wi(p). The number of all changes in the
lower envelope of sn partial functions with at most degree 2s corresponding to
the point p is λ2s+2(n) (Theorem 2.5. [13]). Hence, the number of all changes
to the Yao graph on a set of n moving points is O(nλ2s+2(n)). �

3.3 Kinetic EMST

Our approach to maintain the EMST is based on the fact that the edges of the
EMST are a subset of the edges of the Yao graph; A change in the combinatorial
structure of the EMST depends on the orderings of the edge weights of the
Yao graph edges.

Here, we maintain the edges of YG(P ) (which are the root of DKTi where
i = 1, ..., 6n) in a sorted list (LYG) and whenever the ordering of two edges in
this list is changed, we apply the required changes to the EMST. Therefore, we
need to track these changes to update and maintain the EMST of a set of moving
points. In particular, to maintain the EMST there exists two kinds of events that
we should consider:

(a) edge insertion and edge deletion from LYG , and
(b) the change between two consecutive edges in LYG .

In the case (a), as soon as an edge is deleted from LYG the new one is inserted;
both of the deleted edge and the inserted edge are in the same dynamic ki-
netic tournament and have a common endpoint, call them by pq and pr. In this
case, the deleted edge pq can be one of the EMST edges and so, we have to
find a new edge reconstructing the EMST. It’s easy to show that the new edge
reconstructing the EMST is pr.

Now, we consider the case (b). Let path(pi, pj) be the simple path between
pi and pj in the EMST and |e| be the Euclidean length of e. A change in LYG
corresponds to a pair of edges e and e′ in E(YG(P )) where at time t−, |e| < |e′|,
and at time t+, |e| > |e′|. Then, at time t, e may be replaced by e′ in E(EMST).
It is simple to prove the following lemma:

Lemma 4. EMST changes if and only if at time t−, |e| < |e′|, e ∈ E(EMST),
e′ /∈ E(EMST), and e ∈ path(pi, pj) where pi and pj are the end points of e′ and
at time t+, |e| > |e′|.
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Such events can be detected and maintained within O(log n) time per operation
using the link-cut tree data structure of [17].

Theorem 6 below bounds the number of the events of the EMST in our KDS.

Theorem 6. The number of the combinatorial changes of the EMST in our
KDS is O(n2λ2s+2(n)).

Proof. The set of Yao graph edges is a superset of the set of the EMST edges
and any change in the order of the consecutive edges in the sorted list of the
Yao graph edges may change the EMST. Precisely, any change in the Yao graph
causes insertion/deletion into the sorted list and each insertion may causes O(n)
changes in the EMST. The number of all insertions and deletions into the sorted
list LYG is O(nλ2s+2(n)), see Theorem 5, and therefore, in our data structure,
the number of the combinatorial changes of the EMST is O(n2λ2s+2(n)). �
We summarize all results of our KDS in the following theorem.

Theorem 7. For a set of n moving points with polynomial trajectory of at
most degree s, our KDS uses linear space and requires O(n log n) preprocessing
time. The KDS processes O(n2λ2s+2(n)βs+2(n)) events for the Yao graph and
O(n2λ2s+2(n)) events for the EMST and each of these events can be handled in
the worst case time O(log2 n).

4 Conclusion

In the paper, we presented the new proximity graph Pie Delaunay graph and
then we maintained the kinetic data structure for the Yao graph. In our KDS,
we process the number of nearly cubic events for the kinetic Yao graph but the
exact number of the changes in the Yao graph is nearly square and so, finding a
KDS which processes only nearly square events is a future direction.

For kinetic EMST, we handle a nearly cubic upper bound of topological
changes but the tight upper bound is not known. For linearly moving points
in the plane, Katoh et al. [16] proved an upper bound of O(n32α(n)) for the
number of the combinatorial changes of the EMST which was later improved to
O(n8/32α(n) log4/3 n) by combining the results of Chan [18], and Marcus and Tar-
dos [19]. Finding the tight upper bound for the combinatorial changes (events)
of the EMST and finding a KDS for EMST processing the number of sub-cubic
events are other future directions.

Acknowledgments. We thank Valerie King, Frank Ruskey, and Sue Whitesides
for their useful conversations and comments.
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Abstract. We investigate higher-order Voronoi diagrams in the city
metric. This metric is induced by quickest paths in the L1 metric in
the presence of an accelerating transportation network of axis-parallel
line segments. For the structural complexity of kth-order city Voronoi
diagrams of n point sites, we show an upper bound of O(k(n− k) + kc)
and a lower bound of Ω(n+ kc), where c is the complexity of the trans-
portation network. This is quite different from the bound O(k(n − k))
in the Euclidean metric [12]. For the special case where k = n − 1 the
complexity in the Euclidean metric is O(n), while that in the city met-
ric is Θ(nc). Furthermore, we develop an O(k2(n + c) log(n + c))-time
iterative algorithm to compute the kth-order city Voronoi diagram and
an O(nc log2(n+c) log n)-time divide-and-conquer algorithm to compute
the farthest-site city Voronoi diagram.

1 Introduction

In many modern cities, e.g., Manhattan, the layout of the road network resembles
a grid. Most roads are either horizontal or vertical, and thus pedestrians can
move only either horizontally or vertically. Large, modern cities also have a
public transportation network (e.g., bus and rail systems) to ensure easy and
fast travel between two places. Traveling in such cities can be modeled well by
the city metric. This metric is induced by quickest paths in the L1 metric in the
presence of an accelerating transportation network. We assume that the traveling
speed on the transportation network is a given parameter ν > 1. The speed
while traveling off the network is 1. Further, we assume that the transportation
network can be accessed at any point. Then the distance between two points is
the minimum time required to travel between them.

For a given set S of n point sites (i.e., a set of n coordinates) and a transporta-
tion network in the plane, the kth-order city Voronoi diagram Vk(S) partitions
the plane into Voronoi regions such that all points in a Voronoi region share the
same k nearest sites with respect to the city metric.

The kth-order city Voronoi diagram can be used to resolve the following sit-
uation: a pedestrian wants to know the k nearest facilities (e.g., k stores, or k
hospitals) such that he can make a well-informed decision as to which facility
to go to. For this kind of scenario, the kth-order city Voronoi diagram provides
a way to determine the k nearest facilities, by modeling the facilities as point
sites.

F.V. Fomin and P. Kaski (Eds.): SWAT 2012, LNCS 7357, pp. 59–70, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The nearest-site (first-order) city Voronoi diagram has already been well-
studied [1,4,6,11]. Its structural complexity (the size) has been proved to be
O(n + c) [1], where c is the complexity of the transportation network. Such a
Voronoi diagram can be constructed in O((n + c) log(n+ c)) time [6]. However,
to the best of our knowledge there is no existing work regarding kth-order or
farthest-site (i.e., (n− 1)st-order) city Voronoi diagrams.

Contrary to kth-order city Voronoi diagrams, kth-order Euclidean Voronoi
diagrams have been studied extensively for over thirty years. Lee [12] showed
that the structural complexity of kth-order Voronoi diagrams is O(k(n − k)).
Lee also proved that the jth-order Voronoi diagram can be constructed from the
(j−1)st-order Voronoi diagram, and developed an iterative construction method
within O(k2n logn) time and O(k2n) space. Chazelle and Edelsbrunner [7] made
use of geometric duality and arrangements to develop a different algorithm which
requires O(n2 logn + k(n − k) log2 n) time and O(k(n − k)) space or O(n2 +
k(n−k) log2 n) time and O(n2) space. Additionally, there are several randomized
algorithms [2,14]. and on-line algorithms [3,5].

One of the most significant differences between the Euclidean metric and the
city metric that influences the computation and complexity of Voronoi diagrams
is the complexity of a bisector between two points. In the Euclidean or the L1

metric such a bisector has constant complexity, while in the city metric the com-
plexity may be Ω(c) [1] and can even be a closed curve. Since the properties of
a bisector between two points significantly affect the properties of Voronoi dia-
grams, a kth-order city Voronoi diagram can be very different from a Euclidean
one. First, this property makes it non-trivial to apply existing approaches for
constructing Euclidean Voronoi diagrams to the city Voronoi diagrams. Secondly,
this property also indicates that the complexity of kth-order Voronoi diagrams
may depend significantly on the complexity of the transportation network.

In this paper, we derive bounds for the structural complexity of the kth-
order Voronoi diagram and develop algorithms for computing the kth-order city
Voronoi diagram. The remainder of this paper is organized as follows. In Sec-
tion 2, we introduce two important concepts, wavefront propagation [1] and
shortest path maps [6], which are essential for the proofs in the subsequent sec-
tions. In Section 3, we adopt the wavefront propagation to introduce a novel
interpretation of the iterative construction method of Lee [12], and use this
interpretation to derive an upper bound of O(k(n − k) + kc) for the struc-
tural complexity of kth-order city Voronoi diagrams, where c is the complex-
ity of the transportation network. Then, we construct a worst-case example
to obtain a lower bound of Ω(n + kc). Finally, we extend the insights of Sec-
tion 3 to develop an iterative algorithm to compute kth-order city Voronoi di-
agrams in O(k2(n + c) log(n + c)) time (see Section 4). Moreover, we give a
divide-and-conquer approach to compute farthest-site city Voronoi diagrams in
O(nc logn log2(n+ c)) time. We conclude the paper in Section 5.

Due to space constraints many proofs of this paper are missing, but can be
found in the full version [10] of this paper.
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2 Preliminaries

In this section we introduce the notation used throughout this paper for kth-
order city Voronoi diagrams. Then, we introduce two well-established concepts
in the context of Voronoi diagrams, which are important for the proofs in the
subsequent sections.

A transportation network is a planar straight-line graph C = (VC , EC) with
isothetic edges only, i.e., edges that are either horizontal or vertical, and all
transportation edge have identical speed ν > 1. We define c := |VC |, and since
the degree of a vertex in VC is at most four, |EC | is Θ(c). We denote the distance
of two points in the L1 metric by d1 and in the city metric by dC . Similarly, we
denote the bisector between two points by B1 and BC for the L1 and city metric,
respectively. Additionally, for the city metric we define the distance between a
point p ∈ R2 and a set of pointsH ⊂ R2 to be dC(p,H) = maxq∈H dC(p,H). This
allows us to define the bisector BC(H1, H2) = {r ∈ R2 | dC(r,H1) = dC(r,H2)}
between two sets of points H1 and H2.

By Vk(H,S) we denote a Voronoi region of Vk(S) associated with a k-element
subset H ⊂ S. The common boundary between two adjacent Voronoi regions
Vk(H1, S) and Vk(H2, S) is called a Voronoi edge. This Voronoi edge is a part
of BC(H1, H2) = BC(p, q) where H1 \ H2 = {p} and H2 \ H1 = {q} [12]. The
common intersection among more than two Voronoi regions is called a Voronoi
vertex. Without loss of generality, we assume that no point in the plane is equidis-
tant from four sites in S with respect to the city metric, ensuring that the degree
of a Voronoi vertex is exactly three.

Wavefront Propagation. The wavefront propagation is a well-established
model to define Voronoi diagrams [1]. In Section 3, we will use this concept
to interpret the formation of Vk(S) and analyze its structural complexity.

For a fixed site p ∈ S, let Wp(x) = {q | q ∈ R2, dC(p, q) = x}. This means
that for a fixed x ∈ R+

0 the wavefront Wp(x) is the circle centered at p with
radius x. We call p the source of Wp(x). Note that we can view Wp(x) as the
wavefront at time x of the wave that originated in p at time 0. We refer to such
a wavefront as Wp if the value of x is unimportant.

Initially, the wavefront Wp is a diamond. When it touches a part of the trans-
portation network for the first time it changes its propagation speed and, hence
its shape; see Fig. 1. Certain points on the transportation network play an im-
portant role to determine the structural complexity of kth-order city Voronoi
diagrams. Thus, we introduce the following definitions. For a point v ∈ R2, let
P (v) denote the isothetic projection of v onto the transportation network, i.e., we
shoot an isothetic half-ray starting at v in each of the four directions and for each
half-ray we add its first intersection with an edge of the transportation network
to P (v). It is easy to see that there are at most four such intersections. For a set
X ⊂ R2, we denote the isothetic projection of the set X as P(X) =

⋃
v∈X P (v).

For a site p ∈ S, we call the set A(p) = P (p)∪VC ∪P(VC)∪{p} activation points
(we added {p} to the list for ease of argumentation in some of our proofs).
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Fig. 1. Wavefront Propagation
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Fig. 3. (a) A 2-needle is two 1-needles. (b) Wavefront propagation of a 1-needle. (c)
B1(ηp(p1), ηq(q1)).

As shown by Aichholzer et al. [1], the wavefront Wp changes its propagation
speed only if it hits a vertex in A(p). Since the shape of Wp can become very
complex after it hits multiple activation points, we make the following simplifica-
tion for the remainder of this paper: if a wavefront Wp touches a point q ∈ A(p)
we do not change the propagation speed of Wp. Instead, we start a new wave-
front at q, which, in turn, starts new wavefronts at points in A(p) if it reaches
them earlier than any other wavefront. Hereafter, the start of the propagation
of a new wavefront is called an activation event, or we say a wavefront is acti-
vated. The shape of such a new wavefront depends on the position of q on the
transportation network. It can be categorized into one of three different shapes:
1-needle, 2-needle, and 3-needle [1] (see Fig. 2). To simplify things, we treat a
2-needle (3-needle) as two (three) 1-needles (see Fig. 3(a)).

When a 1-needle reaches the end of the corresponding network segment, as
shown in Fig. 3(b), its shape changes (permanently) [1]. In order to interpret the
propagation of a 1-needle, Bae et al. [6] introduced a structure called needle. A
needle ηp(q, q

′) is a network segment qq′ with weight dC(p, q), where p ∈ S and
q, q′ ∈ A(p). Propagating a wavefront from ηp(q, q

′) is equivalent to propagating
a 1-needle from q on the network segment qq′ at time dC(p, q). If q

′ is obvious or
unimportantwemay refer to ηp(q, q

′) asηp(q).Bae et al. also defined theL1 distance
d1(ηp(q, q

′), r) between a needle ηp(q, q
′) and a point r as dC(p, q) plus the length of

a quickest path from q to r accelerated by qq′. Thus, the bisectorB1(ηp(p1), ηq(q1))
between two needles ηp(p1) and ηq(q1) is well defined (see Fig. 3(c)).
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Shortest Path Map. We use the wavefront model to define shortest path maps
[6], and use this concept to explain the formation of mixed vertices in Section 3.1,
which are important for deriving the structural complexity of the kth-order city
Voronoi diagram.

For a site p ∈ S its shortest path map SPMp is a planar subdivision that
can be obtained as follows: start by propagating a wavefront from the site p.
When a point q ∈ A(p) is touched for the first time by a wavefront, prop-
agate an additional wavefront from ηp(q). Eventually, each point r ∈ R2 is
touched for the first time by a wavefront propagated from a needle ηp(q), where
q ∈ A(p) and d1(r, ηp(q)) = minq′∈A(p)d1(r, ηp(q

′)), and q is called the prede-
cessor of r. This induces SPMp. In detail, SPMp partitions the plane into
at most |A(p)| = O(c) regions SPMp(q) such that all points r ∈ SPMp(q)
share the same predecessor q and q is on a quickest path from p to r, i.e.,
dC(p, r) = dC(p, q) + dC(q, r) = d1(r, ηp(q)). As proved in [6], the common edge
between SPMp(q) and SPMp(q

′) where q, q′ ∈ A(p) belongs to the bisector
B1(ηp(q), ηp(q

′)). Fig. 4 illustrates an example of the function of shortest path
maps where the two Voronoi regions of V1({p, q}) are partitioned by SPMp and
SPMq, respectively.

3 Complexity

In this section we derive an upper and a lower bound of the structural complexity
of the kth-order city Voronoi diagram Vk(S). In Section 3.1, we first introduce
a special degree-2 vertex on a Voronoi edge called mixed vertex which is similar
to the mixed Voronoi vertices of Cheong et al. [8] for farthest-polygon Voronoi
diagrams. Then we derive an upper bound of the structural complexity of Vk(S)
in terms of the number of mixed vertices and Voronoi regions. In Section 3.2, we
adopt the wavefront concept to introduce a new interpretation for the iterative
construction of Vk(S) by Lee [12]. This yields an upper bound for the structural
complexity of Vk(S). In Section 3.3 we construct a worst-case example to obtain
a lower bound for the structural complexity of Vk(S).

3.1 Mixed Vertices

Definition 1 (Mixed Vertex). For two sites p, q ∈ S and a Voronoi edge e
which is part of BC(p, q), a point r on e is a mixed vertex if there are p1, p2 ∈
A(p) and q1 ∈ A(q) such that r ∈ SPMp(p1) ∩ SPMp(p2) ∩ SPMq(q1).

For instance, Fig. 4 shows a first-order city Voronoi diagram V1({p, q}), where
the mixed vertices are marked with a square and denoted by m1, . . . ,m4. The
vertexm2 is a mixed vertex because it is in SPMp(p1)∩SPMp(p2)∩SPMq(q1).
Definition 1 yields the following.

Lemma 1. If a Voronoi edge e contains m ≥ 0 mixed vertices, its complexity is
O(m+ 1).
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Lemma 2. An upper bound for the structural complexity of a kth-order city
Voronoi diagram Vk(S) is O(M + k(n − k)), where M is the total number of
mixed vertices.

Proof. Lee [12] proved that the number of Voronoi regions in the kth-order
Voronoi diagram is O(k(n − k)) in any distance metric satisfying the triangle
inequality, and so is the number of Voronoi edges. By Lemma 1, if a Voronoi
edge e contains me mixed Voronoi vertices, its complexity is O(me+1). Suppose
a city Voronoi diagram Vk(S) contains a set E of Voronoi edges, and each edge
e ∈ E contains me mixed Voronoi vertices. Then, the complexity of all edges,
i.e., the structural complexity of Vk(S), is

∑
e∈E O(me+1) = O(M + |E|). Since

|E| = O(k(n− k)), it follows that O(M + |E|) = O(M + k(n− k)). ��

For the proof in Section 3.2, we further categorize the mixed vertices. Let m be
a mixed vertex on the Voronoi edge between Vk(H1, S) and Vk(H2, S), where
H1 \ H2 = {p} and H2 \ H1 = {q}. We call m an interior mixed vertex of
Vk(H1, S) if m ∈ SPMp(p1) ∩ SPMp(p2) ∩ SPMq(q1), for some p1, p2 ∈ A(p)
and q1 ∈ A(q); otherwise, we call m an exterior mixed vertex of Vk(H1, S). For
example, in Fig.4 the vertices m2 and m4 both are interior mixed vertices of
V1({p}, {p, q}) and exterior mixed vertices of V1({q}, {p, q}).

3.2 Upper Bound

SPMp(p1)
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′
2)
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1)
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q2 q′2
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′
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′
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m3

v3
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Fig. 4. BC(p, q) (solid thin edge), where
m1, . . . ,m4 are mixed vertices

Throughout this subsection, we con-
sider a Voronoi region Vj(H,S) of
a jth-order Voronoi diagram Vj(S),
where H ⊂ S and |H | = j. Let
Vj(H,S) have hH adjacent Voronoi
regions Vj(Hi, S) for 1 ≤ i ≤ hH .
Note that the subsets Hi and H dif-
fer in exactly one element [12]. In the
following let Hi \ H = {qi}, Q =
{q1, . . . , qhH}, and �H = |Q|.

Lee [12] proved that in any distance
metric satisfying the triangle inequal-
ity, Vj(H,S) ∩ V1(Q) = Vj(H,S) ∩
Vj+1(S), and thus computing V1(Q)
for all the Voronoi regions Vj(H,S) of
Vj(S) yields Vj+1(S), leading to an it-
erative construction for Vk(S) for any
k < n. Fig. 5 illustrates this iteration
technique for the Euclidean metric: solid segments form V1(H,S) and dashed
segments form V1(Q). Since the gray region is part of V1({p}, S) and also part
of V1({q1}, Q), all points in the gray region share the same two nearest sites p
and q1, implying that the gray region is part of V2({p, q1}, S).

We adopt wavefront propagation to interpret this iterative construction in a
new way, which will lead to the main proof of this section. Let us imagine that a
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Fig. 5. V1(H,S) ∩ V1(Q) = V1(H,S) ∩
V2(S) where H = {p}, Q = {q1, . . . , q6},
and S = H ∪Q

p1

p2

q1

q2

q3
q4

e1

e2
e3

e4

e5
e6

Fig. 6. V2(H,S) where H = {p1, p2},
Q = {q1, q2, q3, q4}, and S = H ∪Q

wavefront is propagated from each site q ∈ Q into the Voronoi region Vj(H,S).
If a point r ∈ R2 is first touched by the wavefront that propagated from q, r
belongs to Vj+1(H ∪ {q}, S).

Note that when j ≥ 2, |Q| is not necessarily the number of adjacent regions,
i.e., �H ≤ hH . Fig. 6 illustrates an example for the Euclidean metric: V2(H,S)
has 6 adjacent Voronoi regions but |Q| = �H is only 4. This is because for
a site q ∈ Q, B2({q}, H) ∩ Vj(H,S) may consist of more than one Voronoi
edge, where B2({q}, H) is a Euclidean bisector between {q} and H (similar
to BC(H1, H2) defined in Section 2). For instance, as shown in Fig. 6, eq1 =
B2({q1}, H) ∩ V2(H,S) consists of two Voronoi edges e1 and e2.

Now we transfer our interpretation to the city metric. Let eq be BC({q}, H)∩
Vj(H,S) for some site q ∈ Q. If eq contains mq exterior mixed vertices with
respect to Vj(H,S), eq intersects mq + 1 regions in SPMq. We denote these
regions by SPMq(vz) for 1 ≤ z ≤ mq +1. All vz must be in A(q). Then, instead
of propagating a single wavefront from q into Vj(H,S) (as in the Euclidean
metric), we propagate mq + 1 wavefronts, one from each ηq(vz) into Vj(H,S).

As a result, if Vj(H,S) contains mH exterior mixed vertices, mH + �H wave-
fronts will be propagated into Vj(H,S). During the process, when a point
r ∈ Vj(H,S) is first touched by a wavefront propagated from ηq(v), q ∈
Q and v ∈ A(q), we propagate a new wavefront from ηq(r), i.e., an activation
event occurs, if (i) r ∈ P(VC) ∪ VC or (ii) v = q and r ∈ P (q). These two condi-
tions amount to r ∈ A(q) \ {q}, but this classification will help us to derive the
number of mixed vertices. This is due to the fact that during the k−1 iterations
for computing Vj+1(S) from Vj(S) for 1 ≤ j ≤ k − 1, P(VC) contributes O(kc)
activation events, but P(S) only contributes O(n).

Lemma 3. If Vj(H,S) contains mH exterior mixed vertices, then Vj(H,S) ∩
Vj+1(S) contains at most mH+2cH+2aH mixed vertices, where cH = |(P(VC)∪
VC)∩Vj(H,S)| and aH is the number of activation events associated with points
in P(S).
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Proof. According to the above discussion, we propagatemH+�H wavefronts into
Vj(H,S). All those wavefronts combined generate at most cH new wavefronts
from points in P(VC) ∩ Vj(H,S), and aH new wavefronts from points in P(S)∩
Vj(H,S). Note that cH = |(P(VC) ∪ VC) ∩ Vj(H,S)| (condition (i)) but aH ≤
|P(S) ∩ Vj(H,S)| (condition (ii)) Let W be the set of the mH + �H + cH + aH
wavefronts. For each point r ∈ Vj(H,S), if r is first touched by a wavefront
w ∈W it is associated with w. This will partition Vj(H,S) intomH+�H+cH+aH
regions. We view those regions as a special Voronoi diagram V1(W ). Note that
mH + �H of those regions are unbounded.

Vj(H,S) ∩ Vj+1(S) is a subgraph of V1(W ) since if a point r ∈ Vj(H,S)
is first touched by a wavefront in W propagated from ηq(v), r belongs to
Vj+1(H ∪ {q}, S). Without loss of generality, we assume every vertex of V1(W )
has degree 3. According to Euler’s formula it holds that NV = 2(NR − 1)−NU ,
where NV , NR and NU are the numbers of vertices, regions, and unbounded
regions, respectively. Since V1(W ) contains mH + �H unbounded regions and
mH + �H + cH + aH bounded regions, V1(W ) contains mH + �H + 2cH +
2aH − 2 vertices. By [12], since |Q| = �H , there are �H − 2 Voronoi ver-
tices in Vj+1(S) ∩ Vj(H,S). Therefore, Vj(H,S) ∩ Vj+1(S) contains at most
(mH + �H + 2cH + 2aH − 2)− (�H − 2) = mH + 2cH + 2aH mixed vertices. ��

Applying Lemma 3 to each region of Vj(S), yields a recursive formula for the
total number of mixed vertices mj+1 in Vj+1(S): mj+1 = mj + O(c) + aj (see
Lemma 4). In Lemma 5 we show that this formula can be bounded by O(n+kc)
for k iterations of this iterative approach. Finally, in Theorem 1 we combine the
insights of Lemma 2 and Lemma 5 to give an upper bound for the structural
complexity of Vk(S).

Lemma 4. Vj+1(S) contains mj + O(c) + 2aj mixed vertices where mj is the
number of mixed vertices of Vj(S) and aj is the number of activation events
associated with points in P(S) during the computation of Vj+1(S) from Vj(S).

Lemma 5. The number of mixed vertices of Vk(S) is O(n+ kc).

Theorem 1. The structural complexity of Vk(S) is O(k(n− k) + kc).

3.3 Lower Bound

We construct a worst-case example (see Fig. 7) to derive a lower bound for the
structural complexity of the kth-order city Voronoi diagram Vk(S). The example
consists of a left part and a right part which are placed with a sufficiently large
distance between them. We place one vertical network segment in the left part
and build a stairlike transportation network in the right part. Then, we place
k + 1 sites in the right part and the remaining n − k − 1 sites in the left part.
Since the distance between the left and right part is extremely large, the n−k−1
sites in the left part hardly influence the formation of Vk(S) in the right part.
Therefore, Vk(S) in the right part forms the farthest-site city Voronoi diagram
of the k + 1 sites, because sharing the same k nearest sites among k + 1 sites is
equivalent to sharing the same farthest site among the k + 1 sites.
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s1

s2

s3

s4

Fig. 7. This worst-case example (here with
k = 3, n = 12, c = 18) leads to a lower
bound ofΩ(n+kc). The bold solid segments
depict the transportation network, and the
dashed segments compose Vk(S). The right
part is also the farthest-site city Voronoi
diagram of {s1, s2, s3, s4}, where all points
in Region i share the same farthest site si.

By construction, as shown in the
right part of Fig. 7, all the points
in Region i share the same farthest
site si. Since we can set the speed
ν to be large enough, for each point
x in Region 2, the shortest path be-
tween x and s1 (s2) moves along the
transportation network counterclock-
wise, and thus dC(s2, x) > dC(s1, x).
The common Voronoi edge between
Regions i and (i+1) contains at least
( c−2

4 −1)·2+1 (here: 7) segments since
the transportation network forms c−2

4
rectangles and each rectangle except
the first one contains two vertices of
the Voronoi edge. Therefore, in the
right part, Vk(S) contains at least (k−
1) c−6

2 = Ω(kc) segments. Together
with the Ω(n− k) in the left part, we
obtain the following lower bound.

Theorem 2. The structural complexity of Vk(S) is Ω(n+ kc).

4 Algorithms

In this section we present an iterative algorithm to compute kth-order city
Voronoi diagrams in O(k2(n + c) log(n + c)) time. Its main idea has already
been introduced in the complexity considerations in Section 3.2. For the spe-
cial case of the farthest-site Voronoi diagram, i.e., the (n − 1)st-order Voronoi
diagram, this algorithm takes O(n2(n + c) log(n + c)) time. However, for the
farthest-site city Voronoi diagram we present a divide-and-conquer algorithm
which requires only O(nc log2(n+ c) log n) time.

4.1 Iterative Algorithm for kth-Order City Voronoi Diagrams

We describe an algorithm to compute kth-order city Voronoi diagrams Vk(S)
based on the ideas in Section 3.2 and Bae et al.’s [6] O((n + c) log(n+ c))-time
algorithm for the first-order city Voronoi diagram V1(S). Bae et al.’s approach
views each point site in S as a needle with zero-weight and zero-length, and
simulates the wavefront propagation from those needles to compute V1(S). Since
their approach can handle general needles, we adopt it to simulate the wavefront
propagation of Section 3.2 to compute Vj+1(S) from Vj(S).

Algorithm. We give the description of our algorithm for a single Voronoi region
Vj(H,S). All four steps have to be repeated for each Voronoi region of Vj(S).
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Let Vj(H,S) have h adjacent regions Vj(Hi, S) with Hi \ H = {qi} for 1 ≤
i ≤ h and let Q =

⋃
1≤i≤h qi. Our algorithm computes Vj(H,S) ∩ Vj+1(S) as

follows:

1. Compute a new set N of sites (needles): For 1 ≤ i ≤ h, if the Voronoi edge
between Vj(Hi, S) and Vj(H,S) intersect mi regions SPMqi(vz) in SPMqi ,
1 ≤ z ≤ mi, insert every ηqi(vz) into N .

2. Construct a new transportation network CH from C: For each point v ∈
(P(VC) ∪ P(Q) ∪ VC) ∩ Vj(H,S), if v is located on an edge e of C, insert e
into CH .

3. Perform Bae et al.’s wavefront-based approach to compute V1(N) under
the new transportation network CH . The approach can intrinsically handle
needles as weighted sites.

4. Determine Vj(H,S)∩Vj+1(S) from V1(N): Consider each edge e in Vj(H,S)∩
V1(N). Let e be an edge between V1(ηp(vp), N) and V1(ηq(vq), N) where
p, q ∈ S, vp ∈ A(p) and vq ∈ A(q). If p �= q, then e ∩ Vj(H,S) is part of
Vj(H,S) ∩ Vj+1(S).

Note that Step 2 is used only to reduce the runtime of the algorithm. Lemma 6
shows the correctness and the run time of this algorithm for a single Voronoi
region.

Lemma 6. Vj(H,S) ∩ Vj+1(S) can be computed in O((h+m+ cH) log(n+ c))
time, where h is the number of Voronoi edges, m is the number of mixed vertices,
and cH = |(P(VC) ∪ VC) ∩ Vj(H,S)|.

Applying Lemma 6 to each region of Vj(S) combined with Theorem 1 leads
to Lemma 7. The summation of O((j(n − j) + jc) log(n + c)) in Lemma 7 for
1 ≤ j ≤ k − 1 gives Theorem 3.

Lemma 7. Vj+1(S) can be computed from Vj(S) in O((j(n− j)+ jc) log(n+c))
time.

Theorem 3. Vk(S) can be computed in O(k2(n+ c) log(n+ c)) time.

4.2 Divide-and-Conquer Algorithm for Farthest-Site City Voronoi
Diagrams

In this section we describe a divide-and-conquer approach to compute the
farthest-site city Voronoi diagram FV(S). Since there are n Voronoi regions
in FV(S) and each of them is associated with a site p ∈ S, we denote such a
region by FV(p, S).

The idea behind this algorithm is as follows: To compute FV(S), divide S
into two equally-sized sets S1 and S2 = S \ S1, compute FV(S1) and FV(S2),
and then merge the two diagrams into FV(S). Now, suppose we have already
computed FV(S1) and FV(S2). Then, the edges of a Voronoi region FV(p, S)
in FV(S) stem from three sources: i) contributed by FV(S1), ii) contributed by
FV(S2), and iii) contributed by two points, one in S1 and the other in S2, that
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have the same distance to two farthest site. In fact, the union of all of the third
kind of edges is BC(S1, S2). Each connected component of BC(S1, S2) is called
a merge curve. A merge curve can be either a closed or open simple curve.

If all the merge curves are computed, merging FV(S1) and FV(S2) takes time
linear in the complexity of BC(S1, S2). To compute the merge curves, we first
need to find a point on each merge curve, and then trace out the merge curves
from these discovered points.

In order to compute a merge curve, we modify Cheong et al.’s divide-and-
conquer algorithm [8] for farthest-polygon Voronoi diagrams in the Euclidean
metric to satisfy our requirements. Given a set P of disjoint polygons, P =
{P1, P2, . . . , Pm}, of total complexity n, the farthest-polygon Voronoi diagram
FV(P) partitions the plane into Voronoi regions such that all points in a Voronoi
region share the same farthest polygon in P . Let |P | be the number of vertices
of a polygon P ∈ P and let |P| be

∑
P∈P |P | = n.

Their algorithm computes the medial-axisM(P ) for each polygon P ∈ P and
refines FV(P,P) by M(P ). M(P ) partitions the plane into regions such that
all points in a region share the same closest element of P , where an element is a
vertex or an edge of P . In other words, for each point v ∈ R2, M(P ) provides a
shortest path between v and P . Therefore, the medial axes for FV(P,P), with
P ∈ P , have the same function as the shortest path maps SPMp, with p ∈ S in
the city metric. By replacing P and M(P ) with S and SPMp respectively, the
divide-and-conquer algorithm of Cheong et al. [8] can be modified to compute
FV(S) with respect to the city metric.

Cheong et al. [8] pointed out the bottleneck with respect to running time is to
find for each closed merge curve a point that lies on it. In order to overcome the
bottleneck, the authors use some specific point location data structures [9,13].
Let P be divided into two sets P1 and P2 = P \ P1, where |P1| ≈ |P2| ≈ n

2 .
Cheong et al. [8] construct the point location data structures for FV(P1) and
FV(P2). For each polygon P ∈ P1 and each vertex v ∈M(P )∩FV(P,P1), they
perform a point location query in FV(P1) and FV(P2) (likewise for each polygon
P ′ ∈ P2). Each point location query requires O(log n) primitive operations,
and each operation tests for O(1) points and takes O(log n) time. Hence, one
point location query takes O(log2 n) time. Since |FV(P1)| = |FV(P1)| = O(n),
merging FV(P1) and FV(P2) takes O(n log2 n) time.

Since in our case |FV(S1)| = |FV(S2)| = O(nc), we perform O(nc) point loca-
tion queries, each of which takes O(log2 nc) = O(log2(n+ c)2) = O(log2 (n+ c))
time. Therefore, merging FV(S1) and FV(S2) takes O(nc log2(n+ c)) time. We
conclude:

Theorem 4. FV(S) can be computed in O(nc logn log2(n+ c)) time.

5 Conclusion

We contribute two major results for the kth-order city Voronoi diagram. First,
we prove that its structural complexity is O(k(n− k) + kc) and Ω(n+ kc). This
is quite different from the O(k(n − k)) bound in the Euclidean metric [12]. It
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is especially noteworthy that when k = n − 1, i.e., the farthest-site Voronoi
diagram, its structural complexity in the Euclidean metric is O(n), while in the
city metric it is Θ(nc). Secondly, we develop the first algorithms that compute
the kth-order city Voronoi diagram and the farthest-site Voronoi diagram. Our
algorithms show that traditional techniques can be applied to the city metric.
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Abstract. Given a metric (V, d) and an integer k, we consider the prob-
lem of covering the points of V with at most k clusters so as to minimize
the sum of radii or the sum of diameters of these clusters. The former
problem is called the Minimum Sum Radii (MSR) problem and the lat-
ter is the Minimum Sum Diameters (MSD) problem. The current best
polynomial time algorithms for these problems have approximation ra-
tios 3.504 and 7.008, respectively [2]. For the MSR problem, we give an
exact algorithm when the metric is the shortest-path metric of an un-
weighted graph and there cannot be any singleton clusters. For the MSD
problem on the plane with Euclidean distances, we present a polynomial
time approximation scheme.

Keywords: clustering, minimum sum radii and diameters, Euclidean.

1 Introduction

Clustering is one of the fundamental techniques in information technology. The
main goal of this technique is to partition a set of objects into a number of ho-
mogeneous subsets, called clusters. In any clustering method, we need to define
a distance measure between each pair of objects to determine how similar those
objects are. In most clustering algorithms, we try to find a clustering that opti-
mizes an objective function based on these distances. The well known k-center
problem is the clustering problem with the objective of minimizing the maximum
cluster diameter (see [7] for a tight approximation algorithm).

Unfortunately, in some applications, using k-center objective function pro-
duces a dissection effect. This effect causes objects that should be placed in the
same cluster to be assigned to different clusters [6]. To avoid this effect, it is
proposed to minimize the sum of cluster radii or diameters. This leads to the
Minimum Sum Radii (MSR) and the Minimum Sum Diameters (MSD) prob-
lems, respectively. In each of these problems, one is given a set of points V in a
metric space d and the goal is to partition V into k clusters so as to minimize
the sum of radii of clusters (in MSR) or the sum of diameters of the clusters
(in MSD). We can consider these points as the vertices of a graph with a metric

� Research supported by Alberta Innovates Future Technologies, Canada. The second
author was additionally supported by NSERC.

F.V. Fomin and P. Kaski (Eds.): SWAT 2012, LNCS 7357, pp. 71–82, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



72 B. Behsaz and M.R. Salavatipour

cost function on the edges. More formally, we are given a graph G = (V,E)
with edge costs (or distances) d : E → Q+ that satisfies triangle inequality. The
goal is to partition V into k sets V1, V2, . . . , Vk. In the MSR problem, we want
to minimize

∑k
i=1 rad(Vi), where rad(Vi) is equal to minu∈Vi maxv∈Vi d(u, v). In

the MSD problem, we want to minimize
∑k

i=1 diam(Vi), where diam(Vi) is equal
to maxu,v∈Vi d(u, v).

Both the MSR and MSD problems are well studied in general and Euclidean
metrics. When cost function is symmetric, a simple observation is that for
any graph (or cluster) G: rad(G) ≤ diam(G) ≤ 2 rad(G). Therefore, an α-
approximation algorithm for MSD yields a 2α-approximation algorithm for MSR
and vice versa. Doddi et al. [3] considered the MSD problem and showed that
unless P = NP , for any ε > 0, there is no (2 − ε)-approximation algorithm
for the MSD problem even when the graph is unweighed (i.e. the metric is the
shortest-path metric of an unweighted graph). Note that this result does not
imply NP -hardness of MSR. They also presented a bicriteria algorithm that
returns a solution with O(k) clusters whose cost is within O(log(n/k)) factor
of the optimum. Charikar and Panigrahy [2] significantly improved this result
by giving a (3.504 + ε)-approximation algorithm for MSR, and consequently a

(7.008 + ε)-approximation algorithm for MSD, that runs in time nO( 1
ε ). These

are the current best ratios for the MSR and MSD problems on general metrics.
Recently, in an interesting result, Gibson et al. [4] designed an exact algorithm
for the MSR problem which runs in time nO(log n logΔ) where Δ is the ratio of
the largest distance over the smallest distance. They translate this result to a
quasi-polynomial time approximation scheme for general metrics.

There are also several results for the special cases of these problems. When
k = 2, the MSD problem is solvable in polynomial time [6]. When k is fixed and
the metric is Euclidean, Capoyleas et al. [1] present an exact algorithm for MSD.
For fixed k and general metrics, the exact algorithm of [3] for MSR implies a 2-
approximation for MSD. For Euclidean MSR, there is an exact polynomial time
algorithm [5]. This result also extends to L1 and L∞ metrics. This also implies
a 2-approximation for MSD on Euclidean plane, which is the current best ratio.
In contrast, the MSR problem is NP -hard even in metrics induced by weighted
planar graphs and in metrics of constant doubling dimension [4].

1.1 Our Results

We know that for graphs with polynomially bounded Δ (the ratio of the heaviest
to lightest edge cost), for instance for unweighted graphs, there is an exact

algorithm for MSR which runs in time nO(log2 n) [4]. This gives us a strong
evidence that one may be able to design an exact algorithm for MSR when
restricted to these metrics, while the best known polynomial time algorithm is
a (3.504 + ε)-approximation. We make some progress in this direction and give
a polynomial time exact algorithm for metrics of unweighted graphs in the case
that no singleton clusters is allowed.
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Theorem 1. There is a polynomial time exact algorithm for the unweighted
MSR problem when no singletons (clusters of radius zero) is allowed.

This result reduces the unweighted MSR problem to the problem of finding
the singleton clusters. Moreover, when the running time is critical, we have the
following simple algorithm:

Theorem 2. Finding the best single cluster of each connected component is a
3
2 -approximation for the unweighted MSR problem without singletons.

For Euclidean MSD (i.e., points in R2 and Euclidean metric), the exact algorithm
of Capoyleas et al. for fixed k raises a question about the complexity of this
problem for variable k (first asked by Doddi et al. [3]). Recall that the exact
algorithm of [5] gives a 2-approximation for Euclidean MSD and there is ratio
2 hardness for the general case [3]. We give a Polynomial Time Approximation
Scheme (PTAS) for the Euclidean MSD:

Theorem 3. There is an algorithm such that when given a set of n points V
in R2, an integer k, and an error bound ε > 0, finds in time nO(1/ε) a (1 + ε)-
approximate solution to the MSD problem on the given input.

Due to lack of space, we differ most of the proofs to the full version. In Section 2,
we present the exact algorithm for the unweighted MSR problem when no sin-
gleton clusters is allowed. In Section 3, we present a PTAS for the Euclidean
MSD problem. Our concluding remarks come in Section 4.

2 MSR Restricted to Unweighted Graphs

In this section, we focus on the MSR problem when the metric is the shortest
path metric of an unweighted graph. First, note that if one can optimally solve
the MSR problem for some metric in polynomial time for connected graphs, then
using a standard dynamic programming approach, one can optimally solve the
problem for that metric for all graphs (see the full version for the proof):

Proposition 1. The MSR problem reduces in polynomial time to the MSR prob-
lem for connected graphs.

As a consequence, we are going to assume that the input graph is connected in
the rest of this section. We start with some definitions that we use.

Definition 1. A ball of radius r centered at v, denoted by B(v, r), is the set
of vertices {u ∈ V : d(v, u) ≤ r}. We call a ball of radius zero a zero ball or a
singleton. We say two balls intersect if they share at least one common vertex.
We say two balls are adjacent if they do not intersect and there is an edge that
connects two vertices of these balls. Among the optimal solutions, a canonical
optimal solution is a solution with the minimum possible number of balls.

We have the following lemmas about the structure of a canonical optimal solution
in an unweighted graph. Note that although in Theorem 1 we assume no singleton
clusters is allowed, the following two lemmas hold without this assumption.
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Lemma 1. A canonical optimal solution does not have any intersecting balls.

Proof. It is enough to show that two intersecting balls can be merged into one
ball with radius at most sum of their radii. See the full version for the details. ��

Lemma 2. In a canonical optimal solution, each ball is adjacent to at most two
non-zero balls.

Proof. Let B(v, r) be a ball in a canonical optimal solution and let B(v1, r1),
. . . , B(vl, rl) be its adjacent balls such that r1 ≥ r2 ≥ · · · ≥ rl and assume that
l ≥ 3. It is not hard to show that we can find a ball with radius r+r1+r2+1 that
covers B(v, r) and all its adjacent balls (see the full version for the details). As
a result, if r3 > 0, we can decrease the number of balls in the canonical optimal
solution without increasing the cost, which is a contradiction. ��

Suppose (G, k) is an instance of the (unweighted) MSR problem where no zero
balls is allowed. Consider a canonical optimal solution S∗ and suppose that we
have k∗ balls in S∗. Since we can run the algorithm for all values q ≤ k and
take the best solution of all, for simplicity of exposition we assume k∗ = k. By
Lemmas 1 and 2 and because no zero balls is allowed, the balls in S∗ are disjoint
and each has at most two adjacent balls. Therefore, the balls in S∗ form a path
or cycle. Assume that these balls form a path, say B∗

1 , B
∗
2 , . . . , B

∗
k, where each

B∗
i is adjacent to B∗

i+1, 1 ≤ i < k (the case of a cycle reduces to the case of a
path as we show shortly). We give an exact algorithm for this case. Let B be the
set of all possible balls. We use the following simple observation made by many
authors including Doddi et al.:

Observation 1 [3] The size of B is at most n2.

The general idea of our algorithm is as follows. For every V ′ ⊆ V , let G[V ′]
denote the induced subgraph of G on V ′. Let Gi = G[∪i

l=1B
∗
l ] (i.e. the subgraph

of G induced by the vertices in the first i balls of the path). It is easy to see that
for all 1 ≤ i ≤ k, the solution B∗

1 , B
∗
2 , ..., B

∗
i is an optimal solution for coveringGi

with i balls. We present a recursive algorithm, called BestCover, that given
a graph H and the number of clusters j, returns a feasible solution, and this
feasible solution is optimal when H = Gi and j = i, for any 1 ≤ i ≤ k. For the
moment suppose that the algorithm works as described for values of j < l (for
some l ≤ k). When j = l, we guess the ball B∗

l (by enumerating over all possible
balls in B) and remove this ball to get a new graph H ′. Then, run BestCover

with parameters H ′ and l − 1 and return the union of the guessed ball and the
solution of the recursive call. Note that regardless of whether H = Gl or not,
assuming that the recursive call returns a feasible solution for H ′, we have a
feasible solution for H . Furthermore, ifH = Gl then for the guessed ball (namely
B∗

l ), H
′ = Gl−1 and the solution returned by the recursive call is optimal and

has the same cost as the solution B∗
1 , B

∗
2 , ..., B

∗
l−1. Adding the guessed ball B∗

l

to the returned solution, we get an optimal solution for Gl.
The difficulty with the above general idea is that even if we use a dynamic pro-

gramming approach and save the solution of each distinct input of BestCover
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that we encounter, there may still be exponentially many different inputs corre-
sponding to exponentially many subsets of V (G). We fix this problem with the
crucial observation that we are interested to solve only the subproblems corre-
sponding to graphs Gi. Of course, we do not know S∗ and the subsets ∪i

l=1B
∗
l

in advance, but we show that we can find a polynomial size family of subsets of
V (G), called candidate family F , that contains subsets ∪i

l=1B
∗
l for 1 ≤ i ≤ k.

Then we only solve the problem for graphs induced by subsets in F , which gives
the solution for graph G as well, because V (G) = ∪k

l=1B
∗
l is in F .

Definition 2. A candidate family F , is a set of subsets of V (G) which consists
of the following sets: a subset S ⊆ V (G) is in F if S = V (G) or if there exists
a ball B such that G \B has at most two connected components and the set of
vertices in one of those components is S.

Lemma 3. A candidate family can be computed in polynomial time, has at most
2n2 + 1 members and contains subsets ∪i

l=1B
∗
l for all 1 ≤ i ≤ k.

Proof. Recall that |B| ≤ n2. We remove each of these |B| balls from G. If the
number of connected components is at most two, we add the set of vertices in
each component to F . We add V (G) to F as well. This can be done in polynomial
time and we must have considered all members of F after checking all the balls.
The number of subsets obtained this way can be at most 2|B| + 1 ≤ 2n2 + 1.
When in this process, we remove B∗

i for some 1 < i ≤ k, we get at most two
connected components. Therefore, we add the set of vertices ∪i−1

l=1B
∗
l to F for

all 1 < i ≤ k. Also, we added V (G) = ∪k
l=1B

∗
l to F as well. Thus, F contains

subsets ∪i
l=1B

∗
l for all 1 ≤ i ≤ k. ��

The procedure BestCover and the main algorithm (which makes calls to it) are
presented below. The following theorem is a re-statement of Theorem 1 (proof
appears in the full version).

Algorithm 1. BestCover(H, l)

1: If V (H) = ∅, return ∅.
2: If l = 0 then return “infeasible”.
3: Find v the center of H and r = rad(H).
4: If l = 1, return B(v, r).
5: If Table[V (H), l] �= ∅, return Table[V (H), l].
6: for all choices of a ball B ∈ B do
7: if V (H) \ B ∈ F then
8: Store the union of B and the result of BestCover(H \B, l − 1) in C.
9: If C is empty, return B(v, r).
10: Choose a solution in C having the minimum cost, store it in Table[V (H), l] and

return it.

Theorem 4. Algorithm 2 is a polynomial time exact algorithm for the un-
weighted MSR problem when no singletons is allowed.
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Algorithm 2

1: for all choices of a ball B ∈ B do
2: if H = G \ B is connected then
3: Compute a candidate family F for H as in Lemma 3.
4: Define an array Table. For all S ∈ F and for all 1 ≤ l ≤ k, set Table[S, l] = ∅.

5: for all 1 ≤ q ≤ k − 1 do
6: Store the union of B and the result of BestCover(H, q) in the set of

solutions C.
7: Add the best single cluster to C. Return the minimum cost solution in C.

Corollary 1. Given the location of singleton balls, there exists an exact algo-
rithm for the unweighted MSR problem.

3 PTAS for Euclidean MSD

In this section, we present a PTAS for the MSD problem in R2. Throughout
this section, we assume that ε > 0 is a given fixed constant. We build upon the
framework of Gibson et al. [5] and introduce some new ideas to make it work
for the MSD problem. Gibson et al. present an exact algorithm (called GKKPV
from now on) for the MSR problem restricted to Euclidean plane. Since our
algorithm follows the same steps as the GKKPV algorithm [5] for MSR, we give
a brief overview of that algorithm along with the necessary lemmas for its proof
of correctness before presenting our PTAS for MSD.

3.1 The Exact Algorithm of [5] for Euclidean MSR

Consider an instance of Euclidean MSR which consists of a set of points V on
the plane along with integer k. Let D be the set of discs with a center p ∈ V
and radius |pq| for some q ∈ V . Clearly every cluster (disc) of an optimum
solution for MSR is from D (note that |D| ≤ n2). An axis parallel rectangle is
called balanced if the ratio of its width to length is at least 1/3. The GKKPV
algorithm is a dynamic programming algorithm which uses balanced rectangles
to solve subproblems (i.e. a set of points to be covered with discs).

A separator for a (balanced) rectangle is any line which is perpendicular to its
longer side and cuts it in the middle third of its longer side. The algorithm starts
with a rectangle containing all the points, denoted by R0, and recursively “cuts”
it into two smaller rectangles by selecting a separator line. A vertical or horizontal
line is called critical if it either goes through a point p ∈ V or is tangent to some
disk in D. Since all vertical (horizontal) lines between two consecutive vertical
(horizontal) critical lines intersect the same set of discs, it is enough to fix an
arbitrary separator between two consecutive critical line and only consider these
separators. Thus, there are only polynomially many separators to consider. Let
L(R) show the separators of a rectangle R from these fixed separators.
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The algorithm has a recursive procedure DC(R, κ, T ) shown below, which
takes as input a rectangle R, an integer κ ≥ 0 and a subset T ⊆ D and computes
an optimum MSR solution using at most κ discs for the set of points in Q =
{q ∈ V ∩R| q is not covered by T}. The idea is that T is the set of discs in the
optimal solution that intersect R and are chosen in higher levels of recursion.
The algorithm calls DC(R0, k, ∅) to find the best cover for V . The value of
the sub-problem for a recursive call is stored in a dynamic programming table
Table[V ∩ R, κ, T ]. They prove that always |T | ≤ β = 424; this combined
with the fact that the number of distinct balanced rectangles R is O(n4) and
κ ∈ O(n), imply that the size of the dynamic programming table (and hence
sub-problems to compute) is O(n2β+5), which is polynomially bounded.

Algorithm 3. Recursive Clustering: DC(R, κ, T )

1: If Table[V ∩R, κ, T ] is calculated then return.
2: Let Q = {q ∈ V ∩R| q is not covered by T}. If Q = ∅ then Table[V ∩R, κ, T ] ← ∅

and return.
3: If κ = 0, let Table[V ∩R, κ, T ] ← {I} (infeasible) and return.
4: If |Q| = 1 let Table[V ∩R, κ, T ] be the solution with a singleton cluster and return.

5: Let R′ be a minimal balanced rectangle containing V ∩R.
6: Initialize D′ ← {I}.
7: for all choices  ∈ L(R′) do
8: for all choices of a set D0 ⊆ D of size at most 12 that intersect  do
9: for all choices of κ1, κ2 ≥ 0 with κ1 + κ2 + |D0| ≤ κ do
10: Let R1 and R2 be the two rectangles obtained from cutting R′ by . Let T1 =

{D ∈ T ∪D0 : D intersects R1} and T2 = {D ∈ T ∪D0 : D intersects R2}.

11: if |T1| ≤ β and |T2| ≤ β then
12: Recursively call DC(R1, κ1, T1) and DC(R2, κ2, T2).
13: if cost(D0 ∪ Table[V ∩ R1, κ1, T1] ∪ Table[V ∩ R2, κ2, T2]) < cost(D′)

then
14: Update D′ ← D0 ∪Table[V ∩R1, κ1, T1] ∪Table[V ∩ R2, κ2, T2].
15: Assign Table[V ∩R, κ, T ] ← D′ and return.

For the proof of correctness of GKKPV, the authors of [5] prove the following
lemmas. The first one is used to show that in Step 8, it is sufficient to only
consider subsets of size at most 12.

Lemma 4 (Lemma 2.1 in [5]). If R is a rectangle containing a set of points
P ⊆ V and O is an optimum solution of P , then there is a separator for R that
intersects at most 12 discs in O.
The next lemma essentially bounds the number of large discs of optimum inter-
secting a rectangle and is used to show that it is sufficient to only consider the
choices of T1 and T2 as in Step 11. The proof of this lemma is based on the fact
that the centers of discs of an optimum solution cannot contain the centers of
other discs; so you cannot pack too many of them close to each other.
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Lemma 5 (Lemma 2.2 in [5]). If O is an optimum solution for a set of points
P ⊆ R2 and R is a rectangle of length a > 0 containing P , then the number of
discs in O of radius at least a that intersect R is at most 40.

The following lemma puts a lower bound on the distance of separator lines of
nested rectangles. Its proof follows easily from the definition of separator lines.

Lemma 6 (Lemma 3.1 in [5]). If DC(Rt−1, ·, ·) and DC(Rt, ·, ·) are two con-
secutive nested recursive calls, where �t−1 is the separator line chosen for Rt−1

and Rt is one of the two rectangles obtained from cutting Rt by �t−1, if Rt has
length a then the distance between any separator of Rt parallel to �t−1 and �t−1

is at least a/3.

The main part of the proof of correctness is Lemma 3.2 in [5] which proves
inductively the correctness of procedure DC(R, κ, T ). The heart of this proof is
the induction step in which they also show that |T1| ≤ β and |T2| ≤ β.

3.2 A PTAS for Euclidean MSD

In this section, we present a PTAS for the MSD problem in R2. Let P be the
set of all convex polygons having all corners from V . For a cluster C, let CH(C)
denote the convex-hull of C. It is easy to see that in an optimum solution if for
two clusters C1, C2, CH(C1) and CH(C2) intersect then we can replace the two
clusters with one containing all the points in C1∪C2 without increasing the total
diameter. Thus, we can assume that in an optimum solution the convex-hulls of
the clusters are disjoint; so each cluster can be defined by its convex-hull. This
convex-hull belongs to P . For this reason, from now on, when we say a cluster
of optimum, we consider a convex polygon in P . There are two main difficulties
in extending the arguments of GKKPV for MSR to MSD.

First, as we have seen before in the MSR problem, one can bound the number
of distinct clusters that can appear in a solution by O(n2). This allows one to
enumerate over all possible clusters (and more generally over all constant size
subsets of clusters) that appear in an optimal solution. This fact is critically
used in GKKPV algorithm. For the MSD problem, we do not have such a nice
(i.e. polynomially bounded) characterization of clusters that can appear in an
optimum solution. To overcome this obstacle, we show that for every cluster C,
there is a cluster C′ whose diameter is at most a factor (1 + ε) of the diameter
of C and C′ belongs to a set whose size is polynomially bounded. The critical
property of C′ is that it is simpler to describe: it is determined by O(1/ε) points.

The second difficulty in adapting the GKKPV algorithm is that they show one
cannot have too many large clusters close to a rectangle of comparable length
in any optimum solution (Lemma 4). To prove this, they use the simple fact
that no disc (cluster) in an optimum solution can contain the center of another
disc (cluster) as otherwise one can merge the two clusters into one with smaller
total radius. In the MSD problem, clusters are not necessarily defined by a disc
and there is no notion of center here. We can still argue that in an optimum
solution, we cannot have too many large clusters in a bounded region but the
packing argument is different from that of [5] (see Lemma 10).
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Lemma 7. [8] A convex polygon in R2 with diameter D has an enclosing circle
with radius at most

√
3D/3.

Definition 3. A σ-restricted polygon is a convex polygon with at most σ sides
such that each side contains (not necessarily at the corners) at least two points
of V .

We emphasize that the corners of a σ-restricted polygon is not necessarily a point
of V ; it is obtained from the intersection of two lines each of which contains at
least two points of V .

Lemma 8. For any given convex polygon P and fixed ε > 0, there is a σ(ε)-

restricted polygon Q with σ(ε) = 13+ 4
√
3π
3

1
ε , satisfying the following properties:

1) Q contains P , 2) diam(Q) ≤ (1 + ε) diam(P ), and 3) for any vertical or
horizontal line �, � intersects P if and only if � intersects Q.

Proof. The sides of Q are extensions of a subset of sides of P that we choose. In
other words, given a subset of edges of P , we consider the straight lines containing
these edges and the convex polygon defined by these lines is the polygon Q. The
number of sides of Q is exactly equal to the size of the chosen subset of edges of
P . Clearly, if we choose Q this way, it encloses P and therefore contains P . We
show there is a subset of size σ(ε) of edges of P , call it S, such that the resulting
polygon Q satisfies properties 2) and 3) as well. Let us order the vertices of P in
clock-wise order u1, u2, . . . (starting from the left-most corner of P ). We traverse
the edges (sides) of P in clockwise order and choose some of them along the
way, starting with selecting u1u2. In order to satisfy property 3) we also make
sure that the left-most, top-most, right-most, and bottom-most corners of P are
selected to be in Q (along with the two edges defining those corners of P ). So
first, we choose the (at most) 8 edges defining these (at most) 4 corners of P
and let S consists of these edges. The remaining edges added to Q are obtained
by traversing on the edges of P (in clock-wise order) starting from u1u2 and add
them (if not already among those 8 edges) according to the following rules.

Let D be diam(P ). Suppose the last edge (side) chosen was uiui+1. We call
an edge ujuj+1 (j ≥ i+1) dismissible with respect to uiui+1 if: 1) its angle, say
θ, with uiui+1 is less than π/2 and 2) dist(ui+1, uj) ≤ εD/2 (see Figure 1). Let
j be the largest index such that ujuj+1 is dismissible with respect to the last
chosen edge and we add this edge to S, and continue until we arrive at u1u2. We
let Q be the convex polygon defined by the set of straight lines obtained from
the edges in S. Note that Q satisfies property 3).

Let R be the perimeter of P . By Lemma 7, P can be enclosed by a circle of
perimeter 2

√
3πD/3 and hence, we have R ≤ 2

√
3πD/3. It is not hard to see that

we choose at most 2π/(π/2) edges, because of the first condition in definition
of a dismissible side and we choose at most R/(εD/2) edges, because of the

second condition. Therefore, we choose a total of at most 1 + 4 + 4
√
3π
3

1
ε sides

in our traversal. Given that we add at most 8 edges for the left-most, top-most,

right-most, and bottom-most vertices of P , we have |S| ≤ 13 + 4
√
3π
3

1
ε .
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ui+1 uj

uj+1
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y

ui

x

θ

X

Y

Fig. 1. The solid edges uiui+1 and ujuj+1 belong to the convex-hull of C. Also, line 
is shown with solid line. The extension of edges uiui+1 and ujuj+1 in polygon Q are
shown with dashed lines. The part of l outside P has length x which is less than the
length of side ui+1uj .

It only remains to show that diam(Q) ≤ (1+ε)D. It is enough to show that for
any two corners of Q their distance is at most (1 + ε)D. Consider two arbitrary
corners of Q, say v and w, and the line segment � connecting these points. At
most two segments of � may be outside of P and this happens when both v and
w are not in corners of P . The section of � that lies inside P has clearly length
at most D. We prove that each of the (at most) two segments of � which lies
in between P and Q have length at most εD/2. Let us assume that v is the
corner obtained from the two lines that contain edges uiui+1 and ujuj+1 of P
and consider the segment of � that has v as an end-point (see Figure 1). Let X
be the other end-point of it, which is a cross point of P and �. We also name the
cross-point of vw and ui+1uj point Y . Let x be the length of vX and let y be the
length of vY . Because of the convexity of P , we must have y ≥ x. Consider the
triangle ui+1vuj . Since the angle of lines uiui+1 and ujuj+1, θ, is less than π/2,
the angle ˆui+1vuj ≥ π/2, which implies ui+1uj is the longest side of triangle
ui+1vuj . We know that the length of ui+1uj is at most εD/2. We also know
that a segment enclosed in a triangle has length at most equal to the longest
edge of the triangle. Thus, we must have y ≤ εD/2 which implies x ≤ εD/2, as
wanted. ��

We use OPT to denote an optimal solution. The above lemma implies that for
every cluster C of OPT, there is a σ(ε)-restricted polygon Q containing all the
points of C such that diam(Q) ≤ (1+ε) diam(C). Thus, if we replace each cluster
C with the set of points in the corresponding σ(ε)-restricted polygon (breaking
the ties for the points that belong to different σ(ε)-restricted polygons arbitrar-
ily), we find a (1+ε)-approximate solution. This enables us to use essentially the
same Algorithm 3 (presented for MSR), where we enumerate over σ(ε)-restricted
polygons (instead of all clusters), which is a polynomially bounded set of poly-
gons.

Let R0 be a rectangle containing the points of V . First, we define a Θ(n)
size set of separators. The notion of balanced rectangle and separator line is the
same. A vertical (horizontal) line is called critical if it passes through a point in
the input. It is not hard to see that all vertical (horizontal) lines between two
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consecutive critical vertical (horizontal) lines are equivalent in the sense that they
intersect the same set of clusters (recall that the clusters are convex polygons).
Choose an arbitrary vertical (horizontal) line between each consecutive vertical
(horizontal) critical lines. As before, let L(R) show the separators of a rectangle
R from these chosen lines. We make the following modification to Algorithm 3.
Here, we let D to be the set of all clusters that correspond to σ(ε)-restricted
polygons, i.e. for each σ(ε)-restricted polygon P , the set of points in P forms
a cluster in D. Obviously, |D| ∈ O(n2σ(ε)) which is polynomial for fixed ε > 0.
Also, note that for each cluster C ∈ P , there is a cluster C′ ∈ D with diam(C′) ≤
(1 + ε) · diam(C), by Lemma 8. We fix an arbitrary such cluster C′ and call it
the representative of C and denote it by Rep(C). Note that (by Lemma 8):

Corollary 2. A vertical (or horizontal) line intersects a cluster C if and only
if it intersects Rep(C). In particular for every axis-parallel rectangle R, C in-
tersects R if and only if Rep(C) intersects R.

Note that although we have an exponential number of clusters in P , we have a
polynomially bounded size set of representatives. For a set of clusters C, we use
Rep(C) to denote the set of clusters in D that are representative of clusters in C.
In particular, Rep(OPT) are the representative clusters of OPT. We keep the
same dynamic programming table, Table[V ∩R, κ, T ]. We will prove that |T | is
always a constant. Therefore, given that each cluster of T comes from D, the size
of the table is polynomially bounded. Also, instead of a bound of 12 in line 8 for
|D0|, we use a bound of 4 which comes from Lemma 9 which is the equivalent
version of Lemma 4 for MSR. In addition, we use β = 83 for the bounds of |T1|
and |T2| in line 11. Also, Lemma 10 is the equivalent version of Lemma 5 for
MSR . As we stated before, Gibson et al.’ proof strategy does not work here and
we use a new packing argument to prove this lemma. The proof of the following
lemmas appear in the full version.

Lemma 9. Suppose R is a rectangle containing a set of points P ⊆ V and O
is an optimum solution of MSD on P . Let D′ be the set of representatives of
clusters of O. Then there is a separator � for R such that it intersects at most 4
clusters of O (and their representatives in D′).

Lemma 10. A rectangle R of length a intersects at most 3 clusters of OPT

with diameter at least a.

Corollary 3. A rectangle R of length a intersects at most 3 clusters represen-
tative of a cluster of diameter at least a in OPT.

Note that Lemma 6 still holds here as it is based on the properties of balanced
rectangles and separator lines. We prove the following Lemma which is the equiv-
alent version of Lemma 3.2 in [5].

Lemma 11. Suppose that DC(R, κ, T ) is called at some level of recursion. Let
T ′ ⊆ OPT be those clusters of OPT that have a point in V ∩R and a point in V \
R and suppose T = Rep(T ′). Also, let Q′ = {q ∈ V ∩R| q is not covered by T ′}
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and Q = {q ∈ V ∩R| q is not covered by T}, and OPT
′ be the set of clusters of

OPT that contain a point in Q′. Suppose that κ ≥ |OPT
′|. Then after calling

DC(R, κ, T ), Table(V ∩R, κ, T ) contains a κ-cover for Q whose cost is at most
(1 + ε) · cost(OPT

′).

It follows from Lemma 11 that after the call to DC(R0, k, ∅) the entry
Table[V, k, ∅] contains an optimum solution for V . This completes the proof
of Theorem 3.

4 Concluding Remarks

The exact algorithm for unweightedMSR without singletons (in Section 2) can be
used to obtain a (2+ε)-approximation for general metric MSR without singletons.
The first step is to use a standard scaling [5] so that the aspect ratio of weights
are polynomially bounded at a loss of factor (1 + ε). Then one can replace each
edge of weight c with a path of c edges and run the algorithm for the unweighted
MSR. If a chosen center is not a vertex of the original graph (i.e. is on a path that
replaced an edge) then we move that center to the closest vertex of the original
graph. Also, the algorithm of Section 3 for Euclidean MSD in R2 can be extended
to a MSD in any fixed dimension Euclidean space. This is similar to the extension
of [5] and the details are omitted from this extended abstract.

Recently, we have obtained an exact polynomial time algorithm for the MSD
problem with constant k, which settles the open problem of complexity of the
MSD problem in this case (first asked by [3]). This will appear in another paper.

There are several interesting open questions concerning MSR and MSD. Per-
haps the most interesting one is to obtain a PTAS for general MSR. The existence
of a QPTAS for this [4] is a strong evidence that there could be a PTAS. For
MSD on Euclidean metrics, the complexity of the problem is still open.
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Abstract. The problem of finding a nearest neighbor from a set of points
in Rd to a complex query object has attracted considerable attention due
to various applications in computational geometry, bio-informatics, infor-
mation retrieval, etc.Wepropose a generic method that solves the problem
for various classes of query objects and distance functions in a unified way.
Moreover, for linear space requirements the method simplifies the known
approach based on ray-shooting in the lower envelope of an arrangement.

1 Introduction

During the last decades the nearest neighbor problem and its variants have at-
tracted considerable attention in computational geometry, information retrieval,
pattern recognition, bio-informatics, and many more areas of computer science.
In its classical version, the problem is stated as follows: Given an n-point set
P ⊂ Rd together with a metric distance function D : Rd ×Rd → R+, preprocess
P such that for a query point ρ ∈ Rd we can efficiently find a point π ∈ P
with D (π, ρ) ≤ D (π′, ρ) for all π′ ∈ P . The point π is usually called a closest
point or a nearest neighbor of the query point. There are situations in which
we want the query to be an object more complex than a point, as for example
a line or simplex in Rd. Consequently, we generalize the notion of a query and
define a query object Q to be a subset of Rd that has a constant description
complexity. Furthermore, we denote the collection of all allowed query objects
by Θ. As an example, consider Θ as the set of all lines in R3 where a query
object Q ∈ Θ is the point set of a line. A natural generalization of the problem
statement is as follows. Preprocess P such that for a query object Q ∈ Θ we
can efficiently find a point π in P with D (π,Q) ≤ D (π′, Q) for all π′ ∈ P ,
where D (π,Q) = min {D (π, ρ) | ρ ∈ Q} is the distance between the point π and
the query object Q. We refer to this version as the generalized nearest neighbor
problem (GNN problem). In this paper we consider the dimension d as a fixed
constant.

1.1 Our Contribution

We present a novel, simple framework that solves the generalized nearest neigh-
bor problem uniformly for many natural query objects by a combination of ε-nets
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and range searching algorithms. Although the results rely on known concepts,
we are not aware of any prior work that brings the following contributions:

– Our solution to the GNN problem uses range searching data structures,
but does not rely on Megiddo’s parametric search [14] that usually causes a
logarithmic overhead. Parametric search is a powerful but complex technique
to reduce optimization problems to decision problems which we substitute
by an application of ε-nets (see Section 2).

– Applying the framework to three sets of query objects improves previously
published results: If the query objects are lines in 2-dimensional Euclidean
space [15] we improve the query time by a factor of O

(
n0.195

)
. In the case of

query planes in 3-dimensional Euclidean space [16] and in the case of query
circles [17] we improve two recent results by reducing the space requirements
by a logarithmic factor (see Section 3).

– In the case of query lines in 3-space with Manhattan and Euclidean distance,
a problem that has not been considered before, we show that, for a parameter
f > 0, our framework obtains a query time of O

(
n2/3+f

)
while using linear

space (see Section 3).
– The current state-of-the-art idea to approach the GNN problem, which is

referred to as generalized Voronoi diagrams, exploits duality properties of
the distance function. In the case of linear space requirements our framework
simplifies this approach by avoiding any consideration of duality (see Section
4). Furthermore, as opposed to the concept provided by Voronoi diagrams,
we give easy to derive bounds on query time and space requirements (see
Section 2).

Furthermore, our method is intuitive, natural and could also be applied for the
classical nearest neighbor problem. From a practical point of view, the method
can use range searching data structures as a black-box.

1.2 Intuitive Idea of Our Approach

When designing a data structure to solve the GNN problem we have a trade-
off between space and query time that manifests in two extreme cases: Either
we want logarithmic query time and accept larger space requirements, or we
aim for linear space but accept larger, still sub-linear, query time. It is common
and reasonable to focus on these extreme cases, since space/query time trade-
offs in between can usually be derived by a combination of the respective data
structures [11]. In this paper we focus on linear space data structures.

Our framework relies on the existence of data structures for the range search-
ing problem that can be formulated as follows [7]: Preprocess a set P ⊂ Rd of n
points, such that for a given query range R ⊂ Rd one can efficiently report all
points in P ∩R. Now, consider a concrete nearest neighbor problem for a query
collection Θ and a distance function D. Let us define the range Br(Q) as the set
of points within distance r from Q. Observe that this range has the property
that for a large enough value of r it contains a nearest neighbor of Q. For ex-
ample, when the query objects are lines in Euclidean 3-space, for a query Q the
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range Br(Q) is a cylinder with axis Q and radius r (see Section 3). Since known
range searching data structures can efficiently report all points in P ∩ Br(Q),
the only problem to identify a nearest neighbor is to find a value r∗ such that
the nearest neighbor lies in P ∩ Br∗(Q), but not too many other points. This is
achieved by identifying a candidate nearest neighbor α ∈ P such that there are
only few points in P closer to the query object Q. The candidate point is found
by searching a nearest neighbor in a preprocessed ε-net N of P ; the definition
and properties of ε-nets are introduced in Section 2. Krauthgamer et al. [9] also
use ε-nets to bound search space for proximity search, but their definition de-
scribes a completely different notion, which does not provide general worst case
guarantees.

Intuitively, the method is correct since either α is a closest point to Q or one
of the points in P ∩ Br∗(Q). Both settings are checked by the algorithm. The
obtained query time is sub-linear and it depends on the time needed to search
the set N and the time needed to report and check all points in P ∩Br∗(Q). To
search N one can either perform a linear scan or recursively apply of the above
mentioned procedure. The time for the range searching depends on how much
space we accept for the data structure. For many natural query objects there are
suitable range searching algorithms with space/query time trade-offs in between
the above mentioned two extreme cases. The size of the resulting set P ∩Br∗(Q)
is guaranteed to be at most εn which follows from the properties of the ε-net
N (see Section 2). The space requirements of the framework are dominated by
the space requirements of the range searching data structure. For details on the
algorithm and the analysis we refer the reader to Section 2.

1.3 Related Work

Cole and Yap considered the case of 2-dimensional query lines in Euclidean space
[6]. They presented an algorithm which preprocesses n points in O

(
n2
)
time and

space such that a point closest to a query line can be found in O (logn) time.
The problem was later reconsidered for space/query time trade-offs: Mitra et
al. [15] presented an algorithm with O (n logn) preprocessing time, using O (n)
space and O

(
n0.695

)
query time, and Mukhopadhyay [18] provided an algorithm

based on the Partition Theorem [11] with preprocessing time in O
(
n1+f

)
, space

requirements in O (n logn) and a query time in O
(
n1/2+f

)
for any f > 0.

Another type of query objects, namely planes in Euclidean 3-space, was stud-
ied by Mitra et al. [16] who provided an algorithm with O

(
n1+f

)
preprocessing

time, O (n logn) space and O
(
n2/3+f

)
query time for any f > 0. The underlying

data structure is also based on Matoušek’s partition theorem [11].
For the case in which queries are disc boundaries in 2-dimensional Euclidean

space, the authors of [17] provided two algorithms that give space/ query time
trade-offs: the first has O

(
n3
)
preprocessing time and space, and O

(
log2 n

)
query time, and the second has O

(
n1+f

)
preprocessing time, O (n logn) space

and O
(
n2/3+f

)
query time.
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There has also been a general idea how to approach the GNN problem. This
approach is based on a generalization of Voronoi diagrams (see e.g. [1]) and it
can be understood as a kind of guide to solve GNN related problems. Roughly
speaking, the idea is based on ray-shooting in the lower envelope of an arrange-
ment of surfaces that are induced by the distance function D and the point
set P . An application of this idea to the above problems works analogously to
the analysis in Section 3.1 and yield similar improvements as our framework.
However, the idea of applying Voronoi diagrams for the GNN problem is a high
level concept that does not directly imply any space or query time guarantees.
In contrast, our framework provides these guarantees (Theorem 2 and 3) while
being less complex in the application (Section 2 and 4).

2 A Unified Framework for the GNN Problem

We formally introduce the main concepts in the theory of range searching and
its connection to our approach. A range space R is a tuple (X,Γ ), where X is a
set and Γ is a collection of subsets of X . The elements of X are called points and
the elements of Γ are called ranges. An example for a well-studied range space
is (Rd, ΓH), where ΓH is the set of all half-spaces. The range searching problem
for a range space (X,Γ ) and a finite point set P ⊆ X can be stated as follows:
Preprocess P such that one can efficiently answer the following query. For a range
R ∈ Γ , report all points in R ∩ P . This formulation is the so-called reporting
version of the problem [2,5]. There is also the counting version, where one is
interested in computing |R ∩ P |. The restriction of Γ to a set Y ⊆ X , denoted
by Γ |Y , is the set {Y ∩R | R ∈ Γ}. An important measure for the complexity
of a range space is its VC-dimension: A range space R has VC-dimension z if
there exists a subset Y ⊆ X of maximal cardinality z such that Γ |Y equals the
power-set of Y [8]. Though range spaces are formulated on a set theoretic level,
in this paper we only need the special case for which X = Rd.

As a first step to use range searching, we need to define an appropriate range
space (Rd, Γ ) for a collection Θ of query objects and a distance function D. The
Minkowski sum of two sets A and B is A + B = {α+ β | α ∈ A, β ∈ B}. By
Br(X) we denote the r-neighborhood of a set X ⊂ Rd, which equals the open
set X +

{
ρ ∈ Rd | D (ρ, 0) < r

}
=
{
ρ ∈ Rd | D (ρ,X) < r

}
. The r-neighborhood

Br(Q) of all Q ∈ Θ is a natural set for a range in Γ , and consequently, we
define the desired range space to be RΘ = (Rd, {Br(Q) | Q ∈ Θ, r ≥ 0}).
For example, consider the query collection of all lines in Euclidean 3-space. The
1-neighborhood of a line � is the Minkowski sum of � with the Euclidean unit
ball centered at the origin. This forms a cylinder of radius 1 with axis �. Our
framework depends on the existence of an efficient range searching algorithm
for RΘ.

When performing range queries, the resulting sets should not be too large,
as otherwise the performance degenerates. We obtain the desired small sets by
using ε-nets: Let P be an n-point set of the range space (X,Γ ) and let ε ≤ 1/2.
A subset N of P is an ε-net of P for (X,Γ ) if the following holds. For all
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R ∈ Γ , if |R ∩ P | ≥ ε |P | then R ∩ N �= ∅. This concept was first introduced
to computational geometry by Haussler and Welzl [8], but had also significant
impact on other fields of computer science. To simplify notation an ε-net of P is
denoted by Nε(P ). A notable fact is that for range spaces of finite VC-dimension
one can always find ε-nets of P with a size that depends only on ε and not the
size of P as the following lemma states.

Lemma 1 (see e.g. [12]). Let (X,Γ ) be a range space with finite VC-dimension
z ≥ 1. For a constant cz, a parameter ε ≤ 1/2 and an n-point subset P of X,
there exists an ε-net of P for (X,Γ ) of size at most (cz/ε) log(1/ε).

2.1 The Framework

We present our framework for the generalized nearest neighbor problem, which
we call GNN-framework for short. Let P ⊆ Rd be an n-point set, Θ the col-
lection of query objects, and D the underlying metric distance function. The
query collection together with the distance function form the range space RΘ =(
Rd, {Br(Q) | Q ∈ Θ, r ≥ 0}

)
, which is a fundamental element of the described

framework. The framework solves the GNN problem if the range space RΘ sat-
isfies two properties:

1. There is an algorithm AN that constructs small ε-nets for RΘ

2. There is a reasonable efficient range searching algorithm AR for RΘ.

These are the only limitations of the framework. Due to Lemma 1 small ε-nets
exist for range spaces of finite VC-dimensionality and can be found either by
random sampling or deterministically [4]. The existence of an efficient range
searching algorithm is not implied by finite VC-dimensionality, but for many
natural range spaces efficient algorithms have been found. For example, range
spaces that are defined by a constant number of bounded polynomials have been
studied by Agarwal et al. [2]. This indicates the potential for solving various con-
crete instances of the GNN problem as shown in Section 3. The GNN-framework
works as follows:

Preprocessing. We preprocess P0 = P into a data structure D which is a (k+1)-
tuple ((P0,S0), (P1,S2), . . . , (Pk, ∅)) of the following elements. The sets Pi are
hierarchically constructed ε-nets for the range space RΘ that are build by AN
in the following way: For a parameter a ∈ (0, 1/2) we define εi = na/ |Pi−1| and
Pi = Nεi(Pi−1) for 1 ≤ i ≤ k. The choice of a depends on the application and
influences the query time; We only require that a is chosen such that |Pi| <
|Nεi(Pi−1)|. The Si are range searching data structures for RΘ build by AR on
the sets Pi for 0 ≤ i < k. The parameter k also depends on the application and
has only impact on the query time.

Query processing. (see Algorithm 1) For a query object Q ∈ Θ we describe how a
closest point in P0 is found. Note that the algorithm works in a recursive fashion
and each recursive instance has access to D while processing the query. The
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initial call of the algorithm works on (P0,S0), the i-th recursive call works on
(Pi,Si) and the recursion stops at the k-th recursive call. We describe the initial
call of the algorithm since it is representative for the others: First, the algorithm
finds a point α closest to Q in the ε-net P1 by recursively calling itself on P1.
Then, the distance r from α to Q is used to define a range Br(Q) = BD(α,Q)(Q).
The range searching algorithm AR utilizing the data structure S0 is asked to
retrieve the points R = P0 ∩ Br(Q). The resulting set R is searched point-by-
point for the nearest neighbor of Q. If the resulting set is empty, α is outputted.
As stated above, the last recursive call at recursion depth k is handled specially:
The set Pk is searched point-by-point for a nearest neighbor of Q.

Algorithm 1. Data Structure: D = ((P0,S0), (P1,S1), . . . , (Pk, ∅))
Initial call: Query(Q, 0) Input: query object Q Output: nearest neighbor of Q;
Comment: RangeSearch(BD(α,Q)(Q), i) returns BD(α,Q)(Q) ∩ Pi;

1 Function: Query(Q, i) 8 For each π ∈ R do

2 If i < k then 9 If D(α,Q) ≥ D(π,Q) then

3 α = Query(Q, i+ 1) 10 α = π

4 R = RangeSearch(BD(α,Q)(Q), i) 11 end

5 else 12 end

6 R = Pk 13
7 end 14 return α

Theorem 1. Let P be an n-point set, Θ a query collection and D a distance
function. For a query object Q ∈ Θ, Algorithm 1 correctly outputs a point π ∈ P
with D (π,Q) ≤ D (π′, Q) for all π′ ∈ P .

Proof. We prove the theorem by induction on the recursion depth. All line num-
bers refer to Algorithm 1. As induction basis we focus on the highest level of
recursion, where i = k. In this case R is set to Pk (line 6) and the for-loop (line
8-12) finds a point α in Pk = R that is closest to Q. This point is returned, so
the last recursive call of the algorithm returns a point in Pk that is closest to Q.

As induction hypothesis, we assume that at recursion depth i+1 the algorithm
returns a point in Pi+1 that is closest to Q.

For the induction step let i < k. The point returned by the recursive call is α
(line 3), and by the induction hypothesis it is a point in Pi+1 closest to Q. The
range searching algorithm returns all points in Pi∩BD(α,Q)(Q), consequently all
the points in the D(α,Q)-neighborhood of Pi are put in R. If R is non-empty
it must contain the desired point and the for-loop (line 8-12) finds it. If R is
empty, the point α, which is a point in Pi and Pi+1, is closest to Q. Thus the
algorithm works correctly.

To bound query time and space requirements, we introduce further notation for
the time and space requirements of the subroutines. For the range searching
algorithm AR let T ∗

R(n) be the time needed to preprocess an n-point set P into
a range searching data structure of size SR(n), and let TR(n,m) be the time
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needed to report all m points in the intersection of P with any query range.
Furthermore, let T ∗

N (n) be the time needed by the ε-net algorithm AN . The
time needed to compute the distance between the query object and a point is at
most TD. We proceed with a bound on the query time.

Theorem 2. Let P be an n-point set, Θ a query collection and D a distance
function. Furthermore, let a ∈ (0, 1/2] and k ∈ N be parameters of the data
structure D described above. Then, Algorithm 1 using Algorithm AR finds a
nearest neighbor of Q ∈ Θ in time T (n) ≤ kTR(n, na) + knaTD + |Pk| TD.

Proof. We prove the theorem by solving a recurrence equation that we derive
from the query algorithm. All line numbers refer to Algorithm 1. At the highest
depth of recursion the algorithm works on (Pk, ∅) and searches Pk for a closest
point to Q (line 6, line 8-12). Thus, we get T (|Pk|) = TD |Pk|. The running time
T (|Pi|) of all recursive calls at depth i < k working on (Pi,Si) is bounded by
the following components. First, by T (|Pi+1|) which is the running time of the
recursive call on Pi+1 (line 3). Then, by TR(|Pi| , |R|) which is the running time
of the range searching algorithm AR on Pi, and finally, by the time needed to
search the resulting set R for the closest point to Q which is bounded by TD |R|
(line 8-12). From this we get

T (|Pi|) ≤ T (|Pi+1|) + TR (|Pi| , |R|) + TD |R| ,

for i < k. The size of the resulting set R = Pi ∩ BD(α,Q)(Q) can be bounded by
the following arguments. Since α is point in Pi+1 closest to Q, by the definition
of Br(.) we deduce that Pi+1∩BD(α,Q)(Q) is empty. The set Pi+1 is an (na/ |Pi|)-
net of Pi. Thus, by the definition of ε-nets the size of R = Pi ∩ BD(α,Q)(Q) is at
most (na/ |Pi|) |Pi| = na. This yields

T (|Pi|) ≤ T (|Pi+1|) + TR (|Pi| , na) + naTD.

We solve this recurrence equation from i = 0 up to k and obtain

T (|P0|) ≤
k−1∑
i=0

(TR (|Pi| , na) + naTD) + |Pk| TD

We have chosen a such that the size of Pi is monotone decreasing in i, thus by
|Pi| ≤ |P0| = n we get T (n) ≤ kTR(n, na) + knaTD + |Pk| TD, which proves the
theorem.

Theorem 3. Let P be an n-point set, Θ a query collection and D a distance
function. Furthermore, let a ∈ (0, 1/2] and k ∈ N be parameters of the data
structure D described above. The time needed to preprocess P into D using al-
gorithms AN and AR is T ∗(n) ≤ k (T ∗

R(n) + T ∗
N (n)) and the space requirement

is S(n) ≤ k(n+ SR(n)).

Proof. The parameter a used for the construction of the ε-nets P1, P2, . . . , Pk

is chosen such that the size of Pi is monotone decreasing in i. Both, the time
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T ∗
N (n) to create an ε-net on n points as well as the time T ∗

R(n) increase in n.
Thus, the preprocessing time is

T ∗(n) ≤
k∑

i=0

(T ∗
R(|Pi|) + T ∗

N (|Pi|)) ≤ k (T ∗
R(|P0|) + T ∗

N (|P0|)) ,

which proves the first part of the theorem.
The space requirements SR(n) of the range searching data structure is mono-

tone increasing in n. Hence the space requirement of D is

S(n) ≤
k∑

i=0

(|Pi|+ SR(|Pi|)) ≤ k(|P0|+ SR(|P0|)),

which proves the second part of the theorem.

We observe that setting the recursion depth k larger than 1 is important when
searching the points of the ε-net takes more time than the range searching.

3 Solutions for Concrete Query Collections

In this section we consider several types of query objects and distance functions,
some which have been considered before (Section 3.3) and some which we analyze
for the first time (Section 3.1 and 3.2). During the explanation we also follow the
ideas of Voronoi diagrams to provide a better understanding of the similarities
and differences to our framework (Section 3.1). Moreover, in the case of the �1-
distance, we show that the details of a full analysis needed for the a generalization
of Voronoi diagrams can lead to large difficulties, however, our framework stays
easily applicable (Section 3.2).

3.1 Query Lines in 3-Dimensional Space under �2-Norm

The problem of searching an n-point set P in R3 for a nearest neighbor to a given
query line has not been considered in literature. The analysis can be generalized
to Rd, however, to stay in a geometrically well studied space we focus on d = 3.
To compare both concepts, we first solve the problem by following the ideas of
Voronoi diagrams and afterwards by applying our framework, which obtains the
results in a more direct way.

The idea of generalized Voronoi diagrams is based on ray-shooting in the
lower envelope of the arrangement induced by the distance function. This ar-
rangement lives in the space of query objects which can be considered as space
dual to the point space. Therefore, the first step is to identify the distance
function between a point and a line for a suitable representation of a line
in R3. Let the Euclidean norm be denoted by ‖.‖, the corresponding met-
ric by D and standard scalar product by 〈ρ, ρ′〉. Any line Q can be repre-
sented by 4 parameters χQ = (l1, l2, l3, l4); one possible interpretation for these
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parameters is that α = (l1, l2, 0) and β = (l3, l4, 1) determine the intersec-
tion of the line with the plane through the origin and the plane shifted up-
wards (w.r.t. the last coordinate) by one. The collection of all query lines is
Θ� =

{
{α+ t(β − α) | t ∈ R} | (l1, l2, l3, l4) ∈ R4

}
.

The distance between a line α + t(β − α) and a point π ∈ R3 equals the
distance between (α− π) + t(β −α) and the origin, for t ∈ R. Let δ ∈ R3 be the
vector of shortest distance pointing to the line. It satisfies two properties: First,
〈δ, (β − α)〉 = 0 and secondly, δ = (β − π) + s(β − α) for some s ∈ R. Inserting

the second into the first property yields s = −〈α− π, β − α〉 / ‖β − α‖2. After
some calculation based on properties of the scalar product, the squared length
of δ is ‖δ‖2 = ‖α− π‖2 − 〈α− π, β − α〉2 / ‖β − α‖2. We translate this rational

function to the following polynomial function in π, χQ and denote r = ‖δ‖2:

F(π, χQ, r) = ‖α− π‖2 ‖β − α‖2 − 〈α− π, β − α〉2 − r ‖β − α‖2 = 0. (1)

We write Fπ(χ, r) for the polynomial F(π, χ, r) in which the parameter space is
χ, r but π is fixed. We call the space in which the polynomial Fπ lives dual space.
Analogously, we call the space where Fχ,r(π) lives primal space. The solutions of
Fπ(χ, r) = 0 for all π ∈ P form an arrangement of algebraic varieties, which have
the property that the first algebraic variety hit by a ray starting from (χQ, 0)
going into the direction (χQ, 1) represents a nearest neighbor of the line Q.

As described in the introduction it is not known how to perform ray-shooting
in an arrangement with linear space. This is indicated by the fact that the
complexity of the lower envelope defined by a (d−1)-variate function is generally
Ω(nd−1) [20]. Thus, we translate the situation to primal space: Every surface
Fπ = 0 is dual to the point π and a ray {(χ, r) | r ≥ 0} translates to a family of
ranges {Fχ,r(π) | r ≥ 0}. If the ray hits the first surface Fπ at the point (χ, r∗),
then the boundary of the range Fχ,r∗ intersects the point π. So, in primal space
the ray-shooting translates to (algebraic) range searching that is solved by using
a partitioning tree as data structure [2,20]. Additionally the data structure can
be equipped with ε-nets for every node to constrain the resulting range search
operations [13].

Our method, which has the same asymptotic complexity as the method above,
does not consider duality at all: We only need to define the range space RΘ�

=(
R3, {Br(Q) | Q ∈ Θ�, r ≥ 0}

)
of all cylinders around all possible query lines us-

ing the algebraic variety Fχ,r ≤ 0. On P we construct the range searching data
structure of [2] for the range space RΘ�

which yields a query time of O
(
n2/3+f

)
and space requirements in O (n). Secondly, on the point set P we generate a
(n−1/2)-net N of size O

(
n0.5 logn

)
(Lemma 1). We directly derive the following

Observation:

Observation 1. An n-point set P from 3-dimensional Euclidean space can be
preprocessed in a linear space data structure, such that, for a constant parameter
f > 0, a closest point to given query line can be found in time O

(
n2/3+f

)
.
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3.2 Query Lines in 3-Dimensional Space under �1-Norm

The GNN problem in 3-dimensional space with Manhattan distance has not been
considered in literature. We show that, when following the ideas of generalized
Voronoi diagrams, the details get complicated since the distance function is
not described by a polynomial any more. In contrast our framework is easily
applicable.

The distance between a line Q represented by χQ as above and a point π =
(p1, p2, p3) is

D (π,Q) = min
{
|p1 − l3 + p3(l1 − l3)|+ |p2 − l4 + p3(l2 − l3)| ,∣∣∣∣p1 − l3 +

(p2 + l4)(l1 − l3)

l2 − l4

∣∣∣∣+ ∣∣∣∣p3 + p2 + l4
l2 − l4

∣∣∣∣ ,∣∣∣∣p2 − l4 +
(p1 + l3)(l2 − l4)

(l1 − l3)

∣∣∣∣+ ∣∣∣∣p3 + p1 + l3
l1 − l3

∣∣∣∣ },
because the distance can be computed as a minimum of �1-distances between the
point π and the points σ1, σ2, σ3, where σi is the intersection of the line Q with
the i-th hyperplane that is orthogonal to the coordinate axis and intersects π.
The fact that the distance function is a minimum is not harmful since we can take
all three functions into the lower envelope with only constant overhead. The real
problem comes from the functions themselves, because they are absolute values of
rational functions. Known techniques for the decomposition of the lower envelope
induced by such functions cannot be directly applied. Further investigation is
needed to see that the intersection of the functions is linear so that a projection
yields a suitable Voronoi diagram.

On the other hand, the presented framework is easier to apply: It requires
only to identify the range space that is naturally given by constant number of
simplices. To obtained a range Br(Q), it is necessary to project the points of the
r-ball of the l1-metric to the hyperplane that is orthogonal to the query line.
The convex hull of the projected points implicitly describes the range. With
a standard simplex range searching data structure [3] we obtain the following
result.

Observation 2. An n-point set P from 3-dimensional space with Manhattan
distance can be preprocessed into a linear space data structure, such that, for a
constant parameter f > 0, a closest point to given query line can be found in
time O

(
n2/3+f

)
.

3.3 Previously Considered Query Collections

In the same way we can easily derive data structures and query time bounds for
several kind of query objects. Here, we focus on the Euclidean distance.

The case of 2-dimensional query lines has been considered by Mitra et al. and
Mukhopadhyay [15,18] who used ham-sandwich cuts or Matoušek’s simplicial
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partion theorem to solve the problem. For linear space with O (n logn) prepro-
cessing time, the query time is O

(
n0.695

)
and for O (n logn) space with O

(
n1+f

)
preprocessing time, the query time is O

(
n1/2+f

)
, for f > 0. Furthermore, the

case of query 3-dimensional hyperplanes has been considered by Mitra et al. [16]
who obtained a query time of O

(
n2/3+f

)
using O

(
n1+f

)
preprocessing time and

O (n logn) space.
An application of our framework for general query hyperplanes in Euclidean

space of dimension d achieves a faster query time while using less space. The
required range space contains all possible cuts of two parallel half-spaces. An
appropriate standard simplex range searching data structures as e.g.[11] can be
used. An epsilon-net can be obtained by random sampling in O (n) time which,
however, leads to a randomized algorithm. At the cost of larger preprocessing
time, one could also use deterministic ε-net algorithms [10].

Observation 3. An n-point set P from d-dimensional Euclidean space can be
preprocessed in O (n logn) time into a linear space data structure, such that, for
a parameter f > 0, a closest point to a given query hyperplane can be found in
time O

(
n1−1/d+f

)
w.h.p.

In [17] the authors consider circles as query objects and obtain a query time of
O
(
n2/3+f

)
and O (n logn) space. Using a standard lifting transform, the simplex

range searching algorithm from above and sampling for the ε-net, we improve
the space requirements by a logarithmic factor.

Observation 4. An n-point set P from 2-dimensional Euclidean space can be
preprocessed in O (n logn) time into a linear space data structure, such that, for
a parameter f > 0, a closest point to given query circle can be found in time
O
(
n2/3+f

)
w.h.p.

These bounds could also be achieved by following the ideas of generalized Voronoi
diagrams, which lead to analogous steps as in Section 3.1, but there is no pub-
lication considering such an analysis.

4 Comparison with Generalized Voronoi Diagrams

This discussion has to be omitted due to space constraints, but can be found in
the technical report [19].

Acknowledgments. The authors would like to thank Peter Widmayer for stim-
ulating discussions and continuous support of this project. We are also grateful
to Jiri Matoušek for several discussions on the duality, arrangements and tricky
details.
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Abstract. In the Connected Vertex Cover problem we are given
an undirected graph G together with an integer k and we are to find
a subset of vertices X of size at most k, such that X contains at least
one end-point of each edge and such that X induces a connected sub-
graph. For this problem we present a deterministic algorithm running in
O(2kpoly(n)) time and polynomial space, improving over the previous-
best O(2.4882kpoly(n)) time deterministic algorithm and O(2kpoly(n))
time randomized algorithm. Furthermore, when usage of exponential
space is allowed, we present an O(2kk(n+m)) time algorithm that solves
a more general variant with real weights.

Finally, we show that inO(2kpoly(n)) time and space one can count the
number of connected vertex covers of size at most k, and this time upper
bound can not be improved to O((2−ε)kpoly(n)) for any ε > 0 under the
Strong Exponential Time Hypothesis, as shown by Cygan et al. [CCC’12].

1 Introduction

In the classical vertex cover problem we are asked whether there exists a set of
at most k vertices, containing at least one end-point of each edge. As a basic
problem in graph theory Vertex Cover is extensively studied, together with
its natural variants. One of the generalizations of Vertex Cover is the Con-

nected Vertex Cover problem, where a vertex cover is called a connected
vertex cover if it induces a connected subgraph.

Connected Vertex Cover

Input: An undirected graph G = (V,E) and an integer k.
Parameter: k
Question: Does there exist a connected vertex cover of G of cardinality at
most k?

As Connected Vertex Cover is NP-complete we can not hope for poly-
nomial time solutions, however it is possible to efficiently solve the problem for
small values of k. Obviously, for any fixed k, we can solve the problem in poly-
nomial time, by trying all nk possible subsets of vertices. In the parameterized
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complexity setting we are interested in finding algorithms of f(k)poly(n) running
time, for some computable function f .

A few fixed-parameter algorithms were designed for the Connected Vertex

Cover problem during the last few years. The fastest deterministic algorithm
is due to Binkele-Raible [1] running in O∗(2.4882k) time, while the fastest (ran-
domized) algorithm is due to Cygan et al. [5] running in O∗(2k) time, where by
O∗ we denote the standard big O notation, with polynomial factors omitted. In
Table 1 we summarize the history of parameterized algorithms for Connected

Vertex Cover.

Table 1. Summary of parameterized algorithms for Connected Vertex Cover

O∗(6k) Guo et al. [12]

O∗(3.2361k) Mölle et al. [13]

O∗(2.9316k) Fernau et al. [10]

O∗(2.7606k) Mölle et al. [14]

O∗(2.4882k) Binkele-Raible [1]

O∗(2k)(randomized) Cygan et al. [5]

O∗(2k) this paper

Our Results. The main result of this paper is a deterministic algorithm solving
Connected Vertex Cover in O∗(2k) time. Moreover, when we allow expo-
nential space, in the same running time we can solve weighted and counting
versions of the Connected Vertex Cover problem, which was not possible
with the previously fastest randomized algorithm of [5].

#Connected Vertex Cover (#CVC)
Input: An undirected graph G = (V,E), an integer k.
Parameter: k
Goal: Find the number of connected vertex covers of cardinality at most k.

Weighted Connected Vertex Cover (WCVC)
Input: An undirected graph G = (V,E), a weight function ω : V → R+ and
an integer k.
Parameter: k
Goal: Find a minimum weight connected vertex cover of cardinality at most
k.

Theorem 1. Weighted Connected Vertex Cover can be solved in
O(2kk(|V |+ |E|)) time and O(2kk) space.

Theorem 2. #Connected Vertex Cover can be solved in O(2kpoly(|V |))
time and space.

Recently Cygan et al [4] have shown that unless the Strong Exponential Time
Hypothesis (SETH) fails, it is not possible to count the number of connected
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vertex covers of size at most k in O∗((2 − ε)k) time, for any constant ε > 0.
Consequently our counting algorithm is tight under SETH, which is an example
of few parameterized problems with nontrivial solutions for which there exists
an evidence of optimality.

When restricted to polynomial space, we prove that the weighted variant
can still be solved in O∗(2k) running time, assuming weights are polynomially
bounded integers.

Theorem 3. Weighted Connected Vertex Cover with polynomially
bounded integer weights can be solved in O(2kpoly(n)) time and polynomial space.

Related Work. Vertex Cover is one of the longest studied problem in the
parameterized complexity. The currently fastest known parameterized algorithm
for theVertex Cover problem is due to Chen et al., running in O(1.2738k+kn)
time [3]. Recently, new parameterizations of Vertex Cover are considered,
when the parameter is k−|M | [16], whereM is a maximum cardinality matching,
or k − LP, where LP is the optimum value of a natural linear programming
relaxation [8,18].

A notion very close to fixed-parameter tractability, or even a subfield of it,
is kernelization. We call a polynomial time preprocessing routine a kernel, if
given an instance I with parameter k the algorithm produces a single instance
I ′ with parameter k′, such that I ′ is a YES-instance iff I is a YES-instance, and
moreover |I ′| + k′ ≤ g(k). It is well known that a problem admits a kernel if
and only if it is fixed-parameter tractable, however we are mostly interested in
kernelization algorithms with the function g being a polynomial. Unfortunately,
for Connected Vertex Cover no polynomial kernel exists as shown by Dom
et al. [9], unless NP ⊆ coNP/poly.

Organization. In Section 2 we prove Theorem 1. For the sake of presentation
we describe small differences needed to solve the counting variant, that is to
prove Theorem 2, in separate Section 3. Next, in Section 4 we prove Theorem 3
and finally, we finish the article with conclusions and open problems in Section 5.

Notation. We use standard graph notation. For a graph G, by V (G) and E(G)
we denote its vertex and edge sets, respectively. When it is clear which graph
we are describing we use n as the number of its vertices and m as the number of
its edges. For v ∈ V (G), its neighborhood N(v) is defined as N(v) = {u : uv ∈
E(G)}, and N [v] = N(v) ∪ {v} is the closed neighborhood of v. We extend this
notation to subsets of vertices: N [X ] =

⋃
v∈X N [v] and N(X) = N [X ] \X . For

a set X ⊆ V (G) by G[X ] we denote the subgraph of G induced by X . For a
set X of vertices or edges of G, by G \X we denote the graph with the vertices
or edges of X removed; in case of vertex removal, we remove also all the incident
edges. For two subsets of vertices X,Y ⊆ V by E(X,Y ) we denote the set of
edges with one endpoint in X and the other in Y . In particular by E(X,X) we
denote the set of edges with both endpoints in X .

For weighted problems we assume weights are representable reals.



98 M. Cygan

2 Algorithm

In this section we prove Theorem 1. As the starting point we use the iterative
compression technique in Section 2.1. As a consequence we are left with a prob-
lem, where additionally each instance is equipped with a connected vertex cover
Z of size at most k+2. In Section 2.2 we show how to take advantage of the set
Z by showing a natural algorithm, solving a bipartite Steiner tree problem as a
subroutine (described in Section 2.4). The key part of the proof of Theorem 1
is the time complexity analysis of the presented algorithm, which relies on a
combinatorial lemma proved in Section 2.3.

2.1 Iterative Compression

We start with a standard technique in the design of parameterized algorithms,
that is, iterative compression, introduced by Reed et al. [17]. Iterative com-
pression was also the first step of the Monte Carlo algorithm for Connected

Vertex Cover [5].
We define a compression problem, where the input additionally contains a

connected vertex cover Z ⊆ V . The name compression might be misleading in
our case, since in the problem definition below we are not explicitly interested
in compressing the solution, but we want to find a minimum weight connected
vertex cover using the size of Z as our structural parameter. In particular not
only we use the fact that Z is a vertex cover (which ensures that V \ Z is an
independent set), but also we use the fact that G[Z] is connected, which is crucial
for the time complexity analysis of our algorithm.

Compression Weighted Connected Vertex Cover (Comp-WCVC)
Input: An undirected graph G = (V,E), a weight function ω : V → R+, an
integer k and a connected vertex cover Z ⊆ V of G.
Parameter: |Z|
Goal: Find a minimum weight connected vertex cover of cardinality at most
k.

In Section 2.2 we prove the following lemma providing a parameterized algo-
rithm for the above compression problem.

Lemma 4. Comp-WCVC can be solved in O(2|Z|k(|V | + |E|)) time and
O(2|Z|k) space. Moreover, when the weight function is uniform, we can solve
the problem in O(2|Z|(|V |+ |E|)) time and O(2|Z|) space.

Having the above lemma we show how to efficiently find a connected vertex cover
of size at most k (if it exists).

Lemma 5. Given an undirected graph G = (V,E) and an integer k one can
find a connected vertex cover of size at most k, or verify that it does not exist,
in O(2kk(|V |+ |E|)) time and O(2k) space.

Proof. First, let us assume that G does not contain isolated vertices, since we can
remove them. Moreover we can assume that G is connected, since if G contains
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at least two connected components (and no isolated vertices) then it can not
admit a connected vertex cover of any size. Therefore, let V = {v1, ..., vn} be an
ordering of vertices, such that for each 1 ≤ i ≤ n, the graph G[Vi] is connected,
where Vi = {vi, . . . , vn}. For 1 ≤ i ≤ n let Gi be the graph G, with vertices of
Vi identified to a single vertex. Alternatively, we can say that Gi comes from
a contraction of the set of edges of a spanning tree of G[Vi] (where we remove
multiple edges and self-loops). Since Connected Vertex Cover is closed
under edge contractions, we infer that if there is no connected vertex cover of
size at most k in Gi, then clearly there is no connected vertex cover of size at
most k in G.

We are going to construct a sequence of sets Xi ⊆ V (Gi) of size at most
k, such that Xi is a connected vertex cover of Gi. First, observe that the set
X1 = ∅ is a connected vertex cover of G1 of size at most k. Next, let us consider
each value of i = 2, . . . , n one by one. Observe that there is an edge e in E(Gi),
such that the graph Gi−1 is exactly the graph Gi with the edge e contracted.
In particular as e we may take any edge between vi−1 and Vi. Let x be the
vertex in Gi−1 which corresponds to the set Vi−1 and let y be the vertex in Gi

corresponding to the set Vi. We claim that Z = (Xi−1 \ {x}) ∪ {vi−1, y} is a
connected vertex cover of Gi of size at most k + 2. Since |Xi−1| ≤ k the bound
on the size of Z holds. Moreover, since Xi−1 is a vertex cover of Gi−1, the set Z
is a vertex cover of Gi. Finally, Gi[Z] is connected, because either x is contained
in Xi−1, or a neighbour of x belongs to Xi−1, or x is an isolated vertex which
means that i = 2 and then Z = V (G2) induces a connected subgraph.

If, for a fixed i, we use Lemma 4 for the Comp-WCVC instance (Gi, ω, k, Z),
with ω being a uniform unit weight function, then in O(2|Z|(n+m)) = O(2k(n+
m)) time and O(2|Z|) = O(2k) space we can find a set Xi, which is a connected
vertex cover of Gi of cardinality at most k, or verify that no connected vertex
cover of cardinality at most k in the graph G exists. Since Gn = G, the set
Xn is a connected vertex cover of G of size at most k, which we can find in
O(2kn(n+m)) time, because we use Lemma 4 exactly n− 1 times. In order to
reduce the polynomial factor from n(n+m) to k(n+m) observe, that if we order
the set V , such that the set {vi−�+1, . . . , vn} forms a connected vertex cover
of the graph G, then as the set Xi−�+1 we can set a singleton set containing
the vertex corresponding to Vi−�+1 and reduce the number of rounds in the
inductive process from n to �. However, a simple O(n+m) time 2-approximation
of the Connected Vertex Cover problem is known [11], which just takes as
the solution the set of internal nodes of a depth first search tree of the given
graph. Therefore, assuming a vertex cover of size at most k exists, we can find
a connected vertex cover of size at most 2k in O(n+m) time and consequently
reduce the number of rounds of the inductive process to at most 2k, which leads
to O(2kk(n+m)) time complexity. ��

Assuming Lemma 4 by Lemma 5 we can find a connected vertex cover Z of
size at most k, if it exists. Afterwards we use the set Z as part of the input for
Lemma 4, which proves Theorem 1.
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2.2 Compression Algorithm

In this section we present a proof of Lemma 4. The advantage we have while
solving Comp-WCVC instead of WCVC is the additional set Z, which forms
a connected vertex cover of G and the size of Z is our new parameter. We show
how to use the set Z as an insight into the structure of the graph and solve
compression problem efficiently. The algorithm itself is straightforward, but the
crucial part of its time complexity analysis lies in the following combinatorial
bound, which we prove in Section 2.3.

Lemma 6. For any connected graph G = (V,E) we have∑
V1⊆V

E(G[V \V1])=∅

2|cc(G[V1])| ≤ 3 · 2|V |−1, (1)

where by cc(H) we denote the set of connected components of a graph H.

Observe that, in the above lemma, we sum over all sets V1, that form a vertex
cover ofG. The second tool we use in the proof of Lemma 4 is the following lemma
solving the node-weighted Steiner tree problem in bipartite graphs, where both
the terminals and non-terminals form independent sets. The proof of it can be
found in Section 2.4.

Lemma 7. Let G = (V,E) be a bipartite graph and T ⊆ V be a set of terminals,
such that T and V \ T are independent sets. For a given weight function ω :
V \ T → R+ and an integer k in O(2|T |k(|V | + |E|)) time and O(2|T |k) space
we can find a minimum weight subset X ⊆ V \ T of cardinality at most k, such
that G[T ∪X ] is connected, or verify that such a set does not exist. Moreover for
a uniform weight function ω we improve the running time to O(2|T |(|V |+ |E|))
and space usage to O(2|T |).

Having Lemmas 6 and 7 we can prove Lemma 4.

Proof (of Lemma 4). Similarly as in the proof of Lemma 5 we may assume that
the graph G is connected. We start with guessing, by trying all 2|Z| possibilities,
a subset Z1 of Z that is part of a minimum connected vertex cover and denote
Z0 = Z \ Z1.

First, let us consider a special case, that is Z1 = ∅. Then we need to take the
whole set V \ Z to cover the edges E(Z1, V \ Z), since each vertex of V \ Z has
at least one neighbour in Z (otherwise the vertex would be isolated). It is easy
to verify whether V \ Z is a connected vertex cover of size at most k.

Therefore, we assume that Z1 �= ∅ and moreover E(Z0, Z0) = ∅, since other-
wise there is no vertex cover disjoint from Z0. Let us partition the set V \Z into
V1 = (V \Z)∩N(Z0) and V0 = (V \Z)\V1. Less formally, we split the vertices of
V \Z depending on whether they have a neighbour in Z0 or not. Since we need
to cover the edges adjacent to Z0, any vertex cover disjoint from Z0 contains all
the vertices of V1.

Observe that if there exists a vertex v ∈ V1, such that N(v) ⊆ Z0, no vertex
cover disjoint from Z0 is connected, since the vertex v can not be in the same
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connected component as any vertex of Z1, meaning that this choice of Z0 is
invalid (see Fig. 1). Consequently each vertex in V1 has at least one neighbour
in Z1. Moreover, Z1 ∪ V1 forms a vertex cover of the graph G, as V0 ∪ Z0 is an
independent set. Hence we want to investigate how Z1∪V1 can be complemented
with vertices of V0, to make the vertex cover induce a connected subgraph.
Let G′ be the graph G[Z1 ∪ V0 ∪ V1] with connected components of G[Z1 ∪
V1] contracted to single vertices. Denote the set of vertices corresponding to
contracted components of G[Z1 ∪V1] as T . Note that G

′ is bipartite, since G[V0]
is an independent set. By Lemma 7 we can find a minimum weight set X ⊆
V0 of cardinality at most (k − |Z1| − |V1|), such that G′[T ∪ X ] is connected,
which is equivalent to G[Z1 ∪ V1 ∪ X ] being connected. Observe that the size
of the set T is upper bounded by the number of connected components of the
induced subgraph G[Z1], as each vertex of V1 has at least one neighbour in
Z1. Therefore, by Lemma 7, for a fixed choice of Z1 we can find the set X in
O(2|T |(k − |Z1| − |V1|)(|V (G′)| + |E(G′)|)) = O(2|cc(G[Z1])|k(|V (G)| + |E(G)|))
time and O(2|T |(k−|Z1|− |V1|)) = O(2kk) space. Moreover for a uniform weight
function, by Lemma 7, the running time is O(2|cc(G[Z1])|(|V (G)|+ |E(G)|)) and
space usage is O(2k).

V1 V0

Z0 Z1

Fig. 1. An example of invalid choice of Z0, since a vertex of V1 has neighbours in Z1

Summing up the running time over all the choices of Z1, for which Z0 is an
independent set, by Lemma 6 applied to the graph G[Z] we prove the total
running time of our algorithm is O(2kk(|V (G)| + |E(G)|)) for a general weight
function and O(2k(|V (G)|+ |E(G)|)) for a uniform weight function. ��

2.3 Combinatorial Bound

Now we prove Lemma 6, where we reduce the trivial 3|V | bound to 3 · 2|V |−1,
by using a similar idea, as was previously used for Bandwidth [6,7] and Con-

nected Vertex Cover [5].

Proof (of Lemma 6). Note, that we may rewrite the sum we want to bound as
follows:

∑
V1⊆V

E(G[V \V1])=∅

2|cc(G[V1])| = |{(V1,C) : V1 ⊆ V,C ⊆ cc(G[V1]), E[G[V \ V1]] = ∅}| .
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That is we count the number of pairs (V1,C), such that V1 forms a vertex cover
of G and C is any subset of connected components of the subgraph induced by
V1. Denote the set of all pairs (V1,C) we are counting as S. Observe that we can
easily construct an injection φ from S to {ii, io,o}|V |, where for a pair (V1,C) as
φ((V1,C))(v) we set:

– ii (in-in) when v ∈ V1 and the connected component of G[V1] containing v
belongs to C,

– io (in-out) when v ∈ V1 and the connected component of G[V1] containing
v does not belong to C,

– o (out) when v �∈ V1.

Having any function f : V → {ii, io,o}, which belongs to the image of φ, we can
reconstruct a pair (V1,C) (if it exists), such that φ((V1,C)) = f . However, the
injection φ is not a surjection, for at least two reasons. Consider any f ∈ φ(S).
Firstly, for any edge uv ∈ E, we have f(u) ∈ {ii, io} or f(v) ∈ {ii, io}, since
otherwise V1 is not a vertex cover of G. Secondly, for any edge uv ∈ E, if we
have f(u) ∈ {ii, io}, then either f(v) = o or f(v) = f(u), because if both u and
v belong to V1, then they are part of exactly the same connected component C
of G[V1], and therefore knowing f(u) we can infer whether C ∈ C or C �∈ C.

Let us formalize the intuition above, to prove that for almost each vertex
we have at most two, instead of three possibilities. Consider a spanning tree T
of G and root it at an arbitrary vertex r. We construct the following function

v1 v2 v3 v4

v5 v6 v7 v8

v1,o,o

v6, ii,a

v7, ii,a

v4,o,b

v3, io,b

v2, io,a

v5, io,b

v8,o,b

Fig. 2. The set V1 is enclosed within the dashed border, whereas cc(G[V1]) =
{{v2, v3}, {v5}, {v6, v7}} and C = {{v6, v7}}. On the right there is a tree T rooted
at v1, where for each vertex values assigned by φ((V1,C)) and φ′((V1,C)) are given.
Note that the for the root both φ((V1, C)) and φ′((V1,C)) assign exactly the same
value.
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φ′ : S→ {ii, io,o}×{a,b}V \{r}. For a given pair (V1,C) ∈ S we set φ′((V1,C)) =
(φ((V1,C))(r), f), where the function f : V \ {r} → {a,b} is defined in a top-
down manner, with respect to the tree T , as follows. Let v ∈ V \ {r} and denote
p ∈ V as the parent of v in T .

– If p ∈ V1, then if v ∈ V1, we set f(v) = a and otherwise (if v �∈ V1), we set
f(v) = b.

– If p �∈ V1, then we have v ∈ V1 (since otherwise V1 would not be a vertex
cover), and if the connected component of G[V1] containing v belongs to C,
then f(v) = a, otherwise f(v) = b.

Since φ′ is also a surjection, we have |S| ≤ 3 · 2|V |−1, and the lemma follows. An
example showing both functions φ, φ′ is depicted in Fig. 2. ��

2.4 Bipartite Steiner Tree

Here we prove Lemma 7, which concerns the following bipartite variant of the
node-weighted Steiner tree problem.

Weighted Bipartite Steiner Tree

Input: An undirected bipartite graph G = (V,E), a weight function ω : V →
R+, an integer k and a set of terminals T ⊆ V , such that both T and V \ T
are independent sets in G.
Parameter: |T |
Goal: Find a minimum weight subset X ⊆ V \ T of size at most k, such
that G[T ∪X ] is connected.

Proof (of Lemma 7). By a dynamic programming routine, for each subset T0 ⊆ T
and integer 0 ≤ j ≤ k we compute the value t(T0, j), defined as the minimum
weight of a subset X ⊆ V \ T , satisfying:

– |X | = j,
– N(X) = T0,

– G[T0 ∪X ] is connected.

Less formally, the value t(T0, j) is the minimum weight of a set X of cardinality
exactly j, such that G[T0 ∪ X ] induces a connected subgraph, and there is no
edge from X to T \ T0. Observe that min1≤j≤k t(T, j) is the minimum weight
solution for the Weighted Bipartite Steiner Tree problem, therefore in
the rest of the proof we describe how to compute all the (k + 1)2|T | values t
efficiently.

Initially for each t0 ∈ T we set t({t0}, 0) := 0, while all other values in the
table t are set to ∞. Next, consider all the subsets T0 ⊆ T in the order of their
increasing cardinality, and for each integer 0 ≤ j < k and each vertex v ∈ N(T0)
do

t(T0 ∪N(v), j + 1) := min(t(T0 ∪N(v), j + 1), t(T0, j) + ω(v)) .
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In the above expression we take the minimum between the current value and the
solution that utilizes the vertex v. Note, that the assumption v ∈ N(T0) ensures,
that vertices N(v) \ T0 get connected to the vertices of T0.

With this simple dynamic programming routine we compute all the values
t(T0, j) in O(2|T |k(|V (G)| + |E(G)|) time and O(2|T |k) space. Note, that by
standard methods we can reconstruct a set X corresponding to the value t(T, j)
in the same running time. Moreover, if the weight function is uniform, than the
second dimension of our dynamic programming table is unnecessary, since the
cardinality and weight of a set are equal. This observation reduces both the
running time and space usage by a factor of k. ��

3 Counting

In this Section we present a proof of Theorem 2, which is similar to the proof of
Theorem 1.

Proof (of Theorem 2). Similarly as in the proof of Theorem 1, by using Lemma 5
in O(2kk(|V |+ |E|)) time we construct a set Z, which is a connected vertex cover
of G of size at most k, or verify that such a set does not exist.

Next, we proceed as in the proof of Lemma 4, however we have to justify
the assumption that G is a connected graph. When G contains at least two
connected components containing at least two vertices each, then there is no
connected vertex cover in the graph G. If there is one connected component
containing at least two vertices, then no connected vertex cover contains any
of the isolated vertices, hence we can remove them. Finally, when the graph
contains only isolated vertices, then it admits an empty connected vertex cover
and |V | connected vertex covers containing a single vertex only.

The rest of the proof of Lemma 4 remains unchanged and what we are left
with is to show an O(2|T |poly(|V |)) running time algorithm for the following
#Bipartite Steiner Tree problem.

#Bipartite Steiner Tree

Input: An undirected bipartite graph G = (V,E), an integer k and a set of
terminals T ⊆ V , such that both T and V \ T are independent sets in G.
Parameter: |T |
Goal: Find the number of subsets X ⊆ V \ T of size at most k, such that
G[T ∪X ] is connected.

We do it similarly as Björklund et al. in Section 4 of [2], that is for each T0 ⊆ T ,
0 ≤ j ≤ k and 1 ≤ c ≤ |T0| we define the value t(T0, c, j), which is equal to
the number of subsets X ⊆ V \ T of size exactly j, such that N(X) ⊆ T0 and
G[T0 ∪X ] consists of exactly c connected components. To compute values of the
table t one needs to use fast subset convolution and the details will be included
in the full version of the paper. ��
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4 Polynomial Space

The only place in our algorithm, where we use exponential space is when solving
the Bipartite Steiner Tree problem. If, instead of using Lemma 7 we use
the algorithm of Nederlof [15], running in O(2|T |poly(n)) time, we obtain an
O(2kpoly(n)) time and polynomial space algorithm for theConnected Vertex

Cover problem. The algorithm by Nederlof solves also the weighted case, but
only when the weights are polynomially bounded integers, which is enough to
prove Theorem 3. Unfortunately, we are not aware of an algorithm which counts
the number of solutions to the Bipartite Steiner Tree problem in 2|T ||V |O(1)

time and polynomial space (note that the algorithm of [15] counts the number
of branching walks, not the number of subsets of vertices inducing a solution).

5 Conclusions and Open Problems

In [5] Cygan et al. have shown a randomized O(3kpoly(n)) algorithm for the
Feedback Vertex Set problem, where we want to make the graph acyclic by
removing at most k vertices. Is it possible to design a deterministic algorithm of
the same running time?

The Cut&Count technique presented in [5] does not allow neither to count
the number of solution nor to solve problems with arbitrary real weights. Nev-
ertheless, for the Connected Vertex Cover problem we were able to solve
both the weighted and counting variants in the same running time. Is it possi-
ble to design O(ctwpoly(n)) time algorithms for counting or weighted variants of
the connectivity problems parameterized by treewidth for which the Cut&Count
technique can be applied?

Finally, we know that it is not possible to count the number of connected
vertex covers of size at most k in O((2 − ε)kpoly(n)) time, unless SETH fails.
Can we prove that we can not solve the decision version of the problem as well
in such running time?

Acknowledgements. We thank Daniel Lokshtanov, Marcin Pilipczuk and
Micha�l Pilipczuk for helpful discussions. Moreover we are grateful to the anony-
mous reviewers, especially for the comments regarding the counting variant of
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Abstract. An undirected graph is said to be split if its vertex set can
be partitioned into two sets such that the subgraph induced on one of
them is a complete graph and the subgraph induced on the other is an
independent set. We study the problem of deleting the minimum number
of vertices or edges from a given input graph so that the resulting graph
is split.We initiate a systematic study and give efficient fixed-parameter
algorithms and polynomial sized kernels for the problem. More precisely,

1. for Split Vertex Deletion, the problem of determining whether
there are k vertices whose deletion results in a split graph, we give
an O∗(2k)1 algorithm improving on the previous best bound of
O∗(2.32k). We also give an O(k3)-sized kernel for the problem.

2. For Split Edge Deletion, the problem of determining whether
there are k edges whose deletion results in a split graph, we give an

O∗(2O(
√

k log k)) algorithm. We also prove the existence of an O(k2)
kernel.

In addition, we note that our algorithm for Split Edge Deletion adds
to the small number of subexponential parameterized algorithms not
obtained through bidimensionality, and on general graphs.

1 Introduction

The problem of editing (adding/deleting vertices/edges) to ensure that a graph
has some property is a well studied problem in theory and applications of graph
algorithms. When we want the resulting graph to be in a non-trivial hereditary
(i.e. closed under induced subgraphs) graph class, the optimization versions of
the corresponding vertex/edge deletion problems are known to be NP-complete
by a classical result of Lewis and Yannakakis [14]. This problem has also been
studied in generality under paradigms like approximation [9, 16] and parame-
terized complexity [3, 11]. When Π is a specific hereditary class like chordal or

1 O∗() notation hides factors that are polynomial in the input size.

F.V. Fomin and P. Kaski (Eds.): SWAT 2012, LNCS 7357, pp. 107–118, 2012.
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planar graphs, extensive work has been done to explore tight bounds [8,13,17,18].
In this paper, we initiate a study of these problems when Π is the class of all
split graphs, which is also a hereditary graph class.

An undirected graph G = (V,E) is said to be split if its vertex set V can be
partitioned into two sets such that the induced subgraph on one of them is a
complete graph and the induced subgraph on the other is an independent set.
Split graphs were first studied by Földes and Hammer [7], and independently
introduced by Tyshkevich and Chernyak [20]. In [7], the authors provided the
following finite forbidden subgraph characterization of split graphs which gives
us an easy polynomial time algorithm for recognizing split graphs.

Lemma 1. ( [7]) A graph is a split graph if and only if it contains no induced
subgraph isomorphic to 2K2, C4, or C5. Here, K2 is the complete graph on two
vertices, Ci is a cycle on i vertices.

In this paper, we study the following two problems.

Split Vertex Deletion (SVD)

Input: Graph G = (V,E), integer k
Parameter: k
Question: Does there exist a set of vertices of size at most k whose deletion

from G results in a split graph?

Split Edge Deletion (SED)

Input: Graph G = (V,E), integer k
Parameter: k
Question: Does there exist a set of edges of size at most k whose deletion

from G results in a split graph?

As the size of the forbidden set is finite, these problems become fixed-parameter
tractable (see Section 2) due to a general result of Cai [3], when parameterized by
k. One can also observe from Lemma 1, a fairly straightforward branching algo-
rithm for both SVD and SED with running time O∗(5k).

Recently, in [15,19], the authors obtained an O∗(2.32)k algorithm for SVD by
reducing the problem to the Above Guarantee Vertex Cover problem and
using the fixed-parameter algorithm for it. In this paper, we improve this bound
to O∗(2k) by the combination of a bound on the number of split partitions of
a split graph, and the well known technique of iterative compression. We also
obtain an O(k3) vertex kernel for the problem. Note that, this kernel is smaller
than the kernel with O(k4) vertices, which can be obtained by an approach
similar to d-Hitting Set [1]. We also observe that under certain complexity
theoretic assumptions, we cannot obtain a subexponential algorithm for this
problem. Indeed, the reduction from Vertex Cover, where we add a disjoint
clique of size k + 2 to the given instance, along with the fact that Vertex

Cover does not admit a subexponential algorithms unless the Exponential Time
Hypothesis (ETH) fails [4], proves this observation.
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ForSED, we design a subexponential algorithmrunning in timeO∗(2O(
√
k log k))

by combining the color and conquer approach [2], with the bound on the number
of partitions of a split graph. This is probably the second problem (see [8]) hav-
ing a subexponential algorithm on general graphs which doesn’t use bidimension-
ality theory. We also revisit the kernelization algorithm for this problem given by
Guo [11], andbyusing only a subset of the rules presented there,weprove aboundof
O(k2) vertices improving onGuo’s bound ofO(k4). Furthermore, the SplitCom-

pletion problem of adding at most k edges to a given graph to make it split, is
equivalent to deleting at most k edges from the complement of the graph to make
it split. Hence, the bound on the kernel and the subexponential algorithm which
we prove for SED also holds for Split Completion. We also note that though
computing a minimum split completion set is NP-complete, there is a linear time
algorithm to compute a minimal split completion set [12].

2 Preliminaries

For a graph G = (V,E), and a set A of edges, we denote by V (A) the set of
endpoints of the edges in A. For a set S ⊆ V , the subgraph of G induced by S is
denoted by G[S] and it is defined as the subgraph of G with vertex set S and edge
set {(u, v) ∈ E : u, v ∈ S} and the subgraph obtained after deleting S is denoted
as G \ S. Similarly, the subgraph of G induced by an edge set A ⊆ E is defined
as the subgraph of G with edge set A and vertex set V (A). All vertices adjacent
to a vertex v are called neighbours of v and the set of all such vertices is called
the neighbourhood of v. Similarly, a non-adjacent vertex of v is called a non-
neighbour and the set of all non-neighbours of v is called the non-neighbourhood
of v. The neighborhood of v is denoted by N(v). We say that v is global to a
set Z if v is adjacent to all vertices of Z and we say that v is non-adjacent (or
non-neighbor) to a set Z if v is not adjacent to any vertex of Z. For two sets X
and Y , we say that X is global to Y if every vertex in X is global to Y and that
X is non-adjacent to Y if every vertex in X is non-adjacent to Y .

Given a function col : V → C from the vertices of the graph G to a set of
colors, C, we say that an edge (u, v) ∈ E is monochromatic if col(u) = col(v)
and non-monochromatic otherwise.

A graph G is called a split graph if the vertex set V can be partitioned into two
sets V1 and V2 such that G[V1] is a complete graph and G[V2] is an independent
set. We call a set S ⊆ V a split vertex deletion (svd) set if the graph G[V \ S]
is a split graph and a set A ⊆ E is called a split edge deletion (sed) set if the
graph G[E \A] is a split graph.

Definition 1. Given a split graph G = (V,E), a partition (C � I) of the vertex
set into sets C and I is called a split partition of this split graph if G[C] is a
clique and G[I] is an independent set.

Given a split partition (C0�I0) of a subgraph G′ of a split graph G, we say that
a split partition (C � I) of G is consistent with the partition (C0 � I0) if C0 ⊆ C
and I0 ⊆ I. We refer to an induced subgraph isomorphic to 2K2, or C4 or C5 as
a forbidden structure.
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Parameterized Complexity. For decision problems with input size n, and a
parameter k, the goal in parameterized complexity is to design an algorithm
with running time f(k)nO(1) where f is a function of k alone, as contrasted
with a nk+O(1) algorithm. Problems which admit such algorithms are said to
be fixed parameter tractable (FPT). We also call an algorithm with a running
time of f(k)nO(1), an FPT algorithm, and such a running time, an FPT running
time. The theory of parameterized complexity was developed by Downey and
Fellows [5]. For recent developments, see the book by Flum and Grohe [6].

Kernelization. A kernelization algorithm for a parameterized language L is a
polynomial time procedure which takes as input an instance (x, k), where k is
the parameter and returns an instance (x1, k1) such that (x, k) ∈ L if and only
if (x1, k1) ∈ L and |x1| ≤ h(k) and k1 ≤ g(k), for some computable functions
h, g. The returned instance is said to be the kernel for L.

3 An Improved Algorithm for Split Vertex Deletion

In this section, we present a faster parameterized algorithm for SVD by com-
bining the technique of iterative compression along with a linear bound on the
number of split partitions of split graphs. The following lemma is implied by
Theorem 6.2, [10].

Lemma 2. (Theorem 6.2, [10]) A split graph on n vertices can have at most
n+ 1 split partitions.

We will now describe the application of the iterative compression technique to
the SVD problem.

Iterative Compression for Split Vertex Deletion. Given an instance
(G = (V,E), k) of SVD, we let V = {v1, . . . , vn} and define vertex sets Vi =
{v1, . . . , vi}, and let the graph Gi = G[Vi]. We iterate through the instances
(Gi, k) starting from i = k + 3. For the ith instance, we try to find a solution
Ŝi of size at most k, with the help of a known solution Si of size at most k + 1.
Formally, the compression problem we address is the following.

Split Vertex Deletion Compression (SVD Compression)

Input: Graph G = (V,E), an svd set S ⊆ V of size at most k + 1,
integer k

Parameter: k
Question: Does there exist an svd set of size at most k?

We reduce the SVD problem to n−k−2 instances of the SVD Compression

problem as follows. Let Ii = (Gi, Si, k) be the ith instance. Clearly, the set Vk+1

is a solution of size at most k+1 for the instance Ik+3. It is also easy to see that
if Ŝi−1 is a solution of size at most k for instance Ii−1, then the set Ŝi−1∪{vi} is
a solution of size at most k+1 for the instance Ii. We use these two observations
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to start off the iteration with the instance (Gk+3, Sk+3 = Vk+1, k) and look for a
solution of size at most k for this instance. If there is such a solution Ŝk+3, we set
Sk+4 = Ŝk+3 ∪ {vk+4} and ask for a solution of size at most k for the instance
Ik+4 and so on. If, during any iteration, the corresponding instance does not
have a solution of the required size, it implies that the original instance is also
a No instance. This follows from the fact that if a graph G has a split vertex
deletion set of size k, then any vertex induced subgraph of G also has a split
vertex deletion set of size k. Finally, the solution for the original input instance
will be Ŝn. Since there can be at most n iterations, the total time taken to solve
the original instance is bounded by n times the time required to solve the SVD

Compression problem.
Our algorithm for SVD Compression is as follows. Let the input instance

be I = (G = (V,E), S, k). We guess a subset Y ⊆ S with the intention of
picking these vertices in our hypothetical solution for this instance and ignoring
the rest of the vertices in S. We delete the set Y from the graph and decrease k
appropriately. We then check if the graph G[S\Y ] is a split graph and if it is not,
then reject this guess of Y as a spurious guess. Suppose that G[S \ Y ] is indeed
a split graph. We now guess and fix a split partition (C0 � I0) for this graph. By
Lemma 2, we know that there are at most k + 2 such split partitions. The split
partition we fix corresponds to the split partition induced by the hypothetical
solution on the graph G[S \ Y ]. Hence, it now remains to check if there is an
SVD set of the appropriate size which is disjoint from S \ Y , and results in a
split graph with a split partition consistent with (C0 � I0). More formally, we
have an instance of the following problem.

Split Vertex Deletion Compression* (SVD Compression*)

Input: Graph G = (V,E), an svd set S ⊂ V such that G[S] is a split
graph, a split partition (C0 � I0) for the graph G[S], integer k

Parameter: k
Question: Does there exist an svd set X of size at most k, disjoint from S

such that G \X has a split partition consistent with (C0 � I0)?

The following lemma gives a polynomial time algorithm for the above problem.

Lemma 3. [∗]2 Split Vertex Deletion Compression* can be solved in
time polynomial in the input size.

Given Lemma 3, our algorithm for SVD Compression has a running time of
O(Σk

i=0

(
k+1
i

)
· k ·nO(1)) = O∗(2k), where the factor of k is due to the number of

split partitions of G[S \ Y ] and nO(1) is due to the time required to execute our
algorithm for SVD Compression*.

Finally, since we solve at most n instances of SVD Compression, our algo-
rithm for SVD runs in time O∗(2k), giving us the following theorem.

Theorem 1. Split Vertex Deletion can be solved in time O∗(2k) time.

2 Proofs of results marked [∗] will appear in the full version of the paper.
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3.1 A Cubic Kernel for Split Vertex Deletion

In this subsection, we use the structural claim made in the algorithm for SVD to
design a vertex kernel of size O(k3) for SVD. We design the kernel by introducing
reduction rules which can be applied in polynomial time to reduce the instance.
The reduction rules we present here are applied exhaustively and in the order in
which they are presented.

We say that a reduction rule that is applied on an instance (G, k) to produce
an instance (G′, k′) is correct if (G, k) is a YES instance if and only if (G′, k′) is
a YES instance.

Reduction Rule 1. Compute an inclusion wise maximal set of vertex disjoint
forbidden structures greedily, and let the set of vertices involved in this set of
forbidden structures be O∗. If |O∗| exceeds 5k, then return a trivial No instance.

Moving forward, we assume that |O∗| ≤ 5k. Note that G \ O∗ is a split graph,
and let (C∗ � I∗) be a split partition of this graph. Before we present the next
reduction rule, we need the following definition.

Definition 2. We say that a vertex v of G has a high clique non-neighbourhood
if |C∗ \ N(v)| ≥ k + 2. Similarly, v is said to have a high independent set
neighborhood if |I∗ ∩N(v)| ≥ k + 2.

Let Hi = {x ∈ V : |C∗ \ N(v)| ≥ k + 2}, and let Hc = {x ∈ V : |I∗ ∩
N(v)| ≥ k + 2}. It is easy to see that the vertices in Hi will either end up in the
independent partition of the resulting split graph, or will get deleted and hence
will be in the solution. Similarly for vertices in Hc. This justifies the correctness
of the next reduction rule.

Reduction Rule 2. If there is a vertex v ∈ Hi∩Hc, then delete v and decrease
k by 1.

Lemma 4. [∗] Reduction Rule 2 is correct

We now partition the vertex set of the resulting graph G as follows.

– Let C1 = Hc ∩C∗ be the set of vertices of C∗ which have high independent
set neighborhood, and let I1 = Hi∩I∗, is the set of vertices of I∗ which have
high clique non-neighborhood.

– Similarly Co = Hc∩O∗, is the set of vertices of O∗ which have high indepen-
dent set neighborhood, and Io = Hi ∩O∗, is the set of vertices of O∗ which
have high clique non-neighborhood.

– Let C∗
1 = C∗ \ C1, and I∗1 = I∗ \ I1.

We first show that the size of at least one of the sets, C∗
1 and I∗1 is bounded (by

a linear function of k).

Lemma 5. [∗] |C∗
1 | ≤ 2k + 2 or |I∗1 | ≤ 2k + 2.
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In order to describe the next reduction rule, we assume that |I∗1 | ≤ 2k+2. Later,
we give an analogous rule for the case when |I∗1 | > 2k + 2 and |C∗

1 | ≤ 2k + 2.
Our aim is to show that if |C∗

1 | is larger than ck2 for some constant c, then
some of the vertices can be deleted to get an equivalent instance where |C∗

1 | is
at most ck2.

Observe that, by definition, only I1 and Io have high non-neighborhoods to
C∗. Let Y be the set of vertices in C∗

1 which have a non-neighbour in (O∗\Io)∪I∗1 .
Then |Y | is O(k2) as (O∗ \ Io) ∪ I∗1 has O(k) vertices and each such vertex has
at most O(k) non-neighbours in C∗. The next reduction rule presents a way to
bound the remaining vertices in C∗

1 . Let C
r
1 = C∗

1 \ Y (i.e. Cr
1 is adjacent to all

the vertices of (O∗ \ Io) ∪ I∗1 .)

Reduction Rule 3. If |Cr
1 | > k + 2, then delete all edges from Cr

1 to I1 ∪ Io
and delete all but k + 2 vertices of Cr

1 .

The correctness of the rule follows from Lemma 6 below.

Lemma 6. [∗] Reduction Rule 3 is correct.

Now that we have bounded |Cr
1 | by k + 2, we have the following lemma.

Lemma 7. The number of vertices in C∗
1 is O(k2).

The above rule has an analogous counterpart in the case when |I∗1 | > 2k + 2
and |C∗

1 | ≤ 2k+2. The reduction rule and analysis are identical, except we now
consider independent sets where we considered cliques and we consider neighbors
where we considered non-neighbors. Hence, we simply state the reduction rule
without proof.

Reduction Rule 4. Consider the subset X of I∗1 which is non-adjacent to the
sets O∗ \Co and C∗

1 . If this set is larger than k+2, then truncate it to size k+2,
that is remove all but k+2 vertices of X and make the remaining vertices global
to all vertices in C1 ∪ Co.

In this case, we can prove a bound of O(k2) on the size of the set I∗1 (analogous
to Lemma 7). Combining the bounds resulting from the application of these two
rules (Reduction Rules 3 and 4), we get the following lemma.

Lemma 8. When none of the reduction rules presented thus far apply, the size
of the set C∗

1 ∪ I∗1 is bounded by O(k2).

Observe that the only unbounded sets at this point are C1 and I1. We will reduce
these sets by devising rules similar to Reduction Rule 3.

Reduction Rule 5. Consider the subset X of C1 which is global to the sets
O∗ \ Io and I∗1 . If this set is larger than k + 2, then remove edges from X to
I1 ∪ Io and truncate it to size k + 2.

Similarly, the following rule reduces the size of I1.
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Reduction Rule 6. Consider the subset X of I1 which is non-adjacent to the
sets O∗ \Co and C∗

1 . If this set is larger than k+2, then truncate it to size k+2
and make it global to all vertices in C1 ∪ Co.

Similar to Lemma 7, we can bound the size of the set C1 by k times the size of
the set (O∗ \ Io) ∪ I∗1 , and we can bound the size of the set I1 by k times the
size of the set (O∗ \ Co) ∪ C∗

1 . By using the bounds we have already proved for
these sets, we get the following lemma.

Lemma 9. When none of the reduction rules apply, the sets C1 and I1 contain
O(k3) vertices.

Summing up the bounds we have obtained, leads to the following theorem.

Theorem 2. There is a vertex kernel for SVD with O(k3) vertices.

4 An Improved Algorithm for SED

In this section, we present a subexponential algorithm for SED using the Color
and Conquer approach introduced by Alon, Lokshtanov and Saurabh [2]. We first
design a randomized subexponential algorithm for this problem which succeeds
with high probability. We then describe a way of derandomizing this algorithm
to obtain a deterministic algorithm.

4.1 A Randomized Subexponential Algorithm for SED

This algorithm consists of three steps. In the first step, we reduce the instance
(G, k) to an equivalent instance (G′, k′) with O(k2) vertices. In the second step,
we color the vertices of the graph uniformly at random and we prove that with a
sufficiently high probability, all the edges of some k-sized solution (if one exists) are
non-monochromatic. Finally, we give an algorithm to check if a colored instance of
SED has a non-monochromatic split edge deletion set of size at most k.

Kernelization. We first apply the kernelization algorithm (see Section 4.3) which,
given an instance (G, k) of SED, in polynomial time, returns an equivalent
instance (G′, k′) of SED such that the number of vertices in G′ is O(k2) and
k′ ≤ k. In the rest of this section, we will assume that the given instance is an
instance of this kind.

Probability of a Good Coloring. We now color the vertices ofG independently and
uniformly at randomwith

√
8k colors and letAc be the set of non-monochromatic

edges. Suppose that (G = (V,E), k) is aYes instance and let A ⊆ E be a solution
to this instance. We now show that the probability of A being contained in Ac is

at least 2−O(
√
k). We begin by estimating the probability of obtaining a proper

coloring (making all the edges non-monochromatic) when applying the above
random experiment on a graph with k edges.
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Lemma 10. ( [2]) If the vertices of a graph on q edges are colored independently
and uniformly at random with

√
8q colors then the probability that G is properly

colored is at least (2e)−
√

q/8.

Now, since we colored each vertex of the graph G independently, the graph
induced on the set A, of size at most k, will be properly colored with probability

at least 2−O(
√
k), which gives us the following lemma.

Lemma 11. Let (G = (V,E), k) be a Yes instance of SED which is colored by
the random process described above, and let A ⊂ E be a solution for this instance.

The probability that no edge in A is monochromatic is at least 2−O(
√
k).

Solving a Colored Instance. We now present an algorithm to test if there is a
colorful (all edges non-monochromatic) split edge deletion set in a given colored
instance of SED. In the colored instance, every vertex is colored with one of√
8k colors. We start with the following simple observation.

Observation 1 [∗] Let G = (V1 ∪V2 ∪ ...∪Vt, E) be a t-colored graph with color
classes V1, . . . , Vt. If there exists a colorful split edge deletion set A in G, then
G[Vi] is a split graph for every Vi.

We now proceed to the description of the algorithm. Suppose the given instance
had a colorful split edge deletion set A. Observation 1 implies that G[Vi] is a
split graph and it remains a split graph in G \ A. Hence, we use Lemma 2 to
enumerate the split partitions of G[Vi] for each i. Fixing a split partition for
each G[Vi] results in a combined split partition for the vertices in V . There are

O(k2) split partitions for each Vi and O(
√
k) such sets. Hence, there are kO(

√
k)

combined split partitions. Now, it simply remains to check if there is a combined
split partition (C�I) such that the number of edges in the graph G[I] is at most
k and return Yes if and only if there is such a combined split partition. Hence,
we have the following lemma.

Lemma 12. Given a colored instance (G, k) of SED of size O(k2), we can test

if there is a colorful SED set of size at most k in time 2O(
√
k log k).

Combining Lemmas 11 and 12, we get the following theorem.

Theorem 3. There is a randomized FPT algorithm for SED running in time

2O(
√
k log k) + nO(1) with a success probability of at least 2−O(

√
k).

4.2 Derandomization with Universal Coloring Families

For integers m, k and r, a family F of functions from [m] to [r] is called a
universal (m, k, r)-coloring family if, for any graph G on the set of vertices [m]
with at most k edges, there exists a function f ∈ F which gives a proper vertex
coloring of G. Suppose the kernel we obtain has size bounded by ck2, then an
explicit construction of a (ck2, k,

√
8k)-coloring family is known to exist.
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Theorem 4. ( [2]) There exists an explicit universal (ck2, k,
√
8k)-coloring fam-

ily F of size at most 2O(
√
k log k).

Replacing the randomized coloring step of our algorithm with the universal col-
oring family given by Theorem 4, yields the following theorem.

Theorem 5. There is an algorithm which solves SED in time 2O(
√
k log k) +

nO(1).

4.3 Improved Kernel for SED

In this subsection, we use a subset of the reduction rules for SED given in [11] to
show the existence of a kernel with a quadratic number of vertices. The following
are the reduction rules which we will apply on the given instance.

Reduction Rule 1. ( [11]) Delete vertices from G which are not part of an
induced subgraph isomorphic to 2K2, C4 or C5.

From this point on, we refer to an induced subgraph isomorphic to 2K2, C4 or
C5, as an induced 2K2, C4 or C5 respectively. When Reduction Rule 1 no longer
applies, every vertex in G is part of some induced 2K2, C4 or C5.

Reduction Rule 2. ( [11]) If two adjacent edges (u, v) and (u,w) occur to-
gether in more than k induced C4s, then delete (u, v) and (u,w) from G and add
two edges (a, v) and (b, w), where a and b are two new vertices of degree 1.

Reduction Rule 3. ( [11]) If an edge e occurs in more than k induced 2K2’s,
then delete e from G and reduce k by one.

We refer to [11] for the correctness of the reduction rules. We apply the above
reduction rules exhaustively, in the order in which they are presented, and obtain
a reduced instance (G′, k′). For the sake of notational convenience, we denote
the reduced instance by (G, k). In the rest of this discussion, we will assume
that the reduced instance is a Yes instance and prove a bound on the size of
the instance with this assumption. Let S be a minimal solution with at most k
edges and let (C � I) be a split partition of the graph G \ S. We call a vertex of
G affected if some edge in S is incident on it, and unaffected otherwise. Observe
that there are at most 2k affected vertices in G. We now make the following
important observation.

Observation 2 [∗] All the affected vertices lie in the independent set I.

Lemma 13. [∗] (a) Every induced C4 in G intersects S in exactly one edge, or
in exactly two adjacent edges of C4 or in all the four edges.

(b) Every induced C5 in G intersects S in exactly two adjacent edges of C5 or
in exactly three adjacent edges of C5 or in all the five edges.

We now give a bound on the number of vertices in the set I, using the following
lemmas.
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Lemma 14. [∗] There are O(k2) vertices which are part of an induced 2K2 in
G.

Lemma 15. [∗] If v ∈ I is an unaffected vertex, then v is not part of an induced
C4 or C5 in G.

Since we have bounded the number of both affected and unaffected vertices in
I, we have the following lemma.

Lemma 16. There are O(k2) vertices in the independent set I.

We now proceed to bound the number of vertices inside the clique C. To do so,
we introduce the notion of a sliced vertex. For every edge (p, q) ∈ S, and a vertex
v ∈ C, we say that the edge (p, q) slices v if v is adjacent to p but not to q or
vice versa. We say that a vertex v ∈ C is sliced if some edge in S slices it and
unsliced otherwise. Observe that the sets of sliced and unsliced vertices form a
partition of C.

Lemma 17. [∗] If v ∈ C is not sliced by any edge in S, then v is not part of an
induced C4 or C5 in G.

Since every unsliced vertex must be part of an induced 2K2, by Lemma 14 the
number of unsliced vertices in the set C is bounded by O(k2). To bound the
number of sliced vertices in C, we argue that each edge in S can slice O(k)
vertices of C, resulting in the following lemma.

Lemma 18. [∗] There are O(k2) sliced vertices in C.

We have thus bounded the number of vertices in C and I, and hence bounded
the number of vertices of the graph G, leading to the following theorem.

Theorem 6. There is a kernel for SED with O(k2) vertices.

5 Conclusion

In this paper we studied the parameterized complexity of deleting k edges/vertices
to get to the class of split graphs. We obtained faster parameterized algorithms
as well as smaller sized kernels for these problems. We leave open the following
problems.

1. Can we get an O∗((2 − ε)k) algorithm for Split Vertex Deletion? Or
can we show that our O∗(2k) algorithm is optimal under certain complexity
theoretic assumptions?

2. Can we get an O∗(2O(
√
k)) algorithm for Split Edge Deletion?

It will also be interesting to get improved kernels for these problems. Finally,
an interesting project could be to identify other parameterized problems that
admit subexponential algorithms on general graphs.
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Abstract. Given an input graph G on n vertices and an integer k,
the parameterized K4-minor cover problem asks whether there is a
set S of at most k vertices whose deletion results in a K4-minor free
graph or, equivalently, in a graph of treewidth at most 2. The problem
can thus also be called Treewidth-2 Vertex Deletion. This problem
is inspired by two well-studied parameterized vertex deletion problems,
Vertex Cover and Feedback Vertex Set, which can be expressed as
Treewidth-t Vertex Deletion problems: t = 0 for Vertex Cover

and t = 1 for Feedback Vertex Set. While a single-exponential FPT
algorithm has been known for a long time for Vertex Cover, such
an algorithm for Feedback Vertex Set was devised comparatively
recently. While it is known to be unlikely that Treewidth-t Vertex

Deletion can be solved in time co(k) · nO(1), it was open whether the
K4-minor cover could be solved in single-exponential FPT time, i.e. in
ck · nO(1) time. This paper answers this question in the affirmative.

1 Introduction

Given a set F of graphs, the parameterized F-minor cover problem is to
identify a set S of at most k vertices — if it exists — in an input graph G
such that the deletion of S results in a graph which does not have any graph
from F as a minor; the parameter is k. Such a set S is called an F-minor cover
(or an F-hitting set) of G. A number of fundamental graph problems can be
viewed as F-minor cover problems. Well-known examples include Vertex

Cover (F = {K2}), Feedback Vertex Set (F = {K3}), and more generally
Treewidth-t Vertex Deletion for any constant t, which asks whether an
input graph can be converted to one with treewidth at most t by deleting at most
k vertices. Observe that for t = 0 and 1, Treewidth-t Vertex Deletion is
equivalent to Vertex Cover and Feedback Vertex Set, respectively. In
addition to its theoretical importance, the Treewidth-t Vertex Deletion

problem has important practical applications as well. For example, even for
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small values of t, efficient algorithms for this problem would improve algorithms
for inference in Bayesian Networks as a subroutine of the cutset conditioning
method [1]. This method is practical only for small values of t, and therefore
efficient algorithms for small treewidth t are desirable.

In this paper we consider the parameterized F-minor cover problem for
F = {K4}, which is equivalent to Treewidth-2 Vertex Deletion. The NP-
hardness of this problem follows from a classical result [2]. Its fixed-parameter
tractability—that the problem can be solved in time f(k) · nO(1) for an input
graph on n vertices, where f is a computable function—follows from two cele-
brated meta-results: the Graph Minor Theorem of Robertson and Seymour [3]
and Courcelle’s theorem [4]. Unfortunately, the resulting algorithms involve huge
exponential functions in k and are impractical even for small values of k.

For treewidth-t vertex deletion, single-exponential parameterized
algorithms—those which run in ck · nO(1) time on an input graph on n vertices,
where c is a constant—are known only for t = 0 and t = 1. Indeed, for t = 0
(Vertex Cover), a simple O(2k ·n)-time algorithm is an oft-quoted first exam-
ple for a parameterized algorithm [5–7]. For t = 1 (Feedback Vertex Set), no
single-exponential algorithm was known for many years until Guo et al. [8] and
Dehne et al. [9] independently discovered such algorithms. The fastest known de-
terministic algorithm for this problem runs in time O(3.83k ·n2) [10]. The fastest
known randomized algorithm, developed by Cygan et al., runs in O(3k · nO(1))
time [11]. Very recently, Fomin et al. [12] presented 2O(k log k) · nO(1)-time algo-
rithms for treewidth-t vertex deletion, for any constant t. In this paper
we prove the following result for t = 2:

Theorem 1. The K4-minor cover problem can be solved in 2O(k) ·nO(1) time.

Our single-exponential parameterized algorithm for K4-minor cover is based on
iterated compression [13]. This allows us to focus on the disjoint version of the
K4-minor cover problem: given a solution S, find a smaller solution disjoint from
S. We employ a search tree method to solve the disjoint problem. Although
our algorithm shares the spirit of Chen et al.’s elegant iterated compression
algorithm for Feedback Vertex Set [14], our need to cover K4-minors—
instead of K3-minors—results in a compression step which is quite involved. To
bound the branching degree by a constant, we make use of three key factors.
First, we employ protrusion replacement, a technique developed to establish a
meta theorem for polynomial-size kernels [15–17], with modifications that are
needed to facilitate its use in the context of iterated compression. Second, we
introduce the notion of an extended SP-decomposition for treewidth-two graphs,
which makes it easier to exploit their structure. Finally, the running time analysis
makes use of properties of the extended SP-decomposition and a measure which
keeps track of the biconnectivity of a part of the graph.

2 Notation and Preliminaries

We follow the graph terminology of Diestel’s textbook [18]. Our graphs are undi-
rected, loopless and may contain parallel edges. We use “biconnected” as a
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synonym for “2-connected”. For a vertex set X in a graph G = (V,E), the
boundary ∂G(X) of X is the set N(V \ X), i.e. the set of vertices in X which
are adjacent with at least one vertex in V \X . We sometimes omit the subscript
when it is clear from the context. We use tw(G) to denote the treewidth of a
graph G.

When a graph H is a topological minor of a graph G as witnessed by a
subgraph G′ of G, we say that G′ is an H-subdivision in G. In an H-subdivision
G′ of G, the vertices which correspond to the original vertices of H are called the
branching nodes; the other vertices of G′ are called the subdividing nodes. If the
maximum degree of H is at most three, then G containsH as a minor if and only
if it contains H as a topological minor [18]. A θ3-subdivision is a graph which
consists of three vertex disjoint paths between two branching vertices, called its
poles.

Series-parallel graphs are a special class of graphs with a simple structure,
which can be constructed by starting from the single edge and recursively apply-
ing the so-called series and parallel compositions [19]. This recursive construction
can be represented by a so-called SP-tree, a canonical form of which can be con-
structed in linear time in the size of the series-parallel graph [20]. For any graph
G, tw(G) ≤ 2 if and only if every block of G is a series-parallel graph [20, 21].

Extended SP-Decompositon. The block tree BG of a connected graph G has
a node set consisting of all the blocks and cut vertices of G, and a block B and
a cut vertex c are adjacent in BG if and only if B contains c. We now define the
notion of an extended SP-decomposition of a connected graph of treewidth at
most two. In general, an extended SP-decomposition of a graph is a collection
of extended SP-decompositions of its connected components.

Let BG be the block tree of a treewidth-two graph G. We fix an arbitrary
cut node croot of BG. The oriented block tree BG is obtained by orienting the
edges of BG outward from croot. If BG consists of a single node, it is regarded
as an oriented block tree by itself. An extended SP-decomposition of G is a pair
(T,X = {Xα : α ∈ V (T )}), where T is a rooted tree whose vertices are called
nodes and X = {Xα : α ∈ V (T )} is a collection of subsets of V (G), one for each
node in T . We say that Xα is the label of node α.

– For each block B of G, let (TB,XB) be a (canonical) SP-tree of G[B] such
that c(B) is one of the terminals associated to the root node of TB. A leaf
node of TB is called an edge node.

– For each cut vertex c of G, add to (T,X ) a cut node α with Xα = {c}.
– For each block B of G, let the root node of (TB,XB) be a child of the unique

cut node α in T which satisfies Xα = {c(B)}.
– For a cut vertex c of G, let B = B(c) be the unique block such that (B, c) ∈

E(BG). Let β be an arbitrary leaf node of the (canonical) SP-tree (TB,XB)
such that c ∈ Xβ (note that such a node always exists). Make the cut node
α of (T,X ) labeled by {c} a child of the leaf node β.

Let α be a node of T . Then Tα is the subtree of T rooted at node α; Eα is
the set of edges (u, v) ∈ E(G) such that there exists an edge node α′ ∈ V (Tα)
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with Xα′ = {u, v}; and Gα is the — not necessarily induced — subgraph of
G with the vertex set Vα :=

⋃
α′∈V (Tα) Xα′ and the edge set Eα. We define

Yα := Vα \ Xα. We say that a node α of (T,X ) which is not a cut node is
inherited from (TB,XB), where B is the block to which α belongs. Let α be
inherited from (TB,XB). We use TB

α to denote the SP-tree naturally associated
with the subtree of TB rooted at α. By GB

α we denote the SP-graph represented
by the SP-tree TB

α , where (TB,XB) inherits α. The vertex set of GB
α is denoted

V B
α . Note that for every node α, Gα is connected and that ∂G(Vα) ⊆ Xα.
Soundness proofs and running time bounds for all the reduction rules, and

proofs of those statements which are labelled with a �, can be found in the full
version of this paper [22].

3 The Algorithm

Our algorithm for K4-minor cover uses various techniques from parameterized
complexity. First, an iterated compression [13] step reduces K4-minor cover to
the so-called disjoint K4-minor cover problem, where in addition to the
input graph we are given a solution set to be improved. Then a Branch-or-

reduce process develops a bounded search tree. We start with the definition of
the compression problem for K4-minor cover.

Given a subset S of vertices, a K4-minor coverW of G is S-disjoint if W ∩S =
∅. We omit the mention of S when it is clear from the context. If |W | ≤ k − 1,
then we say that W is small.

disjoint K4-minor cover problem

Input: A graph G and a K4-minor cover S of G
Parameter: The integer k ≤ |S|
Output: A small S-disjoint K4-minor cover W of G, if one exists. Oth-

erwise return NO.

To prove Theorem 1, it is sufficient to show that disjoint K4-minor cover

can be solved in 2O(k) · nO(1) time; this follows by an argument which is now
standard in the context of iterated compression [14, 23, 24]. Observe that both
G[V \ S] and G[S] are K4-minor-free. Indeed if G[S] is not K4-minor-free, then
the answer to disjoint K4-minor cover is trivially NO.

3.1 A Disjoint Protrusion Reduction Rule

A subset X of the vertex set of a graph G is a t-protrusion of G if tw(G[X ]) ≤
t and |∂(X)| ≤ t. Our algorithm uses a modified version of the “protrusion
reduction” technique [15, 16]. The adaptation is required because we have to
apply the technique to the “disjoint” version of the problem. In essence, our
(adapted) protrusion lemma for disjoint parameterized problems says that a
‘large’ protrusion which is disjoint from the forbidden set S can be replaced by
a ‘small’ protrusion which is again disjoint from S.
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Reduction Rule 1. (Generic disjoint protrusion rule) Let (G,S, k) be an
instance of disjoint K4-minor cover and X be a t-protrusion such that X ∩
S = ∅. Then there exists a computable function γ(.) and an algorithm which
computes an equivalent instance (G′, S, k′) in time O(|X |) such that G[S] and
G′[S] are isomorphic, G′ − S is K4-minor-free, |V (G′)| < |V (G)| and k′ ≤ k,
provided |X | > γ(2t+ 1).

We remark that some of the reduction rules in the next subsection are instan-
tiations of the generic disjoint protrusion rule. However, to ease the algorithm
analysis, the generic rule above is used only on t-protrusions whose boundary
size is 3 or 4. For protrusions with boundary size 1 or 2, we shall instead apply
the following explicit reduction rules.

3.2 Explicit Reduction Rules

Let F denote the subset V (G) \ S of vertices. For a vertex v ∈ F , let NS(v)
denote the neighbours of v which belong to S. By Ni ⊆ F we refer to the set of
vertices v in F with |NS(v)| = i. In each of the next three rules, S and k are
unchanged (S′ = S, k′ = k).

Reduction Rule 2. (1-boundary rule) Let X be a subset of F . (a) If G[X ]
is a connected component of G or of G \ e for some bridge e, then delete X. (b)
If |∂G(X)| = 1, then delete X \ ∂G(X).

Reduction Rule 3. (Bypassing rule) Bypass every vertex v of degree two in
G with neighbours u1 ∈ V , u2 ∈ F . That is, delete v and its incident edges, and
add the new edge (u1, u2).

Reduction Rule 4. (Parallel rule) If there is more than one edge between
u ∈ V and v ∈ F , then delete all these edges except for one.

The next two reduction rules are somewhat more technical, and their proofs of
correctness require a careful analysis of the structure of K4-subdivisions.

Reduction Rule 5. (Chandelier rule) Let X = {u1, . . . , u�} be a subset
of F , and let x be a vertex in S such that G[X ] contains the path u1, . . . , u�,
NS(ui) = {x} for every i = 1, . . . , �, and vertices u2, . . . , u�−1 have degree ex-
actly 3 in G. If � ≥ 4, contract the edge e = (u2, u3) (and apply Rule 4 to remove
the parallel edges created).

The intuition behind the correctness of the Chandelier rule is that such a set X
cannot host all the four branching nodes of a K4-subdivision. Our last reduction
rule is an explicit 2-protrusion rule. In the particular case when the boundary
size is exactly two, the candidate protrusions for replacement are either a single
edge or a θ3 (see Figure 1).
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Reduction Rule 6. (2-boundary rule) Let X ⊆ F be such that G[X ] is
connected, ∂(X) = {s, t} (and thus, X \ {s, t} ⊆ N0). Then we do the following.
(1) Delete X \ {s, t}. (2) If G[X ] + (s, t) is a series parallel graph and |X | >
2, then add the edge (s, t) (if it is not present). Else if G[X ] + (s, t) is not
a series parallel graph and |X | > 4, add two new vertices a, b and the edges
{(a, b), (a, t), (a, s), (b, t), (b, s)} (see Figure 1).

s

ts
s t

t
ts

b

a

Fig. 1. If G[X] + (s, t) is an SP-graph, we can safely replace G[X] by the edge (s, t).
Otherwise G[X] can be replaced by a subdivision of θ3 with poles a and b in which s
and t are subdividing nodes.

We say that an instance of disjoint K4-minor cover is reduced if none of
the reduction rules 2 - 6 results in changes to the instance.

3.3 Branching Rules

A branching rule is an algorithm which, given an instance (G,S, k), outputs a
set of d instances (G1, S1, k1) . . . (Gd, Sd, kd) for some constant d > 1 (d is the
branching degree). A branching rule is safe if (G,S, k) is a YES-instance if and
only if there exists i, 1 ≤ i ≤ d, such that (Gi, Si, ki) is a YES instance. We
now present three generic branching rules, with potentially unbounded branching
degrees. Later we describe how to apply these rules so as to bound the branching
degree by a constant. Given a vertex s ∈ S, we denote by ccS(s) the connected
component of G[S] which contains s. Likewise, bcS(s) denotes the biconnected
component of G[S] containing s. It is easy to see that three branching rules
below are safe.

Branching Rule 1. Let (G,S, k) be an instance of disjoint K4-minor cover

and let X be a subset of F such that G[S ∪X ] contains a K4-subdivision. Then
branch into the instances (G− {x}, S, k − 1) for every x ∈ X.

Branching Rule 2. Let (G,S, k) be an instance of disjoint K4-minor cover

and let X be a connected subset of F . If S contains two vertices s1 and s2, each
of which has a neighbour in X, and such that ccS(s1) �= ccS(s2), then branch
into the instances

– (G− {x}, S, k − 1) for every x ∈ X
– (G,S ∪X, k)

Branching Rule 3. Let (G,S, k) be an instance of disjoint K4-minor cover

and let X be a connected subset of F . If S contains two vertices s1 and s2,
each of which has a neighbour in X, and such that ccS(s1) = ccS(s2) and
bcS(s1) �= bcS(s2), then branch into the instances
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– (G− {x}, S, k − 1) for every x ∈ X
– (G,S ∪X, k)

We shall apply branching rule 1 in three different cases: (i) X is a singleton
{x} for x ∈ F , (ii) X is connected, or (iii) X consists of a pair of non-adjacent
vertices of F . An instance (G,S, k) is said to be a simplified instance if it is a
reduced instance and if none of the branching rules 1–3 applies on singleton sets
X = {v}, for any v ∈ F . Such an instance has a useful property.

Lemma 1. [�] If (G,S, k) is a simplified instance of disjoint K4-minor cover,
then F = N0 ∪N1 ∪N2.

An instance (G,S, k) of disjoint K4-minor cover is independent if (a) F is
an independent set; (b) every vertex of F belongs to N2; (c) the two neighbours
of every vertex of F belong to the same biconnected component of G[S], and (d)
G[S ∪{x}] is K4-minor free for every x ∈ F . The instance becomes independent
if case (ii) of branching rule 1 is applied exhaustively.

Theorem 2. [�] Let (G,S, k) be an instance of disjoint K4-minor cover.
If (i) none of the reduction rules applies and (ii) no branching rules applies on
connected subsets X ⊆ F , then (G,S, k) is an independent instance.

We now construct an auxiliary graph G∗(S): its vertex set is F , and (u, v) is
an edge in G∗(S) if and only if G[S ∪ {u, v}] contains K4 as a minor. The
next theorem says that to solve disjoint K4-minor cover on the independent
instance, it is sufficient to exhaustively apply case (iii) of branching rule 1.

Theorem 3. [�] Let (G,S, k) be an independent instance of disjoint K4-minor

cover. Then W ⊆ F is a disjoint K4-minor cover of G if and only if it is a
vertex cover of G∗(S).

3.4 The Algorithm and Its Complexity Analysis

We now present the algorithm. At each node of the computation tree associated
with a given instance (G,S, k), one of the following operations is performed.
As each operation either returns a solution (as in (a),(e)) or generates a set of
instances (as in (b)-(d)), the overall application of the operations can be depicted
as a search tree.

(a) if (k < 0) or (k ≤ 0, tw(G) > 2) or (tw(G[S]) > 2), then return NO;
(b) if the instance is not reduced, apply one of the reduction rules 2–5. If none

of these applies, then apply reduction rule 6;
(c) if the instance is not simplified, apply one of branching rules 1–3 on the

singleton sets {x} for each x ∈ F ;
(d) if the instance is simplified, apply the procedure Branch-or-reduce;
(e) if the application of Branch-or-reduce marks every node of (T,X ), then

the instance is an independent instance; solve it in 2k · nO(1) time (Theo-
rem 3).
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The procedure Branch-or-reduce works in a bottom-up manner on an ex-
tended SP-decomposition (T,X ) of G[F ]. Initially the nodes of (T,X ) are un-
marked. Starting from a lowest node, Branch-or-reduce recursively tests if
we can apply one of the branching rules on a subgraph associated with a lowest
unmarked node. If the branching rules do not apply, the procedure tries to detect
a large protrusion (see Lemma 3) and to reduce the instance using the generic
protrusion rule (reduction rule 1). Once either a branching rule or the protru-
sion rule has been applied, the procedure Branch-or-reduce terminates. The
output is a set of instances of disjoint K4-minor cover, possibly a singleton.

A key part of the complexity analysis of the algorithm consists of showing that
the sets X on which branching rules 1–3 are applied, in lines 4, 7, and 10, are
of size bounded by some constant. This is done by a series of technical lemmas.
To simplify the notation, in the following we use Gα instead of G[F ]α for a node
α of T . Similarly, we use the names Vα, Yα = Vα \ Xα and V B

α to denote the
various named subsets of V (G[F ]α).

Lemma 2. [�] Let W and Z be disjoint vertex subsets of a graph G such that
G[W ] is biconnected, G[Z] is connected and |NW (Z)| ≥ 3. Then G[W ∪ Z]
contains a K4-subdivision.

Lemma 3. [�] Let (G,S, k) be a simplified instance and let α be a lowest node
of the extended SP-decomposition (T,X ) of G[F ] which is considered at line 11
of Algorithm 1. If α is a P-node inherited from the SP-tree of block B, then
|∂G(V B

α ) \Xα| ≤ 2 and V B
α is a 4-protrusion.

The next two lemmas show that applying Branch-or-reduce in a bottom-up
manner enables us to bound the branching degree of the Branch-or-reduce

procedure. Lemma 4 states that for every marked node α, the graph Gα is of
constant-size.

Lemma 4. [�] Let (G,S, k) be a simplified instance of disjoint K4-minor

cover and let α be a marked node of the extended SP-decomposition (X , T ) of
G[F ]. Then |Vα| ≤ c1 := 12(γ(8) + 2c0).

Lemma 5. [�] Let (G,S, k) be a simplified instance of disjoint K4-minor

cover and let α be a lowest unmarked node of (T,X ) of G[F ]. In polynomial
time, one can find

(a) a path X of size at most 2c1 satisfying the conditions of line 3 (resp. line 6),
if the test at line 2 (resp. 5) succeeds;

(b) a subset X ⊆ Vα of size bounded by 2c1 satisfying the condition of line 9, if
the test at line 8 succeeds;

For analysing the running time of our algorithm, we introduce the following
measure

μ := (2c1 + 2)k + (2c1 + 2)#cc(G[S]) + #bc(G[S])

where #cc(G[S]) (resp. #bc(G[S])) denotes the number of connected components
(resp. biconnected components) of G[S].
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Algorithm 1. Branch-or-reduce

Input: A simplified instance (G,S, k) of disjoint K4-minor cover, together
with an extended SP-decomposition (T,X ) of G[F ].

Output: A set of instances of disjoint K4-minor cover.

while T contains unmarked nodes do
1 Let α be an unmarked node at the farthest distance from the root of T ;
2 if S contains two vertices xu ∈ NS(u) and xv ∈ NS(v) with u, v ∈ Vα and

ccS(xu) �= ccS(xv) then
3 Let X be a path in Gα between two such vertices u and v such that

X \ {u, v} ⊆ N0;
4 Apply branching rule 2 to X; terminate;

5 if S contains two vertices xu ∈ NS(u) and xv ∈ NS(v) with u, v ∈ Vα and
bcS(xu) �= bcS(xv) then

6 Let X be a path in Gα between two such vertices u and v such that
X \ {u, v} ⊆ N0;

7 Apply branching rule 3 to X; terminate;

8 if G[S ∪ Vα] contains a K4-subdivision then
9 Let X ⊆ Vα be a connected set such that G[S +X] contains a

K4-subdivision;
10 Apply branching rule 1 to X; terminate;

11 if α is a P-node and |V B
α | > γ(9) then

12 X = V B
α is a 4-protrusion (see Lemma 3);

13 Apply the generic protrusion rule (reduction rule 1) with X; terminate;

14 Mark the node α;

We are now ready to prove:

Theorem 1. The K4-minor cover problem can be solved in 2O(k) ·nO(1) time.

Proof. As observed at the beginning of this section, it is sufficient to show that
one can solve disjoint K4-minor cover in time 2O(k) · nO(1). Let (G,S, k) be
an input instance of disjoint K4-minor cover. The recursive application of
operations (a)-(e) (see the beginning of this subsection) to (G,S, k) produces a
search tree Υ . From the fact that the various reduction and branching rules are
safe, it follows that (G,S, k) is a YES-instance if and only if at least one of the
leaf nodes in Υ corresponds to a YES-instance.

We now look at the time required to apply the operations (a)-(e) at each node
of Υ . Every instance corresponding to a leaf node either is a trivial instance or
is an independent instance (Theorem 2) which can be solved in 2k · nO(1) time
by applying branching rule 1 on pairs of vertices of F (Theorem 3). Clearly, the
operations (a)–(c) can be applied in polynomial time. Consider the operation
(d). The while-loop in the algorithm Branch-or-reduce iterates O(n) times.
At each iteration, we are in one of three situations: (i) we detect in polynomial
time (Lemma 5) a connected subset X on which to apply one of the branching
rules, or (ii) apply the protrusion rule in polynomial time (reduction rule 1), or
(iii) none of these two cases occurs, and the node under consideration is marked.
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Observe that by Lemma 5, the branching degree of the search tree is at most
2c1 + 1. To bound the size of Υ , we need the following claim.

Claim. In any application of branching rules 1–3, the measure μ strictly de-
creases.

Proof of claim. The statement holds for branching rule 1 since k reduces by
one and G[S] is unchanged. Recall that branching rules 2 and 3 put a vertex in
the potential solution or add a path X ⊆ F to S. In the first case, μ strictly
decreases because k decreases and #cc(G[S]) and #bc(G[S]) remain unchanged.
Let us see why μ strictly decreases also when we add a path X to S.

If branching rule 2 is applied, the number of biconnected components may
increase by at most 2c1 + 1. This happens if every edge on the path X to-
gether with the two edges connecting the two end vertices of X to S add
to the biconnected components of G[S ∪ X ]. So the new value of μ is μ′ =
(2c1 + 2)k + (2c1 + 2)#cc(G[S ∪ X ]) + #bc(G[S ∪ X ]) ≤ (2c1 + 2)k + (2c1 +
2)(#cc(G[S]) − 1) + (#bc(G[S]) + 2c1 + 1) ≤ μ− 1. It remains to observe that
an application of Branching rule 3 strictly decreases the number of biconnected
components, and it does not increase the number of connected components. It
follows that μ′ ≤ μ− 1. ��

By this Claim, at every root-leaf computation path in Υ we have at most
μ = (2c1 + 2)k + (2c1 + 2)#cc(G[S]) + #bc(G[S]) ≤ (4c1 + 5)k nodes at which
a branching rule is applied. Since we branch into at most (2c1 + 1) ways, the
number of leaves of Υ is bounded by (2c1 + 1)(4c1+5)k. Also note that any root-
leaf computation path contains O(n) nodes at which a reduction rule is applied:
This is because each reduction rule strictly decreases the size of the instance (and
does not affect G[S]). It follows that the running time is bounded by ((4c1 +
5)k +O(n)) · (2c1 + 1)(4c1+3)k · poly(n) = 2O(k) · nO(1). ��

4 Conclusion and Open Problems

Due to the use of the generic protrusion rule (on t-protrusions for t = 3 or 4),
the result in this paper is existential. A tedious case by case analysis would
eventually lead to an explicit ck · nO(1) exponential FPT algorithm for some
constant value c. It is an intriguing challenge to reduce the basis to a small c
and/or get a simple proof of such an explicit algorithm. More generally, it would
be interesting to investigate the systematic instantiation of protrusion rules.

We strongly believe that our method will apply to similar problems. The
first concrete example is parameterized Outerplanar Vertex Deletion, or
equivalently the {K2,3,K4}-minor cover problem. For that problem, we need
to adapt the reduction and branching rules in order to preserve (respectively,
eliminate) the existence of a K2,3 as well. For example, the by-passing rule
(reduction rule 3) may destroy a K2,3 unless we only bypass a degree-two vertex
when it is adjacent to another degree-two vertex. Similarly in reduction rule 6,
we cannot afford to replace the set X by an edge. It would be safe with respect to
{K2,3,K4}-minor deletion if, instead, X is replaced by a length-two path or by
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two parallel paths of length two (depending on the structure ofX). We conjecture
that for Outerplanar Vertex Deletion our reduction and branching rules
can be adapted to design a single exponential FPT algorithm.

A more challenging problem would be to get a single exponential FPT algo-
rithm for the treewidth-t vertex deletion for any value of t. Up to now
and to the best of our knowledge, the fastest algorithm runs in 2O(k log k) · nO(1)

time [12].
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1 Introduction

Given an input directed graph G = (V,E), the all pairs shortest path problem
(APSP) is to compute the shortest paths between all pairs of vertices ofG assum-
ing that edge costs are real values. The APSP problem is a fundamental problem in
computer science and has received considerable attention. Early algorithms such
as Floyd’s algorithm ([2], pp. 211-212) computes all pairs shortest paths in O(n3)
time, where n is the number of vertices of the graph. Improved results show that
all pairs shortest paths can be computed in O(mn+n2 logn) time [9], wherem is
the number of edges of the graph. Pettie showed [14] an algorithm with time com-
plexity O(mn + n2 log logn). See [15] for recent development. There are also re-
sults for all pairs shortest paths for graphs with integer weights[10,16,17,21,22,23].
Fredman gave the first subcubic algorithm [8] for all pairs shortest paths. His algo-
rithm runs inO(n3(log logn/ logn)1/3) time. Fredman’s algorithm can also run in
O(n2.5) time nonuniformly. Later Takaoka improved the upper bound for all pairs
shortest paths to O(n3(log logn/ logn)1/2) [19]. Dobosiewicz [7] gave an upper
bound of O(n3/(logn)1/2) with extended operations such as normalization capa-
bility of floating point numbers in O(1) time. Earlier Han obtained an algorithm
with time complexity O(n3(log logn/ logn)5/7) [12]. Later Takaoka obtained an
algorithm with time O(n3 log logn/ logn) [20] and Zwick gave an algorithm with
time O(n3

√
log logn/ logn) [24]. Chan gave an algorithm with time complexity

of O(n3/ logn) [6]. Chan’s algorithm does not use tabulation and bit-wise paral-
lelism. His algorithm also runs on a pointer machine.

What subsequently happening was very interesting. Takaoka thought that
O(n3/ logn) could be the ultimate goal and raised the question [20] whether

F.V. Fomin and P. Kaski (Eds.): SWAT 2012, LNCS 7357, pp. 131–141, 2012.
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O(n3/ logn) can be achieved. Chan first achieved O(n3/ logn) time and also
thought that O(n3/ logn) is a natural bound [6]. However, Han showed an algo-
rithm with O(n3(log logn/ logn)5/4) time [11]. Because in [11] Han exhausted
Takaoka’s technique [19] Han thought that this result should be it and did not
expect any improvements in the near future (see the reasoning Han gave in the
paper [11] explaining why it should be difficult to further improve). However,
Chan came up with an algorithm with time complexity O(n3(log logn)3/ log2 n)
[5]. Chan [5] believes that O(n3/ log2 n) is probably the final chapter. Our ex-
perience indicates that Chan may be correct. Here we present an algorithm
with time complexity O(n3 log logn/ log2 n). Thus we further remove a factor of
(log logn)2 from the time complexity of the best previous result due to Chan.

We would like to point out the previous results which influenced the formation
of our ideas presented in this paper. They are: Floyd’s algorithm [2], Fredman’s
algorithm [8], Takaoka’s algorithm [19], Han’s algorithm [11], Chan’s algorithm
[5].

2 Preparation

Since it is well known that the all pairs shortest paths computation has the same
time as computing the distance product of two matrices [1] (C = AB), we will
concentrate on the computation of distance product.

We divide the first n×nmatrix A into t1 submatrices A1, A2, , At1 each having
dimension n×n/t1, where t1 = n1−r1 and r1 is a constant to be determined later.
We divide the second n × n matrix B into t1 submatrices B1, B2, ..., Bt1 each
having dimension n/t1 × n. Therefore C = AB = A1B1 + A2B2 + ...+ At1Bt1 ,
where ∗ is addition and + is the minimum operation. In the following we consider
the computation of the distance product of an n×n/t1 matrix E with a n/t1×n
matrix F . The reason we need to do the division for this level will be understood
later in this paper.

We then divide the n × n/t1 matrix E into t2 = (n/t1)/(r2 logn/ log logn)
submatrices E1, E2, ..., Et2 each having dimension n× (r2 logn/ log logn), where
r2 is a constant to be determined later. Similarly we divide the n/t1 × n matrix
F into t2 submatrices each having dimension (r2 logn/ log logn)×n. Now EF =
E1F1 + E2F2 + ...+ Et2Ft2 .

In the following we will first consider the computation of E1F1, and then the
computation of EF (or A1B1). After that it takesO(n2t1) time straightforwardly
to get the all-pairs shortest path of the input graph.

Let E1 = (eij) and F1 = (fij). We will first, for each 1 ≤ i, j ≤ r2 logn/ log
logn, sort fik − fjk, k = 1, 2, ..., n. After sorting each fik − fjk has a rank
in [1, n]. We then give fik − fjk a label lf(i, j, k) = l if fik − fjk has rank in
(l · n/ log9 n, (l + 1) · n/ log9 n]. lf (i, j, k) uses 9 log logn bits. For each ekj − eki
we will give it label le(k, i, j) = l if fik1 − fjk1 < ekj − eki ≤ fik2 − fjk2 , where
fik1−fjk1 has rank (not label) l·n/ log9 n and fik2−fjk2 has rank (l+1)·n/ log9 n.
le(k, i, j) also uses 9 log logn bits.

According to Fredman [8] and Takaoka [19], if the labels of ek1j−ek1i and fik2−
fjk2 are different then we can determine either ek1i+ fik2 < ek1j + fjk2 or ek1i+
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fik2 > ek1j+fjk2 . Say ek1j−ek1i has label le and fik2−fjk2 has label lf . If le < lf
(lf < le) then ek1j − ek1i < fik2 − fjk2 (ek1j − ek1i > fik2 − fjk2) and therefore
ek1j+fjk2 < ek1i+fik2 (ek1j+fjk2 > ek1i+fik2). However, when their labels are
the same then we cannot determine this. However, only a fraction 1/ log9 n of the
total number of (ek1j − ek1i)’s (one out of all lables) are undetermined for each
fik2 − fjk2 and therefore overall a fraction of 1/ log9 n of all pairs of ek1j − ek1i

and fik2−fjk2 are undetermined. In case of indeterminacy for two indices i, j we
will pick i over j (to include i in the computation) when i < j and leave the j-th
position (or index) to be computed separately. This separated computation can
be done in brute force and it takes O(n3/ log8 n) time for the whole computation,
i.e. the computation of AB. The actual counting of complexity of this separate
computation is as this: There are w = O(n3 logn/ log logn) pairs of ek1j − ek1i

and fjk2 − fik2 (k1 and k2 each take value in [0..n − 1] and thus have a factor
of x = n2, there are y = n log logn/(r2 logn) pairs of E and F for each pair of
k1 and k2 and for each pair of E and F there are z = O((r2 logn/ log logn)

2)
pairs of ek1j − ek1i and fjk2 − fik2 . w = xyz. Because 1/ log9 n of these pairs are
in the separate computation the complexity of the separate computation takes
O((n3 logn/ log logn) · (1/ log9 n)) = O(n3/ log8 n) time.

3 The Further Details

Now for fixed i and k we pack le(k, i, j), j = 1, 2, ..., r2 logn/ log logn, into one
word and call it le(k, i). This can be done when r2 is small. Also for fixed i and k
we pack lf (i, j, k), j = 1, 2, ..., r2 logn/ log logn, into one word and call it lf (i, k).
By comparing le(k1, i) and lf (i, k2) we can let the result be 1 if index i should be
chosen over all the other r2 log n/ log logn− 1 indices, and let it be 0 otherwise.
This computation of comparing one index with all the other r2 logn/ log logn
indices is done in constant time by concatenating le(k1, i) and lf(i, k2) into one
word of less than logn bits and then index into a precomputed table to get the
result of either 0 or 1.

Note that since le(k, i) has 9r2 logn bits, and we will pick r2 later such that
9r2 logn is much smaller than logn and therefore le(k, i), k = 1, 2, ..., n can be
sorted into t3 = 29r2 logn = n9r2 blocks such that each block has the same word
(le(k, i)) value.

For the purpose of computing E1F1, there are r2 logn/ log logn i’s (columns
in E1) and for each (column) of them we have n le(k, i)’s (one on each row) and
these le(k, i)’s (0 ≤ k < n) form t3 blocks and for each of these blocks we get a
1 × n vector of bits (0’s and 1’s) that are the result of the above computation
(i.e. indexing into a table to get a 0 or a 1). We need to compute these (a vector
of n) 0’s and 1’s for one le(k, i) in a block because all le(k, i)’s in a block have
the same value. Thus we need to compute r2(logn/ log logn)t3 vectors (of n bits
each), and this can be done in O(r2(logn/ log log n)t3n) time (one step gets one
bit by the above table lookup computation).

On the average for each such an n bit vector v there are only n/(r2 logn/ log
logn) bits that are 1’s and the remaining bits are 0’s. This is so because of
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the way we formed le(k1, i) and lf(i, k2) and the way that we stipulate that
the result of comparison of le(k1, i) and lf (i, k2) is 0 or 1. We take v and first
divide it into n/((r2 logn/ log logn)(r3 logn/ log logn)) small vectors each with
dimension 1× ((r2 log n/ log logn)(r3 logn/ log logn)), where r3 is a constant to
be determined later. Now, on the average, each small vector has r3 logn/ log logn
bits which are 1’s. If a small vector v′ has between (t − 1)r3 logn/ log logn + 1
and tr3 logn/ log logn bits of 1’s we will make a set V of t small vectors each
having ((r2 logn/ log logn)(r3 logn/ log logn)) bits and containing a subset of
no more than r3 logn/ log logn 1’s from v′.

Because the multiplication of each row of E1 with all columns of F1 results in
r2 logn/ log logn vectors having a total of n bits of 1’s, they will result in
2n(r2 logn/ log logn)/((r2 logn/ log logn)(r3 logn/ log
logn))= 2n/(r3 logn/ log logn) small vectors, where factor 2 is because of some
small vectors may have less than r3 logn/ log logn bits of 1’s.

For fixed i (a row of F1) (and therefore lf (i, k), 0 ≤ k < n) and fixed value
of le(k, i)’s (a block) we formed 2n/((r2 logn/ log logn)(r3 logn/ log logn)) small
vectors each having (r2 logn/ log logn)(r3 logn/ log logn) bits with no more than
r3 logn/ log logn bits are 1’s. Therefore each small vector can be represented by
a word (with no more than logn bits) when r3 is small. This is so because∑r3 logn/ log logn

t=0

(
(r2 logn/ log logn)(r3 logn/ log logn)

t

)
< n. We first form these

2n/((r2 logn/ log logn)(r3 logn/ log logn)) words for each vector (on the aver-
age) and then duplicate these words for all rows in the block because all rows
in the same block has the same le(k, i) value. The reason we do this duplicating
is to save time because small vectors with the same value need not to be com-
puted into words repeatedly. Thus for the multiplication of E1F1 we obtained
2n2/(r3 logn/ log logn) words. And for the multiplication of A1B1 we obtained
2n2+r1/((r2 logn/ log logn)(r3 logn/ log logn)) words. And therefore for the mul-
tiplication of AB we have obtained O(n3(log logn/ logn)2) words and computa-
tion thus far takes O(n3(log logn/ logn)2) time.

However these O(n3(log logn/ logn)2) words contain more than
O(n3(log logn/ logn)2) indices because multiple indices are coded into one word.
Thus we shall combined these words to cut the number of indices.

To further combine these words we need to consider only the words formed
by Ei[1, 1..(r2 logn/ log logn)]× Fi[1..(r2 logn/ log logn),
1..(r2 logn/ log logn)(r3 logn/ log logn)] (there are r2 logn/ log logn resulting
words out of this multiplication as we explained above),
i = 1, 2, ..., nr1/(r2 logn/ log logn). Thus there are n

r1 words. We need to reduce
them tonr1/(r3 logn/ log logn) words inO(nr1) time and thereafterwe can simply
disassemble indices (for minimum) out of packed words and finish the remaining
computation straightforwardly. Because each wordw contains a set Sw of no more
than r3 logn/ log logn columns (these columns have 1’s and the other columns

have 0’s) in Fi there are
∑r3 logn/ log logn

l=1

(
((r2 log n/ log logn)(r3 logn/ log logn))

l

)
≤ ncr3 choices, where c is a constant. When r3 is much smaller than r1 there are
many words among the nr1 words having the same Sw sets. This is the fact we can
take advantage of. In the following we will refer two of these words with the same
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Sw sets as w1 and w2, i.e., the two small vectors represented by w1 and w2 are the
same (equal or identical).

4 Combining Words

The scheme for combining words is a little complicated. The basic idea is that,
since we have indices gathered in O(n3(log logn/ logn)2) words, we just need
to do pair-wise comparisons between pairs of indices (paths) to reduce the
number of indices by half. If we do this for 2 log logn rounds we can reduce
the number of indices to n3/(logn)2 and then we can just disassemble indices
from words and finish the computation straightforwardly in O(n3/(logn)2) time.
Note that because we do pairing-off the time complexity will remain to be
O(n3(log logn/ logn)2).

The complication of our algorithm comes from the fact that indices are en-
coded in O(n3(log logn/ logn)2) words. To deal with this encoding we have to
design an algorithm that utilizes the special characteristics of the encoding.

We use a different labeling for the matrix B1 = (bij) and A1 = (aij). We will,
for each 1 ≤ i, j ≤ nr1 , sort bik − bjk together with akj − aki, k = 1, 2, ..., n.
For A and B the total time for sorting is O(n2+r1 logn). This gives the rank of
bik− bjk (akj −aki) which we denote by lb1(i, j, k) (la1(k, i, j)). These ranks take
value from 1 to 2n and have logn + 1 bits. There are n2r1 choices of i, j pairs
and for each of these choices (each pair of i and j) and for each set

Ut = {t(r2 logn/ log logn)(r3 logn/ log log n) + 1,
t(r2 logn/ log logn)(r3 logn/ log logn) + 2, ...,
(t+ 1)(r2 logn/ log logn)(r3 logn/ log logn)},

t = 1, 2, ..., n/((r2 logn/ log logn)(r3 logn/ log logn)), where values of k are
taken, choose any subset of Ut containing no more than r3 log n/ log logn el-
ements and there are no more than (n/((r2 logn/ log logn)(r3 logn/ log logn))

∗
∑r3 log n/ log logn

l=1

(
((r2 logn/ log logn)(r3 logn/ log log n))

l

)
≤ n1+cr3 choices, where c is

a constant, and thus there are a total of n1+2r1+cr3 choices for all pairs of i and j.
For each of these choices we use a word w to represent the total of (a) a choice of
the pair i, j, (b) a choice (referred to as d) of the subset of Ut (n

2r1+cr3 choices)
and (c) the packing of no more than r3 logn/ log logn ranks (lb1(i, j, k)’s) (where
k take values over elements in the subset of Ut). Note that straightforward pack-
ing will not work because it will take O(log2 n/ log logn) bits (a subset of Ut has
up to O(log n/ log log n) elements and each element corresponds to O(log n) bits
of an lb1(i, j, k).) and cannot be stored in a word of logn bits. What we do is
first to build a trie for the r3 logn/ log logn ranks. An example of such a trie is
shown in Fig. 1(a). This trie is a binary tree with a node having two children
when there are ranks with the most significant bits differ at the node’s level.
Next we build a packed trie by removing nodes v with only one child except
the root. The edge connecting this removed node and its child is also removed.
This is shown in Fig. 1(b). Thus let v1, v2, ..., vt be such a chain with vi being
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vi+1’s parent, v1 and vt having two children and vi, i �= 1, t, having one child,
and we will remove v2, v3, ..., vt−1. Edges (v2, v3), (v3, v4), ..., (vt−1, vt) are also
removed. The edge originally connecting v1 and v2 are now made to connect
v1 and vt. We will record on edge (v1, vt) that t − 2 edges (bits) are removed.
Also at leaves, we store only relative address of k (having value between 1 and
(r2 logn/ log logn)(r3 logn/ log logn)) instead of the value of lb1(i, j, k) (having
value between 1 and 2n). Such a packed trie is shown in Fig. 1(c) and it can be
stored in a word w with c logn bits, where c is a constant less than 1.

Now with la1(1, i, j), we can follow this packed trie in word w and reach a leaf l
of the trie (by starting at the root, repeatedly deleting corresponding bits which
has been removed from the packed trie and following the path in the packed
trie). In Fig. 1(d) we show such situations. Therefore we can precompute a table
T1 and use the values of la1(1, i, j) and w to index into T1 to get leaf l. (Note that
la1(1, i, j) has log n+1 bits but this can be reduced to c logn bits with c < 1 by
using multiple tables replacing T1 and taking care of a fraction of logn+ 1 bits
at a time). Here we will use l to represent both the leaf and the relative address
of k mentioned in immediate previous paragraph. From l we get the value of k
and we can then compare la1(1, i, j) and lb1(i, j, k) to find the most significant
bit where la1(1, i, j) and lb1(i, j, k) differ (this can be done by exclusive-oring the
two values and then finding the most significant bit which is 1 by indexing into
a precomputed table). Say this bit is the b-th most significant bit. By using the
values of b, la1(1, i, j) and w (indexing into another precomputed table T2) we
can then figure out at which chain C of the original trie la1(1, i, j) “branches
out”. Note that we need NOT to know the value of C. We need know only
within C the branch happens and whether it branches to left or to right (these
information can be figured out with b, la1(1, i, j) and w.) Thus the output of
indexing into T2 can be the columns where index i should be taken over index
j.

We can store w as an array element in an arrayW asW [i][j][t][d], here, i, j, t, d
are the ones mentioned in the first paragraph of this section. We need not to
pack la1(k, i, j)’s because only one la1(k, i, j) is considered at a time.

Now for the above mentioned words w1 and w2 (last paragraph of Section 3)
we can get t and d value (both w1 and w2 are associated with the same t value
because we put them together as explained above, w1 and w2 are associated
with the same d value because as we mentioned above that we can get this by
setting r3 much smaller than r1). We can also get i from w1 and j from w2. Thus
we can get W [i][j][t][d]. Now we use the values of W [i][j][t][d] and la1(1, i, j) to
index into precomputed table T1, T2 to get rid of half of indices in w1 plus w2.
Repeating this process we can then remove a factor of r3 logn/ log logn from
the total number of indices. Thereafter we disassemble the indices from packed
such that one word contains one index and the remaining computation can be
carried out easily.

The precomputation of tables T1, T2 is not difficult and its complexity cannot
dominate the overall computation. The reason is because all these computations
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have polynomial complexity and we can reduce the table size to nε with ε being
an arbitrarily small constant.

The choice of r1, r2, r3 should not be difficult now. The complexity of the
algorithm as we described above is O(n3(log logn)2/ log2 n).

5 Removing Another Factor of log logn from Complexity

In our algorithm we partitioned the number of rows of E1 and the number of
columns of F1 by a factor of O(logc n) at a time. This gives O(log n/ log logn)
depths of partitioning and results in the loss of a factor of log log n in time com-
plexity. If we partition the number of rows of E1 and the number of columns
of F1 by a constant factor at a time our algorithm would have O(log n) depths
of partitioning and thus can remove another factor of log logn from time com-
plexity. If we do this way the rows of E1 and columns of F1 are not partitioned
uniformly. Such modification does not involve new ideas and does not require
drastically different time analysis. The principle and the approach remain intact,
only the parameter of the algorithm changed. The details of this modification is
as follows.

Let E1 = (eij) and F1 = (fij). We will first, for each 1 ≤ i, j ≤ c1 logn (c1 < 1
is a constant), sort fik − fjk, k = 1, 2, ..., n. After sorting each fik − fjk has a
rank in [1, n]. We then give fik− fjk a label lf (i, j, k) = l if fik− fjk has rank in
(l · n/2, (l+ 1) · n/2]. lf (i, j, k) uses 1 bit. For each ekj − eki we will give it label
le(k, i, j) = l if fik1 − fjk1 < ekj − eki ≤ fik2 − fjk2 , where fik1 − fjk1 has rank
(not label) l · n/2 and fik2 − fjk2 has rank (l + 1) · n/2.

Now if le(k1, i, j) �= lf (i, j, k2) then we can decide to discard an index. If
le(k1, i, j) = lf (i, j, k2) then we cannot make a decision. If we group elements
of the same label together then the above labeling partitions the array [0..n −
1, 0..n − 1] into 4 divisions and among them there are 2 divisions we can de-
termine the index for the shorter path and discard the other index and for the
other 2 divisions we cannot determine. The area for the determined divisions
is n2/2 and the area for the undetermined divisions is also n2/2. Now for the
undetermined divisions we sort and label elements again and further partitions.
In this way when we partitioned to c log logn levels for a constant c then the
area of undetermined divisions is n2/ logc n. See Fig. 2 (Fig. 2 may looks like a
Quad tree and actually it is not).

Built on top of the above partition we now do le(k1, i, j + 1) and lf(i, j +
1, k2). This will further partition the divisions. However, once the undetermined
divisions area reaches n2/ logc n we will stop and not further partition it. Thus
the undetermined divisions obtained when we worked on le(k1, i, j) and lf (i, j, k2)
are not further partitioned.

We can continue to work on le(k1, i, j + 2) and lf (i, j + 2, k2), le(k1, i, j + 3)
and lf (i, j + 3, k2), ..., le(k1, i, j + c1 logn) and lf (i, j + c1 logn, k2). Note the
difference between here and the algorithm we gave before in the paper. Before
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we can only go to le(k1, i, j+r2 logn/ log logn) and lf (i, j+r2 logn/ log logn, k2)
(i.e. combining about logn/ log logn columns (rows) of E1 (F1)), now we can
go to le(k1, i, j + c1 logn) and lf (i, j + c1 logn, k2) (i.e. combining about logn
columns (rows) of E1 (F1)). This is the key for us to remove a factor of log logn
in time complexity.

In each partitioned division the winning index for the shortest paths is the
same. The remaining computation basically follows the algorithm given before
in the paper. First, for each row in E1 and consecutive r3 logn/ log logn columns
(consecutive in matrix F1) we use a word w1 to indicate the r3 logn/ log logn
winning indices. Now compare words wi (obtained for the same row in Ei and
the same columns in Fi). If wi and wj are equal we then combine them into
one word (removing half of the indices) by table lookup. We keep doing this
until we combined logn/ log logn words into one word. Thus now each word has
r3 logn/ log logn winning indices and they are combined from log3 n/(log logn)2

indices. Thus thereafter we can disassemble the indices from the word and the
remaining computation shall take O(n3 log logn/ log2 n) time.

Theorem: All pairs shortest paths can be computed in O(n3 log logn/ log2 n)
time.

As pointed by Chan that O(n3/ log2 n) may be the final chapter and we are
log logn factor shy of this. We will leave this to future research. Also a referee
pointed out that if our scheme can be recursively exploited like in Strassen’s
algorithm [18] then O(n2+ε) time may be achieved.
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Abstract. The biclique problem asks, given a graph G and a parameter k,
whether G has a complete bipartite subgraph of k vertices in each part (a bi-
clique of order k). Fixed-parameter tractability of this problem is a longstanding
open question in parameterized complexity that received a lot of attention from
the community. In this paper we consider a restricted version of this problem
by introducing an additional parameter s and assuming that G does not have
induced (i.e. chordless) paths of length s. We prove that under this parameteriza-
tion the problem becomes fixed-parameter linear. The main tool in our proof is a
Ramsey-type theorem stating that a graph with a long (not necessarily induced)
path contains either a long induced path or a large biclique.

1 Introduction

Overview of Our Results. Let us call a complete bipartite graph H = (A,B,E) with
|A| = |B| = k a biclique of order k. Given a graph G and parameter k, the Biclique
problem asks if G has a biclique of order k as a subgraph. Fixed-parameter tractabil-
ity of this problem is a longstanding open question that received significant attention
from the parameterized complexity community and is believed to be W[1]-hard (see
the abstract of [6]).

In this paper we consider a restricted version of this problem by introducing an ad-
ditional parameter s and assuming G to be Ps-free, i.e. without induced paths of length
s. We show that under this additional parameterization the biclique problem becomes
fixed-parameter linear. Let us remark that the parameterization by s alone is not enough
for efficient computing of a largest biclique (Proposition 1). Indeed, the construction
used by Johnson [16] to establish the NP-hardness of the Biclique problem in fact re-
duces the Clique problem to an instance of the Biclique problem on P8-free graphs, that
is the Biclique problem is NP-hard on Ps-free graphs for s ≥ 8. In this sense, the use
of s as an additional parameter is meaningful.

The key ingredient in our solution is a combinatorial statement (Theorem 1) claim-
ing the existence of a number A(k, s) such that every Ps-free graph with a path of
length at least A(k, s) has a biclique of order k. This result belongs to a large body of
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’Ramsey-type’ theorems showing that if the given graph is ’large’ in a certain sense,
then it contains a large subgraph (either induced or not) that belongs to one of the spec-
ified families. In our case, the largeness condition is ’long path’ and the families are
bicliques and induced (i.e. chordless) paths. The proof of this result requires a number
of intermediate stages which are proven by a non-trivial use of classical Ramsey’s the-
orem. In particular, we use a ’non-binary’ form of Ramsey’s theorem with hyperedges
of size 3, although we apply it to simple graphs only.

Related Work. The Biclique problem appears under the name of ’Balanced Complete
Bipartite Subgraph’ as problem [GT24] in the famous book of Garey and Johnson, an
NP-hardness proof has been further provided by Johnson in [16]. An application of the
problem to the VLSI design is described in detail in [1]. The problem has been con-
sidered in the context of approximation [12] and exact exponential time algorithms [3].
Polynomial time algorithms for a number of restricted classes of the Biclique problem
have been proposed in [1]. To the best of our knowledge, the question regarding fixed-
parameter tractability of Biclique was first asked in [9]. The question has been restated
as an open problem in a number of subsequent publications, see e.g. [6], where the
complexity of a number of parameterized problems is characterised as Biclique-hard.
The induced Biclique problem is known to be W[1]-hard [7,13].

Graphs without long induced paths, i.e. Ps-free graphs for a constant s, have been
extensively studied in the literature (see e.g. [2,11,22]). For small values of s, the struc-
ture of Ps-free graphs is simple. For instance, P3-free graphs are precisely the graphs
every connected component of which is a clique. P4-free graphs also enjoy many nice
properties. In particular, the clique-width of P4-free graphs is bounded by a constant
and hence many algorithmic problems that are generally NP-hard admit polynomial
time solutions when restricted to P4-free graphs.

In the class of Ps-free graphs with s ≥ 5, the situation changes drastically and the
computational complexity changes from polynomial-time solvability to NP-hardness
for many important algorithmic graph problems. For instance, VERTEX COLORING [18]
and MINIMUM DOMINATING SET [17] are NP-hard for P5-free graphs, and VERTEX

4-COLOURABILITY is NP-hard for P8-free graphs [5]. For many other problems, the
complexity status on graphs without long induced paths is unknown. For instance, the
complexity status is unknown for MAXIMUM INDEPENDENT SET in Ps-free graphs
with s ≥ 5 and for VERTEX 3-COLOURABILITY in Ps-free graphs with s ≥ 7 (for
some partial results related to these problems we refer the reader to [15,20,21,24,25]).

Structure of the Paper. Section 2 presents the algorithm for computing a biclique,
Section 3 proves the main combinatorial result, Section 4 discusses directions of further
research. All graphs in this paper are undirected, without loops and multiple edges.

2 Computing a Small Biclique in a Graph without Long Induced
Paths

A biclique of order k is a bipartite graph (A,B,E) with |A| = |B| = k and every u ∈ A
being adjacent to every v ∈ B. A notorious problem in Parameterized Complexity asks,
given a parameter k, if the given graph has a biclique of order k. The fixed-parameter
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tractability of this problem is wide open despite efforts of many researchers. In this
paper we consider the following restricted version of this problem (the abbreviation
NLIP in the name of this problem stands for ’No Long Induced Paths’).

NLIP-BICLIQUE

Input: A graph G
Parameters: k, s
Assumption: G is Ps-free
Output: A biclique of G of size at least k or ’NO’ if there is no such biclique.

The following proposition, essentially proven in [16] shows that the choice of pa-
rameters is meaningful in the sense that s alone is not enough to compute a maximum
biclique efficiently.

Proposition 1. Computing maximum biclique in a Ps-free graph is NP-hard for s ≥ 8

Proof. This is implicitly proven in [16] because an instance of the Clique problem is
reduced to an instance of the Biclique problem on a P8-free graph. Indeed, by con-
struction, given a graph G, a bipartite graph H is constructed in which the first part A
corresponds to the edges of G and the second part B corresponds to a superset of its
vertices and each vertex of A is adjacent to all vertices of B but those corresponding to
the endpoints of the respective edge. It is not hard to see that H is P8-free. Indeed, let
P be a path of length 8. It has one terminal vertex u in A, and 4 vertices v1, . . . , v4 of
B included in it. Three vertices out of v1, . . . , v4 are non-adjacent to u in P but only
two of them may be the endpoints of the respective edge. It follows that u is necessarily
adjacent in H to the remaining one, thus producing a chord in P . ��

In this paper we prove that the NLIP-BICLIQUE problem is FPT. The central statement
towards establishing this is the following.

Theorem 1. For any natural numbers s and k there is a natural number P (s, k) such
that any graph with a path of length P (s, k) has either an induced path of length s or a
biclique of size k.

We prove Theorem 1 in Section 3. Now we use this theorem to establish a corollary that
the same long induced path/large biclique statement follows from a large treewidth as
well.

Corollary 1. For any natural numbers s and k there is a natural number T (s, k) such
that any graph of treewidth at least T (s, k) either has an induced path of length s or a
biclique of order k.

Proof. It is well known (see Theorem 9 of [14]) that for each natural r there is Y (r)
such that if the treewidth of the given graph is at least Y (r), the graph has a path of size
at least r. Take T (s, k) = Y (P (s, k)) and apply Theorem 1. ��

Theorem 2. For fixed parameters s and k, the NLIP-BICLIQUE problem can be solved
in a linear time.
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Proof. Let G be the input graph with n vertices. Using the linear time algorithm of
Bodlaender [4], test the existence of a path of length P (s, k) and find it, in case it
exists.

Assume that such a path P has been found. In this case, the subgraph of G induced
by the vertices of P has a biclique of size k as follows from Theorem 1. Since the size
of this subgraph depends only on the parameters, the way this biclique is computed
does not affect the desired runtime so, we can use the brute force.

If G does not have a path of length P (s, q) then according to Corollary 1, the
treewidth is at most T (s, q), therefore, the biclique problem can be solved by stan-
dard techniques for graphs of bounded treewidth, say Courcelle’s theorem [8]. ��

3 Proof of Theorem 1

In order to prove Theorem 1, we modify it in the following way.

Theorem 3. For every t, q, and s, there is a number z = Z(s, t, q) such that every
graph with a path of length at least z contains either Kt or Kq,q or Ps as an induced
subgraph.

It is not hard to show that Theorem 1 and Theorem 3 are equivalent. Indeed, assume that
Theorem 3 holds. Set P (s, q) = Z(s, 2q, q). It follows from Theorem 3 that a Ps-free
graph with P (s, q) vertices will have either a clique of size 2q or an induced biclique of
order q. Clearly, in both cases the graph has a biclique of order q. Conversely, assume
that Theorem 1 holds. Then we can just set Z(s, t, q) = P (s,R(2, 2,max(t, q))), where
R is the Ramsey number defined below. Thus, the equivalence between Theorem 1 and
Theorem 3 has been established.

The proof of Theorem 3 consists of four stages outlined in the following four sec-
tions. On the first stage we define a class of graphs called connecting structures. We
essentially prove that Theorem 1 holds for connecting structures, that is a sufficiently
large connecting structure has either a large induced path or a large biclique. On the
second stage we consider a class of graphs having a large grid structure without an in-
dependent transversal and we show that this is a sufficient condition for having a large
biclique. On the third stage we define a class of graphs called a bouquet and we prove
that a sufficiently large (Ps,Kt)-free graph necessarily has a large bouquet. On the final
stage, we get the things together. We assume that our graph is (Ps,Kt)-free, using the
third stage this immediately leads us to the conclusion that a large bouquet exists. We
then show that, appropriately contracting vertices of this bouquet, we can get a large
connecting structure as a subgraph. On the resulting connecting structure we consider
the possibilities of a long induced path and a large biclique. Based on the assumption
that the original graph is Ps-free, in both cases we infer the existence of a large grid
structure without independent transversal, which in turn implies the existence of a large
biclique.

Before we start the proof itself, we introduce the main tool we use in the proof,
namely the fundamental result known as Ramsey’s theorem, and provide a few its corol-
laries.
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Theorem 4. For any k, r and m, there is a number R = R(k, r,m) such that in every
coloring of k-subsets of an R-set with r colors there is a monochromatic m-set, i.e. a
set of m elements all of whose k-subsets have the same color.

For k = 1, this theorem is known as the Pigeonhole Principle. For k = r = 2, the
number R(2, 2,m) is frequently referred to as the (symmetric) Ramsey number, i.e.
the minimum number such that every graph with at least R(2, 2,m) vertices has either
a clique of size m or an independent set of size m. In case of connected graphs, the
Ramsey number admits the following generalization (see e.g. Proposition 9.4.1 in [10]).

Lemma 1. For any t, q and s, there is a number �(t, q, s) such that every connected
graph with at least �(t, q, s) vertices contains either Kt or K1,q or Ps as an induced
subgraph.

The Ramsey number also has a bipartite analog, which can be easily derived with the
Pigeonhole Principle and which states that for any q, there is a number BR(q) such that
every bipartite graph G = (V1, V2, E) with |V1| ≥ BR(q) and |V2| ≥ BR(q) has either
a biclique Kq,q or its bipartite complement. With a simple induction, this statement can
be extended to multipartite graphs as follows.

Lemma 2. For any k and q, there is a number MR(k, q) such that in every k-partite
graph G = (V1, V2, . . . , Vk, E) with |Vi| ≥ MR(k, q) (i = 1, . . . , k) there is a collec-
tion of subsets Ui ⊆ Vi of size |Ui| = q (i = 1, . . . , k) such that every pair of subsets
induces either a biclique Kq,q or its bipartite complement.

3.1 Connecting Structures

Definition 1. A bipartite graph G = (A,B,E) is called a connecting structure w.r.t.
A if there is an injective function f from the set {{u, v}|u, v ∈ A} of all the unordered
pairs of A to B such that f({u, v}) is adjacent to both u and v.

Put it differently, we call G a connecting structure w.r.t. A if for each pair {u, v} ⊆ A
we can find a vertex of B adjacent to both u and v so that different pairs are associated
with different vertices.

We refer to |A| as the order of the connecting structure G.

Lemma 3. For every natural numbers s and q, there is a number L(s, q) such that
every connecting structure of order at least L(s, q) contains either a biclique of order
q or an induced path of size s.

Proof. Let M := max(�s/2� + 1, 2q) and L(s, q) := R(3, 3,M) (R is the Ramsey
number). Consider a connecting structure G = (A,B,E) w.r.t. A = {a1, a2, . . . , al}
where l := L(s, q). We color each triple ai, aj , ak (i < j < k) in one of the three
colors (breaking any ties between colors 1 and 2 arbitrarily):

– color 1 if ai is adjacent to f({aj, ak}),
– color 2 if ak is adjacent to f({ai, aj}),
– color 3 if neither ai is adjacent to f({aj, ak}) nor ak is adjacent to f({ai, aj}).
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Then A has a subset A′ = {ai1 , . . . , aiM } of M ≥ 2q vertices all of whose triples have
the same color. Assume that this color is 1. Then every vertex of A1 = {ai1 , . . . , aiq} is
adjacent to every vertex of B1 = {f({u, v})|u, v ∈ {aiq , . . . , ai2q}}. The adjacency of
u ∈ A1 to w ∈ B1 follows either from the condition of color 1 or, in case u = aiq and
w = f({aiq , v}) for v ∈ {aiq , . . . , ai2q}}, from definition of a connecting structure.
Furthermore, observe that |A1| = q and |B1| =

(
q+1
2

)
≥ q for all q ≥ 1. It follows that

the subgraph of G induced by A1 and B1 contains a biclique of order q.
Assume that all tripes in A′ are of color 2. In this case we set A2 = {aiq+1 , . . . , ai2q}

and B2 = {f({u, v})|u, v ∈ {ai1 , . . . , aiq+1}} and then apply regarding A2 and B2

the same reasoning as in the previous paragraph regarding A1 and B1.
Assume now that the color of all tripes in A′ is 3. Consider the path

ai1 , f({ai1 , ai2}), ai2 , . . . , aiM−1 , f({aiM−1 , aiM }), aiM

By definition of M , the length of this path is at least s. Furthermore, observe that this
path is induced. Indeed, the only possible chord is between some aix and f({aiy , aiy+1})
such that x �= y and x �= y + 1. Then either x < y or x > y + 1. In both cases such a
chord is impossible according to the condition of color 3. ��

3.2 Grid Structures with Large Bicliques

In a graph, a (k, t) grid structure is a family of k × t vertex sets Vi,j , i = 1, . . . , k,
j = 1, . . . , t. We call Vi,j the set in the i-th row and j-th column. A transversal in a grid
structure is a collection of sets containing exactly one set from each row. A transversal
is independent if no two vertices in different sets are adjacent.

Lemma 4. For each k ≥ 2, s and q, there is a number C(k, s, q) such that any graph,
having a (k, C(k, s, q)) grid structure with sets of size at most s and with no indepen-
dent transversal, has a biclique Kq,q .

Proof. For k = 2, the statement follows with a double application of the Pigeonhole
Principle. In particular, we define r := R(1, sq, q), C(2, s, q) := R(1, sr, q) and con-
sider an arbitrary collection A of r sets from the first row. Each set in the second row
has a neighbor in each set of the first row, since no transversal is independent. There-
fore, the family of the sets in the second row can be colored with at most sr colors so
that all sets of the same color have a common neighbor in each of the r chosen sets of
collection A. By the choice of C(2, s, q), one of the color classes contains a collection
B of at least q sets. For each set in A, we choose a vertex which is a common neighbor
for all sets in B and denote the set of r chosen vertices by U . The vertices of U can
be colored with at most sq colors so that all vertices of the same color have a common
neighbor in each of the q sets of collection B. By the choice of r, U contains a color
class U1 of least q vertices. For each set in B, we choose a vertex which is a common
neighbor for all vertices of U1 and denote the set of q chosen vertices by U2. Then U1

and U2 from a biclique Kq,q .
For k > 2, we define C(k, s, q) := MR(k, C(2, s, q)) (see Lemma 2 for the defi-

nition of the number MR). Since the grid structure has no independent transversal, by
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Lemma 2 it must contain two rows with C(2, s, q) sets in each so that the two collec-
tions of sets form a (2, C(2, s, q)) grid structure with no independent transversal. By
the first part of the lemma, this structure contains a biclique Kq,q. ��

3.3 Flowers and Bouquets

A flower centered at {a, b}, also called an ab-flower, consists of two distinct vertices
a, b and a number of pairwise vertex disjoint induced paths connecting them. Every
path in a flower will be called a petal. In other words, a petal is an induced path, not
including a and b, such that a is adjacent to one terminal vertex of this path and b is
adjacent to the other one (of course these terminal vertices may coincide in case of path
of length 1). A flower with p petals will be called a p-flower. A bouquet centered at a
set of vertices B consists of ab-flowers centered at each pair a, b ∈ B such that no two
flowers share a non-central vertex. A bouquet of p-flowers centered at a set of q vertices
will be called a (p, q)-bouquet.

In this section we show that every (Ps,Kt)-free graph with a sufficiently large path
contains a big bouquet with many petals in each flower. As a step toward this goal, we
introduce an auxiliary structure called a multipattern.

A pattern Z = (a, P ) in a graph G is an induced subgraph of G consisting of a (not
necessarily chordless) path P and a vertex a outside P such that a is adjacent to the
first and the last vertex of P and possibly to some other vertices of P , and the subpath
of P between any two consecutive neighbors of a on P is induced (i.e. chordless). If a
has at least m neighbors on P , we say that the pattern Z = (a, P ) is m-strong.

A multipattern of size r in G is a sequence (Z1 = (a1, P1), . . . , Zr = (ar, Pr)) of
r patterns such that for each i > 1, Zi is a pattern in the subgraph of G induced by the
vertices of Pi−1. A multipattern is m-strong if each of its patterns is m-strong.

Lemma 5. For any natural numbers s, t,m, r, there is a number MP (s, t,m, r) such
that any (Ps,Kt)-free graph G with a path of length at least MP (s, t,m, r) has an
m-strong multipattern (Z1, . . . , Zr).

Proof. We prove this lemma by induction on r. For r = 1, we let MP (s, t,m, 1) be
equal �(t, 2m, s) (see Lemma 1 for the definition of �) and consider a (Ps,Kt)-free
graph G with a path P of length MP (s, t,m, r). Then, by Lemma 1, the subgraph of
G induced by the vertices of P must have an induced star K1,2m. We denote by a the
center of the star. At least m neighbors of a must be located either to the left or to
the right of a in the order induced by P . These neighbors together with shortest (i.e.
chordless) paths connecting every two consecutive neighbors and together with vertex
a create an m-strong pattern in G, which proves the lemma for r = 1.

For r > 1, we inductively define MP (s, t,m, r) := MP (s, t,M, r − 1), where
M = max{m, �(t, 2m, s)}. Then an (Ps,Kt)-free graph G with a path P of length at
least MP (s, t,m, r) has an M -strong multipattern (Z1, . . . , Zr−1) of size r− 1. Since
M ≥ �(t, 2m, s), the path in the pattern Zr−1 is of length at least �(t, 2m, s). Therefore,
as in the basis case r = 1, it contains an m-strong pattern Zr. This completes the proof
of the lemma. ��
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Lemma 6. For any natural numbers s, t, p, b ≥ 2, there is a number B(s, t, p, b) such
that any (Ps,Kt)-free graph G with a path of length at least B(s, t, p, b) has a (p, b)-
bouquet centered at an independent set.

Proof. Let B(s, t, p, b) := MP (s, t, s2pb2, R(2, 2,max(t, b))) (R is the Ramsey num-
ber and MP is defined in Lemma 5). Then, by Lemma 5, any (Ps,Kt)-free graph
G with a path of length at least B(s, t, p, b) contains an s2pb2-strong multipattern Z
of size R(2, 2,max(t, b)). Since G is Kt-free, Z contains a sub-multipattern (Z1 =
(a1, P1), . . . , Zb = (ab, Pb)) such that {a1, . . . , ab} is an independent set.

The neighbors of a1 partition P1 into vertex disjoint chordless paths each of which
has at most s− 1 vertices (since G is Ps-free). Let us call these paths intervals. Vertex
a2 has neighbors in at least p of these intervals (in fact since each pattern is s2pb2 strong
and in each interval a2 can have at most s neighbors, the number of such neighboring
intervals is at least spb2), and each of them can be used to form a petal in the flower
centered at {a1, a2}. This proves the lemma for b = 2.

For b > 2, assume by induction that (Z2 = (a2, P2), . . . , Zb = (ab, Pb)) contains a
(p, b− 1)-bouquet centered at vertices {a2, . . . , ab}. Vertices {a2, . . . , ab} are adjacent
to at most sp(b−1)(b−2) vertices of the bouquet, these adjacent vertices intersect (use)
at most sp(b− 1)(b− 2) ≤ sp(b− 1)2 intervals of P1. Since each interval consists of at
most s vertices, vertex a2 can have at most s2p(b−1)2 neighbors in these intervals, and
since the total number of neighbors of a2 on P1 is at least s2pb2, it also has neighbors in
at least p of the unused intervals (at least s2p(b2 − (b− 1)2) > sp of unused neighbors
with at most s neighbors per interval), and each of them can be used to form a petal in
the flower centered at {a1, a2}. For 2 < i ≤ b, we assume by induction that flowers
centered at {a1, a2}, . . . , {a1, ai−1} have been added to the bouquet. Collectively, all
flowers in the bouquet use at most sp(b − 1)2 + p(i − 1) ≤ sp(b − 1)2 + p(b − 1) ≤
spb(b − 1) intervals of P1. Since each interval consists of at most s vertices, vertex ai
can have at most s2pb(b− 1) neighbors in these intervals, and since the total number of
neighbors of ai on P1 is s2pb2, it also has neighbors in at least p of the unused intervals,
and each of them can be used to form a petal in the flower centered at {a1, ai}. ��

3.4 Proof of Theorem 3

We define c := C(�s/2�, s, q), a := C(2, sc, q), b := L(s, a), and z := B(s, t, c, b)
(for the definitions of numbers C,L and B see Lemmas 4, 3 and 6, respectively). Let
G be a graph with a path of length z. If G contains a clique Kt or an induced path Ps,
then we are done. So assume G is (Kt, Ps)-free.

By Lemma 6, G contains a (c, b)-bouquet centered at an independent set B of size
b. Contract the non-central vertices of each uv-flower (u, v ∈ B) to a single vertex,
called the uv-connecting vertex. Let X be the set of all connecting vertices. Consider
a bipartite graph S with the bipartition B,X where u ∈ B and w ∈ X are adjacent if
and only if in the graph G vertex u has a neighbour in the set of vertices contracted to
w. Clearly S is a connecting structure with f({u, v}) being the uv-connecting vertex.
By Lemma 3, S has either an induced path of length s or a biclique of order a.

Assume first that S contains an induced path P of length s. This path contains at most
�s/2� vertices of X and each of them represents a set of c petals of size at most s each.
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Consider an arbitrary transversal containing one petal from each set. If this transversal
is independent (i.e. no two vertices in different petals are adjacent), then by replacing
the vertices of X in P by the respective petals of the transversal, we obtain an induced
path of length at least s in the original graph G, which is impossible. Therefore, each
transversal has at least one edge and hence by Lemma 4 G has a biclique of size q.

Suppose now that the connecting structure S has a biclique of order a. Each connect-
ing vertex of this biclique represents a set of c petals of size at most s each. Therefore,
this biclique represents a (2, a) grid structure of G with sets of size at most sc and with
no independent transversal. Therefore, by Lemma 4, G has a biclique of size q.

4 Directions of Future Research

In this paper, we have shown that computing a biclique of order k in a Ps-free graph
is fixed-parameter tractable when parameterized by k and s. The main ingredient of
the proposed method is Theorem 1 that establishes connection between the Biclique
problem and a W[1]-hard problem Induced Path. This might give a hope of a possibility
of establishing W[1]-hardness of the Biclique problem by a reduction from the Induced
path problem. However, it is not clear how such a reduction would work in the presence
of a large biclique.

Intuitively, Biclique problem is ’similar’ to the Clique problem (but much more re-
sistant to the attempts of proving W[1]-hardness). Does this similarity preserve in the
case of Ps-free graphs? In particular, what is the complexity of k-Clique problem in
Ps-free graphs where k and s as parameters? In fact it would be a strong result even
if this problem shown FPT on k with the power of polynomial depending on s: it will
show, for instance, that the Clique problem is FPT for P5-free graphs, where it is known
to be NP-hard by a reduction from the Independent set problem on graphs with large
girth [23]. Dániel Marx suggested that an interesting intermediate problem between Bi-
clique and Clique is the Tripartite Clique, i.e. finding out if the given Ps-free graph has
a complete 3-partite subgraph with k vertices in each part. Although these problems are
closely related to the result proposed in this paper, it is not clear how Theorem 1 can
help in their resolution: Ps-free graphs of large treewidth cannot be guaranteed to have
a large clique, not even a large tripartite clique, because of the failure of such potential
theorems on bipartite graphs. Therefore, if any of these problems is FPT, new methods
would be required to establish this.

Finally, it is interesting to see how Theorem 1 can be modified and extended. In
particular, assume that the given graph does not have a large biclique. In this case if the
largeness condition is a large average degree then the consequences are very strong: as
shown in [19], the considered graph will have an induced subdivision of any graph. In
this paper, we prove that if the largeness condition is a long path, then the absence of a
large biclique implies ’just’ a long induced path. Can we claim more than that? What if
the ’long path’ condition is replaced by a stronger ’large treewidth’ assumption?

Acknowledgments. Research of the first two authors was supported by the Centre
for Discrete Mathematics and Its Applications (DIMAP) at the University of Warwick.
The second author also acknowledges a support from EPSRC, grant EP/I01795X/1.



Linear Time Algorithm for Computing a Small Biclique 151

Part of this research was done when the third author visited the Institute of Informatics
of the Humboldt University of Berlin (hosted by Martin Grohe and Dániel Marx) and
the Department of Informatics of the University of Bergen (hosted by Fedor Fomin).
Both of the visits took place in August 2011. We would like to thank Dániel Marx
for interesting conversations regarding possible further research related to the proposed
result. We would also like to thank anonymous reviewers for noticing a number of minor
mistakes in the preliminary version of this paper.

References

1. Arbib, C., Mosca, R.: Polynomial algorithms for special cases of the balanced complete
bipartite subgraph problem. J. Combin. Math. Combin. Comput. 39, 3–22 (1999)
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vol. 2204, pp. 254–262. Springer, Heidelberg (2001)

19. Kühn, D., Osthus, D.: Induced subdivisions in Ks, s-free graphs of large average degree.
Combinatorica 24(2), 287–304 (2004)

20. Le, V.B., Randerath, B., Schiermeyer, I.: On the complexity of 4-coloring graphs without
long induced paths. Theor. Comput. Sci. 389(1-2), 330–335 (2007)

21. Lozin, V.V., Mosca, R.: Maximum independent sets in subclasses of P5-free graphs. Inf.
Process. Lett. 109(6), 319–324 (2009)

22. Lozin, V.V., Rautenbach, D.: Some results on graphs without long induced paths. Inf. Pro-
cess. Lett. 88(4), 167–171 (2003)

23. Murphy, O.J.: Computing independent sets in graphs with large girth. Discrete Applied Math-
ematics 35(2), 167–170 (1992)

24. Randerath, B., Schiermeyer, I.: 3-colorability in P for P6-free graphs. Discrete Applied Math-
ematics 136(2-3), 299–313 (2004)

25. Woeginger, G.J., Sgall, J.: The complexity of coloring graphs without long induced paths.
Acta Cybernetica 15(1), 107–117 (2001)



Induced Disjoint Paths in AT-Free Graphs�
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Abstract. Paths P1, . . . , Pk in a graph G = (V,E) are said to be mu-
tually induced if for any 1 ≤ i < j ≤ k, Pi and Pj have neither common
vertices nor adjacent vertices (except perhaps their end-vertices). The
Induced Disjoint Paths problem is to test whether a graph G with k
pairs of specified vertices (si, ti) contains k mutually induced paths Pi

such that Pi connects si and ti for i = 1, . . . , k. This problem is known
to be NP-complete already for k = 2. We prove that it can be solved
in polynomial time for AT-free graphs even when k is part of the in-
put. As a consequence, the problem of testing whether a given AT-free
graph contains some graph H as an induced topological minor admits
a polynomial-time algorithm, as long as H is fixed; we show that such
an algorithm is essentially optimal by proving that the problem is W[1]-
hard, even on a subclass of AT-free graphs, namely cobipartite graphs,
when parameterized by |VH |. We also show that the problems k-in-a-
Path and k-in-a-Tree can be solved in polynomial time, even when k
is part of the input. These problems are to test whether a graph contains
an induced path or induced tree, respectively, spanning k given vertices.

1 Introduction

We study the induced version of the well-known Disjoint Paths problem for
the class of AT-free graphs. Before we define this graph class and explain our
results, we first introduce the problem, survey the known results, and mention
its applications.

The Induced Disjoint Paths problem takes as input a pair (G,S), where G
is a graph and S = {(s1, t1), . . . , (sk, tk)} is a set of pairs of specified vertices of a
graph G, which we call terminals, and tests whether there exist (not necessarily
induced) paths P1, . . . , Pk in G that satisfy the following conditions:

i) any distinct Pi, Pj may only share vertices that are ends of both paths.
ii) for all i �= j, no inner vertex u of Pi is adjacent to a vertex v of some Pj ,

except when v is an end-vertex of both Pi and Pj .
iii) for all i, Pi has ends si and ti.
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As can be seen from this definition, we relax the conditions imposed on the
end-vertices (terminals) of the paths Pi. We explain why we do this later.

The Induced Disjoint Paths problem is a variant of the well-known Dis-

joint Paths problem. The latter problem is to test whether a graph G with
k pairs of specified vertices (si, ti) contains a set of k mutually vertex-disjoint
paths P1, . . . , Pk. Note that if we subdivide each edge of an input graph of the
Disjoint Paths problem, then we obtain an equivalent instance of the Induced
Disjoint Paths problem. However, we cannot do this on graph classes that are
not closed under the operation of edge subdivision, and AT-free graphs form an
example of such a class.

The Disjoint Paths problem is one of the problems in Karp’s list of NP-
compete problems [13]. If k is a fixed integer, i.e., not part of the input, it can
be solved in O(n3) time for n-vertex graphs, as shown by Robertson and Sey-
mour [23]. In contrast, the Induced Disjoint Paths problem is NP-complete
even if k = 2, as shown by Fellows [9] and Bienstock [2]. Hence graph classes
for which the k-Induced Disjoint Paths problem may be tractable have been
identified. Below, we briefly survey results for classes studied so far.

For planar graphs, Induced Disjoint Paths stays NP-complete; we can
subdivide each edge of a planar input graph of Disjoint Paths to obtain a pla-
nar input graph of Induced Disjoint Paths and use the result that Disjoint

Paths is NP-complete for planar graphs, as shown by Lynch [20]. However,
Kobayashi and Kawarabayashi [15] presented an algorithm that solves Induced
Disjoint Paths on planar graphs that runs in linear time for any fixed k. For
claw-free graphs, Induced Disjoint Paths stays NP-complete as well. This is
shown by Fiala et al. [10], even for line graphs which form a subclass of claw-free
graphs. They also showed that the problem can be solved in polynomial time if
k is fixed [10]. Recently, we improved this result by proving that Induced Dis-

joint Paths is fixed-parameter tractable for claw-free graphs when parameter-
ized by k [11]. For chordal graphs, Induced Disjoint Paths is polynomial-time
solvable, as shown by Belmonte et al. [1].

Algorithms that solve the Induced Disjoint Paths problem for graph classes
have numerous applications. For example, they are used as a subroutine in al-
gorithms that detect induced containment relations, as explained below.

A graph G contains a graph H as a topological (induced) minor if G contains
an (induced) subgraph that is isomorphic to a subdivision of H , i.e., to a graph
obtained from H by a number of edge subdivisions. The problems that are
to test whether a given graph contains some fixed graph H as a topological
minor or induced topological minor are called H-Topological Minor and H-

Induced Topological Minor. Robertson and Seymour [23] showed that H-

Topological Minor can be solved in polynomial time for any fixed graph H .
Grohe et al. [12] improved this result to cubic time. The complexity classification
for H-Induced Topological Minor is wide open, although both polynomial-
time and NP-complete cases are known, as shown by Lévêque et al. [19].
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Due to our relaxation of conditions i) and ii) for the terminals, we can use
an algorithm for Induced Disjoint Paths as a subroutine in an algorithm
for H-Induced Topological Minor. Hence, for any fixed graph H , we solve
H-Induced Topological Minor in polynomial time on any graph class for
which we can solve the Induced Disjoint Paths problem in polynomial time
for fixed k, such as for the classes of planar graphs, claw-free graphs, or chordal
graphs. Note that this approach cannot be used for general graphs, as Induced
Disjoint Paths is already NP-complete when k = 2 [2,9].

The related problem of detecting an induced subgraph containing a set of k
specified vertices (called terminals as well) has also been extensively studied. This
is in particular the case if the subgraph is required to be a tree, cycle, or path.
Then the problem is called k-in-a-Tree, k-in-a-Cycle, and k-in-a-Path, re-
spectively. Derhy and Picouleau [5] showed that k-in-a-Tree is NP-complete
when k is part of the input, whereas Chudnovsky and Seymour [4] proved that
the 3-in-a-Tree problem is polynomial-time solvable. The complexity of k-in-a-
Tree is open for all fixed k ≥ 4. The problems 2-in-a-Cycle and 3-in-a-Path
are NP-complete, which follows from the aforementioned results of Fellows [9]
and Bienstock [2]. Again, due to our relaxation of conditions i) and ii), we can
use an algorithm for Induced Disjoint Paths as a subroutine for solving these
three problems. This leads to polynomial-time algorithms for solving them for
any fixed k on any graph class for which we can solve the Induced Disjoint

Paths problem in polynomial time for fixed k.
We consider the class of asteroidal triple-free graphs, also known as AT-free

graphs. An asteroidal triple is a set of three mutually non-adjacent vertices such
that each two of them are joined by a path that avoids the neighborhood of the
third, and AT-free graphs are exactly those graphs that contain no such triple.
AT-free graphs, defined fifty years ago by Lekkerkerker and Boland [18], are well
studied in the literature with respect to a variety of graph problems, such as
finding minimum dominating sets, minimum feedback vertex sets, longest paths,
and coloring [14,16,17,24]. Moreover, the class of AT-free graphs contains many
well-known classes, such as cocomparability graphs, cographs, interval graphs,
permutation graphs, and trapezoid graphs (cf. [6]).

Our Results. We prove that the Induced Disjoint Paths problem is poly-
nomial-time solvable for AT-free graphs, even if k is part of the input. This is
somehow surprising, as the related Disjoint Paths problem is NP-complete
already for interval graphs [22]. Usually, the induced variant of a containment
relation problem is computationally just as hard or even harder than its non-
induced variant, as described above for general graphs, planar graphs, and claw-
free graphs.

We explain our algorithm for solving Induced Disjoint Paths in Section 3.
We first provide a thorough exploration of the structure of AT-free graphs, in par-
ticular in relation to the Induced Disjoint Paths problem. We then use these
structural results for a complex dynamic programming algorithm. We should
note that our approach is substantially different from the approach for chordal
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graphs by Belmonte et al. [1], as it appears that their tree-decomposition-based
approach cannot work for AT-free graphs.

In Section 4, we determine to which extent we can use our algorithm for solving
Induced Disjoint Paths for detecting induced topological minors in AT-free
graphs. First, we consider the anchored version of H-Induced Topological

Minor. This variant is to test whether a graph G contains a graph H as an
induced topological minor in such a way that the vertices of H are mapped
to specified vertices of G. We show that the anchored version of H-Induced
Topological Minor can be solved in polynomial time on AT-free graphs even
when H is an arbitrary graph that is part of the input. This result cannot be
generalized to the original, non-anchored version of this problem. However, our
result for Induced Disjoint Paths still implies a polynomial-time algorithm
for H-Induced Topological Minor on AT-free graphs if H is fixed. This
may be the best we can hope for, as we prove that Induced Topological

Minor is W[1]-hard when parameterized by |VH |, even on cobipartite graphs (a
subclass of AT-free graphs).

In Section 5, we consider the problems k-in-a-Tree and k-in-a-Path; note
that k-in-a-Cycle is trivial on AT-free graphs, because AT-free graphs do not
contain induced cycles on six or more vertices. As we explained, our result for
Induced Disjoint Paths implies that k-in-a-Tree and k-in-a-Path can be
solved in polynomial time for AT-free graphs, that is, provided that k is fixed,
as we may need to consider k! ordering of the terminals. In contrast to the
H-Induced Topological Minor problem, however, we can give a direct ap-
proach showing that both k-in-a-Tree and k-in-a-Path can be solved in poly-
nomial time for AT-free graphs even when k is part of the input.

2 Preliminaries

Let G = (V,E) be a graph. Throughout the paper, we consider only finite,
undirected graphs without multiple edges and self-loops. The graph G[S] denotes
the subgraph of G induced by S. We denote the (open) neighborhood of a vertex
u by N(u) = {v | uv ∈ E} and its closed neighborhood by N [u] = N(u) ∪ {u}.
We denote the (open) neighborhood of a set U ⊆ V by N(U) = {v ∈ V \U | uv ∈
E for some u ∈ U} and its closed neighborhood by N [U ] = N(U) ∪ U . We let
d(u) = |N(u)| denote the degree of a vertex u. Whenever it is not clear from the
context, we may add an extra subscript G to these notations. A set of vertices
U ⊆ V of a graph G = (V,E) is a dominating set if u ∈ U or u ∈ N(U) for
each u ∈ V . A pair of vertices {x, y} is a dominating pair if the vertex set of
every x, y-path dominates G. A path P dominates a vertex u if u ∈ N [VP ]. A
path P dominates a vertex set U if it dominates each u ∈ U . Corneil, Olariu
and Stewart [6,7] proved that every connected AT-free graph has a dominating
pair and that such a pair can be found in linear time.

A collection of paths P1, . . . , Pk that satisfy the aforementioned conditions
i)–iii) for a given graph G with a set S of k terminals pairs (si, ti) is called
a solution for (G,S). Note that these paths do not have to be induced paths
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of G. However, as we can take shortcuts if necessary, we may without loss of
generality assume that they are induced. As a matter of fact, this is convenient
for algorithmic purposes and from now on we assume that in a solution

iv) each Pi is an induced path.

We allow a terminal to be in more than one terminal pair, but no two terminal
pairs may coincide and the terminals of each pair may not be the same, i.e., we
assume

v) {si, ti} �= {sj, tj} for all i �= j and si �= ti for all i .

We can assume condition v), as our algorithm for detecting induced topological
minors, which uses our algorithm for Induced Disjoint Paths as a subroutine,
does not require two terminal pairs to coincide, as we shall see. It may happen
that in this application two terminals of the same pair are the same, but we can
easily work around this. Moreover, our algorithm for Induced Disjoint Paths

can be modified to deal with terminal pairs (si, ti) with si = ti, but we refrain
from doing so to avoid any further technicalities. Throughout the paper, we let
T =

⋃k
i=1{si, ti} denote the set of terminals, and S = {(s1, t1), . . . , (sk, tk)} the

set of terminal pairs.

3 Induced Disjoint Paths

In this section we present our polynomial-time algorithm for the Induced Dis-

joint Paths problem. Our algorithm has as input a pair (G,S), where G is an
AT-free graph and S is a set of terminal pairs, and consists of the following three
phases.

Phase 1. Preprocess (G,S) to derive a number of convenient properties. For
instance, afterwards two terminals of the same pair are non-adjacent.

Phase 2. Derive a number of structural properties of (G,S). The algorithm
constructs an auxiliary graph H , which is obtained from the subgraph of G
induced by the terminal vertices by adding a path of length two between each
pair of terminals. It then checks whether H satisfies some necessary conditions,
such as being AT-free and being an anchored topological minor of G. The latter
condition is also shown to be sufficient and demands the construction of another
auxiliary graph in order to describe how induced paths connecting terminal pairs
may interfere with each other.

Phase 3. Perform dynamic programming using the information gathered in
Phases 1-2.

3.1 Phase 1: Preprocessing

Let (G,S) be an instance of Induced Disjoint Paths, where G = (V,E) is an
AT-free graph on n vertices with a set S of k terminal pairs (s1, t1), . . . , (sk, tk).

Recall that T =
⋃k

i=1{si, ti} denotes the set of terminals.
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We need the following preprocessing steps: we first apply Step 1, then Step 2,
and then Step 3, where we perform each step as long as possible. In the below,
M(u) denotes the set of all terminals that form a terminal pair with vertex u.

Step 1. For all u, v ∈ T with uv ∈ E, remove all common neighbors of u and v
that are not terminals from G, i.e., remove all vertices of N(u)∩N(v)∩ (V \T ).
Step 2. For all u ∈ T with M(u) ⊆ N(u), remove u and all of its neighbors that
are not terminals from G. Also remove all (sj , tj) with u ∈ {sj, tj} from S.

Step 3. For all (si, ti) with siti ∈ E, remove (si, ti) from S.

We have the following lemma. The proof of this lemma and of the other lemmas
in this paper has been omitted due to space restrictions.

Lemma 1. Applying Steps 1–3 takes polynomial time and results in a new in-
stance (G′, S′), where G′ is an induced (and hence AT-free) subgraph of G and
S′ ⊆ S, such that (G′, S′) is a Yes-instance of Induced Disjoint Paths if and
only if (G,S) is a Yes-instance.

For convenience we denote the obtained instance by (G,S) as well, and we also
assume that |S| = k.

For i = 1, . . . , k, let Gi denote the subgraph obtained from G after removing
all terminal vertices not equal to si or ti, together with all of their neighbors
not equal to si or ti (should si or ti be adjacent to a terminal from some other
pair), i.e., Gi is the subgraph of G induced by (V \ (∪v∈T\{si,ti}N [v]))∪ {si, ti}.
The following lemma is straightforward to see.

Lemma 2. If si and ti are in different connected components of Gi for some
1 ≤ i ≤ k, then (G,S) is a No-instance of Induced Disjoint Paths.

Hence, we can add the following preprocessing step, which we can perform in
polynomial time.

Step 4. If some si and ti are in two different connected components of Gi, then
return No.

Summarizing, applying Steps 1–4 takes polynomial time and results in the fol-
lowing additional conditions for our instance:

vi) the terminals of each pair (si, ti) are not adjacent;
vii) the terminals of each pair (si, ti) are in the same connected component of

Gi.

3.2 Phase 2: Obtaining Structural Results

We need the following terminology. Let G be a graph and let uw ∈ E. The edge
subdivision of uw removes uw and adds a new vertex v with edges uv and vw.
A graph G′ is a subdivision of G if G′ can be obtained from G by a sequence of
edge subdivisions. A graph H is an induced topological minor of G, if G has an
induced subgraph that is isomorphic to a subdivision of H .
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Let G be a graph in which we specify r distinct vertices p1, . . . , pr. Let H be
a graph in which we specify r distinct vertices q1, . . . , qr. Then G contains H as
an induced topological minor anchored in (p1, q1), . . . , (pk, qk) if G contains an
induced subgraph isomorphic to a subdivision of H such that the isomorphism
maps pi to qi for i = 1, . . . , r. The graphs G and H may have common vertices.
If pi = qi for i = 1, . . . , r, we speak of “being anchored in p1, . . . , pk” instead.

Now let G be an AT-free graph with a set S = {(s1, t1), . . . , (sk, tk)} of ter-
minal pairs satisfying conditions i)–vii). In G[T ], there is no edge between any
two terminals of the same pair due to condition vi). We modify G[T ] by joining
the terminals of each pair (si, ti) by a path Pi of length two, i.e., for each pair
(si, ti) we introduce a new vertex that we make adjacent only to si and ti. We
denote the resulting graph by H . Note that G[T ] is an induced subgraph of H .
The inner vertex of each Pi is called a path-vertex, and the two edges of each Pi

are called path-edges.
The following lemma is straightforward to see.

Lemma 3. The pair (G,S) is a Yes-instance of Induced Disjoint Paths

if and only if G contains H as an induced topological minor anchored in the
terminals of T .

Lemma 3 immediately implies the next lemma.

Lemma 4. If (G,S) is a Yes-instance of Induced Disjoint Paths, then H
is AT-free.

Lemma 4 yields the following step.

Step 5. If H is not an AT-free graph, then return No.

From now on, we assume that H is AT-free. Due to Step 5, we have the following
lemma.

Lemma 5. Every vertex u ∈ T is included in at most five terminal pairs.

Let H1, . . . , Hr be the connected components of H . We observe that the termi-
nals of each pair are in the same connected component of H due to the paths Pi.
Hence, we can define the set Si ⊆ S of terminal pairs in a connected component
Hi. We write Ti = VHi ∩ T to denote the set of terminals in Hi.

Lemma 6. Each Hi has a dominating pair {xi, yi} with xi, yi ∈ Ti. Moreover,
such a dominating pair can be found in linear time.

For the dominating pairs {xi, yi} found by Lemma 6, we compute in linear time
a shortest xi, yi-path Di in Hi for each i = 1, . . . , r. The next two lemmas show
a number of properties of these paths Di.

Lemma 7. Each Di contains at least one of the terminals of every pair in Si.

Lemma 8. Each vertex of Di is adjacent to at most five path-vertices of Hi that
are not on Di and to at most two terminals that are not on Di.
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By Lemma 3, we must check whether G contains H as an induced topological
minor anchored in the terminals of T . In other words, we must check whether
G contains an induced subgraph that is isomorphic to a subdivision H ′ of H ,
such that the isomorphism maps every terminal of G to the same terminal of
H . Because G[T ] is an induced subgraph of H , such a subdivision H ′ contains
no subdivided edges of H between two terminals of the same pair. Hence, H ′ is
obtained from H after subdividing a number of path-edges one or more times
(note that H ′ = H is possible). For this purpose, we need the following lemma.

Lemma 9. Let H ′
i be an AT-free graph obtained from Hi by subdividing a num-

ber of path-edges one or more times. Let P ′
j and D′

i be the resulting paths obtained
from the paths Pj and Di, respectively. Then,

a) the length of each path P ′
j that is not a subpath of D′

i is at most three (im-
plying that every internal vertex of P ′

j is adjacent to at least one of sj , tj);
b) D′

i dominates all but at most two vertices of H ′
i.

Condition vii) tells us that the terminals si and ti are in the same connected
component of the graph Gi for i = 1, . . . , k. Two terminal pairs (si, ti) and
(sj , tj) are interfering if there is an induced si, ti-path Qi in Gi and an induced
sj , tj-path Qj in Gj , respectively, such that Qi and Qj are not mutually induced.
We say that there is interference between two sets of terminal pairs Si and Sj

if a terminal pair from Si and a terminal pair from Sj are interfering.

Lemma 10. Let (si, ti) and (sj , tj) be interfering terminal pairs from two differ-
ent connected components of H. Let Qi and Qj be induced si, ti- and sj , tj-paths
in Gi and Gj , respectively, such that Qi and Qj are not mutually induced. Then
Qi and Qj are vertex disjoint. Moreover, for any edge uv ∈ EG with u ∈ VQi

and v ∈ VQj , it holds that u ∈ N(si) ∪N(ti) and v ∈ N(sj) ∪N(tj).

Lemma 10 implies the following lemma.

Lemma 11. It is possible to check in polynomial time whether two terminal
pairs (si, ti) and (sj , tj) from different connected components of H are interfer-
ing.

Lemma 11 enables us to construct in polynomial time an auxiliary graph I with
vertices 1, . . . , r and edges ij if and only if there is interference between Si and
Sj . This leads to the following lemma.

Lemma 12. The graph I is a disjoint union of paths.

Let I1, . . . , Il be the connected components of I, and let J1, . . . , Jl be their vertex
sets respectively. For h = 1, . . . , l, we define Xh = {(sj , tj) | (sj , tj) ∈ ∪p∈JiSp},
and we let G∗

h be the graph obtained from G by removing all vertices of the closed
neighborhoods of all the terminals that are not included in Xh. Lemma 13 shows
how G is related to the graphs G∗

h.

Lemma 13. The instance (G,S) is a Yes-instance of Induced Disjoint Paths

if and only if (G∗
h, Xh) is a Yes-instance for all 1 ≤ h ≤ l.
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Lemma 13 gives us the following step.

Step 6. If I is disconnected, then solve Induced Disjoint Paths for each
(G∗

h, Xh). Return Yes if the answer is Yes for all of these instances and return
No otherwise.

By Step 6, we may assume that I is connected. Then, by Lemma 12, we may
assume that I is a path. This leads to the following new condition:

viii) there is interference between two sets Si and Sj for some 1 ≤ i < j ≤ r if
and only if j = i+ 1.

Lemma 10 gives us some structural information about interfering terminal pairs.
We are now ready to be a bit more precise, which is necessary for our algorithm.
For i = 1, . . . , r − 1, let Wi be the set of all vertices u ∈ VG, such that there is
an edge uv ∈ E with the following property: there are interfering terminal pairs
(sp, tp) and (sq, tq) in Si and Si+1, respectively, such that Gp has an induced
sp, tp-path containing u and Gq has an induced sq, tq-path containing v. Using
this definition we can state the next lemma.

Lemma 14. For i = 1, . . . , r − 1, there is a set of terminals Zi ⊆ Ti such that
Wi ⊆ N(Zi) and Zi contains either one terminal or two adjacent terminals.

Using Lemmas 10 and 14, we obtain the following result.

Lemma 15. The sets Z1, . . . , Zr−1 can be found in polynomial time.

3.3 Phase 3: Dynamic Programming

Now we are ready to give a dynamic-programming algorithm for Induced Dis-

joint Paths. For simplicity, we solve the decision problem here, i.e., we only
check for the existence of paths, but the algorithm can be modified to get the
paths themselves (if they exist). Due the space restrictions we only sketch the
main ideas used by the algorithm.

Our algorithm is based on the following separation property of AT-free graphs.

Lemma 16. Let u, v be two vertices and let P be an induced u, v-path of length
at least four in an AT-free graph G. Let G′ be the subgraph obtained from G
after removing N [VP \ {u, v}]. If G1 and G2 are connected components of G′

containing a neighbor of u and v in G, respectively, then G1 �= G2.

Let G be a connected AT-free graph and let S = {(s1, t1), . . . , (sk, tk)} be a set
of terminal pairs. We assume that this instance of Induced Disjoint Paths

satisfies conditions i)–viii). We also assume that the auxiliary graph H with the
connected components H1, . . . , Hr is given, together with the sets of terminal
pairs S1, . . . , Sr and the sets of terminals T1, . . . , Tr. Then for i ∈ {1, . . . , r− 1},
the sets Zi ⊆ Ti are constructed using Lemmas 14 and 15. We let Z0 = ∅.

The dynamic programming consists of two stages. First, we construct the
subroutine Component(i,X, Y ) that for each i ∈ {1, . . . , r} and for any two sets
X ⊆ N(Zi−1), Y ⊆ N(Zi) of size at most 10 each, solves Induced Disjoint

Paths for the graph Fi = G[V \ (∪j∈{1,...r},j =i ∪u∈Tj N [u])] with the set of
terminal pairs Si with the following conditions:
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a) the paths from a solution are not adjacent to the vertices of X ,
b) the set of non-terminal vertices from N(Zi) used by the paths in a solution

is a subset of Y .

To construct Component(i,X, Y ), we consider Hi. Recall that this graph has
dominating path Di that joins the terminals xi and yi. In our algorithm we are
“tracing” an xi, yi-path D′

i in Fi that is a subdivision of Di. Our algorithm is
based on the fact that by Lemma 16, we can do this by keeping only the last
at most five vertices of the already constructed subpath originating in xi. Also
recall that, by Lemma 7, at least one vertex of each pair of terminals in Fi should
be in D′

i. Moreover, by Lemma 8, we are interested in only a bounded number
of vertices adjacent to the vertices of D′

i, and by Lemma 9, the paths outside D′
i

are short and D′
i dominates almost all vertices of these paths.

In the second stage we “glue” solutions for Induced Disjoint Paths for Fi

provided by Component(i,X, Y ). Our algorithm solves, for each i ∈ {1, . . . , r}
and Y ⊆ N(Zi) of size at most ten, Induced Disjoint Paths for the graph
F ′
i = G[V \ (∪j∈{i+1,...r}∪u∈Tj N [u])] with the set of terminal pairs S′

i = ∪i
j=1Sj

with the following additional condition: the set of non-terminal vertices from
N(Zi) used by the paths in a solution is a subset of Y . Observe that by Lemma 5,
any vertex u ∈ T is included in at most five terminal pairs. Hence, we consider
only sets Y of size at most ten. We solve this problem consecutively for i =
1, . . . , r. Clearly, if we have a solution for i = r, then we have the Yes-answer
for Induced Disjoint Paths for G and S. If for some i ∈ {1, . . . , r} we get
a No-answer, then we stop and give a No-answer for the original instance. The
algorithm runs in polynomial time and this implies our main result.

Theorem 1. The Induced Disjoint Paths problem can be solved in polyno-
mial time for AT-free graphs.

4 Induced Topological Minors

The Induced Topological Minor problem is to test whether a given graph
G contains a given graph H as an induced topological minor. The Anchored

Induced Topological Minor problem is to test whether a given graph G has
an induced subgraph that is a subdivision of a given graph H , such that H is
anchored in VH ⊆ VG.

It is easy to reduce Anchored Induced Topological Minor to Induced

Disjoint Paths on G: for each edge uv ∈ EH , we construct the pair of terminals
(u, v). Hence, Theorem 1 immediately implies the following.

Corollary 1. The Anchored Induced Topological Minor problem can be
solved in polynomial time for AT-free graphs.

If H is a fixed graph, i.e. not part of the input, then Induced Topological

Minor can be solved in polynomial time, as we mentioned in Section 1.
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Corollary 2. The Induced Topological Minor problem can be solved in
time nk+O(1) for pairs (G,H) where G is an n-vertex AT-free graph and H is a
k-vertex graph.

However, if H is a part of the input or if we parameterize the problem by the
size of H , then we can show hardness even for a subclass of AT-free graphs. A
graph is cobipartite if its vertex set can be partitioned into two cliques. Clearly,
any cobipartite graph is AT-free.

Theorem 2. The Induced Topological Minor problem is NP-complete for
cobipartite graphs, and W[1]-hard for cobipartite graphs parameterized by |VH |.

5 Concluding Remarks

We have presented a polynomial-time algorithm that solves Induced Disjoint

Paths for AT-free graphs, and applied this algorithm on the H-Induced Topo-

logical Minor problem for this graph class. By similar arguments we obtain
the following theorem.

Theorem 3. The k-in-a-Tree problem and the k-in-a-Path problem can be
solved in polynomial time for AT-free graphs.

Motivated by our application on testing for induced topological minors, we as-
sumed that all terminal pairs in an instance (G,S) of Induced Disjoint Paths

are distinct. For general graphs, we can easily drop this assumption by replacing
a vertex u representing � ≥ 2 terminals by � new mutually non-adjacent ver-
tices, each connected to all neighbors of u via subdivided edges. This yields an
equivalent instance of Induced Disjoint Paths, in which all terminal pairs are
distinct. However, we cannot apply this reduction for AT-free graphs, because it
may create asteroidal triples. Hence the complexity of this more general problem
remains an open question. If we consider the special case in which all terminal
pairs coincide, i.e. in which (s1, t1) = · · · = (sk, tk), we note that this problem
is already NP-compete for k = 2 [2,9] and solvable in O(n2) time on n-vertex
planar graphs for arbitrary k [21]. However, we can solve this case in polynomial
time for AT-free graphs.
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that each class of graphs that is closed under taking immersions can be
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the Irrelevant Vertex Technique [14]. (For examples of algorithmic applications,
see [5, 10]).

We say that a graph H is an immersion (minor) of a graph G, if we can obtain
H from a subgraph of G by lifting (contracting) edges. (For detailed definitions,
see Section 2). While the minor relation has been extensively studied throughout
the last decades [1,3,14–19], the immersion relation has only recently gained more
attention [6,10]. One of the fundamental results that appeared in the last paper
of the Graph Minors series was the proof of Nash-Williams’ Conjecture, that is,
the class of all graphs is well-quasi-ordered by the immersion relation [19].

A direct corollary of these results is that a graph class C, which is closed
under taking immersions, can be characterized by a finite family obs≤im(C) of
minimal, according to the immersion relation, graphs that are not contained in C
(called obstructions from now on). Furthermore, in [10], it was proven that there
is an O(|V (G)|3) algorithm that decides whether a graph H is an immersion of
a graph G (where the hidden constants depend only on H). Thus, an immediate
algorithmic implication of the finiteness of obs≤im(C) and the algorithm in [10],
is that it can be checked in cubic time whether a graph belongs in C or not (by
testing if the graph G contains any of the graphs in obs≤im(C) as an immersion).
In other words, these two results imply that membership in an immersion-closed
graph class can be decided in cubic time.

Notice that this meta-algorithmic result assumes that the family obs≤im(C)
is known. However, as the proofs in [17, 19] are non-constructive, there is no
generic algorithm that allows us to identify these obstruction sets for every
immersion-closed graph class. Moreover, even for fixed graph classes, this task
can be extremely challenging as such a set could contain many graphs and no
general upper bound on its cardinality is known other than its finiteness. Thus,
an open problem is to find out which information on an immersion-closed graph
class C make it is possible to effectively compute the obstruction sets.

The issue of the computability of obstruction sets for minors and immersions
was raised by M. Fellows and M. Langston [8, 9]. In their papers, they show
that the problem of determining obstruction sets from machine descriptions of
minor-closed graph classes is recursively unsolvable [9], which directly holds for
the immersion relation as well, and propose several methods to tackle the non-
constructiveness of these sets. See, for example, [3,8]. Furthermore, the problem
of algorithmically identifying minor obstruction sets has been extensively stud-
ied [1, 3, 4, 8, 9, 12].

In this paper, we initiate the study for computing immersion obstruction sets.
In particular, we deal with the problem of computing obs≤im(C) for families of
graph classes C that are constructed by finite unions of immersion-closed graph
classes. Notice that the union and the intersection of two immersion-closed graph
classes are also immersion-closed, hence their obstruction sets are of finite size.
It is also easy to see that, given the obstruction sets of two immersion-closed
graph classes, the obstruction set of their intersection can be computed in a triv-
ial way. We prove that there is an algorithm that, given the obstruction sets of
two immersion-closed graph classes, outputs the obstruction set of their union.
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Our approach is based on the derivation of an upper bound on the tree-width of
the obstructions of the graph class. We build on the machinery introduced by I.
Adler, M. Grohe and S. Kreutzer in [1] for computing minor obstruction sets. For
this, we adapt the results on [1] so to permit the computation of the obstruction
set of any immersion-closed graph class, under the conditions that an explicit
upper bound on the tree-width of its obstructions can also be computed and the
class can be defined in Monadic Second Order Logic. Our next step is a combi-
natorial result proving an upper bound on the tree-width of the obstructions of
the union of two immersion-closed graph classes. We then show that the corre-
sponding obstruction set can be effectively computed. Our combinatorial proofs
significantly differ from the ones in [1] and make use of a suitable extension of
the Unique Linkage Theorem of K. Kawarabayashi and P. Wollan [11].

The rest of the paper is structured as follows. In Section 2 we state the basic
notions that we use throughout the paper as well as few well-known results. In
Section 3 we provide a version of Lemma 3.1 of [1], adapted to immersions, in
order to prove that the obstruction set of an immersion-closed graph class can be
computed when an explicit upper bound of the tree-width of its obstructions is
known. In Section 4 we provide the bounds on the tree-width of the graphs that
belong in obs≤im(C1 ∪ C2) assuming that the sets obs≤im(C1) and obs≤im(C2)
are known, where C1 and C2 are immersion-closed graph classes. The proofs of
Lemmata marked with (*) have been omitted due to space constraints.

2 Preliminaries

2.1 Basics

Throughout this paper, graphs are unweighted, undirected and contain no loops
or multiple edges. Given a graph G, we denote its set of vertices with V (G),
its set of edges with E(G) and the degree of a vertex v with degG(v). The line
graph of a graph G, denoted by L(G), is the graph (E(G), X), where X =
{{e1, e2} ⊆ E(G) | e1 ∩ e2 �= ∅ ∧ e1 �= e2}. Given two graphs G and H , the
lexicographic product G×H , is the graph with V (G×H) = V (G) × V (H) and
E(G×H) = {{(x, y), (x′, y′)} | ({x, x′} ∈ E(G)) ∨ (x = x′ ∧ {y, y′} ∈ E(H))}.

Given an edge e = {x, y} of a graph G, the graph G/e is obtained from G
by contracting the edge e, that is, the endpoints x and y are replaced by a new
vertex vxy which is adjacent to the old neighbors of x and y (except x and y). A
graph H is a minor of G, H ≤m G, if there is a function that maps every vertex
v of H to a connected set Bv ⊆ V (G), such that for every two distinct vertices
v, w of H , Bv and Bw share no common vertex, and for every edge {u, v} of H ,
there is an edge in G with one endpoint in Bv and one in Bu. The graph that is
obtained by the union of all Bv such that v ∈ V (H) and by the edges between
Bv and Bu in G, if there exists an edge {v, u} in H , is called a model of H in G.
A model with minimal number of vertices and edges is called minimal model.

We say that H is an immersion of G (or H is immersed in G), H ≤im G, if H
can be obtained from a subgraph of G after a (possibly empty) sequence of edge
lifts, where the lift of two edges e1 = {x, y} and e2 = {x, z} to an edge e is the
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operation of removing e1 and e2 from G and then adding the edge e = {y, z} in
the resulting graph. Equivalently, we say that H is an immersion of G if there
is an injective mapping f : V (H)→ V (G) such that, for every edge {u, v} of H ,
there is a path from f(u) to f(v) in G and for any two distinct edges of H the
corresponding paths in G are edge-disjoint, that is, they do not share common
edges. Additionally, if these paths are internally disjoint from f(V (H)), then
we say that H is strongly immersed in G. As above, the function f is called a
model of H in G and a model with minimal number of vertices and edges is
called minimal model. A graph class C is called immersion-closed, if for every
G ∈ C and every H with H ≤im G it holds that H ∈ C. For example, the class
of graphs Et that admit a proper edge-coloring of at most t colors such that for
every two edges of the same color every path between them contains an edge of
greater color is immersion closed. (See [2]). Two paths are called vertex-disjoint
if they do not share common vertices.

We define an ordering ≤ between finite sets of graphs as follows: F1 ≤ F2 if
and only if

1.
∑
G∈F1

|V (G)| <
∑

H∈F2

|V (H)| or

2.
∑
G∈F1

|V (G)| =
∑

H∈F2

|V (H)| and
∑
G∈F1

|E(G)| <
∑

H∈F2

|E(H)|.

Definition 1. Let C be an immersion-closed graph class. A set of graphs F =
{H1, . . . , Hn} is called (immersion) obstruction set of C, and is denoted by
obs≤im(C), if and only if F is a ≤-minimal set of graphs for which the fol-
lowing holds: For every graph G, G does not belong to C if and only if there
exists a graph H ∈ F such that H ≤im G.

Remark 1. We would like to remark here that the obstruction set of an
immersion-closed graph class can equivalently be defined in the following way:
For any immersion-closed graph class C, the set of its obstructions is the set
consisting of all ≤im-minimal elements that do not belong in C. However, we
also include Definition 1 as it may facilitate the understanding of the intuition
behind Lemma 4.

Recall that, because of the seminal result of N. Robertson and P. Seymour [19],
for every immersion-closed graph class C, the set obs≤im(C) is finite.

2.2 Tree-Width and Linkages

A tree decomposition of a graph G is a pair (T,B), where T is a tree and B is a
function that maps every vertex v ∈ V (T ) to a subset Bv of V (G) such that:

(i) for every edge e of G there exists a vertex t in T such that e ⊆ Bt,
(ii) for every v ∈ V (G), if r, s ∈ V (T ) and v ∈ Br ∩ Bs, then for every vertex

t on the unique path between r and s in T , v ∈ Bt and
(iii) ∪v∈V (T )Bv = V (G).
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The width of a tree decomposition (T,B) is width(T,B) := max{|Bv| − 1 | v ∈
V (T )} and the tree-width of a graph G is the minimum over the width(T,B),
where (T,B) is a tree decomposition of G.

Let r be a positive integer. An r-approximate linkage in a graph G is a fam-
ily L of paths in G such that for every r + 1 distinct paths P1, P2, . . . , Pr+1

in L, it holds that
⋂

i∈[r+1] V (Pi) = ∅ and each endpoint of the paths ap-
pears in exactly one path of L. We call these paths the components of the
linkage. Let (α1, α2, . . . , αk) and (β1, β2, . . . , βk) be elements of V (G)k. We say
that an r-approximate linkage L, consisting of the paths P1, P2, . . . , Pk, links
(α1, α2, . . . , αk) and (β1, β2, . . . , βk) if Pi is a path with endpoints αi and βi,
for every i ∈ [k]. The order of such linkage is k. We call an r-approximate link-
age of order k, r-approximate k-linkage. Two r-approximate k-linkages L and
L′ are equivalent if they have the same order and for every component P of L
there exists a component P ′ of L′ with the same endpoints. An r-approximate
linkage L of a graph G is called unique if for every equivalent linkage L′ of L,
V (L) = V (L′). When r = 1, such a family of paths is called linkage. Finally, a
linkage L in a graph G is called vital if there is no other linkage in G joining the
same pairs of vertices.

In [18], N. Robertson and P. Seymour proved a theorem which is known as
The Vital Linkage Theorem. This theorem provides an upper bound for the tree-
width of a graph G that contains a vital k-linkage L such that V (L) = V (G),
where the bound depends only on k. A stronger statement of the Vital Linkage
Theorem was recently proved by K. Kawarabayashi and P. Wollan [11], where
instead of asking for the linkage to be vital, it asks for it to be unique. Notice
here that a vital linkage is also unique. As in some of our proofs (for example,
the proof of Lemma 5) we deal with unique but not necessarily vital linkages we
make use of the Vital Linkage Theorem in its latter form which is stated below.

Theorem 1 (The Unique Linkage Theorem [11,18]). There exists a com-
putable function w : N → N such that the following holds. Let L be a (1-
approximate) k-linkage in G with V (L) = V (G). If L is unique then tw(G) ≤
w(k).

2.3 Monadic Second Order Logic

We now recall some definitions from Monadic Second Order Logic (MSO). An
extended introduction to Logic can be found in [7, 13].

We call signature τ = {R1, . . . , Rn} any finite set of relation symbols Ri of
any (finite) arity denoted by ar(Ri). For the language of graphs G we consider
the signature τG = {V,E, I} where V represents the set of vertices of a graph G,
E the set of edges, and I = {(v, e) | v ∈ e and e ∈ E(G)} the incidence relation.

A τ -structure A = (A,RA
1 , . . . , R

A
n ) consists of a finite universe A, and the

interpretation of the relation symbols Ri of τ in A, that is, for every i, RA
i is a

subset of Aar(Ri).
In MSO formulas are defined inductively from atomic formulas, that is, ex-

pressions of the form Ri(x1, x2, . . . , xar(Ri)) or of the form x = y where xi,
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i ∈ [ar(Ri)], x and y are variables, by using the Boolean connectives ¬,∧,∨,→,
and existential or universal quantification over individual variables and sets of
variables. Furthermore, quantification takes place over vertex or edge variables
or vertex-set or edge-set variables. Notice that in the language of graphs the
atomic formulas are of the form V (u), E(e) and I(u, e), where u and e are vertex
and edge variables respectively.

A graph structure G = (V (G) ∪ E(G), V G, EG, IG) is a τG-structure, which
represents the graph G = (V,E). From now on, we abuse notation by treating
G and G equally.

A graph class C is MSO-definable if there exists an MSO formula φC in the
language of graphs such that G ∈ C if and only if G |= φC , that is, φC is true in
the graph G (G models φC).

Lemma 1. The class of graphs that contain a fixed graph H as an immersion
is MSO-definable by an MSO-formula φH .

Proof. Let V (H) = {v1, v2, . . . , vn} and E(H) = {e1, e2, . . . , em}. Let also φH

be the following formula.

φH := ∃E1, E2, . . . , Em∃x1, x2, . . . , xn

[
(
∧
i∈[n]

V (xi)) ∧ (
∧

j∈[m]

Ei ⊆ E)∧

(
∧
i=j

xi �= xj) ∧ (
∧
p=q

Ep ∩ Eq = ∅)∧

(
∧

er={vk,vl}∈E(H)

path(xk, xl, Er))
]
,

where path(x, y, Z) is the MSO formula stating that the edges in Z form a path
from x to y. This can be done by saying that the set Z of edges is connected and
every vertex v incident to an edge in Z is either incident to exactly two edges of
Z or to exactly one edge with further condition that v = x or v = z.

Theorem 2 (Seese’s Theorem [20]). For every positive integer k, it is decid-
able given an MSO-formula whether it is satisfied by a graph G whose tree-width
is upper bounded by k.

In [1], I. Adler, M. Grohe and S. Kreutzer provide tools that allow us to use
Seese’s theorem, when an upper bound on the tree-width of the obstructions
is known and an MSO-description of the graph class can be computed, in or-
der to compute the obstruction sets of minor-closed graph classes. We adapt
their machinery to the immersion relation and prove that the tree-width of the
obstructions of immersion-closed graph classes is upper bounded by some func-
tion that only depends on the graph class. This provides a generic technique to
construct immersion obstruction sets when the explicit value of the function is
known. Then, by obtaining such an explicit upper bound on the tree-width of
the graphs in obs≤im(C), where C = C1 ∪ C2 and C1, C2 are immersion-closed
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graph classes whose obstruction sets are given, we show that the set obs≤im(C)
can be effectively computed.

3 Computing Immersion Obstruction Sets

In this Section we state the analog of Lemma 2.2 in [1] (Lemma 2) and the analog
of Lemma 3.1 in [1] (Lemma 4) for the immersion relation. Their proofs are
omitted due to space constraints. However, we include the necessary definitions
and intermediate lemmata in order to give a rough sketch of the framework
needed in order to prove our main result.

We first state the combinatorial Lemma of this Section.

Lemma 2. There exists a computable function f : N → N such that the fol-
lowing holds. Let H and G be graphs such that H ≤im G. If G′ is a minimal
subgraph of G with H ≤im G′ then tw(G′) ≤ f(|E(H)|).
The proof of Lemma 2 is omitted as a stronger statement will be proved later
on (Lemma 7). We continue by giving the necessary definitions in order to state
the analog of Lemma 3.1 in [1] for the immersion relation.

Extension of MSO. For convenience, we consider the extension of the signa-
ture τG to a signature τex that pairs the representation of a graph G with the
representation of one of its tree-decompositions.

Definition 2. If G is a graph and T = (T,B) is a tree-decomposition of G, τex
is the signature that consists of the relation symbols V,E, I of τG , and four more
relation symbols VT , ET , IT and B.
A tree-dec expansion of G and T , is a τex-structure

Gex = (V (G) ∪ E(G) ∪ V (T ) ∪ E(T ),

V Gex , EGex , IGex , V Gex

T , EGex

T , IGex

T , BGex)

where V Gex

T = V (T ) represents the node set of T , EGex

T = E(T ) the edge set of

T , IGex

T = {(v, e) | v ∈ e ∩ V (T ) ∧ e ∈ E(T )} the incidence relation in T and
BGex = {(t, v) | t ∈ V (T ) ∧ v ∈ Bt ∩ V (G)}.

We denote by CTk
the class of tree-dec expansions consisting of a graph G with

tw(G) ≤ k, and a tree decomposition (T,B) of G of width(T,B) ≤ k.

Lemma 3 ( [1])

1. Let G be a graph and (T,B) a tree decomposition of it with width(T,B) ≤ k.
Then, the tree-width of the tree-dec expansion of G is at most k + 2.

2. There is an MSO-sentence φCTk
such that for every τex-structure G, G |=

φCTk
if and only if G ∈ CTk

.

A classic result of Seese [20] (see Theorem 2) states that we can decide, for every
k ≥ 0, if an MSO-formula is satisfied in a graph G of tw(G) ≤ k. An immediate
corollary of this result and Lemma 3 is the following.
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Corollary 1. We can decide, for every k, if an MSO-formula φ is satisfied in
some G ∈ CTk

.

Theorem 3 ( [1]). For every k ≥ 0, there is an MSO-sentence φTk
such that

for every tree-dec expansion G ∈ CTl
of G, for some l ≥ k, it holds that G |= φTk

if and only if tw(G) = k.

Definition 3. A graph class C is layer-wise MSO-definable, if for every k ∈ N

we can compute an MSO-formula φk such that G ∈ C ∧ tw(G) ≤ k if and only
if G |= φk, where G ∈ CTk

is the tree-dec expansion of G.

Definition 4. Let C be an immersion-closed graph class. The width of C,
width(C) is the minimum positive integer k such that for every graph G /∈ C
there is a graph G′ ⊆ G with G′ /∈ C and tw(G′) ≤ k.

Note that Lemma 2 ensures that the width of an immersion-closed graph class
is well-defined.

Observation 1. If C1 and C2 are immersion-closed graph classes then the fol-
lowing hold.

1. For every graph G /∈ C1∪C2, there exists a graph G′ ⊆ G such that G′ /∈ C1∪C2
and tw(G′) ≤ max{r(|E(H)|, |E(J)|) | H ∈ obs≤im(C1), J ∈ obs≤im(C2)},
where r is the function of Lemma 7 and thus,

2. For every graph G /∈ C1, there exists a graph G′ ⊆ G such that G′ /∈ C1 and
tw(G′) ≤ max{f(|E(H)|) | H ∈ obs≤im(C1)}, where f is the function of
Lemma 2.

Finally, we state the analog of Lemma 3.1 in [1] for the immersion relation.

Lemma 4 (*). There exists an algorithm that, given an upper bound l ≥ 0
on the width of a layer-wise MSO-definable class C, and a computable function
f : N→ MSO such that for every positive integer k, f(k) = φk, where φk is the
MSO-formula defining C ∩ Tk, it computes obs≤im(C).

Remark 2. We remark here that Lemma 4 provides a generic algorithm for com-
puting the obstruction set of any immersion-closed graph class, given that the
conditions stated are satisfied. However, notice that the above lemma implies
that there is an algorithm that given an MSO formula φ and k ∈ N, so that
φ defines an immersion closed-graph class C of width at most k, computes the
obstruction set of C.

The only missing ingredient towards our ultimate goal is an explicit upper bound
on the tree-width of the obstructions of the graph class C1 ∪ C2 where C1 and C2
are immersion-closed graph classes. In the following Section we prove that such
a bound can be computed, given the obstruction sets of C1 and C2.
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4 Tree-Width Bounds for the Obstructions

We first prove the following generalization of the Unique Linkage Theorem.

Lemma 5. There exists a computable function f : N→ N such that the follow-
ing holds. Let G be a graph that contains a 2-approximate k-linkage L̃ such that
V (L̃) = V (G). If L̃ is unique, then tw(G) ≤ f(k).

Proof. Let G be a graph that contains a unique 2-approximate k-linkage L̃ with
V (L̃) = V (G) that links A = (α1, α2, . . . , αk) and B = (β1, β2, . . . , βk) in G.
Denote by T the set A ∪B and consider the graph Gb with

V (Gb) = V ((G \ T )×K2) ∪ T
E(Gb) = E((G \ T )×K2) ∪ {{t, t′} | t, t′ ∈ T ∧ {t, t′} ∈ E(G)}

∪{{t, (v, x)} | t ∈ T ∧ x ∈ V (K2) ∧ v ∈ V (G) ∧ {t, v} ∈ E(G)},

where V (K2) = {1, 2}. It is easy to see that Gb contains a k-linkage that links A
and B. Let G′ be a minimal induced subgraph of Gb that contains a k-linkage
L′ that links A and B. From Theorem 1, it follows that

tw(G′) ≤ w(k). (1)

From now on we work towards proving that G ≤m G′. In order to achieve this,
we prove the following two claims for G′.

Claim. If L′ is a k-linkage in G′ that links A and B then for every vertex
v ∈ V (G) \ T no path of L′ contains both (v, 1) and (v, 2).

Proof. Towards a contradiction, assume that for some vertex v ∈ V (G) \ T ,
there exists a (t, t′)-path P of L′ that contains both (v, 1) and (v, 2). Without
loss of generality, assume also that (v, 1) appears before (v, 2) in P . Let y be the
successor of (v, 2) in P and notice that y �= (v, 1). From the definition of Gb and
the fact that G′ is an induced subgraph of Gb, {y, (v, 1)} ∈ E(G′) \ E(L′). By
replacing the subpath of P from (v, 1) to y with the edge {(v, 1), y}, we obtain
a linkage in G′ \ (v, 2) that links A and B. This contradicts to the minimality of
G′. ��
Claim. If L′ is a k-linkage in G′ that links A and B then for every vertex
v ∈ V (G) \ T , V (L′) ∩ {(v, 1), (v, 2)} �= ∅.
Proof. Assume, in contrary, that there exists a linkage L′ in G′ and a vertex
x ∈ V (G)\T such that L′ links A and B and V (L′)∩{(x, 1), (x, 2)} = ∅. Claim 4
ensures that, after contracting the edges {(v, 1), (v, 2)}, v ∈ V (G) \T (whenever
they exist), the corresponding paths compose a 2-approximate k-linkage L̃′ of
G \ {x} that links A and B. This is a contradiction to the assumption that L̃ is
unique. Thus, the claim holds. ��
Recall that T ⊆ V (G′) and that G′ is an induced subgraph of Gb. Claim 4
implies that we may obtain G from G′ by contracting the edges {(v, 1), (v, 2)}
for every v ∈ V (G) \ T (whenever they exist). As G ≤m G′, from (1), it follows
that, tw(G) ≤ w(k). ��
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We remark that, the previous lemma holds for any graph G that contains an
r-approximate k-linkage. This can be seen by substituting (G \ T ) × K2 with
(G \ T )×Kr in its proof.

We now state a lemma that provides the upper bound of a graph G, given the
upper bound of its linear graph L(G).

Lemma 6 (*). If G is a graph and k is a positive integer with tw(L(G)) ≤ k
then tw(G) ≤ 2k + 1.

Before we proceed to the next lemma, we need to introduce the notion of
an r-approximate k-edge-linkage in a graph. Similarly to the notion of an r-
approximate linkage, an r-approximate edge-linkage in a graph G is a family of
paths E in G such that for every r + 1 distinct paths P1, P2, . . . , Pr+1 in E, it
holds that ∩i∈[r+1]E(Pi) = ∅. We call these paths the components of the edge-

linkage. Let (α1, α2, . . . , αk) and (β1, β2, . . . , βk) be elements of V (G)k. We say
that an r-approximate edge-linkage E, consisting of the paths P1, P2, . . . , Pk,
links (α1, α2, . . . , αk) and (β1, β2, . . . , βk) if Pi is a path with endpoints αi and
βi, for every i ∈ [k]. The order of E is k. We call an r-approximate edge-linkage
of order k, r-approximate k-edge-linkage. When r = 1, we call such a family of
paths, an edge-linkage.

Lemma 7. There exists a computable function r such that the following holds.
Let G1, G2 and G be graphs such that Gi ≤im G, i = 1, 2. If G′ is a minimal
subgraph of G where Gi ≤im G′, i = 1, 2, then tw(G′) ≤ r(|E(G1)|, |E(G2)|).

Proof. Let G′ be a minimal subgraph of G such that Gi ≤im G′, i = 1, 2. Recall
that the edges of Gi compose a ki-edge-linkage Ei in G, where ki = |E(Gi)|,
i = 1, 2. Furthermore, observe that the paths of E1 and E2 constitute a 2-
approximate k-edge-linkage E of G, where k = k1 + k2. Indeed, notice that in
contrary to linkages, we do not require the paths that are forming edge-linkages
to have different endpoints. The minimality of G′ implies that

⋃
{P | P ∈ E} =

G′. Denote by A = (vi1 , vi2 , . . . , vik) and B = (vj1 , vj2 , . . . , vjk) the vertex sets

that are edge-linked by E in G′ and let Ĝ be the graph with

V (Ĝ) = V (G′) ∪ {uiq | q ∈ [k]} ∪ {ujq | q ∈ [k]},
E(Ĝ) = E(G′) ∪ {tiq | q ∈ [k]} ∪ {tjq | q ∈ [k]},

where the vertices uiq and ujq , q ∈ [k] are new, tiq = {uiq , viq}, q ∈ [k] and
tjq = {ujq , vjq}, q ∈ [k].

Consider the line graph of Ĝ, L(Ĝ), and notice that E corresponds to a 2-

approximate k-linkage L from AL to BL in L(Ĝ), where AL = (ti1 , ti2 , . . . , tik)

and BL = (tj1 , tj2 , . . . , tjk). This is true as, from the construction of Ĝ, all
the vertices in AL and BL are distinct. The minimality of G′ yields that
V (L) = V (L(Ĝ)) and implies that L is unique. From Lemma 5, we obtain

that tw(L(Ĝ)) ≤ f(k). Therefore, from Lemma 6, we get that tw(Ĝ) ≤ p(f(k)),

where p is the function of Lemma 6. Finally, as G′ ⊆ Ĝ, tw(G′) ≤ r(k1, k2),
where r(k1, k2) = p(f(k1 + k2)). ��
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Notice that Lemma 2 follows from Lemma 7 when we set G2 to be the empty
graph. Finally, we show that given two immersion closed graph classes C1 and
C2 the immersion-closed graph class C1 ∪ C2 is layer-wise MSO-definable.

Observation 2. Let C1 and C2 be immersion-closed graph classes, then C =
C1 ∪ C2 is a layer-wise MSO-definable class defined, for every k ≥ 0, by the
formula

φk ≡

⎛⎝⎛⎝ ∧
G∈obs≤im

(C1)

¬φG

⎞⎠ ∨
⎛⎝ ∧

H∈obs≤im
(C2)

¬φH

⎞⎠⎞⎠ ∧ φTk

where φG and φH are the formulas described in Lemma 1, and φTk
the formula

of Theorem 3 .

We are now able to prove the Main Theorem.

Theorem 4. Let C1 and C2 be two immersion-closed graph classes. If the sets
obs≤im(C1) and obs≤im(C2) are given, then the set obs≤im(C1 ∪ C2) is com-
putable.

Proof. According to Observation 2, C1 ∪ C2 is a layer-wise MSO-definable class,
and according to Lemma 7 there is a bound on the width of C1 ∪ C2. Therefore,
Lemma 4 is applicable. ��

5 Conclusions and Further Work

In this paper, we further the study on the constructibility of obstruction sets for
immersion-closed graph classes. In particular, we provide an explicit upper bound
on the obstructions of a graph class C, which is the union of two immersion-closed
graph classes C1 and C2 with obs≤im(C1) and obs≤im(C2) given. Then, using that
result, we prove that obs≤im(C) is computable.

In [19], N. Robertson and P. Seymour claimed that the class of graphs is
also well-quasi-ordered under the strong immersion relation. However, a full
proof of this result has not appeared so far. We remark that the combinatorial
results of this paper, that is, the explicit upper bounds on the tree-width of the
obstructions, also hold for the strong immersion relation. Thus, if the claim of
N. Robertson and P. Seymour holds, the obstruction set of the union of two
strongly immersion-closed graph classes, whose obstruction sets are given, can
be effectively computed.

Finally, it was proven by B. Courcelle, R. Downey and M. Fellows [4] that the
obstruction set of a minor-closed graph class C cannot be computed by an algo-
rithm whose input is a description of C as an MSO-sentence. The computability
of the obstruction set of an immersion-closed graph class C, given an MSO de-
scription of C, remains an open problem.
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Abstract. In this paper, we study the problem of moving n sensors on a
line to form a barrier coverage of a specified segment of the line such that
the maximum moving distance of the sensors is minimized. Previously,
it was an open question whether this problem on sensors with arbitrary
sensing ranges is solvable in polynomial time. We settle this open ques-
tion positively by giving an O(n2 log n log log n) time algorithm. Further,
if all sensors have the same-size sensing range, we give an O(n log n) time
algorithm, which improves the previous best O(n2) time solution.

1 Introduction

A Wireless Sensor Network (WSN) uses a large number of sensors to monitor
some surrounding environmental phenomena [1]. Intrusion detection and border
surveillance constitute a major application category for WSNs. A main goal of
these applications is to detect intruders as they cross the boundary of a region
or domain. For example, research efforts were made to extend the scalability of
WSNs to the monitoring of international borders [10,11]. Unlike the traditional
full coverage [13,17,18] which requires an entire target region to be covered by
the sensors, the barrier coverage [2,3,7,8,11] only seeks to cover the perimeter
of the region to ensure that any intruders are detected as they cross the region
border. Since barrier coverage requires fewer sensors, it is often preferable to
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full coverage. Because sensors have limited battery-supplied energy, it is desired
to minimize their movements. In this paper, we study a linear barrier coverage
problem where the barrier is for a (finite) line segment and the sensors are ini-
tially located on the line containing the barrier segment and allowed to move on
the line. As discussed in the previous work [7,8,15] and shown in this paper, bar-
rier coverage even for linear domains poses some challenging algorithmic issues.
Also, our solutions may be used in solving more general problems. For example,
if the barrier is sought for a simple polygon, then we may consider each of its
edges separately and apply our algorithms to each edge.

In our problem, each sensor has a sensing range (or range for short) and
we want to move the sensors to form a coverage for the barrier such that the
maximum sensor movement is minimized.

1.1 Problem Definitions, Previous Work, and Our Results

Denote by B = [0, L] the barrier that is a line segment from x = 0 to x = L > 0
on the x-axis. A set S = {s1, s2, . . . , sn} of n mobile sensors are initially on the
x-axis. Each sensor si ∈ S has a range ri > 0 and is located at the coordinate
xi. We assume x1 ≤ x2 ≤ · · · ≤ xn. If a sensor si is at the position x′, then we
say si covers the interval [x′ − ri, x

′ + ri], called the covering interval of si. Our
problem is to find a set of destinations on the x-axis, {y1, y2, . . . , yn}, for the
sensors (i.e., for each si ∈ S, move si from xi to yi) such that each point on the
barrier B is covered by at least one sensor and the maximum moving distance
of the sensors (i.e., max1≤i≤n{|xi − yi|}) is minimized. We call this problem the
barrier coverage on a line segment, denoted by BCLS. We assume 2·

∑n
i=1 ri ≥ L

(otherwise, a barrier coverage for B is not possible).
The decision version of BCLS is defined as follows. Given a value λ ≥ 0,

determine whether there is a feasible solution in which the moving distance of
each sensor is at most λ. If the ranges of all sensors are the same (i.e., the ri’s
are all equal), then we call it the uniform case of BCLS. When the sensors have
arbitrary ranges, we call it the general case.

The BCLS problem has been studied before. The uniform case has been solved
in O(n2) time [7]. An O(n) time algorithm is also given in [7] for the decision
version of the uniform case. However, it has been open whether the general case
is solvable in polynomial time [7].

In this paper, we settle the open problem on the general BCLS by presenting
an O(n2 logn log logn) time algorithm. We also solve the decision version of the
general BCLS in O(n log n) time. For the uniform case, we derive an O(n log n)
time algorithm, improving the previous O(n2) time solution [7]; and further, if
all sensors are initially on B, our algorithm runs in O(n) time.

1.2 Related Work

A variation of the decision version of the general BCLS is shown to be NP-hard
[7]. Additional results were also given in [7] for the case 2 ·

∑n
i=1 ri < L.
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Mehrandish et al. [15] also considered the line segment barrier, but unlike the
BCLS problem, they intended to use the minimum number of sensors to form a
barrier coverage, which they proved to be NP-hard. But, if all sensors have the
same range, polynomial time algorithms were possible [15]. Another study of the
line segment barrier [8] aimed to minimize the sum of the moving distances of
all sensors; this problem is NP-hard [8], but is solvable in polynomial time when
all sensors have the same range [8]. In addition, Li et al. [12] considers the linear
coverage problem which aims to set an energy for each sensor to form a coverage
such that the cost of all sensors is minimized. There [12], the sensors are not
allowed to move, and the more energy a sensor has, the larger the covering range
of the sensor and the larger the cost of the sensor.

Bhattacharya et al. [2] studied a 2-D barrier coverage problem in which the
barrier is a circle and the sensors, initially located inside the circle, are moved to
the circle to form a coverage such that the maximum sensor movement is mini-
mized; the ranges of the sensors are not explicitly specified but the destinations
of the sensors are required to form a regular n-gon on the circle. Subsequent
improvements of the results in [2] have been made [4,16].

Some other barrier coverage problems have been studied. For example, Kumar
et al. [11] proposed algorithms for determining whether a region is barrier covered
after the sensors are deployed. They considered both the deterministic version
(the sensors are deployed deterministically) and the randomized version (the
sensors are deployed randomly), and aimed to determine a barrier coverage with
high probability. Chen et al. [3] introduced a local barrier coverage problem in
which individual sensors determine the barrier coverage locally.

2 An Overview of Our Approaches

Throughout the paper, for any problem we consider, let λ∗ denote the maximum
sensor movement in an optimal solution.

For the uniform BCLS, as shown in [7], a key property is that there always
exists an order preserving optimal solution, i.e., the order of the sensors in the
optimal solution is the same as that in the input. Based on this property, the
previousO(n2) time algorithm [7] coversB from left to right; in each step, it picks
the next sensor and re-balances the current maximum sensor movement. We take
a very different approach. With the order preserving property, we determine
a set Λ of candidate values for λ∗ with λ∗ ∈ Λ. Consequently, by using the
decision algorithm, we can find λ∗ in Λ. But, this approach may be inefficient
since |Λ| = Θ(n2). To reduce the running time, our strategy is not to compute
the set Λ explicitly. Instead, we compute an element in Λ whenever we need
it. A possible attempt would be to first find a sorted order for the elements of
Λ or (implicitly) sort the elements of Λ, and then obtain λ∗ by binary search.
However, it seems not easy to (implicitly) sort the elements of Λ. Instead, based
on several new observations, we manage to find a way to partition the elements
of Λ into n sorted lists, each list containing O(n) elements. Next, by using a
technique called binary search on sorted arrays [5], we are able to find λ∗ in Λ
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in O(n log n) time. For the special case when all sensors are initially located on
B, a key observation we make is that λ∗ is precisely the maximum value of the
candidate set Λ. Although Λ = Θ(n2), based on new observations, its maximum
value can be computed in O(n) time. Due to the space limit, our algorithms for
the uniform BCLS are omitted and can be found in the full version of this paper.

For the general BCLS, as indicated in [7], the order preserving property no
longer holds. Consequently, our approach for the uniform case does not work.
The main difficulty of this case is that we do not know the order of the sensors
appeared in an optimal solution. Due to this difficulty, no polynomial time al-
gorithm was known before for the general BCLS. To solve this problem, we first
develop a greedy algorithm for the decision version of the general BCLS. After
O(n log n) time preprocessing, our decision algorithm takes O(n log logn) time
for any value λ. If λ ≥ λ∗, implying that there exists a feasible solution, then
our decision algorithm can determine the order of sensors in a feasible solution
for covering B. For the general BCLS, we seek to simulate the behavior of the
decision algorithm on λ = λ∗. Although we do not know the value λ∗, our algo-
rithm determines the same sensor order as it would be obtained by the decision
algorithm on the value λ = λ∗. To this end, each step of the algorithm uses
our decision algorithm as a decision procedure. The idea is somewhat similar
to parametric search [6,14], and here we “parameterize” our decision algorithm.
However, unlike the typical parametric search [6,14], our approach does not in-
volve any parallel scheme and is practical.

For ease of exposition, we assume that initially no two sensors are located at
the same position (i.e., xi �= xj for any i �= j), and the covering intervals of any
two different sensors do not share a common endpoint. Our algorithms can be
easily generalized to the general situation.

In the following, we discuss the decision version of the general BCLS in Section
3. In Section 4, we present our algorithm for the general BCLS, which we refer to
as the optimization version of the problem. Due to the space limit, some proofs
are omitted and can be found in the full version of this paper.

For each sensor si ∈ S, we call the right (resp., left) endpoint of the covering
interval of si the right (resp., left) extension of si. Each of the right and left
extensions of si is an extension of si. Denote by p(x′) the point on the x-axis
whose coordinate is x′, and denote by p+(x′) (resp., p−(x′)) a point to the right
(resp., left) of p(x′) and infinitely close to p(x′). The concept of p+(x′) and
p−(x′) is only used to explain the algorithms, and we never need to find such
a point. Note that we can easily determine whether λ∗ = 0, say, in O(n log n)
time. Henceforth, we assume λ∗ > 0.

3 The Decision Version of the General BCLS

Given any value λ, the decision version is to determine whether λ∗ ≤ λ. Below,
we first explore some properties of a feasible solution for λ.

By a sensor configuration, we refer to a specification of where each sensor
si ∈ S is located. By this definition, the input is a configuration in which each
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sensor si is located at xi. The displacement of a sensor in a configuration C is
the distance between the position of the sensor in C and its original position in
the input. A configuration C is a feasible solution for the distance λ if the sensors
in C form a barrier coverage of B (i.e., the union of the covering intervals of the
sensors in C contains B) and the displacement of each sensor is at most λ. In a
feasible solution, a subset S′ ⊆ S is called a solution set if the sensors in S′ form
a barrier coverage; of course, S itself is also a solution set. A feasible solution
may have multiple solution sets. A sensor si in a solution set S′ is said to be
critical with respect to S′ if si covers a point on B that is not covered by any
other sensor in S′. If every sensor in S′ is critical, then S′ is called a critical set.

Given any value λ, if λ ≥ λ∗, then our decision algorithm will find a critical
set and determine the order in which the sensors of the critical set will appear
in a feasible solution for λ. Consider a critical set Sc. For each sensor s ∈ Sc, we
call the set of points on B that are covered by s but not covered by any other
sensor in Sc the exclusive coverage of s. The proof of Observation 1 is omitted.

Observation 1. The exclusive coverage of each sensor in a critical set Sc is a
continuous portion of the barrier B.

For a critical set Sc in a feasible solution SOL, we define the cover order of
the sensors in Sc as the order of these sensors in SOL such that their exclusive
coverages are from left to right.

Observation 2. The cover order of the sensors of a critical set Sc in a feasible
solution SOL is consistent with the left-to-right order of the positions of these
sensors in SOL. Further, the cover order is also consistent with the order of the
right (resp., left) extensions of these sensors in SOL.

Proof. Consider any two sensors si and sj in Sc with ranges ri and rj , respec-
tively. Without loss of generality, assume si is to the left of sj in the cover order,
i.e., the exclusive coverage of si is to the left of that of sj in SOL. Let yi and yj
be the positions of si and sj in SOL, respectively. To prove the observation, it
suffices to show yi < yj , yi + ri < yj + rj , and yi − ri < yj − rj .

Let p be a point in the exclusive coverage of sj . We also use p to denote its
coordinate on the x-axis. Then p is not covered by si, implying either p > yi+ ri
or p < yi−ri. But, the latter case cannot hold (otherwise, the exclusive coverage
of si would be to the right of that of sj). Since p is covered by sj , we have
p ≤ yj + rj. Therefore, yi+ ri < p ≤ yj+ rj . By using a symmetric argument, we
can also prove yi−ri < yj−rj (we omit the details). Clearly, the two inequalities
yi+ ri < yj + rj and yi− ri < yj − rj imply yi < yj . The observation thus holds.

An interval I of B is called a left-aligned interval if the left endpoint of I is at 0
(i.e., I is of the form [0, x′] or [0, x′)). A set of sensors is said to be in attached
positions if the union of their covering intervals is a continuous interval of the
x-axis whose length is equal to the sum of the lengths of these covering intervals.
In the sequel, we describe our algorithm.



182 D.Z. Chen et al.

Ri−1

s

L
x 

j

Fig. 1. The set Si1 consists of the three
sensors whose covering intervals are shown,
and sg(i) is sj

Ri−1

sj

2λ
x 

L

Fig. 2. The set Si2 consists of the three
sensors whose covering intervals are shown,
and sg(i) is sj if Si1 = ∅

3.1 The Algorithm Description

Initially, we move all sensors of S to the right by the distance λ, i.e., for each
1 ≤ i ≤ n, we move si to the position x′

i = xi + λ. Let C0 denote the resulting
configuration. Clearly, there is a feasible solution for λ if and only if we can
move the sensors in C0 to the left by at most 2λ to form a coverage of B. Thus,
henceforth we only need to consider moving the sensors to the left. Recall that
we have assumed that the extensions of any two distinct sensors are different;
hence in C0, the extensions of all sensors are also different.

Our algorithm takes a greedy approach. It seeks to find sensors to cover B
from left to right, in at most n steps. If λ ≥ λ∗, the algorithm will end up with
a critical set Sc of sensors along with the destinations for all these sensors.

In step i (initially, i = 1), using the configuration Ci−1 and based on certain
criteria, we find a sensor sg(i) and determine its destination yg(i), where g(i) is
the index of the sensor in S and yg(i) ∈ [x′

g(i) − 2λ, x′
g(i)]. We then move the

sensor sg(i) to yg(i) to obtain a new configuration Ci from Ci−1 (if yg(i) = x′
g(i),

Ci is simply Ci−1). Let Ri = yg(i) + rg(i) (i.e., the right extension of sg(i) in
Ci). Assume R0 = 0. Let Si = Si−1 ∪ {sg(i)} (S0 = ∅ initially). We will show
that the sensors in Si together cover the left-aligned interval [0, Ri]. If Ri ≥ L,
we have found a feasible solution with a critical set Sc = Si, and terminate the
algorithm. Otherwise, we proceed to step i + 1. Further, it is possible that a
desired sensor sg(i) cannot be found, in which case we terminate the algorithm
and report λ < λ∗. Below we give the details, and in particular, discuss how to
determine the sensor sg(i) in each step.

We first discuss a technical issue. Suppose there is a sensor st with its right
extension at 0 in C0. We claim st cannot be in a critical set of a feasible solution
if λ∗ ≤ λ. Indeed, assume to the contrary that st is in a critical set Sc. Then
p(0) is the only point on B that can be covered by st. Since L > 0, there must be
another sensor in Sc that also covers p(0) (otherwise, no sensor in Sc would cover
the point p+(0)). Hence, st is not critical with respect to Sc, a contradiction.

Initially, we have R0 = 0 and S0 = ∅. Consider the i-th step of the algorithm
with i ≥ 1. We determine the sensor sg(i), as follows. Define Si1 = {sj | x′

j−rj ≤
Ri−1 < x′

j + rj} (see Fig. 1), i.e., Si1 is the set of sensors covering the point
p+(Ri−1) in the configuration Ci−1. Note that any sensor in Si1 covers the point
p(Ri−1) in Ci−1. If Si1 �= ∅, we choose the sensor in Si1 with the largest right
extension as sg(i) and let yg(i) = x′

g(i). Otherwise, let Si2 be the set of sensors

whose left extensions are larger than Ri−1 and at most Ri−1 + 2λ. If Si2 = ∅,
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we terminate the algorithm and report λ < λ∗. Otherwise, we choose the sensor
in Si2 with the smallest right extension as sg(i) (e.g., sj in Fig. 2), and let
yg(i) = Ri−1 + rg(i). If the algorithm is not terminated, we move sg(i) to yg(i)
and obtain a new configuration Ci. Let Si = Si−1 ∪ {sg(i)}. Let Ri be the right
extension of sg(i) in Ci. If Ri ≥ L, we have found a feasible solution Ci with the
critical set Si. Otherwise, we proceed to step i+ 1.

Since there are n sensors in S, the algorithm is terminated in at most n steps.

3.2 The Algorithm Correctness and Implementation

Based on our algorithm description, we have the following lemma.

Lemma 1. At the end of step i, suppose the algorithm produces the set Si and
the configuration Ci; then Si and Ci have the following properties. (a) The in-
terval on B covered by the sensors in Si is [0, Ri]. (b) For each 1 < j ≤ i, the
right extension of sg(j) is larger than that of sg(j−1). (c) For each 1 ≤ j ≤ i,
sg(j) is the only sensor in Si that covers the point p+(Rj−1) (with R0 = 0). (d)
For each sensor sg(j) ∈ Si with 1 ≤ j ≤ i, it is either from Sj1 or Sj2. If sg(j)
is from Sj1, then its position in Ci is the same as that in C0; otherwise, its left
extension is at Rj−1, and sg(j) and sg(j−1) are in attached positions if j > 1.

The proof of Lemma 1 is omitted. At its termination, our algorithm either reports
λ ≥ λ∗ or λ < λ∗. Suppose in step i, our algorithm reports λ ≥ λ∗. Then
according to the algorithm, it must be Ri ≥ L. By Lemma 1(a) and (c), Ci is a
feasible solution and Si is a critical set. Further, by Lemma 1(b) and Observation
2, the cover order of the sensors in Si is sg(1), sg(2), . . . , sg(i).

Next, we show that if the algorithm reports λ < λ∗, then there is no feasible
solution for λ. This is almost an immediate consequence of Lemma 2.

Lemma 2. Suppose S′
i is the set of sensors in the configuration Ci whose right

extensions are at most Ri. Then the interval [0, Ri] is the largest possible left-
aligned interval that can be covered by the sensors of S′

i such that the displace-
ment of each sensor in S′

i is at most λ.

To prove Lemma 2, the key is to prove the following. If C is a configuration for
the sensors of S′

i such that a left-aligned interval [0, x′] is covered by the sensors
of S′

i, then there always exists a configuration C∗ for S′
i in which the interval

[0, x′] is still covered by the sensors of S′
i and for each 1 ≤ j ≤ i, the position of

the sensor sg(j) in C∗ is yg(j), where g(j) and yg(j) are the values computed by
our algorithm. We omit the proof for this.

Suppose our algorithm reports λ < λ∗ in step i. Then according to the al-
gorithm, Ri−1 < L and both Si1 and Si2 are ∅. Let S′

i−1 be the set of sensors
whose right extensions are at most Ri−1 in Ci−1. Since both Si1 and Si2 are ∅,
no sensor in S \ S′

i−1 can cover any point to the left of the point p+(Ri−1) (and
including p+(Ri−1)). By Lemma 2, [0, Ri−1] is the largest left-aligned interval
that can be covered by the sensors of S′

i−1. Hence, the sensors in S cannot cover
the interval [0, p+(Ri−1)]. Due to Ri−1 < L, we have [0, p+(Ri−1)] ⊆ [0, L]; thus
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the sensors of S cannot cover B = [0, L]. In other words, there is no feasible
solution for the distance λ. This establishes the correctness of our algorithm.

We briefly discuss the implementation of our algorithm. Our algorithm needs
to maintain two sets of sensors, Si1 and Si2. For this purpose, in the preprocess-
ing, we sort the 2n extensions of all sensors by the x-coordinate, and move each
sensor si ∈ S to x′

i to produce the initial configuration C0. During the algorithm,
we sweep along the x-axis and maintain Si1 and Si2, respectively. During the
sweeping, we need to perform the sensor insertions and deletions on the two sets.
In addition, we need a search operation on Si1 for finding the sensor in Si1 with
the largest right extension, and a search operation on Si2 for finding the sensor
in Si2 with the smallest right extension. There are O(n) insertion, deletion, and
search operations in the entire algorithm.

If we use a balanced binary search tree to store each of these two sets in
which the right extensions of the sensors are used as keys, then the algorithm
takes O(n log n) time. Another way is to use an integer data structure (e.g., van
Emde Boas tree [9]), as follows. In the preprocessing, we also sort the sensors
by their right extensions, and for each sensor, assign the integer k to it as its
key if the sensor is the k-th one in the above sorted order. Thus, all such keys
form an integer set {1, 2, . . . , n}. By using the van Emde Boas tree [9], each
operation takes only O(log logn) time. Thus, after O(n log n) time preprocessing,
the algorithm takes O(n log logn) time for each value λ. Although using the
integer data structure does not change the overall running time of our decision
algorithm, it helps our optimization algorithm in Section 4 to run faster.

Theorem 1. After O(n logn) time preprocessing, for any λ, we can determine
whether λ∗ ≤ λ in O(n log logn) time; further, if λ∗ ≤ λ, we can compute a
feasible solution in O(n log logn) time.

Our optimization algorithm in Section 4 also needs to determine whether λ∗ is
strictly less than λ (i.e., λ∗ < λ) for any λ. By modifying our algorithm for
Theorem 1, we have the following Theorem 2 whose proof is omitted.

Theorem 2. After O(n log n) time preprocessing, for any value λ, we can de-
termine whether λ∗ < λ in O(n log logn) time.

Theorems 1 and 2 together lead to the following corollary.

Corollary 1. After O(n logn) time preprocessing, for any value λ, we can de-
termine whether λ∗ = λ in O(n log logn) time.

4 The Optimization Version of the General BCLS

In this section, we discuss the optimization version of the general BCLS problem.
We first give an algorithm overview. In the following discussion, the “decision
algorithm” refers to our algorithm for Theorem 1, unless otherwise stated.

Recall that given any value λ, step i of our decision algorithm determines the
sensor sg(i) and obtains the set Si = {sg(1), sg(2), . . . , sg(i)}, in this order, which
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we also call the cover order of the sensors in Si. In our optimization algorithm, we
often use λ as a variable. Thus, Si(λ) (resp., Ri(λ), sg(i)(λ), and Ci(λ)) refers to
the corresponding Si (resp., Ri, sg(i), and Ci) obtained by running our decision
algorithm on the specific value λ. Denote by CI the configuration of the input.

Our optimization algorithm takes at most n steps. Step i receives an interval
(λ1

i−1, λ
2
i−1) and a sensor set Si−1(λ

∗), with the algorithm invariants that λ∗ ∈
(λ1

i−1, λ
2
i−1) (although we do not know the value λ∗) and for any value λ ∈

(λ1
i−1, λ

2
i−1), we have Si−1(λ) = Si−1(λ

∗) and their cover orders are the same.
Step i either finds the value λ∗ or determines a sensor sg(i)(λ

∗). The interval
(λ1

i−1, λ
2
i−1) will shrink to a new interval (λ1

i , λ
2
i ) ⊆ (λ1

i−1, λ
2
i−1) and we also

obtain the set Si(λ
∗) = Si−1(λ

∗) ∪ {sg(i)(λ∗)}. Each step can be performed in
O(n log n log logn) time. The details of the algorithm are given below.

Initially, let S0(λ
∗) = ∅, R0(λ

∗) = 0, λ1
0 = 0, and λ2

0 = +∞.
Consider a general step i for i ≥ 1 and we have the interval (λ1

i−1, λ
2
i−1) and

the set Si−1(λ
∗). While discussing the algorithm, we will also prove inductively

the following lemma about the function Ri(λ) with variable λ ∈ (λ1
i , λ

2
i ).

Lemma 3. (a) The function Ri(λ) for λ ∈ (λ1
i , λ

2
i ) is a line segment of slope 1

or 0. (b) We can compute the function Ri(λ) for λ ∈ (λ1
i , λ

2
i ) explicitly in O(n)

time. (c) Ri(λ) < L for any λ ∈ (λ1
i , λ

2
i ).

In the base case for i = 0, the statement of Lemma 3 obviously holds. We assume
the lemma statement holds for i− 1. We will show that after step i with i ≥ 1,
the lemma statement holds for i, and thus the lemma will be proved.

Again, in step i, we need to determine the sensor sg(i)(λ
∗) and let Si(λ

∗) =
Si−1(λ

∗) ∪ {sg(i)(λ∗)}. We will also obtain an interval (λ1
i , λ

2
i ) such that λ∗ ∈

(λ1
i , λ

2
i ) ⊆ (λ1

i−1, λ
2
i−1) and for any λ ∈ (λ1

i , λ
2
i ), Si(λ) = Si(λ

∗) holds (with
the same cover order). The details are given below. We assume that we already
compute explicitly the function Ri−1(λ) for λ ∈ (λ1

i−1, λ
2
i−1), which takes O(n)

time by our assumption that the statement of Lemma 3 holds for i− 1.
To find the sensor sg(i)(λ

∗), we first determine the set Si1(λ
∗). Recall that

Si1(λ
∗) consists of all sensors covering the point p+(Ri−1(λ

∗)) in the configura-
tion Ci−1(λ

∗). For each sensor in S \ Si−1(λ
∗), its position in the configuration

Ci−1(λ) with respect to λ ∈ (λ1
i−1, λ

2
i−1) is a function of slope 1. As λ increases

in (λ1
i−1, λ

2
i−1), by our assumption that Lemma 3(a) holds for i− 1, the function

Ri−1(λ) is a line segment of slope 1 or 0. If Ri−1(λ) is of slope 1, then the relative
position of Ri−1(λ) in Ci−1(λ) does not change and thus the set Si1(λ) does not
change; if the function Ri−1(λ) is of slope 0, then the relative position of Ri−1(λ)
in Ci−1(λ) is monotonically moving to the left. Hence, there are O(n) values for λ
in (λ1

i−1, λ
2
i−1) that can incur some changes to the set Si1(λ) and each such value

corresponds to a sensor extension; further, these values can be easily determined
in O(n logn) time by a simple sweeping process (we omit the discussion of it).
Let Λi1 be the set of all these λ values. Let Λi1 also contain both λ1

i−1 and λ2
i−1,

and thus, λ1
i−1 and λ2

i−1 are the smallest and largest values in Λi1, respectively.
We sort the values in Λi1. For any two consecutive values λ1 < λ2 in the sorted
Λi1, the set Si1(λ) for any λ ∈ (λ1, λ2) is the same. By using binary search on
the sorted Λi1 and our decision algorithm, we determine (in O(n log n log logn)
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time) the two consecutive values λ1 and λ2 in Λi1 such that λ1 < λ∗ ≤ λ2.
Further, by Corollary 1, we determine whether λ∗ = λ2. If λ

∗ = λ2, then we
are done. Otherwise, based on our discussion above, Si1(λ

∗) = Si1(λ) for any
λ ∈ (λ1, λ2). Thus, to compute Si1(λ

∗), we can pick an arbitrary λ in (λ1, λ2)
and find Si1(λ) in the same way as in our decision algorithm. Hence, Si1(λ

∗) can
be easily found in O(n log n) time. Note that λ∗ ∈ (λ1, λ2) ⊆ (λ1

i−1, λ
2
i−1).

If Si1(λ
∗) �= ∅, then sg(i)(λ

∗) is the sensor in Si1(λ
∗) with the largest right

extension. An obvious observation is that for any λ ∈ (λ1, λ2), the sensor in
Si1(λ

∗) with the largest right extension is the same, which can be easily found.
We let λ1

i = λ1 and λ2
i = λ2. Let Si(λ

∗) = Si−1(λ
∗)∪{sg(i)(λ∗)}. The algorithm

invariants hold. Further, as λ increases in (λ1, λ2), the right extension of sg(i)(λ),
which is Ri(λ), increases by the same amount. That is, the function Ri(λ) on
(λ1, λ2) is a line segment of slope 1. Therefore, we can compute Ri(λ) on (λ1, λ2)
explicitly in constant time. This also shows Lemma 3(a) and (b) hold for i.

Because the function Ri(λ) on (λ1, λ2) is a line segment of slope 1, there
are three cases depending on the values Ri(λ) and L: (1) Ri(λ) < L for any
λ ∈ (λ1, λ2), (2) Ri(λ) > L for any λ ∈ (λ1, λ2), and (3) there exists a unique
value λ′ ∈ (λ1, λ2) such that Ri(λ

′) = L. For Case (1), we proceed to the next
step, along with the interval (λ1

i , λ
2
i ). Clearly, the algorithm invariants hold and

Lemma 3(c) holds for i. For Case (2), the next lemma shows that it actually
cannot happen due to λ∗ ∈ (λ1, λ2).

Lemma 4. It is not possible that Ri(λ) > L for any λ ∈ (λ1, λ2).

Proof. Assume to the contrary that Ri(λ) > L for any λ ∈ (λ1, λ2). Since
λ∗ ∈ (λ1, λ2), let λ′′ be any value in (λ1, λ

∗). Due to λ′′ ∈ (λ1, λ2), we have
Ri(λ

′′) > L. But this would implies that we have found a feasible solution where
the displacement of each sensor is at most λ′′ ≤ λ∗, incurring contradiction.

For the Case (3), since Ri(λ) on (λ1, λ2) is a line segment of slope 1, we can
determine in constant time the unique value λ′ ∈ (λ1, λ2) such that Ri(λ

′) = L.
Clearly, λ∗ ≤ λ′. By Corollary 1, we determine whether λ∗ = λ′. If λ∗ = λ′, then
we are done; otherwise, we have λ∗ ∈ (λ1, λ

′) and update λ2
i to λ′. We proceed

to the next step, along with the interval (λ1
i , λ

2
i ). Again, the algorithm invariants

hold and Lemma 3(c) holds for i.
If Si1(λ

∗) = ∅, then we need to compute Si2(λ
∗). For any λ ∈ (λ1, λ2), the set

Si2(λ) consists of all sensors whose left extensions are larger than Ri−1(λ) and at
most Ri−1(λ)+2λ in the configuration Ci−1(λ). Recall that the function Ri−1(λ)
on (λ1

i−1, λ
2
i−1) is linear with slope 1 or 0. Due to (λ1, λ2) ⊆ (λ1

i−1, λ
2
i−1), the

linear function Ri−1(λ) + 2λ on (λ1, λ2) is of slope 3 or 2. Again, as λ increases,
the position of each sensor in S \ Si−1(λ

∗) in Ci−1(λ) is a linear function of
slope 1. Therefore, there are O(n) λ values in (λ1, λ2) each of which incurs some
change to the set Si2(λ) and each such λ value corresponds to a sensor extension.
Further, these values can be easily determined in O(n log n) time by a sweeping
process (we omit the discussion for this). (Actually, as λ increases, the size of
the set Si2(λ) is monotonically increasing.) Let Λi2 denote the set of these λ
values, and let Λi2 contain both λ1 and λ2. Again, |Λi2| = O(n). We sort the
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values in Λi2. Using binary search on the sorted Λi2 and our decision algorithm,
we determine (in O(n logn log logn) time) the two consecutive values λ′

1 and λ′
2

in Λi2 such that λ′
1 < λ∗ ≤ λ′

2. Further, by Corollary 1, we determine whether
λ∗ = λ′

2. If λ
∗ = λ′

2, then we are done. Otherwise, Si2(λ
∗) = Si2(λ) for any

λ ∈ (λ′
1, λ

′
2), which can be easily found. Note that λ∗ ∈ (λ′

1, λ
′
2) ⊆ (λ1, λ2).

After obtaining Si2(λ
∗), sg(i)(λ

∗) is the sensor in Si2(λ
∗) with the smallest

right extension. As before, the sensor in Si2(λ) with the smallest right extension
is the same for any λ ∈ (λ′

1, λ
′
2). Thus, sg(i)(λ

∗) can be easily determined. We
let λ1

i = λ′
1 and λ2

i = λ′
2. Let Si(λ

∗) = Si−1(λ
∗) ∪ {sg(i)(λ∗)}. The algorithm

invariants hold. Further, we examine the function Ri(λ), i.e., the right extension
of sg(i)(λ) in the configuration Ci(λ), as λ increases in (λ′

1, λ
′
2). Since sg(i−1)(λ

∗)
and sg(i)(λ

∗) are always in attached positions in this case, for any λ ∈ (λ′
1, λ

′
2),

we have Ri(λ) = Ri−1(λ) + 2rg(i). Thus, the function Ri(λ) is a vertical shift of
Ri−1(λ) by the distance 2rg(i). Because we already know explicitly the function
Ri−1(λ) for λ ∈ (λ′

1, λ
′
2), which is a line segment of slope 1 or 0, the function

Ri(λ) can be computed in constant time, which is also a line segment of slope 1
or 0. Note that this shows that Lemma 3(a) and (b) hold for i.

Similarly to the case when Si1(λ
∗) �= ∅, since the function Ri(λ) in (λ′

1, λ
′
2) is

a line segment of slope 1 or 0, there are three cases depending on the values Ri(λ)
and L: (1) Ri(λ) < L for any λ ∈ (λ′

1, λ
′
2), (2) Ri(λ) > L for any λ ∈ (λ′

1, λ
′
2),

and (3) there exists a unique value λ′′ ∈ (λ′
1, λ

′
2) such that Ri(λ

′′) = L. For Case
(1), we proceed to the next step, along with the interval (λ1

i , λ
2
i ). Clearly, the

algorithm invariants hold and Lemma 3(c) holds for i. Similarly to Lemma 4,
Case (2) cannot happen due to λ∗ ∈ (λ′

1, λ
′
2). For the Case (3), since Ri(λ) in

(λ′
1, λ

′
2) is a line segment of slope 1 or 0, we can compute in constant time the

unique value λ′′ ∈ (λ′
1, λ

′
2) such that Ri(λ

′′) = L. Clearly, λ∗ ≤ λ′′. By Corollary
1, we determine whether λ∗ = λ′′. If λ∗ = λ′′, we are done; otherwise, we have
λ∗ ∈ (λ′

1, λ
′′) and update λ2

i to λ′′. We proceed to the next step, along with the
interval (λ1

i , λ
2
i ). Again, the algorithm invariants and Lemma 3(c) hold for i.

This finishes the discussion of step i of our algorithm. Note that in each case
where we proceed to the next step, Lemma 3 holds for i, and thus Lemma 3 has
been proved. The running time of step i is clearly bounded by O(n log n log logn).

In at most n steps, the algorithm will stop and find the value λ∗. Then by ap-
plying our decision algorithm on λ = λ∗, we finally produce an optimal solution
in which the displacement of every sensor is at most λ∗. Since each step takes
O(n log n log logn) time, the total time of the algorithm is O(n2 logn log logn).

Theorem 3. The general BCLS problem is solvable in O(n2 logn log logn) time.

References

1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor net-
works: A survey. Computer Networks 38(4), 393–422 (2002)

2. Bhattacharya, B., Burmester, B., Hu, Y., Kranakis, E., Shi, Q., Wiese, A.: Optimal
movement of mobile sensors for barrier coverage of a planar region. Theoretical
Computer Science 410(52), 5515–5528 (2009)



188 D.Z. Chen et al.

3. Chen, A., Kumar, S., Lai, T.: Designing localized algorithms for barrier coverage.
In: Proc. of the 13th Annual ACM International Conference on Mobile Computing
and Networking, pp. 63–73 (2007)

4. Chen, D., Tan, X., Wang, H., Wu, G.: Optimal point movement for covering circular
regions. arXiv:1107.1012v1 (2011)

5. Chen, D., Wang, C., Wang, H.: Representing a functional curve by curves with
fewer peaks. Discrete and Computational Geometry (DCG) 46(2), 334–360 (2011)

6. Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. Jour-
nal of the ACM 34(1), 200–208 (1987)

7. Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opa-
trny, J., Stacho, L., Urrutia, J., Yazdani, M.: On Minimizing the Maximum Sensor
Movement for Barrier Coverage of a Line Segment. In: Ruiz, P.M., Garcia-Luna-
Aceves, J.J. (eds.) ADHOC-NOW 2009. LNCS, vol. 5793, pp. 194–212. Springer,
Heidelberg (2009)

8. Czyzowicz, J., Kranakis, E., Krizanc, D., Lambadaris, I., Narayanan, L., Opatrny,
J., Stacho, L., Urrutia, J., Yazdani, M.: On Minimizing the Sum of Sensor Move-
ments for Barrier Coverage of a Line Segment. In: Nikolaidis, I., Wu, K. (eds.)
ADHOC-NOW 2010. LNCS, vol. 6288, pp. 29–42. Springer, Heidelberg (2010)

9. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient
priority queue. Theory of Computing Systems 10(1), 99–127 (1977)

10. Hu, S.: ‘Virtual Fence’ along border to be delayed. Washington Post (February 28,
2008)

11. Kumar, S., Lai, T., Arora, A.: Barrier coverage with wireless sensors. Wireless
Networks 13(6), 817–834 (2007)

12. Li, M., Sun, X., Zhao, Y.: Minimum-Cost Linear Coverage by Sensors with Ad-
justable Ranges. In: Cheng, Y., Eun, D.Y., Qin, Z., Song, M., Xing, K. (eds.)
WASA 2011. LNCS, vol. 6843, pp. 25–35. Springer, Heidelberg (2011)

13. Li, X., Frey, H., Santoro, N., Stojmenovic, I.: Localized sensor self-deployment with
coverage guarantee. ACM SIGMOBILE Mobile Computing and Communications
Review 12(2), 50–52 (2008)

14. Megiddo, N.: Applying parallel computation algorithms in the design of serial al-
gorithms. Journal of the ACM 30(4), 852–865 (1983)

15. Mehrandish, M., Narayanan, L., Opatrny, J.: Minimizing the number of sensors
moved on line barriers. In: Proc. of IEEE Wireless Communications and Network-
ing Conference (WCNC), pp. 653–658 (2011)

16. Tan, X., Wu, G.: New Algorithms for Barrier Coverage with Mobile Sensors. In:
Lee, D.-T., Chen, D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 327–338.
Springer, Heidelberg (2010)

17. Yang, S., Li, M., Wu, J.: Scan-based movement-assisted sensor deployment methods
in wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 18(8), 1108–1121
(2007)

18. Zou, Y., Chakrabarty, K.: A distributed coverage and connectivity-centric tech-
nique for selecting active nodes in wireless sensor networks. IEEE Trans. Com-
put. 54(8), 978–991 (2005)



Annotating Simplices with a Homology Basis

and Its Applications�

Oleksiy Busaryev1, Sergio Cabello2, Chao Chen3,
Tamal K. Dey1, and Yusu Wang1

1 Department of Computer Science and Engineering,
The Ohio State University, Columbus, OH 43210, USA

{busaryev,tamaldey,yusu}@cse.ohio-state.edu
2 Department of Mathematics, University of Ljubljana, Slovenia

sergio.cabello@fmf.uni-lj.si
3 Institute of Science and Technology Austria, Klosterneuburg, Austria

chao.chen@ist.ac.at

Abstract. Let K be a simplicial complex and g the rank of its p-th ho-
mology group Hp(K) defined with Z2 coefficients. We show that we can
compute a basis H of Hp(K) and annotate each p-simplex of K with a
binary vector of length g with the following property: the annotations,
summed over all p-simplices in any p-cycle z, provide the coordinate
vector of the homology class [z] in the basis H . The basis and the an-
notations for all simplices can be computed in O(nω) time, where n is
the size of K and ω < 2.376 is a quantity so that two n × n matrices
can be multiplied in O(nω) time. The precomputed annotations permit
answering queries about the independence or the triviality of p-cycles
efficiently.

Using annotations of edges in 2-complexes, we derive better algo-
rithms for computing optimal basis and optimal homologous cycles in
1 - dimensional homology. Specifically, for computing an optimal basis
of H1(K), we improve the previously known time complexity from O(n4)
to O(nω +n2gω−1). Here n denotes the size of the 2-skeleton of K and g
the rank of H1(K). Computing an optimal cycle homologous to a given
1-cycle is NP-hard even for surfaces and an algorithm taking 2O(g)n log n
time is known for surfaces. We extend this algorithm to work with arbi-
trary 2-complexes in O(nω) + 2O(g)n2 log n time using annotations.

Keywords: Simplicial complex, topology, homology basis, optimal cy-
cles, matrix multiplication.

1 Introduction

Cycles play a fundamental role in summarizing the topological information about
the underlying space that a simplicial complex represents. Homology groups are
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well known algebraic structures that capture topology of a space by identifying
equivalence classes of cycles. Consequently, questions about homological charac-
terizations of input cycles often come up in computations dealing with topology.
For example, to compute a shortest basis of a homology group with a greedy
approach, one has to test several times whether the cycles in a given set are
independent. To determine the topological complexity of a given cycle, a first
level test could be deciding if it is null homologous, or equivalently if it is a
boundary. Recently, a number of studies have been done that concern with the
computation of such topological properties of cycles [1,2,3,4,5,6].

Two optimization questions about cycles have caught the attention of re-
searchers because of their relevance in applications: (i) compute an optimal ho-
mology basis, i.e. a set of cycles that form a basis of the corresponding homology
group and whose weight is minimum among all such basis; (ii) compute an op-
timal homologous cycle, which asks to compute a cycle with minimum weight
in the homology class of a given cycle. Chen and Freedman [3] have shown that
both problems for p-dimensional cycles, p-cycles in short, with p > 1, are NP-
hard to approximate within constant factor. Thus, it is not surprising that most
of the studies have focused on 1-cycles except for a special case considered in [7].
In this paper, we use simplex annotations which lead to better solutions to these
problems. We only consider homology over the field Z2.

Annotation. An annotation for a p-simplex is a length g binary vector, where g is
the rank of the p-dimensional homology group. These annotations, when summed
up for simplices in a given cycle z, provide the coordinate vector of the homology
class of z in a pre-determined homology basis. Such coordinates are only of length
g and thus help us determine efficiently the topological characterization of z. We
provide an algorithm to compute such annotations in O(nω) time, where n is
the number of input simplices and ω is a quantity so that two n × n matrices
can be multiplied in O(nω) time. It is known that ω is smaller than 2.376 [8].

The high-level idea for computing the annotation can be described as follows.
We first compute an appropriate basis Z of the cycle space Zp(K) with the
following property: each cycle z ∈ Z has a sentinel, which is a simplex σz that
appears in the cycle z and in no other cycle from Z. We can then express any
cycle z0 efficiently in the basis Z as the addition of the cycles z from Z whose
sentinels σz are contained in z0. Next, we compute an arbitrary homology basis
H of Hp(K). The annotation of any non-sentinel simplex is simply 0, while the
annotation of a sentinel σz is the coordinates of the homology class [z] in the
basis H . Because of linearity, the sum of the annotations over the sentinels in a
cycle gives the homology class of that cycle. We show how matrix decomposition
algorithms can be leveraged to compute these bases and annotations efficiently.

Annotations have been used extensively to work with 1-dimensional homol-
ogy in surfaces, where they can actually be computed in linear time; see for
example [1,5,6]. However, we are not aware of previous works using annotations
to work with homology in higher dimensions or in general simplicial complexes.
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For readers familiar with cohomology, it may be worth pointing out that cocy-
cles {φi}i=1...g whose classes generate the cohomology group provide an anno-
tation by assigning the binary vector (φ1(σ), . . . , φg(σ)) to simplex σ. From this
viewpoint, annotations can be seen as exposing the classical relation between
homology and cohomology groups.

Applications. Our annotation technique has the following applications.

1. Using the annotations for edges, we can compute an optimal basis for 1-
dimensional homology group H1(K) in O(nω + n2gω−1) time, where g is the
first Betti number of a simplicial complex K. This improves the previous
O(n4) best known algorithm for computing an optimal homology basis in
simplicial complexes [4].

2. Since computing an optimal homologous cycle is NP-hard even for 1-cycles [2,9]
in surfaces, Chambers et al. [2] designed an algorithm taking near-linear time
when g is constant. Erickson and Nayyeri [5] improved the running time to
2O(g)n logn, and Italiano et al. [10] provided an gO(g)n log log n algorithm.
Using our annotations together with the approach of Erickson and Nayyeri,
we obtain an algorithm for finding an optimal homologous cycle in simplicial
complexes in O(nω) + 2O(g)n2 logn time.

3. Using annotations for p-simplices, we can determine if a given p-cycle is null
homologous or if two p-cycles are homologous in time O(tg) time where t > p
is the number of p-simplices in the given p-cycles. Given a set of p-cycles, we
can also answer queries about their homology independence. A set of p-cycles
is called homology independent if they represent a set of linearly independent
homology classes. A maximal subset of homology independent cycles from a
given set of k cycles with t simplices can be computed in O(tg+(g+k)gω−1)
time after computing the annotations.

In many applications, g, the dimension of the concerned homology group is small
and can be taken as a constant. In such cases, the applications listed above
benefit considerably, e.g., applications in 1 and 2 run in O(nω) time.

2 Background

Homology. In this paper, we focus on simplicial homology over the field Z2; see
comments in the conclusion section for extension to other finite fields. We briefly
introduce the notations for chains, cycles, boundaries, and homology groups of
a simplicial complex, adapted to Z2.

Let K be a simplicial complex. Henceforth, we assume that K is connected
and use Kp to denote the set of simplices in K of dimension at most p. To work
with the 1-skeleton we use V = K0, E = K1, and borrow standard notation from
graph theory.

A p-chain in K is a formal sum of p-simplices, c =
∑

σ∈Kp
ασσ, ασ ∈ Z2.

The set of p-chains forms a vector space Cp(K) under Z2-addition where the
empty chain plays the role of identity 0. The chain group Cp is in one-to-one
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correspondence to the family of subsets of Kp. Hence Cp is isomorphic to the np-
dimensional binary vector space (Z2)

np , where np is the number of p-simplices
in K. A natural basis of Cp consists of the p-simplices in K. In this basis, the
coordinate vector of a p-chain is the incidence vector telling which p-simplices
appear in the corresponding subset.

The boundary of a p-simplex is a (p − 1)-chain consisting of the set of its
(p− 1)-faces. This can be linearly extended to a boundary map ∂p : Cp → Cp−1,
where the boundary of a chain is defined as the sum of the boundaries of its
elements. Using the natural bases of Cp and Cp−1, computing the boundary of
a p-chain corresponds to multiplying the chain vector with a boundary matrix
[b1 b2 · · · bnp ] whose column vectors are boundaries of p-simplices. We slightly
abuse the notation and denote the boundary matrix also with ∂p.

We define the group of p-cycles as the kernel of ∂p, Zp := ker ∂p, and define
the group of p-boundaries as the image of ∂p+1, Bp := im ∂p+1. The latter is
a subgroup of the former. The p-th homology group Hp is the quotient Zp/Bp.
Each element in Hp, called a homology class, is an equivalence class of p-cycles
whose differences are p-boundaries. For any p-cycle z, we use [z] to denote the
corresponding homology class. Two cycles are homologous when they belong to
the same homology class. Note that Zp, Bp, and Hp are also vector spaces. We
call their bases a cycle basis, a boundary basis, and a homology basis respectively.
The dimension of the p-th homology group is called the p-th Betti number. We
will denote it by g. A set of p-cycles {z1, · · · , zg} is a homology cycle basis if the
set of classes {[z1], · · · , [zg]} forms a homology basis.

Optimization problems. Given a simplicial complex K, exponentially many cycles
may belong to a homology class [z]. We consider an optimization problem over
such a set with all p-cycles assigned weights. Given a real weight w(σ) ≥ 0 for
each p-simplex σ, we define the weight of a cycle as the sum of the weights of
its simplices, w(z) =

∑
σ∈z w(σ). For example, when p = 1 and the weights are

the lengths of the edges, the weight of a cycle is its length and the optimization
problem seeks for the shortest cycle in a given class. Formally, we state:

Problem 1. Given a simplicial complex and a cycle z, find argminz0∈[z] w(z0).

Next, we consider an optimization problem over the set of all homology cycle
bases. The weight of a homology cycle basisH is defined as the sum of the weights
of its elements, w(H) =

∑
z∈H w(z). Note that a simplex may contribute to the

weight multiple times if it belongs to multiple cycles in the basis H . Formally,
we have the following problem.

Problem 2. Given a simplicial complex, find a homology cycle basis H with
minimal w(H).

3 Efficient Matrix Operations

Under Z2 coefficients, the groups Cp, Zp, Bp, and Hp are all vector spaces. Lin-
ear maps among such spaces or change of bases within the same space can be
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represented by matrices and operations on them. Our algorithm computes sim-
plex annotations via manipulations of such matrices and bases. Several of our
computations use the following concept.

Definition 1 (Earliest Basis). Given a matrix A with rank r, the set of
columns Bopt = {ai1 , · · · , air} is called the earliest basis if the column indices
{i1, · · · , ir} are the lexicographically smallest index set such that the correspond-
ing columns of A have full rank.

For convenience, we often use the same symbol to denote both a set of vectors
and the matrix they form and denote by Bopt also the matrix [ai1 ai2 · · · air ]. It
is convenient to consider the following alternative view of the earliest basis: a
column vector of A is in the earliest basis if and only if it does not belong to the
subspace generated by column vectors to its left.

We next summarize the operations on matrices that we need. For simplicity,
we assume that the matrix multiplication exponent ω > 2; otherwise, some addi-
tional logarithmic terms appear in the running times. The following proposition
follows from results in [11,12,13] and some additional observations narrated in
the full version of the paper.

Proposition 1. Let A be an m×n matrix of rank r with entries over Z2 where
m ≤ n.

(a) If A is square and has full rank, one can compute A−1 in O(nω) time.
(b) There is an O(nω) time algorithm to compute the earliest basis Bopt of A.
(c) In O(nω) time, one can compute the coordinates of all columns of A in Bopt.

Formally, one can compute AP = Bopt[Ir | R], where P is a permutation
matrix, Ir is an r × r identity matrix, and R is an r × (n− r) matrix.

4 Annotating Edges

Let K be a given simplicial complex. First, we define annotations in general
terms using g for the dimension of Hp(K).

Definition 2 (Annotations). An annotation for p-simplices is a function
a: Kp → (Z2)

g with the following property: any two p-cycles z and z′ belong
to the same homology class “if and only if”∑

σ∈z

a(σ) =
∑
σ∈z′

a(σ).

The annotation of any p-cycle z is defined by a(z) =
∑

σ∈z a(σ).

We will construct annotations using coordinate vectors of cycles in a homology
basis. Let H = (h1, h2, . . . , hg) be a basis of the vector space Hp(K). For a p-cycle
z, if [z] =

∑g
i=1 λihi where each λi ∈ Z2, then the coordinate vector of [z] in H

is (λ1, . . . , λg) ∈ (Z2)
g. The question is how to annotate the p-simplices so that

the sum of annotations in the simplices of z gives (λ1, . . . , λg).
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In this section, we explain the technique for annotating edges. An extension
to p-simplices is explained in Section 6. We compute edge annotations in three
steps. First, we construct a cycle basis Z in which any cycle can be expressed in
simple and efficient terms. Second, we find a homology cycle basis H . Last, we
compute the homology of each cycle in Z in the homology cycle basis H . From
this information, one can compute the homology class of any other cycle using
vector sums in the coordinate system provided by H . The approach is based
on using a spanning tree of the 1-skeleton to generate the space of cycles. The
approach of using a spanning tree to generate the fundamental and the homology
group is well known in topology.

Step 1: Computing a cycle basis Z. Let us fix throughout this section a spanning
tree T in the 1-skeleton of K; it contains n0−1 edges. Let k = n1−n0+1 be the
number of edges in E \E(T ). We fix an enumeration e1, . . . , en1 of the edges of
E with the property that the edges e1, . . . , ek are precisely the edges of E\E(T ).
Thus, ek+1, . . . , en1 are the edges of T . The edges of E \E(T ) are called sentinel
edges, while the edges of E(T ) are non-sentinel edges.

For any sentinel edge e ∈ E \ E(T ), denote by γ(T, e) the cycle correspond-
ing to the unique simple path that connects the endpoints of e in T plus the
edge e. We call it a sentinel cycle. Let Z be the set of such sentinel cycles
{γ(T, e1), γ(T, e2), . . . , γ(T, ek)}. We have the following property: a sentinel edge
ei belongs to a sentinel cycle γ(T, ej) if and only if i = j. For completeness, we
set γ(T, e) = 0 when e belongs to T . The following result is probably folklore.

Proposition 2 (Cycle basis). Z is a cycle basis and for any cycle z ∈ Z1 we
have z =

∑
e∈z γ(T, e).

Step 2: Computing a homology cycle basis H. In this step, we compute a ho-
mology cycle basis H from Z with the help of Proposition 1(b). Specifically, we
construct a new matrix [∂2 | Z] with the submatrix Z being formed by the chain

vectors of cycles in Z. We compute the earliest basis Z̃ = [B | H ] of [∂2 | Z]

where B contains the first r = rank(∂2) columns of Z̃. Since the set of columns
of ∂2 generates the boundary group, by the definition of earliest basis, it is nec-
essary that the columns in B come from ∂2 and form a boundary cycle basis.
Since Z and hence ∂2 ∪ Z generates the cycle group, the remaining columns of
Z̃, namely H , form a homology cycle basis.

Step 3: Computing annotations. Finally, for elements of Z we compute their
coordinates in the cycle basis Z̃. For each sentinel cycle z = γ(T, e), we compute

its coordinate vector in Z̃ by solving the linear system Z̃x = z. The last g
entries of x give its coordinates in the basis H . We use this length g vector
as the annotation of the sentinel edge e. We can compute annotations for all
sentinel edges together by solving Z̃X = Z and taking the last g rows of the
solution X . For a non-sentinel edge, we set its annotation to be the zero vector.
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e1

e2 e3

e4 (1, 1)

Annotation

(1, 0)

(0, 0)
(0
, 1
)

An example of annotation for
a 2-complex is shown on right.
The edges of a spanning tree are
shown with thicker edges. The
edges e1, e2, e3, e4 are sentinel
edges. The cycles given by sen-
tinel edges e2 and e3 form the
homology cycle basis H computed by the algorithm. We show the annotations
for the sentinel edges; all other edges get annotation (0, 0). The annotation of
(1, 1) for e4 makes it possible to evaluate the cycle e2e3e4 to (0, 0) as it is null-
homologous and also evaluate the outer boundary to (1, 1) as it is homologous
to the sum of the two holes.

Theorem 1. The algorithm above computes an annotation of length rankH1(K)
for the edges of a 2-complex K in O(nω) time, where n is the size of K.

Proof. From Step 3, the annotation of a sentinel edge e is the coordinate vector of
the homology class [γ(T, e)]. It then follows from Proposition 2 that, for any cycle
z, the coordinate vector of the homology class [z] is simply the summation of
annotations of all edges in z. For the time complexity, notice that Step 1 requires
computing a spanning tree and the cycle basis Z, which takes O(n2) time. Steps
2 and 3 take O(nω) time because of Proposition 1(b) and (a) respectively. ��

5 Optimality for 1-Cycles

5.1 Shortest Homology Basis

In this section we discuss the problem of computing an optimal homology ba-
sis for one dimensional homology H1. The optimal homology cycle basis here
is the shortest homology basis since we minimize the weights / lengths. We
present an efficient algorithm that combines the approach of Erickson and Whit-
tlesey [6] and our annotation technique. The approach restricts the search to a
well-structured family of cycles, represents each cycle in this family with a length-
g binary vector, and then reduces the computation to the problem of finding an
earliest basis in a matrix of size g × n2.

For each vertex s ∈ V , let Ts be the shortest path tree from s with respect
to the weight function. Denote by Zs the set of sentinel cycles corresponding to
this tree Ts and Π the union of Zs for all s ∈ V , that is,

Π =
⋃
s∈V

Zs =
⋃
s∈V

{γ(Ts, e) | e ∈ E \ E(Ts)}.

The following property was noted by Erickson and Whittlesey [6]. See also Dey,
Sun, and Wang [4] for an extension.

Proposition 3. If we sort the cycles of Π in non-decreasing order of their
weights, the earliest basis of Π is a shortest homology basis.
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Theorem 2. Let K be a simplicial complex of size n. We can find a shortest
homology basis in time O(nω + n2gω−1) where g = rank(H1(K)).
Proof. By Theorem 1 we compute annotations for all edges in O(nω) time. Let
a(e) be such annotation for an edge e, and a(z) =

∑
e∈z a(e) for any 1-cycle z.

Next we compute annotations for all cycles z ∈ Π . Instead of computing them
one by one, we annotate all cycles in Zs at once for each s. Given a fixed s, we
first compute Ts in O(n logn) time. We assign a g-long label �(x) to each vertex
x ∈ V which is the label �(x′) of its parent x′ plus the annotation of the edge
xx′, a(xx′). We compute labels for all vertices in O(ng) time by a breadth-first
traversal of Ts. Afterward, the annotation of any sentinel cycle γ(Ts, xy) ∈ Zs

is computed in O(g) time as �(x) + �(y) + a(xy). Thus, we can compute the
annotations for all cycles in Zs in O(ng) time given Ts and edge annotations.
To annotate all cycles of Π , we repeat the procedure for all source vertices s.
Computing annotations for all cycles thus takes O(n2g + n2 logn) time.

Since annotations of cycles give us the homology classes they belong to, we
can use them to find a shortest homology basis. We sort cycles in Π in non-
decreasing order of their weights in O(n2 logn) time. Let z1, z2, z3, . . . be the
resulting ordering. We construct a matrix A whose ith column is the vector a(zi),
and compute its earliest basis. By Proposition 3, the cycles defining the earliest
basis of A form a shortest homology basis. Since there are up to n2 elements in
Π , the matrix A has size g× n2, and thus it is inefficient to compute its earliest
basis using Proposition 1 directly. Instead, we use the following iterative method
to compute the set J of indices of columns that define the earliest basis.

We partition A from left to right into submatrices A = [A1|A2| · · · ] where
each submatrix Ai contains g columns with the possible exception of the last
submatrix which contains at most g columns. Initially, we set J to be the empty
set. We then iterate over the submatrices Ai by increasing index. At each it-
eration we compute the earliest basis for the matrix [AJ |Ai] where AJ is the
submatrix whose column indices are in J . We then set J to be the indices from
the resulting earliest basis, increment i, and proceed to the next iteration. At
each iteration we need to compute the earliest basis in a matrix with g rows and
at most |J |+ g ≤ 2g columns. There are at most O(n2/g) iterations each taking
O(gω) time.

We obtain the claimed time bound by adding up the time to annotate edges,
annotate cycles in Π , and compute the earliest basis. ��

5.2 Shortest Homologous Cycle

In this section, we show how to compute the shortest cycle in a given one-
dimensional homology class. In fact, within the same running time, we can com-
pute a shortest cycle in each homology class. The idea is to use covering graphs,
and it closely resembles the approach of Erickson and Nayyeri [5]. We skip most
of the details because of this similarity. Nevertheless, our main contribution is
the use of the annotations from Section 4.

Let G = (V,E) be the 1-skeleton ofK. We first compute an annotation a: E →
(Z2)

g, as given by Theorem 1. A walk in G is a sequence of vertices x0x1 . . . xt
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connected by edges in E. It is closed if x0 = xt. In this section we keep using the
term cycle for elements of Z1. Each closed walk in G defines a cycle, where only
edges appearing an odd number of times in the walk are kept. The annotation
a(w) of a walk w = x0x1 . . . xt is defined as the sum of the annotations of its
edges xi−1xi for i = 1, . . . , t. Notice that the annotation a(w) of a closed walk
w is the annotation of the cycle defined by w, as annotations in edges appearing
an even number of times in the walk cancel out.

We construct a covering graph G̃ of the 1-skeleton of K, defined as follows:

– V (G̃) = V × (Z2)
g.

– vertex (v, h) ∈ V × (Z2)
g is adjacent to (v′, h′) ∈ V × (Z2)

g if and only if
e = vv′ is an edge of E and h′ = h+a(e). The weight of an edge (v, h)(v′, h′)
is the weight of vv′.

The graph G̃ has n0 · 2g vertices and n1 · 2g edges. The covering graph for the
example shown previously in section 4 for annotation is depicted above. The
second coordinate of a vertex (v, h) ∈ V (G̃) is used to encode the homology of
cycles.

Proposition 4. For all h ∈ (Z2)
g, we can compute a shortest walk wh in G

among all closed walks with annotation h in O(2gn2(g + logn)) time.

We say that a cycle is elementary if it is connected and each vertex is adja-
cent to at most two edges of the cycle. Each cycle is the union of edge-disjoint
elementary cycles. First, we bound the number of elementary cycles in opti-
mal solutions and then use dynamic programming across annotations and the
number of elementary cycles to obtain the following (full details appear in the
extended version available from the authors’ web-pages).

Proposition 5. The shortest cycle in any given homology class consists of at
most g elementary cycles.

Theorem 3. In O(nω +4gg+2gn2(g+logn)) = O(nω)+2O(g)n2 logn time we
can compute the shortest homology cycle for all homology classes in H1.

6 Annotating p-Simplices

In this section, we show how to compute annotations for p-simplices. Notice that
the only thing we need to generalize is the first step: find a set Σ of p-simplices
(sentinel simplices) with cardinality dim (Zp) and a cycle basis Z = {zσ}σ∈Σ

(sentinel cycles) for the p-cycle group Zp with the property that zσ contains
σ′ ∈ Σ if and only if σ = σ′. With this property, any p-cycle z can then be
written as z =

∑
σ∈z∩Σ zσ. Taking zσ = 0 for all σ �∈ Σ, we have z =

∑
σ∈z zσ.

With such a basis, we proceed with Step 2 and 3 just like in the case for edges
to annotate p-simplices. Below, we explain how to compute such a cycle basis Z.

In the case for annotating edges, we first fix a spanning tree. The boundaries
of its edges form a 0-dimensional boundary basis. Any of the remaining edges
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when added to the tree creates a unique 1-cycle which is kept associated with
this edge as a sentinel cycle. For p-simplices, p > 1, we do not have a spanning
tree, but Proposition 1(c) provides us an algebraic tool that serves the same
purpose.

Specifically, consider the np−1 × np boundary matrix ∂p of rank r, where the
i-th column in ∂p corresponds to the (p − 1)-boundary of p-simplex σi. Using
Proposition 1(c) we can obtain an np × np matrix P , an np−1 × r matrix Bopt,
and an r × (np − r) matrix R so that

∂pP = Bopt[Ir | R].

Notice that P permutes the p-simplices so that the first r columns of ∂pP form
the earliest basis Bopt. By reordering the columns of ∂p, we may assume that P is
the identity, giving ∂p = Bopt[Ir | R]. In this scenario, the columns of Bopt form
a basis of the column-space of ∂p, and contains the first r = rank (∂p) columns
of ∂p. Note that the i-th column in [Ir | R] gives the coordinate vector of the
boundary cycle for σi in the boundary basis Bopt.

Take the first r p-simplices {σ1, . . . , σr}. Their boundaries are linearly inde-
pendent. Therefore, no subset of them can form a p-cycle. In analogy to Section
4, we use T for this collection of p-simplices and call them non-sentinel simplices.
The set Σ = Kp \ T of p-simplices are the sentinel simplices.

Now consider any sentinel p-simplex, say σr+i ∈ Σ. Its boundary is the (r+i)-
th column in ∂p and is equal to BoptR[i], where R[i] is the i-th column of R.
This means that ∂pσr+i =

∑r
j=1 R[j, i](∂pσj) where R[j, i] is the j-th entry in

the i-th column of R. Hence taking the set of p-simplices σj , j ∈ [1, r], whose
corresponding entries R[j, i] are 1, plus σr+i itself, we obtain a p-cycle γ(T, σr+i).
We call this p-cycle a sentinel cycle. Similar to Section 4, we set γ(T, σ) = 0 for
each non-sentinel simplex σ ∈ T . Clearly, γ(T, σr+i) can only contain one simplex
from Σ which is σr+i. We have the desired property: a sentinel simplex σ ∈ Σ
belongs to a sentinel cycle γ(T, σ′) if and only if σ = σ′. Finally, observe that

the columns of

[
R

Inp−r

]
give the set of sentinel cycles Z. The (np− r)× (np− r)

identity matrix Inp−r associates each sentinel cycle γ(T, σ) in Z to its sentinel
p-simplex σ. Similar to Proposition 2, we have:

Proposition 6. Z = {γ(T, σr+1), . . . , γ(T, σnp)} is a cycle basis, and for any
p-cycle z we have z =

∑
σ∈z γ(T, σ).

Combining this proposition with Step 2 and 3 from Section 4, we obtain the
following theorem.

Theorem 4. We can annotate the p-simplices in a simplicial complex with n
simplices in O(nω) time.

7 Null Homology and Independence

Our annotation algorithm can be used to address some of the computational
problems involving p-cycles.
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Null homology. A p-cycle z in a simplicial complex K is called null homologous
if [z] = 0. A cycle is null homologous if and only if it has zero coordinates in
some and hence any basis of Hp(K). Consider the following two problems:

Q1: Given a p-cycle z in a simplicial complex K, decide if z is null
homologous.

Q2: Given two p-cycles z1 and z2 in a simplicial complex K, decide if z1
and z2 are homologous.

With annotations whose computations take O(nω) time, we can obtain a query
time of O(tg) for Q1 where g = dimHp(K) and t is the number of p-simplices in
z. For this we simply add the annotations of the p-simplices in z and check if the
result is zero, which takes O(tg) time. The problem Q2 reduces to Q1 because
z1 and z2 are homologous if and only if z1 + z2 is null homologous. Therefore,
Q2 can be answered in O((t1 + t2)g) time after O(nω) time preprocessing where
t1 and t2 are the number of p-simplices in z1 and z2 respectively.

Independence. An analogous problem to testing null homology is the problem of
testing independence.

Q3: Find a maximally independent subset of a given set of p-dimensional
homology classes [z1], . . . , [zk] in a simplicial complex K.

A solution to Q3 can be computed using annotations as follows. By Theorem 4,
we can compute an annotation a(zi) in O(tg) time for all cycles zis, where t is the
number of simplices altogether in all cycles and each a(zi) is a length-g vector.
Now construct a matrix A whose ith column is the vector a(zi). Notice that the
earliest basis of A form a maximally independent subset of column vectors in A.
Thus the set of cycles zis corresponding to columns in this earliest basis form
a maximally independent subset of the input set of p-cycles. Since A is of size
g×k, we have an O(gω+kω) query time, after an O(nω) preprocessing time. We
can improve the query time to O((g + k)gω−1) by using the iterative technique
in Theorem 2. Therefore, total time for computing a maximally independent set
takes O(tg + (g + k)gω−1) time after annotations.

8 Conclusions

In this paper, we present an algorithm to annotate p-simplices in a complex so
that computations about the homology groups can be done faster. For defining
the weights of a cycle we used 1-norm to combine the weights of the individual
edges. For defining the weight of a basis we also used 1-norm to combine the
weights of the basis cycles. In these problems we can use any other norm to
define these weights.

One may wonder why we cannot extend our annotation approach to com-
pute the optimal homology basis or the optimal homologous cycle for higher
dimensional cycles. The main bottleneck for finding an optimal basis is that the
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Proposition 3 does not generalize to higher dimensional cycles. Given that the
problems are NP-hard in high dimensions even for g = 1 [3], such extensions
cannot exist unless P=NP.

Finally, we point out that one can use any finite field instead of Z2 for an-
notations. Since annotations mainly utilize matrix multiplications which remain
valid under any field, the annotation algorithm in section 6 remains applicable
without any change. However, the optimal cycles in sections 5 and 5.2 require
computations of cycles associated with shortest paths which we do not know how
to generalize for general fields. Specifically, it is not clear how to obtain results
for applying Propositions 3 and 4. This could be a topic of further research.
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Abstract. The coverage area of a directional antenna located at point
p is a circular sector of angle α, whose orientation and radius can be
adjusted. The interference at p, denoted I(p), is the number of antennas
that cover p, and the interference of a communication graph G = (P,E)
is I(G) = max{I(p) : p ∈ P}. In this paper we address the question in its
title. That is, we study several variants of the following problem: What
is the minimum interference I , such that for any set P of n points in the
plane, representing transceivers equipped with a directional antenna of
angle α, one can assign orientations and ranges to the points in P , so
that the induced communication graph G is either connected or strongly
connected and I(G) ≤ I .

In the asymmetric model (i.e., G is required to be strongly connected),
we prove that I = O(1) for α < 2π/3, in contrast with I = Θ(log n)
for α = 2π, proved by Korman [12]. In the symmetric model (i.e., G
is required to be connected), the situation is less clear. We show that
I = Θ(n) for α < π/2, and prove that I = O(

√
n) for π/2 ≤ α ≤ 3π/2,

by applying the Erdös-Szekeres theorem. The corresponding result for
α = 2π is I = Θ(

√
n), proved by Halldórsson and Tokuyama [10].

As in [12] and [10] who deal with the case α = 2π, in both models,
we assign ranges that are bounded by some constant c, assuming that
UDG(P ) (i.e., the unit disk graph over P ) is connected. Moreover, the
O(

√
n) bound in the symmetric model reduces to O(

√
Δ), where Δ is

the maximum degree in UDG(P ).

1 Introduction

The vast majority of papers dealing with wireless ad-hoc networks, assume that
the underlying transceivers are equipped with omni-directional antennas and
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model them by disks. In this paper we consider directional antennas and model
them by circular sectors of a fixed angle α. A common belief is that directional
antennas facilitate in reducing interferences. This is of course correct for, e.g., a
set of independent pairs of transceivers, using the same frequency. In this case,
switching to directional antennas can significantly reduce the level of interfer-
ences. However, is this still correct for the case where one is required to construct
a connected network? In this paper, we study this question.

Let P be a set of n points in the plane, and assume that each point repre-
sents a transceiver equipped with a directional antenna. The coverage area of
a directional antenna located at point p of angle α and range r, is a sector of
angle α of the disk of radius r centered at p, where the orientation of the sector
can be adjusted. We denote the coverage area of the antenna at p by Wp (since
when assuming unbounded range the sector becomes a wedge). The induced
symmetric communication graph (sCG) of P is the undirected graph over P , in
which two vertices (i.e., points) u and v are connected by an edge if and only if
v ∈ Wu and u ∈ Wv; see Figure 1(a). A sCG over a set P of points is denoted
sCG(P ). Similarly, the induced directed communication graph (dCG) (or asym-
metric communication graph) of P is the directed graph over P , in which there
is a directed edge from u to v if and only if v ∈ Wu; see figure 1(b). A dCG over
a set P of points is denoted dCG(P ).

v

w

u

x

(a)

v

w

u

x

(b)

Fig. 1. Symmetric and asymmetric communication graphs induced by a set of wedges

Most of the papers dealing with directional antennas consider the problem of
orienting the antennas and fixing their ranges, such that the induced graph is
connected (or strongly connected) and the ranges are not too long. Caragiannis
et al. [5] study this problem under the asymmetric model. They show how to
orient directional antennas and fix their range, such that the induced graph is
strongly connected and the assigned range is minimized. Damian and Flatland [8]
and subsequently Bose et al. [3] show how to minimize both the range and the
hop-ratio (w.r.t. the unit disk graph), for α ≥ π/2 and for α > 0, respectively.
Under the symmetric model, Carmi et al. [6] and Ackerman et al. [1] show that
it is always possible to obtain a connected graph for α ≥ π/3, assuming the
range is unbounded (i.e., equal to the diameter of the underlying point set).
Carmi et al. [6] also observe that for α < π/3 it is not always possible to orient
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the antennas such that the induced sCG is connected. In a companion paper,
Aschner et al. [2] show how to minimize both the range and the hop ratio (w.r.t.
the unit disk graph) under the symmetric model, for α ≥ π/2.

The efficiency of a wireless network is affected to a large extent by the level of
interferences. Interference occurs at a receiver r when two or more transmitters,
whose coverage region contains r, transmit simultaneously. Therefore, reducing
the level of interferences is a major issue in the study of wireless networks. A
few models have been proposed for measuring the level of interferences; see,
e.g., [4, 11, 14]. The most common one is the receiver-centric model, where the
interference of a node v is the number of nodes that cover it [15].

In many papers dealing with directional antennas it is claimed that direc-
tional antennas can reduce the level of interferences (see, e.g., [3, 5, 13]), but
we are not aware of any paper that actually shows the advantage of direc-
tional antennas w.r.t interference. In other words, we are not aware of any
paper that mathematically establishes this intuitive assertion. The interfer-
ence of a point v ∈ P , denoted I(v), is the number of wedges covering v. I.e.,
I(v) = |{u ∈ P \ {v} : v ∈ W (u)}|. In other words it is the in-degree of v in the
induced directed communication graph. The interference of a communication
graph G (whether directed or not) is I(G) = max {I(v) : v ∈ P}.

Von Rickenbach et al. [15] studied the omni-directional symmetric case in
1D (known as the highway model). They gave an algorithm that constructs a
connected network with interference O(

√
Δ), where Δ is the maximum degree

in UDG(P ), and showed that this algorithm approximates the minimum possible
interference by a factor of O(Δ1/4). Tan et al. [16] presented an algorithm that
solves the problem optimally in sub-exponential time. For points in the plane
(i.e., the 2D version) Halldórsson and Tokuyama [10] presented algorithms that
construct a network with interference O(

√
Δ) and ranges at most

√
2 (w.r.t.

the unit disk graph). Their construction does not carry to the case of directional
antennas since connectivity is not guaranteed. Von Rickenbach et al. [15] showed
that even for the 1D version there are instances where interference Ω(

√
n) is

unavoidable. Recently, Korman [12] showed how to obtain a strongly connected
network (i.e., the directed case) with O(logΔ) interference and ranges at most
1, and showed that Ω(log n) interference is sometimes unavoidable.

Our Results. This is the first paper that deals with the problem of constructing
(strongly) connected low-interference networks when the underlying transceivers
are equipped with directional antennas of some fixed angle α. We study the prob-
lem in both the symmetric and asymmetric models. At first glance, it seems natu-
ral that the interference should decrease when switching to directional antennas.
However, as we show, this is not always the case. We discuss this somewhat
unexpected finding in the conclusion section.

In the asymmetric model, we show how to construct a network with inter-
ference O(1), for α < 2π/3 (which is the most interesting range of angles), in
contrast with the Θ(logΔ)-bound for α = 2π. Moreover, assuming UDG(P ) is
connected, we are able to limit the maximum range by an appropriate constant.
The problem of constructing a low-interference graph supporting converge-cast
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operations to a designated node, arises as a subproblem, and in Section 2 we
present a solution to it with interference O(1).

In the symmetric model, we obtain several results. First, we show how to
construct a network with interference O(1) for points on a line and α < 2π, in
contrast with the Θ(

√
Δ)-bound for α = 2π. The 1D construction also applies

to the case of a xy-monotone sequence of points, for π/2 ≤ α ≤ 3π/2. Then, we
observe that for α < π/2 interference Ω(n) is sometimes unavoidable. Finally,
we show how to construct a network with O(

√
n) interference, for π/2 ≤ α ≤

3π/2, by applying the Erdös-Szekeres theorem [9]. Moreover, assuming UDG(P )
is connected, we are able to reduce the interference to O(

√
Δ) and limit the

maximum range by some constant. The corresponding bound for α = 2π is
Θ(
√
Δ).

2 Constant Interference Converge-Cast

In this section we consider converge-cast with low interference. Converge-cast is
an operation in which data from many sources is routed towards a single base-
station. We show that, using directional antennas, one can construct a converge-
cast network with interference O(1). More formally, let P be a set of points in
general position in the plane representing transceivers with directional antennas
of angle α, and let s ∈ P . We show how to assign to each antenna p ∈ P an
orientation θ and a range r, such that dCG(P ) contains a path from each p ∈ P
to s and I(dCG(P )) = O(1).

s

Fig. 2. Constant interference converge-cast

Below, we show how to do this for α < 2π/3. We actually show that the
resulting network has a slightly stronger property. Not only that each point of
P lies in a constant number of wedges, but this is also so for any arbitrary point
in the plane. More precisely, the depth of the arrangement of the wedges is 5,
i.e., every point in the plane is covered by at most 5 wedges.

In order to obtain a dCG with the above properties, we use the Euclidean
minimum spanning tree of P , denoted MST (P ). First, root MST (P ) at s, and
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orient the antenna at each point p ∈ P \{s} towards its parent π(p), i.e., keeping
π(p) on the bisector of Wp. Next, assign range |(p, π(p))| to each antenna p ∈
P \{s}. It is easy to see that the resulting dCG contains a path from each p ∈ P
to s; see Figure 2. By Lemma 1 below, any point x in the plane lies in the range
of at most 5 antennas. In fact, in the proof of Lemma 1, we consider a different
arrangement, whose depth is greater or equal to the depth of the arrangement
of wedges.

Notice that each edge (p, q) of MST (P ) is associated with a single wedge
of range |(p, q)| directed either from p to q or vice versa. For each such edge,
denote by lune (p, q) the intersection of the two disks centered at p and q of radius
|(p, q)|. Notice that lune (p, q) is just the union of two wedges of angle 2π/3 and
range |(p, q)|, directed from p to q and from q to p, respectively. Thus, lune (p, q)
contains the wedge that is associated with the edge (p, q); see Figure 2 for an
illustration. Denote the set of all lunes corresponding to the edges of MST (P )
by L (MST (P )). It is enough to show that the depth of the arrangement of
L (MST (P )) is at most 5. The proof is based on a similar proof from [7].

We use the following easy claim from [7], which is based on known properties
of minimum spanning trees.

Claim. ([7]) Let x be a point in the plane, x /∈ P . If e is an edge ofMST (P∪{x})
but not of MST (P ), then x is an endpoint of e.

Lemma 1. Let x ∈ IR2 be an arbitrary point in the plane, then x belongs to at
most 5 lunes in L (MST (P )).

Proof. Let lune (p, q) ∈ L (MST (P )) such that x ∈ lune (p, q). We first observe
that the edge (p, q) is not in MST (P ∪ {x}). Indeed, recall that each edge in
MST (P ∪ {x}) is also an edge in RNG(P ∪ {x}), where RNG(P ∪ {x}) is the
relative neighborhood graph of P ∪{x}, and, since (p, q) is not in RNG(P ∪{x}),
we have that (p, q) is not in MST (P ∪ {x}).

Therefore, by the claim, for each lune (p, q) ∈ L (MST (P )) such that x ∈
lune (p, q), MST (P ∪ {x}) contains a unique edge that is connected to x and
“replaces” the edge (p, q) of MST (P ). However, x is a vertex of an Euclidean
minimum spanning tree, and as such its degree is at most 6, implying that x is
covered by at most 6 lunes of L (MST (P )). In fact, there are at most 5 lunes of
L (MST (P )) covering x, since one of the edges connected to x (inMST (P∪{x}))
is present due to the increase in the number of points.

The following theorem summarizes the main result of this section.

Theorem 1. Let P be a set of points in general position in the plane represent-
ing directional antennas of angle α < 2π/3, and let s ∈ P . One can assign to
each p ∈ P an orientation θ and a range r, such that (i) the resulting dCG(P )
contains a path from any p ∈ P to s, and (ii) I(dCG(P )) = O(1).

3 Asymmetric Model

In this section we consider the following problem. Assign to each antenna p ∈ P
an orientation θ and a range r, such that dCG(P ) is strongly connected and
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I(dCG(P )) = O(1). First, we show how to compute such an assignment without
bounding the maximum range of the antennas. Then, we show how to do it when
the maximum range is bounded by some constant, assuming UDG(P ) (i.e., the
unit disk graph over P ) is connected.

Assuming P is sufficiently large, Bose et al. [3] showed how to select a subset
Q ⊆ P of size l = �3.5k − 6�, where k = �2π/α�, and assign to each antenna
in Q an orientation θ and range r = ∞, such that dCG(Q) contains a tree T
rooted at some point (i.e., antenna) s ∈ Q whose leaves collectively cover the
entire plane, and each point in Q \ T is oriented towards s. In particular, there
exists a path from s to each point of P .

In order to ensure strong connectivity, dCG(P ) should also contain, for each
p ∈ P , a path from p back to s. First, we modify the orientation assigned to
the leaves of T that do not cover any point in P \ T , by orienting each of them
towards s. Notice that this modification does not disrupt any of the existing
paths. Next, we handle the points in P \Q. In the construction described in [3],
the antennas of P \Q are all oriented towards s, but this might induce a graph
of interference Ω(n). We take a different approach and apply the construction
described in Section 2. More precisely, we build a converge-cast network for
the set P \ Q ∪ {s}, where s is the base-station of the network. Notice that
the construction of Section 2 does not assign an orientation or range to s, so
s’s initial orientation and range remain unchanged. Clearly, the interference of
the resulting dCG is bounded by the sum of |Q| and the interference of the
construction of Section 2 (namely, 5, assuming α < 2π/3), and is therefore O(1).
We thus have the following theorem.

Theorem 2. Let P be a set of points in general position in the plane represent-
ing directional antennas of angle α < 2π/3. Then, one can orient the antennas
and assign ranges to them, such that that the resulting dCG(P ) is strongly con-
nected and I(dCG(P )) = O(1).

The required range of an antenna in the above construction can reach the diam-
eter of P . Assuming UDG(P ) is connected, we are able to improve the construc-
tion so that the ranges of the antennas are bounded by some constant. Roughly,
we “cluster” the points of P and apply the above construction to each of the
clusters separately, keeping the ranges of the antennas to within the close vicin-
ity of their cluster. We also make sure that the clusters are connected to each
other, while still guaranteeing constant interference. More specifically, we lay a
grid G over P , such that the length of a cell side is 2l. For a cell C of G, the block
of C is the 3× 3 portion of G centered at C. Each of the 8 cells surrounding cell
C is a neighbor of C. A cell of G is considered full if it contains at least l points
of P . It is considered non-full if it contains at least 1 and at most l− 1 points of
P . Proposition 1 below is analogous to a proposition of Bose et al. [3], referring
to a similar grid.

Proposition 1. ([3]) Let C be a cell of G. Then, any path in UDG(P ) that begins
at a point in C and exits the block of C, must pass through a full cell in C’s block
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(not including C itself, which may or may not be full). In particular, if there are
points of P outside C’s block, then at least one of the 8 neighbors of C is full.

In each full cell C, we orient the antennas in C using the construction described
above, with two simple modifications. That is, in each full cell C, we construct
the tree TC rooted at sC , and a converge-cast network for the remaining points
in C, where sC is its base-station. We make the following two modifications: (i)
each antenna is assigned range 4

√
2l (instead of unbounded range), and (ii) each

leaf q ∈ TC is oriented toward sC , unless it either covers a point in C that is not
in TC , or it covers the root of the tree in a full neighboring cell, or it covers a
point in a non-full neighboring cell that is oriented towards sC .

In each non-full cell C, we orient each antenna p towards sC′ , where C′ is the
(UDG(P ) hop-distance) closest full cell to p (ties are broken arbitrarily), and
assign p a suitable range (which, by definition, does not exceed 4

√
2l).

Lemma 2. The induced dCG is strongly connected.

Proof. Bose et al. [3] prove that the directed communication graph that is in-
duced by their construction is connected. In their construction, the points in a
full cell C that are not in TC are oriented towards sC . On the other hand, we
construct a converge-cast network for these points, where sC is its base-station.
It is easy to see though that this difference does not affect the strong connec-
tivity property of the induced graph. We thus conclude that the dCG induced
from our construction is strongly connected.

The ranges assigned to the antennas do not exceed 4
√
2l. Therefore, each p ∈ P

is covered only by antennas lying in the 7×7 block around p’s cell. That is, each
antenna q can be covered by antennas belonging to a constant number of cells.
Since the contribution of all antennas in a single cell to the interference at any
point is only O(1), we conclude that the total interference at a point p is O(1).

The following theorem summarizes the main result of this section.

Theorem 3. Let P be a set of points in general position in the plane represent-
ing directional antennas of angle α < 2π/3, such that UDG(P ) is connected.
Then, one can orient the antennas and assign ranges to them, such that (i) the
induced dCG(P ) is strongly connected, (ii) I(dCG(P )) = O(1), and (iii) the
maximum range is at most 4

√
2l.

4 Symmetric Model

In this section we consider the problem in the symmetric model. That is, assign
to each antenna p ∈ P an orientation θ and a range r, such that sCG(P ) is
connected and I(sCG(P )) is as small as possible. We first consider the 1D version
of the problem, for which we show that it is easy to obtain a connected graph
with interference 3. Next, we consider the 2D version. For this version, we first
show that there does not always exist a connected graph with low interference.
More precisely, for α < π/2, interference of Ω(n) is sometimes unavoidable. Our
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main result for the 2D version is an algorithm for constructing a connected graph
with O(

√
n) interference, for π/2 ≤ α ≤ 3π/2. Assuming UDG is connected, this

bound can be replaced by O(
√
Δ), where Δ is the maximum degree in UDG,

and the maximum range of the antennas can be bounded by some constant.

4.1 Interference in 1D

In the highway model, where all the antennas lie on the x-axis, one can obtain,
for any angle α < 2π, a connected graph with interference 3, as described below.

Let p1 < p2 < · · · < pn be n points on the x-axis. For simplicity assume that
n ≥ 6 and that n is even. Orient each point pi in odd position to the right and
assign to it a range that is just sufficient to reach pi+3, for 1 ≤ i ≤ n − 3, or
pn, for i = n− 1. Symmetrically, orient each point pi in even position to the left
and assign to it a range that is just sufficient to reach pi−3, for 4 ≤ i ≤ n, or
p1 for i = 2. See Figure 3 for an illustration. It is easy to see that the induced
communication graph is connected and that each point lies in the range of at
most three other points.

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

Fig. 3. Two representations of a connected graph with interference 3 for points on the
x-axis and α < 2π. In the bottom representation, an arrow from pi to pj indicates that
pi covers pj . The bidirectional arrows are the edges of the graph.

Lemma 3. Let P be a set of n points on the x-axis representing directional an-
tennas of angle α, where α < 2π. Then, one can orient the antennas and assign
ranges to them, such that the resulting sCG(P ) is connected and I(sCG(P )) = 3.

Remark. It is easy to verify that already for 5 points, there does not exist a
connected graph with interference less than 3, thus, 3 is optimal.

4.2 Interference in 2D

α < π/2 . Recall that if α < π/3, there does not always exist a connected
graph. We show that for π/3 ≤ α < π/2 there does not always exist a connected
low-interference graph. Consider, for example, the following setting. The points



Do Directional Antennas Facilitate in Reducing Interferences? 209

p1, . . . , pn−1 are located on some vertical line and the point pn is located far enough
to the right, so that it is impossible for pi, i = 1, . . . , n− 1, to cover both pn and
some other point pj , 1 ≤ j ≤ n − 1. The only way to ensure connectivity in this
case is to orient p1, . . . , pn−1 towards pn, but then I(sCG(P )) = I(pn) = n− 1.

π/2 ≤ α ≤ 3π/2 . For larger angles, the situation is much better. Given
n directional antennas of angle π/2 ≤ α ≤ 3π/2, we are able to construct a
connected graph with interference O(

√
n). We first observe that the construction

described in Section 4.1 for the case of points on the x-axis, can also be used for
the case of an xy-monotone sequence of points. That is, consider the sequence
s obtained by sorting the input points by their x-coordinate. If s happens to be
monotone (either increasing or decreasing), then two orientations are sufficient
in order to connect the points in s, and, moreover, one can do so such that
the resulting interference is 3. More specifically, instead of orientations 0 and
π (i.e., right and left) that are used to connect points on the x-axis, we use
orientations π/4 and 5π/4, if s is increasing, and orientations 3π/4 and 7π/4, if
s is decreasing, in order to connect the points in s. Notice that after connecting
the points in s, the interference of any point in the plane is at most 4.

We thus start by sorting the points of P by their x-coordinate. By the well-
known theorem of Erdös and Szekeres [9], the resulting sorted sequence can be
partitioned into m = O(

√
n) xy-monotone subsequences. (This can be done eas-

ily by repeatedly finding the longest monotone subsequence.) We could consider
each sequence s of the m sequences separately, and connect the points in s as
described above. This would ensure that the interference at any point in the
plane is at most 4m = O(

√
n). However, the sequences might not be connected

to each other.

Fig. 4. A monotone sequence. The two quadruplets are marked by dashed balloons.
The sequence is connected and its interference is at most 11.

We describe how to overcome this problem. Consider a sequence s = (p1, . . . , pl)
and assume that s is long, i.e., l ≥ 8. Arbitrarily choose two disjoint quadruplets
of points in s, where a quadruplet consists of four consecutive points. For each of
these quadruplets Q, assign orientations and ranges to the points in Q, so that
Q is connected and covers all the points in P \ Q. This is possible by a result of
Aschner et al. [2]. Now, assign orientations and ranges to the remaining points in
s, as described above, referring to each of the quadruplets as a pair of antennas



210 R. Aschner, M.J. Katz, and G. Morgenstern

(see Figure 4). Notice that since each quadrupletQ is connected and covers the two
points of s that need to connect to it, s is connected and the interference of s is at
most 11 (actually, 7 by a more delicate argument). Consequently, the interference
at any point in the plane is at most 12m = O(

√
n).

l2l1
s1

s2

Fig. 5. The quadruplet of s1 to the left of l1 and the quadruplet of s2 to the right of
l2 can be separated by a line, implying that s1 and s2 are connected.

Consider any two long sequences s1 and s2. We claim that s1 and s2 are con-
nected. Aschner et al. [2] showed that any two quadruplets that can be separated
by a line are connected. Let l1 (resp., l2) be a vertical line separating between s1’s
(resp. s2’s) two quadruplets, and assume w.l.o.g. that l1 is to the left of l2. Then,
clearly the quadruplet of s1 to the left of l1 and the quadruplet of s2 to the right of
l2 can be separated by a line, implying that s1 and s2 are connected; see Figure 5.

Finally, we describe how to handle the short sequences. For each short se-
quence s and for each point p in s, simply pick an arbitrary point q that covers
p and orient p towards q and set p’s range accordingly. Such a point q always
exists, since in each quadruplet there exists such a point. This increases the in-
terference by only a constant, since it is easy to ensure that all but a constant
number of sequences are long.

The following theorem summarizes our last result.

Theorem 4. Let P be a set of points in the plane representing directional an-
tennas of angle π/2 ≤ α ≤ 3π/2. Then, one can orient the antennas and as-
sign ranges to them, such that the induced sCG(P ) is strongly connected and
I(sCG(P )) = O(

√
n).

Bounding the range and refining the bound on the interference. In the above con-
struction we did not make any effort to reduce the ranges assigned to the antennas.
Assuming UDG(P ) is connected, we now show how to bound the ranges by some
constant and reduce the interference to O(

√
Δ), where Δ is the maximum degree

in UDG(P ). Lay a grid G over P , such that the length of a cell side is 7. A cell of G
is considered full if it contains at least 4 points of P . It is considered non-full if it
contains at least 1 and at most 3 points of P . Notice that the number of points of
P in any 1

2 ×
1
2 square is at most Δ+ 1, since these points correspond to a clique

in UDG(P ). Therefore, each cell in G contains only O(Δ) points.
Roughly, we apply the construction described above in each cell C indepen-

dently, and restrict the ranges of the points in a quadruplet so that they are just
enough to reach any point in C or in one of its eight neighbor cells. Notice that if a
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cell C contains at least 64 points, then one of the monotone sequences is of length
at least 8, and therefore, the neighbor cells of C are covered by the two quadruplets
of that sequence. If a cell C is full but contains less than 64 points, then we choose
four arbitrary “hub” points to cover C and its neighbor cells, and orient each of the
remaining points in C to an arbitrary hub point that covers it. This ensures that
each full cell C contains at least one quadruplet that covers C and its eight neigh-
bor cells, and therefore, that any two full cells that are neighbors of each other are
connected (since they can be separated by a line, see [2]). If a cell C is non-full,
then we orient each point in C to a point that covers it in a neighboring full cell.
By Proposition 1 it is not hard to see that the resulting graph is connected.

Finally, we claim that the interference is O(
√
Δ). This is true since the in-

terference caused by each cell is O(
√
Δ), and any point in the plane is under

the influence of only a constant number of cells surrounding it. Therefore the
interference of the final graph is O(

√
Δ). The following theorem summarizes the

main results of this section.

Theorem 5. Let P be a set of points in the plane representing directional an-
tennas, such that UDG(P ) is connected. Then, (i) for π/2 ≤ α ≤ 3π/2, one can
orient the antennas and assign ranges to them, such that the induced sCG(P )
is strongly connected, I(sCG(P )) = O(

√
Δ), where Δ is the maximum degree

in UDG, and the maximum range is at most O(1), and (ii) for α < π/2,
I(sCG) = Ω(n) is sometimes unavoidable.

5 Conclusion and Future Work

In this paper we tackled the question raised in the title. Do directional antennas
facilitate in reducing interferences, as commonly believed. In the asymmetric
model, the answer is positive. Directional antennas of angle α < 2π/3 enable
reduction in the interference from Θ(logΔ) to O(1). Although, from a theoretical
point of view, it might be interesting to investigate the case of angles larger than
2π/3, we believe that it is less interesting from a practical point of view, since,
as the angle increases, the advantages in using directional antennas (e.g., energy
efficiency) diminish. In the symmetric model, directional antennas might be bad
in the context of interference. For small angles (less than π/2), not only that
the interference does not decrease w.r.t. the Θ(

√
Δ)-bound, it even increases to

Θ(n). This is rather surprising, since intuitively the interference should decrease
as the angle decreases. For larger angles, i.e., for π/2 ≤ α ≤ 3π/4, we have shown
how to obtain interference O(

√
Δ), thus matching the upper bound for omni-

directional antennas. A possible explanation for these counterintuitive results is
that when using directional antennas it is more difficult to achieve connectivity
and longer ranges might be required for that. Finally, we note that for α = 2π−ε,
where ε = O(1/2n), a lower bound of Ω(

√
Δ) can be easily derived from an

example obtained from the exponential chain example by slightly changing it so
that no three points are collinear. The main open problem is either to improve
the O(

√
Δ)-bound in the symmetric model, or to prove a matching lower bound.
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1 Computer Science, University of Wisconsin–Milwaukee
dumitres@uwm.edu

2 Computer Science, University of Illinois at Urbana–Champaign
sariel@cs.uiuc.edu

3 Mathematics and Statistics, Univ. of Calgary and Comp. Sci., Tufts University
cdtoth@ucalgary.ca

Abstract. Let S be a set of n points in d-space. A convex Steiner parti-
tion is a tiling of conv(S) with empty convex bodies. For every integer d,
we show that S admits a convex Steiner partition with at most �(n−1)/d�
tiles. This bound is the best possible for points in general position in the
plane, and it is best possible apart from constant factors in every fixed
dimension d ≥ 3. We also give the first constant-factor approximation
algorithm for computing a minimum Steiner convex partition of a planar
point set in general position.

Establishing a tight lower bound for the maximum volume of a tile
in a Steiner partition of any n points in the unit cube is equivalent to a
famous problem of Danzer and Rogers. It is conjectured that the volume
of the largest tile is ω(1/n) in any dimension d ≥ 2. Here we give a
(1− ε)-approximation algorithm for computing the maximum volume of
an empty convex body amidst n given points in the d-dimensional unit
box [0, 1]d.

1 Introduction

Let S be a set of n ≥ d+1 points in Rd, d ≥ 2. A convex body C is empty if its
interior is disjoint from S. A convex partition of S is a partition of the convex hull
conv(S) into empty convex bodies (called tiles) such that the vertices of the tiles
are in S. In a convex Steiner partition of S the vertices of the tiles are arbitrary:
they can be points in S or new Steiner points. For instance, any triangulation
of S is a convex partitions of S, where the convex bodies are simplices, and so
conv(S) can always be partitioned into fewer than dn empty convex tiles.

In this paper, we study the minimum number of tiles that a convex Steiner
partition of every n points in Rd admits, and the maximum volume of a single
tile for a given point set. The research is motivated by a longstanding open
problem by Danzer and Rogers [2,3,4,11]: What is the maximum volume of an
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empty convex body C ⊂ [0, 1]d that can be found amidst any set S ⊂ [0, 1]d of
n points in a unit cube? The current best bounds are Ω(1/n) and O(log n/n),
respectively (for a fixed d). The lower bound comes from decomposing the unit
cube by n parallel hyperplanes, each containing at least one point, into at most
n+1 empty convex bodies. The upper bound is tight apart from constant factors
for n uniformly distributed random points in the unit cube. It is suspected that
the largest volume (as a function of n) grows faster then Ω(1/n), i.e., it is ω(1/n)
in any dimension d ≥ 2.

Minimum Number of Tiles in a Convex Partition. A minimum convex
partition of S is a convex partition of S with a minimum number of tiles. Denote
this number by fd(S). Further define (by slightly abusing notation)

fd(n) = max{fd(S) : S ⊂ Rd, |S| = n}.

Similarly define a minimum Steiner convex partition of S as one with a minimum
number of tiles and let gd(S) denote this number. We also define

gd(n) = max{gd(S) : S ⊂ Rd, |S| = n}.

There has been substantial work on estimating f2(n), and computing f2(S) for
a given set S in the plane. It has been shown successively that f2(n) ≤ 10n−18

7
by Neumann-Lara et al. [20], f2(n) ≤ 15n−24

11 by Knauer and Spillner [17], and
f2(n) ≤ 4n−6

3 for n ≥ 6 by Sakai and Urrutia [21]. From the other direction,
Garćıa López and Nicolás [12] proved that f2(n) ≥ 12n−22

11 , for n ≥ 4, thereby
improving an earlier lower bound f2(n) ≥ n + 2 by Aichholzer and Krasser [1].
Knauer and Spillner [17] have also obtained a 30

11 -factor approximation algorithm
for computing a minimum convex partition for a given set S ⊂ R2, no three of
which are collinear. There are also a few exact algorithms, including three fixed-
parameter algorithms [10,13,22].

The state of affairs is much different in regard to convex Steiner partitions.
As pointed out in [8], no corresponding results are known for the variant with
Steiner points. Here we take the first steps in this direction, and obtain the
following results.

Theorem 1. For n ≥ d + 1, we have gd(n) ≤
⌈
n−1
d

⌉
. For d = 2, this bound is

the best possible, that is, g2(n) = �(n− 1)/2�; and for every fixed d ≥ 2, we have
gd(n) ≥ Ω(n).

We say that a set of points in Rd is in general position if every k-dimensional
affine subspace contains at most k + 1 points for 0 ≤ k < d. We show that in
the plane every convex Steiner partition for n points in general position, i of
which lie in the interior of the convex hull, has at least Ω(i) tiles. This leads to
a simple constant-factor approximation algorithm.

Theorem 2. Given a set S of n points in general position in the plane, a ratio
3 approximation of a minimum convex Steiner partition of S can be computed
in O(n logn) time.
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The average volume of a tile in a Steiner partition of n points in the unit cube
[0, 1]d is an obvious lower bound for the maximum possible volume of a tile,
and for the maximum volume of any empty convex body C ⊂ [0, 1]d. The lower
bound gd(n) ≥ Ω(n) in Theorem 1 shows that the average volume of a tile is
O(1/n) in some instances, where the constant of proportionality depends only
on d. This implies that a simple “averaging” argument is not a viable avenue for
finding a solution to the problem of Danzer and Rogers.

Maximum Empty Polytope Among n Points in a Unit Cube. In the sec-
ond part of the paper, we consider the following problem: Given a set of n points
in rectangular box B in Rd, find a maximum-volume empty convex body C ⊂ B.
Since the ratio between volumes is invariant under affine transformations, we
may assume without loss of generality that B = [0, 1]d. We therefore have the
problem of computing a maximum volume empty convex body C ⊂ [0, 1]d for
a set of n points in [0, 1]d. We are not aware of any exact algorithm even in
the plane. It can be argued that the maximum volume empty convex body is
a polytope, however, the (number and) location of its vertices is unknown and
this represents the main difficulty.

By John’s ellipsoid theorem, the maximum volume empty ellipsoid in [0, 1]d

gives a 1
dd -approximation. Here we present a (1− ε)-approximation for the max-

imum volume empty convex body Copt by first guessing an approximate in-
scribed ellipsoid of Copt, which is an empty ellipsoid whose volume is an 1

dd -
approximation of vol(Copt), and then refining it to a sufficiently close approxi-
mation of Copt.

Theorem 3. Given a set S of n points in [0, 1]d, one can (1 − ε)-approximate
the maximum-volume empty convex body in [0, 1]d. The running time of the
approximation algorithm is

O
(
n1+d(d−1)/22O(1/ε

d) logd n
)
.

As far as the problem of Danzer and Rogers is concerned, say in the plane, one
need not consider convex sets—it suffices to consider triangles—and for triangles
the problems considered are much simpler. That is, the asymptotic dependency
on n of the areas of the largest empty triangle and convex body are the same.

2 Combinatorial Bounds

In this section we prove Theorem 1. We start with the upper bound. The follow-
ing simple algorithm returns a convex Steiner partition with at most �(n−1)/d�
tiles for any n points in Rd.

Algorithm A1:
Step 1. Compute the convex hull R ← conv(S) of S. Let A ⊆ S be the set of

hull vertices, and let B = S \A denote the remaining points.
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Step 2. Compute conv(B), and let H be the supporting hyperplane of an ar-
bitrary (d − 1)-dimensional face of conv(B). Denote by H+ the halfspace
that contains B, and H− = Rd \H+. The hyperplane H contains d points
of B, and it decomposes R into two convex bodies: R ∩ H− is empty and
R← R∩H+ contains all points inB\H . Update B ← B\H andR← R∩H+.

Step 3. Repeat Step 2 with the new values of R and B until B is the empty set.
(If |B| < d, then any supporting hyperplane of B completes the partition.)

3

1
2

Fig. 1. Steiner convex partitions with Steiner points drawn as hollow circles. Left: A
convex Steiner partition of a set of 13 points. Middle: A Steiner partition of a set of
12 points into three tiles. Right: A Steiner partition of the same set of 12 points into
4 tiles, generated by Algorithm A1 (the labels reflect the order of execution).

It is obvious that the algorithm generates a Steiner convex partition of S.
An illustration of Algorithm A1 on a small planar example appears in Fig-
ure 1(right). Let h and i denote the number of hull and interior points of S,
respectively, so that n = h+ i. Each hyperplane used by the algorithm removes
d interior points of S (with the possible exception of the last round if i is not
a multiple of d). Hence the number of convex tiles is 1 + �i/d�, and we have
1 + �i/d� = �(i+ d)/d� ≤ �(n− 1)/d�, as required.

Lower Bound in the Plane. A matching lower bound in the plane is given by
the following construction. For n ≥ 3, let S = A ∪B, where A is a set of 3 non-
collinear points in the plane, and B is a set of n− 3 points that form a regular
(n− 3)-gon in the interior of conv(A), so that conv(S) = conv(A) is a triangle.
If n = 3, then conv(S) is an empty triangle, and g2(S) = 1. If 4 ≤ n ≤ 5, S is
not in convex position, and so g2(S) ≥ 2. Suppose now that n ≥ 6.

Consider an arbitrary convex partition of S. Let o be a point in the interior
of conv(B) such that the lines os, s ∈ S, do not contain any edges of the tiles.
Refer to Figure 2(left). For each point s ∈ B, choose a reference point r(s) ∈ R2

on the ray −→os in conv(A) \ conv(B) sufficiently close to point s, and lying in
the interior of a tile. Note that the convex tile containing o cannot contain any
reference points. We claim that any tile contains at most 2 reference points. This
immediately implies g2(S) ≥ 1 + �(n− 3)/2� = �(n− 1)/2�.

Suppose, to the contrary, that a tile τ contains 3 reference points r1, r2, r3,
corresponding to the points s1, s2, s3. Refer to Figure 2. Note that o cannot be
in the interior of τ , otherwise τ would contain all points s1, s2, s3 in its inte-
rior. Hence conv{o, s1, s2, s3} is a quadrilateral, and conv{o, r1, r2, r3} is also a



Minimum Convex Partitions and Maximum Empty Polytopes 217

o
s1

s2

s3

r1

r2

r3

Fig. 2. Left: Lower bound construction in R2. Right: Points in general position on a
saddle surface in R3.

quadrilateral, since the reference points are sufficiently close to the corresponding
points in B. We may assume w.l.o.g. that vertices of conv{o, s1, s2, s3} are o, s1,
s2, s3 in counterclockwise order. Then s2 lies in the interior of conv{o, r1, r2, r3}.
We conclude that every tile τ contains at most 2 reference points, as required.

Lower bounds for d ≥ 3. A similar construction works in for any d ≥ 2, but
the lower bound no longer matches the upper bound gd(n) ≤ �(n − 1)/d� for
d ≥ 3.

Recall that a Horton set [16] is a set S of n points in the plane such that the
convex hull of any 7 points is non-empty. Valtr [23] generalized Horton sets to d-
space. For every d ∈ N, there exists a minimal integer h(d) with the property that
for every n ∈ N there is a set S of n points in general position in Rd such that the
convex hull of any h(d) + 1 points in S is non-empty. It is known that h(2) = 6,
and Valtr proved that h(3) ≤ 22, and in general that h(d) ≤ 2d−1(N(d− 1)+1),
where N(k) is the product of the first k primes.

We construct a set S of n ≥ d + 1 points in Rd as follows. Let S = A ∪ B,
where A is a set of d+1 points in general position in Rd, and B is a generalized
Horton set of n− (d+1) points in the interior of conv(A), such that the interior
of any h(d) + 1 points from B contains some point in B.

Consider an arbitrary convex Steiner partition of S. Every point b ∈ B is
in the interior of conv(S), and so it lies on the boundary of at least 2 convex
tiles. For each b ∈ B, place two reference points in the interiors of 2 distinct
tiles incident to b. Every tile contains at most h(d) reference points. Indeed, if
a tile contains h(d) + 1 reference points, then it is incident to h(d) + 1 points in
B, and some point of B lies in the interior of the convex hull of these points, a
contradiction.

We have 2(n− d− 1) reference points, and every tile contains at most h(d) of
them. So the number of tiles is at least �2(n− d− 1)/h(d)�.
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3 Approximating the Minimum Convex Steiner Partition
in R2

In this section we prove Theorem 2 by showing that our simple-minded algorithm
A1 from Section 2 achieves a constant-factor approximation in the plane if the
points in S are in general position.

Approximation Ratio. Recall that algorithmA1 computes a Steiner partition
of conv(S) into at most 1+�i/2� parts, where i stands for the number of interior
points of S. If i = 0, the algorithm computes an optimal partition, i.e., ALG =
OPT = 1. Assume now that i ≥ 1. Consider an optimal convex Steiner partition
Π of S with OPT tiles. We construct a planar multigraph G = (V,E) as follows.
The faces of G are the convex tiles and the exterior of conv(S) (the outer face).
The vertices V are the points in the plane incident to at least 3 faces (counting
the outer face as well). Since i ≥ 1, G is non-empty and we have |V | ≥ 2.
Each edge in E is a Jordan arc on the common boundary of two faces. An edge
between two bounded faces is a straight line segment, and so it contains at most
two interior points of S. An edge between the outer face and a bounded face
is a convex arc, containing hull points from S. Double edges are possible if two
vertices of the outer face are connected by a straight line edge and a curve edge
along the boundary—in this case these two parallel edges bound a convex face.
No loops are possible in G. Since Π is a convex partition, G is connected.

Let v, e, and f , respectively, denote the number of vertices, edges, and bounded
(convex) faces of G; in particular, f = OPT. By Euler’s formula for planar multi-
graphs, we have v−e+f = 1, that is, f = e−v+1. By construction, each vertex of
G is incident to at least 3 edges, and every edge is incident to two vertices. There-
fore, 3v ≤ 2e, or v ≤ 2e/3. Consequently, f = e− v+1 ≥ e− 2e/3+1 = e/3+1.
Since S is in general position, each straight-line edge of G contains at most
2 interior points from S. Curve edges along the boundary do not contain in-
terior points. Hence each edge in E is incident to at most two interior points
in S, thus i ≤ 2e. Substituting this into the previous inequality on f yields
OPT = f ≥ e/3 + 1 ≥ i/6 + 1. Comparing this lower bound with the upper
bound ALG ≤ �i/2�+ 1, we conclude that

ALG

OPT
≤ �i/2�+ 1

i/6 + 1
≤ 3

i+ 3

i+ 6
< 3,

and the approximation ratio of 3 follows.

Tightness of the Approximation Ratio.We first show that the above ratio 3
is tight for Algorithm A1. We construct a planar point set S as follows. Consider
a large (say, hexagonal) section of a hexagonal lattice. Place Steiner vertices at
the lattice points, and place two points in S on each lattice edge. Slightly perturb
the lattice, and add a few more points in S near the boundary, and a few more
Steiner points, so as to obtain a convex Steiner partition of S with no three
points collinear. Denote by v, e, and f , the elements of the planar multigraph
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G as before. Since we consider a large lattice section, we have v, e, f → ∞. We
write a ∼ b, whenever a/b → 1. As before, we have f + v = e + 1, and since
each non-boundary edge is shared by two convex faces, we have e ∼ 6f/2 = 3f .
By construction, i ∼ 2e ∼ 6f , hence f ∼ i/6. Therefore the convex partition
constructed above has f ∼ i/6, while Algorithm A1 constructs one with about
i/2 faces. Letting e → ∞, then i → ∞, and the ratio ALG/OPT approaches 3
in the limit: ALG/OPT ∼ (i/2)/(i/6) = 3.

Time Analysis. It is easy to show that AlgorithmA1 runs inO(n log n) time for
a set S of n points in the plane. We employ the semi-dynamic (delete only) convex
hull data structure of Hershberger and Suri [15]. This data structure supports
point deletion inO(log n) time, and uses O(n) space andO(n log n) preprocessing
time. We maintain the boundary of a convex polygon R in a binary search tree,
a set B ⊂ S of points lying in the interior of R, and the convex hull conv(B)
with the above semi-dynamic data structure [15]. Initially, R = conv(S), which
can be computed in O(n logn) time; and B ⊂ S is the set of interior points. In
each round of the algorithm, consider the supporting line H of an arbitrary edge
e of conv(B) such that B lies in the halfplane H+. The two intersection points
of H with the boundary of R can be computed in O(log n) time. At the end of
the round, we can update B ← B \H and conv(B) in O(k logn) time, where k
is the number of points removed from B; and we can update R ← R ∩ H+ in
O(log n) time. Every point is removed from B exactly once, and the number of
rounds is at most �(n− 3)/2�, so the total update time is O(n logn) throughout
the algorithm.

Remark. Interestingly enough, in dimensions 3 and higher, Algorithm A1 does
not give a constant-factor approximation. For every integer n, one can construct
a set S of n points in general position in R3 such that i = n − 4 of them
lie in the interior of conv(S), but the minimum convex Steiner partition has
only O(

√
n) tiles. In contrast, Algorithm A1 computes a Steiner partition with

i/3 = (n− 4)/3 convex tiles.
We first construct the convex tiles, and then describe the point set S. Specif-

ically, S consists of 4 points of a large tetrahedron, and 3 points in general
position on the common boundary of certain pairs of adjacent tiles.

Let k = �
√
(n− 4)/3�. Place (k+1)2 Steiner points (a, b, a2−b2) on the saddle

surface z = x2 − y2 for pairs of integers (a, b) ∈ Z2, −�k/2� ≤ a, b ≤ �k/2�. The
four points {(x, y, x2 − y2) : x ∈ {a, a+ 1}, y ∈ {b, b+ 1}} form a parallelogram
for every (a, b) ∈ Z2, −�k/2� ≤ a, b ≤ �k/2�− 1. Refer to Figure 2(right). These
parallelograms form a terrain over the region {(x, y) : −�k/2� ≤ x, y ≤ �k/2�}.
Note that no two parallelograms are coplanar. Subdivide the space below this
terrain by vertical planes x = a, −�k/2� ≤ a ≤ �k/2�. Similarly, subdivide the
space above this terrain by planes y = b, −�k/2� ≤ b ≤ �k/2�. We obtain 2k
interior-disjoint convex regions, k above and k below the terrain, such that the
common boundary of a region above and a region below is a parallelogram of
the terrain. The points in R3 that do not lie above or below the terrain can be
covered by 4 convex wedges.
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Enclose the terrain in a sufficiently large tetrahedron T . Clip the 2k convex
regions and the 4 wedges into the interior of T . These 2k + 4 convex bodies
tile T . Choose 3 non-collinear points of S in each of the k2 parallelograms, such
that no 4 points are coplanar and no 2 are collinear with vertices of T . Let the
point set S be the set of 4 vertices of the large tetrahedron T and the 3k2 points
selected from the parallelograms.

4 Approximating the Maximum Empty Convex Body

Let S be a set of points in the unit cube [0, 1]d ⊆ Rd. Our task is to approximate
the largest convex body C ⊆ [0, 1]d that contains no points of S in its interior.
Let Copt = Copt(S) denote this body, and let volopt(S) denote its volume.

As mentioned in the Introduction (see also Theorem 1), vol(Copt) ≥ Ω(1/n).

The diameter of Copt is bounded from above by
√
d, and its width is bounded

from below by 1/(n + 1). By John’s ellipsoid theorem [19], for any compact
convex body C in Rd there exists an ellipsoid E such that E ⊆ C ⊆ dE where
we denote by kE the ellipsoid E scaled up by a factor of k and having the same
center as E . It follows that vol(C) /dd ≤ vol(E) ≤ vol(C). We need the following
well-known fact; see [7] for a proof.

Lemma 1. Every ellipsoid in Rd contains at most d2 + d points in general po-
sition.

Lemma 2. Assume that E ⊆ [0, 1]d is an ellipsoid, and vol(E) ≥ ρ. Then,
one can compute a set Q of O(1/ρ log(1/ρ)) points such that, with probability
≥ 1− (ρ/2)O(1), one of the points of Q lies in E/2.

Proof. Observe that ellipsoids in Rd have bounded V C dimension (see [18] for
basic definitions). Indeed, by Lemma 1 an ellipsoid has at most d2 + d points of
S on its boundary. Now, given an ellipsoid we transform it continuously into an
equivalent ellipsoid containing the same set of points, while having a maximum
number of points on its boundary. As such, its shattering dimension is bounded
by O(d2), thus its V C dimension is bounded by d′ = O(d2 log d). (It is likely
that a better bound on the V C dimension is possible by being more careful.)

By the ε-net theorem [18, Ch. 5.2], a sample Q of size O(d′/ρ log 1/ρ) will
hit any ellipsoid in the unit cube with volume ≥ ρ/2d with high probability. In
particular, this sample hits E/2. ��

4.1 Handling the Large Volume Case

In the following, assume that m > 0 is some integer, and consider the grid point

set G(m) =
{
(i1, . . . , id)/m

∣∣∣ i1, . . . , id ∈ {0, 1, . . . ,m}}. Let S ⊆ [0, 1]d be a

point set such that volopt(S) ≥ μ, where μ is some constant, and let Copt be
the corresponding largest empty convex body in [0, 1]d. Given a grid G(m), we
call conv(Copt ∩G(m)) the discrete hull of Copt [14]. We need the following easy
lemma.
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Lemma 3. Let C ⊆ [0, 1]d be a convex body and D = conv(C ∩G(m)). Then we
have vol(C) − vol(D) = O(1/m), where the constant of proportionality depends
only on d.

Proof. Consider a point p ∈ C \D and the set of 2d points X = {p± 2(d/m)ei},
where ei is the unit vector having one in the ith coordinate, and 0 everywhere
else. If one of the points of X is outside C, then the distance from p to the
boundary of C is at most 2d/m. Otherwise, the cube p+[−2, 2]d/m is contained
in the “diamond” conv(X), which is in turn contained in C. But then, the grid
points of the grid cell of G(m) containing p are in C, and p cannot be outside
D. We reached a contradiction.

It follows that all the points of the corridor C \ D are at distance at most
2(d/m) from the boundary of C. The volume of the boundary of C is bounded
by the volume of the boundary of the unit cube, namely 2d. As such, the volume
of this corridor is vol(∂C)O(d/m) ≤ (2d)(2d/m) = O(d2/m). For a fixed d, this
is O(1/m), as claimed. ��

Lemma 3 implies that if volopt(S) ≥ μ, where μ is some constant, then we can
concentrate our search on convex polytopes that have their vertices at grid points
in G(m), where m = O(1/εμ).

4.2 Finding a Large Empty Convex Polygon

We first re-derive a result of Eppstein et al. [9] concerning an exact algorithm
for a related problem, with a simple proof.

Lemma 4. Given a set S of n points and a set Q of m points in the plane, one
can compute a convex polygon of the largest area with vertices in S that does not
contain any point of Q in its interior in O(n3m+ n4) time. The algorithm has
the same running time if Q is a set of m forbidden rectangles.

Proof. The algorithm works by dynamic programming. First, we compute for
all triangles with vertices from S whether they contain a forbidden point inside
them; trivially this can be done in O(n3m) time. We then build a directed
graph G on the allowable triangles, connecting two triangles Δ and Δ′ if they
share their left endpoint, are interior disjoint, share an edge, and their union
forms a convex quadrilateral. We orient the edge from the triangle that is most
counterclockwise (around the common vertex) to the other triangle. All edges
are oriented “upwards”, so G is a directed acyclic graph (DAG). Observe that
G has O(n3) vertices (allowable triangles) and the maximum out-degree in G is
bounded from above by n.

The weight of a vertex corresponding to a triangle is equal to its area. Clearly,
a convex polygon corresponds to a path in G, namely the triangulation of the
polygon from its leftmost vertex, and its weight is the area of the polygon.
Finding the maximum weight path can be done in linear time in the size of the
DAG; see e.g., [6, Section 4.7]. G has O(n3) vertices and O(n4) edges, and as
such the overall running time is O(n3m+ n4). ��
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Lemma 5. Given a set S ⊆ [0, 1]2 of n points, such that volopt(S) ≥ ρ, and a
parameter ε > 0, one can compute an empty convex body C ⊆ [0, 1]2 such that
vol(C) ≥ (1−ε)volopt(S). The running time of the algorithm is O

(
n+ 1/(ερ)8

)
.

Proof. Consider the grid G(m). By Lemma 3 we can restrict our search to a grid
polygon. Going a step further, we mark all the grid cells containing points of S
as forbidden. Arguing as in Lemma 3, one can show that the area of the largest
convex grid polygon avoiding the forbidden cells is at least volopt(S) − c/m,
where c is some constant.

We now restrict our attention to the task of finding this largest polygon. We
have a set Q of O(m2) grid points that might be used as vertices of the grid
polygon, and a set of O(m2) grid cells that can not intersect the interior of
the computed polygon. Using Lemma 4 finding the largest empty polygon takes
O(m8) time. Setting m = 1/ερ, we get an algorithm with overall running time
O
(
n+ 1/(ερ)8

)
. ��

4.3 The Higher Dimensional Case

Lemma 6. Given a set S ⊆ [0, 1]d of n points, such that volopt(S) ≥ μ, and a
parameter ε > 0, one can compute an empty convex body C ⊆ [0, 1]d, such that

vol(C) ≥ (1−ε)volopt(S). The running time of the algorithm is O
(
n+m2d2m

d
)
,

where m = O(1/εμ).

Proof. Consider the grid G(m). Let X be the set of all the grid cells of G(m)
that contain points from S. Observe that |X | = O(md). Next, let S′ be the set of
all grid points of G(m). Enumerating over all possible subsets of the grid points

S′ generates 2m
d

candidate sets. Checking if such a convex hull intersects the
interior of a specific forbidden cell in X can be done in linear time, that is, in
O(md) time. Therefore, checking if such a candidate set convex hull is a valid
solution, takes O

(
m2d

)
time. Returning the subset with the largest hull volume

found yields the desired approximation. ��

4.4 Better Approximations

Lemma 7. Given a set S ⊆ [0, 1]2 of n points with volopt(S) ≥ ρ and param-
eters δ, ε > 0, one can compute an empty convex body C ⊆ [0, 1]2 such that
vol(C) ≥ (1 − ε)volopt(S) with probability at least 1 − δ. The running time of

the algorithm is O
(

n log2 n
ερ

(
logn+ 1

ε8

)
log 1

δρ

)
. For a fixed δ, the running time

is O
(
n2 log3 n ε−1

(
log n+ ε−8

))
.

Proof. Let E be an ellipse of maximum area contained inside Copt = Copt(S).
As suggested by Lemma 2, let R be a random sample of O(1/ρ log(1/δρ)) points
from [0, 1]2. With probability ≥ 1 − δ this sample hits E/2. The intuitive idea
is now to guess a copy of E/2 and center it at one of the points of R ∩ E/2. In
particular, let p ∈ R be the guess for the desired center of this ellipse. Naturally,



Minimum Convex Partitions and Maximum Empty Polytopes 223

to guess the ellipse itself, we need to guess the lengths of the two axes of E/2,
and their orientation.

Since the shortest axis of E/2 has length at least 1/8n, and the maximum
length axis has length at most

√
2, it follows that if we want to guess the lengths

of the two axes, up to a factor of two, we need to consider only O(log2 n)
possibilities. Indeed, we consider the canonical lengths �i = 2i/8n, for i =
0, . . . , �log2(8n)�.

Consider now the bounding box of the guessed ellipse F (we do not know
its orientation yet). Scale it up by a factor of 4 so that its contains Copt. Let
B be the resulting box fixed in the right orientation. We can apply Lemma 5
to B (as the unit square) to get the desired approximation. The polygon Copt

occupies a constant fraction of the area of B, and as such the resulting running
time is O(n + 1/ε8). Note that the algorithm of Lemma 5 partitions B into a
grid with O(1/ε2) cells. The approximation algorithm cares only about which
cells are empty or not.

Since we do not know the orientation of B, perform a rotational sweeping
algorithm [5], rotating B around p. Whenever a point of S moves form one grid
cell to another in the grid of B, stop and recompute the optimal solution. We
have O(n/ε) such events during the sweeping process, and an update requires
O(1/ε8) time to handle. Hence the running time for computing this polygon for
p is O((n/ε) logn+ n/ε9).

Since we have to repeat this for all the points in the random sample R, and
all ellipse axes, the overall running time is

O

(
n log2 n

ερ

(
logn+

1

ε8

)
log

1

δρ

)
.

Since ρ = Ω(1/n), for a fixed δ, the above expression is bounded by
O
(
n2 log3 n ε−1

(
logn+ ε−8

))
, as claimed. ��

By doing an exponentially decreasing search for ρ, the running time increases
only by a constant factor (this is a geometrically decreasing series, hence the
term with the last value of ρ dominates the whole running time). We summarize
our result for the plane in the following. Observe that if ρ = Ω(1) the running
time of this planar algorithm is near linear in n.

Theorem 4. Given a set S ⊆ [0, 1]2 of n points and parameters ε, δ > 0,
one can compute an empty convex body C ⊆ [0, 1]2, such that vol(C) ≥ (1 −
ε)volopt(S) with probability at least 1− δ. The running time of the algorithm is

O
(

n log2 n
ερ

(
logn+ 1

ε8

)
log 1

δρ

)
, where ρ = volopt(S). For a fixed δ, the running

time is O
(
n2 log3 n ε−1

(
logn+ ε−8

))
.

In higher dimensions we obtain the following (see [7] for proof details).
Theorem 3. Given a set S of n points in [0, 1]d, one can (1 − ε)-approximate
the maximum volume empty convex body in [0, 1]d. The running time of the
approximation algorithm is

O
(
n1+d(d−1)/22O(1/ε

d) logd n
)
.
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Abstract. Christofides’ algorithm is a well known approximation algo-
rithm for the metric travelling salesman problem. As a first step towards
obtaining an average case analysis of Christofides’ algorithm, we provide
a probabilistic analysis for the stochastic version of the algorithm for
the Euclidean traveling salesman problem, where the input consists of n
randomly chosen points in [0, 1]d. Our main result provides bounds for
the length of the computed tour that hold almost surely. We also provide
an experimental evaluation of Christofides’s algorithm.

1 Introduction

The Traveling Salesman Problem, TSP for short, is a well-known NP-hard com-
binatorial optimization problem. For general edge weights, it is even NP-hard
to find any sub-exponential approximation, see e.g. [10]. One natural restriction
is the case where the edge weights fulfill the triangle inequality. The problem
remains NP-hard (and APX-hard) for this restriction as well, but constant factor
approximation algorithms are well known, like Christofides’ algorithm [6] or the
tree doubling algorithm [7]. Euclidean Traveling Salesman Problem (ETSP for
short) is the restriction of metric TSP, where the vertices of the graph are points
in Rd and the edge weights are the Euclidean distances between them. ETSP is
also NP-hard to compute exactly, however efficient approximation schemes are
known [1,13].

There has been a lot of interest to understand the asymptotic behavior of
Euclidean combinatorial optimization problems, in particular ETSP. In their
seminal paper [4], Beardwood, Halton and Hammersley performed a probabilistic
analysis, where they showed the following remarkable result:

Theorem 1. Let d ≥ 2. Let U1, . . . , Un be n independent uniformly distributed
random points over [0, 1]d. There exists a constant γETSP = γETSP(d) > 0 such
that almost surely

lim
n→∞

ETSP(U1, . . . , Un)

n(d−1)/d
= γETSP.
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In words, the authors of [4] showed that when we draw n points uniformly at
random from [0, 1]d, the cost of an optimal tour is almost surely asymptotically
equal to γETSP n

(d−1)/d. Later on, this result was generalized to many other
problems on Euclidean spaces, like the minimum spanning tree problem [17]. In
particular, Steele [16] provided a general framework that provides similar results
for all Euclidean functionals that are sub-additive (see Definition 1).

Motivated by the result of Beardwood et al., Karp [12] gave a partitioning
heuristic for ETSP that runs in polynomial time and asymptotically outputs an
optimal tour with probability 1 over points uniformly sampled from [0, 1]d. Start-
ing with Karp’s work, there has been a lot of interest in the probabilistic analysis
of heuristic algorithms for Euclidean optimization problems. For instance, Avis,
Davis, and Steele [2] showed complete convergence for the greedy algorithm for
the Euclidean minimum matching problem and Goemans and Bertsimas [9] pro-
vided the almost sure asymptotics for the Held-Karp relaxation of ETSP. For
an overview of further results, we refer to [8,18,19,3].

In this paper we study Christofides’ algorithm, a popular heuristic for metric
TSP. It starts with computing a minimum spanning tree and then a minimum
matching on the odd-degree vertices. In the resulting graph, every node has even
degree and therefore, the graph is Eulerian. We obtain a TSP tour by taking
shortcuts in the Eulerian tour. For arbitrary metrics, Christofides’ algorithm
achieves a 3/2-approximation.

Despite its worst case approximation ratio of 3/2, Christofides’ algorithm
is known to perform better in practice. Analyzing Christofides’ algorithm on
random point sets has been an open problem, as posed by Frieze and Yukich in
2002 [8]. In this work, we introduce the functional CHR as the sum of cost of a
minimum spanning tree and a minimum matching on the odd-degree vertices of
the minimum spanning tree (see Section 3). Clearly, CHR serves as a worst case
upper bound on the cost of the tour computed by Christofides’ algorithm. We
prove:

Theorem 2. Let d ≥ 2. Let U1, . . . , Un be n i.i.d. uniformly distributed random
points over [0, 1]d. There exists a constant γCHR = γCHR(d) > 0 such that almost
surely

lim
n→∞

CHR(U1, . . . , Un)

n(d−1)/d
= γCHR.

As a main ingredient in our proof, we show that the functional CHR satisfies
a weak form of geometric sub-additivity (see Definition 2). Then we show that
the techniques developed by Steele [16] can be extended to weakly sub-additive
functionals.

Note that this result for Christofides’ algorithm is not a consequence of the
results known for Euclidean minimum spanning trees and Euclidean minimum
matching, for the matching computed by the Christofides’ algorithm depends
on the odd degree vertices in the minimum spanning tree. Moreover, it is not
clear if Christofides’ functional is sub-additive, and thus it is not possible to
apply known methods. However, we show that Christofides’ functional fulfills a
weaker property, which is still strong enough to obtain the desired results. A
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related approach to overcome the limitations of the classical methods was taken
by Baltz et al. [3], who studied a routing problem with multiple depots.

Before we proceed with the proofs we comment on the values of the con-
stants γETSP and γCHR in Theorems 1 and 2. It is well-known that the worst-case
approximation ratio of Christofides’ algorithm is 3/2. On the other hand, the the-
orems above imply that the approximation ratio is at most γCHR/γTSP on almost
all pointsets. It is an intriguing question whether this ratio is < 3/2. However,
a numerical or analytical evaluation seems from a current perspective very dif-
ficult: although numerous efforts have been made in the past, see e.g. [14,5,11]
and many references therein, the constant γETSP is not known exactly. Similarly,
as in all previous proofs regarding the asymptotic behavior of Euclidean func-
tionals, our proof does not provide any way of computing the value of γCHR. On
the positive side, our experimental evaluation on random points shows that γCHR

is strictly below 1.5, even without shortcutting (see Section 5).

2 Preliminaries

Most of the notations used here are from [19]. In this paper the distance between
two points in [0, 1]d is always the Euclidean distance.

Euclidean Functionals. Let d > 1 be a fixed dimension. An Euclidean functional
in dimension d is a function f that maps any finite point set X ⊂ Rd to a positive
real number f(X). We use the following Euclidean functionals in the paper:

– TSP(X) = total edge weight of a minimum Euclidean traveling salesman
tour of X .

– MM(X) = total edge weight of a minimum weight Euclidean perfect match-
ing of X . (If |X | is odd, then one point will be left unmatched.)

– MST(X) = total edge weight of a minimum Euclidean spanning tree of X .

Following standard notation, for an Euclidean functional f and a hypercube
H ⊂ Rd, f(.,H) will denote the restriction of f , when the points are restricted
to H. In other words, for any point set X we have that f(X,H) = f(X ∩H). We
define certain properties of Euclidean functionals that will be used throughout.

An Euclidean functional f ismonotone if for every F ⊆ G, f(F,H) ≤ f(G,H).
Moreover, f is said to be homogeneous if

∀α > 0 : f(αF, αH) = α · f(F,H),

where αX = {αx : x ∈ X} for any X ⊆ Rd. We will say that f is translation
invariant if

∀ a ∈ Rd : f(F,H) = f(F + a,H+ a)

where X + a = {x + a : x ∈ X} for X ⊆ Rd. We say that f admits a growth
bound, if there is a constant C > 0 such that

f(F, [0, 1]d) ≤ C|F |(d−1)/d, (1)
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Finally, f is called smooth if there is a constant C such that for all F,G ⊂ [0, 1]d,

|f(F ∪G, [0, 1]d)− f(F, [0, 1]d)| ≤ C|G|(d−1)/d. (2)

A further important property of Euclidean functionals is sub-additivity.

Definition 1 (Sub-additivity). Let Q1, . . . , Qmd be a partition of [0, 1]d into
equal-sized sub-cubes of edge m−1 each. Then f is sub-additive if there is a
C = C(d) ≥ 0 such that for m ∈ Z+,

f(F, [0, 1]d) ≤
md∑
i=1

f(F,Qi) + Cmd−1. (3)

Sub-additivity is the one of the most important properties used in several studies
of Euclidean functionals, in particular TSP,MM, and MST, see [8,19] for an
excellent survey.

Proposition 1. The Euclidean functionals TSP,MM, and MST are homoge-
neous, translation invariant, smooth, sub-additive, and admit a growth bound.

The Christofides’ functional is not sub-additive. However, we define a weaker
property that turns out to be sufficient for our analysis of the Christofides’
functional.

Definition 2 (Weak Sub-additivity). Let Q1, . . . , Qmd be a partition of the
unit box [0, 1]d into equal-sized sub-cubes of edge m−1 each. Then, f is said to
be weakly sub-additive, if there are constants C = C(d), C′ = C′(d) ≥ 0 and
ε = ε(d) > 0 such that for m ∈ Z+,

f(F, [0, 1]d) ≤
md∑
i=1

f(F,Qi) + Cn((d−1)/d)−εmε + C′md−1. (4)

We will use the following (folklore) facts about Euclidean minimum matching.
We give a simple proof for completeness.

Lemma 1. Let A,B ⊂ [0, 1]d be two finite, disjoint sets of points with even
cardinality. Then

MM(B) ≤ MM(A ∪B) +MM(A)

Proof. Let M be a minimum matching of A∪B and M1 be that of A. Consider
the graph G = (A ∪ B,M1 ∪M2). For every u ∈ B, there is a unique path Pu

originating at u. Moreover, Pu ends at some u′ ∈ B, and all the remaining
vertices in P are from A. This gives a matching for B of the required cost.

Lemma 2 (Folklore). Let T be a MST of n points. Then the cost of minimum
matching on the odd-degree vertices of T is bounded by MST(T ).

Further Notation. If S is any collection of edges in a graph, and v is a vertex
then ΔS(v) denotes the degree of v in the sub-graph induced by S. Moreover,
we will write ‖S‖ for the sum of the lengths of the edges in S.
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3 Proof of the Main Result

In this section we present the main steps that are needed to achieve the proof of
Theorem 2.We begin with defining the Euclidean functional given by Christofides
algorithm. For any point set F ⊂ [0, 1]d let CHR(F ) denote the cost of a mini-
mum spanning tree T of the points in F plus the cost of a minimum matching
of the odd-degree points in T . In symbols, we write

CHR(F )
�
= MST(F ) + OM(F )

whereOM(F ) denotes the cost of a minimummatching on the odd degree vertices
in the minimum spanning tree. When F has more than one minimum spanning
trees, CHR(F ) is defined as the minimum over all such trees. However, we will
not consider such exceptional cases in our analysis, since the spanning tree of a
random point set is unique.

Note that strictly speaking, the functional CHR defined above does not mea-
sure the length of the tour obtained by Christofides’ algorithm, as we ignore
shortcuts. This is done in order to have more structure in the functional CHR,
even though it weakens the analysis a bit.

The first step in our proof is to establish the following lemma about the
structure of the functional CHR. It is the main contribution of our paper, and it
is proved in Section 4.

Lemma 3. The Euclidean functional CHR is homogeneous, translation invari-
ant, smooth, and admits a growth bound. Moreover, it is weakly sub-additive.

With this fact at hand, we proceed with proving a general result that deter-
mines the asymptotic value of the expectation of a weakly sub-additive Euclidean
functional. This result, together with the proof, are generalizations of the cor-
responding theorems that hold for sub-additive functionals only, and thus they
can be applied to a wider class of functions. Due to space limitations, the proof
is omitted.

Theorem 3. Let d ≥ 2. Let f be a smooth, weakly sub-additive Euclidean func-
tional that admits a growth bound. There is a γf = γf (d) such that if U1, . . . , Un

are uniform i.i.d over [0, 1]d, then

lim
n→∞

E [f(U1, . . . , Un)]

n(d−1)/d
= γf .

Together with Lemma 3, the above theorem implies that there is a γCHR ≥ 0
such that

E [CHR(U1, . . . , Un)] = (1 + o(1)) · γCHR · n(d−1)/d. (5)

However, as γMST > 0, see [8], we also obtain that γCHR > 0.
Note that the above collection of arguments almost shows Theorem 2. To

complete the proof it remains to show that CHR(U1, . . . , Un) is typically very
close to its expected value. This is performed by the next well-known result,
which follows immediately from the arguments exposed in [15].
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Theorem 4. Let f be a homogeneous, translation invariant and smooth Eu-
clidean functional. Suppose that there is a γf = γf (d) such that

lim
n→∞

E[f(U1, . . . , Un)]

n(d−1)/d
= γf .

Then there is a C = C(d) > 0 such that for sufficiently large n

P [|f(U1, . . . , Un)− E[f(U1, . . . , Un)]| > t] ≤ exp

{
−C t2d/(d−1)

n

}
.

Theorem 2 is then a direct consequence of (5) together with Lemma 3 and the
above result, which we apply with, say, t = n2(d−1)/3d = o(n(d−1)/d).

4 Christofides’ Functional

This section is devoted to the proof of Lemma 3. We start with proving all the
properties except for the weak sub-additivity of it.

Lemma 4. CHR is a homogeneous, translation invariant, smooth Euclidean
functional that admits a growth bound.

Proof. As translation or scaling does not change the relative distances between
the points, CHR is homogeneous and translation invariant. The growth bound
can be obtained by that of MST and minimum matching, see [8,19].

We now argue that CHR is also smooth. Let D(d) denote the bound on the
maximum degree in any Euclidean minimum spanning tree of a d-dimensional
pointset. Note that D(d) depends only on d. Let F,G ⊂ [0, 1]d be any finite sets
of points. Let T be a minimum spanning tree of F and O ⊆ F denote the set of
odd-degree points in T . Let T ′ be the minimum spanning tree of F ∪G, obtained
by iteratively adding points from G, one at a time, and then adding/removing
necessary edges to/from T . Let us examine the first step in the above procedure.
Let v ∈ G, and let T1 be a minimum spanning tree of F ∪ {v}. Then by the
degree bound on the Euclidean minimum spanning tree, v can have at most D(d)
incident edges in any MST of F ∪ {v}. For each such edge there is at most one
edge in T that has to be removed to ensure the acyclicity of T1. So, each edge
incident to v can affect the degrees of at most 3 points. Thus, the degrees of
at most 3D(d) points in T1 are different from that in T , and we infer that in
total at most 3D(d)|G| points will have their degrees in T ′ different from that
in T . Let O′ denote the set of odd degree vertices in T ′. The above discussion
guarantees that

||O| − |O′|| ≤ 3D(d)|G|.

As O ∩O′ and O \O′ form a partition of O, we have:

MM(O) ≤ MM(O ∩O′) +MM(O \O′) + t1, (6)
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where t1 is the cost of a single edge if |O ∩ O′| is odd and zero otherwise. By
Lemma 1 with B = O ∩O′, A = O′ \ (O ∩O′) (hence A ∪B = O′),

MM(O ∩O′) ≤ MM(O′) +MM (O′ \ (O ∩O′)) .

Substituting in (6), and using that |O \ O′|, |O′ \ (O ∩ O′)| ≤ 3D(d)|G| and
MM(X) = O(|X |(d−1)/d) for any pointset X ⊂ [0, 1]d

MM(O) ≤ MM(O′) +MM(O \O′) +MM (O′ \ (O ∩O′)) + t1

≤ MM(O′) + 3(3D(d)|G|)(d−1)/d

By interchanging the roles of O and O′ in the above argument, we can show
similarly that

MM(O′) ≤ MM(O) +MM(O′ \O) +MM(O \O′) + t2

where t2 is the cost of a single edge in [0, 1]d . Hence,

MM(O′) ≤ MM(O) + 3(3D(d)|G|)(d−1)/d

Thus we have shown that there is a C = C(d) > 0 such that

OM(F )− C|G|(d−1)/d ≤ OM(F ∪G) ≤ OM(F ) + C|G|(d−1)/d. (7)

By the definition of CHR and the triangle inequality, we have

|CHR(F )− CHR(F ∪G)| ≤ |MST(F )−MST(F ∪G)|+ |OM(F )− OM(F ∪G)|.

As MST is a smooth functional, |MST(F ) − MST(F ∪ G)| = O(|G|(d−1)/d).
Combining this with (7) then proves the claim.

We cannot show that CHR is sub-additive. However, we show that it satisfies
a weaker form of subadditivity, which, however, is sufficient for our purposes.

Lemma 5. CHR is weakly sub-additive.

Before proving Lemma 5, we prove some of the structural properties of Euclidean
minimum spanning trees and minimum matchings.

Notation. We use the following notation in Lemmas 6 and 7. Let T be a minimum
spanning tree of a finite point set F ⊂ [0, 1]d. Let Q1, . . .Qmd be the partitioning
of [0, 1]d into sub-cubes side length m−1 each. An edge e = (u, v) in T is called
a boundary edge, if u ∈ Qi and v ∈ Qj , where i �= j. A boundary edge (u, v)
of T is called short, if Qi ∩ Qj �= ∅. We shall say that Qi and Qj are adjacent
in this case. Every boundary edge that is not short will be denoted as long. A
point v ∈ F is said to be a boundary point, if it is incident to at least one of
the boundary edges of T . Let B denote the set of boundary points of T that
are incident on short edges. Let Bi = B ∩ Qi. Let r ≤ m−1 be a parameter
to be chosen later. Let Qi and Qj be two adjacent sub-cubes, and Bi,j denote
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the boundary between them (i.e, a sub-cube in dimension at most d − 1). Let
C1, . . . , Ct denote the partitioning of Bi,j into sub-cubes of side length r each.

As
∑t

k=1 Vol(Ci) = Vol(Bi,j) ≤ m−(d−1), we have

t ≤ m−(d−1)/rd−1. (8)

For 1 ≤ k ≤ t, let Ci,k (resp. Cj,k) denote the hyper-rectangle in Qi (resp. Qj)
with Ck as one of its base face.

Lemmas 6 and 7 provide some structural properties of B. The proof of the
next statement is not very difficult and can be found in the Appendix.

Lemma 6. With the notations above, suppose that AB and CD are two bound-
ary edges such that A,D ∈ Ci,k and B,C ∈ Cj,k′ for some 1 ≤ k, k′ ≤ t. Then, at

least one point each from {A,D} and {B,C} is at distance at most
√
dr to Bi,j.

Corollary 1. Let Qi and Qj be two adjacent sub-cubes. Then there are at

most t2 boundary edges between points in Qi and Qj of length more than 2
√
dr.

Proof. By Lemma 6, for a sub-rectangle Ci,k, there are at most t boundary

points in Qj at a distance of at least
√
dr from the boundary. As there are t such

rectangles Ci,k, we get the desired bound.

In Lemma 7 below, we bound the cost of a minimum spanning tree or a minimum
matching for the points in Bi. (See Appendix for a proof.)

Lemma 7. Suppose ni = |Qi ∩ F | ≥ 1. There is an ε = ε(d) > 0 such that the
cost of a minimum matching or a minimum spanning tree of any subset of points

in Bi is O(m−1n
((d−1)/d)−ε
i ).

We also bound the total edge length of long boundary edges in T . (See Appendix
for a proof.)

Lemma 8. The total length of all long boundary edges in T is O(md−1).

Proof (of Lemma 5). Let T be a minimum spanning tree of F . Let O denote
the set of odd degree points in T . Let Ti denote the restriction of T to Qi

obtained by removing the edges incident to points outside Qi. Let T
′
i denote a

minimum spanning tree for Fi = F ∩Qi obtained by adding necessary edges to
Ti. Let Si = E(T ′

i )\E(Ti). Let O
′
i denote the set of odd degree points in T ′

i . Let
Oi = O ∩Qi. By definition, CHR(F, [0, 1]d) = ‖T ‖+MM(O). We need to prove

CHR(F, [0, 1]d) ≤
md∑
i=1

CHR(Fi, Qi) +O(n((d−1)/d)−εmε +md−1). (9)

for some ε = ε(d) > 0. Applying the geometric sub-additivity of the Euclidean
minimum spanning tree functional, and that of Euclidean minimum matching,

CHR(F, [0, 1]d) ≤
md∑
i=1

‖T ′
i‖+

md∑
i=1

MM(Oi) + O(md−1). (10)

By the definition of CHR, we have CHR(Fi) = ‖T ′
i‖+MM(O′

i). Thus it is sufficient
to bound MM(Oi) in terms of MM(O′

i). This is performed by the next claim.
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Claim 5 MM(Oi) ≤ MM(O′
i) + ‖Si‖+O(m−1n

((d−1)/d)−ε
i +m−1).

Applying the above claim on (10),

CHR(F, [0, 1]d) ≤
md∑
i=1

(
‖T ′

i‖+MM(O′
i) + ‖Si‖+ C′m−1n

((d−1)/d)−ε
i +O(m−1)

)
The crucial observation is that it is sufficient to replace ‖T ′

i‖ by ‖Ti‖ with a
small additive term in the above sum, since ‖T ′

i‖ = ‖Ti‖ + ‖Si‖. This can be
done using Lemma 7. We prove

‖T ′
i‖ ≤ ‖Ti‖+O(m−1n

((d−1)/d)−ε
i +m−1)

To see this, note first that if Ti is connected, then ‖Si‖ = 0, hence assume that
Ti is not connected. Then at least one point in each of the connected components
of Ti is a boundary point. So, Ti plus a spanning tree of all boundary points in
Fi and a single edge connecting them gives a spanning tree τi of Fi, and hence
‖T ′

i‖ ≤ ‖τi‖. The boundary points in Fi can be partitioned into Bi, and the
remaining boundary points of Fi that are incident on long boundary points. By

Lemma 7, we have MST(Bi) ≤ O(m−1n
((d−1)/d)−ε
i ) + O(m−1). The boundary

points that are incident on long boundary points can be connected arbitrarily
to each other, as their total length is at most O(md−1) by Lemma 8. Thus,

‖T ′
i‖ ≤ ‖τi‖ ≤ ‖Ti‖+MST(Bi) +O(m−1) +MST(long boundary points in Fi)

Thus there is a constant C1 = C1(d) ≥ 0 such that,

‖T ‖ ≤
md∑
i=1

‖Ti‖+ C1 · (n((d−1)/d)−ε
i +m−1) +MST(long boundary points in Fi)

≤
md∑
i=1

(
‖Ti‖+ C1 · (n((d−1)/d)−ε

i +m−1)
)
+O(md−1).

Hence, there is a C′′ = C′′(d) ≥ 0 such that

CHR(F, [0, 1]d) = ‖T ‖+MM(O)

≤
md∑
i=1

(
‖Ti‖+ C1 · (m−1n

((d−1)/d)−ε
i +m−1)

)

+
md∑
i=1

(
MM(O′

i) + ‖Si‖+ C′m−1n
((d−1)/d)−ε
i +O(m−1)

)

=

md∑
i=1

(
‖Ti‖+ ‖Si‖+MM(O′

i) + C′′m−1n
((d−1)/d)−ε
i +O(m−1)

)
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As ‖T ′
i‖ = ‖Ti‖+ ‖Si‖ and CHR(F,Qi) = ‖T ′

i‖+MM(O′
i), we have that

CHR(F, [0, 1]d) ≤
md∑
i=1

{
CHR(Fi, Qi) + C′′(m−1n

((d−1)/d)−ε
i +m−1)

}

≤
md∑
i=1

CHR(Fi, Qi) + C2

(∑
i

ni

)((d−1)/d)−ε
mε

(Hölder’s inequality)

=

md∑
i=1

CHR(Fi, Qi) + C2n
((d−1)/d)−εmε.

To complete the proof of Lemma 5, we need to prove Claim 5. Due to space
limitations, the proof is omitted and can be found in the full version of the
paper.

5 Experimental Evaluation

In this section we present simulation results that shed some light on the actual
values of the constants γETSP and γCHR. In particular, we provide experimental
evidence that the value of Christofides’ functional is strictly less than 3/2 times
the length of an optimal TSP tour through n random points.

Our experimental setup is as follows. Let ni = 500 i, where 1 ≤ i ≤ 20. For
any i in the given range, we generated independently 100 sets of ni uniformly
distributed random points in [0, 1]2, and computed the average and the standard
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Fig. 1. An experimental upper bound for the value of the Christofides’ functional
divided by the length of a optimum TSP tour



A Probabilistic Analysis of Christofides’ Algorithm 235

 0.39

 0.41

 0.43

 0.45

 0.47

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

Size of instances

OM

 0.39

 0.41

 0.43

 0.45

 0.47

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000  10000

Size of instances

OM

 1.26

 1.28

 1.3

 1.32

 1.34 OM
MST

 1.26

 1.28

 1.3

 1.32

 1.34 OM
MST

Fig. 2. The length of MST and OM

deviation of three parameters: i) the size of a minimum spanning tree (MST),
ii) the size of a minimum matching on the odd degree vertices (OM) of the
minimum spanning tree, and iii) the ratio (MST + OM) / MST. Note that the
latter is an upper bound for the approximation ratio of Christofides’ algorithm,
since the length of a minimum spanning tree is a lower bound for the length of
a TSP tour.

The results of the experiments are summarized in Figures 1 and 2, and lead to
the following conclusions. Observe that the ratio (MST + OM) / MST stabilizes
quickly around approximately 1.3347, and the standard deviation becomes small
very quickly. In other words, even if we do not perform any shortcutting, the
approximation ratio stays well below the worst-case value 3/2.
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Abstract. In this paper, we consider the Unsplittable (hard) Capaci-
tated Facility Location Problem (UCFLP) with uniform capacities and
present some new approximation algorithms for it. This problem is a
generalization of the classical facility location problem where each facil-
ity can serve at most u units of demand and each client must be served
by exactly one facility. It is known that it is NP-hard to approximate
this problem within any factor without violating the capacities. So we
consider bicriteria (α, β)-approximations where the algorithm returns a
solution whose cost is within factor α of the optimum and violates the ca-
pacity constraints within factor β. We present a framework for designing
bicriteria approximation algorithms and show two new approximation
algorithms with factors (10.173, 3/2) and (30.432, 4/3). These are the
first algorithms with constant approximation in which the violation of
capacities is below 2. The heart of our algorithms is a reduction from the
UCFLP to a restricted version of the problem. One feature of this re-
duction is that any (O(1), 1+ ε)-approximation for the restricted version
implies an (O(1), 1 + ε)-approximation for the UCFLP for any constant
ε > 0 and we believe our techniques might be useful towards finding such
approximations or perhaps (f(ε), 1 + ε)-approximation for the UCFLP
for some function f . In addition, we present a quasi-polynomial time
(1+ ε, 1+ ε)-approximation for the (uniform) UCFLP in Euclidean met-
rics, for any constant ε > 0.

Keywords: approximation algorithms, unsplittable capacitated facility
location problem, Euclidean metrics.

1 Introduction

We consider the Unsplittable Capacitated Facility Location Problem (UCFLP)
with uniform capacities. In this problem, we are given a set of clients C and
facilities F where client j has demand dj and each facility i has capacity u and
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opening cost fi. We have a metric cost function cij which denotes the cost of
serving one unit of demand of client j at facility i. The goal is to open a subset of
facilities I ⊆ F and assign each client j to exactly one open facility φ(j) to serve
its entire demand dj so that the total amount of demand assigned to each open
facility is no more than u, while minimizing the total cost of opening facilities and
connecting (serving) clients to them, i.e., minimizing

∑
i∈I fi+

∑
j∈C dj · cφ(j)j .

This problem generalizes the bin packing, the minimum makespan, and some
facility location problems. If the demands of clients can be served by multiple
open facilities, then we have the splittable version of the problem (called splittable
CFLP). If each facility can be opened multiple times then we have the so-called
soft-capacitated version. Each of these relaxations (i.e., allowing splitting the
demands of clients and/or having multiple copies of each facility) makes the
problem significantly easier as discussed below.

By a simple reduction from the partition problem, one can show that any
approximation algorithm for the uniform UCFLP violates the capacities of Ω(n)
facilities unless P=NP. Thus, research has focused on the design of bicriteria
approximation algorithms. An (α, β)-approximation for the UCFLP returns a
solution whose cost is within factor α of the optimum and violates the capacity
constraints within factor β. It should be noted that if we violate capacity of a
facility within factor β, we must pay β times its opening cost. In the context of
approximation algorithms, Shmoys, Tardos, and Aardal [9] were the first to con-
sider this problem and presented a (9, 4)-approximation algorithm. They used
a filtering and rounding technique to get an approximation algorithm for the
splittable version and used a rounding for the generalized assignment problem
(GAP) [8] to obtain their algorithm for the unsplittable version. This technique
of reducing the unsplittable version using the rounding for the GAP to the split-
table version was a cornerstone of the subsequent approximation algorithms.
Korupolu, Plaxton, and Rajaraman [5] gave the first constant factor approxima-
tion algorithm for the splittable hard capacitated version, and applied the GAP
rounding technique of [9] to get a (O(1), 2)-approximation algorithm for the
UCFLP. Applying the current best approximation algorithms for the splittable
capacitated version with non-uniform capacities (i.e., each facility has capacity
ui) [10] and uniform capacities [1], one can get factor (11, 2) and (5, 2) approx-
imation algorithms for the UCFLP with non-uniform and uniform capacities,
respectively.

Recently, Bateni and Hajiaghayi [3] modeled an assignment problem in con-
tent distribution networks by the UCFLP. In this application, it is crucial to keep
the violation of capacities as small as possible. Motivated by this strict require-
ment on capacities, the authors of [3] designed a (1 + ε, 1 + ε)-approximation al-
gorithm for tree metrics (for any constant ε > 0) using a dynamic programming
approach.They also presented a quasi-polynomial time (1+ε, 1+ε)-approximation
algorithm (again for trees) for the non-uniform capacity case. Using Fakcharoen-
phol et al.’s improvement of Bartal’s machinery this implies a polynomial time
(O(log n), 1 + ε)-approximation algorithm for almost uniform capacities and a
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quasi-polynomial time (O(log n), 1+ε)-approximation algorithm for non-uniform
case for an arbitrary constant ε > 0.

All the known constant-factor algorithms for the UCFLP violate the capacity
constraints by a factor of at least 2 which is mainly due to using the rounding al-
gorithm for GAP [8]. Also, the algorithm of [3] (although has 1+ε violation) is not
a constant factor approximation. We present the first constant factor approxima-
tion algorithms with capacity violation factor less than 2. Particularly, we present
two approximation algorithms with factors (10.173, 3/2) and (30.432, 4/3) for the
UCFLP. We also consider the UCFLP restricted to Euclidean metrics and give
a (1 + ε, 1 + ε)-approximation that runs in the quasi-polynomial time.

1.1 Related Works

Perhaps the most well-studied facility location problem is the uncapacitated fa-
cility location problem (UFLP). In this problem, we do not have the capacity
constraints and we only need to decide which facilities to open; as each client
will be assigned to its closest open facility. The first constant approximation for
the UFLP was a 3.16-approximation algorithm by Shmoys, Tardos, and Aardal
[9]. The ratio for the UFLP was improved in a series of papers down to 1.488
[6]. On the negative side, a result of Guha and Khuller [4], combined with an
observation of Sviridenko implies 1.463-hardness for the UFLP.

Capacitated facility location problems have also received a lot of attention.
The solutions of the soft capacitated version have a similar structure to the
solution of uncapacitated version and this problem can be reduced to the UFLP.
For example, see [7] for a reduction. This paper gives the current best ratio, 2,
for the soft capacitated version to the best of our knowledge. Since Mahdian et
al. [7] reduce the problem to the UFLP, they give a solution that sends each
client to exactly one facility. As a result, this solution is also feasible for the
unsplittable case and is a 2-approximation for this case too. This comes from
the fact that the optimal value of splittable version is a lower-bound for the
optimal value of the unsplittable version. In contrast, there is an important
distinction between the splittable and unsplittable case in the presence of hard
capacities, because even checking the feasibility of the latter becomes NP-hard
and we need bicriteria algorithms for the latter (see discussions above). In a series
of local search algorithms, the ratio for the splittable CFLP with non-uniform
capacities decreased to 5.83 + ε [10] and with uniform capacities decreased to 3
[1]. It should be noted that all the known LP relaxations for both the splittable
and unsplittable versions have super-constant integrality gap in the general case
of the problems.

1.2 The Main Results and Techniques

Recall that given an instance (F,C) of the UCFLP with opening costs fi, de-
mands dj , and connection costs cij , a solution is a subset I of facilities to open
along with assignment function φ : C → I. We use cf (φ) to denote the facil-
ity cost and cs(φ) to denote the service cost; thus c(φ) = cf (φ) + cs(φ) will
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be the total cost. Since all capacities are uniform, by a simple scaling, we can
assume that all of them are 1 and all the client demands are at most 1. As we
explained before, we are interested in (O(1), β)-approximation algorithms for
some β < 2. We define a restricted version of the problem and show that finding
a good approximation algorithm for this restricted version would imply a good
approximation for the general version.

Definition 1. An ε-restricted UCFLP, denoted by RUCFLP(ε), instance is an
instance of the UCFLP in which each demand has size more than ε, i.e., ε <
dj ≤ 1 for all j ∈ C.

The following theorem establishes the reduction from the general instances of the
UCFLP to the restricted version. Here, the general idea is that if we assign the
large clients oblivious to small clients, we can fractionally assign the small clients
without paying too much. We use the maximum-flow minimum-cut theorem to
show this. Then we can round this fractional assignment of small clients with
the GAP rounding technique [8].

Theorem 1. IfA is an (α(ε), β(ε))-approximation algorithm for the RUCFLP(ε)
with running time τ(A) then there is a (g(ε, α(ε)),max{β(ε), 1+ε})-approximation
algorithm for the UCFLP whose running time is polynomial in τ(A) and the in-
stance size, where g(ε, α(ε)) is a function of ε and α(ε), and is linear in α(ε).

Corollary 1. For any constant ε > 0, an (α(ε), 1 + ε)-approximation algorithm
for the RUCFLP(ε) yields an (O(α(ε)), 1 + ε)-approximation for the UCFLP.
Particularly, when α(ε) is a constant, we have a constant approximation for the
UCFLP with a (1 + ε) violation of capacities in polynomial time.

This reduction shows it is sufficient to consider large clients only, which may
open the possibility of designing algorithms using some of the techniques used
in the bin packing type problems. We believe that one can find an (O(1), 1+ ε)-
approximation algorithm for the RUCFLP(ε). If one finds such an algorithm,
the above corollary shows that we have an (O(1), (1 + ε))-approximation for
the UCFLP. As an evidence for this, we find approximation algorithms for the
RUCFLP(1/2) and the RUCFLP(1/3). For the RUCFLP(1/2), we present an
exact algorithm and for the RUCFLP(1/3), we present a (21, 1)-approximation
algorithm. These, together with Theorem 1 imply:

Theorem 2. There is a polynomial time (10.173, 3/2)-approximation algorithm
for the UCFLP.

Theorem 3. There is a polynomial time (30.432, 4/3)-approximation algorithm
for the UCFLP.

Finally, we give a QPTAS for Euclidean metrics. Here, we employ a dynamic
programming technique and combine the shifted quad-tree dissection of Arora
[2], some ideas from [3], and some new ideas to design a dynamic programming.
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Theorem 4. There exists a (1 + ε, 1 + ε)-approximation algorithm for the Eu-
clidean UCFLP in R2 with running time in quasi-polynomial for any constant
ε > 0.

Although this theorem is presented for R2, it can be generalized to Rd for con-
stant d > 2. Due to lack of space, we defer the proof of Theorem 4 to the full
version.

The rest of this paper is organized as follows. In Section 2, we prove Theo-
rem 1. Next, we present approximation algorithms for the RUCFLP(1/2) and
RUCFLP(1/3), which also prove weaker versions of Theorems 2 and 3 (see the
full version for improved ratios). Finally, in Section 4, we conclude the paper.

2 Reduction to the Restricted UCFLP

In this section, we prove Theorem 1. Let L = {j ∈ C : dj > ε} be the set of
large clients and S = C\L be the set of small clients1. We call two assignment
φ1 : C1 → F1 and φ2 : C2 → F2 consistent if φ1(j) = φ2(j) for all j ∈ C1 ∩ C2.
The high level idea of the algorithm (Algorithm 1) is as follows. We first ignore
the small clients and solve the problem restricted to only the large clients by
running algorithm A of Theorem 1. We can show that given a good assignment
of large clients, there exists a good assignment of all the clients (large and small)
which is consistent with this assignment of large clients, i.e. a solution which
assigns the large clients the same way that A does, whose cost is not far from
the optimum cost. More specifically, we show there is a fractional (i.e. splittable)
assignment of small clients that together with the assignment of large clients
obtained from A gives an approximately good solution. Having this property, we
try to find a fractional assignment of small clients. To assign the small clients,
we update the capacities and the opening costs of facilities with respect to the
assignment of large clients (according to the solution of A). Then, we fractionally
assign small clients and round this fractional assignment at the cost of violating
the capacities within factor 1 + ε.

First, we formally prove the property that given assignment of large clients,
there is a feasible fractional assignment of small clients with an acceptable cost.
Note that we do not open facilities fractionally and a fractional assignment of
demands of (small) clients is essentially equivalent to splitting their demands
between multiple open facilities. We should point out that the proof of this
property is only an existential result and we do not actually find the assignment
in the proof. We only use this lemma to bound the cost of our solution. Let OPT

be an optimum solution which opens set I∗ of facilities and with assignment of
clients φ∗ : C → I∗. We use φ∗

L : L → I∗ and φ∗
S : S → I∗ to denote the

restriction of φ∗ to large and small clients, respectively. Here, φ−1(i) is the

1 We should point out that the definitions of L and S are with respect to a given
parameter ε. Since throughout the following sections, this parameter is the same for
all statements, in the interest of brevity, we use this notation instead of L(ε) and
S(ε).
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Algorithm 1 Algorithm for the UCFLP by reduction to the RUCFLP(ε)

Require: An instance of UCFLP, an ε > 0, and the algorithm A for the RUCFLP(ε)
Ensure: A subset I ⊆ F of facilities to open and an assignment of clients φ : C → I
1: Let L = {j ∈ C : dj > ε} and S = C\L. Assign the clients in L by running A. Let

IL be the opened facilities and φL : L → IL be the assignment found by A.
2: For i ∈ IL, set fi = 0, and set u′

i = max{0, 1−∑
j∈φ−1

L (i)
dj} be the new capacity

of facility i. Assign the clients in S with respect to updated opening costs and
capacities by an approximation algorithm for the splittable CFLP with non-uniform
capacities. Let IS be the new set of opened facilities and φ′

S : S → I ′S be the
assignment function, where I ′S ⊆ IS ∪ IL.

3: Round the splittable assignment φ′
S using algorithm of [8] to find an unsplittable

assignment φS : S → I ′S.
4: Let I = I ′S ∪ IL and define φ : C → I as φ(j) = φS(j) if j ∈ S and otherwise

φ(j) = φL(j). Return φ and I .

set of clients assigned to facility i by the assignment φ and for a F ′ ⊆ F ,
φ−1(F ′) = ∪i∈F ′φ−1(i).

Lemma 1. Suppose IL is a set of open facilities and φL : L → IL is an ar-
bitrary (not necessarily capacity respecting) assignment of large clients. Given
the assignment φL, there exists a feasible fractional assignment of small clients,
φ′′
S : S → I ′′S such that cs(φ

′′
S) ≤ cs(φ

∗) + cs(φL) and cf (φ
′′
S) ≤ cf (φ

∗).

Proof. Let u′
i = max{0, 1 −

∑
j∈φ−1

L (i) dj}, i.e., the amount of capacity left for

facility i after the assignment of large clients based on φL. We assume we open
all the open facilities in the optimum solution, I∗ (if not already open in IL).
Let I ′′S = IL ∪ I∗. To show the existence of φ′′

S , first we move the demands
of small clients to the facilities in I∗ based on φ∗

S and we pay cs(φ
∗
S) for this.

So now the demands of small clients are located at facilities in I∗. However,
a facility i ∈ I ′′S has only u′

i residual capacity left (after commiting parts of
its capacity for the large clients assigned to it by φL) and this capacity may
not be enough to serve the demands of small clients moved to that location.
In order to rectify this, we will fractionally redistribute the demands of these
small clients between facilities (in I ′′S) in such a way that we do not violate
capacities u′

i. In this redistribution, we only use the edges used in φL or φ∗
L and

if an edge is used to assign large client j to facility i (in φL or φ∗
L), we move

at most dj units of demands of small clients along this edge. Therefore, we pay
at most cs(φL) + cs(φ

∗
L) in this redistribution. Thus, by the Triangle Inequality,

the connection cost of the fractional assignment of small clients obtained at the
end is bounded by cs(φ

∗
S) + cs(φ

∗
L) + cs(φL) = cs(φ

∗) + cs(φL). Since we only
open facilities in the optimum solution (on top of what is already open in IL)
the extra facility cost (for assignment φ′′

S) is bounded by the facility cost of the
optimum.

This process of moving the small client demands can be alternatively thought
in the following way. We start from the optimum assignment φ∗ and change
the assignment of large clients to get an assignment identical to φL for those in
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L. Specifically, we change the assignment of a large client j from i′ = φ∗(j) to
i = φL(j). This switch increases the amount of demands served at i by dj and
decreases the amount of demand served at i′ by dj . After doing all these switches
we might have more demand at some facilities than their capacities, while the
total demands assigned to some facilities might be less than 1. To resolve this
problem, we try to redistribute (fractionally) the demands of small clients so
that there is no capacity violation and we use the max-flow min-cut theorem to
show that this redistribution is possible. The details of this part appear in the
full version. ��

Proof of Theorem 1. Since the cost of the optimum solution for the instance
consisting of only the large clients is clearly no more than that of the original
instance, after Step 1 of Algorithm 1, we have an assignment φL such that
c(φL) ≤ α(ε)c(φ∗

L) and it violates the capacities by a factor of at most β(ε). By
Lemma 1, given φL, there is a feasible fractional assignment φ′′

S for small clients
such that cs(φ

′′
S) ≤ cs(φ

∗) + cs(φL) and cf (φ
′′
S) ≤ cf (φ

∗).
In Step 2, consider the instance of the splittable CFLP consisting of the small

clients and the residual facility opening costs and capacities as defined. We use
an approximation algorithm for the splittable CFLP to find an approximate
splittable (i.e. fractional) assignment φ′

S for small clients. Suppose that the ap-
proximation algorithm used for the splittable CFLP has separate factors λss,
λsf , λfs, λff such that it returns an assignment with service cost at most

λsscs(φ̃S) + λsf cf (φ̃S) and with opening cost λfscs(φ̃S) + λffcf (φ̃S) for any

feasible solution φ̃S . Therefore, using Lemma 1:

cs(φ
′
S) ≤ λsscs(φ

′′
S) + λsfcf (φ

′′
S), (1)

and
cf (φ

′
S) ≤ λfscs(φ

′′
S) + λff cf (φ

′′
S). (2)

The current best approximation for the splittable CFLP is due to Zhang et al.
[10] with parameters λss = 1, λsf = 1, λfs = 4, and λff = 5.

In Step 3, we round the splittable assignment φ′
S using the algorithm of

Shmoys and Tardos [8] for the Generalized Assignment Problem (GAP) to find
an integer assignment φS . The GAP is a scheduling problem which has similar-
ities to the UCFLP. In the GAP, we have a collection of jobs J and a set M
of machines. Each job must be assigned to exactly one machine in M . If job
j ∈ J is assigned to machine i ∈M , then it requires pij units of processing and
incurs a cost rij . Each machine i ∈ M can be assigned jobs of total processing
time at most Pi. We want to find an assignment of jobs to machines to minimize
the total assignment cost. We should point out that rij values do not necessar-
ily satisfy the triangle inequality. Shmoys and Tardos [8] show that a feasible
fractional solution of the GAP can be rounded, in polynomial time, to an in-
teger solution with the same cost that violates processing time limit Pi within
additive factor maxj∈J pij ; in worst case this can be a factor 2. We can model
(view) the unsplittable capacitated facility location problem as an instance of
the GAP in the following sense: jobs are clients, machines are facilities, pij = dj
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for all i, rij = dj · cij for all i and j, and Pi = 1, and all facilities are already
open (machines are available). Therefore, if we have a fractional assignment of
clients to facilities (i.e. a splittable assignment), φ′

S , then using the rounding
algorithm of [8], we can round φ′

S to φS without increasing the connection cost,
i.e. cs(φS) = cs(φ

′
S), such that the capacity constraints are violated by at most

an additive factor of maxj∈S dj . Since all the jobs in S have demand at most ε,
the capacity constraints are violated by at most a factor of 1 + ε.

After combining φS and φL in Step 4, the violation of capacities is within a
factor of at most max{β(ε), (1+ε)}, because the facilities with violated capacities
in Step 1 will be removed in Step 2 and will not be used in Step 3. So it only
remains to bound the cost of this assignment:

cs(φS) = cs(φ
′
S) by rounding of [8]

≤ λsscs(φ
′′
S) + λsf cf (φ

′′
s ) by Equation (1)

≤ λss(cs(φ
∗) + cs(φL)) + λsfcf (φ

∗), by Lemma 1
cf (φS) ≤ (1 + ε)cf (φ

′
S) by rounding of [8]

≤ (1 + ε)λfscs(φ
′′
S) + (1 + ε)λff cf (φ

′′
S) by Equation (2)

≤ (1 + ε)λfs(cs(φ
∗) + cs(φL)) + (1 + ε)λffcf (φ

∗). by Lemma 1

Therefore:

c(φ) = c(φS) + c(φL)

= cs(φS) + cf (φS) + cs(φL) + cf (φL)

≤ h1(ε)cs(φ
∗) + h2(ε)cf (φ

∗) + (h1(ε) + 1)cs(φL) + cf (φL), (3)

where h1(ε) = λss +(1+ ε)λfs and h2(ε) = λsf +(1+ ε)λff . Since h1(ε) ≥ 0 for
any ε > 0: (h1(ε)+1)cs(φL)+cf(φL) ≤ (h1(ε)+1)c(φL) ≤ α(ε)(h1(ε)+1)c(φ∗

L) ≤
α(ε)(h1(ε)+1)c(φ∗). Combining this with Inequality (3), we obtain that the cost
of φ is within factor:

g(ε, α(ε)) = max(h1(ε), h2(ε)) + α(ε)(h1(ε) + 1) (4)

of the optimum. ��

3 The RUCFLP(1
2
) and RUCFLP(1

3
)

In this section, we give two approximation algorithms for the RUCFLP(12 ) and
RUCFLP(13 ). Combined with Theorem 1 (and using Algorithm 1) these imply
two approximation algorithms for the UCFLP. We start with the simpler of the
two, namely the RUCFLP(12 ).

Theorem 5. There is a polynomial time exact algorithm for the RUCFLP( 12).

Proof. Consider an optimal solution for a given instance of this problem with
value OPTL. Because dj > 1

2 for all j ∈ C, each facility can serve at most
one client in the optimal solution. Therefore, the optimal assignment function,
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φ∗
L, induces a matching M = {jφ∗

L(j) : j ∈ C}. Let wij = cij .dj + fi and let
w(H) =

∑
e∈H we for any subset of edgesH ⊆ E. It follows that w(M) = OPTL.

Let M∗ be a minimum weight perfect matching with respect to weights wij .
Clearly, w(M∗) ≤ w(M) = OPTL. In addition, M∗ induces a feasible assign-
ment of clients to facilities with cost w(M∗). Thus, M∗ induces an optimal solu-
tion for the RUCFLP(12 ). Since we can find a minimum weight perfect matching
in polynomial time, there is an exact algorithm for the RUCFLP( 12 ). ��

Corollary 2. There is a polynomial time (16.5, 3/2)-approximation algorithm
for the UCFL problem.

Proof. We run Algorithm 1, where we use the algorithm of Theorem 5 in the
first step. Substituting α(ε) = 1 and ε = 1/2, we have h1(

1
2 ) = 7, h2(

1
2 ) = 8.5,

and g(ε, α(ε)) = 16.5. Since β(ε) = 1, the overall ratio is (16.5, 3/2). ��

The algorithm for the RUCFLP(13 ) is more involved. First, we show how finding
an approximation algorithm for the RUCFLP(ε) with zero facility opening costs
leads to an approximation algorithm for the general RUCFLP(ε). Then, we give
an approximation algorithm for the RUCFLP(13 ) with zero opening costs.

Lemma 2. Given an algorithm A′ for the RUCFLP(ε) with zero facility open-
ing costs having approximation factor (α′(ε), β(ε)), we can find a (α′(ε)1ε , β(ε))-
approximation algorithm A for the general RUCFLP(ε).

Proof. Define a new connection cost c′ij = cij+fi and opening cost f ′
i = 0 for all

i ∈ F and j ∈ C. Note that the new cost function is still metric. Then, we run A′

on this new modified instance and let the solution returned by it be assignment
φL. We use φL to assign the clients for the original instance and we claim this is
a (α′(ε)1ε , β(ε))-approximation. The proof of this appears in the full version. ��

Now, we present a (7, 1)-approximation algorithm for the RUCFLP(13 ) with zero
opening costs (see Algorithm 2), which coupled with Lemma 2 yields a (21, 1)-
approximation algorithm for the RUCFLP(13 ).

Theorem 6. There is a (7, 1)-approximation algorithm for the RUCFLP( 13)
with zero opening costs.

Proof. Note that all the clients in the given instance have size > 1
3 . We break

them into two groups: L′ = {j ∈ C : dj > 1
2} and L′′ = C\L′ are those which

have size in (13 ,
1
2 ]. In this proof (and of Lemma 3), we call clients in L′, huge

clients and those in L′′, moderately-large clients. The algorithm assigns the huge
clients by running a minimum weight perfect matching algorithm with edge
weights wij = djcij . Let IL′ be the opened facilities and φL′ : L′ → IL′ be the
assignment function. For moderately-large clients (i.e. those in L′′), we define a
flow-network H and show that minimum cost maximum flows in H correspond
to minimum cost feasible assignment of clients in L′′ to facilities (given the
assignment φL′).

Directed network H has node set X ∪Y ∪{s, t} where there is a node xj ∈ X
for every client j ∈ L′′ and a node yi ∈ Y for every facility i ∈ F ; s is the
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Algorithm 2 Algorithm for solving the RUCFLP(13 ) with zero opening costs

Require: An instance of the RUCFLP( 1
3
) with zero opening costs

Ensure: A subset I ⊆ F and a function φ : C → I
1: Let L′ = {j ∈ C : dj > 1

2
} and L′′ = C\L′. Assign the clients in L′ by running a

minimum weight maximum matching algorithm that saturates L′ with edge weights
wij = djcij . Let IL′ be the opened facilities and φL′ : L′ → IL′ be the assignment
function.

2: Build the flow network H as described in Theorem 6.
3: Find a minimum cost maximum flow in H . If the value of the flow is smaller than

|L′′| then return “Infeasible”. Else, let IL′′ be the subset of facilities in F\IL′ whose
corresponding nodes in Y (in H) have non-zero flow through them and φL′′ be the
assignment function defined as: if there is a unit flow from xj to yi in H then
φL′′(j) = i.

4: Let I = IL′′ ∪ IL′ . Combine φL′′ and φL′ to form assignment function φL : C → I
where φ(j) = φL′′(j) if j ∈ L′′, otherwise φ(j) = φL′(j). Return φ and I .

source and t is the sink. The source is connected to each node xj ∈ X , and all
yi ∈ Y are connected to the sink. Each xj ∈ X is connected to a node yi ∈ Y
if either: the corresponding facility i is in F\IL′ , i.e. unopened yet, or i is in
IL′ and the remaining capacity of i is enough to serve the demand of client j.
Set the capacity of the edges between the source and the nodes in X to 1, set
the capacity of the edges between X and Y to 1, set the capacity of the edges
between the nodes yi ∈ Y whose corresponding facility i is unopened (i.e. not
in IL′) and the sink to 2, and set the capacity of the edges between the nodes
yi ∈ Y whose corresponding facility is in IL′ and the sink to 1. The cost of
an edge connecting xjyi is dj · cij and all the other costs are 0. Algorithm 2
summarizes the algorithm for the RUCFLP(13 ) with zero opening costs.

Let φ∗
L be an optimal assignment for the given instance of the RUCFLP(13 )

with cost OPTL. We use the following lemma (whose proof appears in the full
version):

Lemma 3. There exists an assignment φ′ of clients consistent with φL′ with
cost at most 7OPTL where OPTL is the cost of an optimum assignment φ∗

L for
the given instance of the RUCFLP( 13).

Below we prove that in Steps 2 and 3 the algorithm finds the best possible
feasible assignment of clients in L′′ (given φL′). Therefore, the cost of φ formed
in Step 4 is at most c(φ′) and hence, is at most 7OPTL.

Since for any j ∈ L′′: 1
3 < dj ≤ 1

2 , each unopened facility after Step 1 can
serve any two clients of L′′ (and no more than two). This fact is reflected in that
we connect all the nodes in X (corresponding to moderately-large clients) to the
nodes in Y corresponding to unopened facilities F\IL′ and we set the capacity of
the edges between those nodes in Y and the sink to 2. In addition, each facility
in IL′ can serve at most one moderately-large client, because more than 1

2 of
its capacity is already used by a huge client; accordingly we set the capacity of
the edges from those nodes in Y to the sink to 1 and we only connect to them
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the nodes of X whose corresponding client can be served by them. Considering
these two simple facts (proof in the full version):

Lemma 4. The maximum flow in H has value |L′′| if and only if the given
instance is feasible and there is a one to one correspondence between maximum
flows in H and feasible assignment of moderately-large clients (i.e. in L′′) given
φL′ . Furthermore, a pair of corresponding maximum flow in H and assignment
of clients of L′′ to F have the same cost.

Therefore, the assignment φL′′ obtained from a minimum cost maximum flow
in H has the minimum cost among the assignments consistent with φL′ . This
together with Lemma 3 implies that φB as defined has cost at most 7OPTL. ��

Combining Lemma 2 and Theorem 6:

Corollary 3. There is a polynomial time (21, 1)-approximation algorithm for
the RUCFLP( 13).

Corollary 4. There is a (161.667,4/3)-approximation algorithm for the UCFL
problem.

Proof. We run Algorithm 1, where we use the algorithm of Corollary 3 for
A. That is, we first run the (7, 1)-approximation algorithm of Theorem 6 as
algorithm A′ in Lemma 2 to obtain A with α(ε) = 21 and ε = 1/3. Thus
h1(

1
3 ) = 19/3, h2(

1
3 ) = 23/3, and g(ε, α(ε)) = 23/3 + 21(22/3) < 161.667. Since

β(ε) = 1, the overall ratio is (161.667, 4/3). ��

With a more careful analysis and a simple scaling to balance the bi-factors of
connection and facility costs, we can bring down the factors of our algorithms
(see the full version). This will imply the improved ratios in Theorem 2 and 3.

Notice that we solved the RUCFLP(13 ) and the the RUCFLP(12 ) without
violation of capacities, but this is not possible for smaller values of ε as shown
below (see the full version for the proof).

Theorem 7. The RUCFLP(ε) does not admit any (α(ε), 1)-approximation al-
gorithm for ε < 1

3 unless P = NP .

It should be noted that to find an algorithm for the UCFLP that violates ca-
pacities within factor 1 + ε, we do not need to find an algorithm that does not
violate capacities in the RUCFLP(ε). Even if we violate the capacities within
factor 1 + ε in the RUCFLP(ε), by Theorem 1 we can get an algorithm for the
UCFLP that violates the capacities within factor 1+ε. We think it is possible to
find an (α(ε), 1 + ε)-approximation for the RUCFLP(ε) for any constant ε > 0.
This, together with Theorem 1 would imply an (f(ε), 1 + ε)-approximation for
the UCFLP, for any constant ε > 0.

4 Discussion

We presented a reduction from the UCFLP to a restricted version in which all
demand values are large (i.e. > ε) and presented two algorithms for the case of
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ε = 1
2 and 1

3 . These implied two constant factor approximation algorithms for
the UCFLP with capacity bounds within factor 3/2 and 4/3. We believe similar
results can be found with capacity violations bounded within factor 1+ ε for any
ε > 0. We also showed that at a loss of factor 1/ε, we can ignore the opening
cost of facilities, and that if there is an (α(ε), 1 + ε)-approximation for these
instances then there is an (α′(ε), 1 + ε)-approximation for the general case. We
believe that it should be possible to design constant factor (perhaps depending
on ε) approximation for RUCFLP(ε) with zero opening costs with a violation of
at most 1 + ε on capacities.

Acknowledgements. Part of this work was done while the second author was
on sabbatical at Toyota Tech. Inst. at Chicago (TTIC). He would like to thank
TTIC for hosting him.

References

1. Aggarwal, A., Anand, L., Bansal, M., Garg, N., Gupta, N., Gupta, S., Jain, S.: A
3-Approximation for Facility Location with Uniform Capacities. In: Eisenbrand,
F., Shepherd, F.B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 149–162. Springer,
Heidelberg (2010)

2. Arora, S.: Polynomial time approximation schemes for euclidean tsp and other ge-
ometric problems. In: Proceedings of the 37th Annual Symposium on Foundations
of Computer Science. pp. 2–12 (1996)

3. Bateni, M., Hajiaghayi, M.: Assignment problem in content distribution networks:
unsplittable hard-capacitated facility location. In: Proceedings of the Nineteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 805–814 (2009)

4. Guha, S., Khuller, S.: Greedy strikes back: improved facility location algorithms. In:
SODA 1998: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 649–657 (1998)

5. Korupolu, M.R., Plaxton, C.G., Rajaraman, R.: Analysis of a local search heuristic
for facility location problems. In: Proceedings of the Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 1998, pp. 1–10 (1998)

6. Li, S.: A 1.488 Approximation Algorithm for the Uncapacitated Facility Location
Problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 77–88. Springer, Heidelberg (2011)

7. Mahdian, M., Ye, Y., Zhang, J.: A 2-Approximation Algorithm for the Soft-
Capacitated Facility Location Problem. In: Arora, S., Jansen, K., Rolim, J.D.P.,
Sahai, A. (eds.) RANDOM 2003 and APPROX 2003. LNCS, vol. 2764, pp. 129–
140. Springer, Heidelberg (2003)

8. Shmoys, D., Tardos, E.: An approximation algorithm for the generalized assign-
ment problem. Mathematical Programming 62(3), 461–474 (1993)

9. Shmoys, D., Tardos, E., Aardal, K.: Approximation algorithms for facility loca-
tion problems. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on
Theory of Computing, pp. 265–274 (1997)

10. Zhang, J., Chen, B., Ye, Y.: A Multi-exchange Local Search Algorithm for the
Capacitated Facility Location Problem. In: Bienstock, D., Nemhauser, G.L. (eds.)
IPCO 2004. LNCS, vol. 3064, pp. 219–233. Springer, Heidelberg (2004)



Non-preemptive Speed Scaling
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Abstract. We consider the following variant of the speed scaling prob-
lem introduced by Yao, Demers, and Shenker. We are given a set of jobs
and we have a variable-speed processor to process them. The higher the
processor speed, the higher the energy consumption. Each job is asso-
ciated with its own release time, deadline, and processing volume. The
objective is to find a feasible schedule that minimizes the energy con-
sumption. Moreover, no preemption of jobs is allowed.

Unlike the preemptive version that is known to be in P, the non-
preemptive version of speed scaling is strongly NP-hard. In this work,
we present a constant factor approximation algorithm for it. The main
technical idea is to transform the problem into the unrelated machine
scheduling problem with Lp-norm objective.

1 Introduction

The speed scaling problem was introduced by Yao, Demers and Shenker [16] in
1995. The input is a set J of jobs. Each job j ∈ J is associated with a release
time rj , a deadline dj and a volume vj . W.l.o.g., we assume that release times
and deadlines are given as integers. We have a variable-speed processor, which
is associated with a power function P (s) = sα with α > 1. Assuming that job
j ∈ J is always processed at a speed of sj, then j requires vj/sj time to be
completed. The energy consumption of the processor is power integrated over
time. A schedule is said to be feasible if the volume of each job is completely
processed not before its release time but before its deadline. The goal is to find
a feasible schedule that minimizes the total energy consumption.

Given our growing awareness of the environment, speed scaling is a natural
problem to study. Practically, many modern microprocessors, in order to be more
energy-efficient, have the built-in capability to vary their speed. It is desirable to
have good scheduling policies in order to reduce the energy consumption in such
computing environments. Furthermore this can help prolonging battery lives in
mobile devices.

The original model of Yao et al. assumes that jobs can be preempted. That
is, the execution of a job may be paused and resumed at a later point in time.
The non-preemptive version of this problem, where a job, once started, must be
processed until its completion, has not been studied so far. We call the problem
non-preemptive speed scaling. The assumption that preemption is disallowed is a
natural one to make, since preemption is known to cause significant overhead in
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practice. The fact that some theoretically good scheduling algorithms perform
relatively bad in practice has been attributed to this overhead [10,11,13]. Fur-
thermore, since the preemption of a job may require storing the state of both
the system and the processing of the job, the implementation of preemption can
become particularly hard in some settings. Some researchers try to cope with
the above problems by either limiting or completely avoiding preemption (see
[4,5] for some examples).

Unlike the preemptive speed scaling, for which Yao et al. gave a simple and
elegant polynomial time algorithm, the non-preemptive speed scaling problem is
NP-hard. To see this, consider the following reduction from the partition problem
[12]. In the partition problem, a set of integers N = {n1, n2, · · · } is given. The
question is whether the set N can be partitioned into two disjoint subsets, so
that the sum of one subset is equal to the sum of the other subset. We create
a job j with release time 1 and deadline 2. Its volume vj is

∑
i ni. Further,

for each integer nt ∈ N , create a job of volume vt with release time 0 and
deadline 3. Due to the fact that the power function P (s) = sα is strictly convex,
it is easy to see that the original instance allows a partition if and only if the
optimal schedule uses the same speed in the intervals [0, 1) and [2, 3). By a
straightforward generalization of the idea, we can reduce from the 3-Partition
problem [12] to show that non-preemptive speed scaling is strongly NP-hard.

We note that even though the general case of the problem is NP-hard, there
is a natural special case that is in P: when the given instance has agreeable
deadlines. An instance has agreeable deadlines if given any two jobs j, j′ ∈ J
with rj < rj′ , then dj ≤ dj′ . In words, earlier-released jobs also have earlier
deadlines. For this special case, the original algorithm of Yao et al. can be applied
by the observation that the schedule returned does not make use of preemption.
However, to deal with the general case, novel algorithmic ideas are required.

Our Contribution and Technique. We develop a constant-factor approxi-
mation algorithm for the problem of non-preemptive speed scaling.

Theorem 1. There exists a polynomial time algorithm that achieves a 25α−4-
approximation for the non-preemptive speed scaling problem. For the special case
of laminar instances, there exists a polynomial time algorithm that achieves a
24α−3-approximation.

An instance is said to be a laminar instance if for any two jobs j, j′ ∈ J ,
either [rj , dj) ⊆ [rj′ , dj′), [rj′ , dj′) ⊆ [rj , dj), or [rj , dj) ∩ [rj′ , dj′) = ∅. Laminar
instances are of interest for two reasons. First, they form a natural special class
of instances. As reported in [14], when the jobs are created by recursive calls in a
program, the resulting instance is laminar. Secondly, and more importantly, we
observe that a laminar instance is in a sense the “opposite” of an instance with
agreeable deadlines: for any two jobs that have overlapping intervals, the one
with earlier release time must have a latter deadline. As the agreeable version
can be solved in polynomial time, this “opposite” version highlights the difficulty
of the non-preemptive speed scaling problem. (Observe that the reductions we
used earlier from partition/3-partition are laminar instances as well).
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In Section 3, we show how to achieve a 24α−3 approximation for laminar in-
stances. The rough idea is to use a series of transformations, which involve the
“chopping up” of the intervals of the jobs, so that we can reduce a laminar
instance into an instance of unrelated machine scheduling with the Lα-norm
objective, which is known to be 2-approximable [2]. The “chopping up” of an
interval, roughly speaking, means that we create new instances with the addi-
tional constraint that a job has to be processed entirely within a sub-interval.
The technical challenge is to bound the growth of the cost throughout the series
of transformations.

In Section 4, we develop a sweepline algorithm and use a certain “energy-
folding” technique, to reduce a general instance into a laminar instance, at a
further cost of 2α−1 in the approximation factor.

Due to space constraints some of the proofs are omitted.

Previous Work. Even though dynamic speed scaling has been studied ex-
tensively over the past years, to the best of our knowledge, non-preemptive
speed scaling was not considered before. As already mentioned, the study of
the (preemptive) problem was initiated by Yao et al. [16], who have developed
a polynomial-time algorithm for the offline problem. Some special cases of the
preemptive version of the problem have also been studied. For example, when
the given instance is laminar [14] or when the power function is discrete [15].

In [8] and [9] constant-factor approximation algorithms for the problem on
fixed-speed processors were given. In [8], more than one processor may be used in
order to feasibly schedule the jobs, and the objective is to minimize the number of
used processors. In [9] one may skip jobs in order to produce a feasible schedule.
The objective here is to maximize the number of scheduled jobs. In [7] a similar
problem of scheduling jobs without preemption on a variable-speed processor
was studied. However in their model the processor can only operate at discrete
speed levels, and there are precedence constraints among the jobs. They show
that their problem is NP-hard and give polynomial time approximation schemes
for two restricted cases.

So far we only discussed the offline version of the speed scaling problem. The
online version has also been extensively studied (but still only for the preemptive
version). Yao et al. [16] presented two online algorithms called Average Rate and
Optimal Available. For the first they have proven a competitive ratio of (2α)α/2
whereas the second was analyzed by Bansal, Kimbrel and Pruhs [3] who have
shown a tight competitive ratio of αα.

For a recent literature review on energy efficient algorithms, see [1].

2 Preliminaries

We define a more general version of our problem. Let J be the set of jobs.
Each job j ∈ J has a set of disjoint allowed intervals, Ij1 = [rj1, dj1), Ij2 =
[rj2, dj2), · · · . A schedule S is feasible if each job j ∈ J is executed entirely
within one of its allowed intervals. Note that in the original problem instance I,
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each job has only one allowed interval. We will transform I so that a job may
have multiple intervals. Let dmax be the latest deadline in the original instance
I. Assume without loss of generality, that the earliest release time among all the
jobs in J is 0.

Throughout the article, we implicitly assume that a feasible schedule processes
a job using a uniform speed. This assumption is without loss of generality, since
the power function P (s) = sα is strictly convex and using a uniform speed for a
given job minimizes its expended energy.

Given a schedule S, let S(j) = [bj , ej) denote the execution interval of job j
and ej(S) the finishing time of job j under schedule S. Furthermore, let E(S)
denote the total energy spent by schedule S and E(S, j) be the energy used for
processing job j under schedule S. The following proposition follows from our
assumption that a feasible schedule processes each job at uniform speed.

Proposition 1. Suppose that schedules S and S ′ process job j with speed s
and s′ respectively. Assume that s ≤ cs′ for some c ≥ 1. Then E(S, j) ≤
cα−1E(S ′, j).

3 Special Case: Laminar Family

In this section we assume that the given instance I is a laminar instance. Recall
that for such an instance, for any two jobs j, j′ ∈ J , either [rj , dj) ⊆ [rj′ , dj′),
[rj′ , dj′) ⊆ [rj , dj), or [rj , dj)∩ [rj′ , dj′ ) = ∅. We can associate the jobs in I with
a tree structure as follows. A job j is a descendant of another job j′ in the tree
if and only if [rj , dj) ⊂ [rj′ , dj′ ). A job j is said to be a leaf job if its interval
[rj , dj) is not a proper superset of the interval of any other job. In case that
there are more than one candidate leaf jobs with identical intervals [rj , dj), we
pick an arbitrary one of them as a leaf job. Let the leaf jobs form a set L. Note
that all the jobs in L have distinct deadlines.

Transformation I

Our first step is to partition the entire interval [0, dmax) into “zones” using a set
of “landmarks.”

Definition 1. Let τ1 < τ2 < · · · < τ|L| be the set of ordered deadlines dj for
the jobs j ∈ L. Furthermore, let τ0 = 0 and τ|L|+1 = dmax. (Note that τ0 < τ1
and τ|L| ≤ τ|L|+1.) The intervals [τi, τi+1) for all 0 ≤ i ≤ |L| are called zones.
Throughout the text, we will refer to the τi’s as landmarks.

We create a new instance I1 as follows. Consider a job j ∈ J with its allowed
interval Ij = [rj , dj), such that

τi−1 ≤ rj < τi < τi+1 < · · · < τi+k < dj ≤ τi+k+1.
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We replace its allowed interval Ij = [rj , dj) with a set of allowed intervals⋃k+2
s=1 Ijs, where

Ij1 = [rj , τi), Ij(k+2) = [τi+k, dj), and Ijs = [τs+i−2, τs+i−1) for 2 ≤ s ≤ k + 1.

See Figure 1 for an illustration. We now show that the above partition of jobs’
allowed intervals does not increase the cost of an optimal solution by too much.

Ik
Ij
I�

(a) The original instance I.

Ik1
Ij1 Ij2

I�1 I�2 I�3

(b) The modified instance I1.

Fig. 1. In (a), the two dotted lines are the landmarks, since they are the deadlines
of the leaf jobs. In (b), we show how to use the landmarks to divide a job’s allowed
interval in I into several allowed intervals in the modified instance I1.

Lemma 1. Let OPTI and OPTI1 denote the optimal schedules for instances I
and I1 respectively. Then E(OPTI1) ≤ 2α−1E(OPTI).

Transformation II

In the second transformation, inside each zone [τi−1, τi), we define a set of sub-
landmarks to further subdivide the zone into a set of subzones. The allowed
intervals of a job are (possibly) shortened and then further fragmented by these
subzones. We now flesh out the details.

Recall that each job in J has at most one allowed interval in the zone [τi−1, τi).
Let J ′ ⊆ J be the subset of the jobs that have exactly one allowed interval in
this zone. For simplicity, we assume that the allowed interval of a job j ∈ J ′ is
also its first allowed interval Ij1 = [rj1, dj1). We divide the jobs in J ′ into three
groups.

j ∈ A if rj1 = τi−1, dj1 < τi;

j ∈ B if τi−1 < rj1, dj1 = τi;

j ∈ C if rj1 = τi−1, dj1 = τi.

See Figure 2(a) for an illustration. Observe that jobs in group C have their
allowed intervals span the entire zone; furthermore, by our assumption that the
original instance I is a laminar instance, the allowed intervals of jobs in group
A do not overlap with the allowed intervals of jobs in group B.

Lemma 2. Let S be a feasible schedule for instance I1 and let J ′′ be the jobs of
J ′ that are processed within [τi−1, τi). Then S can be transformed into a feasible
schedule S ′ with the following properties:

– S ′ consumes no more energy than S.
– All jobs in J ′′ are processed within the zone [τi−1, τi).
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(a) Laminar family case (b) General case

Fig. 2. A zone. The dashed lines represent allowed intervals for jobs of group A, the
dotted ones for jobs of group B. Finally, the solid lines represent the allowed intervals
for jobs of group C. (a) illustrates a zone after Transformation I. (b) illustrates a zone
after Transformation I1 (see Section 4).

– S ′ executes all the jobs of group A∩J ′′ before the jobs of group C∩J ′′, which
in turn are executed before the jobs of group B ∩J ′′, in [τi−1, τi). Moreover,
in S ′, the jobs of A∩J ′′ are processed according to the earliest deadline first
principle and the jobs of B ∩ J ′′ according to the earliest release time first
principle.

Let dAl be the latest deadline for the jobs in group A and rBf the earliest
release time for the jobs in group B. Let λA = τi−1 + 3/4(dAl − τi−1) and
λB = τi − 3/4(τi − rBf ) be two sublandmarks and [λA, λB) be a subzone (we
will define more sublandmarks inside [τi−1, λA) and [λB , τi) in a moment). Then

λB − λA = (λB − rBf ) + (dAl − λA) + (rBf − dAl) =

(τi − rBf ) + (dAl − τi−1)

4
+ rBf − dAl =

τi − τi−1

4
+

3(rBf − dAl)

4
≥ τi − τi−1

4
.

(1)

Therefore, the subzone [λA, λB) is of length at least a fourth of the entire zone.
Intuitively speaking, in our proof, this subzone is “reserved” for the jobs in group
C. Given any schedule for I1, even if the processing of the jobs in group C spans
the entire zone, we can always increase their processing speed by a factor of 4
and process them entirely within the subzone [λA, λB).

Let dAf be the earliest deadline in group A and rBl the latest release time
in group C. Also, let x be the largest positive integer so that τi−1 + (dAf −
τi−1)2

x−1 < λA and y to be the largest positive integer so that τi − (τi −
rBl)2

y−1 > λB . We define the following sublandmarks.

λk
A = τi−1 + (dAf − τi−1)2

k−1, for 1 ≤ k ≤ x;

λx+1
A = λA;

λy+1
B = λB ;

λk
B = τi − (τi − rBl)2

k−1, for 1 ≤ k ≤ y.
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Notice that in the case that τi−1 + (dAf − τi−1) = dAf ≥ λA, we do not define
any sublandmark in [τi−1, λA); similarly for [λB , τi), if τi−(τi−rBl) ≥ λB. (Also
note that it is possible that dAf = dAl or rBf = rBl). Finally, observe that as
we assume that all release times and deadlines are integers, there can be only
O(�log dmax�) sublandmarks in each zone.

The sublandmarks {λk
A}xk=1 and {λk

B}
y
k=1 are used to partition the intervals

[τi−1, λA) and [λB, τi) into subzones respectively. See Figure 3 for an illustration.
It can be observed that the sizes of the subzones in [τi−1, λA) grow geometrically,
except the first and the last one; similarly, the sizes of the subzones [λB , τi),
except the first and the last one, decrease geometrically. Roughly speaking, in our
proof, these subzones will be “reserved” for jobs in group A and B respectively.

λ0(τi−1)
λ1
A

dAf

λ2
A λ3

A λ4
A λ5

A λ6
Aλ

7
A(λx+1)

λA =
3
4
dAl dAl

Fig. 3. The sublandmarks inside the interval [τi−1, λA)

We now use the set of sublandmarks {λk
A}xk=1∪{λk

B}
y
k=1∪λA∪λB to partition

the allowed intervals of all jobs in J ′ in a somewhat similar manner to the
previous transformation. Suppose there are totally g sublandmarks in the zone
[τi−1, τi). Let λw denote the w-th sublandmark (in increasing order) for 1 ≤ w ≤
g. For convenience, let λ0 = τi−1 and λg+1 = τi.

We create a new instance I2 based on I1 as follows. For a job j ∈ J ′ with the
allowed interval Ij1 = [rj1, dj1), let λu be the first sublandmark so that rj1 ≤ λu

and λu+k be the last sublandmark so that λu+k ≤ dj1. Then

rj1 ≤ λu < λu+1 < · · · < λu+k ≤ dj1.

We replace its allowed interval Ij1 = [rj1, dj1) with a set of allowed intervals⋃k
s=1 Ij1s, where

Ij1s = [λu+s−1, λu+s), ∀s, 1 ≤ s ≤ k.

Note that by this definition, a subzone [λk−1, λk) becomes an allowed interval
of job j in instance I2 if and only if Ij1 spans the entire interval [λk−1, λk). In
the case that rj1 < λu (this may happen for jobs in B ∩ J ′′) or dj1 > λu+k

(which may happen for jobs in A ∩ J ′′), [rj1, λu) or [λu+k, dj1) respectively are
not allowed intervals.

Lemma 3. Let OPTI1 and OPTI2 denote the optimal schedules for instances
I1 and I2 respectively. Then E(OPTI2) ≤ 4α−1E(OPTI1).
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Proof. We construct a feasible solution OPT I2 for instance I2 based on the
optimal solution OPTI1 for instance I1. Let J ′′ ⊆ J ′ be the subset of jobs that
are processed in the zone [τi−1, τi) in the schedule OPTI1 . By Lemma 2, we can
assume that the jobs in A ∩ J ′′ are processed first, the jobs in C ∩ J ′′ second,
followed by the jobs in B ∩ J ′′. We also can assume that jobs in A ∩ J ′′ (resp.
B∩J ′′) are processed in the order of their increasing deadlines (resp. increasing
release times).

Suppose that there exists at least one sublandmark within [τi−1, λA). Recall
that we define λk

A = τi−1 + (dAf − τi−1)2
k−1 for 1 ≤ k ≤ x; furthermore,

λx+1
A = λA. In the rest of this proof, let λk := λk

A for 1 ≤ k ≤ x + 1. For
simplicity, we can assume that τi−1 = 0. By rescaling, let dAf = 1.

The following facts follow straightforwardly from the definitions and the as-
sumptions:

λk = 2k−1, for each 1 ≤ k ≤ x;

λx+1 = (3/4)dAl ≤ 2x.

For convenience, let λ0 = τi−1. We show how each of the jobs in A ∩ J ′′ can
be processed entirely within one of these subzones [λk−1, λk) when we build
the schedule OPT I2 . The basic idea is this: treat these subzones as bins with
capacity equal to their length, and the jobs j ∈ A∩J ′′ as items whose sizes are
their processing time |OPTI1(j)| divided by a factor of 4. Each item j ∈ A∩J ′′

can only be put into a bin (subzone) whose interval is entirely contained in j’s
allowed interval Ij1. If this can be done, then we have a new schedule where
the jobs in A ∩ J ′′ are feasibly processed, i.e., within their allowed intervals
in instance I2, with processing speeds equal to 4 times their original speeds in
OPTI1 .

Let tj = |OPTI1(j)| for all jobs j ∈ A∩J ′′. Moreover, let us divide A∩J ′′ into
disjoint sets J1 ∪̇J2 ∪̇ · · · ∪̇Jx+1 ∪̇Jx+2 as follows. Job j ∈ Jk if its finishing time
ej(OPTI1) ∈ [λk−1, λk) for 1 ≤ k ≤ x+1. In case that ej(OPTI1) ∈ [λx+1, dAl),
let j ∈ Jx+2.

We note that if j ∈ Jk for k ≥ 2, then j can be feasibly processed within
any of the subzones [λk′−1, λk′) for any 1 ≤ k′ ≤ k − 1 in instance I2, since
each such subzone [λk′−1, λk′ ) will be one of the allowed intervals of j in I2 (this
follows from the fact that ej(OPTI1) ≥ λk−1.) Note also that all jobs in J1 can
be feasibly processed within the subzone [λ0, λ1) in instance I2, since in I1, all
jobs in A∩J ′′ have their deadlines at least as late as dAf = λ1. These facts are
used in the proof of the following claims.

Claim 1. Suppose that there exists at least one sublandmark within [τi−1, λA).
We can process all jobs of A∩J ′′ in OPT I2 at four times their speeds in OPTI1 .
Moreover, in OPT I2 , the following hold:
1. Suppose that x = 1. Then all jobs in A ∩ J ′′ = J1 ∪ J2 ∪ J3 are feasibly

processed within the subzone [λ0, λ1);
2. (a) Suppose that x ≥ 2. Then all jobs in J1∪J2 are feasibly processed within

the subzone [λ0, λ1).
(b) Suppose that x ≥ 3. Then all jobs in Jk are feasibly processed within the

subzone [λk−2, λk−1) for 3 ≤ k ≤ x;
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(c) Suppose that x ≥ 2. Then all jobs in Jx+1 ∪ Jx+2 are feasibly processed
within the subzones [λx−1, λx) and/or [λx, λx+1).

Claim 2. Suppose that there is no sublandmark in [τi−1, λA). We can feasibly
process all jobs in A∩J ′′ in OPT I2 in the subzone [τi−1, λA) so that their speeds
are four times their speeds in OPTI1 .

Claims 1 and 2 imply that the jobs in A ∩ J ′′ can be feasibly processed within
the subzones partitioning the interval [τi−1, λA) with quadrupled speeds. By a
symmetric argument, in OPT I2 , the jobs in B ∩ J ′′ can be feasibly processed
within the subzones partitioning the interval [λB , τi) with quadrupled speeds.
Finally, in OPT I2 , by equation (1), all jobs in C ∩J ′′ can be feasibly processed
using the subzone [λA, λB) with quadrupled speeds. Using Proposition 1, we can
thus conclude that E(OPT I2) ≤ 4α−1E(OPTI1). Now the entire lemma follows
from the fact that E(OPTI2) ≤ E(OPT I2). ��

Transformation III

In this section, we transform I2 into an instance I3 for unrelated machine schedul-
ing with the objective of minimizing the Lα-norm.

Unrelated Machine Scheduling with Lα-norm objective
GivenmmachinesM and n jobs J , where each job j takes pij processing
time on machine i, the goal is to find an assignment A mapping jobs to
machines that minimizes COST (A) = (

∑
i∈M(

∑
j:A(j)=i pij)

α)1/α.

Recall that in I2, each job j ∈ J has a set of allowed intervals, each of which
corresponds to a subzone. Let the collection of all subzones be Z and |zi| denote
the length of a subzone zi ∈ Z. In I3, each subzone zi corresponds to a machine
i ∈ M. For each job j ∈ J and each subzone zi, if j does not have an allowed
interval corresponding to zi, then pij = +∞. If it has such an interval, then let
pij =

vj
|zi|(α−1)/α .

Note that by convexity of the power function, we can assume that a schedule in
I2 processes a set of jobs within a subzone using a uniform speed. The following
lemma shows a one-to-one correspondence between a feasible schedule in I2 and
a feasible assignment in I3.
Lemma 4. For each assignment A in I3, a feasible schedule SI2(A) for instance
I2 can be created as follows. If a set of jobs J ′ ⊆ J is assigned to machine

i ∈M in A, SI2(A) processes the jobs in J ′ with the uniform speed of
∑

j∈J ′ vj
|zi|

in subzone zi. Conversely, given a feasible schedule SI2(A) for instance I2, let
AI2(j) denote the subzone in which job j is processed under SI2(A). We can
create an assignment A in instance I3 so that A(j) = AI2(j) for all jobs j ∈ J .

In both cases, we have (COST (A))α = E(SI2(A)).

Lemma 5. Let OPTI3 be an optimal and A be a feasible solution for I3, such
that COST (A) ≤ 2COST (OPTI3), i.e., A is a 2-approximate solution for I3.
Let SI2(A) be the corresponding schedule of A and OPTI2 be the corresponding
schedule of OPTI3 in instance I2. Then E(SI2(A)) ≤ 2αE(OPTI2).
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We can produce a 2-approximation schedule as stated in Lemma 5 using the
algorithm of Azar and Epstein [2]. Combining Lemmas 1, 3, and 5, we prove
Theorem 1 for the case of laminar instances.

4 General Instances

For a general instance, our algorithm is similar to what we have done for a
laminar instance. Recall that we use the following three transformations for a
laminar instance I.
1. Transformation I. Introduce a set of landmarks to transform I to I1, where

each job’s allowed interval is chopped up into a set of allowed intervals.
2. Transformation II. Introduce a set of sublandmarks to transform I1 to I2,

where each allowed interval of a job is possibly shortened and then further
chopped up into a set of allowed intervals.

3. Transformation III. Transform I2 to I3, an instance of unrelated machine
scheduling.

For a general instance I, Transformations II and III can remain unchanged. But
we need to revise Transformation I as follows.

– Transformation I1. We introduce a sweepline algorithm to define the land-
marks.

– Transformation I2. We shorten a subset of the allowed intervals so that the
instance has the same structure as we have had after transformation I when
dealing with a laminar instance.

Transformation I1
We define a set of landmarks using the sweepline algorithm Sweep presented in
Figure 4. Let Ψ = ∪j∈J {rj, dj} be the set of events. Note that Ψ ≤ 2|J |. The
order of these events is based on their numerical values, where ties are broken
arbitrarily.

Algorithm Sweep, sweeps the time horizon from left to right until it meets the
first deadline. It then sets this deadline as a landmark. Every job that was seen
up to that point gets “removed” and Sweep repeats the same procedure.

Let τ0 = 0 < τ1 < · · · < τk < τk+1 = dmax be the set of landmarks defined
by the above sweepline algorithm. The following lemma follows easily by an
inductive argument.

Lemma 6. Let τi ∈ Tland be the set of landmarks returned by the algorithm
Sweep, where τi’s are ordered increasingly. Within each zone [τi−1, τi), for 1 ≤
i < |Tland|, there exists at least a job j ∈ J whose allowed interval Ij is com-
pletely contained in such a zone, i.e., Ij ⊆ [τi−1, τi).

We create a new instance I1 based on I in the same manner as before. For each
job j ∈ J with its allowed interval Ij = [rj , dj) , suppose that

τi−1 ≤ rj < τi < τi+1 < · · · < τi+k < dj ≤ τi+k+1.
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Algorithm Sweep:

Initialization: Set Jc := ∅, and events Ψ := ∪j∈J {rj , dj}. Assume that the ele-
ments ti, 1 ≤ ti ≤ |Ψ | of Ψ are ordered, and let Tland := {0, dmax} be the initial set
of landmarks.
For i = 1 to |Ψ | do:

If ti = rj for some job j ∈ J \Jc then Jc = Jc ∪ {j}.
Else If ti = dj for some j ∈ Jc then

add ti to Tland; Set Jc := ∅.

Fig. 4. A sweepline algorithm to define landmarks

Then as in Transformation I, we replace its allowed interval Ij = [rj , dj) with a

set of allowed intervals
⋃k+2

s=1 Ijs, where

Ij1 = [rj , τi), Ij(k+2) = [τi+k, dj), and Ijs = [τs+i−2, τs+i−1) for 2 ≤ s ≤ k + 1.

Lemma 7. Let OPTI and OPTI1 denote the optimal schedules for instances I
and I1 respectively. Then E(OPTI1) ≤ 2α−1E(OPTI).

Transformation I2

In I1, each job has at most one allowed interval in the zone [τi−1, τi). Let J ′ ⊆ J
be the set of jobs j that have exactly one allowed interval in [τi−1, τi). Assume
that j ∈ J ′ has the allowed interval Ij1 = [rj1, dj1). As before, we can divide
J ′ into three groups A, B and C: (1) j ∈ A, if rj1 = τi−1, dj1 < τi; (2) j ∈ B if
τi−1 < rj1, dj1 = τi; and (3) j ∈ C if rj1 = τi−1, dj1 = τi.

However, unlike the laminar case, the allowed intervals of jobs in groups A
and B can overlap (see Figure 2(b)) in instance I1. Thus the technique employed
in Transformation II breaks down.

To deal with this, we shorten the allowed intervals of jobs in groups A and B
so that in the new instance I1,1, the allowed intervals of jobs in group A do not
overlap with those of jobs in group B. We argue that the cost of the optimal
solution in instance I1,1 does not increase by too much compared to the optimal
solution in instance I1.

We now transform I1 into I1,1 as follows. For the zone [τi−1, τi), let again dAl

be the latest deadline in group A and rBf the earliest release time in group B.
Suppose that j ∈ J ′ and its allowed interval is Ij1 = [rj1, dj1).

– If j ∈ A and dj1 > τi−1 + dAl−τi−1

2 , then replace j’s allowed interval with

I ′j1 = [τi−1, τi−1 +
dAl−τi−1

2 ).

– If j ∈ B and rj1 < τi − τi−dBf

2 , then replace j’s allowed interval with

I ′j1 = [τi − τi−rBf

2 , τi).

Observe that because Lemma 2 still holds for instances I1 and I1,1, we can
assume that the jobs in group A are processed first, then the jobs in group C,
and then jobs in groups B. Jobs in group A (resp. group B) are processed in the
order of their increasing deadlines (resp. increasing release times). We show the
following lemma.
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Lemma 8. Let OPTI1 and OPTI1,1 denote the optimal schedules for instances
I1 and I1,1 respectively. Then E(OPTI1,1) ≤ 2α−1E(OPTI).

Combining Lemmas 7, 8, 3, and 5, we complete the proof of Theorem 1.
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Abstract. The NP-complete PERMUTATION PATTERN MATCHING problem asks
whether a permutation P can be matched into a permutation T . A matching is an
order-preserving embedding of P into T . We present a fixed-parameter algorithm
solving this problem with an exponential worst-case runtime of O∗(1.79run(T )),
where run(T ) denotes the number of alternating runs of T . This is the first al-
gorithm that improves upon the O∗(2n) runtime required by brute-force search
without imposing restrictions on P and T . Furthermore we prove that – under
standard complexity theoretic assumptions – such a fixed-parameter tractability
result is not possible for run(P ).

1 Introduction

The concept of pattern avoidance (and, closely related, pattern matching) in permuta-
tions arose in the late 1960ies. It was in an exercise of his Fundamental algorithms [12]
that Knuth asked which permutations could be sorted using a single stack. The answer
is simple: These are exactly the permutations avoiding the pattern 231 and they are
counted by the Catalan numbers. By avoiding (resp. containing) a certain pattern the
following is meant: The permutation π = 53142 (written in one-line representation)
contains the pattern 231, since the subsequence 342 of π is order-isomorphic to 231. We
call the subsequence 342 a matching of 231 into π. On the other hand, π avoids the pat-
tern 123 since it contains no increasing subsequence of length three. Since 1985, when
the first systematic study of Restricted Permutations [17] was published by Simion and
Schmidt, the area of pattern avoidance in permutations has become a rapidly growing
field of discrete mathematics, more specifically of (enumerative) combinatorics [4,11].

This paper takes the viewpoint of computational complexity. Computational aspects
of pattern avoidance, in particular the analysis of the PERMUTATION PATTERN MATCH-
ING (PPM) problem, have received far less attention than enumerative questions until
now. The PPM problem is defined as follows:

PERMUTATION PATTERN MATCHING (PPM)
Instance: A permutation T (the text) of length n and a permutation

P (the pattern) of length k ≤ n.
Question: Is there a matching of P into T ?
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In [5] it was shown that PPM is in general NP-complete. From this result follows a
trivial brute-force algorithm checking every length k subsequence of T . Its runtime is
in O∗(2n), i.e. is bounded by 2n · poly(n). To the best of our knowledge, no algorithm
with a runtime of O∗((2 − ε)n) without restrictions on P and T is known yet. If such
restrictions are imposed, improvements have been achieved. There are polynomial time
algorithms in case of a separable pattern [2, 5, 10]. Separable permutations avoid both
3142 and 2413. In case P is the identity 12 . . . k, PPM consists of looking for an in-
creasing subsequence of length k in the text – this is a special case of the LONGEST

INCREASING SUBSEQUENCE problem. This problem can be solved inO(n logn)-time
for sequences in general [16] and inO(n log logn)-time for permutations [7,14]. PPM
can be solved in O(n logn)-time for all patterns of length four [2]. An O(k2n6)-time
algorithm is presented in [9] for the case that both the text and the pattern are 321-
avoiding.

In this paper we tackle the problem of solving PPM faster than O∗(2n) for arbi-
trary P and T . We achieve this by exploiting the decomposition of permutations into
alternating runs. As an example, the permutation π = 53142 has three alternating runs:
531 (down), 4 (up) and 2 (down). We denote this number of ups and downs in a per-
mutation π by run(π). Alternating runs are a fundamental permutation statistic and had
been studied already in the late 19th century by André [3]. An important result was the
characterization of the distribution of run(π) in a random permutation: asymptotically,
run(π) is normal with mean 1

3 (2|π|−1) [13]. Despite the importance of alternating runs
within the study of permutations, the connection to PPM has so far not been explored.

In detail the contributions of this paper are the following:

– We present a fixed-parameter algorithm for PPM with an exponential runtime of
O∗(1.79run(T )). Since the combinatorial explosion is confined to run(T ), this al-
gorithm performs especially well when T has few alternating runs. Indeed, the
runtime depends only polynomially on n, the length of T .

– Since run(T ) ≤ n, this algorithm also solves PPM in time O∗(1.79n). This is a
major improvement over the brute-force algorithm.

– Furthermore, we analyze this algorithm with respect to run(P ). We obtain a run-

time of O∗( (n2/2run(P )
)run(P ) )

. In the framework of parameterized complexity
theory this runtime proves XP membership for run(P ).1

– Finally, we prove that this XP result cannot be substantially improved. We prove
that – under standard complexity theoretic assumptions – no fixed-parameter algo-
rithm exists with respect to run(P ), i.e. no algorithm with runtime O∗(crun(P )) for
some constant c may be hoped for.

Proofs had to be omitted in this version – we refer the reader to the full version of this
paper [6]. Runtime calculations can be found there as well.

2 Preliminaries

Permutations. For any m ∈ N, let [m] denote the set {1, . . . ,m} and [0,m] denote
{0, 1, . . . ,m}. A permutation π on the set [m] can be seen as the sequence π(1), π(2),

1 XP membership also follows from results in [1] and a lemma shown in [6].
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. . . , π(m). Viewing permutations as sequences allows us to speak of subsequences of
a permutation. We speak of a contiguous subsequence of π if the sequence consists of
contiguous elements in π.

Definition 1. Let P (the pattern) be a permutation of length k. We say that the permu-
tation T (the text) of length n contains P as a pattern or that P can be matched into T if
we can find a subsequence of T that is order-isomorphic to P . If there is no such subse-
quence we say that T avoids the pattern P . Matching P into T thus consists in finding
a monotonically increasing map ϕ : [k] → [n] so that the sequence ϕ(P ), defined as(
ϕ(P (i))

)
i∈[k]

, is a subsequence of T .

Every permutation π on [m] defines a total order ≺π on [m]. We write i ≺π j iff
π−1(i) < π−1(j), i.e. the value i stands to the left of the value j in π. When considering
the minimum (maximum) of a subset S ⊆ [m] with respect to ≺π, we write minπ S
(maxπ S).

We discern two types of local extrema in permutations: valleys and peaks. A valley
of a permutation π is an element π(i) for which it holds that π(i − 1) > π(i) and
π(i) < π(i+1). If π(i− 1) or π(i+1) is not defined, we still speak of valleys. The set
Val(π) contains all valleys of π. Similarly, a peak denotes an element π(i) for which it
holds that π(i− 1) < π(i) and π(i) > π(i + 1).

Valleys and peaks partition a permutation into contiguous monotone subsequences,
so-called (alternating) runs. The first run of a given permutation starts with its first
element (which is also the first local extremum) and ends with the second local ex-
tremum. The second run starts with the following element and ends with the third local
extremum. Continuing in this way, every element of the permutation belongs to exactly
one alternating run. Observe that every alternating run is either increasing or decreasing.
We therefore distinguish between runs up and runs down. Note that runs up always end
with peaks and runs down always end with valleys. The parameter run(π) counts the
number of alternating runs in π. Hence run(π) + 1 equals the number of local extrema
in π. These definitions can be analogously extended to subsequences of permutations.

Example 2. In the permutation 1 8 12 4 7 11 6 3 2 9 5 10 the valleys are 1, 4, 2 and 5
and the peaks are 12, 11, 9 and 10. A decomposition into alternating runs is given
by: 1 8 12|4|7 11|6 3 2|9|5|10. A graphical representation can be found in Figure 1 on
page 265. #

Parameterized Complexity Theory. In contrast to classical complexity theory, a pa-
rameterized complexity analysis studies the runtime of an algorithm with respect to an
additional parameter and not just the input size |I|. A problem parameterized by a pa-
rameter p is fixed-parameter tractable (or in FPT) if there is an algorithm solving it
in time O(f(p) · |I|c), where f is a computable function and c a constant. The algo-
rithm itself is also called fixed-parameter tractable (fpt). In this paper we want to focus
on the exponential runtime of algorithms, i.e. the function f , and therefore use the O∗

notation which neglects polynomial factors. The classes W[1] ⊆ W[2] ⊆ . . . build
the so-called W-hierarchy. It is conjectured (and widely believed) that W[1] �= FPT.
Therefore showing W[1]-hardness can be considered as evidence that a problem is
not fixed-parameter tractable. A problem is in XP with respect to a parameter k if
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it can be solved in time O(|I|f(k)) where f is a computable function. It holds that
FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ XP. For details we refer the reader to [8, 15].

3 The Alternating Run Algorithm

We start with an outline of the alternating run algorithm. Its description consists of two
parts. In Part 1 we introduce so-called matching functions. These functions map runs
in P to sequences of adjacent runs in T . The intention behind matching functions is
to restrict the search space to certain length k subsequences, namely to those where
all elements in a run in P are mapped to elements in the corresponding sequences of
runs in T . In Part 2 a dynamic programming algorithm is described. It checks for every
matching function whether it is possible to find a compatible matching. This is done by
finding a small set of representative elements to which the element 1 can be mapped to,
then – for a given choice for 1 – finding representative values for 2, and so on.

Theorem 3. The alternating run algorithm solves PPM in timeO∗(1.79run(T )). There-
fore PPM parameterized by run(T ) is in FPT.

Corollary 4. The alternating run algorithm solves PPM in time O∗(1.79n) where n is
the length of the text T .

Proposition 5. PPM is in XP with respect to the parameter run(P ) since the alternat-

ing run algorithm solves PPM in time O∗(( n2

2run(P )

)run(P ))
.

Throughout this section the input instance (Tex , Pex ) which is given by
Tex = 18 12 4 7 11 6 3 2 9 5 10 and Pex = 23 1 4 serves as a running example.

Part 1: Matching Functions. We introduce the concept of matching functions. These
are functions from [run(P )], i.e. runs in P , to sequences of adjacent runs in T . For a
given matching function F the search space in T is restricted to matchings where an
element i contained in the j-th run in P is matched to an element in F (j). Two adjacent
runs in P are mapped to sequences of runs that overlap with exactly one run. This
overlap is necessary since elements in different runs in P may be matched to elements
in the same run in T . More precisely, valleys and peaks in P might be matched to the
same run in T as their successors (see the following example).

Example 6. In Figure 1 Pex (left-hand side) and Tex (right-hand side) are depicted
together with a matching function F . A matching compatible with F is given by 4 6 2 9.
We can see that the elements 6 and 2 lie in the same run in Tex even though 3 (a peak)
and 1 (its successor) lie in different runs in Pex . #

Definition 7. A matching function F maps an element of [run(P )] to a subsequence of
T . It has to satisfy the following properties for all i ∈ [run(P )].

(P1) F (i) is a contiguous subsequence of T .
(P2) If the i-th run in P is a run up (down), F (i) starts with an element following a

valley (peak) or the first element in T and ends with a valley (peak) or the last
element in T .
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Fig. 1. Pex and Tex together with a matching function F and the compatible matching 4 6 2 9

run up in P

run down in P

Fig. 2. A sketch of a matching function and its M- and W-shaped subsequences

(P3) F (1) starts with the first and F (run(P )) ends with the last element in T .
(P4) F (i) and F (i + 1) have one run in common: F (i + 1) starts with the leftmost

element in the last run in F (i).

Property (P2) implies that every run up is matched into an M-shaped sequence of runs
of the form up-down-up-...-up-down (if the run up is the first or the last run in P the
sequence might start or end differently) and every run down is matched into a W-shaped
sequence of runs of the form down-up-down-...-down-up (again, if the run down is the
first or the last run in P , the sequence might start or end differently). These M- and
W-shaped sequences and their overlap are sketched in Figure 2.

The following lemma is essential as it enables us to iterate over all matching func-
tions in fpt time.

Lemma 8. There are at most
√
2
run(T )

functions from [run(P )] to subsequences of T
that satisfy (P1) to (P4).

Proof idea. A matching function F can be uniquely determined by fixing the first run
up in each F (i). There are at most �run(T )/2� runs up in T . ��

Part 2: Finding a Matching. When checking whether T contains P as a pattern, it is
sufficient to test for all matching functions whether there exists a compatible matching.
A matching is compatible with a matching function F if an element i contained in
the j-th run in P is matched to an element in F (j). This is checked by a dynamic
programming algorithm. The algorithm computes the data structure Xκ for each κ ∈
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[k]. Xκ is a subset of [0, n]run(P ) and contains representative choices for the matching
of the largest element in each run in P that is ≤ κ. (Xκ does of course depend on F but
we omit this in the notation.)

Let us explain what is meant by representative choices. We search for a compatible
matching of P into T by successively determining possible elements for 1, 2, . . . , k.
Given a choice for κ ∈ [k], possible choices for κ + 1 are necessarily larger. In ad-
dition, it is always preferable to choose elements that are as small as possible. To be
more precise: if ν ∈ [n] has been chosen for κ ∈ [k], we merely need to consider the
valleys of the subsequence of T containing all elements larger than ν. Indeed, if any
matching of P into T can be found, it is also possible to find a matching that only in-
volves valleys in the above-mentioned subsequences. Therefore our algorithm will only
consider such valleys – we call these elements representative. As an example, consider
again Figure 1. Here 4 6 3 10 is a matching of Pex into Tex where the elements 3 and
10 are not representative. This can be seen since 3 is not a valley and 10 is not a valley
in the subsequence consisting of elements larger than 6. However, this matching can
be represented by the matching 4 6 2 9 that only involves representative elements (3 is
represented by 2; 10 by 9).

Furthermore, observe that when successively determining possible elements for
1, 2, . . . , k, we move from left to right in runs up and from right to left in runs down.
Hence the chosen elements do not only have to be larger than the previously chosen
element but also have to lie on the correct side of the previously chosen element in the
same run. These observations are captured in the following definition.

Definition 9. For a permutation π on [n] and integers i, j ≤ n, we define πU(i,j)

(πD(i,j)) as the subsequence of π consisting of all elements that are right (left) of
j and larger than i. Then URep(π, i, j) := Val(πU(i,j)) (resp. DRep(π, i, j) :=
Val(πD(i,j))) corresponds to the set of representative elements for the case of a run
up (resp. down).

For an example, see Figure 3 where representative elements are shown for the permu-
tation Tex , i = 3 and j = 2.

1

12

7

11

3
2

9
10

v

v

v

v

8

4

6
5

D

D

D
U

x Val(T )
v

xD DRep(T, 3, 2)

x U URep(T, 3, 2)

Fig. 3. Illustrating Definition 9
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We now describe how the algorithm checks whether there is a matching from P into
T compatible with the matching function F . The data structure Xκ consists of run(P )-
tuples with entries in [0, n]. The i-th component of a tuple in Xκ is a representative
choice for the largest element≤ κ that lies in the i-th run. Limiting Xκ to representative
elements allows to bound its size by 1.262run(T ). In order to achieve this upper bound,
we impose the following conditions (C1) and (C2) and remove unnecessary elements
by applying the rules (R1) and (R2). In order to state these conditions and rules, we
write r(κ) = i iff κ is contained in the i-th run in P . For notational convenience we
define r(0) := 1.

First, we set X0 :=
{
(0, 0, . . . , 0)

}
. The set Xκ is then constructed from Xκ−1 as

follows. Let x =
(
x1, . . . , xrun(P )

)
∈ Xκ−1. We now define Nκ,x to be the set of all

ν ∈ [n] that satisfy (C1) and (C2). This set contains representative elements to which κ
may be mapped to for the given x.

(C1) It has to hold that ν ∈ URep(F (r(κ)), xr(κ−1), xr(κ)) in case κ lies in a run up
and analogously ν ∈ DRep(F (r(κ)), xr(κ−1), xr(κ)) in case κ lies in a run down.

This condition ensures that ν is larger than the previously chosen element for κ − 1,
i.e. larger than xr(κ−1). Furthermore, it enforces ν to lie on the correct side of xr(κ),
the previously chosen element in this run. Instead of considering all such elements in
F (r(κ)) we only take into account representative elements.

(C2) If κ is not the largest element in its run in P , there has to exist ξ ∈ F (r(κ)) with
ν < ξ and ν ≺T ξ for κ appearing in a run up (ξ ≺T ν for κ appearing in a run
down).

This condition excludes a choice for κ that cannot lead to a matching. A non-maximal
element in a run up (down) in P has to be mapped to an element having larger ele-
ments to its right (left). We therefore exclude elements in the rightmost (leftmost) run
of F (r(κ)) if this is a run down (up). Condition (C2) is necessary to obtain the runtime
bounds for the dynamic programming algorithm.

As an intermediate step let X ′
κ := {x(ν) | x ∈ Xκ−1 and ν ∈ Nκ,x}, where

x(ν) :=
(
x1, . . . , xr(κ)−1, ν, xr(κ)+1, . . . , xrun(P )

)
. The tuple x(ν) thus differs from x

only at the r(κ)-th position. Note that two different elements x and x′ in Xκ−1 may
lead to the same element x(ν) = x′(ν) in Xκ if they only differ in xr(κ). Rule (R1)
describes how to compute Xκ from X ′

κ. Stating it requires the following definition.

Definition 10. Let π be a permutation of length n. A subsequence of π consisting of a
consecutive run down and run up (formed like a V) is called a vale. If π starts with a
run up, this run is also considered as a vale and analogously if π ends with a run down.
For two elements ν1, ν2 ∈ [n], ν1 ∼ ν2 if both lie in the same vale2. For two k-tuples
x,y ∈ [n]k, x ∼ y if for every i ∈ [k] it holds that xi ∼ yi. For a fixed set of k-tuples
S and x ∈ S, the equivalence class [x]∼ is defined as all y ∈ S with x ∼ y.

(R1) We set Xκ :=
{

min(r(κ))([x]∼) | x ∈ X ′
κ

}
, where min(i)(S) is the function

picking the tuple in S with the smallest value at the i-th position. If this mini-
mum is not unique, it arbitrarily picks one candidate.

2 Note that every element in a permutation is contained in exactly one vale.
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This rule is the key to prove the 1.262run(T ) upper bound on |Xκ|. It is based on the
observation that it is enough to keep a single tuple for each [x]∼. This means that for a
set of tuples with coinciding vales it is enough to consider one of them. We provide an
intuition about the rule and its correctness in the following example.

Example 11. Consider the text permutation schematically represented in Figure 4. We
are searching for representative choices for κ, an element lying in a run down. For κ′,
the previous element lying in the same run as κ, two representative elements are μ1

(circle) and μ2 (square). They lead to one representative element for κ − 1 each: if μ1

has been chosen ν1 is a representative element (circle) and if μ2 has been chosen ν2 is
one. Following condition (C1), we find three representative elements for κ in F (r(κ)):
ξ1 (if ν1 has been chosen), ξ2 and ξ3 (if ν2 has been chosen).

We can now observe that it is not necessary to store all three representative elements
for κ. Indeed, in the vale containing ξ1 and ξ2 we only need to keep track of ξ1 since
this is always a better choice than ξ2. This can be seen in the following way: In general,
elements that lie further to the right (left) in a run down (up) might be preferable since
they leave more possibilities for future elements that are to be matched. Within a vale
however, the horizontal position does not make any difference, it is only the vertical
position that matters. Here, the elements left of ξ2 and right of ξ1 are not available for
following choices even if we choose ξ2 since they are smaller than ξ2. However, the
elements left of ξ1 that are smaller than ξ2 are only available if we choose ξ1. #

= F (r(κ)) = F (r(κ′)),
where κ and κ′ lie in a run down

. . . . . .

= F (r(κ− 1)),
where κ− 1 lies in a run up

μ1

μ2

ν1

ν2

ξ3
ξ2

ξ1

representative elements for

κ′ :

κ− 1 :

κ :

κ′ < κ− 1 < κ

Fig. 4. Illustrating Rule (R1)

In the case that κ is the largest element in its run, it is enough to consider a single
representative element in F (r(κ)). This is because the position of the element ν is
no longer relevant since no further elements have to be chosen in this run. Hence the
following data reduction is performed on Xκ.

(R2) Let Mκ,x :=
{
yr(κ) | y ∈ Xκ ∧ (yi = xi ∀i �= r(κ))

}
. If κ is the largest ele-

ment in its run, each x =
(
x1, . . . , xrun(P )

)
∈ Xκ is replaced by the tuple(

x1, . . . , xr(κ)−1,min(Mκ,x), xr(κ)+1, . . . , xrun(P )

)
.
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As a consequence there are no two tuples in Xκ that only differ at the r(κ)-th position
in this case.

Termination. For a given matching function F , the algorithm described in Part 2 ter-
minates as soon as we have reached Xk. Observe that Xk is always empty if a previous
Xκ was empty. If for any F the data structure Xk is non-empty, P can be matched into
T .

Example 12. Let us demonstrate with the help of a simple example how the alternating
run algorithm works. Consider the text Tex and the pattern Pex . In this example we
consider the matching function F represented in Figure 1. Figure 5 depicts a successful
run of the algorithm finding the matching 4 6 2 9. #

(0,2,0)

(8,2,0) (4,2,0)

(6,2,0)

(6,2,9)

The only valley in F (r(1)) = F (2) is 2, therefore N1,(0,0,0) = {2}.

There are 3 representative elements larger than 2 in F (1): 8, 4 and 3.
Since 2 is not the largest element in its run in Pex , condition (C2) implies
that 3 is ruled out. Thus N2,(0,2,0) = {8, 4}. Rule (R1) yields X2 = X ′

2.
Rule (R2) is not applicable.

We have N3,(8,2,0) = {11} and N3,(4,2,0) = {7, 6} implying X ′
3 =

{(11, 2, 0), (7, 2, 0), (6, 2, 0)}. Rule (R1) discards (11, 2, 0) in favor of
(7, 2, 0). Finally, Rule (R2) is applicable here and discards (7, 2, 0).

The only representative element larger than 6 in F (3) is 9. The matching
of Pex = 2314 into Tex found by the algorithm is thus 4629.

Fig. 5. The construction of X1, . . . , X4 for our running example (Tex , Pex )

4 W[1]-Hardness for the Parameter run(P )

Proposition 5 shows that the alternating run algorithm also yields an XP result with
respect to run(P ). The following theorem implies that this result cannot be improved
to an FPT result – unless FPT = W[1]. This is shown by an fpt-reduction from the
W[1]-complete CLIQUE problem.

Theorem 13. PPM is W[1]-hard with respect to the parameter run(P ).

5 Future Work

Theorem 3 shows fixed-parameter tractability of PPM with respect to run(T ). An im-
mediate consequence is that any PPM instance can be reduced by polynomial time pre-
processing to an equivalent instance – a kernel – of size depending solely on run(T ).
This raises the question whether even a polynomial-sized kernel exists. Another re-
search direction is the study of further permutation statistics. The major open problem
in this regard is whether PPM is fpt with respect to the length of P . Finally, our method
of making use of alternating runs might lead to fast algorithms for other permutation
based problems as well.
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Abstract. We consider a variant of the orthogonal range reporting
problem when all points should be reported in the sorted order of their
x-coordinates. We show that reporting two-dimensional points with this
additional condition can be organized (almost) as efficiently as the stan-
dard range reporting. Moreover, our results generalize and improve the
previously known results for the orthogonal range successor problem and
can be used to obtain better solutions for some stringology problems.

1 Introduction

An orthogonal range reporting query Q on a set of d-dimensional points S asks
for all points p ∈ S that belong to the query rectangle Q =

∏d
i=1[ai, bi]. The

orthogonal range reporting problem, that is, the problem of constructing a data
structure that supports such queries, was studied extensively; see for example [1].
In this paper we consider a variant of the two-dimensional range reporting in
which reported points must be sorted by one of their coordinates. Moreover,
our data structures can also work in the online modus: the query answering
procedure reports all points from S ∩ Q in increasing x-coordinate order until
the procedure is terminated or all points in S ∩Q are output.1

Some simple database queries can be represented as orthogonal range report-
ing queries. For instance, identifying all company employees who are between
20 and 40 years old and whose salary is in the range [r1, r2] is equivalent to
answering a range reporting query Q = [r1, r2]× [20, 40] on a set of points with
coordinates (salary, age). Then reporting employees with the salary-age range Q
sorted by their salary is equivalent to a sorted range reporting query.

Furthermore, the sorted reporting problem is a generalization of the or-
thogonal range successor problem (also known as the range next-value prob-
lem) [15,8,14,7,21]. The answer to an orthogonal range successor query Q =
[a,+∞] × [c, d] is the point with smallest x-coordinate2 among all points that
are in the rectangle Q. The best previously known O(n) space data struc-
ture for the range successor queries uses O(n) space and supports queries in

� Partially funded by Millennium Nucleus Information and Coordination in Networks
ICM/FIC P10-024F, Chile.

1 We can get increasing/decreasing x/y-coordinate ordering via coordinate changes.
2 Previous works (e.g., [8,21]) use slightly different definitions, but all of them are
equivalent up to a simple change of coordinate system or reduction to rank space [11].

F.V. Fomin and P. Kaski (Eds.): SWAT 2012, LNCS 7357, pp. 271–282, 2012.
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O(log n/ log logn) time [21]. The fastest previously described structure supports
range successor queries in O(log logn) time but needs O(n log n) space. In this
paper we show that these results can be significantly improved.

In Section 3 we describe two data structures for range successor queries. The
first structure needs O(n) space and answers queries in O(logε n) time; hence-
forth ε denotes an arbitrarily small positive constant. The second structure needs
O(n log logn) space and supports queries inO((log logn)2) time. Both data struc-
tures can be used to answer sorted reporting queries inO((k+1) logε n) andO((k+
1)(log logn)2) time, respectively, where k is the number of reported points. In Sec-
tions 4 and 5 we further improve the query time and describe a data structure that
uses O(n logε n) space and supports sorted reporting queries in O(log logn + k)
time. As follows from the reduction of [17] and the lower bound of [19], any data

structure that usesO(n logO(1) n) space needsΩ(log logn+k) time to answer (un-
sorted) orthogonal range reporting queries. Thus we achieve optimal query time
for the sorted range reporting problem. We observe that the currently best data
structure for unsorted range reporting in optimal time [5] also uses O(n logε n)
space. In Section 6 we discuss applications of sorted reporting queries to some
problems related to text indexing and some geometric problems.

Our results are valid in the word RAM model. Unless specified otherwise, we
measure the space usage in words of log n bits. We denote by p.x and p.y the
coordinates of a point p. We assume that points lie on an n× n grid, i.e., that
point coordinates are integers integers in [1, n]. We can reduce the more general
case to this one by reduction to rank space [11]. The space usage will not change
and the query time would increase by an additive factor pred(n), where pred(n)
is the time needed to search in a one-dimensional set of integers [20,19].

2 Compact Range Trees

The range tree is a handbook data structure frequently used for various orthog-
onal range reporting problems. Its leaves contain the x-coordinates of points; a
set S(v) associated with each node v contains all points whose x-coordinates are
stored in the subtree rooted at v. We will assume that points of S(v) are sorted
by their y-coordinates. S(v)[i] will denote the i-th point in S(v); S(v)[i..j] will
denote the sorted list of points S(v)[i], S(v)[i + 1], . . . , S(v)[j].

A standard range tree uses O(n logn) space, but this can be reduced by stor-
ing compact representations of sets S(v). We will need to support the follow-
ing two operations on compact range trees. Given a range [c, d] and a node v,
noderange(c, d, v) finds the range [cv, dv] such that p.y ∈ [c, d] if and only if
p ∈ S(v)[cv..dv] for any p ∈ S(v). Given an index i and a node v, point(v, i)
returns the coordinates of point S(v)[i].

Lemma 1. [6,5] There exists a compact range tree that uses O(nf(n)) space and
supports operations point(v, i) and noderange(c, d, v) in O(g(n)) and O(g(n) +
log logn) time, respectively, for (i) f(n) = O(1) and g(n) = O(logε n); (ii)
f(n) = O(log logn) and g(n) = O(log logn); (iii) f(n) = O(logε n) and g(n) =
O(1).
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Proof : We can support point(v, i) in O(g(n)) time using O(nf(n)) space as in
variants (i) and (iii) using a result from Chazelle [6]; we can support point(v, i)
in O(log logn) time and O(n log logn) space using a result from Chan et al. [5].
In the same paper [5, Lemma 2.4], the authors also showed how to support
noderange(c, d, i) in O(g(n) + log logn) time and O(n) additional space using a
data structure that supports point(v, i) in O(g(n)) time. �

3 Sorted Reporting in Linear Space

In this section we show how a range successor query Q = [a,+∞]× [c, d] can be
answered efficiently. We combine the recursive approach of the van Emde Boas
structure [20] with compact structures for range maxima queries. A combination
of succinct range minima structures and range trees was also used in [5]. A novel
idea that distinguishes our data structure from the range reporting structure
in [5], as well as from the previous range successor structures, is binary search on
tree levels originally designed for one-dimensional searching [20]. We essentially
perform a one-dimensional search for the successor of a and answer range maxima
queries at each step. Let Tx denote the compact range tree on the x-coordinates
of points. Tx is implemented as in variant (i) of Lemma 1; hence, we can find
the interval [cv, dv] for any node v in O(logε n) time. We also store a compact
structure for range maximum queries M(v) in every node v: given a range [i, j],
M(v) returns the index i ≤ t ≤ j of the point p with the greatest x-coordinate in
S(v)[i..j]. We also store a structure for range minimum queries M ′(v). M(v) and
M ′(v) use O(n) bits and answer queries in O(1) time [9]. Hence all M(u) and
M ′(u) for u ∈ Tx use O(n) space. Finally, an O(n) space level ancestor structure
enables us to find the depth-d ancestor of any node u ∈ Tx in O(1) time [2].

Let π denote the search path for a in the tree Tx: π connects the root of Tx

with the leaf that contains the smallest value ax ≥ a. Our procedure looks for
the lowest node vf on π such that S(v) ∩Q �= ∅. For simplicity we assume that
the length of π is a power of 2. We initialize vl to the leaf that contains ax; we
initialize vu to the root node. The node vf is found by a binary search on π.
We say that a node w is the middle node between u and v if w is on the path
from u to v and the length of the path from u to w equals to the length of the
path from w to v. We set the node vm to be the middle node between vu and
vl. Then we find the index tm of the maximal element in S(vm)[cvm ..dvm ] and
the point pm = S(vm)[tm]. If pm.x ≥ a, then vf is either vm or its descendant;
hence, we set vu = vm. If pm.x < a, then vf is an ancestor of vm; hence, we set
vl = vm. The search procedure continues until vu is the parent of vm. Finally,
we test nodes vu and vl and identify vf (if such vf exists).

Fact 1. If the child v′ of vf belongs to π, then v′ is the left child of vf .

Proof : Suppose that v′ is the right child of vf and let v′′ be the sibling of v′.
By definition of vf , Q∩ S(v′) = ∅. Since v′ belongs to π and v′′ is the left child,
p.x < a for all points p ∈ S(v′′). Since S(vf ) = S(v′)∪S(v′′), Q∩S(vf ) = ∅ and
we obtain a contradiction. �
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Since v′ ∈ π is the left child of vf , p.x ≥ a for all p ∈ S(v′′) for the sibling v′′ of v.
Moreover, p.x < a for all points p ∈ S(v′)[cv′ , dv′ ] by definition of vf . Therefore
the range successor is the point with minimal x-coordinate in S(v′′)[cv′′ ..dv′′ ].

The search procedure visits O(log logn) nodes and spends O(logε n) time in
each node, thus the total query time is O(logε n log logn). By replacing ε′ < ε
in the above construction, we obtain the following result.

Lemma 2. There exists a data structure that uses O(n) space and answers or-
thogonal range successor queries in O(logε n) time.

If we use the compact tree that needs Θ(n log logn) space, then g(n) = log logn.
Using the same structure as in the proof of Lemma 2, we obtain the following.

Lemma 3. There exists a data structure that uses O(n log logn) space and an-
swers orthogonal range successor queries in O((log logn)2) time.

Sorted Reporting Queries. We can answer sorted reporting queries by answering
a sequence of range successor queries. Consider a query Q = [a, b] × [c, d]. Let
p1 be the answer to the range successor query Q1 = [a,+∞]× [c, d]. For i ≥ 2,
let pi be the answer to the query Qi = [pi−1.x,+∞] × [c, d]. The sequence of
points p1, . . . pk is the sequence of k leftmost points in [a, b]× [c, d] sorted by their
x-coordinates. We observe that our procedure also works in the online modus
when k is not known in advance. That is, we can output the points of Q ∩ S in
the left-to-right order until the procedure is stopped by the user or all points in
Q ∩ S are reported.

Theorem 1. There exist a data structures that uses O(n) space and an-
swer sorted range reporting queries in O((k + 1) logε n) time, and that use
O(n log logn) space and answer those queries in O((k + 1)(log logn)2) time.

4 Three-Sided Reporting in Optimal Time

In this section we present optimal time data structures for two special cases of
sorted two-dimensional queries. In the first part of this section we describe a
data structure that answers sorted one-sided queries: for a query c we report all
points p, p.y ≤ c, sorted in increasing order of their x-coordinates. Then we will
show how to answer three-sided queries, i.e., to report all points p, a ≤ p.x ≤ b
and p.y ≤ c, sorted in increasing order by their x-coordinates.

One-Sided Sorted Reporting. We start by describing a data structure that an-
swers queries in O(log n+k) time; our solution is based on a standard range tree
decomposition of the query interval [1, c] into O(log n) intervals. Then we show
how to reduce the query time to O(k + log logn). This improvement uses an
additional data structure for the case when k ≤ logn points must be reported.

We construct a range tree on the y-coordinates. For every node v ∈ T , the list
L(v) contains all points that belong to v sorted by their x-coordinates. Suppose
that we want to return k points p with smallest x-coordinates such that p.y ≤ c.
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We can represent the interval [1, c] as a union of O(log n) node ranges for nodes
vi ∈ T . The search procedure visits each vi and finds the leftmost point (that is,
the first point) in every list L(vi). Those points are kept in a data structure D.
Then we repeat the following step k times: We find the leftmost point p stored in
D, output p and remove it from D. If p belongs to a list L(vi), we find the point
p′ that follows p in L(vi) and insert p′ into D. As D contains O(log n) points,
we support updates and find the leftmost point in D in O(1) time [10]. Hence,
we can initialize D in O(log n) time and then report k points in O(k) time.

We can reduce the query time to O(k + log logn) by constructing additional
data structures. If k ≥ logn the data structure described above already answers
a query in O(k + logn) = O(k) time. The case k ≤ logn can be handled as
follows. We store for each p ∈ S a list V (p). Among all points p′ ∈ S such that
p′.y ≤ p.y the list V (p) contains logn points with the smallest x-coordinates.
Points in V (p) are sorted in increasing order by their x-coordinates. To find k
leftmost points in [1, c] for k < logn, we identify the highest point pc ∈ S such
that pc.y ≤ c and report the first k points in V (pc). The point pc can be found
in O(log logn) time using the van Emde Boas data structure [20]. If pc is known,
then a query can be answered in O(k) time for any value of k.

One last improvement will be important for the data structure of Lemma 5.
Let Sm denote the set of �log logn� lowest points in S. We store the y-coordinates
of p ∈ Sm in the q-heap F. Using F , we can find the highest pm ∈ Sm, such that
pm.y ≤ c, in O(1) time [10]. Let nc = |{ p ∈ S | p.y ≤ c }|. If nc ≤ log logn, then
pm = pc. As described above, we can answer a query in O(k) time when pc is
known. Hence, a query can be answered in O(k) time if nc ≤ log logn.

Lemma 4. There exists an O(n log n) space data structure that supports one-
sided sorted range reporting queries in O(log logn+ k) time. If the highest point
p with p.y ≤ c is known, then one-sided sorted queries can be supported in O(k)
time. If |{ p ∈ S | p.y ≤ c }| ≤ log logn, a sorted range reporting query [1, c] can
be answered in O(k) time.

Three-Sided Sorted Queries. We construct a range tree on x-coordinates of
points. For any node v, the data structure D(v) of Lemma 4 supports one-
sided queries on S(v) as described above. For each root-to-leaf path π we store
two data structures, R1(π) and R2(π). Let π

+ and π− be defined as follows. If
v belongs to a path π and v is the left child of its parent, then its sibling v′

belongs to π+. If v belongs to π and v is the right child of its parent, then its
sibling v′ belongs to π−. The data structure R1(π) contains the lowest point in
S(v′) for each v′ ∈ π+; if v ∈ π is a leaf, R1(π) also contains the point stored in
v. The data structure R2(π) contains the lowest point in S(v′) for each v′ ∈ π−;
if v ∈ π is a leaf, R2(π) also contains the point stored in v. Let lev(v) denote the
level of a node v (the level of a node v is the length of the path from the root
to v). If a point p ∈ Ri(π), i = 1, 2, comes from a node v, then lev(p) = lev(v).
For a given query (c, l) the data structure R1(π) (R2(π)) reports points p such
that p.y ≤ c and lev(p) ≥ l sorted in decreasing (increasing) order by lev(p).
Since a data structure Ri(π), i = 1, 2, contain O(log n) points, the point with
the k-th largest (smallest) value of lev(p) among all p with p.y ≤ c can be found
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in O(1) time. The implementation of structures Ri(π) is based on standard bit
techniques and will be described in the full version.

Consider a query Q = [a, b]× [1, c]. Let πa and πb be the paths from the root
to a and b respectively. Suppose that the lowest node v ∈ πa ∩ πb is situated on
level lev(v) = l. Then all points p such that p.x ∈ [a, b] belong to some node v
such that v ∈ π+

a and lev(v) > l or v ∈ π−
b and lev(v) > l. We start by finding

the leftmost point p in R1(πa) such that lev(p) > l and p.y ≤ c. Since the x-
coordinates of points in R1(πa) decrease as lev(p) increases, this is equivalent
to finding the point p1 ∈ R1(πa) such that p1.y ≤ c and lev(p1) is maximal. If
lev(p1) > l, we visit the node v1 ∈ π+

a that contains p1; using D(v1), we report
the k leftmost points p′ ∈ S(v1) such that p′.y ≤ c. Then, we find the point p2
with the next largest value of lev(p) among all p ∈ R1(πa) such that p.y ≤ c; we
visit the node v2 ∈ π+

a that contains p2 and proceed as above. The procedure
continues until k points are output or there are no more points p ∈ R1(πa),
lev(p) > l and p.y ≤ c. If k′ < k points were reported, we visit selected nodes
u ∈ π−

b and report remaining k − k′ points using a symmetric procedure.
Let ki denote the number of reported points from the set S(vi) and let mi =

Q ∩ S(vi). We spend O(ki) time in a visited node vi if ki ≥ log logn or mi <
log logn. If kj < log logn and mj ≥ log logn, then we spend O(log logn + kj)
time in the respective node vj . Thus we spend O(log logn+ kj) time in a node
vj only if mj > kj , i.e., only if not all points from S(vj) ∩Q are reported. Since
at most one such node vj is visited, the total time needed to answer all one-sided
queries is O(

∑
i ki + log logn) = O(log logn+ k).

Lemma 5. There exists an O(n log2 n) space data structure that answers three-
sided sorted reporting queries in O(log logn+ k) time.

Online queries. We assumed in Lemmas 4 and 5 that parameter k is fixed and
given with the query. Our data structures can also support queries in the online
modus using the method originally described in [3]. The main idea is that we find
roughly Θ(ki) leftmost points from the query range for ki = 2i and i = 1, 2, . . .;
while ki points are reported, we simultaneously compute the following Θ(ki+1)
points in the background. For a more extensive description, refer to [18, Section
4.1], where the same method for a slightly different problem is described.

5 Two-Dimensional Range Reporting in Optimal Time

We store points in a compact range tree Ty on y-coordinates. We use the variant
(iii) of Lemma 1 that uses O(n logε n) space and retrieves the coordinates of the
r-th point from S(v) in O(1) time. Moreover, the sets S(v), v ∈ Ty, are divided
into groups Gi(v). Each Gi(v), except of the last one, contains �log3 n� points.
For i < j, each point assigned to Gi(v) has smaller x-coordinate than any point
inGj(v). The set S

′(v) contains selected elements from S(v). If v is the right child
of its parent, then S′(v) contains �log logn� points with smallest y-coordinates
from each groupGi(v); structureD

′(v) supports three-sided sorted queries of the
form [a, b]× [0, c] on points of S′(v). If v is the left child of its parent, then S′(v)
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contains �log logn� points with largest y-coordinates from each groupGi(v); data
structure D′(v) supports three-sided sorted queries of the form [a, b] × [c,+∞]
on points of S′(v). For each point p′ ∈ S′(v) we store the index i of the group
Gi(v) that contains p. We also store the point with the largest x-coordinate from
each Gi(v) in a structure E(v) that supports O(log logn) time searches [20].

For all points in each group Gi(v) we store an array Ai(v) that contains
points sorted by their y-coordinates. Each point is specified by the rank of its
x-coordinate in Gi(v); so each entry uses O(log logn) bits of space.

To answer a query Q = [a, b] × [c, d], we find the lowest common ancestor
vc of the leaves that contain c and d. Let vl and vr be the left and the right
children of vc. All points in Q ∩ S belong to either ([a, b] × [c,+∞]) ∩ S(vl)
or ([a, b] × [0, d]) ∩ S(vr). We generate the sorted list of k leftmost points in
Q ∩ S by merging the lists of k leftmost points in ([a, b] × [c,+∞]) ∩ S(vl)
and ([a, b]× [0, d]) ∩ S(vr). Thus it suffices to answer sorted three-sided queries
([a, b]× [c,+∞]) and ([a, b]× [0, d]) in nodes vl and vr respectively.

We consider a query ([a, b]× [0, d])∩ S(vr); query [a, b]× [c,+∞] is answered
symmetrically. Assume [a, b] fits into one group Gi(vr), i.e., all points p such that
a ≤ p.x ≤ b belong to one group Gi(vr). We can find the y-rank dr of the highest
point p ∈ Gi(vr), such that p.y ≤ d in O(lg lg n) time by binary search in Ai(vr).
Let ar and br be the ranks of a and b in Gi(vr). We can find the positions of k
leftmost points in ([ar, br]×[0, dr])∩Gi(vr) using a data structure Hi(vr). Hi(vr)
contains the y-ranks and x-ranks of points in Gi(vr) and answers sorted three-
sided queries on Gi(vr). By Lemma 5, Hi(vr) uses O(|Gi(vr)|(log logn)3) bits
and supports queries in O(log log logn+k) time. Actual coordinates of points can
be obtained from their ranks in Gi(vr) in O(1) time per point: if the x-rank of
a point is known, we can compute its position in S(vr); we obtain x-coordinates
of the i-th point in S(vr) using variant (iii) of Lemma 1.

Now assume [a, b] spans several groups Gi(vr), . . . , Gj(vr) for i < j. That is,
the x-coordinates of all points in groups Gi+1(vr), . . . , Gj−1(vr) belong to [a, b];
the x-coordinate of at least one point in Gi(vr) (Gj(vr)) is smaller than a (larger
than b) but the x-coordinate of at least one point in Gi(vr) and Gj(vr) belongs
to [a, b]. Indices i and j are found in O(log logn) time using E(vr). We report
at most k leftmost points in ([a, b]× [0, d]) ∩Gi(vr) just as described above.

Let k1 = |([a, b]× [0, d])∩Gi(vr)|; if k1 ≥ k, the query is answered. Otherwise,
we report k′ = k−k1 leftmost points in ([a, b]×[0, d])∩(Gi+1(vr)∪. . .∪Gj−1(vr))
using the following method. Let a′ and b′ be the minimal and the maximal x-
coordinates of points in Gi+1(vr) and Gj−1(vr), respectively. The main idea is
to answer the query Q′ = ([a′, b′] × [0, d]) ∩ S′(vr) in the online modus using
the data structure D′(vr). If some group Gt(vr), i < t < j, contains less than
�log logn� points p with p.y ≤ d, then all such p belong to S′(vr) and will be
reported by D′(vr). Suppose that D

′(vr) reported log logn points that belong to
the same group Gt(vr). Then we find the rank dt of d among the y-coordinates of
points in Gt(vr). Using Ht(vr), we report the positions of all points p ∈ Gt(vr),
such that the rank of p.y in Gt(vr) is at most dt, in the left-to right order; we
can also identify the coordinates of every such p in O(1) time per point. The
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query to Ht(vr) is terminated when all such points are reported or when the
total number of reported points is k.

We need O(log logn+kt) time to answer a query on Ht(vr), where kt denotes
the number of reported points from Gt(vr). Let mt = |Q′ ∩ Gt(vr)| If Gt is the
last examined group, then kt ≤ mt; otherwise kt = mt. We send a query to
Gt(vr) only if Gt(vr) contains at least log logn points from Q′. Hence, a query
to Gt(vr) takes O(log logn+kt) = O(kt) time, unless Gt(vr) is the last examined
group. Thus all necessary queries to Gt(vr) for i<t<j take O(log log n+k) time.

Finally, if the total number of points in ([a, b]×[0, d])∩(Gi(vr)∪. . .∪Gj−1(vr))
is smaller than k, we also report the remaining points from ([a, b]×[0, d])∩Gj(vr).

The compact tree Ty uses O(n logε n) words of space. A data structure D′(v)
uses O(|S′(v)| log2 n log logn) = O(|S(v)| log logn/ logn) words of space. Since
all sets S(v), v ∈ Ty, contain O(n log n) points, all D′(v) use O(n log logn)
words of space. A data structure for a group Gi(v) uses O(|Gi(v)|(log logn)3)
bits. Since all Gi(v) for all v ∈ Ty contain O(n log n) elements, data structures
for all groups Gi(v) use O(n(log logn)3) words of logn bits.

Theorem 2. There exists a O(n logε n) space data structure that answers two-
dimensional sorted reporting queries in O(log logn+ k) time.

6 Applications

In this section we will describe data structures for several indexing and compu-
tational geometry problems. A text (string) T of length n is pre-processed and
stored in a data structure so that certain queries concerning some substrings of
T can be answered efficiently.

Preliminaries. In a suffix tree T for a text T , every leaf of T is associated
with a suffix of T . If the leaves of T are listed from left to right, then the
corresponding suffixes of T are lexicographically sorted. For any pattern P , we
can find in O(|P |) time the special node v ∈ T , called the locus of P . The
starting position of every suffix in the subtree of v = locus(P ) is the location
of an occurrence of P . We define the rank of a suffix Suf as the number of T ’s
suffixes that are lexicographically smaller than or equal to Suf. The ranks of all
suffixes in v = locus(P ) belong to an interval [left(P ), right(P )], where left(P )
and right(P ) denote the ranks of the leftmost and the rightmost suffixes in the
subtree of v. Thus for any pattern P there is a unique range [left(P ), right(P )];
pattern P occurs at position i in T if and only if the rank of suffix T [i..n] belongs
to [left(P ), right(P )]. Refer to [13] for a more extensive description of suffix trees
and related concepts.

We will frequently use a special set of points, further called the position set
for T . Every point p in the position set corresponds to a unique suffix Suf of a
string T ; the y-coordinate of p equals to the rank of Suf and the x-coordinate of
p equals to the starting position of Suf in T .

Successive List Indexing. In this problem a query consists of a pattern P and an
index j, 1 ≤ j ≤ n. We want to find the first (leftmost) occurrence of P at position



Sorted Range Reporting 279

i ≥ j. A successive list indexing query (P, j) is equivalent to finding the point p
from the position set such that p belongs to the range [j, n]× [left(P ), right(P )]
and the x-coordinate of p is minimal. Thus a list indexing query is equivalent to
a range successor query on the position set. Using Theorems 1 and 2 to answer
range successor queries, we obtain the following result.

Corollary 1. We can store a string T in an O(nf(n)) space data structure,
so that for any pattern P and any index j, 1 ≤ j ≤ n, the leftmost occurrence
of P at position i ≥ j can be found in O(g(n)) time for (i) f(n) = O(1) and
g(n) = O(logε n); (ii) f(n) = O(log logn) and g(n) = O((log logn)2); (iii)
f(n) = O(logε n) and g(n) = O(log logn).

Range Non-Overlapping Indexing. In the string statistics problem we want to
find the maximum number of non-overlapping occurrences of a pattern P . In [14]
the range non-overlapping indexing problem was introduced: instead of just com-
puting the maximum number of occurrences we want to find the longest se-
quence of non-overlapping occurrences of P . It was shown [14] that the range
non-overlapping indexing problem can be solved via k successive list indexing
queries; here k denotes the maximal number of non-overlapping occurrences.

Corollary 2. The range non-overlapping indexing problem can be solved in
O(|P | + kg(n)) time with an O(nf(n)) space data structure, where g(n) and
f(n) are defined as in Corollary 1.

Other, more far-fetched applications, are described next.

6.1 Pattern Matching with Variable-Length Don’t Cares

We must determine whether a query pattern P = P1 ∗ P2 ∗ P3 . . . ∗ Pm occurs
in T . The special symbol ∗ is the Kleene star symbol; it corresponds to an
arbitrary sequence of (zero or more) characters from the original alphabet of T .
The parameter m can be specified at query time. In [22] the authors showed
how to answer such queries in O(

∑m
i=1 |Pi|) and O(n) space in the case when

the alphabet size is logO(1) n. In this paper we describe a data structure for
an arbitrarily large alphabet. Using the approach of [22], we can reduce such a
query for P to answeringm successive list indexing queries. First, we identify the
leftmost occurrence of P1 in T by answering the successive list indexing query
(P1, 1). Let j1 denote the leftmost position of P1. P1 ∗ P2 ∗ P3 . . . ∗ Pm occurs in
T if and only if P2 ∗ P3 . . . ∗ Pm occurs at position i ≥ j1 + |P1|. We find the
leftmost occurrence j2 ≥ j1 + |P1| of P2 by answering the query (P2, j1 + |P1|).
P2 ∗ P3 . . . ∗ Pm occurs in T at position i2 ≥ j1 + |P1| if and only if P3 ∗ Pm

occurs at position i3 ≥ j2+|P2|. Proceeding in the same way we find the leftmost
possible positions for P4 ∗ . . . ∗ Pm. Thus we answer m successive list indexing
queries (Pt, it), t = 1, . . . ,m; here i1 = 1, it = jt−1 + |Pi−1| for t ≥ 2, and jt−1

denotes the answer to the (t− 1)-th query.

Corollary 3. We can determine whether a text T contains a substring P =
P1 ∗ . . . Pm−1 ∗Pm in O(

∑m
i=1 |Pi|+mg(n)) time using an O(nf(n)) space data

structure, where g(n) and f(n) are defined as in Corollaries 1 and 2.
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6.2 Ordered Substring Searching

Suppose that a data structure contains a text T and we want to report occur-
rences of a query pattern P in the left-to-right order, i.e., in the same order as
they appear in T ; in some case we may want to find only the k leftmost occur-
rences. In this section we describe two solutions for this problem. Then we show
how sorted range reporting can be used to solve the position-restricted variant
of this problem. We denote by occ the number of P ’s occurrences in T that are
reported when a query is answered.

Data Structure with Optimal Query Time. Such queries can be answered in
O(|P | + occ) time and O(n) space using the suffix tree and the data structure
of Brodal et al. [3]. Positions of suffixes are stored in lexicographic order in the
suffix array A; the k-th entry A[k] contains the starting position of the k-th
suffix in the lexicographic order. In [3] the authors described an O(n) space data
structure that answers online sorted range reporting queries: for any i ≥ j, we
can report in O(j − i + 1) time all entries A[t], i ≤ t ≤ j, sorted in increasing
order by their values. Occurrences of a pattern P can be reported in the left-to-
right order as follows. Using a suffix tree, we find left(P ) and right(P ) in O(|P |)
time. Then we report all suffixes in the interval [left(P ), right(P )] sorted by their
starting positions using the data structure of [3] on A.

Corollary 4. We can answer a sorted substring matching query in O(|P |+occ)
time using a O(n) space data structure.

Succinct Data Structure. The space usage of a data structure for sorted pattern
matching can be further reduced. We store a compressed suffix array for T and a
succinct data structure for range minimum queries. We use the implementation
of the compressed suffix array described in [12] that needs (1 + 1/ε)nHk + o(n)

bits for σ = logO(1) n, where σ denotes the alphabet size and Hk is the k-th
order entropy. Using the results of [12], we can find the position of the i-th
lexicographically smallest suffix in O(logε n) time. We can also find left(P ) and
right(P ) for any P in O(|P |) time. We also store the range minimum data
structure [9] for the array A defined above. For any i ≤ j, we can find such
k = rmq(i, j) that A[k] ≤ A[t] for any i ≤ t ≤ j. Observe that A itself is not
stored; we only store the structure from [9] that uses O(n) bits of space. Now
occurrences of P are reported as follows. An initially empty queue Q contains
suffix positions; with every suffix position p we also store an interval [lp, rp]
and the rank ip of the suffix that starts at position p. Let l = left(P ) and
r = right(P ). We find if = rmq(l, r) and the position pf of the suffix with rank
if . The position pf with its rank if and the associated interval [l, r] is inserted
intoQ. We repeat the following steps untilQ is empty. The item with the minimal
value of pt is extracted from Q. Let it and [lt, rt] denote the rank and interval
stored with pt. We answer queries i′ = rmq(lt, it − 1) and i′′ = rmq(it + 1, rt)
and identify the positions p′, p′′ of suffixes with ranks i′, i′′. Finally, we insert
items (p′, i′, [lt, it − 1]) and (p′′, i′′, [it + 1, rt]) into Q. Using the van Emde Boas
data structure, we can implement each operation on Q in O(log logn) time. We
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can find the position of a suffix with rank i in O(logε n) time. Thus the total
time that we need to answer a query is O(|P | + occ logε n). Our data structure
uses (1 + 1/ε)nHk + O(n) bits. We observe however that we need O(occ logn)
additional bits at the time when a query is answered.

Corollary 5. If the alphabet size σ = logO(1) n, then we can answer an ordered
substring searching query in O(|P |+occ logε n) time using a (1+1/ε)nHk+O(n)-
bit data structure.

Position-Restricted Ordered Substring Searching. The position restricted sub-
string searching problem was introduced by Mäkinen and Navarro in [16]. Given
a range [i, j] we want to report all occurrences of P that start at position t,
i ≤ t ≤ j. If we want to report occurrences of P at positions from [i, j] in the
sorted order, then this is equivalent to answering a sorted range reporting query
[i, j] × [left(P ), right(P )]. Hence, we can obtain the same time-space trade-offs
as in Theorems 1 and 2.

6.3 Maximal Points in a 2D Range and Rectangular Visibility

A point p dominates another point q if p.x ≥ q.x and p.y ≥ q.y. A point p ∈ S
is a maximal point if p is not dominated by any other point q ∈ S. In a two-
dimensional maximal points range query, we must find all maximal points inQ∩S
for a query rectangle Q. We refer to [4] and references therein for description of
previous results.

We can answer such queries using orthogonal range successor queries. For
simplicity, we assume that all points have different x- and y-coordinates. Suppose
that maximal points in the range Q = [a, b]× [c, d] must be listed. For i ≥ 1, we
report a point pi such that pi.x ≥ p.x for any p ∈ Qi−1 ∩ S, where Q0 = Q and
Qj = [a, pi.x] × [pi.y, d] for j ≥ 1. Our reporting procedure is completed when
Qi ∩ S = ∅. Clearly, finding a point pi or determining that no such pi exists is
equivalent to answering a range successor query for Qi−1. Thus we can find k
maximal points in O(kg(n)) time using an O(nf(n)) space data structure, where
g(n) and f(n) are again defined as in Corollary 1.

A point p ∈ S is rectangularly visible from a point q if Qpq ∩ S = ∅, where
Qpq is the rectangle with points p and q at its opposite corners. In the rectangle
visibility problem, we must determine all points p ∈ S that are visible from a
query point q. Rectangular visibility problem is equivalent to finding maximal
points in Q∩S for Q = [0, q.x]× [0, q.y]. Hence, we can find points rectangularly
visible from q in O(kg(n)) time using an O(nf(n)) space data structure.
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Abstract. We consider the problem of indexing a string t of length n
to report the occurrences of a query pattern p containing m characters
and j wildcards. Let occ be the number of occurrences of p in t, and σ
the size of the alphabet. We obtain the following results.

– A linear space index with query time O(m+σj log log n+ occ). This
significantly improves the previously best known linear space index
by Lam et al. [ISAAC 2007], which requires query time Θ(jn) in the
worst case.

– An index with query time O(m + j + occ) using space O(σk2

n logk

log n), where k is the maximum number of wildcards allowed in the
pattern. This is the first non-trivial bound with this query time.

– A time-space trade-off, generalizing the index by Cole et al.
[STOC 2004].

Our results are obtained using a novel combination of well-known and
new techniques, which could be of independent interest.

1 Introduction

The string indexing problem is to build an index for a string t such that the oc-
currences of a query pattern p can be reported. The classic suffix tree data struc-
ture [31] combined with perfect hashing [15] gives a linear space solution for string
indexing with optimal query time, i.e., anO(n) space data structure that supports
queries in O(m+ occ) time, where occ is the number of occurrences of p in t.

Recently, various extensions of the classic string indexing problem that al-
low errors or wildcards (also known as gaps or don’t cares) have been studied
[11,21,29,28,6,25,26]. In this paper, we focus on one of the most basic of these
extensions, namely, string indexing for patterns with wildcards. In this problem,
only the pattern contains wildcards, and the goal is to report all occurrences of
p in t, where a wildcard is allowed to match any character in t.

String indexing for patterns with wildcards finds several natural applications in
large-scale dataprocessing areas suchas information retrieval, bioinformatics, data
mining, and internet traffic analysis. For instance in bioinformatics, the PROSITE
data base [18,5] supports searching for protein patterns containing wildcards.

Despite significant interest in the problem and its many variations, most of
the basic questions remain unsolved. We introduce three new indexes and obtain
several new bounds for string indexing with wildcards in the pattern. If the index
can handle patterns containing an unbounded number of wildcards, we call it

F.V. Fomin and P. Kaski (Eds.): SWAT 2012, LNCS 7357, pp. 283–294, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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an unbounded wildcard index, otherwise we refer to the index as a k-bounded
wildcard index, where k is the maximum number of wildcards allowed in p. Let
n be the length of the indexed string t, and σ be the size of the alphabet. We
define m and j to be the number of characters and wildcards in p, respectively.
Consequently, the length of p is m+ j.

Previous Work. Exact string matching has been generalized with error bounds
in many different ways. In particular, allowing matches within a bounded ham-
ming or edit distance, known as approximate string matching, has been subject
to much research [22,23,27,12,10,29,6,25,11,26,16,2]. Another generalization was
suggested by Fischer and Paterson [14], allowing wildcards in the text or pattern.

Work on the wildcard problem has mostly focused on the non-indexing variant,
where the string t is not preprocessed in advance [14,13,9,20,8,4]. Some solutions
to the indexing problem consider the case where wildcards appear only in the
indexed string [28] or in both the string and the pattern [11,21].

In the following, we summarize the known indexes that support wildcards
in the pattern only. We focus on the case where k > 1, since for k = 0 the
problem is classic string indexing. For k = 1, Cole et al. [11] describe a selection
of specialized solutions. However, these solutions do not generalize to larger k.

Several simple solutions to the problem exist for k > 1. Using a suffix tree
T for t [31], we can find all occurrences of p in a top-down traversal starting
from the root. When we reach a wildcard character in p in location � ∈ T , the
search branches out, consuming the first character on all outgoing edges from
�. This gives an unbounded wildcard index using O(n) space with query time
O(σjm+occ), where occ is the total number of occurrences of p in t. Alternatively,
we can build a compressed trie storing all possible modifications of all suffixes of
t containing at most k wildcards. This gives a k-bounded wildcard index using
O(nk+1) space with query time O(m + j + occ).

In 2004, Cole et al. [11] gave an elegant k-bounded wildcard index using
O(n logk n) space and with O(m+2j log logn+ occ) query time. For sufficiently
small values of j this significantly improves the previous bounds. The key compo-
nents in this solution are a new data structure for longest common prefix (LCP)
queries and a heavy path decomposition [17] of the suffix tree for the text t. Given
a pattern p, the LCP data structure supports efficiently inserting all suffixes of
p into the suffix tree for t, such that subsequent longest common prefix queries
between any pair of suffixes from t and p can be answered in O(log logn) time.
This is the log logn term in the query time. The heavy path decomposition par-
titions the suffix tree into disjoint heavy paths such that any root-to-leaf path
contains at most a logarithmic number of heavy paths. Cole et al. [11] show how
to reduce the size of the index by only creating additional wildcard tries for the
off-path subtries. This leads to the O(n logk n) space bound. Secondly, using the
new tries, the top-down search branches at most twice for each wildcard, leading
to the 2j term in the query time. Though Cole et al. [11] did not consider un-
bounded wildcard indexes, the technique can be extended to this case by using
only the LCP data structure. This leads to an unbounded wildcard index with
query time O(m+ σj log logn+ occ) using space O(n log n).
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The solutions described by Cole et al. [11] all have bounds, which are expo-
nential in the number of wildcards in the pattern. Very recently, Lewenstein [24]
used similar techniques to improve the bounds to be exponential in the number
of gaps in the pattern (a gap is a maximal substring of consecutive wildcards).
Assuming that the pattern contains at most g gaps each of size at most G,
Lewenstein obtains a bounded index with query time O(m + 2γ log logn+ occ)
using space O(n(G2 logn)g), where γ ≤ g is the number of gaps in the pattern.

A different approach was taken by Iliopoulos and Rahman [19], who describe
an unbounded wildcard index using linear space. For a pattern p consisting of
strings p0, p1, . . . , pj (subpatterns) interleaved by j wildcards, the query time

of the index is O(m +
∑j

i=0 occ(pi, t)), where occ(pi, t) denotes the number of
matches of pi in t. This was later improved by Lam et al. [21] with an index
that determines complete matches by first identifying potential matches of the
subpatterns in t and subsequently verifying each possible match for validity using
interval stabbing on the subpatterns. Their solution is an unbounded wildcard
index with query time O (m+ jmin0≤i≤j occ(pi, t)) using linear space. However,
both of these solutions have a worst case query time of Θ(jn), since there may
be Θ(n) matches for a subpattern, but no matches of p.

The unbounded wildcard index by Iliopoulos and Rahman [19] was the first
index to achieve query time linear in m while using O(n) space. Recently,
Chan et al. [6] considered the related problem of obtaining a k-mismatch in-
dex supporting queries in time linear in m and using O(n) space. They describe
an index with a query time of O(m+(log n)k(k+1) log logn+ occ). However, this
bound assumes a constant-size alphabet and a constant number of errors. In this
paper we make no assumptions on the size of these parameters.

Our Results. Our main contributions are three new wildcard indexes.

Theorem 1. Let t be a string of length n from an alphabet of size σ. There
is an unbounded wildcard index for t using O(n) space. The index can report
the occurrences of a pattern with m characters and j wildcards in time O(m +
σj log logn+ occ).

Compared to the solution by Cole et al. [11], we obtain the same query time
while reducing the space usage by a factor logn. We also significantly improve
upon the previously best known linear space index by Lam et al. [21], as we
match the linear space usage while improving the worst-case query time from
Θ(jn) to O(m + σj log logn + occ) provided j ≤ logσ n. Our solution is faster
than the simple suffix tree index form = Ω(log log n). Thus, for sufficiently small
j we improve upon the previously known unbounded wildcard indexes.

The main idea of the solution is to combine an ART decomposition [1] of the
suffix tree for t with the LCP data structure. The suffix tree is decomposed into
a number of logarithmic-sized bottom trees and a single top tree. We introduce
a new variant of the LCP data structure for use on the bottom trees, which
supports queries in logarithmic time and linear space. The logarithmic size of
the bottom trees leads to LCP queries in time O(log logn). On the top tree
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we use the LCP data structure by Cole et al. [11] to answer queries in time
O(log logn). The number of LCP queries performed during a search for p is
O(σj), yielding the σj log logn term in the query time. The reduced size of the
top tree causes the index to be linear in size.

Theorem 2. Let t be a string of length n from an alphabet of size σ. For 2 ≤
β < σ, there is a k-bounded wildcard index using O(n log(n) logk−1

β n) space. The
index can report the occurrences in t of a pattern with m characters and j ≤ k
wildcards in time O(m+ βj log logn+ occ).

The theorem provides a time-space trade-off for k-bounded wildcard indexes.
Compared to the index by Cole et al. [11], we reduce the space usage by a factor
logk−1 β by increasing the branching factor from 2 to β. For β = 2 the index is
identical to the index by Cole et al. The result is obtained by generalizing the
wildcard index described by Cole et al. We use a heavy α-tree decomposition,
which is a new technique generalizing the classic heavy path decomposition by
Harel and Tarjan [17]. This decomposition could be of independent interest. We
also show that for β = 1 the same technique yields an index with query time
O(m+ j+ occ) using space O(nhk), where h is the height of the suffix tree for t.

Theorem 3. Let t be a string of length n from an alphabet of size σ. There is
a k-bounded wildcard index for t using O(σk2

n logk logn) space. The index can
report the occurrences of a pattern with m characters and j ≤ k wildcards in
time O(m+ j + occ).

To our knowledge this is the first linear time index with a non-trivial space
bound. The result improves upon the space usage of the simple linear time in-
dex when σk < n/ log logn. To achieve this result, we use the O(nhk) space
index to obtain a black-box reduction that can produce a linear time index from
an existing index. The idea is to build the O(nhk) space index with support for
short patterns, and query another index if the pattern is long. This technique is
closely related to the concept of filtering search introduced by Chazelle [7] and
has previously been applied for indexing problems [3,6]. The theorem follows
from applying the black-box reduction to the index of Theorem 1.

Our three indexes also support searching for query patterns with variable length
gaps, i.e., patterns of the form p = p0 ∗{a1, b1} p1 ∗{a2, b2} . . .∗{aj, bj} pj, where
∗{ai, bi} denotes a variable length gap that matches an arbitrary substring of
length between ai and bi, both inclusive. We will not consider variable length
gaps in this paper.

We have left out some proofs due to lack of space, and we refer the reader
to [30], which also treats query patterns with variable length gaps.

2 Preliminaries

We introduce the following notation. Let p = p0 ∗ p1 ∗ . . . ∗ pj be a pattern
consisting of j +1 strings p0, p1, . . . , pj ∈ Σ∗ (subpatterns) interleaved by j ≤ k
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wildcards. The substring starting at position l ∈ {1, . . . , n} in t is an occurrence
of p if and only if each subpattern pi matches the corresponding substring in t.
We define t[i, j] = ε for i > j, t[i, j] = t[1, j] for i < 1 and t[i, j] = t[i, |t|] for
j > |t|. Furthermore m =

∑j
r=0 |pr| is the number of characters in p, and we

assume without loss of generality that m > 0 and k > 0.
Let prefi(t) = t[1, i] and suffi(t) = t[i, n] denote the prefix and suffix of t of

length i and n− i+ 1, respectively. Omitting the subscripts, we let pref(t) and
suff(t) denote the set of all non-empty prefixes and suffixes of t, respectively. We
extend the definitions of prefix and suffix to sets of strings S ⊆ Σ∗ as follows.

prefi(S) = {prefi(x) | x ∈ S} suffi(S) = {suffi(x) | x ∈ S}

pref(S) =
⋃
x∈S

pref(x) suff(S) =
⋃
x∈S

suff(x)

A set of strings S is prefix-free if no string in S is a prefix of another string
in S. Any string set S can be made prefix-free by appending the same unique
character $ /∈ Σ to each string in S.

Trees and Tries. For a tree T , the root is denoted root(T ), while height(T ) is
the number of edges on a longest path from root(T ) to a leaf of T . A compressed
trie T (S) is a tree storing a prefix-free set of strings S ⊂ Σ∗. The edges are
labeled with substrings of the strings in S, such that a path from the root to a
leaf corresponds to a unique string of S. All internal vertices (except the root)
have at least two children, and all labels on the outgoing edges of a vertex have
different initial characters.

A location � ∈ T (S) may refer to either a vertex or a position on an edge
in T (S). Formally, � = (v, s) where v is a vertex in T (S) and s ∈ Σ∗ is a
prefix of the label on an outgoing edge of v. If s = ε, we also refer to � as an
explicit vertex, otherwise � is called an implicit vertex. There is a one-to-one
mapping between locations in T (S) and unique prefixes in pref(S). The prefix
x ∈ pref(S) corresponding to a location � ∈ T (S) is obtained by concatenating
the edge labels on the path from root(T (S)) to �. Consequently, we use x and �
interchangeably, and we let |�| = |x| denote the length of x. Since S is assumed
prefix-free, each leaf of T (S) is a string in S, and conversely. The suffix tree for t
denotes the compressed trie over all suffixes of t, i.e., T (suff(t)). We define T�(S)
as the subtrie of T (S) rooted at �. That is, T�(S) contains the suffixes of strings
in T (S) starting from �. Formally, T�(S) = T (S�), where

S� =
{
suff |�|(x) | x ∈ S ∧ pref |�|(x) = �

}
.

Heavy Path Decomposition. For a vertex v in a rooted tree T , we define weight(v)
to be the number of leaves in Tv, where Tv denotes the subtree rooted at v. We
define weight(T ) = weight(root(T )). The heavy path decomposition of T , intro-
duced by Harel and Tarjan [17], classifies each edge as either light or heavy.
For each vertex v ∈ T , we classify the edge going from v to its child of maxi-
mum weight (breaking ties arbitrarily) as heavy. The remaining edges are light.
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This construction has the property that on a path from the root to any vertex,
O(log(weight(T ))) heavy paths are traversed. For a heavy path decomposition
of a compressed trie T (S), we assume that the heavy paths are extended such
that the label on each light edge contains exactly one character.

3 The LCP Data Structure

Cole et al. [11] introduced the the Longest Common Prefix (LCP) data structure,
which provides a way to traverse a compressed trie without tracing the query
string one character at a time. In this section we give a brief, self-contained
description of the data structure and show a new property that is essential for
obtaining Theorem 1.

The LCP data structure stores a collection of compressed tries T (C1), T (C2),
. . . , T (Cq) over the string sets C1, C2, . . . , Cq ⊂ Σ∗. Each Ci is a set of substrings
of the indexed string t. The purpose of the LCP data structure is to support
LCP queries

lcp(x, i, �): Returns the location in T (Ci) where the search for the string x ∈ Σ∗

stops when starting in location � ∈ T (Ci).

If � is the root of T (Ci), we refer to the above LCP query as a rooted LCP
query. Otherwise the query is called an unrooted LCP query. In addition to the
compressed tries T (C1), . . . , T (Cq), the LCP data structure also stores the suffix
tree for t, denoted T (C) where C = suff(t). The following lemma is implicit in
the paper by Cole et al. [11].

Lemma 1 (Cole et al.). Provided x has been preprocessed in time O(|x|), the
LCP data structure can answer rooted LCP queries on T (Ci) for any suffix of x
in time O(log log |C|) using space O(|C|+

∑q
i=1 |Ci|). Unrooted LCP queries on

T (Ci) can be performed in time O(log log |C|) using O(|Ci| log |Ci|) additional
space.

We extend the LCP data structure by showing that support for slower unrooted
LCP queries on a compressed trie T (Ci) can be added using linear additional
space.

Lemma 2. Unrooted LCP queries on T (Ci) can be performed in timeO(log |Ci|+
log log |C|) using O(|Ci|) additional space.

Proof. We initially create a heavy path decomposition for all compressed tries
T (C1), . . . , T (Cq). The search path for x starting in � traverses a number of
heavy paths in T (Ci). Intuitively, an unrooted LCP query can be answered by
following the O(log |Ci|) heavy paths that the search path passes through. For
each heavy path, the next heavy path can be identified in constant time. On the
final heavy path, a predecessor query is needed to determine the exact location
where the search path stops.

For a heavy path H , we let h denote the distance which the search path for x
follows H . Cole et al. [11] showed that h can be determined in constant time by
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performing nearest common ancestor queries on T (C). To answer lcp(x, i, �) we
identify the heavy path H of T (Ci) that � is part of and compute the distance
h as described by Cole et al. If x leaves H on a light edge, indexing distance
h into H from � yields an explicit vertex v. At v, a constant time lookup for
x[h + 1] determines the light edge on which x leaves H . Since the light edge
has a label of length one, the next location �′ on that edge is the root of the
next heavy path. We continue the search for the remaining suffix of x from
�′ recursively by a new unrooted LCP query lcp(suffh+2(x), i, �

′). If H is the
heavy path on which the search for x stops, the location at distance h (i.e.,
the answer to the original LCP query) is not necessarily an explicit vertex, and
may not be found by indexing into H . In that case a predecessor query for h
is performed on H to determine the preceding explicit vertex and thereby the
location lcp(x, i, �). Answering an unrooted LCP query entails at most log |Ci|
recursive steps, each taking constant time. The final recursive step may require
a predecessor query taking time O(log log |C|). Consequently, an unrooted LCP
query can be answered in time O(log |Ci|+ log log |C|) using O(|Ci|) additional
space to store the predecessor data structures for each heavy path. ��

4 An Unbounded Wildcard Index Using Linear Space

In this section we show how to obtain Theorem 1 by applying an ART decom-
position on the suffix tree for t and storing the top and bottom trees in the LCP
data structure.

ART Decomposition. The ART decomposition introduced by Alstrup et al. [1]
decomposes a tree into a single top tree and a number of bottom trees. The
construction is defined by two rules:

1. A bottom tree is a subtree rooted in a vertex of minimal depth such that
the subtree contains no more than χ leaves.

2. Vertices that are not in any bottom tree make up the top tree.

The decomposition has the following key property.

Lemma 3 (Alstrup et al.). The ART decomposition with parameter χ for a
rooted tree T with n leaves produces a top tree with at most n

χ+1 leaves.

Obtaining the Index. Applying an ART decomposition on T (suff(t)) with χ =
logn, we obtain a top tree T ′ and a number of bottom trees B1, B2, . . . , Bq each
of size at most logn. From Lemma 3, T ′ has at most n

logn leaves and hence

O( n
logn ) vertices since T ′ is a compressed trie.
To facilitate the search, the top and bottom trees are stored in an LCP data

structure, noting that these compressed tries only contain substrings of t. Using
Lemma 2, we add support for unrooted O(logχ+ log logn) = O(log logn) time
LCP queries on the bottom trees using O(n) additional space in total. For the
top tree we apply Lemma 1 to add support for unrooted LCP queries in time
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O(log logn) using O( n
logn log n

logn ) = O(n) additional space. Since the branching

factor is not reduced, O(σi) LCP queries, each taking time O(log logn), are
performed for the subpattern pi. This concludes the proof of Theorem 1.

5 A Time-Space Trade-Off for k-Bounded Wildcard
Indexes

In this section we will show Theorem 2. We first introduce the necessary con-
structions.

Heavy α-Tree Decomposition. The heavy α-tree decomposition is a generaliza-
tion of the well-known heavy path decomposition introduced by Harel and Tar-
jan [17]. The purpose is to decompose a rooted tree T into a number of heavy
trees joined by light edges, such that a path to the root of T traverses at
most a logarithmic number of heavy trees. For use in the construction, we de-
fine a proper weight function on the vertices of T , to be a function satisfying
weight(v) ≥

∑
w child of v weight(w) . Observe that using the number of vertices

or the number of leaves in the subtree rooted at v as the weight of v satisfies
this property. The decomposition is then constructed by classifying edges in T
as being heavy or light according to the following rule. For every vertex v ∈ T ,
the edges to the α heaviest children of v (breaking ties arbitrarily) are heavy,
and the remaining edges are light. Observe that for α = 1, this results in a
heavy path decomposition. Given a heavy α-tree decomposition of T , we de-
fine lightdepthα(v) to be the number of light edges on a path from the vertex
v ∈ T to the root of T . The key property of this construction is captured by the
following lemma.

Lemma 4. For any vertex v in a rooted tree T and α > 0

lightdepthα(v) ≤ logα+1 weight(root(T ))

Lemma 4 holds for any heavy α-tree decomposition obtained using a proper
weight function on T . In the remaining part of the paper we will assume that
the weight of a vertex is the number of leaves in the subtree rooted at v.

We define lightheightα(T ) to be the maximum light depth of a vertex in T ,
and remark that lightheight0(T ) = height(T ). For a vertex v in a compressed
trie T (S), we let lightstrings(v) denote the set of strings starting in one of the
light edges leaving v. That is, lightstrings(v) is the union of the set of strings in
the subtries T�(S) where � is the first location on a light outgoing edge of v, i.e.,
|�| = |v|+ 1.

Wildcard Trees. We introduce the (β, k)-wildcard tree, denoted T k
β (C

′), where
1 ≤ β < σ is a chosen parameter. This data structure stores a collection of
strings C′ ⊂ Σ+ in a compressed trie such that the search for a pattern p with
at most k wildcards branches to at most β locations in T k

β (C
′) when consuming

a single wildcard of p. In particular for β = 1, the search for p never branches
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and the search time becomes linear in the length of p. For a vertex v, we define
the wildcard height of v to be the number of wildcards on the path from v to
the root. Intuitively, given a wildcard tree that supports i wildcards, support for
an extra wildcard is added by joining a new tree to each vertex v with wildcard
height i by an edge labeled ∗. This tree is searched if a wildcard is consumed in
v. Formally, T k

β (C
′) is built recursively as follows.

Construction of T i
β(S): Produce a heavy (β − 1)-tree decomposition

of T (S), then for each internal vertex v ∈ T (S) join v to the root of
T i−1
β (suff2(lightstrings(v)) by an edge labeled ∗. Let T 0

β (S) = T (S).

Wildcard Tree Index. Given a collection C′ of strings and a pattern p, we can
identify the strings of C′ having a prefix matching p by constructing T k

β (C
′).

Searching T k
β (C

′) is similar to the suffix tree search, except when consuming

a wildcard character of p in an explicit vertex v ∈ T k
β (C

′) with more than β
children. In that case the search branches to the root of the wildcard tree joined
to v and to the first location on the β − 1 heavy edges of v, effectively letting
the wildcard match the first character on all edges from v. Consequently, the
search for p branches to a total of at most

∑j
i=0 β

i = O(βj) locations, each of
which requires O(m) time, resulting in a query time O(βjm + occ). For β = 1
the query time is O(m + j + occ).

Lemma 5. For any integer 1 ≤ β < σ, the wildcard tree T k
β (C

′) has query

time O(βjm + j + occ). The wildcard tree stores O(|C′|Hk) strings, where H
is an upper bound on the light height of all compressed tries T (S) satisfying
S ⊆ suffd(C

′) for some integer d.

Proof. We prove that the total number of strings (leaves) in T i
β(S), denoted

|T i
β(S)|, is at most |S|

∑i
j=0 H

j = O(|S|Hi). The proof is by induction on i.

The base case i = 0 holds, since T 0
β (S) = T (S) contains |S| = |S|

∑0
j=0 H

j

strings. For the induction step, assume that |T i
β(S)| ≤ |S|

∑i
j=0 H

j. Let Sv =
suff2(lightstrings(v)) for a vertex v ∈ T (S). From the construction we have that
the number of strings in T i+1

β (S) is the number of strings in T (S) plus the
number of strings in the wildcard trees joined to the vertices of T (S). That is,

∣∣T i+1
β (S)

∣∣ =
∣∣S∣∣+ ∑

v∈T (S)

∣∣T i
β(Sv)

∣∣ IH
≤

∣∣S∣∣+ ∑
v∈T (S)

∣∣Sv

∣∣ i∑
j=0

Hj .

The string sets Sv consist of suffixes of strings in S. Consider a string x ∈ S,
i.e., a leaf in T (S). The number of times a suffix of x appears in a set Sv is equal
to the light depth of x in T (S). S is also a set of suffixes of C′, and hence H
is an upper bound on the maximum light depth of T (S). This establishes that∑

v∈T (S) |Sv| ≤ |S|H , thus showing that |T i+1
β (S)| ≤ |S| + |S|H

∑i
j=0 H

j =

|S|
∑i+1

j=0 H
j . ��
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Constructing the wildcard tree T k
β (C), where C = suff(t), we obtain a wildcard

index with the following properties.

Lemma 6. Let t be a string of length n from an alphabet of size σ. For 2 ≤ β < σ
there is a k-bounded wildcard index for t using O

(
n logkβ n

)
space. The index can

report the occurrences of a pattern with m characters and j ≤ k wildcards in
time O

(
βjm+ occ

)
.

Wildcard Tree Index Using the LCP Data Structure. The wildcard index of
Lemma 6 reduces the branching factor of the suffix tree search from σ to β,
but still has the drawback that the search for a subpattern pi from a location
� ∈ T k

β (C) takes O(|pi|) time. This can be addressed by combining the index
with the LCP data structure as in Cole et al. [11]. In that way, the search
for a subpattern can be done in time O(log logn). The index is obtained by
modifying the construction of T i

β(S) such that each T (S) is added to the LCP
data structure prior to joining the (β, i − 1)-wildcard trees to the vertices of
T (S). For all T (S) except the final T (S) = T 0

β (S), support for unrooted LCP
queries in time O(log log n) is added using additional O(|S| log |S|) space. For
the final T (S) we only need support for rooted queries. Upon receiving the query
pattern p = p1 ∗ p2 ∗ . . . ∗ pk, each pi is preprocessed in time O(|pi|) to support
LCP queries for any suffix of pi. The search for p proceeds as described for the
normal wildcard tree, except now rooted and unrooted LCP queries are used to
search for suffixes of p0, p1, . . . , pk.

In the search for p, a total of at most
∑j

i=0 β
i = O(βj) LCP queries, each taking

timeO(log log n), are performed. Preprocessing p0, p1, . . . , pj takes
∑j

i=0 |pi| = m
time, so the query time is O(m + βj log logn + occ). The space needed to store
the index is O(n logkβ n) for T

k
β (C) plus the space needed to store the LCP data

structure.
Adding support for rooted LCP queries requires linear space in the total size

of the compressed tries, i.e., O(n logkβ n). Let T (S0), T (S1), . . . , T (Sq) denote the
compressed tries with support for unrooted LCP queries. Since each Si contains
at most n strings and

∑q
i=0 |Si| = |T k−1

β (C)|, by Lemma 1, the additional space
required to support unrooted LCP queries is

O
( q∑
i=0

|Si| log |Si|
)
= O

(
log n

q∑
i=0

|Si|
)
= O

(
log n|T k−1

β (C′)|
)
= O

(
n log(n) logk−1

β n
)
,

which is an upper bound on the total space required to store the wildcard index.
This concludes the proof of Theorem 2. The k-bounded wildcard index described
by Cole et al. [11] is obtained as a special case of Theorem 2.

Corollary 1 (Cole et al.). Let t be a string of length n from an alphabet of size
σ. There is a k-bounded wildcard index for t using O(n logk n) space. The index
can report the occurrences of a pattern with m characters and j ≤ k wildcards
in time O(m+ 2j log logn+ occ).
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6 A k-Bounded Wildcard Index with Linear Query Time

Consider the k-bounded wildcard index obtained by creating the wildcard tree
T k
1 (suff(t)) for t. This index has linear query time, and we can show that the

space usage depends of the height of the suffix tree.

Lemma 7. Let t be a string of length n from an alphabet of size σ. There is
a k-bounded wildcard index for t using O(nhk) space, where h is the height of
the suffix tree for t. The index can report the occurrences of a pattern with m
characters and j wildcards in time O(m+ j + occ).

In the worst case the height of the suffix tree is close to n, but combining the
index with another wildcard index yields a useful black box reduction. The idea
is to query the first index if the pattern is short, and the second index if the
pattern is long.

Lemma 8. Let F ≥ m and let G be independent of m and j. Given a wild-
card index A with query time O(F + G + occ) and space usage S, there is a
k-bounded wildcard index B with query time O(F + j + occ) and taking space
O(nmin(G, h)k + S), where h is the height of the suffix tree for t.

Proof. The wildcard index B consists of A as well as a special wildcard index
T k
1 (prefG(suff(t))) C, which is a wildcard tree with β = 1 over the set of all

substrings of t of length G. G can be used as an upper bound for the light
height in Lemma 5, so the space required to store C is O(nmin(G, h)k) by using
Lemma 7 if G > h. A query on B results in a query on either A or C. In case
G < F+j, we queryA and the query time will be O(F+G+occ) = O(F+j+occ).
In case G ≥ F + j, we query C with query time O(m+ j+occ) = O(F + j+occ).
In any case the query time of B is O(F + j + occ). ��
Applying Lemma 8 with F = m andG = σk log logn on the unbounded wildcard
index from Theorem 1 yields a new k-bounded wildcard index with linear query
time using space O(σk2

n logk logn). This concludes the proof of Theorem 3.
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Abstract. We consider range queries in arrays that search for low-
frequency elements: least frequent elements and α-minorities. An α-
minority of a query range has multiplicity no greater than an α fraction
of the elements in the range. Our data structure for the least frequent
element range query problem requires O(n) space, O(n3/2) preprocessing
time, and O(

√
n) query time. A reduction from boolean matrix multipli-

cation to this problem shows the hardness of simultaneous improvements
in both preprocessing time and query time. Our data structure for the
α-minority range query problem requires O(n) space, supports queries
in O(1/α) time, and allows α to be specified at query time.

1 Introduction

The frequency of an element x in a multiset stored as an array A[0 : n − 1],
denoted freqA(x), is the number of occurrences (i.e., the multiplicity) of x in
A. Given α ∈ [0, 1], an element x is an α-minority in A if 1 ≤ freqA(x) ≤ αn,
whereas x is an α-majority if freqA(x) > αn.

We examine two problems which involve preprocessing a given array A to
construct a data structure that can efficiently find low-frequency elements in
query ranges. A least frequent element range query specifies a pair of indices
(i, j) and returns a least frequent element that occurs in A[i : j]. An α-minority
range query specifies some α ∈ [0, 1] and a pair of indices (i, j), and returns
an element whose frequency in A[i : j] is at least 1 and at most α|j − i + 1|.
If no such element exists, the query must not return any element. Whenever
we discuss a data structure with a parameter β instead of α, β is fixed before
preprocessing. We do so to differentiate from the more challenging case in which
different parameter values can be specified at query time.

Several recent results examine the minimum, selection (including median),
mode (i.e., the most frequent element), β-majority, and α-majority range query
problems on arrays (e.g., [1–3, 5, 7–14, 16–18]). Most relevant to our low-
frequency query problems are results for their high-frequency analogues: an
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O(n)-space data structure that supports range mode queries in O(
√

n/ logn)
time [5], an O(n log(1/β + 1))-space data structure that supports β-majority
range queries in O(1/β) time [9], and a O(n log n)-space data structure that
supports α-majority range queries in O(1/α) time [11]. Related generalizations
include examinations of the the β-majority range query problem in the dynamic
setting [10] and the α-majority range query problem in two dimensions [11].
Greve et al. [13] give a lower bound of Ω(log n/ log(s ·w/n)) on the range mode
query time for any data structure that uses s memory cells of w bits in the cell
probe model; they show the same bound applies to the problem of determining
whether any element in a given query range has frequency exactly k, for any k
given at query time. Consequently, no O(n)-space data structure can support
constant-time (independent of α) α-minority queries.

Our low-frequency query problems have significant differences when compared
to their high-frequency analogues. For example, for any (i, j), the frequencies of
respective modes of A[i : j] and A[i : j + 1] differ by either zero or one. The
frequency of the mode of a set increases monotonically with the addition of new
elements into the set. Conversely, the frequencies of respective least frequent
elements of A[i : j] and A[i : j + 1] can differ by any value in {i − j, . . . , 0, 1}.
Similarly, if x is a mode of A[i : k] and A[k + 1 : j], then x is a mode of A[i : j],
whereas the analogous property does not hold for least frequent elements.

In Section 2 we consider the least frequent element range query problem. We
describe an O(n)-space data structure that identifies a least frequent element
in a query range in O(

√
n) time. This data structure is a variant of a previous

data structure of Chan et al. [5] for the range mode problem (which in turn was
an improvement of a previous data structure of Krizanc et al. [16]). In addition,
using an argument similar to that of Chan et al. [5], we present a reduction
from boolean matrix multiplication to the least frequent element range query
problem, showing the hardness of simultaneously improving our preprocessing
and query time bounds.

Section 3 contains the main result of this paper: an O(n)-space data structure
that supports α-minority range queries in O(1/α) time. Our technique is quite
different from the previous techniques of Durocher et al. [9] for β-majority range
queries and Gagie et al. [11] for α-majority range queries, which have worse space
bounds (O(n log(1/β + 1) and O(n logn), respectively).

In Section 4 we apply a variation of our technique to give an O(n log n)-
space data structure that supports α-majority range queries in O(1/α) time.
These space and time bounds match those achieved by a recent α-majority data
structure of Gagie et al. [11].

Both our data structures in Sections 3 and 4 make interesting use of existing
tools from computational geometry. Notably, we apply Chazelle’s hive graphs [6],
which were designed for a seemingly unrelated two-dimensional searching prob-
lem: preprocess a set of horizontal line segments so that we can report segments
intersecting a given vertical line segment or ray.
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2 Finding a Least Frequent Element

2.1 O(
√
n)-Time Data Structure

In this section we present an O(n)-space data structure that identifies a least
frequent element in a query range in O(

√
n) time and requires O(n3/2) prepro-

cessing time. Specifically, we will prove the following theorem that implies the
above result when s =

√
n:

Theorem 1. Given an array A[0 : n − 1] and any fixed s ∈ [1, n], there exists
an O(n+ s2)-space data structure that supports least frequent range query on A
in O(n/s) time and requires O(ns) preprocessing time.

Preprocessing.Given an arbitrary input arrayA[0 : n−1], we begin by building
an array B[0 : n − 1] such that B[x] is the rank of A[x] amongst the distinct
elements of A. We find the ranks of all the elements by sorting A. Thus, all
elements in B are in the range {0, . . . , Δ − 1}, where Δ denotes the number of
distinct elements in A. Furthermore, B[x] is a least frequent element in B[i : j]
if and only if A[x] is a least frequent element in A[i : j], for any i, j, and x.
Following Krizanc et al. [16] and Chan et al. [5], for each x ∈ {0, . . . , Δ − 1},
we define an array Qx such that Qx[k] stores the index of the kth instance of
x in B. Since each element in B is represented exactly once in Q0, . . . , QΔ−1,
the total space required by Q0, . . . , QΔ−1 is Θ(n). We also define a rank array
B′[0 : n − 1] such that for all b, B′[b] denotes the rank (i.e., the index) of b in
QB[b]. Therefore, QB[b][B

′[b]] = b. Using these arrays, Chan et al. observe the
following lemma (which follows by comparing QB[i][B

′[i] + q − 1] with j):

Lemma 1 (Chan et al. [5, Lemma 3]). Given an array B[0 : n − 1], there
exists an O(n)-space data structure that determines in O(1) time for any 0 ≤
i ≤ j ≤ n− 1 and any q whether B[i : j] contains at least q instances of element
B[i].

We also require the following lemma:

Lemma 2. Given an array B[0 : n−1], there exists an O(n)-space data structure
that computes in O(j − i+ 1) time for any 0 ≤ i ≤ j ≤ n− 1 the frequencies of
all elements in B[i : j]. In particular, a least frequent element in B[i : j] and its
frequency can be computed in O(j − i+ 1) time.

Proof. No actual preprocessing is necessary other than initializing an array C[0 :
Δ − 1] to zero. The query algorithm is similar to counting sort: compute a
frequency table for B[i : j] stored in C (i.e., for every x, C[x] corresponds to the
frequency of x in B[i : j]), then find a minimum element in C. The time required
to find the minimum is bounded by O(j−i+1) by comparing all frequencies C[x],
where x corresponds to an element in B[i : j] (these are exactly the elements of
C that have non-zero values). This procedure is repeated after identifying the
minimum to reset C to zero. ��
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We divide the array B into s blocks of size t = �n/s�. A query range B[i : j]
spans between 0 and s complete blocks. Let the span of B[i : j] be the sequence
of complete blocks contained within B[i : j]. Let the prefix and suffix of B[i : j]
be the elements of B[i : j] that respectively precede and succeed the span of
B[i : j]. We precompute the following data for each possible span S:

i. an element of minimum frequency and its frequency in S, among all elements
in S, and

ii. an element of minimum frequency and its frequency in S, among all elements
(if any) that appear in S but not in the blocks immediately adjacent to the
left and right of S.

Since s(s+1)/2 spans are possible, these data can be stored in a table D of size
Θ(s2). We construct this table in O(ns) time by repeatedly passing through the
entire array, starting at each of the s block boundaries. We will use the following
lemma:

Lemma 3. There exists a data structure maintaining an initially empty multiset
S of elements from {0, . . . , Δ−1}. It requires O(Δ) space and preprocessing time
and supports the following operations:

– Insert(S, e): Inserts element e into multiset S in O(1) time.
– LeastFrequentElement(S, k): Returns the k least frequent elements in S, along

with their frequencies, in O(k) time.

Proof. We construct a doubly-linked list L, where each node contains a frequency
f and a doubly-linked sublist of all distinct elements with frequency f . The nodes
of L are sorted in the ascending order of frequency. Nodes for the sublists are
taken from an array N [0 : Δ − 1] of nodes for each distinct element. Each of
these sublist nodes contains a pointer to its containing sublist. It can be verified
that an insertion of an element e causes only local changes around N [e] that run
in O(1) time. To find the k least frequent elements, we simply iterate through L
and its sublists until we have reported k elements or there are no more elements
to report. ��

During each pass we incrementally build a multiset using the data structure
of Lemma 3. At every block boundary (i.e., every t elements) we obtain the
least frequent element of the multiset in O(1) time. We must also find the least
frequent element excluding the elements contained in two blocks. This set of
excluded elements has size O(t) and so the element for which we are searching
must appear amongst the O(t) least frequent elements of the multiset, which we
can find in O(t) time. The total cost of a single pass is thus O(n + st) = O(n)
time. Therefore, the s passes altogether require O(ns) time.

Query Algorithm. Consider arbitrary indices 0 ≤ i ≤ j ≤ n − 1 and the
corresponding query range R = B[i : j]. If the prefix and suffix are empty, then
the query can be answered in O(1) time by referring to table D. By Lemma 2,
if j − i + 1 < 2t, then the range query can be answered in O(t) = O(n/s) time.
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Now consider the case j − i + 1 ≥ 2t. In this case, the span, denoted S, must
be non-empty. We denote the prefix by P1 and the suffix by P2. Let P

′
1 and P ′

2

denote the respective blocks that contain P1 and P2. We now treat R, S, P1,
P2, P

′
1, P

′
2 as multisets. Let P denote the union of P1 and P2. Similarly, let P ′

denote the union of P ′
1 and P ′

2. We partition the elements of R into four groups
(see Figure 1) and find an element of minimum frequency among those in each
group:

Case 1. elements of R that are in P but not S,
Case 2. elements of R that are in S and P ,
Case 3. elements of R that are in S and P ′, but not P , and
Case 4. elements of R that are in S but not P ′.

2P’

2P1P

B

ji

2 31 4 8 10 11 13 1495 12 16156 191817 20 21 232270

query range R = B[i:j]

span S
suffixprefix

S

P

P’

PP’ 321 4

1P’

Fig. 1. Every element in the query range R (shaded) is in P or S, partitioned into sets
1–4

We first show how to determine which elements of P ′ fall into Cases 1, 2, and 3.
It suffices to determine for each element of P ′ whether or not the element appears
in P and whether or not the element appears in S. We determine which elements
appear in P by simply iterating through P . To determine which elements appear
in S, we first find the closest occurrence of each element to S in a scan through
P ′. Assume that we have one such closest element B[x] at index x. Assume
without loss of generality that it appears in P ′

1. The next occurrence of element
B[x] is at index x′ = QB[x][B

′[x] + 1], which we compute in O(1) time. Thus, S
contains an occurrence of element B[x] if and only if x′ lies inside S.

The least frequent element in R is given by the least frequent of those found
in each of the four cases defined above:

Case 1. By Lemma 2, we compute the frequencies of all elements in P1 in O(t)
time, omitting the final step of resetting the frequency table to zero. We then
repeat for P2 so that the frequency table contains aggregate data for all of P .
Consider all elements that occur in P but not in S. For each such element e,
freqR(e) = freqP (e). So, the least frequent of these elements in R is the element
with minimum non-zero entry in the frequency table.

Case 2. Let f denote the precomputed minimum frequency of any element in
S, which is stored in table D. The minimum frequency in R of any element
present in both S and P is at least f and at most f+2t. For each element e that
occurs in both S and P1, we find the leftmost occurrence of e within P1 in a scan
through P1. We repeat in a symmetric fashion in P2. Then, by Lemma 1, we can
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check in O(1) time whether an element e in both S and P has frequency in R
less than some threshold. We begin with a threshold of f +2t+1. If an element
e has frequency less than the threshold, we find its actual frequency by iterating
through Qe (forward or backwards depending on whether we are considering an
element in P1 or P2) until reaching an index within R. This frequency becomes
our new threshold. We repeat with all other elements that occur in both S and P .
The last element to change the threshold is the least frequent of these elements.
Since the threshold can decrease to at most f , the total time spent finding exact
frequencies is O(t).

Case 3. Consider all elements that occur in both S and P ′ but not in P . As
in Case 2, their frequencies in R are bounded between f and f + 2t. We can
thus apply the same technique as in Case 2. However, for each element, instead
of finding the leftmost occurrence in P1 or the rightmost occurrence in P2 from
which to base the queries of Lemma 1, we find the rightmost occurrence in P ′

1

or the leftmost occurrence in P ′
2.

Case 4. Consider all elements that occur in S but not in P ′. For each such
element e, freqR(e) = freqS(e). The least frequent of these elements has been
precomputed and can be found in table D in O(1) time.

Analysis. In addition to the arrays A, B, and B′ (each O(n) space), the data
structure stores the tables Q0, . . . , QΔ−1 (O(n) total space), the tables D (O(s2)
space), and a frequency table (O(Δ) ⊆ O(n) space). Populating, scanning, and
resetting the frequency table during a query requires O(t) = O(n/s) time. The
query algorithm involves a constant number of scans of the blocks P ′

1 and P ′
2.

Each element is processed in O(1) amortized time, resulting in O(t) total time.
Thus, the data structure has space O(n + s2) and supports queries in O(t) =
O(n/s) time in the worst case. This completes the proof of Theorem 1.

2.2 Reduction from Boolean Matrix Multiplication

We follow the technique of Chan et al. [5] to multiply two n×n boolean matrices
L and R via least frequent element range queries. In particular, we build an array
A of size n′ ∈ O(n2), and after preprocessing the array in P (n′) time we perform
n2 least frequent element queries, each in Q(n′) time, to calculate M = LR. The
result is Theorem 2.

Theorem 2. Given a data structure for least frequent element query in an array
of n elements with P (n) preprocessing time and Q(n) query time, there exists
an algorithm for boolean matrix multiplication of two n × n matrices that runs
in O(P (n2) + n2Q(n2)) time.

Thus, a data structure for least frequent element with P (n) ∈ o(n3/2−ε) and with
Q(n) ∈ o(n1/2−ε) would yield an algorithm for boolean matrix multiplication
that runs in o(n3−2ε) time, via purely combinatorial means.

The technique of Chan et al. [5] first reduces boolean matrix multiplication to
set disjointness queries between sets encoding the rows of L and the columns of
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R. Let U = {1, . . . , n} be our ground set. We are left with the following problem:
given sets L1, . . . , Ln ⊆ U and R1, . . . , Rn ⊆ U , determine whether Li ∩Rj = ∅
for all i, j ∈ {1, . . . , n}.

Our construction of A involves creating 2n+ 1 blocks of n elements: a block
for each set Li, followed by a block containing each element of U , followed by a
block for each set Rj . The block for set Li contains all elements of Li followed
by all elements of U \ Li. The block for set Rj contains all elements of U \ Rj

followed by all elements of Rj .
We determine whether or not Li and Rj are disjoint via a single least frequent

element query from the leftmost element of U \ Li to the rightmost element of
U \Rj . This query range contains i+ j− 1 > 0 complete blocks, each containing
some permutation of U . If Li and Rj are disjoint, then every element of U
occurs either in U \ Li or U \Rj . Thus, in this case, the least frequent element
has frequency greater than i + j − 1. If Li and Rj are not disjoint then some
element occurs in neither U \ Li nor U \ Rj , and thus has the lowest possible
frequency of i+ j− 1. Thus, Li ∩Rj = ∅ if and only if the frequency of the least
frequent element in the range is exactly i+ j − 1.

In total we must preprocess A, which has size O(n2) and perform n2 least
frequent element queries in this array, resulting in an algorithm that requires
O(P (n2) + n2Q(n2)) time. This completes the proof of Theorem 2.

3 Range Minority

In this section we describe an O(n)-space data structure that identifies an α-
minority element, if any exists, in a query range in O(1/α) time. We first reduce
this α-minority range query problem to the problem of identifying the leftmost
occurrences of the k leftmost distinct elements on or to the right of a given query
index. We call the latter problem distinct element searching and we require that
k can be specified at query time.

Lemma 4. Given a data structure D for distinct element searching that requires
SD(n) space and QD(n, k) query time to report k elements, there exists a data
structure for the α-minority range query problem that requires O(SD(n) + n)
space and O(QD(n, 1/α) + 1/α) query time.

Proof. As described in Section 2.1, suppose we store in an array B′, for each
index i of A, a count of the number of times A[i] occurs previously in A, and
for each distinct element x ∈ {0, . . . , Δ− 1}, a sorted array Qx of all the indices
where x occurs in A. These arrays require O(n) space. By Lemma 1, we can
check in O(1) time whether there are at least q instances of A[i] in the range
A[i : j] for any q ≥ 0 and j ≥ i.

Observe that any element in a range is either an α-majority or an α-minority
for the range and fewer than 1/α distinct elements can be α-majorities. Thus, if
we can find 1/α distinct elements in a range, then at least one of them must be
an α-minority.
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Given a query range A[i : j], we use data structure D to find the leftmost
occurrences of the 1/α leftmost distinct elements on or to the right of index i in
Q(n, 1/α) time. Some of these leftmost occurrences may lie to the right of index
j; we can ignore these elements as no occurrence of these elements lies in A[i : j].
There are O(1/α) remaining leftmost occurrences of leftmost distinct elements.
Consider such an occurrence at index �. Since this is the first occurrence of A[�]
on or after index i, the frequency of A[�] in A[� : j] is equal to the frequency
of A[�] in A[i : j]. We can then check whether or not A[�] is an α-minority in
A[i : j] in O(1) time by setting q = α(j − i + 1) + 1 in Lemma 1. Repeating for
all leftmost occurrences requires O(1/α) time.

If we find an α-minority we are done. If we do not find an α-minority, then
there must not have been 1/α distinct elements to check. In that case, we checked
all distinct elements in A[i : j] so there cannot be an α-minority. ��

We can now focus on distinct element searching. If all queries use a common fixed
k (as is the case if our goal is to solve just the range β-minority problem), there
is a simple data structure that requires O(n) space and O(k) query time: for
each i that is a multiple of k, store the k leftmost distinct elements to the right
of index i; then for an arbitrary index i, we can answer a query by examining
the k elements stored at j′ = �i/k�k in addition to the O(k) elements in A[i : j′].
However, it is not obvious how to extend this solution to the general problem
for arbitrary k, without increasing the space bound.

In Lemma 5, we will map this problem to a 2-dimensional problem in com-
putational geometry that can be solved by Chazelle’s hive graph data structure
[6]. Given n horizontal line segments, the hive graph allows efficient intersection
searching along vertical rays. Finding the first horizontal line intersecting a verti-
cal ray requires an orthogonal planar point location query; however, subsequent
intersections can be found in sorted order in constant time each. The hive graph
requires O(n) space.

Lemma 5. There exists a data structure for distinct element searching that re-
quires O(n) space and O(k) query time.

Proof. Let Li be the set of indices in A that are associated with the leftmost
occurrence of an element on or after index i. We can find the leftmost occurrences
of the k leftmost distinct elements on or after index i by iterating through Li in
sorted order. However,

∑n−1
i=0 |Li| can be Ω(n2) so we cannot afford to explicitly

store all these sets.
Consider an index �. Clearly, � ∈ L� and � /∈ Li for i > �. Consider the first

occurrence of A[�] to the left of index � at index �′, if it exists. Then � /∈ Li

for i ≤ �′. However, for �′ < i ≤ �, � ∈ Li. We associate � with a horizontal
segment with x-interval (�′, �] and with y-value �. If no such index �′ exists,
then we associate � with a horizontal segment with x-interval (−∞, �] and with
y-value �. We thus have n horizontal segments. We build Chazelle’s hive graph
data structure [6] on these segments.

By the construction of the x-intervals of our segments, a segment intersects
the vertical line y = i if and only if it is associated with an index � such that
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� ∈ Li. Since the y-value of a segment associated with � is �, the segments are
sorted along the vertical line in the order of their associated indices. Thus, to
find the k leftmost indices in Li, we query the hive graph for the horizontal
segments with a vertical ray from (i, 0) to (i,∞). The cost of Chazelle’s query
algorithm is O(tPL(n)+k) time, where tPL(n) denotes the cost of a point location
query in an orthogonal subdivision of size O(n). The overall query time would
then be O(log logn+ k) if we use the best known linear-space data structure for
orthogonal point location of Chan [4].

To reduce the query time to O(k), our key idea is to observe that there are
only n distinct vertical rays with which we query the hive graph, and hence only
n distinct points with which we do point location. Thus, we can perform the
orthogonal point location component of each query during preprocessing and
store each resulting node in the hive graph in a total of O(n) space. (In fact,
since all the query rays originate from points on the x-axis, the batched point
locations are one-dimensional and can be handled easily in our application.) ��
Corollary 1. There exists a data structure for the α-minority range query prob-
lem that requires O(n) space and O(1/α) query time.

Proof. By Lemmas 4 and 5. ��

4 Range Majority

We now consider the α-majority range query problem. Recently, Gagie et al. [11]
describe an O(n log n)-space data structure that supports α-majority in O(1/α)
time, where α is specified at query time. In this section we describe a different α-
majority range query data structure whose asymptotic space and time costsmatch
those of Gagie et al. Previous work by Durocher et al. [9] considers the β-majority
range query problem, where β is specified during preprocessing; their data struc-
ture requiresO(n log(1/β + 1)) space and supports queries in O(1/β) time.

We begin by noting that a β-majority data structure can be adapted to sup-
port α-majority at the cost of increased space. Consider logn instances of the
β-majority data structure of Durocher et al. [9], each with respective values
β = 2−i, for i = 1, . . . , logn, for a total of O(n log2 n) space. For any query with
parameter α, there is a data structure for which 1/α ≤ 1/β but 1/β ∈ O(1/α).
Querying this data structure results in a superset of the α-majorities of size
O(1/α). The data structure, having counted the frequencies of each of these
elements, can then filter out the α-minorities in O(1/α) time. Our effort now
turns to solving the problem in O(n logn) space and O(1/α) query time using
an entirely different approach.

Next we consider a related problem: reporting the top k most frequent ele-
ments in a query range where k is specified at query time. We call this problem
the top-k range query problem while warning the reader not to confuse it with
reporting the top k highest valued elements. We use a variation on the tech-
nique of Lemma 5 in order to support one-sided queries in O(n) space and O(k)
query time. We note that the resulting data structure is a persistent version of
Lemma 3 in which all updates are provided offline.
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Lemma 6. There exists a data structure for the one-sided top-k range query
problem that requires O(n) space and O(k) query time.

Proof. Assume our one-sided queries take the form A[0 : i] for 0 ≤ i ≤ n − 1.
Consider the frequencies of the elements as we enlarge the one-sided range from
left to right. Say an element has frequency f for ranges A[0 : i] through A[0 : j]
and this range of ranges is maximal. We construct a horizontal segment with
x-interval [i, j + 1) and with y-value f . We repeat for all elements and for all
f > 0 and arbitrarily perturb the y-values for any segments that overlap.

In total, we construct Δ ≤ n segments with y-value 0: one segment corre-
sponding to each distinct element having frequency 0 in a vacuous subarray.
Each element of A causes a single change in frequency of a single element, which
results in one additional segment. So, in total we construct O(n) segments. We
build Chazelle’s hive graph data structure [6] on these segments.

For every distinct element e in A[0 : i] there is a horizontal segment with
x-interval [�, r + 1) intersecting the vertical line y = i with A[�] = e and
freqA[0:i](e) = f . These horizontal segments are sorted along the vertical line
in the order of frequency. To find the k most frequent elements in A[0 : i], we
query the hive graph for the first k horizontal segments intersecting the vertical
ray from (i, n) to (i,−∞). As in Lemma 5, there are only n distinct queries to
the hive graph, so we can perform the orthogonal point location component of
each query during preprocessing at a cost of O(n) space to store the resulting
nodes of the hive graph. For each segment that the hive graph reports, we report
A[�] where � is the left x-coordinate of the segment. ��

Observe also that the index of the leftmost endpoint of the horizontal segment
associated with a reported element is the index of the rightmost occurrence
of the element in A[0 : i]. Top-k queries are not decomposable in the sense
that, given a partition of a range R into two subranges R1 and R2, there is
no relationship between the top k most frequent elements in R1, R2, and R.
As observed by Karpinski and Nekrich [15], given the same partition of R, an
α-majority in R must either be an α-majority in R1 or R2. Since α-majority
queries are decomposable in this way, and since all α-majorities are amongst the
top 1/α most frequent elements, we can now apply the range tree to support
two-sided α-majority queries.

Theorem 3. There exists a data structure for the α-majority range query prob-
lem that requires O(n log n) space and O(1/α) query time.

Proof. We build the data structure of Lemma 6 on array A. We divide A into
two halves and recurse in both halves to create a range tree. The total space
consumption of all top-k data structures is thus O(n logn). We also include a
data structure for lowest common ancestor queries in the range tree. We use
this data structure to decompose a two-sided query into one-sided queries in
two nodes of the range tree. There are succinct data structures for LCA that
require only O(n) bits of space and O(1) time (e.g., [19]). We also build the
arrays required to support the queries of Lemma 1.
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We decompose a two-sided query into one-sided queries in two nodes of the
range tree in O(1) time. For each one-sided query we find the 1/α most frequent
elements using the top-k data structures in O(1/α) time. By the decompos-
ability of α-majority queries as observed by Karpinski and Nekrich [15], our
O(1/α) most frequent elements in both one-sided ranges are a superset of the
α-majorities of the original two-sided query. Since the top-k data structures re-
port for each element occurrences that are closest to one of the boundaries of
the two-sided range, we can apply Lemma 1 to check which of the O(1/α) most
frequent elements are in fact α-majorities in constant time each. ��

5 Discussion

Using binary rank and select data structures and bit packing, Chan et al. [5] re-
duce the range mode query time from O(

√
n) to O(

√
n/ logn) without increas-

ing the data structure’s space beyond O(n). Unlike the frequency of the mode,
the frequency of the least frequent element does not vary monotonically over a
sequence of elements. Furthermore, unlike the mode, when the least frequent ele-
ment changes, the new element of minimum frequency is not necessarily located
in the block in which the change occurs. Consequently, the techniques of Chan et
al. do not seem immediately applicable to the least frequent range query problem;
it remains open whether o(

√
n) query time is possible in O(n) space.

We have described a data structure for the range least frequent element prob-
lem achieving O(

√
n) query time with O(n3/2) preprocessing time, and given

a lower bound by reduction from boolean matrix multiplication under which
least frequent element with o(n1/2−ε) query time and o(n3/2−ε) preprocessing
time would imply matrix multiplication in o(n3−2ε) time by purely combinato-
rial means. We have also given a data structure achieving O(1/α) query time in
O(n) space on the range α-minority problem; and one achieving O(1/α) query
time in O(n log n) space on the range α-majority problem, matching the bounds
achieved by that of Gagie et al. [11]. The greater space required by current
α-majority data structures compared to that required by current α-minority
data structures suggests that further improvement may be possible; whether α-
majority range queries can be supported in o(n logn) space and O(1/α) query
time remains open.

Acknowledgements. The authors thank Patrick Nicholson for insightful dis-
cussion of the α-majority range query problem.
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Abstract. We show that the asynchronous push-pull protocol spreads
rumors in preferential attachment graphs (as defined by Barabási and
Albert) in time O(

√
log n) to all but a lower order fraction of the nodes

with high probability. This is significantly faster than what synchronized
protocols can achieve; an obvious lower bound for these is the average
distance, which is known to be Θ(log n/ log log n).

1 Introduction

Online social networks like Facebook and Twitter are changing the way people
communicate, organize and act collectively. They are starting to take the lead
over traditional news media in their ability to spread news at a remarkable
speed. One striking example was the first picture of US Airways Flight 1549’s
crash landing on the Hudson River, which became known to a broad audience
through Twitter even before TV channels started to report on the accident.

The theoretical model most widely used for social networks is the so-called
preferential attachment (PA) model, which was introduced in a seminal paper by
Barabási and Albert [1]. It builds on the paradigm that new vertices attach to
already present vertices with a probability proportional to their degree. Several
papersprove that this model indeed enjoys many properties observed in social
networks and many other real world networks, e.g., a power law distribution
of the vertex degrees, a small diameter and a small average degree [2, 4]. The
precise definition of the PA model can be found in Section 2. Note that later
extended definitions for PA graphs were given (with the preference not anymore
proportional to the degree); in this paper, we shall always refer to the original
one.

In this paper, we revisit the rumor spreading problem in PA graphs, i.e., the
spread of one piece of information in a graph. The classical rumor spreading
process is modeled on a discrete time line. A simple protocol assumes that in
each time step (or round) every node that knows the rumor forwards it to a
randomly chosen neighbor. This is known as the push strategy. For many network
topologies, this strategy is a very efficient way to spread a rumor. Let n denote
the number of vertices of a graph. Then the push model with high probability
(i.e., with probability 1− o(1)) sends the rumor to all vertices in time Θ(log n),
if the graph is a complete graph [19], a hypercube [15], an Erdős-Rényi random
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graph Gn,p with p ≥ (1 + ε) log(n)/n [15], or a random regular graph [17]. In
contrast to this, Chierichetti, Lattanzi, and Panconesi [7] showed that the push
model with non-vanishing probability needs Ω(nα) rounds on PA graphs for
some α > 0.

Opposite to the push strategy is the pull strategy: each vertex in each round
contacts a random neighbor and learns the rumor if its contact knows the rumor.
There is a symmetry between the two models [6, 10], hence these results also
hold for the pull model.

Karp, Schindelhauer, Shenker, and Vöcking [22] pointed out that for complete
graphs, the pull strategy is inferior to the push strategy until roughly n/2 vertices
are informed, and then the pull strategy becomes more effective. This motivates
to combine both approaches. In this so-called push-pull strategy each vertex
contacts another vertex chosen uniformly at random among its neighbors. It
pushes the rumor in case it has the rumor, and pulls the rumor in case the
neighbor has the rumor. For complete graphs and many Erdős-Rényi random
graphs, this protocol also needs Θ(log n) rounds, though with better implicit
constants [9, 13, 22]. Its main advantage here is that it allows to define protolls
using fewer messages. Chierichetti et al. [6] relate the broadcast time of the push-
pull strategy to the conductance of graphs; graphs with conductance Φ have a
broadcast time of O

(
log2(Φ−1)Φ−1 logn

)
with high probability. Giakkoupis [20]

recently improved this bound to O(Φ−1 logn) which is tight.
For preferential attachment graphs, however, the push-pull strategy is much

better than push or pull alone. Chierichetti et al. [7] showed that with this
strategy,O(log2 n) rounds suffice with high probability. Recently, we showed that
in fact the push-pull strategy succeeds to inform all nodes in Θ(log n) rounds
[11]. Surprisingly, if the push-pull strategy is slightly modified to prevent that
a node contacts the same neighbor twice in a row, then with high probability
already Θ(log n/ log logn) rounds suffice [11], which is the diameter of the PA
graph.

All these results assume a synchronized model, in which all nodes take action
simultaneously at discrete time steps. In many applications and certainly in real-
world social networks, this assumption is not very plausible. One can also argue
(see, e.g., [5]) that time-synchronization contradicts the idea of a self-organized
broadcasting protocol. Boyd et al. [5] therefore proposed an asynchronous time
model with a continuous time line. Each node has its own clock that ticks at the
times of a rate 1 Poisson process independent from the clocks of other nodes.
The protocol now specifies for every node what to do when its own clock ticks.

The rumor spreading problem in the asynchronous time model has so far
received less attention. The push-pull protocol in this model, however, turns out
to be closely related to Richardson’s model for the spread of a disease and to
first-passage percolation. In this sense, for the hypercube, Fill and Pemantle [16]
and Bollobás and Thomason [3] showed that the asynchronous push-pull protocol
spreads a rumor to all nodes in time Θ(log n). Similarly, for the complete graph,
Janson [21] showed a bound of Θ(log n). Note that these bounds match the same
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asymptotics as in the synchronized case. We also suspect that the same bounds
hold in case all but o(n) nodes are to be informed.

Fountoulakis, Panagiotou, and Sauerwald [18] have recently studied the push-
pull protocol in the asynchronous time model for random graphs in the Ching-Lu
model [8] with a given expected degree distribution that follows a power law with
exponent in (2, 3). For these graphs, they show a constant runtime to inform
n− o(n) nodes. Note that these graphs are quite different from our PA graphs,
e.g., their average diameter is known to be Θ(log logn) (see [8]), whereas for PA
graphs the average diameter is also Θ(log n/ log logn) (see [12]).

Our Results: We study the push-pull protocol in the asynchronous time model
on PA graphs and prove that it spreads a rumor in time O(

√
logn) to n −

o(n) nodes in the PA model with high probability. The protocol thus beats
the average distance of Θ(log n/ log logn), which is a natural lower bound for
the synchronized protocol achieving this aim. To inform all nodes, however, our
protocol is shown to need Θ(log n) time. This is mainly due to few nodes that
require Ω(log n) time to contact or be contacted by a neighbor for the first time.

These results show that the asynchronous push-pull protocol behaves quite
differently than the synchronized one, despite the fact that each node still con-
tacts one neighbor per time unit on average. The discrepancy between informing
all nodes and almost all nodes reflects an often observed ‘long tail’ behavior in
real world networks. Such effects are less visible in the synchronized case [11].

2 Precise Model and Preliminaries

Preferential attachment graphs were first introduced by Barabási and Albert [1].
In this work, we follow the formal definition of Bollobás et al. [2, 4]. Let G be
an undirected graph. We denote by degG(v) the degree of a vertex v in G.

Definition 1 (Preferential attachment graph). Let m ≥ 2 be a fixed
parameter. The random graph Gn

m is an undirected graph on the vertex set
V := {1, . . . , n} inductively defined as follows.

G1
m consists of a single vertex with m self-loops. For all n > 1, Gn

m is built from
Gn−1

m by adding the new node n together with m edges e1n = {n, v1}, . . . , emn =
{n, vm} inserted one after the other in this order. Let Gn

m,i−1 denote the graph

right before the edge ein is added. Let Mi =
∑

v∈V degGn
m,i−1

(v) be the sum of

the degrees of all the nodes in Gn
m,i−1. The endpoint vi is selected randomly such

that vi = u with probability degGn
m,i−1

(u)/(Mi + 1), except for n that is selected

with probability (degGn
m,i−1

(n) + 1)/(Mi + 1).

This definition implies that when ein is inserted, the vertex vi is chosen with
probability proportional to its degree (except for vi = n). Since many real-world
social networks are conjectured to evolve using similar principles, the PA model
can serve as a model for social networks. Another property observed in many
real-world networks has been formally proven for preferential attachment graphs,
namely that the degree distribution follows a power-law [4].
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For m = 1 the graph is disconnected with high probability; so we focus on
the case m ≥ 2. Under this assumption, Bollobás and Riordan [2] showed that
the diameter is only Θ(log(n)/ log logn) with high probability.

With a slight abuse of notation we write (u, v) ∈ E or (v, u) ∈ E both to
denote {u, v} ∈ E. The definition of Gn

m can lead to multiple edges and self-
loops, though they typically make up only a vanishing fraction of the edges.

We examine the following broadcasting protocol.

Definition 2 (Asynchronous push-pull strategy). Each node has a clock
that ticks at the times of a rate 1 Poisson process. Whenever the clock of a vertex
u ticks, it chooses uniformly at random a neighbor v. If u knows the rumor, it
sends the rumor to v (“push”). If v knows the rumor, it sends the rumor to u
(“pull”).

We say that an edge (u, v) fires, whenever the clock of node u ticks and u
contacts v. We call the time span between two ticks of a clock a round. The
length of a round is exponentially distributed with mean 1.Since the exponential
distribution is memoryless, the length of a round is independent over time. The
following elementary lemma shows that also the time when a node contacts a
specific neighbor is exponentially distributed.

Lemma 1. Let u be a node of degree d that is connected to a node v. Let T
denote the time span until u contacts v. Then, P[T > x] = e−x/d.

3 Statement of Results

Theorem 1. With probability 1 − o(1), the asynchronous push-pull protocol
broadcasts a rumor from any node of Gn

m to (i) all but o(n) nodes in time
O(
√
logn), (ii) and to all nodes in time Θ(log n).

The proofs of the upper bounds in Theorem 1 consist of three main steps. In
Section 4.3, we analyze the time needed until the rumor reaches a so-called useful
node. Roughly speaking, a node is useful if its degree is at least polylogarithmic
(see Section 4.2 for details). We prove that a useful node is reached in time
O((log logn)2) with probability 1 − o(1) and in time O(log n) with probability
1−o(n−2). The later bound is used for the case when all nodes are to be informed.

The core of the proof (see Section 4.4) consists of showing that once a useful
node u has been informed, within O(

√
log n) time the rumor is propagated to

node 1. To this aim, we show that there is a short path from u to 1 such that
every second node has degree exactly m that is traversed in time O(

√
logn). To

prove such a fast traversal we exploit edges that fire fast. In particular, we use
the fact that the minimum of k i.i.d. exponential random variables with mean 1
is also exponentially distributed with mean 1/k.

The result then follows from the following symmetry property.

Lemma 2. Assume that if the rumor starts in node u, it reaches node v in time
t with probability p. This implies the reverse statement: if the rumor is initiated
by v, then it reaches u in time t with probability p.
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4 Analysis of the Asynchronous Push-Pull Model

4.1 Alternative Model

In the random process generating Gn
m the random decisions made at each step

depend heavily on the previous random decisions. Bollobás and Riordan [2] there-
fore suggested an alternative way of generating Gn

m that is more accessible. We
first describe the model for m = 1 and then generalize it to arbitrary m.

Let (xi, yi) for i ∈ [n] := {1, 2, . . . , n} be n independently and uniformly
chosen pairs from [0, 1] × [0, 1]. With probability one, all these numbers are
distinct. By reordering each pair if necessary, we assume that xi < yi for every
i ∈ [n]. Suppose that after relabeling, y1 < y2 < · · · < yn. We set W0 := 0 and
Wi := yi for i ∈ [n]. The graph Gn

1 is now defined by having an edge (i, j) if and
only if Wj−1 < xi < Wj . Define wj := Wj −Wj−1.

Similarly, for Gn
m, we sample mn pairs (xi,j , yi,j) independently and uniformly

from [0, 1]× [0, 1] with xi,j < yi,j for i ∈ [n] and j ∈ [m]. We relabel the variables
such that yi,j is increasing in lexicographic order: y1,1 < y1,2 < · · · < y1,m <
y2,1 < · · · < yn,1 < · · · < yn,m. We set W0 := 0 and Wi := yi,m for i ∈ [n].
The graph is now defined by having an edge (i, j) for each k ∈ [m] such that
Wj−1 < xi,k < Wj . As before, define wj = Wj −Wj−1. We write �i,k for the
node j such that Wj−1 < xi,k < Wj . Note that given y1,1, . . . , yn,m, the random
variables x1,1, . . . , xn,m are independent with xik being chosen uniformly from
[0, yi,k]. We instead assume that if y1,1, . . . , yn,m are given, then each xi,k is
chosen independently and uniformly from [0,Wi]. By this slight modification,
we can work with the values of the Wi’s and ignore the values of the yi,j ’s. This
modification only increases the probability of a loop at i. It is straightforward
to check that each step of our proof remains valid if the probability of a loop is
not increased. Thus, the validity of our proof is not affected.

We give a few properties of the alternative model, that are useful in the
analysis. Let s = 2a be the smallest power of 2 larger than log10 n, and let 2b be
the largest power of 2 smaller than 2n/3. Let It = [2t + 1, 2t+1].

Lemma 3 (Bollobás and Riordan [2]). Let m ≥ 2 be fixed. Using the defi-
nitions above, each of the following five events holds with probability 1− o(1).

• E1 :=
{
|Wi −

√
i/n| ≤ 1

10

√
i/n for all i ∈ [s, n]}

• E2 :=
{
|{i ∈ It | wi ≥ 1/(10

√
in)}| ≥ 2t−1 for all t ∈ [a, b)}

• E3 := {w1 ≥ 4
log(n)

√
n
}

• E4 := {wi ≥ log2(n)/n for all i < n1/5}
• E5 := {wi < log2(n)/n for all i ≥ n/2}.

Note that the event E5 is slightly adjusted for our purposes. In the original
paper, the authors show that for i ≥ n/ log5 n; we have wi < n−4/5. It is easy to
check that (essentially) the same proof holds for the above version.

Instead of working directly with the alternative model where the Wi’s are
random variables, we use the following typical social network model where the
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Wi’s are fixed numbers that satisfy the properties E1, . . . , E5. Since by Lemma 3,
these properties hold with high probability, all results proven for a typical social
network model carry over toGn

m with high probability. Let 0 < W1 < · · · < Wn <
1 be distinct real numbers and let wi = Wi −Wi−1. Assume that W1, . . . ,Wn

satisfy the properties E1, . . . , E5. A typical social network Gm(W1, . . . ,Wn) is
obtained by connecting each node i with the nodes �i,1, . . . , �i,m, where each �i,k
is a node chosen randomly with P[�i,k = j] = wj/Wi for all j ≤ i.

We always assume to have a typical social network G := Gm(W1, . . . ,Wn).

4.2 Useful Nodes

We use the notion of a useful node that was introduced by Bollobás and Riordan
[2]. A node i is useful if wi ≥ log2(n)/n. Note that we are slightly relaxing the
original definition in [2] where the authors also assumed that i ≤ n/ log5(n). We
have by E5 that i < n/2 for all useful nodes. Furthermore by E4, every i < n1/5

is useful. The following properties of non-useful nodes were proved in [11].

Lemma 4. With probability 1− o(1), the following event holds

• E6 := {degG(v) ≤ 5m log2 n for all non-useful v}.

Lemma 5. Assume that E6 holds. With prob. 1− n−1/5+o(1), we have

• E7 := {for all non-useful v, there exists at most one cycle whose nodes are
all connected to v via non-useful paths of length at most logn

(log logn)2 }.

Lemma 6 (Bollobás and Riordan [2]). Let v be a fixed non-useful node.
Then for all k ∈ [m], the prob. that �v,k is a useful node is at least log−3 n. This
event is independent from all other random decisions �v′,k′ with (v′, k′) �= (v, k).

Note that in the original lemma, the authors only state a bound on the probabil-
ity that �v,1 is a useful node. However, the same proof yields the above version.
Also, Lemma 6 remains valid if we condition on E6.

4.3 Informing the First Useful Node

Let G = Gm(W1, . . . ,Wn) be a typical social network. Assume that also E6 and
E7 hold. In this section, all probabilities are taken over the product space of the
random graph G and the random decisions of the rumor spreading process.

Lemma 7. Let u be a fixed node. The rumor initiated by u reaches a useful
node in time O((log logn)2) with probability 1− o(1), and in time O(log n) with
probability 1− o(n−2).

4.4 Informing Node 1

Similar to the synchronized case, we use constant degree nodes to establish fast
links between large degree nodes. More precisely, once a neighbor of a constant
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degree node is informed, the time until it has pulled the rumor from this neighbor
and pushed it to one specific neighbor is (essentially) exponentially distributed.
Thus, independent of their own degrees, two nodes that are connected via a third
node of constant degree exchange information in time exponentially distributed.

Starting from one informed useful node, we study how fast the rumor spreads
to the surrounding ‘neighborhoods’ of nodes. We consider neighborhoods alter-
nating between small nodes and good nodes i of relatively large weight wi. The
small nodes act as fast links between the levels of good nodes that ensure a large
expansion. In particular, we make use of the fact that a good node i has a high
degree and since every small neighbor of i independently pulls the rumor in time
exponentially distributed, we can argue that a considerable fraction of the small
neighbors of i will be informed very fast. The more neighbors of informed nodes
there are, the faster the rumor will spread to sufficiently many neighbors that
form the next level of informed node. In contrast, in the synchronized case, it
would always take at least one time step for a neighbor to pull the rumor.

We consider informed neighborhoods at suitably chosen time steps on the
continuous time line. The smaller these steps are chosen, the smaller the achieved
expansion factor is at each step. On the other hand, smaller time steps allow us to
progress faster through the different neighborhood levels. By carefully choosing
each step size, we can balance out these opposing effects in order to achieve the
following runtime.

Theorem 2. Let W1, . . . ,Wn be such that E1, . . . , E5 are satisfied. Let G be a
random graph from Gm(W1, . . . ,Wn). Let v ∈ [n] be a useful node. With proba-
bility 1− o(n−1), using the asynchronous push-pull protocol, a rumor present at
v reaches node 1 in O(

√
logn) steps.

For our argument using fast links, we will need many nodes of constant de-
gree. The following simple lemma proves that there is a linear number of nodes
i ∈

[
2
3n, n

]
that have a degree equal to m. We call such nodes small. If not ex-

plicitly stated, all probabilities in this section are taken over the random graph
Gm(W1, . . . ,Wn), where W1, . . . ,Wn are given numbers that satisfy properties
E1, . . . , E5.

Lemma 8. Let εm := 1
8e

−3m. With probability 1 − e−Ω(n), there are at least
εmn small nodes in

[
2
3n, n

]
.

Crucial for a large expansion in each step are good nodes of large weight. We say
a node i is good if

i ∈ [s+ 1, 2b] and wi ≥ 1/(10
√
in), (1)

where, as before, s = 2a is the smallest power of 2 larger than log10 n and 2b

is the largest power of 2 smaller than 2
3n. Let u be a useful node. Let t0 <

t′0 < t1 < t′1 < . . . denote discrete time steps to be specified later. We consider
neighborhoods of u that are informed in these time intervals. In particular, we
define sets Γk and Γ ′

k recursively as follows. We set Γ0 = {u}. Given the set
Γk, Γ

′
k consists of all small nodes i ≥ 2

3n that contact a neighbor in Γk in time
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[tk, t
′
k] and have not been included in any Γ ′

� with � ≤ k − 1. Similarly, Γk is
defined as the set of all good nodes that are contacted by a neighbor in Γ ′

k−1 in
time [t′k−1, tk] and have not been included in any Γ� with � ≤ k−1. Note that for

all k ≥ 0, Γk only contains nodes i < 2
3n, while Γ ′

k only contains nodes i ≥ 2
3n.

This is true for Γ0 since u is useful and by E5, all useful nodes are smaller than
n/2. We define the weight of a set Γk by

fk :=

{
wu if k = 0∑

i∈Γk

1√
in

if k ≥ 1.
(2)

Since for k ≥ 1, Γk only contains good nodes, and by definition, wu = f0, we
have for k ≥ 0, ∑

i∈Γk

wi ≥ fk/10. (3)

We denote by Nk = Γ0 ∪ Γ1 ∪ · · · ∪ Γk (note that the Γ ′
i are not included). Let

C0 ⊆
[
2
3n, n

]
be the set of small nodes and for k ≥ 1, let Ck = C0\{Γ ′

0, . . . , Γ
′
k−1}

be the set of small nodes excluding nodes in Γ ′
0, Γ

′
1, . . . , Γ

′
k−1. By Lemma 8, we

have C0 ≥ εmn with probability 1− e−Ω(n).
The next lemma shows that we achieve an exponential expansion in terms of

fk in each level as long as there is still a linear number of small nodes in Ck and
similarly, as long as for each interval It := [2t + 1, 2t+1], where t ∈ [a, b), there
are still 2t−2 good nodes that are not Nk.

Lemma 9. Let c > 0 be a sufficiently large constant, k ≥ 0 be such
that log4(n)/

√
n ≥ fk ≥ log2(n)/n and |Ck| ≥ εmn/2. Let Δk =

c log
−1/2
2 (εmfkn/ log

2 n). Set t′k := tk + Δk and tk+1 := t′k + Δk. Then given
Ck and Γ0, Γ

′
0, Γ1, Γ

′
1, . . . , Γk, with prob. 1 − O(n−6/5), one of the following is

satisfied. (i) |Nk+1 ∩ It| ≥ 2t−2, for some t ∈ [a, b), or (ii) fk+1 ≥ 2fk.

5 Conclusion

We have shown that for PA graphs the asynchronous push-pull protocol informs
almost all nodes in O(

√
logn) time. This shows, in an even stronger way than the

previous Θ̃(log n) bounds for the synchronized protocol [11], that randomized
rumor spreading is very effective in network topologies resembling real-world
networks.

From a broader perspective, our result also indicates that in naturally asyn-
chronous settings, it might be a misleading oversimplification to assume a syn-
chronized protocol.
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Abstract. We consider dynamic subgraph connectivity problems for
planar undirected graphs. In this model there is a fixed underlying pla-
nar graph, where each edge and vertex is either “off” (failed) or “on”
(recovered). We wish to answer connectivity queries with respect to the
“on” subgraph. The model has two natural variants, one in which there
are d edge/vertex failures that precede all connectivity queries, and one
in which failures/recoveries and queries are intermixed.

We present a d-failure connectivity oracle for planar graphs that pro-
cesses any d edge/vertex failures in sort(d, n) time so that connectivity
queries can be answered in pred(d, n) time. (Here sort and pred are the
time for integer sorting and integer predecessor search over a subset of
[n] of size d.) Our algorithm has two discrete parts. The first is an algo-
rithm tailored to triconnected planar graphs. It makes use of Barnette’s
theorem, which states that every triconnected planar graph contains a
degree-3 spanning tree. The second part is a generic reduction from gen-
eral (planar) graphs to triconnected (planar) graphs. Our algorithm is,
moreover, provably optimal. An implication of Pǎtraşcu and Thorup’s
lower bound on predecessor search is that no d-failure connectivity ora-
cle (even on trees) can beat pred(d, n) query time.

We extend our algorithms to the subgraph connectivity model where
edge/vertex failures (but no recoveries) are intermixed with connectivity
queries. In triconnected planar graphs each failure and query is handled
in O(log n) time (amortized), whereas in general planar graphs both
bounds become O(log2 n).

1 Introduction

Algorithms for dynamic graphs have traditionally assumed that the graph evolves
according to a completely arbitrary sequence of insertions and deletions of graph
elements. This model makes minimal assumptions but often sacrifices efficiency
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for generality. For example, real world networks (router networks, road networks,
etc.) do change slowly over time. However, the real dynamism of the networks
comes from the frequent failure of edges/nodes and their subsequent recovery.
In this paper we study connectivity problems in the dynamic subgraph model,
which attempts to accurately model this type of dynamism. It is assumed that
there is some fixed underlying graph whose nodes and edges can be off (failed)
or on; queries (connectivity queries, in our case) then answer questions about
the subgraph turned on. The power of this model (compared to the fully dy-
namic graph model) stems from the ability to preprocess the underlying graph
in advance.

There are two natural variants of the dynamic subgraph model. In the d-failure
version failures and recoveries occur in lockstep: a set F of d = |F | edges/nodes
fail together. Our goal is to process F , ideally in Õ(d) time, in order to answer
connectivity queries in G\F . Here d may or may not be a parameter of the
algorithm. In the fully dynamic model, node/edge failures and recoveries are
presented one at a time and intermixed with connectivity queries, whereas in
the decremental model the updates are restricted to failures.

Results. We give new algorithms for subgraph connectivity on undirected planar
graphs in the d-failure model and the decremental model, all of which require
linear preprocessing time. When failures are restricted to edges, we give an es-
pecially simple connectivity oracle that processes d edge failures (for any d) in
O(sort(d, n)) time and subsequently answers queries in O(pred(d, n)) time. Here
sort and pred refer to the time for sorting d integers in the universe {1, . . . , n}
and pred for the time for predecessor search, given sort(d, n) preprocessing time.1

The problem becomes more complicated when vertices fail since we cannot,
in general, spend time proportional to their degrees. Our second algorithm is a
d-failure connectivity oracle for edge and vertex failures with the same parame-
ters (linear preprocessing, O(sort(d, n)) to process d failures, O(pred(d, n)) time
per query). It consists of two parts: a solution for triconnected graphs and a
generic reduction from d-failure oracles in general graphs to d-failure oracles in
triconnected graphs. Triconnectivity plays an important role in the algorithm as
it allows us to apply Barnette’s theorem [6], which states that every triconnected
planar graph contains a degree-3 spanning tree. It is known [27] that predecessor
search is reducible to the d-edge/node failure connectivity problem on trees. Our
query time is therefore provably optimal. In particular, Pǎtraşcu and Thorup’s
lower bound [26] implies that O(log log(n/d)) query time cannot be beaten in
general, even given O(d poly(logn)) time to preprocess the edge/node failures.

Our third algorithm is in the decremental model. In triconnected planar
graphs we can support vertex failures in O(log n) amortized time and connec-
tivity queries in O(log n) time, whereas in general planar graphs both bounds

1 It is known that sort(d, n) = O(d log log d) deterministically, O(d
√
log log d) ran-

domized [22,23], and O(d) randomized if d < 2
√

log n−ε [4]. For predecessor search
the bound is pred(d, n) = O(min{ log d

log logn
, log log d·log log n

log log log n
}) deterministically [20,5]

and O(log log(n/d)) randomized [29,31].
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become O(log2 n).2 The logarithmic slowdown comes from a new reduction from
(planar) dynamic subgraph connectivity to the same problem in triconnected
graphs.

Prior Work on Dynamic Connectivity. Before surveying dynamic subgraph con-
nectivity it is instructive to see what type of “off the shelf” solutions are available
using traditional dynamic graph algorithms. The best known dynamic connec-
tivity algorithms for general undirected graphs require O(

√
n) worst case time

per edge update [19,17] or O(log2 n) time amortized [25]. Vertex updates are sim-
ulated with O(n) edge updates. In dynamic planar graphs the best connectivity
algorithms take O(log n) time per edge update [18].

Prior Work on Subgraph Connectivity. The dynamic subgraph model was pro-
posed explicitly by Frigioni and Italiano [21], who proved that in planar graphs,
node failures and recoveries could be supported in O(log3 n) amortized time per
operation and connectivity queries in O(log3 n) worst case time. An earlier al-
gorithm of Eppstein et al. [18] implies that edge failures, edge recoveries, and
connectivity queries in planar graphs require O(log n) time. In general graphs,
Chan, Pǎtraşcu, and Roditty [11] (improving [10]) showed that node updates
could be supported in amortized time O(m2/3), where m is the number of edges,
and connectivity queries in O(m1/3). Chan et al. [1,10,11] gave numerous appli-
cations of subgraph connectivity to geometric connectivity problems. The first
algorithm with worst-case guarantees was given by Duan [13], who showed that
node updates and queries require only O(m4/5) and O(m1/5) time, respectively.

In the d-edge failure model Pǎtraşcu and Thorup [27] gave a connectivity or-
acle for general graphs that processes d failures in O(d log2 n log logn) time and
answers queries in O(log logn) time. However, their structure requires exponen-
tial preprocessing time; a variant constructible in polynomial time has a slower
update time: O(d log5/2 log logn). Duan and Pettie [15] gave a connectivity or-
acle in the d-node failure model occupying O(mnε) space that processes failures
in O(poly(d, log n)) time and answers queries in O(d) time, where poly(d, n) de-
pends on ε. They also showed that a d-edge failure oracle could be constructed
in Õ(n) time with O(d2 log logn) update time and O(log logn) query time.

The distance sensitivity oracles avoiding 1 node failure [12,8] or 2 node failures
[14] also, as a special case, answer 1- and 2-failure connectivity queries on directed
graphs in O(1) and O(log n) time, respectively. These data structures occupy
Õ(n2) space.

Overview. Section 2 reviews notation and terminology. In Section 3 we describe
our planar d-edge failure connectivity oracle. In Section 4 we give a d-vertex
failure oracle for triconnected planar graphs and in Section 5 we extend it to
a decremental subgraph connectivity oracle for triconnected graphs. The full
manuscript [9] contains reductions from general (planar) graphs to triconnected
(planar) graphs.

2 These bounds are amortized over the actual number f of failures, i.e., in triconnected
graphs processing f failures takes O(f log n) time total.
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2 Definitions, Notation, and Basic Results

We assume that all graphs considered are undirected. A planar graph is a graph
that can be drawn in the plane such that no two edges cross. We refer to such
a drawing as a plane graph. A plane graph G = (V,E) partitions the plane into
maximal open connected sets and we refer to the closure of these sets as the
faces of G. If G is connected, we define a plane graph, called the dual graph G∗

of G, as follows. Associated with each face f of G is a vertex in G∗ which we
identify with f and which we draw inside f . For each edge e in G, there is an
edge (f1, f2) in G∗, where f1 and f2 are the faces in G incident to e. We draw
(f1, f2) such that it crosses e exactly once and crosses no other edge in G or in
G∗. We identify (f1, f2) with e. It can be shown that G∗ is also connected and
that (G∗)∗ = G. In particular, each face in G∗ corresponds to a vertex in G. We
refer to G as the primal graph.

For vertices u and v in a rooted tree T , we let lcaT (u, v) denote the lowest
common ancestor of u and v in T . Consider a spanning tree T in primal graph G.
It is well-known that the edges not present in T form a spanning tree T ∗ of G∗.
We call T ∗ the dual tree of T . The following lemma is a well-known result [30].

Lemma 1. For an edge e in primal tree T , let f and g be the faces to either
side of e in G. Then the edges of E \ {e} that connect the two subtrees of T \ {e}
are exactly those on the simple path in T ∗ from f to g.

A co-path is a sequence of faces that is a sequence of vertices in the dual that
form a path. A co-path avoids a set of edges F if every consecutive pair of faces
in the sequence shares an edge not in F .

3 Edge Failures

In this section, we develop a data structure that, given a planar undirected graph
G = (V,E), an integer d ≥ 1, and a dynamic subset of at most d failed edges,
supports the following operations:

1. update(F ): set F to be the set of failed edges;
2. connected?(u, v): are vertices u and v connected in G \ F?

We may assume that G is plane and connected. We will examine this problem
in the dual by way of the following lemmas:

Lemma 2. Two vertices u and v are connected in G \ F iff there is a u-to-v
co-path in G∗ avoiding F .

Proof. If u and v are connected in G \ F , then there is a u-to-v path P in G
not using any edges in F . This path, viewed as a sequence of vertices in G is a
sequence of faces, or co-path, in G∗. Since consecutive vertices in P are adjacent
by way of edges not in F , consecutive faces in the identified co-path share an
edge not in F : this u-to-v co-path avoids F .
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Conversely, let P be a u-to-v co-path avoiding F . P is a sequence of faces in
G∗, and so is a sequence of vertices in G. Consecutive faces on P in G∗ share an
edge avoiding F and so are adjacent by way of edges not in F : P is a path in G
not using any edges in F .

Consider the subgraph G∗
F of G∗ consisting of the failed edges, F . Let G∗

F inherit
the embedding of G∗. We refer to the faces of G∗

F as superfaces. Each superface
corresponds to the union of faces of G∗.

Lemma 3. Let f and g be faces of G∗. There is an f -to-g co-path in G∗ avoiding
F iff f and g are contained in the same superface of G∗

F .

Proof. Suppose f and g are contained in different superfaces; let C be the set
of edges that bound the superface containing f . Any f -to-g co-path requires a
face on either side of C and so cannot avoid C, which is a subset of F .

Suppose otherwise; let S be the set of faces of G∗ that form the superface fS
containing f and g. Since fS is a face of G∗

F , there is a curve C contained entirely
in fS that starts inside f and ends inside g. Consider the sequence of faces in
S that this path visits; this is an F -avoiding f -to-g co-path as consecutive faces
must share an edge that C crosses and this edge cannot be in F .

In light of Lemma 3 we can restate the operations as follows:

1. update(F ): set F to be the set of failed edges;
2. connected?(u, v): are u and v contained in the same superface of G∗

F ?

3.1 The Data Structure

Fix a rooted spanning tree T of the primal graph G. We use T to determine the
superfaces of G∗

F containing the faces corresponding to the query vertices u and
v. To do so, we require constant-time lca query support for T [24,2,7].

update(F ): The edges F are listed in no particular order. We start by building
the planar embedding of the subgraph G∗

F induced by F that is inherited from
G∗. Let V (F ) be the endpoints of F (in the dual sense). For each vertex v ∈ V (F )
identify the edges of F incident to v and their cyclic ordering3 in G∗. We can
compute these orderings in sort(d, n) time.

The boundaries of the superfaces given by G∗
F can be traversed in O(d) time

given this combinatorial embedding. The set V (F ) is the set of faces of G∗ that
are along the boundaries of superfaces of G∗

F . Label a dual face/primal vertex
in V (F ) with the superface that contains it; mark the vertices of the static tree
T with these superface labels.

3 The cyclic ordering of edges incident to each vertex is sufficient to define the em-
bedding. [16]
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connected?(u, v): To answer a query connected?(u, v), suppose we have iden-
tified the first and last marked vertices (if any) on the u-to-v path in T ; call
them û and v̂.4 By Lemmas 2 and 3, u and v are connected in G \ F iff û and
v̂ do not exist, or û and v̂ are labelled with the same superface. Therefore, we
need only identify û and v̂, if they exist. Lemma 4 shows that finding û and v̂ is
reducible to one least common ancestor query and O(1) predecessor queries.

Lemma 4. Let T be a tree of size n and M ⊆ V (T ) be a set of marked vertices,
with |M | = d. Then after O(n) preprocessing (independent of M), an O(d)-size
data structure can be constructed in O(sort(d, n)) time that answers the following
query in O(pred(d, n)) time: Given u, v ∈ V (T ), what are the first and last M -
vertices on the u-v path?

Proof. Recall that T is rooted. Let w = lca(u, v). The first marked vertex on
the u-to-v path is either the first marked vertex on the u-to-w path or the
last marked vertex on the v-to-w path. Thus, we can assume without loss of
generality that v is an ancestor of u. Fix an arbitrary DFS of T and let pre(x)
(resp. post(x)) be the time when x is pushed onto (resp. popped off) the stack
during DFS. Given M , we first sort the pre and post indices of its elements, in
O(sort(d, n)) time, which allows us to label each x ∈M with the nearest strictly
ancestralM -vertex μ(x). Here it is convenient to assume that the root is marked
(honorarily, if not in M) so μ(x) is defined everywhere except the root. We build
a global predecessor structure on the set S = {pre(x), post(x) : x ∈ M} and
local predecessor structures on the sets Sx = {pre(x′) : x′ ∈ μ−1(x)}, where
x ∈M and Sx is the set of “immediate” descendants in M connected by a path
of non-M vertices. To answer a query u, v (where v is ancestral to u) we first
find the closest marked ancestors u′, v′ ∈M as follows. Let i be the predecessor
of pre(u) in S. If i = pre(y) for some y ∈M then x is an immediate descendant
of y and u′ = y. If i = post(y) then let u′ = μ(y). See Figure 1(a). It follows
that u′ is an ancestor of u and that there are no other M -vertices on the path
from u to u′. If u′ is ancestral to v then there are no marked nodes on the u-v
path, so assume this is not the case. In order to find the last marked vertex on
the path from u to v we search for the predecessor of pre(u) in Sv′ , say pre(y).
Since there is some marked vertex on the path from u to v′ it follows that u is a
descendant of y, which is a descendant of v and that there are no other marked
vertices on the path from y to v. See Figure 1(b).

We now have the following:

Theorem 1. There is a data structure for planar undirected n-vertex graphs and
any d ≥ 1 that after O(n) preprocessing time supports update(F ) in O(sort(d, n))
time, where F ⊆ E, |F | ≤ d, and supports connected?(u, v) in O(pred(d, n))
time.

4 This is a slightly more general problem than themarked ancestor problem considered
by Alstrup, Husfeldt, and Rauhe [3].
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(a) (b)

Fig. 1.Marked vertices are shaded red. (a) The nearest marked ancestor u′ of u depends
on whether the predecessor of pre(u) is pre(y) (left) or post(y) (right) for some marked
y. (b) v′ is the nearest marked ancestor of v. The last marked ancestor y on the u-to-v
path is in μ−1(v′).

4 Vertex and Edge Failures

We now turn our attention to the scenario where both edges and vertices can
fail. The additional challenge arises from high degree vertices that, when failed,
can greatly reduce the connectivity of the graph. Nevertheless we will show how
to maintain dynamic connectivity in time proportional to the number of failed
vertices, rather than their degrees. Formally, we develop a data structure that,
given a planar, undirected graph G = (V,E), an integer d ≥ 1, and a dynamic
subset of at most d failed edges and vertices, supports the following operations:

1. update(F ): set F to be the failed set of vertices and edges;
2. connected?(u, v): are vertices u and v connected in G \ F?

4.1 Vertex Failures for Triconnected Planar Graphs

In this subsection we shall assume that G is triconnected. This allows us to
apply Barnette’s theorem, which states that every triconnected planar graph
has a spanning tree of degree at most three [6]. Furthermore, such a degree-
three tree, T , can be found in linear time [28]. In Section 6 we show that this
assumption is basically without loss of generality: we can reduce the problem on
general graphs to triconnected graphs with an additive pred(d, n) slowdown in
the query and update algorithms.

Assume that only vertices fail. The full manuscript [9] describes how to handle
both vertex and edge failures. Let C be the clockwise cycle that bounds the
infinite and only face of T . C is an embedding-respecting Euler tour of T that
visits each edge twice and each vertex at most three times. For a non-empty
subset F of V , partition C into maximal subpaths whose internal nodes are not
in F . Denote this set of paths by PF . Note that |PF | ≤ 3|F | and therefore that a
connected component of T \F is made up of possibly many paths in PF . Assign
the connected components of T \ F distinct colors and label each path in PF

with the color of its component.
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Let e1 and e2 be the edges before and after a particular copy of vertex v in
the order given by C. Let fi be the face of G to the left of ei. Root the dual
spanning tree T ∗ at the infinite face of G and let � = lcaT∗(f1, f2). If � is not the
root of T ∗, let ev be the parent edge of � in T ∗. Let L be the set of edges ev (if
well defined) with neither endpoint in F for all failed vertices v ∈ F (according
to their multiplicity in C). Note that |L| ≤ 3d. By duality, we consider L as a
subset of primal edges. Considered as an edge of the primal graph, ev forms a
cycle with T that v is on; that is, ev witnesses an alternate connection should v
fail.

We define an auxiliary graph HF that will succinctly represent the connectiv-
ity of PF . The nodes of HF are the paths in PF . Two path-nodes P1, P2 ∈ PF

are adjacent in HF iff

– P1 and P2 have the same color and are consecutive paths in C among paths
of the same color, or

– there is an edge in L between the interior of P1 and the interior of P2.

There are at most |PF | edges of the first type and |L| edges of the second type.
Since |PF | ≤ 3d and |L| ≤ 3d, |HF | = O(d).

Lemma 5. Paths in PF are connected in G \ F iff they are connected in HF .

Proof. Consider distinct paths P1 and P2 in PF . It is clear from the definition
of L and HF that if there is an edge (P1, P2) in HF then the interior of P1 and
the interior of P2 are connected in G \ F . This implies the “if” part.

Since path-nodes of a given color class are connected by a cycle in HF given
by the paths order along C. If two paths are of the same color, their path-nodes
will be connected in HF . So, for the “only if” part, it suffices to show that if P1

and P2 are different colors but (by transitivity of connectivity) there is a single
edge e ∈ G \ F between the interior of P1 and the interior of P2, then they are
connected in HF .

So let e = (u1, u2) be such an edge where ui ∈ Pi. Let f1 and f2 be the faces
incident to e in G such that f1 is the child of f2 in T ∗. Let f be the bounded
face of T ∪ {e} (which contains e and encloses f1). Let vi be the failed vertex
that is an endpoint of Pi on the bounded face of T ∪ {e}.

We continue by induction on the number of faces k ≥ 1 of G contained in f .
In the base case k = 1 and f = f1. Here ev1 = ev2 = e, so e ∈ L and (P1, P2) is
an edge of HF . Now assume k > 1 and that the inductive hypothesis holds for
smaller values.

If f1 has a failed vertex v on its boundary, then we argue ev = e (and so
(P1, P2) is an edge of HF ). Consider the copy of v in the traversal of C that
has f1 to the left. Let g1 and g2 be the faces to the left of the edges before and
after this copy of v in C. Since e ∈ T ∗, e is an ancestral edge of g1 and g2. Since
g1, g2, f1 all contain v as a boundary vertex, lcaT∗(g1, g2) = f1.

Suppose that f1 has no failed vertices on the boundary. For each edge e′ �= e
on the boundary of f1, if e

′ ∈ T then e′ belongs to a path of PF . Otherwise, the
bounded face of T ∪{e′} is contained in f and does not contain f1 so it contains
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fewer than k faces of G. Then the paths of PF containing the endpoints of e′ in
their interior are connected in HF if they have distinct colors (by the inductive
argument) or if they have the same color (by the start of this proof). Since this
holds for every edge e′ of f1 \ {e}, P1 and P2 are connected in HF , as desired.

4.2 The Data Structure

In a linear-time preprocessing step, we compute T , T ∗, and C and initialize an
lca data structure.

update(F ): We build HF for the input set of failed vertices F . Let f be the sum
of the degrees in T of the vertices in F ; note, f ≤ 3d. Let F ′ be the multiset
of failed vertices according to their multiplicity along C, i.e., their degree in T .
Again, |F ′| = f . Sort the vertices of F ′ according to their order along C. This
provides an implicit representation of PF . Label these paths according to their
ordinal in F ′; that is, path Pi is the path starting with the ith vertex in sorted
F ′. This takes time sort(f, n).

Greedily assign colors to the paths, considering the paths in order. In each
iteration we assign colors to all the paths in a given color class. Upon considering
path Pi, if Pi has not yet been colored, assign it a new color. Check the second
last endpoint of Pi and find the edge e that precedes that vertex in C after Pi.
Let Pj be the path that starts with edge e (which can be found by e’s starting
point in C). Color Pj with same color as Pi. Repeat until returning to Pi. This
takes time O(f).

Build the set L of edges. For each edge in L, identify the paths in PF that
contain its endpoints. We do this in bulk. Sort the set of endpoints of L along
with F ′, that is, V (L)∪F ′, according to their order along C. Traverse this order,
assigning each endpoint in V (L) the path corresponding to the last failed vertex
visited. This takes time sort(f, n).

From L (with endpoints labelled with the appropriate path in PF ) and the
colors of PF , build HF . Compute the connected components of HF and label
the path-nodes of HF with the name of the connected component it belongs to.
This takes time O(f).

The total time for update is bounded by sort(f, n) = O(sort(d, n)).

connected?(u, v): We may assume u, v /∈ F . In O(pred(d, n)) time identify
any path Pu containing u in the interior and any path Pv containing v in the
interior. By Lemma 5, u and v are connected in G \ F iff Pu and Pv are in the
same connected component of HF . The latter condition is checked in constant
time given the labels of the connected components.

5 Decremental Subgraph Connectivity

In this section, we consider the model in which updates and queries are inter-
mixed. We only allow failures and not recoveries but no longer assume an upper
bound d on |F |, that is, F is a growing set.
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As in Section 4, we first assume that G is triconnected and that only vertices
can fail. Define T , T ∗, C, L, and F as before and build an lca data structure for
T ∗. Initially L and F are empty. Redefine HF to be (V, T \ F ∪ L), that is, we
no longer contract paths in PF . For each vertex v we maintain a list L(v) of the
lca-edges L incident to v. Represent L as a subset of marked edges of G.

When a vertex v fails, unmark L(v) in L since L should only contain edges
not incident to failed vertices. For each of the at-most-three occurrences of v
along C, find the corresponding lca-edge ev (if it exists); if ev has no endpoint
in F , mark ev as a member of L and add ev to the lists of its endpoints.

It follows easily from the definition of L and of HF that both L and HF are
updated correctly after each failure. Lemma 5 (that two vertices are connected
in G \ F iff they are connected in HF ) holds with these definitions; the only
difference is the interior of the paths from PF are explicitly represented with the
edges from T \F . Note that showing the requisite connectivity for Lemma 5 does
not depend on lca-edges that have a failed endpoint. Removing (unmarking) the
edges L(v) as members of L when v fails is equivalent to not including them in
L as used in the proof of Lemma 5.

We maintain HF with an oracle which allows us to delete an edge and an
isolated vertex in O(log n) time [18] since a vertex failure results in at most
three edges of T being deleted from HF . Furthermore, at most three edges are
added to L and each of these edges is added only to the two lists associated
with its endpoints. Hence if F is the final set of deleted vertices, then a total
of O(|F |) edges are added or removed from HF and there are at most O(|F |)
updates to L and to the lists L(v). It follows that each deletion takes O(log n)
amortized time. A connectivity query can be answered in O(log n) worst-case
time with the oracle associated with HF .

So far we considered only vertex deletions. The full manuscript [9] details
how to handle both vertex and edge deletions. Using the reduction from general
planar graphs to triconnected planar graphs in Theorem 4 we have the following.

Theorem 2. There is a data structure for decremental subgraph connectivity
in triconnected planar graphs that, after O(n) preprocessing time, allows an in-
termixed sequence of vertex/edge failures and connectivity queries in O(log n)
amortized time per failure (i.e., f failures in O(f logn) time total) and O(log n)
worst-case time per query. In general planar graphs there is a data structure
requiring O(log2 n) amortized time per failure and O(log2 n) worst-case time per
query.

6 Reductions to Triconnected Graphs

In this section we state the reductions from general (planar) graphs to tricon-
nected (planar) graphs that were used in Sections 4 and 5. Although the algo-
rithm from Section 5 handles only failures, the reduction allows both failures
and recoveries. See the full manuscript for proofs [9].
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Theorem 3. (The d-Failure Model) Suppose there is a connectivity oracle
A3 for any triconnected (planar) graph G with the following parameters. The
preprocessing time is P3(n,m), the time to update the structure after d edge or
vertex failures is U3(d, n), and the time for a connectivity query is Q3(d, n). Then
there is a connectivity oracle A for any (planar) graph G with parameters P =
O(P3), U = O(U3+sort(d, n)+d·(Q3+pred(d, n))), and Q = O(Q3+pred(d, n)).

Theorem 4. (The Fully Dynamic Subgraph Model) Suppose there is a
connectivity oracle A3 for any triconnected (planar) graph G with the following
parameters. The preprocessing time is P3(n,m), the time to process a vertex
failure or recovery is Uv

3 (n), the time to process an edge failure or recovery Ue
3 (n),

and the time for a connectivity query is Q3(n). Then there is a connectivity
oracle A for any (planar) graph G with parameters P = O(P3), U

e = O((Ue
3 +

Q3 + logn/ log log) log n), Uv = O(Uv
3 + (Ue

3 +Q3 + logn/ log log n) logn), and
Q = O((Q3 + logn/ log logn) logn).
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Abstract. Access graphs, which have been used previously in connec-
tion with competitive analysis to model locality of reference in paging,
are considered in connection with relative worst order analysis. In this
model, FWF is shown to be strictly worse than both LRU and FIFO
on any access graph. LRU is shown to be strictly better than FIFO on
paths and cycles, but they are incomparable on some families of graphs
which grow with the length of the sequences.

1 Introduction

The term online algorithm [4] is used for an algorithm that receives its input
as a sequence of items, one at a time, and for every item, before knowing the
subsequent items, must make an irrevocable decision regarding the current item.

The most standard measure of quality of an online algorithm is competitive
analysis [17,22,20]. This is basically the worst case ratio between the performance
of the online algorithm compared to an optimal offline algorithm which is allowed
to know the entire input sequence before processing it and is assumed to have
unlimited computational power.

Though this measure is very useful and has driven much research, researchers
also observed problems [22] with this measure from the beginning: many algo-
rithms obtain the same (poor) ratio, while showing quite different behavior in
practice. The paging problem is one of the prime examples of these difficulties.
The paging problem is the problem of maintaining a subset of a large number
of pages in a much smaller, faster cache with space for a limited set of k pages.
Whenever a page is requested, it must be brought into cache if it is not already
there. In order to make room for such a page, another page currently in cache
must be evicted. Therefore, an online algorithm for this problem is often referred
to as an eviction strategy.

For a number of years, researchers have worked on refinements or additions
to competitive analysis with the aim of obtaining separations between different
algorithms for solving an online problem. Some of the most obvious and well-
known paging algorithms are the eviction strategies LRU (Least-Recently-Used)
and FIFO (First-In/First-Out). One particularly notable result has been the
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separation of LRU and FIFO via access graphs. Access graphs were introduced
in [5] with the aim of modelling the locality of reference that is often seen in
real-life paging situations [10,11]. An access graph is an undirected graph with
all pages in slow memory as vertices. Given such a graph, one then restricts the
analysis of the performance of an algorithm to sequences respecting the graph,
in the sense that any two distinct, consecutive requests must be neighbors in
the graph. Important results in understanding why LRU is often observed to
perform better than FIFO in practice were obtained in [5,9], showing that on
some access graphs, LRU is strictly better than FIFO, and on no access graph
is it worse; all these previous results are with respect to competitive analysis.

Attempts have been made to define new generally-applicable performance
measures and to apply measures defined to solve one particular problem more
generally to other online problems. A collection of alternative performance mea-
sures is surveyed in [12]. Of the alternatives to competitive analysis, relative
worst order analysis [6] and extra resource analysis [19] are the ones that have
been successfully applied to most different online problems. See [13] for examples
of online problems and references to relative worst order analysis results resolving
various issues that are problematic with regards to competitive analysis.

Paging has been investigated under relative worst order analysis in [7]. Separa-
tions were found, but LRU and FIFO were proven equivalent, possibly because
locality of reference is necessary to separate these two paging algorithms. We
apply the access graph technique to relative worst order analysis. Note that the
unrestricted analysis in [7] corresponds to considering a complete access graph.

Overall, our contributions are the following. Using relative worst order analy-
sis, we confirm the competitive analysis result [5] that LRU is better than FIFO
for path access graphs. Since these two quality measures are so different, this
is a a strong indicator of the robustness of the result. Then we analyze cycle
access graphs, and show that with regards to relative worst order analysis, LRU
is strictly better than FIFO. Note that this does not hold under competitive
analysis. The main technical contribution is the proof showing that on cycles,
with regards to relative worst order analysis, FIFO is never better than LRU.
Clearly, paths and cycles are the two most fundamental building blocks, and fu-
ture detailed analyses of any other graphs type will likely build on these results.

The standard example of a very bad algorithm with the same competitive
ratio as LRU and FIFO is FWF, which is shown to be strictly worse than both
LRU and FIFO on any access graph (containing a path of length at least k+1),
according to relative worst order analysis. Using relative worst order analysis,
one can often obtain more nuanced results. This is also the case here for general
access graphs, where we establish an incomparability result.

None of the algorithms we consider require prior knowledge of the underlying
access graph. This issue was pointed out in [15] and [16] in connection with the
limitations of some of the access graph results given in [5,14,18] and the Markov
paging analogs in [21].

As relative worst order analysis is getting more established as a method for an-
alyzing online algorithms, it is getting increasingly important that the theoretical
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toolbox is extended to match the options available when carrying out competi-
tive analysis. Recently, in [13], list factoring [1,3] was added as an analytical tool
when using relative worst order analysis on list accessing problems [22,2], and
here we demonstrate that access graphs can also be included.

After a preliminary section, we prove that LRU is never worse than FIFO
on paths or cycles. Then we establish separation results, showing that LRU is
strictly better than FIFO on paths and cycles of length at least k + 1 and that
both algorithms are strictly better than FWF on any graph containing a path of
length at least k+1. The last result proves the incomparability of LRU and FIFO
on general access graphs, using a family of graphs where the size is proportional
to the length of the request sequence. We conclude with some open problems
regarding determining completely for which classes of graphs LRU is better than
FIFO. Some of the proofs have been omitted due to space constraints. They can
be found in the full version [8].

2 Preliminaries

The paging problem is the problem of processing a sequence of page requests with
the aim of minimizing the number of page faults. Pages reside in a large memory
of size N , but whenever a page is requested, it must also be in the smaller cache
of size k < N . If it is already present, we refer to this as a hit. Otherwise, we
have a fault and must bring the page into cache. Except for start-up situations
with a cache that is not full, this implies that some page currently in cache must
be chosen to be evicted by a paging algorithm.

If A is a paging algorithm and I an input sequence, we let A(I) denote the
number of faults that A incurs on I. This is also called the cost of A on I.

An important property of some paging algorithms that is used several times
in this paper is the following:

Definition 1. An online paging algorithm is called conservative if it incurs at
most k page faults on any consecutive subsequence of the input containing k or
fewer distinct page references.

The algorithms, Least-Recently-Used (LRU) and First-In/First-Out (FIFO) are
examples of conservative algorithms. On a page fault, LRU evicts the least re-
cently used page in cache and FIFO evicts the page which has been in cache the
longest. Flush-When-Full (FWF), which is not conservative, evicts all pages in
cache whenever there is a page fault and its cache is full.

An input sequence of page requests is denoted I = 〈r1, r2, . . . , r|I|〉. We use
standard mathematical interval notation to denote subsequences. They can be
open, closed, or semi-open, and are denoted by (ra, rb), [ra, rb], (ra, rb], or [ra, rb).
If S is a set of pages, we call a request interval S-free if the interval does not
contain requests to any elements of S. We use the following notation for graphs.

Definition 2. The path graph on N vertices is denoted PN and a cycle graph
on N vertices is denoted CN . A walk is an ordered sequence of vertices where
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consecutive vertices are either identical or adjacent in the graph. A path is a
walk in which every vertex appears at most once. The length of a walk W is the
number of (not necessarily distinct) vertices in it, denoted by |W|. The set of
distinct vertices in a walk W is denoted by {W}.

Definition 3. An access graph G = (V,E) is a graph whose vertex set corre-
sponds to the set of pages that can be requested in a sequence. A sequence is said
to respect an access graph, if the sequence of requests constitutes a walk in that
access graph.

In the relative worst order analyses carried out in this paper, permutations play
a key role. We introduce some notation for this and then present the standard
definition of the relative worst order quality measure.

For an algorithm A, AW (I) is the cost of the algorithm A on the worst re-
ordering of the input sequence I, i.e., AW (I) = maxσ A(σ(I)), where σ is a
permutation on |I| elements and σ(I) is a reordering of the sequence I.

Definition 4. For any pair of paging algorithms A and B, we define

cl(A,B) = sup{c | ∃b : ∀I : AW (I) ≥ cBW (I)− b} and

cu(A,B) = inf{c | ∃b : ∀I : AW (I) ≤ cBW (I) + b}

If cl(A,B) ≥ 1 or cu(A,B) ≤ 1, the algorithms are said to be comparable and
the relative worst order ratio WRA,B of algorithm A to B is defined. Otherwise,
WRA,B is undefined. If cl(A,B) ≥ 1, then WRA,B = cu(A,B) and if cu(A,B) ≤ 1,
then WRA,B = cl(A,B).

If WRA,B < 1, algorithms A and B are said to be comparable in A’s favor.
Similarly, if WRA,B > 1, the algorithms are said to be comparable in B’s favor.

When we use this measure to compare algorithms on a given access graph G,
we use the notation AG

W (I) to denote the cost of A on a worst permutation of
I that respects G. Similarly, we use WRG

A,B to denote the relative worst order
ratio of algorithms A and B on the access graph G.

Finally, let Worst(I,G,A) denote the set of worst orderings for the algorithm
A of I respecting the access graph G, i.e., any sequence in Worst(I,G,A) is a
permutation of I respecting G, and for any I ∈Worst(I,G,A), A(I) = AG

W (I).

3 Paths

In [5, Theorem 13], it has been shown that if the access graph is a tree, then
LRU is optimal among all online algorithms. Furthermore, in the case of path
graphs, LRU matches the performance of an optimal offline algorithm.

Theorem 1. For all I respecting the path PN , LRUPN

W (I) ≤ FIFOPN

W (I).

Proof. Consider any sequence I respecting PN . Let I ′ be a worst ordering for
LRU among the permutations of I respecting PN . Then, using LRU’s optimality
on trees for the first inequality, LRUPN

W (I) = LRU(I ′) ≤ FIFO(I ′) ≤ FIFOPN

W (I).
��
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4 Cycles

Almost this entire section is leading up to a proof that for all I respecting
the access graph CN , LRUCN

W (I) ≤ FIFOCN

W (I). Notice that this theorem is
not trivial, since there exist sequences respecting the cycle access graph where
FIFO does better than LRU. Consider, for example, the cycle on four vertices
C4 = 〈1, 2, 3, 4〉, k = 3, and the request sequence I = 〈2, 1, 2, 3, 4, 1〉. With this
sequence, at the request to 4, LRU evicts 1 and FIFO evicts 2. Thus, FIFO does
not fault on the last request and has one fault fewer than LRU. Note that on
the reordering, I ′ = 〈1, 2, 2, 3, 4, 1〉, LRU still faults five times, but FIFO does
too. This is the transformation which would be performed in Lemma 3 below,
combined with the operation in the proof of Lemma 1 to reinsert requests which
have been removed. Note that this is not a worst ordering for LRU, since LRU
and FIFO both fault six times on I ′′ = 〈1, 2, 3, 4, 1, 2〉.

Each of the results leading up to the main theorem in this section is aimed
at establishing a new property that we may assume in the rest of the section.
Formally, these results state that if we can prove our end goal with the new
assumption, then we can also prove it without. Thus, it is just a formally correct
way of phrasing that we are reducing the problem to a simpler one. Some of the
sequence transformations we perform in establishing these properties also remove
requests, in addition to possibly reordering. The following general lemma allows
us to do this in all of these specific cases.

Lemma 1. Assume we are given an access graph G, a sequence I respecting G,
and a sequence ILRU ∈ Worst(I,G,LRU). We write ILRU as the concatenation
of three subsequences 〈I1, I2, I3〉. Let I ′ be 〈I1, I ′2, I3〉, where I ′2 can be any sub-
sequence (not necessarily of the same length as I2) such that I ′ still respects G.
Assume that LRU incurs at least as many faults on I ′2 as on I2, and the cache
content, including information concerning which pages are least recently used, is
exactly the same just after I ′2 in I ′ as after I2 in ILRU. Assume further that I ′2
is obtained from I2 by removing some requests and/or reordering requests, and
that {I} = {I ′}. Then, I ′ ∈ Worst(I ′, G,LRU), and if LRU(I ′) ≤ FIFOG

W (I ′),
then LRUG

W (I) ≤ FIFOG
W (I).

By repeatedly removing the j− 1 hits in a sequence of j consecutive requests to
the same page, we establish the following property:

Property 1. In proving for any access graph G, any sequence I respecting G, and
any ILRU ∈ Worst(I,G,LRU) that LRU(ILRU) ≤ FIFOG

W (I), we may assume
that ILRU has no consecutive requests to the same page.

We give a collection of definitions enabling us to describe how a request sequence
without consecutive requests to the same page behaves on the cycle.

Definition 5.

– An arc is a connected component of a cycle graph. As a mathematical object,
an arc is the same as a path (in this section), but refers to a portion of CN ,
rather than a part of the walk defined by a request sequence.
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– One can fix an orientation in a cycle so that the concepts of moving in a
clockwise or anti-clockwise direction are well-defined. We refer to a walk as
being uni-directional if each edge is traversed in the same direction as the
previous, and abbreviate this u-walk.

– A request ri in the request sequence is a turn if the direction changes at that
vertex, i.e., if ri is neither the first nor the last request and ri−1 = ri+1. The
vertex requested is referred to as a turning point.

– When convenient we will represent a request sequence I by its turn sequence,

T = 〈A1, v1, A2, v2, . . . , Az, vz〉,

where T = I, vz is simply the last request of the sequence, all the other vi’s
are the turns of the request sequence, and all the Ai’s are u-walks. Thus,
for all i < z, either Ai ⊆ Ai+1 or Ai+1 ⊆ Ai. We refer to a turn vi as
a clockwise (anti-clockwise) turn if the Ai+1 goes in the clockwise (anti-
clockwise) direction.

– Two turns are said to be opposite if they are in different directions.
– If for some i < z, |Ai+1∪{vi+1}| ≥ k, then vi is an extreme turn. Otherwise,

vi is a trivial turn.

Most of the above is obvious terminology about directions around the circle. The
last definition, on the other hand, is motivated by the behavior of the paging
algorithms that we analyze. Not surprisingly, it turns out to be an important
distinction whether or not the cache will start evicting pages before turning back.
We treat this formally below.

We now reduce our problem to sequences without trivial turns.

Lemma 2. Assume Property 1. For the access graph CN , assume that for any
I and ILRU ∈Worst(I, CN ,LRU), where ILRU has no trivial turns, we have that
LRU(ILRU) ≤ FIFOCN

W (I). Then, for any I, LRUCN

W (I) ≤ FIFOCN

W (I).

We have now established the following property:

Property 2. We may assume that a worst ordering for LRU has no trivial turns.

Lemma 3. Assume Properties 1–2. For the access graph CN , assume that for
any sequence I and ILRU ∈ Worst(I, CN ,LRU), where ILRU has turn sequence
〈A1, v1, A2, v2, . . . , Az , vz〉 and ∀i : |Ai| ≥ k − 1, we have that LRU(ILRU) ≤
FIFOCN

W (I). Then, for any I, LRUCN

W (I) ≤ FIFOCN

W (I).

Proof. By Property 2, we may assume that there are no trivial turns. Thus, we
already know that for any i, 1 < i ≤ z, the result holds.

If |A1| < k − 1, then we replace ILRU by I ′LRU = 〈v1, A2, . . .〉 . This preserves
the number of faults in the subsequence 〈v1, A2〉 compared with 〈A1, v1, A2〉,
and since |A2| ≥ k− 1, LRU is in the same state after processing A2 in I ′LRU as
it was in processing ILRU. By Lemma 1, we can use I ′LRU. ��
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We have now established the following property:

Property 3. We may assume that a worst ordering for LRU is of the form

〈A1, v1, A2, v2, . . . , Az, vz〉 where ∀i : |Ai| ≥ k − 1.

If the first three properties hold for some sequence, I, then it is easy to see that
the number of turns determines how many hits LRU has on I.

Proposition 1. If I has the form of Property 3 and contains no repeated re-
quests to the same page, then LRU has exactly (z − 1)(k − 1) hits on I.

Next we show that we may assume that in a worst ordering for LRU, there is
no turn which is followed by a full cycle in the opposite direction.

Definition 6. Let u, v, and w be three distinct consecutive vertices on CN . We
refer to I as having an overlap if I can be written as 〈. . . , u, v, u,B,w, v, . . .〉. If
I does not have an overlap, we refer to I as overlap-free.

Lemma 4. Assume Properties 1–3. For the access graph CN , assume that for
any I and ILRU ∈Worst(I, CN ,LRU), where ILRU is overlap-free, we have that
LRU(ILRU) ≤ FIFOCN

W (I). Then, for any I, LRUCN

W (I) ≤ FIFOCN

W (I).

Proof. Let ILRU ∈Worst(I, CN ,LRU). If ILRU has an overlap, we show that by
reordering while respecting CN an overlap-free sequence with at least as many
faults can be constructed.

Assume that ILRU has an overlap and consider a first occurrence of a vertex
u in ILRU such that ILRU contains the pattern 〈. . . , u, v1, u, B,w, v2, . . .〉, where
u, v, and w are consecutive vertices on CN . The superscripts on v are just for
reference, i.e., v1 and v2 are the same vertex.

We define I ′ = 〈. . . , u, v1, w,BR, u, v2, . . .〉, where BR denotes the walk B,
reversed. Clearly, I ′ respects CN . We now argue that I ′ incurs no more faults
than ILRU. Clearly, there is a turn at v1 in ILRU. If there is also a turn at v2,
then we have effectively just removed two turns. Then Proposition 1 implies that
ILRU cannot be a worst ordering. Thus, we can assume there is no turn at v2.

In the transformation, we are removing the turn at v1 and introducing one
at v2. Thus, since in the sequence ILRU all u-walks between turns contained at
least k − 1 vertices, this is still the case after the transformation in I ′, except
possibly for the u-walk from the newly created turn at v2 to the next turn in
the sequence. Let x denote such a next turn.

If the u-walk between v and x has at least k−1 vertices, then the transformed
sequence has the same number of turns, all u-walks between turns contain at
least k − 1 vertices, and therefore ILRU and I ′ have the same number of hits
(and faults). In addition, the state of the caches after treating ILRU up to x and
I ′ up to x are the same.

If that u-walk contains fewer than k− 1 vertices, we consider the next turn y
after x. Since there are at least k− 1 vertices in between x and y, we must pass
v on the way to y.



Access Graphs Results for LRU versus FIFO 335

Thus, consider ILRU = 〈. . . , u, v1, u, B,w, v2, B1, x, B2, v
3, B3, y, . . .〉, having

turns at v1, x, and y, versus I ′ = 〈. . . , u, v1, w,BR, u, v2, B1, x, B2, v
3, B3, y, . . .〉,

where there are turns at v2, x, and y.
Comparing 〈. . . , u, v1, u, B,w, v2〉 with 〈. . . , u, v1, w,BR, u, v2〉, both of them

have least k − 1 vertices on any u-walk between two turns, and the latter has
one fewer turns. Thus, by Proposition 1, it has k − 1 fewer hits.

By assumption, B1 has fewer than k − 1 vertices. Thus, comparing ILRU and
I ′ up to and including x, I ′ has at least as many faults.

In ILRU, 〈B2, v
3〉 must all be hits, so up to and including v3, I ′ has at least

as many faults.
Since the u-walk leading to v1 in I ′ contains at least k − 1 vertices (not

including v1), and since the u-walk going from v2 to y goes in the same direction,
the requests in 〈B3, y〉 must all be faults in I ′.

Thus, we have shown that there are at least as many faults in I ′ as in ILRU.
In addition, the state of the caches after treating ILRU up to y and I ′ up to y
are the same.

With the transformation above, we do not incur more faults, and any first
occurrence of a vertex u initiating an overlap pattern has been moved further
towards the end of the sequence. Thus, we can apply this transformation tech-
nique repeatedly until no more such patterns exist. ��

We have now established the following property:

Property 4. We may assume that a worst ordering is overlap-free.

Now we have all the necessary tools to prove the theorem of this section.

Theorem 2. For all I respecting the cycle CN , LRUCN

W (I) ≤ FIFOCN

W (I).

Proof. We may assume Properties 1–4.
Consider any I and ILRU ∈Worst(I, CN ,LRU). If there are no turns at all in

ILRU, both FIFO and LRU will fault on every request. If there is only one turn,
FIFO will clearly fault as often as LRU on ILRU, since we may assume that there
is no overlap.

So, consider the first two turns v and v′. By Property 4, we cannot have the
pattern 〈. . . , u, v, u,B,w, v, . . .〉. Thus, after the first turn, the edge from w to
v can never be followed again. This holds symmetrically for v′, which is a turn
in the other direction. Thus, once the request sequence enters the arc between v
and v′, it can never leave it again. We refer to this arc as the gap. To be precise,
since we are on a cycle, the gap is the arc that at the two ends has the neighbor
vertices of v and v′ from which edges to v and v′, respectively, cannot be followed
again, and such that v and v′ are not part of the arc.

Assume without loss of generality that, after the first turn, if the request
sequence enters the gap between v and v′, then it does so coming from v′. After
the first turn at v, the requests can be assumed to be on the path access graph
PN instead of the cycle CN , where the access graph PN starts with v, continues
in the direction of the turn at v, and ends at the neighbor of v in the gap. In fact,
we can assume that we are working on the access graph PN from k− 1 requests
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before the first turn at v, since all u-walks can be assumed to have at least that
length. Let ri be that request. Since there are no turns before v, starting with
ri, LRU and FIFO function as they would starting with an empty cache.

We divide ILRU = 〈r1, r2, . . . , r|ILRU|〉 up into the sequences 〈r1, r2, . . . , ri−1〉
and 〈ri, . . . , r|ILRU|〉. The former is a u-walk, where LRU and FIFO both fault
on every request, and the latter can be considered a request sequence on a path
access graph as explained above, and the conclusion follows from Theorem 1. ��

5 Separation on a Path of Length k + 1

In the last sections, we showed that LRU was at least as good as FIFO on any
path graph or cycle graph. Now we show that LRU is strictly better if these
graphs contain paths of length at least k + 1. We exhibit a family of sequences
{In}n≥1 such that FIFOPN

W (In) ≥
(
k+1
2

)
·LRUPN

W (In)+b, for some fixed constant
b, on path graphs PN with N ≥ k+1. Only k+1 different pages are requested in
In. The same family of sequences is also used to show that FWF is worse than
either LRU or FIFO. We number the vertices of the path graph PN in order
from 1 through N .

Theorem 3. There exists a family of sequences, In = 〈1, . . . , k, k+1, k, . . . , 2〉n,
respecting the access graph PN , and a constant b such that the following holds:

lim
n→∞

LRU(In) =∞, and for all In, FIFO
PN

W (In) ≥
(k + 1

2

)
· LRUPN

W (In) + b.

We now have tight upper and lower bounds on the relative worst order ratio of
FIFO to LRU on paths.

Theorem 4. For any access graph G, if WRG
FIFO,LRU ≥ 1, then WRG

FIFO,LRU ≤
k+1
2 . Thus, if N ≥ k + 1, then WRPN

FIFO,LRU = k+1
2 .

It was shown in [7] that for a complete graph, the relative worst order ratio of
FWF to FIFO is exactly 2k

k+1 . This is also a lower bound for any graph containing
Pk+1, but it is still open whether or not equality occurs in all sparser graphs.

Theorem 5. For any access graph G which has a path of length at least k + 1,

WRG
FWF,FIFO ≥

2k

k + 1
and WRG

FWF,LRU = k.

6 Incomparability

In this section, we show that on some general classes of access graphs, LRU
and FIFO are incomparable. We consider the cyclic access graph defined by
the edge set {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)} and the request sequence I1 =
〈1, 5, 1, 2, 3, 4, 5, 1, 2, 1〉 processed using a cache of size 4.



Access Graphs Results for LRU versus FIFO 337

Lemma 5. On any reordering of I1 starting with 1, LRU incurs at least 8 faults
and FIFO incurs at most 7 faults.

Proof. It is trivial to check that LRU incurs 8 faults on I1.
For FIFO, it is easy to check in the following that reorderings with repeated

requests do not lead to more faults by FIFO. The reorderings of I1 either have
a prefix of the type {〈1, i, 1〉 | i ∈ {2, 5}} or {〈1, i, j〉 | i �= j �= 1}. For the latter,
examples being 〈1, 2, 3〉 and 〈1, 5, 4〉, the subsequence following the prefix con-
tains 4 distinct pages. Since FIFO is conservative, it can incur at most 4 faults
on that part after the prefix, bringing the total fault count up to at most 7.

The first four distinct page requests will always incur 4 faults, but for re-
orderings with the prefix {〈1, i, 1〉 | i ∈ {2, 5}}, some pages are repeated within
the first four requests. If the extended prefix is 〈1, i, 1, i〉 for i ∈ {2, 5}, then the
rest of the sequence still contains 4 distinct pages and again can add at most 4
faults to the previous 2, bringing the total up to at most 6. The only remaining
case is a prefix of the form 〈1, i, 1, j〉 where i, j ∈ {2, 5}, i �= j. Here, there are
3 faults on the prefix. We divide the analysis of the rest of the sequence up into
two cases depending on the next request following j:

For the first case, if the next request is 1, the extended prefix is 〈1, i, 1, j, 1〉.
However, then the next request to a page other than 1 is either to i or j and
therefore not a fault. In addition, either there are no more i’s or no more j’s in
the remaining part of the sequence, and again FIFO can then fault at most 4
times on this sequence with only 4 distinct pages.

For the second case, if the next request is k ∈ {3, 4}, then visiting l ∈ {4, 5|l �=
k} before the next j will give a prefix 〈1, i, 1, j, k, l〉 with 5 faults, and the suffix
must be 〈i, 1, j, 1〉 or 〈i, 1, 1, j〉, adding only one more fault. This gives 6 faults in
total. If j is requested before l, the only possibilities are 〈1, 2, 1, 5, 4, 5, 1, 1, 2, 3〉
and 〈1, 5, 1, 2, 3, 2, 1, 1, 5, 4〉. In total, this gives only 5 faults. ��

Note that the result above does not contradict our result about cycles. As pre-
dicted by that result, one of the worst orderings for LRU and FIFO would be
〈2, 1, 5, 4, 3, 2, 1, 5, 1, 1〉, incurring 8 faults for both algorithms.

Using the cycle graph on which we processed I1, we now construct a larger
graph using “copies” of this graph as follows. For 2 ≤ i ≤ n, we define Ii as a
structural copy of I1, i.e, we use new page names, but with the same relative
order as in I1 (like putting a “dash” on all pages in I1). All these copies have
their own set of pages such that no request in Ii appears in Ij for i �= j. Just as
I1 implies a cycle graph that we denote X1, so do each of these sequences and
we let Xi denote the graph implied by Ii. Let Xi,k denote the kth vertex in the
ith copy and Ij,k denote the kth request in the jth copy. To be precise, we define
Ii = 〈Xi,1, Xi,5, Xi,1, Xi,2, Xi,3, Xi,4, Xi,5, Xi,1, Xi,2, Xi,1〉.

We define a graph Gn with a vertex set containing all Xi,k and n additional
vertices u1, u2, . . . , un. Its edges are all the edges from the graphs Xi, 1 ≤ i ≤ n,
together with edges (Xi,1, ui) and (ui, Xi+1,1) for all i, 1 ≤ i ≤ n− 1, plus the
edge (Xn,1, un).
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Thus, Gn can be described as a chain of cycles, where each two neigh-
boring cycles are separated by a single vertex. Clearly, the sequence In =
〈I1, u1, I2, u2, I3, u3, . . . , In, un〉 respects the access graph Gn.

Theorem 6. For the infinite family of sequences {In} respecting the access
graph Gn, the following two conditions hold:

– limn→∞ FIFO(In) =∞.
– for all In, LRUGn

W (In) ≥ 9
8 · FIFO

Gn

W (In).

Thus, although LRU is strictly better than FIFO on paths and cycles, FIFO is
strictly better than LRU on the family of sequences, {In}, respecting the family
of graphs, {Gn}. Note that Jr = 〈X1,1, X1,2, X1,3, X1,4, X1,5, X1,4, X1,3, X1,2〉r,
which only uses the first cycle of Gn, trivially respects Gn for any r. By Theorem 3
for k = 4, FIFOGn

W (Jr) ≥
(
k+1
2

)
LRUGn

W (Jr)− (k − 1).
Thus, on the family {Jr}, LRU is better than FIFO. Combining with Theo-

rem 6, we get:

Theorem 7. LRU and FIFO are incomparable on the family of graphs {Gn},
according to relative worst order analysis.
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X1,3 X1,4

X1,5

u1

X2,1

X2,2

X2,3 X2,4
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X3,2

X3,3 X3,4

X3,5

u3

X4,1
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X4,3 X4,4

X4,5

u4

Fig. 1. The graph Gn for n = 4

7 Open Problems

We have determined that according to relative worst order analysis, LRU is bet-
ter than FIFO on paths and cycles. On some classes of general access graphs,
the two algorithms are incomparable. It would be interesting to get closer to
determining exact access graphs classes characterizing relationships between the
two algorithms. We believe that the results for paths and cycles will form fun-
damental building blocks in an attack on this problem. The most obvious class
of access graphs to study next is trees. LRU can clearly do better than FIFO
on any tree containing a path of length k + 1. We conjecture that LRU does at
least as well as FIFO on any tree. One difficulty in establishing a proof of this
is that for trees, as opposed to the cases of paths and cycles, there exist worst
order sequences for LRU for which FIFO performs better than LRU.

For general access graphs, when showing that FIFO can do better than LRU,
we used a family of access graphs, the size of which grew with the length of the
input sequence. It would be interesting to know if this is necessary, or if such a
separation result can be established on a single access graph of bounded size.
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Abstract. We study the well-known frequent items problem in data
streams from a competitive analysis point of view. We consider the stan-
dard worst-case input model, as well as a weaker distributional adversar-
ial setting. We are primarily interested in the single-slot memory case and
for both models we give (asymptotically) tight bounds of Θ(

√
N) and

Θ( 3√N) respectively, achieved by very simple and natural algorithms,
where N is the stream’s length. We also provide lower bounds, for both
models, in the more general case of arbitrary memory sizes of k ≥ 1.

1 Introduction

The frequent items problem [8] is one of the most well-studied ones in the area of
data streams [17,1,13,12,4]. Informally, the problem is that of observing a stream
(sequence) of values and trying to discover those that appear most frequently.
Many applications in packet routing, telecommunication logging and tracking
keyword queries in search machines are critically based upon such routines.

More formally, in the most basic version of the classic frequent items problem,
we are given a stream a1, a2, . . . , aN of items from some universe, as well as a
frequency threshold φ, 0 < φ < 1, and we are asked to find and/or maintain all
items that occur more than φN times throughout the stream. For real-life appli-
cations there are some restricting assumptions the algorithms need to respect:
the size N of the stream, as well as the rate at which the items arrive, far exceed
the computational capabilities of our devices. Consequently, we usually require
streaming algorithms to use O(polylog(N)) memory and allow approximate so-
lutions within a factor of ε (additive, with respect to φ), since exact solutions
would require linear space [8], a totally unrealistic option in some domains. Fur-
thermore, we are usually interested in algorithms that make as few passes as
possible over the input stream and, in particular, single-pass algorithms that
process the input stream in an online way, i.e. each item sequentially, making
decisions on-the-fly.
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So, traditionally data stream problems have been essentially approached as
space complexity optimization problems: given an input stream and an approxi-
mation guarantee of ε, we try to minimize the memory used (see, e.g., the seminal
work of [2]). However, despite their intrinsic online nature, these problems have
not been studied within the predominant framework for studying online prob-
lems, i.e. that of competitive analysis [6].

Only recently, Becchetti and Koutsoupias [5] did that, using competitive anal-
ysis to study another important streaming problem, namely that of maintaining
the maximum value within a sliding window [9]. Following a similar approach, we
formulate an online version of the classic frequent items problem: given an input
stream and a memory of at most k slots, try to optimize the online algorithm’s
performance with respect to that of an optimal offline algorithm that knows the
entire input stream in advance. This is, in a way, the inverse of the traditional
space complexity optimization objective mentioned above. We also use a similar
aggregate-through-time perspective (instead of an unrealistic optimization-at-
every-step requirement) upon defining our objective function (see section 1.1).
As argued in [5], the competitive analysis approach combined with an aggre-
gate objective, seem more appropriate for economic applications as well as a
decision-making under uncertainty framework.

1.1 Setting
We are observing a stream A = a1, a2, . . . , aN of N elements drawn from some
universe U , in a sequential, online fashion. It is natural to assume that |U| � N .
We consider algorithms that, at every time step t = 1, 2, . . . , N , maintain in
memory a set St(A) ⊆ {a1, a2, . . . , at} of at most k items from the part of the
input stream A observed so far1. Furthermore, we assume that the only way in
which our algorithms can update these memory sets throughout the execution,
is to make an irrevocable decision, at every time point t, of whether or not to
store the newly arrived element at in memory, i.e. St ⊆ St−1 ∪ {at}. An online
algorithm can base its decision just2 on the knowledge of its current memory
state St−1 and the current time point t, while an offline algorithm can have
access to the entire input stream A. Notice that, since |St| ≤ k, if at some point
t we want to store a new element at /∈ St−1, then we may need to discard some
previously stored item aj ∈ St−1, j < t and then St ⊆ {at} ∪ St−1 \ {aj}. For
the special case of k = 1, which will be our main concern in this paper for the
most part (we will consider general memory sizes of k ≥ 1 again in section 4)
we will denote by st the unique item in the algorithm’s memory at time point t,
i.e. St = {st}.

Given an input stream A and an element a ∈ A we define its frequency as
fA(a) = nA(a)

N , where nA(a) = |{i | ai = a}| is the number of instances of a

1 To keep notation light, we will simply use St instead of St(A) whenever it is clear
to which input stream we are referring to.

2 In a different online setting, we could have also assumed that the online algorithm
has complete knowledge of the past. This, though, seems as a rather unrealistic
assumption to make, especially in a streaming setting.
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in the stream3. Intuitively, we want our algorithms, at every time, to maintain
the most frequent items possible. We formalize this, by defining the aggregate
frequency objective as the sum, across the entire execution, of the frequencies of
all distinct items in memory, i.e.

∑N
t=1

∑
a∈St

f(a). Notice here a fine point: we
treat St as a set and not as a multi-set, i.e. multiple occurrences of the same
element in memory can only contribute once towards our objective. We measure
an online algorithm’s performance on a given input A by comparing its total
gain (i.e. the value of the aggregate frequency objective on stream A) to that
of an offline algorithm that knows the entire input stream A in advance. The
competitive ratio of the online algorithm is the maximum value of this ratio
among all possible inputs,

max
A

∑N
t=1

∑
a∈S′

t
fA(a)

∑N
t=1

∑
a∈St

fA(a)
,

where St, S′
t are the memory sets of the online and optimal offline algorithm,

respectively. The competitive ratio for our online frequent items problem, is the
best (minimum) competitive ratio we can achieve over all online algorithms A.

Finally, whenever we deal with randomized algorithms in this paper, we are
always silently assuming the standard, oblivious adversary [11,6] model, i.e. the
adversary decides an input A knowing the online algorithm but not the actual
results of its coin tosses.

1.2 Organization of the Paper and Results

In this paper we are mostly interested in the special case of single-slot memories
(k = 1). That is the case for Sections 2 and 3. We do not deal with general
memory sizes of k ≥ 1 until Section 4.

In Section 2, we prove that the competitive ratio of the online frequent items
problem is Θ(

√
N), by providing a lower bound proof of 1

3

√
N and showing

that the most simple algorithm that myopically accepts every element that ar-
rives achieves an (asymptotically) tight

√
N competitive ratio. Furthermore, in

Section 2.1, we show that the well known Majority algorithm for the classical
frequent items problem performs very poorly from a competitive analysis point
of view, since it has (asymptotically) the worst possible competitive ratio an
online algorithm can demonstrate, namely Θ(N).

Also, we consider weaker adversarial inputs and in particular the case of the
input stream being generated i.i.d. from a probability distribution, known only to
the adversary. In section 3 we show how a very simple and natural algorithm, called
Eager, that essentially waits until it sees some element appearing twice, achieves
a competitive ratio of O( 3

√
N), asymptotically matching a lower bound of Ω( 3

√
N)

again providing a tight competitive ratio (of Θ( 3
√

N)) for the case of k = 1.
Next, in Section 4 we deal with the more general case of arbitrary memory sizes

of k ≥ 1, for which we give lower bounds of 1
3

√
N/k and Ω( 3

√
N/k), respectively,

3 Again, we will drop the superscript A whenever this causes no confusion.
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for both the worst-case and weaker distributional adversarial models. In fact, the
lower bounds of previous Sections 2 and 3 are derived by simply setting k = 1
at these more general bounds.

Finally, in section 5 we provide an extensive discussion regarding interesting
possible extensions to our model and open problems.

2 Worst-Case Bounds

As the following Theorem 1 demonstrates, one can not hope for online algorithms
with bounded competitive ratios. In particular:

Theorem 1. No (randomized) algorithm for the online frequent items problem
can have a competitive ratio better than 1

3

√
N − o(1).

Proof. The proof can be found in section 4 where we prove the more general
Theorem 13 for arbitrary memory sizes of k ≥ 1.

The lower bound of Theorem 1 is (asymptotically) tight and achieved by the
most simple deterministic algorithm:

Definition 2 (Algorithm Naive). The deterministic Naive algorithm accepts
every element as it arrives. Formally, st = at for all t = 1, 2, . . . , N .

Theorem 3. The Naive algorithm is
√

N -competitive.

Proof. Fix a worst-case input stream A for the Naive algorithm, let α be an
element of the stream having the highest frequency, i.e. α = argmaxa∈A f(a)
and let f = f(α). First, notice that the optimal offline gain cannot exceed Nf
(by simply giving to it α from the very start).

Next, we provide two lower bounds on the online gain. First, we have a trivial
lower bound of N 1

N = 1, since every element stored at any time t in our memory
has a frequency of at least 1

N . Next, since every element a ∈ A is being accepted
as it arrives, we have it in our memory for at least Nf(a) times for a gain of
f(a) per time, so the online gain is at least Nf · f = Nf2.

Consider two cases: If f < 1√
N

, then we use the first bound on the online gain
to get a competitive ratio of at most Nf

1 < N√
N

=
√

N and at the complimentary
case of f ≥ 1√

N
we use the other bound to get, again, a competitive ratio of

Nf
Nf2 = 1

f ≤ √
N .

2.1 The Classic Majority Algorithm

As was discussed in our introduction, if we demand single-pass algorithms then
the traditional data streaming setting is essentially an online setting and so, some
algorithms for the classic frequent items problem are valid algorithms for our on-
line version too. This is true for the counter-based algorithms (see [8]) and in par-
ticular for the well-known Majority algorithm [7], for the case of k = 1, and its
generalizations (see, e.g., the Misra-Gries algorithm [14]) for the case of k > 1.
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The Majority algorithm keeps a single item in memory, along with a counter,
initialized to 0. If the next value that arrives is the same as the one currently
stored, then increase the counter by +1, otherwise decrease it by −1. Whenever
the counter reaches 0, flush the memory and accept the next item to arrive,
increasing the counter to 1. This simple and clever algorithm manages to solve
the 1/2-approximation classic frequent items problem (i.e. if there is a majority
element, appearing more than half the time, it is then in the algorithm’s memory
at the end of the execution) using just a single memory slot. However, as Theorem
4 demonstrates, from a competitive analysis point of view, its performance is
disappointingly poor. The intuition behind this failure, which is the reason why
other classic algorithms would also not perform efficiently for the online problem,
is that the ε-approximate deviation per step has a drastic effect when aggregated
across the entire execution as N → ∞.

It is a simple observation that no online algorithm for the frequent items
problem can perform worse than N with respect to the competitive ratio: at
every given step, the offline gain can not exceed 1 and the online gain can not
be less than 1/N , since for every element α in the stream, 1

N ≤ f(α) ≤ 1.

Theorem 4. The Majority algorithm (asymptotically) achieves the worst pos-
sible competitive ratio of Θ(N).

Proof. Fix a stream length N , N being even, and pick N
2 + 1 distinct elements

α, α1, α2, . . . , αN/2 ∈ U . Give as input the stream

α1, α, α2, α, . . . , αN/2, α.

On this input, Majority is forced to change every two steps, with s2i−1 = s2i = αi

for all i = 1, 2, . . . , N
2 , never having the “desired” element α in memory, resulting

to a disappointing gain of N · 1
N = 1, while the offline strategy that puts element

α in memory as soon as it arrives at time point t = 2 and keeps it until the end
achieves a gain of 1+(N−1) N

2
N , giving a competitive ratio of at least N

2 − 1
2 .

3 Weaker Adversarial Models

Here we consider a distributional model where the adversary, instead of explic-
itly selecting the input sequence stream A, now just decides on a particular
probability distribution, unknown to the online algorithm, which we sample to
construct the input.

Definition 5 (Distributional adversarial model). In the distributional
model the adversary decides the stream’s length N and picks a probability dis-
tribution D on the universe of elements U . The input stream A is generated by
drawing N observations i.i.d. from D. D is not known to the online algorithms.

It is interesting to notice that this type of adversary resembles the random order
input model used in the classical secretary problems as well as recent online
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auctions settings (see, e.g.,[3,10]). A random order streaming model was first
proposed in the seminal paper of Munro and Paterson [16].

Notation. In this section, we will use the following notation: Let N be the
length of the stream, D be the distribution of the input, having support D =
{α1, α2, α3, . . . } with probability pi corresponding to element αi. We set q =∑

αi∈D p2
i and without loss of generality, assume that p1 ≥ p2 ≥ . . . . Since the

items of the stream are selected i.i.d. from D, the expected frequency of element
αi at the resulting stream is simply f(αi) = pi, for all αi ∈ D.

We first provide a lower bound. Although obviously better than that of the
worst-case model of section 2, it still remains unbounded with respect to the
stream’s length N :
Theorem 6. The competitive ratio of the online frequent items problem for the
adversarial model is Ω( 3

√
N).

Proof. As with Theorem 1, the proof can be found in section 4 for the more
general Theorem 14 for arbitrary memory sizes of k ≥ 1.
Now we turn our attention to upper bounds, and in search for an online algorithm
that, used in our current model of distributional inputs, will break the Ω(

√
N)

bound for the worst-case model of Section 2, the first question we should deal
with is whether a trivial algorithm such as the Naive algorithm of Definition 2,
which does not even take into consideration its memory set St−1 before making
a decision, can achieve this. The answer is negative:
Theorem 7. Every (randomized) online algorithm that does not take into con-
sideration its memory set, i.e., for all time points t, its probability of accepting
incoming element at can depend only on the current absolute execution time t
and not St−1, has a competitive ratio of Ω(

√
N) in the distributional adversarial

model.
Proof. Fix a stream length N with N being an even, perfect square positive
integer and let m =

√
N . Consider a probability distribution D with sup-

port {α0, α1, . . . , αN−m} ⊆ U , for which p0 = m/N and pj = 1/N for all
j = 1, 2, . . . , N −m. Let Pt denote the probability of accepting the newly arrived
element at at time t and Qt = Pr [st = α0], the probability of having element α0
stored in memory at time t. Then

Qt+1 = Qt · [1 − (1 − p0) Pt+1] + (1 − Qt) · p0Pt+1 = Pt+1

(m

N
− Qt

)
+ Qt,

which, by the fact that Q1 = m/N (since at the first step any online algorithm
just puts item a1 in memory), gives that Qt = m

N for all t. That means that the
expected gain of our online algorithm is

N∑

t=1
[Qtf(α0) + (1 − Qt)f(α1)] =

N∑

t=1

[

Qt
m

N
+ (1 − Qt)

1
N

]

= m2

N
− m

N
+ 1 = 2 − 1√

N
.
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The offline algorithm that waits until it sees the desired element α0 and then
stores it in memory forever has asymptotically an expected gain of at least
N
2 f(α0) = N

2
m
N =

√
N
2 , since the probability of having discovered α0 until the

middle of the stream is 1 − (1 − p0)N/2 = 1 −
(

1 − 1√
N

)N/2
→ 1, as N → ∞.

Theorem 7 above tells us that we should consider only non-trivial algorithms
that consult their memory before making a decision. The simplest of them is the
following:

Definition 8 (Algorithm Eager). The Eager algorithm accepts every ele-
ment as it comes. If it finds the same element in two consecutive positions, then
it keeps it until the end. Formally, let

t∗ = min
1≤t≤N−1

{t | at = at+1 }

if that exists, otherwise t∗ = N . Then Eager is the algorithm with st = at for
all t ≤ t∗ and st = at∗ for all t > t∗.

First, we need to bound the optimal offline gain:

Theorem 9. The expected optimal offline gain of the distributional model is
O(max{N1/3, p1N}).

Proof. Let Xi be the random variable representing the number of appearances
of element αi at the resulting stream (generated i.i.d. from D). Then, Xi follows
a binomial distribution with parameters pi, N . It is clear that the expected
optimal offline gain cannot exceed neither maxi Xi (maxi Xi

N per step), nor N (1
per step). Also, let M = max{N1/3, p1N}, I1 =

{
i

∣
∣ piN ≥ N1/3 }

and I2 =
{

i
∣
∣ piN < N1/3 }

.
We will need the following lemma:

Lemma 10. For all i ∈ I1, Pr [Xi > 6piN ] ≤ 2p1pi and for all i ∈ I2,
Pr

[
Xi > 6N1/3] ≤ 2piN

−2/3.

Proof. If i ∈ I1, then p1 ≥ pi ≥ N−2/3 and using a Chernoff bound (see [15,
Theorem 4.4]) we get

Pr [Xi > 6piN ] ≤ 2−6piN ≤ 2p1pi,

since 2−6piN

pip1
≤ 2−6piN

p2
i

≤ 2−6N1/3
N4/3 ≤ 2 for all N , the second inequality

holding by substituting pi = N−2/3 at a monotonically decreasing function.
If i ∈ I2, then pi < N−2/3 and

Pr
[
Xi > 6N1/3

]
≤

N∑

k=6N1/3

(
N

k

)

pk
i (1 − pi)N−k

≤ p6N1/3

i

(
N

6N1/3

)

2F1(6n1/3 − n, 1; 1 + 6n1/3; − pi

1 − pi
),
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where 2F1 is the Gaussian hypergeometric function, maximized at pi = N−2/3 for
a value of less than 2 (for all N), giving an upper bound, for the above probability,
of 2p2N1/3

i

(
N

6N1/3

)
. So, we need to show that p6N1/3

i

(
N

6N1/3

) ≤ piN
−2/3, i.e. it is

enough to show that

N2/3p6N1/3−1
i

(
N

6N1/3

)

≤ N2/3
(

N−2/3
)6N1/3−1

(
N

6N1/3

)

≤ 1,

which holds for all N , concluding the proof of the lemma.

Now we are ready to bound the expected optimal offline gain:

E[max Xi] ≤ 6M · Pr [max Xi ≤ 6M ] + N · Pr [max Xi > 6M ]

≤ 6M + N

(
∑

i∈I1

Pr [Xi > 6M ] +
∑

i∈I2

Pr [Xi > 6M ]

)

≤ 6M + N

(
∑

i∈I1

Pr [Xi > 6piN ] +
∑

i∈I2

Pr
[
Xi > 6N1/3

]
)

,

since M ≥ p1N ≥ piN and M ≥ N1/3, and so

E[max Xi] ≤ 6M + N

(
∑

i∈I1

2p1pi +
∑

i∈I2

2N−2/3pi

)

≤ 6M + 2M
∑

i

pi = 8M.

Next, we turn our attention to analyzing the online gain of our algorithms:

Lemma 11. The Naive algorithm (see Definition 2) has an expected gain of at
least 1 + q(N − 1) for the distributional model, where q =

∑
p2

i .

Proof. Notice, that, since the Naive algorithm accepts every element to arrive,
at every step it has element αi stored in memory with probability pi, for an
expected (frequency) gain of 1+pi(N−1)

N at this step, resulting to a total expected
gain of 1 + q(N − 1).

We are ready now to give our upper bound, asymptotically matching that of
Theorem 6:

Theorem 12. The randomized algorithm that runs Naive and Eager with an
equal probability of 1

2 is O( 3
√

N)–competitive for the distributional model.

Proof. From Lemma 11 and Theorem 9 we only need to show that Eager is
O(N1/3)–competitive for the case when p1N > N1/3 and p1N

1+q(N−1) = ω(N1/3),
which give the following necessary conditions:

p1 > N−2/3 and q <
p1

N1/3 . (1)

Let t∗ be as in Definition 8. Then, since the stream is generated i.i.d.
from D, Pr [t∗ ≥ t] =

∏t−1
i=1 Pr [ai �= ai+1] =

∏t−1
i=1 (1 − Pr [ai = ai+1]) =
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∏t−1
i=1 (1 − ∑

i pipi) = (1 − q)t−1 for t ≤ N − 1, and so the probability of Eager
“discovering” α1 at time t + 1 is (1 − q)t−1p2

1, for an expected gain of at least
2+(N−2)p1

N (N − t + 1) ≥ p1(N − t + 1), resulting to a total expected gain of at
least

N−1∑

t=1
(1 − q)(t−1)p2

1 · p1(N − t + 1) = p3
1

(1 − 2q)(1 − q)N−1 + q(N + 1) − 1
q2

This, together with Theorem 9 and (1), gives a competitive ratio upper bound
of

F (q, N)
p2

1
where F (q, n) = q2N

(1 − 2q)(1 − q)N−1 + q(N + 1) − 1
.

It is not difficult to see that F (q, n) is an increasing function with respect to q,
thus by (1) getting an upper bound of

F (p1/N1/3, N)
p2

1
= N1/3

(
1 − 2p1

n1/3

) (
1 − p1

N1/3

)N−1 + p1
( 1

N1/3 + N2/3
) − 1

.

The denominator in the above expression is an increasing function with respect
to p1 and so, by (1), it is minimized by setting p1 = N−2/3 for a value of
(
1 − 2

N

) (
1 − 1

N

)N−1 + 1
N → 1

e , as N → ∞, giving the desired upper bound of
O(N1/3) on our competitive ratio.

4 Lower Bounds for Arbitrary Memory k

In this section we consider an arbitrary memory size of k ≥ 1, generalizing the
single-slot memory settings of the previous Sections 2 and 3 and we extend the
lower bounds for both the worst-case and the weaker distributional adversarial
models considered in these sections. Obviously, for k = 1 our results here match
those of Theorems 1 and 6, respectively.

Theorem 13. No (randomized) algorithm for the online frequent items problem
can have a competitive ratio better than 1

3

√
N
k − o(1).

Proof. We use Yao’s principle [18,6]. Fix a stream length N and set m =
√

N
k

(which we assume to be integer). Fill the stream’s first N − km positions, with
N − km distinct elements a1, . . . , aN−km ∈ U . The probabilistic input is con-
structed by selecting uniformly at random k distinct elements aj1 , . . . , ajk

from
the first km positions and using m copies of each to fill the remaining last km
slots of the stream.

An offline algorithm picks an element αji as soon as it appears, an event which
occurs at step km at the latest, and keeps it until the end, resulting in a total
gain of at least (N−km)·(m+1)

N = m − 1
m for each of the k positions in memory.

By the uniform way in which our input is constructed, it is easy to see that the
best online deterministic strategy is to pick the first k elements, keep them until
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position N −km and then gradually replace them with the k distinct elements of
the last km positions. For a given memory slot, the probability that the online
algorithm will succeed to initially pick one of the high-frequency items is at most

k
km = 1/m. In this case the gain is at most N m+1

N = m + 1. Otherwise, the gain
is at at most (N −km) 1

N +km m+1
N = 1+ km2

N = 2. Therefore the expected online
gain per each memory slot is at most (m+1) 1

m +2(1− 1
m ) ≤ 3. It follows that the

ratio of the optimal gain over the online gain is at least 1
3 (m− 1

m ) = 1
3

√
N
k −o(1).

Theorem 14. The competitive ratio of the online frequent items problem for
the adversarial model is Ω( 3

√
N/k).

Proof. We use again Yao’s principle and give a distributional input D with k
elements α1, α2, . . . , αk (not known to the online algorithm) having a probability
of p = (kN2)−1/3 and all other elements in U being assigned arbitrarily small
probabilities of ε → 0 (we are assuming a very large universe |U| � k). Notice
that this is a valid probability distribution, since kp < 1. By this construction,
it is safe to assume that no element except α1, α2, . . . , αk, appears more than
once in the resulting stream a1, a2, . . . , aN , since such an event occurs with very
small, negligible probability. So, when an online algorithm observes an item that
it is already in its memory (i.e. at ∈ St−1), it knows for sure that this is one
of the “good” elements α1, α2, . . . , αk and, furthermore, until such a “marking”
occurs the online algorithm can have no information on the identities of these
desired elements, meaning that, until then, the probability of having αi residing
in a particular memory slot is at most p, for all i = 1, 2, . . . , k and all memory
slots. Thus, the probability of discovering αi, i = 1, 2, . . . , k, at some time point
t can not exceed kp · p (at most k slots are still “free” at time t and each is
holding αi with a probability of at most p) an event giving an expected gain
of at most Np (assume that all discovered elements can be stored, that we are
receiving gain from all possible multiple copies of the same element and that
this gain is taken from the start t = 1). Also, if we don’t discover any “good”
element throughout the execution, we can trivially get an expected gain of at
most kp · p + (1 − kp)ε per step and per slot. Summing up, the expected total
gain of every online deterministic algorithm is at most

Nk
[
Nkp3 + kp2 + (1 − kp)ε

] ≤ 2k + Nkε ≈ 2k,

since p = (kN2)−1/3, k ≤ N and ε → ∞.
Finally, consider the offline algorithm that waits until it sees element αi for

the first time and then stores it in the i-th memory slot forever (for an expected
gain of at least p per step). Notice that the probability that an element αi has not
been stored until halfway the execution is (1−p)N/2 ≤ 1/

√
e (since p ≥ 1/N), so

the expected offline gain is at least k
(

1 − 1√
e

)
N
2 p = (1−e−1/2)

2 N1/3k2/3, giving
the desired competitive ratio.
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5 Extensions and Future Directions

The most obvious open problem based on our work is that of closing the gap, in
both adversarial models, between the upper and lower bounds of the competi-
tive ratios with respect to the memory size parameter k in the general case of
arbitrary memory sizes of k > 1.

Throughout this paper we have used an absolute frequency notion, i.e. we
take an element’s a count nA(a) (number of appearances) with respect to the
entire stream A. Alternatively, one can define an ephemeral frequency fA

t (a),
dependent on the current time point t and refer to element’s a count up to that
point, i.e.

fA
t (a) = |{i ≤ t | ai = a}|

t
. (2)

Notice that, as expected, f(a) = fN (a). Our aggregate frequency objective can
be naturally extended to

∑N
t=1

∑
a∈St

ft(a).
Intuitively, the competitive ratios for ephemeral frequencies would essentially

not change for the distributional adversarial model, since the expected ephemeral
frequency of an element at a given time t would be equal to its expected absolute
frequency (resulting to equal expected gains per step), while in the worst-case
model one should expect better performance: the “nemesis” inputs similar to
that of the lower bound proof of Theorem 1 no longer apply in such a disastrous
way. Further comparison of the two models is left for the journal version of this
work.

Another interesting direction that the adoption of ephemeral frequencies gives
us, is that of considering a measure of importance upon our time horizon, e.g.
in many scenarios we are more interested in the recent past rather than remote
observations. This can be modeled by using a non-decreasing, non-negative real
valued aging sequence q0, q1, q2, . . . in order to, for a given time point t, assign
to past element at−i a weight of qi, where i = 0, 1, . . . , t − 1. From this point of
view, we need to generalize our (ephemeral) frequency definition in (2) to

fA
t (a) =

∑
i: at−i=a qi
∑t−1

i=0 qi

,

to capture this notion of time decay. Examples of such aging sequences may
include an exponentially decreasing time model, where qi = e−λ·i for some real
constant λ > 0, or a sliding window model of window size w, where qi = 1 if
i ≤ w − 1 and qi = 0 otherwise. Notice that the simple streaming model with no
time-decaying which we have considered in this paper corresponds to the case
of qi = 1 for all i.

Finally, as stated in the introduction, to our knowledge this is just the second
work that studies some data streaming problem in a competitive analysis frame-
work, after only the recent Aggregate-Max paper of Becchetti and Koutsoupias
[5]. We think that a lot of interesting work can be further done in this direction
and that the intrinsic online nature of Data Stream settings makes competitive
analysis an appropriate tool to approach such problems, especially when consid-
ering a decision-making under uncertainty and/or an economics perspective.
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Abstract. Assuming the AND-distillation conjecture, the Pathwidth

problem of determining whether a given graph G has pathwidth at most k
admits no polynomial kernelization with respect to k. The present work
studies the existence of polynomial kernels for Pathwidth with respect
to other, structural, parameters.

Our main result is that, unless NP ⊆ coNP/poly, Pathwidth ad-
mits no polynomial kernelization even when parameterized by the ver-
tex deletion distance to a clique, by giving a cross-composition from
Cutwidth. The cross-composition works also for Treewidth, improv-
ing over previous lower bounds by the present authors. For Pathwidth,
our result rules out polynomial kernels with respect to the distance to
various classes of polynomial-time solvable inputs, like interval or cluster
graphs.

This leads to the question whether there are nontrivial structural pa-
rameters for which Pathwidth does admit a polynomial kernelization.
To answer this, we give a collection of graph reduction rules that are
safe for Pathwidth. We analyze the success of these results and obtain
polynomial kernelizations with respect to the following parameters: the
size of a vertex cover of the graph, the vertex deletion distance to a
graph where each connected component is a star, and the vertex dele-
tion distance to a graph where each connected component has at most c
vertices.

1 Introduction

The notion of kernelization provides a systematic way to mathematically ana-
lyze what can be achieved by (polynomial-time) preprocessing of combinatorial
problems [1]. This paper discusses kernelization for the problem to determine
the pathwidth of a graph. The notion of pathwidth was introduced by Robertson
and Seymour in their fundamental work on graph minors [2], and is strongly
related to the notion of treewidth. There are several notions that are equivalent
to pathwidth including interval thickness, vertex separation number, and node
search number (see [3] for an overview). The problem to determine the pathwidth
of a graph is well studied, also under the different names of the problem.
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It is well known that the decision problem corresponding to pathwidth is
NP-complete, even on restricted graph classes such as bipartite graphs and
chordal graphs [4,5]. A commonly employed practical technique is therefore
to preprocess the input before trying to compute the pathwidth, by employ-
ing a set of (reversible) data reduction rules. Similar preprocessing techniques
for the Treewidth problem have been studied in detail [6,7], and their prac-
tical use has been verified in experiments [8]. Using the concept of kernel-
ization we may analyze the quality of such preprocessing procedures within
the framework of parameterized complexity. A parameterized problem is a lan-
guage Q ⊆ Σ∗ × N, and such a problem is (strongly uniform) fixed-parameter
tractable (FPT) if there is an algorithm that decides membership of an in-
stance (x, k) in time f(k)|x|O(1) for some computable function f . A kernel-
ization (or kernel) for Q is a polynomial-time algorithm which transforms each
input (x, k) into an equivalent instance (x′, k′) such that |x′|, k′ ≤ g(k) for some
computable function g, which is the size of the kernel. Kernels of polynomial size
are of particular interest due to their practical applications. To analyze the qual-
ity of preprocessing rules for Pathwidth we therefore study whether they yield
polynomial kernels for suitable parameterizations of the Pathwidth problem.

As the pathwidth of a graph equals the maximum of the pathwidth of its
connected components, the Pathwidth problem with standard parameteriza-
tion is AND-compositional and thus has no polynomial kernel unless the AND-
distillation conjecture does not hold [9]. We thus do not expect to have kernels
for Pathwidth of size polynomial in the target value for pathwidth k, and
we consider whether polynomial kernels can be obtained with respect to other
parameterizations.

As Pathwidth is known to be polynomial-time solvable when restricted
graph classes such as interval graphs [3], trees [10] and cographs [11], it seems
reasonable to think that determining the pathwidth of a graph G which is “al-
most” an interval graph should also be polynomial-time solvable. Formalizing the
notion of “almost” as the number of vertices that have to be deleted to obtain
a graph in the restricted class F , we can study the extent to which data reduc-
tion is possible for graphs which are close to polynomial-time solvable instances
through the following problem:

Pathwidth parameterized by a modulator to F
Instance: A graph G = (V,E), a positive integer k, and a set S ⊆ V
such that G− S ∈ F .
Parameter: � := |S|.
Question: pw(G) ≤ k?

The set S is a modulator to the class F . Observe that pathwidth should be
polynomial-time solvable on F in order for this parameterized problem to be
FPT. Our main result is a kernel lower bound for such a parameterization of
Pathwidth. We prove that despite the fact that the pathwidth of an inter-
val graph is simply the size of its largest clique minus one — which is very
easy to find on interval graphs — the Pathwidth problem parameterized by
a modulator to an interval graph does not admit a polynomial kernel unless
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NP ⊆ coNP/poly. In fact, we prove the stronger statement that, under the same
condition, Pathwidth parameterized by a modulator to a single clique (i.e., by
distance to F consisting of all complete graphs) does not admit a polynomial
kernel1 (Section 5). As the graph resulting from the lower-bound construction is
co-bipartite, its pathwidth and treewidth coincide [12]: a corollary to our theo-
rem therefore shows that Treewidth parameterized by vertex-deletion distance
to a clique does not admit a polynomial kernel unless NP ⊆ coNP/poly, thereby
significantly strengthening a result of our earlier work [6] where we only managed
to prove kernel lower bounds by modulators from cluster graphs and co-cluster
graphs.

Our kernel bound effectively shows that even in graphs which are cliques after
the deletion of k vertices, the information contained in the (non)edges between
these k vertices and the clique is such that we cannot decrease the size of the
clique to polynomial in k in polynomial time, without changing the answer in
some cases.

Faced with these negative results, we try to formulate safe reduction rules for
Pathwidth (Section 3). It turns out that many of the rules for Treewidth

(e.g., the rules involving (almost) simplicial vertices) are invalid when applied
to Pathwidth, and more careful reduction procedures are needed to reduce
the number of such vertices. We obtain several reduction rules for pathwidth,
and show that they lead to provable data reduction guarantees when analyzed
using a suitable parameterization (Section 4). In particular we prove that Path-
width parameterized by a vertex cover S (i.e., using F as the class of edgeless
graphs in the template above) admits a kernel with O(|S|3) vertices, that the
parameterization by a modulator S′ to a disjoint union of stars has a kernel
with O(|S′|4) vertices, and finally that parameterizing by a set S′′ whose dele-
tion leaves a graph in which every connected component has at most c vertices
admits a kernel with O(c · |S′′|3 + c2 · |S′′|2) vertices.

2 Preliminaries

In this work all graphs are finite, simple, and undirected. The open neighbor-
hood of a vertex v ∈ V in a graph G is denoted by NG(v), and its closed neigh-
borhood is NG[v]. For sets of vertices W ⊆ V we let NG[W ] =

⋃
v∈W NG[v]

and NG(W ) = NG[W ] \W . If S ⊆ V is a vertex set then G − S denotes the
graph obtained from G by deleting all vertices of S and their incident edges.
For a single vertex v we write G− v instead of G− {v}. A vertex v is simplicial
in a graph G if NG(v) is a clique. A vertex v ∈ V is almost simplicial in a
graph G if v has a neighbor w such that NG(v)−{w} is a clique. In such a case,
we call w the special neighbor of v. For a set of verticesW ⊆ V , the subgraph ofG

1 For completeness we point out that Pathwidth parameterized by a modulator to
a clique is FPT: try all orderings in which the vertices from S can be introduced
and forgotten in a decomposition, and do a polynomial-time computation for each
ordering to find the best way to fit the clique G −X into the decomposition.
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induced by W is denoted as G[W ]. A path decomposition of a graph G = (V,E)
is a non-empty sequence (X1, . . . , Xr) of subsets of V called bags, such that:

–
⋃

1≤i≤r Xi = V ,
– for all edges {v, w} ∈ E there is a bag Xi containing v and w, and
– for all vertices v ∈ V , the bags containing v are consecutive in the sequence.

The width of a path decomposition is max1≤i≤r |Xi| − 1. The pathwidth pw(G)
of G is the minimum width of a path decomposition of G. Throughout the paper
we will often make use of the fact that the pathwidth of a graph does not increase
when taking a minor. We also use the following results.

Lemma 1 (Cf. [11]). If graph G contains a clique W then any path- or tree
decomposition for G has a bag containing all vertices of W .

Lemma 2. All graphs G admit a minimum-width path decomposition in which
each simplicial vertex is contained in exactly one bag of the decomposition.

Proof. Lemma 1 shows that for each simplicial vertex v, any path decomposition
of G has a bag containing the clique N [v]. As removal of v from all other bags
preserves the validity of the decomposition, we may do so independently for all
simplicial vertices to obtain a decomposition of the desired form. ��

3 Reduction Rules

In this section we give a collection of reduction rules. Formally, each rule takes as
input an instance (G,S, k) of Pathwidth parameterized by a modulator

to F , and outputs an instance (G′, S′, k′). With the exception of occasionally
outright deciding yes or no, none of our reduction rules change the modulator S
or the value of k. In the interest of readability we shall therefore be less formal in
our exposition, and make no mention of the values of S′ and k′ in the remainder.
We say that a rule is safe for pathwidth (or in short: safe) if for each input
(G,S, k) and output (G′, S′, k′), the pathwidth of G is at most k if and only
if the pathwidth of G′ is at most k′. Any subset of the rules gives a ‘safe’
preprocessing algorithm for pathwidth: apply the rules until no longer possible.
We will argue later that this takes polynomial time for our rules, and give kernel
bounds for some parameters of the graphs.

3.1 Vertices of Small Degree

We start off with a few simple rules for vertices of small degree. Note that,
necessarily, these rules are slightly more restrictive than for the treewidth case;
e.g., we cannot simply delete vertices of degree one since trees have treewidth
one but unbounded pathwidth. The first rule is trivial.

Rule 1. Delete any vertex of degree zero.

Rule 2. If two degree-one vertices share their neighbor then delete one of them.
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Correctness of Rule 2 follows from insights on the pathwidth of trees, pioneered
by Ellis et al. [10]. A self-contained proof is provided in the full version.

The following rule handles certain vertices of degree two; a correctness proof
is given in the full version.

Rule 3. Let v, w be two vertices of degree two, and suppose x and y are common
neighbors to v and w with x ∈ S. Then remove w and add the edge {x, y}.

3.2 Common Neighbors and Disjoint Paths

Rule 4 in this section also appears in our work on kernelization for treewidth [6]
and traces back to well-known facts about treewidth (e.g.,[13,14]). It is also safe
in the context of pathwidth; the safeness proof is identical to when dealing with
treewidth and is hence deferred to the full version.

Lemma 3. Let v and w be nonadjacent vertices. Suppose there are at least k+1
internally vertex disjoint paths from v to w in (V,E). Then the pathwidth of G
is at most k, if and only if the pathwidth of G′ = (V,E ∪ {{v, w}}) is at most k.

A special case of Lemma 3, and the implied Rule 4, is when v and w have at least
k+1 common neighbors. As we do not want to increase the size of a modulator,
we only add edges between pairs of vertices with at least one endpoint in the
modulator; thus G− S remains unchanged.

Rule 4 (Disjoint paths (with a modulator)). Let v ∈ S be nonadjacent to
w ∈ V , and suppose there are at least k+1 paths from v to w that only intersect
at v and w, where k denotes the target pathwidth. Then add the edge {v, w}.

3.3 Simplicial Vertices

In this section, we give a safe rule that helps to bound the number of simplicial
vertices of degree at least two in a graph. Recall that we already have rules for
vertices of degree one and zero, which are trivially simplicial.

v

Fig. 1. An example of an application of the Simplicial vertex rule
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Lemma 4. Let G = (V,E) be a graph, and let v ∈ V be a simplicial vertex
of degree at least two. If for all x, y ∈ NG(v) with x �= y there is a simplicial
vertex w �∈ NG[v] such that x, y ∈ NG(w), then pw(G) = pw(G− v).

Proof. As G− v is a subgraph of G, we directly have that pw(G− v) ≤ pw(G).
For the converse, let (X1, . . . , Xr) be an optimal path decomposition of G − v.
Using Lemma 2, we assume that for each simplicial vertex x, there is a unique
bag Xix with NG[x] ⊆ Xix .

Let C = NG(v). A bag that contains C is called a C-bag. As C is a clique,
Lemma 1 shows there is at least one C-bag. The C-bags must be consecutive
in the path decomposition; let them be Xi1 , . . . , Xi2 . We will first show there is
a vertex w �∈ NG[v] which is simplicial in G − v, and is contained in a C-bag.
Let x, y ∈ C (possibly with x = y) be vertices such that x does not occur in bags
with index smaller than i1, and y does not occur in bags of index larger than i2.

If x �= y then let w �∈ NG[v] be simplicial in G such that x, y ∈ NG(w), whose
existence is guaranteed by the preconditions. As w is also simplicial in G− v it
occurs in a unique bag, which must be a C-bag since it must meet its neighbors x
and y there. If x = y then, as v has degree at least two, there is a vertex w �∈
NG[v] which is simplicial in G and adjacent to x; hence its unique occurrence is
also in a C-bag.

Thus we have established there is a vertex w �∈ NG[v] which is simplicial
in G − v and is contained in exactly one bag, which is a C-bag Xi. Now insert
a new bag just after Xi, with vertex set Xi − {w} ∪ {v}. As Xi − {w} contains
all v’s neighbors, this gives a path decomposition of G without increasing the
width, and concludes the proof. ��

Lemma 4 directly shows that Rule 5 is safe for Pathwidth.

Rule 5. For each e ∈ E, compute span(e) as the number of simplicial vertices
that are adjacent to both endpoints of the edge. If v ∈ V is a simplicial vertex of
degree at least two such that each edge between a pair of neighbors of v has span
at least 2, then remove v.

3.4 Simplicial Components

Let S be the set of vertices used as the modulator. We say that a set of verticesW
is a simplicial component ifW is a connected component in G−S andNG(W )∩S
is a clique. Our next rule deals with simplicial components.

Rule 6 (Simplicial components of known pathwidth). Let S ⊆ V be the
modulator and let k denote the target pathwidth. Suppose that for each pair v, w ∈
S∩NG(W ) (including v = w), there are at least 2k+3 simplicial components Z �=
W such that {v, w} ⊆ NG(Z) and pw(G[Z]) ≥ pw(G[W ]). Then remove W and
its incident edges.

Note that we have to include the case v = w to ensure correctness for simplicial
components which are adjacent to exactly one vertex in the modulator. The
safeness proof for Rule 6 is given in the full version.
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Fig. 2. The vertices marked with a square box form a simplicial component

Let us briefly discuss the running time of this reduction rule. As the modulator
ensures that G− S is contained in the graph class F , the rule can be applied in
polynomial time if the pathwidth of graphs in F can be determined efficiently. In
the setting in which we apply the rule, the graphs in F are either disjoint unions
of stars (which are restricted types of forests, allowing the use of the linear-time
algorithm of Ellis et al. [10]), or F has constant pathwidth which means that
the FPT algorithm for k-Pathwidth [13] runs in linear time.

3.5 Almost Simplicial Vertices

For almost simplicial vertices, we have a rule that replaces an almost simplicial
vertex by a number of vertices of degree two. In several practical settings, the
increase of number of vertices may be undesirable; the rule is useful to derive
some theoretical bounds.

v

w
w

x x

y y

z z

vw,x
vw,y

vw,z vx,y vy,z
vx,z

Fig. 3. An example of an application of the rule for almost simplicial vertices

Lemma 5. Let G = (V,E) be a graph and let v ∈ V be an almost simplicial
vertex of degree at least three, with special neighbor w. Let G′ be obtained by
deleting v and by adding a vertex vp,q with neighbors p and q for any p, q ∈ NG(v)
with p �= q. Then pw(G) = pw(G′).

The proof of the lemma is postponed to the full version. The lemma justifies
the following reduction rule, by observing that an almost simplicial vertex v
with degG(v) > k+ 1 means that pw(G) > k, as NG[v]−w then forms a clique
of size at least k + 2.
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Rule 7. Let v ∈ V \ S be an almost simplicial vertex of degree at least three
with special neighbor w. Let k be the target pathwidth. If degG(v) > k + 1 then
output no. Otherwise, delete v and add a vertex vp,q with neighbors p and q for
any p, q ∈ N(v) with p �= q.

As a simplicial vertex is trivially almost simplicial, note that — in comparison
to Rule 5 — the previous rule gives an alternative way of dealing with simplicial
vertices.

4 Polynomial Kernelizations

For each of the safe rules given in the previous section, there is a polynomial
time algorithm that tests if the rule can be applied, and if so, modifies the
graph accordingly. (We assume that for Rule 6 the bound � on the pathwidth of
the components is a constant.) The following lemma shows that any algorithm
that exhaustively applies (possibly just a subset of) these reduction rules can be
implemented to run in polynomial time.

Lemma 6. Each input instance (G,S, k) is exhaustively reduced by O(n2+nk2)
applications of the reduction rules.

Proof. First we note that for non-trivial instances, Rule 4 does not add edges
to a vertex of degree at most two. In particular, no rule increases the number
of vertices of degree at least three. So, we have at most n applications of a rule
that removes a vertex of degree at least three, and O(n2) applications of Rule
4. Rule 7 is therefore executed at most n times in total, and thus the number of
vertices of degree two that are added in these steps is bounded by O(nk2). As
each other rule removes at least one vertex, the total number of rule applications
in G is bounded by O(n2 + nk2). ��

By analyzing our reduction rules with respect to different structural parameters,
we get the following results.

Theorem 1. Pathwidth parameterized by a modulator to F admits
polynomial kernels for the following choices of F :

1. A kernel with O(�3) vertices when F is the class of all independent sets, i.e.,
if the modulator S is a vertex cover.

2. A kernel with O(c · �3+ c2 · �2) vertices when F is the class of all graphs with
connected components of size at most c.

3. A kernel with O(�4) vertices when F is the class of all disjoint unions of
stars.

Proof. We show Part 3 followed by Part 2. Part 1 follows from the latter since
it is a special case corresponding to c = 1.

(Part 3.) As stars have pathwidth one, graphs with a modulator S of size �
to a set of stars have pathwidth at most � + 1. Thus, if k ≥ � + 1, we return a
dummy yes-instance of constant size. Now, assume k ≤ �.
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Our kernelization applies Rules 1–6 while possible, and applies Rule 7 to all
vertices which have at most one neighbor in G−S. (Applying the rule to vertices
with more neighbors in G− S might cause the resulting graph G′ − S not to be
a disjoint union of stars.) Recall for Rule 6 that pw(G− S) ≤ 1.

Let (G,S, k) be a reduced instance. We will first bound the number of con-
nected components of G−S, with separate arguments for simplicial and nonsim-
plicial components. Each component is a star, i.e., it is a single vertex or a K1,r

for some r (a center vertex with r leaves). Note that in this proof the term leaf
refers to a leaf of a star in G−S, independent of its degree in G (and all degrees
mentioned are with respect to G).

Associate each nonsimplicial component C of G − S to an arbitrary pair of
nonadjacent neighbors of C in S. It is easy to see that each such component
provides a path between the two chosen neighbors, and that for different com-
ponents these paths are internally vertex disjoint. Thus, since Rule 4 does not
apply, no pair of vertices of S has more than k components associated to it.
Hence there are at most k · |S|2 = O(�3) nonsimplicial components.

Now consider a simplicial component W of G−S, and note that pw(G[W ]) ≤
1. As Rule 6 does not apply, there is a pair v, w ∈ S ∩ NG(W ) (possibly v =
w) such that there are strictly less than 2k + 3 simplicial components W ′ �=
W with pw(G[W ′]) ≥ pw(G[W ]) and {v, w} ⊆ NG(W

′). Associate W to the
pair v, w. It follows immediately that no pair of vertices of S has more than 2k+3
components associated to it, which gives a bound of (2k + 3) · |S|2 = O(�3) on
the number of simplicial components.

Thus we find that G− S has a total of O(�3) connected components (each of
which is a star). This bounds the number of centers of stars by O(�3). It remains
to bound the total number of leaves that are adjacent to those centers.

Clearly, each star center has at most one leaf which has degree one (in G).
Each leaf of degree two has exactly one neighbor in S in addition to its adjacent
star center. Since Rule 3 does not apply, no two leaves of degree two can have
the same star center and neighbor in S; thus there are at most O(�4) leaves of
degree two.

Now, we are going to count the number of leaves (of stars) that are of degree
more than two. For each such leaf, one neighbor is the center of its star and all
other neighbors are in S. If its neighbors in S would form a clique, then the leaf
would be almost simplicial in G (with the star center as the special neighbor)
and Rule 7 would apply. Hence, as G is reduced, we can associate each such
leaf to a nonadjacent pair of vertices in S. As Rule 4 cannot be applied, we
associate O(k) vertices to a pair, and thus the number of such leaves is bounded
by O(k · �2) = O(�3).

Thus, the total number of vertices in G is bounded by O(�4). By Lemma 6
the reduction rules can exhaustively be applied in polynomial time. As the rules
preserve the fact that G − S is a disjoint union of stars, the resulting instance
is a correct output for a kernelization algorithm. This completes the proof of
Part 3.
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(Part 2.) Fix some constant c and let F be the class of all graphs of compo-
nent size at most c. Let (G,S, k) be an input instance. Note that the pathwidth
of G is bounded by c+ |S| − 1, since each component of G−S has pathwidth at
most c − 1. We assume that k ≤ c + |S| − 2; otherwise the instance is yes and
we may return a dummy yes-instance of constant size.

Our algorithm uses Rules 1, 2, 4, 5, and 6. Consider a graph G where none
of these rules can be applied. The bounds for the number of simplicial and
nonsimplicial components ofG−S work analogously to Part 3; there areO(k|S|2)
components of the respective types. This gives a total ofO(|S|+c·(c+|S|)·|S|2) =
O(c2|S|2 + c|S|3) vertices in G, using that k ≤ c + |S| − 2. This completes the
proof of Part 2. ��

5 Lower Bounds: Modulator to a Single Clique

We show that the problems Treewidth parameterized by a modulator to

a single clique (TWMSC) and Pathwidth parameterized by a modula-

tor to a single clique (PWMSC) do not admit a polynomial kernel unless
NP ⊆ coNP/poly. In fact, we show that the results hold when restricted to co-
bipartite graphs; as for these graphs the pathwidth equals the treewidth [12], the
same proof works for both problems. The problems are covered by the general
template given in the introduction, when using F as the class of all cliques.

To prove the lower bound we employ the technique of cross-composition
[15], starting from the following NP-complete version [16, Corollary 2.10] of the
Cutwidth problem:

Cutwidth on cubic graphs (CUTWIDTH3)

Instance: A graph G on n vertices in which each vertex has degree at
least one and at most three, and an integer k ≤ |E(G)|.
Question: Is there a linear layout of G of cutwidth at most k, i.e., a
permutation π of V (G) such that maxni=1 |{{u, v} ∈ E(G) | π(u) ≤ i <
π(v)}| ≤ k?

As space restrictions prohibit us from presenting the full proof in this extended
abstract, we will sketch the main ideas. To obtain a kernel lower bound through
cross-composition, we have to embed the logical OR of a series of t input in-
stances of CUTWIDTH3 on n vertices each into a single instance of the target
problem for a parameter value polynomial in n+ log t. At the heart of our con-
struction lies an idea of Arnborg et al. [4] employed in their NP-completeness
proof for Treewidth. They interpreted the treewidth of a graph as the mini-
mum cost of an elimination ordering on its vertices2, and showed how for a given
graph G a co-bipartite graph G∗ can be created such that the cost of elimination
orderings on G∗ corresponds to the cutwidth of G under a related ordering.

2 To eliminate a vertex in a graph means to remove it while completing its open
neighborhood into a clique. When eliminating the vertices of a graph in the order
given by π, the cost of the elimination ordering π is the maximum degree of a vertex
at the time it is eliminated.
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We extend their construction significantly. By the degree bound, instances
with n vertices have O(n2) different degree sequences. The framework of cross-
composition thus allows us to work on instances with the same degree sequence
(and same k). By enforcing that the structure of one side of the co-bipartite
graph G∗ only has to depend on this sequence, all inputs can share the same
“right hand side” of the co-bipartite graph; this part will remain small and act as
the modulator. By a careful balancing act of weight values we then ensure that
the cost of elimination orderings on the constructed graph G∗ are dominated
by eliminating the vertices corresponding to exactly one of the input instances,
ensuring that a sufficiently low treewidth is already achieved when one of the
input instances is yes. On the other hand, the use of a binary-encoding repre-
sentation of instance numbers ensures that low-cost elimination orderings for G∗

do not mix vertices corresponding to different input instances. The remaining
details can be found in the full version of this paper. Our construction yields the
following results.

Theorem 2. Unless NP ⊆ coNP/poly, Pathwidth and Treewidth do not
admit polynomial kernels when parameterized by a modulator to a single clique.

Interestingly, the parameter at hand is nothing else than the size of a vertex
cover in the complement graph.

6 Conclusions

In this paper, we investigated the existence of polynomial kernelizations for
Pathwidth. Taking into account that the problem is already known to be AND-
compositional with respect to the target pathwidth — thus excluding polynomial
kernels under the AND-distillation conjecture — we study alternative, structural
parameterizations.

Our main result is that Pathwidth admits no polynomial kernelization with
respect to the number of vertex deletions necessary to obtain a clique, unless
NP ⊆ coNP/poly. This rules out polynomial kernels for vertex deletion distance
from various interesting graph classes on which Pathwidth is known to be
polynomial-time solvable, like chordal and interval graphs.

On the positive side we develop a collection of safe reduction rules for Path-
width. Analyzing the effect of the rules we show that they give polynomial ker-
nels with respect to the following parameters: vertex cover (i.e., distance from
the class of independent sets), distance from graphs of bounded component size,
and distance from disjoint union of stars.

It is an interesting open problem to determine whether there is a polynomial
kernel for Pathwidth parameterized by the size of a feedback vertex set. For the
relatedTreewidth problem, a kernel withO(|S|4) vertices is known [6], where S
denotes a feedback vertex set. Regarding Pathwidth, long paths in G− S are
the main obstacle that needs to be addressed by additional reduction rules.
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1 Introduction

The study of polynomial kernelization and, in particular, techniques for rul-
ing out polynomial kernelizations has turned into one of the most well-studied
directions in parameterized complexity [1,2,3,4,5,6,7,8] (see Section 2 for basic
definitions). Almost all kernelization lower bound results and tools are, directly
or indirectly, based on a framework due to Bodlaender et al. [1] and Fortnow
and Santhanam [6]. On a high level the framework centers around the fact that
NP-hard problems cannot have both a polynomial kernelization and a so-called
composition algorithm unless NP ⊆ coNP/poly (known to cause a collapse of the
polynomial hierarchy). Chen and Mueller were the first to observe that the conse-
quence still holds when both the kernelization and the composition are allowed to
use co-nondeterminism, which is implicit in the work of Fortnow and Santhanam
(cf. [9]). The aim of this paper is to explore the use of co-nondeterminism for
the purpose of showing lower bounds for kernelization.

The only lower bound result so far based on a co-nondeterministic composition
was given recently by Kratsch [8]. It is showed that the problem of finding an
independent set or a clique of size at least k in a given graph does not admit a
polynomial kernel with respect to k; we call the problem Ramsey for its relation
to Ramsey’s theorem. The composition used in the lower bound proof [8] relies
on embedding instances of an improvement version of Ramsey into a so-called
host graph; co-nondeterminism is used to, essentially, find such a graph.

Ramsey is a special case of the Π-Induced Subgraph problem (defined be-
low) whose parameterized complexity was determined by Khot and Raman [10].
This work seeks to develop kernelization lower bounds for Π-Induced Sub-

graph (when parameterized by the solution size k), hoping to find further ap-
plications of co-nondeterminism for kernelization lower bounds.

Finding Induced Π-subgraphs. For a hereditary (i.e., closed under taking
induced subgraphs) graph property Π , the Π-Induced Subgraph problem
asks for the largest induced subgraph in the given graph G that belongs to the
class Π . A classical result by Lewis and Yannakakis [11] from 1980 asserts that
Π-Induced Subgraph is NP-hard for any non-trivial hereditary property Π .

Π-Induced Subgraph Parameter: k.
Input: A graph G and an integer k.
Question: Does there exist an induced subgraph of G on k vertices that
belongs to Π?

Note that if Π contains all independent sets and all cliques, Π-Induced Sub-

graph is fixed-parameter tractable and admits a kernel of exponential size: by
Ramsey’s theorem, if G is too large, it contains a clique or an independent set
of size k. If Π excludes both cliques and independent sets of a certain size then,
by Ramsey’s theorem, Π is finite and the problem is trivial. Khot and Raman
[10] proved that for all other graph classes Π , Π-Induced Subgraph becomes
W[1]-hard. Given this characterization we study the existence of polynomial
kernelizations when Π is restricted to contain all independent sets and cliques.
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Our Work. Regarding Π-Induced Subgraph we show that for most natural
graph classes Π , including cographs, chordal, interval, split, perfect, and cluster
graphs, there is no polynomial kernelization unless NP ⊆ coNP/poly. This is
proved by lower bounds for two classes of choices for Π which are established
by a co-nondeterministic cross-composition and a parameterized reduction from
Ramsey respectively.

As one tool for our compositions we establish a nice trick for allowing easier
source problems which should be of independent interest for other lower bounds.
We show that for two general classes of problems, modeled after monotone and
anti-monotone optimization problems, it suffices to start from improvement ver-
sions, where each instance comes with a guaranteed solution which is only off
by one from the target value. For example, we define Improvement Π-In-
duced Subgraph as the Π-Induced Subgraph problem, with an additional
set X ⊆ V (G) given in the input, that satisfies |X | = k − 1 and G[X ] ∈ Π .

Since the breakthrough paper of Bodlaender et al. [1] it has been known that
improvement versions are useful source problems for deriving compositions. Un-
fortunately this comes at a price: The framework requires to show NP-hardness
of the improvement version; this may be straightforward, but it can be “a tough
nut” or outright impossible. By introducing co-nondeterminism also into this
part of the picture we are able to show NP-hardness under co-nondeterministic
many-one reductions (see Section 3 for a precise definition) and establish that
this is sufficient for all existing variants of the framework.

The Erdős-Hajnal Conjecture. Surprisingly, the question of kernelizations
for Π-Induced Subgraph turns out to be related to the well-known Erdős-
Hajnal conjecture about Ramsey bounds in hereditary graph classes. For an
undirected graph G, let hom(G) denote the largest size of any clique or in-
dependent set of G. The well-known Ramsey’s theorem asserts that hom(G) ≥
1
2 log |V (G)| [12], and with high probability hom(G) = O(log |V (G)|) for random
graphs G(n, 1

2 ) [13]. Clearly the randomized argument for the upper bound fails
if we assume that G belongs to some fixed non-trivial hereditary property Π .
Erdős and Hajnal conjectured in 1989 that indeed forbidding a fixed induced
subgraph may change the behavior of hom(G) dramatically.

Conjecture 1 ([14]). For every graph H there exists a constant ε(H) > 0 such
that ifG does not containH as an induced subgraph, then hom(G) ≥ |V (G)|ε(H).

On the one hand, a proof of this conjecture would give polynomial bounds for
Ramsey numbers when restricted to any hereditary class Π of graphs. On the
other hand, it implies exponential lower bounds for the minimum number of
vertices required to force the existence of a Π subgraph of a certain size.

Related Work. An alternative way of parameterizing Π-Induced Subgraph

is to use the complement parameter, i.e., the number of vertices to be deleted to
result in a graph in Π . Cai [15] has shown that this problem is fixed-parameter
tractable and admits a polynomial sized kernel when Π forbids a finite set of
induced subgraphs. A complete characterization is open for hereditary Π with
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an infinite forbidden set, though parameterized results are known for specific
properties, e.g., [16,17,18,19].

2 Preliminaries

Graphs and the Erdős-Hajnal Property. We use standard graph notation,
see e.g. [20]. We refer to [21] for the definitions of some of the graph classes. A
family Π of graphs is said to be non-trivial if Π and its complement are infinite.

Definition 1. A hereditary graph class Π has the Erdős-Hajnal property if there
exists ε(Π) > 0 such that every G ∈ Π has hom(G) ≥ |V (G)|ε(Π). I.e., every
graph in Π has a clique or an independent set of size at least |V (G)|ε(Π).

Lemma 1 (folklore, ♠1). The class of perfect graphs, as well as any of its
hereditary subclasses, has the Erdős-Hajnal property.

Although Conjecture 1 is open, its statement is proven for many graphs H . One
of the most important partial results is one due to Alon et al. [22].

Definition 2. Let G be a graph and (Hx)x∈V (G) be a family of graphs, one
for each vertex of G. We define the graph Embed(G; (Hx)x∈V (G)) as the graph
obtained from G by replacing each vertex x with the graph Hx. Formally,

V (Embed(G; (Hx)x∈V (G))) = {v(x, u) : x ∈ V (G), u ∈ V (Hx)},
E(Embed(G; (Hx)x∈V (G))) = {v(x, u)v(x,w) : x ∈ V (G), uw ∈ E(Hx)}

∪{v(x, u)v(y, w) : xy ∈ E(G), u ∈ V (Hx), w ∈ V (Hy)}

We say that Embed(G; (Hx)x∈V (G)) is obtained by embedding (Hx)x∈V (G) into
G. We say that a hereditary class Π is closed under embedding if for all G ∈ Π
and Hx ∈ Π, for x ∈ V (G), the graph Embed(G; (Hx)x∈V (G)) belongs to Π.

Theorem 1 ([22]). Let G be a graph and (Hx)x∈V (G) be a family of graphs. If
the classes of G-free graphs and Hx-free graphs, for all x ∈ V (G), satisfy the
Erdős-Hajnal property, then the class of Embed(G; (Hx)x∈V (G))-free graphs also
satisfies the Erdős-Hajnal property.

Corollary 1 (♠). Let Π be a hereditary property that forbids K�,� for some
integer �. Then Π satisfies the Erdős-Hajnal property.

Proposition 1 ([23], ♠). Cographs, perfect graphs, permutation graphs, weakly
chordal graphs and AT-free graphs are closed under embedding.

Parameterized Complexity and Kernelization. In the parameterized com-
plexity setting, an instance comes with an integer parameter k — formally, a
parameterized problem Q is a subset of Σ∗ × N for some finite alphabet Σ.
We say that the problem is fixed parameter tractable (FPT) if there exists an

1 Proofs of results marked with ♠ are deferred to the full version of the paper.
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algorithm solving any instance (x, k) in time f(k)poly(|x|) for some (usually
exponential) computable function f . It is known that a problem is FPT if and
only if it is kernelizable: a kernelization algorithm for a problem Q takes an
instance (x, k) and in time polynomial in |x| + k produces an equivalent in-
stance (x′, k′) (i.e., (x, k) ∈ Q iff (x′, k′) ∈ Q) such that |x′| + k′ ≤ g(k) for
some computable function g. The function g is the size of the kernel, and if it is
polynomial, we say that Q admits a polynomial kernel.

Kernelization Hardness Framework. The two main ways of showing kernel-
ization lower bounds are to either give some variant of composition or to transfer
a lower bound from another problem to the target problem by an appropriate
reduction. Next we provide the essential definitions for both strategies.

Definition 3 (polynomial equivalence relation [2]). An equivalence rela-
tion R on Σ∗ is called a polynomial equivalence relation if the following holds:

1. Equivalence of any x, y ∈ Σ∗ can be checked in time polynomial in |x|+ |y|.
2. Any finite set S ⊆ Σ∗ has at most (maxx∈S |x|)O(1) R-equivalence classes.

The idea behind polynomial equivalence relations is that it suffices to give cross-
compositions that work for any single equivalence class.

Definition 4 (co-nondeterministic cross-composition). Let L ⊆ Σ∗ and
let Q ⊆ Σ∗×N be a parameterized problem. We say that L coNP-cross-composes
into Q if there is a polynomial equivalence relation R and a co-nondeterministic
algorithm which, given t strings x1, x2, . . . , xt belonging to the same equivalence
class of R, computes on each computation path an instance (x∗, k∗) ∈ Σ∗ × N

in time polynomial in
∑t

i=1 |xi| such that:

1. if xi ∈ L for some i ∈ {1, . . . , t} then each computation path returns an
instance (x∗, k∗) ∈ Q,

2. if xi /∈ L for all i ∈ {1, . . . , t} then at least one computation path returns an
instance (x∗, k∗) /∈ Q,

3. and k∗ is bounded by a polynomial in (max1≤i≤t |xi| + log t) in each out-
put (x∗, k∗).

The following theorem is an easy consequence of combining results for cross-
composition [2] and coNP-composition [8]. The key fact is that a co-nondeter-
ministic cross-composition of some language L into a parameterized problem Q
combined with a polynomial kernelization forQ would give a co-nondeterministic
weak distillation for L. As observed by Chen and Mueller the proof technique
of Fortnow and Santhanam [6] still applies for co-nondeterministic distillations
and implies L ∈ coNP/poly.

Theorem 2. If L ⊆ Σ∗ has a co-nondeterministic cross-composition into the
parameterized problem Q and Q has a polynomial kernel then L ∈ coNP/poly.
If L is NP-hard then NP ⊆ coNP/poly.

The second lower bound strategy, instead of a direct proof via compositions,
is to provide a polynomial parameter transformation from a problem with an
established lower bound.
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Definition 5 ([24]). Let P,Q ⊆ Σ∗ × N be parameterized problems. We say
that a polynomially computable function f : Σ∗ × N → Σ∗ × N is a polynomial
parameter transformation (PPT) from P to Q if for all (x, k) ∈ Σ∗ × N the
following holds: (x, k) ∈ P if and only if (x′, k′) = f(x, k) ∈ Q and k′ ≤ kO(1).

Theorem 3 ([24,5]). Let P and Q be parameterized problems and P̃ and Q̃ be
the unparameterized versions of P and Q respectively. Suppose that P̃ is NP-hard
and Q̃ is in NP. Assume that there is a polynomial parameter transformation
from P to Q. Then if Q admits a polynomial kernel, so does P . (Hence if P
admits no polynomial kernel under some assumption then neither does Q.)

3 Co-nondeterminism and Improvement Versions

In this section we show how to use improvement versions of NP-hard problems
in compositions, without requiring them to be NP-hard themselves, but requir-
ing a weaker assumption of NP-hardness under co-nondeterministic many-one
reductions instead. We include here a proof for special case of Improvement Π-
Induced Subgraph; a general result is deferred to the full version.

Definition 6. Let L,L′ ⊆ Σ∗ be two languages. We say that a nondeterministic
polynomially computable function f is a co-nondeterministic many-one reduction
from L to L′ if the following holds:

1. if x ∈ L, then on all computation paths f(x) ∈ L′;
2. if x /∈ L, then there exists a computation path with f(x) /∈ L′.

Proposition 2 (♠). Let L and L′ be languages with L ∈ coNP/poly. If there is
a co-nondeterministic many-one reduction from L′ to L then L′ ∈ coNP/poly.

Proposition 3. Let Π be a hereditary graph class for which membership can be
tested in deterministic polynomial time. Then there exists a (polynomial-time)
co-nondeterministic many-one reduction from Π-Induced Subgraph to Im-

provement Π-Induced Subgraph.

Proof. Let (G, k) be an instance of Π-Induced Subgraph. The reduction will
guess an integer k′ ∈ {1, . . . , k} and a set X of k′ − 1 vertices. Then it checks
in deterministic polynomial time whether the subgraph induced by X is con-
tained in Π , i.e., if G[X ] ∈ Π . If this is not the case then a dummy YES-
instance of Improvement Π-Induced Subgraph is returned. Otherwise, the
instance (G,X, k′) is returned. This completes the description of the reduction.

Now, if (G, k) is a YES-instance, then it is easy to see that each path returns
a YES-instance of Improvement Π-Induced Subgraph: The guessed set X
is returned only if it induces a graph in Π , and G contains a Π-subgraph on k′

vertices for all k′ ∈ {1, . . . , k}.
If (G, k) is a NO-instance then consider the minimum value k′ ∈ {1, . . . , k}

such that (G, k′) is a NO-instance too; this value is guessed in one branch of the
computation. Clearly G contains a Π-subgraph on k′ − 1 vertices. Hence, one
of the computation paths successfully guesses a subset X of k′ − 1 vertices such
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that G[X ] ∈ Π . On this path the instance (G,X, k′) is returned which can be
easily seen to be a NO-instance of Improvement Π-Induced Subgraph. ��
Theorem 4. Let Π be a non-trivial hereditary graph class for which membership
can be tested in deterministic polynomial time. If there is a coNP-cross-composition
from Improvement Π-Induced Subgraph to Π-Induced Subgraph and Π-
Induced Subgraph has a polynomial kernel then Π-Induced Subgraph ∈
coNP/poly and NP ⊆ coNP/poly.

Proof. It follows from Theorem 2 that the existence of both a coNP-cross-
composition from Improvement Π-Induced Subgraph to Π-Induced Sub-

graph and a polynomial kernelization for Π-Induced Subgraph implies that
Improvement Π-Induced Subgraph ∈ coNP/poly. By Propositions 2 and 3,
we have Π-Induced Subgraph ∈ coNP/poly and, by NP-hardness of Π-In-
duced Subgraph, that NP ⊆ coNP/poly. ��

4 Kernelization Hardness for Some Π-Induced Subgraph
Problems

The following theorem is the main result of this section.

Theorem 5. Unless NP ⊆ coNP/poly, there does not exist a kernelization algo-
rithm with polynomial guarantee on the output size for Π-Induced Subgraph

for any non-trivial hereditary graph class Π that is polynomially recognizable,
contains all independent sets and cliques, is closed under embedding and has the
Erdős-Hajnal property.

This theorem, for example, covers perfect graphs and permutation graphs, as
these classes are closed under embedding due to Proposition 1; recall that all
subclasses of the perfect graphs have the Erdős-Hajnal property. However, split
graphs and chordal graphs are not covered by this theorem as they are not
closed under embedding. See the conclusions for a partial catalogue of graph
classes covered by our results.

By Theorem 4, it suffices to show the following lemma to prove Theorem 5.

Lemma 2. If Π is a hereditary graph class that is polynomially recognizable,
contains all cliques and independent sets, is closed under embedding, and satisfies
the Erdős-Hajnal property, then there exists a coNP-cross-composition algorithm
from Improvement Π-Induced Subgraph into Π-Induced Subgraph.

We now proceed to the description of the coNP-cross-composition algorithm for
Improvement Π-Induced Subgraph towards proving Lemma 2. We start by
preparing a host graph, similar to the case of the Ramsey problem [8]. Fix a
graph class Π satisfying the assumptions of Lemma 2 and let ε > 0 such that
any G ∈ Π satisfies hom(G) ≥ |V (G)|ε.

Recall that the classical Ramsey number R(�) is defined as the smallest integer
such that any graph on R(�) vertices contains an independent set or a clique of
size �. We defineΠ-Ramsey numbers as follows: for a positive integer �, let RΠ(�)
be the smallest integer such that any graph on at least RΠ(�) vertices contains
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an induced subgraph fromΠ of size �. Note that this is well-defined, as all cliques
and independent sets belong to Π , and RΠ(�) ≤ R(�). We continue with a simple
lemma about gaps in Π-Ramsey numbers, similar to the corresponding lemma
about Ramsey numbers in [8].

Lemma 3 (♠). There exists a constant δ(Π) that depends on the class Π only,

such that for any integer t > δ(Π), there exists a positive integer � = O(log1/ε t),
such that RΠ(� + 1) > RΠ(�) + t.

Now we describe the co-nondeterministic construction of a host graph, which
will later be extended to a coNP-cross-composition.

Lemma 4. There exists a nondeterministic algorithm that, given an integer t >
δ(Π), in time polynomial in t either answers FAIL or outputs the following

– an integer � = O(log1/ε t),
– a graph H and a family of sets (Ax)x∈V (H), Ax ⊆ V (H), such that: |V (H)| =

t+o(t) and the graph H satisfies the following covering property: for each x ∈
V (H) the set Ax ⊆ V (H) is of size �, x ∈ Ax, and H [Ax] ∈ Π.

Furthermore, there exists a computation path where the H outputted above
satisfies an additional property that H does not contain an induced subgraph of
size �+ 1 that belongs to Π.

Proof. We make a nondeterministic guess of a positive integer � = O(log1/ε t)
and a graph H0 on tO(1) vertices. By Lemma 3 there is an � = O(log1/ε t)
such that RΠ(� + 1) > RΠ(�) + t. It can be easily verified that for the smallest
such choice of � we have RΠ(�) + t = tO(1). Hence, in at least one computation
path, H0 is a graph on RΠ(�) + t < RΠ(� + 1) vertices which does not contain
any induced subgraph from Π of size �+ 1 (by the definition of RΠ(�+ 1)).

Then we cut the graph H from H0: start with S = ∅ and, while |S| < t,
repeatedly guess a set A ⊆ V (H0 \ S) such that H0[A] ∈ Π and |A| = � and
take S := S∪A. At each step, we verify whether H0[A] ∈ Π : if not, we terminate
and output FAIL. Note that if H0 has (at least) RΠ(�) + t vertices then, as long
as |S| < t, we have |V (H0 \ S)| ≥ RΠ(�) and there exists at least one set A of
size � such that H0[A] ∈ Π . This guarantees that feasible sets A are found on
at least one computation path. Finally, when |S| ≥ t we take H = H0[S]; note
that t ≤ |S| < t+ � = t+ o(t). ��

Proof (of Lemma 2). Let I1, . . . , It be t instances of Improvement Π-Induced
Subgraph of maximum size N . It is straightforward to efficiently partition
such instances into NO(1) equivalence classes: a) malformed instances, b) in-
stances which are trivially NO since k exceeds the number of vertices (which
is bounded by N), c) remaining instances with equal value of k. Note that
all triples (G,X, k) with G[X ] /∈ Π are treated as malformed instances and
can be sorted into the first equivalence class since Π is polynomially recogniz-
able. Hence we may assume well-formed instances of the form Ij = (Gj , Xj , k),
with k ≤ N and Gj [Xj] ∈ Π , since compositions for classes a) and b) are trivial.
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By possibly duplicating some instances, we may assume that t is larger than the
constant δ(Π) given by Lemma 3 for the class Π .

We start by invoking the algorithm from Lemma 4 for the class Π and inte-
ger t, but modify its outputs appropriately. If the algorithm would return FAIL,
we output a trivial YES-instance of Π-Induced Subgraph instead.

Otherwise, we use the graph H and the integer � to construct a graph G′

by embedding one graph Gi into each vertex of H ; as |V (H)| = t + o(t), each
graph Gi is embedded at least once. More formally, we take an arbitrary surjec-
tive function σ : V (H) → {1, 2, . . . , t} and let G′ = Embed(H ; (Gσ(x))x∈V (H)).
Set k′ = �(k−1)+1. We return the instance (G′, k′) of Π-Induced Subgraph.

Clearly, as � = O(log1/ε t), we have k′ ≤ (N + log t)O(1) and the algorithm runs
in nondeterministic polynomial time. We now verify its correctness.

Assume first that (Gi, Xi, k) is a YES-instance to Improvement Π-Induced
Subgraph for some 1 ≤ i ≤ t: let Y ⊆ V (Gi), |Y | = k, Gi[Y ] ∈ Π . Recall that
in this case the coNP-cross-composition algorithm should output a YES-instance
in every computation path; this is clearly true if the algorithm of Lemma 4 fails
to construct a graph H . Otherwise, let x ∈ V (H) be such that σ(x) = i; recall
that x ∈ Ax ⊆ V (H), |Ax| = �, and H [Ax] ∈ Π . Let Yx = Y and Yy = Xσ(y)

for y ∈ Ax \ {x}. Then Y ′ = {v(y, u) : y ∈ Ax, u ∈ Yy} is a set of size k′ =
�(k−1)+1 that induces in G′ a graph isomorphic to Embed(H [Ax]; (G[Yy])y∈Ax).
As H [Ax] ∈ Π and Gσ(y)[Yy] ∈ Π for y ∈ Ax, we infer that G′[Y ′] ∈ Π (since
Π is closed under embedding) and (G′, k′) is a YES-instance for Π-Induced
Subgraph.

For the second case, assume that no graph Gi contains an induced subgraph
of size k that belongs to Π . Let us focus on a computation path where a graph H
and integer � are generated such that H does not contain an induced subgraph
from Π of size � + 1. We claim that in this computation path the generated
instance (G′, k′) is a NO-instance for Π-Induced Subgraph. Assume the con-
trary: let Y ′ ⊆ V (G′), |Y ′| = k′, and G′[Y ′] ∈ Π . Let A = {x ∈ V (H) : ∃u :
v(x, u) ∈ Y ′}. Note that H [A] is an induced subgraph of G′[Y ′], thus H [A] ∈ Π .
Since H does not contain an induced subgraph from Π of size � + 1, |A| ≤ �.
As |Y ′| = k′ = �(k − 1) + 1, by Pigeonhole Principle, there exists x ∈ A such
that Y = {u ∈ V (Gσ(x)) : v(x, u) ∈ Y ′} is of size at least k. Moreover, Gσ(x)[Y ]
is an induced subgraph of G′[Y ′] ∈ Π , thus Y induces a subgraph in Gσ(x) of
size at least k that belongs to Π , a contradiction. ��
By a similar but slightly more technical coNP-cross-composition we can prove
a similar result for graph classes that are not necessarily closed under embed-
ding, but instead exclude a certain biclique Ks,s; e.g., chordal graphs, which
exclude C4 = K2,2.

Theorem 6 (♠). Unless NP ⊆ coNP/poly, there does not exist a kerneliza-
tion algorithm with polynomial guarantee on the output size for Π-Induced
Subgraph for any non-trivial hereditary graph class Π that is polynomially
recognizable, closed under disjoint union and excludes a certain biclique.

The proof of Theorem 6 inspired the slightly more general lower bound result
captured by Theorem 7 which is obtained by giving a polynomial parameter
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reduction from the Ramsey problem to Π-Induced Subgraph; this is showed
in the following section, and Theorem 7 covers both split and chordal graphs as
these classes forbid induced cycles of length 4 (i.e. K2,2).

5 Polynomial Parameter Transformation from RAMSEY

In this section we establish the following theorem which rules out polynomial
kernelizations for Π-Induced Subgraph when Π excludes some biclique Ks,s.

Theorem 7. Unless NP ⊆ coNP/poly, there does not exist a kernelization algo-
rithm with polynomial guarantee on the output size for Π-Induced Subgraph

for any non-trivial hereditary graph class Π that is polynomially recognizable,
contains all independent sets, but excludes a certain biclique.

We note that Theorem 7 is more general than Theorem 6, e.g., by including
split graphs, but still does not cover all the cases of Theorem 5, e.g., the classes
of perfect graphs and cographs are closed under embedding, but contain all
bicliques.

We prove the theorem by a polynomial parameter transformation from the
Ramsey problem. Let us recall the problem definition.

Ramsey Parameter: k.
Input: A graph G and an integer k.
Question: Does G contain an independent set or a clique of size k?

The following lemma, together with Theorem 3 and NP-hardness and ker-
nelization hardness of Ramsey [8], proves Theorem 7. Note that polynomial
recognizability of Π ensures us that Π-Induced Subgraph is in NP.

Lemma 5. For any graph class Π that is polynomially recognizable, contains all
independent sets, but excludes some biclique, there exists a polynomial parameter
transformation that, given an instance (G, k) of Ramsey, outputs an equivalent
instance (G′, k′) of Π-Induced Subgraph.

Proof. Let Ks,s be a biclique that is not in Π .
Let G2 be the join of G and its complement G; that is, V (G2) = V (G)�V (G)

and E(G2) = E(G)∪E(G)∪{uw : u ∈ V (G), w ∈ V (G)}. We define the graphG′

as a graph obtained from G2 by embedding an independent set of size � into each
vertex, where � is a parameter, polynomially bounded in k, that will be chosen
later. In other words, G′ = Embed(G2; (K�)x∈V (G2)). Let k′ = �k. We claim
that, if � is sufficiently large, the Ramsey instance (G, k) is equivalent to the
Π-Induced Subgraph instance (G′, k′).

In one direction, let (G, k) be a YES-instance to Ramsey. Then G2 contains
an independent set of size k, say X ⊆ V (G2). Then X ′ = {v(w, i) : w ∈ X, 1 ≤
i ≤ �} is an independent set of size k′ = k� in G′, and (G′, k′) is a YES-instance
to Π-Induced Subgraph.

In the other direction, let X ′ ⊆ V (G′) be a set of size k′ such that G′[X ′] ∈ Π .
Let Y = {w ∈ V (G2) : ∃iv(w, i) ∈ X ′} and Z = {w ∈ Y : |{1 ≤ i ≤ � :
v(w, i) ∈ X ′}| ≥ s}. The key observation is that sinceG′[X ′] does not contain the
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Table 1. A partial catalogue of graph classes covered by our results; all except split
graphs are closed under disjoint union

Graph Class
closed under
Embedding

Has E-H
Property

Forbids
Biclique

Covered by
Theorem

Perfect, Weakly Chordal,
Cographs, Comparability

Yes Yes No 5

Chordal, Interval, Cluster,
Proper Interval

No Yes Yes, K2,2 6 and 7

Split No Yes Yes, K2,2 7

Claw-Free No Yes Yes, K3,3 6 and 7

AT-free Yes Open No
5 (assuming

E-H Conjecture)

biclique Ks,s as a subgraph, Z is an independent set in G2. Indeed, if u,w ∈ Z
and uw ∈ E(G2) then any s vertices of the form v(w, i) together with any s
vertices of the form v(u, j) induce Ks,s in G′. As G2 is a join of G and G, we
infer that Z is wholly contained in V (G) or wholly contained in V (G).

If |Z| ≥ k, we are done, as Z induces an independent set in G or in G.
Otherwise, as |Z| < k but |X ′| = k′, we infer that |Y \ Z| > �/s. By Lemma 1,
there exists a constant ε = ε(Ks,s) > 0, such that for any Ks,s-free graph H (in
particular, for anyH ∈ Π), hom(H) ≥ |V (H)|ε, and henceΠ satisfies the Erdős-
Hajnal property with the exponent ε. Let � = s(2k)1/ε, so that |Y \Z| > (2k)1/ε.
Note that for any fixed Π , � and k′ are polynomially bounded in k.

Now, G2[Y ] ∈ Π , as G2[Y ] is isomorphic to an induced subgraph of G′[X ′],
and hence it contains a set X that induces a clique or an independent set of
size 2k in G2. At least k vertices of X lie in G or in G, and the Ramsey

instance (G, k) is a YES-instance. ��

6 Conclusion

We showed how to use improvement versions of NP-hard problems for com-
positions without requiring them to be NP-hard, by using the much weaker
property of NP-hardness under co-nondeterministic many-one reductions. We
believe that this may simplify future lower bound proofs. Using this tool, we
showed kernelization hardness results for Π-Induced Subgraph for polynomi-
ally recognizable hereditary graph classes that either exclude bicliques or are
closed under embedding, that also satisfy the Erdős-Hajnal property. Table 1
contains a partial list of graph classes covered by our results of the paper. Note
that if the kernelization hardness result holds for a class Π , then it also holds
for the class that contains the complement of each of the graphs in Π .

It would be interesting to know whether there are any non-trivial hereditary
properties Π for which Π-Induced Subgraph has a polynomial sized kernel.
We conjecture that there are none.
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Abstract. We study the query complexity of testing for properties de-
fined by read once formulae, as instances of massively parametrized prop-
erties, and prove several testability and non-testability results. First we
prove the testability of any property accepted by a Boolean read-once
formula involving any bounded arity gates, with a number of queries ex-
ponential in ε and independent of all other parameters. When the gates
are limited to being monotone, we prove that there is an estimation algo-
rithm, that outputs an approximation of the distance of the input from
satisfying the property. For formulae only involving And/Or gates, we
provide a more efficient test whose query complexity is only quasipoly-
nomial in ε. On the other hand we show that such testability results do
not hold in general for formulae over non-Boolean alphabets; specifically
we construct a property defined by a read-once arity 2 (non-Boolean)
formula over alphabets of size 4, such that any 1/4-test for it requires a
number of queries depending on the formula size.

1 Introduction

Property Testing deals with randomized approximation algorithms that oper-
ate under low information situations. The definition of a property testing al-
gorithm uses the following components: A set of objects, usually the set of
strings Σ∗ over some alphabet Σ; a notion of a single query to the input object
w = (w1, . . . , wn) ∈ Σ∗, which in our case would consist of either retrieving the
length |w| or the i’th letter wi for any i specified by the algorithm; and finally a
notion of farness, a normalized distance, which in our case will be the Hamming
distance — farness(w, v) is defined to be ∞ if |w| �= |v| and otherwise it is
|{i : wi �= vi}|/|v|.

Given a property P , that is a set of objects P ⊆ Σ∗, an integer q, and a
farness parameter ε > 0, an ε-test for P with query complexity q is an algorithm
that is allowed access to an input object only through queries, and distinguishes
between inputs that satisfy P and inputs that are ε-far from satisfying P (that is
inputs whose farness from any object from P is more than ε) while using at most
q queries. By their nature the only possible testing algorithms are probabilistic,
with either 1-sided or 2-sided error (1-sided error algorithms must accept objects
� Research supported in part by an ERC-2007-StG grant number 202405.
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from P with probability 1). Traditionally the query “what is |w|” is not counted
towards the q query limit.

The ultimate goal of Property-Testing research is to classify properties ac-
cording to their optimal ε-test query-complexity. In particular, a property whose
optimal query complexity depends on ε alone and not on the length |w| is called
testable. In many (but not all) cases a “query-efficient” property test will also
be efficient in other computational resources, such as running time (usually it
will be the time it takes to retrieve a query multiplied by some function of the
number of queries) and space complexity (outside the space used to store the
input itself).

Property-Testing was first addressed by Blum, Luby and Rubinfeld [4], and
most of its general notions were first formulated by Rubinfeld and Sudan [19],
where the investigated properties are mostly of an algebraic nature, such as the
property of a Boolean function being linear. The first excursion to combinatorial
properties and the formal definition of testability were by Goldreich, Goldwasser
and Ron [12]. Since then Property-Testing has attracted significant attention
leading to many results. For surveys see [6], [11], [17], [18].

Many times families of properties are investigated rather than individual prop-
erties, and one way to express such families is through the use of parameters.
For example, k-colorability (as investigated in [12]) has an integer parameter,
and the more general partition properties investigated there have the sequence
of density constraints as parameters. In early investigations the parameters were
considered “constant” with regards to the query complexity bounds, which were
allowed to depend on them arbitrarily. However, later investigations involved
properties whose “parameter” has in fact a description size comparable to the
input itself. Probably the earliest example of this is [15], where properties ac-
cepted by a general read-once oblivious branching program are investigated. In
such a setting a general dependency on the parameter is inadmissible, and indeed
in [15] the dependency is only on the maximum width of the branching program,
which may be thought of as a complexity parameter of the stated problem.

A fitting name for such families of properties is massively parametrized prop-
erties. A good way to formalize this setting is to consider an input to be divided
to two parts. One part is the parameter, the branching program in the example
above, to which the testing algorithm is allowed full access without counting
queries. The other part is the tested input, to which the algorithm is allowed
only a limited number of queries as above. Also, in the definition of farness only
changes to the tested input are allowed, and not to the parameter. In other
words, two “inputs” that differ on the parameter part are considered to be ∞-
far. In this setting also other computational measures commonly come into play,
such as the running time it takes to plan which queries will be made to the tested
input.

Recently, a number of results concerning a massively parametrized setting
(though at first not under this name) have appeared. See for example [13,5,8,10]
and the survey [16], as well as [2], where such an ε-test was used as part of a
larger mechanism.
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A central area of research in Property-Testing in general and Massively-
Parametrized Testing in particular is to associate the query complexity of prob-
lems to their other measures of complexity. There are a number of results in this
direction, to name some examples see [1,15,9]. In [3] the study of formulae sat-
isfiability was initiated. There it was shown that there exists a property that is
defined by a 3-CNF formula and yet has a query complexity that is linear in the
size of the input. This implies that knowing that a specific property is accepted
by a 3-CNF formula does not give any information about its query complexity.
In [14] it was shown that if a property is accepted by a read-twice CNF formula,
then the property is testable. Here we continue this line of research.

In this paper we study the query complexity of properties that are accepted
by read once formulae. These can be described as computational trees, with the
tested input values at the leaves and logic gates at the other nodes, where for
an input to be in the property a certain value must result when the calculation
is concluded at the root.

We prove a number of results. Due to space considerations we provide in this
extended abstract only the proofs of the most general of them, while the rest can
be found in the full version [7]. Section 2 contains preliminaries. First we define
the properties we test, and then we introduce numerous definitions and lemmas
about bringing the formulas whose satisfaction is tested into a normalized ”basic
form”. These are important and in fact implicitly form a preprocessing part of
our algorithms. Once the formula is put in a basic form, testing an assignment
to the formula becomes manageable.

In Section 3 we show the testability of properties defined by formulae involving
arbitrary gates of bounded arity. We suppply a brief analysis of the running times
of the algorithms in Section 4. One interesting implication of the testability
results presented here, is that any read-once formula accepting an untestable
Boolean property must use unbounded arity gates other than And/Or.

More results are available in the full version [7]: For such formula involving
only monotone gates, we provide an estimation algorithm, that is an algorithm
that not only tests for the property but with high probability outputs a real
number η such that the true farness of the tested input from the property is
between η − ε and η + ε. We also show that when restricted to And/Or gates,
we can provide a test whose query complexity is quasipolynomial in ε. On the
other hand, we prove that these results can not be generalized to alphabets
that have at least four different letters. We construct a formula utilizing only
one (symmetric and binary) gate type over an alphabet of size 4, such that the
resulting property requires a number of queries depending on the formula (and
input) size for a 1/4-test.

2 Preliminaries

We use [k] to denote the set {1, . . . , k}. A digraph G is a pair (V, E) such that
E ⊆ V × V . For every v ∈ V we set out-deg(v) = {u ∈ V | (u, v) ∈ E}.
A path is a tuple (u1, . . . , uk) ∈ |V |k such that u1, . . . , uk are all distinct and
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(ui, ui+1) ∈ E for every i ∈ [k − 1]. The length of a path (u1, . . . , uk) ∈ |V |k is
k − 1. We say that there is a path from u to v if there exists a path (u1, . . . , uk)
in G such that u1 = u, and uk = v. The distance from u ∈ V to v ∈ V , denoted
dist(u, v), is the length of the shortest path from u to v if one exists and infinity
otherwise.

We use the standard terminology for outward-directed rooted trees. A rooted
directed tree is a tuple (V, E, r), where (V, E) is a digraph, r ∈ V and for every
v ∈ V there is an unique path from r to v. Let u, v ∈ V . If out-deg(v) = 0 then
we call v a leaf. We say that u is an ancestor of v and v is a descendant of u if
there is a path from u to v. We say that u is a child of v and v is a parent of u
if (v, u) ∈ E, and set Children(v) = {w ∈ V | w is a child of v}.

2.1 Formulae, Evaluations and Testing

With the terminology of rooted trees we now define our properties; first we define
what is a formula and then we define what it means to satisfy one.

Definition 1 (Formula). A Read-Once Formula is a tuple Φ =
(V, E, r, X, κ, B, Σ), where (V, E, r) is a rooted directed tree, Σ is an alphabet, X
is a set of variables (later on they will take values in Σ), B ⊆ ⋃

k<∞{Σk → Σ}
a set of functions over Σ, and κ : V → B ∪ X ∪ Σ satisfies the following (we
abuse notation somewhat by writing κv for κ(v)).

– For every leaf v ∈ V we have that κv ∈ X ∪ Σ.
– For every v that is not a leaf κv ∈ B is a function whose arity is

|Children(v)|.
In the case where B contains functions that are not symmetric, we additionally
assume that for every v ∈ V there is an ordering of Children(v) = (u1, . . . , uk).

In the special case where Σ is the binary alphabet {0, 1}, we say that Φ is
Boolean. Unless stated otherwise Σ = {0, 1}, in which case we shall omit Σ from
the definition of formulae. A formula Φ = (V, E, r, X, κ, B, Σ) is called read k-
times if for every x ∈ X there are at most k vertices v ∈ V , where κv ≡ x. We call
Φ a read-once-formula if it is read 1-times. A formula Φ = (V, E, r, X, κ, B, Σ)
is called k-ary if the arity (number of children) of all its vertices is at most k.
If a formula is 2-ary we then call it binary. A function f : {0, 1}n → {0, 1}
is monotone if whenever x ∈ {0, 1}n is such that f(x) = 1, then for every
y ∈ {0, 1}n such that x ≤ y (coordinate-wise) we have f(y = 1) as well. If all
the functions in B are monotone then we say that Φ is (explicitly) monotone.
We denote |Φ| = |X | and call is the formula size.

Definition 2 (Sub-Formula). Let Φ = (V, E, r, X, κ, B) be a formula and u ∈
V . The formula Φu = (Vu, Eu, u, Xu, κ, B), is such that Vu ⊆ V , with v ∈ Vu

if and only if dist(u, v) is finite, and (v, w) ∈ Eu if and only if v, w ∈ Vu and
(v, w) ∈ E. Xu is the set of all κv ∈ X such that v ∈ Vu. If u �= r then we call
Φu a strict sub-formula. We define |Φu| to be the number of variables in Vu, that
is |Φu| = |Xu|.
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Definition 3 (assignment to and evaluation of a formula). An assign-
ment σ to a formula Φ = (V, E, r, X, κ, B, Σ) is a mapping from X to Σ. The
evaluation of Φ given σ, denoted (abusing notation somewhat) by σ(Φ), is defined
as σ(r) where σ : V → Σ is recursively defined as follows.

– If κv ∈ Σ then σ(v) = κv.
– If κv ∈ X then σ(v) = σ(κv).
– Otherwise (κv ∈ B) we set σ(v) = κv(σ(u1), . . . , σ(uk)), where

Children(v) = (u1, . . . , uk).

Given an assignment σ : X → Σ and u ∈ V , we let σu denote its restriction to
Xu, but whenever there is no confusion we just use σ also for the restriction (as
an assignment to Φu).

For Boolean formulae, we set SAT(Φ = b) to be all the assignments σ to Φ such
that σ(Φ) = b. When b = 1 and we do not consider the case b = 0 in that context,
then we simply denote these assignments by SAT(Φ). If σ ∈ SAT(Φ) then we say
that σ satisfies Φ. Let σ1, σ2 be assignments to Φ. We define farnessΦ(σ1, σ2)
to be the relative Hamming distance between the two assignments. That is,
farnessΦ(σ1, σ2) = |{x ∈ X | σ1(x) �= σ2(x)}|/|Φ|. For every subset S of
assignments to Φ we set farnessΦ(σ, S) = min{farnessΦ(σ, σ′) | σ′ ∈ S}. If
farnessΦ(σ, S) > ε then σ is ε-far from S and otherwise it is ε-close to S.

We now have the ingredients to define testing of assignments to formulae in a
massively parametrized model. Namely, the formula Φ is the parameter that is
known to the algorithm in advance and may not change, while the assignment
σ : X → Σ must be queried with as few queries as possible, and farness is
measured with respect to the fraction of alterations it requires.

Definition 4. [(ε, q)-test] An (ε, q)-test for SAT(Φ) is a randomized algorithm
A with free access to Φ, that given oracle access to an assignment σ to Φ operates
as follows.

– A makes at most q queries to σ (where on a query x ∈ X it receives σx as
the answer).

– If σ ∈ SAT(Φ), then A accepts (returns 1) with probability at least 2/3.
– If σ is ε-far from SAT(Φ), then A rejects (returns 0) with probability at least

2/3. Recall that σ is ε-far from SAT(Φ) if its relative Hamming distance from
every assignment in SAT(Φ) is at least ε.

We say that A is non-adaptive if its choice of queries is independent of their
values. We say that A has 1-sided error if given oracle access to σ ∈ SAT(Φ),
it accepts (returns 1) with probability 1. We say that A is an (ε, q)-estimator if
it returns a value η such that with probability at least 2/3, σ is both η + ε-close
and η − ε-far from SAT(Φ).

We can now summarize the contributions of the paper in the following theorem.
The first item is proved in this extended abstract, while the rest can be found
in the full version [7]:

Theorem 5 (Main Theorem). The following theorems all hold:
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– For any read-once formula Φ where B is the set of all functions of arity at
most k there exists a 1-sided (ε, q)-test for SAT(Φ) with q = exp(poly(ε−1)).

– For any read-once formula Φ where B is the set of all monotone func-
tions of arity at most k there exists an (ε, q)-estimator for SAT(Φ) with
q = exp(poly(ε−1)).

– For any read-once formula Φ where B is the set of all conjunctions and
disjunctions of any arity there exists an (ε, q)-test for SAT(Φ) with q =
εO(log ε).

– There exists an infinite family of 4 valued read-once formulae Φ such that
there is no non-adaptive (ε, q)-test for SAT(Φ) with q = O(depth(Φ)), and
no adaptive (ε, q)-test for SAT(Φ) with q = O(log(depth(Φ))).

Note that for the first two items, the degree of the polynomial is linear in k.

2.2 Basic Formula Simplification and Handling

In the following, unless stated otherwise, our formulae will all be read-once and
Boolean. For our algorithms to work, we will need a somewhat “canonical” form
of such formulae. We say that two formulae Φ and Φ′ are equivalent if σ(Φ) =
σ(Φ′) for every assignment σ : X → Σ.

Definition 6. The mDNF (monotone disjunctive normal form) of a monotone
boolean function f : {0, 1}n → {0, 1} is a set of terms T where each term Ti ∈ T
is a subset Ti ⊆ [n], there exists no two different terms Ti, Tj ∈ T such that
Ti ⊂ Tj, and for every x ∈ {0, 1}n, f(x) = 1 if and only if there exists a term
Tj ∈ T such that for all i ∈ Tj, we have that xi = 1.

Observation 7. Any monotone boolean function f : {0, 1}n → {0, 1} has a
unique mDNF T .

Definition 8. For u ∈ V , v ∈ Children(u) is called (a,b)-forceful if σ(v) = a
implies σ(u) = b. v is forceful if it is (a,b)-forceful for some a, b ∈ {0, 1}.

Forceful variables are variables that cause “Or-like” or “And-like” behavior in
the gate.

Definition 9. A vertex v ∈ V is called unforceable if no child of v is forceful.

Definition 10 (k-x-Basic formula). A read-once formula Φ is k-x-basic if it
is Boolean, all the functions in B have arity at least 2, and are either of arity
at most k and unforceable, or ∧ or ∨ of arity at least 2, and Φ satisfies the
following. There is no v ∈ V such that κv ∈ {0, 1}. No ∧ is a child of a ∧ and
no ∨ is a child of a ∨. Any variable may appear at most once in a leaf, either
positively or negated.

The set of variables that appear negated will be denoted by ¬X .

Lemma 11. Every read-once formula Φ with gates of arity at most k has an
equivalent k-x-basic formula Φ′.
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Proof. Suppose for some u that v ∈ Children(u) is (a,b)-forceful. If b = 1 then
κu can be replaced with an ∨ gate, where one input of the ∨ gate is v if a = 1
or the negation of v if a = 0, and the other input is the result of u when fixing
σ(κv) = 1 − a. If b = 0 then κu can be replaced with an ∧ gate, where one input
of the ∧ gate is v if a = 0 or the negation of v if a = 1, and the other input is
the negation of the gate u when it is assumed that σ(κv) = a. After performing
this transformation sufficiently many times we have no forceable gates left.

We will now eliminate ¬ gates. Any ¬ gate in the input or output of a gate
which is not ∧ or ∨ can be assimilated into the gate. Otherwise, a ¬ on the
output of an ∨ can be replaced with an ∧ with ¬’s on all of its inputs, according
to De-Morgan’s laws. Also by De-Morgan’s laws, a ¬ on the output of a ∧ can
be replaced with an ∨ with ¬’s on all of its inputs.

Finally, any ∨ gates that have ∨ children can be merged with them, and the
same goes for ∧ gates. Now we have achieved an equivalent k-x-basic formula.

Note that ∨ and ∧ gates are very much forceable.

2.3 Observations about Subformulae and Farness

Definition 12 (heaviest child h(v)). Let Φ = (V, E, r, X, κ, B) be a formula.
For every v ∈ V we define h(v) to be v if Children(v) = ∅, and otherwise to be
an arbitrarily selected vertex u ∈ Children(v), such that |Φu| = max{|Φw| | w ∈
Children(v)}.

Definition 13 (vertex depth depthΦ(v)). Let Φ = (V, E, r, X, κ, B) be a
formula. For every v ∈ V we define depthΦ(v) = dist(r, v) and depth(Φ) =
max{depthΦ(u) | u ∈ V }.

Observation 14. Let v ∈ V be such that either κv ≡ ∨ and b = 0 or κv ≡ ∧
and b = 1, and farness(σ, SAT(Φv = b)) ≥ ε. For every 1 > α > 0 there exists
S ⊆ Children(v) such that

∑
s∈S |Φs| ≥ εα2|Φ| and farness(σ, SAT(Φw =

b)) ≥ ε(1 − α) for every w ∈ S. Furthermore, the exists a child u ∈ Children(v)
such that farness(σ, SAT(Φu = b)) ≥ ε.

Proof. Let T be the maximum subset of Children(v) such that Φw is ε(1 − α)-
far from being evaluated to b for every w ∈ T . If

∑
t∈T |Φt| < εα2|Φ| then the

distance from having Φv evaluate to b is at most εα2 + ε(1−α)(1−α) < ε, which
contradicts the assumption.

For the last part, note that if no such child exists then Φv is ε-close to being
evaluated to b.

Observation 15. Let v ∈ V be such that either κv ≡ ∨ and b = 1 or κv ≡ ∧
and b = 0, and farness(σ, SAT(Φv = b)) ≥ ε. For every child u ∈ Children(v),
|Φu| ≥ |Φ|ε and farness(σ, SAT(Φu = b)) ≥ ε(1 + ε). Furthermore, ε ≤ 1/2, and
for any u ∈ Children(v) \ {h(v)}, farness(σ, SAT(Φu = b)) ≥ 2ε.
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Proof. First suppose that the weight of some child u is less than ε. In this case
setting u to b makes the formula Φv evaluate to b by changing less than an ε
fraction of inputs, a contradiction.

Since there are at least two children, every child u is of weight at most 1 − ε
and since setting it to b would make Φv evaluate to b, it is at least ε(1 + ε)-far
from being evaluated to b.

For the last part, note that since Since |Children(v)| > 1, there exists u ∈
Children(v) such that |Φu| ≤ |Φv|/2. Thus every assignment to Φv is 1/2-
close to an assignment σ′ by which Φv evaluates to b. Also note that any u ∈
Children(v) \ {h(v)} is of weight at most 1/2, and therefore if Φu were 2ε-close
to being evaluated to b, Φv was ε-close to being evaluated to b.

2.4 Heavy and Light Children in General Gates

Definition 16. Given a formula Φ, a parameter ε and a vertex u, we let � =
�(u, ε) be the smallest integer such that the size of the �’th largest child of u is
less than |Φ|(4k/ε)−� if it exists, and set � = k +1 otherwise. The heavy children
of u are the � − 1 largest children of u, and the rest of the children of u are its
light children.

Lemma 17. If an unforceable vertex v has a child u such that |Φv|(1−ε) ≤ |Φu|,
then σ is both ε-close to SAT(Φv = 1) and ε-close to SAT(Φv = 0).

Observation 18. If κu �≡ ∧ and κu �∈ X and σ is ε-far from SAT(Φu = b),
then it must have at least two heavy children.

3 Upper Bound for General Bounded Arity Formula

Algorithm 1 tests whether the input is ε-close to having output b with 1-sided
error, and also receives a confidence parameter δ. The explicit confidence pa-
rameter makes the inductive arguments easier and clearer.

Lemma 19. The depth of recursion in Algorithm 1 is at most
16(4k/ε)k log(ε−1).

Proof. If ε > 1 then the condition in Line 1 is satisfied and the algorithm returns
without making any queries.

All recursive calls occur in Lines 8, 13, 17 and 18.
Since Φ is k-x-basic, any call with a subformula whose root is labeled by

∧ results in calls to subformulas, each with a root labeled either by ∨ or an
unforceable gate, and with the same b value (this is crucial since the b value
for which ∧ recurses with a smaller ε is the b value for which ∨ recurses with
a bigger ε, and vice-versa). Similarly, any call with a subformula whose root is
labeled by ∨ results in calls to subformulas, each with a root labeled either by ∧
or an unforceable gate, and with the same b value. Therefore, an increase of two
in the depth results in an increase of the farness parameter from ε to at least
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Algorithm 1
Input: read-once k-x-basic formula Φ = (V, E, r, X, κ), parameters ε, δ > 0, b ∈ {0, 1},
oracle to σ.
Output: “true” or “false”.
1: if ε > 1 then return “true”
2: if κr ∈ X then return the truth value of σ(r) = b
3: if κr ∈ ¬X then return the truth value of σ(r) = 1 − b
4: if (κr ≡ ∧ and b = 1) or (κr ≡ ∨ and b = 0) then
5: y ←− “true”
6: for i = 1 to l = 32(2k/ε)2k log(δ−1) do
7: u ←− a vertex in Children(r) selected independently at random, where the

probability that w ∈ Children(r) is selected is |Φw |/|Φ|
8: y ←− y ∧ Algorithm 1(Φu, (ε(1 − (2k/ε)−k/16)), σ, δ/2, b)
9: return y

10: if (κr ≡ ∧ and b = 0) or (κr ≡ ∨ and b = 1) then
11: if there exists a child of weight less than ε then return “true”
12: y ←− “false”
13: for all u ∈ Children(r) do y ←− y ∨ Algorithm 1(Φu, (ε(1 + ε)), σ, εδ/2, b)
14: return y
15: if there is a child of weight at least 1 − ε then return “true”
16: for all u ∈ Children(r) do
17: y0

u ←− Algorithm 1(Φu, (ε(1 + (4k/ε)−k)), σ, δ/2k, 0)
18: y1

u ←− Algorithm 1(Φu, (ε(1 + (4k/ε)−k)), σ, δ/2k, 1)
19: if There exists a string x ∈ {0, 1}k such that κr on x would evaluate to b and for

all u ∈ Children(r) we have yxu
u equal to “true” then return “true” else return

“false”

(ε(1 − (2k/ε)−k/16))(ε(1 + (4k/ε)−k)) ≥ ε(1 + (4k/ε)−k/16). Thus in recursive
calls of depth 16(4k/ε)k log(ε−1) the farness parameter exceeds 1 and the call
returns without making any further calls.

Lemma 20. Algorithm 1 uses at most ε−480(4k/ε)k+3 log log(δ−1) queries.

The proof is standard and thus deferred to the full version. It follows from
Lemma 19.

Lemma 21. If Φ on σ evaluates to b then Algorithm 1 returns “true” with
probability 1.

The proof follows by an induction on formula depth and is deferred to the full
version.

Lemma 22. If σ is ε-far from getting Φ to output b then Algorithm 1 returns
“false” with probability at least 1 − δ.

Proof. The proof is by induction over the tree structure, where we partition to
cases according to κr and b. Note that ε ≤ 1

If κr ∈ X or κr ∈ ¬X then by Lines 2 or 3 the algorithm returns “false” if σ
is 0-far from getting Φ to output b.
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If κr ≡ ∧ and b = 1 or κr ≡ ∨ and b = 0, since σ is ε-far from getting Φ
to output b then by Observation 14 we get that there exists T ⊆ Children(r)
such that

∑
t∈T |Φt| ≥ |Φ|ε((2k/ε)−2k/16) and each Φt is ε(1 − (2k/ε)−k/16)-far

from being evaluated to b. Let S be the set of all vertices selected in Line 7. The
probability of a vertex from T being selected is at least ε((2k/ε)−2k/16). Since
this happens at least 32(2k/ε)2k log(δ−1) times independently, with probability
at least 1 − δ/2 we have that S ∩ T �= ∅. Letting w ∈ T ∩ S, the recursive call on
it with parameter ε(1− (2k/ε)−k/16) will return “false” with probability at least
1 − δ/2, which will evetually cause the returned value to be “false” as required.
Thus the algorithm succeeds with probability at least 1 − δ.

Now assume that κr ≡ ∧ and b = 0 or κr ≡ ∨ and b = 1. Since Φ is ε-far
from being evaluated to b, Observation 15 implies that all children are of weight
at least ε, and therefore the conditions of Line 11 would not be triggered. Every
recursive call on a vertex v ∈ Children(r) is made with distance parameter
ε(1 + ε) and so it returns “true” with probability at most εδ/2. Since there are
at most ε−1 children of r, the probability that none returns “true” is at least
1 − δ/2 and in that case the algorithm returns “false” successfully.

Now assume that κr is some unforceable gate. By Observation 17, since Φ is ε-
far from being satisfied the condition in Line 15 is not triggered. If the algorithm
returned “true” then it must be that the condition in Line 19 is satisfied. If there
exists some heavy u ∈ Children(r) such that yb

u is “true” and y1−b
u is “false”,

then by Lemma 21 the formula Φu does evaluate to b and the string in x must be
such that xu = b. For the rest of the children of r, assuming the calls succeeded,
each the subformula rooted in v is (ε(1 + (4k/ε)−k))-close to evaluate to xv.
Since u is heavy, the total weight of Children(r) \ {u} is at most 1 − (4k/ε)−k,
and thus by changing at most a (ε(1 + (4k/ε)−k))(1 − (4k/ε)−k) ≤ ε fraction of
inputs we can get to an assignment where Φ evaluates to b.

If all heavy children u are such that both yb
u and y1−b

u are “true”, then pick
some heavy child u arbitrarily. Since r is unforceable, there is an assignment
that evaluates to b no matter what the value of Φu is. Take such an assignment
x that fits the real value of Φu. Note that for every heavy child v we have that
yxv

v is “true”, and therefore by changing at most an (ε(1 + (4k/ε)−k))-fraction
of the variables in Φv we can get it to evaluate to xv. The weight of u is at
least (4k/ε)−�+1, thus the total weight of the other heavy children is at most
1 − (4k/ε)−�+1 and the total weight of the light children is at most ε

4 (4k/ε)−�.
So by changing all subformulas to evaluate to the value implied by x we change
at most an (ε(1 + (4k/ε)−k))(1 − (4k/ε)−�+1) + ε

4 (4k/ε)−� ≤ ε fraction of inputs
and get an assignment where Φ evaluates to b. Note that this x is not necessarily
the one found in Line 19.

Thus we have found that finding an assignment x in Line 19, assuming the
calls are correct, implies that Φ is ε-close to evaluate to b. The probability that
all relevant calls to an assignment return “true” incorrectly is at most the prob-
ability that the 2k recursive calls err, which by the union bound is at most δ,
and the algorithm will return “false” correctly with probability at least 1 − δ.
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4 The Computational Complexity of the Testers
and Estimator

There are two parts to analyzing the computational complexity of a test for
a massively parametrized property. The first part is the running time of the
preprocessing phase, which reads the entire parameter part of the input, in
our case the formula, but has no access yet to the tested part, in our case the
assignment. This part is subject to traditional running time and working space
definitions, and ideally should have a running time that is quasi-linear or at least
polynomial in the parameter size.

In our case, the preprocessing part would need to take a k-ary formula and
convert it to the k-x-basic form corresponding to the algorithm that we run. We
would also need to put the formula in a data structure that allows the following
operations to be performed as quickly as possible:

For Algorithm 1, we would need to quickly pick a child of a vertex with
probability proportional to its sub-formula size, and know who are the light
children as well as what is the relative size of the smallest child. This mainly
requires storing the size of every sub-formula for every vertex of the tree, as well
as sorting the children of each vertex by their sizes and storing the value of the
corresponding “�”.

It is not hard to see that both constructing the normal form and calculating
the above additional data can be done very efficiently. Furthermore, the only part
that depends on epsilon is designating the light children, but this can also be
done “for all epsilon” at a low cost (by storing the range of ε for every positive �).

The second part is analyzing the running time complexity of the algorithm.
Once the above preprocessing is performed, the time per instantiation (and thus
per query) of the algorithm will be very small (where we charge the time it takes
to calculate a recursive call to the recursive instantiation). This would make it
a cost logarithmic in the input size per query (multiplied by the time it takes to
write and read an address) – where the log incurrence is in fact only when we
need to randomly choose a child according to its weight.
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Abstract. This paper investigates the number of quantum queries made
to solve the problem of reconstructing an unknown string from its sub-
strings in a certain query model. More concretely, the goal of the problem
is to identify an unknown string S by making queries of the following
form: “Is s a substring of S?”, where s is a query string over the given
alphabet. The number of queries required to identify the string S is the
query complexity of this problem.

First we show a quantum algorithm that exactly identifies the string
S with at most 3

4
N + o(N) queries, where N is the length of S. This

contrasts sharply with the classical query complexity N . Our algorithm
uses Skiena and Sundaram’s classical algorithm and the Grover search
as subroutines. To make them effectively work, we develop another sub-
routine that finds a string appearing only once in S, which may have an
independent interest. We also prove two lower bounds. The first one is a
general lower bound of Ω( N

log2 N
), which means we cannot achieve a query

complexity of O(N1−ε) for any constant ε. The other one claims that if
we cannot use queries of length roughly between logN and 3 logN , then
we cannot achieve a query complexity of any sublinear function in N .

Keywords: quantum computing, string algorithms, query complexity,
lower bounds.

1 Introduction

For an input of length N , we usually assume that the time complexity of any
algorithmA is at leastN , since A needs N steps only to read the input. However,
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especially recently, there have been increasing demands for studying algorithms
that run in significantly less than N steps by sacrificing the exactness of the
computation. In this case, we obviously need some mechanism for algorithms
to obtain the input, since it is no longer possible to read all the input bits
sequentially. Oracles are a popular model for this purpose. The most standard
oracle is so-called an index oracle, a mapping f from {0, 1, . . . , N−1} into {0, 1}
such that f(i) returns the ith bit of the input. Thus, we need N oracle calls
in order to get all the input bits. A little surprisingly, however, some Boolean
functions can be computed, with high success probability, using oracle calls much
less than N times. For example, a balanced AND-OR tree can be computed with
O(N0.753...) oracle calls with high success probability [24].

This interesting fact becomes even more impressive if we are allowed to use
quantum oracles. Due to the famous Grover search [16], we need only O(

√
N)

oracle calls to compute the Boolean-OR function with high success probability,
or a quadratic speed-up against its classical version (classically we need Ω(N)
calls). This result is widely known as one of the two most remarkable examples
claiming the superiority of quantum computation over classical computation (the
other is Shor’s integer factorization algorithm [23]).

To compute the Boolean-OR, it suffices to find at least one true value in
the input bits. The oracle identification problem, or the string reconstruction
problem, is more general and more difficult, namely it requires us to recover all
the N bits of the input (thus any Boolean function can be computed without any
additional oracle calls). The quantum index oracle is still nontrivially powerful
for this problem; Ref. [9] shows that N/2 + O(

√
N) oracle calls are enough for

this problem, while we obviously need N queries in the classical counterpart.
There are different types of oracles that are much more powerful for this most
general problem. The quantum IP oracle [6], a function g from {0, 1}N into {0, 1}
such that g(q) = q ·x for the input string x, needs only one oracle call to recover
x while its classical counterpart N oracle calls. Recently, Ref. [18] studied the
balance oracle, which models the balance scale to be used for the counterfeit
coin problem (i.e., for finding the k counterfeit coins in N coins), and shows
its quantum version can be solved with O(k1/4) oracle calls while the classical
version requires Ω(k log(N/k)) calls, where k is the number of 1’s in x.

In 1993, Skiena and Sundaram [22] showed that N+Θ(
√
N) (classical) queries

are sufficient to reconstruct the hidden string x if we use a substring oracle or
an S-oracle, in short. This oracle, h(q), which returns 1 if the query string q
is a substring of x, and 0 otherwise, had been quite popular in the algorithm
community. For example it plays an important role in computational biology
such as sequencing by hybridization [10,19,20]. One should notice that there is
no obvious way (even regardless of its efficiency) of using this oracle for string
reconstruction (h(q) probably returns yes almost always if |q| (the length of q)
is short, say two or three, and no almost always if |q| is, say, 10). Thus Skiena
and Sundaram’s result was highly appreciated, whose basic idea is as follows:
Suppose that we already know that a substring s exists in the input x. Then we
ask the oracle if s1 is a substring. If the answer is yes, we can increase the length
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of a confirmed substring by one. Otherwise, we know s0 is a substring or s is at
the right end of x. Just assume the former and check the latter occasionally and
we can get the above bound. It is almost tight information-theoretically.

Now here is our question in this paper: Is quantum also more powerful than
classical computation for this oracle, and how much is it if yes? One might say
the answer is easy: Instead of asking if s1 is a substring, we ask which of x00,
x01, x10 and x11 is a substring using the 1/4-Grover search [7]. Since 1/4-Grover
needs just one query, we can increase the confirmed substring by two per call, or
we would get a roughly N/2 upper bound. Unfortunately it immediately turns
out that this does not work, since more than one of the four candidates may be
(correct) substrings of x at the same time (recall that 1/4-Grover only works for
a unique solution).

Our Contribution. Here is our main result in this paper:

Theorem 1. The quantum query complexity for identifying S-oracle is at most
3
4N +O(

√
N logN).

Therefore, the quantum algorithm is better than its classical counterpart by a
factor of 3/4. Notice that our algorithm is exact as well as the classical one in [22].
To cope with the difficulty mentioned above, we use Skiena and Sundaram’s
algorithm until the confirmed substring gets to a certain length, then change
our algorithm to the one based on 1/4-Grover. There still exists the possibility
of multiple solutions, say s00 and s01, but now we can assume that s is pretty
long or those two strings need to overlap if they are both solutions. This gives us a
lot of information about the string s, which basically changes the problem into a
certain kind of string manipulation problem that has a long history in theoretical
computer science. By using this information, we construct the procedure which
makes the situation that 1/4-Grover is useful.

Our strong conjecture is that our problem needs at least a linear number of
queries. Our basic idea is to use the quantum adversary method [3,26], but it
turns out that the fact that there is a wide range (one to N) in the length of
query strings makes its direct application hard. We bypass this difficulty with
two different approaches: The first one is to introduce a new query model, an
anchored substring oracle, which is something between our substring oracle and
the standard index oracle and makes it possible to exploit the basic ideas of the
adversary method for the latter. This gives us the following theorem.

Theorem 2. The quantum query complexity for identifying an S-oracle is

Ω
(

N
log2 N

)
.

The second one is to prohibit a small range of length for available queries.

Theorem 3. Suppose that we cannot use queries of length logN−1−2 log logN
to 3 logN . Then the problem of identifying an S-oracle needs Ω(N) queries.

This theorem says that we need to use queries of the range of length between
logN − 1− 2 log logN and 3 logN “effectively” to achieve a sublinear bound.

Related Work. There have been many studies achieving quantum linear
speedups. As mentioned already, a most celebrated one is due to van Dam [9],
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who presented a quantum algorithm for identifying the oracle by N
2 + O(

√
N)

queries. This is optimal up to a constant factor since the lower bound N
4 was

obtained by Ambainis [1]. Another example is ordered search, that is, to find
a target in a sorted list of N items. Farhi et al. [15] invented a quantum algo-
rithm that makes at most c logN queries with c ≈ 0.53 (note that any classical
algorithm needs at least logN queries), and the constant c was subsequently
improved [11,5]. These linear speedups were also turned out to be tight (up to
a constant factor) by the lower bound results in [2,17,12] which improved the
previous lower bounds of [8,14].

There are no quantum studies based on substring oracles, and few ones about
string manipulation previously. One of them is a quantum algorithm given by
Ramesh and Vinay [21] which determines if a given pattern appears in a given
text by combining Grover’s search with a classical string matching technique
called deterministic sampling.

Notes. The proofs of Theorems 2 and 3 are omitted here due to space con-
straints. They can be found in the full version of the present paper [13].

2 Upper Bounds

Now we give the definition of our oracle model. We call it a substring oracle, or
simply an S-oracle.

Definition 1. A substring oracle, or an S-oracle, in short, is a binary string
x = x0 · · ·xN−1 ∈ {0, 1}N . A query to an S-oracle is given as a string s ∈⋃N

k=1{0, 1}k. The answer from the S-oracle is a binary value χ(x; s) defined
as follows: If x has s as substring, that is, there exists an integer i such that
xi+k−1 = sk for all 1 ≤ k ≤ |s| then χ(x; s) = 1 and otherwise χ(x; s) = 0. In
the quantum computation an S-oracle is viewed as the unitary transformation
OS,x that transforms |s〉|a〉 to |s〉|a⊕ χ(x; s)〉.

To give the proof of Theorem 1, we define some notations on strings. The string
representing the concatenation of strings u and v will be denoted uv. When
z = uv, we call u a prefix of z and call v a suffix of z. A string v is called a
presuffix of a string w if v is a prefix of w and also a suffix of w. The string
formed by concatenating i copies of z will be denoted zi. A string t is called the
periodic string of a string a if t is the shortest string such that ai = t(i mod |t|)
for all i (or, equivalently, t is the shortest string such that a can be written as
a = tkb for some integer k and some prefix b of t).

2.1 Basic Ideas and Algorithms

Before the full description of our algorithm, we present the basic idea. The al-
gorithm has three main steps. At the first step, we use Skiena and Sundaram’s
algorithm [22], which extends a substring in the oracle string x by one letter
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with one query. At the second step, we extend the substring z obtained by the
first step to a string zout so that zout can appear only once in x. Note that the
first and second steps are implemented classically. The third step is quantum:
we apply Grover’s search algorithm [16] under the special case that is called 1/4-
Grover search [7]. Recall that the 1/4-Grover search can find a solution surely
with only one query in the case when we know there is only one solution out of
four candidates. Since the second step assures that the substring zout appears
only once in x, there is exactly one substring of x in {00z, 01z, 10z, 11z} for any
string z that extends zout unless z corresponds to the leftmost part of x. So the
1/4-Grover search can extend the substring by two letters with only one query.
If we know that z is a prefix of the oracle string, we run the 1/4-Grover search
for {z00, z01, z10, z11}.

The second step is the most technical and it is also essential to implement
the third step successfully. A key idea for obtaining the substring appearing
only once is relatively simple; extending z by its periodic string. For instance,
we assume x = 1010110110110111110. Then the substring z = 1011011 appears
three times in x. The periodic string t of z is t = 101. Let us extend z by
t as long as possible such that tiz is still a substring of x. In the example
we get a substring t2z = 1011011011011, which appears only once in x. Now
the difficulty is to make the string z obtained by the first step as short as
possible, which improves the complexity of the algorithm. Another key idea for
this difficulty is to analyze what happens when z appears twice in x. When a
substring z with length > N/2 appears twice in x, these occurrences of z must
be partially overlapping, and x has a substring uvw such that z = uv = vw. A
key property is that the overlapped string v is a presuffix of z. Using these key
ideas we can construct the algorithm by starting from the substring z of length
> N/2.

Now we give an exact algorithm Identify and its subroutine MakeOnce.

Algorithm. Identify
Input : an S-oracle OS,x.
Output : the oracle string x.
Step 1. Find a substring z of length �N/2� + 1 using Skiena and Sundaram’s
algorithm [22].
Step 2. Run the algorithm MakeOnce on input z. Let zout be the output.
Step 3. Repeat extending zout to the left by 2 letters using the 1/4-Grover
search. Check whether the extended string is a substring of x after every

√
N

applications of the 1/4-Grover search. If not, we know that a prefix of x is
obtained between the current check point and the previous check point. Then,
find this prefix by binary search.
Step 4. Repeat extending the current substring to the right by 2 letters using
the 1/4-Grover search, and stop when the length of the substring becomes N−1
or N . If the length is N − 1, use a classical query to find the last bit.
(End of Algorithm Identify)
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Algorithm MakeOnce
Input : a string z (a substring of x, |z| > N/2); an S-oracle OS,x.
Output : a substring zout that appears only once in x.
Step 1. T0 := ∅. A0 := ∅. l := 1. z1 := z. (Al is used for the analysis.)
Step 2. Repeat Steps 2.1–2.7.
Step 2.1. Find the shortest string al satisfying the following conditions.
(i) al is a presuffix of zl.
(ii) The periodic string of al is not in Tl−1.
If there is no such string, go to Step 3. Let tl be the periodic string of al.
Tl := Tl−1 ∪ {tl}. Al := Al−1 ∪ {al}.
Step 2.2. Find the largest integer i such that (tl)

izl is also a substring of x.
Define z′l := (tl)

izl.

Step 2.3. Let j be the largest integer such that z′l = utjl al for some string u.
Step 2.4. Let h be the largest integer such that z′l = thl alw for some string w.

Step 2.5. If z′l = tjl al or h < j, then zl+1 := z′l and go to Step 2.7.
Step 2.6. Find the largest integer k such that ukz′l is also a substring of x. Define
zl+1 := ukz′l.
Step 2.7. l := l + 1.
Step 3. lmax := l. zout := zlmax . T := Tlmax−1. A := Almax−1. (lmax, T and A
are used for the analysis.)
(End of Algorithm MakeOnce)

2.2 Analysis of MakeOnce

In this section, we give the analysis of MakeOnce. First, a number of properties
are given for the analysis.

Lemma 1. For any l < lmax, MakeOnce satisfies the following properties.

1. al ∈ A is represented as al = tlbl, where tl ∈ T and |bl| < |tl|.
2. z′l and al ∈ A are prefixes of zl+1.
3. zl (and hence al ∈ A) is a suffix of zl+1.
4. al is a presuffix of al+1 and |al+1| > |al|.
5. |al+1| ≥ |al|+ |tl|.
6. |tl+1| > |tl|.
7. At step 2.6, |u| > |tl|.
8. lmax = O(

√
N).

Now we analyze the query complexity and the correctness of MakeOnce. In what
follows, we refer to the properties 1–8 of Lemma 1 as simply the properties 1–8.

Proposition 1. MakeOnce uses at most O(
√
N logN) queries.

Proof. To obtain zout, we need queries only at Step 2.2 and Step 2.6. These steps
can be implemented by binary search to find tilzl and ukz′l, which use O(logN)

queries. Since the number of repetitions of Step 2 is O(
√
N) by the property 8,

the total number of queries is O(
√
N logN). ��
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Proposition 2. The output zout of MakeOnce appears exactly once in x.

Proposition 2 is proved by contradiction. We assume that zout appears twice in
x. Since |zout| > N

2 , x has a substring uvw such that zout = uv = vw, where
|u| = |w| > 0. Then we can see that v has the following special form.

Lemma 2. v = tml al for some l > 0 and m ≥ 0 where tl ∈ T and al ∈ A.

Proof. First we should notice that zout has no substring which satisfies the con-
ditions at Step 2.1 since we go to Step 3 and zout is output only when there is
no string satisfying the conditions at Step 2.1. On the contrary, v is a presuffix
of zout, which means that v satisfies the condition (i) of Step 2.1. This implies
that v does not satisfy the condition (ii) of Step 2.1. That is, the periodic string
of v must be tl in T for some l. Hence, it is represented as v = tm

′

l y where l > 0,
m′ > 0, tl ∈ T , and |y| < |tl|.

For al ∈ A, let bl be the string such that al = tlbl and |bl| < |tl| as guaranteed
by the property 1. By the property 3, al is a suffix of zout. Also, v is a suffix
of zout. Thus y has suffix bl or bl has suffix y. Now we show that y = bl by
contradiction. Assuming |y| < |bl|, it must hold that tlbl = y′tly for some y′ such
that |y′| < |tl|. Then the length of the periodic string of al is at most |y′|, which
contradicts that tl is the periodic string of al. Assuming |y| > |bl|, y′tlbl = tly
for some y′ such that |y′| < |tl|. Then the length of the periodic string of al is
at most |y′|, which also leads to a contradiction.

By the above arguments, v is represented as v = tm
′

l bl = tml al where m =
m′ − 1. ��

The main statement for the correctness of MakeOnce is now stated as follows.
(In the rest of this section, we assume that u, w, u′ and w′ have positive length.)

Lemma 3. For any l ≤ lmax, any c < l and m ≥ 0, x has no substring utmc acw
such that zl = utmc ac = tmc acw, tc ∈ Tl−1 and ac ∈ Al−1.

Then, by the assumption that zout (= zlmax) appears twice in x, Lemma 2 implies
that x has a substring utml alw for some 0 < l ≤ lmax − 1 and m ≥ 0, which
contradicts Lemma 3. This completes the proof of Proposition 2.

What remains is the proof of Lemma 3. We prove the statement by induction
on l. The case of l = 1 is easy. In this case, T0 = A0 = ∅, z1 = u = w and
|z1| = |z| > N

2 . Hence x does not have a substring uw = z1z1. Next we assume
that the statement holds for l, and show that the statement holds for l+ 1. For
this purpose, we first show the following lemma:

Lemma 4. If x has u′tm
′

c′ ac′w
′ as a substring such that zl+1 = u′tm

′

c′ ac′ =

tm
′

c′ ac′w
′ for some c′ < l and m′ ≥ 0, then x also has utmc acw such that

zl = utmc ac = tmc acw for some c ≤ c′ and m ≥ 0.

Proof. By the property 3, zl is a suffix of zl+1. By the assumption, zl+1 appears
twice in x, and hence zl also appears twice in x. Since |zl| > N/2, x has a
substring uvw with zl = uv = vw. Let t be the periodic string of v. Then v is
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represented as tmvb for some mv > 0, where |b| < |t| and b is a prefix of t. Note
that |t| ≤ |tc′ | since v is a suffix of tm

′

c′ ac′ .
Now we show that there is c ≤ c′ such that t = tc and b = bc, where bc is

the string such that tcbc = ac as guaranteed by the property 1. First we show
t ∈ Tl, which means that t = tc for some c ≤ c′ by |t| ≤ |tc′ | and property 6.
For contradiction, we assume that t /∈ Tl (and hence /∈ Tl−1). Note that since
v satisfies the condition (i) of Step 2.1 for the l-th loop (i.e., v is a presuffix of
zl), tb also satisfies this condition. Then, by t /∈ Tl−1, tb satisfies the conditions
(i) and (ii) at Step 2.1. Since al is the shortest string satisfying the conditions
(i) and (ii) at Step 2.1, |tb| ≥ |al|. This means that al is a prefix of tb. Then
we have |tl| ≤ |t| ≤ |tc′ | and c′ < l. This contradicts the property 6. Second we
show b = bc. To this end, it suffices to show |b| = |bc| because both b and bc
are prefixes of t = tc. Assume that |b| < |bc|. Then ytcb = tcbc for some y such
that |y| < |tc| since tb = tcb is a suffix of zl and also, by property 3, ac = tcbc
is a suffix of zl. Then, the length of a periodic string of ac is at most |y|, which
contradicts that tc is a periodic string of ac. By a similar argument, we also have
a contradiction assuming that |b| > |bc|. Thus |b| = |bc|.

We conclude that tb = tcbc = ac, which completes the proof of Lemma 4. ��

Lemma 4 and the induction hypothesis imply: For any c < l and m ≥ 0, x has
no substring utmc acw such that zl+1 = utmc ac = tmc acw, tc ∈ Tl and ac ∈ Al. We
now show another lemma.

Lemma 5. For any m ≥ 0, x has no substring u′tml alw
′ such that zl+1 =

u′tml al = tml alw
′.

Proof. For contradiction, we assume that there is an m ≥ 0 such that x has
a substring u′tml alw

′ satisfying zl+1 = u′tml al = tml alw
′. Then we lead to a

contradiction for all the possible three cases at Step 2.5: (1) z′l = tjl al; (2) h < j;
(3) the other case.

In case (1), since tjlal = zl+1 = u′tml al, we have m < j and u′ = tj−m
l . Then

u′tml alw
′ = tj−m

l z′l is a substring of x, which contradicts the maximality of i for
z′l = tilzl at Step 2.2.

In case (2), h < j and zl+1 := z′l = utjlal for some u. Note that m ≤ h since h
is taken as the largest integer such that z′l = thl alw for some w at Step 2.4. Thus

j > m and henceu′tml alw
′ = utj−m

l z′l. This implies that utj−m
l z′l and hence t

j−m
l z′l

are included in x, which contradicts the maximality of i for z′l = tilzl at Step 2.2.

In case (3) where h ≥ j, we take the largest integer k such that ukz′l = uk+1tjl al
is a substring of x, and let zl+1 := uk+1tjl al at Step 2.6. Notice that u does not

have suffix tl and |u| > |tl| by the property 7. This implies that if zl+1 = uk+1tjl al

has a suffix tj
′

l al then j′ ≤ j. By the assumption, zl+1 has tml al as a suffix, which
meansm ≤ j. Moreover, we can show thatm = j: Since z′l is a prefix of zl+1 by the
property 2, there is a stringw′′ such that zl+1 = z′lw

′′. Then x includes u′tml alw
′ =

uk+1tj−m
l z′lw

′′. However, Step 2.2 means that x does not have a tlz
′
l, which implies

thatm = j. Then x have a substring (uk+1tjl al)w
′ = uk+1(tml alw

′) = uk+1zl+1 =
u2k+1z′l, which contradicts the maximality of k at Step 2.6. ��
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By the above two lemmas, it has been shown that for any c < l+1 and m ≥ 0, x
has no substring utmc acw such that zl+1 = utmc ac = tmc acw, tc ∈ Tl and ac ∈ Al.
That is, the statement of Lemma 3 for case l + 1 holds under the assumption
that it holds for case l. Now the proof of Lemma 3 is completed.

2.3 Analysis of Identify

First, by following the basic idea described in Section 2.1, the correctness of
Identify is easily verified. The output zout of MakeOnce appears in x only once
by Proposition 2. This guarantees that the 1/4-Grover search can extend z by
two letters successfully in Steps 3 and 4 unless the current string reaches the left
or right end. Moreover, the algorithm knows if the string reaches the ends by
the regular checking in Step 3 or by the current length in Step 4.

Second, we analyze the number of queries used in Identify. At Step 1, we find
a substring of length �N2 �+1 by extending a string by one letter with one query.

Then the number of queries at Step 1 is �N2 � + 1. At Step 2, the subroutine

MakeOnce uses O(
√
N logN) queries by Proposition 1. At Steps 3 and 4, we

extend a substring of length longer than N
2 by two letters with one query. Note

that the number of checking whether it is a substring of x is O(
√
N). Thus the

number of queries at Steps 3 and 4 is at most N/4 + O(
√
N). Therefore, the

total number of queries is at most 3N
4 +O(

√
N logN).

Now the proof of Theorem 1 is completed.

3 Conclusion

Obvious future works are a (possible) improvement of the constant factor for the
upper bound and a challenge to a linear lower bound (we strongly believe there
are no sublinear algorithms). For the former, one possibility is to exploit a parity
computation as was done in [9,18]. However, we do not have any indication that
parity is substantially easier than reconstruction itself for substring oracles. For
the latter we at least need to get rid of the reduction since we have already
lost a logN factor by that. (See Section B.2 in [13].) Different approaches like
the polynomial method [4] do exist as a possibility, but we have no idea on this
direction, either, at this moment.
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