Chapter 7
Miscellanea

7.1 Mixed Moments of Student’s #-Distributions

Let M, be the Euclidean space of symmetric d x d matrices with the scalar product
(A1, Ay) :==1tr(A1Ay), Ay, Ay € My, M; C M, be the cone of nonnegative definite
matrices and QZ(MJ) be a class of probability measures on Mj. Here tr A denotes
the trace of a matrix A.

The probability distribution of a d-dimensional random vector X is said to be the
mixture of centered Gaussian distributions with the mixing distribution U € & (M;)
(U -mixture for short) if, for all z € R4,

Ee!(©X) — / 2 A (dA). (7.1)

+
My

The distributional properties of such mixtures are well studied (see, e.g., [1, 2]
and references therein).
Letc; = (¢jy,...,cj,) € Rd,j =1,2,...,2n.Weshall derive formulas evaluat-

ing E (H?"zl (cj, X )) for U-mixtures of Gaussian distributions, including Student’s
t-distribution.

Let Iy, be the class of pairings o onthe set I, = {1, 2, ..., 2n},i.e. the partitions
of I, into n disjoint pairs, implying that

2n)!

Cardl'Izn = W

For each o € Ily,, we define uniquely the subsets I\, and integers o (),
J € Iy\o, by the equality

o={(.0()).Jj€ bno}-
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78 7 Miscellanea

If U = ¢y is a Dirac measure with fixed ¥ € M7, i.e. the Gaussian case, Isserlis
theorem (in mathematical physics known as Wick theorem) says (see, e.g., [3-5])
that

2n
El [, x)[= D [] (€T co) :=malc, %) (72)
j=1 o€l jehn\o
Write
Py () := / e A9y dA), ©eM]. (7.3)
My

Theorem 7.1 [6] The following statements hold:

(i) The probability distribution of a d-dimensional random vector X is the U-
mixture of centered Gaussian distributions if and only if

: 1
Eeil=X) = gy (EZTZ) , (7.4)

where 7! is the transposed vector z.
(ii) If the probability distribution of X is the U-mixture of centered Gaussian dis-
tributions and, for j = 1,2, ..., 2n,

/(ch,cj)”U(dA) < 00, (7.5)
M
then
2n
E|[Jtc.x)|= > /mgn(c,A)U(dA), (7.6)
j=1 GEHan;_
where

m$,(c, A) =[] (cjA. cog)-

j612n\(7

Proof (1) The statement follows from (7.1) and (7.3), because, obviously,
tr ((ZTZ)A) = (zA,z).

(ii) Observe that card I\, = n and, for all o € I1, and A € Mj,
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[T Kejd o))" = D0 lejA, coi)]

J€hn\o J€hn\o

<n " > A o)

jEIZn\U

2n—1
< Z [(cjA, ci)" + (ca(A, co(i))"]
jEIZn\rr
2n

2n—1
== Z(ch, i) (7.7)
j=1

Using (7.5) and (7.7), we find that

2n
E| [t 20| = /m2n<c, AU (dA)
Jj=1 MF
= Z / m$, (c, AYU(dA).
(TEHz,,M;
O
Taking (see also [7])
U=2(Y),
where X € Mj is fixed and
v
L) =GIG (—5, v,O)
we have that )
2(L)* (tr(T@)) 7
du(®) = (3) - Ky (,/2&(2@)) , (7.8)
r(z)
LX) =Ty(v, 2,0) (7.9)
and, for j =1,2,...,2n
(L —
M@jz,q)", it 2n <,
/(c,-A,cj)”U(dA)z (3)5—"
2

+ .
My oo, if 2n > .
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Thus, for 2n < v,

2n v
/H(Cj,x)Td v, %,0) (dx) = —2—my,(c, X), (7.10)

R4 j=1 %) !

SIS

—~
—

2n 2n
Tl 0 5.00@0 = [ T[Tz + tej. ] v, 2. 00

R4 Jj=1 Rd j=1

and because of anti-symmetry, for 2k + 1 < v,

2k+1
[ tcix)Tuw. £, 0)(dx) = 0.
rd J=1
Remark 7.2 Let v > d be an integer, Y7, ..., Y, be ii.d. d-dimensional centered

Gaussian vectors with a covariance matrix X, |X| > 0,and U = . (v X, 1), where

the matrix )
W, => 1Y,
j=1
If v > d, the matrix W, is invertible with probability 1, because it is well known
that the Wishart distribution
LWy) == Wu(Z,v)

has a density

v—d—1 .
|A] 2 exp[—ztr(E_lA)]
, if |A] >0,
Wi (2, v, A) = v odd-1 ., i if |A] >
a5 ()
j=1 2
0, otherwise.

Because (see, e.g., [2, 8, 9])
/ 1Ay @A) = / ¢ VT (v, 2, 0)(dx)
M R4

— E[e 2G®Y] ;e RY, (7.11)
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taking z = tc, t € R', ¢ € R?, we find that

/ e—é(CA,C)U(dA) — E [e—f(CE,C)Y} .
M
Thus, for all ¢ € RY,
& (v<cW—1, c>) — Z((c%, 0)Y),

contradicting to the formula

.i”((ch_l,c)) =$((CE_1,C) 21 )

Xu—d+1

in [9].

Unfortunately, the last formula was used in [6], Example 3.
From (7.11) we easily find that

] ei<Zsa) v
/e“”)Td(v, 2, a)(dx) = >3- (1) (e, z2)*
T

T (3)

xK% ( v(zE,z)), z€ R,

<

R4

(see [10, 11).

7.2 Long-Range Dependent Stationary Student Processes

It is well known (see, e.g., [12]) that a real square integrable and continuous in
quadratic mean stochastic process X = {X PR S Rl} is second order stationary if
and only if it has the following spectral decomposition:

o0 o
Xt=a+/cos(n)v(dx)+ / sin(An)w(dr), ¢ e R,
—00 —0o0

where ¢« = EXy, v(dX) and w(dA) are mean O and square integrable real random
measures such that, for each A, A, A, € @(Rl),

E [v(A1)v(A2)] = Ev? (A1 N A)), (7.12)
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E[w(A])w(A2)] = Ew?(A| N Ay), (7.13)
E[v(A])w(A2)] = 0, (7.14)
F(A) := Ev’(A) = Ew?(A). (7.15)

The correlation function r satisfies

r(t) = /cos(kt)F(dA),
where .
F(A) = f(A) , Ae BRY.
F(RY)

Following [13], we shall construct a class of strictly stationary stochastic processes
X = {X;,t € R'} such that

ZLXn=T (v, oz,a), v > 2,

called the Student’s stationary processes.

Recall the notion and some properties of the independently scattered random
measures (i.s.r.m.) (see [13—15]).

Let T € A(RY),.7 be ao-ring of subsets of T (i.e. countable unions of sets in .%”
belong to . and, if A, B € ./, A C B, then B\A € .%¥). The o algebra generated
by . is denoted o (.%).

A collection of random variables v = {v(A), A € .} defined on a probability
space (2, %, P) is said to be an i.s.r.m. if, for every sequence {A,, n > 1} of disjoint
sets in ., the random variables v(A,),n = 1,2, ..., are independent and

V(U A,,) = ZV(A,,) a.s.,
n=1 n=1

whenever |J52 | A, € 7.
Letv(A), A € ., be infinitely divisible,

log Ee™™"™) = izmo(A) = 321 (A) +/ (e’w - izt(u)) (A, du),

f
Ry

where my is a signed measure, I1(A, du) for fixed A is a measure on %(R(l)) such
that



7.2 Long-Range Dependent Stationary Student Processes 83

/ (1 A uz) M(A, du) < oo:
R;
u, if Ju| <1,
T(u) = { 2w > 1
ul
Assume now that mg = m; = 0 and

IT(A, du) = M(A)I(du),

where M (A) is some measure on 7" and I1(du) is some Lévy measure on R(l).
Integration of functions on 7 with respect to v is defined first for real simple
functions f = Z'}zl xjla;, Aje s, j=1,...,nby

/f(x)v(dx) = > xjp(ANA)),
A

j=1

where A is any subset of 7', for which A e o()and ANA; € &, j=1,...,n.

In general, a function f: (T, o (%)) — (Rl, %(Rl)) is said to be v-integrable
if there exists a sequence {f,,n =1,2,...} of simple functions as above such
that f, — f M-a.e. and, for every A € o(%), the sequence {fA fn()v(dx),
n =1,2,...} converges in probability, as n — oo. If f is v-integrable, we write

[ reov@n =p tin [ s,
A A

The integrand f 4 J(x)v(dx) does not depend on the approximating sequence.
A function f on T is v-integrable if and only if

/ Zo (f (x)) M(dx) < oo

T

and

/ \Z (£ (x))| M(dx) < oo,
T

where
2o0) = [ (18 @) e,

1
RO
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and
Z(y) =/(f(uy)—yf(u))1'l(du)-

1
RO

For such functions f

logEexp | i£ / Feovdn | = / s (Ef (x)) M(d),
A

A

where
2(€) =/(e"5“ —1 —iét(u)) 1 (du).

1
R(J

Let now Y; = (Y tl, Y tz), t > 0, be a bivariate Student-Lévy process such that
L) = Tv,0%h,0), b= ((1) (1’) ,

and F be an arbitrary probability distribution on R'.
Let T = R!,.% be the o-ring of subsets A = U?’;l (aj, bj], where the intervals

(aj, bj], j =1,2, ..., are disjoint. Define i.m.r.m. v and w by the equalities:

oo
1 1
A =3 (YF(bn - YF(aj))
j=1

and
o0

w(A) = Z(F(b) V). A=

(aj,bj] e ..

Tt

~
I
-

Because, fori = 1,2, j =1,2,...,v > 2,

E( b, = Vi) =0

o2y

E ) = Vi) = (F(b) F(aj))

and
o2y

o0

[ [ 2
D EWrgy) = Vi)' <
=1

the definition of v and w is correct.
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From (7.10) it follows that v and w satisfies (7.12)—(7.15) with

2
Fay=2YF@), Acs.
v—2
Thus, the process
o0 o0
X, =a+ / cos(ut)v(du) + / sin (ut)w(du), 1€ R',

—00 —00

is well defined, strictly stationary,
LX) =Ti(v,0% )

and the correlation function r satisfies

r(t) = /cos(ut)F(du), t e R

—00

Strict stationarity of X follows from the formula (see [13]):

n n
P2 njXi io 3 n;

Ee /=! =e¢ J
o0 1 n
X exp / logfzw7 5 'kZ:l 1Nk COS (u(tj —tk)) F(du) ¢,
—00 Jk=

nj,tjGRl, j=1,...,l’l,

where

oo

~ 1

hy s 0) = /efgupgig (%; —5 v, O) du
0

Il
-
| N
[(S1ES
—~
D>
| 9,
<
~
N
o
—
i
Q)
[3°]
S
<
N—"
<
V
o

As it was checked in [16], if

F(du) = f5,(w)du, 0<B<1, yeR',
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where |
fpy@) =2 [fpot+y)+ fpow—p)], uekr,
with
1-B
a=p)
fpom) = Ki—p (lul) lu] 27,
a0 (g)
then cos V1
N =—""_ teR
(1+12)2
and
o0
/|r(r)|dr=oo,
—0Q

implying long-range dependence of X (see also [17-20]).
Remark 7.3 Defining Student-Lamperti process X* as (see [21])

Xr =t"Xpoqs, t>0, X3=0, H>DO0.

we have that X* is H-self-similar, i.e., for each ¢ > 0, processes {X;t t > 0} and

{CH X t> 0} have the same finite dimensional distributions, and (see [13])

i XXy e X il
Ee 7= =e /=
o0 1 n
A~ t
X exp / loghyo|= Z njnktflt,fl cos(u log i) F(du)yt,
) 2 = tx

tj >0, r;.,'eRl, j=1,...,n.

In particular,
inX* oty 2H N 1
Ee't = €' hy, o | ¢ ) t>0, neR,

and

o
Ee/M(X17X5) = oo =" exp [ / [l"gﬁv,a(%nz (SZH + 2

t
—2sHH cos(u log —) )1|F(du)], s,t >0, ne R'.
S



7.3 Lévy Copulas 87

7.3 Lévy Copulas

Considering the probability distributions F on R? with the 1-dimensional Student’s ¢
marginals F; ; = 1,...,d, and having in mind their relationship with stochas-
tic processes, we restricted ourselves to the cases when F is a mixture of the
d-dimensional Gaussian distributions .

Denoting

Clur,osug)i=F (7@, B ), uj €[00, j=1,....d,

it is obvious that this function is the probability distribution function on the d-cube
[0,1]‘1 with uniform one-dimensional marginals, called the d-copula (see, e.g., [22]).
Trivially,

F(x1,...,xq9) =C(F1(x1), ..., Fg(xq)), ((x1,...,xq) € R4, (7.16)

Formula (7.16) with the arbitrary d-copula defines uniquely the probability distri-
butions on R? with the given Student’s 1-dimensional marginals. These statements
are very special cases of well known Sklar’s theorem (see [23, 24]).

Thus, taking concrete d-copulas we shall obtain a wide class of multivariate gen-
eralizations of Student’s 7-distributions.

For instance, the Archimedean copulas have the from

Cnveocug) =y (v +-+ v @) wy €011 j=1...d

where i is a d-monotone function on [0, c0), i.e., for each x > 0 and k =
0,1,...,d -2,
k d*
(=1 dx—kl/f(x) >0,

(—1)4724@=2)(x), x > 0, is nonincreasing and convex function.
In particular, if

V@) =04x)"7, 6e(0,00), x>0,

we have the Clayton’s copula

1
4

d
Clut,...,ug) =D u;"—d+1] , wujel0,1], j=1,...d.
j=1

If¢(x) =exp {—xé }, 6 > 1, x > 0, we obtain the Gumbel copula
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=

Ma.

Cuy,...,uq) =expq— loguj , uj€[0,1], j=1,...,d.

J=1

Unfortunately, it is difficult to describe if the copulation preserves such important for
us properties of marginal distributions as infinite divisibility or self-decomposability.

A promising direction for future work is a notion of Lévy copulas and, analo-
gously to the classical copulas, construction of new Lévy measures on R? using
marginal ones (see [25-28]). Following [28], we briefly describe an analogue of
Sklar’s theorem in this context.

Let R := (—00,00]. Fora,b € R wewrittea < b, ifax < by, k =1,....d
and, in this case, denote

(a,b] := (a1, b1] x ... x (aq, bq] .

Let F : S — R forsome subset S C RY.Fora, b € S witha < b and (a,b] C S,
the F-volume of (a, b] is defined by

Vr ((a, b)) := > (DN F (),

LtE{al ,b1}><--~><{ad,bd}

where N (u) := d{k : uy = ar}.
A function F : § — R is called d-increasing if Vr ((a, b]) > Oforalla,b € S
witha < b and (a, b] C S.

Definition 7.4 Let F : RY — R bea d-increasing function such that F(uy, ...,
ug) = 0if u; = 0 for at least one i € {1, ...,d}. For any non-empty index set
I C{1,...,d} the I-marginal of F is the functlon F; : Rl — R, defined by

F' (w)i)ier) == ali)rréo Z F(ui,...,ug) H sgnu;,

(Uiiere €{—a,00}l!‘! ielt
where 1€ = {1,...,d}\I, |I| := card/, and

o — 1, if x>0,
SEnx = -1, if x <O.

Definition 7.5 A function F : R? — R is called a Lévy copula if

F(uy,...,ug) #oofor (uy,...,ug) # (00,...,00),
F(uy,...,uq) =0ifu; =0 for atleastone i € {1,...,d},
F is d-increasing,

Flil () =uforanyi e {l,...,d},u e R

b .
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Write

(x,00), if x =<0,
(—o0,x], if x>0.

F(x) = |

Definition 7.6 Let X = (X!, ..., X?) be an R?-valued Lévy process with the Lévy
measure I1. The tail integral of X is the function V : (Rl\{O})d — R! defined by

d

V(. ..ooxg) = [ [senG T (2 () x -+ x I (xq))
i=1

and, for any non-empty I C {1, ..., d} the /-marginal tail integral V1 of X is the
tail integral of the process X! = (XYies.

We denote one-dimensional margins by V; := Vi,

Observe, that marginal tail integrals {V/:C{1, ..., d} non-empty} are uniquely
determined by IT. Conversely, IT is uniquely determined by the set of its marginal
tail integral.

Relationship between Lévy copulas and Lévy processes are described by the
following analogue of Sklar’s theorem.

Theorem 7.7 [28]

1. Let X = (X Lo X d) be an R?-valued Lévy process. Then there exists a Lévy
copula F such that the tail integrals of X satisfy

V((x)ier) = FY ((Vitxi))ier) » (7.17)

for any non-empty I C {1,...,d} and any (x;);es € (Rl\{O})m. The Lévy cop-
ula F is unique on RanVy x --- x RanV,.

2. Let F be a d-dimensional Lévy copula and V;, i = 1, ...,d, be tail integrals of
real-valued Lévy processes. Then there exists an R -valued Lévy process X whose
components have tail integrals V1, ..., Vg and whose marginal tail integrals
satisfy (7.17) for any non-empty I C {1, ...,d} and any (x;)iec] € (Rl\{O})“l.
The Lévy measure T1 of X is uniquely determined by F and V;, i =1, ...,d.

In the above formulation RanV means the range of V. The reader is referred for
proofs to [28].

An analogue of the Archimedean copulas is as follows (see [28]).

Let ¢ : [—1, 1] — [—o00, o] be a strictly increasing continuous function with
(1) = 00, p(0) = 0, and ¢(—1) = —o0, having derivatives of orders up to d on
(—1,0) and (0, 1), and, forany k = 1, ..., d, satisfying
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dfou)
duk

dro(u)

G 20 we© ) and (-1

<0, ue(-10).

Let
Gu) =22 (p(u) — p(—u)), uel-1,1].

Then

d
Fui, ... uq) = qo(H@‘(u»)

i=1

defines a Lévy copula.
In particular, if

1 1
@(x) ==n(=log|x])"7 lixsoy — (I —n) (=loglx)"7 Ix<oy

with ¥ > 0 and n € (0, 1), then
~ d—2 _1
¢x) =277 (—log|x|)" 7 sgnx, x € —1,1],

and

1

d v
Flup,....ug) =2 (Z |ui|—”) My g0y — (1= My g <0,

i=1

resembling the ordinary Clayton copulas.
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