
Chapter 7
Miscellanea

7.1 Mixed Moments of Student’s t-Distributions

Let Md be the Euclidean space of symmetric d × d matrices with the scalar product
〈A1, A2〉 := tr(A1 A2), A1, A2 ∈ Md , M+

d ⊂ Md be the cone of nonnegative definite
matrices and P(M+

d ) be a class of probability measures on M+
d . Here tr A denotes

the trace of a matrix A.
The probability distribution of a d-dimensional random vector X is said to be the

mixture of centered Gaussian distributions with the mixing distribution U ∈ P(M+
d )

(U -mixture for short) if, for all z ∈ Rd ,

Eei〈z,X〉 =
∫

M+
d

e− 1
2 〈z A,z〉U (dA). (7.1)

The distributional properties of such mixtures are well studied (see, e.g., [1, 2]
and references therein).

Let c j = (c j1 , . . . , c jd ) ∈ Rd , j = 1, 2, . . . , 2n. We shall derive formulas evaluat-

ing E
(∏2n

j=1〈c j , X〉
)

for U -mixtures of Gaussian distributions, including Student’s

t-distribution.
Let�2n be the class of pairingsσ on the set I2n = {1, 2, . . . , 2n}, i.e. the partitions

of I2n into n disjoint pairs, implying that

card�2n = (2n)!
2nn! .

For each σ ∈ �2n , we define uniquely the subsets I2n\σ and integers σ( j),
j ∈ I2n\σ , by the equality

σ = {
( j, σ ( j)) , j ∈ I2n\σ

}
.
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78 7 Miscellanea

If U = ε� is a Dirac measure with fixed� ∈ M+
d , i.e. the Gaussian case, Isserlis

theorem (in mathematical physics known as Wick theorem) says (see, e.g., [3–5])
that

E

⎡
⎣ 2n∏

j=1

〈c j , X〉
⎤
⎦ =

∑
σ∈�2n

∏
j∈I2n\σ

〈c j�, cσ( j)〉 := m2n(c, �). (7.2)

Write

φU (�) :=
∫

M+
d

e−tr(A�)U (dA), � ∈ M+
d . (7.3)

Theorem 7.1 [6] The following statements hold:

(i) The probability distribution of a d-dimensional random vector X is the U-
mixture of centered Gaussian distributions if and only if

Eei〈z,X〉 = φU

(
1

2
zT z

)
, (7.4)

where zT is the transposed vector z.
(ii) If the probability distribution of X is the U-mixture of centered Gaussian dis-

tributions and, for j = 1, 2, . . . , 2n,

∫

M+
d

〈c j A, c j 〉nU (dA) < ∞, (7.5)

then

E

⎡
⎣ 2n∏

j=1

〈c j , X〉
⎤
⎦ =

∑
σ∈�2n

∫

M+
d

mσ
2n(c, A)U (dA), (7.6)

where
mσ

2n(c, A) =
∏

j∈I2n\σ
〈c j A, cσ( j)〉.

Proof (i) The statement follows from (7.1) and (7.3), because, obviously,

tr
(
(zT z)A

)
= 〈z A, z〉.

(ii) Observe that card I2n\σ = n and, for all σ ∈ �2n and A ∈ M+
d ,
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∏
j∈I2n\σ

∣∣〈c j A, cσ( j)〉
∣∣n ≤ n−n

⎛
⎝ ∑

j∈I2n\σ

∣∣〈c j A, cσ( j)〉
∣∣
⎞
⎠

n

≤ n−1
∑

j∈I2n\σ

∣∣〈c j A, cσ( j)〉
∣∣n

≤ 2n−1

n

∑
j∈I2n\σ

[〈c j A, c j 〉n + 〈cσ( j)A, cσ( j)〉n]

= 2n−1

n

2n∑
j=1

〈c j A, c j 〉n . (7.7)

Using (7.5) and (7.7), we find that

E

⎡
⎣ 2n∏

j=1

〈c j , X〉
⎤
⎦ =

∫

M+
d

m2n(c, A)U (dA)

=
∑
σ∈�2n

∫

M+
d

mσ
2n(c, A)U (dA).

�

Taking (see also [7])
U = L (Y�),

where � ∈ M+
d is fixed and

L (Y ) = G I G
(
−ν

2
, ν, 0

)

we have that

φU (�) = 2
(
ν
2

) ν
4 (tr(��))

ν
4

	
(
ν
2

) K ν
2

(√
2tr(��)

)
, (7.8)

L (X) = Td(ν,�, 0) (7.9)

and, for j = 1, 2, . . . , 2n

∫

M+
d

〈c j A, c j 〉nU (dA) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

	
(
ν
2 − n

)
(ν

2

)ν
2

−n

〈c j�, c j 〉n, if 2n < ν,

∞, if 2n ≥ ν.
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Thus, for 2n < ν,

∫

Rd

2n∏
j=1

〈c j , x〉Td (ν,�, 0) (dx) = 	
(
ν
2 − n

)
(
ν
2

) ν
2 −n

m2n(c, �), (7.10)

∫

Rd

2n∏
j=1

〈c j , x〉Td(ν,�, α)(dx) =
∫

Rd

2n∏
j=1

[〈c j , y〉 + 〈c j , α〉] Td(ν,�, 0)(dy)

and because of anti-symmetry, for 2k + 1 < ν,

∫

Rd

2k+1∏
j=1

〈c j , x〉Td(ν,�, 0)(dx) = 0.

Remark 7.2 Let ν ≥ d be an integer, Y1, . . . ,Yν be i.i.d. d-dimensional centered
Gaussian vectors with a covariance matrix �, |�| > 0, and U = L

(
ν�−1

ν

)
, where

the matrix

Wν =
ν∑

j=1

Y T
j Y j .

If ν ≥ d, the matrix Wν is invertible with probability 1, because it is well known
that the Wishart distribution

L (Wν) := Wd(�, ν)

has a density

Wd(�, ν, A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

|A|
ν − d − 1

2 exp

{
−1

2
tr
(
�−1 A

)}

(
2d |�|)

ν

2 π

d(d − 1)

4
d∏

j=1
	

(
k − j + 1

2

) , if |A| > 0,

0, otherwise.

Because (see, e.g., [2, 8, 9])

∫

M+
d

e− 1
2 〈z A,z〉U (dA) =

∫

Rd

ei〈z,x〉Td(ν,�, 0)(dx)

= E[e− 1
2 〈z�,z〉Y ], z ∈ Rd , (7.11)
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taking z = tc, t ∈ R1, c ∈ Rd , we find that

∫

M+
d

e− t2
2 〈cA,c〉U (dA) = E

[
e− t2

2 〈c�,c〉Y
]
.

Thus, for all c ∈ Rd ,

L
(
ν〈cW −1, c〉

)
= L (〈c�, c〉Y ) ,

contradicting to the formula

L
(
〈cW −1

ν , c〉
)

= L

(
〈c�−1, c〉 1

χ2
ν−d+1

)

in [9].

Unfortunately, the last formula was used in [6], Example 3.
From (7.11) we easily find that

∫

Rd

ei〈z,x〉Td(ν,�, α)(dx) = ei〈z,α〉

2
ν
2 −1	

(
ν
2

) (ν〈z�, z〉) ν4

×K ν
2

(√
ν〈z�, z〉

)
, z ∈ Rd ,

(see [10, 11]).

7.2 Long-Range Dependent Stationary Student Processes

It is well known (see, e.g., [12]) that a real square integrable and continuous in
quadratic mean stochastic process X = {

Xt , t ∈ R1
}

is second order stationary if
and only if it has the following spectral decomposition:

Xt = α +
∞∫

−∞
cos (λt)v(dλ)+

∞∫

−∞
sin (λt)w(dλ), t ∈ R1,

where α = EX0, v(dλ) and w(dλ) are mean 0 and square integrable real random
measures such that, for each A, A1, A2 ∈ B(R1),

E [v(A1)v(A2)] = Ev2(A1 ∩ A2), (7.12)
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E [w(A1)w(A2)] = Ew2(A1 ∩ A2), (7.13)

E [v(A1)w(A2)] = 0, (7.14)

F̃(A) := Ev2(A) = Ew2(A). (7.15)

The correlation function r satisfies

r(t) =
∞∫

−∞
cos (λt)F(dλ),

where

F(A) = F̃(A)

F̃(R1)
, A ∈ B(R1).

Following [13], we shall construct a class of strictly stationary stochastic processes
X = {

Xt , t ∈ R1
}

such that

L (Xt ) ≡ T1

(
ν, σ 2, α

)
, ν > 2,

called the Student’s stationary processes.
Recall the notion and some properties of the independently scattered random

measures (i.s.r.m.) (see [13–15]).
Let T ∈ B(Rd), S be a σ -ring of subsets of T (i.e. countable unions of sets in S

belong to S and, if A, B ∈ S , A ⊂ B, then B\A ∈ S ). The σ algebra generated
by S is denoted σ(S ).

A collection of random variables v = {v(A), A ∈ S } defined on a probability
space (�,F ,P) is said to be an i.s.r.m. if, for every sequence {An, n ≥ 1} of disjoint
sets in S , the random variables v(An), n = 1, 2, . . ., are independent and

v

( ∞⋃
n=1

An

)
=

∞∑
n=1

v(An) a.s.,

whenever
⋃∞

n=1 An ∈ S .
Let v(A), A ∈ S , be infinitely divisible,

log Eeizv(A) = i zm0(A)− 1

2
z2m1(A)+

∫

R+
0

(
eizu − 1 − i zτ(u)

)
�(A, du),

where m0 is a signed measure, �(A, du) for fixed A is a measure on B(R1
0) such

that
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∫

R1
0

(
1 ∧ u2

)
�(A, du) < ∞;

τ(u) =
{

u, if |u| ≤ 1,
u

|u| , if |u| > 1.

Assume now that m0 = m1 = 0 and

�(A, du) = M(A)�(du),

where M(A) is some measure on T and �(du) is some Lévy measure on R1
0.

Integration of functions on T with respect to v is defined first for real simple
functions f = ∑n

j=1 x j 1A j , A j ∈ S , j = 1, . . . , n, by

∫

A

f (x)v(dx) =
n∑

j=1

x j v(A ∩ A j ),

where A is any subset of T , for which A ∈ σ(S ) and A ∩ A j ∈ S , j = 1, . . . , n.
In general, a function f : (T, σ (S )) → (

R1,B(R1)
)

is said to be v-integrable
if there exists a sequence { fn, n = 1, 2, . . .} of simple functions as above such
that fn → f M-a.e. and, for every A ∈ σ(S ), the sequence

{∫
A fn(x)v(dx),

n = 1, 2, . . .} converges in probability, as n → ∞. If f is v-integrable, we write

∫

A

f (x)v(dx) = p − lim
n→∞

∫

A

fn(x)v(dx).

The integrand
∫

A f (x)v(dx) does not depend on the approximating sequence.
A function f on T is v-integrable if and only if

∫

T

Z0 ( f (x))M(dx) < ∞

and ∫

T

|Z ( f (x))| M(dx) < ∞,

where

Z0(y) =
∫

R1
0

(
1 ∧ (uy)2

)
�(du),
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and

Z(y) =
∫

R1
0

(τ (uy)− yτ(u))�(du).

For such functions f

log E exp

⎧⎨
⎩iξ

∫

A

f (x)v(dx)

⎫⎬
⎭ =

∫

A

κ (ξ f (x))M(dx),

where

κ(ξ) =
∫

R1
0

(
eiξu − 1 − iξτ(u)

)
�(du).

Let now Yt = (
Y 1

t ,Y 2
t

)
, t ≥ 0, be a bivariate Student-Lévy process such that

L (Y1) = T2(ν, σ
2 I2, 0), I2 =

(
1 0
0 1

)
,

and F be an arbitrary probability distribution on R1.
Let T = R1, S be the σ -ring of subsets A = ⋃∞

j=1

(
a j , b j

]
, where the intervals(

a j , b j
]
, j = 1, 2, . . ., are disjoint. Define i.m.r.m. v and w by the equalities:

v(A) =
∞∑
j=1

(
Y 1

F(b j )
− Y 1

F(a j )

)

and

w(A) =
∞∑
j=1

(
Y 2

F(b j )
− Y 2

F(a j )

)
, A =

∞⋃
j=1

(
a j , b j

] ∈ S .

Because, for i = 1, 2, j = 1, 2, . . ., ν > 2,

E(Y i
F(b j )

− Y i
F(a j )

) = 0,

E(Y i
F(b j )

− Y i
F(a j )

)2 = σ 2ν

ν − 2

(
F(b j )− F(a j )

)

and ∞∑
j=1

E(Y i
F(b j )

− Y i
F(a j )

)2 ≤ σ 2ν

ν − 2
< ∞,

the definition of v and w is correct.
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From (7.10) it follows that v and w satisfies (7.12)–(7.15) with

F̃(A) = σ 2ν

ν − 2
F(A), A ∈ S .

Thus, the process

Xt = α +
∞∫

−∞
cos(ut)v(du)+

∞∫

−∞
sin (ut)w(du), t ∈ R1,

is well defined, strictly stationary,

L (Xt ) ≡ T1(ν, σ
2, α)

and the correlation function r satisfies

r(t) =
∞∫

−∞
cos (ut)F(du), t ∈ R1.

Strict stationarity of X follows from the formula (see [13]):

Ee
i

n∑
j=1

η j Xt j = e
iα

n∑
j=1

η j

× exp

⎧⎨
⎩

∞∫

−∞
log ĥν,σ

⎛
⎝1

2

n∑
j,k=1

η jηk cos
(
u(t j − tk)

)
⎞
⎠ F(du)

⎫⎬
⎭ ,

η j , t j ∈ R1, j = 1, . . . , n,

where

ĥν,σ (θ) :=
∞∫

0

e−θu 1

σ 2 gig
( u

σ 2 ;−ν
2
, ν, 0

)
du

= 2

	
(
ν
2

)
(
θσ 2ν

2

) ν
4

K ν
2

(√
2σ 2θν

)
, θ > 0.

As it was checked in [16], if

F(du) = fβ,γ (u)du, 0 < β ≤ 1, γ ∈ R1,
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where

fβ,γ (u) = 1

2

[
fβ,0(u + γ )+ fβ,0(u − γ )

]
, u ∈ R1,

with

fβ,0(u) = 2
1−β

2

√
π	

(
β
2

)K1−β (|u|) |u| (1−β)
2 ,

then
r(t) = cos γ t

(1 + t2)
β
2

, t ∈ R1,

and ∞∫

−∞
|r(t)| dt = ∞,

implying long-range dependence of X (see also [17–20]).

Remark 7.3 Defining Student-Lamperti process X� as (see [21])

X�t = t H X log t , t > 0, X�0 = 0, H > 0.

we have that X� is H -self-similar, i.e., for each c > 0, processes
{

X�ct , t ≥ 0
}

and{
cH X�t , t ≥ 0

}
have the same finite dimensional distributions, and (see [13])

Ee
i

n∑
j=1

η j X�t j = e
iα

n∑
j=1

t H
j η j

× exp

⎧⎨
⎩

∞∫

−∞

⎡
⎣log ĥν,σ

⎛
⎝1

2

n∑
j,k=1

η jηk t H
j t H

k cos

(
u log

t j

tk

)⎞
⎠
⎤
⎦F(du)

⎫⎬
⎭,

t j > 0, η j ∈ R1, j = 1, . . . , n.

In particular,

EeiηX�t = eiαt Hηĥν,σ

(
t2H η

2

2

)
, t > 0, η ∈ R1,

and

Eeiη(X�t −X�s ) = eiα
(
t H −s H

)
η exp

{ ∞∫

−∞

[
log ĥν,σ

(
1

2
η2
(

s2H + t2H

−2s H t H cos

(
u log

t

s

))]
F(du)

}
, s, t > 0, η ∈ R1.
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7.3 Lévy Copulas

Considering the probability distributions F on Rd with the 1-dimensional Student’s t
marginals Fj, j = 1, . . . , d, and having in mind their relationship with stochas-
tic processes, we restricted ourselves to the cases when F is a mixture of the
d-dimensional Gaussian distributions .

Denoting

C(u1, . . . , ud) := F
(

F−1
1 (u1), . . . , F−1

d (ud)
)
, u j ∈ [0, 1], j = 1, . . . , d,

it is obvious that this function is the probability distribution function on the d-cube
[0,1]d with uniform one-dimensional marginals, called the d-copula (see, e.g., [22]).
Trivially,

F(x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) , (x1, . . . , xd) ∈ Rd . (7.16)

Formula (7.16) with the arbitrary d-copula defines uniquely the probability distri-
butions on Rd with the given Student’s 1-dimensional marginals. These statements
are very special cases of well known Sklar’s theorem (see [23, 24]).

Thus, taking concrete d-copulas we shall obtain a wide class of multivariate gen-
eralizations of Student’s t-distributions.

For instance, the Archimedean copulas have the from

C(u1, . . . , ud) = ψ
(
ψ−1(u1)+ · + ψ−1(ud)

)
, u j ∈ [0, 1], j = 1, . . . , d,

where ψ is a d-monotone function on [0,∞), i.e., for each x ≥ 0 and k =
0, 1, . . . , d − 2,

(−1)k
dk

dxk
ψ(x) ≥ 0,

(−1)d−2ψ(d−2)(x), x ≥ 0, is nonincreasing and convex function.
In particular, if

ψ(x) = (1 + x)−
1
θ , θ ∈ (0,∞), x ≥ 0,

we have the Clayton’s copula

C(u1, . . . , ud) =
⎛
⎝ d∑

j=1

u−θ
j − d + 1

⎞
⎠

− 1
θ

, u j ∈ [0, 1], j = 1, . . . , d.

If φ(x) = exp
{
−x

1
θ

}
, θ ≥ 1, x ≥ 0, we obtain the Gumbel copula
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C(u1, . . . , ud) = exp

⎧⎪⎨
⎪⎩−

⎛
⎝ d∑

j=1

(− log u j
)θ
⎞
⎠

1
θ

⎫⎪⎬
⎪⎭ , u j ∈ [0, 1], j = 1, . . . , d.

Unfortunately, it is difficult to describe if the copulation preserves such important for
us properties of marginal distributions as infinite divisibility or self-decomposability.

A promising direction for future work is a notion of Lévy copulas and, analo-
gously to the classical copulas, construction of new Lévy measures on Rd using
marginal ones (see [25–28]). Following [28], we briefly describe an analogue of
Sklar’s theorem in this context.

Let R̄ := (−∞,∞]. For a, b ∈ R̄d we write a ≤ b, if ak ≤ bk , k = 1, . . . , d
and, in this case, denote

(a, b] := (a1, b1] × . . .× (ad , bd ] .

Let F : S → R̄ for some subset S ⊂ R̄d . For a, b ∈ S with a ≤ b and (a, b] ⊂ S,
the F-volume of (a, b] is defined by

VF ((a, b]) :=
∑

u∈{a1,b1}×···×{ad ,bd }
(−1)N (u)F(u),

where N (u) := �{k : uk = ak}.
A function F : S → R̄ is called d-increasing if VF ((a, b]) ≥ 0 for all a, b ∈ S

with a ≤ b and (a, b] ⊂ S.

Definition 7.4 Let F : R̄d → R̄ be a d-increasing function such that F(u1, . . . ,

ud) = 0 if ui = 0 for at least one i ∈ {1, . . . , d}. For any non-empty index set
I ⊂ {1, . . . , d} the I -marginal of F is the function FI : R̄|I | → R̄, defined by

F I ((u)i)i∈I ) := lim
a→∞

∑
(ui )i∈I c ∈{−a,∞}|I c |

F(u1, . . . , ud)
∏
i∈I c

sgnui ,

where I c = {1, . . . , d}\I , |I | := cardI , and

sgnx =
{

1, if x ≥ 0,
−1, if x < 0.

Definition 7.5 A function F : R̄d → R̄ is called a Lévy copula if

1. F(u1, . . . , ud) �= ∞ for (u1, . . . , ud) �= (∞, . . . ,∞),
2. F(u1, . . . , ud) = 0 if ui = 0 for at least one i ∈ {1, . . . , d},
3. F is d-increasing,
4. F {i}(u) = u for any i ∈ {1, . . . , d}, u ∈ R1.
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Write

I (x) :=
{
(x,∞), if x ≤ 0,
(−∞, x], if x > 0.

Definition 7.6 Let X = (X1, . . . , Xd) be an Rd -valued Lévy process with the Lévy

measure �. The tail integral of X is the function V : (R1\{0})d → R1 defined by

V (x1, . . . , xd) :=
d∏

i=1

sgn(xi )� (I (x1)× · · · × I (xd))

and, for any non-empty I ⊂ {1, . . . , d} the I -marginal tail integral V I of X is the
tail integral of the process X I := (Xi )i∈I .

We denote one-dimensional margins by Vi := V {i}.
Observe, that marginal tail integrals {V I :I⊂{1, . . . , d} non-empty} are uniquely

determined by �. Conversely, � is uniquely determined by the set of its marginal
tail integral.

Relationship between Lévy copulas and Lévy processes are described by the
following analogue of Sklar’s theorem.

Theorem 7.7 [28]

1. Let X = (
X1, . . . , Xd

)
be an Rd-valued Lévy process. Then there exists a Lévy

copula F such that the tail integrals of X satisfy

V ((xi )i∈I ) = F I ((Vi (xi ))i∈I
)
, (7.17)

for any non-empty I ⊂ {1, . . . , d} and any (xi )i∈I ∈ (
R1\{0})|I |. The Lévy cop-

ula F is unique on RanV1 × · · · × RanVd.

2. Let F be a d-dimensional Lévy copula and Vi , i = 1, . . . , d, be tail integrals of
real-valued Lévy processes. Then there exists an Rd -valued Lévy process X whose
components have tail integrals V1, . . . , Vd and whose marginal tail integrals

satisfy (7.17) for any non-empty I ⊂ {1, . . . , d} and any (xi )i∈I ∈ (
R1\{0})|I |.

The Lévy measure � of X is uniquely determined by F and Vi , i = 1, . . . , d.

In the above formulation RanV means the range of V . The reader is referred for
proofs to [28].

An analogue of the Archimedean copulas is as follows (see [28]).
Let ϕ : [−1, 1] → [−∞,∞] be a strictly increasing continuous function with

ϕ(1) = ∞, ϕ(0) = 0, and ϕ(−1) = −∞, having derivatives of orders up to d on
(−1, 0) and (0, 1), and, for any k = 1, . . . , d, satisfying
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dkϕ(u)

duk
≥ 0, u ∈ (0, 1) and (−1)k

dkϕ(u)

duk
≤ 0, u ∈ (−1, 0).

Let
ϕ̃(u) := 2d−2 (ϕ(u)− ϕ(−u)) , u ∈ [−1, 1].

Then

F(u1, . . . , ud) := ϕ

(
d∏

i=1

ϕ̃−1(ui )

)

defines a Lévy copula.
In particular, if

ϕ(x) := η (− log |x |)− 1
ϑ 1{x>0} − (1 − η) (− log |x |)− 1

ϑ 1{x<0}

with ϑ > 0 and η ∈ (0, 1), then

ϕ̃(x) = 2d−2 (− log |x |)− 1
ϑ sgnx, x ∈ −1, 1],

and

F(u1, . . . , ud) = 22−d

(
d∑

i=1

|ui |−ϑ
)− 1

ϑ

(η1{u1...ud≥0} − (1 − η)1{u1...ud<0}),

resembling the ordinary Clayton copulas.
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