
Chapter 6
Student Diffusion Processes

6.1 H-Diffusions

We shall consider the regular positive recurrent diffusion processes X = {Xt , t ≥ 0}
on an open interval (l, r) ⊆ R1 with the inaccessible end points and predetermined
one-dimensional distributions (for used terminology see, e.g., [1, 2]).

Let τa = inf{t > 0 : Xt = a}, a ∈ (l, r), and s(x), s ∈ (l, r) be the scale
function for the process X , i.e. a strictly increasing continuous function such that for
all l < a ≤ x ≤ b < r

Px {τa < τb} = s(b)− s(x)

s(b)− s(a)
,

where Px denotes the underlying probability measure of the process given X0 = x .
Let m be the speed measure for the process X , characterized by the properties that

m(I ) > 0 for every non-empty subinterval I of (l, r) and for l < a < x < b < r

Ex (τa ∧ τb) =
∫

(a,b)

gs(a),s(b) (s(x), s(y))m(dy)

where

ga,b(u, v) =

⎧⎪⎪⎨
⎪⎪⎩

(b − u)(v − a)

b − a
, if v ≤ u,

(u − a)(b − v)

b − a
, if u ≤ v,

and the expectation Ex is taken with respect to the measure Px .
It is known (see [1–4]) that if s(x) → +∞, as x ↑ r , s(x) → −∞, as x ↓ l, and

|m| := m ((l, r)) < ∞,
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58 6 Student Diffusion Processes

then the diffusion X is positive recurrent with the inaccessible end points. Moreover, if

L (X0) = m

|m| ,

the process X will be strictly stationary and ergodic.
Let G (l, r) be a class of strictly positive differentiable functions g(x), x ∈ (l, r),

such that for each x ∈ (l, r) there exists ε > 0, (x − ε, x + ε) ⊂ (l, r), satisfying

x+ε∫

x−ε
|g′(v)|dv < ∞,

for some x0 ∈ (l, r), as x ↑ r ,

G(x) :=
x∫

x0

g(v)dv → +∞,

and, as x ↓ l, G(x) → −∞.
Let h(x), x ∈ (l, r) be a strictly positive measurable function such that

r∫

l

h(x)dx = 1. (6.1)

Write H(dx) = h(x)dx ,

a(x) = −1

2

g′(x)
h(x)g2(x)

, x ∈ (l, r), (6.2)

and
σ 2(x) = (h(x)g(x))−1 , x ∈ (l, r). (6.3)

Theorem 6.1 [5] For each g ∈ G (l, r) and h, satisfying (6.1), there exists the unique
weak solution for the stochastic differential equation

{
dXt = a(Xt )dt + σ(Xt )dBt , t > 0

L (X0) = H,
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which is a regular positive recurrent diffusion with the scale function

s(x) =
x∫

x0

g(v)

g(x0)
dv, x ∈ (l, r),

and the speed measure m = g(x0)H.
Here and below B = {Bt , t ≥ 0} is the standard univariate Brownian motion.

The solution is a strictly stationary process with the one dimensional distribution H ,
called the H-diffusion (see [6]). The functions g and h are intrinsic characteristics of
the H-diffusions, in terms of which their properties should be formulated.

Example 6.2 Let (l, r) = (0, 1),

h(x) = Cxβ1−1(1 − x)β2−1eλx , x ∈ (0, 1),

g(x) = 1

Cσ 2

[
xα1+β1−1(1 − x)α2+β2−1e(χ+λ)x]−1

,

x ∈ (0, 1), α1, α2, λ, χ ∈ R1, σ 2 > 0, β1 > 0, β2 > 0.

Here and below C is the norming constant. It is easy to check that g ∈ G (0, 1) if and
only if α1 + β1 ≥ 2 and α2 + β2 ≥ 2.

In this case

a(x) = σ 2

2

[
(α1 + β1 − 1)xα1−1(1 − x)α2 − (α2 + β2 − 1)

× xα1(1 − x)α2−1(λ+ μ)xα1(1 − x)α2
]

eχx , x ∈ (0, 1),

and
σ 2(x) = σ 2xα1(1 − x)α2 eχx , x ∈ (0, 1).

Taking α1 = α2 = 1, χ = 0, we have the Wright–Fisher gene frequency model with
mutation and selection in the population genetics (see, e.g., [1, 7]).

Example 6.3 Let (l, r) = (0,∞),

h(x) = Cxλ−1 exp
{− (χx−β1 + ψxβ2

)}
, x > 0

g(x) = 1

Cσ 2 x−(λ+γ )+1 exp
{
χx−β1 + ψxβ2

}
, x > 0

where σ 2 > 0, β1 > 0, β2 > 0 and either

(i) λ, γ ∈ R1, χ > 0, ψ > 0, or
(ii) χ = 0, λ > 0, ψ > 0, λ+ γ > 2, or

(iii) ψ = 0, λ < 0, χ > 0, λ+ γ < 2.
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In all these cases g ∈ G (0,∞),

a(x) = σ 2

2

[
(γ + λ− 1)xγ−1 + χβ1xγ−β1−1 − ψβ2xγ+β2−1

]
, x > 0

and

σ 2(x) = σ 2xγ , x > 0.

If γ = 2, β2 = 1, χ = 0, λ > 0, we have that

a(x) = σ 2

2
(λ+ 1)x − ψx2, x > 0,

σ 2(x) = σ 2x2

and

h(x) = Cxλ−1e−ψx ,

giving us a diffusion version of the Pearl-Verhulst logistic population growth model
(see [1]). This class of diffusions also contains the Cox–Ingersoll–Ross model for
short interest rates in bond markets and its generalizations (see, e.g., [4, 8]).

Example 6.4 Let (l, r) = (−∞,+∞),

h(x) = C

(
1 +
(

x − α

δ

)2
)γ

exp

{
−κ arctan

(
x − α

δ

)}
, x ∈ R1,

g(x) = exp
{
κ arctan

( x−α
δ

)}

Cσ 2
(

1 + ( x−α
δ

)2)λ+γ , x ∈ R1 α, λ,κ ∈ R1, λ < −1

2
,

λ+ γ ≤ 1

2
, δ > 0, σ 2 > 0.

In this case g ∈ G (−∞,+∞),

μ(x) = σ 2

δ

(
1 +
(

x − α

δ

)2
)γ−1 [

(λ+ γ )

(
x − α

δ

)
− κ

2

]
, x ∈ R1,

σ 2(x) = σ 2

(
1 +
(

x − α

δ

)2
)γ

, x ∈ R1.
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Taking γ = 1, we have the Johannesma diffusion model for the stochastic activity
of neurons (see [9–11]) and one of the Föllmer–Schweizer models for stock returns
(see [12], also [13]). The stationary distribution is the skew Student’s t-distribution
with the skewness coefficient κ. If κ = 0, we arrive to the univariate Student’s
t-distribution.

6.2 Student Diffusions

Definition 6.5 An H-diffusion process X on R1 is called a Student diffusion if
H = T1(ν, σ

2, α), ν > 0, σ 2 > 0, α ∈ R1.

From Theorem 6.1 it follows that for each g ∈ G (−∞,∞) there exists a Student
diffusion. For example, taking λ = − ν+1

2 , γ = 1, κ = 0, σ 2 = θ , we find from
Example 6.4 that the unique weak solution for the stochastic differential equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dXt = −θ(ν − 1)

2

(
Xt − α

δ

)
dt +
√√√√θ
(

1 +
(

Xt − α

δ

)2
)

dBt , θ > 0,

L (X0) = T1(ν, δ
2ν−1, α)

is a Student diffusion.

Example 6.6 [8] The function g(x) ≡ σ−2 > 0, x ∈ R1, belongs to G (−∞,∞).
Thus for any strictly positive pdf h(x), x ∈ R1, the unique weak solution for the
stochastic differential equation

{
dXt = (σ 2h(Xt )

)− 1
2 dBt , t > 0

L (X0) = H,

is an H-diffusion.
If ν > 1, as the unique weak solution for the stochastic differential equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dXt = −θ Xt − α

δ
dt +
√√√√ 2θδ2

ν − 1

(
1 +
(

Xt − α

δ

)2
)

dBt , t > 0,

L (X0) = T1(ν, δ
2ν−1, α),

the Student diffusion is a member of the family of Kolmogorov–Pearson diffusions
(see [14, 15]).

Now let us consider a Student diffusion X = {Xt , t ≥ 0}, corresponding to
the function g ∈ G (−∞,∞), and discuss the domain-of-attraction problem for the
maximum values
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MT = max
0≤t≤T

Xt , T > 0,

using linear normalization.
We shall see that the problem for H-diffusion reduces to the classical extreme

value theory and the criteria are expressed in the terms of functions g independently
of the marginal distribution H .

Definition 6.7 We say that an H-diffusion X = {Xt , t ≥ 0} belongs to the maximum
domain of attraction of the nondegenerate distribution Q (X ∈ M D Al(Q) for short)
if there exist constants aT > 0 and bT ∈ R1 such that, as T → ∞,

L (aT (MT − bT )) ⇒ Q.

Define γT from the equality G(γT ) = T .

Theorem 6.8 [6] Let an H-diffusion X corresponds to the function g ∈ G (l, r). The
following criteria hold true:

(i) X ∈ M D Al(�) if and only if there exists a function b(x) > 0, x ∈ (x0, r),
such that, for each x ∈ R1,

lim
y↑r

G(y)

G(y + b(y)x)
= e−x ;

(ii) X ∈ M D Al(�γ ) if and only if r = ∞ and, for each x > 0,

lim
y↑∞

G(y)

G(xy)
= x−γ , γ > 0;

(iii) X ∈ M D Al(�γ ) if and only if r < ∞ and, for each x > 0

lim
y↓0

G(r − y)

G(r − xy)
= xγ , γ > 0.

Moreover, in the case (i)

r∫

x0

(G(v))−1 dv < ∞
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and we can take

b(x) = G(x)

r∫

x

(G(v))−1 dv,

aT ∼ 1

T

⎛
⎝

r∫

γT

(G(v))−1 dv

⎞
⎠

−1

,

bT = γT + χT ,

where χT are any constants such that aTχT → 0, as T → ∞.
In the case (ii)

aT ∼ γ−1
T , bT = 0

and in the case (iii)

aT ∼ (r − γT )
−1, bT = r.

Proof Under the assumptions of Theorem from Davis [16] (see also [17, 18]) we
have that for any constants uT ↑ ∞, as T → ∞.

lim
T →∞

∣∣∣P{MT ≤ uT } − FT (uT )

∣∣∣ = 0,

where

F(x) = e−(G(x))−1
, x ∈ (l, r).

Let

F̂(x) =
{

0, for x < x̂0,

1 − (G(x))−1 1(x̂0,r), for x ≥ x̂0,

where G(x̂0) = 1.
Because 1 − F(x) ∼ 1 − F̂(x), as x ↑ r , the statement of Theorem 6.8, using

the principle of equivalent tails, now follows from the classical extreme value theory
(see, e.g., [19, 20]). �

Because, for x ∈ (x̂0, r),

f̂ (x) := F̂ ′(x) = g(x)

2G2(x)
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and

f̂ ′(x) = 1

2

g′(x)
G2(x)

− g2(x)

G3(x)
,

we shall have the following analogue of classical von Mises theorem (see, [19–22]).

Theorem 6.9 [21] Let an H-diffusion X correspond to the function g ∈ G (l, r).
The following sufficient conditions are valid:

(i) if

lim
x↑r

g′(x)G(x)
g2(x)

= 1,

then X ∈ M D Al(�);
(ii) if r = ∞ and

lim
x↑∞

xg(x)

G(x)
= γ > 0,

then X ∈ M D Al(�γ );
(iii) if r < ∞ and

lim
x↑r

(r − x)g(x)

G(x)
= γ > 0,

then X ∈ M D Al(�γ ).

Now the following Propositions are obvious.

Proposition 6.10 Let a Student diffusion X correspond to the function
g ∈ G (−∞,∞).

There are two possibilities:

(1) X ∈ M D Al(�) if and only if there exists a function b(x) > 0, x ∈ (x0,∞),
such that, for each x ∈ R1,

lim
y↑∞

G(y)

G (y + b(y)x)
= e−x ,

and
(2) X ∈ M D Al(�γ ) if and only if, for each x > 0,

lim
y↑∞

G(y)

G(xy)
= x−γ , γ > 0.
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In the case (1) we can take

b(x) = G(x)

⎛
⎝

∞∫

∞T

(G(v))−1 dv

⎞
⎠

−1

,

and the norming constants

aT ∼ 1

T

⎛
⎝

∞∫

γT

(G(v))−1 dv

⎞
⎠

−1

,

bT = γT + χT ,

where χT are any constants such that aTχT → 0, as T → ∞.
In the case (2) the norming constants are aT ∼ γ−1

T , bT = 0.

Proposition 6.11 Let a Student diffusion X correspond to the function
g ∈ G (−∞,∞).

Then, if

lim
x↑∞

g′(x)G(x)
g2(x)

= 1,

X ∈ M D Al(�),

and, if

lim
x↑∞

xg(x)

G(x)
= γ > 0,

X ∈ M D Al(�γ ).

Example 6.12 (continued Example 6.2) Let α1 + β1 > 2. Using Theorem 6.9 (iii),
because

lim
x↑1

(1 − x)g(x)

G(x)
= α1 + β1 − 2,

X ∈ M D Al(�α1+β1−2).

Example 6.13 (continued Example 6.3) In the both cases (i) and (ii)

lim
x→∞

g′(x)G(x)
g2(x)

= 1,

implying by Theorem 6.9 (i) that X ∈ M D Al(�).
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In the case (iii), assuming that λ+ γ < 2, we have that

lim
x↑∞

xg(x)

G(x)
= 2 − λ− γ,

implying by Theorem 6.9 (ii) that X ∈ M D Al(�2−λ−γ ).

Example 6.14 (continued Example 6.4) Assuming that λ+ γ < 1
2 , we have that

lim
x↑∞

xg(x)

G(x)
= 1 − 2(λ+ γ ),

implying by Theorem 6.9 (ii) that X ∈ M D Al(�1−2(λ+γ )).

Example 6.15 (continued Example 6.6) Taking x0 = 0, we find that G(x) = σ 2x ,
x ∈ R1, γT = σ−2T and

xg(x)

G(x)
≡ 1.

Thus, X ∈ M D Al(�1) and, as T → ∞,

L

(
σ 2

T
MT

)
⇒ �1.

6.3 Point Measures of ε-Upcrossings for Student Diffusions

Let ε > 0 be fixed. The process X = {Xt , t ≥ 0} is said to have an ε-upcrossing of
the level u at t0 if X (t) < u, for t ∈ (t0 − ε, t0), and X (t0) = u. Let T > 0 and
B ∈ B ((0, 1]). Then

NT (B) = � {ε − crossings of uT by X on the set T B}

is called the time normalized point measure of ε-upcrossings of the level uT by X .
The following statement is slightly weakened but essentially simplified version

of the Borkovec and Klüppelberg result in [8] (for used terminology see, e.g., [23]).

Theorem 6.16 [24] Let an H-diffusion X correspond to the function g ∈ G (l, r),
pdf h is continuous and there exists a constant K such that, for all x ∈ (l, r),

h(x)G2(x) log(|G(x)| + 1)

g(x)
≤ K . (6.4)
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If uT ↑ r , as T → ∞, and

lim
T →∞ T −1G(uT ) = (2τ)−1, τ > 0, (6.5)

then the point measure NT converges vaguely to the homogeneous Poisson point
measure on B ((0, 1)) with the intensity τ , as T → ∞.

Example 6.17 Let (l, r) = (−∞,∞), x0 = 0, h(x), x ∈ R1, be an arbitrary strictly
positive continuous pdf, g(x) ≡ σ−2 > 0.

If there exists a constant K such that, for all x ∈ R1

x2 log (|x | + 1) h(x) ≤ K , (6.6)

then the statement of Theorem 6.16 holds true with τ = σ 2

2 and uT = T .
Because for the skew Student’s t-distribution (see Example 6.4 and [13])

h(x) = Cν,δ,κ

(
1 +
(

x − α

δ

)2
)− ν+1

2

exp

{
−κ arctan

(
x − α

δ

)}
, x ∈ R1,

(6.7)
where

Cν,δ,κ = �
(
ν+1

2

)
δ
√
π�
(
ν
2

)
∞∏

k=0

[
1 + κ

2

(ν + 1 + 2k)2

]−1

,

we have that, as |x | → ∞,

h(x) ∼ Cν,δ,κδ
ν+1|x |−(ν+1). (6.8)

In this case the assumption (6.4) is satisfied if and only if ν > 1.

Example 6.18 Let X be a skew Student diffusion corresponding to the function

g(x) = exp
{
κ arctan

( x−α
δ

)}

Cν,δ,κ
(

1 + ( x−α
δ

)2)− ν+1
2 +γ , x ∈ R1, α,κ ∈ R1, γ ≤ 1 + ν

2
.

Having in mind (6.8), because, as |x | → ∞,

g(x) ∼ |x |ν+1−2γ

Cν,δ,κδν+1−2γ
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and, using l’Hospital’s rule,

G(x) ∼ |x |ν+2−2γ

Cν,δ,κδν+1−2γ (ν + 2 − 2γ )
,

we find that the assumption (6.6) is satisfied if and only if 1 < γ ≤ 1 + ν
2 .

If 1 < γ < 1 + ν
2 , taking

uT =
(

T

2Cν,δ,κδν+1−2γ (ν + 2 − 2γ )

) 1
ν+2−2γ

,

then the point measure NT , as T → ∞, converge vaguely to the Poisson measure
with the intensity 1.

Example 6.19 (continued Example 6.3) In the case (i), using l’Hospital’s rule, we
have that, as x → ∞,

G(x) ∼ (ψβ1)
−1x1−β1 g(x) (6.9)

and, as x → 0,
G(x) ∼ −(χβ2)

−1x1+β2 g(x). (6.10)

Thus, the assumption (6.4) is satisfied if and only if

2 − 2β1 < γ < 2 + 2β2

and (6.5) holds with τ = 1 and

uT =
(

1

ψ
log T

) 1
β1 + 1

β1ψ

(
1

ψ
log T

) 1
β1

−1

×
[
β1 + γ + λ− 2

β1
log

(
1

ψ
log T

)
+ log

(
β1ψC

σ 2

2

)]
(6.11)

Here we used formulas for asymptotic solutions of equations like G(uT ) = T from
[19], Table 3.4.4.

In the case (ii) we analogously find that, as x → ∞, (6.10) holds, and, as x → 0,

G(x) ∼ x

2 − (λ+ γ )
g(x), (6.12)

implying that the assumption (6.4) is satisfied if and only if

2 < γ < 2β2 + 2.

The equality (6.5) holds with τ = 1 and uT , defind by (6.11).
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Finally, in the case (iii), as x → ∞, it holds (6.12) and, as x → 0, it holds (6.10),
implying that the assumption (6.4) is satisfied if and only if

2 − 2β1 < γ < 2.

The equality (6.5) holds with τ = 1 and

uT =
[
(2 − λ− γ )(

σ 2T

2
)

] 1
2−λ−γ

.

6.4 Kolmogorov–Pearson Diffusions

Definition 6.20 An H-diffusion X = {Xt , t ≥ 0} in the interval (l, r) is called the
Kolmogorov–Pearson diffusion if it is a weak solution for the stochastic differential
equation {

dXt = θ A(Xt )dt + √
θB(Xt )dBt , t > 0, θ > 0,

L (X0) = H,
(6.13)

where

A(x) = p0 + p1x, x ∈ (l, r),

and

B(x) = q0 + q1x + q2x2 > 0, x ∈ (l, r).

This class of diffusions was described by Kolmogorov in 1931 (see [25]). Ergodic
distributions of these diffusions are contained in the family of Pearson distributions,
satisfying the Pearson equation:

h′(x)
h(x)

= 2A(x)− B ′(x)
B(x)

, x ∈ (l, r). (6.14)

Last years this class of diffusions attracted attention of statisticians as a flexible
and statistically tractable stochastic processes (see, e.g., [13, 26–32]).

Let L2 ((l, r); H) be a Hilbert space of equivalency classes of measurable func-
tions f : (l, r) → R1 such that

|| f ||2H :=
r∫

l

f 2(x)h(x)dx < ∞
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and C2 ((l, r)) be a class of twice differentiable functions f : (l, r) → R1.
The generator

L = θ

2
B(x)

d2

dx2 + θ A(x)
d

dx

of the Kolmogorov–Pearson diffusion X , satisfying (6.13), is a map

L : L2 ((l, r); H) ∩ C2 ((l, r)) → L2 ((l, r); H) .

Let us recall the following classical results (see, e.g., [1, 33–35]).
Obviously, L maps polynomials to polynomials. If, for all n = 0, 1, . . .,

r∫

l

x2nh(x)dx < ∞,

there exists an orthonormal system of polynomials {Pn(x), x ∈ (l, r), n = 0, 1, . . .}
such that

L Pn(x)+ λn Pn(x) = 0, x ∈ (l, r),

where
λn = −nθ

(
p1 + q2

2
(n + 1)

)
, n = 0, 1, . . . , (6.15)

showing that the spectrum of—L is discrete with the eigenvalues, given by (6.15),
and the corresponding eigenfunctions {Pn(x), x ∈ (l, r), n = 0, 1, . . .}, which under
the additional assumption that

lim
x→l−0

h(x)B(x) = lim
x→r+0

h(x)B(x) = 0 (6.16)

are given by the generalized Rodrigues formula:

Pn(x) = cn

[
h(x)Bn(x)

](n)
h(x)

, x ∈ (l, r), n = 0, 1, . . . , (6.17)

where

c−2
n =

r∫

l

([
h(x)Bn(x)

](n))2
h(x)

dx .
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If, for some integer N ,
r∫

l

x2N h(x)dx < ∞, (6.18)

but

r∫

l

|x |2N+1h(x)dx = ∞,

the spectrum of—L consists of the continuous part and the finite number of discrete
eigenvalues

λn = −nθ
(

p1 + q2

2
(n + 1)

)
, n = 0, 1, . . . , N ,

corresponding to the eigenfunctions {Pn(x), x ∈ (l, r), n = 0, 1, . . . , N }, defined by
the formula (6.17).

Let

h j =
r∫

l

x j h(x)dx, j = 0, 1, 2, . . . ,

�n =

∣∣∣∣∣∣∣∣

1 h1 . . . hn

h1 h2 . . . hn+1
. . . . . . . . . . . .

hn hn+1 . . . h2n

∣∣∣∣∣∣∣∣
, �0 = 1,

and

Qn(x) =

∣∣∣∣∣∣∣∣∣∣

1 h1 . . . hn

h1 h2 . . . hn+1
. . . . . . . . . . . .

hn−1 hn . . . h2n−1
1 x . . . xn

∣∣∣∣∣∣∣∣∣∣
, Q0(x) ≡ 1.

Then

Pn(x) = Qn(x)√
�n−1�n

, x ∈ (l, r), n = 1, 2, . . . .

If h is a pdf of the skew Student’s t-distribution, given by (6.7), from Example 6.4
it follows that the corresponding H-diffusion is the Kolmogorov–Pearson diffusion
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with

A(x) = θ

δ

[
−ν − 1

2

(
x − α

δ

)
− κ

2

]
, (6.19)

and

B(x) = θ

(
1 +
(

x − α

δ

)2
)
, x ∈ R1, α,κ ∈ R1, ν, δ > 0. (6.20)

In this case from (6.8) it follows that (6.16) is satisfied if and only if ν > 1,
and (6.18) holds true with the largest integer N satisfying 2N < ν and denoted
N = ⌊ ν2

⌋
. The discrete eigenvalues for the skew Student diffusion, defined by (6.19)

and (6.20), are

λn = nθ

2δ2 (ν − n), n = 0, 1, . . . ,
⌊ν

2

⌋
.

The corresponding eigenfunctions are equal to

Pn(x) = cn

[
h(x)
(

1 + ( x−α
δ

)2)n](n)
h(x)

, n = 0, 1, . . . ,
⌊ν

2

⌋
(6.21)

If κ = 0, h is the pdf of T1(ν, δ
2ν−1, α). Following [30], polynomials (6.21) are

called the Routh–Romanovsky polynomials (see [36, 37]).
If κ = α = 0, we have that, for j < ν,

h(0)j :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞∫
−∞

x j h(x)dx = δ j

√
π�
(ν

2

)�
(

j

2
+ 1

2

)
�

(
ν

2
− j

2

)
, if j is even,

0, if j is odd,

and, for κ = 0, α �= 0, j < ν,

h(α)j :=
∞∫

−∞
x j h(x)dx =

j∑
k=0

(
j
k

)
h(0)k α j−k .

We refer the reader to [30] (see also [9, 15]) where a version of the Student
diffusion was considered with

A(x) = −x + α

δ
,
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B(x) = 2δ2

ν − 1

(
1 +
(

x − α

δ

)2
)
, α ∈ R1, ν > 1, δ > 0,

λn = θ

ν − 1
n(ν − n), n = 0, 1, . . . ,

⌊ν
2

⌋

and the Routh–Romanovsky polynomials as corresponding eigenfunctions. Most
important that in this paper the continuous part of spectrum is described in terms
of the hypergeometric functions, obtained the spectral representation of transition
probability density of X and applied to the statistical inference of the model.

The skew Student diffusion is known as the Johannesma diffusion model for the
stochastic activity of neurons (see [9–11]) and as one of the Föllmer–Schweizer
models for stock returns (see [12, 13]).

Classification of the Kolmogorov–Pearson diffusions to six types is given in
[14, 15]. The characteristics of these types are the following:

(1)

A(x) = −x + α, B(x) ≡ 2, (l, r) = (−∞,∞),

h(x) = 1√
2π

e− 1
2 (x−α)2 , x, α ∈ R1,

λn = n2θ, n = 0, 1, . . .

{
Pn(x), x ∈ R1, n = 0, 1, . . .

}
are the Hermite polynomials;

(2)

A(x) = −x + α, B(x) = 2x, (l, r) = (0,∞), α > 1,

h(x) = xα−1e−x

�(α)
, x > 0,

λn = nθ, n = 0, 1, . . . ,

{Pn(x), x > 0, n = 0, 1, . . .} are the Laguerre polynomials;
(3)

A(x) = −x + α, B(x) = 2ax2, (l, r) = (0,∞), a > 0, α > 0,

h(x) = Ca−1+1,1, αa

(
1 + x2

)− 1
2a −1

exp
{
−α

a
arctan (x − α)

}
, x > 0

λn = nθ (1 − a(n + 1)) , n = 0, 1, . . . ,

⌊
1

2
+ 1

2a

⌋
,

{
Pn(x), x > 0, n = 0, 1, . . . ,

⌊ 1
2 + 1

2a

⌋}
are the Routh-Romanovsky

polynomials;
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(4)

A(x) = −x + α, B(x) = 2ax2, (l, r) = (0,∞), a > 0, α > 0,

h(x) =
(
α
a

) 1
a +1

�
( 1

a + 1
) x− 1

a −2 exp
{
− α

ax

}
, x > 0,

λn = nθ (1 − a(n + 1)) , n = 0, 1, . . . ,

⌊
1

2
+ 1

2a

⌋
,

{
Pn(x), x > 0, n = 0, 1, . . . ,

⌊ 1
2 + 1

2a

⌋}
are the Bessel polynomials;

(5)

A(x) = −x + α, B(x) = 2ax(x + 1), (l, r) = (0,∞), α ≥ a > 0,

h(x) = 1

B
(
α
a ,

1
a + 1
) x α

a −1(1 + x)−
α+1

a −1, x > 0,

λn = nθ (1 − a(n + 1)) , n = 0, 1, . . . ,

⌊
1

2
+ 1

2a

⌋
,

{
Pn(x), x > 0, n = 0, 1, . . . ,

⌊ 1
2 + 1

2a

⌋}
are the Fisher–Snedocor polynomials;

(6)

A(x) = −x + α, B(x) = 2ax(x − 1), (l, r) = (0, 1), −1 < a < 0,

1 + a ≤ α ≤ −a,

h(x) = 1

B
(−α

a ,− 1−α
a

) x− α
a −1(1 − x)−

α+1
a −1, 0 < x < 1,

λn = nθ (1 − 2a(n + 1)) , n = 0, 1, . . . ,

{Pn(x), x ∈ (0, 1), n = 0, 1, . . .} are Jacobi polynomials.

In the above formulas B(z1, z2) means the Euler’s beta function.
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