
Chapter 2
Asymptotics

2.1 Asymptotic Behavior of Student’s Pdf

Proposition 2.1 For each x ∈ Rd, as ν → ∞,

fν,�,a(x) → ga,�(x). (2.1)

Proof Let a = 0. Using the well-known formula that

�(z) =
√

2π

z
e−z zz

(
1 + O

(
1

z

))
, as z → ∞, (2.2)

we find that, as ν → ∞,

�(ν+d
2 )

(νπ)
d
2 �(ν

2 )
∼

√
4π

ν+d e− ν+d
2 ( ν+d

2 )
ν+d

2

(νπ)
d
2

√
4π
ν

e− ν
2 ( ν

2 )
ν
2

→ 1

(2π)
d
2

(2.3)

and, obviously, (
1 + 〈x�−1, x〉

ν

)− ν+d
2

→ e− 1
2 〈x�−1,x〉. (2.4)

Here and below “∼” is the equivalence sign.
The statement (2.1) with a = 0 follows from (1.1), (2.2), (2.3) and (2.4).
Let now a �= 0 and

yν = 2

ν + d

[
〈a�−1, a〉(ν + 〈x�−1, x〉)

] 1
2
.
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10 2 Asymptotics

Because, as ν → ∞, uniformly in y (see Appendix)

Kν(νy) ∼
√

π

2ν

exp {−ν
√

1 + y2}
(1 + y2)

1
4

(
y

1 + √
1 + y2

)−ν

and

√
1 + y2

ν ∼ 1 + 1

2
y2
ν ,

we shall have that

K ν+d
2

([
〈a�−1, a〉(ν + 〈x�−1, x〉)

] 1
2
)

= K ν+d
2

(
ν + d

2
yν

)

∼
√

π

ν + d
exp

{
−ν + d

2

(
1 + 1

2
y2
ν

)} (
yν

2 + 1
2 y2

ν

)− ν+d
2

∼
√

π

ν + d
e− ν+d

2 exp

{
− 1

ν + d
〈a�−1, a〉

(
ν + 〈x�−1, x〉

)}(
yν

2 + 1
2 y2

ν

)− ν+d
2

.

(2.5)

From (1.2) and (2.5) we elementarily find that

fν,�,a(x) ∼ ( ν
2 )

ν
2

�(ν
2 )

2 exp
{〈x�−1, a〉}

(2π)
d
2
√|�|

( 〈a�−1, a〉
ν+〈x�−1, x

) ν+d
4

√
π

ν + d
e− ν+d

2

× exp

{
− 1

ν + d
〈a�−1, a〉

(
ν + 〈x�−1, x〉

)} (
yν

2 + 1
2 y2

ν

)− ν+d
2

∼ exp
{〈x�−1, a〉}

(2π)
d
2
√|�|

e−〈a�−1,a〉e− d
2

(
ν + 〈x�−1, x〉

2 + 1
2 y2

ν

)− ν+d
2

∼ exp
{〈x�−1, a〉}

(2π)
d
2
√|�|

e−〈a�−1,a〉e− d
2

× exp

{
−1

2
(〈x�−1, x〉 − d)

} (
1 + 1

4
y2
ν

) ν+d
2

. (2.6)

But

(
1 + 1

4
y2
ν

) ν+d
2 =

(
1 + 1

(ν + d)2

[
〈a�−1, a〉

(
ν + 〈x�−1, x〉

)]) ν+d
2
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→ exp

{
1

2
〈a�−1, a〉

}
. (2.7)

Thus, (2.6) and (2.7) imply that, for each x ∈ Rd , as ν → ∞,

fν,�,a(x) → exp
{〈x�−1, a

}
(2π)

d
2
√|�|

exp

{
−1

2

(
〈a�−1, a〉 + 〈x�−1, x〉

)}
= ga,�(x). �

Proposition 2.2 For each fixed xεRd and ν > 0, as |a| → 0,

fν,�,a(x) → fν,�(x).

Proof Indeed, as |a| → 0,

K ν+d
2

([
〈a�−1, a〉(ν + 〈x�−1, x〉)

] 1
2
)

∼ �

(
ν + d

2

)
2

ν+d
2 −1

[
〈a�−1, a〉(ν + 〈x�−1, x〉)

]− ν+d
4

(see Appendix) and, having in mind formulas (1.1), (1.2),

fν,�,a(x) → ( ν
2 )

ν
2

�(ν
2 )

2
ν+d

2 �(ν+d
2 )

(2π)
d
2
√|�|

(
ν + 〈x�−1, x〉

)− ν+d
2 = fν,�(x). �

Proposition 2.3 (i) As |x | → ∞,

fν,�(x) ∼ cν,�

(
〈x�−1, x〉

)− ν+d
2

,

where

cν,� = �
( d+ν

2

)
π

d
2 �(ν

2 )
√|�|

.

(ii) As |x | → ∞, a �= 0,

fν,�,a(x) ∼ cν,�,a

(
〈x�−1, x〉

)− ν+d+1
4
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× exp

{
−

[
〈a�−1, a〉〈x�−1, x〉

] 1
2 + 〈x�−1, a〉

}
,

where

cν,�,a = ( ν
2 )

ν
2
(〈a�−1, a〉) ν+d+1

4

�(ν
2 )(2π)

d−1
2

√|�|
.

Proof (i) Obviously follows from (1.1).
(ii) Because, as |x | → ∞,

K ν+d
2

([
〈a�−1, a〉

(
ν + 〈x�−1, x〉

)] 1
2
)

∼
√

π

2

[
〈a�−1, a〉

(
ν + 〈x�−1, x〉

)]− 1
4

× exp

{
−

[
〈a�−1, a〉

(
ν + 〈x�−1, x〉

)] 1
2
}

,

from (1.2) we find that, as |x | → ∞,

fν,�,a(x) ∼ ( ν
2 )

ν
2
(〈a�−1, a〉) ν+d−1

4

�(ν
2 )(2π)

d−1
2

√|�|
exp

{〈x�−1, a〉}(
ν + 〈x�−1, x〉) ν+d+1

4

× exp

{
−

[
〈a�−1, a〉

(
ν + 〈x�−1, x〉

)] 1
2
}

∼ cν,�,a

(
〈x�−1, x〉

)− ν+d+1
4

× exp

{
−

[
〈a�−1, a〉〈x�−1, x〉

] 1
2 + 〈x�−1, a〉

}
.

�

Corollary 2.4 Let d=1.

(i) If a > 0, x → ∞, then

fν,σ 2,a(x) ∼ 1

σ�(ν
2 )

( νa

2σ

) ν
2

x− ν
2 −1. (2.8)

(ii) If a > 0, x → −∞, then
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fν,σ 2,a(x) ∼ 1

σ�(ν
2 )

( νa

2σ

) ν
2 |x |− ν

2 −1 exp

{
−2a|x |

σ 2

}
. (2.9)

(iii) If a < 0, x → ∞, then

fν,σ 2,a(x) ∼ 1

σ�(ν
2 )

(
ν|a|
2σ

) ν
2

x− ν
2 −1 exp

{
−2|a|x

σ 2

}
. (2.10)

(iv) If a < 0, x → −∞, then

fν,σ 2,a(x) ∼ 1

σ�(ν
2 )

(
ν|a|
2σ

) ν
2 |x |− ν

2 −1. (2.11)

2.2 Asymptotic Distributions for Extremal and Record Values

Let now d = 1 and {Xn, n ≥ 1} a sequence of i.i.d. random variables with common
Student’s t-distribution function and let Mn = max

1≤ j≤n
X j .

Proposition 2.5 (i) If pdf of L (X1) is fν,σ 2 , then, as n → ∞,

L
(
(K1n)−

1
ν Mn

)
⇒ �ν,

where “⇒” means weak convergence of probability laws, �ν is the Fréchet
distribution

�ν(x) =
{

exp
{−x−ν

}
, if x > 0

0, if x ≤ 0,

and

K1 = �(ν+1
2 )σ ν

ν
√

π�(ν
2 )

.

(ii) If pdf of L (X1) is fν,σ 2,a, a > 0, then, as n → ∞,

L
(
(K2n)−

2
ν Mn

)
⇒ �ν

2
,

where
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K2 = 2( νa
2σ

)
ν
2

νσ�(ν
2 )

.

(iii) If pdf of L (X1) is fν,a,σ 2 , a < 0, then, as n → ∞,

L

(
2|a|
σ 2 Mn − ln n −

(ν

2
+ 1

)
ln ln n + ln K3

)
⇒ 	,

where 	 is the Gumbel distribution

	(x) = e−e−x
, x ∈ R1,

and

K3 = ν
ν
2 σ

ν
2 +3

2ν+2�(ν
2 )

.

Proof (i) From Proposition 2.3 (i) with d = 1 and the l’Hospital’s rule we have,
as x → ∞,

∞∫
x

fν,σ 2(u)du ∼ cν,σ

νσ

( x

σ

)−ν = K1x−ν, (2.12)

where

cν,σ = �
(

ν+1
2

)
√

π�
(

ν
2

)
σ

.

The statement (i) is standard for Pareto-like distributions (see, e.g., [1, 2]).
(ii) From Corollary 2.4 (i) and the l’Hospital’s rule we have that, as x → ∞,

∞∫
x

fν,σ 2,a(u)du ∼ K2x− ν
2 (2.13)

and the conclusion is analogs to (i).
(iii) From Corollary 2.4 (iii) and the l’Hospital’s rule we find that, as x → ∞,

∞∫
x

fν,σ 2,a(u)du ∼ σ

2|a|�(ν
2 )

(
ν|a|
2σ

) ν
2

x− ν
2 −1 exp

{
−2|a|x

σ 2

}
. (2.14)

The statement (iii) is standard for gamma-like distributions (see, e.g., [1, 2]).

�
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Now let us recall main results on limit theorems for record values in the sequences
of i.i.d. random variables {Xn, n ≥ 1} with a common continuous distribution func-
tion F which will be applied to the case of Student’s t-distributions.

The record times are L1 = 1, Ln+1 = min
{
k : k > n, Xk > X Ln

}
for n =

1, 2, . . ., and the record values are Rn = X Ln , n = 1, 2, . . .. Let W (x) =
− log(1 − F(x)) be the integrated hazard function and the associate distribution
function A(x) = 1 − e−√

W (x), x ∈ R1. Let la,b(x) = ax + b, a > 0, b ∈ R1, be a
group of affine homeomorphisms of R1 with the composition law

la1,b1 ∗ la2,b2 = la1a2,a1b2+b1 ,

the unit element l1,0 and the inverse l−1
a,b = la−1,a−1b.

The domain of attraction problem for record values using linear normalization
was solved by Resnick (see [3] also [4]). It was proved that the class of all possible
non-degenerated weak limit laws Q such that for suitable constants an > 0, bn ∈ R1,
as n → ∞,

L
(

l−1
an ,bn

(Rn)
)

⇒ Q

coincide with the class of laws �(− log(− log G(·))), where � is a standard normal
distribution and G is a l-max stable law, i. e. a non-degenerated distribution on R1

such that for any n ≥ 2 there exist constants an > 0, bn ∈ R1 satisfying

Gn(x) = G
(
lan ,bn (x)

)
, x ∈ R1.

As in the classical extreme value theory this class can be factorized into three
linear types, saying that probability distributions F1 and F2 are of the same linear
type it there exist constants a > 0, b ∈ R1 such that

F1(x) = F2
(
la,b(x)

)
, x ∈ R1.

In the classical case these types are generated by the Fréchet distribution �γ , the
Gumbel distribution 	 and the Weibull distribution

�γ (x) =
{

1, if x ≥ 0,

exp {−(−x)γ } , if x < 0, γ > 0,

which correspond to generators of three types of the limiting laws for L
(
lan ,bn (Rn)

)
:

�̃γ (x) =
{

0, if x ≤ 0,

�(log xγ ), if x > 0, γ > 0,
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�̃γ (x) =
{

�(log(−x)γ ), if x < 0,

1, if x ≥ 0, γ > 0,

and the standard normal distribution �(x), x ∈ R1.
We say that F belongs to the record domain of attraction under linear normaliza-

tion of the non-degenerated distribution Q (F ∈ RDAl(Q) for short) if there exist
constants an > 0 and bn ∈ R1 such that L (l−1

an ,bn
(Rn)) ⇒ Q, as n → ∞.

Duality theorem of Resnick says that F ∈ RDAl(�̃γ ) ⇔ A ∈ MDAl(�γ
2
),

F ∈ RDAl(�̃γ ) ⇔ A ∈ MDAl(�γ
2
) and F ∈ RDAl(�) ⇔ A ∈ MDAl(	), where

MDAl(Q) denotes the maximum domain of attraction under linear normalization of
the non-degenerated distribution Q (see, e.g., [3]). As a corollary we find that in the
case of heavy-tailed distributions F the record values cannot have non-degenerate
limiting distributions if we use linear normalization. Indeed, for the Pareto-like dis-
tributions F , satisfying, as x → ∞,

1 − F(x) ∼ K x−δ, δ > 0,

the associate distributions A satisfy, as x → ∞,

1 − A(x) ∼ e−√
δ log x .

In this case A∈̄MDAl(�γ
2
) ∪ MDAl(�γ

2
) ∪ MDAl(	). This fact is an argument to

consider limit theorems for the record values using power normalization.
Let

pα,β(x) = α|x |βsignx, α > 0, β > 0, x ∈ R1.

Observe that this class of functions form a group of homeomorphisms of R1 with
the composition law

pα1,β1 ∗ pα2,β2 = p
α1α

β1
2 ,β1β2

,

the unit element p1,1 and the inverse

p−1
α,β = p

α−β−1
,β−1 .

We say that F belongs to the record domain of attraction under power normalization of
the non-degenerate distribution Q (F ∈ RDAp(Q) for short) if there exist constants

αn > 0, βn > 0 such that, as n → ∞, L
(

p−1
αn ,βn

(Rn)
)

⇒ Q.

A non-degenerate distribution function G̃ on R1 is called p-max stable if for any
n ≥ 2 there exist constants α̃n > 0, β̃n > 0 such that

G̃n(x) = G̃(pα̃n ,β̃n
(x)), x ∈ R1.
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Probability distributions F1 and F2 are of the same power type if there exist
constants α > 0, β > 0 such that F1(x) = F2(pα,β(x)), x ∈ R1.

The class of non-degenerated limiting distributions for L (p−1
αn ,βn

(Rn)), as n →
∞, is equal to the class of law �̂(− log(− log Ĝ(·))), where G̃ is a p-max stable law
K, and is factorized to the six power types, generated by the distribution functions
(see [5, 6]):

�̂1,γ (x) =
{

0, if x ≤ 1,

�(γ log log x), if x > 1, γ > 0,

�̂2,γ (x) =
⎧⎨
⎩

0, if x ≤ 0,

�(−γ log | log x |), if 0 < x < 1,

1, if x ≥ 1, γ > 0,

�̂3,γ (x) =
⎧⎨
⎩

0, if x ≤ −1,

�(−γ log | log |x ||), if − 1 < x < 0,

1, if x ≥ 0, γ > 0,

�̂4,γ (x) =
{

�(−γ log log |x |), if x < −1,

1, if x ≥ −1, γ > 0,

�̂5(x) =
{

0, if x ≤ 0,

�(log x), if x > 0,

and

�̂6(x) =
{

�(− log |x |), if x < 0,

1, if x ≥ 0.

There are the valid analog of Resnick’s duality theorem and the principle of
equivalent tails, which says that if continuous distribution functions F1 and F2 are
such that r(F1) = r(F2) and 1 − F1(x) ∼ 1 − F2(x), as x ↑ r(F1), then F1 ∈
RDAp(Q) if and only if F2 ∈ RDAp(Q) with the same normalizing constants,
where r(F) = sup{x : F(x) < 1} and Q is a non-degenerate limiting distribution
for record values using power normalization.

The following analog of classical R. von Mises theorem [7] holds true.

Theorem 2.6 [8]. Assume that the integrated hazard function W (x) is differentiable
in some neighborhood of r(F). Then:

(i) if r(F) = ∞ and

lim
x→∞

W ′(x)x log x√
W (x)

= γ, γ > 0,

then F ∈ RDAp(�̂1,γ );
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(ii) if 0 < r(F) < ∞ and

lim
x↑r(F)

W ′(x)x log
(

r(F)
x

)
√

W (x)
= γ, γ > 0,

then F ∈ RDAp(�̂2,γ );
(iii) if r(F) = 0 and

lim
x↑0

W ′(x)x log |x |√
W (x)

= γ, γ > 0,

then F ∈ RDAp(�̂3,γ );
(iv) if r(F) < 0 and

lim
x↑r(F)

W ′(x)|x | log
(

x
r(F)

)
√

W (x)
= γ, γ > 0,

then F ∈ RDAp(�̂4,γ );
(v) if W is twice differentiable in some neighborhood of r(F) and

lim
x↑r(F)

W (x)

(
W ′′(x)

(W ′(x))2 + 1

xW ′(x)

)
= 0, (2.15)

then for 0 < r(F) ≤ ∞ F ∈ RDAp(�̂5) and for r(F) ≤ 0 F ∈ RDAp(�̂6).

Proposition 2.7

(i) If pdf of F is fν,σ 2 , then F ∈ RDAp(�̂5).

(ii) If pdf of F is fν,σ 2,a, a > 0, then F ∈ RDAp(�̂5).
(iii) If pdf of F is fν,σ 2,a, a < 0, then F ∈ RDAl(�).

Proof

(i) From the principle of equivalent tails and (2.12) it is enough to check (2.15)
with r(F) = ∞ and the integrated hazard function

W (x) = ν ln x − ln K1.

Indeed,

W ′′(x)

(W ′(x))2 + 1

xW ′(x)
= − ν

x2(
ν
x

)2 + 1

ν
≡ 0.
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(ii) From the principle of equivalent tails and (2.13) it is enough to check (2.15)
with r(F) = ∞ and the integrated hazard function

W (x) = ν

2
ln x − ln K2.

Again we find that

W ′′(x)

(W ′(x))2 + 1

xW ′(x)
= − ν

2x2(
ν

2x

)2 + 2

ν
≡ 0.

(iii) From (2.14) and the principle of equivalent tails it is enough to consider the
integrated hazard function

W (x) =
(ν

2
+ 1

)
ln x + 2|a|

σ 2 x − ln K3,

where

K3 = σ

2|a|� (
ν
2

)
(

ν|a|
2σ

) ν
2

.

The corresponding associated distribution

1 − A(x) = exp

{
−

√(ν

2
+ 1

)
ln x + 2|a|

σ 2 x − ln K3

}

∼ exp

{
−

√
2|a|
σ 2 x

}
, as x → ∞.

Using again the principle of equivalent tails, Resnick’s duality theorem and cri-
teria from the classical extreme value theory we easily find that A ∈ MDAl(	)

and thus F ∈ RDAl(�). �
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