Chapter 2
Asymptotics

2.1 Asymptotic Behavior of Student’s Pdf

Proposition 2.1 For each x € R asv — oo,
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Proof Leta = 0. Using the well-known formula that
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Here and below “~” is the equivalence sign.

The statement (2.1) with a = 0 follows from (1.1), (2.2), (2.3) and (2.4).

Let now a # 0 and
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Because, as v — oo, uniformly in y (see Appendix)
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we shall have that
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From (1.2) and (2.5) we elementarily find that
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- exp[%(aE_l,a)]. (2.7)

Thus, (2.6) and (2.7) imply that, for each x € R¢, as v — oo,
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Proposition 2.2 For each fixed xe R and v > 0, as la] — 0,

Sozax) = fus().

Proof Indeed, as |a| — 0,
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(see Appendix) and, having in mind formulas (1.1), (1.2),
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Proposition 2.3 (i) As|x| — oo,
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(ii) As |x] — o0, a #0,
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%
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Proof (i) Obviously follows from (1.1).
(ii) Because, as |x| — oo,
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from (1.2) we find that, as |x| — oo,
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Corollary 2.4 Let d=1.
(i) Ifa >0, x — oo, then
1 va % _r_q
fv,az,a(x) O‘F(%) (g) x 2 . (2.8)

(ii) Ifa > 0, x - —o0, then
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(iii) Ifa < 0, x — 00, then
1 (vlal\? _v_, 2|alx
fv’o.zya(x)’\’r@(g) X 2 exp[— o2 . (210)
(iv) Ifa <0, x — —oo, then
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fu,az,a(x)~ar(%) (y) lx|727". (2.11)

2.2 Asymptotic Distributions for Extremal and Record Values

Letnow d = 1 and {X,,, n > 1} a sequence of i.i.d. random variables with common

Student’s ¢-distribution function and let M,, = 1max X;.
<jsn

Proposition 2.5 (i) If pdf of £ (X1) is f, ,2, then, asn — oo,
2 ((Kim™" M) = @,

where “=" means weak convergence of probability laws, ®, is the Fréchet
distribution

_ exp{—x‘”}, if x>0
q’““”‘{o, it x<0,
and
Lo

Klzm.

(ii) If pdf of L(X1) is f, 52,40 @ > O, then, as n — oo,
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(iii) If pdf of £(X1) is f, 4,02, @ < 0, then, as n — o0,
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where A is the Gumbel distribution
Ax) = e ¢, xeR!,

and
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Proof (1) From Proposition2.3 (i) with d = 1 and the 1’Hospital’s rule we have,

as x — 0o,

o0

—V
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The statement (i) is standard for Pareto-like distributions (see, e.g., [1, 2]).
(i) From Corollary 2.4 (i) and the 1’Hospital’s rule we have that, as x — oo,

o0
/ fror.a(@)du ~ Krx~2 (2.13)
X

and the conclusion is analogs to (i).
(iii)) From Corollary 2.4 (iii) and the I’Hospital’s rule we find that, as x — oo,

o0 v

o vlal\? _v_, 2|alx
/fv’UZ’a(u)du ~ 2|a|—r(%) (X) x 2 eXp [— 0'2 . (214)
X

The statement (iii) is standard for gamma-like distributions (see, e.g., [1, 2]).

O
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Now let us recall main results on limit theorems for record values in the sequences
of i.i.d. random variables {X,,, n > 1} with a common continuous distribution func-
tion F' which will be applied to the case of Student’s ¢-distributions.

The record times are L1 = 1, L,4; = min {k k>n, Xi > XLn} forn =
1,2,..., and the record values are R, = X;,, n = 1,2,.... Let W(x) =
—log(l — F(x)) be the integrated hazard function and the associate distribution
function A(x) =1 — e’m,x € R'. Let lyp(x) =ax+Db,a>0,b ¢ R, bea
group of affine homeomorphisms of R! with the composition law

lay by *lay,by = lajaz,a1br+by s

the unit element /; o and the inverse la_’}) =141 4-1p-

The domain of attraction problem for record values using linear normalization
was solved by Resnick (see [3] also [4]). It was proved that the class of all possible
non-degenerated weak limit laws Q such that for suitable constants a,, > 0, b, € R!,
asn — 00,

2 (I, (R)) = 0

coincide with the class of laws ® (—log(—log G(-))), where & is a standard normal
distribution and G is a [-max stable law, i. e. a non-degenerated distribution on R!
such that for any n > 2 there exist constants a,, > 0, b, € R! satisfying

G"(x) = G (g b, (x)), x €R".

As in the classical extreme value theory this class can be factorized into three
linear types, saying that probability distributions F and F; are of the same linear
type it there exist constants @ > 0, b € R! such that

Fi(x) = F> (lap(x)), x e R

In the classical case these types are generated by the Fréchet distribution ®,,, the
Gumbel distribution A and the Weibull distribution

I if x>0,
qjy(x)_[exp{—(—x)y}, if x<0, y>0,

which correspond to generators of three types of the limiting laws for .Z (la,, b, (Rn)) :

0, if x<0,

Dy x) = {CD(long), if x>0, y>0,
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~ | @dog(—x)"), if x <O,
‘I’V(x)—[l, if x>0, y>0,

and the standard normal distribution ®(x), x € R'.

We say that F belongs to the record domain of attraction under linear normaliza-
tion of the non-degenerated distribution Q (F € RDA,;(Q) for short) if there exist
constants a, > 0 and b, € R' such that .f(l_ b, (Rn)) = Q,asn — oo.

Duality theorem of Resnick says that F € RDA](dDy) & A € MDA;(® %),

F e RDA[(\TJV) & Ae MDA;(\I/%) and F € RDA;(®) & A € MDA, (A), where
MDA; (Q) denotes the maximum domain of attraction under linear normalization of
the non-degenerated distribution Q (see, e.g., [3]). As a corollary we find that in the
case of heavy-tailed distributions F' the record values cannot have non-degenerate
limiting distributions if we use linear normalization. Indeed, for the Pareto-like dis-
tributions F, satisfying, as x — 00,

1—Fx)~Kx% §>0,
the associate distributions A satisfy, as x — oo,

1 — A(x) ~ e~ Vologx,

In this case AeMDA;(®y) U MDA[(\I—’V ) UMDA;(A). This fact is an argument to
consider limit theorems ff)r the record values using power normalization.
Let

Da.p(x) = a|x|ﬁsignx, a>0, >0, x¢e R'.

Observe that this class of functions form a group of homeomorphisms of R! with
the composition law

Pay.py * Par.py = pal“zﬁl,ﬁlﬁz’
the unit element p; 1 and the inverse

—1
Pop = Pafﬁfl’ﬁflo

We say that F belongs to the record domain of attraction under power normalization of
the non-degenerate distribution Q (F € RDA ,(Q) for short) if there exist constants
a, > 0, B, > 0 such that, asn — o0, ¥ (p;nl,ﬁn (Rn)) = 0.

A non-degenerate distribution function G on R is called p-max stable if for any
n > 2 there exist constants &, > 0, 8, > 0 such that

G"(x) = G(pg, 5,0, xeR.
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Probability distributions F; and F» are of the same power type if there exist
constants o > 0, 8 > 0 such that Fj(x) = F2(pe,g(x)), x € R'.

The class of non-degenerated limiting distributions for .Z( p;n{ y (Ry)), asn —
00, is equal to the class of law CiD(— log(—log é(~))), where G is a p-max stable law
K, and is factorized to the six power types, generated by the distribution functions
(see [, 6]):

By, () = r=1
Lyt CD(yloglogx) if x>1, y >0,
0, if x <0,
CI>2),(x) d(—ylog|logx]), if O0<x <1,
1, if x>1, y>0,
0, if x<-1,
CI>3y(x) O (—ylog|log|x|]), if —1<x <0,
1, if x>0, y=>0,
O (—yloglog|x|), if x < —1,
By (x) = I if x>—1, y>0,
if x <0,
@5(x) _{CD(logx) if x>0,
and
. _ | @(=loglx]), if x <O,
q’“”‘[l, if x>0.

There are the valid analog of Resnick’s duality theorem and the principle of
equivalent tails, which says that if continuous distribution functions Fj and F; are
such that r(F1) = r(F2) and 1 — Fi(x) ~ 1 — Fp(x), as x 1 r(Fp), then F| €
RDA,(Q) if and only if F, € RDA,(Q) with the same normalizing constants,
where r(F) = sup{x : F(x) < 1} and Q is a non-degenerate limiting distribution
for record values using power normalization.

The following analog of classical R. von Mises theorem [7] holds true.

Theorem 2.6 [8]. Assume that the integrated hazard function W (x) is differentiable
in some neighborhood of r (F). Then:

(i) if r(F) = oo and
fim W' (x)x log x
X— 00 /W(x)

then F € RDA,(®1,);

=y, y>0,
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(ii) if0 < r(F) < oo and

W' (x)x log (’(f’)
hm — , > O,
xtr(F) VW(x) v
then F € RDA ,(®3.,));
(iii) ifr(F) = 0and
5 W' (x)x log |x| 0
m-——— =9, > U,
x10 VW(x) v
then F € RDA ,(®3.,);
(iv) ifr(F) < 0and
W' (o)Ll log (25 )
li y >0,

m =Y,
*tr(F) NAZE)) v

then F € RDA ,(®4.,);
(v) if W is twice differentiable in some neighborhood of r (F') and

, W (x) i
lim W —0, 2.15
ity W) ((W/(x))z + xW’(x)) @15

then for 0 < r(F) < 0o F € RDA,(®s) and for r(F) < 0 F € RDA ,(®).
Proposition 2.7
(i) If pdf of F is f, .2, then F € RDA,(®s).
(ii) Ifpdf of F is f, 42 4 a > O, then F € RDA,(ds).
(iii) If pdf of F is f, 424, a <0, then F € RDA;(D).

Proof

(i) From the principle of equivalent tails and (2.12) it is enough to check (2.15)
with 7 (F) = oo and the integrated hazard function

W(x)=vInx —InKj.
Indeed,

LACC) RS SN
(W'x)>  xW)
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(i) From the principle of equivalent tails and (2.13) it is enough to check (2.15)
with 7 (F) = oo and the integrated hazard function

Wx) = glnx —In K>.

Again we find that

|<

W’ (x) T
(W0 xW/x) ()

I
e

+

NN
< N

(i) From (2.14) and the principle of equivalent tails it is enough to consider the
integrated hazard function

2lal
—2X —1In K3,
(e

Wx) = (% + 1) Inx +

where

ki —C (My
T oar ) \20 )

The corresponding associated distribution

v 2/l
| — A(x) = exp | — (§+1)lnx+7x—lnl(3
2lal
~exXpy— —2)( , as x — OQ.
o

Using again the principle of equivalent tails, Resnick’s duality theorem and cri-
teria from the classical extreme value theory we easily find that A € MDA;(A)
and thus F € RDA;(®D). O
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