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Abstract. In this paper, the use of non-optimality spheres in a simpli-
cial branch and bound (B&B) algorithm is investigated. In this context,
some considerations regarding the use of bisection on the longest edge
in relation with ideas of Reiner Horst are reminded. Three arguments
highlight the merits of bisection of simplicial subsets in B&B schemes.

Keywords: Global Optimization, simplicial partition, branch and bound,
bisection.

1 Introduction

This work is dedicated to Reiner Horst, who encouraged and inspired the study
of Global Optimization branch and bound (B&B) methods. In his last (2010)
contribution titled “Bisection by global optimization revisited” [8], some consid-
erations were elaborated regarding the use of simplices in branch and bound.
Reiner ideas on simplicial partitioning, developed in discussion with his co-
workers Micheal Nast and Nguyen Van Thoai, are summarized in the book [11]
and elaborated and experimented in the thesis of Ulrich Raber [17]. The main
issue in [8] is that “bisection is not optimal”. It is clear that optimality depends
on the objective under consideration, and we would like to stress that Reiner
had a wider view on the use of simplices than B&B only, namely the typical
lower dimensional tessalation in physics and the use of triangulations for find-
ing roots of mappings. This paper focuses on several aspects for which bisecting
the longest edge in simplicial branch and bound in Global Optimization may be
convenient.
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Previous experience regarding the use of B&B on the unit simplex in appli-
cations in mixture design for multinational Unilever, [4], showed that the study
of Reiner [7], on splitting the unit simplex by bisection, leads typically to edge
lengths of 1,

√
3/2,

√
2/2 and 1/2. Moreover, it was shown that, implicitly, this

technique leads to samples points over an equidistant grid when using an ε accu-
racy in the decision space [4]. In the above mentioned application, the practical
importance of this design property has connections with robustness considera-
tions, in the sense that finding an acceptable design means that all points in
its environment are feasible. Bisecting the longest edge gives relatively ‘round’
partition sets. For running a B&B tree to the bottom, where simplices have at
most a size of ε, this feature is convenient. Using radial splitting over the cen-
troid, as suggested in [7], leads to needle shaped subsimplices. Deviating from
the midpoint requires keeping track of ε robustness. Concluding Bisecting over
the middle of the longest edge can be convenient for ε robustness considerations.

A second aspect has to do with implementation issues in B&B. Instead of
questioning how many small subsets the B&B search may lead to at the bottom
of the tree, Reiner showed his always optimistic perspective of following a subset
to be split iteratively from top to bottom of the tree to see how fast it converges
to a singleton. In [8] he repeats the proposition that can also be found in [7]
and with an extensive proof in [11] that after splitting an n-simplex n times, the
longest edge will be shorter than

√
3/2. He also reminded that Beaker Kearfott

already published a similar result in 1978. In [4] it is shown that after splitting
all edges i.e. going n(n+1)/2 deeper in the tree, then the size is at most 1/2. Up
to about n = 9 this is even a sharper bound. However, seen from the worst case
(pessimistic) B&B perspective this is not encouraging; the number of simplices
to be evaluated is astronomically high.

After obtaining in practice millions of subsets to be stored in RAM, there
are two optional directions. From a theoretical point of view, this means looking
for sharper (and more elegant) bounds. From a practical perspective, it implies
designing a convenient way to store and manage the search tree, allowing sort-
ing, easy look up, and workload distribution over several processors. This is a
second reason why using the midpoint of the longest edge can be convenient; the
same (evaluated) point appears several times as vertex of sub-simplices, allowing
repeated re-use of its information without the need to evaluate it. Concluding,
bisecting over the middle of the longest edge can be convenient for storing a B&B
tree structure with subsets linked to evaluated vertices.

The use of simplices in B&B to solve GO problems is common [12,16]. The
idea can be found in the work of Ulrich Raber [16], also in the work of Julius
and Antanas Žilinskas [20] and Remigijus Paulavičius, J. Žilinskas and Andreas
Grothey [14]. Specifically, in [19] the idea of using more elegant partitioning
than bisection is discussed. However, these proposals are applicable only to low
dimensional cases. Theoretically, it is known that convergence is guaranteed. As
discussed, bisection may be a good basis from the computer science perspective,
despite it is not efficient from a bounding perspective. In the sequel, a third
aspect related to the practical use in B&B is outlined. To address this issue, a
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question is posed: how can simplicial partition sets and bisection be used to have
early pruning of nodes? This means to develop methods that detect subspaces
which cannot contain a global optimizer in an early phase.

Regarding node pruning, we focus on covering methods, based on bounds on
first (Lipschitz constant) and second derivative. For higher dimensions, greater
than 1, Reiner Horst mentioned in [11] that Lipschitz optimization “does not
look very practical”. His focus was rather on B&B; in [10] a B&B view on
covering methods is presented. Our study deals with linking the two concepts
using so-called non-optimality spheres.

We describe the idea of covering algorithms that can basically also be found
in the books of Reiner Horst [9,11] with the aid of simple examples and figures
in Sect. 2. In Sect. 3, the concept of non-optimality spheres is presented and a
B&B algorithm is given in Sect. 4 based on simplicial partition sets. We discuss
how to infer simplicial partition set covering by non-optimality spheres in Sect.
5. We numerically illustrate the concept of using bisection in such a procedure
in Sect. 6. This is followed by conclusions in Sect. 7.

2 Covering Algorithms

The generic box-constrained GO problem consists in finding the global mini-
mum f∗ of a real valued n-dimensional function f : S → R, S ⊂ R

n, and the
corresponding set S∗ of global minimum points, where S is a box, i.e.:

f∗ = f(x∗) = min
x∈S

f(x), x∗ ∈ S∗ . (1)

Covering methods approach this problem by defining iteratively a covering func-
tion ϕk(x) ≤ f(x), where a minimum point of ϕk(x) ≤ f(x) over S is then used
as the next iterate xk+1. A basic method with this property is due to Piyavski
and Shubert [5,15,18], who published in parallel about an algorithm where the
so-called saw-tooth cover is based on information about the Lipschitz constant.
The knowledge of a scalar L is assumed such that

| f(x1)− f(x2) |≤ L‖x1 − x2‖ ∀x1, x2 ∈ S . (2)

For evaluated points x1, . . . , xi, . . . , xk, with function values f1, . . . , fi, . . . , fk the
covering function is defined by

ϕk(x) = max
1≤i≤k

(fi − L‖x− xi‖) . (3)

By keeping track of the best function value as upper bound of the global min-
imum U = min1≤i≤k fi, one can show that the algorithm evaluating iteratively
the minimum of ϕk leads to a guaranteed approximation of the optimum with
accuracy δ, when using U −minx ϕ(x) < δ as stopping criterion.

The real challenge is the application of this concept for dimensions higher
than 1, given the scepticism of some authors, Reiner Horst included in [11] that
a direct application looks impractical. A continuing report on achievements on
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covering methods in Russian is due to the work of Yuri Evtushenko (e.g. [6])
during 40 years. A description of the corresponding algorithm and minimization
of ϕk is also described in [13].

A second base for covering algorithms is due to the work of Breiman and
Cutler, [2] when using a bound K on the second derivative, such that K ≥
−f ′′(x), x ∈ S or more general (in higher dimensions) on an overestimate of the
negative of the minimum eigenvalue of the Hessian, such that

f(x) ≥ f(x1) +∇fT (x)(x − x1)− 1

2
K‖x− x1‖2 ∀x, x1 ∈ S . (4)

Analogously to (3), the corresponding covering function is given by

ϕk(x) = max
1≤i≤k

(fi +∇fT
i (x− xi)− 1

2
K‖x− xi‖2) . (5)

The algorithm of Breiman-Cutler takes iteratively a minimum point of ϕk as next
iterate. The original article [2] describes also the approach for the multivariate
case where it is necessary to find the minimum of intersecting parabolics leading
to polytope shaped regions that are similar to Voronoi diagrams. The method is
very elegant, but also very elaborative, as it requires storing information on all
evaluated points, intersecting planes and resulting vertices of the polytopes.

Baritompa in [1] showed how (2) and (4) can be relaxed by focussing on
the behavior around global optimum x∗, f∗. Let M and K be values such that
f(x) ≤ f∗ +M‖x− x∗‖, ∀x ∈ S and f(x) ≤ f∗+ 1

2K‖x− x∗‖2, ∀x ∈ S. So, it is

5(x)

f(x)

x1 f1

x2 f2

x3 f3

x4 f4
x5 f5

Fig. 1. Iterate is a minimum of (7) for f(x) = sin(x) + sin(3x) + ln(x)
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not necessary to have a global overestimate of neither Lipschitz constant, nor of
the second derivative (or the negative of the minimum eigenvalue of the Hessian
in higher dimensions), K. Then one can take as cover

ϕk(x) = max
1≤i≤k

{fi −M‖x− xi‖} (6)

or alternatively

ϕk(x) = max
1≤i≤k

{fi − 1

2
K‖x− xi‖2} . (7)

An interesting aspect is that ϕ is not necessarily an underestimating function of
f , but it neither cuts away a global minimum point.

Example 1. Consider function f(x) = sin(x) + sin(3x) + ln(x) on the interval
X = [3, 7]. We take K = 10, as the maximum value of the second derivative is
reached close to x∗. Fig. 1 depicts iterates corresponding to a minimum point
of (7). Function ϕk is not a lower bounding function, but neither cuts away the
global minimum. The minimum point of ϕk is a lower bound for the minimum
of f .

The example illustrates the deterministic view of Reiner Horst, where the global
minimum can be obtained with a guarantee given certain information. Usually
one refers to a bound on derivatives, but the assumptions of Baritompa around
the global minimum point do not require the function to be differentiable neither
continuous over the whole domain. On the other hand, practically information
on M or K is required, which may be as hard to obtain as solving the original
problem.

Our interest is the multivariate variants of using (6) and (7) in simplicial
branch and bound. Finding iteratively the minimum point of ϕk(x) may be a te-
dious job. However, from a B&B perspective, it is not necessary to know exactly
the minimum of ϕ. Our focus is on the potential of so-called non-optimality
spheres, close to the covering concepts of [6] and the concept of infeasibility
spheres in [4]. The purpose is to come to simplicial B&B based algorithms ap-
plying (6) and (7) in order to illustrate the usefulness of bisection.

3 Non-optimality Spheres

As the name suggests, non-optimality spheres are spheres that are guaranteed
not to contain an optimal solution. We start describing how non-optimality
spheres can be derived from sample points and global value information. Next,
a specific B&B algorithm which uses simplicial partition sets is presented.

Consider sample points x1, . . . , xi, . . . , xk, with f1, . . . , fi, . . . , fk as function
values, and U the best function value found, U = min1≤i≤k fi. For a value of M
such that

f(x) ≤ f∗ +M‖x− x∗‖, ∀x ∈ S, ∀x∗ ∈ S∗, (8)

a non-optimality sphere BMi centered at xi with radius ri is given by

BMi = {x ∈ S| ‖x− xi‖ < (ri =
fi − U

M
)} . (9)
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For a value K with

f(x) ≤ f∗ +
1

2
K‖x− x∗‖2, ∀x ∈ S, ∀x∗ ∈ S∗ (10)

a non-optimality sphere is given by

BKi = {x ∈ S| ‖x− xi‖2 < (r2i = 2
fi − U

K
)} . (11)

First notice that in (8) and (10) necessarily M > 0 and K > 0. The definition
of the non-optimality sphere radius is obtained by a simple manipulation of (8)
and (10), bounding f∗ by U and replacing x and f(x) respectively by xi and
fi. Comparing BKi as in (11) with the sphere that could be obtained using
a similar procedure and the Breiman-Cutler assumption (4), the difference is
that the center of the sphere is shifted towards xi +

1
K∇fi and in the radius

definition in (11), one should take instead of fi the value of the top of the
parabola fi +

1
2K∇fT

i ∇fi.
Notice that for a current best point where fi = U , the non-optimality sphere

is empty, i.e. it could be an optimum point. Moreover, if the upper bound U
goes down during the iterations, the spheres are getting bigger. The fact that
the area of the non-optimality spheres can be left out of further consideration is
given in the following theorems.

Theorem 1. Non-optimality sphere BMi does not contain a global minimum
point x∗ ∈ S∗.

Proof. Proof by contradiction. By definition of M , f(xi) ≤ f∗ +M‖xi − x∗‖,
such that f∗ ≥ fi−M‖xi−x∗‖. Let x∗ ∈ Bi. Substitution of definition (9) gives

f∗ ≥ fi − L‖xi − x∗‖ > fi − fi + U = U, (12)

which contradicts U being an upper bound of f∗. ��
For the parabolic non-optimality sphere this is given as follows.

Theorem 2. Non-optimality sphere BKi does not contain a global minimum
point x∗ ∈ S∗.

Proof. Proof by contradiction. By definition of K, f(xi) ≤ f∗ + 1
2K‖xi − x∗‖2,

such that f∗ ≥ fi− 1
2K‖xi−x∗‖2. Let x∗ ∈ BKi. Substitution of definition (11)

gives

f∗ ≥ fi − 1

2
K‖xi − x∗‖2 > fi − fi + U = U, (13)

which contradicts with U being an upper bound of f∗. ��
In general, a non-optimality sphere may be completely covered by another one
depending on the values of M and K. This is interesting from algorithmic per-
spective, as the covered sample point and its sphere apparently do not add any
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information to the search. However, ifM is a strict overestimate of the Lipschitz
constant

M >
|f2 − f1|
‖x2 − x1‖∀x1, x2 ∈ S, (14)

then one sphere cannot be covered by another one.

Theorem 3. LetM be an overestimate (14), BMi be defined by (9) and x1, x2 ∈
S with function values f1, f2. Then neither BM1 ⊂ BM2 nor BM2 ⊂ BM1.

Proof. A sphere BM2 of radius r2 and center x2 contains a sphere BM1 with
radius r1 and center x1 if

r2 ≥ r1 + ‖x2 − x1‖.
W.l.o.g. let f2 > f1, such that r2 > r1. Then BM2 ⊂ BM1 is not possible, as
r1 ≥ r2 + ‖x2 − x1‖ is not possible. Furthermore, from (9) we have

r2 − r1 =
f2 − U

M
− f1 − U

M
=
f2 − f1
M

.

Now using (14) we obtain

r2 − r1 <
f2 − f1
|f2 − f1| ‖x2 − x1‖ = ‖x2 − x1‖,

so
r2 < r1 + ‖x2 − x1‖.

So neither BM2 ⊂ BM1 nor BM1 ⊂ BM2. ��
Example 2. Consider the six-hump camel-back function:

f(x) = 4x21 − 2.1x41 +
1

3
x61 + x1x2 − 4x22 + 4x42 (15)

taking as feasible area S = [−2, 2]× [−2, 2]. It has 6 local optimum points two
of which describe the set of global optimum solutions. All vertices of S and 16
more generated sample points xi are evaluated. The maximum eigenvalue of the
Hessian goes up to 184. In [2], experiments are done with K = 9, as the lower
bounding is based on the most negative eigenvalue. In the illustration, a value
of K = 60 is used.

The resulting Emmentaler set S \ ∩BKi, where the optimum still can be
located, is drawn in Fig. 2. Similar figures can be made using M = 38 as valid
upper bound in the determination of BMi. The spheres close to the vertices of
S are relatively big, because the highest function values are attained there. Only
19 spheres are drawn because the one that corresponds to mini fi is empty; a
cross marks its center.

As such, the described set is difficult to work with. However, an alternative is
to link covering algorithms to B&B as Reiner Horst did in [10]. Specifically, we
apply the spheres in a B&B framework where n-simplices are used as suggested
by Reiner in [8].
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Fig. 2. Emmentaler set for six-hump camel-back evaluated at vertices and 16 additional
sample points

4 B&B Simplicial Covering Algorithm

The use of value information on M and K aims at guaranteeing that in the end
the best sampled point has a function value that differs less than a predefined
accuracy δ from f∗; f∗ ≤ U ≤ f∗ + δ. This target can be reached by having
a dense sampling, e.g. a grid. If a value for M is given and there is for every
sampling point, another sampling point such that the distance in between them
is at most ε = 2 δ

L , then any x ∈ S is closer than 1
2ε from a sampled point, such

that, f(x) > U − 1
2Mε = U − δ , ∀x ∈ S. In this case U is a δ-accuracy optimal

solution.
Similarly, if a value for K is given, one can sample up to an accuracy of points

being ε =
√

8δ
K apart to guarantee f(x) > U− 1

2K(12ε)
2 = U−δ. The essential of

branch and bound is not to sample everywhere dense, but to remove areas where
it has been proven that the optimum cannot be located. In the B&B method, the
set is subsequently partitioned into more and more refined parts (branching) over
which bounds of an objective function value, and in this case, non-optimality
spheres can be determined. Parts completely covered by the spheres are deleted
(pruning), since these parts of the domain cannot contain optimum solutions.
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Algorithm 1. B&B algorithm.

Inputs: - S: box constrained feasible area
- f : objective function
- δ: accuracy
- K: parabolic parameter

Output: - best proven solution xU

Funct B & B Algorithm

1. ε :=
√

8δ
K
, Λ := {C1, . . . , Cp} as first partition of S

2. for sample points xi ∈ Cj , Cj ∈ Λ EvaluateVertex(xi)
3. for simplices Cj ∈ Λ EvaluateSimplex(Cj)
4. while Λ �= ∅
5. Take one subset C from list Λ according to a selection rule.

Subdivide C into two new subsets Cnew1 and Cnew2 by splitting
over the longest edge, generating new point xk.

6. EvaluateVertex(xk),
7. EvaluateSimplex(Cnew1), EvaluateSimplex(Cnew2)
8. return xU

A possible algorithm based on bisection is outlined (see Algorithm 1). The
method starts with a partitioning of set S into simplices C1, . . . , Cp to be stored
as first elements of a list Λ of subsets (partition sets) and stops when the list Λ
is empty. We also store the generated sample points xi and their function value
fi on which the radius of the non-optimality spheres is based. Finally we keep
track of points, that are proven to have a function value which differs less than
δ from the global minimum f∗.

A generated subset Ck is not stored in Λ, if it can be proven that it is cov-
ered. In Sect. 5, results on proving coverage are discussed. Moreover, partition
sets smaller in size than ε are discarded. The branching concerns the further
refinement of the partition. This means that one of the subsets is selected to be
split into new subsets. A selection rule determines the subset to be split next.

As discussed before based on the considerations in [7], an advantage of bisec-
tion splitting along the longest edge is due to the shape of the partition sets.
The length of the longest edge is at most twice the size of the shortest edge.
Therefore the sets can never get a needle shape.

Algorithm 2. Evaluate subset, decide to put on list based on cover

Funct EvaluateSimplex (C); global Λ, U, ε

1. if size(C) > ε
2. Cover check of C by ∪BKi

3. if C not proven to be covered
4. store C in Λ
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Algorithm 3. Evaluate a point and update global information.

Funct EvaluateVertex (x); global Λ,U, xU

1. Determine f(x) either from stored points or evaluate
2. if f(x) < U
3. U := f(x) and xU := x Update global information
4. Update all BKi and remove all Ck ∈ Λ that are covered Pruning

5 Check on Covering a Simplex by Spheres

The question if simplex C is covered by spheres Bi = {x| ‖x−vi‖ ≤ ri} centered
at its vertices vi has been dealt with extensively in [3]. Notice that the vertices
vi are a subgroup of the evaluated points; {vi ∈ C} ⊂ {x1, . . . , xk}. Even the
question of covering the simplex by spheres at the vertices is not for each instance
easy to verify. The following three rules are useful:

1. check first if one of the spheres alone covers C, i.e. maxj ‖vj − vi‖ < ri.

2. if an interior point x ∈ C is covered by the intersection of spheres x ∈
∩vi∈CBi, all the simplex is covered, i.e. C ⊂ ∪vi∈CBi. One can try a weighted
average of the vertices.

3. the best point to check is the so called θ-point where ‖θ − vi‖2 − r2i =
‖θ − vj‖2 − r2j , ∀vi, vj ∈ C. Even if θ is not interior, but covered, the whole
simplex C is covered.

In the algorithmic context, the first rule is the easiest to check and should be
tried first. The determination of the θ-point requires solving a set of n linear
equalities. Consider the vertices v1, . . . , vn+1 of C. Equating

(θ − v1)
T (θ − v1)− r21 = (θ − vi)

T (θ − vi)− r2i , i = 2, . . . , n+ 1 (16)

and bringing the terms with θ to the left hand side gives

2(vi − v1)
T θ = r21 − r2i + vTi vi − vT1 v1, i = 2, . . . , n+ 1 . (17)

Example 3. Consider the following three spheres in 2-dimensional space:

v1 =

(
0
0

)
, v2 =

(
5
0

)
, v3 =

(
3
6

)
, r21 = 4, r22 = 3, r23 = 1.

Point θ =

(
2.6
2.7

)
can be determined equating the two planes (17) between v1

and v2 and between v1 and v3, see Fig. 3. The corresponding solution has equal
values ‖θ − vj‖2 − r2j = 10.05 for the three vertices, v1, v2 and v3.
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v1 v2

v3

θ

Fig. 3. Determination of the θ-point

It is interesting that the θ-point is closely related to the vertices that Breiman-
Cutler keep track of in their algorithm. In fact, in [3] it is shown that if θ is
interior with respect to C, then it is a global minimum point of ψC , defined
similar as ϕk in (7), where one only considers the vertices of C. To be more
precise:

ψ(x) = max
vi∈C

{‖x− vi‖2 − r2i } . (18)

Using (11), where r2i = 2 fi−U
K , we can redefine

ψC(x) = max
vi∈C

{fi − 1

2
K‖x− vi‖2} . (19)

Notice that ψC(x) ≤ ϕk(x), because {vi ∈ C} ⊂ {x1, . . . , xk}. As has been shown
in [3], l(C) := ψ(θ) ≤ minx∈C ψ(x) is a lower bound of ψC over C. In that sense,
l(C) is also a lower bound of ϕk over C. The consequence of this theoretical
results is that to check the cover, θ can be computed to find l(C). If l(C) > U ,
then C cannot contain an optimum solution. For the underestimate based onM
(8), one can also redefine the function ψ of (18). However, in that case also the
ratio between radii (ri/rj) depends on the best function value found, U . That
means, that also the θ-point depends on U . So, one can construct a similar test,
but if an update of the global upper bound U has been found, the ratio changes,
such that the θ-point is shifted.

Now getting back to the main question of our research that deals with the use
of bisecting the longest edge by the midpoint. In the empirical work of running
the algorithms, we found that if the θ-point and therefore minimum point of ψ,
has more tendency to be inside the simplex under consideration, than in the case
of needle shaped simplices. Concluding, bisecting over the middle of the longest
edge can be convenient for checking the cover of a simplex by non-optimality
spheres centered at its vertices.
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Fig. 4. Progress of a simple covering algorithm on six-hump after 50 iterations. The
left over simplices, the evaluated points and their corresponding non-optimality spheres
are depicted. The best points found are given by a small square.

If an inspected simplex C is not covered by the spheres at its vertices, it may
still be covered completely by spheres centered at other points in {x1, . . . , xk} \
{vi ∈ C}. To check this individually, one can run over the list of evaluated points
x1, . . . , xj , . . . xk and check whether

max
vi∈C

‖xj − vi‖2 < r2j . (20)

Intuitively, a sphere has more tendency to cover a ‘round’ simplex than a needle
shaped one. In the illustration, (20) is used on the bisected partition sets.

6 Numerical Illustration

How does the development of using non-optimality spheres in simplicial B&B
look like? The presented algorithm is rather generic as many details can be filled
in. A simple illustration is given without any pretention to outperform other
covering based algorithms. The algorithm was applied to the six-hump camel-
back function, where an accuracy of δ = 0.0001 and K = 60 were used. The
only used cover check is the validation of (20) for all evaluated points and a
breadth-first-search selection was applied. A list of ns simplices is maintained
and the number ndel of deleted simplices and number nf of function evaluations
is measured during the iterations it in Table 1.
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The algorithm converges after 622 iterations returning the global minimum
points. Notice that at each iteration two simplices are evaluated and that about
half of them are not put on the list in the first place. Figure 4 sketches the
progress after 50 iterations. Proceeding, U is updated and consequently spheres
increase. Figure 5 shows the state after 150 iterations. These figures also show
well that many simplices are covered by a set of non-optimality spheres, but
not by a single one, so test (20) is quite rough. The main interpretation of the
illustration is that in fact more ‘round’ simplices have an earlier covering by
individual spheres than needle shaped simplices, advocating the use of bisection
as division rule.

Table 1. Progress of the B&B algorithm on six-hump, δ = 0.0001 and K = 60

it 50 200 400 622

ns 36 96 19 0
ndel 16 106 383 624
nf 39 129 285 454
U -.13 -.98 -1.02 -1.03
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Fig. 5. Progress of a simple covering algorithm on six-hump after 150 iterations. The
left over simplices, the evaluated points and their corresponding non-optimality spheres
are depicted. The best points found are given by a small square.
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7 Conclusions and Future Work

In a recent publication Reiner Horst stated that bisection is “not optimal” refer-
ring to volume considerations and convergence rates within a branch and bound
tree.

In this paper we discuss several aspects for which the use of bisection in
simplicial B&B may be convenient due to the feature of leading to relatively
‘round’ partition sets, and implicitly sampling over an equidistant grid. Bisecting
the longest edge over the midpoint appears to be convenient for

– Robustness considerations searching for feasible ε-spheres;
– storage issues in branch and bound trees;
– checking the cover of a simplex by non-optimality spheres.

The first two observations follow from experience solving practical design prob-
lems by B&B. To elaborate the latter, a generic B&B algorithm has been outlined
and several properties regarding non-optimality spheres in this context have been
elaborated. As reported, relatively ‘round’ simplices appear to be convenient.
Like Reiner, we also looked into other ways to divide simplices. Although con-
venient in low dimensional applications, regular equilateral subsivisions cannot
be extended to higher dimensional branch and bound methods. Further research
can even be focussed on overlapping equilateral subdivisions.
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