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Abstract. Business and ICT strategic alignment remains an ongoing
challenge facing organizations as they react to changing requirements
by adapting or introducing new technologies to existing infrastructure.
Enterprise Architecture (EA) has increasingly become relevant to these
demands and as a consequence numerous methods and frameworks have
emerged. However these approaches remain bloated, time-consuming and
lacking in precision. This paper proposes a light-weight method for EA
called LEAP and introduces a language for EA simulation that is il-
lustrated with a detailed case study of business change currently being
addressed by UK higher education institutions.
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1 Introduction

Enterprise Architecture (EA) is intended to provide a holistic understanding of
all aspects of a business, connecting the business drivers and the surrounding
business environment, through the business processes, organizational units, roles
and responsibilities, to the underlying IT systems that the business relies on
[18]. In addition to presenting a coherent explanation of the what, why and how
of a business, EA aims to support specific types of business analysis including:
alignment between business functions and IT systems; business change describing
the current state of a business (as-is) and a desired state of a business (to-
be); maintenance of systems; checks for quality assurance and compliance; and
strategic planning [9,25,20,4,13]. Alignment between business and IT strategy
however remains one of the most pressing concerns [6].

EA has its origins in Zachman’s original EA framework [34] but has since
seen a range of methods introduced along with some specific tool modelling lan-
guages such as ArchiMate [12]. Emerging methods while purporting to address
EA requirements have themselves posed questions about their efficacy. Because
methods have largely been located as part of EA frameworks they do not readily
provide the means by which to easily address the need to understand how to
change an EA to meet a new requirement. Drilling down, the potential impact
and change to an EA required would need to be promulgated as an impact anal-
ysis, a sliced view of the EA (of the systems affected), a gap analysis of missing
functions and most importantly an equivalence analysis of an existing system
and proposed changes. Current methods and frameworks that have largely pre-
sented layered architectural models do not necessarily lend themselves to this
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type of modeling and analysis. Furthermore their bloated and document driven
nature presents additional issues of complexity and places significant workloads
on enterprise architects and those tasked with managing systems in large or-
ganization. In section 2 we discuss and review the various EA methods and
frameworks currently available.

Another aspect that has potential to influence the use of an EA to address
use cases such as measuring alignment between business and IT, business change
or integration of new systems is the different architectural styles that may be
prevalent in a single organization. Several different styles of architecture are
possible. A Service Oriented Architecture (SOA) involves the publication of log-
ically coherent groups of business functionality as interfaces, that can be used
by components using synchronous or asynchronous messaging. An alternative
style, argued as reducing coupling between components and thereby increasing
the scope for component reuse, is Event Driven Architecture (EDA) whereby
components are event generators and consumers. An important difference be-
tween SOA and EDA is that the latter generally provides scope for Complex
Event Processing (CEP) where the business processes within a component are
triggered by multiple, possibly temporally related, events. In SOA there is no
notion of relating the invocation of a single business process to a condition hold-
ing between the data passed to a collection of calls on one of the component’s
interfaces. As described in [19] and [26], complex events can be the basis for
a style of EA design. EDA replaces interfaces with events that trigger organi-
zational activities. This creates the flexibility necessary to adapt to changing
circumstances and makes it possible to generate new processes by a sequence of
events [22]. The relationship between event driven SOA and EA is described in
[2] where a framework is proposed that allows enterprise architects to formulate
and analyze research questions including ‘how to model and plan EA-evolution
to SOA-style in a holistic way’ and ‘how to model the enterprise on a formal
basis so that further research for automation can be done.’ Our claim is that
system architectures should be based on both EDA and SOA.

Technologies for EA need to support a wide spectrum of business concepts
and use-cases. When designing such technologies there are essentially two ap-
proaches: top-down or analytic and bottom-up or synthetic. The former charac-
teristically identifies all potentially distinct categories of feature from the domain
with the goal of equipping the user with a richly diverse collection of elements
with which to express their models. The approach guarantees to provide a suf-
ficiently expressive language at the expense of precision and orthogonality. The
latter characteristically identifies a precisely defined collection of orthogonal con-
cepts with associated semantics; the goal is to achieve precision with respect to a
collection of defined use-cases, as opposed to the the more holistic, but imprecise,
top-down approach.

There is safety in the analytic approach, it is guaranteed to be complete mostly
because of its ambiguity and rich collection of features. However this safety is
misleading since the resulting language is not amenable to mechanical processing
and rigorous analysis. Therefore, top-down languages are forever consigned to
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the early stages of system analysis and design where so-called sketching is an
important modelling technique.

So how dangerous is the synthetic approach? Certainly it is almost guaranteed
to be incomplete since the design of the language must be contextualized with
particular use-cases. However, this might lead to a language that is good enough
for most cases, and as such will have engineering benefits that far outweigh
those of a sketching language. In addition, a synthetic language provides a firm
basis for iterative language development through the incremental analysis of new
use-cases.

EA languages are currently exclusively top-down. They are large and impre-
cise and therefore almost guaranteed to support any interpretation of a business
and associated EA use-case. Typically, an EA language makes distinctions be-
tween different views of a business, for example separating business, application
and technology layers. The result is a very large number of suspiciously similar
features. Our proposal is that this is not necessary, and that the multiplicity of
feature variety and separation of views is bogus, at least fundamentally1.

This paper validates the claim that EA technologies should be synthetic by
introducing and using a technology called LEAP to analyse a problem faced
by UK universities. The case study involves the specification of an idealized
system that meets a new organizational regulation, then shows how the current
IT systems can be used to implement the system and finally describes a process
by which the two architectures can be aligned. It is precisely because LEAP
is a synthetic operational language for architecture simulation that the user
can have confidence in the alignment, in contrast to other enterprise modelling
technologies. The approach has been used to describe concrete IT systems within
our own organization and to indicate appropriate modifications necessary to
meet new regulations. Our contribution claim is that LEAP represents a novel
approach to EA in that it is a simple, precise and executable technology that
offers a different approach to EA analysis with the advantages that come with
the ability to analyze and simulate an architecture.

2 Related Work on EA Methods

The nature of EA, that is, its breadth, the range of organizational impact and
the inherent complexity of operating at multiple levels (business through to
deployment) and technology variations means that it is difficult to arrive at
specific understanding of what methodologies are available and the extent of their
utilization. As Riege et al point out: ‘Although there are isolated EA methods
taking the situation of application into account,..., there is no overall landscape
of EA methods available’ [25, :p389]. In addition, the practitioner nature of
EA also means that well documented methods are difficult to access. In order
to establish the current availability and literature surrounding EA methods,
key word searches ‘Enterprise Architecture Method ’ were conducted in Google
Scholar and the ACM/IEEE digital libraries. This section presents an overview
1 How it is presented to a business user is entirely a different matter.
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of the current situation and while it is not an exhaustive literature review (the
limitations of the paper and its main focus prevents that) it does allow the reader
an insight into the state of the art.

Much literature has concentrated on providing descriptions of a number of
architecture frameworks. Usefully Steen et al point out: ‘Frameworks provide
structure to the architectural descriptions by identifying and sometimes relat-
ing different architectural domains and the modelling techniques associated with
them’ [28, :p6]. Some of the more popular and widely disseminated EA frame-
works include:

Zachman’s Framework that provides a logical structure for classifying and
organizing representations of an EA relevant to specific stakeholders in terms
of 36 different types of views [34];

The Reference Model for Open Distributed Processing (RM-ODP)
is an ISO/ITU Standard (ITU, 1996) that defines a framework for ar-
chitecture specification of large distributed systems using five viewpoints
on a system and its environment: enterprise, information, computation,
engineering and technology. The theoretical basis of the RM-ODP model
resides in object oriented principles and service oriented specification and
the mapping of the levels to implementation objects [15,24];

The Open Group’s framework TOGAF [27] and related frameworks for
the Department of Defense ( DODAF [33]), Federal processing (FEAF),
UK Ministry of Defence (MODAF) [3] provides over-arching structures for
supporting a consistent approach for standardizing, planning, analyzing and
modelling of architectural system components.

Regardless of the specifics of the framework, as Tang et al note there are common
deficiencies such as: (1) the level of detail required in an architecture model is not
generally specified; (2) support, specification and management of non-functional
requirements is lacking and (3) software configuration modelling is also generally
lacking [29]. Although architecture includes notions of design, the objective of
architecture is different from design but there are a lack of guidelines to address
the case when architectural activity moves into detailed design.

The frameworks discussed above claim independence of any specific method.
In addition to the availability of these frameworks, a number of methods aimed
at delivering techniques, languages and tools to support EA have also been de-
veloped. The ADM method underpinning TOGAF is one exception. Methods
have focused on specific aspects of business and IT alignment [30,31] (an oft
cited requirement [6]) or they have provided a means of providing analysis tools
for understanding EA changes and impact [17,16]. Of note also is the UN/CE-
FACT modelling method - a UML based approach to design business services
that are focused on collaboration with external organizations [14]. Like [11]this
method introduces the notion of the extended enterprise architecture that in-
cludes external system components (located in other organizations) that require
collaboration.

There are examples of methods that have a more generic EA purpose. These
methods do not focus on typical use cases for EA, instead they are aimed at



52 T. Clark, B.S. Barn, and S. Oussena

addressing the design gap introduced earlier and identified by [29]. An early
example is Memo [10] an EA method that introduces a range of visual mod-
elling languages supporting multiple views. The method provides an integrated
process model. Some of the approaches proposed could be argued to have been
superseded by advances in business process modelling notably with the advent
of BPMN (Business Process Modelling Notation) and service oriented architec-
tures. Pereira and Sousa [23] introduce a method that is overlayed on top of the
Zachman framework and suggests how specific techniques can be used to develop
each of the 36 viewpoints. Integration of artifacts produced for the viewpoints
is also suggested. Support for Event modelling is not immediately clear in this
method. The SOMA method developed by Arsanjani et al for IBM is an end-end
software development life-cycle method that assumes a service oriented architec-
ture style for EA. The method uses concepts of component based design and goal
oriented modelling as well as established techniques such as use case modelling
to support the design and implementation of EA solutions [1]. While the lan-
guage and concepts underpinning SOMA have some similarity with the method
and technology proposed in this paper, we note that consistent with all the
methods reviewed here, there is not immediate clarity on how event modelling
is integrated and supported in these methods.

The range and variation of methods in terms of focus and scope strongly sup-
ports the case proposed by Riege et al that there is no method that fits all the
requirements for EA and instead there is a need for a method engineering ap-
proach [25]. They identify three broad contingency factors that should influence
the target focus for EA methods: Adoption of advanced architectural paradigms
and modelling capabilities; Deployment and monitoring of EA data and services
and Organizational penetration of EA. We argue that that methods also need
to ensure that they address the key use cases for EA such as business and IT
alignment.

Our claim is that many EA use-cases can be addressed using a precisely
defined synthetic language compared to the imprecise analytic technologies cur-
rently available. To validate this claim we have constructed a technology called
LEAP that is briefly introduced in section 3 where it is compared with a leading
EA technology. We have applied LEAP to a number of real-world case studies
such as that described in section 6, however because these become rather large,
section 4 describes a complete LEAP application using a simple example. We
do not claim that LEAP will support every EA use-case, however our aim to
address a series of use-cases and incrementally extend LEAP. This paper argues
that LEAP represents a practical technology for Architecture Alignment and
our approach is defined in section 5.

3 LEAP

The LEAP language proposes that EA is fundamentally about representing and
analyzing data-rich and highly-structured executable systems at different levels
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of abstraction. It has been designed as a synthetic language where distinctions
between many business concepts are deemed fundamentally irrelevant (domain
specific presentation issues being viewed as perfectly respectable sugar). The key
concepts in LEAP are:

component. A component is the key structuring concept in LEAP and can
be used to represent entities such as physical systems, roles, logical sys-
tems, transient elements, and organizational units. Components encapsulate
data, behaviour, conditions such as business directives and goals, and can be
nested. Components are intended to support a process of step-wise refine-
ment where a business can be expressed as a single component at a high-level
of abstraction and where refinement develops a graph of sub-components.

data. Each component defines models of data; shared models support informa-
tion communication between components. Data is highly structured, includ-
ing lists and records, to facilitate declarative pattern matching.

functions. LEAP is a functional language. Functions can be attached to com-
ponents to represent business processes and can be used at any level to
parameterize over language features. For example, parameterizing over com-
ponents supports template patterns.

messages. LEAP execution is performed in terms of messages between com-
ponent ports. Messages are defined in port interfaces and bear model data.
Execution strategies for both SOA and EDA are supported through the con-
struction and use of component architectures based on the same fundamental
concepts.

rules. Component behaviour can be specified in terms of rules that match
against data in the local database and messages arriving at the component’s
ports. Rules facilitate complex event processing since a rule may rely on
receiving multiple unordered interrelated messages and database changes of
arbitrary complexity. Where appropriate, rule collections can be expressed
using state machines within components.

conditions. Business goals and directives can be expressed using invariants over
the state of a component and its sub-components. Component behaviour can
be expressed in terms of pre and post-conditions.

LEAP has a precise semantics in the form of an operational implementation and
an associated tool for graphical display and simulation. Our claim is that the
features above are necessary and sufficient for a wide range of EA use-cases, and
there they are not sufficient, a conservative extension will suffice.

Table 1 shows a comparison between ArchiMate concepts and LEAP con-
cepts. We have chosen ArchiMate because it is arguably the most developed EA
notation. The table shows that ArchiMate includes a large number of different
elements that can be mapped onto a smaller number of LEAP elements. In
fact, ArchiMate includes more elements that those shown because several of
the concepts occur as distinct elements in different layers. Our claim is that
this mapping provides evidence that EA languages, and ArchiMate in particular,
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Table 1. Comparison of Archimate and LEAP

Archimate Concept LEAP Concept
Actor Component

Application Layer Components
Artifact Data Model

Behaviour Operation,rule, transition
Business Function Operation, rule, transition

Business Layer Components
Business Process Operation, rule, transition
Business Service Operation, rule, transition
Collaboration Components

Collective Behaviour Components
Communication Path Connections

Concept Component,Class
Contract Invariant
Device Component

External Perspective LEAP Model
Individual Behaviour Component

Interaction Mesage
Interface Interface

Internal Perspective LEAP Model
Meaning Semantics
Network Component
Product Data Model

Representation Data Model
Role Component

Software Component
Technology Layer Components

Value ?

includes redundancy that is difficult to analyze without mapping to a language
with precise semantics.

It should be stated that LEAP does not claim to be an Architecture Descrip-
tion Language, although it shares many features with technologies for ADL.
Features of LEAP can be used to model both physical and logical aspects of a
system including information, roles and organizational units. Furthermore, al-
though LEAP has an operational semantics, there is no support for expressing
complex features such as real-time.

LEAP is a text-based language together with a graphical modelling tool. Fig-
ure 1 shows the core language features. A LEAP model consists of a collection
of a collection of nested component definitions. A component has input and out-
put ports from which it reads and to which it writes messages. Ports are typed
with interfaces. Each component manages a database whose tables are defined
as classes and associations in a data model. the database can be initialized using
a state declaration and a component is initialized by the init expressions that
are evaluated when the component is created. Incoming messages are handled by
operations. An operation may update the component’s database by adding and
removing data; changes in the database are monitored by a collection of rules.
When a rules patterns all match the current state of the database, the body of
the rule is performed.
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exp ::=
cmp

| fun(arg*) exp functions
| exp(exp*) applications
| var variables
| atom ints,strs,bools
| state local data
| self reference
| { exp* } blocks
| { bind* } records
| [ exp | qual* ] lists
| new term extension
| term terms
| delete term deletion
| if exp then exp else exp conditional
| replace pattern with term else exp
| find pattern in exp exp else exp
| case exp { arm* } matching
| let bind* in exp locals
| for pattern in exp { exp } loops
| forall pattern in exp { exp } univ quant
| exp <- name(exp*) message passing
term ::= name(exp*)
arm ::= pattern -> exp
bind ::= pattern = exp
qual ::= pattern <- exp | ?exp

cmp ::= components
component [name] { optional name

port* input/output ports
[model { element* }] data models
[state { term* }] local data
[invariants { inv* }] always hold
[operations { op* }] methods
[rules { rule* }] event processing
[init { exp* } initialization
(name = exp)* bindings

}
port ::=

port name[(in|out)]: interface { message }
element ::=

class name { (name:type)* }
| assoc name { name type name type }
pattern ::=
var variables

| name(pattern*) term patterns
| atom ints,strs,bools
| name = pattern pattern binding
| [pattern*] lists
| pattern:pattern cons pairs
| ? exp predicate
op ::= name(arg*) { exp* }
rule ::= name : pattern* { exp* }

Fig. 1. LEAP Language

4 A Simple LEAP Example

The people of Ruritania adore fruit, especially apples and oranges. However, an
increase in the voracious Ruritanian Fruiter Beetle (Greengrocerous Apostropho-
rum) means that availability must be limited so that each Ruritanian can have
either apples or oranges, but not both, each day. Typically a Ruritanian fruit
shop will sell apples and oranges at separate tills, merging the account at the
end of each day. However this makes it difficult to police the fruit quotas. A
new system must be implemented that enforces the rules until the beetle can be
eradicated.

Our business goal in this case is to enforce the regulations. Our approach is to
design an idealized architecture that satisfies the regulation and then to extend
the current fruit shop architecture in such a way that it is possible to show how
the physical architecture is consistent with the logical architecture. Our claim is
that this EA use-case is supported by LEAP because it has a precisely defined
behaviour.

4.1 Logical Architecture

The first step in EA Alignment is to define the logical architecture. Typically this
will create a single component definition that captures the logical information
and behaviour together with any constraints that must be achieved. Figure 2
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Fig. 2. Greengrocer Information

shows the information managed by each Ruritanian greengrocer. The business
goal is specified as the following LEAP invariant:
illegal_to_buy_both_products_on_same_day {
exists OrangeTrans(c,OrangeTransaction(t,_)) in state {
exists AppleTrans(c,AppleTransaction(t,_)) in state { false }

}
}

Simulation of the logical component is achieved by defining a LEAP compo-
nent that sends messages to a greengrocers shop component as shown in figure
3. The definition of component logical_architecture_simulation includes
the definition of the logical architecture named greengrocers. The simulation
component has a predefined state that contains a sequence of messages each of
which has a time, a message name and a sequence of arguments. There are two
simulation rules: send that fires when there is a message at the current time,
and tick that fires when there is no message at the current time and when the
end of the simulation has not been reached. The send rule sends the message
to the input port of the greengrocer component. The tick rule increments the
time and sends a tick message to the greengrocer. The logical component is de-
fined in figure 4. The port named in can receive messages named buy_apples,
buy_oranges and tick. Each message is handled by an operation with the same
name. Consider buy_apples, it uses the private local operation get_customer
to select a term from the component’s database (named state) if it exists or
create a new customer-term if it does not. The buy_apples operation proceeds
by querying the database for the current time and then adding two new database
terms that represent an apple transaction.

The greengrocer component has a rule named day that is run once per day
in order to consolidate the accounts. Rules are checked each time a message
arrives or when the database changes in a component. In this case all the trans-
actions for the customer in the given day are added up and a new consolidated
Transactions term is added to the database.
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component logical_architecture_simulation {
component greengrocers {
// Defined elsewhere...

}
state {
Time(0)
Message(0,’buy_oranges’,[’fred’,10])
Message(1,’buy_apples’,[’fred’,10])
Message(2,’buy_oranges’,[’fred’,10])
Message(3,’buy_apples’,[’fred’,10])
Message(4,’buy_oranges’,[’fred’,10])
Message(4,’buy_apples’,[’fred’,10])
End(5)

}
rules {
send: Time(t) Message(t,m,args) {
send(greengrocers.in,m,args);
delete Message(t,m,args)

}
tick: Time(t) not(Message(t,_,_)) not(End(t)) {

delete Time(t);
greengrocers.in <- tick();
new Time(t+1)

}
}

}

Fig. 3. Simulation Component

component greengrocers {

model { // As shown in figure Greengrocer Information ... }

invariants { // The illegal_to_buy_both_products_on_same_day condition... }

port in[in]: interface {

buy_apples(name:str,amount:int):void;
buy_oranges(name:str,amount:int):void;
tick():void

}

operations {

buy_apples(customer,amount) {

let c = get_customer(customer); t = time()

in new AppleTransaction(t,amount), AppleTrans(c,AppleTransaction(t,amount))

}

buy_oranges(customer,amount) { // As above for oranges... }

get_customer(name) { find Customer(name) in state else new Customer(name) }

time() { find Time(t) in state { t } else 0 }

tick() { replace Time(t) with Time(t+1) else new Time(1) }

addup(l) { case l { [] -> 0; h:t -> h + addup(t) } }

}

rules {

day: Time(t) {

for Customer(name) in state {

let oranges = addup([n | OrangeTrans(Customer(name),OrangeTransaction(tt,n)) <- state, ?(tt <= t) ]);

apples = addup([n | AppleTrans(Customer(name),AppleTransaction(tt,n)) <- state, ?(tt <= t) ])

in replace Transactions(name,a,o) with Transactions(name,apples,oranges)

else new Transactions(name,apples,oranges)

}

}

}

}

Fig. 4. The Logical Greengrocers Component
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Fig. 5. Architecture Refinement

4.2 Refinement

LEAP has an executable semantics which means that a LEAP model can be
mapped to execution traces. Figure 5 is an overview of the approach for archi-
tecture alignment. A Logical Architecture, such as that described for Ruritanian
greengrocers is mapped to execution traces via a semantic function φ. A Phys-
ical Architecture is constructed using the real-world systems available to the
organization leading to a collection of physical execution traces. It remains to
show that the physical architecture is complete and consistent. Completeness
is achieved by showing that there is a physical trace for every correct logical
trace and consistency is achieved by showing that every physical trace can be
projected onto a correct logical trace, subject to preserving key information.

Table 2. Logical Architecture Execution Trace

component in state
greengrocers buy_oranges(’fred’,10)
greengrocers tick() OrangeTrans(Customer(’fred’),

OrangeTransaction(0,10)),
OrangeTransaction(0,10), Customer(’fred’)

greengrocers buy_apples(’fred’,10) Transactions(’fred’,0,10), Time(1),...
greengrocers tick() AppleTrans(Customer(’fred’),

AppleTransaction(1,10)),
AppleTransaction(1,10),...

greengrocers buy_oranges(’fred’,10) Transactions(’fred’,10,10), Time(2),...
greengrocers tick() OrangeTrans(Customer(’fred’),

OrangeTransaction(2,10)),
OrangeTransaction(2,10),
Transactions(’fred’,10,10), Time(2), ...

greengrocers buy_apples(’fred’,10) Transactions(’fred’,10,20), Time(3),...
greengrocers tick() AppleTrans(Customer(’fred’),

AppleTransaction(3,10)), AppleTransaction(3,10),
Transactions(’fred’,10,20), Time(3), ...

greengrocers buy_apples(’fred’,10) Transactions(’fred’,20,20), Time(4), ...
greengrocers buy_oranges(’fred’,10) AppleTrans(Customer(’fred’),

AppleTransaction(4,10)), AppleTransaction(4,10),
Transactions(’fred’,20,20), Time(4), ...

greengrocers tick() OrangeTrans(Customer(’fred’),
OrangeTransaction(4,10)),
OrangeTransaction(4,10), ...

greengrocers Transactions(’fred’,30,30), Time(5), ...
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Given that LEAP has a precisely defined semantics (currently implemented
as a tool for executing LEAP models), it would be possible to formally establish
the refinement criteria. In practice however, it is likely that rigorous inspection
of traces will be sufficient to provide confidence of correct refinement. The LEAP
tool can produce an XML trace of a model execution. The table shown in table 2
is a symbolic representation of the output for the greengrocer simulation where
execution proceeds from top to bottom and repeated state is represented by
ellipses.

Fig. 6. Ruriatian Greengrocers: Physical Architecture

4.3 Physical Architecture

A physical architecture must reflect the systems available to an organization. All
Ruritanian Greengrocers must, by law, implement separate tills for apples and
oranges. Therefore, they have separate IT systems that must be consolidated
in order to implement the new regulations. The consolidation is achieved by a
new IT system, called accounts, as shown in figure 6. Notice that the two tills
have output ports that produce events; a third party component can monitor
the events in order to detect changes. The simulation component must be mod-
ified slightly to reflect the physical architecture as shown in figure 7. The two
till components are almost identical, therefore they are candidates for template
patterns. LEAP can represent template patterns by abstracting a function over
a component definition. Each till behaves exactly the same except for the type
of produce being sold, therefore the physical architecture simulator defines the
make_till operation defined in figure 8. Now it is possible to create both types
of till using the function:



60 T. Clark, B.S. Barn, and S. Oussena

component physical_architecture_simulation {
state {
Time(0)
Message(0,oranges_till.in,’buy’,[’fred’,10])
Message(1,apples_till.in,’buy’,[’fred’,10])
Message(2,oranges_till.in,’buy’,[’fred’,10])
Message(3,apples_till.in,’buy’,[’fred’,10])
Message(4,apples_till.in,’buy’,[’fred’,10])
Message(4,oranges_till.in,’buy’,[’fred’,10])
End(5)

}
rules {
send: Time(t) Message(t,p,m,args) {
send(p,m,args);
delete Message(t,p,m,args)

}
tick: Time(t) not(Message(t,_,_,_)) not(End(t)) { replace Time(t) with Time(t+1) }

}
operations {
time() { find Time(t) in state else 0 }

}
init {
connect(apples_till.events,accounts.monitor);
connect(oranges_till.events,accounts.monitor)

}
}

Fig. 7. Physical Architecture Simulation

make_till(type) {
component {

model {
class Customer { name:str }
class Transaction { type:str; time:int; amount:int }
assoc Trans { customer Customer trans Transaction }

}
port in[in]: interface {
buy(name:str,amount:int):void

}
port events[out]: interface {
buy(type:str,time:int,name:str,amount:int):void

}
operations {
buy(customer,amount) {

let c = get_customer(customer)
in {

new Transaction(type,time(),amount);
new Trans(c,Transaction(type,time(),amount));
events <- buy(type,time(),customer,amount)

}
}
get_customer(name) {

find Customer(name) in state else new Customer(name)
}

}
}

}

Fig. 8. The make_till Operation
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component physical_architecture_simulation {
operations {
make_till(type) { ... }

}
oranges_till = make_till(’oranges’)
apples_till = make_till(’apples’)
...

}

The accounts component monitors the events created by the till components,
must consolidate the accounts and must detect fraud when it occurs. The phys-
ical definition of the new system is shown in figure 9. The execution trace for
the physical architecture is shown in table 3. At the end of the trace, the system
reports fraud because the customer has attempted to buy apples and oranges on
the same day.

It remains to show that the physical architecture is correct with respect to
the logical architecture. In an ideal world we would formally prove this to be
the case. However, in a practical setting, where architectures may be large and
where expertise with formal methods is limited, we argue that is more realistic
to be able to use rigorous argument through inspection, to provide confidence
of correctness. Since LEAP provides modular components, operational seman-
tics and execution traces, it is possible to generate execution data that can be
inspected off-line.

component accounts {
model {

class Transactions { customer:str; apples:int; oranges:int }
}
port monitor[in]: interface {
buy(type:str,time:int,customer:str,amount:int):void

}
operations {
buy(type,t,customer,amount) {

case type {
’apples’ -> new Apples(t,customer,amount);
’oranges’ -> new Oranges(t,customer,amount)

}
}

}
rules {
record_apples: Apples(t,customer,amount) not(Oranges(t,customer,_)) {

replace Transactions(customer,apples_bought,oranges_bought) with
Transactions(customer,apples_bought+amount,oranges_bought)

else new Transactions(customer,amount,0)
}
record_oranges: Oranges(t,customer,amount) not(Apples(t,customer,_)) {

replace Transactions(customer,apples_bought,oranges_bought) with
Transactions(customer,apples_bought,oranges_bought+amount)

else new Transactions(customer,0,amount)
}
fraud: Oranges(t,customer,_) Apples(t,customer,_) {
print(’FRAUD: ’ + customer + ’ at time ’ + t + ’ ’ + state)

}
}

}

Fig. 9. Physical Definition for accounts
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In the case of the Ruritanian Greengrocers system, we need to show that
execution traces such as those shown above satisfy correctness. Consider trans-
forming the physical trace into the logical trace. The two till components can be
transformed into their logical counterpart by re-introducing type information.
The accounts component is almost equivalent to the information held in the log-
ical component and can be trivially transformed. Messages that purchase apples
and oranges can be transformed by reintroducing type information, and tick
messages can be introduced when the time changes. Therefore, we argue that
the physical trace is consistent with the logical trace.

It remains to show that every correct logical execution has an equivalent
physical execution. To see this we argue as follows. Every buy_oranges and
buy_apples message is translated to a buy message that targets the appropriate
till component. The effect of these messages on the tills and accounts has the
desired effect. The tick messages are removed, but they occur when no other
messages are being processed and have the same effect in the physical architec-
ture.

5 An Approach to Architecture Alignment

In this section we introduce our approach to using LEAP for Architecture Align-
ment. The motivation for developing a method to support EA is driven by our
hypothesis that existing methods are large, cumbersome, and are not based on
precisely defined concepts. Where methods have used modeling languages such
as ArchiMate they are constrained by orthodox layering approaches (business
layer, functional layer, deployment layer and so on) that prevent rigorous equiv-
alence analysis. Our proposed method also uses existing techniques to identify
key information, but then represents it using a precisely defined simulation lan-
guage. Figure 10 provides an overview of our proposed method.

Consistent with most approaches to EA methods where there is need to de-
scribe as-is and to-be models, there are two streams of activity which converge
at key stages. The to-be analysis stream includes activities to Model Require-
ments. We do not prescribe how you might wish to derive the requirements in
order to produce a model of requirements but as our method is based on UML-
style modelling, models will include artifacts such as business information mod-
els, process models and business use case models. Existing method approaches
such as Catalysis [8] and its derivatives [7] could be used for developing informa-
tion models whilst recommended approaches for process modeling could include
Ould’s approach [21].

In parallel to the Model Requirements step, the activities in the Col-
late Physical Architecture stage will bring together existing descriptions of
systems and their configurations. Our experience of such descriptions are large
pictorial based documentation captured using drawing tools such as Powerpoint.
A key output of this stage is a description of the systems that exist in the or-
ganization. We recommend capturing the description of each system as a UML
Component to aid the migration to later stages of the method. Again, the method
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Table 3. Physical Architecture Execution Trace

id in state
oranges_till buy(’fred’,10)
oranges_till Trans(Customer(’fred’), Transaction(’oranges’,0,10)),

Transaction(’oranges’,0,10), Customer(’fred’)
accounts buy(’oranges’,0,’fred’,10)

apples_till buy(’fred’,10)
accounts Transactions(’fred’,0,10), Oranges(0,’fred’,10)

apples_till Trans(Customer(’fred’), Transaction(’apples’,1,10)),
Transaction(’apples’,1,10), Customer(’fred’)

accounts buy(’apples’,1,’fred’,10) ...
oranges_till buy(’fred’,10) ...
accounts Transactions(’fred’,10,10), Apples(1,’fred’,10),

Oranges(0,’fred’,10)
oranges_till Trans(Customer(’fred’),Transaction(’oranges’,2,10)),

Transaction(’oranges’,2,10), ...
accounts buy(’oranges’,2,’fred’,10) ...

apples_till buy(’oranges’,2,’fred’,10) ...
accounts Transactions(’fred’,10,20), Oranges(2,’fred’,10),

Apples(1,’fred’,10), Oranges(0,’fred’,10)
apples_till Trans(Customer(’fred’),Transaction(’apples’,3,10)),

Transaction(’apples’,3,10), ...
accounts buy(’apples’,3,’fred’,10) ...
accounts Transactions(’fred’,20,20), Apples(3,’fred’,10),

Oranges(2,’fred’,10), Apples(1,’fred’,10),
Oranges(0,’fred’,10)

oranges_till Trans(Customer(’fred’),Transaction(’oranges’,4,10)),
Transaction(’oranges’,4,10), ...

apples_till buy(’fred’,10) ...
accounts buy(’oranges’,4,’fred’,10) ...

apples_till Trans(Customer(’fred’),Transaction(’apples’,4,10)),
Transaction(’apples’,4,10),...

accounts buy(’apples’,4,’fred’,10) Transactions(’fred’,20,30),...

does not prescribe new approaches, it leaves it to the practitioner to determine
how to produce the artifacts required.

The Configure Physical Architecture step slices a description of an EA
to determine what system components are likely to be impacted by emerging re-
quirements. Techniques that can be used to support this impact analysis includes
use case maps [5]. A use case map is simply a trace of path of causal sequences
of events across a set of system components representing an EA. The events are
triggered by a business use case identified in the Model Requirements step.

Alternative approaches that could be used in this step include the use of CRC
to help identify those system components that are (collaboratively) responsible
for delivering a business use case [32]. The key output from this activity is an ar-
tifact expressed in system components that includes all the EA system elements
that will be subject to some impact as a result of the emerging requirements.

Up to now, the steps in the method have utilized well-established notations
and techniques. The subsequent steps in stage 2 incorporate an integrated set of
concepts from SOA and complex event processing.

The Define Physical Enterprise Architecture (L-EA) step is aimed
at defining a slice of the existing physical architecture that we know will be
subject to impact from new requirements. The slice emerged from the Configure
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Fig. 10. Method Overview

Physical Architecture step and like the Logical EA step is now expressed in
our DSL using concepts such as components, ports, rules and events.

The Define Logical Enterprise Architecture (L-EA) step produces a
model based description of a target logical EA - that is - the system components,
information structures and constraints that are required as a result of the Model
Requirements step. Where appropriate the Logical EA may use candidate logical
components from the Configure Physical Architecture step.

The Logical EA (L-EA) uses our integrated concepts derived from SOA and
complex event modeling so the L-EA is expressed as components offering services,
raised events, requested services and monitored events. Dependencies between
components are thus expressed in terms of services request and fulfillments and
event management.

The Conformance step uses simulation to produce and visualize results. The
logical architecture describes what is required and the physical to-be architecture
defines how existing systems can be used to satisfy the requirements. It remains
to validate the physical architecture by showing that the behavior conforms to
the requirements. If the simulation produces the same output when it is run
with both the logical and physical EA definitions then we claim that they are
aligned. Such an approach presents a practical solution that is geared toward EA
practitioners.

6 Case Study

Having outlined the method and technology, this section presents a genuine
requirement faced by IT directors in UK higher education institutions to deliver
key information sets (KIS) to applicants deciding on which course and which
university to chose for study at undergraduate level.

Higher education institutions (HEI) in the UK are faced with a challeng-
ing and dynamic business environment where public funding of HEIs has been
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reduced by up to 70%. This lost funding is being replaced by the introduction
of a new student fees regime beginning in 2012 following a bill introduced in
the UK Parliament in November 2010. The UK Government is of the view that
students will require key information in order to make informed decisions re-
garding the selection of courses and institutions. Currently this information is
not readily available in a consistent and easily accessible form. Consequently the
Higher Education funding body (HEFCE) is coordinating the specification of
the required information and how it is to be made available and at what time.

HEFCE produces KIS data at a given census date each year. In order to be
included in KIS, each university must register with both the NSS and DHLE
government agencies before the census date. KIS information consists of NSS
data, teaching and learning data from each university, financial data from each
university (including university owned and private accommodation costs), em-
ployability data from the DHLE agency.

The NSS data is completed by students via a web portal. The details of the
information go to the NSS agency and the university is informed of the comple-
tion for their records. Private property prices within the geographic area around
the university are captured by monitoring RSS feeds from property companies.

7 Applying LEAP to the Case Study

Section 4 has shown a detailed, but simple example of using LEAP for architec-
ture alignment. The example shows how LEAP is used to capture the top-level
information structures and invariants that arise from a business requirement,
how LEAP can be used to represent an architecture of interacting components
based on existing IT systems, and then how alignment is established through
simulation and rigorous argument.

Section 5 has outlined a pragmatic approach to Architecture Alignment that
can be based on a range of technologies. This section follows the method using
LEAP. Since the case study is quite large we will present an overview and include
samples of the implementation where these are illustrative of our approach.

7.1 Step 1: Model Requirements

Figure 11 shows the information model that supports the KIS requirements. The
model is taken directly from the LEAP tool that represents the requirements as
a single top-level component. Each University has a number of students. Infor-
mation is maintained on the cost of both University owned accommodation and
private accommodation in the area. A student studies a course and optionally
completes an NSS return in their third year of study; the NSS form allows stu-
dents to comment on the quality of the University’s provision of teaching and
learning in terms of questions such as: ‘Do you agree that you receive prompt
feedback on formative assessments? ’.
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Fig. 11. KIS Information Structure

Each course is delivered in terms of scheduled, guided and practical teach-
ing and learning components, and assessed in terms of exams, courseworks and
practicals. Information is maintained nationally about employment statistics for
particular courses, such as the salary of graduates and the percentage who are
in work or unemployed 6 months after graduation. Each HE course in the UK
has a cost and may involve various forms of financial support.

7.2 Step 2: Define L-EA and Simulation

Figure 12 shows the outline of the logical architecture simulator. All component
structure in the architecture has been flattened and has been represented as
information. For example, in the physical architecture we will be required to
implement components for universities and for HEFCE.

The logical architecture will also contain a number of invariants that must be
maintained when the logical architecture is refined to become a physical archi-
tecture. For example, the values of various fields must be unique and percentage
values must add up to 100. The most important invariant that follows from the
business requirement is that when the time reaches a specific point, all the in-
formation necessary to construct the KIS report must be available. Given this
requirement, any mapping from logical to physical must provide KIS data no
matter how distributed the data becomes.
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component kis_logical {
component kis {

model { // KIS Information Structure... }
port in[in]:interface {
make_university(name:str,courses:void):void;
register_student(university:str,student:str,course:str):void;
accommodation(university:str,lower:int,upper:int):void;
owned(university:str,lower:int,upper:int):void;
complete_nss(student:str,quality:bool,it_accessible:bool,library_available:bool,...):void

}
operations {
make_university(name,courses) {

let u = new University(name)
in for Course(course_name,t1,t2,t3,a1,a2,a3,employment,finance) in courses {

let c = new Course(course_name)
in // create and link instances of the information model...

}
}
register_student(university,student,course) {

find u=University(university) in state {
find Courses(u,Course(course)) in state {

let s = new Student(student)
in new Students(u,s), new Studies(s,Course(course))

} else error(’no course ’ + course)
} else error(’no university ’ + university)

}
complete_nss(student,q,i,l,f,p,u,g) { ... }
accommodation(university,lower,upper) { ... }
owned(university,lower,upper) { ... }

}
}
state {
Time(0)
Message(0,kis.in,’make_university’,[’middle england’,[
Course(’Computer Science’, TeachingAndLearning(1,60,40,0),..., Assessment(1,100,0,0),...,
Employment(20000,50,20,20,10,0), Finance(9000,true,true,true,true))

]])
Message(1,kis.in,’register_student’,[’middle england’,’fred’,’Computer Science’])
...
Message(2,kis.in,’complete_nss’,[’fred’,true,true,true,true,true,true,true])
Message(3,kis.in,’accommodation’,[’middle england’,500,1000])
Message(4,kis.in,’owned’,[’middle england’,500,1000])
...
End(100)

}
rules {
send: Time(t) Message(t,p,m,args) { send(p,m,args); delete Message(t,p,m,args) }
tick: Time(t) not(Message(t,_,_,_)) not(End(t)) { replace Time(t) with Time(t+1) }

}
}

Fig. 12. Logical Architecture Simulation
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7.3 Step 3: Collate Physical-EA

The next step of our method involves reviewing the current physical as-is system
architecture. Most organizations have a systems overview which is used as the
input to this step. The result is an understanding of the current capability of
the organization in terms of systems, interfaces, information and events.

The context for the physical EA includes external systems. When generating
KIS data, all universities must work with the following external systems: students
use the web to complete NSS reports; employability information is maintained
by the dhle; the NSS forms are collated by nss; an RSS property feed provides
information on the cost of accommodation at regular intervals; hefce manages
the KIS process.

We will use the University of Middlesex (Mdx), London, UK as the basis for
our case study. Space limitations prevent us from providing a complete descrip-
tion of the Mdx physical architecture, however it is consistent with most UK
HEIs and includes systems for registry, an asset management system that in-
cludes a sub-system for university accommodation, an examinations database,
a library system, a financial management system called PAFIS, a teaching and
learning system called OASIS, an alumni management system, a student portal,
and a staff portal.

7.4 Step 4: Configure Physical-EA

The next step of the method analyses the physical system of an organization and
takes an appropriate slice to produce just those systems that will be involved
in the required to-be architecture. In the case of supplying KIS data, we know
that Mdx will need to provide student, accommodation, teaching and learning,
assessment and financial information. Therefore, the P-EA will not include the
alumni or library management systems.

7.5 Step 5: Define Physical-EA

Figure 13 shows a physical architecture model for KIS including two universities.
The physical architecture distributes the information structures and invariants
across multiple components and uses component-nesting within the university
components to drill down to particular IT systems. For the purposes of simula-
tion, the multiple universities are constructed using template patterns.

The simulation is driven by the hefce component that triggers an event when
it is time to construct the KIS reports. The simulation uses pattern matching
across multiple events within hefce to determine when all of the information has
been received as shown in figure 14. Of particular interest are the rules defined
by hefce. When both registration events are received in any order from NSS
and DHLE then hefce registers the university. The kis_run rule detects when
it is time for KIS reporting and sends messages to all universities, to DHLE and
to NSS. The replies from these messages are received in an arbitrary order and
update the hefce database; the kis rule detects when updates have occurred
(again in any order) and creates the KIS report for each university.
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Fig. 13. Physical Architecture

7.6 Step 6: Conformance

Our EA design method produces both a logical and a physical architecture de-
scription using the LEAP simulation language. The logical architecture describes
what is required and the physical to-be architecture defines how existing systems
can be used to satisfy the requirements. It remains to validate the physical ar-
chitecture by showing that the behaviour aligns to the requirements.

In general, conformance can be established using a number of approaches. The
context defines a collection of system executions in terms of messages, events and
state changes. It is possible to use inspection-based techniques to show that all
required executions are handled appropriately by the physical architecture.

Our KIS physical architecture simulation model included Mdx IT systems
that managed information on students, finance, property and academic teaching
and learning. The invariants for the logical model were translated into equivalent
conditions over the physical architecture.

The logical architecture simulation was driven using a sequence of messages
that registered courses, registered students, completed NSS forms, and provided
property prices. The same messages were used to drive the physical architecture
and the results were observed using the LEAP tooling. Figure 15 shows part of
the output where LEAP produces HTML. The simulation proceeds by generating
clock ticks in response to button clicks. The simulation output shows KIS data
rendered as a collection of gui components including a pie-chart and a histogram.
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component hefce {
state { KIS_Census(5) }
port uni_bcast[out]: interface {

get_finances():void;
get_students():void;
get_teaching():void;
get_accommodation():void

}
port in[in]:interface {
finances(uni:str,data:void):void;
students(uni:str,data:void):void;
scores(data:void):void;
employment(data:void):void;
teaching(uni:str,data:void):void;
accommodation(uni:str,data:void):void

}
port nss_out[out]: interface { get_scores():void }
port dhle_out[out]: interface { get_employment():void }
operations { // updates to database corresponding to input messages ... }
rules {
university: NSS_Registered(name) DHLE_Registered(name) { new University(name) }
kis_run: Time(n) KIS_Census(n) {
uni_bcast <- get_finances();
uni_bcast <- get_students();
uni_bcast <- get_teaching();
uni_bcast <- get_accommodation();
dhle_out <- get_employment();
nss_out <- get_scores()

}
kis: University(name)

Students(name,studies)
Finance(name,finance)
Teaching(name,tdata)
Accommodation(name,adata)
NSS(data)
Employment(edata) {

let filtered_nss = [ nss_data | NSS(student_name,nss_data) <- data,
Studies(Student(student_name),_) <- studies ];

filtered_employment = [ Employment(c,d) | Employment(name,c,d) <- edata ]
in // construct report

}
}

Fig. 14. The HEFCE Simulation
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Fig. 15. Part of the KIS Simulation Output

In all cases, no invariants were violated and the output from the logical and
physical simulations was identical.

Finally, if we require total confidence in conformance then we need to resort
to formal methods such as model checking and theory proving. For large sys-
tems such as those found in EA, formal methods are often impractical in terms
of complexity. That said, a formal semantics for LEAP is an area for future
development in order to investigate whether formal methods could help.

8 Discussion and Further Work

Enterprise Architecture remains a confusing and constantly evolving collection
of methods and frameworks which are generally characterized by an expansive
outlook, lack of precision, a focus on diagrams and an emphasis on document
management. The result is that existing approaches are difficult to analyze and
process. This paper has presented an effort to pin down important EA use cases of
managing change and better understanding the impact of changing requirements
on existing technical architectures of an organization.

We have proposed a synthetic language for EA called LEAP and contrasted
it with a leading analytic language called ArchiMate. Our claim is that the large
collection of EA features in ArchiMate are not orthogonal and can be mapped
to a much smaller collection in LEAP. This claim is validated through a real-
world case study although it remains as further work to compare the resulting
LEAP simulation with the equivalent ArchiMate models. Furthermore, we do
not claim that analytic languages such as ArchiMate are redundant since they
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Fig. 16. Leap Tool

are domain-specific and present features in terms recognizable to a business ana-
lyst; however, LEAP could be used as a basis for EA language precision through
mappings such as that described in table 1. In this way the broad EA could be
captured by ArchiMate and then simulated and analysed using LEAP by mak-
ing decisions about how each ArchiMate concept maps onto elements in LEAP
and by introducing procedural and structural detail where required. Simulation
results and analysis performed in terms of LEAP can then be presented back to
the analyst using corresponding ArchiMate concepts.

It remains to show that the features of LEAP are necessary and sufficient for
EA construction and analysis. Our primary concern in this paper is to provide
examples of LEAP in action for simulation and to show that an operational
semantics leads to scope for analysis that is more rigorous than that supported
by other methods. Our guiding principle for the definition of LEAP features has
been providing a synthetic language for EA by identifying low-level precisely
defined concepts that can be freely combined. LEAP allows an organization
to be modelled as a single component or as a highly-structured collection of
collaborative service-oriented and event-based components. An organization can
be modelled multiple times from different perspectives and the relationships can
be analysed, thereby providing scope for step-wise refinement and a route to
reconfiguration including migration to a SOA-based architecture. As such, we
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claim that LEAP is highly expressive, but more empirical work is required to
establish the claim that it is both necessary and sufficient.

Our claim goes further by proposing that EA languages should be executable
wherever that makes sense. EA aims to address features of organizations; organi-
zations are systems that operate in terms of structure, resources and information.
LEAP provides a simple and universal basis for representing these EA charac-
teristic features without introducing unnecessary distinctions between otherwise
fundamentally identical concepts. This claim has been validated by applying
LEAP to a real-world EA case study in order to address a typical EA use-case:
Architecture-Alignment. We have shown that an operational semantics can be
used in a practical sense to build confidence that two different architectural
descriptions of the same system are equivalent.

We claim that LEAP represents a contribution to industrial EA because it
takes a pragmatic approach to introducing precision in EA. Current EA lan-
guages lie at the sketching end of the development life-cycle. This is valuable,
but is not amenable to automated analysis. At the other end of the spectrum
lies formal methods and their associated tools, however it is not clear that there
is any evidence that such a formalized approach to EA would be tractable given
the size and complexity of the systems involved. LEAP lies in-between on this
spectrum by supporting diagrams for the key features of an architecture, a high-
level programming language for the details and a semantics that, in principle,
does not rule out formal analysis in the future.

How would Industry use LEAP? Our experience with KIS and other case
studies we have developed, is that the ability to create a simulation of part of
an organization is very valuable. LEAP does not require components to map
on to physical resources and organizational units, it is intended that features of
an EA application, whether tangible or intangible, can be expressed in terms of
components, data, rules, operations, constraints, state-machines, and messages.
A novel feature of LEAP is that both components and operations are higher-
order which means that it is easy to capture template patterns, as shown in the
case of the tills in the greengrocer example and the universities in the KIS case
study. In another example not reported here, we have used template patterns to
capture the life-cycle of a customer record as a component.

Therefore, Industry can use LEAP to produce simulations of architectures at
any level of abstraction, and the operational nature of LEAP makes it practical
to compare the same system developed to different levels of detail. Since the
information is represented as LEAP models, it is possible to generate artifacts
from them, including code, although this is something to be investigated as future
work. In addition, since components are encapsulated, our intention is to allow
LEAP to interface to existing systems, thereby providing a means to migrate an
existing architecture by simulating the new components and gradually replacing
them with new IT systems.

Our use of LEAP for the KIS analysis at Mdx has shown that existing Uni-
versity information systems can support the new HEFCE regulations subject to
being able to provide the appropriate interfaces and supporting the information
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models defined in the simulation. Given a simulation, the mapping from LEAP
to real information systems is straightforward. LEAP tooling supports single
stepping through the simulation together with snapshots of the simulation state
as shown in figure 16.

LEAP does not claim to be a universal technology for EA, however, as de-
scribed above, we have taken a fundamentally different approach to the design of
a language for EA compared to that provided by current systems. Since LEAP
is a synthetic language it is necessarily limited, however it provides a basis on
which to test the hypothesis that the our proposed concepts are sufficient for a
wide variety of EA use-cases and, where it is found lacking, our claim is that
the required extensions will be orthogonal and precisely defined where possible.
Current limitations include the ability to express and manage the refinement of
business goals and to express non-functional system requirements (such as cost
and risk). We have started a process of consultation with Industry in order to
understand how these features need to be represented and processed.
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