
Decomposing Process Mining Problems Using Passages

Wil M.P. van der Aalst

Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, The Netherlands

www.vdaalst.com

Abstract. Process discovery—discovering a process model from example be-
havior recorded in an event log—is one of the most challenging tasks in process
mining. Discovery approaches need to deal with competing quality criteria such
as fitness, simplicity, precision, and generalization. Moreover, event logs may
contain low frequent behavior and tend to be far from complete (i.e., typically
only a fraction of the possible behavior is recorded). At the same time, mod-
els need to have formal semantics in order to reason about their quality. These
complications explain why dozens of process discovery approaches have been
proposed in recent years. Most of these approaches are time-consuming and/or
produce poor quality models. In fact, simply checking the quality of a model is
already computationally challenging.

This paper shows that process mining problems can be decomposed into a
set of smaller problems after determining the so-called causal structure. Given a
causal structure, we partition the activities over a collection of passages. Confor-
mance checking and discovery can be done per passage. The decomposition of
the process mining problems has two advantages. First of all, the problem can be
distributed over a network of computers. Second, due to the exponential nature of
most process mining algorithms, decomposition can significantly reduce compu-
tation time (even on a single computer). As a result, conformance checking and
process discovery can be done much more efficiently.

Keywords: process mining, conformance checking, process discovery,
distributed computing, business process management.

1 Introduction

A recent report by the McKinsey Global Institute (MGI) called “Big Data: The Next
Frontier for Innovation, Competition, and Productivity” describes the spectacular growth
of data and the potential economic value of such data in different industry sectors [28].
MGI estimates that enterprises globally stored more than 7 exabytes of new data on disk
drives in 2010, while consumers stored more than 6 exabytes of new data on devices
such as PCs and notebooks. Despite the growth of storage space, it is impossible to store
all event data. The global capacity to store data has been estimated in various studies.
For example, a recent study in Science suggests that the total global storage capacity
increased from 2.6 exabytes in 1986 to 295 exabytes in 2007 [25].

The incredible growth of event data provides new opportunities for process analysis.
As more and more actions of people, organizations, and devices are recorded, there are

S. Haddad and L. Pomello (Eds.): PETRI NETS 2012, LNCS 7347, pp. 72–91, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Decomposing Process Mining Problems Using Passages 73

ample opportunities to analyze processes based on the footprints they leave in event
logs. In fact, the analysis of hand-made process models will become less important
given the omnipresence of event data. This is the reason why process mining is one
of the “hot” topics in Business Process Management (BPM). Process mining aims to
discover, monitor and improve real processes by extracting knowledge from event logs
readily available in today’s information systems [2].

Starting point for process mining is an event log. Each event in such a log refers to
an activity (i.e., a well-defined step in some process) and is related to a particular case
(i.e., a process instance). The events belonging to a case are ordered and can be seen as
one “run” of the process. It is important to note that an event log contains only example
behavior, i.e., we cannot assume that all possible runs have been observed. In fact, an
event log often contains only a fraction of the possible behavior [2].

The growing interest in process mining is illustrated by the Process Mining Mani-
festo [26] recently released by the IEEE Task Force on Process Mining. This manifesto
is supported by 53 organizations and 77 process mining experts contributed to it. The
active contributions from end-users, tool vendors, consultants, analysts, and researchers
illustrate the significance of process mining as a bridge between data mining and busi-
ness process modeling.

Petri nets are often used in the context of process mining. Various algorithms em-
ploy Petri nets as the internal representation used for process mining. Examples are
the region-based process discovery techniques [6, 13, 19, 33, 36], the α algorithm [7],
and various conformance checking techniques [8, 30–32]. Other techniques use alter-
native internal representations (C-nets, heuristic nets, etc.) that can easily be converted
to (labeled) Petri nets [2].

In this paper, we focus on the following two main process mining problems:

– Process discovery problem: Given an event log consisting of a collection of traces
(i.e., sequences of events), construct a Petri net that “adequately” describes the
observed behavior.

– Conformance checking problem: Given an event log and a Petri net, diagnose the
differences between the observed behavior (i.e., traces in the event log) and the
modeled behavior (i.e., firing sequences of the Petri net).

Both problems are formulated in terms of Petri nets. However, other process notations
could be used, e.g., BPMN models, BPEL specifications, UML activity diagrams, Stat-
echarts, C-nets, heuristic nets, etc. In fact, also different types of Petri nets can be em-
ployed, e.g., safe Petri nets, labeled Petri nets, free-choice Petri nets, etc.

Process mining problems tend to be very challenging. There are obvious challenges
that also apply to many other data mining and machine learning problems, e.g., dealing
with noise, concept drift, and the need to explore a large and complex search space.
For example, event logs may contain millions of events. Moreover, there are also some
specific problems that make process discovery even more challenging:

– there are no negative examples (i.e., a log shows what has happened but does not
show what could not happen);

– due to concurrency, loops, and choices the search space has a complex structure
and the log typically contains only a fraction of all possible behaviors;

74 W.M.P. van der Aalst

– there is no clear relation between the size of a model and its behavior (i.e., a smaller
model may generate more or less behavior although classical analysis and evalua-
tion methods typically assume some monotonicity property); and

– there is a need to balance between four (often) competing quality criteria (see Sec-
tion 3): (1) fitness (be able to generate the observed behavior), (2) simplicity (avoid
large and complex models), (3) precision (avoid “underfitting”), and (4) general-
ization (avoid “overfitting”).

Process discovery and conformance checking are related problems. This becomes evi-
dent when considering genetic process discovery techniques [15, 29]. In each genera-
tion of models generated by the genetic algorithm, the conformance of every individual
model in the population needs to be assessed (the so-called fitness evaluation). Models
that fit well with the event log are used to create the next generation of candidate mod-
els. Poorly fitting models are discarded. The performance of genetic process discovery
techniques will only be acceptable if dozens of conformance checks can be done per
second (on the whole event log). This illustrates the need for efficient process mining
techniques.

Dozens of process discovery [2, 6, 7, 11, 13, 18, 19, 21, 24, 29, 33, 35, 36] and con-
formance checking [3, 8–10, 16, 22, 24, 30–32, 34] approaches have been proposed in
literature. Despite the growing maturity of these approaches, the quality and efficiency
of existing techniques leave much to be desired. State-of-the-art techniques still have
problems dealing with large and/or complex event logs and process models. Therefore,
we proposed a divide and conquer approach for process mining. This approach uses a
new concept: passages. A passage is a pair of two sets of activity nodes (X,Y) such
that X• = Y (i.e., the activity nodes in X influence the enabling of the activity nodes
in Y) and X = •Y (i.e., the activity nodes in Y are influenced by the activity nodes
in X). The notion of passages will be formalized in terms of graphs and labeled Petri
nets. Passages can be used to decompose process discovery and conformance checking
problems into smaller problems. By localizing process mining techniques to passages,
more refined techniques can be used. Assuming that the event log and process model
can be decomposed into many passages, substantial speedups are possible. Moreover,
passages can also be used to distribute process mining problems over a network of
computers (e.g., a grid or cloud infrastructure).

This paper focuses on the theoretical foundations of process mining based on pas-
sages. Section 2 introduces various preliminaries, including the new notion of passages
on graphs, event logs, and Petri nets. Section 3 discusses quality criteria for process min-
ing, e.g., the fitness notion is introduced. The notion of passages is used in Section 4 to
decompose the overall conformance checking problem into a set of local conformance
checking problems. Section 5 shows how the same ideas can be used for process discov-
ery, i.e., after determining the causal structure and related passages, the overall process
discovery problem can be decomposed into a set of local process discovery problems.
Related work is discussed in Section 6. Section 7 concludes the paper.

Decomposing Process Mining Problems Using Passages 75

2 Preliminaries

This section introduces basic concepts related to Petri nets, WF-nets, and event logs.
Moreover, we introduce the notation of passages on arbitrary graphs. This notion will
be used to decompose process mining problems into a set of smaller problems.

2.1 Graphs, Passages, and Paths

First, we introduce basic graphs notations. We will use graphs to represent process mod-
els (i.e., Petri nets) and the causal structure (also referred to as skeleton) of processes.

Definition 1 (Graph). A graph is a pair G = (N,E) comprising a set N of nodes and
a set E ⊆ N ×N of edges.

For a graph G = (N,E) and n ∈ N , we define preset
G• n = {n′ ∈ N | (n′, n) ∈ E}

(direct predecessors) and postset n
G• = {n′ ∈ N | (n, n′) ∈ E} (direct successors).

This can be generalized to sets, i.e., for X ⊆ N :
G• X = ∪n∈X

G• n and X
G•=

∪n∈X n
G• . The superscript G can be omitted if the graph is clear from the context.

To decompose process mining problems into smaller problems, we partition process
models using the notion passages introduced in this paper. A passage is a pair of non-
empty sets of nodes (X,Y) such that the set of direct successors of X is Y and the set
of direct predecessors of Y is X .

Definition 2 (Passage). Let G = (N,E) be a graph. P = (X,Y) is a passage if and

only if ∅ �= X ⊆ N , ∅ �= Y ⊆ N , X
G•= Y , and X =

G• Y . pas(G) is the set of all
passages of G.

Consider the sets X = {b, c, d} and Y = {d, e, f} in Fig. 1 (for the moment ignore
the numbers in the graph). X• = {b, c, d}• = {d, e, f} = Y and X = {b, c, d} =
•{d, e, f} = •Y , so (X,Y) is indeed a passage.

A weak passage is a pair (X,Y) such that ∅ �= X ∪ Y ⊆ N , X
G• ⊆ Y , and

G• Y ⊆ X , i.e., X may contain nodes without predecessors and Y may contain nodes
without successors. Note that any passage is also a weak passage but not vice versa. In
the remainder, we only consider passages.

Definition 3 (Operations on Passages). Let P1 = (X1, Y1) and P2 = (X2, Y2) be two
passages.

– P1 ≤ P2 if and only if X1 ⊆ X2 and Y1 ⊆ Y2,
– P1 < P2 if and only if P1 ≤ P2 and P1 �= P2,
– P1 ∪ P2 = (X1 ∪X2, Y1 ∪ Y2),
– P1 \ P2 = (X1 \X2, Y1 \ Y2).

The union of two passages P1 ∪ P2 is again a passage. The difference of two passages
P1 \ P2 is a passage if P2 < P1.

76 W.M.P. van der Aalst

a
b

c

d

e

f

g

h
i

1

1

2

2

2

2

2

2

3

4

5

5

X Y

Fig. 1. A graph with five minimal passages: P1 = ({a}, {b, c}), P2 = ({b, c, d}, {d, e, f}),
P3 = ({e}, {g}), P4 = ({f}, {h}), and P5 = ({g, h}, {i}). Passage P2 is highlighted and
edges carry numbers to refer to the minimal passage they belong to.

Lemma 1 (Properties of Passages). Let G = (N,E) be a graph with passages
P1, P2 ∈ pas(G).

– P1 ∪ P2 is a passage.
– If P2 < P1, then P1 \ P2 is a passage.

Proof. Let P1 = (X1, Y1) and P2 = (X2, Y2) be two passages.
For P3 = (X3, Y3) = P1 ∪ P2 we need to prove: ∅ �= X3 ⊆ N , ∅ �= Y3 ⊆ N ,

X3• = Y3, and X3 = •Y3. This trivially holds because X3• = (X1 ∪X2)• =
X1 • ∪X2• = Y1 ∪ Y2 = Y3 and •Y3 = •(Y1 ∪ Y2) = •Y1 ∪ •Y2 = X1 ∪X2 = X3.

Assume that P2 < P1 and P3 = (X3, Y3) = P1 \ P2. Again we need to prove that
∅ �= X3 ⊆ N , ∅ �= Y3 ⊆ N , X3• = Y3, and X3 = •Y3. There is a (x, y) ∈ E with
x ∈ X3 and y ∈ Y3. Otherwise, P2 �< P1. Hence, X3 �= ∅ and Y3 �= ∅. Observe that
X2 • ∩X3• = ∅ and •Y2 ∩ •Y3 = ∅ because P2 is a passage. Moreover, X3• ⊆ Y1

and •Y3 ⊆ X1. Hence, X3• = (X1 \X2)• = X1 • \X2• = Y1 \ Y2 = Y3. •Y3 =
•(Y1 \ Y2) = •Y1 \ •Y2 = X1 \X2 = X3. Therefore, P3 is indeed a passage. 	

Since the union of two passages is again a passage, it is interesting to consider minimal
passages. A passage is minimal if it does not “contain” a smaller passage.

Definition 4 (Minimal Passage). Let G = (N,E) be a graph with passages pas(G).
P ∈ pas(G) is minimal if there is no P ′ ∈ pas(G) such that P ′ < P . pasmin(G) is
the set of minimal passages.

Figure 1 contains five minimal passages. The sets X and Y highlight minimal pas-
sage P2 = ({b, c, d}, {d, e, f}). The edges in Fig. 1 have numbers corresponding to
the passage they belong to, e.g., edges (a, b) and (a, c) have a label “1” showing that
they belong to passage P1 = ({a}, {b, c}). Here we already use the property that an
edge belongs to precisely one minimal passage. In fact, a minimal passage is uniquely
identified by any of its elements as is shown next.

Decomposing Process Mining Problems Using Passages 77

Lemma 2. Let G = (N,E) be a graph and (x, y) ∈ E. There is precisely one minimal
passage P(x,y) = (X,Y) ∈ pasmin(G) such that x ∈ X and y ∈ Y .

Proof. Construct P(x,y) = (X,Y) as follows. Initially: X := {x} and Y := {y}. Then
repeat X := X ∪ •Y and Y := Y ∪X• until X and Y do not change anymore. The
algorithm will end because there are finitely many nodes. When it ends X = •Y and
Y = X• . Hence, P(x,y) = (X,Y) is passage. No unnecessary elements are added to
X and Y , so (X,Y) is minimal and there is precisely one such mininal passage for
(x, y) ∈ E. 	

Passages define an equivalence relation on the edges in a graph: (x1, y1) ∼ (x2, y2) if
and only if P(x1,y1) = P(x2,y2). It is easy to see that ∼ is reflexive (i.e., (x, y) ∼ (x, y))
, symmetric (i.e., (x1, y1) ∼ (x2, y2) if and only if (x2, y2) ∼ (x1, y1)), and transitive
(i.e., (x1, y1) ∼ (x2, y2) and (x2, y2) ∼ (x3, y3) implies (x1, y1) ∼ (x3, y3)). In Fig. 1
(b, d) ∼ (b, e) ∼ (b, f) ∼ (c, f) ∼ (d, d) ∼ (d, e), i.e., the arcs having label “2” form
an equivalence class.

For any {(x, y), (x′, y), (x, y′)} ⊆ E: P(x,y) = P(x′,y) = P(x,y′), i.e., P(x,y) is
uniquely determined by x and P(x,y) is also uniquely determined by y. Moreover,
pasmin(G) = {P(x,y) | (x, y) ∈ E}.

We use the notation x
σ:E#Q� y to state that there is a non-empty path σ from node x

to node y in the graph G = (N,E) where the set of intermediate nodes visited by path
σ does not include any nodes in Q.

Definition 5 (Path). Let G = (N,E) be a graph with x, y ∈ N and Q ⊆ N . x
σ:E#Q�

y if and only if there is a sequence σ = 〈n1, n2, . . . nk〉 with k > 1 such that x = n1,
y = nk, for all 1 ≤ i < k: (ni, ni+1) ∈ E, and for all 1 < i < k: ni �∈ Q. Derived
notations:

– x
E#Q� y if and only if there exists a path σ such that x

σ:E#Q� y,

– x
σ:E� y is a shorthand for x

σ:E#Q� y with Q = ∅,

– nodes(x
E#Q� y) = {n ∈ σ | ∃σ∈N∗ x

σ:E#Q� y}, and

– for X,Y ⊆ N : nodes(X
E#Q� Y) = ∪(x,y)∈X×Y nodes(x

E#Q� y).

Consider the graph G = (N,E) in Fig. 1 to illustrate these notions. a
E#Q� i holds

for Q = {b, d, e, g} because of the path σ = 〈a, c, f, h, i〉. a E#Q� i does not hold if
Q = {g, h} because all paths connecting a to i need to visit g or h. If Q = {d, e, g},

then nodes(a
E#Q� i) = {a, b, c, f, h, i} because of the two paths connecting a to i not

visiting any of the nodes in Q.

2.2 Multisets

Multisets are used to represent the state of a Petri net and to describe event logs where
the same trace may appear multiple times.

B(A) is the set of all multisets over some set A. For some multiset b ∈ B(A), b(a)
denotes the number of times element a ∈ A appears in b. Some examples: b1 = [],

78 W.M.P. van der Aalst

b2 = [x, x, y], b3 = [x, y, z], b4 = [x, x, y, x, y, z], b5 = [x3, y2, z] are multisets over
A = {x, y, z}. b1 is the empty multiset, b2 and b3 both consist of three elements, and
b4 = b5, i.e., the ordering of elements is irrelevant and a more compact notation may
be used for repeating elements.

The standard set operators can be extended to multisets, e.g., x ∈ b2, b2 � b3 = b4,
b5 \ b2 = b3, |b5| = 6, etc. {a ∈ b} denotes the set with all elements a for which b(a) ≥
1. [f(a) | a ∈ b] denotes the multiset where element f(a) appears

∑
x∈b|f(x)=f(a) b(x)

times.

2.3 Petri Nets

Most of the results presented in the paper, can be adapted for various process modeling
notations. However, we use Petri nets to formalize the main ideas and to prove their
correctness.

Definition 6 (Petri Net). A Petri net is tuple PN = (P, T, F) with P the set of places,
T the set of transitions, and F ⊆ (P × T) ∪ (T × P) the flow relation.

Figure 2 shows an example Petri net PN = (P, T, F) with P = {start , c1, . . . ,
c5, end}, T = {a, b, . . . , h}, and F = {(start , a), (a, c1), (a, c2), . . . , (h, end)}. The
state of a Petri net, called marking, is a multiset of places indicating how many tokens
each place contains. [start] is the initial marking shown in Fig. 2. Another potential
marking is [c110, c25, c45]. This is the state with ten tokens in c1, five tokens in c2, and
five tokens in c4.

a
start register

request

b
examine
thoroughly

c
examine
casually

d

check ticket

decide

pay
compensation

reject
request

reinitiate
request

e

g

h

f

end

c1

c2

c3

c4

c5

Fig. 2. A Petri net

Definition 7 (Marking). Let PN = (P, T, F) be Petri net. A marking M is a multiset
of places, i.e., M ∈ B(P).

Like for graphs we define the preset and postset of a node. For any x ∈ P ∪ T ,
PN• x =

{y | (y, x) ∈ F} (input nodes) and x
PN• = {y | (x, y) ∈ F} (output nodes). We drop

the superscript PN if it is clear from the context.

Decomposing Process Mining Problems Using Passages 79

A transition t ∈ T is enabled in marking M , denoted as M [t〉, if each of its input
places •t contains at least one token. Consider the Petri net in Fig. 2 with M = [c3, c4]:
M [e〉 because both input places are marked.

An enabled transition t may fire, i.e., one token is removed from each of the input
places •t and one token is produced for each of the output places t• . Formally: M ′ =
(M \ •t) � t• is the marking resulting from firing enabled transition t in marking M .
M [t〉M ′ denotes that t is enabled in M and firing t results in markingM ′. For example,
[start][a〉[c1, c2] and [c3, c4][e〉[c5] for the net in Fig. 2.

Let σ = 〈t1, t2, . . . , tn〉 ∈ T ∗ be a sequence of transitions. M [σ〉M ′ denotes that
there is a set of markings M0,M1, . . . ,Mn such that M0 = M , Mn = M ′, and
Mi[ti+1〉Mi+1 for 0 ≤ i < n. A marking M ′ is reachable from M if there exists a
σ such that M [σ〉M ′. For example, [start][σ〉[end] for σ = 〈a, b, d, e, g〉.
Definition 8 (Labeled Petri Net). A labeled Petri net PN = (P, T, F, Tv) is a Petri
net (P, T, F) with visible labels Tv ⊆ T . Let σv = 〈t1, t2, . . . , tn〉 ∈ T ∗

v be a sequence
of visible transitions. M [σv � M ′ if and only if there is a sequence σ ∈ T ∗ such that
M [σ〉M ′ and the projection of σ on Tv yields σv (i.e., σv = σ�Tv).

If we assume Tv = {a, e, g, h} for the Petri net in Fig. 2, then [start][σv � [end] for
σv = 〈a, e, e, e, e, g〉 (i.e., b, c, d, and f are invisible).

In the context of process mining, we always consider processes that start in an initial
state and end in a well-defined end state. For example, given the net in Fig. 2 we are
interested in firing sequences starting in Mi = [start] and ending in Mo = [end].
Therefore, we define the notion of a system net.

Definition 9 (System Net). A system net is a triplet SN = (PN ,Mi,Mo) where
PN = (P, T, F, Tv) is a Petri net with visible labels Tv, Mi ∈ B(P) is the initial
marking, and Mo ∈ B(P) is the final marking.

Given a system net, τ(SN) is the set of all possible visible full traces, i.e., firing se-
quences starting in Mi and ending in Mo projected onto the set of visible transitions.

Definition 10 (Traces). Let SN = (PN ,Mi,Mo) be a system net. τ(SN) = {σv |
Mi[σv�Mo} is the set of visible traces starting in Mi and ending in Mo.

If we assume Tv = {a, e, f, g, h} for the Petri net in Fig. 2, then τ(SN) = {〈a, e, g〉,
〈a, e, h〉, 〈a, e, f, e, g〉, 〈a, e, f, e, h〉, . . .}.

2.4 WF-Net

The Petri net in Fig. 2 has a designated source place (start), a designated source place
(end), and all nodes are on a path from start to end . Such nets are called WF-nets
[1, 4].

Definition 11 (WF-net). WF = (PN , in , Ti, out , To) is a workflow net (WF-net) if

– PN = (P, T, F, Tv) is a labeled Petri net,
– in ∈ P is a source place such that •in = ∅ and in• = Ti,

80 W.M.P. van der Aalst

– out ∈ P is a sink place such that out• = ∅ and •out = To,
– Ti ⊆ Tv is the set of initial transitions and •Ti = {in},
– To ⊆ Tv is the set of final transitions and To• = {out}, and

– nodes(in
F� out) = P ∪ T , i.e., all nodes are on some path from source place in

to sink place out .

WF-nets are often used in the context of business process modeling and process mining.
Compared to the standard definition of WF-nets [1, 4] we added the requirement that
the initial and final transitions need to be visible.

A WF-net WF = (PN , in, Ti, out , To) defines the system SN = (PN ,Mi,Mo)
with Mi = [in] and Mo = [out]. Ideally WF-nets are also sound, i.e., free of deadlocks,
livelocks, and other anomalies [1, 4]. Formally, this means that for any state reachable
from Mi it is possible to reach Mo.

Process models discovered using existing process mining techniques may be un-
sound. Therefore, we cannot assume/require all WF-nets to be sound.

2.5 Event Log

As indicated earlier, event logs serve as the starting point for process mining. An event
log is a multiset of traces. Each trace describes the life-cycle of a particular case (i.e., a
process instance) in terms of the activities executed.

Definition 12 (Trace, Event Log). Let A be a set of activities. A trace σ ∈ A∗ is a
sequence of activities. L ∈ B(A∗) is an event log, i.e., a multiset of traces.

An event log is a multiset of traces because there can be multiple cases having the
same trace. In this simple definition of an event log, an event refers to just an activity.
Often event logs may store additional information about events. For example, many
process mining techniques use extra information such as the resource (i.e., person or
device) executing or initiating the activity, the timestamp of the event, or data elements
recorded with the event (e.g., the size of an order). In this paper, we abstract from such
information. However, the results presented in this paper can easily be extended to event
logs with more information.

An example log is L1 = [〈a, e, g〉10, 〈a, e, h〉5, 〈a, e, f, e, g〉3, 〈a, e, f, e, h〉2]. L1

contains information about 20 cases, e.g., 10 cases followed trace 〈a, e, g〉. There are
10× 3 + 5× 3 + 3× 5 + 2× 5 = 70 events in total.

Definition 13 (Projection). Let A be a set and X ⊆ A a subset.�X∈ A∗ → X∗ is a
projection function and is defined recursively: (1) 〈 〉�X= 〈 〉 and (2) for σ ∈ A∗ and
a ∈ A:

(σ; 〈a〉)�X=

{
σ�X if a �∈ X

σ�X ; 〈a〉 if a ∈ X

The projection function is generalized to event logs, i.e., for some event log L ∈ B(A∗)
and set X ⊆ A: L�X= [σ�X | σ ∈ L].

For the event log L1: L1�{a,g,h}= [〈a, g〉13, 〈a, h〉7]. Note that all e and f events have
been removed.

Decomposing Process Mining Problems Using Passages 81

3 Conformance Checking

Conformance checking techniques investigate how well an event log L ∈ B(A∗) and
a system net SN = (PN ,Mi,Mo) fit together. Note that the process model SN may
have been discovered through process mining or may have been made by hand. In any
case, it is interesting to compare the observed example behavior in L and the potential
behavior of SN .

Conformance checking can be done for various reasons. First of all, it may be used
to audit processes to see whether reality conforms to some normative or descriptive
model [5]. Deviations may point to fraud, inefficiencies, and poorly designed or out-
dated procedures. Second, conformance checking can be used to evaluate the results
of a process discovery techniques. In fact, genetic process mining algorithms use con-
formance checking to select the candidate models used to create the next generation of
models [29].

There are four quality dimensions for comparing model and log: (1) fitness, (2) sim-
plicity, (3) precision, and (4) generalization [2]. A model with good fitness allows for
most of the behavior seen in the event log. A model has a perfect fitness if all traces in
the log can be replayed by the model from beginning to end. The simplest model that
can explain the behavior seen in the log is the best model. This principle is known as
Occam’s Razor. Fitness and simplicity alone are not sufficient to judge the quality of a
discovered process model. For example, it is very easy to construct an extremely simple
Petri net (“flower model”) that is able to replay all traces in an event log (but also any
other event log referring to the same set of activities). Similarly, it is undesirable to have
a model that only allows for the exact behavior seen in the event log. Remember that
the log contains only example behavior and that many traces that are possible may not
have been seen yet. A model is precise if it does not allow for “too much” behavior.
Clearly, the “flower model” lacks precision. A model that is not precise is “underfit-
ting”. Underfitting is the problem that the model over-generalizes the example behavior
in the log (i.e., the model allows for behaviors very different from what was seen in the
log). At the same time, the model should generalize and not restrict behavior to just the
examples seen in the log. A model that does not generalize is “overfitting”. Overfitting
is the problem that a very specific model is generated whereas it is obvious that the
log only holds example behavior (i.e., the model explains the particular sample log, but
there is a high probability that the model is unable to explain the next batch of cases).

In the remainder, we will focus on fitness. However, the ideas are applicable to the
other quality dimensions.

Definition 14 (Perfectly Fitting Log). Let L ∈ B(A∗) be an event log and let SN =
(PN ,Mi,Mo) be a system net. L is perfectly fitting SN if and only if {σ ∈ L} ⊆
τ(SN).

Consider two event logs L1 = [〈a, e, g〉10, 〈a, e, h〉5, 〈a, e, f, e, g〉3, 〈a, e, f, e, h〉2] and
L2 = [〈a, e, g〉10, 〈a, e, h〉5, 〈a, g〉3, 〈a, a, g, e, h〉2] and the system net SN of the WF-
net depicted in Fig. 2 with Tv = {a, e, f, g, h}. Clearly, L1 is perfectly fitting SN and
L2 is not. There are various ways to quantify fitness [2, 3, 8, 24, 29–32], typically on a
scale from 0 to 1 where 1 means perfect fitness. To measure fitness, one needs to align

82 W.M.P. van der Aalst

traces in the event log to traces of the process model. Some example alignments for L2

and SN :

γ1 =
a e g
a e g

γ2 =
a e h
a e h

γ3 =
a � g
a e g

γ4 =
a a g e h
a � � e h

γ5 =
a a � g e h
a � e g � �

The top row of each alignment corresponds to “moves in the log” and the bottom row
corresponds to “moves in the model”. If a move in the log cannot be mimicked by a
move in the model, then a “�” (“no move”) appears in the bottom row. For example, in
γ4 the model is unable to do the second a move and is unable to do g before e. If a move
in the model cannot be mimicked by a move in the log, then a “�” (“no move”) appears
in the top row. For example, in γ3 the log did not do an e move whereas the model has to
make this move to enable g and reach the end. Given a trace in the event log there may
be many possible alignments. The goal is to find the alignment with the least number of
� elements, e.g., γ4 is clearly better than γ5. The number of � elements can be used
to quantify fitness. Moreover, once an optimal alignment has been established for every
trace in the event log, these alignments can be used as a basis to quantify precision and
generalization [3].

4 Distributed Conformance Checking

Conformance checking techniques can be time consuming as potentially many different
traces need to be aligned with a model that may allow for an exponential (or even
infinite) number of traces. Event logs may contain millions of events. Finding the best
alignment may require solving many optimization problems [8] or repeated state-space
explorations [32]. When using genetic process mining, one needs to check the fitness of
every individual model in every generation [29]. As a result, thousands or even millions
of conformance checks need to be done. For each conformance check, the whole event
log needs to be traversed. Given these challenges, we are interested in reducing the time
needed for conformance checking.

In this section, we show that it is possible to decompose and distribute conformance
checking problems using the notion of passages defined in Section 2.1. In order to do
this we focus on the visible transitions and create the so-called skeleton of the process
model.

Definition 15 (Skeleton). Let PN = (P, T, F, Tv) be a labeled Petri net. The skeleton
of PN is the graph skel(PN) = (N,E) with N = Tv and E = {(x, y) ∈ Tv × Tv |
x

F#Tv� y}.

Figure 3 shows the skeleton of the WF-net in Fig. 2 assuming that Tv = {a, e, f, g, h}.
The resulting graph has two minimal minimal passages.

Note that only the visible transitions Tv appear in the skeleton. For example, if we
assume that Tv = {a, g, h} in Fig. 2, then the skeleton is ({a, g, h}, {(a, g), (a, h)})
and there is only one passage ({a}, {g, h}).

If there are multiple minimal passages in the skeleton, we can decompose confor-
mance checking problems into smaller problems by partitioning the Petri net into net

Decomposing Process Mining Problems Using Passages 83

aregister
request

decide

reject
request

reinitiate
request

e g

hf

pay
compensation

Fig. 3. The skeleton of the labeled Petri net in Fig. 2 (assuming that Tv = {a, e, f, g, h}). There
are two minimal minimal passages: ({a, f}, {e}) and ({e}, {f, g, h}).

fragments and the event log into sublogs. Each passage (X,Y) defines one net fragment
PN (X,Y) and one sublog L�X∪Y . We will show that conformance can be checked per
passage.

a

register
request

b
examine
thoroughly

c
examine
casually

d

check ticket

decide pay
compensation

reject
request

reinitiate
request

e g

hf

c1

c2

c3

c4

c5
decide

e

reinitiate
request

f

Fig. 4. Two net fragments corresponding to the two passages of the skeleton in Fig. 3:
PN 1 = PN ({a,f},{e}) (left) and PN 2 = PN ({e},{f,g,h}) (right). The visible transitions
Tv = {a, e, f, g, h} that form the boundaries of the fragments are highlighted.

Consider event log L = [〈a, e, g〉10, 〈a, e, h〉5, 〈a, e, f, e, g〉3, 〈a, e, f, e, h〉2], the
WF-net PN shown in Fig. 2 with Tv = {a, e, f, g, h}, and the skeleton shown in Fig. 3.
There are two passages: P1 = ({a, f}, {e}) and P2 = ({e}, {f, g, h}). Based on this
we define two net fragments PN 1 and PN 2 as shown in Fig. 4. Moreover, we de-
fine two sublogs: L1 = [〈a, e〉15, 〈a, e, f, e〉5] and L2 = [〈e, g〉10, 〈e, h〉5, 〈e, f, e, g〉3,
〈e, f, e, h〉2]. To check the conformance of the overall event log on the overall model,
we check the conformance of L1 on PN 1 and L2 on PN 2. Since L1 is perfectly fitting
PN 1 and L2 is perfectly fitting PN 2, we can conclude that L is perfectly fitting PN .
This illustrates that conformance checking can be decomposed.

In order to prove this, we first define the notion of a net fragment.

Definition 16 (Net Fragment). Let PN = (P, T, F, Tv) be a labeled Petri net. For any
two sets of transitionsX,Y ⊆Tv, we define the net fragmentPN (X,Y)=(P ′, T ′, F ′, T ′

v)
with:

84 W.M.P. van der Aalst

– Z = nodes(X
F#Tv� Y) \ (X ∪ Y) are the internal nodes of the fragment,

– P ′ = P ∩ Z ,
– T ′ = (T ∩ Z) ∪X ∪ Y ,
– F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)), and
– T ′

v = X ∪ Y .

Note that PN 1 = PN ({a,f},{e}) in Fig. 4 has Z = {b, c, d, c1, c2, c3, c4} as internal
nodes.

b

a

c

d

e

j

i

hf nk

l

m

o

pgi o

Fig. 5. WF-net WF is decomposed in subnets PN (X,Y). The “clouds” model the internal struc-
ture of these subnets (places but possibly also hidden transitions). Due to the decomposition based
on passages, one cloud can only influence another cloud through the visible interface transitions
X and Y . Since the visible interface transitions are “controlled” by the event log, it is possible to
check fitness locally per subnet.

Now we can prove the main result of this paper. Figure 5 illustrates our decomposi-
tion approach. A larger model can be decomposed into net fragments corresponding to
minimal passages. The event log can be decomposed in a similar manner and confor-
mance checking can be done per passage.

Theorem 1 (Main Theorem). Let L ∈ B(A∗) be an event log and let WF = (PN ,
in, Ti, out , To) be a WF-net with PN = (P, T, F, Tv).

L is perfectly fitting system net SN = (PN , [in], [out]) if and only if

– for any 〈a1, a2, . . . ak〉 ∈ L: a1 ∈ Ti and ak ∈ To, and
– for any (X,Y) ∈ pasmin(skel(PN)): L �X∪Y is perfectly fitting SN (X,Y) =

(PN (X,Y), [], []).

Proof. (⇒) Let σv = 〈a1, a2, . . . ak〉 ∈ L such that there is a σ ∈ T ∗ with [in][σ〉[out]
and σ�Tv= σv (i.e., σv fits into the overall WF-net). We need to prove the two properties
listed above:

Decomposing Process Mining Problems Using Passages 85

– a1 ∈ Ti and ak ∈ To because only transitions in Ti are enabled in the initial
marking and only transitions in To can produce tokens for out . Moreover, when
σ puts a token in place out all other places should be empty; otherwise σ cannot
result in [out] (property of WF-nets). Note that Ti ⊆ Tv and To ⊆ Tv, so the first
and last transition need to be visible.

– For any (X,Y) ∈ pasmin(skel(PN)): we define PN (X,Y) = (P ′, T ′, F ′, T ′
v) and

σ′ = σ �T ′ . We need to prove that [][σ′〉[] in PN (X,Y). This follows trivially
because SN (X,Y) can mimic any move of SN with respect to transitions T ′.

(⇐) Let σv = 〈a1, a2, . . . ak〉 ∈ L such that a1 ∈ Ti, ak ∈ To, and assume that for
any (X,Y) ∈ pasmin(skel(PN)) there is a sequence σ(X,Y) such that [][σ(X,Y)〉[]
in PN (X,Y) = (P ′, T ′, F ′, T ′

v) with σ(X,Y) �X∪Y= σv �X∪Y . We need to prove that
there is a σ ∈ T ∗ such that [in][σ〉[out] in PN with σ�Tv= σv. The different σ(X,Y)

sequences can be stitched together into an overall σ because the different subnets only
interface via visible transitions. Transitions in one subnet can only influence other sub-
nets through visible transitions and these can only move synchronously as defined by
σv ∈ L. 	

Although the theorem only addresses the notion of perfect fitness, other conformance
notions can be decomposed in a similar manner. Metrics can be computed per passage
and then aggregated into an overall metric.

Assuming a process model with many passages, the time needed for conformance
checking can be reduced significantly. There are two reasons for this. First of all, as
Theorem 1 shows, larger problems can be decomposed into a set of independent smaller
problems. Therefore, conformance checking can be distributed over multiple comput-
ers. Second, due to the exponential nature of most conformance checking techniques,
the time needed to solve “many smaller problems” is less than the time needed to solve
“one big problem”. Existing approaches use state-space analysis (e.g., in [32] the short-
est path enabling a transition is computed) or optimization over all possible alignments
(e.g., in [8] the A∗ algorithm is used to find the best alignment). These techniques do
not scale linearly in the number of activities. Therefore, decomposition is useful even if
the checks per passage are done on a single computer.

5 Process Discovery: Divide and Conquer

As explained before, conformance checking and process discovery are closely related.
Therefore, we can use the approach used in Theorem 1 for process discovery provided
that some coarse causal structure (comparable to the skeleton in Section 4) is known.
Based on the passages in the causal structure, multiple smaller discovery problems are
formulated. This result in one net fragment per passage. These fragments can be folded
into an overall model.

More concretely, we propose the following discovery approach:

1. Input is an event log Lraw ∈ B(A∗
raw) over a set of activities Araw.

2. Extend each trace in the event log with an artificial start event � and an artificial
end event⊥ ({�,⊥}∩Araw = ∅). Lext = [〈�〉;σ; 〈⊥〉 | σ ∈ Lraw] is the resulting
log over Aext = {�,⊥} ∪Araw.

86 W.M.P. van der Aalst

3. Discover the causal structure, i.e., we assume that there is an algorithm γc such
that γc(Lext) = (A,C) with {�,⊥} ⊆ A ⊆ Aext and C ⊆ A × A. The causal
structure may be inspected and modified by a domain expert.

4. Filter the event log using the selected set of activities A: L = Lext�A.
5. Compute the set of passages on the graph G = (A,C): PS = pasmin(G) =

{(X1, Y1), (X2, Y2), . . . , (Xk, Yk)}. We assume that there is an algorithm γp, such
that γp(L�Xi∪Yi , Xi, Yi) = PN i = (Pi, Ti, Fi, Xi ∪ Yi) returns a Petri net with
visible transitions Xi ∪ Yi. The discovered Petri nets only overlap with respect to
visible transitions, i.e., for 1 ≤ i < j ≤ k: ((Pi ∪ Ti) \ (Xi ∪ Yi)) ∩ ((Pj ∪
Tj)\ (Xj ∪Yj)) = ∅. Moreover, each PN i should respect the causal structure, i.e.,
visible transition x ∈ Xi is connected to visible transition y ∈ Yi in PN i if and
only if (x, y) ∈ C.

6. Merge the individual subsets into one overall system net SN = (PN ,Mi,Mo)
with PN = (P, T, F, Tv) such that:

– P = {in, out} ∪ ∪1≤i≤k Pi,
– T = ∪1≤i≤k Ti,
– F = {(in,�), (⊥, out)} ∪ (∪1≤i≤k Fi),
– Tv = A,
– Mi = [in], and
– Mo = [out].

The discovery process is parameterized by γc (the algorithm to find causal structure)
and γp (the algorithm to find a local, transition bordered process model). Any com-
bination of γc and γp can be used as the two main steps are decoupled by the causal
structure. γc can also be used to filter out infrequent activities, noise, etc. Moreover, the
user is able to edit the causal structure using domain knowledge or particular prefer-
ences. Experience shows that user feedback is vital to balance between overfitting and
underfitting.

The log is extended by adding an artificial start event � and an artificial end event ⊥
to every trace, This is just a technicality to ensure that there is a clearly defined start and
end. Note that passages can be activated multiple times, e.g., in case of loops. Therefore,
we add transitions � and ⊥ and places in and out . If there is a unique start (end) event,
then there is no need to add transition � (⊥). Ideally, the causal structure created in
Step 3 has one source node �, one sink node ⊥, and all other nodes are on a path from
� to ⊥ (like in a WF-net).

To illustrate the divide and conquer approach based on passages, consider the event
logLraw=[〈a, b, c, d〉40, 〈b, a, c, d〉35, 〈a, b, c, e〉30, 〈b, a, c, e〉25, 〈a, b, x, d〉1, 〈a, b, e〉1].
The log describes 132 cases. We first add the artificial start and events (Step 2): Lext =
[〈�, a, b, c, d,⊥〉40, 〈�, b, a, c, d,⊥〉35, 〈�, a, b, c, e,⊥〉30, 〈�, b, a, c, e,⊥〉25, 〈�, a, b,
x, d,⊥〉1, 〈�, a, b, e,⊥〉1]. Then we compute the causal structure using γc (Step 3). As-
sume that the causal structure shown in Fig. 6 is computed. Since x occurs only once
whereas the other activities occur more than 50 times, x is excluded. The same holds
for the dependency between b and e. L is the log where x is removed (Step 4).

The causal structure has four minimal passages: P1 = ({�}, {a, b}), P2 = ({a, b},
{c}), P3 = ({c}, {d, e}), and P4 = ({d, e}, {⊥}). Based on these passages we create
four corresponding sublogs:L1 = [〈�, a, b〉72, 〈�, b, a〉60], L2 = [〈a, b, c〉70, 〈b, a, c〉60,

Decomposing Process Mining Problems Using Passages 87

a

b
c

d

e

Fig. 6. Causal structure γc(Lext) discovered for the extended event log having four minimal
passages

〈a, b〉2], L3 = [〈c, d〉75, 〈c, e〉55, 〈d〉1, 〈e〉1], and L4 = [〈d,⊥〉76, 〈e,⊥〉56]. One
transition-bordered Petri net is discovered per sublog using γp (Step 5). Figure 7 shows
the resulting net fragments. Note that infrequent behavior has been discarded, i.e., trace
〈a, b〉 in L2 is not possible in PN 2, and traces 〈d〉 and 〈e〉 in L3 are not possible in
PN 3. What behavior is included and what not depends on γp.

a

b

c

d

e

d

e

a

b

c

Fig. 7. The Petri net fragments discovered for the four passages: PN 1, PN 1, PN 3, and PN 4

In the last step of the approach, the four net fragments of Fig. 7 are merged into
the overall model shown in Figure 8 (Step 6). Note that this model is indeed able to
replay all frequent behavior. Two of the 132 cases cannot be replayed because they
were treated as noise by γc and γp.

in

a

b

c

d

e
out

Fig. 8. The WF-net obtained by merging the individual subsets

The small example shows that we can use a divide and conquer approach when
discovering process models. We deliberately did not select concrete algorithms for γc
and γp. The approach is generic and can be combined with existing process discovery
techniques [2, 6, 7, 11, 13, 18, 19, 21, 24, 29, 33, 35, 36]. Moreover, the user can modify
the causal structure (i.e., the result of γc) to guide the discovery process.

88 W.M.P. van der Aalst

By decomposing the overall discovery problem into a collection of smaller discovery
problems, it is possible to do a more refined analysis and achieve significant speed-ups.
The discovery algorithm γp is applied to an event log consisting of just the activities
involved in the passage under investigation. Hence, process discovery tasks can be dis-
tributed over a network of computers (assuming there are multiple passages). Moreover,
most discovery algorithms are exponential in the number of activities. Therefore, the se-
quential discovery of all individual passages on one computer is often still faster than
solving one big discovery problem. If there are more passages than computers, one can
merge minimal passages into aggregate passages and use these for discovery and con-
formance checking (one passage per computer). However, in most situations, it will be
more efficient to analyze the minimal passages sequentially.

6 Related Work

For an introduction to process mining we refer to [2]. For an overview of best practices
and challenges, we refer to the Process Mining Manifesto [26]. The goal of this paper
is to decompose challenging process discovery and conformance checking problems
into smaller problems. Therefore, we first review some of the techniques available for
process discovery and conformance checking.

Process discovery, i.e., discovering a process model from a multiset of example
traces, is a very challenging problem and various discovery techniques have been pro-
posed [6, 7, 11, 13, 18, 19, 21, 24, 29, 33, 35, 36]. Many of these techniques use Petri
nets during the discovery process and/or to represent the discovered model. It is impos-
sible to provide an complete overview of all techniques here. Very different approaches
are used, e.g., heuristics [21, 35], inductive logic programming [24], state-based regions
[6, 19, 33], language-based regions [13, 36], and genetic algorithms [29]. Classical syn-
thesis techniques based on regions [23] cannot be applied directly because the event log
contains only example behavior. For state-based regions one first needs to create an au-
tomaton as described in [6]. Moreover, when constructing the regions, one should avoid
overfitting. Language-based regions seem good candidates for discovering transition-
bordered Petri nets for passages [13, 36]. Unfortunately, these techniques still have
problems dealing with infrequent/incomplete behavior.

As described in [2], there are four competing quality criteria when comparing mod-
eled behavior and recorded behavior: fitness, simplicity, precision, and generalization.
In this paper, we focused on fitness, but also precision and generalization can also be in-
vestigated per passage. Various conformance checking techniques have been proposed
in recent years [3, 8–10, 16, 22, 24, 30–32, 34]. Conformance checking can be used to
evaluate the quality of discovered processes but can also be used for auditing purposes
[5]. Most of the techniques mentioned can be applied to passages. The most challeng-
ing part is to aggregate the metrics per passage into metrics for the overall model and
log. We consider the approach described in [8] to be most promising as it constructs an
optimal alignment given an arbitrary cost function. This alignment can be used for com-
puting precision and generalization [3, 31]. However, the approach can be rather time
consuming. Therefore, the efficiency gains can be considerable for larger processes with
many activities and passages.

Decomposing Process Mining Problems Using Passages 89

Little work has been done on the decomposition and distribution of process mining
problems. In [15] an approach is described to distribute genetic process mining over
multiple computers. In this approach candidate models are distributed and in a similar
fashion also the log can be distributed. However, individual models are not partitioned
over multiple nodes. Therefore, the approach in this paper is complementary. Moreover,
unlike [15], the decomposition approach based on passages is not restricted to genetic
process mining.

Most related are the divide-and-conquer techniques presented in [20]. In [20] it is
shown that region-based synthesis can be done at the level of synchronized State Ma-
chine Components (SMCs). Also a heuristic is given to partition the causal dependency
graph into overlapping sets of events that are used to construct sets of SMCs. Passages
provide a different (more local) partitioning of the problem and, unlike [20] which fo-
cuses on state-based region mining, we decouple the decomposition approach from the
actual conformance checking and process discovery approaches.

Several approaches have been proposed to distribute the verification of Petri net prop-
erties, e.g., by partitioning the state space using a hash function [14] or by modularizing
the state space using localized strongly connected components [27]. These techniques
do not consider event logs and cannot be applied to process mining.

Most data mining techniques can be distributed [17], e.g., distributed classification,
distributed clustering, and distributed association rule mining [12]. These techniques
often partition the input data and cannot be used for the discovery of Petri nets.

7 Conclusion

Computationally challenging process mining problems can be decomposed in smaller
problems using the new notion of passages. This paper shows that the fitness of the
overall model can be analyzed per passage. The approach is independent of the partic-
ular conformance checking technique used. Moreover, the same idea can be applied to
other conformance notions. The paper also presents a discovery approach where the dis-
covery problem can be decomposed after determining the causal structure. The refined
behavior can be discovered per passage and, subsequently, the discovered net fragments
can be merged into an overall process model. Conformance checking and process dis-
covery can be done much more efficiently using such decompositions. Moreover, the
approach can be distributed over a network of computers.

This paper presents the idea of passages and provides a formal correctness proof
showing that a log is perfectly fitting the overall model if and only if the property
holds per passage. Future work will focus on large scale experiments demonstrating
the performance gains on a variety of process mining problems. We anticipate that the
actual speedup heavily depends on the number of passages. Therefore, it is important
investigate this using real-life logs and models.

References
1. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. The Journal

of Circuits, Systems and Computers 8(1), 21–66 (1998)
2. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Busi-

ness Processes. Springer, Berlin (2011)

90 W.M.P. van der Aalst

3. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.: Replaying History on Process Mod-
els for Conformance Checking and Performance Analysis. WIREs Data Mining and Knowl-
edge Discovery 2(2), 182–192 (2012)

4. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek, H.M.W.,
Voorhoeve, M., Wynn, M.T.: Soundness of Workflow Nets: Classification, Decidability, and
Analysis. Formal Aspects of Computing 23(3), 333–363 (2011)

5. van der Aalst, W.M.P., van Hee, K.M., van der Werf, J.M., Verdonk, M.: Auditing 2.0: Using
Process Mining to Support Tomorrow’s Auditor. IEEE Computer 43(3), 90–93 (2010)

6. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler, E., Günther,
C.W.: Process Mining: A Two-Step Approach to Balance Between Underfitting and Overfit-
ting. Software and Systems Modeling 9(1), 87–111 (2010)

7. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering
Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineer-
ing 16(9), 1128–1142 (2004)

8. Adriansyah, A., van Dongen, B., van der Aalst, W.M.P.: Conformance Checking using Cost-
Based Fitness Analysis. In: Chi, C.H., Johnson, P. (eds.) IEEE International Enterprise Com-
puting Conference (EDOC 2011), pp. 55–64. IEEE Computer Society (2011)

9. Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Towards Robust Conformance
Checking. In: zur Muehlen, M., Su, J. (eds.) BPM 2010 Workshops. LNBIP, vol. 66,
pp. 122–133. Springer, Heidelberg (2011)

10. Adriansyah, A., Sidorova, N., van Dongen, B.F.: Cost-based Fitness in Conformance Check-
ing. In: International Conference on Application of Concurrency to System Design (ACSD
2011), pp. 57–66. IEEE Computer Society (2011)

11. Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs.
In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377,
pp. 469–483. Springer, Heidelberg (1998)

12. Agrawal, R., Shafer, J.C.: Parallel Mining of Association Rules. IEEE Transactions on
Knowledge and Data Engineering 8(6), 962–969 (1996)

13. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process Mining Based on Regions of
Languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 375–383. Springer, Heidelberg (2007)

14. Boukala, M.C., Petrucci, L.: Towards Distributed Verification of Petri Nets properties. In:
Proceedings of the International Workshop on Verification and Evaluation of Computer and
Communication Systems (VECOS 2007), pp. 15–26. British Computer Society (2007)

15. Bratosin, C., Sidorova, N., van der Aalst, W.M.P.: Distributed Genetic Process Mining.
In: Ishibuchi, H. (ed.) IEEE World Congress on Computational Intelligence (WCCI 2010),
Barcelona, Spain, pp. 1951–1958. IEEE (July 2010)

16. Calders, T., Guenther, C., Pechenizkiy, M., Rozinat, A.: Using Minimum Description Length
for Process Mining. In: ACM Symposium on Applied Computing (SAC 2009), pp. 1451–
1455. ACM Press (2009)

17. Cannataro, M., Congiusta, A., Pugliese, A., Talia, D., Trunfio, P.: Distributed Data Mining
on Grids: Services, Tools, and Applications. IEEE Transactions on Systems, Man, and Cy-
bernetics, Part B 34(6), 2451–2465 (2004)

18. Carmona, J., Cortadella, J.: Process Mining Meets Abstract Interpretation. In: Balcázar, J.L.,
Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS, vol. 6321, pp. 184–199.
Springer, Heidelberg (2010)

19. Carmona, J.A., Cortadella, J., Kishinevsky, M.: A Region-Based Algorithm for Discovering
Petri Nets from Event Logs. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008.
LNCS, vol. 5240, pp. 358–373. Springer, Heidelberg (2008)

Decomposing Process Mining Problems Using Passages 91

20. Carmona, J., Cortadella, J., Kishinevsky, M.: Divide-and-Conquer Strategies for Process
Mining. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701,
pp. 327–343. Springer, Heidelberg (2009)

21. Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based Data.
ACM Transactions on Software Engineering and Methodology 7(3), 215–249 (1998)

22. Cook, J.E., Wolf, A.L.: Software Process Validation: Quantitatively Measuring the Cor-
respondence of a Process to a Model. ACM Transactions on Software Engineering and
Methodology 8(2), 147–176 (1999)

23. Darondeau, P.: Unbounded Petri Net Synthesis. In: Desel, J., Reisig, W., Rozenberg, G. (eds.)
ACPN 2004. LNCS, vol. 3098, pp. 413–438. Springer, Heidelberg (2004)

24. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust Process Discovery with
Artificial Negative Events. Journal of Machine Learning Research 10, 1305–1340 (2009)

25. Hilbert, M., Lopez, P.: The World’s Technological Capacity to Store, Communicate, and
Compute Information. Science 332(6025), 60–65 (2011)

26. IEEE Task Force on Process Mining. Process Mining Manifesto. In: Business Process Man-
agement Workshops. LNBIP, vol. 99, pp. 169–194. Springer, Berlin (2012)

27. Lakos, C., Petrucci, L.: Modular Analysis of Systems Composed of Semiautonomous Sub-
systems. In: Application of Concurrency to System Design (ACSD 2004), pp. 185–194.
IEEE Computer Society (2004)

28. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.: Big Data:
The Next Frontier for Innovation, Competition, and Productivity. McKinsey Global Institute
(2011)

29. Alves de Medeiros, A.K., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic Process Min-
ing: An Experimental Evaluation. Data Mining and Knowledge Discovery 14(2), 245–304
(2007)

30. Muñoz-Gama, J., Carmona, J.: A Fresh Look at Precision in Process Conformance. In: Hull,
R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 211–226. Springer, Heidel-
berg (2010)

31. Munoz-Gama, J., Carmona, J.: Enhancing Precision in Process Conformance: Stability, Con-
fidence and Severity. In: IEEE Symposium on Computational Intelligence and Data Mining
(CIDM 2011), Paris, France. IEEE (April 2011)

32. Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Processes Based on Monitor-
ing Real Behavior. Information Systems 33(1), 64–95 (2008)

33. Solé, M., Carmona, J.: Process Mining from a Basis of State Regions. In: Lilius, J., Penczek,
W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 226–245. Springer, Heidelberg (2010)

34. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A Robust F-measure for Evalu-
ating Discovered Process Models. In: IEEE Symposium on Computational Intelligence and
Data Mining (CIDM 2011), Paris, France, pp. 148–155. IEEE (April 2011)

35. Weijters, A., van der Aalst, W.M.P.: Rediscovering Workflow Models from Event-Based
Data using Little Thumb. Integrated Computer-Aided Engineering 10(2), 151–162 (2003)

36. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process Discov-
ery using Integer Linear Programming. Fundamenta Informaticae 94, 387–412 (2010)

	Decomposing Process Mining Problems Using Passages
	Introduction
	Preliminaries
	Graphs, Passages, and Paths
	Multisets
	Petri Nets
	WF-Net
	Event Log

	Conformance Checking
	Distributed Conformance Checking
	Process Discovery: Divide and Conquer
	Related Work
	Conclusion
	References

