
Old and New Algorithms

for Minimal Coverability Sets

Antti Valmari and Henri Hansen

Department of Software Systems, Tampere University of Technology
P.O. Box 553, FI-33101 Tampere, Finland
{antti.valmari,henri.hansen}@tut.fi

Abstract. Many algorithms for computing minimal coverability sets for
Petri nets prune futures. That is, if a new marking strictly covers an old
one, then not just the old marking but also some subset of its subsequent
markings is discarded from search. In this publication, a simpler algo-
rithm that lacks future pruning is presented and proven correct. Then
its performance is compared with future pruning. It is demonstrated,
using examples, that neither approach is systematically better than the
other. However, the simple algorithm has some attractive features. It
never needs to re-construct pruned parts of the minimal coverability set.
If the minimal coverability set is constructed in depth-first or most to-
kens first order, and if so-called history merging is applied, then most
of the advantage of future pruning is automatic. Some implementation
aspects of minimal coverability set construction are also discussed.

1 Introduction

The set of reachable markings of a finite Petri net is not necessarily finite. How-
ever, Karp and Miller [4] showed that an abstracted version of it, the coverability
set, is always finite. The coverability set constructed by the algorithm of Karp
and Miller is not unique. Finkel defined a unique minimal coverability set and
presented an algorithm for constructing it [1]. Surprisingly, more than a decade
later an error was found in his algorithm [2]. This inspired new interest in cov-
erability set algorithms.

Proposals for solving the problem correctly, and more efficiently than the
original, have been made [3,6]. Some recent work also exists on incremental
construction of coverability graphs, that is, mapping transformations of a Petri
net to transformations of its coverability graph [5].

Minimal coverability sets may be huge. For instance, the “linear” Petri net
· · · with n places, n−1 tokens in the first place, and no

tokens elsewhere, has (2n−2)!/(n−1)!2 ≈ 22n−2/
√
π(n− 1) maximal markings.

The algorithms of [4,1,6] are all based on the idea of building a tree of mark-
ings with acceleration or ω-addition, that is, replacing unbounded markings of
a place with an ω, based on the history of a newly discovered marking. The two
latter algorithms also prune the tree by excluding the already constructed de-
scendants of the covered nodes from future exploration, in an attempt to make

S. Haddad and L. Pomello (Eds.): PETRI NETS 2012, LNCS 7347, pp. 208–227, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Old and New Algorithms for Minimal Coverability Sets 209

the computation more efficient. With this pruning, correctness or termination
of the algorithm is jeopardised, and proving either becomes very hard, as is
evidenced by the fact that the algorithm of [1] was long thought to be correct.

Pruning takes place when a sequence M0, t1, . . . , tn, Mn of markings and
transitions has been found, where each Mi is obtained by firing ti from Mi−1

and then possibly adding ω-symbols, and then an M ′
0 such that M0 < M ′

0 is
found. Then M0 is clearly unnecessary in the coverability set. IfM0 [t1 · · · tn〉 Mn

and M0 < M ′
0, then there is an M ′

n such that M ′
0 [t1 · · · tn〉 M ′

n and Mn < M ′
n.

Inspired by this, future pruning passivates also M1, . . . , Mn simultaneously with
M0. However, when ω-symbols are added along the path from M0 to Mn, it is
possible that Mn = M ′

n. Then it is possible that after Mn has been pruned, it
may have to be activated anew. We say that the pruning of Mn is overeager if
and only if M ′

0 [t1 · · · tn〉 Mn.
To provide a firm foundation for the discussion in this publication, in Section 2

we recall the basic facts of minimal coverability sets. Then, in Section 3, we
propose an algorithm for creating minimal coverability sets that does not prune
futures, and show that it is correct. We also comment on some implementation
issues. Section 4 is devoted to a discussion of the order in which the set is
constructed.

The simple approach is compared with future pruning in Section 5. We demon-
strate that future pruning is vulnerable to having to construct large subsets more
than once. Then we prove that if the minimal coverability set is constructed in
depth-first order or what we call most tokens first order, and if what we call
history merging is applied, then, even without explicit pruning, the algorithm
automatically avoids the investigation of transitions from those markings that fu-
ture pruning would prune but not in the overeager way. The last section presents
our conclusions and some measurements.

2 Minimal Coverablity Sets

The basic facts of coverability sets are more or less widely known, but their pub-
lished proofs tend to be unclear and tied to individual algorithms. Therefore, we
prove them anew in this section, independently of even the notion of transition.
The set of natural numbers (including 0) is denoted with N. Let P be any finite
set. Its elements are called places. We start with the notion of markings that
may also use ω as the marking of a place. Intuitively, ω denotes unbounded.

Definition 1. An ω-marking is a function from P to N ∪ {ω}. If n ∈ N, we
define n < ω and ω + n = ω − n = ω. Let M and M ′ be ω-markings. We
define that M ′ covers M and write M ≤ M ′ if and only if M(p) ≤ M ′(p) for
every p ∈ P . Furthermore, M ′ covers M strictly if and only if M < M ′, that is,
M ≤ M ′ and M �= M ′. A (finite or infinite) sequence M1,M2, . . . of ω-markings
is growing if and only if M1 ≤ M2 ≤ . . . and strictly growing if and only if
M1 < M2 <

Note that (ordinary) markings are ω-markings. An ω-marking is a marking if
and only if it does not contain ω-symbols.

210 A. Valmari and H. Hansen

Given any infinite growing sequence Mi of ω-markings and any place p, Mi(p)
either reaches a maximum value and stays there or grows without limit. The
latter means that for each n ∈ N, there is an i such that Mi(p) ≥ n. Therefore,
the following notion of the limit of the sequence is well-defined.

Definition 2. Let M1, M2, . . . be ω-markings such that M1 ≤ M2 ≤ Their
limit is the ω-marking M = lim

i→∞
Mi such that for each p ∈ P , either M(p) =

Mi(p) = Mi+1(p) = Mi+2(p) = . . . for some i, or M(p) = ω and Mi(p) grows
without limit as i grows.

Clearly Mi ≤ lim
i→∞

Mi for each i. The ω-markings in a sequence need not be

different from each other. So also the sequence M,M,M, . . . has a limit. It is
M . It is also worth pointing out that in this publication, the either-part of the
definition does not require that M(p) < ω. Therefore, M(p) = ω is possible in
two ways: either Mi(p) = ω from some i on, or Mi(p) grows without limit.

The following lemma is an immediate consequence of Definition 2. It says
that given an arbitrary finite value, the places marked with ω in the limit may
simultaneously get at least that value, while the other places get their limit
values. In this publication, Mi(p) may also be ω, but then trivially Mi(p) ≥ n.

Lemma 1. If M = lim
i→∞

Mi, then for every n ∈ N there is an i such that for

each p ∈ P , either Mi(p) = M(p) < ω or Mi(p) ≥ n and M(p) = ω.

For convenience, we also define a limit of a set of ω-markings as any limit of
any infinite growing sequence of elements of the set. The limit of a set is not
necessarily unique. Actually, each element of the set is its limit.

Definition 3. Let M be a set of ω-markings. Then M is a limit of M if and
only if there are M1 ∈ M, M2 ∈ M, . . . such that M1 ≤ M2 ≤ . . . and
M = lim

i→∞
Mi.

The next lemma follows from Dickson’s lemma, but is easier to prove directly.

Lemma 2. Every infinite sequence of ω-markings has an infinite growing sub-
sequence.

Proof. Let Mi be the sequence and P = {p1, p2, . . . , p|P |}. We show that for
each 0 ≤ j ≤ |P |, Mi has an infinite subsequence Mj,i such that Mj,1(pk) ≤
Mj,2(pk) ≤ . . . for 1 ≤ k ≤ j.

Clearly Mi qualifies as the M0,i. Let j > 0. If Mj−1,i(pj) only gets a finite
number of different values for i ∈ N, then some value v occurs infinitely many
times. We let Mj,i be the infinite subsequence obtained by picking those Mj−1,i

that have Mj−1,i(pj) = v. Otherwise Mj−1,i(pj) gets infinitely many different
values. Then Mj−1,i has an infinite subsequence where Mj−1,i(pj) grows. It
qualifies as the Mj,i.

Finally M|P |,i qualifies as the sequence in the claim of the lemma. 	

Old and New Algorithms for Minimal Coverability Sets 211

We are ready to define coverability sets. The idea is that for a given set M of
markings, the ω-markings in its coverability set M′ cover every marking in M
without using bigger ω-markings than necessary. The goal is to get finite cover-
ability sets. However, if M(p) obtains infinitely many different values in M, then
to cover them all with finitely many ω-markings it is necessary to let M ′(p) = ω
in at least one M ′ ∈ M′. More generally, it may be that many places must
simultaneously have M ′(p) = ω to cover some subset of M with finitely many
ω-markings. Part 2 of the definition says that this is the only justification for the
introduction of ω-symbols. The concept of antichain is important, because we
will later show that a coverability set is minimal if and only if it is an antichain.

Definition 4. Let M be a set of markings and M′ a set of ω-markings. We
define that M′ is a coverability set for M, if and only if

1. For every M ∈ M, there is an M ′ ∈ M′ such that M ≤ M ′.
2. Each M ′ ∈ M′ is a limit of M.

A coverability set is an antichain, if and only if it does not contain two ω-
markings M1 and M2 such that M1 < M2.

Every M ∈ M is the limit of the infinite growing sequence M,M,M, Thus
M is its own coverability set. However, it is not necessarily finite. To prove that
each set of markings has a finite coverability set, we first show that the limit of
an infinite growing sequence of limits is a limit of the original set.

Lemma 3. Let M be a set of markings. For each i > 0, let Mi be any limit of
M such that M1 ≤ M2 ≤ Then also lim

i→∞
Mi is a limit of M.

Proof. For each i, let Mj,i be an infinite growing sequence of elements of M such
that lim

j→∞
Mj,i = Mi. Let M

′
1 = M1,1. When i > 1, let M ′

i be the first element of

Mj,i such that for each p ∈ P , either M ′
i(p) = Mi(p) < ω or M ′

i−1(p) ≤ M ′
i(p) ≥

i and Mi(p) = ω. It exists by Lemma 1. Furthermore, M ′
i−1(p) ≤ Mi−1(p) ≤

Mi(p), so if M ′
i(p) = Mi(p), then M ′

i−1(p) ≤ M ′
i(p). Thus M ′

i is an infinite
growing sequence of elements of M.

If Mi(p) < ω for each i, then M ′
i(p) = Mi(p) for each i > 1, so M ′

i(p) has
the same limit as Mi(p). Otherwise, from some value of i on, Mi(p) = ω and
M ′

i(p) ≥ i. Then the limit of M ′
i(p) is ω, which is also the limit of Mi(p). As a

consequence, lim
i→∞

M ′
i = lim

i→∞
Mi. 	

We say that an element a of a set A is maximal, if and only if there is no b ∈ A
such that a < b. Let [M] denote the set of all limits of M, and let �M� denote
the set of the maximal elements of [M]. We are ready to prove the central result
of this section.

Theorem 1. Each set M of markings has a coverability set that is an antichain.
It is finite and unique. It consists of the maximal elements of the limits of M.

212 A. Valmari and H. Hansen

Proof. Obviously [M] satisfies part 2 of Definition 4. It also satisfies part 1,
because each M ∈ M is the limit of M,M,M,

We prove next that for every M ∈ [M], there is an M ′ ∈ �M� such that
M ≤ M ′. Let M0,1 = M and j = 0. For each i > 1 such that Mj,i−1 is not
maximal in [M], there is an Mj,i ∈ [M] such that Mj,i−1 < Mj,i. If this sequence
ends, then the last Mj,i qualifies as the M ′. Otherwise, let Mj+1,1 = lim

i→∞
Mj,i.

Clearly Mj+1,1 ≥ Mj,1 ≥ M . By Lemma 3, Mj+1,1 ∈ [M]. We repeat this
reasoning with j = 1, j = 2, and so on as long as possible. Because Mj,i is
strictly growing as i grows, Mj+1,1 has more ω-symbols than Mj,1. Therefore,
Mj,i has at least j ω-symbols. This implies that j cannot grow beyond |P |. So a
maximal element is eventually encountered.

Thanks to this, �M� satisfies part 1 of Definition 4. It clearly also satisfies
the rest of Definition 4. So an antichain coverability set exists.

If M′ is an infinite coverability set of M, then it is possible to pick an infinite
sequence of distinct elements from M′. By Lemma 2, it has an infinite grow-
ing subsequence Mi. Because all its elements are distinct, we have M1 < M2.
Therefore, infinite coverability sets are not antichains.

It remains to be proven that there are no other antichain coverability sets.
We have already ruled out infinite sets, so let M′ be any finite coverability set
of M. Part 2 of Definition 4 yields M′ ⊆ [M].

For any M ∈ �M�, let Mi be a sequence of elements of M whose limit is
M . Because M′ is finite, it must cover every Mi only using a finite number
of ω-markings. Thus M′ must contain an ω-marking M ′ that covers infinitely
many of Mi. Definition 2 implies that M ≤ M ′. We have M ′ ∈ M′ ⊆ [M], and
M ∈ �M� makes M < M ′ is impossible. Therefore, M ′ = M .

We have proven that every finite coverability set M′ satisfies �M� ⊆ M′ ⊆
[M]. If there is anM such thatM ∈ M′\�M�, then there is anM ′ ∈ �M� ⊆ M′

such that M < M ′, so M′ is not an antichain. As a conclusion, there is only one
antichain coverability set. 	

A coverability set is minimal if and only if none of its proper subsets is a cov-
erability set. Next we will show that a coverability set is minimal if and only
if it is an antichain. This will immediately yield the existence, finiteness, and
uniqueness of minimal coverability sets.

Corollary 1. Each set of markings has precisely one minimal coverability set.
It is finite. It is the antichain coverability set.

Proof. The claims follow by Theorem 1, if we prove that a coverability set is
minimal if and only if it is an antichain. It is clear that a coverability set that is
not an antichain has a proper subset that is a coverability set, because M1 could
be left out. Consider the antichain coverability set �M�. Because it is finite, it
cannot have any infinite set as a proper subset. By the proof of Theorem 1, every
finite coverability set has �M� as a subset. So �M� cannot have a proper subset
that is a coverability set. 	

Old and New Algorithms for Minimal Coverability Sets 213

1 F := {M̂}; A := {M̂}; W := {M̂} × T ; M̂.B := nil
2 while W �= ∅ do
3 (M, t) := any element of W ; W := W \ {(M, t)}
4 if ¬M [t〉 then continue
5 M ′ := the ω-marking such that M [t〉M ′

6 if M ′ ∈ F then continue
7 Add-ω(M,M ′)
8 if ω was added then if M ′ ∈ F then continue
9 Cover-check(M ′) // may update A and W

10 if M ′ is covered then continue
11 F := F ∪ {M ′}; A := A ∪ {M ′}; W := W ∪ ({M ′} × T); M ′.B := M

Fig. 1. The basic coverability set algorithm

3 Basic Algorithm

In this section we present, discuss, and prove correct the simplest of the algo-
rithms in this paper, and its variant that uses what we call history merging. We
believe that they are new.

A Petri net is a tuple (P, T,W, M̂) such that P ∩T = ∅, M̂ is a function from
P to N, and W is a function from (P × T)∪ (T × P) to N. For this publication,
we assume that P and T are always finite. The elements of P , T , W , and M̂ are
called places, transitions, weights, and initial marking respectively. The firing
rule for ω-markings is the same as with markings: M [t〉M ′ if and only if for each
p ∈ P , M(p) ≥ W (p, t) and M ′(p) = M(p)−W (p, t) +W (t, p). Whether or not
M [t〉 holds, is determined by the places for which M(p) < ω. If M(p) < ω, then
M ′(p) = M(p)−W (p, t) +W (t, p) < ω. If M(p) = ω, then also M ′(p) = ω. We
define M [t1t2 · · · tn〉M ′ in the usual way.

Overview. The algorithm is shown in Fig. 1. The ω-markings that have been
generated and taken into consideration, are stored in the set F . We call these
found ω-markings. In our test implementation, F is presented as a hash table.
There is a base table of pointers to ω-markings that is indexed by the hash value
of the ω-marking. Each ω-marking has a pointer to the next ω-marking in the
hash list.

The set of found ω-markings is divided to sets of active and passive ω-
markings. The set of active ω-markings is denoted with A, and passive are those
that are in F but not in A. In our test implementation, A is represented by a
linked list, maintained by another pointer in the ω-marking structure.

Each ω-marking M ′ has a back pointer M ′.B that points to the ω-marking
M such that M ′ was first found by firing a transition from M , except that it
points to nowhere in the case of the initial marking. Using the back pointers one
can scan the history of M ′ up to the initial marking.

Finally, W is a workset that keeps track of the work to be done. The minimal
coverability set can be constructed in many different orders, including breadth-
first, depth-first, and what we call “most tokens first”. To model this generality,

214 A. Valmari and H. Hansen

Add-ω(M,M ′)
1 last := M ; now := M ; added := False
2 repeat
3 if now < M ′ ∧ ∃p ∈ P : now(p) < M ′(p) < ω then
4 added := True; last := now
5 for each p ∈ P such that now(p) < M ′(p) < ω do
6 M ′(p) := ω
7 if now .B = nil then now := M else now := now .B
8 until now = last

Fig. 2. The basic version of ω-addition

in Fig. 1, W contains pairs consisting of an ω-marking and a transition. In prac-
tice it suffices to store ω-markings instead of pairs. In our test implementation,
the workset is a queue, stack, or heap containing pointers to ω-markings, and
each ω-marking has an integer attribute next tr containing a number of a tran-
sition. If M is in the workset of the implementation, the pairs (M, t) in the W
of Fig. 1 are the ones where the number of t is at least M.next tr . When we say
that M is in the workset, we mean that (M, t) ∈ W for some t ∈ T .

Initially the initial marking M̂ has been found and is active, and the workset
contains M̂ paired with every transition. The algorithm runs until the workset is
empty. Intuitively, the workset contains the ω-markings which still may contain
something of interest for the minimal coverability set. In each iteration of the
main loop, the algorithm selects and removes one pair (M, t) from the workset.
Then it tries to fire t from M . If t cannot be fired from M , then the main loop
rejects the pair and goes to the next pair. This is shown in the figure with the
word “continue” that means a jump to the test of the while-loop.

If the firing of t from M succeeds, the algorithm checks whether the resulting
ω-marking M ′ has already been found. If found, M ′ is rejected. Otherwise the
operation Add-ω is applied to M ′. It adds ω-symbols to M ′ as justified by the
history of M ′. We will discuss the operation in more details soon.

If M ′ was changed by Add-ω, then the algorithm tests again whether the
resulting ω-marking has already been found and rejects it if it is. If M ′ survived
or avoided this test, one more test is applied to it. Cover-check(M ′) finds out if
M ′ is covered by any ω-marking in A. It also removes from A those ω-markings
that M ′ covers strictly. Therefore, A is always the set of maximal found ω-
markings. We will soon discuss this in more details. Cover-check also removes
from W each pair whose first component was removed from A.

If M ′ passes all these tests, it is added to the found ω-markings and made
active. It is also added to the workset paired with every transition. Its back
pointer is made to point to the previous ω-marking.

Add-ω. Add-ω is shown in Fig. 2. It scans the history of M towards the initial
marking at least once. It tries to find an ω-marking M ′′ = now that is strictly
covered by M ′, in such a way that M ′ does not yet have ω in all those places
whereM ′′(p) < M ′(p). Whether such a covered ω-marking was found is recorded

Old and New Algorithms for Minimal Coverability Sets 215

p3

t1

p1

p2

t2 2

(1, 1, 2)

(3, 1, 1)

(2, 1, 2)

t1

t2

Fig. 3. The advantage of repeated scanning of history

in the boolean variable added . The operation then sets M ′(p) = ω for places
where previously M ′′(p) < M ′(p) < ω. Then it moves to the next (or perhaps
one should say previous) ω-marking, and so on. The operation terminates when
it has fully tested the history without being able to add new ω-symbols.

The purpose of repeated scanning of the history is to add as many ω-symbols
as possible to M ′. For example (see Fig. 3), let (1, 1, 2) [t1〉 (3, 1, 1) [t2〉 (2, 1, 2).
For each n ∈ N except 0 and 1 we have (1, 1, 2) [(t1t2)

2n−3tn−2
2 〉 (n, 1, n), where

σi means σ repeated i times. So (ω, 1, ω) is a limit of reachable markings. Add-
ω checks whether (2, 1, 2) covers (3, 1, 1). It does not. Then it checks whether
(2, 1, 2) covers (1, 1, 2). It does, so Add-ω converts (2, 1, 2) to (ω, 1, 2). Then it
has found the end (or beginning) of the history. If it terminated there, the result
would be (ω, 1, 2). However, Add-ω starts anew at (3, 1, 1) and sees that (ω, 1, 2)
covers it. Therefore, it converts (ω, 1, 2) to (ω, 1, ω).

We will later see that inserting an ω-marking to the data structures is an
expensive operation. By Corollary 1 and Theorem 1, the algorithm only has
to maintain maximal ω-markings. Therefore, first inserting (ω, 1, 2) and later
removing it and inserting (ω, 1, ω) is disadvantageous compared to just inserting
(ω, 1, ω). In the worst case, fully testing the history after the last addition of ω
doubles the running time of Add-ω, which is a relatively small price.

After each addition of an ω-symbol, scanning is continued from where it was
instead of starting anew at M , because intuition suggests that the least recently
tried ω-markings have the best chance of success. However, this is not a theorem
but a heuristic.

We write M [t〉ωM ′ to denote that M ′ is obtained by firing t from M and then
executing Add-ω(M,M ′). This notion depends on not only M and t, but also
on the history of M .

Cover-Check. The purpose of Cover-check(M ′) is to ensure that A always
consists of the maximal ω-markings in F . In our test implementation, A is rep-
resented as a linked list, which is scanned by Cover-check. If it finds an element
M ′′′ that is strictly covered by M ′, it removes M ′′′ from the list and removes
(M ′′′, t) from the workset for every t ∈ T . In our test implementation, the latter
is done simply by assigning to M ′′′.next tr a number that is greater than the
number of any transition. Then Cover-check continues scanning.

216 A. Valmari and H. Hansen

If Cover-check finds that M ′ is covered by an element M ′′ of the list, it
terminates immediately, because then it is not possible that M ′ covers strictly
any element in the list. This is because if M ′ > M ′′′ and M ′′′ is in the list, then
M ′′ ≥ M ′ > M ′′′, so the list does not consist of only maximal elements.

While the test whether a given ω-marking has already been found can be
performed very efficiently with hash tables, testing whether a given ω-marking
strictly covers any found ω-marking seems much more difficult. We are not aware
of essentially better approaches than comparing the new ω-marking one by one
to each old ω-marking, with some heuristics to speed the procedure up a little.
Therefore, it makes sense to try to reduce the number of times Cover-check is
called. It also makes sense to try to keep A small, because the cost of the call
is often and at most proportional to the size of A. For both goals, it seems
advantageous to get as many ω-symbols as possible to the ω-markings as early
as possible. However, this is not a theorem but an intuitive heuristic.

This is also the reason for the presence of F in the algorithm. Correctness does
not require it, because Cover-check and A suffice for filtering out later instances
of any found ω-marking M . If the earlier instance of M has been removed from
A, it happened in favor of some M ′ that strictly covers M , so the filtering effect
remains. However, detecting repeated instances of the same ω-marking with a
hash table costs next to nothing, while the cost of the coverability check is
significant. Repeated instances of the same ω-marking are common with Petri
nets, because if M [t1t2〉M12 and M [t2t1〉M21, then M12 = M21. Therefore, it
makes sense to implement a special mechanism for them that is much faster
than the general mechanism.

Also Add-ω is costly compared to the test whether M ′ ∈ F . Performing the
test before Add-ω and after each addition of ω-symbols inside Add-ω would
speed Add-ω up, but would also globally slow down the adding of ω-symbols,
because the new instance of the same ω-marking usually has a different history
and may thus introduce ω-symbols to different places. We believe that most calls
of Add-ω do not lead to the addition of ω-symbols, and therefore we believe that
it is advantageous to test M ′ ∈ F before calling Add-ω. On the other hand, if
Add-ω has already succeeded in adding an ω-symbol, then the chances of finding
a new maximal ω-marking are improved, so it seems better to let it continue.
Again, this is a heuristic argument, and we do not really know the actual effect.

History Merging. History merging is a variant of the basic algorithm. In it,
M.B is a set of (pointers to) any number of predecessor ω-markings, instead of
being a single ω-marking. This mirrors the fact that the same ω-marking may
be reached in multiple ways, any of which may justify the addition of ω-symbols.

If M ′ is rejected on line 6 or 8 of Fig. 1, then it already has a representation
in F . In history merging, the program inserts M to the predecessor set of M ′.
Thus the predecessor set collects pointers to all ω-markings from which M ′ was
reached by firing one transition and possibly executing Add-ω.

Consider the example in Fig. 4. Suppose the algorithm proceeds in a breadth-
first manner. It finds the ω-markings (0, 1, 0, 0) and (0, 0, 1, 0), by firing t1 and t2
from (1, 0, 0, 0). It then generates (0, 0, 0, 1) by firing t3 from (0, 1, 0, 0).

Old and New Algorithms for Minimal Coverability Sets 217

t1 t2

t3 t4

t5

(1, 0, 0, 0)

(0, 1, 0, 0) (0, 0, 1, 0)

(0, 0, 0, 1)

(0, 1, 1, 0)

t1 t2

t3 t4

t5

Fig. 4. How history merging helps

The same ω-marking is also found by firing t4 from (0, 0, 1, 0), at which time
we can update the history of (0, 0, 0, 1) to contain both ω-markings. The benefit
comes when we add ω-symbols to (0, 1, 1, 0): as both these ω-markings are in its
history, we can add two omegas, giving (0, ω, ω, 0).

History merging may also be applied on line 10 of Fig. 1, if for each p ∈ P we
have M ′′(p) = M ′(p) or M ′′(p) = ω, where M ′′ is the ω-marking that coversM ′.
If the condition holds in the opposite direction, the histories of those ω-markings
that M ′ is found to strictly cover on line 9, can be merged into the history of
M ′. In these cases, the changes in the numbers of tokens in those places whose
marking is not ω are represented correctly along any path despite the mergings.
For the remaining places, the changes do not matter, because their ω-marking
is ω also in all later ω-markings. Our test implementation does not yet have this
feature.

With history merging, the history of an ω-marking forms a directed graph
that is partially shared by the histories of other ω-markings. It can be scanned
in time that is linear in its size. After each addition of ω-symbols, our test
implementation starts a new scan where it was and continues it atM analogously
to Fig. 2, to guarantee that at termination no ω-marking in the history can justify
the addition of more ω-symbols to M ′.

Repeated scans require repeated resetting of “found” information, which may
become a performance problem if implemented näıvely. In our test implemen-
tation, each ω-marking has an attribute search nr and there is a global vari-
able search now . When an ω-marking is found, search now is assigned to its
search nr . In the beginning of each search, search now is incremented, and if it
overflows its type, it is set to 1 and the search nr of every found ω-marking is
set to 0 by scanning the hash table that implements F .

218 A. Valmari and H. Hansen

Correctness. The correctness of the algorithm consists of four issues, three of
which correspond to the three conditions in Definition 4 and the fourth is the
termination of the algorithm. We present a lemma for each. In the proofs, we
will use the following obvious fact: if M [t〉M ′ and M ≤ M1, then there is an M ′

1

such that M1[t〉M ′
1 and M ′ ≤ M ′

1.

Lemma 4. After termination, for every reachable marking M of the Petri net,
A contains an ω-marking M ′ such that M ≤ M ′.

Proof. Each time when an ω-marking is inserted to F , it is also inserted to A.
Each time when an M is removed from A, an M ′ such that M < M ′ is inserted
to A. Therefore, the algorithm maintains the following invariant:

I1: For each M ∈ F , there is an M ′ ∈ A such that M ≤ M ′.

Each time when an M is added to A, (M, t) is added to W for every t ∈ T . Each
time when a pair (M, t) is removed from W , either ¬M [t〉, or there is an M ′

such that M [t〉M ′. In the latter case, the set F either contains an ω-marking M ′′

such that M ′ ≤ M ′′, or such an M ′′ is inserted to F . Therefore, the algorithm
also maintains the following invariant:

I2: For each M ∈ A and t ∈ T , either (M, t) ∈ W , ¬M [t〉, or for the M ′

such that M [t〉M ′ there is an M ′′ ∈ F such that M ′ ≤ M ′′.

Let R be the set of the reachable markings of the Petri net. If M ∈ R, then
there is a sequence M0 [t1〉M1 [t2〉 · · · [tn〉Mn such that M0 = M̂ and Mn = M .
We prove by induction that for each 0 ≤ i ≤ n there is an M ′

i ∈ A such that

Mi ≤ M ′
i . The claim holds for i = 0 by I1, because M̂ is found initially. After ter-

mination (M ′
i−1, ti) /∈ W , because then W = ∅. We also cannot have ¬M ′

i−1[ti〉,
because Mi−1[ti〉Mi and Mi−1 ≤ M ′

i−1. Let M
′′′
i be such that M ′

i−1[ti〉M ′′′
i . By

I2 there is an M ′′
i ∈ F and by I1 an M ′

i ∈ A such that Mi ≤ M ′′′
i ≤ M ′′

i ≤ M ′
i .
	

Lemma 5. Every element of F (and thus of A) is a limit of the set of the
reachable markings of the Petri net.

Proof. Let R be the set of the reachable markings of the Petri net.
We show first that if M [t〉M ′ and M is a limit of R, then also M ′ is a limit of

R. We have M(p) = ω if and only if M ′(p) = ω. Let Pω = {p ∈ P | M(p) = ω} =
{p ∈ P | M ′(p) = ω}. Let d be the minimum of W (t, p)−W (p, t) over p ∈ Pω . By
Lemma 1, for every n ∈ N, there is an Mi ∈ R such that W (p, t) ≤ Mi(p) ≥ n−d
for every p ∈ Pω and Mi(p) = M(p) for every p ∈ P \ Pω . We have Mi[t〉. If M ′

i

is such that Mi[t〉M ′
i , then M ′

i(p) = Mi(p)−W (p, t) +W (t, p) ≥ Mi(p) + d ≥ n
for every p ∈ Pω and M ′

i(p) = M(p) − W (p, t) + W (t, p) = M ′(p) for every
p ∈ P \ Pω . So M ′ is the limit of M ′

i and thus a limit of R.
We show next that if M ′ is a limit of R and M ′′ is the result of applying Add-

ω to it, then M ′′ is a limit of R. Consider any ω-marking M = now that triggers
addition of ω-symbols to M ′. Let t1, . . . , tk be the transitions from M to M ′. Let

Old and New Algorithms for Minimal Coverability Sets 219

d be the minimum of

k∑

i=1

W (ti, p)−W (p, ti) over p ∈ P . Let e be the maximum of

k∑

i=1

W (p, ti) over p ∈ P . For each p ∈ P we have either (1) M ′(p) = M ′′(p) = ω,

(2) M(p) = M ′(p) = M ′′(p) < ω, or (3) M(p) < M ′(p) < M ′′(p) = ω.
By Lemma 1, for every n ∈ N there is an Mi ∈ R such that Mi(p) ≥ n(1− d)

and Mi(p) ≥ ne for every p of kind 1, and Mi(p) = M ′(p) for the remaining
places. For places of kind 1, ne suffices for firing t1 · · · tk n times in a row starting
at Mi, and the result satisfies M ′

i(p) ≥ Mi(p) + nd ≥ n. For places of kinds 2
and 3, t1 · · · tk can be fired once from Mi because it was possible to fire it from
M . For kind 2, Mi(p) = M(p) = M ′(p) < ω, so t1 · · · tk can be fired n times and
the result is M ′

i(p) = Mi(p) = M ′′(p). For kind 3, M(p) < Mi(p) = M ′(p) < ω,
so t1 · · · tk can be fired repeatedly, each time adding at least one token to p.
After n repetitions, M ′

i(p) ≥ n. We conclude that M ′′ = lim
i→∞

M ′
i . Furthermore,

Mi [(t1 · · · tk)n〉M ′
i , so M ′

i ∈ R and M ′′ is a limit of R.
We have shown that each operation of the algorithm that introduces or modi-

fies ω-markings yields a limit of R, if its input ω-markings are limits of R. Origi-
nally there is only the initial marking M̂ . It is obviously reachable and the limit
of M̂, M̂, M̂ , So all ω-markings found by the algorithm are limits of R. 	

Lemma 6. The set A is always an antichain.

Proof. This is trivial, because it is explicitly ensured by lines 9 to 11 of Fig. 1,
{M̂} is an antichain, and no other operation modifies the contents of A. 	

Lemma 7. The algorithm terminates.

Proof. Termination of loops other than the main loop of the algorithm and
Add-ω are obvious. Add-ω stops adding ω-symbols to M ′ at the latest when
M ′(p) = ω for every p ∈ P , so each call of Add-ω terminates.

The only way in which the main loop of the algorithm gets new work to do is
that a new ω-marking is found that is different from all earlier ones. Each old ω-
marking and each transition give rise to at most one new ω-marking. Therefore,
if the longest acyclic history of any found ω-marking is of length �, then at most
1 + |T |+ |T |2 + . . .+ |T |� ω-markings are found. This is a finite number.

We conclude that failure of termination requires the existence of an infinite
sequence M̂ = M0 [t1〉ω M1 [t2〉ω M2 [t3〉ω · · · such that each Mi is first found
by firing ti from Mi−1, and then possibly adding ω-symbols with Add-ω. The Mi

are distinct because of the tests M ′ ∈ F . By Lemma 2, M0,M1,M2, . . . has an
infinite strictly growing subsequence M ′

0 < M ′
1 < M ′

2 < · · · . Thanks to Add-ω,
each M ′

i+1 has at least one ω-symbol more than M ′
i . However, there are only |P |

places, so we run out of places where to add new ω-symbols at M ′
|P |+1, if not

earlier. This is a contradiction. So failure of termination is impossible. 	

Together Lemmas 4 to 7 yield the following theorem.

Theorem 2. The algorithm in Fig. 1 terminates, and then A contains the min-
imal coverability set of the Petri net.

220 A. Valmari and H. Hansen

F := {M̂}; A := {M̂}; Q := {M̂}; M̂.B := nil
while Q �= ∅ do

M := the first element of Q; Q := Q \ {M}
for t ∈ T do

if M /∈ A then continue
lines 4, . . . , 10 of Fig 1
F := F ∪ {M ′}; A := A ∪ {M ′}; add M ′ to the end of Q; M ′.B := M

Fig. 5. Breadth-first discipline

4 Construction Order

The algorithm in the previous section does not specify the order in which the
pairs (M, t) are picked from W , and the correctness of the algorithm does not
depend on it. In this section we discuss some possible orderings.

The age of a pair is defined as the time (for example, the number of itera-
tions of the main loop) elapsed since the pair was inserted to W . The age of
(M, t) is determined by M , because the pairs (M, t) for every t ∈ T are inserted
simultaneously to W .

Many state space verification algorithms require traversing the state space in a
specific order. With ordinary state spaces, it is customary to construct the state
space in that order, so as to enable running the verification algorithm on-the-fly.
With coverability sets, however, due to the high cost of unnecessary construction
of non-maximal ω-markings, it may be better to construct the set in the order
best suited for coverability sets and then, using the minimal coverability set as a
starting point, re-generate the transitions in the order required by the verification
algorithm.

Breadth-First. Breadth-first discipline is obtained by always picking one of
the oldest pairs from W . One possible implementation is described in Fig. 5,
where Q (to reflect the fact that it is a queue) is used instead of W of Fig. 1.
With this implementation, the attribute next tr is not needed. To save more
memory, A and Q can actually be in the same linked list. The list contains
first those elements of A that are not in Q, and then the elements of Q. This
implementation automatically retains the property Q ⊆ A when an element is
removed from A. There are three common pointers: to the beginning, to the
beginning of Q, and to the end.

New ω-markings are added to the end, and Q := Q \ {M} is implemented by
moving the middle pointer (the beginning of Q) one step forward.

Let M.next A denote the pointer of M that points to the next ω-marking
in the list. The test M /∈ A can be done in constant time: M.next A is made
to point to M after M is removed from A. Actually, it would be correct to
skip the test, but then the algorithm would unnecessarily fire transitions from
ω-markings that are no longer maximal.

From the above we deduce that the breadth-first discipline has a simple
and memory-saving implementation. Furthermore, breadth-first is usually more

Old and New Algorithms for Minimal Coverability Sets 221

amenable to parallel implementation than other common disciplines. However,
it seems intuitively that it typically adds ω-markings later and thus should have
longer running time than other common disciplines. In our measurements (see
Section 6), breadth-first was never clearly the fastest but was often clearly the
slowest. So we do not recommend breadth-first. Like in many other arguments
in this publication, this is a heuristic and not a theorem.

Indeed, it is possible to construct a situation where breadth-first works better
than any other approach. Consider an arbitrary Petri net (P, T,W, M̂), for which
the construction of the minimal coverability set takes some considerable time to
finish. We add to it one place p1 and two transitions t and t′ in the following way:
W (p, t) = 0 and W (t, p) = 1 for every p ∈ P . W (p, t′) = 0 and W (t′, p) = M̂(p)
for p ∈ P , and W (t′, p1) = 0. W (p1, t) = W (p1, t

′) = W (t, p1) = 1. A new
initial marking M̂ ′ is such that M̂ ′(p1) = 1, and all other places are empty. The
ordering of transitions is such that t′ is the first transition to be fired, and t is
the second.

Now, breadth-first fires t as the second transition from the initial marking,
resulting in (ω, . . . , ω) and quick termination of the algorithm. With many other
disciplines, such as depth-first, the algorithm fires t′, which “primes” the original
Petri net, after which the algorithm runs its course exactly as with the original
Petri net. It explores t only as the very last transition.

Depth-First. Depth-first discipline is obtained by always picking a youngest
pair from W . It can be implemented by storing the ω-markings of the pairs in a
stack; returning (M,M.next tr) as the pair, where M is the top element of the
stack; and popping the top element when it has no more unused transitions.

Depth-first also has a well-known recursive implementation. It has the advan-
tage that next tr is not needed, making it conceptually simpler. On the other
hand, each recursion level consumes some memory, and the recursive calls con-
sume some time. Therefore, the recursive implementation is likely to be at least
marginally less efficient.

Intuitively, depth-first typically adds ω-markings early on, because of the fol-
lowing result. Thus it should have a good running time. In our measurements it
was seldom the fastest and seldom much worse than the fastest.

We say that M ′ is a successor of M if and only if there is a t such that the
algorithm at some point fires M [t〉ωM ′ and either puts M ′ into F or detects
that it is there already. A descendant of an ω-marking is the ω-marking itself,
its successor, or a descendant of its successor.

Lemma 8. If the construction order is depth-first and M has more ω-symbols
than the ω-marking via which it was first found, then the algorithm will not
backtrack from M before it has investigated all descendants of M .

Proof. Let an ω-marking be black, if it has been backtracked from; grey, if it has
been found but not yet backtracked from; and white, if it has not been found.
Depth-first search has the property that the set of grey ω-markings and the
transitions via which they were first found, constitute a path from the initial

222 A. Valmari and H. Hansen

marking to the current ω-marking. We call any contiguous sub-path of this path
a grey path.

Each black ω-marking has been removed from W . So the successors of any
black ω-marking are grey or black. A black ω-marking may have white descen-
dants, but each path to any of them goes via at least one grey ω-marking.

If M2 is a descendant of M1, then M2 has ω-symbols in at least the same
places as M1. Assume that the algorithm is about to backtrack from M to M ′,
where M has more ω-symbols than M ′. Then no descendant of M can be along
the grey path from M̂ to M ′. Thus none of them can be grey, implying that
none of them can be white either. Hence, they are all black. 	

Most Tokens First. The desire to add ω-symbols as early as possible naturally
leads to the heuristic of always trying next the ω-marking that has the most
tokens. The ω-marking with the maximal number of ω-symbols is preferred, and
if it is not unique, then the total number of tokens in the places whose marking
is not ω is used as the criterion. Like before, only ω-markings are stored in the
workset, and next tr is used to get the transition component of the pair (M, t).
If the workset is implemented as a heap and contains w ω-markings, then each
operation on it takes O(logw) time.

In our measurements, this discipline was often both the fastest and con-
structed the smallest number of ω-markings. It lost to depth-first a small number
of times, and often there was no clear difference. It may be remarkable that it
lost in the biggest example. However, our set of measurements is far too small
for firm conclusions.

5 To Prune or Not to Prune

In this section we discuss pruning of active ω-markings and whether it is better
than the algorithm in Section 3.

Pumping Cycle Passivation. Consider M0 in the history of Mn such that M0

triggered the addition of at least one ω-symbol to Mn along the path M0 [t1〉ω
M1 [t2〉ω . . . [tn〉ω Mn. Then M0 < Mn and Mn [t1 · · · tn〉. When 0 ≤ i ≤ n,
let M ′

i be the ω-marking such that Mn [t1 · · · ti〉 M ′
i . Clearly Mi < M ′

i for each
0 ≤ i < n. So eventually M0, . . . , Mn−1 will not be maximal. The firing of those
transitions from them that have not already been fired seems wasted work.

Therefore, it seems a good idea to passivate or remove M0, . . . , Mn−1 alto-
gether, when ω-symbols are added to Mn. By passivation we mean the removal
from W and A, but not from F . (The removal of M from W means the removal
of (M, t) from W for every t ∈ T .) By removal we mean the removal from all
data structures. The algorithm in [1] removes M0, . . . , Mn−1.

We argue that the removal of M0, . . . , Mn−1 is not a good idea in general.
Firstly, keeping them in F costs very little, but prevents the algorithm from
constructing their futures, if they are constructed anew. As we have pointed
out, reaching the same marking many times is common with Petri nets.

Old and New Algorithms for Minimal Coverability Sets 223

p1

p3

p2

t1

t3

t2

2

(1, 0, 0) (0, 1, 0) (1, 0, ω)

(0, ω, ω)

(ω, ω, ω)

t2 t3 t1

t3

Fig. 6. A pumping ω example

Secondly, the removal may slow down the addition of ω-symbols. Consider
the example in Fig. 6, assuming depth-first discipline. The algorithm in Fig. 1
fires (1, 0, 0) [t2〉 (0, 1, 0) [t3〉 (1, 0, 1) and converts (1, 0, 1) to (1, 0, ω). Then it
fires (1, 0, ω) [t1〉 (0, 2, ω) and converts (0, 2, ω) to (0, ω, ω), because it covers
(0, 1, 0). Finally (0, ω, ω) [t3〉 (1, ω, ω) > (0, ω, ω), yielding (ω, ω, ω). Transitions
were fired altogether four times. However, if M0, . . . , Mn−1 are removed, then
(1, 0, 0) and (0, 1, 0) are removed after constructing (1, 0, ω). Next (1, 0, ω) [t1〉
(0, 2, ω) [t3〉 (1, 1, ω) are fired, yielding (1, ω, ω). Again, all other ω-markings are
removed. Firing t1 and t2 from (1, ω, ω) do not yield new maximal ω-markings,
but t3 yields (ω, ω, ω). So seven transition firings were needed.

Future Pruning. Pruning of futures refers to the passivation or removal of
some or all found ω-markings whose histories contain an ω-marking that was
strictly covered by a newly found ω-marking. Pumping cycle passivation can be
considered as a special case of future pruning. The algorithms in [1] and [6] both
perform some more general form of future pruning.

Correctness of future pruning is tricky, and not all forms are correct. The
counter-example presented in [2] reveals a flaw in the future pruning of the
algorithm in [1]. In the counter-example, an ω-markingM1 first triggers pumping
cycle removal. Then another ω-markingM2 with a different history is found, and
its successor ω-markings are covered by M1. Therefore, M2 remains active but
does not lead to any new ω-markings. An ω-marking in the (removed) pumping
cycle is covered by M2, but the algorithm fails to notice this, since the cycle’s
ω-markings have been removed. Finally, a third ω-marking M3 is found that
covers strictly some ω-marking in the history of M1, and M1 is removed. The
firing of transitions from M3 leads to an ω-marking that is covered by M2, and
exploration stops short of finding an ω-marking that covers M1.

In [6], the algorithm never removes, only passivates ω-markings. The pres-
ence of these passive ω-markings in the histories of active ω-markings means
that pruning happens differently from [1]. When a pumping cycle is found, the
intermediate ω-markings are passivated, but they remain in the history of the
new ω-marking. Whenever a new ω-marking M covers some ω-marking not in
its own history, the whole branch starting from that ω-marking is passivated,
even if the covered ω-marking is passive.

224 A. Valmari and H. Hansen

This avoids the behaviour described above. When M1 in the counter-example
triggers pumping cycle passivation, the intermediate ω-markings remain in a
tree. On the way to M2 the algorithm encounters another ω-marking, M , that
covers a passive ancestor ofM1. The algorithm passivates the branch ofM1 when
adding M , so by the time it gets to M2, M1 is no longer active, and the search
will continue from M2.

Unfortunately, this technique requires checking whether the new ω-marking
M strictly covers any element in F (excluding the history of M). This is a
disadvantage, because otherwise checking coverage against A would suffice, A
may be much smaller than F , and checking coverage is expensive.

Is It Worth the Effort? Our first observation is that the running time may
depend heavily on finding a certain ω-marking early on. By exploiting this, it is
possible to design Petri nets so that either algorithm is faster in the particular
case. This is illustrated by the tables below. The arc weights are shown in the
table in the format−W (p, t),W (t, p). The initial marking is (1, 0, 0). We consider
the most tokens first order, and at the same ω-marking, transitions are tried in
the numeric order. (We have designed a similar example for depth-first order.)
Like in [6] and unlike in Section 3, we assume that only active ω-markings are
taken into account in Add-ω.

t1 t2 t3 t4 t5
p1 −1, 2 −1, 0 −0, 1 −0, 0 −0, 1
p2 −0, 1 −0, 2 −2, 0 −1, 1 −0, 0
p3 −1, 0 −0, 0 −1, 0 −0, 1 −1, 1

t1 t2 t3 t4 t5
p1 −1, 2 −1, 0 −0, 1 −0, 1 −0, 0
p2 −0, 0 −0, 2 −2, 0 −1, 2 −1, 1
p3 −1, 0 −0, 0 −1, 0 −1, 0 −0, 1

With the first Petri net, both algorithms fire first (1, 0, 0) [t2〉ω (0, 2, 0) [t4〉ω
(0, 2, ω) [t3〉ω (1, 0, ω) and passivate at least (0, 2, 0) and (1, 0, 0). The prun-
ing algorithm also passivates (0, 2, ω) simultaneously with (1, 0, 0). Then it fires
(1, 0, ω) [t1〉ω (ω, ω, ω), passivates all other ω-markings, fires (ω, ω, ω) [ti〉ω (ω, ω, ω)
for 1 ≤ i ≤ 5, and terminates. The non-pruning algorithm continues with
(0, 2, ω), because it has more tokens than (1, 0, ω). It fires (0, 2, ω) [t4〉ω (0, 2, ω)
and (0, 2, ω) [t5〉ω (ω, 2, ω) [t1〉ω (ω, ω, ω), fires each ti, and terminates. So the
pruning algorithm is faster. (Thanks to (1, 0, 0), the Add-ω in Section 3 would
have yielded (0, 2, ω) [t5〉ω (ω, ω, ω).)

With the second Petri net, both algorithms fire first (1, 0, 0) [t2〉ω (0, 2, 0)
[t5〉ω (0, 2, ω) [t3〉ω (1, 0, ω). The non-pruning algorithm continues (0, 2, ω) [t4〉ω
(ω, ω, ω), while the pruning algorithm fires (1, 0, ω) [t1〉ω (ω, 0, ω) [t1〉ω (ω, 0, ω)
[t2〉ω (ω, ω, ω). So with this Petri net, the non-pruning algorithm is faster.

Our second observation is that the pruning algorithm may activate the same
ω-marking more than once, leading to repeated work. To illustrate this, let the
t1 of the second Petri net be replaced by a transition that takes two tokens from
each of p2 and p3, and puts three tokens to a new place p4. There is also a transi-
tion t6 that moves a token from p4 to p5. After constructing (0, 2, ω, 0, 0), the al-
gorithm fires (0, 2, ω, 0, 0) [t1t6t6t6〉ω (0, 0, ω, 0, 3). Then it fires (0, 2, ω, 0, 0) [t3〉ω
(1, 0, ω, 0, 0), notices that (1, 0, 0, 0, 0) is covered, and passivates all ω-markings

Old and New Algorithms for Minimal Coverability Sets 225

other than (1, 0, ω, 0, 0). Next it fires [t2〉ω , activating (0, 2, ω, 0, 0) again. Then
it fires (0, 2, ω, 0, 0) [t1t6t6t6〉ω (0, 0, ω, 0, 3) for a second time.

The goal of pruning is to avoid unnecessarily investigating ω-markings that
will later be strictly covered by other ω-markings. Fortunately, the following
theorem says that if the construction order is depth-first and history merging is
applied, this happens automatically, without any explicit future pruning.

Theorem 3. Let the construction order be depth-first and history merging be
applied. Assume that M0 [t1 · · · tn〉ω Mn and M0 < M ′

0. Assume that all transi-
tions along the path M0 [t1 · · · tn〉ω Mn were found before M ′

0. After finding M ′
0,

the algorithm will not fire transitions from Mn, unless M ′
0 [t1 · · · tn〉 Mn.

Proof. Let M1, . . . , Mn−1 be defined in the obvious way. Consider the moment
when M ′

0 has just been found. If Mn is black, then it has no more transitions to
fire. From now on we assume that Mn is grey.

There is a grey path from Mn to the newest ω-marking, that is, M ′
0. We

denote its transitions and ω-markings with tn+1, . . . , tm and Mn+1, . . . , Mm,
where Mm = M ′

0. We have M0 [t1 · · · tn〉ω Mn [tn+1 · · · tm〉ω M ′
0, and M0 < M ′

0.
Thanks to Add-ω, for each p ∈ P , M ′

0(p) = M(p) or M ′
0(p) = ω. In particular,

M ′
0 has more ω-symbols than M0.
Along any path, the marking of any place may change from finite to ω but

not vice versa. Let M ′′ be the first ω-marking along the grey path that has ω-
symbols in precisely the same places as M ′

0. By Lemma 8, the algorithm will not
backtrack from M ′′ before it has investigated all descendants of M ′′. Therefore,
currently the only investigated transition from any non-descendant of M ′′ to any
descendant of M ′′ is the transition via which M ′′ was first found. Because also
the path M0 [t1 · · · tm〉ω M ′

0 has such a transition, it must be the same transition.
So M ′′ = Mh for some 0 < h ≤ m.

Let M ′′
n be the ω-marking such that M ′

0 [t1 · · · tn〉 M ′′
n . The algorithm will not

backtrack from Mh before it has found an M ′
n that covers M ′′

n . If n < h, then
M ′

n is found before backtracking to Mn. Furthermore, Mn < M ′
n, because M ′

0

has ω-symbols in the same places as Mn and in at least one more place. So the
algorithm passivates Mn by direct coverage before backtracking to it.

If n ≥ h, then Mn has ω-symbols in precisely the same places as M ′
0. Also

M ′′
n has ω-symbols in precisely the same places, because it was defined using

“[· · · 〉” instead of “[· · · 〉ω”. For the remaining places, M0(p) = M ′
0(p), so also

Mn(p) = M ′′
n (p). We conclude that M ′′

n = Mn, implying M ′
0 [t1 · · · tn〉 Mn. 	

We prove a similar theorem for most tokens first search.

Theorem 4. Let the construction order be most tokens first and history merging
be applied. Assume that M0 [t1 · · · tn〉ω Mn and M0 < M ′

0. Assume that all
transitions along the path M0 [t1 · · · tn〉ω Mn were found before M ′

0. After finding
M ′

0, the algorithm will not fire transitions from Mn, unless M ′
0 [t1 · · · tn〉 Mn.

Proof. Let M1, . . . , Mn−1 be defined in the obvious way. Let M ≺ M ′ denote
that M has fewer ω-places than M ′, or the same number of ω-places but alto-
gether fewer tokens in the remaining places than M ′. Then M < M ′ implies

226 A. Valmari and H. Hansen

M ≺ M ′. Also note that along any path, ω-symbols may be introduced but
cannot disappear. Let A(M) denote any M ′′ such that M � M ′′ and M ′′ ∈ A.

If Mn � Mi for each 0 ≤ i ≤ n, then Mn has ω-symbols in precisely the same
places as M0. Furthermore, Mn � M0 ≺ M ′

0 � A(M ′
0), so A(M ′

0)[t1〉ωM ′
1 is fired

before firing transitions from Mn. Because M0 < M ′
0 and ω-symbols were not

added during M0 [t1〉ω M1, we have Mn � M1 < M ′
1. The reasoning continues

until we get Mn < M ′
n. Then Mn is passivated by coverage.

In the opposite case, let i be maximal such that Mi−1 ≺ Mn. So Mn � Mj

for i ≤ j ≤ n. If any of Mi, . . . ,Mn has been found before Mi−1[ti〉ωMi is fired,
then all transitions from such an ω-marking and eventually all transitions from
Mn are fired before Mi−1[ti〉ωMi. In that case, the algorithm never fires any
transitions from Mn after finding M ′

0, simply because it already has fired them
all. The same happens if any M that is investigated after firing Mi−1[ti〉ωMi but
before M ′

0 is found has M ≺ Mn.
The case remains where Mi−1 ≺ Mn � Mj for i ≤ j ≤ n, none of the Mj

is found before firing Mi−1[ti〉ωMi, and (1) from then on every ω-marking M
investigated had Mn � M until M ′

0 is found.
Because M ′

0 is not found before completing the path, the finding history of
M ′

0 has some M ′
h−1 [t′h〉ω M ′

h (where h ≤ 0) such that M ′
h−1 (but not M ′

h) has
been found when Mi−1 [ti〉ω Mi is fired. This implies M ′

h−1 � Mi−1 ≺ Mn.
By (1), M ′

h−1 [t′h〉ω M ′
h cannot be fired after Mi−1 [ti〉ω Mi until M

′
0 is found.

The remaining possibility is that M ′
h−1 [t′h〉ω M ′

h is the same transition as Mi−1

[ti〉ω Mi. This implies that M0 [t1 · · · ti〉ω Mi [t
′
h+1 · · · t′0〉ω M ′

0. Add-ω guarantees
that for each p ∈ P , either M0(p) = M ′

0(p) or M
′
0(p) = ω.

By Mn � Mi, Mn and Mi have ω-symbols in precisely the same places.
Therefore, M ′

0 has ω-symbols in at least the same places as Mn.
If M ′

0 has more ω-symbols than Mn, then the same holds for all M ′
i along

the path M ′
0 [t1 · · · tn〉 M ′

n, and we have Mn ≺ M ′
i � A(M ′

i). Therefore, all the
transitions corresponding to A(M ′

0) [t1 · · · tn〉ω A(M ′
n) are fired before firing any

transition from Mn, and Mn is passivated before being investigated further.
Otherwise, M ′

0 and Mn have ω-symbols in precisely the same places. This
implies M ′

0 [t1 · · · tn〉 Mn, because M0(p) = M ′
0(p) if M

′
0(p) < ω. 	

6 Conclusion

We have given a simple algorithm for calculating minimal coverability sets. Fur-
thermore, we have given arguments that lead us to believe that published more
complicated algorithms are in general no more efficient.

Using examples, we have demonstrated that by tailoring the incoming Petri
net in a suitable way, almost any algorithm can be made terminate much quicker
for that particular Petri net than its competitors. Therefore, there probably
cannot be any theorem that one algorithm is systematically better, or even as
good as, another. However, we proved two theorems saying that certain versions
of the simple non-pruning algorithm automatically have the benefits that pruning
tries to achieve. At the same time, the simple algorithm does not run the risk
of repeating work on identical ω-markings, like pruning algorithms do. We also

Old and New Algorithms for Minimal Coverability Sets 227

Table 1. Some measurements with test data from [3]

model |A| most tokens f. depth-first breadth-first [6]

fms 24 63 53 110 56 421 139 809
kanban 1 12 12 12 12 12 12 114
mesh2x2 256 479 465 774 455 10733 2977 6241
mesh3x2 6400 11495 11485 8573 10394
multipoll 220 245 234 244 244 507 507 2004
pncsacover 80 215 246 284 325 7122 5804 1604

pointed out that it may be advantageous to add as many ω-symbols as early as
possible, and presented techniques towards such a goal.

Table 1 shows results of the six biggest test runs that we have made with the
test set from [3]. The second column shows the size of the minimal coverability
set. The other numbers are the total numbers of constructed distinct ω-markings,
that is, |F |. The running time was always below 0.1 s except with mesh3x2 (30 s,
29 s, 8 s, 9 s) and, in the case of breadth-first search also mesh2x2 (0.7 s, 0.1 s) and
pncsacover (0.3 s, 0.3 s). These times should not be compared to those in [3,6],
because we used a different computer and programming language (C++).

We ran each experiment with transitions tried in the order that they were
given in the input and in the opposite order. As the table shows, this low-level
difference had sometimes a dramatic impact on the result. This acts as a warning
that numbers like the ones in the table are much less reliable than we would like.

History merging was applied on lines 6 and 8 of Fig. 1. Switching it off had
very little effect on |F | except with breadth-first search.

We leave further analysis and measurements as potential future work.

Acknowledgements. We would like to thank Prof. Mikko Tiusanen and the
reviewers for their help, and the authors of [6] for providing help for the
experiments.

References

1. Finkel, A.: The Minimal Coverability Graph for Petri Nets. In: Rozenberg, G. (ed.)
APN 1993. LNCS, vol. 674, pp. 210–243. Springer, Heidelberg (1993)

2. Finkel, A., Geeraerts, G., Raskin, J.-F., Van Begin, L.: A counter-example to the
minimal coverability tree algorithm. Technical Report 535, Universite Libre de Brux-
elles (2005)

3. Geeraerts, G., Raskin, J.-F., Van Begin, L.: On the efficient computation of the min-
imal coverability set of Petri nets. International Journal of Foundations of Computer
Science 21(2), 135–165 (2010)

4. Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and
System Sciences 3(2), 147–195 (1969)

5. König, B., Koziura, V.: Incremental construction of coverability graphs. Information
Processing Letters 103(5), 203–209 (2007)

6. Reynier, P.-A., Servais, F.: Minimal Coverability Set for Petri Nets: Karp and Miller
Algorithm with Pruning. In: Kristensen, L.M., Petrucci, L. (eds.) PETRI NETS
2011. LNCS, vol. 6709, pp. 69–88. Springer, Heidelberg (2011)

	Old and New Algorithms
for Minimal Coverability Sets
	Introduction
	Minimal Coverablity Sets
	Basic Algorithm
	Construction Order
	To Prune or Not to Prune
	Conclusion
	References

