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Preface

This volume constitutes the proceedings of the 33rd International Conference on
Application and Theory of Petri Nets and Concurrency (PETRI NETS 2012).
The Petri Net conferences serve as annual meeting places to discuss the progress
in the field of Petri nets and related models of concurrency. They provide a
forum for researchers to present and discuss both applications and theoretical
developments in this area. Novel tools and substantial enhancements to existing
tools can also be presented. The satellite program of the conference comprised
five workshops, a Petri net course including tutorials and a model checking con-
test. PETRI NETS 2012 was co-located with the 12th International Conference
on Application of Concurrency to System Design (ACSD 2012). The two con-
ferences shared five invited speakers. The PETRI NETS 2012 conference was
organized by the University of Hamburg. It took place in Hamburg, Germany,
during June 25-29, 2012. We would like to express our deepest thanks to the
Organizing Committee chaired by Daniel Moldt (Germany) for all the time and
effort invested in the local organization of the conference.

This year the number of submitted papers amounted to 55, which included
48 full papers and 7 tool papers. The authors of the papers represented 25
different countries. We thank all the authors who submitted papers. Each paper
was reviewed by at least four referees. The Program Committee (PC) meeting
took place electronically, using the EasyChair conference system for the paper
selection process. The PC selected 21 papers: 18 regular papers and 3 tool papers
for presentation. After the conference, some authors were invited to publish an
extended version of their contribution in the Fundamenta Informaticae journal.
We thank the PC members and other reviewers for their careful and timely
evaluation of the submissions before the meeting, and the fruitful discussions
during the electronic meeting. Finally, we are grateful to the invited speakers for
their contribution: Tony Hoare, Alain Finkel, Bart Jacobs, Joost-Pieter Katoen
and Jens Spars. The Springer LNCS Team and the EasyChair system provided
high-quality support in the preparation of this volume.

April 2012 Serge Haddad
Lucia Pomello
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Jóźwiak, Piotr
Karandikar, Prateek
Klai, Kais
Kosters, Walter
Kretinsky, Jan
Lembachar, Yousra
Li, Yin
Liu, Lin
Lodaya, Kamal
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Maŕıa Martos-Salgado and Fernando Rosa-Velardo

On the α-Reconstructibility of Workflow Nets . . . . . . . . . . . . . . . . . . . . . . . 128
Eric Badouel

On Profiles and Footprints – Relational Semantics for Petri Nets . . . . . . . 148
Matthias Weidlich and Jan Martijn van der Werf

Data and Abstraction for Scenario-Based Modeling with Petri Nets . . . . 168
Dirk Fahland and Robert Prüfer
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Net Models for Concurrent Object Behaviour

Tony Hoare

Principal Researcher, Microsoft Research Ltd. Ave., Cambridge CB3 0FB

Summary

The behaviour of an object allocated and used by a computer program consists of
a set of events involving the object which occur in and around a computer during
execution of the program. Object behaviour can be modelled by an occurrence
net (a Petri net without places), in which each event is a transition (drawn as a
box), and the arrows between the transitions represent dependency between the
events. The total behaviour of the program is just the sum of the behaviours of
the objects which it allocates. A program (perhaps expressed as a Petri net with
places) is mathematically defined as just the set of all its possible behaviours,
in all its possible environments of execution. An object class is similarly defined
as the set of all the possible behaviours of all its possible objects, as used in any
possible program.

Events occurring in a program execution can be classified according to the
time and place at which they occur. We draw space boundaries in a net as
straight horizontal lines and time boundaries as (possibly skewed) vertical lines.
Obviously, space boundaries cannot cross other space boundaries, and a similar
constraint applies to time boundaries. Space and time boundaries cross each
other orthogonally. No dependency can cross a time boundary backwards. While
preserving these constraints, a skewed time boundary can be drawn straight by
stretching the net horizontally.

We distinguish a class of local dependency arrows to denote a causal rela-
tionship between events occurring at the same place. A local arrow is drawn
horizontally, and represents ownership of an object by a particular thread. This
representation is defined formally by a rule that no local arrow can cross a space
boundary. This constraint does not apply to non-local arrows, which are drawn
vertically. They usually represent communication between threads, but they can
represent communication within the same thread. Transmission of object own-
ership has to be accomplished by vertical arrows. In this way occurrence nets
provide a simple model for Concurrent Separation Logic [1].

We permit the introduction of labels for the events and transitions of an
occurrence net. The set of possible labels is part of the definition of the object
class. An event is usually labelled by the syntactic format of the command whose
execution gave rise to the event. It may also have labels identifying the values and
the names or addresses of the objects involved, and the thread in which the event
occurred. An arrow may be labelled by the value which is transmitted, and the
identity of the variable or channel involved in the communication. A horizontal
arrow may be labelled by its serial number within the horizontal chain to which
it belongs.

S. Haddad and L. Pomello (Eds.): PETRI NETS 2012, LNCS 7347, pp. 1–2, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 T. Hoare

These modelling conventions are illustrated by application to various kinds
of object: semaphores, local variables, volatile variables and channels. Several
variations of each concept are explored, for example, channels which are syn-
chronous, asynchronous or finitely buffered. We also give examples of weaker
classes of object, such as lossy or re-ordering channels, and the weak memory
of modern multicore chips. In several cases, the definition of the whole set of
behaviours of an object class is presented as a Petri net.

The behaviour of a complete program, just like any other object, is modelled
as an occurrence net. Its atomic actions are modelled as boxes containing just one
event from each object involved in the action. Groups of boxes in an occurrence
net may be surrounded by a larger box, giving a structure of nested boxes to
the given execution. Each such box in an occurrence net is attributed to the
compound command in the program whose execution it records. If the program
is a Petri net with boxes, as in the Box Algebra [2] for Petri nets, each box in
the occurrence net is one of the executions of the corresponding box in the Petri
net.

This net model of program behaviour can be proved (with the aid of pictures)
to be a model of the Laws of Programming [3], extended by a new exchange
law which relates concurrency to sequential composition [4]. An operational se-
mantics (Milner style) and a deductive semantics (Hoare style) can be derived
algebraically from the Laws [5]. Consequently, the net model is a valid model for
both kinds of semantics, and no further demonstration is needed of the mutual
consistency of proofs with the implementation of a programming language.

References

1. Brookes, S.D.: A Semantics for Concurrent Separation Logic. Theoretical Computer
Science 375(1-3), 227–270 (2007)

2. Best, E., Devillers, R., Koutny, M.: The Box Algebra = Petri nets + Process Ex-
pressions. Information and Computation 178, 44–100 (2002)

3. Hoare, C.A.R., et al.: Laws of Programming. Commun. ACM 30(8), 672–686 (1987)
4. Hoare, C.A.R., Wehrman, I., O’Hearn, P.: Graphical Models of Separation Logic.
In: Engineering Methods and Tools for Software Safety and Security, pp. 177–202.
IOS Press (2009)

5. Hoare, T., van Staden, S.: In Praise of Algebra, under consideration for publication
in Formal Aspects of Computing



The Theory of WSTS:
The Case of Complete WSTS�

Alain Finkel and Jean Goubault-Larrecq

ENS Cachan
{finkel,goubault}@lsv.ens-cachan.fr

Abstract. We describe a simple, conceptual forward analysis procedure
for ∞-complete WSTS S. This computes the so-called clover of a state.
When S is the completion of a WSTS X, the clover in S is a finite
description of the downward closure of the reachability set. We show
that such completions are ∞-complete exactly when X is an ω2-WSTS ,
a new robust class of WSTS. We show that our procedure terminates in
more cases than the generalized Karp-Miller procedure on extensions of
Petri nets. We characterize the WSTS where our procedure terminates as
those that are clover-flattable. Finally, we apply this to well-structured
Presburger counter systems.

1 Introduction

Context. Well-structured transition systems (WSTS) [Fin87, Fin90, FS01,AČJT00]
are a general class of infinite-state systems where coverability—given states s, t,
decide whether s ≥ s1 →∗ t1 ≥ t for some s1, t1—is decidable, using a sim-
ple algorithm that works backwards. The starting point of the series of papers
entitled Forward analysis for WSTS, part I: Completions [FG09a], and Forward
analysis for WSTS, part II: Complete WSTS [FG09b] Simplis our desire to de-
rive similar algorithms working forwards , namely algorithms computing the cover
↓Post∗(↓ s) of s. While the cover allows one to decide coverability as well, by test-
ing whether t ∈ ↓Post∗(↓ s), it can also be used to decide the boundedness prob-
lem, i.e., to decide whether the reachability set, Post∗(s), is finite. No backward
algorithm can decide this. In fact, boundedness is undecidable in general, e.g., on
reset Petri nets [DFS98]. So the reader should be warned that computing the cover
is not possible for general WSTS. Despite this, the known forward algorithms are
felt to be more efficient than backward procedures in general: e.g., for lossy chan-
nel systems, although the backward procedure always terminates, only a (nec-
essarily non-terminating) forward procedure is implemented in the TREX tool
[ABJ98]. Another argument in favor of forward procedures is the following: for
depth-bounded processes, a fragment of the π-calculus, the backward algorithm of
[AČJT00] is not applicable when the maximal depth of configurations is not known
� This paper is an extended abstract of a complete paper that will appear in the journal

LMCS [FG12b]. A short version has already appeared in [FG09b] at ICALP’09.

S. Haddad and L. Pomello (Eds.): PETRI NETS 2012, LNCS 7347, pp. 3–31, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



4 A. Finkel and J. Goubault-Larrecq

in advance because, in this case, the predecessor configurations are not effectively
computable [WZH10]. But the forward Expand, Enlarge and Check algorithm of
[GRvB07], which operates on complete WSTS, solves coverability even though the
depth of the process is not known a priori [WZH10].

State of the Art. Karp and Miller [KM69] proposed an algorithm, for Petri
nets, which computes a finite representation of the cover , i.e., of the downward
closure of the reachability set of a Petri net. Finkel [Fin87, Fin90] introduced
the framework of WSTS and generalized the Karp-Miller procedure to a class of
WSTS. This was achieved by building a non-effective completion of the set of
states, and replacing ω-accelerations of increasing sequences of states (in Petri
nets) by least upper bounds. In [EN98, Fin90] a variant of this generalization
of the Karp-Miller procedure was studied; but no guarantee was given that the
cover could be represented finitely. In fact, no effective finite representations of
downward-closed sets were given in [Fin90]. Finkel [Fin93] modified the Karp-
Miller algorithm to reduce the size of the intermediate computed trees. Geeraerts
et al. [GRvB07] recently proposed a weaker acceleration, which avoids some
possible underapproximations in [Fin93]. Emerson and Namjoshi [EN98] take
into account the labeling of WSTS and consequently adapt the generalized Karp-
Miller algorithm to model-checking. They assume the existence of a compatible
dcpo, and generalize the Karp-Miller procedure to the case of broadcast protocols
(which are equivalent to transfer Petri nets). However, termination is then not
guaranteed [EFM99], and in fact neither is the existence of a finite representation
of the cover. We solved the latter problem in [FG09a].

Abdulla, Collomb-Annichini, Bouajjani and Jonsson proposed a forward pro-
cedure for lossy channel systems [ACABJ04] using downward-closed regular lan-
guages as symbolic representations. Ganty, Geeraerts, Raskin and Van Begin
[GRvB06b, GRvB06a] proposed a forward procedure for solving the coverabil-
ity problem for WSTS equipped with an effective adequate domain of limits, or
equipped with a finite set D used as a parameter to tune the precision of an ab-
stract domain. Both solutions ensure that every downward-closed set has a finite
representation. Abdulla et al. [ACABJ04] applied this framework to Petri nets and
lossy channel systems. Abdulla, Deneux, Mahata and Nylén proposed a symbolic
framework for dealing with downward-closed sets for Timed Petri nets [ADMN04].

Our Contribution. First, we define a complete WSTS as a WSTS S whose
well-ordering is also a continuous dcpo (a dcpo is a directed complete partial
ordering). This allows us to design a conceptual procedure CloverS that looks
for a finite representation of the downward closure of the reachability set, i.e.,
of the cover [Fin90]. We call such a finite representation a clover (for closure of
cover). This clearly separates the fundamental ideas from the data structures
used in implementing Karp-Miller-like algorithms. Our procedure also terminates
in more cases than the well-known (generalized) Karp-Miller procedure [EN98,
Fin90]. We establish the main properties of clovers in Section 4 and use them to
prove CloverS correct, notably, in Section 6.
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Second, we characterize complete WSTS for which CloverS terminates. These
are the ones that have a (continuous) flattening with the same clover. This es-
tablishes a surprising relationship with the theory of flattening [BFLS05]. The
result (Theorem 7), together with its corollary on covers, rather than clovers
(Theorem 8), is the main achievement of this paper.

Third, and building on our theory of completions [FG09a], we characterize
those WSTS whose completion is a complete WSTS in the sense above. They
are exactly the ω2-WSTS , i.e., those whose state space is ω2-wqo (a wqo is a
well quasi-ordering), as we show in Section 5. All naturally occurring WSTS are
in fact ω2-WSTS. We shall also explain why this study is important: despite the
fact that CloverS cannot terminate on all inputs, that S is an ω2-WSTS will
ensure progress , i.e., that every opportunity of accelerating a loop will eventually
be taken by CloverS.

Finally, we apply our framework of complete WSTS to counter systems in Sec-
tion 7. We show that affine counter systems may be completed into ∞-complete
WSTS iff the domains of the monotonic affine functions are upward-closed.

2 Preliminaries

We borrow from theories of order, as used in model-checking [AČJT00, FS01],
and also from domain theory [AJ94, GHK+03]. A quasi-ordering ≤ is a reflexive
and transitive relation on a set X . It is a (partial) ordering iff it is antisymmetric.

We write < for the associated strict ordering (≤ \ ≥), There is also an asso-
ciated equivalence relation ≡, defined as ≤ ∩≥.

A set X with a partial ordering ≤ is a poset (X,≤), or just X when ≤ is
clear. If X is merely quasi-ordered by ≤, then the quotient X/≡ is ordered by
the relation induced by ≤ on equivalence classes. So there is not much difference
in dealing with quasi-orderings or partial orderings, and we shall essentially be
concerned with the latter.

The upward closure ↑E of a set E in X is {y ∈ X | ∃x ∈ E · x ≤ y}. The
downward closure ↓E is {y ∈ X | ∃x ∈ E · y ≤ x}. A subset E of X is upward-
closed if and only if E = ↑E. Downward-closed sets are defined similarly. A
basis of a downward-closed (resp. upward-closed) set E is a subset A such that
E = ↓A (resp. E = ↑A); E has a finite basis iff A can be chosen to be finite.

A quasi-ordering is well iff from any infinite sequence x0, x1, . . . , xi, . . ., one
can extract an infinite ascending chain xi0 ≤ xi1 ≤ . . . ≤ xik

≤ . . ., with
i0 < i1 < . . . < ik < . . .. While wqo stands for well-quasi-ordered set, we
abbreviate well posets as wpos .

An upper bound x ∈ X of E ⊆ X is such that y ≤ x for every y ∈ E. The
least upper bound (lub) of a set E, if it exists, is written lub(E). An element x
of E is maximal (resp. minimal) iff ↑x ∩ E = {x} (resp. ↓x ∩ E = {x}). Write
MaxE (resp. Min E) for the set of maximal (resp. minimal) elements of E.

A directed subset of X is any non-empty subset D such that every pair of
elements of D has an upper bound in D. Chains, i.e., totally ordered subsets,
and one-element sets are examples of directed subsets. A dcpo is a poset in which
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every directed subset has a least upper bound. For any subset E of a dcpo X ,
let Lub(E) = {lub(D) | D directed subset of E}. Clearly, E ⊆ Lub(E); Lub(E)
can be thought of E plus all limits from elements of E.

The way below relation 
 on a dcpo X is defined by x 
 y iff, for every
directed subset D such that lub(D) ≤ y, there is a z ∈ D such that x ≤ z. Note
that x 
 y implies x ≤ y, and that x′ ≤ x 
 y ≤ y′ implies x′ 
 y′. Write
↓↓E = {y ∈ X | ∃x ∈ E · y 
 x}, and ↓↓x = ↓↓{x}. X is continuous iff, for every
x ∈ X , ↓↓x is a directed subset, and has x as least upper bound.

When ≤ is a well partial ordering that also turns X into a dcpo, we say that
X is a directed complete well order , or dcwo. We shall be particularly interested
in continuous dcwos.

A subset U of a dcpo X is (Scott-)open iff U is upward-closed, and for any
directed subset D of X such that lub(D) ∈ U , some element of D is already in
U . A map f : X → X is (Scott-)continuous iff f is monotonic (x ≤ y implies
f(x) ≤ f(y)) and for every directed subset D of X , lub(f(D)) = f(lub(D)).
Equivalently, f is continuous in the topological sense, i.e., f−1(U) is open for
every open U .

A weaker requirement is ω-continuity: f is ω-continuous iff lub{f(xn) | n ∈
N} = f(lub{xn | n ∈ N}), for every countable chain (xn)n∈N

. This is all we
require when we define accelerations, but general continuity is more natural in
proofs. We won’t discuss this any further: the two notions coincide when X is
countable, which will always be the case of the state spaces X we are interested
in, where the states should be representable on a Turing machine, hence at most
countably many.

The closed sets are the complements of open sets. Every closed set is downward-
closed. On a dcpo, the closed subsets are the subsets B that are both downward-
closed and inductive, i.e., such that Lub(B) = B. An inductive subset of X is
none other than a sub-dcpo of X .

The closure cl(A) of A ⊆ X is the smallest closed set containing A. This
should not be confused with the inductive closure Ind(A) of A, which is obtained
as the smallest inductive subset B containing A. In general, ↓A ⊆ Lub(↓A) ⊆
Ind(↓A) ⊆ cl(A), and all inclusions can be strict. All this nitpicking is irrelevant
when X is a continuous dcpo, and A is downward-closed in X . In this case indeed,
Lub(A) = Ind(A) = cl(A). This is well-known, see e.g., [FG09a, Proposition 3.5],
and will play an important role in our constructions. As a matter in fact, the fact
that Lub(A) = cl(A), in the particular case of continuous dcpos, is required for
lub-accelerations to ever reach the closure of the set of states that are reachable
in a transition system.

3 A Survey on Well-Structured Transition Systems

WSTS were originally thought of as generalizations of Petri nets, in which the
set of states (called markings) of a Petri net with n places, N

n, is abstracted
into a set X equipped with a wpo ≤; the Petri net transitions (which are affine
translations from N

n into N
n) are abstracted to general recursive monotonic
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functions from X to X . WSTS were defined and studied in the first author’s PhD
thesis in 1986, the results were presented at ICALP’87 [Fin87] and published in
[Fin90]. The theory of WSTS has now been used for 25 years as a foundation
for verification in various models, such as (monotonic extensions of) Petri nets,
broadcast protocols, fragments of the pi-calculus fragments, rewriting systems,
lossy systems, timed Petri nets, etc.

3.1 Well-Structured Transition Systems: From 1986 to 1996

A transition system is a pair S = (S,→) of a set S, whose elements are called
states , and a transition relation → ⊆ S × S. We write s → s′ for (s, s′) ∈
→. Let ∗→ be the transitive and reflexive closure of the relation →. We write
PostS(s) = {s′ ∈ S | s→ s′} for the set of immediate successors of the state s.
The reachability set of a transition system S = (S,→) from an initial state s0

is Post∗S(s0) = {s ∈ S | s0
∗→ s}.

We shall be interested in effective transition systems. Intuitively, a transition
system (S,→) is effective iff one can compute the set of successors PostS(s) of
any state s. We shall take this to imply that PostS(s) is finite, and each of its
elements is computable.

An ordered transition system is a triple S = (S,→,≤) where (S,→) is a
transition system and ≤ is a partial ordering on S. We say that (S,→,≤) is
effective if (S,→) is effective and if ≤ is decidable.

We say that S = (S,→,≤) is monotonic (resp. strictly monotonic) iff for all
s, s′, s1 ∈ S such that s → s′ and s1 ≥ s (resp. s1 > s), there exists an s′1 ∈ S

such that s1
∗→ s′1 and s′1 ≥ s′ (resp. s′1 > s′). S is transitive monotonic iff for

all s, s′, s1 ∈ S such that s → s′ and s1 ≥ s, there exists an s′1 ∈ S such that
s1

+→ s′1 and s′1 ≥ s′. S is strongly monotonic iff for all s, s′, s1 ∈ S such that
s→ s′ and s1 ≥ s, there exists an s′1 ∈ S such that s1 → s′1 and s′1 ≥ s′. These
variations on monotonicity were studied in [Fin87, FS01].

Finite representations of Post∗S(s), e.g., as Presburger formulae or finite au-
tomata, usually don’t exist even for monotonic transition systems (not even
speaking of being computable). However, the cover CoverS(s) = ↓Post∗S(↓ s)
(= ↓Post∗S(s) when S is monotonic) will be much better behaved. Note that be-
ing able to compute the cover allows one to decide coverability (t ∈ CoverS(s)?),
and boundedness (is Post∗S(s) finite?). Let us recall that the control-state reach-
ability problem (when the set of states is Q × X with Q a finite set of control
states) can be reduced to coverability. However, the repeated control state reach-
ability problem (does there exist an infinite computation that visits infinitely
often a control state q?) cannot be reduced to coverability.

The eventuality property for a given upward closed set I, is the following
property: EG I is true in a state s0 iff there is a computation from s0 in which
all states are in I. Given two labeled transition systems S1 = (S1,→1) and
S2 = (S2,→2), on the same alphabet Σ, the relation R ⊆ S1×S2 is a simulation
of S1 by S2 if for each (s1, s2) ∈ R, s′1 ∈ S1 and a ∈ Σ, if s1

a→ s′1 then there
exists s′2 ∈ S2 such that s2

a→ s′2 and (s′1, s
′
2) ∈ R. We say that s1 ∈ S1 is
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simulated by s2 ∈ S2 if there is a simulation R of S1 by S2 such that (s1, s2) ∈ R.
An ordered transition system S = (S,→,≤) has the effective PredBasis property
if there exists an algorithm which computes ↑ Pre(↑ s) for each s ∈ S; S is
intersection effective if there is an algorithm which computes a finite basis of
↑ s∩ ↑ s′, for all states s, s′ ∈ S.

Definition 1. An ordered transition system S = (S,→,≤) is a Well Structured
Transition System (WSTS) iff S is monotonic and (S,≤) is wpo. A WSTS S =
(S,→,≤) is effective if (S,→) is effective (i.e., Post(s) is finite and computable
for any s) and ≤ is decidable.

In particular, an effective WSTS is finitely banching. Some of the decidability
results do not require this but, for simplicity, we will make this assumption.
Originally, three different definitions of monotonicity (hence six definitions with
the strict variant) were given in [Fin87] and four (resp. eight) were studied in
[FS01].

We now summarize the main decidability results on WSTS obtained between
1986 and 1996.

Theorem 1. The following are decidable:

– Termination, for effective transitive monotonic WSTS [Fin87, FS01].
– Boundedness, for effective strictly monotonic transitive WSTS [Fin87, FS01].
– Coverability (hence control-state reachability), for effective WSTS with ef-

fective PredBasis ([AČJT00], extended in [FS01]).
– Eventuality, for effective strongly monotonic finitely branching WSTS (see

[KS96, AČJT00], extended in [FS01]).
– Simulation of a labeled WSTS by a finite automaton, for intersection effective

and effective strongly monotonic WSTS with effective PredBasis [AČJT00].
– Simulation of a finite automaton by a labeled WSTS, for effective strongly

monotonic WSTS [AČJT00].

The following are undecidable:

– Reachability, for effective strongly strictly monotonic WSTS (Transfer Petri
nets, [DFS98]).

– Repeated control-state reachability (hence LTL), for effective strongly strictly
monotonic WSTS (Transfer Petri nets, [DFS98]). ��

To prove these decidability results we alternatively use forward and backward
algorithms. Termination, boundedness, eventuality and one part of simulation
can be proved by using a forward algorithm that builds the so-called Finite
Reachability Tree (FRT) [Fin87]: we develop the reachability tree until a state
larger than or equal to one of its ancestors is encountered, in which case the
current branch is definitely closed. The place-boundedness problem (to decide
whether a place can contain an unbounded number of tokens) is undecidable for
transfer Petri nets [DFS98], although they are strongly and strictly monotonic
WSTS. It is decidable for Petri nets. This requires a richer structure than the
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FRT, the Karp-Miller tree. The set of labels of the Karp-Miller tree is a finite
representation of the cover.

Almost all the assumptions used above are necessary:

Theorem 2. The following are undecidable:

– Termination, for transitive monotonic WSTS.
– Boundedness, for effective strongly monotonic WSTS.
– Coverability, for effective strongly strictly monotonic WSTS. ��

For termination, Turing machines are transitive monotonic WSTS for which the
termination ordering ≤termination is undecidable, [FS01]. For the second claim,
Reset Petri nets have an undecidable bounded problem, and are effective strongly
monotonic WSTS; but they are not strictly monotonic [DFS98]. For the last
claim, there are WSTS composed of two recursive strictly monotonic functions
from N

2 into N
2 that are not recursive on N

2
ω hence there are no algorithm

computing a PredBasis, [FMP04].
In writing this paper, we realized that the status of eventuality and simulation

is open: for each of these properties, we know of no natural class of WSTS for
which this property would be undecidable.

3.2 WSTS Everywhere: From 1997 to 2012

To the best of our knowledge, there have been no essential new results in the
theory of WSTS between 1997 and 2003 (this does not mean that there are no
interesting results about particular classes of WSTS). Let us just mention two
kinds of results: the study of better quasi ordering (bqo) as an alternative to
wqo [AN00], and the study of specific models such as Reset/Transfer Petri nets
[DFS98], or Lossy Channel Systems [ABJ98]. Moreover, two papers synthesise
the known results and show the possible applications: [AČJT00, FS01].

Many papers appeared during the period 2004-2012. We will not make an
exhaustive list. Here are some of the papers that introduced new points of view,
in our opinion:

2006. P. Ganty, G. Geeraerts, J.-F. Raskin and L. Van Begin proposed
[GRvB06a, GRvB06b] a forward procedure for deciding the coverability
problem. This is the first forward procedure for this problem in the gen-
eral framework of WSTS. Their procedure computes a sufficient part (to
decide coverability) of the finite representation of the cover.

2007 & 2011. P. Abdulla, G. Delzanno, G. Geeraerts, J.-F. Raskin and L. Van
Begin studied [ADB07, GRVB07] the expressive power of WSTS by means
of the set of coverability languages which are well-adapted to WSTS. An-
other, new approach, proposed by R. Bonnet, A. Finkel, S. Haddad and F.
Rosa-Velardo in [BFHRV11], is to use the order type of posets to prove, for
example, that the class of all WSTS with set of states of type N

n are less
expressive than WSTS with set of states of type N

n+1. This strategy unifies
the previous proofs and allows us to compare models of different natures,
such as lossy channel systems and timed Petri nets.
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2004 & 2007 & 2011. R. Lazic, T. Newcomb, J. Ouaknine, A.W. Roscoe, J.
Worrell, F. Rosa-Velardo, D. de Frutos-Escrig studied classes of Petri net
extensions where tokens carry data: data nets, Petri data nets and ν-Petri
nets [LNORW07, VF07, RMF11]. Affine and recursive Petri nets extensions
were studied by A. Finkel, P. McKenzie, C. Picaronny in [FMP04]; affine
well-structured nets are less expressive than ν-Petri nets.

Since 2009. We began in 2009 a series entitled "Forward analysis for WSTS,
Part I: Completions" and "Forward Analysis for WSTS, Part II: Complete
WSTS" in which we provide the missing theoretical fundations of finite rep-
resentations of downward closed sets. This work, based on both order and
topology, allowed us to design a new conceptual Karp and Miller procedure.
Bounded WSTS [CFS11] are a particular recursive class of WSTS for which
the new Karp and Miller procedure terminates.

Since 2010. D. Figueira, S. Figueira, S. Schmitz and Ph. Schnoebelen began
the study of the complexity of general WSTS. They characterized the ordinal
length of bad sequences of vectors of integers (using the Dickson lemma) and
of words (using the Higman lemma) [FFSS11, SS11].

4 Complete WSTS Are Better

We will now present the recent papers on the computation of a finite represen-
tation of the cover. The material of what follows is a part of [FG09b]. We will
consider transition systems that are functional , i.e., defined by a finite set of
transition functions. This is, as in [FG09a], for reasons of simplicity. However,
our CloverS procedure (Section 6), and already the technique of accelerating
loops (Definition 4) depends on the considered transition system being func-
tional. Formally, a functional transition system (S,

F→) is a labeled transition
system where the transition relation F→ is defined by a finite set F of partial
functions f : S −→ S, in the sense that for every s, s′ ∈ S, s

F→ s′ iff s′ = f(s)
for some f ∈ F . If additionally, a partial ordering ≤ is given, a map f : S → S
is partial monotonic iff dom f is upward-closed and for all x, y ∈ dom f with
x ≤ y, f(x) ≤ f(y). An ordered functional transition system is an ordered tran-
sition system S = (S,

F→,≤) where F consists of partial monotonic functions.
This is always strongly monotonic. A functional WSTS is an ordered functional
transition system where ≤ is a well-ordering.

A functional transition system (S,
F→) is effective if every f ∈ F is computable:

given a state s and a function f , we can decide whether s ∈ dom f and in this
case, one can also compute f(s).

For example, every Petri net, every reset/transfer Petri net, and in fact every
affine counter system (see Definition 15) is an effective, functional WSTS.

4.1 Complete WSTS and Their Clovers

All forward procedures for WSTS rest on completing the given WSTS to one that
includes all limits. E.g., the state space of Petri nets is N

k, the set of all markings
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on k places, but the Karp-Miller algorithm works on N
k
ω, where Nω is N plus

a new top element ω, with the usual componentwise ordering. We have defined
general completions of wpos, serving as state spaces, and have briefly described
completions of (functional) WSTS in [FG09a]. We temporarily abstract away
from this, and consider complete WSTS directly.

Generalizing the notion of continuity to partial maps, we define:

Definition 2. A partial continuous map f : X → X, where (X,≤) is a dcpo, is
a partial map whose domain dom f is open (not just upward-closed), and such
that for every directed subset D in dom f , lub(f(D)) = f(lub(D)).

This is the special case of a more topological definition: in general, a partial
continuous map f : X → Y is a partial map whose domain is open in X , and
such that f−1(U) is open (in X , or equivalently here, in dom f) for any open U
of Y .

The composition of two partial continuous maps again yields a partial con-
tinuous map.

Definition 3 (Complete WSTS). A complete transition system is a func-
tional transition system S = (S,

F→,≤) where (S,≤) is a continuous dcwo and
every function in F is partial continuous. A complete WSTS is a functional
WSTS that is complete as a functional transition system.

The point in complete WSTS is that one can accelerate loops:

Definition 4 (Lub-acceleration). Let (X,≤) be a dcpo, f : X → X be partial
continuous. The lub-acceleration f∞ : X → X is defined by: dom f∞ = dom f ,
and for any x ∈ dom f , if x < f(x) then f∞(x) = lub{fn(x) | n ∈ N}, else
f∞(x) = f(x).

Note that if x ≤ f(x), then f(x) ∈ dom f , and f(x) ≤ f2(x). By induction, we
can show that {fn(x) | n ∈ N} is an increasing sequence, so that the definition
makes sense.

Complete WSTS are strongly monotonic. One cannot decide, in general, whether
a recursive function f is monotonic [FMP04] or continuous, whether an ordered
set (S,≤) with a decidable ordering ≤, is a dcpo or whether it is a wpo. To show
the latter claim for example, fix a finite alphabet Σ, and consider subsets S of
Σ∗ specified by a Turing machine M with tape alphabet Σ, so that S is the
language accepted byM.

We can also prove that given an effective ordered functional transition system,
one cannot decide whether it is a WSTS, or a complete WSTS, in a similar way.
However, the completion of any functional ω2-WSTS is complete, as we shall
see in Theorem 3.

In a complete WSTS, there is a canonical finite representation of the cover:
the clover (a succinct description of the closure of the cover).

Definition 5 (Clover). Let S = (S,
F→,≤) be a complete WSTS. The clover

CloverS(s0) of the state s0 ∈ S is MaxLub(CoverS(s0)).
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New lubs

Clover
̂S(s)

CoverS(s)

x1 x2 x3 x4

“Down”

Fig. 1. The clover and the cover, in a complete space

This is illustrated in Figure 1. The “down” part on the right is meant to illustrate
in which directions one should travel to go down in the chosen ordering. The
cover CoverS(s0) is a downward-closed subset, illustrated in blue (grey if you
read this in black and white). Lub(CoverS(s0)) has some new least upper bounds
of directed subsets, here x1 and x3. The clover is given by just the maximal points
in Lub(CoverS(s0)), here x1, x2, x3, x4.

The fact that the clover is indeed a representation of the cover follows from
the following.

Lemma 1. Let (S,≤) be a continuous dcwo. For any closed subset F of S,
MaxF is finite and F = ↓Max F .

Proposition 1. Let S = (S,
F→,≤) be a complete WSTS, and s0 ∈ S. Then

CloverS(s0) is finite, and cl(CoverS(s0)) = ↓CloverS(s0).

For any other representative, i.e., for any finite set R such that ↓R = ↓CloverS(s0),
CloverS(s0) = Max R. Indeed, for any two finite sets A, B ⊆ S such that
↓A = ↓B, Max A = MaxB. So Clover is the minimal representative of the
cover, i.e., there is no representative R with |R| < |CloverS(s0)|. The clover was
called the minimal coverability set in [Fin93].

Despite the fact that the clover is always finite, it is non-computable in gen-
eral (for example for Reset Petri nets) Nonetheless, it is computable on flat
complete WSTS, and even on the larger class of clover-flattable complete WSTS
(Theorem 7 below).

4.2 Completions

Many WSTS are not complete: the set N
k of states of a Petri net with k places

is not even a dcpo. The set of states of a lossy channel system with k channels,
(Σ∗)k, is not a dcpo for the subword ordering either. We have defined general
completions of wpos, and of WSTS, in [FG09a], a construction which we recall
quickly.

The completion ̂X of a wpo (X,≤) is defined in any of two equivalent ways.
First, ̂X is the ideal completion Idl(X) of X , i.e., the set of ideals of X , ordered
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by inclusion, where an ideal is a downward-closed directed subset of X . The
least upper bound of a directed family of ideals (Di)i∈I is their union. ̂X can
also be described as the sobrification S(Xa) of the Noetherian space Xa, but
this is probably harder to understand.

There is an embedding ηX : X → ̂X , i.e., an injective map such that x ≤ x′

in X iff ηX(x) ≤ ηX(x′) in ̂X . This is defined by ηX(x) = ↓x. This allows us
to consider X as a subset of ̂X, by equating X with its image ηX〈X〉, i.e., by
equating each element x ∈ X with ↓x ∈ ̂X. However, we shall only do this in
informal discussions, as this tends to make proofs messier.

For instance, if X = N
k, e.g., with k = 3, then (1, 3, 2) is equated with the

ideal ↓(1, 3, 2), while {(1, m, n) | m, n ∈ N} is a limit , i.e. an element of ̂X \X ;
the latter is usually written (1, ω, ω), and is the least upper bound of all (1, m, n),
m, n ∈ N. The downward-closure of (1, ω, ω) in ̂X, intersected with X , gives back
the set of non-limit elements {(1, m, n) | m, n ∈ N}.

This is a general situation: one can always write ̂X as the disjoint union X∪L,
so that any downward-closed subset D of X can be written as X ∩↓A, where A
is a finite subset of X ∪L. Then L, the set of limits, is a weak adequate domain
of limits (WADL) for X—we slightly simplify Definition 3.1 of [FG09a], itself a
slight generalization of [GRvB06b]. In fact, ̂X (minus X) is the smallest WADL
[FG09a, Theorem 3.4].

̂X = Idl(X) is always a continuous dcpo. In fact, it is even algebraic [AJ94,
Proposition 2.2.22]. It may however fail to be well, hence to be a continuous
dcwo, see [FG12b, Section 4.2].

We have also described a hierarchy of datatypes on which completions are
effective [FG09a, Section 5]. Notably, ̂N = Nω, ̂A = A for any finite poset, and

̂∏k
i=1 Xi =

∏k
i=1

̂Xi. Also, ̂X∗ is the space of word-products on X . These are
the products, as defined in [ABJ98], i.e., regular expressions that are products
of atomic expressions A∗ (A ∈ Pfin( ̂X), A �= ∅) or a? (a ∈ ̂X). In any case,
elements of completions ̂X have a finite description, and the ordering ⊆ on
elements of ̂X is decidable [FG09a, Theorem 5.3].

Having defined the completion ̂X of a wpo X , we can define the completion
S = ̂X of a (functional) WSTS X = (X,

F→,≤) as ( ̂X,
SF→ ,⊆), where SF = {Sf |

f ∈ F} [FG09a, Section 6]. For each partial monotonic map f ∈ F , the partial
continuous map Sf : ̂X → ̂X is such that domSf = {C ∈ ̂X | C ∩ dom f �= ∅},
and Sf(C) = ↓ f〈C〉 for every C ∈ ̂X . In the cases of Petri nets or functional-
lossy channel systems, the completed WSTS is effective [FG09a, Section 6].

The important fact, which assesses the importance of the clover, is Propo-
sition 2 below. We first require a useful lemma. Up to the identification of X
with its image ηX〈X〉, this states that for any downward-closed subset F of ̂X ,
cl(F )∩X = F ∩X , i.e., taking the closure of F only adds new limits, no proper
elements of X .

Up to the identification of X with ηX〈X〉, the next proposition states that
CoverX(s0) = CoverS(s0) ∩ X = ↓CloverS(s0) ∩ X . In other words, to com-
pute the cover of s0 in the WSTS X on the state space X , one can equivalently
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X
̂X

Clover
̂S(s)

CoverS(s)

x1 x2 x3 x4

Fig. 2. The clover and the cover, in a completed space

compute the cover s0 in the completed WSTS ̂X, and keep only those non-limit
elements (first equality of Proposition 2). Or one can equivalently compute the
closure of the cover in the completed WSTS ̂X, in the form of the downward clo-
sure ↓CloverS(s0) of its clover. The closure of the cover will include extra limit
elements, compared to the cover, but no non-limit element. This is illustrated in
Figure 2.

Proposition 2. Let S = ̂X be the completion of the functional WSTS X =
(X,

F→,≤). For every state s0 ∈ X, CoverX(s0) = η−1
X (CoverS(ηX(s0))) =

η−1
X (↓CloverS(ηX(s0))).

CoverS(s0) is contained, usually strictly, in ↓CloverS(s0). The above states
that, when restricted to non-limit elements (in X), both contain the same ele-
ments. Taking lub-accelerations (Sf)∞ of any composition f of maps in F may
leave CoverS(s0), but is always contained in ↓CloverS(s0) = cl(CoverS(s0)).
So we can safely lub-accelerate in S = ̂X to compute the clover in S. While the
clover is larger than the cover, taking the intersection back with X will produce
exactly the cover CoverX(s0).

In more informal terms, the cover is the set of states reachable by either follow-
ing the transitions in F , or going down. The closure of the cover ↓CloverS(s0)
contains not just states that are reachable in the above sense, but also the lim-
its of chains of such states. One may think of the elements of ↓CloverS(s0) as
being those states that are “reachable in infinitely many steps” from s0. And
we hope to find the finitely many elements of CloverS(s0) by doing enough
lub-accelerations.

5 Completion of WSTS into Complete WSTS Is (Almost)
Always Possible

It would seem clear that the construction of the completion S = ̂X of a WSTS
X = (X,

F→,≤) be, again, a WSTS. We shall show that this is not the case. The
only missing ingredient to show that S is a complete WSTS is to check that ̂X
is well-ordered by inclusion. We have indeed seen that ̂X is a continuous dcpo;
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and S is strongly monotonic, because Sf is continuous, hence monotonic, for
every f ∈ F .

Next, we shall concern ourselves with the question: under what condition on
X is S = ̂X again a WSTS? Equivalently, when is ̂X well-ordered by inclusion?
We shall see that there is a definite answer: when X is ω2-wqo.

5.1 Motivation

The question may seem mostly of academic interest. Instead, we illustrate that
it is crucial to establish a progress property described below.

Let us imagine a procedure in the style of the Karp-Miller tree construction.
We shall provide an abstract version of one, CloverS, in Section 6. However, to
make things clearer, we shall use a direct imitation of the Karp-Miller procedure
for Petri nets for now, generalized to arbitrary WSTS. This is a slight variant of
the generalized Karp-Miller procedure of [Fin87, Fin90], and we shall therefore
call it as such.

We build a tree, with nodes labeled by elements of the completion ̂X, and
edges labelled by transitions f ∈ F . During the procedure, nodes can be marked
extensible or non-extensible. We start with the tree with only one node labeled
s0, and mark it extensible. At each step of the procedure, we pick an extensible
leaf node N , labeled with s ∈ ̂X, say, and add new children to N . For each
f ∈ F such that s ∈ domSf , let s′ = Sf(s), and add a new child N ′ to N .
The edge from N to N ′ is labeled f . If s′ already labels some ancestor of N ′,
then we label N ′ with s′ and mark it non-extensible. If s′′ ≤ s′ for no label s′′

of an ancestor of N ′, then we label N ′ with s′ and mark it extensible. Finally, if
s′′ < s′ for some label s′′ of an ancestor N0 of N ′ (what we shall refer to as case
(*) below), then the path from N0 to N ′ is labeled with a sequence of functions
f1, . . . , fp from F , and we label N ′ with the lub-acceleration (fp ◦ . . . ◦ f1)

∞(s′′).
(There is a subtle issue here: if there are several such ancestors N0, then we
possibly have to lub-accelerate several sequences f1, . . . , fp from the label s′′ of
N0: in this case, we must create several successor nodes N ′, one for each value
of (fp ◦ . . . ◦ f1)

∞(s′′).) When X = N
k and each f ∈ F is a Petri net transition,

this is the Karp-Miller procedure, up to the subtle issue just mentioned, which
we shall ignore.

Let us recall that the Karp-Miller tree (and also the reachability tree) is finitely
branching, since the set F of functions is finite. This will allow us to use König’s
Lemma, which states that any finitely branching, infinite tree has at least one
infinite branch.

The reasons why the original Karp-Miller procedure terminates on (ordinary)
Petri nets are two-fold. First, when ̂X = N

k
ω, one cannot lub-accelerate more than

k times, because each lub-acceleration introduces a new ω component to the label
of the produced state, which will not disappear in later node extensions. This is
specific to Petri nets, and already fails for reset Petri nets, where ω components
do disappear.

The second reason is of more general applicability: ̂X = N
k
ω is wpo, and this

implies that along every infinite branch of the tree thus constructed, case (*)



16 A. Finkel and J. Goubault-Larrecq

will eventually happen, and in fact will happen infinitely many times. Call this
progress : along any infinite path, one will lub-accelerate infinitely often. In the
original Karp-Miller procedure for Petri nets, this will entail termination.

As we have already announced, for WSTS other than Petri nets, termination
cannot be ensured. But at least we would like to ensure progress. The argument
above shows that progress is obtained provided ̂X is wpo (or even just wqo).
This is our main motivation in characterizing those wpos X such that ̂X is wpo
again.

p1 t1

t3

t2t4

p4p3

p2

Fig. 3. The reset Petri net from [DFS98]

Before we proceed, let us explain why termination cannot be ensured. Gen-
erally, this will follow from undecidability arguments Here is a concrete case
of non-termination. Consider the reset Petri net of [DFS98, Example 3], see
Figure 3. This net has 4 places and 4 transitions, hence defines an transition
system on N

4. Its transitions are: t1(n1, n2, n3, n4) = (n1, n2 − 1, n3, n4 + 1) if
n1, n2 ≥ 1, t2(n1, n2, n3, n4) = (n1−1, 0, n3+1, n4) if n1 ≥ 1, t3(n1, n2, n3, n4) =
(n1, n2+1, n3, n4−1) if n3, n4 ≥ 1, and t4(n1, n2, n3, n4) = (n1+1, n2+1, n3−1, 0)
if n3 ≥ 1. Note that t4(tn2

3 (t2(tn2
1 (1, n2, 0, 0)))) = (1, n2+1, 0, 0) whenever n2 ≥ 1.

The generalized Karp-Miller tree procedure, starting from s0 = (1, 1, 0, 0), will
produce a child labeled (1, 0, 0, 1) through t1, then (0, 0, 1, 1) through t2, then
(0, 1, 1, 0) through t3. Using t4 leads us to case (*) with s′ = (1, 2, 0, 0). So the
procedure will lub-accelerate the sequence t1t2t3t4, starting from s0 = (1, 1, 0, 0).
However (t4 ◦ t3 ◦ t2 ◦ t1)(s′) = (1, 1, 0, 0) = s′ again, so the sequence of iterates
(t4 ◦ t3 ◦ t2 ◦ t1)n(s0) stabilizes at s′, and (t4 ◦ t3 ◦ t2 ◦ t1)

∞(s0) = s′. So the pro-
cedure adds a node labeled s′ = (1, 2, 0, 0). Similarly, starting from the latter,
the procedure will eventually lub-accelerate the sequence t21t2t

2
3t4, producing a

node labeled (1, 3, 0, 0), and in general produce nodes labeled (1, i + 1, 0, 0) for
any i ≥ 1 after having lub-accelerated the sequence ti1t2t

i
3t4 from a node labeled

(1, i, 0, 0). In particular, the generalized Karp-Miller tree procedure will generate
infinitely many nodes, and therefore fail to terminate.

This example also illustrates the following: progress does not mean that we
shall eventually compute limits g∞(s) that could not be reached in finitely many
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steps. In the example above, we do lub-accelerate infinitely often, and compute
(t4 ◦ ti3 ◦ t2 ◦ ti1)

∞(1, i, 0, 0), but none of these lub-accelerations actually serve
any purpose, since (t4 ◦ ti3 ◦ t2 ◦ ti1)

∞(1, i, 0, 0) = (1, i + 1, 0, 0) is already equal
to (t4 ◦ ti3 ◦ t2 ◦ ti1)(1, i, 0, 0).

Progress will take a slightly different form in the actual procedure CloverS

of Section 6. In fact, the latter will not build a tree, as the tree is in fact only
algorithmic support for ensuring a fair choice of a state in ̂X, and essentially
acts as a distraction. However, progress will be crucial (Proposition 5 states
that if the set of values computed by the procedure CloverS is finite then
CloverS terminates) in our characterization of the cases where CloverS ter-
minates (Theorem 7), as those states that are clover-flattable (see Section 6).
Without it, CloverS would terminate in strictly less cases.

5.2 ω2-WSTS

Recall here the working definition in [Jan99]: a well-quasi-order X is ω2-wqo if
and only if (P(X),≤�) is wqo (where A ≤� B iff for every b ∈ B, there is an
a ∈ A such that a ≤ b or equivalently iff ↑ B ⊆↑ A iff B ⊆↑ A). We show that
the above is the only case that can go bad:

Proposition 3. Let S be a well-quasi-order. Then ̂S is well-quasi-ordered by
inclusion iff S is ω2-wqo.

Let an ω2-WSTS be any WSTS whose underlying poset is ω2-wqo. It follows:

Theorem 3. Let S = (S,
F→,≤) be a functional WSTS. Then ̂S is a (complete,

functional) WSTS iff S is an ω2-WSTS. ��

5.3 Are ω2-wqos Ubiquitous?

It is natural to ask whether this is the norm or an exception. We claim that all
wpos used in the verification literature are in fact ω2-wpo.

Consider the following grammar of datatypes, which extends that of [FG09a,
Section 5] with the case of finite trees (last line):

D ::= N natural numbers
| A≤ finite set A, ordered by ≤
| D1 × . . .×Dk finite product
| D1 + . . . + Dk finite, disjoint sum
| D∗ finite words
| D� finite multisets
| T (D) finite trees

(1)

Then:

Proposition 4. Every datatype defined in (1) is ω2-wqo, and in fact bqo.

In fact, all naturally occurring wqos are bqos, perhaps to the notable exception
of finite graphs quasi-ordered by the graph minor relation, which are wqo [RS04]
but not known to be bqo.
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5.4 Effective Complete WSTS

The completion ̂S of a WSTS S is effective iff the completion ̂S of the set of
states is effective and Sf is recursive for all f ∈ F . ̂S is effective for all the data
types of [FG09a, Section 5]

Also, Sf is indeed recursive for all f ∈ F , whether in Petri nets, functional-
lossy channel systems, and reset/transfer Petri nets notably.

In the case of ordinary or reset/transfer Petri nets, and in general for all affine
counter systems (which we shall investigate from Definition 15 on), Sf coincides
with the extension f defined in [FMP04, Section 2]: whenever dom f is upward-
closed and f : N

k → N
k is defined by f(s) = As + a, for some matrix A ∈ N

k×k

and vector a ∈ Z
k, then domSf = ↑S dom f , and S(f)(s) is again defined as

As + a, this time for all s ∈ N
k
ω, and using the convention that 0× ω = 0 when

computing the matrix product As [FMP04, Theorem 7.9].

6 A Conceptual Karp-Miller Procedure

There are some advantages in using a forward procedure to compute (part of)
the clover for solving coverability. For depth-bounded processes, a fragment of
the π-calculus, the simple algorithm that works backward (computing the set of
predecessors of an upward-closed initial set) of [AČJT00] is not applicable when
the maximal depth of configurations is not known in advance because, in this
case, the predecessor configurations are not effectively computable [WZH10]. It
has been also proved that, unlike backward algorithms (which solve coverability
without computing the clover), the Expand, Enlarge and Check forward algo-
rithm of [GRvB07], which operates on complete WSTS, solves coverability by
computing a sufficient part of the clover, even though the depth of the process
is not known a priori [WZH10]. Recently, Zufferey, Wies and Henzinger pro-
posed to compute a part of the clover by using a particular widening, called a
set-widening operator [ZWH12], which loses some information, but always ter-
minates and seems sufficiently precise to compute the clover in various case
studies.

Model-checking safety properties of WSTS can be reduced to coverability,
but there are other properties, such as boundedness (is Post∗S(s) finite?) that
cannot be reduced to coverability: boundedness is decidable for Petri nets but
undecidable for Reset Petri nets [DFS98], hence for general WSTS.

Recall that being able to compute the clover allows one to decide not only
coverability since t is coverable from s iff t ∈ CoverS(s) iff ∃t′ ∈ CloverS(s)
such that t ≤ t′ but also boundedness, and place-boundedness. To the best of
our knowledge, the only known algorithms that decide place-boundedness (and
also some formal language properties such as regularity and context-freeness of
Petri net languages) require one to compute the clover.

Another argument in favor of computing clovers is Emerson and Namjoshi’s
[EN98] approach to model-checking liveness properties of WSTS, which uses a
finite (coverability) graph based on the clover. Since WSTS enjoy the finite path
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property ([EN98], Definition 7), model-checking liveness properties is decidable
for complete WSTS for which the clover is computable.

All these reasons motivate us to try to compute the clover for classes of com-
plete WSTS, even though it is not computable in general.

The key to designing some form of a Karp-Miller procedure, such as the
generalized Karp-Miller tree procedure (Section 5.1) or the CloverS procedure
below is being able to compute lub-accelerations. Hence:

Definition 6 (∞-Effective). An effective complete functional WSTS S = (S,
F→

,≤) is ∞-effective iff every function g∞ is computable, for every g ∈ F ∗, where
F ∗ is the set of all compositions of maps in F .

E.g., the completion of a Petri net is∞-effective: not only is N
k
ω a wpo, but every

composition of transitions g ∈ F ∗ is of the form g(x) = x + δ, where δ ∈ Z
k. If

x < g(x) then δ ∈ N
k \ {0}. Write xi the ith component of x, it follows that

g∞(x) is the tuple whose ith component is xi if δi = 0, ω otherwise.
Let S be an ∞-effective WSTS, and write A ≤� B iff ↓A ⊆ ↓B, i.e., iff every

element of A is below some element of B. This is the Hoare quasi-ordering, also
known as the domination quasi-ordering. The following is a simple procedure
which computes the clover of its input s0 ∈ S (when it terminates):

Procedure CloverS(s0) :
1. A← {s0};
2. while PostS(A) �≤� A do

(a) Choose fairly (see below) (g, a) ∈ F ∗ ×A such that a ∈ dom g;
(b) A← A ∪ {g∞(a)};

3. return MaxA;

Note that CloverS is well-defined and all its lines are computable by assump-
tion, provided we make clear what we mean by fair choice in line (a). Call Am

the value of A at the start of the (m− 1)st turn of the loop at step 2 (so in par-
ticular A0 = {s0}). The choice at line (a) is fair iff, on every infinite execution,
every pair (g, a) ∈ F ∗ ×Am will be picked at some later stage n ≥ m.

A possible implementation of this fair choice is the generalized Karp-Miller
tree construction of Section 5.1: organize the states of A as labeling nodes of a
tree that we grow. At step m, Am is the set of leaves of the tree, and case (*) of the
generalized Karp-Miller tree construction ensures that all pairs (g, a) ∈ F ∗×Am

will eventually be picked for consideration. However, the generalized Karp-Miller
tree construction does some useless work, e.g., when two nodes of the tree bear
the same label.

Most existing proposals for generalizing the Karp-Miller construction do build
such a tree [KM69, Fin90, Fin93, GRvB07], or a graph [EN98]. We claim that
this is mere algorithmic support for ensuring fairness, and that the goal of such
procedures is to compute a finite representation of the cover. Our CloverS

procedure computes the clover, which is the minimal such representation, and
isolates algorithmic details from the core construction.

We shall also see that termination of CloverS has strong ties with the theory
of flattening [BFLS05]. However, Bardin et al. require one to enumerate sets of
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the form g∗(x), which is sometimes harder than computing the single element
g∞(x). For example, if g : N

k → N
k is an affine map g(x) = Ax + b − a for

some matrix A ∈ N
k×k and vectors a, b ∈ N

k, then g∞(x) is computable as a
vector in N

k
ω, as we have seen in Section 5.4. But g∗(x) is not even definable by

a Presburger formula in general, in fact even when g is a composition of Petri
net transitions; this is because reachability sets of Petri nets are not semi-linear
in general [HP79].

Finally, we use a fixpoint test (line 2) that is not in the Karp-Miller algorithm;
and this improvement allows CloverS to terminate in more cases than the Karp-
Miller procedure when it is used for extended Petri nets (for reset Petri nets for
instance, which are a special case of the affine maps above), as we shall see.
To decide whether the current set A, which is always an under-approximation
of CloverS(s0), is the clover, it is enough to decide whether PostS(A) ≤� A.
The various Karp-Miller procedures only test each branch of a tree separately,
to the partial exception of the minimal coverability tree algorithm [Fin90] and
Geeraerts et al.’s recent coverability algorithm [GRvB07], which compare nodes
across branches. That the simple test PostS(A) ≤� A does all this at once does
not seem to have been observed until now.

6.1 Correctness and Termination of the Clover Procedure

We cannot hope to have CloverS terminate on all inputs. But we can at least
start by showing that it is correct, whenever it terminates. This will be Theorem 4
below.

We first show that if CloverS terminates then the computed set A is con-
tained in Lub(Post∗S(s0)). It is crucial that Lub(F ) = cl(F ) for any downward-
closed set F , which holds because the state space S is a continuous dcpo. We
use this through invocations to Proposition 1.

If the procedure CloverS does not stop, it will compute an infinite sequence
of sets of states. In other words, CloverS does not deadlock. This is the progress
property mentioned in Section 5.1.

Proposition 5 (Progress). Let S be an∞-effective complete functional WSTS
and An be the value of the set A, computed by the procedure CloverS on input
s0, after n iterations of the while statement at line 2. If

⋃

n An is finite, then the
procedure CloverS terminates on input s0.

While CloverS is non-deterministic, this is don’t care non-determinism: if one
execution does not terminate, then no execution terminates. If CloverS termi-
nates, then it computes the clover, and if it does not terminate, then at each
step n, the set An is contained in the clover. Let us recall that An ≤� An+1. We
can now prove:

Theorem 4 (Correctness). If CloverS(s0) terminates, then it computes
CloverS(s0).

If the generalized Karp-Miller tree procedure (see Section 5.1) terminates
then it has found a finite set g1, g2, ..., gn of maps to lub-accelerate. These
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lub-accelerations will also be found by CloverS, by fairness. From the fixpoint
test, CloverS will also stop. So CloverS terminates on at least all inputs where
the generalized Karp-Miller tree procedure terminates. We can say more:

Proposition 6. The procedure CloverS terminates on strictly more input states
s0 ∈ S than the generalized Karp-Miller tree procedure.

Proof. Consider the reset Petri net of [DFS98, Example 3] again (Figure 3).
Add a new transition t5(n1, n2, n3, n4) = (n1 + 1, n2 + 1, n3 + 1, n4 + 1). The
generalized Karp-Miller procedure does not terminate on this modified reset
Petri net starting from s0 = (1, 1, 0, 0), because it already does not terminate
on the smaller one of Section 5.1. On the other hand, by fairness, CloverS will
sooner or later decide to pick a pair of the form (t5, a) at line (a), and then
immediately terminate with the maximal state (ω, ω, ω, ω), which is the sole
element of the clover. ��
Deciding when CloverS terminates is itself impossible. We first observe that
CloverS terminates on each bounded state.

Lemma 2. Let S = (S,
F→) be an ∞-effective complete WSTS, and s0 ∈ S

a state such that the reachability set Post∗S(s0) is finite. Then CloverS(s0)
terminates.

Proof. Since Post∗S(s0) is finite, g∞(s) is in Post∗S(s0) for every s ∈ Post∗S(s0)
and every g ∈ F ∗ with s ∈ dom g. So, defining again An as the value of the set
A computed by CloverS on input s0, after n iterations of the while statement
at line 2,

⋃

n∈N
An is contained in Post∗S(s0), hence finite. By Proposition 5,

CloverS(s0) terminates. ��

Proposition 7. There is an ∞-effective complete WSTS S = (S,
F→) such that

we cannot decide, given s0 ∈ S, whether CloverS(s0) will terminate.

The following result was more generally stated in [Fin87] (but without sufficient
effective and completeness hypotheses) and it was also expressed for Recursive
Well Structured Nets in [FMP04] where the∞-effective hypothesis was replaced
by a weaker condition that allows to compute a sufficient underapproximation
of the limit of the fn(x) when n goes to infinity and for x < f(x).

Theorem 5. [BF12] For ∞-effective strictly monotonic complete WSTS S =
(Nn,

F→,≤), the procedure CloverS(s0) terminates.

There is another case in which the procedure CloverS terminates. A functional
transition system S = (S,

F→) with initial state s0 is flat iff there are finitely
many words w1, w2, ..., wk ∈ F ∗ such that any fireable sequence of transitions
from s0 is contained in the language w∗

1w
∗
2 ...w∗

k. (We equate functions in F with
letters from the alphabet F .) corresponding composition of maps, i.e., fg denotes
g ◦f .) Ginsburg and Spanier [GS64] call this a bounded language, and show that
it is decidable whether any context-free language is flat.

Theorem 6. For ∞-effective complete flat WSTS S = (Nn,
F→,≤), the proce-

dure CloverS(s0) terminates.
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6.2 Clover-Flattable Complete WSTS

We now characterize those ∞-effective complete WSTS on which CloverS ter-
minates.

ϕ

S1 S2

Fig. 4. Flattening

Not all systems of interest are flat. The simplest example of a non-flat system
has one state q and two transitions q

a→q and q
b→q.

For an arbitrary system S, flattening [BFLS05] consists in finding a flat system
S′, equivalent to S with respect to reachability, and in computing on S′ instead of
S. We adapt the definition in [BFLS05] to functional transition systems, without
an explicit finite control graph for now (but see Definition 11).

Definition 7 (Flattening). A flattening of a functional transition system S2 =
(S2,

F2→) is a pair (S1, ϕ), where:

1. S1 = (S1,
F1→) is a flat functional transition system;

2. and ϕ : S1 → S2 is a morphism of transition systems. That is, ϕ is a pair
of two maps, both written ϕ, from S1 to S2 and from F1 to F2, such that
for all (s, s′) ∈ S2

1 , for all f1 ∈ F1 such that s ∈ dom f1 and s′ = f1(s),
ϕ(s) ∈ dom ϕ(f1) and ϕ(s′) = ϕ(f1)(ϕ(s)) (see Figure 4).

Let us recall that a pair (S, s0) of a transition system and a state is Post∗-
flattable iff there is a flattening S1 of S and a state s1 of S1 such that ϕ(s1) = s0

and Post∗S(s0) = ϕ(Post∗S1
(s1)).

Recall that we equate ordered functional transition systems (S,
F→,≤) with

their underlying function transition system (S,
F→). The notion of flattening then

extends to ordered functional transition systems. However, it is then natural to
consider monotonic flattenings , where in addition ϕ : S1 → S2 is monotonic. In
the case of complete transition systems, the natural extension requires ϕ to be
continuous:

Definition 8 (Continuous Flattening). Let S2 = (S2,
F2→,≤2) be a complete

transition system. A flattening (S1, ϕ) of S2 is continuous iff:
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1. S1 = (S1,
F1→,≤1) is a complete transition system;

2. and ϕ : S1 → S2 is continuous.

Definition 9 (Clover-Flattable). Let S be a complete transition system, and
s0 be a state. We say that (S, s0) is clover-flattable iff there is an continuous
flattening (S1, ϕ) of S, and a state s1 of S1 such that:

1. ϕ(s1) = s0 (ϕ maps initial states to initial states);
2. cl(CoverS(s0)) = cl(ϕ〈cl(CoverS1 (s1))〉) (ϕ preserves the closures of the

covers of the initial states).

On complete WSTS—our object of study—, the second condition can be sim-
plified to ↓CloverS(s0) = ↓ϕ(CloverS1 (s1)) (using Proposition 1 and the fact
that ϕ, as a continuous map, is monotonic), or equivalently to CloverS(s0) =
Maxϕ〈CloverS1 (s1)〉. Recall also that, when S is the completion ̂X of a WSTS
X = (X,

F→,≤), the clover of s0 ∈ X is a finite description of the cover of s0 in
X (Proposition 2), and this is what ϕ should preserve, up to taking downward
closures.

a

q6q7

q4 q5

q3

q2q0 q1

Fig. 5. An rl-automaton

Let us define the synchronized product.

Definition 10 (Synchronized Product). Let S = (S,
F→,≤) be a complete

functional transition system, and A = (F, Q, δ, q0) be an rl-automaton on the
same alphabet F .

Define the synchronized product S × A as the ordered functional transition
system (S × Q,

F ′
→,≤′), where F ′ is the collection of all partial maps f 
� δ :

(s, q) �→ (f(s), δ(q, f)), for each f ∈ F such that δ(q, f) is defined for some
q ∈ Q. Let also (s, q) ≤′ (s′, q′) iff s ≤ s′ and q = q′.

Let π1 be the morphism of transition systems defined as first projection on
states; i.e., π1(s, q) = s for all (s, q) ∈ S ×Q, π1(f 
� δ) = f for all f ∈ F .

Lemma 3 (Synchronized Product). Let S = (S,
F→,≤) be a complete func-

tional transition system, and A = (F, Q, δ, q0) be an rl-automaton on the same
alphabet F .

Then (S×A, π1) is a continuous flattening of S.
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Strong flattenings are special: the decision to take the next action f ∈ F from
state (s, q) is dictated by the current control state q only, while ordinary flat-
tenings allow more complex decisions to be made.

We say that a transition system is strongly clover-flattable iff we can require
that the flat system S1 is a synchronized product, and the continuous morphism
of transition systems ϕ is first projection π1:

Definition 11 (Strongly Clover-Flattable). Let S = (S,
F→) be a complete

functional transition system. We say that (S, s0) is strongly clover-flattable iff
there is an rl-automaton A, say with initial state q0, such that cl(CoverS(s0)) =
cl(π1〈cl(CoverS×A(s0, q0))〉).

The following is then obvious.

Lemma 4. On complete functional transition systems, the implications “strongly
clover-flattable” =⇒ “clover-flattable” =⇒ “weakly clover-flattable” hold.

It is also easy to show that “weakly clover-flattable” also implies “clover-flattable”.
However, we shall show something more general in Theorem 7 below.

We show in Proposition 8 that CloverS(s0) can only terminate when (S, s0)
is strongly clover-flattable. We shall require the following lemma. For notational
simplicity, we equate words g1g2 with compositions g2 ◦ g1.

Lemma 5. Let S = (S,
F→) be a complete functional transition system, and

s0 ∈ F . Assume g1
∞g2

∞ . . . gn
∞(s0) is defined, and in some open subset U of

S, for some g1, g2, . . . , gn ∈ F . Then there are natural numbers k1, k2, . . . , kn

such that gk1
1 gk2

2 . . . gkn
n (s0) is defined, and in U .

Proposition 8. Let S be an ∞-effective complete WSTS. If CloverS termi-
nates on s0, then (S, s0) is strongly clover-flattable.

We now loop the loop and show that CloverS terminates on s0 whenever (S, s0)
is weakly clover-flattable (Theorem 7 below). This may seem obvious. In partic-
ular, if (S, s0) is clover-flattable, then accelerate along the loops from S1, where
S1, ϕ is a continuous flattening of S. The difficulty is that we cannot actually
choose to accelerate whenever we want: the CloverS procedure decides by itself
when it should accelerate, independently of any flattening whatsoever.

There is an added difficulty, in the sense that one should also check that lub-
accelerations, as they are used in CloverS, are enough to reach all required
least upper bounds. The key point is the following lemma, which asserts the
existence of finitely many subsequences gpj+�qj (s), � ∈ N, whose exponents form
infinite arithmetic progressions, and which generate all possible limits of directed
families of elements of the form gn(s), n ∈ N, except possibly for finitely many
isolated points.

This is the point in our study where progress is needed. Indeed, we require S
to be wpo to pick k and m in the proof below.

Lemma 6. Let S be a dcwo, g : S → S a partial monotonic map, and s ∈ S.
Consider the family G of all elements of the form gn(s), for those n ∈ N such
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that this is defined. Then there are finitely many directed subfamilies G0, G1,
. . . , Gm−1 of G such that:

1. cl(G) =
⋃m−1

j=0 cl(Gj) = ↓{lub(G0), lub(G1), . . . , lub(Gm−1)};
2. each Gj is either a one-element set {gpj (s)}, where pj ∈ N, or is a chain

of the form {gpj+�qj (s) | � ∈ N}, where pj ∈ N, qj ∈ N \ {0}, and gpj (s) <
gpj+qj (s);

3. for every j, 0 ≤ j < m, s �< gpj (s).

Proposition 9. Let S be an ∞-effective complete WSTS. Assume that (S, s0)
is weakly clover-flattable. Then CloverS terminates on s0.

Putting together Lemma 4, Proposition 8, and Proposition 9, we obtain:

Theorem 7 (Main Theorem). Let S be an ∞-effective complete WSTS. The
following statements are equivalent:

1. (S, s0) is clover-flattable;
2. (S, s0) is weakly clover-flattable;
3. (S, s0) is strongly clover-flattable;
4. CloverS(s0) terminates. ��

6.3 Cover-Flattability (without the “l” in “Cover”)

Turning to non-complete WSTS, we define:

Definition 12 (Monotonic Flattening). Let X2 = (X2,
F2→,≤2) be an ordered

functional transition system. A flattening (X1, ϕ) of X2 is monotonic iff:

1. X1 = (X1,
F1→,≤1) is an ordered functional transition system;

2. and ϕ : X1 → X2 is monotonic.

Definition 13 (Cover-Flattable). Let X be an ordered functional transition
system, and x0 be a state. We say that (X, x0) is cover-flattable iff there is a
monotonic flattening (X1, ϕ) of X, and a state x1 of X1 such that:

1. ϕ(x1) = x0;
2. CoverX(x0) = ↓ϕ〈CoverX1 (x1)〉.

Theorem 8. Let X = (X,
F→,≤) be an ω2-WSTS that is ∞-effective, in the

sense that ̂X is ∞-effective, i.e., that (Sg)∞ is computable for every g ∈ F ∗.
The following statements are equivalent:

1. (X, x0) is cover-flattable;
2. (̂X, ηX(x0)) is (weakly, strongly) clover-flattable;
3. Clover

̂X(ηX(x0)) terminates.

In this case, Clover
̂X(ηX(x0)) returns the clover A = CloverS(s0), and this is

a finite description of the cover, in the sense that CoverX(x0) = η−1
X (↓A).

By a slight abuse of language, say that a functional WSTS S = (S,
F→,≤) is

cover-flattable iff (S, s0) is cover-flattable for every initial state s0 ∈ S.
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Corollary 1. Every Petri net, and every VASS, is cover-flattable.

Proof. The state space of a Petri net on k places is N
k, that of a VASS [HP79]

is Q × N
k, where Q is a finite set of control states. We deal with the latter,

as they are more general. Transitions of the VASS X are of the form f(q, x) =
(q′, x + b − a), provided x ≥ a, and where a, b are fixed tuples in N

k. It is
easy to see that Sf is defined by: Sf(q, x) = (q′, x + b − a), provided x ≥ a,
this time for all x ∈ N

k
ω. So the completion ̂S of the VASS is ∞-effective. On

these, the Karp-Miller algorithm terminates [KM69], hence also the generalized
Karp-Miller algorithm of Section 5.1. By Proposition 6, Clover

̂S terminates on
any input s0 ∈ Q× N

k
ω. So X is cover-flattable, by Theorem 8. ��

Corollary 2. There are reset Petri nets, and functional-lossy channel systems
that are not cover-flattable.

7 Well Structured Presburger Counter Systems

We now demonstrate how the fairly large class of counter systems fits with
our theory. We show that counter systems composed of affine monotonic func-
tions with upward-closed definition domains are complete (strongly monotonic)
WSTS. This result is obtained by showing that every monotonic affine function
f is continuous and its lub-acceleration f∞ is computable [CFS11]. Moreover,
we prove that it is possible to decide whether a general counter system (given
by a finite set of Presburger relations) is a monotonic affine counter system, but
that one cannot decide whether it is a WSTS.

Definition 14. A Presburger counter system (with n counters), C is a tuple
C = (Q, R,→) where Q is a finite set of control states, R = {r1, r2, ...rk} is a
finite set of Presburger relations ri ⊆ N

n × N
n and →⊆ Q×R×Q.

We will consider a special case of Presburger relations, those which allow us
to encode the graph of affine functions. A (partial) function f : N

n −→ N
n is

non-negative affine, for short affine if there exist a matrix A ∈ N
n×n with non-

negative coefficients and a vector b ∈ Z
n such that for all x ∈ dom f, f(x) =

Ax+b. When necessary, we will extend affine maps f : N
n −→ N

n by continuity
to f : N

n
ω −→ N

n
ω, by f(lubi∈N(xi)) = lubi∈N(f(xi)) for every countable chain

(xi)i∈N in N
n. That is, we just write f instead of Sf .

Definition 15. An Affine Counter System (with n counters), a.k.a. an ACS
C = (Q, R,→) is a Presburger counter system where all relations ri are (partial)
affine functions.

The domain of maps f in an affine counter system ACS are Presburger-definable.
A reset/transfer Petri net is an ACS where every line or column of every matrix
contains at most one non-zero coefficient equal to 1, and, all domains are upward-
closed sets. A Petri net is an ACS where all affine maps are translations with
upward-closed domains.
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Theorem 9. One can decide whether an effective Presburger counter system is
an ACS.

Proof. The formula expressing that a relation is a function is a Presburger for-
mula, hence one can decide whether R is the graph of a function. One can also
decide whether the graph Gf of a function f is monotonic because monotonicity
of a Presburger-definable function can be expressed as a Presburger formula.
Finally, one can also decide whether a Presburger formula represents an affine
function f(x) = Ax + b with A ∈ N

n×n and b ∈ Z
n, using results by Demri et

al. [DFGvD06]. ��
For counter systems (which include Minsky machines), monotonicity is undecid-
able. Clearly, a counter system S is well-structured iff S is monotonic: so there
is no algorithm to decide whether a Presburger counter system is a WSTS. How-
ever, an ACS is strongly monotonic iff each map f is partial monotonic; this is
equivalent to requiring that dom f is upward-closed, since all matrices A have
non-negative coefficients. This is easily cast as Presburger formula, and therefore
decidable.

Proposition 10. There is an algorithm to decide whether an ACS is a strongly
monotonic WSTS.

Proof. The strong monotony of an ACS C means that every function of C is
monotonic and this can be expressed by a Presburger formula saying that all
the (Presburger-definable) definition domains are upward-closed (the matrices
are known to be positive). ��
We have recalled that the transitions function of Petri nets (f(x) = x + b,
b ∈ Z

n and dom(f) upward-closed) can be lub-accelerated effectively. This result
was generalized to broadcast protocols (equivalent to transfer Petri nets) by
Emerson and Namjoshi [EN98] and to another class of monotonic affine functions
f(x) = Ax+b such that A ∈ N

n×n, b ∈ N
n (note that b is not in Z

n) and dom(f)
is upward closed [FMP04].

[CFS11] recently extended this result to all monotonic affine functions: for
every f(x) = Ax + b with A ∈ N

n×n, b ∈ Z
n and dom(f) upward-closed, the

function f∞ is recursive.
We deduce the following strong relationship between well-structured ACS and

complete well-structured ACS.

Theorem 10. The completion of an ACS S is an ∞-effective complete WSTS
iff S is a strongly monotonic WSTS.

Proof. Strong monotonicity reduces to partial monotonicity of each map f , as
discussed above. Well-structured ACS are clearly effective, since Post(s) = {t |
∃f ∈ F ·f(t) = s} is Presburger-definable. Note also that monotonic affine func-
tion are continuous, and N

n
ω is a continuous dcwo. Finally, for every Presburger

monotonic affine function f , the function f∞ is recursive, so the considered ACS
is ∞-effective. ��
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Corollary 3. One can decide whether the completion of an ACS is an ∞-
effective complete WSTS.

So the completions of reset/transfer Petri nets [DFS98], broadcast protocols
[EFM99], self-modifying Petri nets [Val78] and affine well-structured nets [FMP04]
are ∞-effective complete WSTS.

8 Conclusion and Perspectives

We have provided a framework of complete WSTS , and of completions of WSTS,
on which forward reachability analyses can be conducted, using natural finite
representations for downward-closed sets. The central element of this theory is
the clover , i.e., the set of maximal elements of the closure of the cover. We have
shown that, for complete WSTS, the clover is finite and describes the closure of
the cover exactly. When the original WSTS is not complete,

We have also defined a simple procedure, CloverS for computing the clover
for∞-effective complete WSTS S. This captures the essence of generalized forms
of the Karp-Miller procedure, while terminating in more cases. We have shown
that that CloverS terminates iff the WSTS is clover-flattable, i.e., that it is some
form of projection of a flat system, with the same clover. We have also shown
that several variants of the notion of clover-flattability were in fact equivalent.
We believe that this characterization is an important, and non-trivial result.

In the future, we shall explore efficient strategies for choosing sequences g ∈
F ∗ to lub-accelerate in the CloverS procedure. We will also analyze whether
CloverS terminates in models such as BVASS [VG05], reconfigurable nets, timed
Petri nets [ADMN04], post-self-modifying Petri nets [Val78] and strongly mono-
tonic affine well-structured nets [FMP04]), i.e., whether they are cover-flattable.

One potential use of the clover is in deciding coverability. But the CloverS

procedure may fail to terminate. This is in contrast to the Expand, Enlarge and
Check forward algorithm of [GRvB07], which always terminates, hence decides
coverability. One may want to combine the best of both worlds, and the lub-
accelerations of CloverS can profitably be used to improve the efficiency of the
Expand, Enlarge and Check algorithm. This remains to be explored.

Finally, recall that computing the finite clover is a first step [EN98] in the
direction of solving liveness properties (and not only safety properties which
reduce to coverability). We plan to clarify the construction of a cloverability
graph which would be the basis for liveness model checking.

Acknowledgement. We wish to acknowledge Rémi Bonnet and Sylvain
Schmitz for fruitful discussions.
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Abstract. Biotechnological improvements over the last decade has
made it economically and technologically feasible to collect large DNA
sequence data from many closely related species. This enables us to study
the detailed evolutionary history of recent speciation and demographics.
Sophisticated statistical methods are needed, however, to extract the
information that DNA sequences hold, and a limiting factor in this is
dealing with the large state space that the ancestry of large DNA se-
quences spans. Recently a new analysis method, CoalHMMs, has been
developed, that makes it computationally feasible to scan full genome
sequences – the complete genetic information of a species – and extract
genetic histories from this. Applying this methodology, however, requires
that the full state space of ancestral histories can be constructed. This
is not feasible to do manually, but by applying formal methods such as
Petri nets it is possible to build sophisticated evolutionary histories and
automatically derive the analysis models needed. In this paper we de-
scribe how to use colored stochastic Petri nets to build CoalHMMs for
complex demographic scenarios.

1 Introduction

Biotechnological advances over the last decade have dramatically reduced the
cost of obtaining the full genetic material of an individual – the full genome –
and genomes from many closely related species are now available. For example,
one or more genomes have been sequenced for each species of the great apes, the
closest related species to humans. This puts us in the unique position to learn
much more about human evolutionary history over the last 15 million years than
what has previously been gleaned from fossils and from single gene studies.

Computational approaches to studying biology enables sophisticated analysis
and provide the only feasible approach to analysis for very large data sets, such as
full genome sequences. Whole genome comparisons hold the key to decipher the
speciation process, selection and demographic changes in human and great ape
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history, but analysis methods that are statistical powerful and computationally
efficient are still in their infancy.

Sequential Markov Coalescent (SMC) and its inference method Coalescent
hidden Markov models (CoalHMMs) [5,8,9,12,18,22,24] is a recently developed
methodology for analyzing genome relationships and make inference of specia-
tion divergence and the mechanisms involved in speciation. CoalHMMs combine
the so-called “coalescence process” model of population genetics [11] with the
computational efficient statistical tool “hidden Markov models” [7] and provides
the first approach to analyze the speciation process computationally scalable
to whole-genome analysis. CoalHMMs model the dependence of the genealogies
(tree relationships) between neighboring nucleotides along a genomic sequence
as a function of the events of coalescence and recombination in the history of
the sequences, and can analyze samples of entire genomes appropriately aligned.

The first CoalHMMs were designed to estimate split times and genetic di-
versity in the species ancestral to human, chimpanzee and gorilla by analyzing
patterns of incomplete lineage sorting – i.e. patterns of genealogies inconsistent
with the species phylogeny caused by deep coalescences [8,12]. The same models
were later used to analyze the complete orangutan genome [17] and gave insight
into the evolutionary forces forming the great ape genomes [13]. The models have
also been applied to the gorilla genome [29] and bonobo genome [25] further il-
luminating the evolution of our own species by comparing our genome with our
closest ape relatives. A different approach to CoalHMMs was recently used to
infer demographic parameters of the human species [16].

A major limitation of the initial CoalHMM methods is that they do not gen-
eralize to comprise complex demographic and speciation scenarios. The methods
strongly depend on patterns of incomplete lineage sorting and do not allow for
complex population structures, population size bottlenecks, gene flow etc. This
was amended in the method used for analyzing the orangutan subspecies [18].
Here, a mathematical model based on continuous time Markov chains (CTMCs)
was used to explicitly model the probability of changes in genealogies along a
genome sequence, using exact calculations from the coalescence process. While
this first CTMC based method is rather simple, only capturing changes in co-
alescence time between two genomes, the strengths of the CTMC approach is
that, in theory, it generalizes to a large variety of scenarios.

Constructing CTMC models of complex demographic scenarios, however, is at
best tedious and error prone, considering the large state space of these models,
and it is unlikely that they can be constructed correctly by hand. In this paper
we propose using colored Petri nets (CPN) [15] as a formal method for specifying
genetic models and give algorithms for translating the state space of such models
into CoalHMMs.

In the next section, we will provide background information for the coalescent
process and present a CPN model of the coalescence process. In the following
section we describe how the coalescent CPN model can be used to define a
Markov model along a genome, approximating the coalescence process. This is
similar to the construction of a Markov chain from a stochastic Petri net [21].
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We then present results from our prototype implementation, and finally draw
our conclusions.

2 Modeling the Coalescent Process

The general idea behind coalescent hidden Markov models is to approximate
the coalescent process by a Markov model along a genomic alignment. Below
we first present the coalescence process and then present a CPN model of the
coalescence process over two neighboring nucleotides.

2.1 The Coalescent Process

The coalescent process [11] is a statistical model describing the genetic relation-
ship of a sample of genes. The coalescent process assumes that k genes have
been sampled in a population, and models how their ancestry (or “genealogy”)
could be, providing probabilities to different scenarios of the genes ancestry from
which a number of properties of the population can be inferred.

The process runs backwards in time, and in its simplest form each pair of genes
can coalesce with a fixed rate. When two genes coalesce, it models the time where
they last shared an ancestor (known as the most recent common ancestor, or
MRCA, of the two genes). After a pair of genes have coalesced, they are replaced by
a gene representing their MRCA, and the process continues further back in time,
now with k− 1 genes. The process is continued until all genes have coalesced, i.e.
when k = 1. A run of the coalescent process corresponds to a tree, where the order
in which different genes coalesce determines the topology and the time in which
genes coalesce determines the branch lengths, see Fig. 1 (a).

By treating the process as a continuous time Markov chain, each tree can be
assigned a probability, and by placing mutations on the tree we can compute
the probability that a given tree gave rise to the observed genes. From this
we can get the joint probability of the tree and the observed genes, and use
this to make statistical inference. Since the true ancestry of genes is unknown,
and in general unknowable, statistical inference based on the coalescence process
involves integrating over all trees, either explicitly (for small k) or with statistical
Monte Carlo integration (for larger k).

A simple tree relationship for genes, however, is an inaccurate model of species
with two genders. Sex cells in species with two genders are constructed as “re-
combinations” of the genetic material inherited by each parent. In the coalescent
process, this is modeled by adding a second type of event. Each gene can undergo
recombination, in which case the gene is split in two at a random point, the left
and right side of the recombination point. The process is then continues with
k+1 genes as the left and right part of the recombined gene is assumed to have
independent ancestries.

A run of the coalescent process with recombination can no longer be repre-
sented as a tree but instead a directed acyclic graph, known as the ancestral
recombination graph or ARG, see Fig. 1 (b). Scanning from left to right along
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1 2 3 4

{1,2}

{3,4}

{1,2,3,4}

(a) A coalescence tree over a
sample of size 4

1-1 2-2 3-3 4-4

2-

-2
{3,4}-{3,4}

{1,2}-1

{3,4}-{2,3,4}

{1,2,3,4}-{1,2,3,4}

(b) An ancestral recombination
graph over a sample of size 4 of
sequences of length 2

Fig. 1. A coalescence tree and an ancestral recombination graph. (a) A coalescence
tree, where first genes 1 and 2 coalesce into their most recent common ancestor, {1, 2},
then genes 3 and 4 coalesce into their most recent common ancestor {3, 4} and finally
all genes coalesce into the grand most recent common ancestor. (b) An ancestral re-
combination graph of four sequences of length two. First genes 3 and 4 coalesce, where
both their left and right nucleotide find an ancestor at the same time. Then gene 2
recombines, leading to independent genes for its left and right nucleotide. The right
nucleotide of gene 2 coalesce with the ancestor of genes 3 and 4 while the left nucleotide
of gene 2 coalesce with gene 1, before all genes find their most recent common ancestor.
The left and right nucleotide in this example have different genealogies, with the left
having topology ((1, 2), (3, 4)) and the right having topology (1, (2, (3, 4))).

the sampled genes, at each point the ancestry of the genes will be a tree, but the
trees can change whenever a recombination point is seen. The tree at each point
is known as a local genealogy while the ARG is known as the global genealogy
of the genes.

The state space of possible ARGs for a gene sample is generally intractable
for all but the smallest samples [30] even for statistical integration, and to deal
with large sample sizes or long gene sequences approximations to the process
is necessary. One such approximation is assuming that the relationship between
genealogies is Markov along the genes [1, 20], an assumption that greatly re-
duces the complexity of the process. Assuming the Markov property essentially
means that we only need to model pairs of nucleotides rather than the full DNA
sequence, since the probability of a sequence can be specified through all the
pairwise probabilities.

2.2 A Colored Petri Net Model for Pairwise Genealogies

While the coalescence process is difficult to make inference from, the rules for how
the process generates genealogies are straightforward and can be expressed as a
very simple colored Petri net. The way the coalescence process treats genes as
independent items with events that can affect one or two genes maps straight-
forwardly to a CPN model where genes become tokens and coalescence and
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Coalescence Recombination

(l,r)

(l,Ø) + (Ø,r)

(l1,r1) + (l2,r2)

(l1 ∪ l2,r1 ∪ r2)

Fig. 2. CPN model of the basic two-nucleotide coalescence. This rather simple colored
Petri net can construct all two-nucleotide coalescence runs for any number of samples
in a single population. The set of genes in the process are represented as tokens on
the single place, where each token contains a pair of sets of sampled genes. The pair
represent the left and right nucleotide in the gene, and the sets the genes or most recent
common ancestor of a set of genes. A coalescence event combines the left and right sets
of the genes, while a recombination breaks up one gene into two: the left and right
nucleotide of the original gene.

recombination events become transitions. Such a CPN model is shown in Fig. 2.
The CPN model has a single place, containing the genes of the process, and two
transitions modeling the two operations Coalescence and Recombination. The to-
kens on the single place consists of pairs – the left and right nucleotide of the
genes – and each nucleotide will contain the set of original sampled genes. The
initial marking consists of pairs ({i} , {i}) for genes i = 1, . . . , k

A run of this CPN, producing the ARG in Fig. 1 (b), would look like this:

State: 1‘({1}, {1}) + 1‘({2}, {2}) + 1‘({3}, {3}) + 1‘({4}, {4})
Binding: [Coalescence; 1‘({3}, {3}) + 1‘({4}, {4})〉
State: 1‘({1}, {1}) + 1‘({2}, {2}) + 1‘({3, 4}, {3, 4})
Binding: [Recombination; 1‘({2}, {2})〉
State: 1‘({1}, {1}) + 1‘({2}, ∅) + 1‘(∅, {2}) + 1‘({3, 4}, {3, 4})
Binding [Coalescence; 1‘({3, 4}, {3, 4})+ 1‘(∅, {2})〉
State 1‘({1}, {1}) + 1‘({2}, ∅) + 1‘({3, 4}, {2, 3, 4})
Binding: [Coalescence; 1‘({1}, {1}) + 1‘({2}, ∅)〉
State 1‘({1, 2}, {1}) + 1‘({3, 4}, {2, 3, 4})
Binding: [Coalescence; 1‘({1, 2}, {1}) + 1‘({3, 4}, {2, 3, 4})〉
State: 1‘({1, 2, 3, 4}, {1, 2, 3, 4})

When we have different populations or different species, the probability of
coalescing genes in different populations/species is zero, and we cannot model
genes in this simple way. To model this, we can annotate tokens with popu-
lations and only allow Coalescence and Recombination to affect genes within a
single population, but instead add a new event that migrates a gene from one
population to another, see Fig. 3.
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Coalescence Recombination

(p,(l,r))

(p,(l,Ø)) + (p,(Ø,r))

(p,(l1,r1)) + (p,(l2,r2))

(p,(l1 ∪ l2,r1 ∪ r2))

Migration

(p,(l,r)) (q,(l,r))

[q ≠ p]

Fig. 3. CPN model with migration. To model different populations, we annotate each
token with the population it belongs to. Coalescence events are only possible between
lineages in the same population. Recombination, as well, although this only involves a
single lineage so the difference is only seen in the arc annotation. To allow lineages to
move from one population to another, a new transition is added that moves one lineage
from one population to another.

2.3 Building Coalescent CTMCs from the Petri Net Specification

From the CPN specification we can build a state space capturing all possible
ancestries of a sample. Our goal is to assign probabilities to all such ancestries.
To do this, we consider the process a continuous time Markov chain (CTMC),
and build the complete state space graph of the system. This corresponds to a
matrix of rates between states where the rate between states is given by the type
of transition in the CPN, and is similar to how a Markov chain is constructed
from a Stochastic Petri net. We cannot use vanilla stochastic Petri nets, though
as the transition rates depend also on the binding of the variables and we need
to keep it symbolic for future estimation.

In terms of CTMC theory, what we construct is the instantaneous transition
matrix, usually denoted Q and from this we can derive the probability of any run
of the system. Obtaining a probabilistic model of the ancestries of a sample thus
involves building the complete state space of the CPN model, translating this
into a matrix of rates of transitions and considering this a CTMC rate matrix.
For samples from a single population, we assign a fixed rate to transitions and
recombinations (see Fig. 2), while for a scenario with multiple populations, we
allow different coalescence rates for each population and different migration rates
between different pairs of populations.
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3 Constructing Sequential Markov Coalescent Models

The computational efficiency of CoalHMMs stems from assuming that the prob-
ability distribution of genealogies along a genome alignment is Markov: The
probability of a local genealogy depends on its immediate neighbor, but not the
more distant genealogies [1, 20, 22]. This way, the probability of a genealogy of
the entire alignment can be specified from just the probability distribution of
genealogies of two neighboring nucleotides [8, 18].

Let Pr (GL,GR) denote the joint probability of genealogies, GL and GR of two
nucleotides L and R (left and right). If this probability can be efficiently com-
puted, then the probability of a genealogy over L nucleotides, Pr (G1,G2, . . . ,GL)

can efficiently be computed as Pr (G1,G2, . . . ,GL) = Pr (G1)
∏L−1

i=1 Pr (Gi+1 | Gi)
where Pr (G1) =

∑
g Pr (G1, g) and Pr (Gi+1 | Gi) = Pr (Gi,Gi+1) /Pr (Gi).

The key idea in Mailund et al. [18], that we generalize in this paper, was
that these joint probabilities can be computed from a two-nucleotide CTMC.
We can explicitly enumerate all possible states and state changes in the ancestry
of two neighboring nucleotides, construct the corresponding CTMC, and obtain
probabilities from this. Constructing the CTMC manually is feasible for small
systems, as in Mailund et al. [18], but quickly becomes unmanageable. Below
we show how the system can be constructed from a colored Petri net, and how
the joint probability of a pair of genealogies can be algorithmically constructed
from this.

To fully specify a CoalHMM we need to specify both transition and emis-
sion matrices (see Appendix A for the formal specification of a hidden Markov
model), but since emission matrices can be computed using standard bioinfor-
matics techniques, we will only focus on the transition matrix here. Constructing
the transition matrix for the CoalHMM from the CTMC involves two steps: pro-
jecting a run of the CTMC onto the two neighboring genealogies, and discretizing
time into time-intervals.

3.1 Projecting Runs of the CPN Model onto Pairs of Genealogies

A run of the CTMC involves coalescence events, recombination events and migra-
tion events. Of these, only coalescence events, where two lineages find a MRCA,
are observable in the genealogies. All other events are important for computing
the probability of the genealogies, but only the times of MRCAs are directly
observable as genealogies and all other events should be integrated out when the
probabilities of genealogies are computed.

The time points where two lineages find their MRCA corresponds to tran-
sitions in the CTMC state space where the system moves from one strongly
connected component (SCC) to another since both migration and recombina-
tion events are reversible through a migration back or a coalescence of the two
genes recombined, respectively. The genealogies of interest thus correspond to
the paths in the SCC graph of the CTMC state space. Enumerating all paths in
the SCC graph thus gives us all the genealogies to be considered, and there is
a one-to-one correspondence between pairs of genealogies and paths in the SCC
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1-1 2-2 3-3 4-4
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-2
{3,4}-{3,4}

{1,2}-1

{3,4}-{2,3,4}

{1,2,3,4}-{1,2,3,4}

1`({1},{1}) + 1`({2},{2}) + 1`({3},{3}) + 1`({4},{4})

1`({1},{1}) + 1`({2},{2}) + 1`({3,4},{3,4})

1`({1},{1}) + 1`({2},Ø) + 1`(Ø,{2}) + 1`({3,4},{3,4})

1`({1},{1}) + 1`({2},Ø) + 1`({3,4},{2,3,4})

1`({1,2},{1}) + 1`({3,4},{2,3,4})

1`({1,2,3,4},{1,2,3,4})

{1},{2},{3},{4} and {1},{2},{3},{4}

{1},{2},{3,4} and {1},{2},{3,4}

{1},{2},{3,4} and {1},{2,3,4}

{1,2},{3,4} and {1},{2,3,4}

(a) ARG and corresponding states and SCCs

1 2 3 4

(b) Left genealogy

1 2 3 4

(c) Right genealogy

Fig. 4. ARG, state space and strongly connected components of a run. (a) On the left
the ARG from Fig. 1 (b). In the middle the CPN states corresponding to this ARG. On
the right, the strongly connected components corresponding to this run of the CPN.
The SCC is represented by the coalesced lineages on the left and right, respectively, and
does not change due to the recombination event on the ARG. (b) The left genealogy
of the ARG. (c) The right genealogy of the ARG.

graph. Fig. 4 shows a run of the CPN of a coalescent system. Here an ARG
(from Fig. 1) is shown together with the states of the CPN that can produce
this system, the SCC run of the system and the left and right genealogies of this
run.

Paths in the SCC graph corresponds to pairs of genealogies and will be the
state transitions in the hidden Markov model we construct. To exploit the effi-
cient algorithms for HMMs we need to project the infinite state space of SCC
paths onto a finite state space. We do this by discretizing time into a finite, fixed
set of non-overlapping time intervals, [τ0, τ1], [τ1, τ2], up to [τn−1, τn] with τ0 = 0
and τn = ∞. We obtain finite state spaces by only considering which state the
system is in at the time points between these intervals (τ1, τ2, . . . , τn−1).

We combine the discretized time with the valid SCC runs as follows. For any
path through the SCC graph, c1, c2, . . . , cn, we assign time points to components
τ1 ↔ ci1 , τ2 ↔ ci2 , . . . τn−1 ↔ cin−1 where ij ≤ ik for j ≤ k. So, as an example,
with three time intervals [τ0 = 0, τ1], [τ1, τ2] and [τ2, τ3 = ∞] and an SCC path
with two components, c1, c2, we would get the following three timed paths:
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Interval τ1 Interval τ2 Interval

[τ0, τ1] c1 [τ1, τ2] c1 [τ2, τ3]
[τ0, τ1] c1 [τ1, τ2] c2 [τ2, τ3]
[τ0, τ1] c2 [τ1, τ2] c2 [τ2, τ3]

Notice that not all components need to be assigned a time point, and some can
be assigned to several. This reflects that the system can move through several
components within a single time interval and also stay in one component over
several time intervals.

CTMC theory provides us with the mechanism for integrating over all paths
leading from one state to another. If Q denotes the instantaneous rate matrix
of the CTMC, then the probability of being in state s at time τi and state t
at time τi+1 is given by P

τi+1−τi
i,j where P τi+1−τi = exp (Q [τi+1 − τi]) (where

exp (M) denotes matrix exponentiation [23]). The probability of being in SCC
ci at time τi and SCC cj at time τi+1 is then computed by summing over all
transitions from a state s ∈ ci to a state t ∈ cj in the time interval [τi, τi+1]:∑

s∈ci

∑
t∈cj

P
τi+1−τi
s,t . The probability of an entire SCC path assigned to time

intervals is obtained by summing across all time intervals in this way (see Fig. 5),
e.g. for the example above:

Pr ([τ0, τ1] c1 [τ1, τ2] c1 [τ2, τ3]) =
∑
s∈c1

∑
t∈c1

P τ1
ι,s · P τ2−τ1

s,t

Pr ([τ0, τ1] c1 [τ1, τ2] c2 [τ2, τ3]) =
∑
s∈c1

∑
t∈c2

P τ1
ι,s · P τ2−τ1

s,t

and

Pr ([τ0, τ1] c2 [τ1, τ2] c2 [τ2, τ3]) =
∑
s∈c2

∑
t∈c2

P τ1
ι,s · P τ2−τ1

s,t

(notice changes in subscripts) where we assume that the system always starts in
a fixed state ι.

For the general case [τ0, τ1] ci1 [τ1, τ2] ci2 . . . [τn−2, τn−1] cin−1 [τn−1, τn] this
becomes ∑

s1∈ci1

∑
s2∈ci2

· · ·
∑

sn−1∈cin−1

P τ1
ι,s1 · P

τ2−τ1
si1 ,si2

· · ·P τn−1−τn−2
sn−2,sn−1

which is a sum of |ci1 | × |ci2 | × · · · × |cin−1 | terms, where each term is a product
of n − 1 transition probabilities. To efficiently compute this for all paths, we
rewrite this to

∑
s1∈ci1

P τ1
ι,s1

⎛⎝ ∑
s2∈ci2

P τ2−τ1
si1 ,si2

⎛⎝· · ·

⎛⎝ ∑
sn−1∈cin−1

P τn−1−τn−2
sn−2,sn−1

⎞⎠⎞⎠ . . .

⎞⎠
which we can compute inside-out for all paths using dynamic programming.
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τ1 τ2 τ3τ0

ι Pτ1 Pτ2-τ3 Pτ3-τ2

c1
c2

c3

Fig. 5. Computing path probabilities. When computing the probability of the timed
path [τ0, τ1] c1 [τ1, τ2] c2 [τ2, τ3] c3 [τ3, τ4] we implicitly sum over all paths between the
time interval breakpoints using CTMC transition probability matrices P τi+1−τi and
explicitly sum over states in the strongly connected components at the breakpoints ci.

3.2 Dealing with Different Demographic Epochs

When modeling the history of a set of genomes from different species, we need
to consider different time period of their history. Consider for example a model
of the ancestry of three different species, e.g. humans, chimpanzees and gorillas.
At present, these are three different species that cannot exchange genes, but as
we go back in time we first enter a period where humans and chimpanzees share
an ancestral species, where they can exchange genes, and further back in time
all three species share an ancestor where they exchange genes.

To deal with this we use what we called different “epochs”. Each epoch cor-
responds to separate model in terms of transitions and transition rates, but all
epochs for the same analysis can be embedded in the same (often large) state
space, enabling us to map states between them. For the human, chimpanzee and
gorilla example, we would have three populations/species and one sample from
each. So the type used for lineages would have three colors (e.g. H, C and G for
human, chimpanzee and gorilla) and the type used for populations also three
colors. The space of all possible states would be all states that the CPN could
be in. The different epochs would consist of restrictions to this state space, and
typically we would never enumerate the full state space but only the sub-state
spaces reachable in the different epochs.

A simple human, chimpanzee and gorilla model could have three epochs, one
where all three species are isolated, one where humans and chimpanzees have
found a common ancestor and one where all three African apes have found a
common ancestor. This model will not allow migrations in any epochs. The first
epoch will have each species in its own population, the second epoch would have
humans and chimpanzees in the same population, and the third epoch would
have all three species in the same population.
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We construct the model by first constructing the state space of the first epoch,
where the populations are H, C and G. We then take all reachable states in this
system and maps H and C tokens to the same population, e.g. H, so tokens are
mapped (p, (l, r)) �→ (H, (l, r)) whenever p is H or C. For the second epoch, we
compute the state space of all states reachable from these mapped states (but
not states from the first epoch where tokens can be in population C). For the
third epoch we repeat this, but now mapping G populations to H as well.

When computing the probability of paths in the system, we add this projection
of states as well. If the time point τi is between two different epochs, we use a
matrix P τi−τi−1 · Ii instead of P τi−τi−1 where Ii is a projection matrix mapping
states from the epoch before τi to the epoch after τi. For the transition between
the first and second epoch in the human, chimpanzee and gorilla example, this
projection matrix would have a 1 in all entries where the states are equal exact
for all C populations being set to H and 0 in all other entries, and for the
projection from the second to the third epoch, the projection matrix would have
a 1 in entries where the states are equal except that now G populations are set
to H as well. The projection onto left and right genealogies, and the sums used
for computing the probabilities of strongly connected components paths is not
changed otherwise.

4 Results

The algorithm was implemented in the Python programming language and below
we show results for state space construction, model fit and parameter estimation.

4.1 State Space Statistics

We constructed the state space and HMM transition matrix for a number of
different configurations, varying the number of populations from one to three
and varying the number of chromosomes from one to four. With one population
there is a single time epoch, with two populations there are two epochs, one
before and after the populations merge, and with three populations there are
three time epochs: the first before any populations merge, the second after the
first and second population merge, and the last when all three populations have
merged.

Table 1 shows the size of the state spaces in the various configurations and
epochs and the time it takes to construct the HMM transition matrix. The
HMM construction time is split in three components: 1) the time it takes to
construct the CTMC (i.e. build the state space of the CPN and translate it
into a rate matrix), 2) pre-processing time for the HMM construct, involving
building the SCC graph and assign all possible SCC paths to time intervals,
and 3) the time it takes to construct the actual transition matrix, involving
exponentiating rate matrices and summing over SCC paths. Of these three, the
first two needs only be computed once for a given model, while the third needs
to be recomputed whenever the parameters of the HMM changes, and must
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Table 1. Summaries of the state space sizes, SCCs and construction time for both the
state space and the hidden Markov model transition matrix. Configurations n = i, j, k
should be read as population one containing i chromosomes, population two containing
j chromosomes and population three containing k chromosomes. Construction time
is measured in seconds and – indicates that the computation was terminated before
finishing.

1st epoch 2nd epoch 3rd epoch Construction time

Configuration States SCCs States SCCs States SCCs CTMC Pre. Trans.

1 population
n = 1 2 1 0.00 0.00 0.01
n = 2 15 4 0.00 0.01 0.09
n = 3 203 25 0.03 3.44 18.02
n = 4 4 140 225 1.35 – –

2 populations
n = 1,1 4 1 15 4 0.00 0.02 0.08
n = 2,1 30 4 203 25 0.03 14.60 24.90
n = 3,1 406 25 203 25 1.71 – –
n = 2,2 225 16 4 140 225 1.49 – –

3 populations
n = 1,1,1 8 1 30 4 203 25 0.11 19.75 21.87
n = 2,1,1 60 4 306 25 4 140 225 1.67 – –

potentially be computed hundreds of times in a numerical optimization of the
HMM likelihood.

The most time consuming part of constructing the HMM is clearly not con-
structing the state space of the model but rather the alignment of the SCC
graph onto time intervals for constructing the HMM states and the exponentia-
tion of rate matrices for computing transition probabilities. The configurations
in Table 1 where the construction time is missing were terminated after hours
of run-time indicating a very steep exponential growth in running time as the
size of the system grows.

4.2 Parameter Estimation

As an evaluation of the model, we consider the so-called isolation-with-migration
model of speciation, see Fig. 6. In this model, the speciation is initiated by
a split in an ancestral species into two groups who evolve independently but
exchange genes through limited migration, until at some later point this gene-
flow ends and the species evolve completely independent. For most apes, this is
believed to be the process in which they separated; the two gorilla species alive
today are believed to have split about a million years ago but exchanged genes
until recently [29, 31], the two orangutan sub-species has a similar story [17],
and even humans have exchanged genes with archaic forms of humans, such as
Neanderthals [10] and the recently discovered Denisovan humans [27, 28].
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τ1

τ2

m

Fig. 6. Isolation-with-migration model. A model of the speciation process, where an
ancestral species is initially split into two populations that exchange genes through
migration between the groups for a period of time, after which gene flow stops and the
species evolve independently.

Relevant parameters in this model include the initial split time, the time when
gene-flow ended, the migration rate between the ancestral populations and the
coalescence rate in the ancestral species (which measures the genetic variation
in the ancestral species). To test our model in this scenario, we simulated data
using the coalescence simulator CoaSim [19] and then estimated the parameters
with our CoalHMM. Results are shown in Fig. 7.

Although there naturally is some variation in the estimated parameters, we
find that the model accurately estimates the parameters of the simulated data.

5 Discussion

We have presented a method for building inference models for complex demo-
graphic histories of speciation and genome ancestry. The method 1) employs a
colored Petri net to specify the demographic scenario, constructs the state space
for the scenario, 2) uses this as a continuous time Markov chain to compute
probabilities of genealogies, 3) uses the strongly connected component graph of
the state space to compute transition probabilities between local genealogies,
and finally 4) uses these transition probabilities to construct a coalescent hidden
Markov model for inferring parameters of the scenario.

The approach we have presented fully automates the translation of a demo-
graphic scenario to an inference method, making CoalHMMs accessible to biolo-
gists with limited computational skills, but the complexity of scenarios that can
be explored is still limited by the state space explosion in the model and the com-
putational time needed for enumerating all SCC paths and for exponentiating
large rate matrices.
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Fig. 7. Parameter estimates on simulated data. In a model with an initial population
split followed by a period of migration after which gene-flow stops, we simulated data
and estimated parameters. The box plot shows the distribution of estimates in ten
simulations. The dashed lines show the simulated parameter.

Different points of attack are possible. The state space explosion can be al-
leviated using reduction methods. Samples within the same population are by
nature symmetric, so symmetry reduction [4, 14] is an obvious approach. The
symmetry method allows us to consider two states as equal if it is possible to
find a permutation of the samples mapping one to the other. In our example, we
can allow all permutations of samples. To evaluate the viability of this approach,
we built a prototype implementation of this using CPN Tools [26]. Due to the
limitation of our prototype, we have implemented this method using a simple
hand-crafted mapping mapping each state to a canonical member of its symme-
try group. This means that we not necessarily generate the minimal state space
but that we have an efficient means of computing symmetric mappings. In the
future we want to either improve this or instead use the lower-level formalism
of symmetric nets [2], for which symmetries can be computed automatically. In
Table 2, we have shown the reduced sizes of the state space for the different
cases. We see that the ratio of the size of the reduced state space to the full
state space gets much smaller as the number of species grow.

The sweep-line method [3] makes is possible to delete states from memory
when they are no longer needed. In our example, we notice that as soon as two
species have coalesced, it is impossible for them to split again. Thus, a state can
never have arcs to states where fewer species have coalesced. We can define a
progress measure which counting the number of coalesced species and process
states in a least progress-first-order. This allows us to delete any states from
memory with a lower progress value than any state we have yet to process. We
can generate a highly efficient progress measure by creating the state space for
the model with only coalescence, computing the strongly connected components
of this graph, traverse this graph using a breadth-first traversal and use the
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Table 2. Summaries of the state space sizes, SCCs and construction time for the full
state space and reduced state spaces. The basic model are scenarios with all samples in
the same population, while models with gene-flow assume one population per sample.

Full Symmetry Sweep-line Construction time

Size States SCCs States SCCs States Full Symmetry

Basic model
n = 1 2 1 2 1 2 0.00 0.00
n = 2 15 4 12 4 12 0.00 0.00
n = 3 203 25 77 11 46 0.02 0.02
n = 4 4 140 225 607 39 363 0.92 0.30
n = 5 115 975 2 704 5 455 215 2 659 47.05 4.45
n = 6 – – 54 054 1 604 25 518 – 65.10
n = 7 – – 586 534 – 266 550 – 2 043.62
Model with gene-flow
n = 2 94 4 79 4 76 0.01 0.02
n = 3 12 351 25 6 065 10 5 017 4.81 4.99
n = 4 3 188 340 – 731 840 – 451 559 26 525.88 5 720.11

breadth-first rank of each state as progress value for the full state space. In
Table 2 we show the maximum number of states in memory during processing
(when combined with symmetry reduction). The time to construct the state
space and the number of SCCs is the same as for constructing the symmetry
reduced graph.

We notice that if we sort the states of the (full) state space such that states
belonging to the same strongly connected component are kept together, we get
a rate which has block corresponding to each of the strongly connected compo-
nents. If we know the layout of the blocks we can thus compute the rate matrix
from the individual blocks. Each block on the diagonal of the rate matrix cor-
responds to all transitions internal to a SCC and all other blocks correspond to
transitions from one SCC to another. A property of the sweep-line method is that
it keeps entire SCCs in memory at the same time (assuming that the progress
measure is monotone, which it is here). Thus, we can easily compute all blocks
on the diagonal of the rate matrix. Furthermore, we can store, for each SCC,
all transitions leading out of the SCC and subsequently sort them according to
the target SCC. This allows us to also compute all other blocks. If we sort the
states according to the progress measure, we get a rate matrix which is almost
upper-triangular. The reason is that it is only possible to go from a state with
lesser progress to a state with higher progress. The only parts below the diagonal
are the blocks corresponding to transitions internal to a SCC. Furthermore, we
know that the rate matrix will be very sparse even above the diagonal, as we
only have a non-zero block if there is an arc from one SCC to another.

Unfortunately, the rates of transitions are not necessarily the same even for
symmetrical transitions, and it is not obvious to us how to construct the HMM
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transition matrix from the symmetry reduced CPN state space; future work
includes combining lumping techniques for Markov chains [2, 6] with the con-
struction of the rate matrix outlines using the sweep-line method to our case.

Rather than exponentiating the rate matrix, it is also possible to get good
approximations of the probabilities through Monte Carlo simulation where we
can simulate thousands or millions of runs of the continuous time Markov chain
and obtain the probabilities this way. Future work will concentrate on ways of
extending the complexity of scenarios by alleviating the state space explosion
problem.

6 Conclusions

Coalescent hidden Markov models (CoalHMMs) [8, 12] are a recent invention
that has become popular for genome analysis as they are currently the only ap-
proach that is computationally efficient enough for analyzing full genome data.
Different variants of CoalHMMs have been successfully used in recent great ape
genome projects, including an analysis of human population size changes [16],
an analysis of the orangutan sub-species [17,18], and estimating speciation times
between humans, chimpanzees, bonobos, gorillas and orangutans [13,25,29]. The
demographic scenarios explored, however, have been very simple ones because
the CoalHMMs have so far been constructed manually. Typically, this involves
deriving equations for transition probabilities by approximating the coalescence
process, which at best is tedious and in cases can introduce biases in the esti-
mation because of the simplifying assumptions necessary to do this. Computing
the transition probabilities using a continuous time Markov chain alleviates this
somewhat, but manually constructing the Markov chain is still only possible for
simple scenarios.

While the colored Petri net model we present here is very simple, we stress
that it is capable of modeling most demographic scenarios. Combined with an
algorithm for translating a formal model of demographics like this into the final
CoalHMM, complex scenarios can be explored in genome analysis. As the cost
of sequencing genomes is steadily decreasing, the bottleneck in future genome
projects will be in the mathematical modeling and in constructing analysis meth-
ods that both captures the complexity of the genomes and are computationally
efficient. We believe that CoalHMMs combined with formal methods such as
Petri nets can be a powerful approach in this.

Acknowledgements. The authors wish to thank Lars M. Kristensen for fruit-
ful discussions about the use state-space reduction techniques.
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A Hidden Markov Models

Hidden Markov models (HMMs) is a framework for modeling sequential data
such as DNA sequences. HMMs provide a computational efficient way of analyz-
ing sequential data, that would otherwise be intractable to analyze.

Given a sequence of observation Z1, Z2, . . . , Zn, the Markov assumption states
the the probability of the entire sequence Pr (Z1, Z2, . . . , Zn) can be stated as a
sequence of conditional probabilities

Pr (Z1, Z2, . . . , Zn) = Pr (Z1)

n−1∏
i=1

Pr (Zi+1 |Zi)

which is typically much more efficient to calculate.
In many applications, however, a sequence of observations cannot be justified

modeled in this way. The genetic differences between a sample of genes, for
instance, is conditional on the local genealogies, but whereas we can model the
local genealogies as a Markov process the observed genetic differences do not
directly lead to a Markov process.

Hidden Markov models instead assumes that we have a sequence of un-
seen parameters that do follow a Markov process, but that the observations



50 T. Mailund, A.E. Halager, and M. Westergaard

we see depend on those parameters but are not themselves a Markov pro-
cess. An HMM models a sequence of observations, X1, X2, . . . , Xn, by assum-
ing there is an underlying but unobserved sequence of states the process goes
through, Z1, Z2, . . . , Zn, that determines the probability of the observations.
Each observation depends on one hidden state, Pr(Xi |X1, . . . , Xn, Z1, . . . , Zn) =
Pr(Xi |Zi), as the genetic differences between a set of genes would depend on the
local genealogies at each position but not neighboring genealogies. Were both
the hidden states and the observations known, the joint probability would be

Pr (X,Z) = Pr (Z1) Pr (X1 |Z1)

n−1∏
i=1

Pr (Zi+1 |Zi) Pr (Xi+1 |Zi+1) .

The Markov process states, Zi, however are not observed in a hidden Markov
model, only the sequenceX1, . . . , Xn. Efficient dynamic programming algorithms
exist, however to sum over all hidden state paths and thus computing Pr(X) and
from this making maximum likelihood parameter estimations.

An HMM is completely parameterized by specifying the initial state prob-
abilities π = (Pr(Z1), . . . ,Pr(Zm)) for possible hidden states Z1, . . . , Zm, the
transition probability matrix Ti,j = Pr(Zi |Zj) and the emission probability
matrix El,m = Pr(Xm |Zl).



An SMT-Based Discovery Algorithm for C-Nets
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Abstract. Recently, Causal nets have been proposed as a suitable model
for process discovery, due to their declarative semantics and the great
expressiveness they possess. In this paper we propose an algorithm to
discover a causal net from a set of traces. It is based on encoding the
problem as a Satisfiability Modulo Theories (SMT) formula, and uses a
binary search strategy to optimize the derived model. The method has
been implemented in a prototype tool that interacts with an SMT solver.
The experimental results obtained witness the capability of the approach
to discover complex behavior in limited time.

1 Introduction

Process Mining [1] is a discipline that aims at using the data available in in-
formation systems to discover the processes taking place inside an organization,
check their compliance and perform predictions. It is an evolving area which, al-
though becoming crucial to support decision making, still needs to settle down in
terms of algorithmic and model support. One example of this is the vast amount
of algorithms that exist for a wide range of models: Petri nets, Heuristic nets,
Event-Driven Process Chains, Fuzzy models, among others [1].

Recently, a formalism called Causal nets (C-nets) [2] has been proposed as
a suitable modeling language for process mining. It is a rather compact rep-
resentation that allows expressing complex behavior that is sometimes difficult
to describe using other models. For instance consider the set of traces (log) in
Fig. 1(a). In Fig. 1(b) we can see two Petri nets that are required to represent
all the sequences without adding extra behavior. It is possible to use a single
Petri net, instead of two, but then the use of silent transitions (or, alternatively,
transitions sharing the same label) is needed, as shown in (c). On the other hand
the equivalent C-net representation (d) is quite compact. The semantics of that
C-net can be informally described as:

Activity a must be executed initially, followed either by b, c, or b and c. Any
of these three possibilities is followed by the execution of activity e.

Figure 2 (from [2]) shows a more meaningful example, describing a C-net that
models the process of booking resources for travel.

The discovery problem refers to obtaining a model (in some suitable formalism)
that describes the behavior recorded in a log. To the best of our knowledge, there
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Fig. 2. Causal net Ctravel from [2]

are few discovery algorithms for C-nets. One indirect method is to first discover
a Petri net and then convert it into a C-net as described in [2]. This strategy is
very cumbersome since the conversion introduces a silent activity in the C-net
for each place in the Petri net, thus increasing significantly the size of the C-
net, although a very compact C-net representing the same language may exist.
Another possibility is to use discovery algorithms for flexible heuristic nets [3], a
model closely related to C-nets, or heuristic nets [4,5] which can be viewed as a
restricted subclass of C-nets. However, these two approaches cannot guarantee
that the log is included in the language of the derived model.
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This paper presents the first algorithm to discover a C-net from a log that
guarantees that i) the language of the C-net includes the log, and ii) among those
satisfying the previous property, the C-net has the minimal number of arcs. It is
based on encoding the problem as an SMT formula, and using binary search to
find a minimal C-net (in terms of number of arcs). A prototype tool which in-
terfaces with an SMT solver is reported, showing promising experimental results.

Organization of the Paper: In Sect. 2 we give the formal definition of C-
nets and we introduce some of the mathematical background used in the rest of
the paper. Our approach to the discovery of C-nets is explained in Sect. 3 and
experimentally tested in Sect. 4. Finally, Sect. 5 presents some future work and
concludes this paper.

2 Background

2.1 Mathematical Preliminaries

A multiset (or a bag) is a set in which elements of a set X can appear more than
once, formally defined as a function X → N. We denote as B(X) the space of all
multisets that can be created using the elements of X . Let M1,M2 ∈ B(X), we
consider the following operations on multisets: sum (M1 + M2)(x) = M1(x) +
M2(x), subtraction (M1−M2)(x) = max(0,M1(x)−M2(x)) and inclusion (M1 ⊆
M2) ⇔ ∀x ∈ X,M1(x) ≤ M2(x). As usual, sets will be considered as bags when
necessary.

A log L is a bag of sequences of activities. In this work we restrict the type of
sequences that can form a log. In particular, we assume that all the sequences
start with the same initial activity and end with the same final activity, and that
these two special activities only appear once in every sequence. This assumption
is without loss of generality, since any log can be easily converted by using two
new activities that are properly inserted in each trace.

Given a finite sequence of elements σ = e1e2 . . . en, its length is denoted
|σ| = n, and its prefix sequence up to element i, with i ≤ n, denoted σi, is
e1 . . . ei. We define σ0 as the empty sequence, denoted ε. Conversely, its suffix
sequence after i, with i < n, denoted σi→, is ei+1 . . . en. The alphabet of σ,
denoted Aσ, is the set of elements in σ. We extend this notation to logs, so that
AL is the alphabet of the log L, i.e., AL =

⋃
σ∈L Aσ. Finally, we extend the ∈

notation to sequences, so that e ∈ σ is true if, and only if, e occurs in σ.

2.2 Causal Nets (C-Nets)

In this section we introduce the main model used along this paper.

Definition 1 (Causal net [2]). A Causal net is a tuple C = 〈A, as, ae, I, O〉,
where A is a finite set of activities, as ∈ A is the start activity, ae ∈ A is
the end activity, and I (and O) are the set of possible input ( output resp.)
bindings per activity. Formally, both I and O are functions A → SA, where
SA = {X ⊆ P(A) | X = {∅} ∨ ∅ /∈ X}, and satisfy the following conditions:
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– {as} = {a | I(a) = {∅}} and {ae} = {a | O(a) = {∅}}
– all the activities in the graph (A, arcs(C)) are on a path from as to ae,

where arcs(C) is the dependency relation induced by I and O such that
arcs(C) = {(a1, a2) | a1 ∈

⋃
X∈I(a2)

X ∧ a2 ∈
⋃

Y ∈O(a1)
Y }.

Definition 1 slightly differs from the original one from [2], where the set arcs(C)
is explicitly defined in the tuple. The C-net of Fig. 1(d) is formally defined
as C = 〈{a, b, c, e}, a, e, I, O〉, with I(a) = ∅, O(a) = {{b}, {c}, {b, c}}, I(b) =
{{a}}, O(b) = {{e}}, I(c) = {{a}}, O(c) = {{e}}, I(e) = {{b}, {c}, {b, c}}
and O(e) = ∅. The dependency relation of C, which corresponds graphically to
the arcs in the figure, in this case is: arcs(C) = {(a, b), (a, c), (b, e), (c, e)}. The
activity bindings are denoted in the figure as dots in the arcs, e.g., {b} ∈ O(a) is
represented by the dot in the arc (a, b) that is next to activity a, while {a} ∈ I(a)
is the dot in arc (a, b) next to b. Non-singleton activity bindings are represented
by circular segments connecting the dots: {b, c} ∈ O(a) is represented by the
two dots in arcs (a, b), (a, c) that are connected through a circular segment.

Definition 2 (Binding, Binding Sequence, Activity Projection). Given
a C-net 〈A, as, ae, I, O〉, the set B of activity bindings is {(a, SI , SO) | a ∈
A ∧ SI ∈ I(a) ∧ SO ∈ O(a)}. A binding sequence β ∈ B∗ is a sequence of
activity bindings. Given a binding sequence β = (a1, S

I
1 , S

O
1 ) . . . (an, S

I
n, S

O
n ), its

activity projection is the activity sequence denoted σβ = a1 . . . an.

Two binding sequences of the C-net in Fig. 1(d) are: β1 = (a, ∅, {b})(b, {a}, {e})
(e, {b}, ∅) and β2 = (a, ∅, {b, c})(c, {a}, {e})(e, {c}, ∅). The projection of β1 is
σβ1 = abe.

The semantics of a C-net are achieved by selecting, among all the possible
binding sequences, the ones satisfying certain properties. These sequences will
form the set of valid binding sequences of the C-net, and their corresponding
projection (see Def. 2) will define the language of the C-net. The next definition
addresses this.

Definition 3 (State, Valid Binding Sequence, Language). Given a C-net
C = 〈A, as, ae, I, O〉, its state space S = B(A×A) is composed of states that are
bags of obligations (activity 2-tuples). An obligation (a, b) expresses that activity
a has executed and expects b to execute. When this obligation is satisfied, it is
removed from the state, thus a state informally represents the bag of pending
( i.e., not yet satisfied) obligations. Function ψ ∈ B∗ → S is defined inductively:
ψ(ε) = ∅ and ψ(β ·(a, SI , SO)) = ψ(β)−(SI ×{a})+({a}×SO). The state ψ(β)
is the state of the C-net after the sequence of bindings β. The binding sequence
β = (a1, S

I
1 , S

O
1 ) . . . (an, S

I
n, S

O
n ) is said to be valid if:

1. a1 = as, an = ae and ∀k : 1 < k < n, ak ∈ A \ {as, ae}
2. ∀k : 1 ≤ k ≤ n, (SI

k × {ak}) ⊆ ψ(βk−1)
3. ψ(β) = ∅
The set of all valid binding sequences of C is denoted as V (C). The language
of C, denoted L(C), is the set of activity sequences that correspond to a valid
binding sequence of C, i.e., L(C) = {σβ | β ∈ V (C)}.
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Fig. 3. (a) C-net mixing concurrent and exclusive behavior for activities c and d.
(b) Immediately follows C-net of log L = {abce, acbe}. Its language (using regular
expressions) is ab(cb)∗e ∪ a(bc)+e ∪ ac(bc)∗e ∪ a(cb)+e.

For instance, in Fig. 1(d), β1 is a valid binding sequence, while β2 is not, since
the final state is not empty (condition 3 is violated). The language of that C-
net is {abe, ace, abce, acbe}. Similarly to Workflow Petri nets [6], C-nets have a
notion of soundness [2]:

Definition 4 (Soundness). A C-net C = 〈A, as, ae, I, O〉 is sound if (i) ∀a ∈
A, ∀S ∈ I(a), ∃β ∈ V (C), ∃X ⊆ A : (a, S,X) ∈ β, and (ii) ∀a ∈ A, ∀S ∈
O(a), ∃β ∈ V (C), ∃X ⊆ A : (a,X, S) ∈ β. That is, every input and output
binding defined in C is used in at least one valid sequence.

Importantly, C-nets can naturally represent behaviors that cannot be easily ex-
pressed in the Petri net notation unless unobservable (silent) transitions and/or
transitions sharing labels are used. Fig. 3(a) illustrates this point. In the C-net,
activities c and d can occur concurrently or exclusively, even in different itera-
tions of the loop created by activity f , e.g., abcdez or abdefbcez. However, there
is still another possibility that arises from combining the output binding {c, d} of
b and the input bindings {c} and {d} of e: abdceefbdfbcez. Note that in this last
trace, activity e could execute twice for a single b (although in the overall trace
they execute the same number of times), and that after these two executions
there are two (e, f) obligations in the state (i.e., ψ(abcdee) = 2(e, f)), which
shows the necessity of defining the state as a multiset of obligations.

C-nets, contrary to Petri nets, have an “additive” nature. That is, while adding
a place to a Petri net can only restrict behavior, adding an arc (or any other
element) to a C-net can only add behavior. The “additive” nature of C-nets is
formally defined with the help of Def. 5 and Property 1.

Definition 5. Given two C-nets C1 = 〈A1, a
1
s, a

1
e, I1, O1〉 and C2

= 〈A2, a
2
s, a

2
e, I2, O2〉, we say that C1 is included in C2, denoted C1 ⊆ C2, if:

– a1s = a2s ∧ a1e = a2e,

– A1 ⊆ A2, and

– ∀a ∈ A1, I1(a) ⊆ I2(a) ∧O1(a) ⊆ O2(a)
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Property 1 ([7]). Let C1 and C2 be two C-nets. If C1 ⊆ C2, then V (C1) ⊆ V (C2),
L(C1) ⊆ L(C2) and arcs(C1) ⊆ arcs(C2).

2.3 C-Net Discovery

Given a log L, the problem tackled in this paper is to derive a C-net C such that
L(C) ⊇ L and C contains the minimal number of arcs. In Sect. 3 we present
such a method together with heuristics to limit the language of the derived net.

Given the additive nature of C-nets, there is a simple method to generate
a C-net that can replay all the traces in L. It is based on the immediately
follows relation [6] between the activities in L, denoted <L and defined as
<L= {(a, b) | ∃σ = a1 . . . an ∈ L, ∃i : 1 ≤ i < n ∧ ai = a ∧ ai+1 = b}.

Definition 6. Given a log L, the immediately follows C-net of L, denoted CIF(L),
is the C-net 〈A, as, ae, I, O〉 such that: (i) A = AL, (ii) ∀σ = a1 . . . an ∈ L, a1 =
as ∧ an = ae, (iii) ∀a ∈ A,O(a) = {{b} | a <L b} ∧ I(a) = {{b} | b <L a}.
Trivially, L(CIF(L)) ⊇ L.

The immediately follows C-net can be computed in linear time with respect of the
size of the log, but allows for many unobserved behavior, thus exhibiting a poor
precision [8]. For instance consider the following log: L = {abce, acbe}. Activities
b and c interleave, but if we build the immediately follows C-net (Fig. 3(b)) we
can see that it allows for loops of arbitrary length involving these two activities,
e.g., abcbce or acbce, since L(CIF(L)) = ab(cb)∗e ∪ a(bc)+e∪ ac(bc)∗e ∪ a(cb)+e,
which significantly differs from L.

3 Discovering Strategies for C-Nets Based on SMT

3.1 Protobinding Sequences of a Log

In Sect. 2.2 we have seen first the definition of a C-net and then the definition of
the valid sequences of bindings it can produce. To discover a C-net from a log,
we follow the same path but in the opposite direction: we will define sequences
of triples representing unrestricted bindings that satisfy some properties, and
then we will show that given these sequences, it is easy to obtain a C-net C such
that these sequences are actually valid sequences of bindings of C. Consequently,
this transforms the discovery problem for C-nets into the problem of deriving
these sequences of triples from the sequences in the log. Let us first formalize
the concept of protobinding:

Definition 7 (Protobinding, Well-Formed Protobinding Sequence). A
triple (a,X, Y ) is a protobinding if a is an element and both X and Y are sets.
A sequence β = (a1, X1, Y1) . . . (an, Xn, Yn) of protobindings is well-formed if it
satisfies the following conditions:

(W1) ∀i : 1 < i ≤ n,Xi ⊃ ∅ ∧ ai �= a1
(W2) ∀i : 1 ≤ i < n, Yi ⊃ ∅ ∧ ai �= an
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(W3) X1 = Yn = ∅
(W4) ∀i : 1 ≤ i ≤ n, ψ(βi−1) ⊇ (Xi × {ai})
(W5) ψ(βn) = ∅

Compared with the definition of binding (Def. 2), this is a weaker definition since
it is no longer tied to a particular C-net. Given a set B of sequences of well-
formed sequences of protobindings it is possible to characterize (with necessary
conditions) all the C-nets such that their set of valid sequences of bindings
contain the sequences of protobindings in B, as next lemma states.

Lemma 1. Given a set of well-formed protobinding sequences B with identical
initial and final activities as and ae, respectively, and a C-net C = 〈A, as, ae, I, O〉.
The following conditions:

(N1) A ⊇ {a | ∃β ∈ B : (a,X, Y ) ∈ β}
(N2) ∀a ∈ A, I(a) ⊇ {X | ∃β ∈ B, ∃Y : (a,X, Y ) ∈ β}
(N3) ∀a ∈ A, O(a) ⊇ {Y | ∃β ∈ B, ∃X : (a,X, Y ) ∈ β}

hold if, and only if, V (C) ⊇ B.

Proof. ⇒ Take any protobinding sequence β ∈ B, we will prove that since it
is well-formed it is actually a valid binding sequence of C, thus V (C) ⊇ B. By
Def. 2, we know that to be a binding sequence (not necessarily valid) of C, every
protobinding (a,X, Y ) ∈ β must satisfy that a ∈ A, X ∈ I(a) and Y ∈ O(a),
which is trivially true given our definition of C. Thus, given N1, N2 and N3, β is
a binding sequence of C. We now prove that β is in fact also valid. To prove this
we use the fact that β is well-formed (thus satisfies W1 to W5). Proving that
β = (a1, X1, Y1) . . . (an, Xn, Yn) is a valid binding sequence, we need to prove
that a1 = as, an = ae and ∀k : 1 < k < n, ak ∈ A \ {as, ae}. The first two
conditions are satisfied because we require that all the sequences in B start with
as and end with ae. The third condition is guaranteed by W1 and W2. The
remaining two conditions for a valid sequence are directly W4 and W5.

⇐ If C is a C-net and L(C) ⊇ {σβ | β ∈ B}, then if N1 does not hold it
exists some activity that appears in the sequences of B that cannot be executed
by C. If N2 does not hold, then there is some sequence that is not possible
because some X cannot be used by C, and the same applies for N3 and Y . ��

Creating a tuple 〈A, as, ae, I, O〉 satisfying N1, N2 and N3 does not necessarily
yield a C-net (for instance we could add activities to A that violate some of the
conditions of Def. 1), since these are necessary but not sufficient conditions. To
guarantee that a C-net is generated and it is sound (c.f., Def. 4), we restrict the
conditions of the previous lemma in the following theorem:

Theorem 1. Given a set of well-formed protobinding sequences B with identical
initial and final activities as and ae, respectively, the tuple C = 〈A, as, ae, I, O〉
with:

(T1) A = {a | ∃β ∈ B : (a,X, Y ) ∈ β}
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(T2) ∀a ∈ A, I(a) = {X | ∃β ∈ B, ∃Y : (a,X, Y ) ∈ β}
(T3) ∀a ∈ A, O(a) = {Y | ∃β ∈ B, ∃X : (a,X, Y ) ∈ β}

is a sound C-net such that V (C) ⊇ B.

Proof. We will prove that C is a C-net, since then we can use Lemma 1 to
prove that V (C) ⊇ B. Proving that C is sound, once we know it is a C-net,
is straightforward since every input and output binding in I and O appears in
at least one of the sequences in B, thus in at least one valid binding sequence
of C, thus C is sound. So we have only to prove that C is a C-net satisfying
Def. 1. First of all we have to prove that as is the only activity with empty
input binding (I(as) = ∅) and ae is the only activity with empty output binding
(O(ae) = ∅). Consider all sequences β = (a1, X1, Y1) . . . (an, Xn, Yn) ∈ B, by
W3, we know that ∅ ∈ I(as) and ∅ ∈ O(ae) (because a1 = as and an = ae),
and since these two activities are only executed once (due to W1 and W2) there
is no other set in I(as) and O(ae). Since the other activities a ∈ A \ {as, ae}
are not executed at the begining nor the end of β, also by W1 and W2 we
know their Xi and Yi sets are non-empty, thus they cannot have I(a) = {∅}
nor O(a) = {∅}. We must also prove that the I and O functions are defined
over the powerset of A, i.e., ∀a ∈ A, ∀X ∈ I(a), X ⊆ A. Because of W4 and
W5 the sequence can only consume obligations previously produced, and all
the obligations must be consumed. If some Xi in β contains activities not in
A, it is impossible to satisfy W4 thus it would not be well-formed, which is a
contradiction. Similarly, if some Yi in β contains activities not in A, then the
obligations created can never be consumed, violating W5. Finally, we have to
prove that all the activities in the graph (A, arcs(C)) are on a path from as to ae.
Again by W4 and W5, since an activity ai (different than as) can only execute
when it has at least one obligation (a, ai) for it in ψ(βi−1) and a ∈ Xi, thus
(a, ai) ∈ arcs(C), and the source of all this chain of obligations is as and ends in
ae or otherwise ai (or some of its successors in the obligation chain) would have
produced an obligation that nobody would have consumed, violating W5, then
every activity is in a dependency chain between as and ae. ��

The theorem allows an easy conversion from protobinding sequences to C-nets,
so that the C-net discovery problem from a log L can be reduced to the following
problem: given a log L, compute a well-formed protobinding sequence for each
sequence in L. Since by definition all our sequences in the log have the same initial
and final activities, then all the protobinding sequences will also have, thus we
can use Theorem 1 to discover a C-net. Although the theorem does not consider
all the C-nets whose valid binding sequences include the protobinding sequences
B, it gives always the smallest C-net (in terms of valid binding sequences and
also in terms of number of structural elements of the C-net) that can generate
the sequences in B as next corollary states.

Corollary 1. Given a set of well-formed protobinding sequences B with iden-
tical initial and final activities as and ae, respectively, a C-net C such that
V (C) ⊇ B and a C-net C⊥ satisfying T1, T2 and T3, then C⊥ ⊆ C.
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Proof. If C is a C-net and V (C) ⊇ B, then by Lemma 1 we know it satisfies
N1, N2 and N3. Since C⊥ satisfies T1, T2 and T3, by Def. 5 C⊥ ⊆ C, and this
entails by Property 1 V (C⊥) ⊆ V (C). ��

In the next section we explain how we can encode as linear constraints the
problem of computing the sequences of protobindings.

3.2 Encoding the Problem as Linear Constraints

Given a sequence σ = a1 . . . an of a log L, it is trivial to build a protobinding
sequence βσ out of it as βσ = (a1, X1, Y1) . . . (an, Xn, Yn). The difficult part is
to ensure that βσ is actually well-formed. We will encode the unknown Xi and
Yi sets using integer variables and then define the linear constraints that will
guarantee that βσ is well-formed. We start by delimiting the values that the Xi

and Yi unknowns can take using the following property:

Property 2. Let σ = a1 . . . an be a sequence of activities. Consider the proto-
binding sequence βσ = (a1, X1, Y1) . . . (an, Xn, Yn). If βσ is well-formed, then
∀i : 1 ≤ i ≤ n,Xi ⊆ Aσi−1 ∧ Yi ⊆ Aσi→ .

Proof. If for some i, Xi �⊆ Aσi−1 , then let a ∈ Xi \ Aσi−1 . Now activity ai
is waiting for an obligation (a, ai) that cannot have been produced (since a /∈
Aσi−1). Thus ψ(βi−1) �⊇ (Xi × {ai}) and β is not well-formed (violates W4),
which is a contradiction. Similarly, if Yi �⊆ Aσi→ , then it exists an activity a such
that a ∈ Yi \Aσi→ . Now obligation (ai, a) cannot be consumed (since a /∈ Aσi→)
so ψ(βn) �= ∅ (violating W5), and again β is not well-formed. ��

To encode arithmetically the sets Xi and Yi for each βσ, we use an integer
variable over the domain {0, 1} (i.e., a Boolean variable, although we treat it as
an integer in this section) to encode the fact that a particular activity belongs to
the set. In particular we use a variable xσ,i,(a,ai) to indicate whether activity a
belongs to Xi in βσ or not. As usual when sets are encoded using characteristic
functions we use the following semantics:

xσ,i,(a,ai) =

{
1 if a ∈ Xi in βσ

0 otherwise.

Similarly, the variable yσ,i,(ai,a) indicates if a belongs to Yi in βσ. Due to Prop-
erty 2, the activity a for x variables can only be chosen among the alphabet of
prefix σi−1, while in y variables it is restricted to the alphabet of the suffix of σ
after ai, i.e., Aσi→ . We denote by X and Y the set of all x and all y variables,
respectively.

We will now rewrite the conditions (W1,W2,W3,W4 and W5) of Def. 7 for a
well-formed protobinding sequence βσ = (a1, X1, Y1) . . . (an, Xn, Yn) as inequal-
ities using the X and Y variables.
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Condition W1. In this case, part of the condition is already guaranteed, since
our definition of log already assumes that the initial activity only appears once.
Thus the condition simplifies to requiring that every Xi (except X1) must be
non-empty:

∀i : 1 < i ≤ n,
∑

e∈Aσi−1

xσ,i,(e,ai) ≥ 1 (1)

Condition W2. This is the symmetrical case to W1 but with the Yi sets. Since
the uniqueness of the final activity is already guaranteed, we must only enforce
that the Yi sets (except Yn) are non-empty:

∀i : 1 ≤ i < n,
∑

e∈Aσi→

yσ,i,(ai,e) ≥ 1 (2)

Condition W3. This needs no conversion, since we can directly assign the
empty set toX1 and Yn. Note that the model does not even generate any variable
in X or Y to represent these sets, since Aσ0 = Aσn→ = ∅.

Condition W4. This condition requires that the state of obligations after exe-
cuting prefix βi−1 (i.e., ψ(βi−1)) contains, at least, the obligations in (Xi×{ai}).
This is the same as requiring that the number of obligations of the type (e, ai) in
ψ(βi−1) is larger or equal than the number of obligations (e, ai) in (Xi × {ai}).
Moreover, if ai is the last occurrence of that activity, condition W5 applies in-
stead, since there cannot be pending obligations in the final state, so the last
occurence of an activity must consume all the obligations for it. The number of
such obligations in ψ(βi−1) can be computed by summing the number of times
the obligation has been produced minus the number of times it has been already
consumed before the execution of ai.

∀i : (1 ≤ i ≤ n ∧ ∃j : (j > i ∧ aj = ai)) , ∀e ∈ Aσi−1 ,∑
k:k<i∧ak=e

yσ,k,(e,ai) −
∑

m:m≤i∧am=ai

xσ,m,(e,ai) ≥ 0 (3)

Condition W5. To force that the final number of obligations must be zero
we require that the number of (e, ai) obligations is exactly zero after the last
execution of ai in the sequence. Since it is simply a stronger version of (3), it
replaces (3) in the last execution of ai.

∀i : (1 ≤ i ≤ n ∧ ∀j (j > i ⇒ aj �= ai)) , ∀e ∈ Aσi−1 ,∑
k:k<i∧ak=e

yσ,k,(e,ai) −
∑

m:m≤i∧am=ai

xσ,m,(e,ai) = 0 (4)
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Definition 8 (Structural equations). The set of structural equations for a
C-net including the behavior of a log L, denoted structural equations(L), is the
set of equations obtained by adding the set of equations (1), (2), (3) and (4) for
every σ ∈ L.

Example 1. Consider the sequence σβ = abcbe, so that β = (a1, X1, Y1)(a2, X2, Y2)
(a3, X3, Y3)(a4, X4, Y4)(a5, X5, Y5) with a1 = a, a2 = b, a3 = c, a4 = b, a5 = e,
and X1 = Y5 = ∅. Table 1 shows the structural equations for each prefix in the
sequence.

Table 1. Structural equations for sequence abcbe

i = 1 Aσ0 = ∅, Aσ1→ = {b, c, e}, σ1 = a

(1) –
(2) yσ,1,(a,b) + yσ,1,(a,c) + yσ,1,(a,e) ≥ 1
(3) –

i = 2 Aσ1 = {a}, Aσ2→ = {b, c, e}, σ2 = ab

(1) xσ,2,(a,b) ≥ 1
(2) yσ,2,(b,b) + yσ,2,(b,c) + yσ,2,(b,e) ≥ 1
(3) yσ,1,(a,b) − xσ,2,(a,b) ≥ 0
i = 3 Aσ2 = {a, b}, Aσ3→ = {b, e}, σ3 = abc

(1) xσ,3,(a,c) + xσ,3,(b,c) ≥ 1
(2) yσ,3,(c,b) + yσ,3,(c,e) ≥ 1
(4) yσ,1,(a,c) − xσ,3,(a,c) = 0 and yσ,2,(b,c) − xσ,3,(b,c) = 0

i = 4 Aσ3 = {a, b, c}, Aσ4→ = {e}, σ4 = abcb

(1) xσ,4,(a,b) + xσ,4,(b,b) + xσ,4,(c,b) ≥ 1
(2) yσ,4,(b,e) ≥ 1
(4) yσ,1,(a,b) − xσ,2,(a,b) − xσ,4,(a,b) = 0, yσ,2,(b,b) − xσ,4,(b,b) = 0 and

yσ,3,(c,b) − xσ,4,(c,b) = 0

i = 5 Aσ4 = {a, b, c}, Aσ5→ = ∅, σ5 = abcbe

(1) xσ,5,(a,e) + xσ,5,(b,e) + xσ,5,(c,e) ≥ 1
(2) –
(4) yσ,1,(a,e) − xσ,5,(a,e) = 0, yσ,2,(b,e) − yσ,4,(b,e) − xσ,5,(b,e) = 0 and

yσ,3,(c,e) − xσ,5,(c,e) = 0

Note that in this table some of the equations for i = 1 are empty since Aσ0 = ∅,
a similar case to that of i = 5 and (2), because Aσ5→ = ∅. Moreover, (4) is used
instead of (3) for i ∈ {3, 4, 5} because these are the last executions of activities
c, b and e, respectively.

In summary, by finding the satisfying assignments to the X and Y variables
in the equations arising from a log, one can derive a C-net that includes the
language of the log. In terms of complexity, the number of variables that each
activity occurrence generates is |A|, thus for a sequence σ, the total number of
variables generated is |A| · |σ|. Hence, the total number of variables for a log L
is |A| ·

∑
σ∈L |σ|, which is O (|L| · |A| ·maxσ∈L (|σ|)). The number of equations
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for an activity ai ∈ σ is two ((1) and (2)) plus |Aσi−1 | for (3) and (4). Thus, for
a sequence σ, the maximum number of equations is O(|σ| · |A|) so for the whole
log L is O(|L| · |A| · maxσ∈L(|σ|)), the same as the number of variables. Next
sections illustrate how to algorithmically solve the discovery problem described
in this section.

3.3 Solving Linear Constraints Using SMT

The equations presented in the previous section can be represented in different
domains. In the algebraic domain, one option is to model equations (1)–(4) in a
Integer Linear Programming (ILP) model (but with binary variables), and use
one of the available solvers. However, such an option has an important drawback:
the cost function used to minimize the solution to the problem must be linear. A
possibility is to minimize the sum of all the X and Y variables. However, this will
promote solutions like the immediately follows C-net, since in that C-net every
activity (except the initial and final ones) always consumes one obligation and
produces one obligation, thus it is not possible to have a C-net producing less
obligations. Ideally we would like to express that we seek for a C-net as simple
as possible and, as we will see in Sect. 3.4, we can restrict its number of arcs.
However, this requires an expression involving logical disjunctions. Although
these type of constraints can be encoded as linear combinations1, they require
the introduction of auxiliary variables and additional constraints.

An alternative will be to solve the problem in the Boolean domain. SMT
solvers for the theory of quantifier-free bit-vector arithmetic [9], as we will see
in this section, can also model equations (1)–(4) and have the advantage that
they can also encode more easily the bound on the number of arcs in the C-net,
as well as some other constraints (see Sect. 3.6). Since SMT solvers provide a
higher degree of flexibility and our tests showed that in terms of running time
ILP solvers and SMT solvers had a similar performance in our benchmarks, we
have decided to use SMT to encode the problem.

Variables in X and Y are all Boolean, so obtaining a Boolean formula that
represents the model is possible. Now let us show how (1), (2), (3) and (4) can be
encoded as Boolean formulas. Equations (1) and (2) are trivial, since they corre-
spond to a disjunction. For instance, the inequality (1):

∑
e∈Aσi−1

xσ,i,(e,ai) ≥ 1

can be rewritten as
∨

e∈Aσi−1
xσ,i,(e,ai) = 1. Equations (3) and (4), are very sim-

ilar, so we can simply focus on one of them. The key idea is to compute Boolean
expressions that represent the individual bits of the sum or the subtraction of
these Boolean variables. For (3) we then have to check the sign of the result
(must be positive, so the most significant bit in two’s complement must be zero)
while for (4) the result must be zero (so all the bits of the result have to be zero).

The translation process is quite involved (this is why automated tools like
[10] are used for this task), but it can be quite straightforward for the most
simple cases. For instance, going back to Example 1, consider the equation

1 For instance z = x ∨ y is equivalent to z ≥ x, z ≥ y and z ≤ x+ y.
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yσ,1,(a,b) − xσ,2,(a,b) ≥ 0 ((3) for i = 2). Translated to a Boolean expression
this is simply yσ,1,(a,b) ∨ xσ,2,(a,b).

Once all formulas have been translated to the Boolean domain, they can be
converted into CNF formulas and fed into a SAT solver. In this work (Sect. 4) we
have used the STP solver [10] to convert our linear equations to CNF formulas.

3.4 Adding a Cost Function

Due to the additive nature of C-nets, reducing the number of arcs tends to
restrict the language of the net. Fortunately, it is possible to encode as an SMT
formula an expression that bounds the number of arcs in the derived C-net. To
accomplish this we can use any of the sets of Boolean variables. Without loss
of generality, we use set X . For readability we introduce an auxiliary notation
to denote all the variables in X that correspond to a given binding (a, b) in the
sequences of a log L. Namely, X(a,b)(L) = {xσ,i,(a,b) | ∃σ = a1 . . . a|σ| ∈ L : ai =
b ∧ a ∈ Aσi−1}. We can now compute the number of arcs in the C-net obtained
through T1, T2 and T3 (Theorem 1) using the following expression:

number of arcs(L)
def
=

∑
a∈AL

∑
b∈AL

∨
x∈X(a,b)(L)

x

Then, the equation bounding the number of arcs is:

bound arcs(L, l)
def
= number of arcs(L) ≤ l (5)

In Sect. 3.5 we will use this equation to find the C-net whose language includes
the log L and has the minimum number of arcs. Since we will explore the solution
space using a binary search strategy, we need to derive lower and upper bounds
on the number of arcs that the C-net can have.

An upper bound can be obtained by computing the immediately follows C-
net and counting its arcs. A possible lower bound can be the maximum between
|AL|−1, which is the minimum number of arcs to guarantee that all the activities
in the log are connected, and the bound obtained in the following lemma:

Lemma 2. Let As be a set containing all the activities that appear in second
position in some sequence of log L. Similarly, let Ae be a set containing the
activities that appear in previous to the last position in some sequence. Any C-
net C such that L ⊆ L(C) satisfies:

arcs(C) ≥ |As|+ |Ae|+ |AL \ (As ∪ Ae)| − 2 + max(|As \Ae|, |Ae \As|)

Proof. C has an arc from initial activity as to all the activities in As. Similarly
it has an arc from every activity in Ae to the final activity ae, otherwise there
is a sequence in L that does not belong to L(C). This means we have already
|As|+ |Ae| arcs in C. Now for activities in As ∩Ae no further arc is mandatory,
however for activities not in the intersection there must be a path from as to
ae (by C-net definition). Since one activity in As \ Ae can be connected to
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another activity in Ae \As, the difference set with maximum number of elements
determines the number of additional arcs that have to be added (thus we must
add max(|As \ Ae|, |Ae \ As|) to the number of arcs). Finally the activities not
in As, Ae nor in {as, ae} can be arbitrarily placed, however the structure that
yields the least number of additional arcs is to put them in a sequence in an
already existing path from as to ae, in which case one arc is added for each
activity in this set. Hence |AL \ (As ∪Ae ∪ {as, ae})| = |AL \ (As ∪Ae)| − 2 arcs
are added. ��

Depending on the characteristics of the log (mainly the sizes of As and Ae),
this bound might be more restrictive than using simply connectedness argu-
ments (i.e., the bound |AL|−1) thus using the largest of both values potentially
decreases the number of SMT problems that have to be solved.

3.5 The Algorithm

In Algorithm 1 we give the pseudocode of the proposed approach. The main
idea is to build the structural equations mandatory to any C-net whose language
includes a given log L, and then bound the number of arcs allowed in the solution.
Following the outcome of the SMT solver, the bound is changed, so that we
minimize the number of arcs using a binary search strategy. To obtain reasonable
initial bounds, we use Lemma 2 for a lower bound (line 5) and the number of
arcs in the immediately follows C-net for the upper bound (line 6).

Algorithm 1. Discover minimal C-net

1: procedure discoverMinCnet(L)
2: C = 〈A, as, ae, I, O〉 ← CIF(L) � See Sect. 2.3
3: As ← {a | (as, a) ∈ arcs(C)}
4: Ae ← {a | (a, ae) ∈ arcs(C)}
5: min ← max(|A|, |As|+ |Ae|+ |A \ (As ∪Ae)| − 2 +max(|As \ Ae|, |Ae \As|))
6: max ← |arcs(C)| − 1
7: Es ← structural equations(L)
8: while min ≤ max do
9: avg ← �(min+max)/2�
10: E ← Es ∪ {bound arcs(L, avg)} � Add (5)
11: feasible, solutions ← solve(E) � Call SMT solver
12: if feasible then
13: C ← extract cnet(solutions) � Model feasible
14: max ← |arcs(C)| − 1 � Since |arcs(C)| ≤ avg
15: else
16: min ← avg + 1 � Model unfeasible
17: end if
18: end while
19: return C
20: end procedure
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Note that, although the minimum number of arcs to guarantee that all activ-
ities are connected is |A| − 1, the minimum bound in the algorithm is set to |A|.
This is because there is a single model that has |A| − 1 arcs, which corresponds
to a sequence of activities. If this model is feasible, then it should have been
already found in CIF, thus |arcs(C)| = |A| − 1 and the algorithm would never
enter the loop and return CIF. On the other hand, if |arcs(C)| > |A| − 1, then
there is no feasible model with just |A|−1 arcs, thus the minimum search bound
can be set to |A|.

The algorithm contains two calls to functions not yet introduced. One is func-
tion solve(E) which simply calls the SMT solver on the set of equations E and
returns two values: feasible that is a Boolean value indicating whether the solver
found a solution to the equations in E and solutions that contains the values
of the X and Y variables in case the problem was feasible. The other function,
extract cnet(solutions), simply builds a C-net out of the values of the variables
in sets X and Y using the principles explained in Theorem 1.

Theorem 2. Let C be the C-net returned by Algorithm 1 executed on a log L.
The language of C includes L and there is no other C-net including L that has
less arcs than C.

Proof. Since the equations Es represent all possible well-formed protobinding
sequences of L, any valid solution is a set B of well-formed protobinding se-
quences of L. Using Theorem 1 on B (the extract cnet function) we obtain
the C-net C whose set of valid binding sequences includes B (thus its language
includes L) and has the smallest number of arcs (Corollary 1). Since we simply
add a restriction (bound arcs(L, avg)) on the maximum number of arcs that the
sequences in B induce on C, by performing a binary search we guarantee that
no other C-net whose language includes L can have fewer arcs than C. ��

3.6 Encoding Other Types of Constraints

The approach of Sect. 3.5 does not give any guarantee on the amount of addi-
tional behavior that the generated C-net might exhibit. For instance, consider
the log {abcdez, abdcez}. The C-net whose language contains only this log is
shown in Fig. 4(a). However there are other C-nets with six arcs that also con-
tain the log (as well as some other sequences), like the one in (b). Ideally we
would like to obtain the simplest C-net that adds the least amount of additional
behavior. While restricting the language accepted by a Petri net is straightfor-
ward, the same operation in C-nets is much more difficult given their additive
nature and the fact that their language is not prefix closed.

The basic problem is that in C-nets we could only exclude complete sequences
(notice that there may be infinitely many sequences starting with the initial ac-
tivity and ending with the final activity), rather than prefixes (known as wrong
continuations [11] or faulty words [12]) as in Petri nets. Since it is not possi-
ble to exclude an infinite number of complete sequences, we have to resort to
some heuristics to favor the selection of C-nets with a more particular language.
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Fig. 4. Two possible C-nets with the minimum amount of arcs for log {abcdez, abdcez}

We will use three approaches: the first one penalizes the activities whose input
binding set does not contain activities that are near enough in a sequence, the
second limits the amount of different input and/or output bindings per activity,
and the third restricts the set of activities for which an activity can generate or
consume obligations. This latter approach is fundamental to tackle some of our
largest benchmarks, since it can greatly reduce the amount of variables in the
model to solve. Note that, using the following heuristics, the guarantee that no
other C-net whose language includes the log can have fewer arcs is lost.

Restricting the First Occurrence of Activities. To check whether two
activities are nearby in a sequence, we take into account the other sequences
in the log and the position that the activity occupies in all other sequences
that share a prefix with the current sequence. For instance in the log used in
Fig. 4, {abcdez, abdcez}, activity d is executed in the fourth position in the first
sequence, but there is another sequence sharing a prefix ab in which it appears
in the third position. In this case, we consider that the last activity in the prefix,
namely activity b in second position in both sequences, is the first point in which
an obligation for d can be generated, otherwise d could potentially be executed
prior to this point (e.g., for instance just after the execution of a). Consequently,
we would penalize activity d if its input binding does not contain at least one
of the activities after the first position in any of the two sequences, namely
activities b, c, d, e and z. That is, if its input binding is simply {a} we would
add one to the penalty function (but, for instance, we would not penalize {a, b}
or {c}). Summing all the penalties for the first occurrence of every activity in
each sequence, we obtain an expression that can be bounded, similarly to (5),
and added into the SMT problem. In our example, the C-net of 4(b) would have
a penalty of one (because of activity c), while the C-net in (a) has a zero penalty.

Limiting the Input/Output Bindings per Activity. The second approach
involves limiting the number of input and/or output bindings per activity. Aux-
iliary variables are used for this task. We illustrate this point using variables X ,
since the strategy for the Y variables is identical. Assume that two input bindings
are allowed for each activity. For each variable xσ,i,(a,b) involving an obligation
(a, b) we generate one variable ik,(a,b) for each one of the k input bindings we
allow. Since in this case k = 2, this means that we would have i1,(a,b) and i2,(a,b).
Now for every input binding set in position i of sequence σ, we will enforce that∨

1≤j≤k

(∧
a∈Aσi

xσ,i,(a,ai) = ij,(a,ai) ∧
∧

a/∈Aσi
xσ,i,(a,ai) = 0

)
.
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Limiting the Obligation Alphabet. We have seen in Property 1 that the set
of input bindings for an activity ai in sequence σ is a subset of Aσi . However
this allows for very long causal dependencies, that are rather unfrequent in most
of the logs. We can simplify the C-net discovery problem by bounding this set
using a window: we will only allow activity ai to consume obligations generated
by activities that are at most at distance w of any occurrence of ai in any of the
sequences of the log. Using a window size of one (w = 1) the number of variables
can be dramatically reduced (the same principles are used to restrict the output
binding sets), allowing the discovery of larger benchmarks. However, when using
this approach complex causalities between activities can be missed.

4 Experiments

First of all, Table 2 describes some of the examples used in our experiments.
We have used logs obtained by simulation of C-nets coming from [2], or that we
have created to represent a variety of non-trivial behavior. Other benchmarks
are logs introduced in [13], for which we have manually created a C-net (to set
a target C-net to achieve) from a Petri net generated by a discovery tool using
the theory of regions [12]. The table also includes the following information: |L|
is the number of distinct sequences in the log, |σm| is the length of the largest
sequence and |A| is the size of the alphabet of activities.

We have implemented Algorithm 1 in a prototype tool that uses the STP

solver [10] as the underlying SMT solver2. We have compared it with the Flexible
Heuristic Miner (FHM) [3] which is able to discover a formalism similar to C-nets
(called flexible heuristic nets from a log [3]) . Table 3 shows the results on some
small log examples with the following information: arcs is the number of arcs
of the final C-net, T is the elapsed time (in seconds) required to complete the
discovery process, id indicates if the obtained C-net was identical to the original
one, in the case where the log originated from a C-net, or has the same language
as a Petri net found using the theory of regions, cf is the cost-based fitness per
case metric of [14] where 1.0 indicates that all sequences in the log belong to
the language of the C-net, and the smaller the value is the less sequences are
reproducible by the C-net, |X ∪ Y| is the number of Boolean variables used to
encode the SMT problem, |E| is the number of equations that the SMT problem
contains, bounds is the initial range in the number of arcs where the binary
search must take place, it is the number of iterations to obtain this C-net, and
column heur indicates if some of the heuristics in Sect. 3.6 was used, where f
refers to restricting the first occurrence of activities and i (o) to limiting the
number of input (output) bindings per activity. In this first set of experiments
we did not limit the obligation alphabet.

The results on these small benchmarks show that the approach is, in general,
able to derive valuable C-nets. In fact the quality of the discovered nets is much
better than the ones derived using FHM. For instance, the latter generates four

2 STP translates the SMT formula to a SAT formula and then uses the miniSAT solver,
but any other SAT (or incremental SAT) tool could have been used as backend.
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Table 2. Logs used in the experiments

aalst2b [2] |L| = 10, |σm| = 5, |A| = 5
abcde

a b

c

d e

abcbcdde
abbbcccddde
abbcdcde
abcbdcde
abcbbdccdde
abbccdde
abbcbdcdcde

mixedXorAnd |L| = 8, |σm| = 11, |A| = 5
abcdez

See Fig. 3(a)abdefbcez
abdceefbdfbcez

a12f0n00 5 [13] |L| = 5, |σm| = 7, |A| = 12
SbcejE

S

f

b
c

d

e

j

g

h

i

k

E

SbdjE
SfghikE
SfgihkE
SfhgikE

optional1 |L| = 11, |σm| = 8, |A| = 6
abf

a

b

c

e

d f

acbdef
abbedf
abbbbedf
acbedf
acbbbedf
acbbf
abbbbdef
abbdef
acbbbdef
acbf

cycles |L| = 7, |σm| = 18, |A| = 8
abcfgz

a b

c

d h

g

f

z

abcdbcfghfgz
abcfghdbcfgz
abcfgdhbcfgz
abcfdgbhcfgz
abcfdghbcfgz
abcdbcdbcfghfghfgz
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Table 3. Results of discovery algorithm on small examples

FHM Algorithm 1
Benchmark arcs T id cf |X ∪ Y| |E| bounds arcs it T heur id cf

aalst1 (Fig. 2) 6 0.1 n 0.71 156 147 [6, 11] 6 2 0.3 – y 1.0
aalst2b 7 0.0 n 0.24 156 147 [5, 9] 6 3 0.2 – n 1.0
mixedXorAnd 8 0.0 n 0.12 219 162 [7, 11] 8 3 0.2 – y 1.0
a12f0n00 5 14 0.2 n 0.87 176 143 [12, 17] 14 3 0.1 f y 1.0
optional1 7 0.0 n 0.27 413 264 [6, 10] 9 2 0.1 f,o y 1.0
cycles 9 0.1 n 0.09 839 542 [8, 17] 9 3 1.3 f,i y 1.0
a22f0n00 1 34 0.5 n 0.37 28898 18942 [22, 166] ≤39 ≥4 >1h – – –

C-nets with empty language. In contrast, Algorithm 1 always generates C-nets
whose language contains the given log (fitness=1.0), not only this but also it
rediscovers the original C-nets in most of the cases. However two logs are not
successfully discovered: for the aalst2b benchmark, we obtain a C-net equal to
the one in Table 2, but without the arc between b and d; on the other hand, the
largest benchmark in this table (a22f0n00 1 from [13]) could not be discovered
in the one hour limit used in our experiments. Although it seems reasonable to
assume that the large number of variables and equations is the responsible of
this fact, a more careful evaluation shows that this is not the main factor. For
instance, in Fig. 5, we can see the time used by the solver to solve the set of
equations, as the bound in the number of arcs allowed is reduced. Initially, the
solver finds quickly a solution, but as the bound approaches the lower limit, the
time needed grows exponentially. The reason is simple: the set of valid solutions
diminishes as the bound also reduces, and the solver has to spend more time
searching. Note that the set of equations to solve in all these cases is exactly the
same (same variables, same equations) with the only exception that the constant
used to bound the number of arcs is different.
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Fig. 5. stp solver times for the a22f0n00 1 log

To be able to pro-
cess larger benchmarks
we have to resort to our
last heuristic (limiting the
obligation alphabet). Ta-
ble 4 shows the results for
our previous benchmarks
as well as some larger ex-
amples also from [13]. In
this case we have not used
any other heuristic. De-
spite the fact that the
original models were dis-
covered only in three of
the benchmarks, in each
case the model found was actually the original but in which some additional
input and output binding sets were present. This strongly suggests that a
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Table 4. Results of discovery algorithm when heuristics to limit the number of variables
are used (activity window of size 1)

Benchmark |L| |σm| |A| |X ∪ Y| |E| bounds arcs it T id cf

aalst1 10 5 5 136 137 [6, 11] 6 2 0.0 y 1.0
aalst2b 8 11 5 240 246 [5, 9] 6 3 0.1 n 1.0
mixedXorAnd 3 14 7 89 98 [7, 11] 8 3 0.0 y 1.0
a12f0n00 5 5 7 12 72 91 [12, 17] 14 3 0.0 y 1.0
optional1 11 8 6 229 220 [6, 10] 9 2 0.0 n 1.0
cycles 7 18 8 265 288 [8, 17] 9 3 0.1 y 1.0
a22f0n00 1 99 46 22 12827 10369 [22, 166] 34 7 9.3 n 1.0
a22f0n00 5 836 76 22 121281 97429 [22, 183] 34 7 264.9 n 1.0
a32f0n00 1 100 73 32 26378 19049 [32, 362] 46 8 35.4 n 1.0
a42f0n00 1 100 58 42 48432 31815 [42, 735] 63 9 248.4 n 1.0

strategy that minimizes the number of such sets would greatly improve the
results, as well as the overall readability of the derived C-nets.

5 Conclusion and Future Work

This paper has presented an algorithm to derive a C-net from a set of traces,
which guarantees minimality in the number of arcs. As future work, we plan to
incorporate in the algorithm new ideas on how to bound the language of the
C-net obtained. Also, high-level strategies that can make the approach able to
handle industrial examples will be considered in the future.
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Abstract. Process discovery—discovering a process model from example be-
havior recorded in an event log—is one of the most challenging tasks in process
mining. Discovery approaches need to deal with competing quality criteria such
as fitness, simplicity, precision, and generalization. Moreover, event logs may
contain low frequent behavior and tend to be far from complete (i.e., typically
only a fraction of the possible behavior is recorded). At the same time, mod-
els need to have formal semantics in order to reason about their quality. These
complications explain why dozens of process discovery approaches have been
proposed in recent years. Most of these approaches are time-consuming and/or
produce poor quality models. In fact, simply checking the quality of a model is
already computationally challenging.

This paper shows that process mining problems can be decomposed into a
set of smaller problems after determining the so-called causal structure. Given a
causal structure, we partition the activities over a collection of passages. Confor-
mance checking and discovery can be done per passage. The decomposition of
the process mining problems has two advantages. First of all, the problem can be
distributed over a network of computers. Second, due to the exponential nature of
most process mining algorithms, decomposition can significantly reduce compu-
tation time (even on a single computer). As a result, conformance checking and
process discovery can be done much more efficiently.

Keywords: process mining, conformance checking, process discovery,
distributed computing, business process management.

1 Introduction

A recent report by the McKinsey Global Institute (MGI) called “Big Data: The Next
Frontier for Innovation, Competition, and Productivity” describes the spectacular growth
of data and the potential economic value of such data in different industry sectors [28].
MGI estimates that enterprises globally stored more than 7 exabytes of new data on disk
drives in 2010, while consumers stored more than 6 exabytes of new data on devices
such as PCs and notebooks. Despite the growth of storage space, it is impossible to store
all event data. The global capacity to store data has been estimated in various studies.
For example, a recent study in Science suggests that the total global storage capacity
increased from 2.6 exabytes in 1986 to 295 exabytes in 2007 [25].

The incredible growth of event data provides new opportunities for process analysis.
As more and more actions of people, organizations, and devices are recorded, there are
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ample opportunities to analyze processes based on the footprints they leave in event
logs. In fact, the analysis of hand-made process models will become less important
given the omnipresence of event data. This is the reason why process mining is one
of the “hot” topics in Business Process Management (BPM). Process mining aims to
discover, monitor and improve real processes by extracting knowledge from event logs
readily available in today’s information systems [2].

Starting point for process mining is an event log. Each event in such a log refers to
an activity (i.e., a well-defined step in some process) and is related to a particular case
(i.e., a process instance). The events belonging to a case are ordered and can be seen as
one “run” of the process. It is important to note that an event log contains only example
behavior, i.e., we cannot assume that all possible runs have been observed. In fact, an
event log often contains only a fraction of the possible behavior [2].

The growing interest in process mining is illustrated by the Process Mining Mani-
festo [26] recently released by the IEEE Task Force on Process Mining. This manifesto
is supported by 53 organizations and 77 process mining experts contributed to it. The
active contributions from end-users, tool vendors, consultants, analysts, and researchers
illustrate the significance of process mining as a bridge between data mining and busi-
ness process modeling.

Petri nets are often used in the context of process mining. Various algorithms em-
ploy Petri nets as the internal representation used for process mining. Examples are
the region-based process discovery techniques [6, 13, 19, 33, 36], the α algorithm [7],
and various conformance checking techniques [8, 30–32]. Other techniques use alter-
native internal representations (C-nets, heuristic nets, etc.) that can easily be converted
to (labeled) Petri nets [2].

In this paper, we focus on the following two main process mining problems:

– Process discovery problem: Given an event log consisting of a collection of traces
(i.e., sequences of events), construct a Petri net that “adequately” describes the
observed behavior.

– Conformance checking problem: Given an event log and a Petri net, diagnose the
differences between the observed behavior (i.e., traces in the event log) and the
modeled behavior (i.e., firing sequences of the Petri net).

Both problems are formulated in terms of Petri nets. However, other process notations
could be used, e.g., BPMN models, BPEL specifications, UML activity diagrams, Stat-
echarts, C-nets, heuristic nets, etc. In fact, also different types of Petri nets can be em-
ployed, e.g., safe Petri nets, labeled Petri nets, free-choice Petri nets, etc.

Process mining problems tend to be very challenging. There are obvious challenges
that also apply to many other data mining and machine learning problems, e.g., dealing
with noise, concept drift, and the need to explore a large and complex search space.
For example, event logs may contain millions of events. Moreover, there are also some
specific problems that make process discovery even more challenging:

– there are no negative examples (i.e., a log shows what has happened but does not
show what could not happen);

– due to concurrency, loops, and choices the search space has a complex structure
and the log typically contains only a fraction of all possible behaviors;
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– there is no clear relation between the size of a model and its behavior (i.e., a smaller
model may generate more or less behavior although classical analysis and evalua-
tion methods typically assume some monotonicity property); and

– there is a need to balance between four (often) competing quality criteria (see Sec-
tion 3): (1) fitness (be able to generate the observed behavior), (2) simplicity (avoid
large and complex models), (3) precision (avoid “underfitting”), and (4) general-
ization (avoid “overfitting”).

Process discovery and conformance checking are related problems. This becomes evi-
dent when considering genetic process discovery techniques [15, 29]. In each genera-
tion of models generated by the genetic algorithm, the conformance of every individual
model in the population needs to be assessed (the so-called fitness evaluation). Models
that fit well with the event log are used to create the next generation of candidate mod-
els. Poorly fitting models are discarded. The performance of genetic process discovery
techniques will only be acceptable if dozens of conformance checks can be done per
second (on the whole event log). This illustrates the need for efficient process mining
techniques.

Dozens of process discovery [2, 6, 7, 11, 13, 18, 19, 21, 24, 29, 33, 35, 36] and con-
formance checking [3, 8–10, 16, 22, 24, 30–32, 34] approaches have been proposed in
literature. Despite the growing maturity of these approaches, the quality and efficiency
of existing techniques leave much to be desired. State-of-the-art techniques still have
problems dealing with large and/or complex event logs and process models. Therefore,
we proposed a divide and conquer approach for process mining. This approach uses a
new concept: passages. A passage is a pair of two sets of activity nodes (X,Y ) such
that X• = Y (i.e., the activity nodes in X influence the enabling of the activity nodes
in Y ) and X = •Y (i.e., the activity nodes in Y are influenced by the activity nodes
in X). The notion of passages will be formalized in terms of graphs and labeled Petri
nets. Passages can be used to decompose process discovery and conformance checking
problems into smaller problems. By localizing process mining techniques to passages,
more refined techniques can be used. Assuming that the event log and process model
can be decomposed into many passages, substantial speedups are possible. Moreover,
passages can also be used to distribute process mining problems over a network of
computers (e.g., a grid or cloud infrastructure).

This paper focuses on the theoretical foundations of process mining based on pas-
sages. Section 2 introduces various preliminaries, including the new notion of passages
on graphs, event logs, and Petri nets. Section 3 discusses quality criteria for process min-
ing, e.g., the fitness notion is introduced. The notion of passages is used in Section 4 to
decompose the overall conformance checking problem into a set of local conformance
checking problems. Section 5 shows how the same ideas can be used for process discov-
ery, i.e., after determining the causal structure and related passages, the overall process
discovery problem can be decomposed into a set of local process discovery problems.
Related work is discussed in Section 6. Section 7 concludes the paper.
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2 Preliminaries

This section introduces basic concepts related to Petri nets, WF-nets, and event logs.
Moreover, we introduce the notation of passages on arbitrary graphs. This notion will
be used to decompose process mining problems into a set of smaller problems.

2.1 Graphs, Passages, and Paths

First, we introduce basic graphs notations. We will use graphs to represent process mod-
els (i.e., Petri nets) and the causal structure (also referred to as skeleton) of processes.

Definition 1 (Graph). A graph is a pair G = (N,E) comprising a set N of nodes and
a set E ⊆ N ×N of edges.

For a graph G = (N,E) and n ∈ N , we define preset
G• n = {n′ ∈ N | (n′, n) ∈ E}

(direct predecessors) and postset n
G• = {n′ ∈ N | (n, n′) ∈ E} (direct successors).

This can be generalized to sets, i.e., for X ⊆ N :
G• X = ∪n∈X

G• n and X
G•=

∪n∈X n
G• . The superscript G can be omitted if the graph is clear from the context.

To decompose process mining problems into smaller problems, we partition process
models using the notion passages introduced in this paper. A passage is a pair of non-
empty sets of nodes (X,Y ) such that the set of direct successors of X is Y and the set
of direct predecessors of Y is X .

Definition 2 (Passage). Let G = (N,E) be a graph. P = (X,Y ) is a passage if and

only if ∅ �= X ⊆ N , ∅ �= Y ⊆ N , X
G•= Y , and X =

G• Y . pas(G) is the set of all
passages of G.

Consider the sets X = {b, c, d} and Y = {d, e, f} in Fig. 1 (for the moment ignore
the numbers in the graph). X• = {b, c, d}• = {d, e, f} = Y and X = {b, c, d} =
•{d, e, f} = •Y , so (X,Y ) is indeed a passage.

A weak passage is a pair (X,Y ) such that ∅ �= X ∪ Y ⊆ N , X
G• ⊆ Y , and

G• Y ⊆ X , i.e., X may contain nodes without predecessors and Y may contain nodes
without successors. Note that any passage is also a weak passage but not vice versa. In
the remainder, we only consider passages.

Definition 3 (Operations on Passages). Let P1 = (X1, Y1) and P2 = (X2, Y2) be two
passages.

– P1 ≤ P2 if and only if X1 ⊆ X2 and Y1 ⊆ Y2,
– P1 < P2 if and only if P1 ≤ P2 and P1 �= P2,
– P1 ∪ P2 = (X1 ∪X2, Y1 ∪ Y2),
– P1 \ P2 = (X1 \X2, Y1 \ Y2).

The union of two passages P1 ∪ P2 is again a passage. The difference of two passages
P1 \ P2 is a passage if P2 < P1.
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Fig. 1. A graph with five minimal passages: P1 = ({a}, {b, c}), P2 = ({b, c, d}, {d, e, f}),
P3 = ({e}, {g}), P4 = ({f}, {h}), and P5 = ({g, h}, {i}). Passage P2 is highlighted and
edges carry numbers to refer to the minimal passage they belong to.

Lemma 1 (Properties of Passages). Let G = (N,E) be a graph with passages
P1, P2 ∈ pas(G).

– P1 ∪ P2 is a passage.
– If P2 < P1, then P1 \ P2 is a passage.

Proof. Let P1 = (X1, Y1) and P2 = (X2, Y2) be two passages.
For P3 = (X3, Y3) = P1 ∪ P2 we need to prove: ∅ �= X3 ⊆ N , ∅ �= Y3 ⊆ N ,

X3• = Y3, and X3 = •Y3. This trivially holds because X3• = (X1 ∪X2)• =
X1 • ∪X2• = Y1 ∪ Y2 = Y3 and •Y3 = •(Y1 ∪ Y2) = •Y1 ∪ •Y2 = X1 ∪X2 = X3.

Assume that P2 < P1 and P3 = (X3, Y3) = P1 \ P2. Again we need to prove that
∅ �= X3 ⊆ N , ∅ �= Y3 ⊆ N , X3• = Y3, and X3 = •Y3. There is a (x, y) ∈ E with
x ∈ X3 and y ∈ Y3. Otherwise, P2 �< P1. Hence, X3 �= ∅ and Y3 �= ∅. Observe that
X2 • ∩X3• = ∅ and •Y2 ∩ •Y3 = ∅ because P2 is a passage. Moreover, X3• ⊆ Y1

and •Y3 ⊆ X1. Hence, X3• = (X1 \X2)• = X1 • \X2• = Y1 \ Y2 = Y3. •Y3 =
•(Y1 \ Y2) = •Y1 \ •Y2 = X1 \X2 = X3. Therefore, P3 is indeed a passage. ��

Since the union of two passages is again a passage, it is interesting to consider minimal
passages. A passage is minimal if it does not “contain” a smaller passage.

Definition 4 (Minimal Passage). Let G = (N,E) be a graph with passages pas(G).
P ∈ pas(G) is minimal if there is no P ′ ∈ pas(G) such that P ′ < P . pasmin(G) is
the set of minimal passages.

Figure 1 contains five minimal passages. The sets X and Y highlight minimal pas-
sage P2 = ({b, c, d}, {d, e, f}). The edges in Fig. 1 have numbers corresponding to
the passage they belong to, e.g., edges (a, b) and (a, c) have a label “1” showing that
they belong to passage P1 = ({a}, {b, c}). Here we already use the property that an
edge belongs to precisely one minimal passage. In fact, a minimal passage is uniquely
identified by any of its elements as is shown next.
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Lemma 2. Let G = (N,E) be a graph and (x, y) ∈ E. There is precisely one minimal
passage P(x,y) = (X,Y ) ∈ pasmin(G) such that x ∈ X and y ∈ Y .

Proof. Construct P(x,y) = (X,Y ) as follows. Initially: X := {x} and Y := {y}. Then
repeat X := X ∪ •Y and Y := Y ∪X• until X and Y do not change anymore. The
algorithm will end because there are finitely many nodes. When it ends X = •Y and
Y = X• . Hence, P(x,y) = (X,Y ) is passage. No unnecessary elements are added to
X and Y , so (X,Y ) is minimal and there is precisely one such mininal passage for
(x, y) ∈ E. ��

Passages define an equivalence relation on the edges in a graph: (x1, y1) ∼ (x2, y2) if
and only if P(x1,y1) = P(x2,y2). It is easy to see that ∼ is reflexive (i.e., (x, y) ∼ (x, y))
, symmetric (i.e., (x1, y1) ∼ (x2, y2) if and only if (x2, y2) ∼ (x1, y1)), and transitive
(i.e., (x1, y1) ∼ (x2, y2) and (x2, y2) ∼ (x3, y3) implies (x1, y1) ∼ (x3, y3)). In Fig. 1
(b, d) ∼ (b, e) ∼ (b, f) ∼ (c, f) ∼ (d, d) ∼ (d, e), i.e., the arcs having label “2” form
an equivalence class.

For any {(x, y), (x′, y), (x, y′)} ⊆ E: P(x,y) = P(x′,y) = P(x,y′), i.e., P(x,y) is
uniquely determined by x and P(x,y) is also uniquely determined by y. Moreover,
pasmin(G) = {P(x,y) | (x, y) ∈ E}.

We use the notation x
σ:E#Q� y to state that there is a non-empty path σ from node x

to node y in the graph G = (N,E) where the set of intermediate nodes visited by path
σ does not include any nodes in Q.

Definition 5 (Path). Let G = (N,E) be a graph with x, y ∈ N and Q ⊆ N . x
σ:E#Q�

y if and only if there is a sequence σ = 〈n1, n2, . . . nk〉 with k > 1 such that x = n1,
y = nk, for all 1 ≤ i < k: (ni, ni+1) ∈ E, and for all 1 < i < k: ni �∈ Q. Derived
notations:

– x
E#Q� y if and only if there exists a path σ such that x

σ:E#Q� y,

– x
σ:E� y is a shorthand for x

σ:E#Q� y with Q = ∅,

– nodes(x
E#Q� y) = {n ∈ σ | ∃σ∈N∗ x

σ:E#Q� y}, and

– for X,Y ⊆ N : nodes(X
E#Q� Y ) = ∪(x,y)∈X×Y nodes(x

E#Q� y).

Consider the graph G = (N,E) in Fig. 1 to illustrate these notions. a
E#Q� i holds

for Q = {b, d, e, g} because of the path σ = 〈a, c, f, h, i〉. a E#Q� i does not hold if
Q = {g, h} because all paths connecting a to i need to visit g or h. If Q = {d, e, g},

then nodes(a
E#Q� i) = {a, b, c, f, h, i} because of the two paths connecting a to i not

visiting any of the nodes in Q.

2.2 Multisets

Multisets are used to represent the state of a Petri net and to describe event logs where
the same trace may appear multiple times.

B(A) is the set of all multisets over some set A. For some multiset b ∈ B(A), b(a)
denotes the number of times element a ∈ A appears in b. Some examples: b1 = [ ],
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b2 = [x, x, y], b3 = [x, y, z], b4 = [x, x, y, x, y, z], b5 = [x3, y2, z] are multisets over
A = {x, y, z}. b1 is the empty multiset, b2 and b3 both consist of three elements, and
b4 = b5, i.e., the ordering of elements is irrelevant and a more compact notation may
be used for repeating elements.

The standard set operators can be extended to multisets, e.g., x ∈ b2, b2 � b3 = b4,
b5 \ b2 = b3, |b5| = 6, etc. {a ∈ b} denotes the set with all elements a for which b(a) ≥
1. [f(a) | a ∈ b] denotes the multiset where element f(a) appears

∑
x∈b|f(x)=f(a) b(x)

times.

2.3 Petri Nets

Most of the results presented in the paper, can be adapted for various process modeling
notations. However, we use Petri nets to formalize the main ideas and to prove their
correctness.

Definition 6 (Petri Net). A Petri net is tuple PN = (P, T, F ) with P the set of places,
T the set of transitions, and F ⊆ (P × T ) ∪ (T × P ) the flow relation.

Figure 2 shows an example Petri net PN = (P, T, F ) with P = {start , c1, . . . ,
c5, end}, T = {a, b, . . . , h}, and F = {(start , a), (a, c1), (a, c2), . . . , (h, end)}. The
state of a Petri net, called marking, is a multiset of places indicating how many tokens
each place contains. [start ] is the initial marking shown in Fig. 2. Another potential
marking is [c110, c25, c45]. This is the state with ten tokens in c1, five tokens in c2, and
five tokens in c4.

a
start register

request

b
examine
thoroughly

c
examine
casually

d

check ticket

decide

pay
compensation

reject
request

reinitiate
request

e

g

h

f

end

c1

c2

c3

c4

c5

Fig. 2. A Petri net

Definition 7 (Marking). Let PN = (P, T, F ) be Petri net. A marking M is a multiset
of places, i.e., M ∈ B(P ).

Like for graphs we define the preset and postset of a node. For any x ∈ P ∪ T ,
PN• x =

{y | (y, x) ∈ F} (input nodes) and x
PN• = {y | (x, y) ∈ F} (output nodes). We drop

the superscript PN if it is clear from the context.
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A transition t ∈ T is enabled in marking M , denoted as M [t〉, if each of its input
places •t contains at least one token. Consider the Petri net in Fig. 2 with M = [c3, c4]:
M [e〉 because both input places are marked.

An enabled transition t may fire, i.e., one token is removed from each of the input
places •t and one token is produced for each of the output places t• . Formally: M ′ =
(M \ •t) � t• is the marking resulting from firing enabled transition t in marking M .
M [t〉M ′ denotes that t is enabled in M and firing t results in markingM ′. For example,
[start ][a〉[c1, c2] and [c3, c4][e〉[c5] for the net in Fig. 2.

Let σ = 〈t1, t2, . . . , tn〉 ∈ T ∗ be a sequence of transitions. M [σ〉M ′ denotes that
there is a set of markings M0,M1, . . . ,Mn such that M0 = M , Mn = M ′, and
Mi[ti+1〉Mi+1 for 0 ≤ i < n. A marking M ′ is reachable from M if there exists a
σ such that M [σ〉M ′. For example, [start ][σ〉[end ] for σ = 〈a, b, d, e, g〉.

Definition 8 (Labeled Petri Net). A labeled Petri net PN = (P, T, F, Tv) is a Petri
net (P, T, F ) with visible labels Tv ⊆ T . Let σv = 〈t1, t2, . . . , tn〉 ∈ T ∗

v be a sequence
of visible transitions. M [σv �M ′ if and only if there is a sequence σ ∈ T ∗ such that
M [σ〉M ′ and the projection of σ on Tv yields σv (i.e., σv = σ�Tv ).

If we assume Tv = {a, e, g, h} for the Petri net in Fig. 2, then [start ][σv � [end ] for
σv = 〈a, e, e, e, e, g〉 (i.e., b, c, d, and f are invisible).

In the context of process mining, we always consider processes that start in an initial
state and end in a well-defined end state. For example, given the net in Fig. 2 we are
interested in firing sequences starting in Mi = [start ] and ending in Mo = [end ].
Therefore, we define the notion of a system net.

Definition 9 (System Net). A system net is a triplet SN = (PN ,Mi,Mo) where
PN = (P, T, F, Tv) is a Petri net with visible labels Tv, Mi ∈ B(P ) is the initial
marking, and Mo ∈ B(P ) is the final marking.

Given a system net, τ(SN ) is the set of all possible visible full traces, i.e., firing se-
quences starting in Mi and ending in Mo projected onto the set of visible transitions.

Definition 10 (Traces). Let SN = (PN ,Mi,Mo) be a system net. τ(SN ) = {σv |
Mi[σv�Mo} is the set of visible traces starting in Mi and ending in Mo.

If we assume Tv = {a, e, f, g, h} for the Petri net in Fig. 2, then τ(SN ) = {〈a, e, g〉,
〈a, e, h〉, 〈a, e, f, e, g〉, 〈a, e, f, e, h〉, . . .}.

2.4 WF-Net

The Petri net in Fig. 2 has a designated source place (start), a designated source place
(end), and all nodes are on a path from start to end . Such nets are called WF-nets
[1, 4].

Definition 11 (WF-net). WF = (PN , in , Ti, out , To) is a workflow net (WF-net) if

– PN = (P, T, F, Tv) is a labeled Petri net,
– in ∈ P is a source place such that •in = ∅ and in• = Ti,
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– out ∈ P is a sink place such that out• = ∅ and •out = To,
– Ti ⊆ Tv is the set of initial transitions and •Ti = {in},
– To ⊆ Tv is the set of final transitions and To• = {out}, and

– nodes(in
F� out) = P ∪ T , i.e., all nodes are on some path from source place in

to sink place out .

WF-nets are often used in the context of business process modeling and process mining.
Compared to the standard definition of WF-nets [1, 4] we added the requirement that
the initial and final transitions need to be visible.

A WF-net WF = (PN , in, Ti, out , To) defines the system SN = (PN ,Mi,Mo)
with Mi = [in] and Mo = [out ]. Ideally WF-nets are also sound, i.e., free of deadlocks,
livelocks, and other anomalies [1, 4]. Formally, this means that for any state reachable
from Mi it is possible to reach Mo.

Process models discovered using existing process mining techniques may be un-
sound. Therefore, we cannot assume/require all WF-nets to be sound.

2.5 Event Log

As indicated earlier, event logs serve as the starting point for process mining. An event
log is a multiset of traces. Each trace describes the life-cycle of a particular case (i.e., a
process instance) in terms of the activities executed.

Definition 12 (Trace, Event Log). Let A be a set of activities. A trace σ ∈ A∗ is a
sequence of activities. L ∈ B(A∗) is an event log, i.e., a multiset of traces.

An event log is a multiset of traces because there can be multiple cases having the
same trace. In this simple definition of an event log, an event refers to just an activity.
Often event logs may store additional information about events. For example, many
process mining techniques use extra information such as the resource (i.e., person or
device) executing or initiating the activity, the timestamp of the event, or data elements
recorded with the event (e.g., the size of an order). In this paper, we abstract from such
information. However, the results presented in this paper can easily be extended to event
logs with more information.

An example log is L1 = [〈a, e, g〉10, 〈a, e, h〉5, 〈a, e, f, e, g〉3, 〈a, e, f, e, h〉2]. L1

contains information about 20 cases, e.g., 10 cases followed trace 〈a, e, g〉. There are
10× 3 + 5× 3 + 3× 5 + 2× 5 = 70 events in total.

Definition 13 (Projection). Let A be a set and X ⊆ A a subset.�X∈ A∗ → X∗ is a
projection function and is defined recursively: (1) 〈 〉�X= 〈 〉 and (2) for σ ∈ A∗ and
a ∈ A:

(σ; 〈a〉)�X=

{
σ�X if a �∈ X

σ�X ; 〈a〉 if a ∈ X

The projection function is generalized to event logs, i.e., for some event log L ∈ B(A∗)
and set X ⊆ A: L�X= [σ�X | σ ∈ L].

For the event log L1: L1�{a,g,h}= [〈a, g〉13, 〈a, h〉7]. Note that all e and f events have
been removed.
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3 Conformance Checking

Conformance checking techniques investigate how well an event log L ∈ B(A∗) and
a system net SN = (PN ,Mi,Mo) fit together. Note that the process model SN may
have been discovered through process mining or may have been made by hand. In any
case, it is interesting to compare the observed example behavior in L and the potential
behavior of SN .

Conformance checking can be done for various reasons. First of all, it may be used
to audit processes to see whether reality conforms to some normative or descriptive
model [5]. Deviations may point to fraud, inefficiencies, and poorly designed or out-
dated procedures. Second, conformance checking can be used to evaluate the results
of a process discovery techniques. In fact, genetic process mining algorithms use con-
formance checking to select the candidate models used to create the next generation of
models [29].

There are four quality dimensions for comparing model and log: (1) fitness, (2) sim-
plicity, (3) precision, and (4) generalization [2]. A model with good fitness allows for
most of the behavior seen in the event log. A model has a perfect fitness if all traces in
the log can be replayed by the model from beginning to end. The simplest model that
can explain the behavior seen in the log is the best model. This principle is known as
Occam’s Razor. Fitness and simplicity alone are not sufficient to judge the quality of a
discovered process model. For example, it is very easy to construct an extremely simple
Petri net (“flower model”) that is able to replay all traces in an event log (but also any
other event log referring to the same set of activities). Similarly, it is undesirable to have
a model that only allows for the exact behavior seen in the event log. Remember that
the log contains only example behavior and that many traces that are possible may not
have been seen yet. A model is precise if it does not allow for “too much” behavior.
Clearly, the “flower model” lacks precision. A model that is not precise is “underfit-
ting”. Underfitting is the problem that the model over-generalizes the example behavior
in the log (i.e., the model allows for behaviors very different from what was seen in the
log). At the same time, the model should generalize and not restrict behavior to just the
examples seen in the log. A model that does not generalize is “overfitting”. Overfitting
is the problem that a very specific model is generated whereas it is obvious that the
log only holds example behavior (i.e., the model explains the particular sample log, but
there is a high probability that the model is unable to explain the next batch of cases).

In the remainder, we will focus on fitness. However, the ideas are applicable to the
other quality dimensions.

Definition 14 (Perfectly Fitting Log). Let L ∈ B(A∗) be an event log and let SN =
(PN ,Mi,Mo) be a system net. L is perfectly fitting SN if and only if {σ ∈ L} ⊆
τ(SN ).

Consider two event logs L1 = [〈a, e, g〉10, 〈a, e, h〉5, 〈a, e, f, e, g〉3, 〈a, e, f, e, h〉2] and
L2 = [〈a, e, g〉10, 〈a, e, h〉5, 〈a, g〉3, 〈a, a, g, e, h〉2] and the system net SN of the WF-
net depicted in Fig. 2 with Tv = {a, e, f, g, h}. Clearly, L1 is perfectly fitting SN and
L2 is not. There are various ways to quantify fitness [2, 3, 8, 24, 29–32], typically on a
scale from 0 to 1 where 1 means perfect fitness. To measure fitness, one needs to align
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traces in the event log to traces of the process model. Some example alignments for L2

and SN :

γ1 =
a e g
a e g

γ2 =
a e h
a e h

γ3 =
a � g
a e g

γ4 =
a a g e h
a � � e h

γ5 =
a a � g e h
a � e g � �

The top row of each alignment corresponds to “moves in the log” and the bottom row
corresponds to “moves in the model”. If a move in the log cannot be mimicked by a
move in the model, then a “�” (“no move”) appears in the bottom row. For example, in
γ4 the model is unable to do the second a move and is unable to do g before e. If a move
in the model cannot be mimicked by a move in the log, then a “�” (“no move”) appears
in the top row. For example, in γ3 the log did not do an e move whereas the model has to
make this move to enable g and reach the end. Given a trace in the event log there may
be many possible alignments. The goal is to find the alignment with the least number of
� elements, e.g., γ4 is clearly better than γ5. The number of � elements can be used
to quantify fitness. Moreover, once an optimal alignment has been established for every
trace in the event log, these alignments can be used as a basis to quantify precision and
generalization [3].

4 Distributed Conformance Checking

Conformance checking techniques can be time consuming as potentially many different
traces need to be aligned with a model that may allow for an exponential (or even
infinite) number of traces. Event logs may contain millions of events. Finding the best
alignment may require solving many optimization problems [8] or repeated state-space
explorations [32]. When using genetic process mining, one needs to check the fitness of
every individual model in every generation [29]. As a result, thousands or even millions
of conformance checks need to be done. For each conformance check, the whole event
log needs to be traversed. Given these challenges, we are interested in reducing the time
needed for conformance checking.

In this section, we show that it is possible to decompose and distribute conformance
checking problems using the notion of passages defined in Section 2.1. In order to do
this we focus on the visible transitions and create the so-called skeleton of the process
model.

Definition 15 (Skeleton). Let PN = (P, T, F, Tv) be a labeled Petri net. The skeleton
of PN is the graph skel(PN ) = (N,E) with N = Tv and E = {(x, y) ∈ Tv × Tv |
x

F#Tv� y}.

Figure 3 shows the skeleton of the WF-net in Fig. 2 assuming that Tv = {a, e, f, g, h}.
The resulting graph has two minimal minimal passages.

Note that only the visible transitions Tv appear in the skeleton. For example, if we
assume that Tv = {a, g, h} in Fig. 2, then the skeleton is ({a, g, h}, {(a, g), (a, h)})
and there is only one passage ({a}, {g, h}).

If there are multiple minimal passages in the skeleton, we can decompose confor-
mance checking problems into smaller problems by partitioning the Petri net into net
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aregister
request

decide

reject
request

reinitiate
request

e g

hf

pay
compensation

Fig. 3. The skeleton of the labeled Petri net in Fig. 2 (assuming that Tv = {a, e, f, g, h}). There
are two minimal minimal passages: ({a, f}, {e}) and ({e}, {f, g, h}).

fragments and the event log into sublogs. Each passage (X,Y ) defines one net fragment
PN (X,Y ) and one sublog L�X∪Y . We will show that conformance can be checked per
passage.
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request
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examine
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decide

e

reinitiate
request

f

Fig. 4. Two net fragments corresponding to the two passages of the skeleton in Fig. 3:
PN 1 = PN ({a,f},{e}) (left) and PN 2 = PN ({e},{f,g,h}) (right). The visible transitions
Tv = {a, e, f, g, h} that form the boundaries of the fragments are highlighted.

Consider event log L = [〈a, e, g〉10, 〈a, e, h〉5, 〈a, e, f, e, g〉3, 〈a, e, f, e, h〉2], the
WF-net PN shown in Fig. 2 with Tv = {a, e, f, g, h}, and the skeleton shown in Fig. 3.
There are two passages: P1 = ({a, f}, {e}) and P2 = ({e}, {f, g, h}). Based on this
we define two net fragments PN 1 and PN 2 as shown in Fig. 4. Moreover, we de-
fine two sublogs: L1 = [〈a, e〉15, 〈a, e, f, e〉5] and L2 = [〈e, g〉10, 〈e, h〉5, 〈e, f, e, g〉3,
〈e, f, e, h〉2]. To check the conformance of the overall event log on the overall model,
we check the conformance of L1 on PN 1 and L2 on PN 2. Since L1 is perfectly fitting
PN 1 and L2 is perfectly fitting PN 2, we can conclude that L is perfectly fitting PN .
This illustrates that conformance checking can be decomposed.

In order to prove this, we first define the notion of a net fragment.

Definition 16 (Net Fragment). Let PN = (P, T, F, Tv) be a labeled Petri net. For any
two sets of transitionsX,Y ⊆Tv, we define the net fragmentPN (X,Y )=(P ′, T ′, F ′, T ′

v)
with:
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– Z = nodes(X
F#Tv� Y ) \ (X ∪ Y ) are the internal nodes of the fragment,

– P ′ = P ∩ Z ,
– T ′ = (T ∩ Z) ∪X ∪ Y ,
– F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)), and
– T ′

v = X ∪ Y .

Note that PN 1 = PN ({a,f},{e}) in Fig. 4 has Z = {b, c, d, c1, c2, c3, c4} as internal
nodes.

b
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c

d

e

j
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hf nk

l
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Fig. 5. WF-net WF is decomposed in subnets PN (X,Y ). The “clouds” model the internal struc-
ture of these subnets (places but possibly also hidden transitions). Due to the decomposition based
on passages, one cloud can only influence another cloud through the visible interface transitions
X and Y . Since the visible interface transitions are “controlled” by the event log, it is possible to
check fitness locally per subnet.

Now we can prove the main result of this paper. Figure 5 illustrates our decomposi-
tion approach. A larger model can be decomposed into net fragments corresponding to
minimal passages. The event log can be decomposed in a similar manner and confor-
mance checking can be done per passage.

Theorem 1 (Main Theorem). Let L ∈ B(A∗) be an event log and let WF = (PN ,
in, Ti, out , To) be a WF-net with PN = (P, T, F, Tv).

L is perfectly fitting system net SN = (PN , [in ], [out ]) if and only if

– for any 〈a1, a2, . . . ak〉 ∈ L: a1 ∈ Ti and ak ∈ To, and
– for any (X,Y ) ∈ pasmin(skel(PN )): L �X∪Y is perfectly fitting SN (X,Y ) =

(PN (X,Y ), [ ], [ ]).

Proof. (⇒) Let σv = 〈a1, a2, . . . ak〉 ∈ L such that there is a σ ∈ T ∗ with [in][σ〉[out ]
and σ�Tv= σv (i.e., σv fits into the overall WF-net). We need to prove the two properties
listed above:
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– a1 ∈ Ti and ak ∈ To because only transitions in Ti are enabled in the initial
marking and only transitions in To can produce tokens for out . Moreover, when
σ puts a token in place out all other places should be empty; otherwise σ cannot
result in [out ] (property of WF-nets). Note that Ti ⊆ Tv and To ⊆ Tv, so the first
and last transition need to be visible.

– For any (X,Y ) ∈ pasmin(skel(PN )): we define PN (X,Y ) = (P ′, T ′, F ′, T ′
v) and

σ′ = σ �T ′ . We need to prove that [ ][σ′〉[ ] in PN (X,Y ). This follows trivially
because SN (X,Y ) can mimic any move of SN with respect to transitions T ′.

(⇐) Let σv = 〈a1, a2, . . . ak〉 ∈ L such that a1 ∈ Ti, ak ∈ To, and assume that for
any (X,Y ) ∈ pasmin(skel(PN )) there is a sequence σ(X,Y ) such that [ ][σ(X,Y )〉[ ]
in PN (X,Y ) = (P ′, T ′, F ′, T ′

v) with σ(X,Y ) �X∪Y= σv �X∪Y . We need to prove that
there is a σ ∈ T ∗ such that [in][σ〉[out ] in PN with σ�Tv= σv. The different σ(X,Y )

sequences can be stitched together into an overall σ because the different subnets only
interface via visible transitions. Transitions in one subnet can only influence other sub-
nets through visible transitions and these can only move synchronously as defined by
σv ∈ L. ��

Although the theorem only addresses the notion of perfect fitness, other conformance
notions can be decomposed in a similar manner. Metrics can be computed per passage
and then aggregated into an overall metric.

Assuming a process model with many passages, the time needed for conformance
checking can be reduced significantly. There are two reasons for this. First of all, as
Theorem 1 shows, larger problems can be decomposed into a set of independent smaller
problems. Therefore, conformance checking can be distributed over multiple comput-
ers. Second, due to the exponential nature of most conformance checking techniques,
the time needed to solve “many smaller problems” is less than the time needed to solve
“one big problem”. Existing approaches use state-space analysis (e.g., in [32] the short-
est path enabling a transition is computed) or optimization over all possible alignments
(e.g., in [8] the A∗ algorithm is used to find the best alignment). These techniques do
not scale linearly in the number of activities. Therefore, decomposition is useful even if
the checks per passage are done on a single computer.

5 Process Discovery: Divide and Conquer

As explained before, conformance checking and process discovery are closely related.
Therefore, we can use the approach used in Theorem 1 for process discovery provided
that some coarse causal structure (comparable to the skeleton in Section 4) is known.
Based on the passages in the causal structure, multiple smaller discovery problems are
formulated. This result in one net fragment per passage. These fragments can be folded
into an overall model.

More concretely, we propose the following discovery approach:

1. Input is an event log Lraw ∈ B(A∗
raw) over a set of activities Araw.

2. Extend each trace in the event log with an artificial start event � and an artificial
end event⊥ ({�,⊥}∩Araw = ∅). Lext = [〈�〉;σ; 〈⊥〉 | σ ∈ Lraw] is the resulting
log over Aext = {�,⊥} ∪Araw.
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3. Discover the causal structure, i.e., we assume that there is an algorithm γc such
that γc(Lext) = (A,C) with {�,⊥} ⊆ A ⊆ Aext and C ⊆ A × A. The causal
structure may be inspected and modified by a domain expert.

4. Filter the event log using the selected set of activities A: L = Lext�A.
5. Compute the set of passages on the graph G = (A,C): PS = pasmin(G) =

{(X1, Y1), (X2, Y2), . . . , (Xk, Yk)}. We assume that there is an algorithm γp, such
that γp(L�Xi∪Yi , Xi, Yi) = PN i = (Pi, Ti, Fi, Xi ∪ Yi) returns a Petri net with
visible transitions Xi ∪ Yi. The discovered Petri nets only overlap with respect to
visible transitions, i.e., for 1 ≤ i < j ≤ k: ((Pi ∪ Ti) \ (Xi ∪ Yi)) ∩ ((Pj ∪
Tj)\ (Xj ∪Yj)) = ∅. Moreover, each PN i should respect the causal structure, i.e.,
visible transition x ∈ Xi is connected to visible transition y ∈ Yi in PN i if and
only if (x, y) ∈ C.

6. Merge the individual subsets into one overall system net SN = (PN ,Mi,Mo)
with PN = (P, T, F, Tv) such that:

– P = {in, out} ∪ ∪1≤i≤k Pi,
– T = ∪1≤i≤k Ti,
– F = {(in,�), (⊥, out)} ∪ (∪1≤i≤k Fi),
– Tv = A,
– Mi = [in ], and
– Mo = [out ].

The discovery process is parameterized by γc (the algorithm to find causal structure)
and γp (the algorithm to find a local, transition bordered process model). Any com-
bination of γc and γp can be used as the two main steps are decoupled by the causal
structure. γc can also be used to filter out infrequent activities, noise, etc. Moreover, the
user is able to edit the causal structure using domain knowledge or particular prefer-
ences. Experience shows that user feedback is vital to balance between overfitting and
underfitting.

The log is extended by adding an artificial start event � and an artificial end event ⊥
to every trace, This is just a technicality to ensure that there is a clearly defined start and
end. Note that passages can be activated multiple times, e.g., in case of loops. Therefore,
we add transitions � and ⊥ and places in and out . If there is a unique start (end) event,
then there is no need to add transition � (⊥). Ideally, the causal structure created in
Step 3 has one source node �, one sink node ⊥, and all other nodes are on a path from
� to ⊥ (like in a WF-net).

To illustrate the divide and conquer approach based on passages, consider the event
logLraw=[〈a, b, c, d〉40, 〈b, a, c, d〉35, 〈a, b, c, e〉30, 〈b, a, c, e〉25, 〈a, b, x, d〉1, 〈a, b, e〉1].
The log describes 132 cases. We first add the artificial start and events (Step 2): Lext =
[〈�, a, b, c, d,⊥〉40, 〈�, b, a, c, d,⊥〉35, 〈�, a, b, c, e,⊥〉30, 〈�, b, a, c, e,⊥〉25, 〈�, a, b,
x, d,⊥〉1, 〈�, a, b, e,⊥〉1]. Then we compute the causal structure using γc (Step 3). As-
sume that the causal structure shown in Fig. 6 is computed. Since x occurs only once
whereas the other activities occur more than 50 times, x is excluded. The same holds
for the dependency between b and e. L is the log where x is removed (Step 4).

The causal structure has four minimal passages: P1 = ({�}, {a, b}), P2 = ({a, b},
{c}), P3 = ({c}, {d, e}), and P4 = ({d, e}, {⊥}). Based on these passages we create
four corresponding sublogs:L1 = [〈�, a, b〉72, 〈�, b, a〉60], L2 = [〈a, b, c〉70, 〈b, a, c〉60,
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a
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e

Fig. 6. Causal structure γc(Lext) discovered for the extended event log having four minimal
passages

〈a, b〉2], L3 = [〈c, d〉75, 〈c, e〉55, 〈d〉1, 〈e〉1], and L4 = [〈d,⊥〉76, 〈e,⊥〉56]. One
transition-bordered Petri net is discovered per sublog using γp (Step 5). Figure 7 shows
the resulting net fragments. Note that infrequent behavior has been discarded, i.e., trace
〈a, b〉 in L2 is not possible in PN 2, and traces 〈d〉 and 〈e〉 in L3 are not possible in
PN 3. What behavior is included and what not depends on γp.
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Fig. 7. The Petri net fragments discovered for the four passages: PN 1, PN 1, PN 3, and PN 4

In the last step of the approach, the four net fragments of Fig. 7 are merged into
the overall model shown in Figure 8 (Step 6). Note that this model is indeed able to
replay all frequent behavior. Two of the 132 cases cannot be replayed because they
were treated as noise by γc and γp.

in
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Fig. 8. The WF-net obtained by merging the individual subsets

The small example shows that we can use a divide and conquer approach when
discovering process models. We deliberately did not select concrete algorithms for γc
and γp. The approach is generic and can be combined with existing process discovery
techniques [2, 6, 7, 11, 13, 18, 19, 21, 24, 29, 33, 35, 36]. Moreover, the user can modify
the causal structure (i.e., the result of γc) to guide the discovery process.
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By decomposing the overall discovery problem into a collection of smaller discovery
problems, it is possible to do a more refined analysis and achieve significant speed-ups.
The discovery algorithm γp is applied to an event log consisting of just the activities
involved in the passage under investigation. Hence, process discovery tasks can be dis-
tributed over a network of computers (assuming there are multiple passages). Moreover,
most discovery algorithms are exponential in the number of activities. Therefore, the se-
quential discovery of all individual passages on one computer is often still faster than
solving one big discovery problem. If there are more passages than computers, one can
merge minimal passages into aggregate passages and use these for discovery and con-
formance checking (one passage per computer). However, in most situations, it will be
more efficient to analyze the minimal passages sequentially.

6 Related Work

For an introduction to process mining we refer to [2]. For an overview of best practices
and challenges, we refer to the Process Mining Manifesto [26]. The goal of this paper
is to decompose challenging process discovery and conformance checking problems
into smaller problems. Therefore, we first review some of the techniques available for
process discovery and conformance checking.

Process discovery, i.e., discovering a process model from a multiset of example
traces, is a very challenging problem and various discovery techniques have been pro-
posed [6, 7, 11, 13, 18, 19, 21, 24, 29, 33, 35, 36]. Many of these techniques use Petri
nets during the discovery process and/or to represent the discovered model. It is impos-
sible to provide an complete overview of all techniques here. Very different approaches
are used, e.g., heuristics [21, 35], inductive logic programming [24], state-based regions
[6, 19, 33], language-based regions [13, 36], and genetic algorithms [29]. Classical syn-
thesis techniques based on regions [23] cannot be applied directly because the event log
contains only example behavior. For state-based regions one first needs to create an au-
tomaton as described in [6]. Moreover, when constructing the regions, one should avoid
overfitting. Language-based regions seem good candidates for discovering transition-
bordered Petri nets for passages [13, 36]. Unfortunately, these techniques still have
problems dealing with infrequent/incomplete behavior.

As described in [2], there are four competing quality criteria when comparing mod-
eled behavior and recorded behavior: fitness, simplicity, precision, and generalization.
In this paper, we focused on fitness, but also precision and generalization can also be in-
vestigated per passage. Various conformance checking techniques have been proposed
in recent years [3, 8–10, 16, 22, 24, 30–32, 34]. Conformance checking can be used to
evaluate the quality of discovered processes but can also be used for auditing purposes
[5]. Most of the techniques mentioned can be applied to passages. The most challeng-
ing part is to aggregate the metrics per passage into metrics for the overall model and
log. We consider the approach described in [8] to be most promising as it constructs an
optimal alignment given an arbitrary cost function. This alignment can be used for com-
puting precision and generalization [3, 31]. However, the approach can be rather time
consuming. Therefore, the efficiency gains can be considerable for larger processes with
many activities and passages.
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Little work has been done on the decomposition and distribution of process mining
problems. In [15] an approach is described to distribute genetic process mining over
multiple computers. In this approach candidate models are distributed and in a similar
fashion also the log can be distributed. However, individual models are not partitioned
over multiple nodes. Therefore, the approach in this paper is complementary. Moreover,
unlike [15], the decomposition approach based on passages is not restricted to genetic
process mining.

Most related are the divide-and-conquer techniques presented in [20]. In [20] it is
shown that region-based synthesis can be done at the level of synchronized State Ma-
chine Components (SMCs). Also a heuristic is given to partition the causal dependency
graph into overlapping sets of events that are used to construct sets of SMCs. Passages
provide a different (more local) partitioning of the problem and, unlike [20] which fo-
cuses on state-based region mining, we decouple the decomposition approach from the
actual conformance checking and process discovery approaches.

Several approaches have been proposed to distribute the verification of Petri net prop-
erties, e.g., by partitioning the state space using a hash function [14] or by modularizing
the state space using localized strongly connected components [27]. These techniques
do not consider event logs and cannot be applied to process mining.

Most data mining techniques can be distributed [17], e.g., distributed classification,
distributed clustering, and distributed association rule mining [12]. These techniques
often partition the input data and cannot be used for the discovery of Petri nets.

7 Conclusion

Computationally challenging process mining problems can be decomposed in smaller
problems using the new notion of passages. This paper shows that the fitness of the
overall model can be analyzed per passage. The approach is independent of the partic-
ular conformance checking technique used. Moreover, the same idea can be applied to
other conformance notions. The paper also presents a discovery approach where the dis-
covery problem can be decomposed after determining the causal structure. The refined
behavior can be discovered per passage and, subsequently, the discovered net fragments
can be merged into an overall process model. Conformance checking and process dis-
covery can be done much more efficiently using such decompositions. Moreover, the
approach can be distributed over a network of computers.

This paper presents the idea of passages and provides a formal correctness proof
showing that a log is perfectly fitting the overall model if and only if the property
holds per passage. Future work will focus on large scale experiments demonstrating
the performance gains on a variety of process mining problems. We anticipate that the
actual speedup heavily depends on the number of passages. Therefore, it is important
investigate this using real-life logs and models.
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Abstract. Classical workflow nets (WF-nets) are an important class of Petri nets
that are widely used to model and analyze workflow systems. Soundness is a
crucial property that guarantees these systems are deadlock-free and bounded.
Aalst et al. proved that the soundness problem is decidable, and proposed (but not
proved) that the soundness problem is EXPSPACE-hard. In this paper, we show
that the satisfiability problem of Boolean expression is polynomial time reducible
to the liveness problem of bounded WF-nets, and soundness and liveness are
equivalent for bounded WF-nets. As a result, the soundness problem of bounded
WF-nets is co-NP-hard.

Workflow nets with reset arcs (reWF-nets) are an extension to WF-nets, which
enhance the expressiveness of WF-nets. Aalst et al. proved that the soundness
problem of reWF-nets is undecidable. In this paper, we show that for bounded
reWF-nets, the soundness problem is decidable and equivalent to the liveness
problem. Furthermore, a bounded reWF-net can be constructed in polynomial
time for every linear bounded automaton (LBA) with an input string, and we
prove that the LBA accepts the input string if and only if the constructed reWF-
net is live. As a result, the soundness problem of bounded reWF-nets is PSPACE-
hard.

Keywords: Petri nets, workflow nets, workflow nets with reset arcs, soundness,
co-NP-hardness, PSPACE-hardness.

1 Introduction

In the recent decade, workflow nets (WF-nets) have been widely applied to (inter-
organizational) workflow management systems and business process management sys-
tems to model and analyze their operational processes [1]-[4], [11]-[14], [16].
WF-nets can well characterize their system features such as concurrency, choices, and
synchronous/asynchronous communication. To enhance the expressive power, some ex-
tensions to WF-nets, such as workflow nets with reset or inhibitor arcs (reWF-nets and
inWF-nets, respectively) [17,18], are proposed which can express priority, preemption,
or cancelation.

Soundness [1]-[4] is an important property of these systems which, informally speak-
ing, reflects whether the designed systems are correct. For instance, the soundness of

S. Haddad and L. Pomello (Eds.): PETRI NETS 2012, LNCS 7347, pp. 92–107, 2012.
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WF-nets guarantees that the designed systems are deadlock-free and bounded. Aalst et
al. [4] defined eight notions of soundness. This work considers the classical soundness
[4] that means any run of the designed systems is always finished correctly and each
action has a right/chance to be executed.

It has been proven that the soundness of WF-nets is decidable [3,11]. Aalst proposed
(but not proved) in [3] that the soundness problem is EXPSPACE-hard, based on the
work in [5], which shows that the problems of reachability, liveness, and deadlock of
Petri nets are all EXPSPACE-hard. In addition, Aalst proved in [3] that the soundness
problem of a workflow net can be decided in polynomial time if the workflow net is a
free-choice one [6].

Generally, enhancing the models’ expressive power increases the complexity of de-
ciding their properties. Aalst et al. [4] proved that the soundness problems of reWF-
and inWF-nets are both undecidable.

Our contribution. In this paper, we show that the satisfiability problem of Boolean
expression (SAT problem) is polynomial time reducible to the liveness problem of
bounded WF-nets, and the soundness and liveness are equivalent for bounded WF-nets,
thereby proving that the soundness problem of bounded WF-nets is co-NP-hard. Based
on the Linear Bounded Automaton Acceptance problem (LBA Acceptance problem),
we show that the soundness problem of bounded reWF-nets is decidable but PSPACE-
hard. To the best of our knowledge, it is the first time to propose and prove these con-
clusions for WF- and reWF-nets.

Organization. The remainder of the paper is organized as follows. Section 2 reviews
the definitions of Petri nets, WF- and reWF-nets, and the SAT and LBA Acceptance
problems. Section 3 proves the co-NP-hardness of the soundness of bounded WF-nets
and Section 4 proves the PSPACE-hardness of the soundness of bounded reWF-nets.
Section 5 concludes this paper.

2 Preliminary

In this section, we review the definitions of Petri nets, WF-nets, reWF-nets, SAT prob-
lem, and LBA Acceptance problem. For more details, please refer to [4] and [9].

2.1 Petri Nets

Let N = {0, 1, 2, · · ·} be the set of nonnegative integers, Given m ∈ N and m > 0, let
Nm = {1, 2, · · · ,m} be the set of integers from 1 to m.

Definition 1. A net is a 3-tuple N = (P, T, F) where P is a set of places, T is a set of
transitions, F ⊆ (P × T) ∪ (T × P) is a set of arcs, P ∪ T �= ∅, and P ∩ T = ∅.

A transition t is called an input transition of a place p and p is called an output place of
a transition t if (t, p) ∈ F. Input place and output transition can be defined similarly.
Given a net N = (P, T, F) and a node x ∈ P ∪ T, •x = {y ∈ P ∪ T | (y, x) ∈ F} and
x• = {y ∈ P ∪ T | (x, y) ∈ F} are called the pre-set and post-set of x, respectively.
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A marking of N = (P, T, F) is a mapping M: P → N. p ∈ P is marked at M if
M(p) > 0. A marking may be viewed as a | P |-dimensional non-negative integer vector
in which every element represents the number of tokens in corresponding place at this
marking, e.g., M = (1, 0, 6, 0) over P = {p1, p2, p3, p4} represents that at M, p1,
p2, p3, and p4 have 1, 0, 6, and 0 tokens, respectively. Notice, we assume a total order
on the set of places P so that the i-th entry in the vector corresponds to the i-th place in
the ordered set. When the number of places is very large and the distribution of tokens
is sparse, the above two kinds of presentation of a marking are relatively complex. For
convenience, M is denoted as M =

∑
p∈P M(p) ·p in this paper. For the above example,

it is written as M = p1 + 6p3.
If ∀ p ∈ •t: M(p) > 0, then t is said to be enabled at M, which is denoted as M[t〉 .

Firing an enabled transition t produces a new marking M′, which is denoted as M[t〉M′,
such that M′(p) = M(p) − 1 if p ∈ •t \ t•; M′(p) = M(p) + 1 if p ∈ t•\•t; and
M′(p) = M(p) otherwise.

A marking Mk is said to be reachable from a marking M if there exists a firing
sequence σ = t1t2 · · · tk such that M[t1〉M1[t2〉 · · ·〉Mk−1[tk〉Mk. M[σ〉Mk represents that
M reaches Mk after firing sequence σ. The set of all markings reachable from M in a net
N is denoted as R(N, M).

A net N with an initial marking M0 is called a Petri net, and denoted as (N, M0).

Definition 2. Given a Petri net (N, M0) = (P, T, F, M0), t ∈ T is called live if
∀M ∈ R(N, M0), ∃M′ ∈ R(N, M): M′[t〉. A Petri net (N, M0) is called live if every
transition is live. It is called bounded if ∀ p ∈ P, ∃ k ∈ N, ∀M ∈ R(N, M0): M(p) ≤ k.

2.2 WF-Nets

WF-nets are an important subclass of Petri nets and widely studied and applied in aca-
demic and industrial systems. Each WF-net has a source place representing the begin-
ning of a task and a sink place representing the ending of the task.

Definition 3. A net N = (P, T, F) is a WF-net if

1. N has two special places i and o where i ∈ P is called source place such that
•i = ∅ and o ∈ P is called sink place such that o• = ∅; and

2. NE = (P, T ∪ {b}, F ∪ {(b, i), (o, b)}) is strongly connected.

For instance, Fig. 1(a) is a WF-net in which i and o are its source and sink places,
respectively. This WF-net may be seen as a composition of three subsystems. The left
and right subsystems produce parts and the middle assembles them.

Definition 4. Let N = (P, T, F) be a WF-net, M0 = i, and Md = o. N is sound if the
following requirements hold:

1. ∀M ∈ R(N, M0): Md ∈ R(N, M); and
2. ∀ t ∈ T, ∃M ∈ R(N, M0): M[t〉.

Aalst [3] proves that the soundness is equivalent to the liveness and boundedness for
WF-nets.
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Fig. 1. (a) A WF-net; and (b) an reWF-net

Theorem 1. Let N = (P, T, F) be a WF-net, NE = (P, T∪{b}, F∪{(b, i), (o, b)}),
and M0 = i. Then, N is sound if and only if (NE, M0) is live and bounded.

Therefore, the following conclusion is obvious.

Corollary 1. Let N = (P, T, F) be a WF-net such that (NE, M0) = (P, T ∪{b}, F ∪
{(b, i), (o, b)}, i) is bounded. Then, N is sound if and only if (NE, M0) is live.

2.3 reWF-Nets

reWF-nets are an extension to WF-nets in which some reset arcs are added. A reset arc
can delete all tokens from related places and then the next computing can be started.

Definition 5. A 4-tuple N = (P, T, F, R) is an reWF-net if

1. N = (P, T, F) is a WF-net; and
2. R ⊆ [P \ {o} × T] is the set of reset arcs.

A reset arc is represented by a double-headed arrow in an reWF-net chart, and denoted
as [p, t] formally in order to differ from (p, t) which is the notation of an arc in general
Petri nets. We denote ◦t = {p ∈ P | [p, t] ∈ R}, ∀ t ∈ T, as the set of places that
connect with t by reset arcs. For example, Fig. 1(b) is an reWF-net that has two reset
arcs [p10, t9] and [p11, t9]. ◦t9 = {p10, p11}.

Rules of enabling and firing a transition are defined as follows:
Given an reWF-net N = (P, T, F, R) and a marking M, if ∀ p ∈ •t: M(p) > 0, then

t is said to be enabled at M, which is denoted as M[t〉. Firing an enabled transition t
produces a new marking M′, which is denoted as M[t〉M′ , such that M′(p) = 0 if p ∈◦t;
M′(p) = M(p) − 1 if p �∈◦t ∧ p ∈ •t \ t•; M′(p) = M(p) + 1 if p �∈◦t ∧ p ∈ t•\•t; and
M′(p) = M(p) otherwise.
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Obviously, the enabling rule of transitions of reWF-nets identifies with that of gen-
eral Petri nets, but, after firing a transition, the tokens in those places that connect with
the transition by reset arcs are all removed.

Other notions of reWF-nets, such as liveness, boundedness, and soundness, are the
same as those of Petri nets and WF-nets, and are omitted here.

2.4 SAT Problem

The SAT problem, which is NP-complete [9], is used in this paper. Assume that there
are n Boolean variables x1, x2,· · ·, and xn. A literal l is a variable x or its negation
¬x. An expression G of conjunctive normal form (CNF) is a conjunction of m different
terms and each term is a disjunction of different literals not containing a complementary
pair x and ¬x. An expression H of disjunctive normal form (DNF) is a disjunction of
m different terms and each term is a conjunction of different literals not containing a
complementary pair x and ¬x.

Our proof is based on the 3SAT problem, i.e., each term has exactly three literals.

3SAT Problem: For a CNF expression G in which each term has exactly three literals,
is there an assignment of variables such that G = 1?

For convenience, an equivalent problem, which is constructed by negating the CNF
expression G, is used instead of the above problem. That is, DNF expressions are con-
sidered. This problem is denoted by 3SAT [15].

3SAT Problem: For a DNF expression H in which each term has exactly three literals,
is there an assignment of variables such that H = 0?

Without loss of generality, it is assumed that m > 3 (notice, m is the number of terms
in the formula) and each variable and its negation are both in H. Additionally, we need
the following assumption.

 There is no variable x such that it or its negation ¬x occurs in all terms.

This assumption is reasonable. If there exists a variable such that it or its negation occurs
in all terms, we may produce two expressions H′ and H′′ by assigning this variable the
value 1 and 0, respectively. Then, H = 0 if and only if H′ = 0 ∨ H′′ = 0, while
the problem of H′ = 0 ∨ H′′ = 0 belongs to 2SAT problem that can be decided in
polynomial time [9].

2.5 LBA Acceptance Problem

An LBA is a Turing machine that has a finite tape containing initially a test string with
a pair of bound symbols on either side.

Definition 6. An 8-tuple Ω = (Q, Γ, Σ, Δ, q0, qf , #, $) is an LBA if
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1. Q = {q0, q1, · · · , qm, qf }, m ≥ 0, is a set of control states where q0 is the initial
state and qf is the accept state;

2. Γ = {a1, a2, · · · , an}, n > 0, is a tape alphabet;
3. Σ ⊆ Γ is an input alphabet;
4. Δ ⊆ Q × Γ × {R, L} × Q × Γ is a set of transitions where R and L represent

respectively that the read/write head moves right or left by one cell; and
5. # and $ are two bound symbols that are next to the left and right sides of an input

string, respectively.

We assume that there is no transition from the accept state qf because the computation is
finished correctly once qf is reached. We also assume that there is a transition sequence
(q0, , , q′, ), (q′, , , q′′, ), · · ·, (q(k), , , qf , ) in an LBA. Otherwise, the accept
state is never reached.

If an LBA is at state p with the read/write head scanning a cell in which symbol a is
stored, and there is a transition δ = (p, a, R, q, b) ∈ Δ, then firing δ causes: 1) the
read/write head erase a from the cell, write b in the cell, and move right by one cell;
and 2) the LBA be at state q.

LBA Acceptance Problem: For an LBA with a test string, does it accept the string?

This problem is PSPACE-complete even if the LBA is deterministic [9].

3 co-NP-Hardness of the Soundness of Bounded WF-Nets

In this section, we prove that the soundness problem of bounded WF-nets is co-NP-hard
based on the 3SAT problem.

Let x1, x2,· · ·, and xn be n variables and H = D1∨D2∨· · ·∨Dm = (l1,1∧l1,2∧l1,3)∨
(l2,1 ∧ l2,2 ∧ l2,3) ∨ · · · ∨ (lm,1 ∧ lm,2 ∧ lm,3) be a DNF expression. The 3SAT problem
is reducible in polynomial time to the liveness problem of bounded WF-nets, thereby
proving that the soundness problem of bounded WF-nets is co-NP-hard by Corollary 1.

For each term Dk, k ∈ Nm, let Ψ(Dk) denote the set of subscripts of three variables
in Dk. For example, if D = ¬x1 ∧ x3 ∧ x6, then Ψ(D) = {1, 3, 6}.

For each DNF expression H, a WF-net can be constructed by the following method.

Construction 1

– P = {i, o, p0}
∪{pk, p′

k, vk, v′k, ck, c′k | k ∈ Nn}
– T = {b, t0, t′0}

∪{dj, d′
j | j ∈ Nm}

∪{tk, t′k, ek, e′k | k ∈ Nn}
– F = {(i, t0), (t′0, p0), (o, b), (b, i)}

∪{(p0, dj), (d′
j , o) | j ∈ Nm}

∪{(t0, pk), (p′
k, t′0) | k ∈ Nn}

∪{(dj, vk), (v′k, d′
j) | k ∈ Nn \ Ψ(Dj), j ∈ Nm}

∪{(pk, tk), (pk, t′k), (tk, p′
k), (t

′
k, p′

k) | k ∈ Nn}
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∪{(tk, ck), (t′k, c′k), (ck, ek), (c′k, e′k) | k ∈ Nn}
∪{(vk, ek), (vk, e′k), (ek, v′k), (e

′
k, v′k) | k ∈ Nn}

∪{(ck, dj) | lj,1 = xk ∨ lj,2 = xk ∨ lj,3 = xk, k ∈ Nn, j ∈ Nm}
∪{(c′k, dj) | lj,1 = ¬xk ∨ lj,2 = ¬xk ∨ lj,3 = ¬xk, k ∈ Nn, j ∈ Nm}

– M0 = i

For example, given a DNF expression H0 = (¬x3 ∧ x4 ∧ x5)∨ (x1 ∧¬x2 ∧ x3)∨ (¬x1 ∧
x2 ∧ x4) ∨ (¬x3 ∧ ¬x4 ∧ ¬x5), the constructed Petri net is shown as Fig. 2. Notice
that, strictly speaking, the Petri net constructed by Construction 1 is not a WF-net but a
trivial extension of a WF-net, i.e., if transition b, as a bridge connecting source and sink
places, is deleted, then the resulting net is a WF-net. Sometimes, we do not distinguish
between a WF-net and its trivial extension if no ambiguity is produced.

Intuitively, the constructed Petri net can be viewed as the composition of two part-
ners. One (e.g., the left section of Fig. 2, i.e., the subnet generated by {i, t0, t′0} ∪
{tk, t′k, pk, p′

k, ck, c′k | k ∈ Nn}) is to set an assignment for variables, and another (e.g.,
the right section of Fig. 2, i.e., the subnet generated by {o, p0}∪{ek, e′k, vk, v′k, ck, c′k |
k ∈ Nn}∪{dj, d′

j | j ∈ Nm}) is to decide whether H is 0 under the assignment. Variables
xk and ¬xk, k ∈ Nn, are represented by places ck and c′k, respectively. When ck (resp. c′k)
has a token, it means xk = 1 (resp. ¬xk = 1).

At the initial marking M0 = i, only t0 is enabled. After firing t0, only t1, t′1, t2, t′2,
· · ·, tn, and t′n are enabled, but for the pair tk and t′k, firing one will disable another since
pk has only one token. Firing tk (resp. t′k) means assigning the value 1 to xk (resp. ¬xk)
since a token is moved into ck (resp. c′k ). Obviously, xk and ¬xk are not assigned true at
the same time. In a word, this partner is to set an assignment for variables. Only after
each variable is assigned a value, transition t′0 is enabled. Only after firing t′0, another
partner can start to decide whether the expression H equals to 0 under the corresponding
assignment.

Transitions d1, d2, · · ·, and dm represent terms D1, D2, · · ·, and Dm respectively
because ck or c′k (k ∈ Nn) is an input place of dj (j ∈ Nm) if and only if xk or ¬xk occurs
in Dj. If none of d1, d2, · · ·, and dm is enabled under an assignment, then it means
H = 0 under this assignment. Notice that, this case (H = 0) implies that the Petri
net is not live. If H = 1 under certain assignment, i.e., some terms are true under this
assignment, then the corresponding transitions in {d1, d2, · · · , dm} are enabled, but
only one of these enabled transitions can be fired since p0 has only one token. Let dj be
an enabled transition under this assignment. Then, after firing dj, we have that for each
k ∈ Nn \Ψ(Dj), a token is put into vk, the token assigned to ck or c′k is still retained, and
tokens in •dj are removed. For removing the token from ck or c′k where k ∈ Nn \Ψ(Dj),
ek or e′k is competent, i.e., if ck is marked, then only ek is enabled, otherwise, only e′k
is enabled. After firing ek or e′k, ∀ k ∈ Nn \ Ψ(Dj), d′

j can be fired. Notice that, after
firing d′

j , only o has one token, and other places have no tokens. This decision is ended.
Finally, firing b means that the initial marking is returned, i.e., a new decision may be
started.

In what follows, it is proven that there is an assignment of variables such that H = 0
if and only if the constructed Petri nets is not live.

Lemma 1. There is an assignment of variables such that H = 0 if and only if Petri net
(P, T, F, M0) constructed by Construction 1 is not live.
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Fig. 2. The WF-net corresponding to H0 = (¬x3 ∧ x4 ∧ x5) ∨ (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧
x4) ∨ (¬x3 ∧ ¬x4 ∧ ¬x5) where xk (resp. ¬xk), k ∈ N5, corresponds to ck (resp. c′k)

Proof: (only if ) Let (κ1, κ2, · · · , κn) be an assignment of (x1, x2, · · · , xn) such that
H = 0, where κk = 1 or κk = 0, ∀ k ∈ Nn. Then, after firing the transition sequence
t0τ1τ2 · · · τnt′0, where τi = ti if κi = 1 or τi = t′i if κi = 0, there is no enabled transition.
This is because: if there is still an enabled transition after firing t0τ1τ2 · · · τnt′0, this
transition must be the one in {d1, d2, · · · , dm}, which means that there is a term whose
value is 1 under the assignment, thereby making H = 1. A contradiction is produced.

(if ) (by contradiction) Assume that no assignment fulfills H = 0, i.e., for each as-
signment (κ1, κ2, · · · , κn), there always exists a term that is true. Through the analysis
in the paragraph above this lemma, we know that for each assignment, (P, T, F, M0)
always returns to its initial marking. Therefore, b, t0, t′0, t1, t′1, · · ·, tn, and t′n are obvi-
ously live. For each dj, we can fire the corresponding transitions in {t1, t′1, · · · , tn, t′n}
to move tokens into the input places of dj, thereby ensuring that dj can be fired. That
is, dj and d′

j are also live. What remains is to show that e1, e′1,· · ·, en, and e′n are live.
Obviously, if the pre-set of vk is not empty, then ek and e′k are live, ∀ k ∈ Nn. By the
previous assumption (i.e., there is no variable x such that it or its negation ¬x occurs in
each term), we know that for each vk, its pre-set is not empty, because there always is
a term Dj such that k ∈ Nn \ Ψ(Dj), i.e., xk and ¬xk are not in Dj. Hence, ek and e′k are
also live, ∀ k ∈ Nn. �
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Notice that, by the above conclusion we know that Petri net (P, T, F, M0) constructed
by Construction 1 is live if and only if for each assignment of variables there is H =
1. The problem on deciding whether there is always H = 1 for each assignment of
variables is co-NP-complete [9].

Corollary 2. Petri net (P, T, F, M0) constructed by Construction 1 is live if and only
if H = 1 for each assignment of variables.

Lemma 2. Let (P, T, F, M0) be the Petri net constructed for a DNF H by Construc-
tion 1. Then, (P, T \ {b}, F \ {(o, b), (b, i)}, M0) is a bounded WF-net.

Proof: It is obvious that for each transition t ∈ T \ {b} (resp. each place p ∈ P) in
the net (P, T \ {b}, F \ {(o, b), (b, i)}), there is a directed path from i to o such
that t (resp. p) occurs in it. Therefore, (P, T, F) is strongly connected. Therefore,
(P, T \ {b}, F \ {(o, b), (b, i)}) is a WF-net.

Obviously, i, o, p0, p1, p′
1,· · ·, pn, p′

n, v1, v′1, · · ·, vn, and v′n are all bounded in
(P, T, F, M0) because the two subnets generated by them represent the state tran-
sition of the two partners and are easily shown to be bounded. We only need to observe
places v1, v′1, · · ·, vn, and v′n. In the case that (P, T, F, M0) is not live: all deadlock
states satisfy that p0 has a token, each pair ck and c′k has a token, and others have no to-
ken. In the case that (P, T, F, M0) is live: before o is marked, each pair ck and c′k has at
most one token, and when o is marked, all tokens in c1, c′1, · · ·, cn, and c′n are removed.
Hence, (P, T, F, M0) is bounded, thereby (P, T \ {b}, F \ {(o, b), (b, i)}, M0)
bounded. �

Theorem 2. The soundness problem for bounded WF-nets is co-NP-hard.

Proof: For each DNF expression in which there are n variables and m terms and each
term has 3 literals, it is easy to compute that the constructed WF-net has 6n + 3 places,
4n + 2m + 3 transitions, and 2mn + 14n − m + 4 arcs. Therefore, the WF-net can be
constructed in polynomial time (i.e., O(2mn + 24n + m + 10)). Therefore, it is known
by Lemma 2 and Corollaries 1 and 2 that the soundness problem of bounded WF-net is
co-NP-hard. �

4 PSPACE-Hardness of the Soundness of Bounded reWF-Nets

Obviously, the reachability, liveness, and soundness are all decidable for bounded reWF-
nets since we can construct their reachability graph by which these properties can be
decided. However, we are to show that they are PSPACE-hard. First, we prove that the
liveness and soundness are equivalent for bounded reWF-nets.

Lemma 3. Let N = (P, T, F, R) be an reWF-net such that (NE, M0) = (P, T ∪
{b}, F ∪ {(b, i), (o, b)}, R, i) is bounded. Then, N is sound if and only if (NE, M0)
is live.

Proof: (only if ) Please see Lemma 5.1 in [4].
(if ) First, let Md = o. Because (NE, M0) is live, b is live. Hence, ∃M ∈ R(NE, M0):

M[b〉. Hence, M ≥ Md. Let M0[σ〉M and M[b〉M′. Next, we use the contradiction
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method to prove M = Md. Assume that there is place p ∈ P such that M(p) >
Md(p) = 0. Then, M′(p) > Md(p) = 0 and M′(i) = 1 = M0(i) since there is no
reset arc between b and p, i.e., firing b does not empty p. Hence, σb can fire infinitely,
thereby making place p unbounded. This contradicts the boundedness of (NE, M0).
Hence, for each marking M ∈ R(NE, M0), if M ≥ Md, then M = Md = o. Hence,
R(NE, M0) = R(N, M0). Hence, by using the liveness of (NE, M0), we can easily
prove that 1) ∀M ∈ R(N, M0): Md ∈ R(N, M); and 2) ∀ t ∈ T, ∃M ∈ R(N, M0):
M[t〉. Hence, N is sound. �

Next, we prove that the soundness problem is PSPACE-hard for bounded reWF-nets.
Given an LBA Ω = (Q, Γ, Σ, Δ, q0, qf , #, $) with an input string S, an reWF-

net can be constructed. The construction below is refered as Construction 2. We first
assume that the length of S is l, l ≥ 0, and the i-th element of S is denoted as Si.
Q = {q0, q1, · · · , qm, qf}, m ≥ 0. Γ = {a1, a2, · · · , an}, n > 0. Cells storing #S$
are labeled 0, 1, · · ·, l, and l + 1, respectively.

– P = {i, o, p0, p′
0}

∪{A0,#, Al+1,$, Ai,j | i ∈ Nl, j ∈ Nn}
∪{Bi,j | i ∈ {0, 1, · · · , l + 1}, j ∈ {0, 1, · · · , m}}

A token in A0,# (resp. Al+1,$) means that the tape cell 0 (resp. l + 1) stores # (resp.
$). Therefore, once the computation starts, A0,# (resp. Al+1,$) has a token until the
computation ends since the two special symbols are not allowed to be replaced by other
symbols. A token in Ai,j means that the symbol in the cell i is aj. A token in Bi,j means
that the read/write head is on the cell i and the machine is at state qj. Notice that, in
the computing process, the LBA is only at one state at any time, thus only one place
in {Bi,j | i ∈ {0, 1, · · · , l + 1}, j ∈ {0, 1, · · · , m}} is marked by one token in the
modeling process. Once the computation finishes, i.e., the LBA accepts the input string
S, the token in {Bi,j | i ∈ {0, 1, · · · , l + 1}, j ∈ {0, 1, · · · , m}} is moved into p0. The
purpose of having p′

0 will be discussed later.
The sets of transitions, arcs, and reset arcs of the reWF-net are constructed as follows.

– b is a transition such that •b = {o} and b• = {i}.
– ts is a transition such that •ts = {i} and t•s = {A0,#, Al+1,$, B0,0} ∪ {Ai,j | Si =

aj, i ∈ Nl, j ∈ Nn}. In fact, t•s corresponds to the initial configuration of the
LBA, i.e., tokens in {A0,#, Al+1,$, Ai,j | Si = aj, i ∈ Nl, j ∈ Nn} represent the
input string with the two bound symbols, and the token in B0,0 represents that the
machine is at the initial state q0 and the read/write head is on the leftmost cell.

– t′s is a transition such that •t′s = {p′
0} and t′•s = {p0} ∪ {A0,#, Al+1,$, Ai,j | i ∈

Nl, j ∈ Nn} ∪ {Bi,j | i ∈ {0, 1, · · · , l + 1}, j ∈ {0, 1, · · · , m}}. Later, we will
explain the reason of having t′s.

– te is a transition such that •te = {p0} and t•e = {p′
0}. Only te connects with reset

arcs such that ◦te = {p0} ∪ {A0,#, Al+1,$, Ai,j | i ∈ Nl, j ∈ Nn} ∪ {Bi,j | i ∈
{0, 1, · · · , l+1}, j ∈ {0, 1, · · · , m}}. The token in p0 means that the computation
ends, and then firing te will empty all places in {p0} ∪ {A0,#, Al+1,$, Ai,j | i ∈
Nl, j ∈ Nn} ∪ {Bi,j | i ∈ {0, 1, · · · , l + 1}, j ∈ {0, 1, · · · , m}}, i.e., the tape is
emptied and the machine is not at any state.

– t′e is a transition such that •t′e = {p′
0} and t′•e = {o}
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For each transition δ ∈ Δ, we construct transitions of the reWF-net. We first consider
transitions in Δ that make the LBA to enter the accept state qf .

– If δ is the form of (qh, #, R, qf , #), h ∈ {0, 1, · · · , m}, i.e., the LBA halts
correctly and the read/write head is on the leftmost cell, we construct a transition t
of the reWF-net such that •t = {A0,#, B0,h} and t• = {A0,#, p0}.

– If δ is the form of (qh, $, L, qf , $), h ∈ {0, 1, · · · , m}, i.e., the LBA halts correctly
and the read/write head is on the rightmost cell, we construct a transition t such that
•t = {Al+1,$, Bl+1,h} and t• = {Al+1,$, p0}.

– If δ is the form of (qh, aj, L/R, qf , ak), h ∈ {0, 1, · · · , m}, j, k ∈ Nn, i.e., the
LBA halts correctly but the read/write head is possibly on any cell, we construct for
each cell r (r ∈ Nl) a transition tr. Formally, ∀ r ∈ Nl, a transition tr is constructed
such that •tr = {Ar,j, Br,h} and t•r = {Ar,k, p0}.

Next, we consider other transitions in Δ that have no pf .

– If δ is the form of (qh, #, R, qi, #), h, i ∈ {0, 1, · · · , m}, i.e., the read/write head
scans #, # is rewritten, the read/write head moves right, and the state is changed
into qi from qh. For this δ, we construct a transition t of the reWF-net such that
•t = {A0,#, B0,h} and t• = {A0,#, B1,i}.

– If δ is the form of (qh, $, L, qi, $), h, i ∈ {0, 1, · · · , m}, i.e., the read/write head
scans $, $ is rewritten, the read/write head moves left, and the state is changed into
qi from qh. For this δ, we construct a transition t such that •t = {Al+1,$, Bl+1,h}
and t• = {Al+1,$, Bl,i}.

– If δ is the form of (qh, aj, R, qi, ak), h, i ∈ {0, 1, · · · , m}, j, k ∈ Nn, then we
construct l transitions, i.e., we should consider each cell. Formally, ∀ r ∈ Nl, a
transition tr is constructed such that •tr = {Ar,j, Br,h} and t•r = {Ar,k, Br+1,i}.

– If δ is the form of (qh, aj, L, qi, ak), h, i ∈ {0, 1, · · · , m}, j, k ∈ Nn, then we
also construct l transitions, i.e., ∀ r ∈ Nl, a transition tr is constructed such that
•tr = {Ar,j, Br,h} and t•r = {Ar,k, Br−1,i}.

In the running process of the Petri net, a marking over {p0} ∪ {A0,#, Al+1,$, Ai,j |
i ∈ Nl, j ∈ Nn} ∪ {Bi,j | i ∈ {0, 1, · · · , l + 1}, j ∈ {0, 1, · · · , m}} corresponds
to a configuration of the LBA, i.e., tokens in {A0,#, Al+1,$, Ai,j | i ∈ Nl, j ∈ Nn}
correspond to the string on the tape, and the token in {p0} ∪ {Bi,j | i ∈ {0, 1, · · · , l +
1}, j ∈ {0, 1, · · · , m}} represents the current state of the LBA.

We know that the LBA halts correctly and accepts the input string when a token
enters p0, and at this marking, only te is enabled. Firing te makes all places in {p0} ∪
{A0,#, Al+1,$, Ai,j | i ∈ Nl, j ∈ Nn}∪{Bi,j | i ∈ {0, 1, · · · , l+1}, j ∈ {0, 1, · · · , m}}
emptied because te have reset arcs with these places. However, some transitions, which
correspond to Δ, are not necessarily enabled in the computing process. It is because
for an LBA with an acceptable input string, not all transitions of the LBA are used
in the deciding process. Therefore, we use t′s to produce a token for each place in
{p0} ∪ {A0,#, Ai,j, Al+1,$ | i ∈ Nl, j ∈ Nn} ∪ {Bi,j | i ∈ {0, 1, · · · , l + 1}, j ∈
{0, 1, · · · , m}}, which makes all transitions corresponding to Δ have an enabling right
again. Clearly, once te is fired, all places in {p0} ∪ {A0,#, Ai,j, Al+1,$ | i ∈ Nl, j ∈
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Nn} ∪ {Bi,j | i ∈ {0, 1, · · · , l + 1}, j ∈ {0, 1, · · · , m}} are emptied again. This guar-
antees that all transitions corresponding to Δ are live when the LBA accepts the input
string. Obviously, if t′e and then b are fired, the initial marking, M0 = i, is returned.

Notice that, places in {A0,#, Al+1,$, Ai,j | i ∈ Nl, j ∈ Nn}∪{Bi,j | i ∈ {0, 1, · · · , l+
1}, j ∈ {0, 1, · · · , m}} are set in order to consider all possible cases for each cell, but
because Δ is finite, some of these places are not used or only have input or output
transitions. This makes the constructed net not strongly connected. Therefore, we add a
transition d such that

– for each place p in {A0,#, Al+1,$, Ai,j | i ∈ Nl, j ∈ Nn}∪{Bi,j | i ∈ {0, 1, · · · , l+
1}, j ∈ {0, 1, · · · , m}}, p ∈•d and p ∈ d•.

This ensures that the constructed net is strongly connected. Obviously, d does not influ-
ence the behavior of the constructed Petri net, and only after firing t′s, d is enabled. Note
that, even though there is no transition d, there also exists a direct path from place i to
place o, which is guaranteed by the previous assumption (i.e., for an LBA, there always
exists a transition sequence (q0, , , q′, ), (q′, , , q′′, ), · · ·, (q(k), , , qf , ).).

For example, the LBA Ω0 = (Q, Γ, Σ, Δ, q0, qf , #, $) can produce the language
{ai1bi1ai2bi2 · · · aim bim | i1, i2, · · · , im,m ∈ N}, where

– Q = {q0, q1, q2, q3, qf}
– Γ = {a, b, X}
– Σ = {a, b}
– Δ = {(q0, #, R, q1, #), (q1, $, L, qf , $), (q1, X, R, q1, X), (q1, a, R, q2, X),

(q2, a, R, q2, a), (q2, X, R, q2, X), (q2, b, L, q3, X), (q3, a, L, q3, a),
(q3, X, L, q3, X), (q3, #, R, q1, #)}

Notice that, this LBA accepts the empty string. For the LBA with the input string ab,
the Petri net constructed by Construction 2 is (NE, M0) = (P, T, F, R, i) where

– P = {i, o, p0, p′
0}

∪{A0,#, A3,$, Ai,j | i ∈ N2, j ∈ N3}
∪{Bi,j | i, j ∈ {0, 1, 2, 3}}

– T = {b, ts, t′s, te, t′e, d}
∪{t0, t1, t2, ti,j | i ∈ N7, j ∈ N2}

– F = {(p0, te), (te, p′
0), (p

′
0, t′e), (t

′
e, o), (o, b), (b, i)}

∪{(i, ts), (ts, A0,#), (ts, A3,$), (ts, A1,1), (ts, A2,2), (ts, B0,0)}
∪{(t0, p0), (t0, A3,$), (A3,$, t0), (B3,1, t0)}
∪{(t1, B1,1), (t1, A0,#), (A0,#, t1), (B0,0, t1)}
∪{(t2, B1,1), (t2, A0,#), (A0,#, t2), (B0,3, t2)}
∪{(t1,1, B2,1), (t1,1, A1,3), (A1,3, t1,1), (B1,1, t1,1)}
∪{(t1,2, B3,1), (t1,2, A2,3), (A2,3, t1,2), (B2,1, t1,2)}
∪{(t2,1, B2,1), (t2,1, A1,3), (A1,1, t2,1), (B1,1, t2,1)}
∪{(t2,2, B3,1), (t2,2, A2,3), (A2,1, t2,2), (B2,1, t2,2)}
∪{(t3,1, B2,2), (t3,1, A1,1), (A1,1, t3,1), (B1,2, t3,1)}
∪{(t3,2, B3,2), (t3,2, A2,1), (A2,1, t3,2), (B2,2, t3,2)}
∪{(t4,1, B2,2), (t4,1, A1,3), (A1,3, t4,1), (B1,2, t4,1)}
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∪{(t4,2, B3,2), (t4,2, A2,3), (A2,3, t4,2), (B2,2, t4,2)}
∪{(t5,1, B0,3), (t5,1, A1,3), (A1,2, t5,1), (B1,2, t5,1)}
∪{(t5,2, B1,3), (t5,2, A2,3), (A2,2, t5,2), (B2,2, t5,2)}
∪{(t6,1, B0,3), (t6,1, A1,1), (A1,1, t6,1), (B1,3, t6,1)}
∪{(t6,2, B1,3), (t6,2, A2,1), (A2,1, t6,2), (B2,3, t6,2)}
∪{(t7,1, B0,3), (t7,1, A1,3), (A1,3, t7,1), (B1,3, t7,1)}
∪{(t7,2, B1,3), (t7,2, A2,3), (A2,3, t7,2), (B2,3, t7,2)}
∪{(p′

0, t′s), (t
′
s, A0,#), (t′s, A3,$)}

∪{(t′s, Ai,j) | i ∈ N2, j ∈ N3}
∪{(t′s, Bi,j) | i, j ∈ {0, 1, 2, 3}}
∪{(d, A0,#), (d, A3,$), (A0,#, d), (A3,$, d)}
∪{(d, Ai,j), (Ai,j, d) | i ∈ N2, j ∈ N3}
∪{(d, Bi,j), (Bi,j, d) | i, j ∈ {0, 1, 2, 3}}

– R = {[A0,#, te], [A3,$, te], [p0, te]}
∪{[Ai,j, te] | i ∈ N2, j ∈ N3}
∪{[Bi,j, te] | i, j ∈ {0, 1, 2, 3}}

Fig. 3 shows another constructed Petri net that corresponds to the above LBA Ω0 with
an empty string. Notice, the following (reset) arcs are not drawn in Fig. 3:

t′•s = {p0, A0,#, A1,$, B0,0, B0,1, B0,2, B0,3, B1,0, B1,1, B1,2, B1,3}
◦te = {p0, A0,#, A1,$, B0,0, B0,1, B0,2, B0,3, B1,0, B1,1, B1,2, B1,3}
•d = d• = {A0,#, A1,$, B0,0, B0,1, B0,2, B0,3, B1,0, B1,1, B1,2, B1,3}
Clearly, if there are no transition d as well as the related arcs, the constructed net is
not strongly connected. Notice that, because the input string is an empty one, there
are no transitions for (q1, X, R, q1, X), (q1, a, R, q2, X), (q2, a, R, q2, a),
(q2, X, R, q2, X), (q2, b, L, q3, X), (q3, a, L, q3, a), and (q3, X, L, q3, X).
Transitions t0, t1, and t2 correspond to (q0, #, R, q1, #), (q3, #, R, q1, #)}, and
(q1, $, L, qf , $), respectively. Firing ts produces respectively one token for A0,#, A1,$,
and B0,0, which represents the initial configuration of the LBA, i.e., the tape stores an
empty string (i.e., only two bound symbols are on the tape), the machine is at state
q0, and the read/write head is on the leftmost cell. At this marking, only transition t0
is enabled. t0 corresponds to (q0, #, R, q1, #). At the initial configuration, only
(q0, #, R, q1, #) is enabled. After firing (q0, #, R, q1, #), the configuration of
the LBA is that the machine is at state q1 and the read/write head moves right (i.e., it
is moved on the cell storing $). This is in accordance with t0 because firing t0 removes
the token from B0,0 and put a token into B1,1. At this marking, only t2 is enabled,
which is also in accordance with the LBA since at the corresponding configuration only
(q1, $, L, qf , $) is valid. Firing t2 moves a token into p0, which means the LBA accepts
this input string.

Lemma 4. An LBA accepts an input string if and only if the Petri net constructed by
Construction 2 is live.

Proof: (only if ) Because the LBA accepts the input string, we have that for each mark-
ing M ∈ R(N, M0) such that M0[σ〉M but te is not in σ, there is a reachable marking
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Fig. 3. The reWF-net corresponding to the LBA Ω0 with the empty string

M′ ∈ R(N, M) such that p0 is marked at M′. At marking M′, only transition te is en-
abled. After firing te, marking M′′ = p′

0 is reached. At marking M′′, only t′e or t′s is
enabled. Firing t′s produces a token for each place in {p0} ∪ {A0,#, Ai,j, Al+1,$ | i ∈
Nl, j ∈ Nn} ∪ {Bi,j | i ∈ {0, 1, · · · , l + 1}, j ∈ {0, 1, · · · , m}}, which makes tran-
sition d and transitions corresponding to Δ have an enabling right. Clearly, once te is
fired again, all places in {p0} ∪ {A0,#, Ai,j, Al+1,$ | i ∈ Nl, j ∈ Nn} ∪ {Bi,j | i ∈
{0, 1, · · · , l + 1}, j ∈ {0, 1, · · · , m}} are emptied again. If firing t′e at marking M′′

and then firing b, the initial marking, M0 = i, is returned. Therefore, the constructed
Petri net is live.

(if ) By Construction 2 we know that when the constructed Petri net is live, there is
a reachable marking such that transition te is enabled at this marking, i.e., this marking
marks place p0. By Construction 2 we know that if place p0 can be marked by some
reachable marking, then the LBA accepts the input string. �

Lemma 5. Let (P, T, F, R, M0) be the Petri net constructed for an LBA with an input
string by Construction 2. Then, (P, T \ {b}, F \ {(o, b), (b, i)}, R, M0) is a bounded
reWF-net.

Proof: Clearly, (P, T, F, R, M0) is strongly connected after deleting all reset arcs.
Therefore, (P, T \ {b}, F \ {(o, b), (b, i)}, R, M0) is an reWF-net. For boundedness,
we only need to observe the constructed transitions corresponding to Δ. Since each of
them has two input places and two output places, they neither increase nor decrease the
number of tokens at any time. �

Theorem 3. The soundness problem for bounded reWF-nets is PSPACE-hard.

Proof: It is derived by Lemmas 3, 4, and 5. Notice that, the reWF-net can be constructed
in O(l · (m + n + k)) time where l =| S |, m =| Q |, n =| Γ |, and k =| Δ |. �

The soundness of bounded reWF-nets is decidable but PSPACE-hard. However, it is
still an open problem whether the boundedness problem of reWF-nets is decidable.
What we know is that the boundedness problem is undecidable for general Petri nets
with reset arcs [7,8].

Similarly, based on the LBA Acceptance problem, we can prove that the soundness
problem of bounded WF-nets with inhibitor arcs is PSPACE-hard. The boundedness
problem is undecidable for general Petri nets with inhibitor arcs [10,19].
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5 Conclusion

The SAT problem is shown to be polynomial time reducible to the soundness problem
for bounded WF-nets. This implies the latter is co-NP-hard. The soundness problem
of bounded reWF-nets is proven to be PSPACE-hard by reducing the LBA Accep-
tance problem to it in polynomial time. Co-NP-hardness (resp. PSPACE-hardness) of
the soundness problem of bounded WF-nets (resp. reWF-nets) shows a lower limit of
the complexity. Therefore, future work focuses on finding if the soundness problem is
co-NP-complete for bounded WF-nets and PSPACE-complete for bounded reWF- and
inWF-nets.

The results in this paper is meaningful in theory. However, WF- and reWF-nets are of
the strong application background in industry and often have special structures such as
AND-join and OR-split [3]. Therefore, it is our future work to explore efficient analysis
methods for specially structural WF- and reWF-nets.
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Abstract. We extend workflow Petri nets (wf-nets) with discrete prices,
by associating a price to the execution of a transition and, more impor-
tantly, to the storage of tokens. We first define the soundness problem
for priced wf-nets, that of deciding whether the workflow can always
terminate properly, where in the priced setting “properly” also means
that the execution does not cost more than a given threshold. Then,
we study soundness of resource-constrained workflow nets (rcwf-nets),
an extension of wf-nets for the modeling of concurrent executions of
a workflow, sharing some global resources. We develop a framework in
which to study soundness for priced rcwf-nets, that is parametric on the
cost model. Then, that framework is instantiated, obtaining the cases in
which the sum, the maximum, the average and the discounted sum of
the prices of each all instances are considered. We study the relations
between these properties, together with their decidability.

1 Introduction

Workflow nets (wf-nets) are an important formalism for the modeling of business
processes, or workflow management systems [1, 2]. Roughly, a wf-net is a Petri
net with two special places, in and out. Its initial marking is that with a token
in the place in and empty everywhere else, which models the situation in which
a task has been scheduled. The basic correctness notion for a workflow is that
of soundness. Intuitively, a workflow is sound if it cannot go wrong, so that
no supervisor is needed in order to ensure the completion of the task under a
fairness assumption. More precisely, and in terms of wf-nets, soundness implies
that at any reachable state, it is possible to reach the final state, that with a
token in the place out, and empty elsewhere. Soundness is decidable for wf-nets,
and even polynomial for free-choice wf-nets [2].

Recent works [3–5] study an extension of wf-nets, called resource-constrained
wf-nets (rcwf-nets) in which several instances of a workflow execute concurrently,
assuming that those instances share some global resources. Even if a singe in-
stance of an rcwf-net is sound, several instances could deadlock because of these
shared resources. In [3] the authors define dynamic soundness, the condition
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stating the existence of a minimum amount of resources for which any num-
ber of instances running simultaneously can always reach the final state, that
in which all the tasks have been completed and the number of resources is as
in the initial state. The paper [4] defines another notion of dynamic soundness,
in terms of the absence of instance deadlocks in rcwf-nets, fixing the initial
amount of resources though keeping the condition that instances must not change
the number of resources. In [5] we continued the work in [4], but we considered
that instances may create or consume resources. We proved this notion of dy-
namic soundness to be undecidable, and we identified a subclass of rcwf-nets,
called proper, for which dynamic soundness is decidable.

In the fields of business process management or web services, the importance
of QoS properties in general and cost estimation in particular has been identified
as central in numerous works [6–10]. As an example, in the previously mentioned
models, it may be possible to reach the final marking in different ways, due to
the different interleavings of the execution, or to the inherent non-determinism
in wf-nets. Moreover, in the case of rcwf-nets, an instance locking some resource
may force another instance to take a “less convenient” path (in terms of money,
energy or gas emissions, for example), that does not use the locked resource.
However, the reason why a workflow should prefer one path over another is
something that lies outside the model.

In order to study these problems, in this paper we add prices to our nets,
similarly as done for the (untimed) priced Petri nets in [11]. We consider different
types of prices, modeled as tuples of integers or naturals. More precisely, we add
firing costs to transitions, and more importantly, storage costs to places. Then,
the price of firing a transition is computed as the cost of its firing plus the cost of
storing all the tokens in the net while the transition is fired. The price of a run is
defined as the sum of the prices of the firings of its transitions. Then, we say that
a workflow net is price-safe if the price of each of its runs stays under a given
threshold. When costs are integers, we prove that price-safety is undecidable, so
that in the rest of the paper we restrict ourselves to non-negative costs.

In this priced setting, we restate the soundness problems. For ordinary wf-nets,
this is straightforward: a priced wf-net is sound if essentially we can always reach
the final marking, without spending more than a given budget. For priced rcwf-
nets, the definition of soundness is not so straightforward, since it must consider
the behavior of an arbitrary number of instances. We consider a parametric
definition of soundness for priced rcwf-nets. For any run, we collect the prices
of every instance in the run, so that soundness is parametric in the way in
which local prices are aggregated to obtain a global price. The definition is open
to many different variants, we study several such variants in this paper: the
maximum, the sum, the average and the discounted sum.

We prove decidability of price-safety for the sum, the maximum, and a finite
version of discounted sum, relying on the decidability of coverability for a class
of Petri nets with names, broadcasts and whole place operations, that can be
seen as an unordered version of Data Nets with name creation [12, 13]. In these
cases we have decidability of priced soundness within the proper subclass. As a
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corollary, we obtain the corresponding results for ordinary priced wf-nets (with
non-negative costs). For the average, we reduce soundness to the unpriced case,
so that it is decidable for proper rcwf-nets. However, price-safety remains open.

Related Work. In parallel to the works on wf-nets and rcwf-nets, there has
recently been an increasing interest in the study of quantitative aspects of both
finite and infinite state systems. In [14] the authors consider quantitative gen-
eralizations of classical languages, using weighted finite automata, that assign
real numbers to words, instead of boolean values. They study different problems,
which are defined in terms of how they assign a value to each run. In particular,
they assign the maximum, limsup, liminf, average and discounted sum of the
transition weights of the run.

Numerous works extend timed automata with prices [11, 15, 16]. E.g., the pa-
per [11] defines a model of Timed Petri Nets with discrete prices. In such model,
a price is associated to each run of the net. Then, the reachability (coverability)
threshold-problem, that of being able to reach (cover) a given final marking with
at most a given price, is studied. This study is extended to the continuous case
in [17]. In our setting, we require the workflow to behave correctly in any case,
without the need of a supervisor, which in the priced setting means that no run
reaching the final marking costs too much, as opposed to the threshold problems,
in which the existence of one good run is considered.

Quantitative aspects of reactive systems are studied as energy games e.g.
in [18–20]. For example, in [20] games are played on finite weighted automata,
studying the existence of infinite runs satisfying several properties over the ac-
cumulated weights, as ensuring that a resource is always available or does not
exceed some bound.

Outline. Sect. 2 gives some notations we will use throughout the paper. Sec. 3
extends wf-nets with prices and proves undecidability of price-safety with nega-
tive costs. In Sect. 4 we extend rcwf-nets and give some basic results. In Sect. 5
we study some specific cases of price predicates. Finally, in Sect. 6 we present
our conclusions. Missing proofs can be found in [21].

2 Preliminaries

A quasi-order ≤ over a set A is a reflexive and transitive binary relation over A.
Given a quasi-order ≤, we say that a < b if a ≤ b and b � a. Given B ⊆ A, we
denote B ↓= {a ∈ A | ∃b ∈ B, a ≤ b} the downward closure of B and we say that
B is downward-closed if B ↓= B. Analogously, we define B ↑, the upward closure
of B and say B is upward closed if B ↑= B. We denote by Nω = N∪{ω}, the nat-
urals completed with their limit ω and 0 = (0, ..., 0). We write v[i] to denote the
ith component of v ∈ Nk

ω. We denote by ≤ the component-wise order in any Nk
ω

or Zk, and by < its strict version. A (finite) multiset m over a set A is a mapping
m : A → N with finite support, that is, such that supp(m) = {a ∈ A | m(a) > 0}
is finite. We denote by A⊕ the set of finite multisets over A. For two multisets
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m1 and m2 over A we define m1 +m2 ∈ A⊕ by (m1 +m2)(a) = m1(a) +m2(a)
and m1 ⊆ m2 if m1(a) ≤ m2(a) for every a ∈ A. For a multiset m and λ ∈ N,
we take (λ ∗m)(a) = λ ∗ m(a). When m1 ⊆ m2 we can define m2 − m1 ∈ A⊕

by (m2 − m1)(a) = m2(a) − m1(a). We denote by ∅ the empty multiset, that
is, ∅(a) = 0 for every a ∈ A, and |m| =

∑
a∈supp(m) m(a). We use set nota-

tion for multisets when convenient, with repetitions to account for multiplicities
greater than one. We write {a1, ..., an} ≤⊕ {b1, ..., bm} if there is an injection
h : {1, ..., n} → {1, ...,m} such that ai ≤ bh(i) for each i ∈ {1, ..., n}.

Petri Nets. A Place/Transition (P/T) net is a tuple N = (P, T, F ), where
P is a finite set of places, T is a finite set of transitions (disjoint with P ) and
F : (P × T ) ∪ (T × P ) → N is the flow function.

A marking of N is an element of P⊕. For a transition t we define •t ∈ P⊕

as •t(p) = F (p, t). Analogously, we take t•(p) = F (t, p), •p(t) = F (t, p) and
p•(t) = F (p, t). A marking m enables a transition t ∈ T if •t ⊆ m. In that case t

can be fired, reaching the marking m′ = (m− •t) + t•, and we write m
t−→m′. A

run r is a sequence m0
t1−→m1

t2−→...
tn−→mn. If r1 and r2 are two runs so that r1

finishes at the marking in which r2 starts, we denote by r1 · r2 the run starting
with the transitions in r1, followed by those in r2, as expected.

Workflow Petri Nets. We will use the definition in [4]. A workflow Petri net
(shortly a wf-net) is a P/T net N = (P, T, F ) such that:

– there are in, out ∈ P with •in = ∅, in• �= ∅, •out �= ∅ and out• = ∅,
– for each p ∈ P \ {in, out}, •p �= ∅ and p• �= ∅.

When there is no confusion we will simply refer to the special places given by the
previous definition as in and out, respectively. We denote by min the marking
of N with a single token in in, and empty elsewhere. Analogously, mout is the
marking of N with a single token in out and empty elsewhere. There are several
definitions of soundness of wf-nets in the literature. We will use one called weak
soundness in [2]. A wf-net is weakly sound if for any marking reachable from
min it is possible to reach mout.

Petri Nets with Dynamic Name Creation and Whole Place Opera-
tions. In order to model different instances running in the same net, we will use
names, each name representing a different instance. A ν-PN is an extension of
Petri nets in which tokens are names and fresh name creation can be performed.
We define them here as a subclass of wν-PNs, a class of nets which we will need
in Sect. 5.1, that also allow whole-place operations and broadcasts, similar to
Data Nets [13]. Data Nets extend P/T nets by considering a linearly ordered and
dense domain of tokens, and in which whole place operations can be performed.
Therefore, wν-PNs can be seen as an unordered version of Data nets [13] in
which names can be created fresh. When a transition t of a wν-PN is fired, four
operations are performed: the subtraction of several tokens of different colors,
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Fig. 1. The firing of a wν-PN

whole-place operations (affecting every color in the same way), the creation of
new names and the addition of tokens.

Let us consider a set Var of variables and Υ ⊂ Var a set of name creation vari-
ables. A wν-PN is a tuple N = (P, T, F,G,H) where P and T are finite disjoint
sets of places and transitions, respectively; for each t ∈ T , Ft : P → (V ar\Υ )⊕
is its subtraction function, Gt : P ×P → N is its whole-place operations matrix,
and Ht : P → V ar⊕ is its addition function. Moreover, if x ∈ Ht(p) \ Υ then
x ∈ Ft(p

′) for some p′ ∈ P .
Let Id be an infinite set of names. A marking is any m : P → Id⊕. An a-token

in p is an occurrence of a ∈ m(p). Id(m) is the set of names appearing in m, that
is, Id(m) =

⋃
p∈P supp(m(p)). We denote by Var(t) = {x ∈ V ar | ∃p ∈ P, x ∈

Ft(p)∪Ht(p)} and Var(p) = {x ∈ Var | ∃t ∈ T, x ∈ Ft(p)∪Ht(p)}. A mode is a
mapping σ : Var(t) → Id extended pointwise to σ : Var(t)⊕ → Id⊕. A transition
t is enabled at a markingm with mode σ if for all p ∈ P , σ(Ft(p)) ⊆ m(p) and for
all ν ∈ Υ , σ(ν) /∈ Id(m). Then, we say that t can be fired, reaching a new marking
m′, where for all p ∈ P ,m′(p) =

∑
p′∈P ((m(p′)−σ(Ft(p

′)))∗Gt(p
′, p))+σ(Ht(p)),

and we denote this by m
t(σ)→ m′.

Example 1. Let N = ({p1, p2}, {t}, F,G,H) be a wν-PN, where:

– Ft(p1) = {x}, Ft(p2) = ∅.
– Ht(p1) = ∅, Ht(p2) = {x, ν}.
– Gt(p1, p1) = 1, Gt(p1, p2) = 0, Gt(p2, p1) = 1, Gt(p2, p2) = 0.

This net is depicted in Fig 1. Note that although Ft and Ht are represented by
arrows labelled by the corresponding variables, the effects of Gt are not depicted.

Let m be the marking of N such that m(p1) = {a, b} and m(p2) = {b, c}.
Then, t can be fired at m with mode σ, where σ(x) = a and σ(ν) = d, reaching
a new marking m′, such that m′(p1) = {b, b, c} and m′(p2) = {a, d}. Note that
m′ is obtained from m by the following steps:

– Removing an a-token from the place p1, due to the “effect” of F .
– Removing all tokens from p2 and copying them to p1, because of G.
– Adding an a-token and a d-token to p2, because of H .

We write m1 % m2 if there is a renaming m′
1 of m1 such that m′

1(p) ⊆ m2(p)
for every p ∈ P . A marking m is coverable from an initial marking m0 if we can
reach m′ from m0 such that m % m′.

A wν-PN could be considered as an unordered Data Net, except for the fact
that wν-PNs can create fresh names. In [12] the authors extend Data Nets with
fresh name creation and prove that coverability is still decidable by instantiating
the framework of Well Structured Transition Systems [22].



Cost Soundness for Priced Resource-Constrained Workflow Nets 113

Proposition 1. Coverability is decidable for wν-PN.

Finally, we define ν-PN [23], which is a fragment of wν-PN without whole-place
operations. Formally, a ν-PN is a wν-PN in which, for each t ∈ T , Gt is the
identity matrix, and we will simply write (P, T, F,H).

In the rest of the paper we will introduce some more models, that will be
most of the time priced versions of the models already defined. For the sake of
readability, we prefer to present these models in an incremental way, instead of
considering a very general model which subsumes all the others.

3 Priced Workflow-Nets

Let us define a priced extension of wf-nets. We follow the cost model in [11]. It
essentially amounts to adding to a wf-net two functions, defining the price of the
firing of each transition, and the cost of storing tokens during the firing of each
transition, respectively.

Definition 1 (Priced workflow net). A priced workflow net (pwf-net) with
price arity k ≥ 0 is a tuple N = (P, T, F, C, S) such that:

– (P, T, F ) is a wf-net, called the underlying wf-net of N ,
– C : T → Zk is a function assigning firing costs to transitions, and
– S : P × T → Zk is a function assigning storage costs to pairs of places and

transitions.

Notice that costs may be negative. The behavior of a pwf-net is given by its
underlying wf-net. In particular, adding prices to a wf-net does not change its
behavior, as the costs are not a precondition for any transition. That is the main
difference between adding resources and prices. Indeed, firing costs can be seen
as resources. However, since storage costs depend not only on the transitions
which are fired, but also on the number of tokens in the rest of the places when
the transitions are fired, they cannot be seen as resources anymore.

Let us define the price of a transition.

Definition 2 (Price of a run). Let t be a transition of a pwf-net enabled at a
marking m. We define P(t,m), the price of the firing of t at m, as

P(t,m) = C(t) +
∑

p∈m−•t

S(p, t)

Then, the price of a run r = m1
t1−→m2

t2−→m3 . . .mn
tn−→mn+1 of a pwf-net is

P(r) =
∑n

i=1 P(ti,mi).

Notice that in the definition of P(t,m) the term m− •t is a multiset, so that if
a place p appears twice in it then we are adding S(p, t) twice in turn. It can be
seen that firing costs can be simulated by storage costs, though we prefer to keep
both to follow the approach in [11]. However, storage costs cannot be simulated
by firing costs, since the former are marking dependent, while the latter are not.
Next, we define safeness of a pwf-net with respect prices.
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Definition 3 (b-p-safeness). Given b ∈ Nk
ω, we say that a pwf-net is b-p-safe

if for each run r reaching mout, P(r) ≤ b.

Therefore, a pwf-net is b-safe if all the runs that reach the final marking cost
less than the given budget. Next, define soundness for pwf-nets.

Definition 4 (b-soundness). Given b ∈ Nk
ω, we say that a pwf-net is b-sound

if from each marking m, reachable from min via some run r1, we can reach mout

via some run r2 such that P(r1 · r2) ≤ b.

Intuitively, for a pwf-net to be sound we need to be able to reach the final
marking at any point with a price that does not exceed the budget b ∈ Nk

ω. It is
easy to see that a pwf-net is b-sound iff it is weakly sound and b-p-safe. However,
as we prove next, the latter is undecidable.

Proposition 2. b-p-safeness is undecidable.

Proof (sketch). We reduce the cost-threshold-reachability problem for PPN with
negative costs, which is undecidable [11]. A PPN is a P/T net endowed with stor-
age and firing costs. The cost-threshold-reachability problem consists in, given
mf and b ∈ Nk

ω, decide whether there is a run σ with m0
σ−→mf such that

C(σ) ≤ v. The reduction consists essentially in obtaining the pwf-net as the
inverse of the PPN, by taking the inverse of each firing and storage cost. Then,
if a run σ has price c in the PPN, the simulating run has cost v − c, so that it
satisfies the cost-threshold-reachability property iff N �|= 0. The details of the
proof can be found in [21].

Instead of addressing the problem of b-soundness with non-negative costs di-
rectly, we will consider a more general version of the problem, that in which sev-
eral instances of the workflow execute concurrently, called resource-constrained
workflow nets. Then, we will obtain the results regarding pwf-nets as a corollary
of the more general problem.

To conclude this section, notice that if a pwf-net is b-p-safe (b-sound) then it
is also b′-p-safe (b′-sound) for any b′ > b, so that the set B(N) = {b ∈ Nk

ω | N is
b-p-safe (b-sound)} is an upward-closed set. In this situation, we can apply the
Valk & Jantzen theorem:

Theorem 1 ([24]). Let V be an upward-closed set. We can compute a finite
basis of V if and only if for each v ∈ Nk

ω we can decide whether v ↓ ∩V �= ∅.

Therefore, we can compute a finite basis of the set B(N), i.e., the minimal
budgets b for which the pwf-net is b-p-safe (b-sound), provided we can decide
b-p-safety (b-soundness) for each b ∈ Nk

ω.

4 Priced Resource-Constrained wf-Nets

Let us start by recalling the definition of resource-constrained wf-nets (rcwf-
nets). For more details see [5]. The definition we use is equivalent to those in [3, 4],
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though more convenient for our purposes. We represent each instance in an rcwf-
net by means of a different name. Hence, our definition of rcwf-nets is based on
ν-PN. A ν-PN can be seen as a collection of P/T nets that can synchronize
between them and be created dynamically [25]. We start by defining a subclass
of ν-PN, called asynchronous ν-PN, in which each instance can only interact
with a special instance (which models resources) that is represented by black
tokens. We fix variables ν ∈ Υ and x, ε ∈ V ar\Υ .

Definition 5 (Asynchronous ν-PN). An asynchronous ν-PN is a ν-PN N =
(P, T, F,H) such that:

– For each p ∈ P , Var(p) ⊆ {x, ν} or Var(p) = {ε}.
– For each t ∈ T , Var(t) ⊆ {ν, ε} or Var(t) ⊆ {x, ε}.

Places p ∈ P with V ar(p) = {ε} are called static, and represented in figures by
circles in bold. They can only contain (by construction) black tokens, so that
they will represent resources, and can only be instantiated by ε. Places p ∈ P
with Var(p) ⊆ {x, ν} are called dynamic, and represented by normal circles.
They can only contain names (different from the black token), that represent
instances, and can only be instantiated by x. We denote PS and PD the sets of
static and dynamic places respectively, so that P = PS ∪ PD.

Let us introduce some notations we will need in the following definition. Given
a ν-PN N = (P, T, F,H) and x ∈ Var we define the P/T net Nx = (P, T, Fx),
where Fx(p, t) = Ft(p)(x) and Fx(t, p) = Ht(p)(x) for each p ∈ P and t ∈ T .
Moreover, for Q ⊆ P , by F |Q we mean each Ft restricted to Q, and analogously
for H |Q. Roughly, an rcwf-net is an asynchronous ν-PN that does not create
fresh names, and so that its underlying P/T net is a wf-net.

Definition 6 (Resource-constrained workflow nets). A resource-
constrained workflow net (rcwf-net) N = (P, T, F,H) is an asynchronous ν-PN
such that:

– for all t ∈ T , ν /∈ V ar(t),
– Np = (PD, T, F |PD , H |PD )x is a wf-net, called the production net of N .

Fig. 2 shows an rcwf-net (for now, disregard the annotations C and S in the
figure). In figures we do not label arcs, since they can be inferred (arcs to/from
static places are labelled by ε, and arcs to/from dynamic places are labelled by
x). Np, the production net of N , is the P/T net obtained by projecting N to its
dynamic places.

Intuitively, each instance is given by a name, which is initially in in. Given
m0 ∈ P⊕

S , for each j ∈ N we define the initial marking mj
0 as the marking that

contains m0(s) black tokens in each static place s, j pairwise different names in
its place in, and is empty elsewhere. For instance, the marking of the rcwf-net
in Fig. 2 is m2

0, where m0 = {s, s, s}. Moreover, for such mj
0 we denote by Mj

out

the set of markings in which the same j names are in its place out and every
other dynamic place is empty. Now we define the priced version of rcwf-nets,
analogously as in Def. 1.
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Definition 7 (Priced rcwf-net). A priced rcwf-net (prcwf-net) with price ar-
ity k ≥ 0 is a tuple N = (P, T, F,H,C, S) such that:

– (P, T, F,H) is an rcwf-net, called the underlying rcwf-net of N ,

– C : T → Zk and S : P × T → Zk are functions specifying the firing and
storage costs, respectively.

As for priced wf-nets, the behavior of a priced rcwf-net is given by its underlying
rcwf-net. However, its runs have a price associated. We start by defining the price
of an instance in a run.

Definition 8 (Price of an instance). We define the price of an instance

a ∈ Id(m0) in a run r = m0
t1(σ1)−→ m1

t2(σ2)−→ m2 . . .mn−1
tn(σn)−→ mn of a prcwf-net as

P(a, r) =
n∑

i=1
σi(x)=a

(C(ti) +
∑
p∈P

|mi−1(p)− σ(Ft(p))| ∗ S(p, ti))

Intuitively, we are considering those transitions in r fired by a, and computing
its price as we did in Def. 2 for pwf-nets. In particular, we are assuming that
when computing the price of the firing of a transition by an instance, the tokens
belonging to other instances are accounted for. In other words, a pays a penal-
ization for the storage of all tokens when it fires a transition. We could have also
decided that each instance only pays for its own tokens, thus being in a slightly
different setting, but the techniques used in our results would also apply.

As we have mentioned before, prices are different from resources in that they
do not constraint the behavior of the net. However, once we are interested in
checking a priced-soundness problem, it is natural to consider the available “bud-
get” as an extra resource. Indeed, this can be done but only for firing costs, which
are local to transitions, but again this is not possible for storage costs.

Since in rcwf-nets we are interested in the behavior of several concurrent
instances, we collect their prices in the following definition.

Definition 9 (Price of a run). Given a run r of a prcwf-net starting in m0,
we define the price of r as the multiset P(r) = {P(a, r) | a ∈ Id(m0)} ∈ (Zk)⊕.
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Instead of fixing the condition to be satisfied by all the prices of each instance,
we define a parametric version of p-safeness and dynamic soundness. More pre-
cisely, those properties for prcwf-nets are parameterized with respect to a price-
predicate.

Definition 10 (Price-predicate). A price-predicate φ of arity k ≥ 0 is a
predicate over Nk

ω × (Zk)⊕ such that if b ≤ b′ and A′ ≤⊕ A then φ(b, A) →
φ(b′, A′) holds.

Intuitively, b stands for the budget, and A stands for the price of a run. Notice
that price-predicates are upward-closed in their first argument, but downward-
closed in their second argument. Intuitively, if a price-predicate holds for given
budget and costs, then it holds with a greater budget and less costs, as expected.
From now on, for a price-predicate φ and b ∈ Nk

ω, we will denote by φ(b) the
predicate over (Zk)⊕ that results of specializing φ with b. Moreover, when there
is no confusion we will simply say that a run r satisfies a predicate when P(r)
satisfies it.

We now proceed as in the case of a single instance, defining p-safeness and
dynamic soundness, though with respect to a given price-predicate.

Definition 11 (φ-p-safeness). Let b ∈ Nk
ω and φ be a price-predicate. We say

that the prcwf-net N is φ(b)-p-safe for m0 ∈ P⊕
S if for each j > 0, every run of

N starting in mj
0 satisfies φ(b).

Definition 12 (φ-dynamic soundness). Let b ∈ Nk
ω and φ be a price-predicate.

We say that the prcwf-net N is φ(b)-dynamically sound for m0 ∈ P⊕
S if for each

j > 0 and for each marking m reachable from mj
0 by firing some r1, we can reach

a marking mf ∈ Mj
out by firing some r2 such that r1 · r2 satisfies φ(b).

Ordinary dynamic soundness [5] is obtained by taking φ as the constantly true
predicate. Let us see some simple facts about φ-p-safeness and φ-dynamic sound-
ness.

Proposition 3. The following holds:

1. If φ1 → φ2 holds, then φ1(b)-p-safeness implies φ2(b)-p-safeness, and φ1(b)-
dynamic soundness implies φ2(b)-dynamic soundness.

2. For any φ, φ-dynamic soundness implies (unpriced) dynamic soundness.
3. In general, φ-dynamic soundness is undecidable.

Proof. (1) is straightforward by Def. 11 and Def. 12. (2) follows from (1), con-
sidering that any φ entails the constantly true predicate. (3) follows from the
undecidability of (unpriced) dynamic soundness for general rcwf-nets [5]. ��
Therefore, φ-dynamic soundness is undecidable for some φ, though certainly not
for all. As a (not very interesting) example, if φ is the constantly false price-
predicate, no prcwf-net is φ-dynamically sound, so that it is trivially decidable.
Now we factorize φ-dynamic soundness into unpriced dynamic soundness and
p-safety. As we proved in the previous section, if we consider negative costs
safeness is undecidable even for priced wf-nets. Therefore, for now on we will
focus in rcwf-nets with costs in N.
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Proposition 4. Let φ be a price-predicate and N a prcwf-net with non-negative
costs. Then N is φ(b)-dynamically sound if and only if it is dynamically sound
and φ(b)-p-safe.

Proof. First notice that for any run r of N and any run r′ extending r we have
φ(b,P(r · r′)) → φ(b,P(r)). Indeed, it is enough to consider that, because we are
considering that costs are non-negative, P(r) ≤⊕ P(r·r′) holds and, by Def. 10, φ
is downward closed in its second parameter. For the if-part, if N is dynamically
sound and all its runs satisfy φ(b) then it is clearly φ(b)-dynamically sound.
Conversely, if it is φ(b)-dynamically sound it is dynamically sound by Prop. 3.
Assume by contradiction that there is a run r that does not satisfy φ(b). By
the previous observation, no extension of r can satisfy φ(b), so that N is not
φ(b)-dynamically sound, thus reaching a contradiction. ��

Therefore, to decide φ-dynamic soundness we can consider those two properties
separately. Though (unpriced) dynamic soundness is undecidable for general
rcwf-nets, it is decidable for a subclass of rcwf-nets that we call proper rcwf-
nets [5]. An rcwf-net is proper if its production net is weakly sound and for each
transition t in the production net, t• �= ∅. The first condition can be intuitively
understood as the rcwf-net behaving properly (being weakly sound) if endowed
with infinitely-many resources, which amounts to removing the restriction of its
behavior by means of resources. The second condition is a slight relaxation of
the standard connection condition considered for wf-nets [2]: for any n ∈ P ∪ T
there exists a path from in to n and from n to out. That is because, given a
transition t ∈ T , if there exists a path from t to out, then there must be p ∈ P
with p ∈ (•t) and therefore t• �= ∅.

In turn, it is decidable to check that an rcwf-net is proper [5]. In the follow-
ing sections, we will study the decidability of φ(b)-p-safeness for various price-
predicates, even if N is not proper.

To conclude this section, and as we did in the previous one, notice that for any
price-predicate φ, the set Bφ(N) = {b ∈ Nk

ω | N is φ(b)-dynamically sound (φ(b)-
p-safe)} is upward-closed because of the upward-closure in the first parameter
of price-predicates. Therefore, and as we did for pwf-nets, we can apply the Valk
& Jantzen result to compute the minimal budgets b for which N is φ(b)-p-safe
(φ(b)-dynamically sound) whenever we can decide φ(b)-p-safeness (φ(b)-dynamic
soundness) for each b ∈ Nk

ω.

5 Selected Price Predicates

Now, we study some specific cases of these price predicates. In particular, we
study the maximum, the sum, the average and the discounted sum.

5.1 Sum and Max -Dynamic Soundness

Let us now study the two first of the concrete priced problems for prcwf-nets.
When we consider several instances of a workflow net running concurrently, we
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may be interested in the overall accumulated price, or in the highest price that
the execution of each instance may cost.

Definition 13 (Sum and Max price-predicates). We define the price-
predicates Sum and Max as:

Sum(b, A) ⇐⇒
∑

x∈A x ≤ b

Max (b, A) ⇐⇒ x ≤ b for all x ∈ A

Sum and Max are indeed price-predicates because they satisfy the conditions in
Def. 10. They are both upward closed in the first parameter and downward closed
in the second. Let us remark that the cost model given by Sum, in which all the
prices are accumulated, is the analogous to the cost models in [11, 17]. However,
since we are here interested in the behavior of an arbitrary number of instances,
a necessary condition for Sum(b)-p-safeness is the existence of an instance from
which the rest of the instances have a null price (for those components in b that
are not ω).

Example 2. Consider the prcwf-net N in Fig. 3, and a run of N with n instances,
and in which t2 is not fired until t1 has been fired n times. The price of the i-th
instance in any such run is 2 · (i− 1). Indeed, the first firing of t1 costs nothing,
because there are no tokens in p, but in the second one there is already a token in
p, so that the second firing costs 2 (because S(p, t1) = 2). In particular, the last
instance of the net costs 2 · (n− 1). Therefore, the net is neither Max (b)-p-safe
nor Sum(b)-p-safe for any b ∈ N.

Now, suppose that S(p, t) = 0 for each place p and transition t, C(t1) = 1 and
C(t2) = 0. Each instance costs exactly 1, so that it is Max (1)-p-safe. However,
if we consider a run in which n instances have reached out, then the sum of the
prices of all instances is n, and the net is not Sum(b)-p-safe for any b ∈ N.

Now we prove decidability of Max (b) and Sum(b)-p-safety by reducing them to
non-coverability problems in a wν-PN. Given a prcwf-net N we build a wν-
PN C(N), the cost representation net of N , by adding to N new places, whose
tokens represent the costs of each run. Then, the net will be safe iff no marking
with bi + 1 tokens in the place representing the ith component of the prices
can be covered. More precisely, we will use a-tokens to compute the cost of the
instance represented by a. We simulate firing costs by adding to N “normal
arcs”, without whole-place operations, but for the simulation of storage costs we
need the whole-place capabilities of wν-PN.

Proposition 5. Max-p-safety and Sum-p-safety are decidable for prcwf-nets.
Max-dynamic soundness and Sum-dynamic soundness are decidable for proper
prcwf-nets.

Proof. We reduce Sum-p-safety to coverability for wν-PN. Then, we sketch how
to adapt this reduction to the case of Max -p-safety. Let N = (P, T, F,H,C, S)
be a prcwf-net with price arity k. Let b ∈ Nk

ω. We can assume that b has no ω-
components, or we could safely remove the cost information of those components.
We build the wν-PN C(N) = (P c, T c, F c, Gc, Hc) as follows:
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•••• ••

t2 t3

t1

tν

tc1 tc2c2c1

ν

Fig. 4. The costs representation wν-PN of the prcwf-net in Fig. 2

– P c = P ∪ {c1, ..., ck},
– T c = T ∪ {tν} ∪ {tc1 , ..., tck}.
– For each t ∈ T ,

• F c
t (p) = Ft(p) if p ∈ P , and F c

t (p) = ∅, otherwise,

• Hc
t (p) = Ht(p) if p ∈ P , and Hc

t (ci) = C(t)[i] ∗ {x}, otherwise,

• Gc
t(p, p

′) =

⎧⎨⎩
S(p, t)[i] if p ∈ P , and p′ = ci,

1 if p = p′,
0 otherwise.

– For each i ∈ {1, ..., k},

• F c
tci

(ci) = {x, y}, and F c
tci

(p) = ∅ otherwise,

• Hc
tci

(ci) = {x, x}, and Hc
tci

(p) = ∅ otherwise, and

• Gc
tci

is the identity matrix.

– Ftν (p) = ∅ for any p ∈ P c, Htν (in) = {ν} and returns the empty multiset
elsewhere, and Gtν is the identity matrix.

Any run r of N can be simulated by a run of C(N), preceded by several firings
of tν . Moreover, if r starts in m0 and finishes in m (seen as a run of C(N)), then
by construction of C(N) it holds that the sum of the prices of the instances in r,
is the vector formed by considering the number of tokens (maybe with different
colors) in c1, ..., ck. Finally, as each transition tci takes two tokens with different
names from ci, and puts them back, changing the name of one of them by the
name of the other token, these transitions allow to reach each markings in which
the sum of the prices of all instances of a run is represented by the tokens in the
places ci, all of them with the same name. Then, N is Sum(b)-p-unsafe if and
only if there is j ∈ {1, ..., k} such that the marking with b[j] + 1 tokens of the
same color in cj and empty elsewhere is not coverable, and we are done.

The previous construction with some modifications also yields decidability of
Max (b)-p-safeness. We add one more place last (which will always contain the



Cost Soundness for Priced Resource-Constrained Workflow Nets 121

name of the last instance that has fired a transition) and for each i ∈ {1, ..., k},
we add a new place di (where we will compute the costs). When a transition
t ∈ T is fired, in C(N) we replace the name in last by the name of the current
transition, and reset every place ci (by setting Gt(ci, ci) = 0). Moreover, we
change the effect of every tci : they now take a token from ci, and put a token of
the name in last in the place di (see Fig. 5).

Therefore, when a transition t ∈ T is fired, it is possible to reach a marking in
which the costs of firing t are added to every di (represented by the name of the
instance that has fired t) by firing t followed by the firing of every tci ni times,
provided t put ni tokens in ci. Notice that if another transition fires before, then
that run is lossy, in the sense that it is computing an underapproximation of
its cost, but it is always possible to compute the exact cost. Therefore, N is
Max (b)-p-unsafe if and only if there is j ∈ {1, ..., k} such that the marking with
b[j] + 1 tokens of the same color in dj and empty elsewhere is not coverable. ��

Example 3. Fig. 4 shows the costs representation net of the net N in Fig. 2.
For a better readability, we have removed the labels of the arcs. As the prices
in N are vectors of N2, we have added two places, c1 and c2, to store the costs;
and two transitions tc1 and tc2 , which take two tokens of different colours of the
corresponding places and put them back, with the same colour. Moreover, we
have added arcs that manage the addition of the cost of transitions. In particular,
dashed arcs denote copy arcs, meaning that when the corresponding transition is
fired, tokens are copied in the places indicated by the arrows (which is the effect
of G in the proof of the previous result). Then, Sum(b)-p-safeness is reduced to
non-coverability problems: the prcwf-net is Sum(1, 1)-p-safe iff neither m1 (the
marking with only two tokens carrying the same name in c1) neither m2 (the
marking with only two tokens carrying the same name in c2) are coverable.

We remark that if we consider a cost model in which each instance only pays
for its own tokens, as discussed after Def. 8, the previous proof can be adapted
by considering a version of wν-PN with finer whole-place operations, which are
still a subclass of the ones considered in [12], so that the result would still apply.
To conclude this section, we show that we can reduce the soundness problem for
pwf-nets defined in Sect. 3 to Max -dynamic soundness for prcwf-nets.

Corollary 1. b-p-safeness and b-soundness are decidable for pwf-nets with non-
negative costs.

Proof. Let N be a pwf-net. To decide b-safety it is enough to build a prcwf-net
N ′ by adding to N a single static place s, initially containing one token, two new
places in′ and out′ (the new initial and final places), and two new transitions
tin and tout. Transition tin can move a name from in′ to in whenever there is a
token in s, that is, Ftin(in

′) = {x}, Ftin(s) = {ε} and Ftin is empty elsewhere,
and Htin(in) = {x} and empty elsewhere. Analogously, tout can move a name
from out to out′, putting the black token back in s, that is, Ftout(out) = {x}, and
empty elsewhere, and Htout(out

′) = {x}, Htout(s) = {ε}, and empty elsewhere.
In this way, the concurrent executions of N ′ are actually sequential. Since there
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Fig. 6. The construction of Cor. 1

is no other way in which instances can synchronize with each other (because
there are no more static places) the potential behavior of all instances coincide,
and coincide in turn with the behavior of N . Finally, we take the cost of firing
tin and tout as null, as well as the cost of storing tokens in in′ and out′ for any
transition, and the cost of storing tokens in any place for tin and tout. More
precisely, C(tin) = C(tout) = 0, S(p, tin) = S(p, tout) = 0 for any p ∈ P , and
S(in′, t) = S(out′, t) = 0 for any t ∈ T . In this way, the cost of each instance is
the cost of a run of N . Therefore, N is b-p-safe if and only if N ′ is Max (b)-p-safe.
Since weak soundness is decidable for wf-nets [2], we conclude. ��

5.2 Av-Dynamic Soundness

Now we study the next of the concrete priced-soundness problems. Instead of
demanding that the execution of each instance does not exceed a given budget
(though the price of one instance depends on the others), we will consider an
amortized, or average price.

Definition 14 (Av price-predicate). We define the price-predicate Av as
Av(b, A) ⇔ (

∑
x∈A x)/ |A| ≤ b.

Therefore, N is Av(b)-p-safe if in average, the price of each instance does not
exceed b, for any number of instances. Alternatively, we could have a slightly
more general definition, in which we only considered situations in which the
number of instances exceeds a given threshold l > 0. More precisely: Av l(b, A) ⇔
|A| ≥ l → (

∑
x∈A x)/ |A| ≤ b. We will work with Av , though we claim that with

fairly minor changes in our techniques we could also address the slightly more
general price-predicate Av l.

Example 4. Consider the prcwf-net in Fig. 9. The cost of firing t1 is twice the
number of instances in place in when t1 is fired. Therefore, the net is Av(2)-p-
safe, though it is not Max (b)-p-safe for any b ∈ N.

Now suppose that we force t1 to be fired in the first place by adding some
static conditions. Then, though the net is not Av(0)-p-safe, it is Av l(0)-p-safe if
we consider any threshold l ≥ 2.

We can reduce Av(b)-dynamic soundness of a prcwf-netN to (unpriced) dynamic
soundness of an rcwf-net N b. In order to ensure Av(b)-p-safeness, the maximum
budget we may spend in an execution with n instances is b ∗ n. Essentially, the
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Fig. 8. Schema of the managing of
storage costs assuming S(p, t) = 1

idea of this construction is to add to N new places s in which tokens represent
the remaining budget, and remove tokens from them when transitions are fired.
Moreover, each transition will have s as a precondition, so that if the net has con-
sumed all the budget, then it halts before reaching the final marking. Therefore,
we add b tokens to s each time an instance starts its execution. The simulation
is “lossy” because of how we manage storage costs, but it preserves dynamic
soundness. The proof of the next proposition gives a detailed explanation of this
construction.

Proposition 6. Given a prcwf-net N and b ∈ Nk
ω, there is an rcwf-net N b such

that N is Av(b)-dynamically sound if and only if N b is dynamically sound.

Proof. Let k be the price arity of N . We start the construction of N b by adding
to N new static places s1, ..., sk that initially contain one token each. These new
places store the budget than can be consumed by instances, plus the initial extra
token. In order to obtain that, every instance adds b[i] tokens to si when it starts.
When a transition t is fired, we remove from si C(t)[i] tokens to cope with firing
costs. We will later explain how to cope with storage costs (notice that N b is an
rcwf-net, and in particular it does not have whole-place operations). Moreover,
each transition has s1, ..., sk as preconditions and postconditions. Therefore, the
net will deadlock when some si is empty, meaning that it has used strictly
more than the allowed budget. Then, if N is not Av(b)-dynamically sound, N b

halts before reaching the final marking for some execution, and therefore, it is
not dynamically sound. Moreover, if N is Av(b)-dynamically sound, then N b is
dynamically sound, because each place si always contains tokens, and therefore
the executions of N b represent executions of N . Fig. 7 shows a schema of the
reduction for price arity 1.

Now we address the simulation of storage costs. Fig. 8 depicts the following
construction. We simulate them in a “lossy” way, meaning that if the firing of t
in N costs v, in the simulation we will remove at most v[i] tokens from si. To
do that, for each place p of N we will add a new place p′.

When a transition t is fired, for each place p we transfer tokens from p to
p′, one at a time (transition tp in the figure), removing at each time S(p, t)[i]
tokens from si. We add the same mechanism for the transfer of tokens from p′
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S(in, t1) = 2C(t1) = C(t2) = 0

S(q, ti) = 0 otherwise.

in out

s

• • •

•••

• • •

t2

t1

Fig. 9. Av -p-safety does not imply Max -p-safety

to p. At any point, the transfer can stop (even if some tokens have not been
transfered), which finishes the simulation of t. Since we now have two places
representing each place p (p and p′), for each transition of N , we need to add
several transitions in order to be able to take (or put) tokens from p, p′ or both.

Having lossy computations of the cost of a run, if N exceeds the average
budget for some execution and some number of instances, then N b will have a
deadlock when this execution is simulated correctly (meaning that all the tokens
which have to be transfered are indeed transfered). Then, N b is not dynamically
sound. Conversely, if N is Av(b)-dynamically sound (and in particular no run of
N exceeds the average budget), then N b never consumes all the tokens in any
si, and it behaves as N , so that it is dynamically sound. ��

Corollary 2. Av-dynamic soundness is decidable for proper prcwf-nets.

5.3 Ordered Prices

So far, we have considered that instances are not ordered in any way, follow-
ing directly the approaches in [3–5]. Nevertheless, we could consider an order
between the instances, and use it to compute the price of a run in such a way
that the relative order between instances matter. A sensible way to do that is
to assume a linear order between instances within a run given by the order in
which they start their execution.

Definition 15 (Order between instances). Let N be a prcwf-net, and a and
b be two instances in a run r of N . We write a <r b if a is removed from in in
r before b, and a =r b if neither a nor b have been removed from in in r. We
write a ≤r b if a =r b or a <r b.

Then, the order ≤r is a total order over the set of instances in r. In this situation
we can write Id(r) = a1 ≤r · · · ≤r an to denote that a1, ..., an are all the
instances in r, ordered as indicated. In the following, for a set A we denote by
A∗ the set of finite words over A.

Definition 16 (Ordered price of a run). Given a run r of a prcwf-net with
Id(r) = a1 ≤r · · · ≤r an we define the ordered price of r as the word Po(r) =
P(a1, r)...P(an, r) ∈ (Nk)∗.

Notice that the previous definition is correct in the sense that whenever a =r b
then we have P(a, r) = P(b, r) = 0. Moreover, the instances of a run are always
ordered as a1 <r · · · <r am < am+1 =r ... =r an.
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Table 1. A � symbol in row φ1 and column φ2 means that φ1(b)-dynamic soundness
implies φ2(b)-dynamic soundness; a �� symbol means that the implication holds possibly
for a different b; a × means that the implication does not hold

Sum Max Ds Av

Sum � � � �
Max × (Ex. 2) � [21] �� [21] � [21]

Ds × (Fig. 3) × (Fig. 3) � × (Fig. 3)

Av × (Fig. 9) × (Fig. 9) × (Fig. 9) �

With the notion of ordered price, we can consider price-predicates that depend
on the order in which instances are fired. Therefore, ordered price-predicates
are predicates over Nk

ω × (Nk)∗. We consider the order ≤∗ over (Nk)∗ given by
w1...wn ≤∗ w1...w

′
m iff n < m and for each 0 < i ≤ n, wi ≤ w′

i. For instance,
following [14], we can model situations in which costs in the future are less
important than closer ones.

Definition 17 (Ds-price predicate). Given 0 < λ < 1, we define the discounted-
sum price-predicate Dsλ as Dsλ(b, v1...vn) ⇔

∑n
i=1 λ

i · vi ≤ b.

Example 5. Let us recall the run of the net N of Fig. 3 described in Ex. 2. We
proved that the net is neither Max (b)-p-safe nor Sum(b)-p-safe for any b ∈ N.
Moreover, the average price of the run is

∑n
i=1 2(i − 1)/n, which equals n − 1,

so that it is not Av(b)-p-safe for any b ∈ N. However, the discounted price of
the run is

∑n
i=1 2(i − 1)λi, with 0 < λ < 1. By using standard techniques, it

can be seen that the limit of those sums is b = 2λ2/(1 − λ)2. Moreover, for
λ = 1/c with c > 1 that formula simplifies to 2/(c− 1)2. As it is easy to prove
that the considered runs are the most expensive ones of N , it follows that it is
Dsλ(b)-p-safe for that b ∈ N.

Note that if we consider ≤∗, then Dsλ is downward-closed in its second argu-
ment. Decidability of Dsλ-p-safeness remains open, but a weaker version of this
problem, in which we only consider finitely many instances, is decidable.

Definition 18 (Fds-price predicate). Given 0 < λ < 1 and k ∈ N, we define

the finite-discounted-sum price-predicate Fdskλ(b, v1...vn) ⇔
∑min{n,k}

i=1 λi ·vi ≤ b.

For this finite version of discounted-sum, p-safety is decidable.

Proposition 7. Let k ∈ N, c ∈ N \ {0} and λ = 1/c. Fdskλ-p-safety is decidable
for prcwf-nets. Fdskλ-dynamic soundness is decidable for proper prcwf-nets.

6 Conclusions and Open Problems

We have extended the study of workflow processes, adding prices to them. In
particular, we have added firing and storage costs to wf-nets and rcwf-nets,
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as done for priced Petri nets in [11]. Then, we have defined priced versions of
safety and soundness for pwf-nets, and several notions of the same properties for
rcwf-nets, depending on how we aggregate local prices to obtain a global price.
Table 1 shows the relations between the different predicates. Some of its results
are either trivial or proved in [21].

We have proved that b-p-safety is undecidable when negative costs are con-
sidered, but decidable for non-negative costs. Moreover, b-soundness is also de-
cidable in this case. Regarding prcwf-nets, we have proved that Sum, Max , and
Fds-p-safety are decidable, and Sum, Max , Av and Fds-dynamic soundness are
decidable for the subclass of proper prcwf-nets.

There are interesting open problems that remain open: decidability of Av -
p-safety and that of the problems related to the discounted sum. Their study
would be a good starting point for the study of more sophisticated aggregation
techniques, like the Gini or the Theil index.

There are several ways in which we can extend this work. It would be inter-
esting to consider that storage costs depend on how long tokens stay on places
during the transitions. For this purpose, time for rcwf-nets should be considered
instead of arbitrary interleavings in the firing of transitions, as done in [17]. The,
priced safety and soundness properties could be studied in this timed model.

Moreover, it would be interesting to study the complexity of the problems
studied here. It is easy to see that coverability for ν-PN (which has a non-
primitive recursive complexity [23]) can be reduced to Sum and Max safety, so
that they are non-primitive recursive. Further research is needed to investigate
the complexity for the remaining predicates.

Finally, the study of Ds-soundness, leads us to several interesting questions
about how the size of the markings and prices of a (sound) rcwf-net may grow. In
this sense, we would be interested in studying possible bounds for the number
of tokens in places, or for the costs of an instance in terms of the number of
instances running in the net.
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Abstract. The process mining algorithm α was introduced by van der
Aalst et al. for the discovery of workflow nets from event logs. This al-
gorithm was presented in the context of structured workflow nets even
though it was recognized that more wokflow nets should be reconstructible.
In this paper we assess α algorithm and provide a more precise descrip-
tion of the class of workflow nets reconstructible by α.

Keywords: Process Mining, Workflows, Net Synthesis.

1 Introduction

One of the purpose of process mining [11] is to construct or to reconstruct from
an event log a business process model that can generate this event log. The
game is to dig out of event logs sufficient informations on the structure of their
generating model. As a technique for model discovery, process mining has some
connections with machine learning.

Process mining may be used for the purpose of modelling. For instance, after
collecting over a long period of time information on the health history of many
patients, including the diagnosis and treatment steps, one may want to extract
from this record an accurate model of the workflow system of an hospital. Re-
verse engineering, which consists of reconstructing from representative use cases
an existing but partially unknown system, is another activity of model discov-
ery that can be achieved by process mining. According to [11], process mining
can also be used for conformance checking or enhancement of business process
models. For instance, process-aware systems record run-time informations used
to detect discrepancies between expected and actual behaviours and to refactor
these systems.

In this paper we focus our attention on model discovery. We fix a subclass
of net systems, the so-called workflow nets, as the class of target models for
process mining. Section 2 introduces the model of workflow nets and we present
and illustrate algorithm α [12, 13]. The mining algorithm α tries to reconstruct
the places of a workflow net by taking solely into account those pairs of tran-
sitions that follow each other in some execution sequence. This assumption has
strong impacts, considered in Section 4, on the class of reconstructible workflow
nets. In particular, we point out that their inner places are boundary places, a
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condition that we study in more details in Section 5. On that basis we obtain
a characterization of the class of workflow nets that are discovered by α. This
class contains the structured workflow nets of [12, 13].

2 Discovering Workflow Nets from Event Logs

A log is a finite set of execution sequences of a workflow system. Given a log of the
system to be discovered (i.e., constructed or reconstructed), each event reported
in this log refers to an activity, i.e., a particular step in the workflow system, and
to a specific case, i.e., a process instance. Additional informations pertaining to
events are generally included, for instance a time stamp or the identity of the
performer. Usually cases have little or no connection with one another, and time
stamps will mainly serve the purpose of indicating the correct ordering of the
activities. An event log may then be abstracted to a set of sequences of activities.
Each sequence represents all activities of a case from the time when it enters the
system till the time when it leaves the system.

As the target representation of process mining, we consider a subclass of
elementary net systems, called workflow nets. The goal of process mining is to
synthesize from an event log a workflow net that can reproduce all sequences of
activities traced in this log, from the inception of a case to its termination.

Example 2.1. The workflow net displayed below specifies all possible behaviours
of an isolated case in some workflow system. In other words, the firing sequences

of the workflow net represent all ac-
tivities pertaining to a case from
the time when the case enters into
the system (the input place i is
marked) until the case terminates
and exits from the system (the out-
put place o is marked). The possi-
ble sequences of activities are thus
ABCD,ACBD,AED.

i

p1

p2

p3

p4

o
A

B

E

C

D

A workflow net contains an input place i and an output place o. The input place i
is initially marked, and this initial marking represents the entry of a new case in
the system. The output place o gets marked when the case comes to completion,
and this final marking represents the exit of the case from the system. The
current marking of the workflow net represents the current status of a case. It is
assumed that the execution of a case can always reach termination, and that it
cannot interfere with the execution of any subsequent case. The latter property,
called soundness in [13], can be formalized as follows: when the output place
is marked, all other places must be empty. The marking in which the output
place and no other place is marked is called the terminal marking. Therefore, in
a (sound) workflow net, the terminal marking must be reachable from any other
reachable marking.
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Moving the token from the output place back to the initial place is a way
to simulate the termination of a case and the inception of a new case. A work-
flow net with such an implicit feedback may be seen as a cyclic generator, that
can iterate in sequence all scenarios of execution of all cases. Instead of adding
a feedback transition from the output place to the input place, one might as
well coalesce the input place and the output place (confusing thus the initial
and terminal markings). With this representation, the two crucial properties of
workflow nets N may be reformulated equivalently as follows: (i) the net N ′

obtained by coalescing the input place and the output place of N is reversible
(the initial marking may be reached from any reachable marking) and (ii) the
initial (or terminal) marking is the only reachable marking of N ′ containing the
input (or output) place. This is essentially the definition of workflow nets which
we adopt below.

Definition 2.2. A workflow net is a contact-free, initially life, place simple and
connected elementary net system N = (P, T, F,M0) where P contains an input
place i and an output place o (the remaining places p ∈ P \{i, o} are called inner
places), such that the following conditions hold:

1. •i = o• = ∅
2. (∀p ∈ P \ {i, o}) •p �= ∅ ∧ p• �= ∅
3. M0 = {i}.
4. The closed net system N ′ = (P ′, T, F ′, {ι}) obtained from N by replacing

places i and o with a unique place ι such that •ι = •o and ι• = i• is reversible,
and its initial marking M ′

0 = {ι} is the unique reachable marking of N ′ in
which the place ι is marked.

Let us recall that a net system is initially life if any transition is enabled in some
reachable marking, and it is life if, for any transition t and for any reachable
marking M , the transition t is enabled in some marking reachable from M .
Notice that the closed net system N ′ being both initially life and reversible is
life. Let us also recall that a contact situation for an elementary net system is
given by an accessible marking M and a transition t such that •t ⊆ M and
M ∩ t• �= ∅, i.e., transition t is disabled in marking M because of one of its
output places. An elementary net is contact-free if it has no contact situation.
i.e.,M∩t• = ∅ for every accessible markingM and transition t such that •t ⊆ M .
Any elementary net system is equivalent to a contact-free net obtained by adding
complementary places where needed1. Contact-free elementary net systems are
equivalent to one-safe net systems and, up to this correspondence, Def. 2.2 is an
equivalent reformulation of the definition of sound workflow nets given in [13].

1 Places p and p are complementary places when •p = p•, p• = •p, and p ∈ M0 ⇔
p �∈ M0, then for every marking M accessible (from the initial marking M0) one
has p ∈ M ⇔ p �∈ M . If a place has no complementary place one can formally add
one such place to the net system without modifying its behaviour (both net systems
have isomorphic reachability graph). One can then eliminate the contact situations
by adding complementary places to those (output) places involved in some contact
situation.
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Given a workflow net N = (P, T, F,M0), the full log of N is the language
L(N) = {u ∈ T ∗ | {i} [u〉 {o}}, i.e., the full log of N is the set of all firing
sequences from the initial marking {i} to the final marking {o}. A log of N is
any subset W ⊆ L(N) such that every transition t ∈ T occurs in at least one
execution sequence in W . A workflow log is any log of a workflow net. Since
workflow nets have no dead transitions, the full log of a workflow net is actually
a log of this workflow net.

Example 2.3 (Exple. 2.1 continued). Consider the log {ABCD,ACBD,AED}
⊆ L(N) of the workflow net N shown in Exple.2.1. Every execution sequence in
this log starts with event A and ends with event D. In between, one is left the
choice to perform either the event E or the events B and C, which are concur-
rent since they occur in the log in both orders BC and CB. Using these structural
informations extracted from the log, the α algorithm can reconstruct the work-
flow net N from the considered log. All three execution sequences in this log are
actually needed by algorithm α: every activity ought to be reported in at least one
execution sequence(thus AED is needed), and for any pair of concurrent events,
at least two execution sequences exhibiting the two possible orderings are needed
(thus ABCD and ACBD are needed).

The set of all execution sequences of a workflow net may grow exponentially
with the number of events, owing to their possible concurrency. Therefore the
execution sequences reported in an event log usually form a small but hopefully
representative set of samples of all possible behaviours. In order to discover a
workflow netN from some small logW ⊂ L(N), a process mining algorithmmust
carry out some non-trivial generalization over the execution sequences in this log.
For that purpose algorithm α is presented as the composition α = Syn◦Abs of an
abstraction function Abs and a synthesis function Syn. The role of the function
Abs is to extract from a log W the relevant relations between the events that
occur in this log. The role of the function Syn is to reflect, as faithfully as
possible, these relations in the structure of a synthesized net system.

Definition 2.4. The α-abstraction of a workflow log W ⊂ T ∗ is the triple
Abs(W ) = 〈IW , CW , OW 〉 where:
1. IW = {t ∈ T | ∃u ∈ T ∗ t · u ∈ W } is the set of transitions starting some

execution sequence in the log;
2. OW = {t ∈ T | ∃u ∈ T ∗ u · t ∈ W } is the set of transitions ending some

execution sequence in the log;
3. CW =

{
t · t′ ∈ T 2 | ∃u, v ∈ T ∗ u · t · t′ · v ∈ W

}
is the set of pairs of tran-

sitions appearing consecutively in some execution sequence in the log.

Definition 2.5. W ⊆ L(N) is said to be a complete log of workflow net N when
Abs(W ) = Abs(L(N))

Hence a complete logW contains already all the information needed by algorithm
α: the net systems α(W ) and α(L(N)) are identical up to a bijective renaming
of their set of places. This relation, called isomorphism, will be denoted by ∼=.
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Hence a workflow net is α-reconstructible (i.e., N ∼= α(L(N))) if and only if it
can be discovered from any of its complete log W ⊆ L(N) (i.e., N ∼= α(W )).

From the theory of event structures [14, 15], we know that the behaviour of a
net system can be captured, up to net unfolding, by the basic relations of causal-
ity, conflict and concurrency between events. When unfolding a net to an event
structure, the events are not in bijective correspondence with the transitions of
the net, since two occurrences of the same transition may be distinguished by
their past history. Nevertheless, given a workflow net N with set of transitions
T and a log W of N , one may derive from the α-abstraction of this log three re-
lations →W , �W , ‖W between the transitions of N (the activities reported in the
log), approximating loosely the relations of causality, conflict and concurrency
in the associated event structure. These relations are the following:

causality: t→W t′ ⇔ t · t′ ∈ CW ∧ t′ · t �∈ CW

conflict: t �W t′ ⇔ t · t′ �∈ CW ∧ t′ · t �∈ CW

concurrency: t ‖W t′ ⇔ t · t′ ∈ CW ∧ t′ · t ∈ CW

From these relations between transitions, one may derive again the following
relations between sets of transitions.

Definition 2.6. Let W ⊆ T ∗ be a workflow log. For any sets of transitions
A,B ⊆ T , let A ≺W B when the following three conditions hold:

1. (∀a ∈ A)(∀b ∈ B) a →W b,
2. (∀a1, a2 ∈ A) a1�Wa2, and
3. (∀b1, b2 ∈ B) b1�W b2

Let A ≺m
W B when A and B are maximal sets with the property A ≺W B, i.e.,

A ≺m
W B ⇔ (A ≺W B) ∧ (A′ ≺W B′ ∧A ⊆ A′ ∧B ⊆ B′ ⇒ A = A′ ∧B = B′).

Note that the definition of ≺W may be applied to any workflow log, and in
particular to the full log L(N) of a workflow net N . Using the above relations,
the synthesis function Syn used in the α algorithm may be defined as follows.

Definition 2.7. Let 〈IW , CW , OW 〉 be the α-abstraction of a workflow log W ⊂
T ∗. Then α(W ) = Syn(〈IW , CW , OW 〉) is the elementary net system (P, T, F,M0)
defined as follows:

1. P = {i, o} ∪ {pA,B | A,B ⊆ T ∧A ≺m
W B },

2. •i = ∅, and i• = IW ,
3. •o = OW , and o• = ∅,
4. •pA,B = A, and pA,B

• = B,
5. M0 = {i}.

Example 2.8. The algorithm α reconstructs the net system of Exple.2.1 from
its set of firing sequences W = {ABCD,ACBD,AED}. We have IW = {A},
OW = {D}, and CW = {AB,BC,CD,AC,CB,BD,AE,ED}. For any pair of
transitions t and t′ one of the following exclusive conditions holds: t→W t′, t′→W

t, t�W t′, or t‖W t′. In the given example we obtain the following classification:
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B C D E

A A→W B A→W C A�WD A→W E
B B‖WC B→W D B�WE
C C→W D C�WE
D E→W D

The maximal elements of ≺W are obtained from the smallest ones, namely
{t} ≺W {t′} for t →W t′, by progressively adjoining new elements to each of
these two sets while preserving the conditions imposed on ≺W . We obtain:

{A}≺m
W {B,E} {A}≺m

W {C,E} {B,E}≺m
W {D} {C,E}≺m

W {D}

providing respectively the places p1, p2, p3, and p4 of the net system displayed in
Exple.2.1.

3 Some Observations about the Algorithm α

The reader may feel uncomfortable with the fact that the synthesized places are
associated only from the maximal elements of relation≺W . Of course, associating
a place p with every pair such that A ≺W B would produce a net with a large
number of places. We may expect many of these additional places (if not all)
to be implicit, so that one can remove them without having an impact on the
behaviour of the system.

Definition 3.1. A place p of a (contact-free) net system N = (P, T, F,M0) is
a (structurally) implicit place if for every reachable marking M and transition
t ∈ p•, •t \ {p} ⊆ M ⇒ p ∈ M .

The next example shows however that some of these places are not implicit and
therefore the decision to restrict to the maximal elements of the relation ≺W

has an impact of the expressivity of algorithm α.

Example 3.2. Let us consider the workflow net N depicted next.
Its language is L(N) = A (B′C′A′)

∗
B (C′A′B′)

∗
C.

A complete log is W = {ABC,AB′C′A′BC′A′B′C}.
Places q, q′ and r correspond to maximal elements of
relation ≺W , namely {A,A′}≺m

W{B,B′}, {B,B′}≺m
W

{C,C′}, and {C′} ≺m
W {A′} respectively. Whereas

•p = {A}≺m
W {B} = p• and •p′ = {B}≺m

W {C} =
p′• are not. Nevertheless these places are not im-
plicit places since they disable the firing of transi-
tion B (respectively C) in the marking reached af-
ter firing ABC′A′ (resp. AB′) where place q (resp.
place q′) is marked. The net N ′ = α(W ) synthe-
sized by algorithm α is obtained from N by sup-
pressing these two places p and p′. Its language is
L(N ′) = A (B + B′) (C′A′ (B + B′))∗ C.

i

p q

p′ q′

r

o

A A′

B B′

C C′
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Algorithm α is sober in the sense that for any complete log W ⊆ L(N) of
a workflow net N any larger log W ⊆ W ′ ⊆ L(N) is also complete and the
minimal size of complete logs of workflow nets is asymptotically negligible w.r.t.
the size of their languages. Indeed when N ranges over workflow nets with set of
transitions T , the size of Abs(L(N)) is in O(|T |2). Moreover, a firing sequence
of N contained in a log W may contribute several pairs of transitions in CW .
Therefore, one may expect to find complete logs of N with size even smaller than
O(|T |2). Sobriety means that one can assume W ⊆ L(N) to be a complete log
of workflow net N as soon as it contains a reasonable number of its execution
sequences. Process reconstruction then amounts to the following:

Workflow net discovery

Problem Reconstruct a workflow net N from one of its complete log
W ⊆ L(N).
Solution N is α-reconstructible if and only if N ∼= α(W ) if and only if
the following two conditions hold: (i) α(W ) is a workflow net, and (ii)
W ⊆ L(α(W )), i.e., the synthesized net can reproduce each execution
sequence in W .

The reader may have expected any net constructed by algorithm α to be an α
reconstructible workflow net. Or more precisely, that α algorithm computes a
closure operation providing the best approximation of a given log by a workflow
net. This is unfortunately not the case as illustrated by the next example.

Example 3.3. Algorithm α relies only on the local informations reported in
Abs(L(N)). The price to pay for the locality of observations is that one cannot
detect a situation where a transition t is an immediate cause of t′ (there exists a
non implicit place 2 in t•∩ •t′) but t′ cannot occur immediately after t because it
depends on others transitions that can be fired only after t. The following example
illustrates this situation. In the language of the workflow net of Fig. 1, namely
W = {ACD,BCE}, event D never follows immediately event A even though A

is an immediate cause of D. Note however that p is not an implicit place because
it disables D to be fired after the sequence BC: q is marked but not p after firing
this sequence. The workflow net derived by algorithm α from W , the language of
the workflow net of Fig. 1 is displayed in Fig. 2. This net reproduces the original
workflow net of Fig. 1 but for the two places p and p′. Due to the absence of these
two places the dependency of D on A (and similarly the dependency of E on B) is
not inferred by algorithm α and the resulting net system contains two additional
execution sequences ACE and BCD. In this case algorithm α looses precision
by generalizing too much (it is underfitted). N1 is not α-recontructible. Still
N1 is isomorphic to α(W ′) where W ′ = {ACD,BCE,AD,BE}; however W ′ �⊆
2 Since implicite place have no impact on the net behaviour an implicit place in t•∪•t′

can represent a fictitious dependency between t and t′. We say that t is an immediate
cause of t′ when t• ∪ •t′ contains a non implicit place.
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o

A

B
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E

D

Fig. 1. a workflow net N1

i o

A

B

C

E

D

Fig. 2. The workflow net N2 constructed by algorithm α from the language of the
workflow net N1 of Fig. 1

L(N1) = {ACD,BCE}. Thus a net produced from a log does not necessarily
reproduce every execution sequence contained in the log.

The preceding example shows that α cannot be associated with a Galois connec-
tion W ⊆ L(N) ⇔ N ≤ α(W ) where ≤ is some order (or pre-order) relation on
net systems. If it were the case we would have W ⊆ L(α(W )) for every W ⊆ T ∗,
in contradiction with the above example. Thus α cannot be used to provide the
best net system N , according to some order, or pre-order relation, whose lan-
guage contains a given log. For that reason we put stress on process discovery
and in this context sobriety is a crucial property since we need to be assured
that the log given as input is a complete log of the net to be discovered.

An alternative process mining algorithm based on regions in elementary net
systems [7, 8, 6, 1] was proposed in [3, 4]. It is not the purpose of this pa-
per to provide a detailed presentation of this algorithm for which we refer the
reader to the above mentionned references and [2]. We just want to stress on the
differences between the two approaches: process discovery (α algorithm) versus
process approximation (ω algorithm). The latter algorithm produces a workflow
net ω(W ) whose language is the least language of a workflow net containing the
log W ⊆ T ∗.

Example 3.4. Let us consider the elementary net system N1 depicted on left
part of Fig. 3 with language W = {ACDE,BDCE}. This net is not a workflow
net because places p2 (respectively p3) gets marked after the firing of sequence
ACDE (resp. BDCE) hence these places will not be synthesized by algorithm ω.
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i

p1 p2 p3 p4

p5 p6

o

A B

C D

E

i

p1 p4

p5 p6

o

A B

C D

E

i

o

A B

C D

E

Fig. 3. An elementary net system (left) with language W = {ACDE,BDCE}, its
workflow net approximation given by algorithm ω (center), and the workflow net syn-
thesized by α from W (right)

The net N2 = ω(W ) 3 shown in the center of Fig. 3 reproduces net N1 with-
out these two places; its language L(N2) = {ACDE,ADCE,BCDE,BDCE}
is the least language of a workflow net containing W . If we now apply the α-
algorithm to the log W , we obtain A�WB, A�WD, B�WC, C‖WD and the imme-
diate causalities A →W C, B →W D, C →W E, and D →W E. The resulting
net N3 = α(W ), depicted on the right-part of Fig. 3, is a workflow net but
W = {ACDE,BDCE} �⊆ L(N3) = {ACE,BDE}. α may fail to find a workflow
net realizing all computation sequences in a given log W , i.e., a workflow net
N such that W ⊆ L(N). In that case, α provides no solution of any kind. In
contrast, ω always produces the optimal solution, i.e., a workflow net with the
least possible language containing W .

Algorithm ω is also able to discover the workflow net N1 of Exple. 3.3. This ex-
tended expressivity is however at the price of a higher computational complexity
due to the fact that regions are global properties of the log whereas α considers
only very local informations that are easy to extract: the α-algorithm is much
faster and less space consuming that the ω-algorithm.

Since α does not provide useful information when it fails to discover a workflow
net it is the more so important to be able to identify the class of α-reconstructible
workflow nets. This was the motivation for restricting the α-algorithm to the
context of structured workflow nets. The main result announced in [13] and
proven in the report [12] is that structured workflow nets without short loops
(a condition that we introduce in the next section) are α-reconstructible. Let us
briefly introduce structured workflow nets. The reader may have observed that
the workflow net N1 of Exple. 3.3 is not a free-choice net [5]. The two choices
between events A and B and between events D and E are not independent: if one

3 More precisely, the ω algorithm [2] is presented with two variants. In the first case,
places are the so called ω-regions –regions that may appear as extensions of places
of workflow nets–. A simplified, and language equivalent, version is obtained by
restricting the inner places to be minimal regions. It is the simplified version that is
depicted in Fig. 3.
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chooses A (resp. B), then one must choose D (resp. E). In fact, one cannot choose
between events D and E at run time, since both events are never jointly enabled.
Structured workflow nets satisfy a property slightly stronger that the free-choice
property, that already excludes such interferences between conflict (the sharing
of an input place by two transitions) and synchronization (the sharing of two
input places by a transition).

Definition 3.5. A workflow net N = (P, T, F,M0) is a structured workflow net
if it has no structurally implicit places and the following condition holds:

∀t ∈ T |•t| > 1 ⇒ (∀p ∈ •t |•p| = 1 ∧ |p•| = 1) (SWN)

i.e., if a transition t requires the synchronization of several conditions (places),
then each of these conditions has a unique cause (|•p| = 1) and a unique con-
sequence (|p•| = 1), hence it cannot induce a conflict between t and another
transition t′.

The main result established in [12] is the following.

Theorem 3.6. Structured workflow nets without short loops are α-reconstructible.

Adding structurally implicit places to a net preserves its language, and removing
places from a net satisfying condition (SWN) cannot invalidate this condition.
Therefore, one can state the following corollary to Th. 3.6.

Corollary 3.7. A workflow net N without short loops and satisfying condi-
tion (SWN) is always language equivalent to some α-reconstructible workflow
net N ′.

Condition (SWN) is a structural condition, hence it can be checked very effi-
ciently. It was argued [13] that the class of nets satisfying this condition supports
all basic routing patterns and building blocks used to construct workflow systems
in practice. The conditions characterizing structured workflow nets (Def. 3.5) are
sufficient, but however not necessary, to ensure α-reconstructibility. Actually, an
α-reconstructible net may contain structurally implicit places (Exple. 3.8 below)
and it may not satisfy condition (SWN) (Exple. 2.1).

Example 3.8. Consider transitions C, F , G in the workflow net N depicted on
the left of Fig. 4. If we let W = L(N), then we get C�WF , C →W G, and F →W G.

A

B

C

D

E

F

G p

A

B

C

D

E

F

G

Fig. 4. A place p of an α-reconstructible net which is a structurally implicit place
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Therefore, the α-algorithm necessarily produces a place in C• ∩ F • ∩ •G. This
is indeed the place p that appears in the net N ′ = α(L(N)) shown on the right
of Fig. 4. Another place in D• ∩ E• ∩ •G appears symmetrically in N ′. Now N
and N ′ are language equivalent, and therefore, N ′ is α-reconstructible, and p is
clearly a structurally implicit place of N ′.

4 α Reconstructible Workflow Nets

In view of the preceding discussion we try in this section to obtain a more precise
understanding of α-reconstructibility of workflow nets. The purpose of algorithm
α is to deduce places of the net on the basis of the information Abs(W ) extracted
from the event log. Notice that for every place p of an elementary net one has
(i) ∀a, a′ ∈ •p a�Na′, (ii) ∀b, b′ ∈ p• b�Nb′, and (ii) ∀a ∈ •p ∀b ∈ p• a →N b
where

t→N t′ ⇔ t• ∩ •t′ �= ∅
t �N t′ ⇔ (•t ∩ •t′) ∪ (t• ∩ t′•) �= ∅
t ‖N t′ ⇔ (•t ∪ t′•) ∩ (•t ∪ t′•) = ∅

In order to correctly infer the places of a workflow net N from the abstraction
Abs(L(N)) of its language (or of any of its complete log W ) the above relations
of causality, conflict and concurrency associated respectively with N and W
should fit at best.

Proposition 4.1. Let W = L(N) be the full log of a workflow net.

1. t →W t′ ⇒ t →N t′, t‖W t′ ⇒ t‖N t′, and t�N t′ ⇒ t�W t′

2. if t and t′ are co-enabled, i.e. there exists some reachable marking M such
that M [t〉 and M [t′〉, then t‖N t′ ⇔ t‖W t′ and t�N t′ ⇔ t�W t′

Proof. These properties are easily derived from the firing rule of elementary net
systems using the fact that a workflow net is contact-free. More precisely one
can successively check that

1. (M [t · t′〉 ∧ M [t′〉) ⇔ (t‖N t′ ∧ •t ∪ •t′ ⊆ M ∧ M ∩ (t• ∪ t′•) = ∅) and one has
M [t′ · t〉 and Mt·t′ =Mt′·t in this case.

2. M [t · t′〉 ⇔ ¬(t�N t′) ∧ •t ∪ (•t′ \ t•) ⊆ M ∧ M ∩ (t• ∪ (t′• \ •t)) = ∅
3. From M [t · t′〉 and t• ∩ •t′ = •t ∩ t′• = ∅ it follows that M [t′〉 and hence t‖N t′.
4. If N is contact-free, then (M [t · t′〉 ∧ t• ∩ •t′ = ∅) ⇒ M [t′〉
5. Then t�N t′ ⇒ t�W t′, and t�N t′ ⇔ t�W t′ if t and t′ are co-enabled, i.e., M [t〉

and M [t′〉 for some reachable marking M .
6. The following relations hold if N is contact-free:

(a) t →W t′ ⇒ t →N t′,
(b) t‖W t′ ⇒ t‖N t′,
(c) if t and t′ are co-enabled then t‖N t′ ⇔ t‖W t′. �

The following example illustrates the mismatch between the structural (→N ) and
behavioural (→W ) relations of causality that can arise from contact situations.
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i

o

p1 p2

p3

I

O

B

A C

Fig. 5. A workflow with (many) contact situations, the marking indicated in this pic-
ture is the marking reached after the firing of the initial transition I

Example 4.2. The language of the workflow net depicted in Fig. 5 is I(ABC)∗AO.
A complete log of this language is given by W = {IABCAO} from which we
deduce the following causal dependencies: A→W B, B→W C, and C→W A. The
relations induced by the net system report (fake) immediate causalities in the
reverse direction: B→N A, A→N C, and C→N B.

It can be inferred from the non emptiness of t• ∩ •t′ that transition t is an
immediate cause of t′ only if one can find at least one place p ∈ t• ∩ •t′ that is
used as a ressource for t′ and not for the purpose of disabling transition t. This
is the rationale for requiring workflow nets to be contact-free.

The inclusion →L(N)⊆→N shows that the causal relation inferred from the
observations t · t′ ∈ CL(N) and t′ · t �∈ CL(N) (according to Def. 2.4) implies the
existence of a connecting place p ∈ t•∩•t′. As just noticed contact-freeness avoids
the production of connecting places representing fake dependencies. But this
restriction is not sufficient to guarantee that the converse inclusion →N⊆→L(N)

holds. In particular, as illustrated by the following example, cyclic dependencies
given by short loops is another obstacle to α-reconstructibility.

Definition 4.3. Two transitions of a (contact-free) elementary net system form
a short loop if t• ∩ •t′ �= ∅ and t′• ∩ •t �= ∅.

Example 4.4. The workflow net N of Fig. 6 has a short loop involving transi-
tions B and C. A complete log of N is W = {ABCBD}. The abstraction of this
log is Abs(W ) = {{A} , {AB,BC,CB,BD}, {D}}. Since both short sequences BC

and CB belong to CW , one gets B ‖W C. Thus cyclic dependencies within short

i o

A

B

C

D

Fig. 6. A workflow net with a short loop
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loops are lost when applying the α-algorithm. The net system synthesized by the
function Syn from Abs(W ) is shown in Fig. 7. This net is not a workflow net
since the transition C is isolated, hence α-algorithm fails in that case.

i o

A

B

C

D

Fig. 7. The net system constructed by the algorithm α from the complete log W =
{ABCBD} of the workflow net of Fig. 6

Proposition 4.5. If N is a workflow net without short loops then

t• ∩ •t′ �= ∅ ⇒ t′ · t �∈ CL(N)

Proof. t• ∩ •t′ �= ∅ implies t′• ∩ •t = ∅ (no short loops). Suppose by way of
contradiction that t′ · t ∈ CL(N). Then there exists a reachable marking M such
that M [t′ · t〉. Since t′• ∩ •t = ∅ and the net is contact-free we have M [t〉 and
thus t‖N t′ which is in contradiction with t• ∩ •t′ �= ∅. �

In view ofProposition 4.5, in order to establish→N⊆→L(N) (and thus→N=→L(N)

since the converse implication holds by Prop. 4.1) it remains to ensure that t• ∩
•t′ �= ∅ implies t · t′ ∈ CL(N). This condidition can be restated as the following
requirement on places.

Definition 4.6. An inner place p of a workflow net is said to be a boundary
place when: ∀t ∈ •p ∀t′ ∈ p• t · t′ ∈ CL(N).

For instance place p (or similarly place p′) of workflow netN1 depicted in Fig. 1 is
not a boundary place since •p = {A}, p• = {D}, and there is no firing sequence of
this net in which A is immediately followed by D. Indeed, the two non-boundary
places p and p′ cannot be discovered by algorithm α (Fig. 2).

Corollary 4.7. Let N be a workflow net without short loops and all of whose
inner places are boundary places, then →N=→L(N).

From the definition of the structural relations of causality →N and conflict �N
associated with a net system N , it follows that for every place p one has

1. ∀t ∈ •p ∀t′ ∈ p• t →N t′,
2. ∀t, t′ ∈ •p t�N t′, and
3. ∀t, t′ ∈ t• t�N t′.

Using �N ⊆ �L(N) (by Prop. 4.1) and →N⊆→L(N) (by Cor. 4.7) we deduce the
following result.
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Corollary 4.8. •p ≺ p• for every place of a workflow net N without short loops
and whose inner places are boundary places, where ≺=≺L(N) (see Def. 2.6) 4.

Elements of the (graph of) relation ≺= {(A,B) ∈ ℘(T )× ℘(T ) | A ≺ B } are
generalizations of the (extents of) places of the net to be discovered. In analogy
with regions in transition systems, we might called them α-regions. The pair
(•p, p•), called the α-extent of place p ∈ P , belongs (by above Cor. 4.8) to relation
≺ when p is a boundary place. Moreover when equipped with the component-
wise order relation (A,B) % (A′, B′) ⇔ A ⊆ A′ ∧ B ⊆ B′ the set ≺ is
downward-closed:

(A ≺ B ∧ A′ ⊆ A ∧ B′ ⊆ B) ⇒ A′ ≺ B′

The fact that p is a boundary place yields that A ≺ B for every A ⊆ •p and
B ⊆ p•. We say that place p justifies the corresponding observation A ≺ B.
In order to synthesize a net from Abs(L(N)) we have to find enough abstract
places (α-regions) for justifying every element A ≺ B in that relation. This led
us to consider the following class of workflow nets:

Definition 4.9. A workflow net without short loops and all of whose inner
places are boundary places is said to be an α-workflow net when a place p exists
such that A ⊆ •p and B ⊆ p• whenever A ≺ B.

The main result of this section is the following theorem, which sums up the
various elements presented so far in the course of this section.

Theorem 4.10. An α-workflow net N whose places have incomparable α-extents
(i.e., •p ⊆ •q ∧ p• ⊆ q• ⇒ p = q) is α-reconstructible; i.e., N ∼= α(W ) for
any complete log W ⊆ L(N) of N .

Proof. Let N be an α-workflow net whose places have incomparable extents for
the order relation %. We have i• = IL(N) and these transitions can occur only
as the first elements of execution sequences, symetrically •o = OL(N) and these
transitions can occur only as the last transitions of execution sequences. Thus we
also have i• = IW and •o = OW sinceW ⊆ L(N) contains at least one occurrence
of each transition. Let us now proceed to a comparison of the respective sets of
inner places of nets N and α(W ). Cor. 4.8 states that the extents of inner places
of N are elements of relation ≺=≺W . The condition stated in Def. 4.9 ensures
that all maximal elements of ≺W are extents of places. Therefore the extents of
places are exactly the maximal elements of ≺W , i.e. they are the places of α(W ),
if and only if they are incomparable for order relation %. �

Notice that, by definition, the places of α(W ) have incomparable extents. Thus
an α-workflow net is α-reconstructible if and only if it has incomparable places.
More significantly, we establish in the next section a converse to Theo. 4.10
which allows to identify α-reconstructible workflow nets with those α-workflow
nets whose places have incomparable extents.

4 We have also ≺=≺W for any complete log W ⊆ L(N) of N .



142 E. Badouel

Example 4.11 (example 3.2 continued). The extents of places p and p′

of Exple. 3.2 are not maximal elements w.r.t. % since (•p, p•) % (•q, q•) and
(•p′, p′•) % (•q′, q′•). The language of the net N ′ = α(W ) synthesized from its
complete log W is not the least language of a workflow net containing W (since
N , which is also an α-workflow net, gives in that respect a better approximation).
But N ′, unlike N , is α-reconstructible.

5 Boundary Places of a Workflow Net

In this section we provide a characterization of the boundary places and we
describe their relationship with the non structurally implicit places. For some
classes of net systems these two notions coincide.

Proposition 5.1. Let N be a workflow net that satisfies Condition (SWN). An
inner place of N is a boundary place if and only if it is a non structurally implicit
place.

Proof. The key argument is the observation that for any pair of transitions t
and t′ of a workflow net that satisfies Condition (SWN) the set t• ∩ •t′ contains
at most one place. Let p be a boundary place of N , then there exists accessible
markings M and M ′ such that M [t〉M ′[t′〉 and marking M satisfies p �∈ M and
•t′ \ {p} ⊆ M (since none of these places belong to t• by the preceding remark).
Hence p is a non structurally implicit place. Conversely let p be a non structurally
implicit place of N .

1. If |p•| > 1 then for every t′ ∈ p• one has •t′ = {p}. Since the net is initially
life every t ∈ •p is enabled in some reachable marking M , and since the net
is contact-free t′ is enabled in the marking M ′ such that M [t〉M ′. Hence
t · t′ ∈ CL(N) and p is a boundary place.

2. If p• = {t′} and •t′ = {p} then the same argument applies: t ∈ •p is enabled
in some reachable marking M , and since the net is contact-free t′ is enabled
in the markingM ′ such thatM [t〉M ′. Hence t·t′ ∈ CL(N) and p is a boundary
place.

3. If p• = {t′} and |•t′| > 1 then p′• = {t′} for every p′ ∈ •t′ and |•p| = 1, say
•p = {t}. Let M be a reachable marking such that •t′ \{p} ⊆ M and p �∈ M .
Since places in •t′ are inner places they should be emptied by a transition
enabled in a marking M ′ reachable from M . This transition is necessarily t′

and the firing of t′ requires that p be filled, hence t be fired beforehand, and
t′ can then fired immediately after t. Hence p is a boundary place. �

The input and output places are non implicit and we could equivalently have
defined structured workflow nets as workflow nets satisfying Condition (SWN)
and all whose inner places are boundary places. However in the general case
these two notions differ. For instance the place p and p′ in the workflow net
of Exple. 3.3 are neither boundary places nor structurally implicit places, and
the place p in net N ′ of Exple. 3.8 is both a boundary place and a structurally
implicit place.
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Let us now proceed to the characterization of boundary places. The language
of a workflow net N is closed under the congruence ∼ generated by the relations
t · t′ ∼ t′ · t pertaining to pairs of concurrent transitions t and t′ (t‖N t′). An
equivalence class of maximal execution sequences of N is called a process of N .
Processes of a workflow net N may be represented equivalently as follows.

Definition 5.2. A process of a workflow net N = (P, T, F,M0) is a pair R =
(R, �) consisting of a net R = (PR, TR, FR) and two labelling functions � : TR →
T and � : PR → ℘(P ) satisfying the following conditions:

1. There is a place iR such that •iR = ∅, and �(iR) = {i} where i is the input
place of the workflow net N .

2. There is a place oR such that oR
• = ∅, and �(oR) = {o} where o is the output

place of the workflow net N .
3. ∀pR ∈ PR \ {iR, oR} |•pR| = 1 and |pR•| = 1.
4. ∀tR ∈ TR

•tR �= ∅ and tR
• �= ∅.

5. The underlying graph of R is acyclic.
6. {�(pR) | pR ∈ •tR } is a partition of •�(tR).
7. {�(pR) | pR ∈ tR

• } is a partition of �(tR)
•.

The above definition differs slightly from the usual definition of processes as
occurrence nets [10]. The sole difference is that here, each place in a process R
is mapped by � to a set of places of N , playing indistinguishable roles in this
process. As a result, processes are free from equivalent places. In the sequel, we
let �(MR) =

⋃
{�(pR) | pR ∈ MR } denote the marking of N associated by � with

the marking MR of R.

Proposition 5.3. Processes R = (R, �) of a workflow net N are in bijective
correspondence with the equivalences classes of complete execution sequences of
N modulo permutation of concurrent transitions.

The proof of this proposition is delayed until some additional results have been
proved starting with the following lemma.

Lemma 5.4. If R = (R, �) is a process of a workflow net N then

{iR} [t1 · · · tk〉 {oR} in R ⇔ {i} [�(t1) · · · �(tk)〉 {o} in N

Proof. More generally for X ⊆ TR we let �(X) =
⋃
{�(pR) | pR ∈ X }, in partic-

ular �(•tR) =
•�(tR) and �(•tR) =

•�(tR) for every tR ∈ TR. MR[tR〉M ′
R in R iff

MR \M ′
R = •tR and M ′

R \MR = tR
• iff �(MR \M ′

R) = �(MR) \ �(M ′
R) =

•�(tR)
and �(M ′

R \MR) = �(M ′
R) \ �(MR) = �(tR)

• iff �(MR)[�(tR)〉�(M ′
R) in N . Thus

{iR} [t1 · · · tk〉 {oR} in R iff {i} [�(t1) · · · �(tk)〉 {o} in N . �

We recall that if two firing sequences of the form u · t · t′ · v and u · t′ · t · v are
both enabled in the initial marking of an elementary net system N , then one
necessarily has t‖N t′ and these sequences are permutation equivalent.

Corollary 5.5. Let R = (R, �) be a process of a workflow net N . The set LR =
{�(t1) · · · �(tn) | t1 · · · tn ∈ L(R)} where L(R) is the set of firing sequences of
R starting in {iR} and ending in {oR} is closed by permutation of concurrent
transitions.
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Lemma 5.6. Any firing sequence u = t1 · · · tk ∈ L(N) of a workflow net N
can be associated with a process R = (R, �) of N defined as follows. We let
TR =

{
t̃1, · · · , t̃k

}
with �(t̃i) = ti. For 1 ≤ i < j ≤ k we let

Pi,j = {p ∈ ti
• ∩ •tj | ∀i < j′ < j p �∈ •tj′ }

We further let PR stand for the set
{
p′i,j | Pi,j �= ∅

}
together with two additional

places, iR and oR, where

– �(iR) = i, and �(oR) = o,
– �(p̃i,j) = Pi,j,
– •t̃1 = iR, and

•t̃j = {p̃i,j | 1 ≤ i < j } for 1 < j ≤ k, and
– t̃i

• = {p̃i,j | i < j ≤ k } for 1 ≤ i < k, and t̃k
• = {oR}.

Proof. Indeed the non empty sets Pi,j for j ∈ {i+ 1, . . . , k} form a partition of
ti
• and the non empty sets Pi,j for i ∈ {1, . . . , j − 1} form a partition of •tj and

R = (R, �) satisfies the conditions in Def. 5.2. �

Proof (of Prop. 5.3). In view of the two preceding lemmas and Corollary 5.5 it
just remains to prove that any two sequences in L(R) are permutation equivalent.
We note that R is a workflow net, in particular it is contact-free. Moreover,
since it contains no conflict it is a persistent net: once a transition is enabled
it remains enabled until it is actually fired. Since the net is acyclic a place is
never filled twice and a transition is fired exactly once along any maximal firing
sequence. It follows by induction that any two sequences in L(R) are permutation
equivalent. �

Proposition 5.7. An inner place p of a workflow net is a boundary place if
and only if for every pair of transitions t ∈ •p and t′ ∈ p• there exists a process
R = (R, �) of N and a non (structurally) implicit place pR ∈ PR in this
process with pR ∈ tR

• ∩ •t′R such that �(tR) = t, �(t′R) = t′ and p ∈ �(pR).

Proof. Let p a boundary place of a workflow net N . For every t ∈ •p and
t′ ∈ p• there exists a firing sequence u = t1 · · · tk ∈ L(N) such that t = ti
and t′ = ti+1 for some index i. Let R = (R, �) be the process of N associated
with u as described in Lemma 5.6. Since p ∈ Pi,i+1 the place p̃i,i+1 and the
transitions t̃i and t̃i+1 of the process satisfy �(t̃i) = ti, �(t̃i+1) = ti+1, and
p ∈ �(p̃i,i+1) = Pi,i+1. Since p̃i,i+1 is the unique element of t̃i

•∩•t̃i+1 every input
places of t̃i+1 but p̃i,i+1 are marked after firing the sequence t1 . . . ti. Therefore
place p̃i,i+1 is not an implicit place. Conversely assume that for every pair of
transitions t ∈ •p and t′ ∈ p• there exists a process P = (R, �) of N and a non
implicit place pR ∈ PR in this process with pR ∈ tR

• ∩ •t′R such that �(tR) = t,
�(t′R) = t′ and p ∈ �(pR). There exists a reachable marking where every input
place of t′R but pR are marked, then t′R becomes enabled as soon (and only
when) transition tR fires and t′R can fire immediately then. By Lemma 5.4 we
can deduce the existence of a firing sequence ofN where t is immediately followed
by t′ thus showing that p is a boundary place. �
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Example 5.8
The workflow net of Exple. 2.1
has two complete processes given
next from which we deduce that
all of its inner places are bound-
ary places. Actually these two
processes contains no implicit
places and they allow to cover
all possible triples (t, p, t′) with
p ∈ t• ∩ •t′ from the workflow
net.

{i}

{p1}

{p2}

{p3}

{p4}

{o}
A

B

C

D

{i} {p1, p2} {p3, p4} {o}
A E D

The workflow net of Exple. 3.3
has two complete processes given
next. Place {p} is an implicit
place of the first process since it
is marked in all reachable mark-
ings that contain place {q}. Sim-
ilarly place {p′} is an implicit
place of the second process. We
deduce that places p and p′ in
the original workflow net are not
boundary places (even though
they are not implicit places).

{i} {q′}

{p}

{q} {o}

A

C

D

{i} {q′}

{p′}

{q} {o}

B

C

E

If p ∈ t• ∩ •t′ is a boundary place of a workflow net N and p̃ is a non implicit
place and t̃ and t̃′ are transitions of a process R = (R, �) of N such that �(t̃) = t,
�(t′) = t′, and p ∈ �(p̃), then �(p̃) ⊆ t• ∪ •t′. The following example shows that
this inclusion may be strict.

Example 5.9
The workflow net shown
next (below) has a unique
process (the net system
shown just above it). Place
q ∈ A• ∩ •D is not a
boundary place since there
is no place qR ∈ A• ∩ •D in
the corresponding process.

{i} {p1, q} {p2} {p3, q} {o}

i p1 p2

q

p3 o

A B C D

A B C D

We then conclude with the characterization of α-reconstructibility.

Theorem 5.10. A workflow net is α-reconstructible if and only if it is an α-
workflow net whose places are incomparable for %.

Proof. Theo. 4.10 shows that the given conditions are sufficient. It remains to
show that the absence of short loops and the fact that inner places are boundary
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places are necessary conditions for α-reconstructibility. First, by definition of the
construction α, an inner place p of the synthesized net is a boundary place. The
justification is as follows. For every t ∈ •p and t′ ∈ p• we have t · t′ ∈ CL(N)

(and also t′ · t �∈ CL(N)), i.e. there exists some execution sequence of the form
σ = u · t · t′ · u′ ∈ L(N). The complete process R associated with this execution
sequence has transitions t̃, t̃′ and places p̃ that lift respectively t, t′, and p; i.e.
such that �(t̃) = t, �(t̃′) = t′, •p̃ =

{
t̃
}
, p̃• =

{
t̃′
}
, and p ∈ �(p̃). Since t̃′ can fired

immediately after t̃ in this process we deduce that p̃ is a non-implicit place of
R, hence place p is a boundary place. Now let us assume that N is a workflow
net all of whose inner places are boundary places and containing a short loop
given by two transitions t1 and t2 such that t1

• ∩ •t2 �= ∅ and t2
• ∩ •t1 �= ∅.

Since the places in t1
• ∩ •t2 and t2

• ∩ •t1 are boundary places we deduce that
t1 · t2 and t2 · t1 both belong to CL(N) and thus t1‖L(N)t2. It follows that the
sets t1

• ∩ •t2 and t2
•∩ •t1 are both empty when these flow relations are taken in

the synthesized net α(N) and therefore N is not isomorphic to α(L(N)) hence
it is not α-reconstructible. �

6 Conclusion

The starting point of this work was the desire to achieve a characterization of the
class of α-reconstructible workflow nets: even though the original presentation
by van der Aalst et al was restricted to structured workflow nets it was clear that
their method could be applied to a much wider class of nets. In particular none
of the two properties shared by structured workflow nets, namely the absence of
implicit places and a variant of free-choice property, are necessary to guarantee
α-reconstructibility. The main condition for α-reconstructibility states that all
(inner) places of the workflow net are boundary places. Boundary places and
non implicit places coincide in the context of structured workflow nets but these
notions diverge in general. By making this distinction explicit we hope to have
gained a better understanding of α-reconstructibility. From a practical point of
view however this characterization has probably a limited interest. The fact that
the obtained conditions are not structural properties, in contrast with structured
workflow nets, makes their verification more involved. More specifically we have
to associate a workflow net with a finite set of “patterns” from which all of its
processes can be generated.

The main goal of α is the exact reconstruction of processes from sets of execu-
tion sequences, and α is particularly good at achieving this goal from complete
logs (that need not be full logs) of structured workflow nets. Without these as-
sumptions, α may behave in an unexpected way. For instance, the synthesized
net may fail to reproduce some of the execution sequences from the input log.
When using region-based net synthesis algorithms, one does not make any as-
sumption on W . One just tries to construct for all W the simplest net model
that contains all sequences in this set. Sobriety, which is crucial to process re-
construction algorithms, has minor importance in this different perspective. The
α and ω algorithms are the two extreme of a range of process mining algorithms.
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By resorting only to local information α is more efficient but less expressive than
ω. There is potentially room for the design of intermediate mining algorithms.
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Abstract. Petri net systems have been successfully applied for mod-
elling business processes and analysing their behavioural properties. In
this domain, analysis techniques that are grounded on behavioural re-
lations defined between pairs of transitions emerged recently. However,
different use cases motivated different definitions of behavioural relation
sets. This paper focusses on two prominent examples, namely behavioural
profiles and behavioural footprints. We show that both represent different
ends of a spectrum of relation sets for Petri net systems, each inducing
a different equivalence class. As such, we provide a generalisation of the
known relation sets. We illustrate that different relation sets complement
each other for general systems, but form an abstraction hierarchy for dis-
tinguished net classes. For these net classes, namely S-WF-systems and
sound free-choice WF-systems, we also prove a close relation between the
structure and the relational semantics. Finally, we discuss implications
of our results for the field of business process modelling and analysis.

1 Introduction

Business process modelling emerged as a means to capture the operations of an
organisation. A process model depicts the major activities conducted to achieve
a certain goal along with their temporal dependencies [29]. Drivers for process
modelling include, among others, the need to establish a shared understanding
of the business processes, certification of operations, or process automation.

In practice, business process modelling is often conducted using domain-specific
high-level languages, such as BPMN or EPCs, see [29]. For the analysis of pro-
cess models, however, the Petri net formalism has been successfully employed
for over a decade [1,6]. The simple yet powerful formalism is conceptual close to
many of the industrial process languages and, in fact, inspired the definition of
execution semantics for many of them. Also, the existing theory on the analysis
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of Petri nets proved to be valuable for answering many of the analysis questions
for business process models, cf., [6].

Behavioural analysis of Petri net systems may be grounded on different types
of semantics. For instance, the analysis of deadlock freedom of interacting busi-
ness processes [30,4] suggests to consider the moment of choice, i.e., the state
space of a system. Techniques from the field of process mining, in turn, are typ-
ically based on trace semantics [21,2,28]. Recently, sets of behavioural relations,
which induce relational semantics for Petri nets, have been utilised for analysis,
most prominently the behavioural profile [25] and the behavioural footprint [2].
These relations are defined between pairs of transitions and capture behavioural
characteristics, or features in the data mining terminology [12], such as order and
exclusiveness. The aforementioned notions of relational semantics are conceptual
close. Both define relations that allow to represent the behavioural characteristics
of a system as a matrix. Yet, they differ with respect to the captured characteris-
tics since different utility considerations led to their definition. Even though the
different relations sets proved to be useful in many use cases, their differences
have not been thoroughly investigated so far. Insights into their relation and the
induced equivalence classes, however, are needed to select a definition that is
appropriate for a specific analysis setting.

In this paper, we address this need and make the following contributions.
First, we show that the existing notions of profiles and footprints represent dif-
ferent ends of a spectrum of relation sets for Petri net systems. Based on this
observation, we provide a generalization of the notion of a relation set. Sec-
ond, we investigate the expressiveness of different relation sets in this spectrum.
We illustrate that those complement each other for general systems. Third, we
prove that relation sets form an abstraction hierarchy for classes of workflow
(WF-)systems, i.e., S-WF-systems and sound free-choice WF-systems. For these
systems, we also establish a link between the net structure and relational se-
mantics. Finally, we elaborate on the implications of our investigations for the
application of relational semantics in the field of business process modelling.

The remainder of this paper is structured as follows. The next section presents
formal preliminaries. Sec. 3 generalises existing relation sets to obtain a spectrum
of relational semantics. Sec. 4 elaborates on relation sets of distinguished net
classes. Sec. 5 outlines implications of our work for the application of relation
sets. Finally, we review related work in Sec. 6 and conclude in Sec. 7.

2 Preliminaries

Let S be a set. The powerset of S is denoted by P(S) = {S′ | S′ ⊆ S}. We use
|S| for the number of elements in S. Two sets S and T are disjoint if S ∩ T = ∅.
A set of sets U ⊆ P(S) is a partitioning of S iff all sets in U are pairwise disjoint
and

⋃
X∈U X = S.

We denote the Cartesian product of two sets S and T by S × T . A binary
relation R from S to T is defined by R ⊆ (S × T ). For (x, y) ∈ R, we also
write xR y. For a relation R ⊆ (S × T ), the inverse relation R−1 is defined as



150 M. Weidlich and J.M.E.M. van der Werf

R−1 = {(y, x) ∈ (T ×S) | xRy}. Let R ⊆ (S×S) be a binary relation over a set
S. Relation R is reflexive if xRx for all x ∈ S. It is irreflexive if (x, x) /∈ R for
all x ∈ S. It is symmetric if xR y implies y R x for all x, y ∈ S, and asymmetric
if relation R is not symmetric. The relation is antisymmetric if xR y and y Rx
imply x = y for all x, y ∈ S.

A bag m over S is a function m : S → N, where N = {0, 1, . . .} denotes the
set of natural numbers. We denote e.g. the bag m with an element a occurring
once, b occurring three times and c occurring twice by m = [a, b3, c2]. The set
of all bags over S is denoted by NS . Sets can be seen as a special kind of bag
where all elements occur only once; we interpret sets in this way whenever we
use them in operations on bags. We use + and − for the sum and difference of
two bags, and =, <, >, ≤, ≥ for the comparison of two bags, which are defined
in a standard way.

A sequence over S of length n ∈ N is a function σ : {1, . . . , n} → S. If
n > 0 and σ(i) = ai for i ∈ {1, . . . , n}, we write σ = 〈a1, . . . , an〉. The length
of a sequence is denoted by |σ|. The sequence of length 0 is called the empty
sequence, and is denoted by ε. The set of all finite sequences over S is denoted
by S∗. We write a ∈ σ if a 1 ≤ i ≤ |σ| exists such that σ(i) = a. Concatenation
of two sequences ν, γ ∈ S∗, denoted by σ = ν; γ, is a sequence defined by σ :
{1, . . . , |ν|+ |γ|} → S, such that σ(i) = ν(i) for 1 ≤ i ≤ |ν|, and σ(i) = γ(i− |ν|)
for |ν|+ 1 ≤ i ≤ |ν|+ |γ|.
Definition 1 (Petri Net). A Petri net is a tuple N = (P, T, F ) where P
and T are finite disjoint sets of places and transitions, respectively, and F ⊆
(P × T ) ∪ (T × P ) is the flow relation. The set of all nodes P ∪ T is denoted
by N .

For a node n ∈ N , we define its preset by •n = {m | (m,n) ∈ F} and its
postset by n• = {m | (n,m) ∈ F}. We lift the notion of presets (postsets) to
sequences by •σ =

⋃
n∈σ

•n (σ• =
⋃

n∈σ n
•) for σ ∈ T ∗. A sequence π ∈ N∗

of length n is a path of N iff (π(i), π(i + 1)) ∈ F for all 1 ≤ i < n. The set of
all paths of N from node x ∈ N to node y ∈ N is denoted by Π(N)(x,y). We
assume all nets to be connected, i.e., for all Petri nets N = (P, T, F ) we assume
Π(N)(x,y) ∪Π(N)(y,x) �= ∅ for all nodes x, y ∈ N .

Definition 2 (System, Enabledness, Firing). Let N = (P, T, F ) be a Petri
net. A marking of N is a bag over P , i.e., m ∈ NP . A Petri net N = (P, T, F )
with corresponding marking m ∈ NP is called a system.

Let (N,m) be a system with N = (P, T, F ). A transition t ∈ T is enabled in
(N,m), denoted by (N,m)[t〉, if •t ≤ m. An enabled transition can fire, resulting
in a new marking m′ = m− •t+ t•, and denoted by (N,m)[t〉(N,m′).

Given a system (N,m0) with N = (P, T, F ), we extend the firing rule to se-
quences in a standard way. A sequence σ ∈ T ∗ is a firing sequence of (N,m0)
if markings m1, . . . ,mn ∈ NP exist such that (N,mi−1)[σ(i)〉(N,mi) for all
1 ≤ i ≤ n, and denoted by (N,m0)[σ〉(N,mn).

The set of all traces from (N,m0) is defined by T (N,m0) = {σ ∈ T ∗ | ∃m ∈
NP : (N,m0)[σ〉(N,m)}, and the set of all reachable markings by R(N,m0) =
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{m | ∃σ ∈ T ∗,m ∈ NP : (N,m0)[σ〉(N,m)}. Two systems (N,m0) and (N ′,m′
0)

are called trace-equivalent iff T (N,m0) = T (N ′,m′
0).

A transition t ∈ T of a system (N,m0) is live, iff for every marking m ∈
R(N,m0) a reachable marking m′ ∈ R(N,m) exists, such that (N,m′)[t〉. If all
transitions of (N,m0) are live, the system is called live.

A place p ∈ P of a system (N,m0) is k-bounded for some k ∈ N iffm(p) ≤ k for
every reachable marking m ∈ R(N,m0). If all places of (N,m0) are k-bounded,
the system is called k-bounded. A system is called bounded if a k ∈ N exists such
that N is k-bounded.

Let (N,m0) be a system with N = (P, T, F ). The concurrency relation ‖co⊆
N ×N [13] contains all pairs of nodes (x, y) that are marked (in case of a place)
or enabled (in case of a transition) concurrently in some reachable marking, i.e.,
(x, y) ∈‖co iff a marking m ∈ R(N,m0) exists such that m ≥ mx + my with
mj = [j] if j ∈ P and mj = •j if j ∈ T . The concurrency relation is symmetric
by definition.

On Petri nets, we define the following subclasses. A Petri net N = (P, T, F )
is called an S-net iff |•t| ≤ 1 and |t•| ≤ 1 for all transitions t ∈ T . Net N is
called a T-net iff |•p| ≤ 1 and |p•| ≤ 1 for all places p ∈ P . It is called free
choice iff •t1 ∩ •t2 �= ∅ implies •t1 = •t2 for all transitions t1, t2 ∈ T . Given a
system (N,m), if N is an S-net (free-choice net), we call the system an S-system
(FC-system)

A special subclass of Petri nets is the class of workflow nets. A Petri net
N = (P, T, F ) is a workflow net (WF net) if two places i, f ∈ P exist such that
•i = f• = ∅ and all nodes are on a path from i to f , i.e., for each node n ∈ N ,
a path π ∈ Π(N)(i,f) exists such that n ∈ π. Place i is called the initial place
of N , place f is called the final place of N . We define the short-circuited net of
WF net N by N̄ = (P, T ∪ {t̄}, F ∪ {(f, t̄), (t̄, i)}). WF net N is called sound if
the system (N̄ , [i]) is live and bounded.

3 A Spectrum of Relational Semantics

This section outlines a spectrum of relational semantics, induced by a spectrum
of sets of relations defined over pairs of transitions. We first give an overview
of this spectrum in Sec. 3.1, before Sec. 3.2 presents the formal definition of
parametrised relation sets. Sec. 3.3 elaborates on equivalences based on relation
sets.

3.1 Overview

A first set of behavioural relations was presented as part of the α-mining algo-
rithm [7,2]. It aims at the construction of a workflow net system from sequences
of observed transition occurrences. To this end, it exploits direct successorship
of transition occurrences, i.e., a directly follows relation. This relation comprises
pairs of transitions that succeed each other. Using this relation, the α-algorithm
defines three relations, # (or + to harmonise notation), →, and ‖, over pairs of
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transitions. Membership of a transition pair for one of these relations is deter-
mined using the directly follows relation: two transitions may never follow each
other (+), follow each other in one direction (→), or in both directions (‖). As
such, the relations (with relation →−1) partition the Cartesian product of the
observed transitions. These relations are jointly referred to as a footprint [2]. Al-
though proposed for sequences of observed transition occurrences, the relations
may be derived for a net system based on all traces.

A similar, yet different set of behavioural relations was presented in [25],
dubbed behavioural profile. The behavioural profile is grounded on the notion of
weak order. This relation captures whether a transition is eventually succeeded
by another transition. Again, three derived relations (+, →, and ‖ using the
same notation) are constructed by investigating whether two transitions never
occur together (+), are always ordered if they occur together (→), or may occur
in any order (‖). Together with the inverse of the order relation, one obtains a
partitioning of the Cartesian product of transitions.

The footprint relations have been defined in the context of processmining. Here,
the direct successorship of transitions according to the behavioural relations trans-
lates into a structural successorship during the construction of a net system. Be-
havioural profiles, in turn, have been motivated by the analysis of process model
consistency. Models that shall be analysed for consistency typically show only a
partial functional overlap, i.e., a certain share of transitions of one net system is
without counterpart in the other system. Consistency measurement that is insen-
sitive to such model extensions, therefore, is grounded on indirect behavioural de-
pendencies as captured by the behavioural profile. With the same motivation, be-
havioural profiles have been applied for change propagation [27], process model
abstraction [22], and the derivation of reusable modelling blocks [23].

Besides their differences, the footprint and the profile are conceptually close.
Both adopt a binary base relation for transitions that requires the existence
of a firing sequence that contains the respective transitions. The transitions
are either required to succeed each other with no or an arbitrary number of
transitions occurring in between. The difference, therefore, lies in the look ahead
assumed to build the base relation. For illustration, consider the net system
depicted in Fig. 1(a). Matrix M1 in Fig. 1(b) depicts the relational semantics
induced by the footprint. It holds D + F , i.e., both transitions never succeed
each other directly. In the footprint, relation + captures transitions that never
succeed each other, whereas ‖ captures concurrent enabling (e.g., E ‖ F ) and
control flow cycles of length one or two (e.g., D ‖ E). Matrix MF , in turn, shows
the profile. Here, it holds D ‖ F since the transitions may appear in either order.
In the profile, relation + captures transitions that never occur together in any
trace (e.g., C + G). Relation ‖ captures concurrent enabling and control flow
cycles of any length.

Both relation sets span a spectrum of relational semantics, which is obtained
by step-wise increasing the assumed look ahead when constructing the base
relation. We exemplify this spectrum by matrix M2. Here, the relations are
derived from a 2-successor relation that holds if two transitions follow each other
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(a) An example net system.
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(b) Three different relational semantics.

Fig. 1. Overview of different relational semantics

directly or with just a single transition occurring in between. In this matrix, we
observe D → F . There exists a trace in which D is succeeded by E and F .
However, F is succeeded by D only once at least two transitions, B and E, have
occurred.

3.2 Parametrised Relation Sets

In order to obtain a formalisation of the spectrum of relation sets, we first
parametrise the base relation. The up-to-k successor relation holds between two
transitions, if there exists a trace in which both transitions occur with at most
k − 1 transitions in between.

Definition 3 (k-Successor, up-to-k-Successor, minimal k-Successor). Let
(N,m0) be a system, let T ′ ⊆ T be a set of transitions, and let k ∈ N. The k-
successor relation �k ⊆ T ′ × T ′ is defined by:

x�k y ⇔ ∃σ ∈ T (N,m0), 1 ≤ i ≤ |σ| : σ(i) = x ∧ σ(i + k) = y

The up-to-k-successor relation >k⊆ T ′ × T ′ is defined by:

x >k y ⇔ ∃1 ≤ l ≤ k : x�l y
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The minimal k-successor relation �k ⊆ T ′ × T ′ is defined by:

x�k y ⇔ x�k y ∧ (x, y) /∈>k−1

Directly from the definition of the concurrency relation, if two transitions occur
in the concurrency relation, then they are direct successors.

Proposition 4. Let (N,m0) be a system, and let x, y ∈ T be two transitions.
If (x, y) ∈‖co then x >1 y.

Using the parametrised successor relation, we obtain parametrised relation sets.

Definition 5 (k-Relation set). Let S = (N,m0) be a system, let T ′ ⊆ T be a
set of transitions, and let k ∈ N. Given a pair of transitions (x, y) ∈ T ′ × T ′, we
define the k-exclusiveness relation +k ⊆ T ′×T ′, the k-order relation→k⊆ T ′×T ′

and the k-disorder relation ‖k⊆ T ′ × T ′ by:
◦ x+k y, iff (x, y) /∈ >k and (y, x) /∈ >k;
◦ x →k y, iff (x, y) ∈ >k and (y, x) /∈ >k;
◦ x ‖k y, iff (x, y) ∈ >k and (y, x) ∈ >k.

The k-relation set of S over T ′ is defined as a 3-tuple ST ′
k (N,m0) = {+k,→k, ‖k}.

If T ′ = T , we omit the superscript. We overload set comparison operators on
relation sets by pairwise comparing the elements of the relation sets.

According to this definition, the footprint of a net system corresponds to its
1-relation set. We observe that the properties proved for footprints, see [2], hold
also true for parametrised relation sets.

Property 6. Let (N,m0) be a system, let k ∈ N and let T ′ ⊆ T be a subset of
transitions. Then for ST ′

k (N,m0) = {+k,→k, ‖k}, it holds
(1) relation →k is antisymmetric and irreflexive;
(2) relations +k and ‖k are symmetric;
(3) +k, →k and ‖k are pairwise disjoint; and
(4) +k, →k, →−1

k and ‖k is a partitioning of T ′ × T ′.

All properties follow directly from the definition of the relations based on the
up-to-k-successor relation.

The parametrisation of relation sets induces an unbounded number of rela-
tional semantics for net systems. However, we observe that once a certain bound
is reached, relation sets for higher parameters are all equal. We characterise this
successor bound as follows.

Definition 7 (Successor bound). For a net system (N,m0), the successor
bound b ∈ N is the smallest number satisfying
◦ Sb(N,m0) = Sk(N,m0) for all b ≤ k; and
◦ Sk(N,m0) ⊂ Sb(N,m0) for all k < b.

Proposition 8. Given a net system (N,m0) there exists a unique successor
bound with b ≤ |T |2.
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Fig. 2. Systems S and S′ are k-equivalent for any k ∈ N, but not trace equivalent

Proof. Follows from the inductive definition of >k and �k, and Prop. 6(4). ��

The successor bound for the relation sets of a net system is related to the notion
of a behavioural profile. Apparently, the k-relation set with k being the successor
bound coincides with the profile of a net system.

3.3 Equivalence of Relation Sets

Parametrised relation sets induce a number of equivalences. We first consider
two types of equivalences. Two system may either show equivalent k-relation
sets, or they even agree on all relation sets down to a certain boundary.

Definition 9 (k-Equivalent, down-to-k-equivalent). Let S = (N,m0) and
S′ = (N ′,m′

0) be two systems, and let Sk(N,m0) = {+k,→k, ‖k} and Sk(N
′,m′

0) =
{+′

k,→′
k, ‖′k} be their respective k-relation sets.

◦ Systems S and S′ are k-equivalent, denoted by S ≡k S′, iff +k = +′
k,

→k=→′
k and ‖k=‖′k.

◦ Systems S and S′ are down-to-k-equivalent, denoted by S ≡↓k S′, iff S ≡l S
′

for all l ∈ N with k ≤ l.

Proposition 10. Relations ≡k and ≡↓k are equivalences.

Proof. Relations ≡k and ≡↓k are reflexive. Transitivity and symmetry follow
directly from the set equivalences. ��

The relation sets are deduced from the up-to-k-successor relation, which formu-
lates statements on the existence of a trace. As a consequence, net systems that
show equal sets of traces show equal relation sets for all parameters.

Proposition 11. Let S = (N,m0) and S′ = (N ′,m′
0) be two systems that are

trace equivalent. Then S ≡↓0 S
′.

Proof. Follows directly from the definition of >k. ��

The opposite, however, does not hold. Consider Fig. 2. Systems S and S′ are
down-to-1-equivalent, i.e., the systems are k-equivalent for any k ∈ N. However,
as 〈A,B,A〉 is a firing sequence of S, but not of S′, they are not trace equivalent.

Turning the focus on the relation between equivalence of relation sets for
different parameters, we observe the following: Since relation sets beyond the
successor bound do not change, equivalence for one parameter above this bound
implies equivalence for all parameters above the bound.
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Fig. 3. Equivalences based on different relation sets are incomparable; systems S1 and
S2 are 1-equivalent, but not 7-equivalent; whereas S2 and S3 are 7-equivalent, but not
1-equivalent

Theorem 12. Let S and S′ be two systems. Let b be the successor bound of
S, and let b′ be the successor bound of S′. Let b̄ = max{b, b′}. If S ≡b̄ S′ then
S ≡↓b̄ S

′.

Proof. The proof follows directly from the definition of ≡↓k and Prop. 8. ��

In general, equivalences based on different relation sets are incomparable. Con-
sider for example the systems in Fig. 3. Systems S1 and S2 are 1-equivalent
but not 7-equivalent. Likewise, systems S2 and S3 are 7-equivalent, but not 1-
equivalent.

The example systems given in Fig. 2 illustrated already that different initial
markings of a system may not be distinguished by relation sets. This is due to
the fact that relation sets capture only the dependencies between transitions
in terms of their minimal distance in any trace. However, they do not provide
any notion of a start of a trace. To countervail this effect, we present two more
equivalences. Those extend the given equivalences with the requirement of equal
sets of initially enabled transitions.

Definition 13 (Start-k-equivalent, start-down-to-k-equivalent). Let S =
(N,m0) and S′ = (N ′,m′

0) be two systems. Let T0 = {t ∈ T | (N,m0)[t〉} and
T ′
0 = {t ∈ T ′ | (N ′,m′

0)[t〉} be the transitions enabled in the initial markings of
both systems.

◦ Systems S and S′ are start-k-equivalent, denoted by S ≡s
k S′ if T0 = T ′

0 and
S ≡k S′.

◦ Systems S and S′ are start-down-to-k-equivalent, denoted by S ≡s
↓k S′, iff

S ≡s
l S

′ for all l ∈ N with k ≤ l.
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Fig. 4. Systems S and S′ are start-k-equivalent for any k ∈ N, but not trace equivalent

Proposition 14. Relations ≡s
k and ≡s

↓k are equivalences.

Proof. Relations ≡s
k and ≡s

↓k are reflexive. Transitivity and symmetry follow
directly from the set equivalences. ��
As for the initially presented equivalences, the successor bound allows to draw
conclusions on equivalence of relation sets for different parameters.

Proposition 15. Let S = (N,m0) and S′ = (N ′,m′
0) be two systems that are

start-down-to-k-equivalent. Then, S ≡↓k S′.

Proof. Follows from the definition of ≡s
↓k. ��

Also for these equivalences, however, the systems shown in Fig. 3 illustrate that
this result does not hold in the general case.

Finally, we observe that, again, trace equivalence implies the equality of rela-
tion sets for all parameters and equality of sets of initially enabled transitions.

Proposition 16. Let S = (N,m0) and S′ = (N ′,m′
0) be two systems that are

trace equivalent. Then S ≡s
↓0 S

′.

Proof. Follows from Prop. 11 and the definition of ≡s
↓k. ��

In contrast to k-equivalence, start-down-to-k-equivalence distinguishes the sys-
tems given in Fig. 2. However, even start-down-to-k-equivalence does not imply
trace equivalence for general net systems, as illustrated by the systems in Fig. 4.
Both systems are start-k-equivalent for any k ∈ N, but 〈A,A〉 is a firing sequence
of S, but not of S′. Thus, they are not trace equivalent.

4 Relation Sets for Distinguished Net Classes

This section investigates relation sets for distinguished classes of net systems,
namely S-WF-systems and free-choice WF-systems. S-WF-systems provide a
rather simple class of net systems, since they do not exhibit concurrency. As
such, the structure of an S-WF-net is equivalent to its reachability graph. Further,
the results for free-choice WF-systems imply those for S-WF-systems. Despite
their simplicity and containment in the class of free-choice WF-systems, we first
consider S-WF-systems to illustrate the investigated aspects. That is, first, the
derivation of relation sets from the structure of the net system is shown. Second,
we elaborate on the abstraction of a k-relation set, which yields a k+ 1-relation
set. Finally, we investigate the equivalence class induced by relation sets for the
respective net systems.
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4.1 S-WF-Systems

Derivation. In an S-WF-system, i.e., workflow systems that are also an S-net,
we observe a close relation between the length of a directed path between two
transitions and the fact whether they are k-successors. The reason for this close
relation is the absence of concurrency in S-WF-systems.

Property 17. For a S-WF-system it holds ‖co= ∅.

This property which directly follows from the structure of S-WF-systems, allows
for the following structural characterisation of k-successorship.

Lemma 18. Let S = (N,mi) be an S-WF-system. Then, x �k y iff there is a
path π ∈ Π(N)(x,y) with k = |π| − 1.

Proof. Marking mi marks one place, so do all markings m ∈ R(N,mi).
(⇒) Let x �k y. Then, there exists a trace σ ∈ T (N,mi) containing x and y,
and k − 1 transitions between them. Since ‖co= ∅, the k − 1 transitions form a
directed path.
(⇐) Let there be a directed path comprising k − 1 transitions between x and
y. Since every transition is on a path from the initial to the final place, all
transitions have exactly one place in the preset and one place in the postset.
Each reachable marking marks one place, hence, the k − 1 transitions may be
fired in the respective order in any marking enabling x, so that x�k y. ��

From the above, it follows that the derivation of a k-relation set requires only
knowledge on the length of shortest directed paths between all transitions. Those
may be determined in low polynomial time to the size of the system.

Theorem 19. For any S-WF-system holds, any k-relation set is computed from
its graph distance matrix.

Proof. Follows directly from Lm. 18. ��

Corollary 20. Let (N,m0) be a S-WF-system, and let k ∈ N. The k-relation
set can be calculated in O(|N |3).

Proof. Follows from Thm. 19 and the fact that the shortest directed paths be-
tween all nodes of a directed graph with N nodes are determined in O(|N |3)
time [24]. ��

Abstraction. We introduce a notion of abstraction to describe the interplay
between different relation sets of a single net system. Abstraction aims at deriv-
ing the (k + 1)-relation set from a k-relation set using the system structure. To
this end, it extends the underlying successor relation. Since S-WF-systems do
not show concurrency, abstraction can be done in a sequential way as follows.

Definition 21 (Sequential abstraction). Let (N,m0) be a system with N =
(P, T, F ), >k⊆ T ×T an up-to-k successor relation. Then, the sequential abstrac-
tion of >k, denoted by αS(>k) ⊆ T ×T , is defined by (x, z) ∈ αS(>k), iff x >k z
or a transition y ∈ T exists with x >k y and z ∈ p• for some p ∈ y•.
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To show that abstraction of a k-relation set indeed yields the (k + 1)-relation
set, we first prove an auxiliary result. It states that structural precedence hints
at the enabling of a transition in a certain marking.

Proposition 22. Let (N,m0) be an S-WF-system with N = (P, T, F ). Let σ ∈
T ∗ and m ∈ NP such that (N,m0)[σ〉(N,m). Then t ∈ p• for some p ∈ σ(|σ|)•
iff (N,m)[t〉 for any t ∈ T .

Proof. Follows from the structure of S-nets and the boundedness theorem [8].
��

Using this result, we can prove that abstraction indeed allows for generalising
relation sets of S-WF-systems.

Proposition 23. Let (N,m0) be an S-WF-system, and let k ∈ N such that
k > 0. Then αS(>k) = >k+1.

Proof. Define N = (P, T, F ). It suffices to consider the case of �k, as it implies
the result for >k. Let x, z ∈ T such that x�k z. Then, a trace σ ∈ T (N,m0) and
marking m ∈ NP exist with (N,m0)[σ〉(N,m) and σ(|σ|−k) = x and σ(|σ|) = z.
(⇒) Consider a transition y ∈ p• for some p ∈ z•. By Prop. 22, y may be fired
in m, which yields x�k+1 y.
(⇐) Assume σ is extended by firing a transition y in m. Then, y ∈ p• for some
p ∈ z• by Prop. 22. ��

Equivalence. Turning the focus on the equivalence classes induced by rela-
tion set for S-WF-systems, we observe that those form a hierarchy. A smaller
parameter for the relation set yields a stricter equivalence.

Theorem 24. Let S and S′ be two S-WF-systems. If S ≡s
1 S′, then S ≡s

k S′,
for any k ∈ N with k > 0.

Proof. We prove the statement by showing that if S ≡s
l S′ for all l ≤ k, then

S ≡s
k+1 S′. Let (x, y) ∈ αS(>k). Then either (x, y) ∈>k or a z ∈ T and l < k

exists with (x, z) ∈>l and z >1 y. Since S ≡s
l S′ and S ≡s

1 S′, both (x, y) ∈>′
l

and z >′
1 y. Hence, (x, y) ∈ αS(>′

k). By Prop. 23, we have >k+1=>′
k+1. Hence,

S ≡s
k+1 S′. ��

Finally, we show that 1-relation sets provide a complete characterisation of trace
semantics for S-WF-systems. Hence, start-down-to-k-equivalence coincides with
trace equivalence.

Theorem 25. Let S = (N,mi) and S′ = (N ′,m′
i) be S-WF-systems. Then, S

and S′ are trace equivalent, iff S ≡s
↓1 S′.

Proof. Follows directly from Thm. 24, Prop. 22 and Prop. 16. ��
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4.2 Free-Choice WF-Systems

Free-choice Petri nets [8] is a well-studied subclass of Petri nets, for which many
nice theoretical results and efficient algorithms exist. Many behavioural proper-
ties of free-choice nets are decidable based on the structure of the net, like well-
formedness. In addition, free-choice nets are an important class for modelling
business processes, since the essentials of common process description languages
can be traced back to free-choice nets (exceptions include OR-joins and error
handling) [17]. As an example, the BIT process library1 contains 732 unique
process models that all correspond to free-choice nets. In this section, we show
that for free-choice nets, the up-to-k-successor can be decided on the structure
of the net as well.

Derivation. For free-choice nets, we derive the up-to-k-successor using the
minimal k-successor, i.e., the minimal k for which x �k y holds. Based on the
structure of free-choice nets, we introduce the minimal structural successor func-
tion (MSS). The MSS is a structural measure to calculate the number of steps
needed to enable or mark a node y from a node x.

Definition 26 (Minimal structural successor). Let (N,m0) be a system
with N = (P, T, F ). The minimal structural successor mss : N × N �→ P(N)
assigns sets of nodes to pairs of nodes x, y ∈ N as follows:

mss(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∅ if (x, y) /∈ F ∗,

{x} if xF ∗y, y ∈ x•,

{x} ∪
⋃

v∈x•,(v,y)/∈‖co
mss(v, y) if xF ∗y, y /∈ x•, x ∈ T ,

{x} ∪mss(v, y) if xF ∗y, y /∈ x•, x ∈ P , v ∈ x•,

|mss(v, y)| = minv∈x• |mss(v, y)|

where F ∗ denotes the transitive closure of F .

For live and bounded free-choice systems, the minimal structural successor and
the minimal k successor coincide, which means that we can compute the up-
to-k successor in polynomial time. To prove this, we first show that a marking
is reachable in which all necessary places needed to fire the transitions given
by the minimal structural successor, i.e., places that are in the preset of these
transitions, but not in their postset.

Proposition 27. Let (N,m0) be a live and bounded system with N = (P, T, F )
free-choice. Let x, y ∈ T such that (x, y) �∈‖co and m0(p) = 0 for all places
p ∈ P ∩ mss(x, y). Then a reachable marking m ∈ R(N,m0) exists with m ≥∑

p∈•U\U• [p] with U = T ∩mss(x, y).

Proof. Since (N,m0) is live, a marking m ∈ R(N,m0) and firing sequence γ ∈
(T \ U)∗ exist such that (N,m0)[γ〉(N,m) and (N,m)[x〉, i.e., firing sequence γ
enables transition x for the first time.
1 http://www.zurich.ibm.com/csc/bit/downloads.html (last accessed March 26,
2012).

http://www.zurich.ibm.com/csc/bit/downloads.html
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Define Q(m) = {p ∈ •ν \ ν• | m(p) > 0}, i.e., Q(m) is the set of places marked
in m needed to fire a transition of U , but not produced by any transition of U .
Let p ∈ •U \ (U• ∪ •x) \ Q(m). As p is not in the postset of any transition in
mss(x, y), we have (x, p) ∈‖co. Since (N,m0) is live, a firing sequence τ ∈ T ∗

and marking m′ ∈ NP exist such that (N,m)[τ〉(N,m′), m′ ≥ •x+[p] and x �∈ τ ,
since if x was needed to mark p, then p ∈ mss(x, y). Suppose Q(m)∩•τ �= ∅, i.e.,
some transition u ∈ τ consumes from some place q ∈ Q(m). By the free-choice
property, a transition v ∈ mss(x, y) should then be enabled as well. However, x
has not fired in γ; τ , thus v cannot be enabled, and hence, u cannot be enabled
as well. Thus, Q(m) ∩ •τ = ∅, and Q(m′) = Q(m) ∪ {q}. ��

The above proposition shows the existence of a markingm in a free-choice system
that generates sufficient tokens in order to fire the transitions of the MSS, as
shown in the next proposition.

Proposition 28. Let (N,m0) be a live and bounded system with N = (P, T, F )
is free-choice. Let x, y ∈ T such that (x, y) �∈‖co and m0(p) = 0 for all places
p ∈ P ∩mss(x, y). Then x�k y with k = |T ∩mss(x, y)|.

Proof. We prove the statement by showing the existence of a firing sequence
σ ∈ T (N,m0) such that σ(i) = x and σ(i + k) = y for some 1 ≤ i ≤ |σ|. We
define relation � ⊆ T × T by a � b if a p ∈ mss(x, y) ∩ P exists such that
{(a, p), (p, b)} ∈ F , and a % b if either a = b or a c ∈ T ∩mss(x, y) exists such
that a % c and c � b. By definition, % is a partial order. Let ν ∈ T ∗ such that
ν(i) % ν(j) for all 1 ≤ i ≤ j ≤ |ν| and t ∈ ν iff t ∈ mss(x, y).

By Prop. 27, a firing sequence μ ∈ T (N,m0) and marking m ∈ NP exist such
that (N,m0)[μ〉(N,m) and m ≥

∑
p∈•ν\ν• [p]. Next, we show that ν is a firing

sequence of (N,m). We prove this by induction on the length of ν.
Since ν(1) = x, we have •ν(1) ⊆ {p ∈ P | p ∈ •ν \ ν•}. Hence, •ν(1) ≤ m.
Now, suppose ν = ν′; ν′′ with |ν′′| > 0, and suppose a marking m′ exists such

that (N,m)[ν′〉(N,m′). By construction of ν, ν′
•∩•u �= ∅. If •u ⊆ ν′

•
, transition

u is enabled in m′. Otherwise, a p ∈ •u \ ν′• exists. By the construction of ν, we
have m(q) > 0.

Hence, firing sequence σ = μ; ν has the desired property. ��

Using this result, we establish the relation between the minimal k-successor
relation and the minimal structural successor as follows.

Lemma 29. Let (N,m0) be a live and bounded system with N = (P, T, F ) free-
choice. Let x, y ∈ T such that (x, y) �∈‖co and m0(p) = 0 for all places p ∈
P ∩mss(x, y). Then x�k y iff |mss(x, y) ∩ T | = k.

Proof. (⇒) Suppose x�k y for some k ∈ N. Then a firing sequence σ ∈ T (N,m0)
exists with an 1 ≤ i ≤ |σ| such that σ(i) = x and σ(i + k) = y, and for all
firing sequences τ ∈ T (N,m0) and 1 ≤ i, j,≤ n such that τ(i) = x and τ(j) =
y, then j − i ≥ k. As a consequence, the sequence 〈σ(i), . . . , σ(i + k)〉 is cycle
free, and each transition σ(j) for i ≤ j ≤ i + k is needed in order to enable y,
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since otherwise x ≤k−1 y. Hence, (σ(j), y) �∈‖co for all i ≤ j ≤ i + k. Thus,
σ(i) ∈ mss(x, y) for i ≤ j ≤ i+ k, and |mss(x, y) ∩ T | ≥ k.

Suppose a t ∈ mss(x, y) ∩ T exists and no i ≤ j ≤ i + k exists with σ(j) = t.
Then (t, y) �∈‖co and firing y depends on firing transition t, i.e., a j < i should
exist with σ(j) = t, which is not possible since transition x needs to fire in order
to enable t. Hence, such a transition does not exist and |mss(x, y) ∩ T | = k.

(⇐) Suppose |mss(x, y) ∩ T | = k. To prove x �k y, we need to show x �k y
and (x, y) �∈>k−1. By Prop. 28, we have x�k y.

Since (x, y) �∈‖co, no marking exists in which both x and y are enabled. Sup-
pose some place p ∈ P ∩mss(x, y) is marked by some firing sequence not con-
taining x, i.e., a firing sequence γ ∈ T (N,m0) and marking m ∈ NP exist with

(N : m0
γ−→ m), x �∈ γ and m(p) > 0. Since (N,m0) is live, a firing sequence

σ ∈ T ∗ and marking m′ ∈ NP exist such that (N,m)[σ〉(N,m′), x �∈ σ and
(N,m)[x〉. Then p ∈ σ, since otherwise place p would be unbounded in (N,m0).
Thus, m′(p) = 0. Thus, all places p ∈ P ∩mss(x, y) are empty when x fires.

Hence (x, y) �∈>k−1. ��

We conclude that the minimal structural successor suffices to compute the k-
relation set of a live and bounded FC-system and, therefore, sound free-choice
WF-systems.

Theorem 30. Let (N,m0) be a live and bounded FC-system. Then for any
k ∈ N, the k-relation set can be computed from its concurrency relation and
its minimal structural successor.

Proof. Follows from Prop. 4 and Lm. 29. ��

Corollary 31. Let (N,m0) be a live and bounded FC-system, then for any k ∈ N
with k > 0, the k-relation set can be calculated in O(|N |3) time.

Proof. By Thm. 30, calculating the k-relation set for a live and bounded FC-
systems can be done from its concurrency relation and the minimal successor
length. The concurrency relation is computed in O(|N |3) time [13,11], the con-
struction of the minimal structural successor also takes O(|N |3) time. ��

Abstraction. As illustrated for S-systems, also for sound free-choice WF
-systems there exists an abstraction operation for relation sets. Due to poten-
tial concurrency, the sequential abstraction introduced earlier cannot be applied,
though. Therefore, we define a more generic abstraction operation based on the
notion of the MSS.

Definition 32 (Abstraction). Let (N,m0) be a system, ‖co⊆ T × T its con-
currency relation, and let >k⊆ T × T be an up-to-k successor relation. Then,
the abstraction of >k, denoted by α(>k) ⊆ T × T , is defined by (x, y) ∈ α(>k)
iff x >k y or k = |mss(x, y) ∩ T | − 1.

Abstraction, indeed, allows for deriving the (k+1)-relation set from the k-relation
set for live and bounded free-choice systems and, therefore, for sound free-choice
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WF-systems. Sequential abstraction is a special case of abstraction for free-choice
nets, as in S-systems, the MSS equals the shortest path between x and y.

Proposition 33. Let (N,m0) be a live and bounded system with N = (P, T, F )
free-choice. Let x, y ∈ T be two transitions such that (x, y) �∈‖co, and m0(p) = 0
for all places p ∈ P ∩mss(x, y). Then (x, y) ∈ α(>k) iff (x, y) ∈>k+1.

Proof. Define l = |mss(x, y) ∩ T |.
(⇒) Suppose (x, y) ∈ α(>k). Then (x, y) ∈>k or k = 1+ |mss(x, y) ∩ T |. In the
first case, also (x, y) ∈>k+1. Suppose not (x, y) ∈>k. Then l = k− 1 By Lm. 29,
x�l y, i.e., x �∈>l−1 and x�l y. Hence, x�k+1 y.
(⇐) Suppose (x, y) ∈>k+1. If l < k + 1, then (x, y) ∈>k. Otherwise, i.e., if
l = k + 1, then, k = |mss(x, y) ∩ T | − 1. Hence, (x, y) ∈ α(>k). ��

Equivalence. The abstraction for free-choice nets equals the k + 1 successor
only if the places between the two nodes in consideration are initially empty.
Therefore, we only consider free-choice WF-systems for equivalences. A sound
WF-system is traced back to a live and bounded free-choice system and, initially,
all places, except for the initial place, are empty.

Theorem 34. Let S and S′ be sound free-choice WF-systems. If S ≡s
1 S′, then

S ≡s
k S′, for any k ∈ N with k > 0.

Proof. Analogously to the proof of Thm. 24 using the abstraction of Def. 32 and
Prop. 33. ��

Finally, we consider the expressiveness of relation sets. For sound free-choice WF-
systems, 1-relation sets provide a complete characterisation of trace semantics.
Therefore, down-to-1-equivalence coincides with trace equivalence.

Theorem 35. Let S = (N,m0) and S′ = (N ′,m′
0) be sound free-choice WF-

systems. Then, S and S′ are trace equivalent, iff S ≡s
↓1 S′.

Proof. Follows directly from Thm. 34, Prop. 28, and Prop. 16. ��

5 Applications of Relational Semantics

Relation sets as proposed in this paper are a generalisation of existing notions of
relational semantics. Earlier, we mentioned that those existing notions have been
introduced for diverse applications within the field of business process modelling
and analysis. We take up two applications and outline the benefits of using
parametrised relation sets. Note that a formalisation of notions and measures
for these applications is beyond the scope of this paper.

Process Model Similarity. Management of process model collections requires no-
tions of process model similarity that are exploited for search and retrieval. Re-
cently, different relation sets have been used as a means for similarity measures,
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see [10,31,14]. The overlap of relations, e.g., determined by the Jaccard coeffi-
cient, is used to quantify behavioural similarity. However, those works rely on
a single instantiation of relation sets, i.e., choose a certain parameter. On the
one hand, this raises the question of how to choose the parameter since different
utility considerations may be followed. On the other hand, more fine-granular
measures can be obtained once more than one parameter, i.e., more than one
relation set, is taken into account. Assume that two transitions are related by
1-order in one system S1, but not in another system S2. This negatively im-
pacts the similarity score, independent of the fact whether the two transitions
are related by 2-order or only by 20-order in S2. Taking the whole spectrum of
parametrised relation sets (or a reasonable subset thereof) as the basis, therefore,
enables to distinguish those cases. The difference between 1-order and 2-order
is arguably less severe than the one between 1-order and 20-order, which can be
reflected in the similarity score.

Conformance Analysis. Conformance analysis is an integral part of process min-
ing. Given process logs that capture the observed execution sequences of a busi-
ness process, conformance checking answers the question to which extent the
observed behaviour is in line with the behaviour defined by an according busi-
ness process model, i.e., a net system. Conformance analysis may be based on
relation sets. Then, a relation set is constructed not only for a net system, but
also for a single execution sequence or a complete process log, cf., [26,2]. Existing
work leverages only a single instantiation of relation sets, which, again, raises
the question of appropriateness of different relation sets. This holds in partic-
ular, since conformance analysis has to cope with alien events (events in a log
that are not represented by any transition in a net system) and silent transitions
(transitions of a net system that are not represented by any event). Parametrised
relation sets provide a means to address these challenges: the parameter of a rela-
tion set may be stepwise increased until the relation for a pair of net transitions
coincides with the relation of the corresponding log events. A low parameter
hints at a less severe deviation compared to a high parameter.

We conclude that techniques defined for a single instantiation of relation sets
may benefit from taking the whole spectrum of parametrised relation sets into
account. Then, instead of basing the analysis on a fixed distance between tran-
sition occurrences, parametrised relation sets allow for additional insights into
the differences between two behavioural models. It is important to see that this
holds even if only sound free-choice WF-systems are considered. Although Sec. 4
showed that 1-relation sets provide a complete characterisation of trace seman-
tics for this class, parametrised relation sets provide a means to quantify the
severity of any deviation. If models that are no sound free-choice WF-systems
are considered, the usage of parametrised relation sets is advantageous even in
terms of expressiveness. As illustrated with the examples in Fig. 3, different
relation sets are incomparable for general net systems. A detailed analysis on
the expressiveness of parametrised relation sets for more general classes of net
systems is left for future work, though.
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6 Related Work

Our work relates to other types of relational semantics and their applications.
Work on process mining does not only rely on the footprint, i.e., the 1-relation

set, but also considers other relations. A causal matrix has been used in genetic
process mining [3]. It formulates dependencies for transitions using input and
output functions that associate subsets of preceding or succeeding transitions
to a single transition. Hence, they capture a share of the 1-relation set. To as-
sess the quality of mined models, follows and precedes relations that associate
the value ‘never’, ‘sometimes’, or ‘always’ to pairs of transitions have been pro-
posed [21]. However, those relations neglect the distance between the occurrences
of transitions. Closely related are also approaches to the declarative modelling of
behaviour. Those allow for the restriction of possible behaviour by constraints,
e.g., expressed in Linear Temporal Logic, see [5,18].

Relation sets capture complete trace semantics only for restricted system
classes, but are a behavioural abstraction for general systems. Other approxi-
mations of trace semantics are causal footprints [9]. A causal footprint defines
two relations, look-back links and look-ahead links. For a transition, those define
a set of transitions of which one must have occurred before or after the transi-
tion. In contrast to relation sets, however, there is no unique causal footprint
for a single system. Communication fingerprints [19] are another behavioural ab-
straction for net systems that focusses on boundaries and dependencies for the
cardinalities of tokens consumed or produced at dedicated places. As such, this
work can be seen to be orthogonal to relation sets.

Besides those mentioned in Sec. 5, applications of relation sets include the
verification of hardware specifications, modelled as a labelled net system [20].
Here, relations that classify transitions of a net system as being sequential or
parallel are used. Also, the management of business process variants has been
addressed using an order matrix [15,16]. The latter is a specific instantiation of
relation sets introduced in this paper.

7 Conclusions

In this paper, we took up existing definitions of behavioural relations and pro-
vided a generalisation that defines a spectrum of relational semantics for Petri
net systems. The relational semantics induce equivalence classes for systems that
are not comparable for general net systems. However, for sound free-choice WF-
systems, we proved that the relation sets form a hierarchy. This allows to derive
the (k+1)-relation set from a k-relation set with knowledge about the 1-relation
set. Also, we showed that for this class of systems, relation sets are derived
from the structure of net systems. Finally, the 1-relation set provides a complete
characterisation of trace semantics for sound free-choice WF-systems.

These insights are valuable for applying relation sets for several reasons. First,
if the goal is checking equivalence of sound free-choice WF-systems, it is suffi-
cient to consider 1-relation sets. Second, once focus is on measuring behavioural
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differences, we outlined that even for sound free-choice WF-systems it is advan-
tageous to consider different k-relation sets. Third, we illustrated that k-relation
sets are incomparable for general net systems. Hence, for general net systems,
the joint application of different relation sets allows for a closer approximation
of trace semantics.

In future work, we aim at investigating the expressiveness of k-relation sets
beyond the class of sound free-choice WF-systems. The example given in Fig. 3 il-
lustrates that k-relation sets offer a means to distinguish behavioural differences
that stem from non-free-choiceness. However, even a joint usage of different k-
relation sets may not provide a complete characterisation of trace semantics
for net systems. Thus, we aim at exploring for which more general classes of
net systems the set of k-relation sets provides a complete trace characterisation.
In addition, we aim at investigating k-relation sets for labelled net systems. Al-
though we foresee that the relations may be directly lifted to labelled net systems,
the influence on the expressiveness of k-relation sets needs to be clarified.
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Abstract. Scenario-based modeling is an approach for describing behaviors of
a distributed system in terms of partial runs, called scenarios. Deriving an op-
erational system from a set of scenarios is the main challenge that is typically
addressed by either synthesizing system components or by providing operational
semantics. Over the last years, several established scenario-based techniques have
been adopted to Petri nets. Their adaptation allows for verifying scenario-based
models and for synthesizing individual components from scenarios within one
formal technique, by building on Petri net theory. However, current adaptations
of scenarios face two limitations: a system modeler (1) cannot abstract from con-
crete behavior, and (2) cannot explicitly describe data in scenarios. This paper
lifts these limitations for scenarios in the style of Live Sequence Charts (LSCs).
We extend an existing model for scenarios, that features Petri net-based seman-
tics, verification and synthesis techniques, and close the gap between LSCs and
Petri nets further.

Keywords: scenario-based modeling, data, abstraction, Petri nets.

1 Introduction

Designing and implementing a distributed system of multiple components is a com-
plex task. Its complexity originates in the component interactions. Established scenario-
based methods such as (Hierarchical) Message Sequence Charts ((H)MSCs) [26] and
Live Sequence Charts (LSCs) [6] alleviate this complexity: A system designer specifies
the system’s behaviors as a set of scenarios. Each scenario is a self-contained, partial ex-
ecution usually given in a graphical notation. Then system components are synthesized
(preferably automatically) that together interact as described in the scenarios. Alterna-
tively, a specification becomes a system model by equipping scenarios with operational
semantics.

A significant drawback of established techniques is that components have to be syn-
thesized in a different formal theory than the one in which the scenarios are given, e.g.,
HMSCs or LSCs are synthesized into Petri nets or statecharts [7,19]. Also operational
semantics for MSCs and LSCs require a translation into another formalism like au-
tomata [31], process algebras [30], or require involved formal techniques such as graph
grammars [24] or model-checking [20]. Many HMSC and LSC specifications cannot be
distributed into components but require centralized control [7,4]. This renders turning
scenarios into systems surprisingly technical while scenarios appear to be very intuitive.
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Approaches which express scenarios, system behaviors and system model in the
same formal theory face less problems. In particular, approaches which describe sce-
narios in terms of Petri nets and their partially ordered runs, e.g., [9], have been suc-
cessful. The approach in [2] presents a general solution for synthesizing a Petri net from
HMSC-style specifications in a Petri net-based model. [8] shows how to compose com-
plex system behaviors from single Petri net events with preconditions. The model of
oclets [11,12] adapts ideas from LSCs to Petri nets: a scenario is a partial run with a
distinguished precondition; system behavior emerges from composing scenarios based
on their preconditions. This idea allows oclets to adapt existing Petri net techniques for
a general solution to the synthesis problem for LSC-style scenarios [12].

The Petri net-based scenario techniques [9,2,8,11,12] in their current form only de-
scribe control-flow and provide no means for abstracting behavior in a complex specifi-
cation. Any practically applicable specification technique needs some notion of abstrac-
tion as well as some explicit notion of data, and means to describe several components
of the same kind.

This paper addresses these problems of practical applicability of Petri-net based sce-
narios. We show for the model of oclets how to extend scenarios by abstract causal
dependencies (abstracting from a number of possibly unknown actions between two de-
pendent actions), and how to express data in scenarios by adapting notions of Algebraic
Petri nets [32]. Our contribution is two-fold: First, abstraction and data are two key fea-
tures of LSCs, so our extension of oclets closes the gap between LSCs and Petri nets
further. Second, all our extensions are simple generalizations of existing concepts from
Petri net theory, giving rise to the hope that existing verification and synthesis results,
e.g., [12], can be transferred to the more expressive model proposed in this paper.

We proceed as follows. Section 2 recalls the scenario-based approach in more detail
and explains the basic ideas of oclets by an example. In Sections 3 and 4, abstract causal
dependencies and data are introduced into the model, respectively. Section 5 discusses
the relation of oclets to Petri nets. We conclude and discuss related and future work in
Section 6.

2 Specifying with Scenarios

This section recalls the scenario-based approach by the help of an example and dis-
cusses features and limitations of scenario-based specification techniques. Two of these
limitations will be addressed in the remainder of this paper.

2.1 Running Example and Requirements for Capturing It

Our running example is a gas station (adapted from [23]) that allows customers to refuel
their cars using one of the available pumps as follows. When a customer arrives with his
car at a pump, he asks the operator to activate that pump for a certain amount of fuel for
which he pays in advance or after he finished pumping the gas. The customer can start
an activated pump to refuel his car, pumping gas one unit at a time. The pump stops
when all requested gas has been pumped, or when stopped by the customer. The pump
then signals the operator the pumped amount and the operator returns corresponding
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change to the customer. Each customer gets a free snack that he may pick up after
starting the pump and before leaving the gas station.

A specification technique capable to express this gas station has to describe (R1)
distributed components (e.g., pump, customer, operator), (R2) interaction between com-
ponents, (R3) sequential, independent, and alternative ordering of actions, (R4) precon-
ditions of actions (e.g., “when all requested gas has been pumped”), (R5) actions that
depend on data (e.g., returned change, amount of pumped gas), (R6) multiple instances
of the same kind of component (e.g., multiple customers and pumps). Furthermore, a
specification technique also should allow a system designer to keep an overview of
larger specifications by (R7) means of abstraction. Finally, the specification technique
should allow to (R8) derive the specified behavior in an intuitive way, that is, the derived
behavior should be “correct by construction” and not require additional verification.

2.2 Principles of Scenario-Based Specifications

In the scenario-based approach, a system designer obtains a system model of a dis-
tributed system (e.g., our gas station example) in two steps. First she describes the
system behavior as component interactions. One scenario describes how several com-
ponents interact with each other in a particular situation; a specification is a set of sce-
narios. When she completed the specifications, components are synthesized (preferably
automatically) such that all components together interact as described in the scenarios.
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Fig. 1. An HMSC H describing compositions of MSCs
M0,M1,M2

The most valued feature of
this approach is that scenar-
ios tangibly decompose complex
system behavior into smaller,
self-contained stories of com-
ponent interactions (scenarios)
which are easy to understand.
Fig. 1 shows 3 scenarios (M0,
M1, M2) of the running exam-
ple in the well-established syn-
tax of MSCs. In each MSC, a
vertical lifeline describes one
component, arrows between com-
ponents describe interactions,
boxes at components describe local actions; M0 is a special case as it describes the
creation of a new instance of a customer. Established scenario-based techniques adhere
to a few simple principles that allow to derive system behavior from scenarios in a
comprehensible way as follows.

S1 A scenario is partial order of actions, understood as a partial run of the system. A
specification is a set of scenarios.

S2 System behavior follows from composing (appending) scenarios.
S3 Each scenario distinguishes a prefix as a precondition describing when the scenario

can occur; the remainder of the scenario is called contribution.
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S4 When a system run ends with a scenario’s precondition, the run can continue by
appending the scenario’s contribution. Scenarios with the same precondition and
different contributions lead to alternative runs.

S1 is the most generally agreed upon principle for scenarios and usually expressed
in an MSC-like notation as in Fig. 1; other notations are possible [6,9,11,2]. To specify
practically relevant systems, more principles are needed. The probably most established
scenario-based techniques – (H)MSCs, LSCs and UML Sequence Diagrams – realize
these principles differently as we discuss next.

HMSCs proposed principle S2 first, where the order of scenario composition is de-
scribed by a finite automaton [26]. For instance, HMSC H of Fig. 1 describes that M0 is
followed by M1 or alternatively by M2, and then M0 can occur again. This way, HMSCs
are capable to express the requirements R1-R3 of Sect. 2.1, but not R4. In the HMSC
standard, notions of data (R5) are only provided on a syntactical, but not on a semanti-
cal level [26]. Also multiple instances of the same component cannot be expressed: the
HMSC of Fig. 1 allows only one customer to be served at a time. Means of abstraction
(R7) are provided by the possibility of nesting one MSC inside another MSC. UML
Sequence Diagrams express scenario composition entirely by nesting scenarios in each
other.

It has been repeatedly observed that this approach to scenarios requires a global
understanding of the entire system as the ordering of scenarios is described in a global
automaton [17,12]. Moreover, as MSCs of a HMSC cannot overlap, a specification may
have to be refactored when a new scenario shall be included [34] and specifications
tend to consist of many small-scale scenarios composed in complex ways, which is
counter-intuitive to the idea of one scenario describing a “self-contained story” of the
system [38,12].
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Fig. 2. Three LSCs of the gas station example

LSCs extend MSCs in a differ-
ent way to provide enough ex-
pressive power [6]. Altogether,
LSCs provide notions for pre-
conditions of scenarios, data,
multiple instances and abstrac-
tion on component lifelines, sat-
isfying R1-R7 of Sect. 2.1 [21].
LSCs first proposed principle S3
that a scenario is triggered by a
precondition; this idea has been
adopted in other approach as
well [17,35,11]. Fig. 2 shows 3
LSCs corresponding to the MSCs of Fig. 1. However, LSCs specify system behavior
not by scenario composition, but each LSC denotes a linear-time temporal logic for-
mula: when a system run ends with an LSC’s precondition, then the run must continue
with the LSC’s contribution, i.e., the given events occur in the run eventually in the
given order.

For instance, L1 expresses that after arrive occurred (precondition), the customer
pays, starts and stops the pump, and gets his change (contribution). Additionally, LSCs
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specify particular events as implicitly forbidden at particular stages of an LSC. For in-
stance, in L2, event pay is forbidden to occur before event stop. At the same time, L1
requires pay to occur right after arrived (before stop) and forbids occurrences of pay
after stop. In contrast to intuition, L1 and L2 are contradictory and no system satisfies
both LSCs. This contradiction arises because of the linear-time semantics of LSCs as
both L1 and L2 have to occur in the same run. The contradiction vanishes when using
a branching-time semantics for LSCs as proposed in the model of epLSCs [37]: when
the pre-condition occurs, some run continues with the contribution (principle S4). How-
ever, also in this model, deriving system behavior from a specification is cumbersome:
whether two epLSCs have to occur in different runs or may occur overlappingly in the
same run still requires to check their temporal logic formulae, possibly requiring verifi-
cation on large parts of the specified state-space [20].

Between LSCs and HMSCs. To summarize, HMSCs have a simple semantics that
allows to derive specified behaviors by composing scenarios. Though, HMSCs suffer
from the global automaton and that scenarios cannot overlap. LSCs allow for local
preconditions and overlapping scenarios, but are based on an intricate semantics that
makes it hard to understand behavior specified by a set of LSCs. That simplicity of
semantics influences the way how components can be synthesized from scenarios can
be seen when comparing available techniques. While synthesis is generally infeasible
from both HMSCs and LSCs, synthesis from feasible subclasses of scenarios to Petri
nets is straight forward for HMSCs [31,2] yielding components that are correct by con-
struction, whereas synthesis from LSCs [1,28] requires to verify the synthesis result to
ensure correctness.

In the following, we derive a scenario-based technique that inherits the advantages of
HMSCs and LSCs without their disadvantages: a LSC-style syntax of scenarios with lo-
cal precondition is given a HMSC-style semantics where system behavior follows from
scenario composition. The hope is that a simpler semantic model allows to synthesize
from LSC-style scenarios components that are correct by construction. Indeed, this al-
ready has been proven to be successful for a simple model of scenarios that we present
next.

2.3 A Simple Model for Scenarios Based on Petri Nets

We derive a simple semantic model for LSC-style scenarios by applying principles of
Petri net theory. Petri net-based scenarios benefit from expressing scenarios, behavior,
and system in the same formal model, which allows to create a Petri-net based op-
erational semantics for scenarios and supports the crucial step from specification to
system model. For HMSC-style specifications, corresponding semantics and synthesis
techniques are already available [2]

For LSC-style scenarios, a simple model that adopts the semantics of epLSCs [37]
to Petri nets has been proposed in the model of oclets [11,12] that we recall next. Oclets
realize all principles S1-S4 in the following way. Fig. 3 shows four scenarios of the
gas station example of Sect. 2.1 in the notation of oclets. The partial order of actions is
expressed as a so called labeled causal net. A transition (place) of a causal net is called
event (condition); the flow relation defines a partial order over events and conditions
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s.t. the net is conflict-free. The grey-filled (white-filled) nodes indicate the precondition
(contribution) of an oclet.
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Fig. 3. Scenarios for the gas sta-
tion example

The four oclets describe some behavior of the gas sta-
tion example. Oclet prepay: after a customer arrived at
the gas station, he asks to activate a pump and pre-pays
his gas (event pay). Alternatively (oclet pay later), the
customer may just ask the operator to activate the pump
(order). Oclet activate: after receiving the order, the op-
erator activates the pump. Oclet start: When a pump is
activated, the customer may start it.

Oclets generalize the semantics of Petri net transi-
tions to scenarios. Whenever a run ends with an oclet’s
precondition, the oclet is enabled and the run can con-
tinue by appending the oclet’s contribution. Two oclets
with the same precondition and different contributions
are alternatives and hence yield alternative continua-
tions.

For example, consider the run π0 indicated in Fig. 4.
In π0, oclets pay and use card are enabled. Continuing π0

with pay yields the run π1 indicated in Fig. 4(left), that
was obtained by appending pay’s contribution to π0. Ap-
pending pay later yields the run π′1 of Fig. 4(right) that is
alternative to π1. In π1, oclet activate is enabled; append-
ing its contribution yields π2. This way, oclets derive the
specified behavior of the gas station by composition.

Properties and limitations. In their current form, oclets
allow to express properties (R1-R4) of Sect. 2.1 and al-
low to analyze scenarios, and synthesize a system by
reusing and extending Petri net techniques [12]. Yet,
oclets cannot express data (e.g., how much gas to pump)
or distinguish instances (e.g., two different pumps). Fur-

thermore, the events in an oclet currently describe a “contiguous piece of behavior.”
In the worst case, the specification consists of many short scenarios, only. Abstraction
would allow a system designer to also specify longer scenarios of corresponding, non-
contiguous pieces of behavior. In the remainder of this paper, we show how to introduce
abstraction and data to oclets, thus providing a scenario-based technique between HM-
SCs and LSCs. We stay close to the spirit of Petri nets and define an extension in terms
of simpler, existing principles.

3 Adding Abstraction: Abstract Dependencies

In this section, we introduce means to abstract from behavior in a scenario. We sketch
the idea by our running example before we present formal definitions.
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Fig. 4. Two alternative runs of the gas station built by composing scenarios of Fig. 3

3.1 Abstracting Causal Dependencies

As stated in Sect. 2.3, the flow relation of an oclet as described in [11,12] denotes
direct causal dependencies which may restrict how a particular system behavior can be
specified. Abstract causal dependencies allow other events to occur between two events
of a scenario.

Fig. 5 shows examples of abstract dependencies; an abstract dependency is drawn as
a dashed arrow. The oclet main describes the main interaction between customer and
the gas station’s operator and the pump (see Sect. 2.1). The oclet abstracts from other
behavior taking place at the gas station, some of that behavior is needed to make the
customer’s interaction happen. For instance, oclet main only abstractly describes the
dependency of the two Pump conditions. This allows events which are not depicted to
occur between these conditions. In particular event start of oclet start of Fig. 3 can occur
here. In other words, oclet start refines this abstract dependency of oclet main. There are
further abstract dependencies in main that have to be detailed by other oclets. Yet, the
main scenario clearly describes that once the pump has been activated, it eventually
completes pumping, which will lead to the operator returning change to the customer.
We complete the specification in Sect. 4.4.

Abstract dependencies are also useful in a scenario’s precondition. Here, they allow
to specify that an oclet is enabled if a specific behavior occurred “some time” in the
past, instead of immediately. For instance, oclet main[completed] in Fig. 5 expresses that
activate must have occurred some time in the past in order to enable event completed,
including the possibility that other events occurred in between.

Introducing abstract dependencies in oclets comes at a price: we cannot continue
a run with an enabled oclet by appending its contribution. The principle solution is
to decompose an oclet into basic oclets such as main[completed] in Fig. 5(top right).
Each basic oclet contributes exactly one event, its precondition consists of all transitive
predecessors in the original oclet. This effectively moves abstract dependencies into pre-
conditions and system behavior emerges from concatenating well-defined single events.

In the remainder of this section, we formalize these ideas by extending syntax and
semantics of oclets [11,12] with abstract dependencies. We assume the reader to be
familiar with the basic concepts of Petri Nets and their distributed runs; see [33] for an
introduction.
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Fig. 5. Main scenario of the gas station example (left), abstract dependencies allow to abstract
several details of the system behavior; a basic oclet (top right); an abstract run (bottom right)

3.2 Basic Notions

First, we recall some basic notation. A partial order over a set A is a binary relation
≤ ⊆ A × A that is reflexive (i.e. ∀a ∈ A : a ≤ a), transitive (i.e. ∀a, a′, a′′ ∈ A : a ≤ a′ ∧
a′ ≤ a′′ ⇒ a ≤ a′′), and antisymmetric (i.e. ∀a, a′ ∈ A : a ≤ a′ ∧ a′ ≤ a⇒ a = a′). Let
a↓≤ := {a′ ∈ A | a′ ≤ a} and a↑≤ := {a′ ∈ A | a ≤ a′} denote the transitive predecessors
and successors of a ∈ A, respectively. As usual, for a relation R ⊆ (A × A), R+ and R∗
denote the transitive, and reflexive-transitive closures of R.

We write a Petri Net as N = (P, T, F), with places P, transitions T (P∩T = ∅), and
arcs F ⊆ (P × T ) ∪ (T × P). Notation-wise, introducing N,N1,N′ implicitly introduces
their components PN , P1, P′ etc. For each node x ∈ XN := P ∪ T , •x = {y ∈ X | (y, x) ∈
F} and x• = {y ∈ X | (x, y) ∈ F} are the pre- and post-set of x, respectively. A causal net
π = (B, E, F) is a Petri net where (1) ≤π := F∗ is a partial order over Xπ, (2) for each
x ∈ Xπ, x↓≤π is finite, and (3) for each b ∈ B, |•b| ≤ 1 and |b•| ≤ 1. An element of B (E)
is called condition (event). The arcs of a causal net denote direct causal dependencies:
x depends on y iff x ≤ y, and x and y are concurrent iff neither x ≤ y nor y ≤ x. We
write min π = {x | •x = ∅} and max π = {x | x• = ∅} for the nodes without predecessor
and successor, respectively.

In the following, we consider labeled causal nets π = (B, E, F, �) where each node
x ∈ Xπ is assigned a label �(x) ∈ L from some given set L. We will interpret a labeled
causal net as a partially ordered run (of a possibly unknown system); in analogy to Petri
nets, an event e describes an occurrence of an action (or transition) �(e), and a condition
b describes an occurrence of a local state (a token on a place) �(b).
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3.3 Runs with Abstract Dependencies

We formally introduce abstract dependencies by generalizing the notion of a partially
ordered run to an abstract run. This definition then canonically lifts to oclets with ab-
stract dependencies.

Definition 1 (Partially ordered run). An abstract partially ordered run (run for short)
π = (B, E, F, A, �) is a labeled causal net (B, E, F, �) with abstract dependencies A ⊆
Xπ × Xπ s.t. ≤π:= (F ∪ A)∗ is a partial order over the nodes Xπ. π is concrete iff A = ∅.
We write πα for any run that is isomorphic to π by the isomorphism α : π → πα. Run π
occurs in run ρ, written π ⊆ ρ, iff Bπ ⊆ Bρ, Eπ ⊆ Eρ, Fπ ⊆ Fρ, Aπ ⊆ Aρ, �π = �ρ|Xπ . We
will work with two important relations on runs: prefixes and refinement.

Definition 2 (Prefix). A run π is a prefix of a run ρ, written π � ρ, iff (1) min ρ ⊆ Xπ ⊆
Xρ (2) Fπ = Fρ|Xρ×Xπ , Aπ = Aρ|Xρ×Xπ (π contains all predecessors), (3) for each e ∈ Eρ
and all (e, b) ∈ Fρ holds (e, b) ∈ Fπ (events have all post-conditions). The set of all
prefixes of ρ is Pre(ρ) := {π | π � ρ}.
Fig. 5(bottom right) shows an abstract run; Fig. 4 shows concrete runs; π1 is a prefix of
π2; π′1 is not a prefix of π1. Each abstract run describes a set of concrete runs (without
abstract dependencies) that refine the abstract run. Intuitively, an abstract dependency
in a run π can be refined by a number of nodes that respect the partial order of π. The
refinement can exclude nodes with a particular label, which we need for oclet semantics.

Definition 3 (Refine an abstract run). Let π and ρ be abstract distributed runs. Let
κ : Aπ → 2L assign each abstract dependency in π a (possibly empty) set of forbidden
labels. ρ refines π w.r.t. κ, written ρ �κ π iff

– Bπ ⊆ Bρ, Eπ ⊆ Eρ,∀x ∈ Xπ : �π(x) = �ρ(x),
– Fπ ⊆ Fρ and (Fπ ∪ Aπ)+ ⊆ (Fρ ∪ Aρ)+, and
– ∀(x, y) ∈ Aπ�e ∈ Eρ : x ≤ρ e ≤ρ y ∧ �ρ(e) ∈ κ(x, y).

We write π � ρ if κ(x, y) = ∅ for all (x, y) ∈ Aπ. Every run π describes the set �π� := {ρ |
ρ � π, Aρ = ∅} of all concrete runs that refine ρ.

Run π2 of Fig. 4 refines the abstract run π′2 of Fig. 5.

3.4 Scenarios with Abstract Dependencies

Syntax. Abstract dependencies canonically lift from abstract runs to oclets. As already
sketched in Sect. 3.1, an oclet is an abstract run with a distinguished prefix.

Definition 4 (Oclet). An oclet o = (π, pre) consists of an abstract distributed run π and
a prefix pre � π of π.

Fig. 5 shows oclet main. Def. 4 generalizes “classical” oclets as introduced in [11,12]
by abstract dependencies of the underlying run. We call pre the precondition of o and
the suffix con(o) := (Bπ \ Bpre, Eπ \ Epre, Fπ \ Fpre, Aπ \ Apre, �π|Xcon(o) ) its contribution;
technically con(o) is not a net as it contains arcs adjacent to nodes of the precondition.

A specification is a set of oclets together with an initial run that describes how system
behavior starts.
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Definition 5 (Specification). A specification Ω = (O, π0) is a set O of oclets together
with an abstract run π0 called initial run.

A specification usually consists of a finite set of oclets; we allow the infinite case for
technical reasons. This is all syntax that we need.

Semantics. The semantics of oclets is straight forward. An oclet o describes a scenario
with a necessary precondition: the contribution of o can occur whenever its precondition
occurred. Then, we call o enabled.

Definition 6 (Enabled Oclet). Let o = (π, pre) be an oclet and let π be a run. Each
(x, y) ∈ Aπ defines the post-events of y as forbidden, i.e., κ(x, y) = {�(e) | (y, e) ∈
Fo ∪ Ao, e ∈ Eo}. Oclet o is enabled in π iff there exists a refinement pre′ �κ pre s.t. (1)
pre′ ⊆ π, (2) max pre′ ⊆ max π, and (3) Xcon(o) ∩ Xπ = ∅.
An oclet is enabled in a run π if the complete precondition occurs at end of π, i.e.,
“just happened.” The forbidden events κ restrict which events may occur in place of an
abstract dependency of pre (see Def. 3); this ensures enabling only at a “very recent”
occurrence of the precondition. The same model is applied in LSCs [6].

An oclet o can be enabled at several different locations in π (whenever we find pre
several times at the end of π). We say that o is enabled in π at location α iff oα is enabled
in π. For technical reasons, o’s contribution is assumed to be disjoint from π so that it
can be appended to π.

Definition 7 (Continue a run with an oclet). Let o be an oclet and let π be a dis-
tributed run. If o is enabled in π, then the composition of π and o is defined as π � o :=
(π ∪ πo) = (Bπ ∪ Bo, Eπ ∪ Eo, Fπ ∪ Fo, �

′, Aπ ∪ Ao) with �′(x) = �π(x), for all x ∈ Xπ,
�′(x) = �o(x), for all x ∈ Xo.

A specification Ω describes a set R(Ω) of abstract runs: that is, the prefixes of all runs
that can be constructed by repeatedly appending enabled oclets of Ω to the initial run.
The concrete system behaviors specified by Ω are the concrete runs that refine R(Ω).

Definition 8 (Semantics of a specification). Let Ω = (O, π0) be a specification. The
abstract runs of Ω are the least set R(Ω) of runs s.t.

1. Pre(π0) ⊆ R(Ω), and
2. for all π ∈ R(Ω), o ∈ O, if o is enabled in π at α then Pre(π � oα) ⊆ R(Ω).

A set R of concrete runs satisfies Ω iff for each π ∈ R(Ω), �π�∩R � ∅.

3.5 Operational Semantics

A system designer can use oclets to specify the behaviors of a distributed system. Harel
et al. [20] suggested to turn a specification into an executable system model by provid-
ing operational semantics for scenarios.

Operational semantics describe system behavior as occurrences of single events.
Each event has a local precondition, if the precondition holds, the event can occur by
being appended to the run. These principles are naturally captured by basic oclets that
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contribute just a single event; we define operational semantics of oclets by decomposing
complex oclets into basic oclets.

We call an event e of a run π concrete iff e has no abstract dependencies, i.e., ∀(x, y) ∈
Aπ : x � e � y. Oclet o is basic iff its contribution consists of exactly one concrete event
e (with post-conditions). If o is not basic, then it can be decomposed into basic oclets.
Each concrete event e of o’s contribution induces the basic oclet o[e] that contributes e
and e’s post-set and has as precondition all transitive predecessors e ↓≤o of e in o.

Definition 9 (Decomposition into basic oclets). Let o = (π, pre) be a basic oclet. A
concrete event e ∈ Econ(o) induces the basic oclet o[e] = (π′, pre′) with X′ = e ↓≤o ∪e•,
F′ = F |X′×X′ , A′ = A|X′×X′ , �′ = �|X′ , and pre′ � π′ s.t. Xpre′ = e ↓≤o \{e}. The basic
oclets of o are ô = {o[e] | e ∈ Econ(o), e is concrete}.
There may be specifications where a particular action a has no corresponding concrete
event e, �(e) = a, i.e., it is always adjacent to some abstract dependency. In this case,
the specification provides no information on how to refine these abstract dependencies.
We found it useful for concise specifications, that in this case, a non-concrete event e of
an oclet o = (π, pre) also induces the basic oclet o[e] where the abstract dependencies
between e and some condition b are turned into direct dependencies, i.e., replace in o
each abstract dependency (b, e) ∈ Ao, b ∈ Bo by an arc (b, e) ∈ Fo and each (e, b) ∈
Ao, b ∈ Bo by an arc (e, b) ∈ Fo, and then compute o[e] as in Def. 9.

In both cases of Def. 9 and with additional basic oclets, the operational semantics of
an oclet specification follows from its basic oclets.

Definition 10 (Operational semantics). Let Ω = (O, π0) be a specification. Ω̂ =
(
⋃

o∈O ô, π0) is the basic specification induced by Ω. It defines the operational seman-
tics of Ω as R(Ω̂). Ω is operational iff R(Ω̂) satisfies Ω.

We call R(Ω̂) the operational semantics of Ω because Ω̂ describes a set of single events.
Each event is enabled when its local precondition holds; an enabled event can occur
(by appending it to the run). Not every specification has operational semantics that
satisfy the specification. A non-operational specification needs to be refined to become
operational. Yet, we can characterize operational specifications.

Theorem 1. Let Ω = (O, π0) be a specification s.t. π0 is concrete and each event in the
contribution of each oclet in O is concrete. Then Ω is operational.

Proof. This theorem has been proven for oclets without abstract dependencies in [11]:
by induction on the prefixes of an oclet’s contribution, an oclet’s contribution can be
reconstructed from its basic oclets. In particular, whenever oclet o is enabled in π, also
each basic oclet of o is enabled in π or in a continuation π � o[e1] � . . . � o[ek]. This
reasoning applies also when o has abstract dependencies in its precondition (still, each
basic oclet o[e] gets enabled whenever o is enabled).

Theorem 1 states a rather strict sufficient condition for operational specifications (ab-
stract dependencies only in preconditions). Next, we present a more general sufficient
condition: Ω is operational if all abstract dependencies of Ω can be refined by its basic
oclets.
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Refining abstract runs lifts to oclets: oclet o2 = (π2, pre2) refines oclet o1 = (π1, pre1),
written o2 � o1, iff π2 � π1 and pre2 = pre1, i.e., we may only refine contributions. An
oclet’s refinement can be justified by another oclet.

Definition 11 (Justified by oclet). Let o1, o2 be oclets s.t. o2 refines o1. The refinement
from o1 to o2 is justified by an oclet o iff Xo2 \Xo1 ⊆ Xcon(o), Fo2 \Fo1 ⊆ Fcon(o), Ao2 \Ao1 ⊆
Acon(o).

Let Ω = (O, π0) be an oclet specification. The refinement from o1 to o2 is justified by
Ω iff there is a sequence of refinements from o1 to o2 s.t. each refinement is justified by
a basic oclet o ∈ Ô (or by an isomorphic copy oα of o).

Theorem 2. Let Ω = (O, π0) be a specification. If each oclet o1 ∈ O can be refined
to an oclet o2 justified by Ω s.t. all events of o2’s contribution are concrete, then Ω is
operational.

Lemma 1. Let Ω = (O, π0) be a specification. Let o be an oclet that can be refined
into an oclet o′, justified by Ω, s.t. each e ∈ Econ(o′) is concrete. Let π be a run s.t. o
is enabled in π. Then there exists a sequence o1, . . . , on ∈ Ô ∪ ô of basic oclets s.t.
(π � o1 � . . . � on) = (π � o′) � (π � o).

Proof (Lem. 1). Proof by the number n = |Econ(o′)|. For n = 0, the proposition holds
trivially. For n > 0, let e ∈ Econ(o′) be a maximal (no other event of o succeeds e).

Case 1: e ∈ Econ(o′) and e is concrete. Obtain o−e, o′−e by removing e and e• from
o, o′. o′−e � o−e justified by Ω and ρ := π � o1 � . . . � on−1 = π � o′−e � π � o−e by
inductive assumption. From e being complete follows o[e] ∈ ô and o[e] enabled in ρ.
Thus (ρ � o[e]) = (π � o′−e � o[e]) = (π � o′) � (π � o).

Case 2: e ∈ Econ(o′) and e is not complete, or for some b ∈ e•, b ∈ max πo (s.t. e is
added by refining (x, b) ∈ Ao, see Def. 3). By Def. 11, a basic oclet õ of Ω with p̃re ⊆ π′
justifies e ∈ Eo′ ∩ Eõ and all (x, e), (e, y) ∈ Fo′ \ Fo ⊆ Fcon(õ). Thus, there ex. oclet
o′′ s.t. o′ � o′′ � o where o′ � o′′ is justified by õ (and the rest by Ω). All events of
o′′ (except e) are concrete. Obtain o−e, o′−e, o

′′−e by removing e and e• from o, o′, o′′. By
construction holds o′′−e = o′−e and max p̃re ⊆ max π′−e. Refinement o′′−e � o−e is justified
byΩ, thus ρ := (π�o1�. . .�on−1) = (π�o′−e) � (π�o−e) holds by inductive assumption.
Further, p̃re ⊆ π′−e ⊆ ρ and max p̃re ⊆ maxπ′−e ⊆ max ρ holds. Thus, õ is enabled in ρ
and (ρ � õ) = (π � o′−e � õ) = (π � o′) � (π � o). �

Proof (Thm. 2). By induction on the semantics of Ω = (O, π0). Let Ω̂ = (Ô, π0). Base:
By Def. 8, π0 ∈ R(Ω) and π0 ∈ R(Ω̂). Step: Show for π � o ∈ R(Ω) (o enabled in π) that
there ex. ρ ∈ R(Ω̂) s.t. ρ � π � o. By assumption there ex. a refinement o′ � o justified
by Ω. As ô ⊆ Ô, Lem. 1 implies that π � o′ ∈ R(Ω̂) and (π � o′) � (π � o). �

4 Adding Data: Σ-Oclets

In the current model of oclets, conditions and events can be labeled with specific data
values. But the language of oclets does not allow to concisely describe manipulation
of data values and data-dependent enabling of events. In this section, we extend oclets
with notions of data. As we adopt techniques that are well-established in several Petri net
formalisms, we just describe our approach in an informal manner; for technical details,
see [13]. Similar to Sect. 3, we start with a general description of how to specify data.
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4.1 Specifying Data

We propose to incorporate data into oclets in the same way as data has been introduced
in Place/Transition nets (P/T nets) by several classes of high level Petri Nets, e.g., in
Coloured Petri nets (CPNs) [27]. Recall that in CPNs, a marking distributes concrete
values (from one or several domains) on places; expressions on arcs describe which
values are consumed or produced by an occurrence of a transition; a guard expression at
the transition may restrict consumable and producible values further. The method-wise
relevant property of CPNs is that each colored net can be unfolded w.r.t. all possible
interpretations of its expressions into an equivalent P/T net. Then, a (black) token on a
P/T net place (p, v) denotes value v on colored place p; likewise each colored transition
unfolds to several P/T net transitions defined by the consumed and produced concrete
values. A special class of CPNs are Algebraic Petri nets [32] where expressions and
values are defined by a Σ-algebra with a signature Σ.
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Fig. 6. Σ-oclet pump of the gas station example
(left) and an unfolding pumpβ (right) by assign-
ing each variable a concrete value

We adapt the idea of Algebraic Petri
nets to oclets and introduce Σ-oclets. In
a run, a place p carrying the value v is la-
beled (p, v). In a Σ-oclet, each condition is
labeled with a pair (p, t) where p is a name
(e.g., of a component) and t is a term (over
function symbols and variables of Σ) de-
scribing possible values on p. Events are
labeled with names of actions as before;
an event may carry an additional guard ex-
pression (defined over Σ). A system designer can use different terms in the pre- and
post-sets of an event to describe how values change by an occurrence of an event.
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Fig. 7. A distributed run with data

Fig. 6 shows Σ-oclet pump of the gas
station example; the complete specifica-
tion is given in Sect. 4.4. Oclet pump de-
scribes how the pump at the gas station
refuels the customer’s car by one unit of
fuel and updates its internal records about
the provided and the remaining amount
of fuel. A Pump’s internal record is rep-
resented as a 4-tuple. An occurrence of
event pump increases done by 1 (3rd en-
try) and decreases todo by 1 (4th entry).
The guard restricts occurrences of pump
to those cases where todo > 0. Techni-
cally, pid, todo and done are variables and
Running is a constant of Σ. As in Petri nets,
the semantics of a Σ-oclet o can be un-
derstood by unfolding o into a “low-level”
oclet that has no terms and variables. The
basic idea is to assign a value to each vari-
able in o, and then to replace each term t
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in o by the value obtained by evaluating t. For example, for Σ-oclet pump, the assign-
ment β : pid �→ 17, done �→ 0, todo �→ 3 yields the classical oclet pumpβ shown in Fig. 6.
An occurrence of pumpβ can be understood as an occurrence of pump in mode β. Other
assignments yield other low-level oclets. A Σ-oclet can only be unfolded if all guards
evaluate to true.

This way an entire set of Σ-oclets O can be unfolded to a (possibly infinite) low-level
oclet specification O′. O describes the distributed runs that are described by O′, that is,
can be constructed from the unfolded oclets. For example, pumpβ is enabled in run π of
Fig. 7, i.e., oclet pump is enabled for pid �→ 17, etc. We can continue π by appending
the contribution of pumpβ which updates the internal record of the pump. Now pump is
enabled for the assignment todo �→ 2. Thus, pump can occur two more times, i.e., until
the assignment todo �→ 0 violates the guard expression.

This notion of data now allows to express data-dependent behavior: event pump
repeats as often as specified by todo. Further, we are now able to distinguish different
instances of a component. Unlike in run π2 of Fig. 4, we can now distinguish the two
pumps run in π of Fig. 7. This permits to activate exactly the pump that was chosen by
the customer.

4.2 Formalization

The formalization of Σ-oclets is straight-forward as it follows exactly the principles of
Coloured Petri nets. First, a specification defines an algebraic signature Σ providing
sorts (of values), variables, constants and function symbols. We usually assume sorts
Bool and the usual Boolean operators be given that are interpreted in the usual way. The
signature permits to build sorted terms over its symbols and variables. The model of
oclets is then extended to Σ-oclets as follows:

1. Label each event and each condition of an abstract distributed run with a pair (a, t)
of a name a and a term t over Σ so that the term of an event is of type Bool (this
terms guards the event); such a run is called a Σ-run.

2. A Σ-oclet is a Σ-run with a distinguished prefix.
3. A Σ-specification is a set of Σ-oclets together with an initial run that is assumed to

be variable free.

The semantics of Σ-oclets is defined by unfolding each Σ-oclet into a set of “low-level”
oclets according to Def. 4. Fix a Σ-algebraA to interpret all sorts, constants, and func-
tion symbols. For each oclet o, find an assignment of its variables such that all guards
of all events evaluate to true, and then replace each term t by its value in A under this
assignment (see Fig. 6). Depending on A, an oclet o can unfold into infinitely many
different oclets (each representing a different value). The semantics of the unfolded
specification defines the semantics of the Σ-specification. The technical details of this
construction are given in [13].

4.3 Operational Semantics

In principle, Σ-oclets gain operational semantics by the operational semantics of their
unfolding. However, unfolding a Σ-specification Ω into an (infinite) set of oclets seems



182 D. Fahland and R. Prüfer

impractical to operationalize a Σ-specification. A more practical approach is to directly
decompose a Σ-oclet into its basic Σ-oclets by lifting Def. 9 to preserve each node’s
terms. Then, the operational semantics of Ω are the runs of its basic Σ-specification Ω̂.

While Ω̂ yields semantics based on occurrences of single events, it may introduce
spurious behavior (not specified by Ω). This spurious behavior arises if a basic Σ-oclet
o[e] of o unfolds to some basic low-level oclet that is not defined by the unfolding of
entire o. For instance, consider a Σ-oclet o with two events, where event e1 carries the
guard (x > 0), event e2 carries the guard (x < 5), and e1 ≤ e2. If x is assigned 17, then
o[e1] may occur while o[e2] may not – the operational semantics would “get stuck” in
the middle of o after e1. To avoid such behavior, we demand that each Σ-oclet o ∈ Ω is
data-consistent. To this end, o should exhibit two properties: (1) two distant nodes only
carry variables that also occur in their joint predecessors, and (2) two guards of events
of o do not contradict each other. For Σ-specifications that contain only data-consistent
oclets, the operational semantics can be implemented; details are given in [13].

For such specifications, it is sufficient to check for a basic Σ-oclet o[e] first, whether
its pre-condition occurs at the end of a run π (ignoring the particular values of π), and
then to check whether the variables in o[e] can be bound in a way that the terms in o[e]
match the values in π.

4.4 Complete Gas Pump Example

Fig. 8 shows the complete set O of Σ-oclets for the gas pump example including its
initial run init. The signature Σ for the Σ-specification Ω = (O, init,A) is Boolean
and also contains the theory of integers with its usual interpretation, and addition-
ally defines constant symbols Price, 6, 17 of sort integer. Further, it has a sort con-
taining the constant symbols Free, Active and Running. The variables are V = VNat ={
$, change, cid, done, pid, todo, left

}
. The initial run init specifies an environment (Env),

the operator, and two inactive pumps with ids 6 and 17.
Oclets prepay (when the customer pays in advance) and pay later (when the customer

pays at the end) describe the system behavior at the most abstract level. All other oclets
but env justify a refinement of main. The specification is data-consistent, and the run of
Fig. 7 is a run of this specification.

Oclet env describes the arrival and leaving of a new customer; technically a new
instance of Customer is created with id (cid), the amount the customer wants to refuel
(todo), the id of the pump he wants to use (pid) and his payment ($). Only customers who
can pay their desired amount of gas may participate. A customer instance is destroyed
after the customer received his change.

When the customer paid or ordered his amount, the operator activates the pump (see
prepay and pay later). The pid assures to activate the pump that the customer wants to
use. The amount that has to be pumped is passed to the pump.

Afterwards, the pump can be started by the customer (see get gas). Then, the pump
starts pumping (see pump). The customer may stop at any time, at the latest when all of
the amount requested by him was pumped. When the pump finished, the actual amount
that was pumped is passed to the operator. A customer who did not pay in the beginning
can pay now (see pay later). Then, the change is calculated (see prepay and pay later).
Note that because cid, pid, todo and $ occur in prepay’s precondition, it is not necessary



Data and Abstraction for Scenario-Based Modeling with Petri Nets 183

��������	���
��� �����
�
���� ����

�����������������
�����	

	���
���

�
����
��

����

����

��������


������

�
�

�
��������

	���
��� �
���
�

���������

����
��������

���

��

��������

�
����
��

	���
���

���

��

��  ��  ������!��� ��

������!�

��  ��������

	���
��� ��  ��  ��� ��

��  ��  �!"��
�$�������� ��

��  �%������&��������

����
��  ���
��������
��&���

��  ��������
������
���
��

��

��
�!"��
�$������

������!� 
����
��
����  ������

��	
�����

	���
���

�
����
��

����

����

��������


������

�
�

������������

	���
���

���������

����
��������

���

��

��������

�
����
��

	���
���

���

��

��  ��  ������!��� ��

�����
������

��  ��������

��  ��  ��� ��

��  ��  �!"��
�$�������� ��

��  �%������&��������

����
��  ���
��������
��&���

��  ��������

������
���
��

������ 
����
��
����  ������

��
�����

����

����

��  �'�

�
����
���������

��  �'�

�
����
�(������"����

)����*&+


������

���

��������

�
�

��  ��  ������!��� ��

)���� , !$�����+

���

��

��������
��  ��  ���
��!��� ���
�

��
��

�
�

��
��
�����

��������

��� -��� �

�.

��������

���
�����������
��  ��  ��� ��

�������
�
����
��

��������
��  ��  ��� ��

����
��  �%������&��������

����
��  �'�

�
��&��������

��
��

��������
��  ��  ��� ��

����
��  �'�

�
����
����-����

��������
��  ��  ��� ��

����
��  ���
��������
��&���

����

	���
���

�
�
�������

�
���
��!�

��������
��  ��  �!��� ��

��

��
�!"��
�$������

��  ��  ��� ��

��  ��  ��� ��

	���
���
���
��

Fig. 8. Complete specification of the gas station example with Σ-oclets

that the operator continuously carries any of these values up to the occurrence of change.
Thus, he may start serving a second customer before the first one gets his change back.

Between starting the pump and leaving the gas station, the customer can get one free
snack. Oclet snack can occur only once as an occurrence of get free snack after start
prevents oclet snack from being enabled.

Tool Support. The approach presented here is implemented in the Eclipse-based tool
Greta [14]. Greta provides a graphical editor for oclets and animated execution via a
simulation engine which implements the operational semantics of oclets including ab-
stract dependencies and Σ-oclets. Greta finds variable assignments and evaluates terms
using the simulation engine of CPN Tools via Access/CPN [40]. Additionally, Greta
allows to verify whether a Petri net implements a given specification, and to synthesize
a minimal labeled Petri net that implements a specification — both techniques operate
on McMillan-prefixes for oclets [12]. Greta is available at www.service-technology.
org/greta.
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5 On the Relation of Oclets to Petri Nets

This section discusses the relation between oclets and Petri nets. As above, oclets with-
out abstraction and data representation are called “classical.”

Classical Oclets vs. P/T Nets. Classical oclets contain P/T-nets: for each P/T net N ex-
ists a specification Ω s.t. their behaviors are identical: R(Ω̂) = R(N) [11]. The converse
does not hold. Even classical oclets can mimic a Turing machine by their precondi-
tions [12]. However, if Ω is bounded (i.e., there exists a k s.t. no run π ∈ R(Ω̂) of Ω
has more than k maximal conditions with the same label), then there is a labeled Petri
net N with the same behavior: R(N) = R(Ω̂). N can be synthesized automatically from
Ω by first building a McMillan-prefix [10] for Ω that finitely represents R(Ω̂) and then
folding that prefix to N [12].

Σ-Oclets vs. P/T Nets. Σ-oclets extend classical oclets. Clearly, a Σ-specification Ω
with an infinite domain has no equivalent finite P/T net. If Ω has only finite domains,
it unfolds to a finite low-level specification val(Ω). If abstract dependencies in val(Ω)
can be refined s.t. they only occur in pre-conditions, then semantics of classical oclets
carries over (Thm. 2). Thus not every Σ-specification has a P/T net with the same behav-
ior. Yet it seems plausible that every bounded Σ-specification with finite domains has
a net with the same behavior: finitely many oclets will allow to continue markings of
finite size only in finitely many ways. This suggests that the synthesis from oclets [12]
can also be generalized to Σ-oclets. If abstract dependencies in Ω cannot be refined, the
synthesis of a P/T net also has to find a refinement of the abstract dependencies.

Σ-Oclets vs. Algebraic Petri Nets. As synthesizing Algebraic Petri nets from Σ-oclets
is out of the scope of this paper, we just sketch some basic observations here. First,
every Algebraic net N with term-inscribed arcs and term-inscribed transition guards has
an equivalent Σ-specification: translate each transition and its pre- and post-places to a
basic oclet by moving arc inscriptions to the respective pre- and post-condition. The
reverse direction is more difficult. Term annotations are not an issue as both models
are based on the same concepts. But enabledness of an event of a Σ-oclet depends on
a “history” in the execution while enabledness of a transition depends on the current
marking only. Hee et al. [22] have shown how to express history of tokens in a data-
structure of an Algebraic Petri net, and how to use them in guards. Whether all data-
dependencies expressible in Σ-oclets can be expressed this way is an open question.
Yet, token histories of [22] have drawbacks regarding analysis. Thus, synthesizing a
net without an explicit and complete recording of token histories is an interesting, open
problem as well. In any case, the signature Σ of a specification has to be extended to
allow remembering behavior in the past.

6 Conclusion and Future Work

In this paper, we proposed a formal model for scenarios that combines the advantages of
HMSCs (simple semantics by composition of scenarios) with the advantages of LSCs
(intuitive notion of scenarios with local preconditions and a flexible style of specify-
ing systems). Our model called oclets is based on Petri nets and their distributed runs.
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The basic semantic notions of composing LSC-style scenarios to distributed runs have
been proposed earlier; in this paper we have shown how the basic model of oclets can
be lifted to the expressive means of LSCs by introducing a notion of abstract depen-
dencies and adopted concepts from Algebraic Petri nets to represent data. All of our
extensions are constructed such that (1) they generalize and embed the “classical” oclet
concept and (2) their semantics can be described in terms of classical oclets. Existing
operational semantics for oclets canonically lift to our extended model. Oclets deviate
from LSCs where their semantics turns problematic for the aim of deriving specified be-
havior by composing scenarios (see Sect. 2). Our approach is implemented in the tool
Greta and was validated on a number of elaborate examples. Finally, composition, de-
composition, abstraction, refinement, and unfolding suggest oclets to be an interesting
model for a calculus of scenarios. The contribution of this model of scenarios becomes
obvious when considering existing works that relate scenario-based techniques to Petri
nets.

From Scenarios to Petri Nets. To bridge the gap between scenario-based specifications
and Petri nets, several approaches have been proposed. Methods to transform UML se-
quence diagrams to Coloured Petri nets (CPNs) are described in [5], [16], and [41]; the
latter approach is used in [15] to model a variant of the gas station example used in this
paper. Further, there exist approaches to provide Petri net semantics for MSCs [25,29]
and to synthesize a Petri net out of a MSC specification [36]. While these approaches are
straight-forward, the scenario languages lack expressive power (MSCs, UML sequence
diagrams) or tend to yield complex specifications in practice (HMSCs, see Sect. 2).

Approaches to transform a LSC specification to a CPN have been described in [1]
and [28]. As two LSCs of a specification may be contradictory [20], both synthesis
approaches need to generate the state space of the LSC and the synthesized CPN to
check equivalency of both models. Also operational semantics of LSCs [20] requires
model checking to find a correct play-out step. We have shown in this paper that Σ-
oclets do not require model checking for operational semantics. The gives rise to the
hope that components can be synthesized from Σ-oclets as correct by construction (as
in the case of HMSCs).

To the best of our knowledge, no other Petri net-based model for scenarios features
data and abstract causal dependencies. The notion of history-dependent behavior in
Petri nets was introduced in [22]. Oclets particulary relate to Token History Petri nets
where each token records its “traveling” through the net; LTL-past guards at transitions
restrict enabledness to tokens with a particular history. The scenario-based approach of
oclets provides a graphical syntax for a subclass of these guards. Particularly, Token
History Petri nets might allow to synthesize components from an oclet specification.
There are numerous refinement and abstraction techniques for Petri net system mod-
els, e.g., by modular refinement [39] or using rules [3]. Refinement of actions of a
distributed run has been studied in [18]; we think these results can be lifted to refine
abstract dependencies in oclets in a systematic way.

Future Work. A next step for research work is to develop symbolic semantics for Σ-
oclets allowing to concisely describe infinitely many behaviors. This should support
solving the main challenge of scenarios: to synthesize high level Petri net components
from a Σ-specification without unfolding into a concrete low-level model.
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Abstract. In process semantics of Petri Net, a non-sequential process is
a concurrent run of the system represented in a partial order-like struc-
ture. For transition systems it is possible to define a similar notion of
concurrent run by utilising the idea of confluence. Basically a confluent
process is an acyclic confluent transition system that is a partial unfold-
ing of the original system. Given a non-confluent transition system G,
how to find maximal confluent processes of G is a theoretical problem
having many practical applications.
In this paper we propose an unfolding procedure for extracting max-

imal confluent processes from transition systems. The key technique we
utilise in the procedure is the construction of granular configuration
structures (i.e. a form of event structures) based on diamond-structure
information inside transition systems.

1 Introduction

Confluence is an important notion of transition systems. Previously there has
been extensive work devoted to its study, e.g. [10,7,6,9]. In [7] confluence is stud-
ied from the perspective of non-interleaving models, where it was concluded that
in order to characterise the class of confluent transition systems the underlying
event-based models needs to support the notion of or-causality [16,19].

In this paper we are going to study the idea of maximal confluent sub-systems
of a non-confluent transition system, also from a non-interleaving perspective.
It can be regarded as an extension of the notion of non-sequential pocesses in
Petri Net [5,2,3] onto transition systems. We call it maximal confluent process
(MCP). Intuitively a maximal confluent process is a concurrent run of the system
that is maximal both in length and in degree of concurrency. A non-confluent
system has multiple such runs. Non-maximal concurrent runs can be deduced
from maximal ones, e.g. by restricting concurrency (i.e. strengthening causality
relation).

Like non-sequential processes, which can be bundled together to form branch-
ing processes of Petri Net, the set of maximal confluent processes (extracted
from a given transition system) can coalesce into a MCP branching processes of
the original system. Such branching processes record, in addition to causality
information, also the ‘choice points’ of the system at which different runs split
from each other. In a non-interleaving setting the ‘choice points’ are formalised
as (immediate) conflicts on events. The arity of the conflicts can be non-binary,

S. Haddad and L. Pomello (Eds.): PETRI NETS 2012, LNCS 7347, pp. 188–207, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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thus giving rise to the so called finite conflicts. For instance, in state s0 of Fig-
ure 1 actions a, b and c form a ternary conflict, which induces the three maximal
concurrent runs of the system (i.e. the three subgraphs on the right).

In this paper we propose an unfolding procedure to construct granular configu-
ration structures from transition systems. The procedure preserves the maximal-
ity of confluence in such a way that each generated configuration corresponds
to a prefix of some maximal concurrent run. Configuration structures are an
event structure represented in a global-state based fashion [15,14]. They support
or-causlity as well as finite conflicts.

2 Motivating Examples

We first look at two examples in order to build up some intuitions for maximal
confluent processes.

a

b

c

  s1

s2

s3

s0

Full Graph

s4

s5
s7

s6
s8

a

aa

b

b

b

c

c c

a

b

Subgraph 1

a

b

bc c

a

c

Subgraph 2

a

b

bc c

b

c

Subgraph 3

a

b
c

Fig. 1. A running example

The first example is the left-most graph in Figure 1, which is an LTS in the
shape of a broken cube (i.e. replacing transition s4

s−→ s8 by s4
s−→ s7 will give

rise to a true cube-shaped LTS). The three subgraphs on its right are confluent
subgraphs of the broken cube. Moreover, they are maximal such subgraphs;
adding any state or transition to them will invalidate their confluence. They are
exactly the maximal confluent processes we are looking for.

a

b

s2

s3

s1

b

a

a

b

b

a

LTS MCP 1 MCP 2 MCP 3

a

a b

b

Fig. 2. The second example

For the general cases, however, maximal confluent processes do not coincide
with maximal confluent subgraphs. Let us look at the left-most LTS in Figure 2.
The maximal confluent subgraphs of such system are the four maximal simple

paths in the graph, i.e. s1
a−→ s2

a−→ s3, s1
a−→ s2

b−→ s3, s1
b−→ s2

a−→ s3, and
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s1
b−→ s2

b−→ s3. But its maximal confluent processes have three members, MCP

1-3 in Figure 2. Two subgraphs s1
a−→ s2

b−→ s3 and s1
b−→ s2

a−→ s3 are combined
into one process, MCP 1. MCP 1 is not a subgraph because state s2 of the
original LTS is split into two states.

The idea of maximal confluent processes has interesting applications. The
extraction of maximal confluent processes from a given transition system can be
regarded as a deep form of commutativity analysis on the system, which is fully
dynamic (i.e. state-dependent) and global (i.e. checking infinite number of steps
into future). For instance, they can be used in partial order reduction [11,4,13]
to define a canonical notion of optimal reduction, weak knot [8]. The challenge,
however, lies in how to find a procedure that uses only local diamond-structure
information inside transition systems to extract maximal confluent processes.

Now let us develop a formal framework to study the problem.

3 Maximal Confluent Processes

Definition 1. A transition system (TS) is a 4-tuple (S,Σ,Δ, ŝ) where

– S is a set of states,
– Σ is a finite set of actions (ranged over by a, b, etc.),
– Δ is a partial function from S ×Σ to S (i.e. the transition function)1, and
– ŝ ∈ S is the initial state.

Fix a TS, G = (S,Σ,Δ, ŝ), and define:

– a transition t = s
a−→ s′ means (s, a, s′) ∈ Δ;

– a consecutive sequence of transitions L = s0
a1−→ s1

a2−→ s2 . . . sn−1
an−−→ sn

means si−1
ai−→ si for all 1 ≤ i ≤ n. L is called an execution (i.e. sequential

run) of G from s0 to sn producing trace a1 · · · an. When s0 = ŝ we further
call it a system execution of G; and we use L(G) to denote the set of system
executions of G.

– s
a1···an−−−−→ s′ means there exists an execution of G from s0 to sn producing

trace a1 · · ·an;
– s

a−→ means ∃s′ : s a−→ s′, while s � a−→ means ¬s a−→;
– eb(s) denotes the set of actions enabled at s, i.e. {a | s a−→};
– Reach(s) denotes the set of states reachable from s;
– given any s ∈ Reach(ŝ), G/s = (S,Σ,Δ, s) denotes the new transition

system generated after the evolution to s;
– and if G is acyclic, we further define:

• s % s′ means s′ ∈ Reach(s), i.e. s′ is a subsequent state of s (or s is an
earlier state of s′);

• given any X ⊆ S, min(X) denotes the set of %-minimal states inside X ,
while X↓ denotes the %-downward closure of X ;

1 Note that our transition systems are actually deterministic transition systems in the
classical sense. It gives us simplicity in theory presentation while at the same time
sacrificing few technical insights.
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• s ||� s′ means s and s′ are incomparable w.r.t. %;

• and given any s ∈ Reach(ŝ), s/G denotes the restriction of G to {s}↓,
i.e. s/G = ({s}↓, Σ, {(s0, a, s1) | (s0, a, s1) ∈ Δ ∧ s0, s1 ∈ {s}↓}, ŝ).

When there is any danger of confusion, we use →G to say the transitions come
from a TS named G. Similarly we use SG for the set of states and ŝG for the
initial state of G.

TSes can be related to each other by partial unfolding relation:

– We say G is a partial unfolding of G′ if there exists a function f from SG to
SG′ such that f(ŝG) = ŝG′ and s

a−→G s′ =⇒ f(s)
a−→G′ f(s′).

As its name suggests partial unfolding unwinds just part of a transition system.
When f is injective, partial unfolding is reduced to subgraph relation. In the rest
of the paper, whenever the homomorphism f of any subgraph relation is left
unspecified, we assume f is the identity function.

Of cause, we can also fully unwind TSes, giving rise to the unfolding relation:

– We say G is an unfolding of G′ if G is a partial unfolding of G′ and, for all
system execution ŝG′

a1−→G′ s′1
a2−→G′ s′2 . . . s

′
n−1

an−−→G′ s′n of G′, there is a

system execution ŝG
a1−→G s1

a2−→G s2 . . . sn−1
an−−→G sn of G s.t. s′i = f(si)

for all 1 ≤ i ≤ n.

Of all TSes, a particular interesting subclass of TSes is confluent TSes.

– G is confluent if, for all s ∈ SG and a, b ∈ ebG(s) (with a �= b), a and b form

a local diamond at s, i.e. ∃s3 ∈ SG : s
ab−→G s3 ∧ s

ba−→G s3.

In the rest of the paper we use a�s b to denote a diamond rooted at s and
built from a and b actions. The notation can be extended to multi-dimension
diamonds. We use�s A to denote a n-dimension (where n = |A|) diamond rooted
at s and built from members of A, i.e. given any B ⊆ A, there exists a unique
s′ ∈ S such that s

a1···am−−−−−→ s′ for all permutation a1 · · · am of B.
It is interesting to note that all local diamonds inside a partial unfolding

are inherited from those of the original TS. They are the unwinded versions of
the original diamonds (c.f. MCP 1 in Figure 2). Furthermore, since a partial
unfolding can visit a state of the original TS more than once (esp. when the
original TS is cyclic), we can choose to unwind a different diamond on subsequent
visits to the state.

Now we are ready to define the notion of concurrent runs of TSes:

– We say an acyclic confluent TS F is a confluent process of G if F is a partial
unfolding of G.

A confluent process F can be finite or infinite. For a finite confluent process F ,
it has a unique maximal state, denoted šF .
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– We say a confluent process F of G is a maximal confluent process (MCPs)
if F is maximal w.r.t. partial unfolding relation, i.e. F is a partial unfolding
of another confluent process F ′ implies F ′ and F are isomorphic2.

When restricted to confluent processes, partial unfolding relation is reduced to
subgraph relation (c.f. the lemma below). Thus MCPs are ‘maximal confluent
subgraphs’. In addition, there is a unique minimal confluent subgraph of G,
denoted Ĝ. Ĝ is the trivial TS with a single state and empty transition function,
i.e. Ĝ = ({ŝG}, Σ, {}, ŝG).

Lemma 1. Given two confluent processes F and F ′ of G, F is a partial unfold-
ing of F ′ implies the homomorphism f between F and F ′ is injective.

In the rest of the paper we will use + to denote subgraph relation on confluent
processes. Relation + allows a confluent process to be reduced in two different
dimensions: the degree of concurrency and the length of causality chains. Thus
MCPs represent the longest possible runs of the system in a maximally con-
current fashion. In a transition system with cycles that implies MCPs are often
infinite graphs: finite MCPs are those derived from terminating runs (i.e. ending
in a state where there is no outgoing transitions).

More refined relations on confluent processes that reduces only one of the
dimensions can also be defined:

– Given two confluent processes F and F ′, we say F is a (concurrency) tight-
ening of F ′ (or F ′ is a relaxation of F ), denoted F +r F

′, if F is a subgraph
of F ′ and, for all s ∈ SF and a ∈ ebF ′(s), there exists a subsequent state
s′ ∈ SF of s s.t. a ∈ ebF (s

′).
– Given two confluent processes F and F ′ of G, we say F is a prefix of F ′ (or

F ′ is an elongation of F ′), denoted F +e F ′, if F is a subgraph of F ′ and
there exists a function p from SF to 2Σ (i.e. the pending action function)

s.t. s ∈ SF =⇒ p(s) = ebF ′(s) \ ebF (s) and s
a−→F s′ =⇒ p(s) ⊆ p(s′).

Subgraph relation is decomposable into the two refined relations.

Lemma 2. F + F ′′ 1) iff there exists some F ′ s.t. F +r F ′ +e F ′′ and 2) iff
there exists some F ′ s.t. F +e F

′ +r F
′′.

The intuition behind the refined relations can better be understood using the
notion of ‘events’.

– Given a confluent process F , we say a state s ∈ SF is the origin of an action

occurrence, say a, if a ∈ ebF (s) and s0
b−→F s =⇒ a = b ∨ a /∈ ebF (s0).

– An occurrence of a with origin s gives rise to a granular event, denoted
T , which is the set of a-transition reachable from s by firing only non-a
transitions in F . Conversely, given T we use lbF (T ) and oF (T ) to denote its
label a and origin s resp.

2 In the rest of the paper we will freely use F to denote an acyclic confluent graph or
to denote its isomorphism class.
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– Given two confluent processes F + F ′ and two granular events T in F and
T ′ in F ′, we say T and T ′ are the same event if T ⊆ T ′ and oF (T ) = oF ′(T ′);
and we say T is a postponed occurrence of T ′ if T ⊆ T ′ and oF (T ) �= oF ′(T ′).

– We say two granular events T and T ′ of F are or-causally coupled if T ∩T ′ �=
{}.

The or-causal coupling relation is reflexive and symmetric. Its transitive closure,
which is an equivalence relation, can be used to partition the set of granular
events in F . That is, each equivalence class E gives rise an event T =

⋃
T0∈E T0.

Note that an event does not have a unique origin; thus we replace oF (T ) by
OF (T ) to denote its set of origins.

– Given two confluent processes F + F ′ and two events T in F and T ′ in F ′, we
say T and T ′ are the same event if T ⊆ T ′ and OF (T ) = OF ′(T ′)∩ SF , and
we say T is a delayed occurrence of T ′ if T ⊆ T ′ and OF (T ) �= OF ′(T ′)∩SF .

Based on the notions of events we can see that tightening on F ′ delays (but
not removes) events in F ′ while prefixing on F ′ removes (but not delays) events
inside F ′.

One fact noteworthy is that, as we elongate a confluent process, events can
become ‘enlarged’ through the addition of new granular events (even though
they remain the same events). However, this addition has an upper-limit as the
‘size’ of an event will eventually stablise.

Lemma 3. Given a strictly increasing (w.r.t. +E) infinite sequence of confluent
processes F0 F1 ... Fi ..., T is an event in Fi implies there exists some j ≥ i and
event T ′ in Fj s.t. T and T ′ are the same event and T ′ is stablised at j, i.e. for
any n ≥ j, T ′′ of Fn is the same event as T ′ implies OFj (T

′) = OFn(T
′′).

Some further facts about the refined relations are:

Lemma 4. Given two finite confluent processes F + F ′, we have 1) F +r F ′

iff šF = šF ′ , and 2) F +e F
′ iff F = šF /F

′.

In another word the set of prefixes of F ′ corresponds 1-1 to the set of states of
F ′.

– A confluent process F is said to be a maximally relaxed process (i.e. MRP)
if F is maximal w.r.t. +r.

– A confluent process F is said to be an MCP prefix if there exists an MCP
F ′ s.t. F is a prefix of F ′. MCP prefixes are the initial parts of complete
maximally-concurrent runs.

Naturally one can imagine that MCPs are generated step by step by unfolding
local diamonds in the states it visits; MCPs usually prefers to unfold larger
diamonds in each step. However, the maximality of MCPs, unlike diamonds,
is a global property. Sometimes choosing a strictly smaller diamond to unfold
at an early state might lead to a larger diamond in subsequent states. This
phenonmenon is similar to the phenonmenon of confusion in Petri Net.
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– Given a state s ∈ SG, we say A ⊆ Σ is an MCP step (MPS) at s if there
exists a MCP F of G s.t. ∃sF ∈ SF : f(sF ) = s ∧ ebF (sF ) = A.

Given a state s, the set of its MPSes are not necessarily downward closed or
mutually imcomparable (w.r.t subsethood). As an example, imagine an event
structure with four events e1, e2, e3 and e4 labelled by action a, b, c and d resp.
e3 and e4 causally depend on e2 while e3 is in conflict with e1. In the transition
system generated by the event structure, a and b form a maximal diamond at
the initial state. However, taking the a� b diamond will destroy the future c� d
diamond which is reachable by taking the b action only. Thus {a, b} and {b} are
both MPSes at the initial state whilst {a} is not.

Similarly we can see that not all MCP prefixes are MRPs, even though all
MRPs are MCP prefixes:

Lemma 5. A confluent process F is an MRP implies F is an MCP prefix.

Maximal confluence is a global property which is generally hard to establish.
However, once established, the property is preserved by system evolutions:

Lemma 6. 1) F is an MCP of G implies F/sF is an MCP of G/f(sF ) for all

ŝF
a−→F sF ; 2) ŝG

a−→G sG and F ′ is an MCP of G/sG implies there exists an (not

necessarily unique) MCP F of G s.t. ŝF
a−→F sF , sG = f(sF ) and F/sF = F ′.

Now we can develop the notion of maximal back-propagation that will form the
basis of our unfolding procedure in the next section.

– If F is a confluent process of G/s, then we say there is a concurrent run F

from s, denoted s
F
=⇒G. If F is finite and f(šF ) = s′ ∈ SG, we further say

that there is a concurrent run F from s to s′, denoted s
F
=⇒G s′.

– We say an action a ∈ Σ is fired in a concurrent run s
F
=⇒G if an a-labelled

transition is reachable in F . We say an action a ∈ Σ is blocked in a concur-

rent run s
F
=⇒G if there exists a path ŝF

a1···an−1−−−−−−→F sF
an−−→F s′F in F s.t.

a1, · · · , an ∈ Σ \ {a} and a�f(sF ) an does not hold in G; otherwise we say a

is unblocked in s
F
=⇒G.

– Given a confluent process F of G, we say an action a ∈ Σ \ ebF (sF ) is
postponed at sF (or, more accurately, the potential granular event with label
a and origin sF has postponed occurrence in F ) if a is unblocked in F/sF
and there exists a granular event T ′ in F s.t. lb(T ′) = a and o(T ′) � sF .

– Furthermore, we say a ∈ Σ \ ebF (sF ) is p-pending (partially pending) at
sF ∈ SF if a is unblocked but fired in F/sF (a) and there is no granular
event T ′ in F s.t. lb(T ′) = a and o(T ′) � sF , and we say a ∈ Σ \ ebF (sF ) is
pending at sF ∈ SF if a is neither fired nor blocked in F/sF (a).

For instance, given G (the leftmost graph) and its three confluent processes in
the figure below, we can see c is pending at s1, p-pending at s2 and postponed
at s1′ in the three confluent processes resp.
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Fig. 3. Pending, p-pending and postponed

– A confluent process F is called primary confluent process (PCP) if no action
is postponed at any state in F .

– Given a finite confluent process F and an action a ∈ ebG(f(šF )), we define
the pending back-propagation of a over F to be bppn(a, F ) = {sF ∈ SF | a is
pending at sF }, and the maximal pending back-propagation of a over F to
be mbppn(a, F ) = minF (bppn(a, F )).

– Similarly, given an action a ∈ Σ which is p-pending at some state of F , we
define the p-pending back-propagation of a over F to be bppp(a, F ) = {sF ∈
SF | a is p-pending at sF }, and the maximal p-pending back-propagation of
a over F to be mbppp(a, F ) = minF (bppp(a, F )).

Lemma 7. A confluent process F is an MRP iff there is no postponed or p-
pending action at any sF ∈ SF .

Lemma 8. Given an action a ∈ Σ postponed or p-pending at a state sF of
F , there exists a unique minimal relaxation F ′ of F , denoted F ′ = F ↑asF , s.t.
a ∈ ebF ′(sF ).

Lemma 9. Given an action a ∈ ebG(f(šF )) and a state sF ∈ bppn(a, F ),

there exists a unique minimal elongation F ′ of F , denoted F
a�sF F ′, s.t.

a ∈ ebF ′(sF ).

Theorem 1. Given a finite primary confluent process F , if sF ∈ mbppp(a, F )∧
F ′ = F ↑asF or sF ∈ mbppn(a, F ) ∧ F

a�sF F ′, then F ′ is a primary confluent
process.

4 Coalescing Confluent Processes

A confluent process records one possible history of system evolution. To see other
possible evolutions and pinpoint where different evolutions come to deviate and
split from each other, we need to coalesce a set of confluent processes into a
branching structure. Coalescing operation merges the shared part of evolution
histories, and in so doing, makes the ‘branching points’ explicit.
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– Given a set F of confluent processes of G, we use pr(F) to denote the set
of finite prefix of F . Then we can construct a general transition system G′3,
called the coalescing of F , s.t. SG′ = pr(F), ŝG′ = Ĝ, and F

a−→G′ F ′ iff

F +E F ′ and šF
a−→F ′ šF ′ . It is crucial to note that, for all F ∈ SG′ , F/G′

is isomorphic to F and, therefore, a confluent process of G.
– The notions of granular events can be extended onto G′: t1 = F1

a−→G′ F ′
1

and t2 = F2
a−→G′ F ′

2 belong to a same granular event in G′ iff t1 belongs to
T1 in F ′

1/G
′, t2 belongs to T2 in F ′

2/G
′ and min(T1) = min(T2).

Although we can coalesce arbitrary sets of confluent processes, it makes more
sense to coalesce a set of confluent processes that are 1) mutually incomparable
w.r.t. + and 2) able to fully cover the set of system evolutions. The second
requirement can be formalised in the same spirit as for the definition of unfolding.
A confluent process F covers a set of system executions, i.e. those which are a
linearisation of some prefix of F , denoted lin(pr({F})). F fully covers the set of
system evolutions if L(G) = lin(pr(F)). We call such set of confluent processes
an evolution cover of G.

– An evolution cover F of G is an MCP evolution cover if all F ∈ F are MCPs.
– A transition system G′ is a CP unfolding of G if there exists an evolution

cover F of G s.t. G′ is the coalescing of F .
– A transition system G′ is a MCP unfolding of G if there exists an MCP

evolution cover F of G s.t. G′ is the coalescing of F .
– If, furthermore, for all L ∈ L(G), there exists a unique F ∈ pr(F) s.t.

L ∈ lin(F ), we call F determinate.

For determinate evolution covers, we can give a simplified (alternative) definition
to CP unfolding:

– We say an acyclic TS G is a confluent tree if, for all s ∈ SG, s/G is confluent
(denoting a concurrent run).

– We say a confluent tree G′ is a confluent tree unfolding of TS G if G′ is an
unfolding of G.

Lemma 10. G′ is a confluent tree unfolding of G iff there is a determinate
evolution cover F s.t. G′ is the coalescing of F .

The notion of events on top of confluent tree unfoldings is exactly the same as
that on top of confluent processes, i.e. granular events quotiented by an equiva-
lence which is the transitive closure of or-causal coupling relation.

However, the above definition is not extendable to general CP unfolding be-
cause of indeterminate evolution cover. For instance, when the two confluent

processes in the above figure are coalesced into G′, transitions s0
b−→ s1 and

s′0
b−→ s′1 will collapse in G′ into one transition, and so are states s2 and s′2 into

3 The reason general transition systems are needed here is largely due to indeterminate
evolution covers (introduced below).
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Fig. 4. Label ambiguity v.s. event ambiguity

one state, say g2 ∈ SG′ . (Note that states s3 and s′3 will not collapse in G′; they

are mapped resp. to say g3, g
′
3 ∈ SG′ .) Since s0

b−→ s1 and s2
b−→ s3 belong to the

same granular event in the left confluent process and s′0
b−→ s′1 and s′2

b−→ s′3 to
the same granular event in the right, using the above definition we can see that

s2
b−→ s3 and s′2

b−→ s′3 belong to the same event in G′. Thus, from state g2 by
firing the same event we can reach two different states, i.e. g3 and g′3. This is
contradictory with the intuition of events. In summary, confluent tree unfolding
supports the notion of events, whereas CP unfolding only supports the notion
of granular events.

So far our problem statement and foundation work are developed mostly
within the interleaving framework. But we have witnessed the usefulness of ‘event
intuition’ in understanding notions like prefix, postpone and back-propogation
for confluent processes. As we start to deal with more sophisticated CP branching
processes, however, we will see that it is crucial (due to simplicity and intuitive-
ness) to reason directly in terms of events, concurrency, causality and conflict
rather than in terms of transitions, commutativity, enabling and disabling.

Thus, we will move gradually into event-based models, e.g. configuration struc-
tures and granular configuration structure. Configuration structures are the non-
interleaving incarnation of confluent tree unfolding and is thus built from events;
while granular configuration structure is the non-interleaving incarnation of CP
unfolding and is built from granular events.

Below we start with a quick introduction to the two structures, focusing on the
correspondence with their transition system incarnations. Granular configuration
structure will be the basis of our MCP unfolding (that requires indeterminate
evolution covers, c.f. the example in Figure 1). We will present a formal and
detailed introduction of granular configuration structure in the next section4.

A configuration structure (E,C) consists of a set E of events and a set C
of configurations. Each configuration c ∈ C is a subset of events, which repre-
sents the global state reached after firing exactly the set c of events. The empty
configuration represents the initial state.

For example, the left graph in the Figure below is a confluent tree G. We can
coarsely partition transitions in G into events as shown in the middle graph, or

4 A formal and detailed introduction of configuration structures can be found in [8].
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we can finely group them into granular events, which do not form a partitioning
of transitions (e.g. e3 and e3′ share a transition), as shown in the right graph.
In the middle graph each state in G is mapped to a configuration. Given a state
s mapped to c, if s can transit to s′ via a transition belonging to e, then the s′

is mapped to c ∪ {e}. The soundness of this rule is implied by the fact that, no
matter what system execution one uses to reach a given state in F , the set of
events fired by the execution is the same.
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b

b
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c

c
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Fig. 5. From transitions to events and granular events

Similarly in the right graph each state s in G is mapped to a granular config-
uration c. But the property that all system executions to a same state fire the
same set of events is no longer true. c here denotes, instead, the set of granular
events whose member (i.e. transition) has occured in s/G. Thus it is possible
that, by firing one transition in G, we can fire more than one event in the gran-
ular configuration structure, e.g. from {e1, e2} to {e1, e2, e3, e3′} by c and from
{e1, e3} to {e1, e2, e3, e3′} by b in the right graph.

Discussion: The notion of confluent tree unfolding can be of independent in-
terests. Indeed it provides a powerful tool for analysing previous works such
as [18,12] and [8].

In [18,12] the class of confluent processes one can produce by unfolding a
TS G is highly constrained. It is because an independence relation is imposed
on top of G, i.e. the so called transition systems with independence (TSI). The
independence relation marks (statically) a selected subset of diamonds in G
as ‘true diamonds’, and requires all diamonds in confluent processes originating
from true diamonds. Furthermore, Axiom 3 of TSI requires that no true diamond
can be unfolded sequential, i.e. if two consecutive edges of the diamond are
unfolded in F , then the whole diamond is unfolded in F .

The work in [8] removes the static independence restriction on transitions.
Thus a confluent process can utilise any possible diamond in G, and a diamond
can be unfolded sequentially in one confluent process while concurrently in an-
other one (c.f. the example in Figure 10 of [8]).

Furthermore, Axiom 4 of TSI imposes a transitivity-like condition on the
set of true diamonds so that they form a global network of diamonds and the
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existence of a true diamond at one location implies the existence of a set of
true diamonds at its neighboring locations. Therefore, Axiom 4 combined with
Axiom 3 ensures that 1) or-causality does not occur in confluent processes (and
thus granular events coincide with events), and 2) non-local conditions become
reducible to local ones (since the non-local part is guaranteed by the transitivity).
One example is, given a confluent process F of a TSI G and an event T in F , T
is postponed at a state s ∈ SF that is adjacent to o(T ) via transition s

a−→ o(T )
iff a  f(s) lb(T ) in G.

Other related works that transform transition systems into non-interleaving
models include the region theory of Petri net [1]. However, it is beyond the scope
of this paper for detailed comparison.

5 Unfolding Procedure

In this section we first introduce granular configuration structures which is an
adaptation of labelled configuration structures [15,14,8]. Granular configuration
structures 1) restore the causality relation on events which can greatly simplify
the definition of advanced notions like prefixes, immediate conflicts, etc. and 2)
improve the expressiveness so that CP/MCP unfoldings can be fully captured.
Then we give the MCP unfolding procedure to unfold transition systems into
granular configuration structures.

5.1 Granular Configuration Structures

Definition 2. A granular configuration structure (or simply GCS) over alpha-
bet Σ is a triple (E≤, C, lb), where

– E is a partially ordered set of granular events (or henceforth simply events),
where ≤ is the well-founded causality relation,

– lb is a labelling function mapping events of E into labels of Σ,
– and C is a set of granular configurations (or simply configurations), where

each configuration c ∈ C is a finite ≤-downward closed subset of E and e ∈ E
implies [e] ∈ C.

A configuration c can be thought of as representing a state reached after the
execution of exactly the set c of granular events. The empty configuration {}
represents the initial state and is a required member of C in our model.

Below we fix a GCS, cs = (E≤, C, lb), and introduce some basic notions for
GCSes.

– We say cs is finitely branching if the Hasse diagram of E≤ is finitely branch-
ing. In such a GCS, concurrency and conflict are bounded and infinite con-
figurations are derivable from finite ones.

– [e] denotes the ≤-downward closure of {e} while [e]− denotes [e] \ {e}.
– Given X ⊆ E, [X ] and [X ]− denote

⋃
e∈X [e] and

⋃
e∈X [e]− resp.

– We say a nonempty finite subset δ ⊆ E is a consistent set if there is some
c ∈ C such that δ ⊆ c. Otherwise, δ is an inconsistent set.
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– A consistent ≤-downward closed δ ⊆ E is called a pre-configuration.
– We say an event e is activated at pre-configuration δ, or e ∈ ac(δ), if [e]− ⊆ δ

and c � {e} is consistent.
– We say cs is well-activated if lb(e) = lb(e′) ∧ e ||≤ e′ ∧ {e, e′} is consistent

implies [e]− ||⊆ [e′]−.
– We say an activated event e at pre-configuration δ is pending at δ, or e ∈

acpn(δ), if ∀e′ ∈ δ : e ||≤ e′ =⇒ lb(e) �= lb(e′).
– We say an activated event e is p-pending at pre-configuration δ, or e ∈

acpp(δ), if ∃e′ ∈ δ : e ||≤ e′ ∧ lb(e) = lb(e′). Given a pre-configuration δ, we
say δ is p-pending closed if acpp(δ) = {}; otherwise we use δ∗ to denote the
p-pending closure of δ.

– We say there is a transition from c to c′, written c
a−→C c′, if c ⊂ c′ and there

exists an event e ∈ acpn(c) s.t. lb(e) = a and {e} ⊆ c′ \ c ⊆ (c � {e})∗ \ c∗.
The definition of transitions here is unconventional, esp. in comparison with
configuration structures. A transition from c to c′ may involve multiple events
(c′\c). Some of them, those pending events from acpn(c), are the ‘driving events’
of the transition while others, those p-pending events from (c�{e})∗ \ (c∗∪{e}),
are ‘auxilary ones’ piggybacked on the transition. Note that only those freshed
generated p-pending events (due to the driving ones) can be piggybacked, not
any old one from c∗ \ c.

Thus a GCS gives rise to an acyclic transition system, and the definitions like
‘subsequent to’ relation %, (system) execution, etc. carry over. Furthermore,
note that c ⊂ c′ does not imply there exists an execution from c to c′ in GCSes;
this is very different from configuration structures.

– We write eb(c) = {a ∈ Σ | c a−→C} to denote the set of enabled actions at c.

succ(c) = {c′ ∈ C | c a−→C c′} denotes its set of successor configurations.
– We say cs is well-connected if all the configurations in C are −→C -reachable

from {} and, for all c ∈ C and e ∈ acpn(c), there exists c′ ∈ C s.t. c
lb(e)−−−→C

c′ ∧ e ∈ c′.

Based on the above, we can say cs is well-formed if it is finitely branching, well-
activated and well-connected. Well-formed GCSes have roughly the same expres-
siveness as (general) event structures from [17]. We prefer to use GCSes in this pa-
per mainly because of its affinity to transition systems.We give a few basic proper-
ties of well-formed GCSes, esp. those in comparison with configuration structures.

– Given a finite D ⊆ C, we say D is downward-closed (w.r.t. %) if c % c′ ∈
D =⇒ c ∈ D. We use D↓ to denote the %-downward closure of D.

– We say a finite subset of configurations D ⊆ C are compatible if
⋃
D is

consistent and disjoint from
⋃

c∈D(c
∗ \ c).

– We say cs is closed under bounded union if, for all compatible subsets D ⊆ C,
∃c′ ∈ C :

⋃
D ⊆ c′ ⊆ (

⋃
D)∗ \

⋃
c∈D(c∗ \ c).

– We say cs is free of auto-concurrency if lb(e) = lb(e′) and e ||≤ e′ implies
�c ∈ C : [e′]− ∪ [e] ⊆ c ∧ e′ ∈ ac(c). 5

5 GCSes with auto-concurrency can be useful, on the other hand, for unfolding systems
like general Petri Net.



Maximal Confluent Processes 201

Lemma 11. cs is free of auto-concurrency and closed under bounded union.

Lemma 12. If there is a non-empty execution from c to c′ such that e ∈ ac(c)
and c′ ∪ {e} is consistent, then we have either e ∈ c′ or e ∈ ac(c′).

GCSes are the non-interleaving incarnations of the coalescing of confluent pro-
cesses: each configuration in a GCS uniquely corresponds to an acyclic confluent
transition system.

Lemma 13. Given any c ∈ C, cs � {c}↓, i.e. the restriction of cs to {c}↓, gives
rise to an acyclic confluent transition system, i.e. CP(c) = ({c}↓,Σ ,−→{c}↓ , {}),
where CP () is an injective function.

For the rest of this paper we only consider well-formed GCSes and simply call
them GCSes. Advanced notions of GCSes can be easily defined by using the
restored causality relation:

– Given a finite ≤-downward closed subset X ⊆ E, we say X is p-pending
event closed (or simply pp-event closed) if, for all pre-configuration δ ⊆ X
and event e ∈ X , e ∈ acpn(δ) implies (δ∪{e})∗ ⊆ X . We denote the pp-event
closure of X as X�.

– A finite subset X ⊆ E is a prefix if X is both ≤-downward closed and
pp-event closed.

– A finite ≤-antichainK ⊆ E is an immediate conflict (IC) if [K]� is a minimal
prefix that is not conflict-free.

Lemma 14. K is an IC implies K ⊆ acpn([K]−).

Based on these notions, we can recover a purely event-based definition of GCS-
like structures (i.e. without resorting to the use of configurations):

Granular Event Structures (GESes): A granular configuration structure
(say cs) can be re-formulated (say using transformation CE(cs)) into a granular
event structure: a granular event structure is a triple, es = (E≤, IC, lb), where
IC is a set of immediate conflicts (IC). An immediate conflict K ∈ IC is a finite
≤-antichain of events satisfying that, for all K ∈ IC, [K] contains no IC other
than K and, for all e ∈ E, [e] contains no IC.

Conversely, we can also recover a granular configuration structure from es
(say using transformation EC(es)). Given cs, we say a finite subset X ⊆ E
is consistent if [X ] contains no IC. This enables us to recover the definition
of pre-configuration, activated/pending/p-pending events and well-activatedness.
On well-activated es, we say a pre-configuration δ ⊆ E is a configuration if there
exists another pre-configuration δ′ ⊇ δ s.t. (ac(δ′) ∪ δ′) ∩ acpp(δ) = {}. Finally
we say es is well-formed if it is well-activated, finite-branching and satisfying
e ∈ E =⇒ [e] is a configuration.

We can show that well-formed granular event structures correspond exactly
to well-formed granular configuration structures:

Theorem 2. cs = EC(CE(cs)) and es = CE(EC(es)).
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5.2 Unfolding TSes into GCSes

The aim of our procedure is to construct the Hasse diagram of configurations in
a roughly bottom up fashion. Starting from the empty configuration, we move up
step by step, deriving larger configurations from smaller ones. Each configuration
generated corresponds to a finite MCP prefix (up to isomorphism).

However, since transitions between configurations follow ‘big-step semantics’
(i.e. firing multiple events), a simpler and more elegant approach is to first build
the Hasse diagram of pre-configurations, where the transitions follow ‘small-step
semantics’. Each pre-configuration corresponds to a finite PCP prefix. Then, we
remove all pre-configurations that are not configurations (called nonstable pre-
configurations) and re-connect what are left, i.e. configurations, by big steps.

The search for new PCP prefixes is guided by a key sub-procedure of extending
one PCP (say F ) into another PCP (say F ′). Firstly, we calculate the maximal
back-propagation of actions for F and, if there is no corresponding events existing
for those points, we create new ones accordingly. Then we extend F by those
events to generate F ′ (i.e. elongate or relax F depending on the events being
pending or p-pending), which is a PCP according to Theorem 1. Note that in
generating F ′ there is a ‘prefix-closure’ effect. That is, F ′ might have more than
one immediate prefix and some of them (other than F ) might be non-PCP and,
therefore, not generated yet. Thus in generating F ′ we also need to generate
some of its prefixes.

Now let us formalise the unfolding procedure and define the notions of MCP
unfolding and MCP branching processes :

– Given a TS G, a labelled GCS over G is a tuple lcs = (E≤, C, lb, st), where
(E≤, C, lb) constitutes a GCS over Σ and st : C → SG is a function mapping
configurations to states.

– Given lcs over G, we say lcs is an MCP unfolding of G if (C,Σ,−→C , {}) is
an MCP unfolding of G via homomorphism f = st.

– Given lcs over G, we say lcs = (E≤, C, lb, st) is an MCP branching process
of G if there exists an MCP unfolding lcs′ = (E′≤, C′, lb′, st′) of G s.t. E is
a prefix of (E′≤, C′, lb′), C = C′ � E, lb = lb′ � E and st = st′ � C.

Our procedure, lcs = U(G) (c.f. Figure 6), unfolds TSes in a maximally concur-
rent fashion into a labelled GCS over G.

The basic data structure is (E, preC, lb, st). E and preC store resp. the
set of generated events and the set of generated pre-configurations. The back-
propagation information for each pre-configuration is stored in function bppn
and bppp resp. We create new events based on such information, which are then
passed on from smaller pre-configurations to larger ones and stored in function
acpn and acpp resp. as activated events.

Then, adding activated events to existing pre-configurations produces the set
of potential extensions, ext. Some of the extensions are PCPs, i.e. those in the
set pcp. The definition of pcp is recursive, utilising Theorem 1 and starting from
the empty pre-configuration. But, due to the ‘prefix closure’ effect mentioned
above, PCP extensions cannot be realised ‘eagerly’ by immediately throwing
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them into preC. Rather, the realisation proceeds in steps by first realising the
prefixes (i.e. sub-configuration6) of the PCP extensions, so that the expansion
of preC will preserve the +-downward closedness. We say a PCP prefix is ready
for realisation if it is unrealised but all its sub-configurations are realised. The
set of ready-for-realisation PCP prefixes is given in nxt.

Thus, starting from an empty preC we pick one pre-configuration (say c′) a
time from nxt and realise by adding c′ to preC (line 3-5 of function Unfold in
Figure 6). In the mean time we calculate (c.f. line 8-9 of function Realise) the
set of activated events inheritable by c′ from its immediate sub-configurations
(i.e. •c′), and also derive (line 4-7 of function Realise) the new bppn and bppp
functions based on those of •c′. Some useful notations used in such calcula-
tion/derivation are given below.

Given any c, c′ = c � {e} ∈ preC, we define

– prppn(c
′, c, a) =

• {[e]} if e ∈ acpn(c) ∧ ¬lb(e)�st(c) a ∨ e ∈ acpp(c) ∧mbppn(c, a) = {c}, or
• min(mbppn(c, a) ∪ {[e]}) if otherwise;

– prppp(c
′, c, a) =

• bppp(c, a) if lb(e) �= a,
• {c0 ∈ bppp(c, a) | c0 ||� [e]−} if e ∈ acpp(c) ∧ lb(e) = a, or
• {c0 ∈ bppn(c, a) ∪ bppp(c, a) | c0 ||� [e]−} if e ∈ acpn(c) ∧ lb(e) = a;

– hrtpn(c
′, c) = {e′ ∈ acpn(c) | e ∈ acpp(c) ∨ (e ∈ acpn(c) ∧ lb(e)�st(c) lb(e

′))}
– hrtpp(c

′, c) = {e′ ∈ (acpn(c) ∪ acpp(c)) | (e′ ∈ acpn(c) =⇒ e ∈ acpn(c) ∧
lb(e) = lb(e′)) ∧ (lb(e) = lb(e′) =⇒ [e′]− ||� [e]−)}.

Note that hrtpn(c
′, c) produces the set of pending events c′ can inherit from

c while hrtpp(c
′, c) produces the set of p-pending events c′ can inherit from c.

On the other hand, prppn(c
′, c, a) produces the information about how action

a can be back-propagated through edge (c, c′) into the sub-configurations while
prppp(c

′, c, a) about the p-pending points of a through edge (c, c′).
Then, if c′ is a PCP and has maximal back-propagation not covered by acti-

vated events inherited from •c′, we create new ones to cover them (c.f. procedure
GenEvent). An event (say e) can be created only if its origin (say c) is a config-
uration according to c′: the condition is implemented as the predicate c isCFGin
c′. After e is created at c, we propagate e upward to its super-configurations (c.f.
line 4-8 of procedure GenEvent).

Finally, after the set of pre-configurations fully generated, we filter out non-
stable pre-configurations and produce the set of configurations (c.f. line 6 of
function Unfold). The intuition is that a PCP pre-configuration is a MRP if
acpp(c

′) = {} and the prefixes of MRP pre-configurations are configurations.
We can illustrate the procedure by unfolding the broken cube originally from

Figure 1. In the step 0 of Figure 7 the initial state is mapped to configuration
{}. The set of activated events at {}, i.e. acpn({}) and acpp({}), is initialised

6 Actually it should be sub-pre-configurations, i.e. pre-configurations which are subset
of the original pre-configurations.
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Data Structure:
(E, preC, lb, st) = ({}, {{}}, {}, {({}, ŝ)});
acpn = {}; acpp = {}; bppn = {}; bppp = {};

Derived Values, Functions and Predicates:
ext = {c ∪ {e} | c ∈ preC ∧ e ∈ acpn(c) ∪ acpp(c)}
pcp = {c ∪ {e} | c ∈ pcp ∧ ( e ∈ acpn(c) ∧ [e]− ∈ mbppn(c, lb(e))

∨e ∈ acpp(c) ∧ [e]− ∈ mbppp(c, lb(e)) )}
nxt = {c′ ∈ ext \ preC | ∃c′′ ∈ pcp : c′ ⊆ c′′ ∧ ∀c ∈ ext : c ⊂ c′ =⇒ c ∈ preC}
c isCFGin c′ = ∀e ∈ c′ \ c : [e]− /∈ bppp(c, lb(e)) ∧ ∀a ∈ Σ : bppp(c, a) ∩ bppp(c

′, a) = {}
•c′ = {c | c ∈ preC ∧ c � {e} = c′}

Function Unfold((S,Σ,Δ, ŝ))
Begin
1 Foreach a ∈ eb(ŝ) do Set bppn({}, a) = {{}};
2 GenEvent({});
3 While nxt �= {}
4 Pick any c′ ∈ nxt and Realise(c′);
5 If c′ ∈ pcp Then GenEvent(c′);
6 Set C = {c ∈ preC | ∃c′ ∈ pcp : c ⊆ c′ ∧ acpp(c) ∩ c′ = {} = acpp(c

′)};
7 Return (E,C, lb, st)
End

Procedure Realise(c′)
Begin
1 Assume c′ = c � {e} for some c ∈ preC;
2 If e ∈ acpn(c) Then s′ = Δ(st(c), lb(e)) Else s′ = st(c);
3 Add c′ to preC and (c′, s′) to st() ;
4 Foreach a ∈ eb(st(c′)) do
5 Set bppn(c

′, a) =
⋂

c∈•c′{c1 : preC | ∃c0 ∈ prppn(c
′, c, a) : c0 ⊆ c1 ⊆ c′};

6 Foreach a ∈ Σ s.t. D =
⋃

c∈•c′ prppp(c
′, c, a) �= {} do

7 Set bppp(c
′, a) = {c0 ∈ D | ∀c ∈ •c′ : c0 ⊆ c =⇒ c0 ∈ prppp(c

′, c, a)};
8 Set acpn(c

′) = {e′ ∈
⋃

c∈•c′ hrtpn(c
′, c) | ∀c ∈ •c′ : [e′]− ⊆ c =⇒ e′ ∈ hrtpn(c

′, c)};
9 Set acpp(c

′) = {e′ ∈
⋃

c∈•c′ hrtpp(c
′, c) | ∀c ∈ •c′ : [e′]− ⊆ c =⇒ e′ ∈ hrtpp(c

′, c)}
End

Procedure GenEvent(c′)
Begin
1 Foreach (a, c) ∈ mbppp(c

′) ∪mbppn(c
′)

s.t. �e ∈ E : (lb(e), [e]−) = (a, c) ∧ c isCFGin c′ do
2 Create a new event e, and add e to E and (e, a) to lb();
3 Add e to acpn(c) and set D = {c};
4 While M = min({x ∈ preC | x ⊃ c} \D) �= {} do
5 Pick any c′′ ∈ M and add c′′ to D;
6 If ∀c ∈ •c′′ : [e]− ⊆ c =⇒ e ∈ hrtpn(c

′′, c) Then Add e to acpn(c
′′)

7 Else If ∀c ∈ •c′′ : [e]− ⊆ c =⇒ e ∈ hrtpp(c
′′, c)

8 Then Add e to acpp(c
′′) Else Add {c ∈ preC | c ⊇ c′′} to D

End

Fig. 6. An unfolding procedure
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to be empty (i.e. no inheritance). Since the three enabled actions at the initial
state are maximally back-propagated to {} but there is no activated events at
{} to match them, we create three new events e1, e2 and e3 at {} (note the
use of symbol !) and add them to acpn({}). Thus the initial state is labelled as
{}/{e1, e2, e3} (in the style of c/acpn(c)). Firing one of the generated events say
e1 leads to a new extension, say {e1}, which is a new member of nxt.

In the step 1, we pick a member say {e1} of nxt and realise it. {e1} is mapped
to s1 and acpn({e1}) inherits {e2, e3} from {}, which fully covers the maximal
back-propagation of the two actions enabled at s1. Thus, although {e1} is a PCP
and procedure GenEvent is called, no new event will be created. Similarly we
can also realise {e2} and {e3}.

Now {e1, e3} is a member of nxt, which we can pick in the step 2 to realise.
Note that {e1, e3} can inherit e2 from {e1} but not from {e3} (since e2 and
e1 do not form a diamond at {e3}). This inconsistency leads to e2 not being
added to acpn({e1, e3}). {e1, e3} is a PCP and in calling GenEvent, however,
a new event e2′ is created at {e1} to cover the maximal back-propagation of the
enabled b action at s5 (mapped to {e1, e3}). e2′ can be inherited and added to
acpn({e1, e3}). Similarly, the back-propagation from {e1, e2} and from {e2, e3}
leads to the creation of e3′ at {e1} and e1′ at {e2, e3} resp.

e1′ at {e2, e3} can lead to a PCP extension but not so for e2′ and e3′ at {e1}.
Instead, they are PCP prefixes since {e1, e2, e3′} and {e1, e2′, e3} are PCP ex-
tensions. Therefore, all the possible extensions so far are inside nxt. In realising
these extensions, {e1, e3′} and {e1, e2′} need to be realised before {e1, e2, e3′}
and {e1, e2′, e3} resp. to preserve the +-downward closedness of preC.

In the step 3, obviously {e1, e2′} inherits e3 and e3′ from {e1}; and {e1, e3′}
inherits e2 and e2′. But e3′ at {e1, e2′} and e2′ at {e1, e3′} will lead to extensions
outside nxt. So the outcome is a GCS with three maximal configurations. Two
of them, {e1, e3, e2′} and {e1, e2, e3′}, are mapped to a same terminating state
s7. (In contrast, state s5 is split into {e1, e3} and {e1, e3′} while s6 into {e1, e2}
and {e1, e2′}.)

The broken cube example does not have or-causality; thus the part of the
procedure related to non-stable pre-configuration and p-pending points/events
has not been utilised. We give a second example in Figure 8 to do so.

The original transition system is given as the top-left graph in the figure. The
top-right graph is its MCP unfolding, which is the coalescing of two MCPs
({a1, b1, c1, c2, d2} and {a1, b1, c2, d1, d2}). The MCP of {a1, b1, c1, c2, d2} is
drawn with thick-line edges and strong-colored configurations.

The bottom graph is the Hasse diagram of pre-configurations (with some edges
missing). The faint-colored pre-configurations in bottom graph are nonstable pre-
configurations; they will be removed in order to produce the Hasse diagram of
configurations. Note further that {a1, b1, c2} is a configuration in the MCP of
{a1, b1, c1, c2, d2} but not so in that of {a1, b1, c2, d1, d2}, even though it is a
pre-configuration being used in the generation of both MCPs. Note that the set
of pre-configurations being used to generate the MCP of {a1, b1, c1, c2, d2} are
those connected up by edges in the graph.
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Fig. 7. Unfolding of the broken cube
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Fig. 8. P-pending event and nonstable pre-configuration
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We can show that the output of functionUnfold indeed is the MCP unfolding
of G:

Theorem 3. U(G) is an MCP unfolding of G.
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Abstract. Many algorithms for computing minimal coverability sets for
Petri nets prune futures. That is, if a new marking strictly covers an old
one, then not just the old marking but also some subset of its subsequent
markings is discarded from search. In this publication, a simpler algo-
rithm that lacks future pruning is presented and proven correct. Then
its performance is compared with future pruning. It is demonstrated,
using examples, that neither approach is systematically better than the
other. However, the simple algorithm has some attractive features. It
never needs to re-construct pruned parts of the minimal coverability set.
If the minimal coverability set is constructed in depth-first or most to-
kens first order, and if so-called history merging is applied, then most
of the advantage of future pruning is automatic. Some implementation
aspects of minimal coverability set construction are also discussed.

1 Introduction

The set of reachable markings of a finite Petri net is not necessarily finite. How-
ever, Karp and Miller [4] showed that an abstracted version of it, the coverability
set, is always finite. The coverability set constructed by the algorithm of Karp
and Miller is not unique. Finkel defined a unique minimal coverability set and
presented an algorithm for constructing it [1]. Surprisingly, more than a decade
later an error was found in his algorithm [2]. This inspired new interest in cov-
erability set algorithms.

Proposals for solving the problem correctly, and more efficiently than the
original, have been made [3,6]. Some recent work also exists on incremental
construction of coverability graphs, that is, mapping transformations of a Petri
net to transformations of its coverability graph [5].

Minimal coverability sets may be huge. For instance, the “linear” Petri net
· · · with n places, n−1 tokens in the first place, and no

tokens elsewhere, has (2n−2)!/(n−1)!2 ≈ 22n−2/
√
π(n− 1) maximal markings.

The algorithms of [4,1,6] are all based on the idea of building a tree of mark-
ings with acceleration or ω-addition, that is, replacing unbounded markings of
a place with an ω, based on the history of a newly discovered marking. The two
latter algorithms also prune the tree by excluding the already constructed de-
scendants of the covered nodes from future exploration, in an attempt to make

S. Haddad and L. Pomello (Eds.): PETRI NETS 2012, LNCS 7347, pp. 208–227, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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the computation more efficient. With this pruning, correctness or termination
of the algorithm is jeopardised, and proving either becomes very hard, as is
evidenced by the fact that the algorithm of [1] was long thought to be correct.

Pruning takes place when a sequence M0, t1, . . . , tn, Mn of markings and
transitions has been found, where each Mi is obtained by firing ti from Mi−1

and then possibly adding ω-symbols, and then an M ′
0 such that M0 < M ′

0 is
found. Then M0 is clearly unnecessary in the coverability set. IfM0 [t1 · · · tn〉 Mn

and M0 < M ′
0, then there is an M ′

n such that M ′
0 [t1 · · · tn〉 M ′

n and Mn < M ′
n.

Inspired by this, future pruning passivates also M1, . . . , Mn simultaneously with
M0. However, when ω-symbols are added along the path from M0 to Mn, it is
possible that Mn = M ′

n. Then it is possible that after Mn has been pruned, it
may have to be activated anew. We say that the pruning of Mn is overeager if
and only if M ′

0 [t1 · · · tn〉 Mn.
To provide a firm foundation for the discussion in this publication, in Section 2

we recall the basic facts of minimal coverability sets. Then, in Section 3, we
propose an algorithm for creating minimal coverability sets that does not prune
futures, and show that it is correct. We also comment on some implementation
issues. Section 4 is devoted to a discussion of the order in which the set is
constructed.

The simple approach is compared with future pruning in Section 5. We demon-
strate that future pruning is vulnerable to having to construct large subsets more
than once. Then we prove that if the minimal coverability set is constructed in
depth-first order or what we call most tokens first order, and if what we call
history merging is applied, then, even without explicit pruning, the algorithm
automatically avoids the investigation of transitions from those markings that fu-
ture pruning would prune but not in the overeager way. The last section presents
our conclusions and some measurements.

2 Minimal Coverablity Sets

The basic facts of coverability sets are more or less widely known, but their pub-
lished proofs tend to be unclear and tied to individual algorithms. Therefore, we
prove them anew in this section, independently of even the notion of transition.
The set of natural numbers (including 0) is denoted with N. Let P be any finite
set. Its elements are called places. We start with the notion of markings that
may also use ω as the marking of a place. Intuitively, ω denotes unbounded.

Definition 1. An ω-marking is a function from P to N ∪ {ω}. If n ∈ N, we
define n < ω and ω + n = ω − n = ω. Let M and M ′ be ω-markings. We
define that M ′ covers M and write M ≤ M ′ if and only if M(p) ≤ M ′(p) for
every p ∈ P . Furthermore, M ′ covers M strictly if and only if M < M ′, that is,
M ≤ M ′ and M �= M ′. A (finite or infinite) sequence M1,M2, . . . of ω-markings
is growing if and only if M1 ≤ M2 ≤ . . . and strictly growing if and only if
M1 < M2 < . . ..

Note that (ordinary) markings are ω-markings. An ω-marking is a marking if
and only if it does not contain ω-symbols.
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Given any infinite growing sequence Mi of ω-markings and any place p, Mi(p)
either reaches a maximum value and stays there or grows without limit. The
latter means that for each n ∈ N, there is an i such that Mi(p) ≥ n. Therefore,
the following notion of the limit of the sequence is well-defined.

Definition 2. Let M1, M2, . . . be ω-markings such that M1 ≤ M2 ≤ . . .. Their
limit is the ω-marking M = lim

i→∞
Mi such that for each p ∈ P , either M(p) =

Mi(p) = Mi+1(p) = Mi+2(p) = . . . for some i, or M(p) = ω and Mi(p) grows
without limit as i grows.

Clearly Mi ≤ lim
i→∞

Mi for each i. The ω-markings in a sequence need not be

different from each other. So also the sequence M,M,M, . . . has a limit. It is
M . It is also worth pointing out that in this publication, the either-part of the
definition does not require that M(p) < ω. Therefore, M(p) = ω is possible in
two ways: either Mi(p) = ω from some i on, or Mi(p) grows without limit.

The following lemma is an immediate consequence of Definition 2. It says
that given an arbitrary finite value, the places marked with ω in the limit may
simultaneously get at least that value, while the other places get their limit
values. In this publication, Mi(p) may also be ω, but then trivially Mi(p) ≥ n.

Lemma 1. If M = lim
i→∞

Mi, then for every n ∈ N there is an i such that for

each p ∈ P , either Mi(p) = M(p) < ω or Mi(p) ≥ n and M(p) = ω.

For convenience, we also define a limit of a set of ω-markings as any limit of
any infinite growing sequence of elements of the set. The limit of a set is not
necessarily unique. Actually, each element of the set is its limit.

Definition 3. Let M be a set of ω-markings. Then M is a limit of M if and
only if there are M1 ∈ M, M2 ∈ M, . . . such that M1 ≤ M2 ≤ . . . and
M = lim

i→∞
Mi.

The next lemma follows from Dickson’s lemma, but is easier to prove directly.

Lemma 2. Every infinite sequence of ω-markings has an infinite growing sub-
sequence.

Proof. Let Mi be the sequence and P = {p1, p2, . . . , p|P |}. We show that for
each 0 ≤ j ≤ |P |, Mi has an infinite subsequence Mj,i such that Mj,1(pk) ≤
Mj,2(pk) ≤ . . . for 1 ≤ k ≤ j.

Clearly Mi qualifies as the M0,i. Let j > 0. If Mj−1,i(pj) only gets a finite
number of different values for i ∈ N, then some value v occurs infinitely many
times. We let Mj,i be the infinite subsequence obtained by picking those Mj−1,i

that have Mj−1,i(pj) = v. Otherwise Mj−1,i(pj) gets infinitely many different
values. Then Mj−1,i has an infinite subsequence where Mj−1,i(pj) grows. It
qualifies as the Mj,i.

Finally M|P |,i qualifies as the sequence in the claim of the lemma. ��
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We are ready to define coverability sets. The idea is that for a given set M of
markings, the ω-markings in its coverability set M′ cover every marking in M
without using bigger ω-markings than necessary. The goal is to get finite cover-
ability sets. However, if M(p) obtains infinitely many different values in M, then
to cover them all with finitely many ω-markings it is necessary to let M ′(p) = ω
in at least one M ′ ∈ M′. More generally, it may be that many places must
simultaneously have M ′(p) = ω to cover some subset of M with finitely many
ω-markings. Part 2 of the definition says that this is the only justification for the
introduction of ω-symbols. The concept of antichain is important, because we
will later show that a coverability set is minimal if and only if it is an antichain.

Definition 4. Let M be a set of markings and M′ a set of ω-markings. We
define that M′ is a coverability set for M, if and only if

1. For every M ∈ M, there is an M ′ ∈ M′ such that M ≤ M ′.
2. Each M ′ ∈ M′ is a limit of M.

A coverability set is an antichain, if and only if it does not contain two ω-
markings M1 and M2 such that M1 < M2.

Every M ∈ M is the limit of the infinite growing sequence M,M,M, . . .. Thus
M is its own coverability set. However, it is not necessarily finite. To prove that
each set of markings has a finite coverability set, we first show that the limit of
an infinite growing sequence of limits is a limit of the original set.

Lemma 3. Let M be a set of markings. For each i > 0, let Mi be any limit of
M such that M1 ≤ M2 ≤ . . .. Then also lim

i→∞
Mi is a limit of M.

Proof. For each i, let Mj,i be an infinite growing sequence of elements of M such
that lim

j→∞
Mj,i = Mi. Let M

′
1 = M1,1. When i > 1, let M ′

i be the first element of

Mj,i such that for each p ∈ P , either M ′
i(p) = Mi(p) < ω or M ′

i−1(p) ≤ M ′
i(p) ≥

i and Mi(p) = ω. It exists by Lemma 1. Furthermore, M ′
i−1(p) ≤ Mi−1(p) ≤

Mi(p), so if M ′
i(p) = Mi(p), then M ′

i−1(p) ≤ M ′
i(p). Thus M ′

i is an infinite
growing sequence of elements of M.

If Mi(p) < ω for each i, then M ′
i(p) = Mi(p) for each i > 1, so M ′

i(p) has
the same limit as Mi(p). Otherwise, from some value of i on, Mi(p) = ω and
M ′

i(p) ≥ i. Then the limit of M ′
i(p) is ω, which is also the limit of Mi(p). As a

consequence, lim
i→∞

M ′
i = lim

i→∞
Mi. ��

We say that an element a of a set A is maximal, if and only if there is no b ∈ A
such that a < b. Let [M] denote the set of all limits of M, and let -M. denote
the set of the maximal elements of [M]. We are ready to prove the central result
of this section.

Theorem 1. Each set M of markings has a coverability set that is an antichain.
It is finite and unique. It consists of the maximal elements of the limits of M.
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Proof. Obviously [M] satisfies part 2 of Definition 4. It also satisfies part 1,
because each M ∈ M is the limit of M,M,M, . . ..

We prove next that for every M ∈ [M], there is an M ′ ∈ -M. such that
M ≤ M ′. Let M0,1 = M and j = 0. For each i > 1 such that Mj,i−1 is not
maximal in [M], there is an Mj,i ∈ [M] such that Mj,i−1 < Mj,i. If this sequence
ends, then the last Mj,i qualifies as the M ′. Otherwise, let Mj+1,1 = lim

i→∞
Mj,i.

Clearly Mj+1,1 ≥ Mj,1 ≥ M . By Lemma 3, Mj+1,1 ∈ [M]. We repeat this
reasoning with j = 1, j = 2, and so on as long as possible. Because Mj,i is
strictly growing as i grows, Mj+1,1 has more ω-symbols than Mj,1. Therefore,
Mj,i has at least j ω-symbols. This implies that j cannot grow beyond |P |. So a
maximal element is eventually encountered.

Thanks to this, -M. satisfies part 1 of Definition 4. It clearly also satisfies
the rest of Definition 4. So an antichain coverability set exists.

If M′ is an infinite coverability set of M, then it is possible to pick an infinite
sequence of distinct elements from M′. By Lemma 2, it has an infinite grow-
ing subsequence Mi. Because all its elements are distinct, we have M1 < M2.
Therefore, infinite coverability sets are not antichains.

It remains to be proven that there are no other antichain coverability sets.
We have already ruled out infinite sets, so let M′ be any finite coverability set
of M. Part 2 of Definition 4 yields M′ ⊆ [M].

For any M ∈ -M., let Mi be a sequence of elements of M whose limit is
M . Because M′ is finite, it must cover every Mi only using a finite number
of ω-markings. Thus M′ must contain an ω-marking M ′ that covers infinitely
many of Mi. Definition 2 implies that M ≤ M ′. We have M ′ ∈ M′ ⊆ [M], and
M ∈ -M. makes M < M ′ is impossible. Therefore, M ′ = M .

We have proven that every finite coverability set M′ satisfies -M. ⊆ M′ ⊆
[M]. If there is anM such thatM ∈ M′\-M., then there is anM ′ ∈ -M. ⊆ M′

such that M < M ′, so M′ is not an antichain. As a conclusion, there is only one
antichain coverability set. ��

A coverability set is minimal if and only if none of its proper subsets is a cov-
erability set. Next we will show that a coverability set is minimal if and only
if it is an antichain. This will immediately yield the existence, finiteness, and
uniqueness of minimal coverability sets.

Corollary 1. Each set of markings has precisely one minimal coverability set.
It is finite. It is the antichain coverability set.

Proof. The claims follow by Theorem 1, if we prove that a coverability set is
minimal if and only if it is an antichain. It is clear that a coverability set that is
not an antichain has a proper subset that is a coverability set, because M1 could
be left out. Consider the antichain coverability set -M.. Because it is finite, it
cannot have any infinite set as a proper subset. By the proof of Theorem 1, every
finite coverability set has -M. as a subset. So -M. cannot have a proper subset
that is a coverability set. ��
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1 F := {M̂}; A := {M̂}; W := {M̂} × T ; M̂.B := nil
2 while W �= ∅ do
3 (M, t) := any element of W ; W := W \ {(M, t)}
4 if ¬M [t〉 then continue
5 M ′ := the ω-marking such that M [t〉M ′

6 if M ′ ∈ F then continue
7 Add-ω(M,M ′)
8 if ω was added then if M ′ ∈ F then continue
9 Cover-check(M ′) // may update A and W
10 if M ′ is covered then continue
11 F := F ∪ {M ′}; A := A ∪ {M ′}; W := W ∪ ({M ′} × T ); M ′.B := M

Fig. 1. The basic coverability set algorithm

3 Basic Algorithm

In this section we present, discuss, and prove correct the simplest of the algo-
rithms in this paper, and its variant that uses what we call history merging. We
believe that they are new.

A Petri net is a tuple (P, T,W, M̂) such that P ∩T = ∅, M̂ is a function from
P to N, and W is a function from (P × T )∪ (T × P ) to N. For this publication,
we assume that P and T are always finite. The elements of P , T , W , and M̂ are
called places, transitions, weights, and initial marking respectively. The firing
rule for ω-markings is the same as with markings: M [t〉M ′ if and only if for each
p ∈ P , M(p) ≥ W (p, t) and M ′(p) = M(p)−W (p, t) +W (t, p). Whether or not
M [t〉 holds, is determined by the places for which M(p) < ω. If M(p) < ω, then
M ′(p) = M(p)−W (p, t) +W (t, p) < ω. If M(p) = ω, then also M ′(p) = ω. We
define M [t1t2 · · · tn〉M ′ in the usual way.

Overview. The algorithm is shown in Fig. 1. The ω-markings that have been
generated and taken into consideration, are stored in the set F . We call these
found ω-markings. In our test implementation, F is presented as a hash table.
There is a base table of pointers to ω-markings that is indexed by the hash value
of the ω-marking. Each ω-marking has a pointer to the next ω-marking in the
hash list.

The set of found ω-markings is divided to sets of active and passive ω-
markings. The set of active ω-markings is denoted with A, and passive are those
that are in F but not in A. In our test implementation, A is represented by a
linked list, maintained by another pointer in the ω-marking structure.

Each ω-marking M ′ has a back pointer M ′.B that points to the ω-marking
M such that M ′ was first found by firing a transition from M , except that it
points to nowhere in the case of the initial marking. Using the back pointers one
can scan the history of M ′ up to the initial marking.

Finally, W is a workset that keeps track of the work to be done. The minimal
coverability set can be constructed in many different orders, including breadth-
first, depth-first, and what we call “most tokens first”. To model this generality,
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Add-ω(M,M ′)

1 last := M ; now := M ; added := False
2 repeat
3 if now < M ′ ∧ ∃p ∈ P : now(p) < M ′(p) < ω then
4 added := True; last := now
5 for each p ∈ P such that now(p) < M ′(p) < ω do
6 M ′(p) := ω
7 if now .B = nil then now := M else now := now .B
8 until now = last

Fig. 2. The basic version of ω-addition

in Fig. 1, W contains pairs consisting of an ω-marking and a transition. In prac-
tice it suffices to store ω-markings instead of pairs. In our test implementation,
the workset is a queue, stack, or heap containing pointers to ω-markings, and
each ω-marking has an integer attribute next tr containing a number of a tran-
sition. If M is in the workset of the implementation, the pairs (M, t) in the W
of Fig. 1 are the ones where the number of t is at least M.next tr . When we say
that M is in the workset, we mean that (M, t) ∈ W for some t ∈ T .

Initially the initial marking M̂ has been found and is active, and the workset
contains M̂ paired with every transition. The algorithm runs until the workset is
empty. Intuitively, the workset contains the ω-markings which still may contain
something of interest for the minimal coverability set. In each iteration of the
main loop, the algorithm selects and removes one pair (M, t) from the workset.
Then it tries to fire t from M . If t cannot be fired from M , then the main loop
rejects the pair and goes to the next pair. This is shown in the figure with the
word “continue” that means a jump to the test of the while-loop.

If the firing of t from M succeeds, the algorithm checks whether the resulting
ω-marking M ′ has already been found. If found, M ′ is rejected. Otherwise the
operation Add-ω is applied to M ′. It adds ω-symbols to M ′ as justified by the
history of M ′. We will discuss the operation in more details soon.

If M ′ was changed by Add-ω, then the algorithm tests again whether the
resulting ω-marking has already been found and rejects it if it is. If M ′ survived
or avoided this test, one more test is applied to it. Cover-check(M ′) finds out if
M ′ is covered by any ω-marking in A. It also removes from A those ω-markings
that M ′ covers strictly. Therefore, A is always the set of maximal found ω-
markings. We will soon discuss this in more details. Cover-check also removes
from W each pair whose first component was removed from A.

If M ′ passes all these tests, it is added to the found ω-markings and made
active. It is also added to the workset paired with every transition. Its back
pointer is made to point to the previous ω-marking.

Add-ω. Add-ω is shown in Fig. 2. It scans the history of M towards the initial
marking at least once. It tries to find an ω-marking M ′′ = now that is strictly
covered by M ′, in such a way that M ′ does not yet have ω in all those places
whereM ′′(p) < M ′(p). Whether such a covered ω-marking was found is recorded
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p3

t1

p1

p2

t2 2

(1, 1, 2)

(3, 1, 1)

(2, 1, 2)

t1

t2

Fig. 3. The advantage of repeated scanning of history

in the boolean variable added . The operation then sets M ′(p) = ω for places
where previously M ′′(p) < M ′(p) < ω. Then it moves to the next (or perhaps
one should say previous) ω-marking, and so on. The operation terminates when
it has fully tested the history without being able to add new ω-symbols.

The purpose of repeated scanning of the history is to add as many ω-symbols
as possible to M ′. For example (see Fig. 3), let (1, 1, 2) [t1〉 (3, 1, 1) [t2〉 (2, 1, 2).
For each n ∈ N except 0 and 1 we have (1, 1, 2) [(t1t2)

2n−3tn−2
2 〉 (n, 1, n), where

σi means σ repeated i times. So (ω, 1, ω) is a limit of reachable markings. Add-
ω checks whether (2, 1, 2) covers (3, 1, 1). It does not. Then it checks whether
(2, 1, 2) covers (1, 1, 2). It does, so Add-ω converts (2, 1, 2) to (ω, 1, 2). Then it
has found the end (or beginning) of the history. If it terminated there, the result
would be (ω, 1, 2). However, Add-ω starts anew at (3, 1, 1) and sees that (ω, 1, 2)
covers it. Therefore, it converts (ω, 1, 2) to (ω, 1, ω).

We will later see that inserting an ω-marking to the data structures is an
expensive operation. By Corollary 1 and Theorem 1, the algorithm only has
to maintain maximal ω-markings. Therefore, first inserting (ω, 1, 2) and later
removing it and inserting (ω, 1, ω) is disadvantageous compared to just inserting
(ω, 1, ω). In the worst case, fully testing the history after the last addition of ω
doubles the running time of Add-ω, which is a relatively small price.

After each addition of an ω-symbol, scanning is continued from where it was
instead of starting anew at M , because intuition suggests that the least recently
tried ω-markings have the best chance of success. However, this is not a theorem
but a heuristic.

We write M [t〉ωM ′ to denote that M ′ is obtained by firing t from M and then
executing Add-ω(M,M ′). This notion depends on not only M and t, but also
on the history of M .

Cover-Check. The purpose of Cover-check(M ′) is to ensure that A always
consists of the maximal ω-markings in F . In our test implementation, A is rep-
resented as a linked list, which is scanned by Cover-check. If it finds an element
M ′′′ that is strictly covered by M ′, it removes M ′′′ from the list and removes
(M ′′′, t) from the workset for every t ∈ T . In our test implementation, the latter
is done simply by assigning to M ′′′.next tr a number that is greater than the
number of any transition. Then Cover-check continues scanning.
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If Cover-check finds that M ′ is covered by an element M ′′ of the list, it
terminates immediately, because then it is not possible that M ′ covers strictly
any element in the list. This is because if M ′ > M ′′′ and M ′′′ is in the list, then
M ′′ ≥ M ′ > M ′′′, so the list does not consist of only maximal elements.

While the test whether a given ω-marking has already been found can be
performed very efficiently with hash tables, testing whether a given ω-marking
strictly covers any found ω-marking seems much more difficult. We are not aware
of essentially better approaches than comparing the new ω-marking one by one
to each old ω-marking, with some heuristics to speed the procedure up a little.
Therefore, it makes sense to try to reduce the number of times Cover-check is
called. It also makes sense to try to keep A small, because the cost of the call
is often and at most proportional to the size of A. For both goals, it seems
advantageous to get as many ω-symbols as possible to the ω-markings as early
as possible. However, this is not a theorem but an intuitive heuristic.

This is also the reason for the presence of F in the algorithm. Correctness does
not require it, because Cover-check and A suffice for filtering out later instances
of any found ω-marking M . If the earlier instance of M has been removed from
A, it happened in favor of some M ′ that strictly covers M , so the filtering effect
remains. However, detecting repeated instances of the same ω-marking with a
hash table costs next to nothing, while the cost of the coverability check is
significant. Repeated instances of the same ω-marking are common with Petri
nets, because if M [t1t2〉M12 and M [t2t1〉M21, then M12 = M21. Therefore, it
makes sense to implement a special mechanism for them that is much faster
than the general mechanism.

Also Add-ω is costly compared to the test whether M ′ ∈ F . Performing the
test before Add-ω and after each addition of ω-symbols inside Add-ω would
speed Add-ω up, but would also globally slow down the adding of ω-symbols,
because the new instance of the same ω-marking usually has a different history
and may thus introduce ω-symbols to different places. We believe that most calls
of Add-ω do not lead to the addition of ω-symbols, and therefore we believe that
it is advantageous to test M ′ ∈ F before calling Add-ω. On the other hand, if
Add-ω has already succeeded in adding an ω-symbol, then the chances of finding
a new maximal ω-marking are improved, so it seems better to let it continue.
Again, this is a heuristic argument, and we do not really know the actual effect.

History Merging. History merging is a variant of the basic algorithm. In it,
M.B is a set of (pointers to) any number of predecessor ω-markings, instead of
being a single ω-marking. This mirrors the fact that the same ω-marking may
be reached in multiple ways, any of which may justify the addition of ω-symbols.

If M ′ is rejected on line 6 or 8 of Fig. 1, then it already has a representation
in F . In history merging, the program inserts M to the predecessor set of M ′.
Thus the predecessor set collects pointers to all ω-markings from which M ′ was
reached by firing one transition and possibly executing Add-ω.

Consider the example in Fig. 4. Suppose the algorithm proceeds in a breadth-
first manner. It finds the ω-markings (0, 1, 0, 0) and (0, 0, 1, 0), by firing t1 and t2
from (1, 0, 0, 0). It then generates (0, 0, 0, 1) by firing t3 from (0, 1, 0, 0).



Old and New Algorithms for Minimal Coverability Sets 217

t1 t2

t3 t4

t5

(1, 0, 0, 0)

(0, 1, 0, 0) (0, 0, 1, 0)

(0, 0, 0, 1)

(0, 1, 1, 0)

t1 t2

t3 t4

t5

Fig. 4. How history merging helps

The same ω-marking is also found by firing t4 from (0, 0, 1, 0), at which time
we can update the history of (0, 0, 0, 1) to contain both ω-markings. The benefit
comes when we add ω-symbols to (0, 1, 1, 0): as both these ω-markings are in its
history, we can add two omegas, giving (0, ω, ω, 0).

History merging may also be applied on line 10 of Fig. 1, if for each p ∈ P we
have M ′′(p) = M ′(p) or M ′′(p) = ω, where M ′′ is the ω-marking that coversM ′.
If the condition holds in the opposite direction, the histories of those ω-markings
that M ′ is found to strictly cover on line 9, can be merged into the history of
M ′. In these cases, the changes in the numbers of tokens in those places whose
marking is not ω are represented correctly along any path despite the mergings.
For the remaining places, the changes do not matter, because their ω-marking
is ω also in all later ω-markings. Our test implementation does not yet have this
feature.

With history merging, the history of an ω-marking forms a directed graph
that is partially shared by the histories of other ω-markings. It can be scanned
in time that is linear in its size. After each addition of ω-symbols, our test
implementation starts a new scan where it was and continues it atM analogously
to Fig. 2, to guarantee that at termination no ω-marking in the history can justify
the addition of more ω-symbols to M ′.

Repeated scans require repeated resetting of “found” information, which may
become a performance problem if implemented näıvely. In our test implemen-
tation, each ω-marking has an attribute search nr and there is a global vari-
able search now . When an ω-marking is found, search now is assigned to its
search nr . In the beginning of each search, search now is incremented, and if it
overflows its type, it is set to 1 and the search nr of every found ω-marking is
set to 0 by scanning the hash table that implements F .
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Correctness. The correctness of the algorithm consists of four issues, three of
which correspond to the three conditions in Definition 4 and the fourth is the
termination of the algorithm. We present a lemma for each. In the proofs, we
will use the following obvious fact: if M [t〉M ′ and M ≤ M1, then there is an M ′

1

such that M1[t〉M ′
1 and M ′ ≤ M ′

1.

Lemma 4. After termination, for every reachable marking M of the Petri net,
A contains an ω-marking M ′ such that M ≤ M ′.

Proof. Each time when an ω-marking is inserted to F , it is also inserted to A.
Each time when an M is removed from A, an M ′ such that M < M ′ is inserted
to A. Therefore, the algorithm maintains the following invariant:

I1: For each M ∈ F , there is an M ′ ∈ A such that M ≤ M ′.

Each time when an M is added to A, (M, t) is added to W for every t ∈ T . Each
time when a pair (M, t) is removed from W , either ¬M [t〉, or there is an M ′

such that M [t〉M ′. In the latter case, the set F either contains an ω-marking M ′′

such that M ′ ≤ M ′′, or such an M ′′ is inserted to F . Therefore, the algorithm
also maintains the following invariant:

I2: For each M ∈ A and t ∈ T , either (M, t) ∈ W , ¬M [t〉, or for the M ′

such that M [t〉M ′ there is an M ′′ ∈ F such that M ′ ≤ M ′′.

Let R be the set of the reachable markings of the Petri net. If M ∈ R, then
there is a sequence M0 [t1〉M1 [t2〉 · · · [tn〉Mn such that M0 = M̂ and Mn = M .
We prove by induction that for each 0 ≤ i ≤ n there is an M ′

i ∈ A such that

Mi ≤ M ′
i . The claim holds for i = 0 by I1, because M̂ is found initially. After ter-

mination (M ′
i−1, ti) /∈ W , because then W = ∅. We also cannot have ¬M ′

i−1[ti〉,
because Mi−1[ti〉Mi and Mi−1 ≤ M ′

i−1. Let M
′′′
i be such that M ′

i−1[ti〉M ′′′
i . By

I2 there is an M ′′
i ∈ F and by I1 an M ′

i ∈ A such that Mi ≤ M ′′′
i ≤ M ′′

i ≤ M ′
i .
��

Lemma 5. Every element of F (and thus of A) is a limit of the set of the
reachable markings of the Petri net.

Proof. Let R be the set of the reachable markings of the Petri net.
We show first that if M [t〉M ′ and M is a limit of R, then also M ′ is a limit of

R. We have M(p) = ω if and only if M ′(p) = ω. Let Pω = {p ∈ P | M(p) = ω} =
{p ∈ P | M ′(p) = ω}. Let d be the minimum of W (t, p)−W (p, t) over p ∈ Pω . By
Lemma 1, for every n ∈ N, there is an Mi ∈ R such that W (p, t) ≤ Mi(p) ≥ n−d
for every p ∈ Pω and Mi(p) = M(p) for every p ∈ P \ Pω . We have Mi[t〉. If M ′

i

is such that Mi[t〉M ′
i , then M ′

i(p) = Mi(p)−W (p, t) +W (t, p) ≥ Mi(p) + d ≥ n
for every p ∈ Pω and M ′

i(p) = M(p) − W (p, t) + W (t, p) = M ′(p) for every
p ∈ P \ Pω . So M ′ is the limit of M ′

i and thus a limit of R.
We show next that if M ′ is a limit of R and M ′′ is the result of applying Add-

ω to it, then M ′′ is a limit of R. Consider any ω-marking M = now that triggers
addition of ω-symbols to M ′. Let t1, . . . , tk be the transitions from M to M ′. Let
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d be the minimum of

k∑
i=1

W (ti, p)−W (p, ti) over p ∈ P . Let e be the maximum of

k∑
i=1

W (p, ti) over p ∈ P . For each p ∈ P we have either (1) M ′(p) = M ′′(p) = ω,

(2) M(p) = M ′(p) = M ′′(p) < ω, or (3) M(p) < M ′(p) < M ′′(p) = ω.
By Lemma 1, for every n ∈ N there is an Mi ∈ R such that Mi(p) ≥ n(1− d)

and Mi(p) ≥ ne for every p of kind 1, and Mi(p) = M ′(p) for the remaining
places. For places of kind 1, ne suffices for firing t1 · · · tk n times in a row starting
at Mi, and the result satisfies M ′

i(p) ≥ Mi(p) + nd ≥ n. For places of kinds 2
and 3, t1 · · · tk can be fired once from Mi because it was possible to fire it from
M . For kind 2, Mi(p) = M(p) = M ′(p) < ω, so t1 · · · tk can be fired n times and
the result is M ′

i(p) = Mi(p) = M ′′(p). For kind 3, M(p) < Mi(p) = M ′(p) < ω,
so t1 · · · tk can be fired repeatedly, each time adding at least one token to p.
After n repetitions, M ′

i(p) ≥ n. We conclude that M ′′ = lim
i→∞

M ′
i . Furthermore,

Mi [(t1 · · · tk)n〉M ′
i , so M ′

i ∈ R and M ′′ is a limit of R.
We have shown that each operation of the algorithm that introduces or modi-

fies ω-markings yields a limit of R, if its input ω-markings are limits of R. Origi-
nally there is only the initial marking M̂ . It is obviously reachable and the limit
of M̂, M̂, M̂ , . . .. So all ω-markings found by the algorithm are limits of R. ��
Lemma 6. The set A is always an antichain.

Proof. This is trivial, because it is explicitly ensured by lines 9 to 11 of Fig. 1,
{M̂} is an antichain, and no other operation modifies the contents of A. ��
Lemma 7. The algorithm terminates.

Proof. Termination of loops other than the main loop of the algorithm and
Add-ω are obvious. Add-ω stops adding ω-symbols to M ′ at the latest when
M ′(p) = ω for every p ∈ P , so each call of Add-ω terminates.

The only way in which the main loop of the algorithm gets new work to do is
that a new ω-marking is found that is different from all earlier ones. Each old ω-
marking and each transition give rise to at most one new ω-marking. Therefore,
if the longest acyclic history of any found ω-marking is of length �, then at most
1 + |T |+ |T |2 + . . .+ |T |
 ω-markings are found. This is a finite number.

We conclude that failure of termination requires the existence of an infinite
sequence M̂ = M0 [t1〉ω M1 [t2〉ω M2 [t3〉ω · · · such that each Mi is first found
by firing ti from Mi−1, and then possibly adding ω-symbols with Add-ω. The Mi

are distinct because of the tests M ′ ∈ F . By Lemma 2, M0,M1,M2, . . . has an
infinite strictly growing subsequence M ′

0 < M ′
1 < M ′

2 < · · · . Thanks to Add-ω,
each M ′

i+1 has at least one ω-symbol more than M ′
i . However, there are only |P |

places, so we run out of places where to add new ω-symbols at M ′
|P |+1, if not

earlier. This is a contradiction. So failure of termination is impossible. ��
Together Lemmas 4 to 7 yield the following theorem.

Theorem 2. The algorithm in Fig. 1 terminates, and then A contains the min-
imal coverability set of the Petri net.
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F := {M̂}; A := {M̂}; Q := {M̂}; M̂.B := nil
while Q �= ∅ do

M := the first element of Q; Q := Q \ {M}
for t ∈ T do

if M /∈ A then continue
lines 4, . . . , 10 of Fig 1
F := F ∪ {M ′}; A := A ∪ {M ′}; add M ′ to the end of Q; M ′.B := M

Fig. 5. Breadth-first discipline

4 Construction Order

The algorithm in the previous section does not specify the order in which the
pairs (M, t) are picked from W , and the correctness of the algorithm does not
depend on it. In this section we discuss some possible orderings.

The age of a pair is defined as the time (for example, the number of itera-
tions of the main loop) elapsed since the pair was inserted to W . The age of
(M, t) is determined by M , because the pairs (M, t) for every t ∈ T are inserted
simultaneously to W .

Many state space verification algorithms require traversing the state space in a
specific order. With ordinary state spaces, it is customary to construct the state
space in that order, so as to enable running the verification algorithm on-the-fly.
With coverability sets, however, due to the high cost of unnecessary construction
of non-maximal ω-markings, it may be better to construct the set in the order
best suited for coverability sets and then, using the minimal coverability set as a
starting point, re-generate the transitions in the order required by the verification
algorithm.

Breadth-First. Breadth-first discipline is obtained by always picking one of
the oldest pairs from W . One possible implementation is described in Fig. 5,
where Q (to reflect the fact that it is a queue) is used instead of W of Fig. 1.
With this implementation, the attribute next tr is not needed. To save more
memory, A and Q can actually be in the same linked list. The list contains
first those elements of A that are not in Q, and then the elements of Q. This
implementation automatically retains the property Q ⊆ A when an element is
removed from A. There are three common pointers: to the beginning, to the
beginning of Q, and to the end.

New ω-markings are added to the end, and Q := Q \ {M} is implemented by
moving the middle pointer (the beginning of Q) one step forward.

Let M.next A denote the pointer of M that points to the next ω-marking
in the list. The test M /∈ A can be done in constant time: M.next A is made
to point to M after M is removed from A. Actually, it would be correct to
skip the test, but then the algorithm would unnecessarily fire transitions from
ω-markings that are no longer maximal.

From the above we deduce that the breadth-first discipline has a simple
and memory-saving implementation. Furthermore, breadth-first is usually more



Old and New Algorithms for Minimal Coverability Sets 221

amenable to parallel implementation than other common disciplines. However,
it seems intuitively that it typically adds ω-markings later and thus should have
longer running time than other common disciplines. In our measurements (see
Section 6), breadth-first was never clearly the fastest but was often clearly the
slowest. So we do not recommend breadth-first. Like in many other arguments
in this publication, this is a heuristic and not a theorem.

Indeed, it is possible to construct a situation where breadth-first works better
than any other approach. Consider an arbitrary Petri net (P, T,W, M̂), for which
the construction of the minimal coverability set takes some considerable time to
finish. We add to it one place p1 and two transitions t and t′ in the following way:
W (p, t) = 0 and W (t, p) = 1 for every p ∈ P . W (p, t′) = 0 and W (t′, p) = M̂(p)
for p ∈ P , and W (t′, p1) = 0. W (p1, t) = W (p1, t

′) = W (t, p1) = 1. A new
initial marking M̂ ′ is such that M̂ ′(p1) = 1, and all other places are empty. The
ordering of transitions is such that t′ is the first transition to be fired, and t is
the second.

Now, breadth-first fires t as the second transition from the initial marking,
resulting in (ω, . . . , ω) and quick termination of the algorithm. With many other
disciplines, such as depth-first, the algorithm fires t′, which “primes” the original
Petri net, after which the algorithm runs its course exactly as with the original
Petri net. It explores t only as the very last transition.

Depth-First. Depth-first discipline is obtained by always picking a youngest
pair from W . It can be implemented by storing the ω-markings of the pairs in a
stack; returning (M,M.next tr) as the pair, where M is the top element of the
stack; and popping the top element when it has no more unused transitions.

Depth-first also has a well-known recursive implementation. It has the advan-
tage that next tr is not needed, making it conceptually simpler. On the other
hand, each recursion level consumes some memory, and the recursive calls con-
sume some time. Therefore, the recursive implementation is likely to be at least
marginally less efficient.

Intuitively, depth-first typically adds ω-markings early on, because of the fol-
lowing result. Thus it should have a good running time. In our measurements it
was seldom the fastest and seldom much worse than the fastest.

We say that M ′ is a successor of M if and only if there is a t such that the
algorithm at some point fires M [t〉ωM ′ and either puts M ′ into F or detects
that it is there already. A descendant of an ω-marking is the ω-marking itself,
its successor, or a descendant of its successor.

Lemma 8. If the construction order is depth-first and M has more ω-symbols
than the ω-marking via which it was first found, then the algorithm will not
backtrack from M before it has investigated all descendants of M .

Proof. Let an ω-marking be black, if it has been backtracked from; grey, if it has
been found but not yet backtracked from; and white, if it has not been found.
Depth-first search has the property that the set of grey ω-markings and the
transitions via which they were first found, constitute a path from the initial
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marking to the current ω-marking. We call any contiguous sub-path of this path
a grey path.

Each black ω-marking has been removed from W . So the successors of any
black ω-marking are grey or black. A black ω-marking may have white descen-
dants, but each path to any of them goes via at least one grey ω-marking.

If M2 is a descendant of M1, then M2 has ω-symbols in at least the same
places as M1. Assume that the algorithm is about to backtrack from M to M ′,
where M has more ω-symbols than M ′. Then no descendant of M can be along
the grey path from M̂ to M ′. Thus none of them can be grey, implying that
none of them can be white either. Hence, they are all black. ��

Most Tokens First. The desire to add ω-symbols as early as possible naturally
leads to the heuristic of always trying next the ω-marking that has the most
tokens. The ω-marking with the maximal number of ω-symbols is preferred, and
if it is not unique, then the total number of tokens in the places whose marking
is not ω is used as the criterion. Like before, only ω-markings are stored in the
workset, and next tr is used to get the transition component of the pair (M, t).
If the workset is implemented as a heap and contains w ω-markings, then each
operation on it takes O(logw) time.

In our measurements, this discipline was often both the fastest and con-
structed the smallest number of ω-markings. It lost to depth-first a small number
of times, and often there was no clear difference. It may be remarkable that it
lost in the biggest example. However, our set of measurements is far too small
for firm conclusions.

5 To Prune or Not to Prune

In this section we discuss pruning of active ω-markings and whether it is better
than the algorithm in Section 3.

Pumping Cycle Passivation. Consider M0 in the history of Mn such that M0

triggered the addition of at least one ω-symbol to Mn along the path M0 [t1〉ω
M1 [t2〉ω . . . [tn〉ω Mn. Then M0 < Mn and Mn [t1 · · · tn〉. When 0 ≤ i ≤ n,
let M ′

i be the ω-marking such that Mn [t1 · · · ti〉 M ′
i . Clearly Mi < M ′

i for each
0 ≤ i < n. So eventually M0, . . . , Mn−1 will not be maximal. The firing of those
transitions from them that have not already been fired seems wasted work.

Therefore, it seems a good idea to passivate or remove M0, . . . , Mn−1 alto-
gether, when ω-symbols are added to Mn. By passivation we mean the removal
from W and A, but not from F . (The removal of M from W means the removal
of (M, t) from W for every t ∈ T .) By removal we mean the removal from all
data structures. The algorithm in [1] removes M0, . . . , Mn−1.

We argue that the removal of M0, . . . , Mn−1 is not a good idea in general.
Firstly, keeping them in F costs very little, but prevents the algorithm from
constructing their futures, if they are constructed anew. As we have pointed
out, reaching the same marking many times is common with Petri nets.
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p1

p3

p2

t1

t3

t2

2

(1, 0, 0) (0, 1, 0) (1, 0, ω)

(0, ω, ω)

(ω, ω, ω)

t2 t3
t1

t3

Fig. 6. A pumping ω example

Secondly, the removal may slow down the addition of ω-symbols. Consider
the example in Fig. 6, assuming depth-first discipline. The algorithm in Fig. 1
fires (1, 0, 0) [t2〉 (0, 1, 0) [t3〉 (1, 0, 1) and converts (1, 0, 1) to (1, 0, ω). Then it
fires (1, 0, ω) [t1〉 (0, 2, ω) and converts (0, 2, ω) to (0, ω, ω), because it covers
(0, 1, 0). Finally (0, ω, ω) [t3〉 (1, ω, ω) > (0, ω, ω), yielding (ω, ω, ω). Transitions
were fired altogether four times. However, if M0, . . . , Mn−1 are removed, then
(1, 0, 0) and (0, 1, 0) are removed after constructing (1, 0, ω). Next (1, 0, ω) [t1〉
(0, 2, ω) [t3〉 (1, 1, ω) are fired, yielding (1, ω, ω). Again, all other ω-markings are
removed. Firing t1 and t2 from (1, ω, ω) do not yield new maximal ω-markings,
but t3 yields (ω, ω, ω). So seven transition firings were needed.

Future Pruning. Pruning of futures refers to the passivation or removal of
some or all found ω-markings whose histories contain an ω-marking that was
strictly covered by a newly found ω-marking. Pumping cycle passivation can be
considered as a special case of future pruning. The algorithms in [1] and [6] both
perform some more general form of future pruning.

Correctness of future pruning is tricky, and not all forms are correct. The
counter-example presented in [2] reveals a flaw in the future pruning of the
algorithm in [1]. In the counter-example, an ω-markingM1 first triggers pumping
cycle removal. Then another ω-markingM2 with a different history is found, and
its successor ω-markings are covered by M1. Therefore, M2 remains active but
does not lead to any new ω-markings. An ω-marking in the (removed) pumping
cycle is covered by M2, but the algorithm fails to notice this, since the cycle’s
ω-markings have been removed. Finally, a third ω-marking M3 is found that
covers strictly some ω-marking in the history of M1, and M1 is removed. The
firing of transitions from M3 leads to an ω-marking that is covered by M2, and
exploration stops short of finding an ω-marking that covers M1.

In [6], the algorithm never removes, only passivates ω-markings. The pres-
ence of these passive ω-markings in the histories of active ω-markings means
that pruning happens differently from [1]. When a pumping cycle is found, the
intermediate ω-markings are passivated, but they remain in the history of the
new ω-marking. Whenever a new ω-marking M covers some ω-marking not in
its own history, the whole branch starting from that ω-marking is passivated,
even if the covered ω-marking is passive.
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This avoids the behaviour described above. When M1 in the counter-example
triggers pumping cycle passivation, the intermediate ω-markings remain in a
tree. On the way to M2 the algorithm encounters another ω-marking, M , that
covers a passive ancestor ofM1. The algorithm passivates the branch ofM1 when
adding M , so by the time it gets to M2, M1 is no longer active, and the search
will continue from M2.

Unfortunately, this technique requires checking whether the new ω-marking
M strictly covers any element in F (excluding the history of M). This is a
disadvantage, because otherwise checking coverage against A would suffice, A
may be much smaller than F , and checking coverage is expensive.

Is It Worth the Effort? Our first observation is that the running time may
depend heavily on finding a certain ω-marking early on. By exploiting this, it is
possible to design Petri nets so that either algorithm is faster in the particular
case. This is illustrated by the tables below. The arc weights are shown in the
table in the format−W (p, t),W (t, p). The initial marking is (1, 0, 0). We consider
the most tokens first order, and at the same ω-marking, transitions are tried in
the numeric order. (We have designed a similar example for depth-first order.)
Like in [6] and unlike in Section 3, we assume that only active ω-markings are
taken into account in Add-ω.

t1 t2 t3 t4 t5
p1 −1, 2 −1, 0 −0, 1 −0, 0 −0, 1
p2 −0, 1 −0, 2 −2, 0 −1, 1 −0, 0
p3 −1, 0 −0, 0 −1, 0 −0, 1 −1, 1

t1 t2 t3 t4 t5
p1 −1, 2 −1, 0 −0, 1 −0, 1 −0, 0
p2 −0, 0 −0, 2 −2, 0 −1, 2 −1, 1
p3 −1, 0 −0, 0 −1, 0 −1, 0 −0, 1

With the first Petri net, both algorithms fire first (1, 0, 0) [t2〉ω (0, 2, 0) [t4〉ω
(0, 2, ω) [t3〉ω (1, 0, ω) and passivate at least (0, 2, 0) and (1, 0, 0). The prun-
ing algorithm also passivates (0, 2, ω) simultaneously with (1, 0, 0). Then it fires
(1, 0, ω) [t1〉ω (ω, ω, ω), passivates all other ω-markings, fires (ω, ω, ω) [ti〉ω (ω, ω, ω)
for 1 ≤ i ≤ 5, and terminates. The non-pruning algorithm continues with
(0, 2, ω), because it has more tokens than (1, 0, ω). It fires (0, 2, ω) [t4〉ω (0, 2, ω)
and (0, 2, ω) [t5〉ω (ω, 2, ω) [t1〉ω (ω, ω, ω), fires each ti, and terminates. So the
pruning algorithm is faster. (Thanks to (1, 0, 0), the Add-ω in Section 3 would
have yielded (0, 2, ω) [t5〉ω (ω, ω, ω).)

With the second Petri net, both algorithms fire first (1, 0, 0) [t2〉ω (0, 2, 0)
[t5〉ω (0, 2, ω) [t3〉ω (1, 0, ω). The non-pruning algorithm continues (0, 2, ω) [t4〉ω
(ω, ω, ω), while the pruning algorithm fires (1, 0, ω) [t1〉ω (ω, 0, ω) [t1〉ω (ω, 0, ω)
[t2〉ω (ω, ω, ω). So with this Petri net, the non-pruning algorithm is faster.

Our second observation is that the pruning algorithm may activate the same
ω-marking more than once, leading to repeated work. To illustrate this, let the
t1 of the second Petri net be replaced by a transition that takes two tokens from
each of p2 and p3, and puts three tokens to a new place p4. There is also a transi-
tion t6 that moves a token from p4 to p5. After constructing (0, 2, ω, 0, 0), the al-
gorithm fires (0, 2, ω, 0, 0) [t1t6t6t6〉ω (0, 0, ω, 0, 3). Then it fires (0, 2, ω, 0, 0) [t3〉ω
(1, 0, ω, 0, 0), notices that (1, 0, 0, 0, 0) is covered, and passivates all ω-markings
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other than (1, 0, ω, 0, 0). Next it fires [t2〉ω , activating (0, 2, ω, 0, 0) again. Then
it fires (0, 2, ω, 0, 0) [t1t6t6t6〉ω (0, 0, ω, 0, 3) for a second time.

The goal of pruning is to avoid unnecessarily investigating ω-markings that
will later be strictly covered by other ω-markings. Fortunately, the following
theorem says that if the construction order is depth-first and history merging is
applied, this happens automatically, without any explicit future pruning.

Theorem 3. Let the construction order be depth-first and history merging be
applied. Assume that M0 [t1 · · · tn〉ω Mn and M0 < M ′

0. Assume that all transi-
tions along the path M0 [t1 · · · tn〉ω Mn were found before M ′

0. After finding M ′
0,

the algorithm will not fire transitions from Mn, unless M ′
0 [t1 · · · tn〉 Mn.

Proof. Let M1, . . . , Mn−1 be defined in the obvious way. Consider the moment
when M ′

0 has just been found. If Mn is black, then it has no more transitions to
fire. From now on we assume that Mn is grey.

There is a grey path from Mn to the newest ω-marking, that is, M ′
0. We

denote its transitions and ω-markings with tn+1, . . . , tm and Mn+1, . . . , Mm,
where Mm = M ′

0. We have M0 [t1 · · · tn〉ω Mn [tn+1 · · · tm〉ω M ′
0, and M0 < M ′

0.
Thanks to Add-ω, for each p ∈ P , M ′

0(p) = M(p) or M ′
0(p) = ω. In particular,

M ′
0 has more ω-symbols than M0.
Along any path, the marking of any place may change from finite to ω but

not vice versa. Let M ′′ be the first ω-marking along the grey path that has ω-
symbols in precisely the same places as M ′

0. By Lemma 8, the algorithm will not
backtrack from M ′′ before it has investigated all descendants of M ′′. Therefore,
currently the only investigated transition from any non-descendant of M ′′ to any
descendant of M ′′ is the transition via which M ′′ was first found. Because also
the path M0 [t1 · · · tm〉ω M ′

0 has such a transition, it must be the same transition.
So M ′′ = Mh for some 0 < h ≤ m.

Let M ′′
n be the ω-marking such that M ′

0 [t1 · · · tn〉 M ′′
n . The algorithm will not

backtrack from Mh before it has found an M ′
n that covers M ′′

n . If n < h, then
M ′

n is found before backtracking to Mn. Furthermore, Mn < M ′
n, because M ′

0

has ω-symbols in the same places as Mn and in at least one more place. So the
algorithm passivates Mn by direct coverage before backtracking to it.

If n ≥ h, then Mn has ω-symbols in precisely the same places as M ′
0. Also

M ′′
n has ω-symbols in precisely the same places, because it was defined using

“[· · · 〉” instead of “[· · · 〉ω”. For the remaining places, M0(p) = M ′
0(p), so also

Mn(p) = M ′′
n (p). We conclude that M ′′

n = Mn, implying M ′
0 [t1 · · · tn〉 Mn. ��

We prove a similar theorem for most tokens first search.

Theorem 4. Let the construction order be most tokens first and history merging
be applied. Assume that M0 [t1 · · · tn〉ω Mn and M0 < M ′

0. Assume that all
transitions along the path M0 [t1 · · · tn〉ω Mn were found before M ′

0. After finding
M ′

0, the algorithm will not fire transitions from Mn, unless M ′
0 [t1 · · · tn〉 Mn.

Proof. Let M1, . . . , Mn−1 be defined in the obvious way. Let M ≺ M ′ denote
that M has fewer ω-places than M ′, or the same number of ω-places but alto-
gether fewer tokens in the remaining places than M ′. Then M < M ′ implies
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M ≺ M ′. Also note that along any path, ω-symbols may be introduced but
cannot disappear. Let A(M) denote any M ′′ such that M + M ′′ and M ′′ ∈ A.

If Mn + Mi for each 0 ≤ i ≤ n, then Mn has ω-symbols in precisely the same
places as M0. Furthermore, Mn + M0 ≺ M ′

0 + A(M ′
0), so A(M ′

0)[t1〉ωM ′
1 is fired

before firing transitions from Mn. Because M0 < M ′
0 and ω-symbols were not

added during M0 [t1〉ω M1, we have Mn + M1 < M ′
1. The reasoning continues

until we get Mn < M ′
n. Then Mn is passivated by coverage.

In the opposite case, let i be maximal such that Mi−1 ≺ Mn. So Mn + Mj

for i ≤ j ≤ n. If any of Mi, . . . ,Mn has been found before Mi−1[ti〉ωMi is fired,
then all transitions from such an ω-marking and eventually all transitions from
Mn are fired before Mi−1[ti〉ωMi. In that case, the algorithm never fires any
transitions from Mn after finding M ′

0, simply because it already has fired them
all. The same happens if any M that is investigated after firing Mi−1[ti〉ωMi but
before M ′

0 is found has M ≺ Mn.
The case remains where Mi−1 ≺ Mn + Mj for i ≤ j ≤ n, none of the Mj

is found before firing Mi−1[ti〉ωMi, and (1) from then on every ω-marking M
investigated had Mn + M until M ′

0 is found.
Because M ′

0 is not found before completing the path, the finding history of
M ′

0 has some M ′
h−1 [t′h〉ω M ′

h (where h ≤ 0) such that M ′
h−1 (but not M ′

h) has
been found when Mi−1 [ti〉ω Mi is fired. This implies M ′

h−1 + Mi−1 ≺ Mn.
By (1), M ′

h−1 [t′h〉ω M ′
h cannot be fired after Mi−1 [ti〉ω Mi until M

′
0 is found.

The remaining possibility is that M ′
h−1 [t′h〉ω M ′

h is the same transition as Mi−1

[ti〉ω Mi. This implies that M0 [t1 · · · ti〉ω Mi [t
′
h+1 · · · t′0〉ω M ′

0. Add-ω guarantees
that for each p ∈ P , either M0(p) = M ′

0(p) or M
′
0(p) = ω.

By Mn + Mi, Mn and Mi have ω-symbols in precisely the same places.
Therefore, M ′

0 has ω-symbols in at least the same places as Mn.
If M ′

0 has more ω-symbols than Mn, then the same holds for all M ′
i along

the path M ′
0 [t1 · · · tn〉 M ′

n, and we have Mn ≺ M ′
i + A(M ′

i). Therefore, all the
transitions corresponding to A(M ′

0) [t1 · · · tn〉ω A(M ′
n) are fired before firing any

transition from Mn, and Mn is passivated before being investigated further.
Otherwise, M ′

0 and Mn have ω-symbols in precisely the same places. This
implies M ′

0 [t1 · · · tn〉 Mn, because M0(p) = M ′
0(p) if M

′
0(p) < ω. ��

6 Conclusion

We have given a simple algorithm for calculating minimal coverability sets. Fur-
thermore, we have given arguments that lead us to believe that published more
complicated algorithms are in general no more efficient.

Using examples, we have demonstrated that by tailoring the incoming Petri
net in a suitable way, almost any algorithm can be made terminate much quicker
for that particular Petri net than its competitors. Therefore, there probably
cannot be any theorem that one algorithm is systematically better, or even as
good as, another. However, we proved two theorems saying that certain versions
of the simple non-pruning algorithm automatically have the benefits that pruning
tries to achieve. At the same time, the simple algorithm does not run the risk
of repeating work on identical ω-markings, like pruning algorithms do. We also
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Table 1. Some measurements with test data from [3]

model |A| most tokens f. depth-first breadth-first [6]

fms 24 63 53 110 56 421 139 809
kanban 1 12 12 12 12 12 12 114
mesh2x2 256 479 465 774 455 10733 2977 6241
mesh3x2 6400 11495 11485 8573 10394
multipoll 220 245 234 244 244 507 507 2004
pncsacover 80 215 246 284 325 7122 5804 1604

pointed out that it may be advantageous to add as many ω-symbols as early as
possible, and presented techniques towards such a goal.

Table 1 shows results of the six biggest test runs that we have made with the
test set from [3]. The second column shows the size of the minimal coverability
set. The other numbers are the total numbers of constructed distinct ω-markings,
that is, |F |. The running time was always below 0.1 s except with mesh3x2 (30 s,
29 s, 8 s, 9 s) and, in the case of breadth-first search also mesh2x2 (0.7 s, 0.1 s) and
pncsacover (0.3 s, 0.3 s). These times should not be compared to those in [3,6],
because we used a different computer and programming language (C++).

We ran each experiment with transitions tried in the order that they were
given in the input and in the opposite order. As the table shows, this low-level
difference had sometimes a dramatic impact on the result. This acts as a warning
that numbers like the ones in the table are much less reliable than we would like.

History merging was applied on lines 6 and 8 of Fig. 1. Switching it off had
very little effect on |F | except with breadth-first search.

We leave further analysis and measurements as potential future work.

Acknowledgements. We would like to thank Prof. Mikko Tiusanen and the
reviewers for their help, and the authors of [6] for providing help for the
experiments.
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Abstract. We call a linear time property simple if counterexamples
are accepted by a Büchi automaton that has only singleton strongly
connected components. This class contains interesting properties such
as LTL formulas G(ϕ =⇒ F ψ) or ϕ U ψ which have not yet received
support beyond general LTL preserving approaches.

We contribute a stubborn set approach to simple properties with the
following ingredients. First, we decompose the verification problem into
finitely many simpler problems that can be independently executed. Sec-
ond, we propose a stubborn set method for the resulting problems that
does neither require cycle detection, nor stuttering invariance, nor ex-
istence of transitions that are invisible to all atomic propositions. This
means that our approach is applicable in cases where traditional ap-
proaches fail. Third, we show that sufficient potential is left in existing
implementations of the proposed conditions by exploiting all the avail-
able nondeterminism in these procedures. We employ a translation to
integer linear programming (ILP) for supporting this claim.

1 Introduction

There are two main approaches to the verification of temporal properties, both
concerned with the alleviation of the state explosion. In symbolic model check-
ing [1,2], sophisticated data structures represent a set S of states or paths such
that the memory consumption does not strongly correlate to the number of ele-
ments contained in S. In explicit model checking, the original transition system
is replaced by a smaller one that, by construction, is equivalent with respect
to the investigated property. This paper is concerned with explicit model check-
ing. Here, the partial order reduction [16,7,11] appears to be the most powerful
reduction technique.

There is a broad spectrum of approaches to partial order reduction. On one
end of the spectrum, there are approaches that preserve properties of a full
temporal logic such as LTL [11,17] or CTL∗ [6] or a process algebraic semantics
[18]. On the other end of the spectrum, singular properties or distinguished
classes of properties are preserved such as deadlocks [16], reachability [10] or
other standard properties [13]. Between these extremal techniques, there are
approaches to smaller but nontrivial fragments of temporal logic [14].

In this paper, we generalize the technique used in [13] for singular properties
to a class of properties that can be defined in terms of the structure of a Büchi
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automaton. Büchi automata are an established tool for specifying linear time
temporal properties and are closely related to the temporal logic LTL. We study
Büchi automata where all loops are self loops; that is, the automaton has no
strongly connected component with more than one element. For such properties,
we decompose the verification problem into a finite number of even simpler
verification problems. We present a new stubborn set method that preserves
the resulting class of properties. The resulting technique complements existing
approaches. In difference to traditional LTL preserving methods, it does not
require the detection of cycles (at least not for stubborn set calculation), it
tolerates a limited amount of stuttering in the investigated property, and it
requires fewer transitions to be invisible with respect to the property.

For increasing the power of the required stubborn set calculation, we fur-
ther study the impact of nondeterministic choices in a particular procedure for
stubborn set calculation. To this end, we give a translation of the stubborn set
calculation problem to an integer linear programming (ILP) problem that reflects
all possible choices. This way, we import the mature heuristics that ILP offers
for resolving nondeterminism. Experiments show that this translation pays off,
even when the costly ILP procedure is involved.

The paper is organized as follows. We first introduce Petri nets (Sect. 2) and
Büchi automata (Sect. 3). Then we introduce our notion of simple properties and
discuss consequences (Sect. 4). We continue with a presentation of traditional
stubborn set reduction for liner time properties (Sect. 5) and our new approach
(Sect. 6). In Sect. 7, we present a translation of stubborn set calculation to integer
linear programming. We conclude with a discussion of related work.

2 Petri Nets

For a set M , denote 2M its power set. For sets M and N , let MN be the set of
functions f : N → M . We use the following notation for Petri nets.

Definition 1 (Petri net). A Petri net N = [P, T, F, W, m0] consists of two
finite, nonempty, and disjoint sets P (of places) and T (of transitions), a flow
relation F ⊆ (P × T ) ∪ (T × P ), a multiplicity assignment W : F → N\ {0}, and
an initial marking m0 ∈ NP .

Places and transitions are collectively called nodes. For a node x, let •x = {y |
[y, x] ∈ F} denote its pre-nodes while x• = {y | [x, y] ∈ F} denotes its post-
nodes.

Definition 2 (Behavior). Transition t ∈ T is enabled in marking m ∈ NP iff,
for all p ∈ •t, m(p) ≥ W (p, t). We denote this by m

t−→ . If t is enabled, t can fire
in m, yielding marking m′ where, for all p ∈ P , m′(p) = m(p)−W (p, t)+W (t, p)
under the assumption that W (x, y) is set to 0 for [x, y] /∈ F . This relation is
denoted by m

t−→ m′.

We investigate properties that are evaluated in marking sequences of N .
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Definition 3 (Marking sequence). A finite or infinite sequence of markings
m0m1m2 . . . (mi ∈ NP ) is a marking sequence of the Petri net N iff m0 is the
initial marking of N and, for all i, either there are no enabled transitions in
mi and mi+1 = mi, or there is a transition ti such that mi

ti−→ mi+1. We say
that the corresponding transition sequence t0t1 . . . produces the marking sequence
m0m1m2 . . . . We denote executability of a transition sequence starting at m by
m

titi+1...−−−−−→ or, if the reached marking is relevant, by m
titi+1...−−−−−→ m′.

3 Model Checking with Büchi Automata

In this paper, we consider linear time properties. A linear time property is one
that can be evaluated in each single (typically infinite) run of the system in
isolation. Such a property is true of the given system if all runs of the system
satisfy it. A popular way to verify linear time properties is to construct a Büchi
automaton that accepts all those infinite sequences which violate the property.
Using standard product automaton construction, a new Büchi automaton is
constructed that accepts all runs which are possible in the system and violate the
property. If the given property is satisfied in the system, the resulting automaton
accepts the empty language, otherwise any accepted run yields a counterexample.

Properties are built upon propositions. We postulate a countable set of atomic
propositions which can combined using Boolean operators.

Definition 4 (Proposition). Let A be some countable set, elements of which
are called atomic proposition. Atomic propositions are propositions. If ϕ and ψ
are propositions, so are (ϕ ∧ ψ) and (ϕ ∨ ψ). Let PA the set of all propositions
over A.

Subsequently, we omit parentheses relying on the usual precedence of the ∧ and
∨ operators. We assume that A is arbitrary but fixed throughout the paper.
In examples, we shall use atomic propositions of the form p ≥ k and p < k
where p is a place of the investigated Petri net and k is some natural number.
Propositions are evaluated in markings. For the atomic propositions, we assume
that their interpretation is somehow given by a relation |= ⊆ NP × A. In our
example set of atomic propositions, let m |= p ≥ k iff m(p) ≥ k and m |= p < k
iff m(p) < k. Relation |= is canonically lifted to arbitrary propositions by stating
m |= (ϕ ∧ ψ) (m |= (ϕ ∨ ψ)) iff m |= ϕ and (or) m |= ψ.

We call A closed under negation if, for every a ∈ A, there is a b ∈ A such
that, for all m, m 	|= a if and only if m |= b. Throughout the paper, we assume
A to be closed under negation which justifies the absense of negation in Def. 4:
negation can easily be removed using de Morgan’s laws. Our example set of
atomic propositions is obviously closed under negation. We furthermore assume
that there is a proposition tt that is true of all markings and a proposition ff
that is false of all markings. In our examples, tt := p ≥ 0 and ff := p < 0 satisfy
these requirements.

We define Büchi automata such that they are directly controlled by propo-
sitions. For defining accepting runs of the automaton, we need to observe that



Stubborn Sets for Simple Linear Time Properties 231

(ϕ ∧ ¬ψ)
(¬ϕ ∧ ψ)

ψ

tt

ttq1

q2

q3
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tt ttψ

¬ψ(ϕ ∧ ψ)
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(b) B2

ψ ψ ψ

χϕ

q1 q2 q3 q4

(c) B3

¬ϕ

¬ϕ

ϕ

q1 q2

ϕ

(d) B4

Fig. 1. Examples of Büchi automata

the Büchi automaton attaches propositions to transitions while, in the system,
propositions are related to markings.

Definition 5 (Büchi automaton). A Büchi automaton B = [Q, q0, δ, λ, F ]
consists of

– a finite set Q of states;
– an initial state q0 ∈ Q;
– a transition relation δ ⊆ Q × Q;
– a labeling function λ : δ → PA;
– a set F ⊆ Q of finite states.

B accepts an infinite sequence of markings m1m2m3 . . . if and only if there is
an infinite sequence q0q1q2q3 . . . such that

– for all i, [qi, qi+1] ∈ δ;
– for all i > 0, mi |= λ([qi−1, qi]);
– for infinitely many i, qi ∈ F .

Figure 1 shows a few examples of Büchi automata.
The first state of a state sequence is of course the designated initial state of B.

Acceptance of a Büchi automaton as defined above is in fact nondeterministic.
For some state q and marking m, there may exist several q1, q2 such that q1 	= q2,
m |= λ([q, q1]), and m |= λ([q, q2]).

The product system N ∩ B of a Petri net N and a Büchi automaton B is a
Büchi automaton again.
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Definition 6 (Product System). Let N = [P, T, F, W, m0] be a Petri net and
B = [Q, q0, δ, λ, F ] be a Büchi automaton. The product system N ∩ B is a Büchi
automaton B∗ = [Q∗, q∗

0 , δ∗, λ∗, F ∗] where

– q∗
0 is some element not contained in NP × Q

– Q∗ = {q∗
0} ∪ (NP × Q);

– [q∗
0 , [m, q]] ∈ δ∗ iff [q0, q] ∈ δ, m0 |= λ([q0, q]), and m = m0;

– [[m, q], [m′, q′]] ∈ δ∗ iff m → m′, [q, q′] ∈ δ, m′ |= λ([q, q′]);
– for all [q∗, q∗′] ∈ δ∗, λ([q∗, q∗′]) = tt;
– [m, q] ∈ F ∗ iff q ∈ F .

The resulting Büchi automaton labels all transition with tt. That is, the actual
input sequence is irrelevant and the product system can be seen as a closed
system. Nevertheless, standard theory asserts:

Proposition 1 (Emptiness). There is an infinite sequence of markings real-
izable in N and accepted by B if and only if the product system N ∩ B has an
accepting run.

For bounded Petri nets, the product system has an accepting run if and only
if it has a strongly connected component (w.r.t. δ) that is reachable from the
initial state and contains a final state.

There is a close link between Büchi automata and the linear time temporal
logic LTL. In our setting, LTL formulas are interpreted on infinite sequences of
markings. Sloppily introduced, LTL comprises propositions (true of a sequence
if satisfied in the first marking), Boolean operations (with the usual meaning),
and temporal operators X (“holds in the next state”), F (“holds eventually”),
G (“holds invariantly”), and U (“one property holds until another one is satis-
fied”). For LTL, we know that:

Proposition 2 (LTL). For every LTL formula ϕ, there is a Büchi automaton
that accepts exactly those sequences of markings which violate ϕ.

Büchi automaton B1 (Fig. 1) accepts all sequences that violate the LTL property
ϕ U ψ. B2 accepts all sequences that violate G(ϕ =⇒ F ψ).

In this paper, all results rely on Büchi automata as such. We use LTL only
for the purpose of linking our results to related work. For this reason, we skip a
formal definition of syntax and semantics of LTL.

4 Simple Büchi Automata

For a binary relation R, let R∗ denote its reflexive and transitive closure.

Definition 7 (Simple Property). A Büchi automaton is simple iff, for all
q, q′ ∈ Q, [q, q′] ∈ δ∗ and [q′, q] ∈ δ∗ implies q = q′. A linear time property is
simple iff the set of infinite runs violating the property is accepted by a simple
Büchi automaton.
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In a simple Büchi automaton, the only occurring cycles in the transition relation
are self-loops at states. In other words, all strongly connected components reach-
able from the initial state are singletons. In Fig. 1, automata B1, B2, and B3
are simple whereas B4 is not.

The class of simple properties contains several relevant properties that are
expressible in LTL. Among them, there is the formula G(ϕ =⇒ F ¬ψ) (for
arbitrary propositions ϕ and ψ, see B2 in Fig. 1) which has been shown to be
central in the verification of distributed algorithms in [12]. F ϕ, G ϕ, and ϕ U ψ
are other examples of simple LTL properties. In contrast, FG ϕ is not simple.
Marking sequences that violate FG ϕ contain infinitely many markings where ϕ
is not satisfied. For these sequences, the set of states of the Büchi automaton
that are entered infinitely often must contain both a final and a non-final state
since we need to leave the final state when ϕ is violated and to enter it when ϕ is
satisfied. In this case, however, these two states would form a cycle contradicting
simplicity. Automaton B4 in Fig. 1 accepts all sequences that violate FG ¬ϕ.

As self loops (states q with [q, q] ∈ δ) are the only cycles in simple Büchi
automata, accepting runs have only one state that occurs infinitely often. This
must obviously be a final state. In addition, there is no state re-entered after
having been left. This can be exploited for replacing simple Büchi automata by
even simpler automata.

Definition 8 (Elementary Büchi automaton). A simple Büchi automaton
is elementary iff

– for each state q there is at most one state q′ such that [q, q′] ∈ δ and q 	= q′;
– if q ∈ F then [q, q′] ∈ δ implies q = q′.

That is, if unreachable states are removed, an elementary Büchi automaton con-
sists of a nonbranching sequence of states which may or may not have self loops
and the last of which is a final state.

It is not difficult to see

Lemma 1. For each simple Büchi automaton B, there is a finite set of elemen-
tary Büchi automata M such that a marking sequence is accepted by B if and
only if it is accepted by one automaton in M.

M is obtained by enumerating all self-loop free paths in B that end in a final
state of B. By the simplicity property, there exist only finitely many such paths.
For each path, its set of states together with transitions between subsequent
states and self loops (as far as present in B) form one automaton to be included
in M. Only the last state in the path is final in the resulting automaton.

Figure 3 shows the two elementary Büchi automata that are the result of
decomposing B1 in Fig. 1. Decomposition of B2 in the same figure yields the
automaton depicted in Fig: 3.

If a non-elementary simple Büchi automaton B is decomposed into a set of
elementary Büchi automata M, it is clear that each element B∗ ∈ M has a
simpler structure than B. In particular, its structure is embedded in B. That is,
we can immediately observe



234 A. Lehmann, N. Lohmann, and K. Wolf

(ϕ ∧ ¬ψ)

q1

(a) B1 1

(ϕ ∧ ¬ψ) tt

(¬ϕ ∧ ¬ψ)
q1 q2

(b) B1 2

Fig. 2. Decomposition of B1 (Fig.1) into elementary automata

tt ψ

(ϕ ∧ ψ)
q1 q2

Fig. 3. Decomposition of B2 (Fig.1) into elementary automata

Corollary 1. Let N be a Petri net, B a simple Büchi automaton, and M its
decomposition into elementary Büchi automaton. For every B∗ ∈ M, the number
of states of N ∩ B∗ is less than or equal to the number of states of N ∩ B.

Of course, the decomposition of B may contain a large number of elementary
automata (in fact, up to exponentially many). Moreover, as some of the resulting
automata share common prefixes, the accumulated run time for the product
systems N ∩ B∗ for all B∗ ∈ M may take more time than producing N ∩ B.
However, the limiting resource for model checking is still the available memory
and a large number of state spaces each of which fit into memory is more valuable
than a single state space that does not.

Another advantage of decomposition is that each resulting automaton B∗

operates only on some of the proposition that occur in B. This means that
more transitions of N become invisible which is favorable for traditional LTL
preserving stubborn set methods (see next section).

Using this argument, the remainder of this paper is concerned with elementary
Büchi automata only. Hence, we conclude this section with the introduction
of some terminology. Without loss of generality, we represent an elementary
Büchi automaton using a set {q0, . . . , qn} such that q0 is the initial state and
δ = {[qi, qi+1] | i < n} ∪ {[qi, qi] | i ≤ n}. Consequently, F = {qn}. Every
elementary automaton can be expressed this way by renaming its states. In
particular, missing self loops can be added by labeling them with formula ff.

For state qi, we call ϕi := λ([qi, qi+1]) the progressing formula at qi as its sat-
isfaction is necessary for leaving qi and getting closer to the final state. Likewise,
call ψi := λ([qi, qi]) the retarding formula at qi.
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5 Traditional LTL Preserving Stubborn Sets

For self-containedness, we sketch the core concepts of the classical LTL preserving
stubborn set technique. Stubborn set reduction aims at replacing a state space
with a smaller one that is equivalent to the original one with respect to the
original one. For linear time properties, equivalence means that the reduced state
space has an accepting run if and only if the original does. Reduction is obtained
by considering, in each state only some transitions. The set of transitions to be
considered is controlled by a function stub : NP → 2T . In each marking m, only
transitions in stub(m) are considered. stub(m) is called the stubborn set in m.
For a given function stub, the reduced state space is obtained by replacing the
condition m → m′ in Def. 6 with the condition there is a transition t in stub(m)
such that m

t−→ m′. While only enabled transitions in stub(m) are considered
for producing successor states, it is convenient to permit disabled transitions as
members of stub(m), too.

Equivalence of original and reduced transition system can only be established
if certain conditions are met by the stubborn set generator stub. For preserving
a linear time property, stub(m) must contain an enabled transition if there is any
in m and meet the requirements of commutation, invisibility, and non-ignorance
each of which is discussed subsequently. Furthermore, it is required that the
investigated property is stuttering invariant. A linear time property is stuttering
invariant iff, for all finite marking sequences π1, all markings m, and all infinite
marking sequences π2, the property is satisfied in the path π1mπ2 if and only if it
is satisfied in the path π1mmπ2. For an LTL formula, absence of the X operator
is sufficient but not necessary for stuttering invariance. For instance, F(ϕ ∧X ψ)
is stuttering invariant if ψ is the negation of ϕ.

Properties represented by B1, B2, and B4 in Fig. 1 are stuttering invariant,
whereas the one represented by B3 is not.

5.1 Commutation

The requirement of commutation is the heart of any stubborn set method.

Definition 9 (Commutation). A stubborn set generator stub satisfies the
commutation requirement at marking m iff, for at least one t∗ ∈ stub(m), all
sequences w of transitions outside stub(m) and all t ∈ stub(m),

– m
wt−→ m′ implies m

tw−→ m′;
– m does not enable any transition or m

t∗−→ and m
w−→ implies m

wt∗−−→ .

For preserving linear time properties, the traditional stubborn set method re-
quires that the commutation requirement is satisfied in all markings.

For every marking m and every set U ⊆ T of transitions, there exists a set
U ′ of transitions such that U ⊆ U ′ and U ′ meets the commutation requirement
at m. This statement is trivial as U ′ := T always satisfies the commutation
requirement. It is nevertheless useful to postulate the existence of a function
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closure : NP ×2T → 2T such that, for al markings m and all sets U of transitions,
closure(m, U) is a — desirably small — set of transitions that includes U and
meets the commutation requirement at m.

Several procedures for implementing closure have been discussed in the lit-
erature [20,18]. A very simple procedure (implemented in our tool LoLA) tran-
sitively includes transitions according to the following requirements: (E) if t is
contained and enabled in m, then (•t)• must be included, too, and (D) if t is
included and disabled in m then •p must be included, too, for some insufficiently
marked place p (i.e., m(p) < W ([p, t])).

5.2 Invisibility

Invisibility is the only requirement in the traditional LTL preserving stubborn
set method that depends on the verified property. For space reasons, we present
a rather coarse version of the requirement. A finer version of the requirement
can be found in [17].

Definition 10 (Invisibility). Transition t is invisible for proposition ϕ iff, for
all m, m′ ∈ NP with m

t−→ m′, m |= ϕ if and only if m′ |= ϕ. A stubborn
set generator obeys the invisibility requirement if, for all markings m, it either
returns all transitions or only transitions that, if enabled, are invisible to all
propositions occurring in the involved Büchi automaton.

The purpose of the invisibility requirement is to make sure that the sequences wt
and tw considered for the commutation requirement produce marking sequences
that differ only by stuttering.

5.3 Non-ignorance

Preservation of a linear time property can be proved by gradually transforming an
accepting run of the original system into an accepting run of the reduced system.
The main tool for transformation is the commutation requirement, as follows. A
path π1wtπ2 of the original system where π1 is executable in the reduced system,
m0

π1−→ m, w being a sequence of transitions not using transitions in stub(m), and
t ∈ stub(m), is transformed into π1twπ2 which, by the commutation requirement,
is equally well executable in the original. Moreover, as t ∈ stub(m), at least π1t is
now executable in the reduced system as well. Repeated application of this argu-
ment produces the accepting run in the reduced system.

The invisibility property ensures that π1wtπ2 and π1twπ2 produce marking
sequences that differ only by stuttering. The same is true for any finite number
of modifications of the path. Unfortunately, the argument cannot be continued
to an infinite number of transformations. Assume that m does not satisfy ϕ but
the occurrence of w makes ϕ hold. That is, the original path satisfies F ϕ. If,
however, an infinite number of invisible transitions is shifted in front of w, the
resulting path is an infinite sequence of markings none of which satisfies ϕ, so
the resulting path does not satisfy F ϕ. The non-ignorance requirement repairs
this problem.
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Definition 11 (Non-ignorance). A stubborn set generator stub obeys the non-
ignorance requirement for a Petri net N if, in every cycle of the reduced product
system, there is at least one marking where stub(m) = T .

By this condition, only finitely many transformations of the original path are
necessary before the first transition of w can be shown to be executable in the
reduced system as well. So, all (especially all visible) transitions of the original
path can be executed in the reduced system thus ensuring the desired preserva-
tion of the verified property.

Non-ignorance is typically implemented by starting with a stubborn set gen-
erator stub that does not care about ignorance. Whenever a cycle is detected in
the reduced state space, stub(m) is augmented to the whole T . In order to safely
detect all cycles, the generation of the reduced system is usually done according
to the depth first strategy. Here, every cycle contains a state that has a successor
on the depth first search stack which is a very simple procedure for cycle detec-
tion. This approach is, however, quite problematic especially for distributed state
space generation where a strict depth first order blocks the parallel exploration
of states. In addition, it is widely believed that the non-ignorance requirement
is to a large extent responsible for unsatisfactory reduction results.

6 Our Approach to Stubborn Sets for Simple Properties

In our approach, we would like to use the stubborn sets for navigating the gen-
eration of the product system through the Büchi automaton. By the results of
Sect. 4, we only need to consider elementary Büchi automata. For being able to
tinvolve the current state of the Büchi automaton, we modify the signature of the
stubborn set generator. Instead of stub : NP → 2T , we use stub : NP × Q → 2T .
In a non-final Büchi state qi, two formulas are important. First, there is the
(unique) progressing formula ϕi. Its satisfaction can take us to the next Büchi
state and hence closer to acceptance. Second, there is the retarding formula ψi.
This formula must not be violated until the progressing formula becomes true.
Otherwise, the Büchi automaton would not accept either. In the unique final
state of the Büchi automaton, our goal is to stay there forever. This state has
only a retarding formula to be considered. Consequently, we have two objectives
in stubborn set generation: we would like to “switch on” the progressing formula
while, at the same time, avoid “switching off” the retarding formula. In the se-
quel, we first study these two objectives in isolation. Then we combine them
to our stubborn set approach for elementary Büchi automata, and finally we
compare the approach to the traditional LTL preserving method.

6.1 Stubborn Sets for Switching on Formulas

For this part, we import the ideas from [13] and present them just for being
self-contained. The main concept in his subsection are up-sets.
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Definition 12 (up-set). Consider a marking m and a proposition ϕ such that
m 	|= ϕ. A set U of transitions is an up-set for m and ϕ if every transition
sequence w such that m

w−→ m′ and m′ |= ϕ contains at least one element of U .

In other words, ϕ remains violated as long as only transitions in T \ U are fired.
Let UP(m, ϕ) the family of all up-sets for m and ϕ and observe that UP(m, ϕ)
is not defined if m |= ϕ.

For our stubborn set approach, we are interested in small up-sets for given m
and ϕ. Calculation of up-sets can typically be done by just considering m, the
structure of ϕ, and the topology of N . A reasonable up-set for atomic proposition
p ≥ k is •p while p• can be used for p < k. If m 	|= ϕ any up-set of ϕ is an up-set
for ϕ∧ψ. Symmetrically, if m 	|= ψ, any up-set for ψ is an up-set for ϕ∧ψ as well.
In cases where neither ϕ nor ψ are satisfied, we can actually choose between an
up-set for ϕ and an up-set for ψ when trying to find one for ϕ ∧ ψ. For ϕ ∨ ψ, an
up-set can be constructed as the union of some up-set for ϕ and an up-set for ψ.
Both UP(m, ϕ) and UP(m, ψ) are defined since violation of ϕ ∨ ψ at m implies
violation of both ϕ and ψ at m.

The stubborn set approach of [13] just relies on up-sets and the commutation
requirement. The following results is concerned with the state space of a Petri
net rather than a product system.

Lemma 2 ([13]). Let N be a Petri net and ϕ a proposition. Assume that, at
every marking m where m 	|= ϕ, stub(m) includes U for some U ∈ UP(m, ϕ)
and satisfies the commutation requirement. Then the full state space contains
some marking that satisfies ϕ if and only if the reduced system does.

If the original state space does not reach a marking that satisfies ϕ, then such
a state cannot be reachable in the reduced state space as we never fire disabled
transitions. Assume that the full state space contains a marking m∗ satisfying ϕ
but the reduced state space does not. Let π1π2 be a transition sequence that is
executable in the full state space such that m0

π1π2−−−→ m∗, π1 can be executed
in the reduced system, and the length of π2 is minimal. The minimum exists
since some m satisfying ϕ is reachable in the full state space and m0 is part
of the reduced state space (so π1 is in worst case the empty sequence). Let m

be the marking where m0
π1−→ m, so m occurs in the reduced system. By our

assumptions, m 	|= ϕ, so stub(m) includes an up-set for m and ϕ. One element
of this up-set must occur in π2 since otherwise ϕ would be violated in m∗. That
is, π2 contains elements of stub(m) and can thus be separated into π2 = w1tw2
where w1 contains only transitions in T \ stub(m) and t ∈ stub(m). By the
commutation requirement, tw1w2 can be executed in m as well and still reaches
m∗. However, this means that we have π′

1 = π1t and π′
2 = w1w2 such that

m0
π′

1π′
2−−−→ m∗, π′

1 can be executed in the reduced system, and the length of π′
2 is

shorter than the length of π2. This contradicts the required minimality for the
length of π2.

Stubborn set calculation using up-sets is implemented in the Petri net based
verification tool LoLA [21]. In case studies [4,15] and a model checking contest [9],
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the technique turned out to perform very well. In nets where a marking satisfying
ϕ is indeed reachable, LoLA often computes only little more than the path from
m0 to a target marking. The computed path tends to be only little longer than
the shortest possible one. If a marking that satisfies ϕ is not reachable, the
stubborn set method proposed in [10] produces smaller state spaces but does
not have such a strong goal orientation on satisfiable instances.

6.2 Preventing Formulas from Being Switched Off

For preserving the value of a retarding formula, we propose a stubborn set that
contains only invisible enabled transitions. In difference to the traditional stub-
born set technique for LTL, invisibility refers only to the retarding formula at
the current state (and not for all propositions). Another difference is that we
completely drop the non-ignorance requirement. For non-final Büchi states, the
up-sets replace non-ignorance. For the final Büchi state, infinite stuttering is
rather welcome, so the absence of a non-stuttering requirement does not harm.

6.3 Stubborn Sets for Elementary Büchi Automata

Let B be an elementary Büchi automaton and N a Petri net. We aim at con-
structing a reduced product system that accepts some path if and only if N ∩ B
does. Besides the ideas presented above, we only need two more ingredients.
First, there are states where the above ideas cannot be applied. In these situa-
tions, the fallback solution is always to include all transitions in the stubborn
set. Second, we would like to encapsulate the up-set based arguments such that
the considered portion of a path does not change the Büchi state. To do that, we
will require an up-set that does not contain enabled transitions. This way, the
definition of up-sets assures that the progressing formula remains false by firing
any transition in the stubborn set. Hence, we stay in the same Büchi state.

Definition 13 (Stubborn set for elementary Büchi automata). Let B
be an elementary Büchi automaton, qi a state with progressing formula ϕi and
retarding formula ψi, and m a marking of Petri net N . stub(m, qi) is any set
of transitions of N that satisfies the commutation requirement, the invisibility
requirement with respect to ψi and:

– If qi is the final state of B then stub(m, qi) contains at least one enabled
transition if m has one;

– If qi is a non-final state of B then either m 	|= ϕi and stub(m, qi) contains an
up-set U for m and the progressing formula ϕi such that U does not contain
any transition enabled at m, or stub(m, qi) = T .

This definition brings us immediately to the main theorem of this paper.

Theorem 1 (Preservation of linear time properties). Let B be an ele-
mentary Büchi automaton and N a Petri net. Assume that a reduced state space
is constructed using stubborn set stub(m, q) in state [m, q]. Assume further that
stub meets the conditions of Def. 13. Then N ∩ B accepts some path if and only
if the reduced product system does.
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Proof. As the reduced system is a subsystem of the full one, acceptance in the
reduced system trivially implies acceptance of the same path in the full system.
Assume that the full product system accepts some marking sequence while the
reduced system does not accept any marking sequence. Let π be an accepting
run in N ∩ B, that is, π is a sequence of elements in NP × Q. Separate π into
the finite sequence π1 and the infinite sequence π2 such that π = π1π2 and π1
is the largest prefix of π that is also executable in the reduced system. Assume
without loss of generality that π is selected such that the number of elements in
π2 with non-final Büchi states is minimal. Let [m, q] be the last element of π1.
As π1 is the largest prefix executable in the reduced state space, stub(m, q) does
not contain all enabled transitions. We consider two cases.

In the first case, assume that q is the final state of the Büchi automaton. Then,
by construction of stub, stub(m, q) contains at least one enabled transition if m
has one, all enabled transitions in stub(m, q) are invisible with respect to the
retarding formula ψ at q, and the commutation requirement is satisfied. Let
t1t2 . . . be the transition sequence that produces the infinite marking sequence
[m, q]π2 (i.e. t1 is fired in m). We separate two sub-cases. In case 1.1, there is a
i such that tj ∈ stub(m, qi), then let j be the smallest such i. This means that
t1 . . . tj−1 consists of transitions in T \ stub(m, q). By the commutation require-
ment, sequence tjt1t2 . . . tj−1tj+1tj+2 . . . is executable at m. As tj is invisible
for ψ, the marking sequence produced by the modified transition sequence is
an accepting one in the full product system but has a larger prefix executable
in the reduced system. In case 1.2, the whole sequence t1t2 . . . consists only of
transitions not in stub(m). Then either m does not have enabled transitions in
which case acceptance is trivial, or stub(m) contains a transition t∗ that satisfies
the second condition of the commutation requirement. For this t∗, combining
the two conditions of the commutation requirement, we have that t∗t1t2 . . . can
be executed at m. The produced marking sequence is accepted in the full prod-
uct system since the invisibility condition applies to t∗. Again, a larger prefix is
executable in the reduced system. As we do not leave the final Büchi state, the
arguments of the first case can be repeated, finally yielding an infinite accepting
run in the reduced system.

In the second case, q is a non-final state of the Büchi automaton. Separate π2
into π2 = π2,1π2,2 such that all elements of π2,1 have q as their Büchi state while
no element of π2,2 has q as its Büchi state. This separation is possible since we
consider an elementary Büchi automaton. Let [m∗, q∗] be the first element of π2,2.
Let t1 . . . tn be the marking sequence that produces the markings occurring in
[m, q]π2,1[m∗, q∗]. In particular, we have m

t1...tn−−−−→ m∗. Let ϕ be the progressing
formula at q and ψ the retarding formula at q. Since stub(m, q) 	= T , we have
that m 	|= ϕ and there is an up-set U for m and ϕ that is contained in stub(m, q)
and does not contain transitions enabled at m. On the other hand, since [m∗, q∗]
is the first state in π2,2, we have that q∗ 	= q, so m∗ |= ϕ. By the property of up-
sets, some element of U occurs in t1 . . . tn. Since U is included in stub(m, q), we
can rephrase this statement into: some element of stub(m, q) occurs in t1 . . . tn.
Let i be the smallest index such that ti ∈ stub(m, q). Let m′ be the marking
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where m
t1...ti−−−→ m′. By the commutation requirement, ti is enabled in m, so

ti /∈ U . Hence, m′ 	|= ϕ and, in particular, m′ 	= m∗. Arguing once more with the
commutation requirement, we have m

tit1t2...ti−1−−−−−−−→ m′. Since none of the involved
markings satisfies ϕ and the invisibility condition for ψ applies to ti, this sequence
produces a run in the full product system that ends in state [m′, q]. From there,
we can continue as in the original path thus having exhibited another accepting
run but with smaller distance to the final Büchi state. This contradicts an initial
assumption on the choice of π.

6.4 Comparison

Our stubborn set approach differs in various regards from the traditional LTL
preserving method.

First, our stubborn sets can be determined purely from N , m, qi, ϕi, and ψi. In
particular, we do not need to check for cycles in the reduced state space (except
for checking the Büchi acceptance condition). This simplifies reduced state space
generation with state space exploration techniques other than depth-first order.
Hence, our approach permits flexibility in the search strategy for a accepted run
and enables distributed state space generation. We have completely dropped the
non-ignorance requirement.

Second, we require invisibility only for retarding formulas, and only one at
a time. For progressing formulas not a single invisible transition is formally
required. That is, we can expect reduction for properties where progress towards
the accepting state depends on non-local events. For the retarding formulas,
consideration of one at a time increases the odds that a stubborn set containing
only invisible enabled transitions can be found. On the other hand, we require to
have a complete up-set included in the stubborn set which may decrease the odds
of finding a stubborn set with invisible enabled transitions only. Experimentation
beyond this paper will be necessary for finding out whether the overall effect is
positive or negative.

Third, we would like to emphasize that we did not require stuttering invariance
of the verified property. Stuttering invariance can be violated if some Büchi state
q has ff as its retarding formula. Our stubborn set method will yield stub(m, q) =
T . However, if other states do have retarding formulas different from ff, the
reduced product system can still be smaller than the full one. If we verify using
automaton B3 in Fig. 1, reduction can at least be obtained for states of the
product system where the Büchi state is q1 or q4.

7 Calculation of Stubborn Sets Using ILP Solving

In the previous section, we learned that the main thread for the size of the stub-
born set is fact that two requirements may interfere: the inclusion of an up-set
and the invisibility condition. A bad up-set may inevitably cause the insertion
of a visible transition while another up-set may not cause this problem. Fortu-
nately, for a fixed marking m and a fixed proposition ϕ, there may be several
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different up-sets. An existing implementation of the up-set approach to simple
reachability queries in the tool LoLA does not compute and compare up-sets — it
uses just an arbitrary one. In connection with the invisibility condition which is
not required for reachability, we feel that it is necessary to optimize the choice
of an up-set. When computing stubborn sets in LoLA, there is another source of
nondeterminism that is not fully exploited yet. In establishing the commutation
requirement (in particular, condition (D) in Sect. 5.1), a disabled transition may
have several insufficiently marked pre-places and we need to consider only one
of them.

Consequently, we would like to study the potential gain that can be obtained
by considering all instead of just one up-set and by considering all instead of
an arbitrarily fixed insufficiently marked pre-place. To avoid too bad run-time
penalties, we import a mature mechanism for managing the huge amount of
resulting nondeterminism. To this end, we translate the stubborn set calcula-
tion used in LoLA into an integer linear programming (or ILP) problem. The
LoLA procedure starts with an arbitrary up-set. For each enabled transition,
it includes the conflicting ones and for each disabled transition, it includes the
pre-transitions of some insufficiently marked pre-place. If, during this procedure,
a visible transition becomes prt of the stubborn set, LoLA returns the set of all
enabled transitions.

Translation to ILP brings us to the question of the optimality criterion for
stubborn sets. Optimality of stubborn sets has been studied in depth [20,19].
Two results are relevant here. First, if there are two stubborn sets U and V such
that U ⊆ V then U is always the better choice; that is, yields better reduction.
If there are two stubborn sets U and V such that card(U) < card(V ) then U
may or may not be the better choice, that is, replacing V with U may decrease
or increase the size of the overall state space. The reason is that transitions in
U may generate successor markings where only poor reduction is obtained while
transitions in V may avoid these states. However, the results only state that U
may be not the best choice. It does not state that it never is the best choice. For
this reason, we decided to use a target function of the ILP problem where the
number of enabled transitions in the stubborn set is minimized.

For our ILP problem, we include three sets of integer variables. The first set
is T . We shall construct the inequations such that a value of 1 assigned to t in
the solution means that t is an element the stubborn set while a value of 0 means
that t is not an element of the stubborn set. The second set of variables is P . A
value of 1 assigned to p means that p is the selected insufficiently marked pre-
place of some disabled transition in the closure operation sketched in Sect. 5.1.
The third set of variables consists of one variable for each up-set we want to
consider.

We continue with presenting the actual translation of the stubborn set calcu-
lation into an ILP problem under the assumption that a family of up-sets to be
considered is given. We continue with an enumeration of reasonable up-sets and
conclude with experimental results.
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7.1 Specification of the ILP Problem

For stubborn set calculation in the case of a non-final state, the inputs are a
net N , a marking m, a family of up-sets M, a progressing formula ϕ and a
retarding formula ψ. The target function of or ILP problem states that we want
to minimize the number of enabled transition in the set.

∑

t∈T | m
t−→

t = MIN .

For all variables, we want them to have integer values between 0 and 1.

∀t ∈ T : 0 ≤ t ≤ 1 ∀p ∈ P : 0 ≤ p ≤ 1 ∀M ∈ M : 0 ≤ M ≤ 1

Next, we want to have one of the up-sets included in the stubborn set. In the
sequel, we shall use the inequation y + 1 − x > 0 for modeling the Boolean
relation x =⇒ y.

∑
M∈M

M = 1 ∀M∀t ∈ M : t + 1 − M > 0

The invisibility condition can be stated as follows:
∑

t:t visible to ϕ, m
t−→

t = 0

The commutation requirement for enabled transitions can be coded in the fol-
lowing way.

∀t : t enabled in m ∀t′ ∈ (•t)• : t′ + 1 − t > 0

For disabled transitions, we first need to pick an insufficiently marked pre-place.

∀t : t disabled in m
∑

p∈(•t),m(p)<W (p,t)

p > 0

For the picked place, all pre-transitions need to be inserted.

∀p ∈ P ∀t ∈ •p : t + 1 − p > 0

Since the translation is more or less a re-formulation of the requirements of
Def. 13, we can state without proof:

Theorem 2. If the ILP returns a solution, the set of all transitions that have
value 1 in this solution form a stubborn set with minimal number of enabled
transitions. If the ILP is infeasible, T is the stubborn set with minimal number
of enabled transitions.

For stubborn sets in final Büchi states, the approach is analogous.
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7.2 Enumeration of Up-Sets

The remaining problem is to enumerate reasonable up-sets. Input is a marking
m and a formula ϕ. Output is a family UP(m, ϕ) of up-sets. By Def. 13, we are
only interested in up-sets which do not contain enabled transitions.

We follow the discussion in Sect. 6.1 and proceed by induction on the structure
of the formula. For atomic propositions, up-sets depend on the particular nature
of the propositions. In our example language, we have UP(m, p ≥ k) = {•p} if
•p does not contain enabled transitions, otherwise UP(m, p ≥ k) = ∅. Likewise,
UP(m, p < k) is {p•} or ∅.

For the Boolean operations, we naturally derive UP(m, ϕ1 ∧ϕ2) = UP(m, ϕ1)
if m |= ϕ2, UP(m, ϕ1 ∧ ϕ2) = UP(m, ϕ2) if m |= ϕ1, UP(m, ϕ1 ∧ ϕ2) =
UP(m, ϕ1) ∪ UP(m, ϕ2), else. Remember that m 	|= ϕ1 ∧ ϕ2 when we com-
pute up-sets. For disjunction, we get UP(m, ϕ1 ∨ ϕ2) = {M1 ∪ M2 | M1 ∈
UP(m, ϕ1), M2 ∈ UP(m, ϕ1)}.

If cϕ denotes the number of elements in UP(m, ϕ), we can give the following
constraints for the values cϕ.

cp≥k = 1
cp<k = 1

cϕ1∧ϕ2 ≤ cϕ1 + cϕ2

cϕ1∨ϕ2 = cϕ1 · cϕ2

In principle, this number can grow exponentially. We believe, however, that
most properties occurring in practice will have a limited alternation between
conjunction and disjunction, so the number should not be a problem.

The returned up-sets are the smallest ones we can exhibit without further
knowledge of the net. If there is no up-set without enabled transitions, or there
is one beyond the ones considered by the recursive procedure sketched above, we
will not launch the ILP instance but return T as a stubborn set.

7.3 Experimental Validation

Unfortunately, we do not have experimental results on nontrivial elementary
properties yet. We can, however, provide results for the property G ϕ. This
property is violated if a state m is reachable where m 	|= ϕ. Hence, we can
evaluate our approach, in particular the effect of minimizing the stubborn sets
by enumeration of up-sets. We compare the new, ILP based approach to the
existing implementation in our tool LoLA where an arbitrary up-set is picked,
and an arbitrary insufficiently marked pre-place is chosen. We compare these two
approaches using benchmark examples from the 2011 issue of the model checking
contest [9]. Using the existing LoLA implementation for comparison is justified
by the excellent overall performance of LoLA in that contest. The reachablity
queries in the contest were all global reachability predicates which as such do not
leave any invisible transition (which is not a problem for progressing formulas).
For traditional stubborn set methods, the absence of invisible transitions would
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Table 1. Comparing the original LoLA with the new ILP approach. All numbers are
states explored for checking 20 tasks (fomulas) for each family and scale factor. After
5 million states we stopped the check (–).

model states with LoLA states with LoLA-ILP

family scale min avg max min avg max

FMS 2 11 436 1,230 11 56 203
FMS 5 53,929 147,760 308,435 76 241 665
FMS 10 – – – 121 625 1,970
FMS 50 – – – 481 9,586 39,410
FMS 100 – – – 931 35,524 153,710
FMS 200 – – – 1,831 136,527 607,310
FMS 500 – – – 4,531 832,534 3,768,110

Kanban 5 54 302,121 860,406 46 304 1,131
Kanban 10 – – – 266 2,498 12,832
Kanban 20 – – – 516 9,121 51,782
Kanban 50 – – – 1,266 52,932 322,232
Kanban 100 – – – 2,516 205,749 1,284,982
Kanban 200 – – – 5,016 804,110 –
Kanban 500 – – – 12,516 2,623,553 –

MAPK 8 132 1,775,353 – 93 32,701 93,948
MAPK 20 – – – 539,722 2,206,091 –

require them to produce an unreduced state space. For this reason, we do use
any other tool in our experiments.

We checked three family of models: a flexible manufacturing system (FMS),
Kanban (a benchmark from the SMART model checker [3]), and a system bio-
logical model (MAPK). Each family can be scaled by adjusting the size of the
initial marking. The interested reader is referred to [9] for a detailed discussion
of the models.

Of course, calculation of stubborn sets using ILP is much slower than classical
methods where nondeterminism is resolved arbitrarily but without backtracking.
In the experiments, the ILP version of LoLA needed about 50 to 100 times
as long as the original LoLA implementation for calculating the same number
of states. As the numbers show, this time is well invested, though. First, the
investment of more expensive stubborn set calculation pays off by the smaller
number of states to be explored. That is, the ILP version typically finishes earlier
than the original LoLA. Second, the smaller state spaces increase the odds that
a problem instance ca be solved within the given memory. This is actually much
more important in the model checking area than run time.

8 Related Work and Conclusion

Most approaches on partial order reduction focus on reduction of the transition
system under investigation. To our best knowledge, [8] is the closest approach
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that also takes care of the Büchi state when calculation stubborn sets. Basically,
they relax the original invisibility requirement to those propositions that are
ahead of the current Büchi state. In contrast, our approach requires invisibility
only for one proposition at a time, and only for retarding formulas. We have to
pay for this improvement with the inclusion of a whole up-set in the stubborn
set whereas [8] needs to include only an enabled transition. This means that they
may be able to find stubborn sets with only invisible enabled transitions more
frequently. We address this issue by a more sophisticated calculation procedure
where all the available nondeterminism is exploited for the sake of finding a good
stubborn set.

This paper lacks experimental evaluation of the actual reduction power. We
compensate this problem by collecting other, indirect evidence for the signifi-
cance of our approach. First, our approach is applicable where other approaches
generally fail. We tolerate partial violation of the stuttering invariance, we toler-
ate lack of invisible transitions w.r.t. the progressing formulas, and we tolerate
search strategies where cycles in the product system cannot be found. Further-
more our technique is a proper generalization of [13] which has already shown its
merit. That approach has been further explored in [10]. In future work, we have
to study whether these ideas can be applied to simple linear time properties as
well.

Determining an optimal stubborn set is a question that has received much
attention [20,5,19]. With our translation to ILP, we exploit all the nondetermin-
ism that is available in the particular closure operation we rely on, as well as
most of the nondeterminism in the choice of an up-set. Experimental results are
quite encouraging. Nevertheless, our minimality criterion (minimal number of
enabled transitions in the stubborn set) is known not necessarily to be the best
choice [20]. It optimizes the size of stubborn sets only locally but cannot guaran-
tee minimal resulting product systems. Hence, optimal stubborn set calculation
that takes care of up-sets remains an open question.

Acknowledgement. This work was partially funded by the DFG (German
research foundation) in the project WS4Dsec in the priority program Reliably
Secure Software Systems (SPP 1496).
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Abstract. The sweep-line method allows explicit state model checkers
to delete states from memory on-the-fly during state space exploration
thereby lowering the memory demands of the verification procedure. The
sweep-line method is based on a least progress-first search order that
prohibits the immediate use of standard on-the-fly LTL model checking
algorithms that rely on a depth-first search order. This paper proposes
and experimentally evaluates an algorithm for LTL model checking com-
patible with the search order prescribed by the sweep-line method.

1 Introduction

A main paradigm in explicit state model checking is to limit memory require-
ments by storing only a subset of the visited states in memory at a time. This
means that the peak memory usage is reduced. The subsets of the state space
stored in memory during state space exploration are chosen in such a way that
termination of the exploration is still guaranteed. State caching [14,17] was one
of the first methods based on this paradigm and relies on storing only the states
on the depth-first search stack in memory. The sweep-line method [5,18] and the
to-store-or-not-to-store method [2] represent more recent methods based on the
paradigm of on-the-fly state deletion, and use other conditions for determining
the subsets of states that are to be stored in memory.

The basic idea of the sweep-line method is to exploit a notion of progress
exhibited by many systems. Exploiting progress makes it possible to explore all
reachable states while storing only small subsets of the state space in memory
at a time. The subsets of states stored are determined via a progress value
assigned to each state, and the method explores the states in a progress-first
order. The sweep-line method explore all states with a given progress value before
progressing to the states with a higher progress value. When the method proceeds
to the consider states with a higher progress value, it deletes the subset of states
with a lower progress value. The assumption is that the system does not make
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regress, and hence states with a lower progress value will not be visited again
and do not need to be kept in memory. If the system does make regress, then the
method will mark states at the end of regress edges as persistent (i.e., make them
permanently stored in memory) in order to ensure termination. In presence of
regress, the sweep-line method may visit some states multiple times. The sweep-
line method is in its simplest form [5,18] aimed at on-the-fly verification of safety
properties , such as determining whether a reachable state exists that satisfies a
given state predicate. The theoretical foundation of the sweep-line method has
been further developed in several papers [3,11,18,20,19] and the method has
been implemented in the ASAP platform [25] and in the LoLA tool [22]. The
sweep-line method has been used [12,13,15,23] for the verification of several
industrial-sized protocols specified using the CPN modelling language.

An open research question that has not been addressed in the earlier papers
on the sweep-line method is how to combine the sweep-line method with on-
the-fly model checking of Linear Time Temporal Logic (LTL) properties. The
conventional approach to on-the-fly LTL model checking is based on the explo-
ration of a product Büchi automaton: the negation of the LTL formula to be
checked is represented as a Büchi automata [24] and the product of this property
automaton and the state space (viewed as a Büchi automata) is explored using
a nested depth-first traversal [7] in search for an acceptance cycle, i.e., a cycle
containing an acceptance state. The challenge in the context of the sweep-line
method is that the nested depth-first search of LTL model checking is incompat-
ible with the progress-based search order of the sweep-line method as the latter
cannot guarantee that states in an acceptance cycle will be present in memory
simultaneously. The basic idea of the hybrid approach developed in this paper
is to use nested depth-first search to detect acceptance cycles where the states
on the cycle all have the same progress value, and use a variation of the MAP
algorithm [1,4] to detect acceptance cycles that span multiple progress values.

The rest of this paper is organised as follows. Section 2 introduces the basic
concepts underlying LTL model checking and the sweep-line state space explo-
ration algorithm. Section 3 then presents our algorithm for conducting LTL
model checking with the sweep-line method. The correctness of this algorithm is
proved in Sect. 4 along with its complexity. In Sect. 5, we discuss some possible
extensions and variations of our algorithm. Section 6 presents the results from
the experimental evaluation that we have performed based on an implementa-
tion of the proposed algorithm. Finally, in Sect. 7 we sum up our conclusions
and discuss directions for future work. The reader is assumed to be familiar with
the basic idea of explicit state space exploration.

2 Background

2.1 LTL Model Checking

LTL model checking is usually performed following the automata-based approach
originating from [24] that proceeds in two steps, the first being the transla-
tion of the negation of the LTL formula to be checked into a Büchi automata.
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In this paper we focus only on the second step of the process that can be reduced
to a graph problem [6]: given a graph representing the synchronised product of
the Büchi property automaton and the state space of the system, find a cycle
containing an accepting state. A state of the synchronised product is an ac-
ceptance state if the Büchi property automaton component of the state is an
acceptance state. Any such identified cycle determines an infinite execution of
the system violating the LTL formula. Acceptance cycles can be detected using
nested depth-first search [7] or a variation of Tarjan’s algorithm for strongly con-
nected component (SCC) detection [8]. Hence, we will only reason on automaton
graphs that result from the product of a Büchi property automaton and a state
space graph describing the behaviour of the modelled system.

Definition 1. An automaton graph G is a 4-tuple (S, E , s0,A) where S is a
finite and non-empty set of states; E ⊆ S × S is a finite set of edges; s0 ∈ S is
an initial state; and A ⊆ S is a set of accepting states.

Notation. For an automaton graph G = (S, E , s0,A) we write s → s′ if (s, s′) ∈
E ; and s →∗ s′ if there exists s1, . . . , sn with s1 = s, sn = s′ and si → si+1 for
1 ≤ i ≤ n−1. Acceptance states are graphically represented using double circles.

2.2 The Sweep-Line Method

The sweep-line method [5,18] deletes states on-the-fly by exploiting a particular
notion of progress in the system. Progress is formally captured by a progress
measure that quantifies the progression of a state:

Definition 2. Let G = (S, E , s0,A) be an automaton graph. A progress mea-
sure (or progress mapping) for G is a mapping from S to Φ, where Φ is a
non-empty set of progress values equipped with a total order %.

A progress mapping determines a partition of edges into progress edges cor-
responding to steps that increase the progress value (i.e., edges (s, s′) with
φ(s) � φ(s′)); stationary edges connecting two states with a same progress value;
and regress edges corresponding to steps that decreases the progress value (i.e.,
edges (s, s′) with φ(s′) � φ(s)). Algorithm 1 is the generalised sweep-line algo-
rithm [18] that maintains four data structures:

H is a hash table used to store states currently in memory;
G ⊆ H contains states that will be garbage collected (deleted) when possible;
R ⊆ H contains states that will serve as roots during the next sweep (i.e., an

iteration of the algorithm at ll. 4–10); and
Q ⊆ H contains states that have not yet been processed by the algorithm.

A sweep works basically as a standard state space exploration initiated from
a set of root states R initialised, for the first sweep, with the initial state s0.
States are expanded and their successors that have not been visited so far are
put in Q to be later expanded. This process ends when Q becomes empty.
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Algorithm 1. Sweep, the generalised sweep-line algorithm of [18]

1 algorithm Sweep is
2 s0.pers := false ; R := {s0} ; H := {s0}
3 while R �= ∅ do
4 Q := R ; R := ∅
5 while Q �= ∅ do
6 G := ∅ ; φm := Q.minProgress ()
7 while Q.minProgress () = φm do
8 s := Q.dequeue ()
9 visit (s)

10 H := H \ G

11 procedure visit(s) is
12 for (s, s′) ∈ E do
13 if s′ /∈ H then
14 s′.pers := φ(s′) � φ(s)
15 H := H ∪ {s′}
16 if s′.pers then
17 R := R ∪ {s′}
18 else
19 G := G ∪ {s′}
20 Q := Q ∪ {s′}

The search progresses using a least progress-first policy determined by map-
ping φ: the algorithm proceeds layer by layer, a layer being defined as a set of
states sharing the same progress value, i.e., connected by stationary edges. Two
differences are introduced by the sweep-line method compared to standard state
space exploration. First, we perform garbage collection at l. 10 by removing a
whole layer of states sharing progress value φm (ll. 7–9), and before processing
states with a higher progress value. Any state can be deleted this way except
for persistent states for which the detection is described below. Conceptually,
there exists a sweep-line that separates already visited (and deleted) states from
states to be processed present in Q. This line advances to include new states
after a whole layer of states with the same progress value has been processed.
The only situation the sweep-line can move back is before the start of a new
sweep. A second difference is that to guarantee termination, the algorithm iden-
tifies regress edges (l. 14), and marks their destination as persistent, indicating
that these may not be deleted from memory. Indeed, for any cycle it holds that
either all its states have the same progress value or at least two of its states
are connected by a regress edge. In the first case, no state of the cycle will be
garbage collected as long as at least one of its states remains in H and in the
second case, the destination of the regress edge will always remain in H after
having been detected. Hence, it is guaranteed that the algorithm will not visit
the same states over and over since at least one state per cycle will be present
in H. Note that the destination of a regress edge is not put in Q but in R to
serve as a root for the next sweep (ll. 16–17).

The snapshot of the Sweep algorithm at three different stages is presented in
Fig. 1 for a simple example. Information on accepting states have not been drawn
on this figure as they are not relevant to illustrate the principle of the algorithm.
States are ordered left to right according to their progress value. The conceptual
sweep-line is represented as a vertical dotted line. After the visit of states 0 and
1 (Stage 1) their successor states 2, 3 and 4 are put the queue. State 0 and 1
can then be deleted since they have been processed and their progress value is
strictly smaller than the minimal value found in Q, i.e., φ(2). Hence, the sweep-
line method makes the assumption that they cannot be reached from the set of
unprocessed states. At Stage 2, states 7 and 8 have been processed. All states from
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Fig. 1. Snapshot of algorithm Sweep at different stages

0 to 6 have been previously deleted from H. The visit of state 8 then generated
state 6, already explored but deleted from memory, and state 9, seen for the first
time. Since edges (8,6) and (8,9) are both regress edges, states 6 and 9 are marked
as persistent and put in set R to serve as roots for the next sweep. Once the ex-
pansion of states 7 and 8 is finished they are deleted and this sweep terminates. A
new sweep starts with states 6 and 9 as roots. The algorithm then visits states in
the following order given by φ: 9, 6, 4, 10, 7, 8. After the visit of states 9, 6 and 4
(Stage 3), 9 and 6 will not be deleted since they were marked as persistent during
the previous sweep. Hence, the cycle 8→6→4→7→8 is detected during the visit
of state 8 that generates 6 already in H.

3 A Sweep-Line Algorithm for LTL Model Checking

In this section we introduce our new LTL model checking algorithm. This al-
gorithm consists of two distinct components each dedicated to the detection of
specific kinds of accepting cycles. Before introducing these two components, we
describe a property of accepting cycles.

Let us suppose that state 1 in Fig 1 is an accepting state. The accepting cycle
1→0→1 could be easily discovered by algorithm Sweep previously introduced
since all its states share the same progress value and will therefore be simultane-
ously present in memory at some stage. If state 6 is an accepting state, then the
accepting cycle 6→4→7→8→6 will not be discovered by the sweep-line method
since its states are distributed upon several layers. This property of cycles is
formalised through the following definition.

Definition 3. Let G = (S, E , s0,A) be an automaton graph, and φ be a progress
mapping for G. An accepting cycle c = s1 → s2 → . . . → sn → s1 is a single
layer accepting cycle (SLAC) if and only if φ(si) = φ(sj), ∀i, j ∈ {1, . . . , n}.
Otherwise c is a multiple layers accepting cycle (MLAC).
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Our algorithm separates the detection of SLACs from the detection of MLACs. In
order to discover SLACs, the algorithm builds upon the classical NDFS algorithm
while MLACs are taken care of by a combination of the sweep-line algorithm and
the MAP algorithm [1,4]. Before introducing the LTL model checking algorithm,
we specify the property it should have in terms of being compatible with the
search order of the sweep-line method. The definition below specify that a sweep-
line compliant algorithm may not keep in memory a state behind the sweep-line
that would be deleted by algorithm Sweep.

Definition 4. Let G = (S, E , s0,A) be an automaton graph and φ be a progress
mapping for G. An LTL model checking algorithm storing states to process in a
queue Q is sweep-line compliant if and only if, at any step t of the algorithm:

∀s ∈ St : (∃s′ ∈ S with (s′, s) ∈ Et ∧ φ(s) � φ(s′)) ∨ (mins′∈Q(φ(s
′)) % φ(s))

where St ⊆ S denotes all states kept in memory by the algorithm at step t, and
Et ⊆ E denotes all edges connecting states in St.

3.1 Combining NDFS and Sweep to Discover SLACs

Algorithm 2 contains the pseudo-code of procedure LTL-Sweep that is a variation
of the sweep-line algorithm equipped with a mechanism that allows the detection
of SLACs by performing local nested depth-first searches on layers of states
sharing the same progress value. A state has three associated boolean flags, all
initialised to false (ll. 12–14): pers indicating if the state is persistent and must
not be garbage collected; blue and red that indicate if the state has been visited
by the first level DFS (the blue DFS) or the second level DFS (the red DFS).

The principle of NDFS is to interleave a blue DFS looking for accepting states,
and red DFSs looking for cycles containing accepting states reached by the blue
DFS. When the blue DFS backtracks from an accepting state s, it initialises a
red DFS rooted in s (called seed in the first presentation of the algorithm [7]) to
find whether s is reachable from itself. The algorithm works in linear time since
the result of a red DFS (i.e., marking visited states as red) can be reused in
subsequent red DFSs. In addition to this linear complexity, NDFS also has other
appreciable characteristics, among which: its low memory requirements (only 2
bits required per state, the blue and red bits), its ability to report accepting
cycles on-the-fly, and its easy combination with partial-order reduction [16].

Starting from the initial state, algorithm LTL-Sweep repeatedly perform sweeps
using procedure findSLAC, until no new persistent state is found. An iteration of
procedure findSLAC (ll. 17–22) consists of removing from the priority queue Q
all states with the lowest progress value and performing local NDFSs on theses
states. All non-persistent states visited by these NDFSs are then present in G
and can be removed from H (l. 22). If the main loop fails to find an SLAC,
the findMLAC is invoked to look for an MLAC. Procedures dfsBlue and dfsRed
follow the same principle as algorithm NDFS with the following modifications to
the DFSs:
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Algorithm 2. LTL-Sweep, a sweep-line algorithm for LTL model checking

1 algorithm LTL-Sweep is
2 insert (s0)
3 R := {s0}
4 while R �= ∅ do
5 Q := R
6 R := ∅
7 findSLAC ()
8 findMLAC (H)
9 report “no cycle found”

10 procedure insert(s) is
11 H := H ∪ {s}
12 s.pers := false
13 s.blue := false
14 s.red := false
15 procedure findSLAC () is
16 while Q �= ∅ do
17 G := ∅
18 φm := Q.minProgress ()
19 while Q.minProgress ()=φm do
20 s := Q.dequeue ()
21 dfsBlue (s)
22 H := H \ G

23 procedure dfsBlue(s) is
24 if ¬s.blue then
25 s.blue := true
26 if ¬s.pers then G := G ∪ {s}
27 for (s, s′) ∈ E do
28 if s′ /∈ H then
29 insert (s′)
30 if φ(s) = φ(s′) then
31 dfsBlue (s′)
32 else if φ(s′) � φ(s) then
33 s′.pers := true
34 R := R ∪ {s}
35 else
36 Q := Q∪ {s}
37 if s ∈ A then dfsRed (s, s)
38 procedure dfsRed(s, seed) is
39 s.red := true
40 for (s, s′) ∈ E withφ(s) = φ(s′) do
41 if s′ = seed then
42 report “SLAC found”
43 else if ¬s′.red then
44 dfsRed (s′, seed)

– Any visited state is put in the garbage set G if not persistent (l. 26).
– DFSs are limited to states sharing the same progress value (ll. 30–31, l. 40).
– Finally, two alternatives arise for any new state s′ reached by the first level

DFS (dfsBlue) from a state s belonging to a different layer: it is put in the
root set R and marked as persistent if it is behind the sweep-line (ll. 32–
34); or, if it is in front of the sweep-line (ll. 35–36), it is put in the priority
queue Q to be later visited by a next NDFS during a subsequent iteration
of procedure findSLAC.

3.2 Combining MAP and Sweep to Discover MLACs

Local nested DFSs are guaranteed to find any SLAC, but the algorithm relies
on another procedure to find accepting cycles split upon several layers. This one
is based on the principle that any MLAC always contains at least one regress
edge and, hence, one persistent state. Thus, if the algorithm has failed to find
an SLAC it will launch procedure findMLAC to possibly discover an MLAC
containing a persistent state (l. 8 of Alg. 2). This procedure is invoked with the
hash tableH that contains, at l. 8 of Algorithm 2, all persistent states discovered.

The algorithm we propose to find MLACs is an adaptation of the MAP al-
gorithm initially designed in the context of distributed memory model checking
[4], and later adapted for external memory storage [1].
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Fig. 2. Illustration of the MAP algorithm

Principle of the MAP Algorithm. For an automaton graphG = (S, E , s0,A),
MAP assumes a total order relation >S⊆ S×S that is used to determine a max-
imal accepting predecessor function mapG : S → A ∪ {⊥}. Intuitively mapG(s)
is the largest accepting state that is backward reachable from s (or ⊥ if there
is no such state). The mapping mapG can be computed using a breadth-first
search (MBFS) that propagates forward information on the maximal accepting
predecessor in O(|S| · |A|). Trivially, mapG(s) = s implies the existence of an
accepting cycle looping on s. Unfortunately the converse does not necessarily
hold (see Figure 2(c) for an example) as an accepting state a that is outside a
cycle containing an accepting state b will prevent from discovering this cycle if
a →∗ b ∧ a >S b (which implies that ⇒ mapG(b) = a). We will then say that b
(or the cycle) is hidden by a. Hence, MAP alternates between MBFSs used to
compute mapG and delete transformations used to remove states from A that
may hide accepting cycles. Deleted states are those that have been propagated
along the graph, i.e., the set {s ∈ A | ∃s′ ∈ S,mapG(s

′) = s}. If there is no such
state to delete, then there is no accepting cycle. Otherwise, it is guaranteed that
any accepting cycle will be discovered within a finite number of iterations.

The behaviour of MAP is illustrated on the graph of Fig. 2(a) with two dif-
ferent orders. With the first order (see Fig. 2(b)), MAP finds the accepting cycle
around 6 during the first iteration (since mapG(6) = max{1,2,6} = 6). With the
second order (see Fig. 2(c)), the accepting cycle around 6 is not discovered after
the first computation of mapG (since mapG(6) = max{1,2,6} = 2). States 1 and
2 that have been propagated during this first MBFS are both deleted from A
before a second MBFS is initiated. Since 6 is now the only accepting state, the
cycle is discovered. In the absence of edge (6, 7), MAP would have stopped after
this second iteration and reported the absence of accepting cycle.
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Adaptation of the MAP Algorithm for MLAC Detection. Unlike state-
of-the-art algorithms for LTL model checking, MAP is not based on a depth-first
search and is as such a good candidate for a combination with the sweep-line
method. However, we would like to have an algorithm that is sweep-line compli-
ant (Def. 4) and a straightforward adaptation of the MAP algorithm would not
have this property as it has to remember somehow accepting states removed from
A by the delete transformation. We instead exploit the fact that any MLAC we
are looking for contains at least one persistent state. This is a direct consequence
of the fact that the cycle is distributed upon several layers and, hence, contains
at least one regress edge. We therefore switch from the idea of maximal accept-
ing predecessor to the one of maximal persistent predecessor formalised below.
Note that the mppPG function defined below associates a pair to each state, the
second boolean component giving information on the backwards reachability of
an accepting state as explained below.

Definition 5. Let G = (S, E , s0,A) be a automaton graph, P ⊆ S be a set of
persistent states, and >S be a total order relation on S. For a state s ∈ S,
R(s) = {p ∈ P | p →∗ s} denotes the set of persistent states backwards reachable
from s. The maximal persistent predecessor function mppPG : S → {⊥} ∪
(P × {false, true}) is defined by:

mppPG(s) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(p, true) if R(s) �= ∅, ∀p′ ∈ R(s) \ {p} : p >S p′

and ∃a ∈ A such that p →∗ a →∗ s
(p, false) if R(s) �= ∅, ∀p′ ∈ R(s) \ {p} : p >S p′

and �a ∈ A such that p →∗ a →∗ s
⊥ otherwise

Intuitively, if mppPG(s) = (p, b), then p is the largest persistent state that is
backward reachable from s and b = true if and only if there is a path from p
to s containing an accepting state. Hence, the following proposition is a direct
consequence of Def. 5.

Proposition 1. Let G = (S, E , s0,A) be an automaton graph and P ⊆ S. If
mppPG(s) = (s, true) then G has an accepting cycle containing state s.

Procedure findMLAC (see Algorithm 3) is an adaptation of the MAP algorithm
for MLACs detection. Each iteration of the algorithm (ll. 4–7) consists of com-
puting the mppPG function; and then removing set D from P . This set D contains
states that have been propagated during the computation of mppPG and that
may hide some accepting cycle(s). It is initialised to P before each computa-
tion even though procedure mpp will discard from it hidden persistent states.
In order to optimise the search, we also remove from P the states s such that
mppPG(s) = ( , false) (l. 7). It follows from Def. 5 that these cannot be part
of an accepting cycle. The procedure terminates when set P has been emptied
meaning that all persistent states have been propagated.

Procedure mpp is a sweep-line compliant algorithm computing the maximal
persistent predecessor function with states behind the sweep-line being deleted
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Algorithm 3. Procedure findMLAC to discover multiple layers accepting cycles

1 procedure findMLAC (H) is
2 P := H
3 while P �= ∅ do
4 D := P
5 mpp ()
6 P := P \ D
7 P := P \ {s | s.mpp = ( ,false)}
8 procedure visit(s, prop) is
9 for (s, s′) ∈ E do

10 if prop = (s′, true) then
11 report “MLAC found”
12 if s′ /∈ H then
13 insert (s′) /* see Alg. 2 */
14 s′.mpp := ⊥
15 if prop >mpp s′.mpp then
16 Q := Q ∪ {s′}
17 s′.mpp := prop

18 procedure mpp() is
19 for s ∈ P do
20 s.mpp := (s, s ∈ A)
21 Q := P
22 while Q �= ∅ do
23 G := ∅
24 φm := Q.minProgress ()
25 while Q.minProgress () = φm

do
26 s := Q.dequeue ()
27 (p, acc) := s.mpp
28 prop := (p, acc ∨ s ∈ A)
29 if s ∈ P and p >S s then
30 D := D \ {s}
31 visit (s, prop)
32 if ¬s.pers then
33 G := G ∪ {s′}
34 H := H \ G

at l. 34. Before visiting a state s, we first determine the maximal persistent
predecessor prop it will propagate to its successors (ll. 27–28). It is s.mpp with
the second component set to true if s is accepting. Moreover, if s is persistent
and hidden by s.mpp (ll. 29–30) it must be removed from set D as it must not
be touched by the deletion transformation operated at l. 6.

The visit procedure evaluates whether a maximal predecessor value prop com-
puted as explained above should be propagated to the successors s′ of a state
s. This decision is made according to the result of the comparison of prop and
s′.mpp using the order relation defined below.

Definition 6. Let G = (S, E , s0,A) be an automaton graph and >S be a total
order relation on S. We define the total order relation >mpp on {⊥} ∪ (S ×
{false, true}) as follows:

m >mpp m′ ⇔
{

m = (s, b) ∧m′ = (s′, b′) ∧ (s >S s′ ∨ s = s′ ∧ b ∧ ¬b′)
∨ m = (s, b) ∧m′ =⊥

The definition states that propagation takes place if we have found for s′ a
larger persistent predecessor than the previous one, or, starting from the same
persistent predecessor, an alternative path containing an accepting state has
now been found. State s′ then has to be put in the priority queue Q to be later
visited according to the same process. Note that from Def. 6 and ll. 12–14, prop
is always propagated if s′ is a new state. Finally, as stated by Prop. 1 an MLAC
is found at ll. 10–11 if one reaches s′ with s′.mpp = (s′, true).

An example is illustrated by Fig. 3. At the first iteration, we have P =
{1, 2, 3} (states in dark gray on the figure). We assume that the order rela-
tion on S is such that 3 >S 2 >S 1. The computation of the maximal persistent
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predecessor function gives the following results: mppPφ (2) = mppPφ (3) = (3, false)

and mppPφ (1) = (3, true). The set D of states to remove from P is the single-
ton {3} because 1 and 2 have been hidden by 3 and, hence, discarded from D.
However, we can also delete 2 from P since, as mppPφ (2) = (3, false), no path
starting from 1, 2, or 3 and leading to 3 can contain an accepting state. Hence,
P = {1} after the removal, and after the second iteration, mppPφ (1) = (1, true)
and the MLAC 1→4→5→1 is discovered.

4 Correctness Proof and Complexity of LTL-Sweep

We first prove the correctness of our algorithm. The proof of Theorem 1 is
inspired by the proof of the MAP algorithm [4].

Theorem 1. Algorithm LTL-Sweep reports an accepting cycle if and only if the
automaton graph has an accepting cycle.

Proof. We prove that if the graph has an accepting cycle then a cycle is neces-
sarily reported by the algorithm. The other direction follows immediately from
the computation of s.mpp and Prop. 1. Let C = {s1, . . . , sn} be an accepting
cycle with s1 → . . . → sn → s1. We consider two cases.

1. C is an SLAC. Since algorithm Sweep visits all states, and ∀si, sj ∈ C, φ(si) =
φ(sj), the first NDFS initiated on one of the states si ∈ C will obviously
report the cycle.

2. C is an MLAC. We denote by Pi the content of set P of states used as roots
during the ith call to procedure mpp. Let smax be the largest persistent state
of the cycle (i.e. smax ∈ C∩P0) such that ∀si ∈ (C∩P0)\{smax}, smax >S si.
This state exists since otherwise, we would have P0 = ∅ which would in turn
mean that ∀si, sj ∈ C, φ(si) = φ(sj) and, hence, that C is an SLAC. If the
cycle C is not reported by the ith call to procedure mpp then it necessarily
holds that once the procedure has terminated, smax.mpp = (m, true) with
m >S smax which implies that smax /∈ D and m ∈ D. Now, once mpp has
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terminated, if ∃s ∈ S | s.mpp = (s′, b) with s′ �= s then s′ ∈ D and s /∈ D.
This, combined with the fact that smax.mpp = (m, true), implies that smax

is not touched by the deletion transformation (ll. 6–7 of Alg. 3) and therefore
belongs to Pi+1 while m does not. Since P is finite, C (or another MLAC)
is necessarily reported by a jth (with j > i) call to mpp. ��

Theorem 2. Algorithm LTL-Sweep terminates after having explored at most 2 ·
|P| · |S|+2 · |P|3 · |S| states where P denotes the set of persistent states computed
by Algorithm Sweep.

Proof. Algorithm Sweep explores at most |P| · |S| states [18]. Therefore the same
algorithm combined with NDFS to detect SLACs explores at most 2 · |P| · |S|
states. Procedure mpp of Alg. 3 visits each state s ∈ P at most 2 · |P| times: for
any s′ ∈ P with s′ >S s, it can be visited a first time with s.mpp = (s′, false)
and a second time with s.mpp = (s′, true). Each visit by procedure mpp of s ∈ P
generates at most |S| visits. Hence, procedure mpp terminates after visiting at
most 2 · |P|2 · |S|. Therefore, since procedure findMLAC performs at most |P|
iterations and calls to mpp, it explores at most 2 · |P|3 · |S| states. ��

5 Extensions

We propose in this section extensions to the algorithm we introduced in the
previous section. The first extension has been implemented in our tool and the
experimental section discusses its benefits. The second and third extensions are
opportunities for future research directions and have not been implemented yet.

5.1 On-the-Fly MLAC Detection

The algorithm we introduced can detect SLACs on-the-fly, i.e., without the need
of exploring the entire graph. Indeed, each time a sweep will encounter a layer
containing an SLAC, the use of NDFS guarantees an early termination of the
algorithm. However, an MLAC will be discovered only when no SLAC has been
discovered and, hence, after a complete visit of the automaton graph. One could
however prioritise the discovery of MLACs by interleaving both searches. The
modification we propose is to launch procedure findMLAC each time a sweep
of the first level algorithm (i.e., procedure findSLAC of Algorithm 2) looking
for SLACs has finished. The search of findMLAC is then initiated from states
that were used as roots by the first level sweep and is bound to persistent states
that have already been visited (i.e., not discovered by the last sweep performed).
Let us denote by Ri the set of root states during the ith sweep of the first level
algorithm. After sweep i has terminated, procedure findMLAC will be launched
to look for an MLAC including at least one persistent state of Ri and possibly
some states of ∪j∈{0..i−1}Rj . Procedure findMLAC of Alg. 3 has to be modified
in such a way that, after sweep i has terminated, P is initialised at l. 2 with
Ri. With this modification, it is guaranteed that an MLAC containing some
persistent states p1 ∈ Rp̂1 , . . . , pn ∈ Rp̂n will be reported once the mth sweep
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has finished where m = max{p̂1,...,p̂n}. In the following, we refer to LTL-Sweepoff

as the algorithm where findMLAC is followed by findMLAC and LTL-Sweepon

as the version that interleaves the discovery of the two types of cycles.

5.2 Informed Search for MLACs

For now, there is no interaction between the two search procedures whereas
procedure findMLAC could benefit from the experience of the previous search for
SLACs. For example, in case the automaton graph does not have any accepting
state, the search for MLACs could be avoided by just noticing this information
during the previous step. More generally, we propose to build, as the search
progresses, the progress graph as defined below.

Definition 7. Let G = (S, E , s0,A) be an automaton graph with a progress
mapping φ : S → Φ. The progress graph of G with φ is an automaton graph
Gφ = (Sφ, Eφ, sφ0 ,Aφ) defined by:

– Sφ = {sα | ∃s ∈ S with φ(s) = α} ;
– (sα, sβ) ∈ Eφ ⇔ ∃(a, b) ∈ E with φ(a) = α and φ(b) = β ;

– sφ0 = sφ(s0) ; and
– sα ∈ A ⇔ ∃s ∈ A with φ(s) = α.

This graph provides information on the connectivity between progression layers
of the state space graph and can be used to prune the search for MLACs. We
can for instance avoid the visit of any state s such that, in the progress graph,
sφ(s) is not in a strongly connected component with an accepting state. It is a
direct consequence of Def. 7 that this state can not be part of an accepting cycle.

5.3 Using the Progress Measure to Order States

Another direction we would like to pursue is to study whether the progress
mapping could be useful in the definition of the order relation used to calculate
the maximal persistent predecessor function. We arbitrarily chose in the current
implementation to order states according to the bit vectors they are encoded in
before insertion in the hash table. The sweep-line method works well for systems
for which it is possible to derive a progress measure clustering the state space
into multiple layers with few regress edges. On the basis of this assumption, we
would like to experiment with an order relation that considers the progress value
of states. Let s1 and s2 be two states such that φ(s1) � φ(s2) with s2 being part
of an accepting cycle. If the progress measure has the desired properties, then
it is more likely that s1 →∗ s2 than s2 →∗ s1. In this situation it would then
make sense that s2 >S s1 so that if it is indeed the case that s1 →∗ s2 and if
both states are used as roots during the computation of the maximal persistent
predecessor function, then state s1 would not hide s2 and the accepting cycle
containing that state. It would then not be necessary to perform an iteration of
the algorithm in order to delete s1 to be able at the next iteration to detect the
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accepting cycle. For instance, with the graph of Fig. 3, this heuristic would imply
to order states in such a way that 1 >S 2 and 1 >S 3 (since φ(2) � φ(1) and
φ(3) � φ(1)). We would then have mpp(1) = (1, true) after the first iteration
and the accepting cycle 1 → 4 → 5 → 1 would be detected without the need of
deleting 2 and 3 from P and reiterating the search.

6 Experiments

We have implemented our algorithm in its two variants LTL-Sweepoff and LTL-
Sweepon on the ASAP verification platform [25], and experimented with it using
DVE models from the BEEM database [21]. The 85 instances we selected have
a number of states ranging from 100,000 to 10,000,000 states. Out of these 85
instances, 49 had an accepting cycles and the 36 remaining ones did not. We
compared our algorithm to two LTL model checking algorithms: the classical
NDFS algorithm [7] and the MAP algorithm [4]. We also compared it to the
sweep-line algorithm Sweep from [18] designed for checking safety properties. As
the full graph must be explored in the absence of an accepting cycle, the perfor-
mance of Sweep served, in that context, as a baseline to assess the performance
of LTL-Sweep: the latter cannot visit (or store) fewer states than Sweep. We used
automatically generated progress measures for each model according to the gen-
eration process described in [9]. Each measure projects a state vector to some of
its components (e.g., local variables, program counters) chosen after a prelimi-
nary exploration of the system. For the sake of clarity, we have selected a set of
representative instances from our experiments with respect to several parame-
ters (complexity of the model, size of the graph, and performance). However, for
completeness, the reader may find all our experimental data in [10].

Our experimental data are reported in Table 1. We have separated instances
for which the property analysed holds (top part of the table) from those contain-
ing an accepting cycle (bottom part). The first column provides information on
each graph we analysed: the instance name, the number (in the BEEM database)
of the analysed property and the number of states (st.) and edges (ed.) in the
automaton graph1. Each entry in the table provides data for a single run, i.e.,
a triple (instance, property, algorithm): the peak number of states stored (first
row) and the number of states visited (second row). For sweep-line based al-
gorithms an entry also reports the number of persistent states once the search
has terminated (third row). All these numbers are expressed as fractions of the
number of states of the automaton graph. Finally, for instances exhibiting an
accepting cycle, a small letter to the left of stored states indicates, for our algo-
rithm, the type of cycle detected (S for an SLAC and M for an MLAC).

Our interpretation of the data first deals with graphs without an accepting
cycle. We then discuss the models with falsified properties. Throughout this
section all our comments dealing with LTL-Sweep apply to both versions of the
algorithm: LTL-Sweepoff and LTL-Sweepon.

1 We will not detail the models and their properties in this article but we invite the
reader to consult this database online at http://anna.fi.muni.cz/models/.

http://anna.fi.muni.cz/models/
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Table 1. Experimental data

ND
FS

MAP Sw
eep LT

L-

Sw
eep

on LT
L-

Sw
eep

off

Verified properties

bopdp.3, prop. 4 1.000 1.000 0.074 0.074 0.106
1,703,192 st. 1.000 1.000 2.021 15.739 8.349
4,619,673 ed. – – 0.009 0.009 0.009

leader filters.5, prop. 2 1.000 1.000 0.086 0.086 0.086
1,572,886 st. 2.000 14.462 1.000 2.000 2.000
4,319,565 ed. – – 0.000 0.000 0.000

lifts.6, prop. 2 1.000 1.000 0.012 0.012 0.012
998,570 st. 1.332 16.564 1.552 4.076 3.387
2,864,768 ed. – – 0.006 0.006 0.006

lup.3, prop. 2 1.000 1.000 0.330 0.336 0.336
2,346,373 st. 1.170 10.954 3.909 50.486 8.511
4,965,501 ed. – – 0.111 0.111 0.111

peterson.4, prop. 4 1.000 1.000 0.184 0.205 0.224
2,239,039 st. 1.500 11.546 5.322 103.883 25.443
11,449,204 ed. – – 0.046 0.046 0.046

pgm protocol.8, prop. 4 1.000 1.000 0.043 0.045 0.143
3,069,399 st. 1.000 5.000 1.127 2.995 5.029
7,125,130 ed. – – 0.025 0.025 0.025

rether.6, prop. 2 1.000 1.000 0.069 0.121 0.175
6,046,531 st. 1.001 2.000 1.463 45.663 9.681
7,980,886 ed. – – 0.045 0.045 0.045

Falsified properties

extinction.4, prop. 2 0.408 1.000 0.068 S 0.022 S 0.022
2,001,372 st. 0.817 2.585 1.000 0.115 0.115
6,856,693 ed. – – 0.000 0.000 0.000

iprotocol.4, prop. 4 0.006 0.614 0.109 M 0.032 M 0.123
8,214,324 st. 0.006 1.077 1.803 0.938 7.565
30,357,177 ed. – – 0.108 0.029 0.108

mcs.6, prop. 4 0.140 1.000 0.339 S 0.045 S 0.045
665,007 st. 0.279 8.289 3.414 0.183 0.183
3,283,155 ed. – – 0.003 0.000 0.000

plc.2, prop. 3 0.004 0.005 0.013 M 0.000 S 0.001
130,220 st. 0.004 0.006 1.051 0.009 0.053
210,710 ed. – – 0.013 0.000 0.000

rether.3, prop. 6 0.001 0.129 0.255 M 0.056 M 0.476
607,382 st. 0.001 0.193 1.612 0.413 15.660
991,098 ed. – – 0.040 0.007 0.040

synapse.1, prop. 3 0.059 0.103 0.393 S 0.219 S 0.219
159,888 st. 0.059 0.081 2.099 1.050 0.270
721,531 ed. – – 0.183 0.033 0.033
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Instances without Accepting Cycle. On the criterion of explored states,
MAP and LTL-Sweep, are in general incomparable although we found that, on
the average,MAP have more stable performance. However, this observation is not
surprising if we recall that the time complexity of MAP is O(|A|2 · |S|) while our
algorithm works in O(|P|3 · |S|). The relative performance of both algorithms
then depends on the number of accepting states and the quality of the progress
measure that has an impact on the number of persistent states. Still, even in
the presence of very few persistent states (e.g., instances bopdp.3, rether.6) our
algorithm can explore a large number of states: it also depends on how the
deletion transformation (ll. 6–7 of Alg. 3) succeeds in removing states from the
set of persistent states P that procedure findMLAC will search for cycles on.

If we compare the two variants of our algorithm on the same criterion (ex-
plored states) we observe that LTL-Sweepoff is generally faster than LTL-Sweepon.
With algorithm LTL-Sweepoff, procedure findMLAC is invoked only once with
all persistent states discovered by the algorithm whereas with algorithm LTL-
Sweepon, the procedure is invoked withR0,R1, . . . (Ri being the set of root states
during the ith sweep of the top level algorithm looking for SLACs). Hence, the
delete transformation is usually more successful in the off-line variant as it can
potentially remove more states from P and perform fewer computations of the
maximal persistent predecessor function. Stated in a different manner, it is better
to perform a single invocation of findMLAC on a set S rather than partitioning
S and then performing several invocations on each class of this partition. Av-
eraged over all instances with no accepting cycle, LTL-Sweepon was 12.6 slower
than NDFS while this number goes down to 5.3 with algorithm LTL-Sweepoff. If
we now compare both algorithms to Sweep these ratios become 7.6 and 3.9.

From a different perspective, calling procedure findMLAC once with a large
set naturally causes the algorithm to consume more memory (with respect to
several calls with smaller sets). This is why the peak number of states stored
observed with LTL-Sweepoff is generally larger than with LTL-Sweepon (e.g., in-
stances bopdp.3, pgm protocol.8 or rether.6). For the on-line variant, the differ-
ence observed in stored states between Sweep and LTL-Sweepon is due to the way
the mpp procedure processes: it does not really perform sweeps as algorithm
Sweep does (i.e., visiting states layer-by-layer by increasing the progress value
and then starting again a sweep from some persistent states) but each time it
meets a persistent state s after executing a regress edge, it puts s in the priority
queue, and then continues the search normally. Hence, the sweep-line moves back
each time a persistent state is met. We plan to implement and experiment with
both versions in a future version of our prototype. The negative observations
we made on our algorithm regarding visited states must, however, be related
to its lower memory usage. In most cases, Table 1 shows that the number of
states stored of LTL-Sweepon and LTL-Sweepoff equalled or at least approached
the consumption of Sweep.

In order to compare algorithms on both visited and stored states we mea-
sured for each algorithm on a specific instance a score defined as the product
of stored and visited states. This score indicates to which extent state revisits
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Table 2. Instances for which an algorithm got the best score (i.e., minimised |Visited| ·
|Stored|)

MAP NDFS LTL-Sweepon LTL-Sweepoff

36 instances
without an 11.1% 44.4% 61.1% 36.1%

accepting cycle

49 instances
with an 34.6% 85.7% 53.06% 53.06%

accepting cycle

are compensated by memory reduction, the lower score the better. We com-
puted for each algorithm A the percentage of instances for which algorithm A
got the smallest score. This data can be found in Table 2. Note that the sum
of these percentages exceeds 100% since several algorithms can obtain the same
best score. This for example occurs if the graph does not have any accepting
state. The results indicate that the run time increase of LTL-Sweep is usually
acceptable in that it is counterbalanced by an effective memory usage. More-
over, it appears that our algorithm obtained bad scores mainly on instances for
which the sweep-line method is anyway not adapted. These include models such
as peterson.4 or lup.3. Their graphs are composed of a single connected compo-
nent and do not really exhibit progress. The only exception is model rether.6.
As Table 1 shows, algorithm Sweep performs quite well on that model but the
performance of LTL-Sweepon and LTL-Sweepoff is poor.

Instances with Accepting Cycle(s). On most instances, NDFS is the algo-
rithm performing the best, reporting an accepting cycle faster than its competi-
tors. Even if we consider the number of states stored NDFS, Table 2 shows that
NDFS is the clear winner. However, we found out some instances, for which LTL-
Sweep outperformed both NDFS and MAP. Two such examples are extinction.4
and mcs.6. In both cases it happened that the SLAC reported by LTL-Sweep
contained states close to the initial state (from the progress measure perspec-
tive) which possibly explains why the algorithm could terminate relatively early.
In contrast, using NDFS, it is likely that this cycle would be discovered later
since, by proceeding depth-first, the first states the algorithm backtracks from
(launching the search for accepting cycles) are deeper in the graph and usually
with a higher progress value. If we compare MAP and LTL-Sweep we again ob-
serve very different performances and there is no clear winner between the two.
Relying in these two algorithms on an arbitrary order relation (comparison of
bit state vectors) can also explain their unpredictable performances.

A comparison of the two variants of our algorithm reveals the impact of the
type of accepting cycles found in the graph. If the graph only contains SLACs (or
if contains MLACs including persistent states met after an SLAC is reported),
then the number of states visited by LTL-Sweepoff is guaranteed to be fewer or
equal than the one with LTL-Sweepon. Indeed, in that case, LTL-Sweepon will in-
terleave between searches for SLACs and (useless) searches for MLACs whereas
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LTL-Sweepoff will postpone the latter and discover SLACs sooner. This, for ex-
ample, explains the difference observed in visited states for instance synapse.1.
If the graph has both types of cycles, looking for MLACs as soon as possible
can be fruitful. This explains why LTL-Sweepon terminated faster on instance
plc.2. Algorithm LTL-Sweepoff could report an SLAC only during the last itera-
tions. Finally, if the graph only has MLACs (e.g., for instances iprotocol.4 and
rether.3), then we observe that LTL-Sweepon is usually much faster showing again
the benefit of searching for MLACs as soon as possible.

7 Conclusion and Perspectives

We have introduced in this article an LTL model checking algorithm that can be
used with the on-the-fly deletion of states performed by the sweep-line method.
The major difficulty of designing such a combination stems from the algorithm
the sweep-line method relies on. For reachability properties, the search uses a
progress-based policy whereas state-of-the-art algorithms for LTL model check-
ing rely on a depth-first search that is best suited for cycle detection.

Our algorithm LTL-Sweep is made of two distinct building blocks each one
being dedicated to a specific kind of accepting cycle. For accepting cycles con-
taining states with the same progress value (i.e., SLACs), we simply adapt the
basic Sweep algorithm to perform nested depth-first searches on layers of states.
If the accepting cycle spans several layers (i.e., MLACs) we use a variation of
the MAP algorithm in order to look for accepting cycles containing persistent
states. The choice of MAP originates from its independence from any search or-
der policy which makes it more easily compatible with the sweep-line method.
Since the two searches are independent, we propose two versions of our algo-
rithm. The off-line version first tries to look for SLACs and then for MLACs if
the first search did not detect an acceptable cycle. The on-line variation, inter-
leaves both searches and is thus able to report existing MLACs faster. We have
implemented th algorithms in the ASAP verification platform and compared it
with other LTL model checking algorithms. The conclusions we drew from these
experiments are:

– LTL-Sweep uses roughly the same amount of memory as Sweep while being
4 times slower than Sweep in its off-line version and 8 times slower in its
on-line version;

– When the run time increases it is usually compensated by a low memory
consumption that keeps LTL-Sweep competitive with other algorithms ;

– MAP and LTL-Sweep are in general incomparable: their performance can
considerably vary according to the model analysed ;

– LTL-Sweep could in general not compete with NDFS for fast accepting cycles
discovery but could terminate earlier for some specific models ;

– Both the on-line and off-line versions have their pros and cons: the former
can usually report accepting cycles earlier while the latter usually visits fewer
states in the absence of accepting cycle. This suggests that each could be
useful at different stages of the verification process.
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We identified some possible rooms for improvement. First, data could be ex-
changed between the two procedures to optimise the search for MLACs. We
propose to maintain as the search progresses, a progression graph that sum-
marises the connections between the layers and that could be useful to prune the
search for MLACs. Second, we plan to investigate to which extent the progress
measure could be used to order states efficiently when looking for MLACs.

Our experiments showed that our algorithm achieves a good memory reduc-
tion if we take algorithm Sweep as a reference. This can, however, be penalised
by an increase of the execution time. One direction for future research would
be to design a parallel version of LTL-Sweep to address this issue. As algorithm
MAP, and unlike NDFS, LTL-Sweep does not use an inherently sequential nested
depth-first search this motivates this research direction. Moreover, the two com-
ponents LTL-Sweep is made of are relatively independent: the search for SLACs
and the search for MLACs can be performed in parallel. Several issues still have
to be tackled. For instance, we have to take care that such a combination does
not cancel the sweep-line reduction by letting processes explore different layers
of states (while the sequential algorithm always keep a single layer in memory at
a time). On the other hand, using a global “clock” to determine how processes
explore the system would not necessarily yield a good time reduction.
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Abstract. We define a safety slice as a subnet of a marked Petri net
Σ that approximates Σ’s temporal behavior with respect to a set of
interesting places Crit. This safety slice can be used to verify and fal-
sify stutter-invariant linear-time safety properties when Crit is the set of
places referred to by the safety property. By construction it is guaranteed
that the safety slice’s state space is at most as big as that of the orig-
inal net. Results on a benchmark set demonstrate effective reductions
on several net instances. Therefore safety slicing as a net preprocessing
step may achieve an acceleration for model checking stutter-invariant
linear-time safety properties.

Slicing is a technique to syntactically reduce a model in such a way that at best
the reduced model contains only those parts that may influence the property
the model is analyzed for. It originated as a method for program debugging[16]
but has found applications in many other domains. We here introduce a slicing
approach tailored to Petri nets as a means to alleviate the state space explosion
problem for model checking Petri nets. We present a safety slicing algorithm that
determines what parts of a marked Petri net Σ can be sliced away (i.e. discarded)
so that the remaining net is equivalent to the original w.r.t. a stutter-invariant
linear-time safety property ψ. The remaining net is called safety slice Σ′ and is
built for a so called slicing criterion Crit.

We will formally show that safety slices allow for verification and falsifica-
tion of stutter-invariant linear-time safety properties. Hence when one wants to
examine whether a marked Petri net Σ satisfies a stutter-invariant linear-time
safety property ψ, the safety slice may be examined instead. The safety slice
may have a substantially smaller state space, yielding an acceleration in model
checking. As the safety slicing algorithm is linear in the size of the net Σ (not its
state space!), even when slicing does not accelerate model checking, the overhead
will usually be insignificant.

In [11] we presented a more conservative slicing algorithm. There we intro-
duced CTL∗

-X slices, which preserve CTL∗
-X properties assuming a weak fairness

assumption on the original net Σ. By definition a safety slice for Crit is a subnet
of the CTL∗

-X slice for Crit, so that safety slicing offers the potential to generate
smaller slices than the CTL∗

-X preserving algorithm but sacrifices the preservation
of liveness properties.
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Outline. In the next section we introduce the basic notions of this paper. As
an introduction to safety slicing, we sketch the algorithm for CTL∗

-X slicing in
Sect. 2. In Sect. 3 we refine this algorithm to the more aggressive safety slicing
algorithm and formally prove that a safety slice preserves stutter-invariant linear-
time safety properties. We then discuss related work in Sect. 4 and present
evaluation results in Sect. 5. We outline future work and conclude the paper in
Sect. 6.

1 Basic Definitions

The developed slicing techniques aim to alleviate the model checking problem
for temporal logic specifications. Temporal logic allows to specify properties re-
ferring to the system behavior over time [1]. In [11] we presented a first slicing
approach preserving any property expressed in CTL∗

-X, i.e. CTL
∗ (see e.g. [1])

without next-time operator. In this paper however we focus on a less conserva-
tive algorithm that only preserves stutter-invariant linear-time safety properties,
which are formally introduced in this section.

Sets and Sequences. For a set X we denote the union of finite and infinite
words over X , X∗ ∪ Xω, as X∞. For a finite sequence γ = x1x2...xn ∈ X∞,
|γ| is n, the length of γ. If γ is infinite, |γ| = ∞. γ(i) denotes the i-th ele-
ment, 1 ≤ i < |γ| + 1, and γi denotes the suffix of γ that truncates the first
i positions of γ, 0 ≤ i < |γ| + 1. γ′ = projX′(γ) denotes the projection of γ
to X ′ ⊆ X , i.e. γ′ is derived from γ by omitting every xi ∈ X \ X ′. Two se-
quences γ1 and γ2 are stutter-equivalent iff unstutter(γ1) = unstutter(γ2), where
unstutter merges finitely many successive repetitions of the same sequence el-
ement into one. So γ1 = x1x2x3 and γ2 = x1x2x3x3x3 are stutter-equivalent
whereas γ3 = x1x2x3x3.... is not stutter-equivalent to γ1 or γ2. We extend the
functions unstutter and proj to sets of sequences in the usual way.

Petri Net Definitions. A Petri net N is a triple (P, T,W ) where P and T are
disjoint sets and W : ((P × T ) ∪ (T × P )) → N. An element p of P is called
a place and t ∈ T is called a transition. The function W defines weighted arcs
between places and transitions. A Petri net is finite iff P and T are finite sets.
In this paper we consider finite Petri nets only.

The preset of p ∈ P is •p = {t ∈ T | W (t, p) > 0} and the postset of p is
p• = {t ∈ T | W (p, t) > 0}, analogously •t and t• are defined.

A marking of a net N is a function M : P → N, which assigns a number
of tokens to each place. With a given order on the places, p1, ..., pn, M can be
represented as a vector in N|P |, where the i-th component is M(pi).

A transition t ∈ T is enabled at marking M , M [t〉, iff ∀p ∈ •t : M(p) ≥
W (p, t). If t is enabled it can fire. The firing of t generates a new marking M ′,
M [t〉M ′, which is determined by the firing rule as M ′(p) = M(p) − W (p, t) +
W (t, p), ∀p ∈ P . The definition of [〉 is extended to transition sequences σ as
follows. A marking M always enables the empty firing sequence ε and its firing
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generates M . M enables a transition sequence σt, M [σt〉, iff M [σ〉M ′ and M ′[t〉.
If M [σ〉, the transition sequence σ is called a firing sequence from M . The effect
of σ on a place p ∈ P , Δ(σ, p) ∈ Z, is defined by Δ(ε, p) = 0 and Δ(σt, p) =
Δ(σ, p) +W (t, p)−W (p, t).

Given a firing sequence σ = t1t2... with M [t1〉M1[t2〉M2..., the sequence
MM1M2... is called themarking sequence of σ fromM ,M(M,σ). AsM(M,σ)|P̃
:= M |P̃M1|P̃M2|P̃ ... we denote the elementwise restriction of M(M,σ) to P̃ ⊆
P . A marking M is called final iff there is no nonempty firing sequence from
M . A firing sequence σ from M is maximal iff either σ is of infinite length or
σ generates a final marking. A marking sequence M(M,σ) is maximal iff σ is
a maximal firing sequence. By convention, we regard a finite maximal marking
sequence μ as equivalent to the infinite marking sequence μ′ that repeats the
final marking of μ infinitely often.

A Petri net Σ = (N,Minit) with a designated initial marking Minit is called
a marked Petri net. A marking of Σ is reachable if there is a firing sequence
from Minit that generates M , Minit[σ〉M . The set of reachable markings of Σ is
denoted as [Minit〉. In the following we will use N synonymous with (P, T,W )
and Σ synonymous with (N,Minit) and subscripts carry over to the components,
i.e. we use N1 synonymous with (P1, T1,W1). Moreover, we denote a marking
generated by firing σ ∈ T ∗ from the initial marking Minit as Mσ.

Transition System of a Petri Net. A transition system is one standard model
to describe the behavior of system. We use transition systems here as an inter-
mediate: We define stutter-invariant linear-time safety properties on transition
systems and introduce TSΣ the transition system of a Petri net Σ.

Definition 1 (Transition System). A transition system TS with initial state
is a tuple (S,Act , R,AP , L, sinit) where

– S is the set of states,
– Act is a set of actions,
– R ⊆ S ×Act × S is the transition relation with

∀s ∈ S : ∃α ∈ Act : ∃s′ ∈ S : (s, α, s′) ∈ R,
– AP is a set of atomic propositions,
– L : S → 2AP is a state labelling function.
– sinit is a designated initial state of TS

Note, that a transition system according to Def. 1 has no terminal states, i.e.
every state has a successor via R.

A path π from a state s is a sequence of states such that π(1) = s and
∀i, 1 ≤ i < |π| + 1 : ∃αi ∈ Act : (π(i), αi, π(i + 1)) ∈ R. A trace ϑ of a path
π is L(π) := L(π(0))L(π(1))... . TracesTS (s) denotes the set traces of (TS , s).
TracesTS(s),fin and TracesTS(s),inf denote the sets of finite and infinite traces of
paths of TS starting at s. We use TS and (S,Act , R,AP , L, sinit) synonymously.

Next we define the transition system of a Petri net. We denote the set of places
a temporal logic property ϕ refers to as scope(ϕ).
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The behavior of a marked Petri net Σ can be captured by a transition system
TSΣ . The reachable markings of Σ are the states of TSΣ . If M [t〉M ′, then there
is also a transition from state M to M ′ via action t in TSΣ . Hence a path
μ = M0M1 ...Mn in TSΣ corresponds to the firing sequence σ = t1t2...tn with
marking sequence M(M0, σ) = M0M1...Mn .

A maximal firing sequence may be finite and thus generate a final marking
that does not enable any transition, but every state M of TSΣ has to have at
least one successor. By convention we therefore introduce a new action symbol
τ and define that a final marking M reaches itself via τ . By this extension
any marking sequence corresponds to a path and any maximal firing sequence
corresponds to an infinite path.

Definition 2 (TSΣ). Given a Petri net Σ and a set of atomic propositions
APΣ ⊆ P × N, the transition system TSΣ(Σ,APΣ) is the tuple
(SΣ ,ActΣ , RΣ ,APΣ , LΣ,Minit) with

– SΣ = [Minit〉,
– ActΣ = T � {τ} ,
– RΣ = {(M, t,M ′) | M,M ′ ∈ [Minit〉 ∧ t ∈ T ∧M [t〉M ′} ∪ {(M, τ,M) | M ∈

[Minit〉 ∧ ∀t ∈ T : ¬M [t〉}
– LΣ = {(M �→ A) | M ∈ SΣ ∧ A = {(p, x) ∈ APΣ | M(p) = x}}.

Stutter-invariant Safety Properties. In the following we introduce the notion
of stutter-invariance and characterize safety properties following [1]. For the
following we fix a set of atomic propositions AP .

Linear-time properties express constraints on infinite paths or more precisely
on infinite traces.

Definition 3 (LT Property). A linear-time property (LT Property) over the
set of atomic propositions AP is a subset of (2AP )ω.

TS , s |= P means that all infinite traces starting from s satisfy P . Note, that
by Def. 1, a finite trace can always be extended to an infinite trace, since our
transition systems have no terminal states. We formally define TS , s |= P by:

Definition 4 (Satisfaction Relation for LT Properties). Let P be an LT
property over AP and TS a transition system.

TS , s |= P ⇔ TracesTS,inf(s) ⊆ P.

Stutter-invariant linear-time properties do not distinguish between stutter-
equivalent traces.

Definition 5 (Stutter-invariant [6,8]). Let ϑ and ϑ2 be in (2AP )ω.
A property Pstutter ⊆ (2AP )ω is stutter-invariant if whenever ϑ and ϑ2 are
stutter-equivalent then either both ϑ and ϑ2 satisfy Pstutter or both violate Pstutter .

We are now ready to define safety properties. A safety property can be thought of
as stating that nothing bad will eventually happen [6]. When a safety property
Psafe is violated, a finite prefix is sufficient to expose the behavior forbidden
by Psafe . Formally a safety property is an LT property that, if any possible
infinite trace ϑ violates Psafe , it has a bad finite prefix ϑpref , such that any

other (possible) trace ϑ̃ with prefix ϑpref also violates Psafe .
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Definition 6 (safety property). An LT property Psafe over AP is a safety
property if for all words ϑ ∈ (2AP )ω \Psafe there is a finite prefix ϑpref of ϑ such
that

Psafe ∩ {ϑ̃ ∈ (2AP )ω | ϑpref is a prefix of ϑ̃} = ∅.

Any such prefix ϑpref is called a bad prefix for Psafe . The set of all bad prefixes
for Psafe is denoted by BadPref (Psafe).

This definition allows us to derive a satisfaction relation referring to the finite
behaviors of TS only. A transition system satisfies a safety property Psafe from
state s iff the set of finite traces from s does not have a bad prefix, that means
nothing bad happens starting from s.

Proposition 7 (Satisfaction Relation for Safety Properties [1]). For a
transition system TS and safety property Psafe it holds that

TS , s |= Psafe if and only if TracesTS ,fin(s) ∩ BadPref (Psafe) = ∅.

The fact that satisfiability of safety properties can be characterized by the fi-
nite behaviors of TS will allow us to define more effective reductions for safety
preserving slicing than for CTL∗

-X slicing, which also preserves liveness properties.
If we interpret in the following a temporal property ϕ on a Petri net Σ, we

always assume that the set of atomic propositions of ϕ is contained in APΣ , the
set of atomic propositions of TSΣ .

2 CTL∗
-X Slicing

If we want to observe the behavior of Σ w.r.t. a set of places Crit –which may
for instance be the set of places a CTL∗

-X property ϕ refers to–, the behavior is
dependent on other parts of the net. Following these dependencies backwards
starting from Crit will give us the slice. The basic idea for our Petri net slicing
algorithms is to define the dependencies based on the locality property of Petri
nets: The token count of a place p is determined by the firings of incoming and
outgoing transitions of p. Whether such a transition can fire, depends on the
token count of its input places.

If we want to observe the marking on a set of places Crit, we can iteratively
construct a subnet Σ̂ = (P̂ , T̂ , Ŵ , M̂init) ofΣ by taking all incoming and outgoing
transitions of a place p ∈ P̂ together with their input places, starting with
P̂ = Crit. The subnet Σ̂ certainly captures every token flow of Σ that influences
the token count of a place p ∈ Crit.

We refine the above construction by distinguishing between reading and non-
reading transitions. A reading transition of places R cannot change the token
count of any place in R. We formally define t to be a reading transition of
R ⊆ P iff ∀p ∈ R : W (p, t) = W (t, p). If t is not a reading transition of R,
we call t a non-reading transition of R. Let us now iteratively build a subnet
Σ′ = (P ′, T ′,W ′,M ′

init) by taking all non-reading transitions of a place p ∈ P ′

together with their input places, starting with P ′ = Crit.
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Definition 8 (CTL∗
-X slice, sliceCTL∗

-X
). Let Σ be a marked Petri net and

Crit ⊆ P a non-empty set, called slicing criterion. The following algorithm con-
structs sliceCTL∗

-X
(Σ,Crit) of Σ for the slicing criterion Crit.

1 generateSlice(Σ,Crit){
2 T ′, Pdone := ∅ ;
3 P ′ := Crit ;
4 while ( ∃p ∈ (P ′ \ Pdone) ) {
5 Let p be a place in P ′ \ Pdone ;
6 while ( ∃t ∈ (( •p ∪ p•) \ T ′) : W (p, t) �= W (t, p) ) {
7 Let t be a transition in {t ∈ (( •p ∪ p•) \ T ′) | W (p, t) �= W (t, p)} ;
8 P ′ := P ′ ∪ •t ;
9 T ′ := T ′ ∪ {t} ; }

10 Pdone := Pdone ∪ {p} ; }
11 return (P ′, T ′,W |(P ′,T ′),Minit|P ′) ; }
The algorithm always terminates and always determines a subnet
sliceCTL∗

-X
(Σ,Crit) for any given slicing criterion Crit. Though, the slice may equal

the original net Σ. If Crit ⊆ Crit′, sliceCTL∗
-X
(Σ,Crit) is a subnet of sliceCTL∗

-X

(Σ,Crit′). Figure 1 illustrates the effect of generateSlice.

s1

t4

s4 t6

s0

t3

s5s3

s2

t0

t1

t2

t5 t7 s6

Σ′
1

Σ1

Fig. 1. Slicing a Petri net. The original net Σ1 and its slice Σ
′
1 = sliceCTL∗

-X
(Σ1, {s5}).

The slice sliceCTL∗
-X
(Σ,Crit) may be smaller than Σ̂, the subnet constructed

without considering reading transitions. Even for certain strongly connected nets
the algorithm generateSlice might produce a slice Σ′ that is smaller than Σ,
whereas Σ̂ for a strongly connected net is always equals to Σ.

In [11] it was shown, that it holds

Σ |= ϕ fairly w.r.t. T ′ ⇔ sliceCTL∗
-X
(Σ,Crit) |= ϕ

for a CTL∗
-X formula ϕ, scope(ϕ) ⊆ Crit and where T ′ is the set of transitions of

sliceCTL∗
-X
(Σ,Crit). Basically, a firining sequence σ is fair w.r.t. T ′, if σ is either

maximal or σ is infinite and if σ eventually permanently enables a t′ ∈ T ′, a
transition t ∈ T ′ will be fired infinitely often– t may or may not equals t′. We
refer the interested reader to [11] for a formal definition. Σ |= ϕ fairly w.r.t. T ′

holds if all fair firing sequences of Σ –more precisely, their corresponding traces–
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satisfy ϕ. This kind of weak fairness assumption on Σ guarantees progress within
its slices subnet and is necessary when studying liveness properties.

The CTL∗
-X slicing algorithm is fairly conservative. Assuming a very weak

fairness assumption on Σ it approximates the temporal behavior quite accurately
by preserving all CTL∗

-X properties. For safety slicing we focus on the preservation
of stutter-invariant linear-time safety properties only. So we need to preserve
the temporal behavior of Σ less accurately. This allows us to define a more
aggressive slicing algorithm that may generate smaller slices than the CTL∗

-X

slicing algorithm. In the next section we will first characterize in which respect
we have more freedom in capturing Σ’s behavior, and then formulate the safety
slicing algorithm.

3 Safety Slicing

In this section we will develop the safety slicing algorithm which preserves
stutter-invariant linear-time safety properties.

The Ease of Slicing for Safety Properties. The reason why the slicing algorithm
can be more aggressive for safety properties is due to the fact that satisfiability
of safety properties can already be determined inspecting finite prefixes of traces
of TSΣ . A transition system satisfies a safety property Psafe iff its set of finite
traces does not have a bad prefix (c.f. Prop. 7). Two transition systems satisfy the
same stutter-invariant safety-properties if their sets of finite paths are stutter-
equivalent:

Proposition 9. Let TS 1 and TS 2 be two transition systems with the same set
of atomic propositions, AP1 = AP2. Let Psafe ⊆ (2AP1)ω be a stutter-invariant
safety property.

If unstutter(TracesTS1,fin(sinit1))=unstutter(TracesTS2,fin(sinit2)),
then TS 1, sinit1 |= Psafe if and only if TS 2, sinit2 |= Psafe .

Proof. We first show that TS 1, sinit1 |= Psafe implies TS 2, sinit2 |= Psafe . Let us
assume that TS 1, sinit1 |= Psafe . Let ϑ2 be a finite trace of TS 2 from sinit2. By as-
sumption, TS 1 has a stutter-equivalent trace ϑ1, unstutter(ϑ1) = unstutter(ϑ2).
Since TS 1, sinit1 |= Psafe and since there are by Def. 1 no terminal states in TS 1,
ϑ1 is the prefix of an infinite trace ϑ1ϑsuf that satisfies Psafe . Since ϑ1 and ϑ2

are stutter-equivalent, ϑ2ϑsuf |= Psafe . This implies that ϑ2 �∈ BadPref (Psafe).
By Prop. 7 it follows that TS 2, sinit2 |= Psafe .

It follows analogously that TS 2, sinit2 |= Psafe ⇒ TS 1, sinit1 |= ψsafe . ��

Because marking sequences of Σ correspond to paths of TSΣ, it follows that two
Petri nets satisfy the same stutter-invariant safety properties if their (sets of)
finite firing sequences generate (sets of) stutter-equivalent marking sequences.

Building the Safety Slice. The basic idea for constructing a safety slice is to build
a slice for a set of places Crit by taking all non-reading transitions connected to
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Crit and all their input places, so that we get the exact token count on Crit. But
for all other places we are more relaxed: We iteratively take only transitions that
increase the token count on places in P ′ and their input places (c.f. Def. 10).
Intuitively, that way we can run any “sliced” firing sequence of Σ on its safety
slice Σ′ such that we have in Σ′ at least as many tokens on the places and the
same token count on Crit. This guarantees that we capture “enough” behavior
of Σ within Σ′. Also we will see that every firing sequence of Σ′ is also a firing
sequence of Σ. Hence the slice does not expose too much behavior.

Definition 10 (safety slice, sliceS). Let Σ be a marked Petri net and let
Crit ⊆ P be the slicing criterion. The safety slice of Σ for slicing criterion Crit,
sliceS(Σ,Crit), is the subnet generated by the following algorithm.

1 generateSafetySlice(Σ,Crit){
2 T ′:= {t ∈ T | ∃p ∈ Crit : W (p, t) �= W (t, p)} ;
3 P ′ := •T ′ ∪ Crit ;
4 Pdone := Crit ;
5 while ( ∃p ∈ (P ′ \ Pdone) ) {
6 Let p be a place in P ′ \ Pdone ;
7 while ( ∃t ∈ ( •p \ T ′) : W (p, t) < W (t, p) ) {
8 Let t be a transition in {t ∈ ( •p \ T ′) | W (p, t) < W (t, p)} ;
9 P ′ := P ′ ∪ •t ;

10 T ′ := T ′ ∪ {t} ; }
11 Pdone := Pdone ∪ {p} ; }
12 return (P ′, T ′,W |(P ′,T ′),Minit|P ′) ; }

This safety slice allows to verify and falsify linear-time stutter-invariant safety
properties.

Figure 2 illustrates the effect of generateSafetySlice. Whereas sliceS(Σ2,
{s6}) does not contain the transition t4, the CTL∗ slice sliceCTL∗

-X
(Σ2, {s6})

includes it, as t4 can decrease the token count on s7.

s2

t4

s1

t3

s5 t7 s7t8s6s4

s0

t0 t1

t2

t6

s3

Σ2

Σ′
2

Fig. 2. Slicing a Petri net for safety. The original net Σ2 and its slice Σ′
2 =

sliceS(Σ2, {s6}).

Figure 1 shows the sliceCTL∗
-X
(Σ, {s5}). The safety slice sliceS(Σ, {s5}) is smaller

than sliceCTL∗
-X
(Σ, {s5}). It omits t3 and s0. Let us consider the liveness
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property AF(s5, 1), meaning that eventually s5 is marked with one token.
Whereas the safety slice eventually places a token on s5, the original net and also
sliceCTL∗

-X
(Σ, {s5}) may not, because they may fire t3. That is, sliceS(Σ, {s5})

|= ϕ, whereas Σ fairly �|= ϕ. Hence the safety slice does not preserve liveness
properties.

Impact of Slicing. Let us consider the size of Σ’s state space in terms as reachable
states and state transitions as an indicator of the impact of slicing, as it usually
has a strong influence on time and space needed for model checking.

If slicing removes dead subnets, in which never any transition is enabled, the
effect on the state space is void. In contrast, if slicing removes parts of the net
that expose highly concurrent behavior, the savings may be huge.

For an example consider the net in Fig. 2, but let us change its initial marking
on s1 to (a) Minit(s1) = 0, (b) Minit(s1) = 1 as in Fig. 2 and (c) Minit(s1) = 3.
The safety slice is the same in all three cases with 9 reachable states and 11
state transitions. The state space sizes of the unsliced nets are (a) (18, 45), (b)
(54, 197) and (c) (180, 822) given as pairs of (states, state transitions).

Hence, whether a net is reducible depends on the model structure, whereas the
impact of slicing depends on the system dynamics. As the dynamics is difficult
to predict by just studying the model structure, the impact of slicing is difficult
to predict as well.

3.1 Proving Safety Slice’s Properties

To show that the safety slice preserves indeed stutter-invariant safety properties,
it suffices to show that the sets of finite firing sequences of Σ and Σ′ generate
stutter-equivalent traces, as we have seen.

Correspondence of Firing Sequences. We first show the correspondence of firing
sequences. We will show that for a given firing sequence σ of Σ we can fire the
projected firing sequence proj T ′(σ) on the safety sliceΣ′. We can omit transitions
in T \ T ′, since they do not increase the token count of any place in P ′, so the
token count on all places will be at least as high as it is on Σ firing σ. Further,
every firing sequence of a safety slice Σ′ is a firing sequence of Σ.

Firing Sequences, Marking Sequences, Traces. We then show that corresponding
firing sequences σ and σ′ generate corresponding markings, Mσ|Crit = M ′

σ′ |Crit.
We consider markingsM of Σ and M ′ of Σ′ as correspondent iff they coincide on
Crit, because we assume that scope(ϕ) ⊆ Crit. It thus follows that two marking
sequences that are stutter-equivalent w.r.t. their submarkings on Crit represent
stutter-equivalent traces, which concludes our proof.

For the following let Crit ⊆ P be a set of places and Σ′ = sliceS(Σ,Crit) be
the safety slice of Σ. If we interpret a safety property ϕ on a slice sliceS(Σ,Crit),
we assume that scope(ϕ) ⊆ Crit.
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Preservation of Safety Properties. We start by unveiling basic properties of
the safety slice. The algorithm constructs the safety slice, so that any transition,
that may increase the token count on a place in P ′, is element of T ′.

Lemma 11. Let p be a place and t be a transition of Σ.

p ∈ P ′ ∧W (p, t) < W (t, p) ⇒ t ∈ T ′.

Proof. Since at line 12 of generateSafetySlice Pdone equals P
′, we show that

from line 4 the property p ∈ Pdone ∧W (p, t) < W (t, p) ⇒ t ∈ T ′ holds.
First note, that the algorithm never removes transitions from T ′. Pdone is

initialized to Crit in line 4. In line 2 all transitions that may change the token
count on Crit become elements of T ′. Only in line 11 the set Pdone is extended
– by a place p. The second while-block (line 7 to 10) guarantees that at line
11 T ′ already includes any t ∈ •p with W (p, t) < W (t, p). ��

A transition sequence σ of Σ generates at most as many tokens on P ′ as its
projection to T ′, proj T ′(σ), because in Σ′ a place p′ is connected to all transitions
t ∈ T that can potentially increase its token count (Eq. 1a).

As W ′ is the restriction of W to P ′ and T ′, a transition sequence in T ′ has
the same effect on P ′ in Σ and Σ′ (Eq. 1b).

The effect on Crit of a transition sequence σ of Σ is the same as of proj T ′(σ),
because all transitions that may change the token count on Crit are in T ′ (Eq.
1c). For the following equations let σ ∈ T∞ be a transition sequence of Σ and
σ′ ∈ T ′∞ be a transition sequence of Σ′.

∀p ∈ P ′ : ΔΣ(σ, p) ≤ ΔΣ′(proj T ′(σ), p). (1a)

∀p ∈ P ′ : ΔΣ(σ
′, p) = ΔΣ′(σ′, p). (1b)

∀p ∈ Crit : ΔΣ(σ, p) = ΔΣ′(proj T ′(σ), p). (1c)

Proof. Equation 1a to 1c can easily be shown by induction on the length of σ
and σ′ respectively. We first formally prove Eq. 1a and then sum up the proof
arguments for Eq. 1b and 1c.

The induction base |σ| = 0 holds trivially, as the effect ε is always void.
l → l + 1: Let σt ∈ T ∗ be a transition sequence of length l + 1. We assume

that ΔΣ(σ, p) ≤ ΔΣ′(proj T ′(σ), p), ∀p ∈ P ′ holds. For the following let p′ be an
arbitrary place in P ′.

Let us first assume t ∈ T ′. As W ′ equals W |(P ′,T ′), it follows that ΔΣ(t, p
′) =

ΔΣ′(t, p′) and hence ΔΣ(σt, p
′) ≤ ΔΣ′(proj T ′(σt), p′). In case t ∈ T \ T ′,

proj T ′(σt) equals proj T ′(σ). So ΔΣ′(proj T ′(σt), p′) = ΔΣ′(proj T ′(σ), p′) holds.
According to Lemma 11, t does not increase the token count on p′. Consequently,
ΔΣ(σt, p

′) ≤ ΔΣ(σ, p
′) and thus ΔΣ(σt, p) ≤ ΔΣ′(proj T ′(σt), p) holds.

Equation 1b follows, becauseW ′ equalsW |(P ′,T ′). HenceΔΣ(t, p) = ΔΣ′(t, p),
∀t ∈ T ′, ∀p ∈ P ′ holds.

The induction proof for Eq. 1c is analogously done to the proof of Eq. 1a. We
use that, by line 2 of generateSafetySlice, T ′ includes all transitions that
may change the token count on Crit. ��
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We now turn to behavioral correspondences between the original net and its
safety slice. By the next proposition the sets of firing sequences of Σ and Σ′

correspond.

Proposition 12. Let σ be a firing sequence and M be a marking of Σ.

(i) Minit [σ〉M ⇒ ∃M ′ ∈ [M ′
init〉 : M ′

init[proj T ′(σ)〉M ′ with
M(p) ≤ M ′(p), ∀p ∈ P ′.

Let σ′ be a firing sequence and M ′ a marking of Σ′.

(ii) M ′
init[σ

′〉M ′ ⇒ ∃M ∈ [Minit〉 : M ′ = M |P ′ ∧ Minit [σ
′〉M .

Proof. We show Prop. 12 by induction on the length l of σ and σ′, respectively.
For the induction base l = 0 its enough to note that by Def. 10, M ′

init = Minit|P ′ .
l → l+1: First we show (i). Let σt be a firing sequence of Σ of length l+1. By

the induction hypothesis, σ′ := proj T ′(σ) is a firing sequence of Σ′ and generates
a marking M ′

σ′ with at least as many tokens on P ′ as Mσ, Mσ(p) ≤ M ′
σ′(p), ∀p ∈

P ′. If t is an element of T ′, it follows from Mσ[t〉 that M ′
σ enables t. By Eq. 1a,

it follows that Mσt(p) ≤ M ′
σ′t(p), ∀p ∈ P ′. If t ∈ T \ T ′, proj T ′(σ) = proj T ′(σt)

which is a firing sequence of Σ′ by the induction hypothesis. A transition in T \T ′

can only decrease the token count on P ′, thus Mσt(p) ≤ Mσ(p) ≤ M ′
σ′(p), ∀p ∈

P ′.
For (ii) let σ′t be a firing sequence of Σ′ with length l+1. Since M ′

σ′ enables
t and by Eq. 1b, also Mσ′ enables t and the generated markings coincide on P ′,
Mσ′t|P ′ = M ′

σ′t. ��

The following proposition implies in combination with Prop. 12 that the sets of
finite traces of TSΣ and TSΣ′ are stutter-equivalent. It states, that given two
marking sequences μ, μ′ generated by corresponding firing sequences, we can
find for any finite prefix of μ′ a stutter-equivalent corresponding finite prefix
of μ and vice versa. As we are now assuming that scope(ϕ) ⊆ Crit, we restrict
markings to Crit.

At the first glance, Prop. 13 may seem overly complicated by talking about
prefixes. But note, unstutter(M(Minit, σ)|Crit) = unstutter(M(M ′

init, σ
′)|Crit) does

not necessarily hold, since either just σ or σ′ may be maximal and hence one
marking sequence would be finite whereas the other would be infinite.

Proposition 13. Let σ ∈ T ∗ be a firing sequence of Σ with σ′ := proj T ′(σ).

(i) If μ is a finite prefix of M(Minit, σ), then there is a finite prefix μ′ of
M(M ′

init, σ
′) with unstutter(μ|Crit) = unstutter(μ′|Crit).

Let σ′ ∈ T ′∗ be a firing sequence of Σ′.

(ii) If μ′ is a finite prefix of M(M ′
init, σ

′), then there is a finite prefix μ of
M(Minit, σ

′) with unstutter(μ|Crit) = unstutter(μ′|Crit).
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Proof. We only prove (i). (ii) follows analogously. We show that M(M ′
init, σ

′)|Crit
starts with a stutter-equivalent version of μ|Crit. The proof is by induction on
the length l of μ.

First note that the initial markings Minit and M ′
init coincide on Crit and hence

for a prefix of length 1 the above holds.
l → l+1: Let μM be a prefix ofM(Minit, σ) of length l+1. Let σμt be the firing

sequence generating μM . Let σ′
μ be the projection of σμ to T ′, proj T ′(σμ). By

the induction hypothesis M(M ′
init, σ

′
μ) has a prefix μ′ such that μ|Crit and μ′|Crit

are stutter-equivalent. The case in which μ|Crit and μM |Crit are stutter-equivalent
follows trivially. Otherwise, t changes the submarking on Crit and hence t is an
element of T ′. Let M ′ be the marking generated by σ′

μt. So M(M ′
init, σ

′
μt) has

a prefix that starts with μ′ and ends with M ′, μ′μ′
2M

′. By Eq. 1c, M coincides
with M ′ on Crit. Since unstutter(μ|Crit) = unstutter(μ′|Crit) holds, it follows that
μ′ reflects all changes on Crit caused by σμ. Hence there cannot be a change on
the submarking of Crit within μ′

2. So μ′μ′
2M

′ is stutter-equivalent to μ′M ′ and
hence stutter-equivalent to μM . ��

Theorem 14 (Preservation of Safety Properties). Let Σ be a Petri net and
Crit ⊆ P be a set of places. Let Σ′ be sliceS(Σ,Crit) and ϕ a stutter-invariant
linear-time safety property with scope(ϕ) ⊆ Crit.

Σ |= ϕ if and only if Σ′ |= ϕ.

Proof. By Prop. 9 it is sufficient to show that unstutter(TracesTSΣ ,fin(Minit)) =
unstutter(TracesTSΣ′ ,fin(M

′
init)). Let ϑ be a finite trace of TSΣ . Let σ be a cor-

responding firing sequence of Σ, i.e. σ corresponds to a path μ with L(μ) = ϑ.
By Prop. 12, σ′ = proj T ′(σ) is also a firing sequence of Σ′. Hence it follows by
Prop. 13, that there is a finite path μ′ in TS ′

Σ such that μ′|Crit and μ|Crit are
stutter-equivalent. Since scope(ϕ) ⊆ Crit, it follows that μ′ generates a trace ϑ′

that is stutter-equivalent to ϑ.
Analogously follows that for a finite trace ϑ′ of TSΣ′ there is stutter equivalent

trace ϑ of TSΣ . ��

4 Related Work

The slicing and other reduction approaches are relatively old research areas
and have received much attention. In this section we highlight differences and
similarities to the most relevant works.

4.1 Petri Net Slicing

In [4] C. K. Chang and H. Wang presented a first slicing algorithm on Petri nets
for testing. For a given set of communication transitions CS , their algorithm
determines the sets of paths in the Petri net graph, called concurrency sets, such
that all paths within the same set should be executed concurrently to allow for
the execution of all transitions in CS .
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Whereas the approach of Chang and Wang does not yield a reduced net,
Llorens et. al. developed an algorithm to generate a reduced Petri net [7]. They
showed how to use Petri net slicing for reachability analysis and debugging pre-
senting a forward and backward algorithm for Petri nets with maximal arc weight
1, as shown in Fig. 3. A forward slice is computed for all initially marked places.
They presented a second algorithm to compute a backward slice for a slicing
criterion Crit based on our CTL∗

-X slicing algorithm generateSlice as presented
in [12,11]. Their (combined) slice is defined by Σ′ = (P ′, T ′,W |(P ′,T ′),Minit|P ′)
with (P ′, T ′) = forwardSlice(Σ) ∩ backwardSlice(Σ,Crit).

forwardSlice(Σ){
T ′:={t ∈ T | Minit[t〉};
P ′:= {p ∈ P | Minit(p) > 0} ∪ T ′•;
Tdo:= {t ∈ T \ T ′ | •t ⊆ P ′};
while ( Tdo �= ∅ ) {

P ′:= P ′ ∪ T •
do;

T ′:= T ′ ∪ Tdo;
Tdo:= {t ∈ T \ (T ′) | •t ⊆ P ′} }

return (P ′, T ′) }

backwardSlice(Σ,C){
T ′:= ∅;
P ′:= C;
while ( •P ′ �= T ′ ) {

T ′:= T ′ ∪ •P ′;
P ′:= P ′ ∪ •T ′;}

return (P ′, T ′)}

Fig. 3. Llorens’ forward and backward slice according to [7]

Obviously the forward slice can also be used as a preprocessing step to model
checking and removes dead transitions only. Their slice was considered correct
iff for every firing sequence σ of the original net Σ it holds that the restriction
σ′ = proj T ′(σ) can be performed on Σ′ and for every place p′ of the slice it
holds that firing σ′ generates at least as many tokens as σ. We infer that their
slice allows falsification but no verification of lower bounds, and their slice allows
verification and falsification of upper bounds, but no decision whether a certain
submarking is reachable.

The principal difference between the backwardSlice of Llorens et. al. and our
CTL∗

-X slicing algorithm is that backwardSlice includes only those transitions
that increase the token count on slice places whereas CTL∗

-X slicing also includes
transitions that decrease the token count. Now our safety slicing algorithm com-
bines the two approaches. It uses CTL∗

-X slicing on Crit and a refined version of
backwardSlice on P ′\Crit. By exploiting read arcs and considering arc weights,
line 5 in the backwardSlice algorithm (c.f. Fig. 3) can be replaced by

T ′:= T ′ ∪ {t | t ∈ •P ′ ∧ ∃p ∈ P ′ : W (t, p) > W (p, t)};
Now the backward algorithm adds new transitions only if they might produce
additional tokens on interesting places. This principle is used in the safety slicing
algorithm of Def. 10.

Let us compare the three algorithms—the algorithm of Llorens for examining
bounds, our algorithm preserving CTL∗

-X properties and our algorithm preserving
safety properties. The idea of forward slicing can be used for our algorithms
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as well. It can be seen as a preprocessing step applied before the backward
slicing. The idea to use read arcs and to extend the algorithm to weighted Petri
nets is also applicable to the algorithm of Llorens et al. So let us compare the
algorithms for backward slicing considering the version of Llorens et al. extended
for weighted Petri nets as discussed above. Our algorithm for slicing of CTL∗

-X

properties is the least aggressive but most conservative algorithm, that is its slices
are bigger or as big as slices generated by the other algorithms but preserves the
most properties. The algorithm for slicing of safety properties is more aggressive
than that preserving CTL∗

-X but less aggressive than the algorithm preserving
bounds. The algorithm of Llorens is the most aggressive algorithm and is also
the least conservative. Note, that all three variants produce the same results on
strongly-connected nets.

4.2 Petri Net Reductions

Petri net slicing is a structural reduction technique, as slicing constructs a smaller
net based on the model structure, i.e. the Petri net graph. There are only a few
Petri net reductions that preserve temporal properties. Pre- and postagglomer-
ation [2] are two very powerful structural reduction rules and probably also the
most established. In [9] it was shown that they preserve LTL-X properties.

Pre- and postagglomerations merge two transition sets H := •p and F := p•

around a place p into a new one, HF . Applying these rules changes the net
structure. So when model checking the reduced net a counterexample needs a
translation first to be executable on the original net. Whereas slicing preserves
the net structure by taking every place and transition the places in scope(ϕ)
causally depends on, agglomerations can also be applied in between to shorten
causal dependencies. But agglomerations are not applicable in the following sce-
narios: (1) Transition sets H := •p and F := p• are not agglomerateable, if
place p is marked. (2) Given a place p with more than one input and output
transition, if any transition in F := p• has an input place other than p, H := •p
is not postagglomerateable. (3) Given a place p with •p = {h}, h ∈ T , if h has
an output place other than p, F := p• is not preagglomerateable and (4) if other
transitions consume tokens from the input places of h, h is not agglomerateable
at all. It is easy to build a net that exposes a lot of these constructs but is nicely
sliceable for a given property.

5 Evaluation

In this section we present evaluation results on the benchmark set of J. C.
Corbett [5]. The set of 75 examples consists of real Ada tasking programs as
well as standard benchmark examples from the concurrency analysis literature.
In the benchmark set there are five non-scalable systems and seventeen systems
were scaled and are present in four different sizes. We say that nets belong to
the same family if they are scaled up versions of the same system.

We applied a fully automatic evaluation procedure that does not require the
specification of temporal properties. For each place of a net, a slice was generated.
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We belive that not every single place corresponds to a meaningful or relevant
temporal property. So, to avoid an overly optimistic evaluation result, we filter
out the smallest slices. This clearly is a heuristic, as the smallest slices may or
may not be due to a meaningless slicing criterion. We measure the effect of slicing
in terms of savings of the reachable state space, as the size of the state space
usually has a strong influence on time and space needed for model checking.

We call a slice with a state space smaller than its original’s properly effective.
When considering uncondensed state spaces (cf. Sect. 5.1), slicing guarantees
that the reachable state space of a slice is at most as big as the original’s. When
we consider state spaces that are condensed using partial order reductions (cf.
Sect. 5.2) this is not neccessarily the case. Nevertheless, we demonstrate that
slicing may even be an useful preprocessing step when it is daisy chained with
partial order reduction techniques. Slices that have a state space greater than
the original’s are called limited effective.

5.1 Effect on the Full State Space

Let us consider the savings in terms of the state space, i.e. in terms of the number
of reachable states and state transitions. According to Table 1 safety slicing gains
much more savings than CTL∗

-X slicing.

Table 1. Results on the full state space

#properly red. families
#families

mean state space savings mean net graph savings

(states, state trans.) (places, trans.)

safety slicing 10/23 (0.16, 0.13) (0.10, 0.03)
CTL∗

-X slicing 9/23 (0.07, 0.09) (0.09, 0.02)

Table 2 illustrates the results when only slices are considered that save at
least 10% of the state space. A coverage of x% means that for x% of the places
in the original nets there is a slice that saves at least 10% of the state space. So
for more than a third of all places a safety slice exists with a state space that is
at least 10% smaller than the state space of the original net.

Table 2. Reducts with a State Space Saving of 10%

#properly red. families
#families

coverage on reducible coverage on all nets

places [%] places [%]

safety slicing 9/23 85.36 35.39
CTL∗

-X slicing 6/23 48.38 18.58

We already know from the Table 1 that safety slicing gains the greater savings
than CTL∗

-X slicing. Comparing the results of CTL∗
-X slicing (a) and safety slicing

(b) in Fig. 4 shows that safety slicing is able to reduce the same nets more
aggressively than CTL∗

-X slicing and also is able to reduce more nets.
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Fig. 4. Properly effective re-
duced nets clustered by their
savings w.r.t. the full state
space. Each column displays the
savings of the respective slicing
technique. A net name appears
within a cluster when a net has
a properly effective reduct with a
saving within the cluster’s range.
The earliest occurrence of a fam-
ily is marked in black.

5.2 Partial Order Reductions

Partial order reductions (=POR) refer to a family of powerful reduction tech-
niques developed to avoid the blow-up caused by concurrent behaviours. One
reason of the state space explosion problem is that the interleaving semantics rep-
resents concurrency of actions by interleaving them in all possible ways, whereas
the actions’ total effect is independent of their ordering. POR condense state
spaces by decreasing the number of equivalent interleavings.

In this section we examine the combination of safety slicing and POR by com-
paring the condensed state space of the original net with the condensed state
spaces of its slices. As in Sect. 5.1, we filter out the smallest reducts with respect
to the ful state space. The combination of slicing and POR is particularly inter-
esting, because the slicing effect as measured in Sect. 5.1 profits from eleminating
concurrent behaviours. We use the stubborn set technique [13] of PROD tool[10]
as POR technique. We chose to condense the state space by deadlock preserv-
ing stubborn sets as we have built slices for single places not temporal-logical
formulas. Usually a state space condensed to preserve deadlocks is expected to
be smaller than (or equal to) a state space condensed to preserve safety prop-
erties or e.g. LTL-X properties [13]. We hence believe that the results presented
in the following allow to study the general effects of combining Petri net graph
reductions with stubborn sets.

Results with Respect to Condensed State Spaces. Since we now measure the
results with respect to the condensed state space, we say that we have a saving
of x of states (state transitions), if the reduct has factor x less states (state
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transitions) than the original net has in its condensed state space. Analogously,
we use overhead, benefit and cost with respect to the condensed state space.

Of course, the condensed state space of a reduced net generated by the stub-
born set technique is smaller than (or equals) the full state space of the reduced
net and is hence also smaller than the full state space of the original, but the
condensed state space of a reduced net may not be smaller than the condensed
state space of the original net if the stubborn set performs worse on the reduced
net (cf. Fig. 5). It may be counterintuitive that the condensed state space of
the reduced net can be bigger than the condensed state space of the unreduced
net even when the full state space of the reduced net is substantially smaller
than the full state space of the unreduced net. But as POR usually implement a
heuristic to determine which transitions can be considered as independent, such
a heuristic can work better for one net than for the other so that the stubborn
set condensation on the original may be more effective than the condensation on
the reduced net.

≥

≥

?

≥

full TSΣ

condensed
TSΣ

full TSΣ′

condensed
TSΣ′

Fig. 5. Condensed and reduced state spaces. TSΣ refers to the state space of the
original system and TSΣ′ to the state space of a reduct.

Table 3. Mean savings w.r.t. condensed state spaces. The second column gives the
savings gained by slicing w.r.t. the condensed state space.

mean savings relative to # limited # properly
the condensed state space effective effective

(states,state trans.) # nets # nets

safety slicing 0.373, 0.265 14 714
CTL∗

-X slicing 0.7, 1.2 41 631

Let us study the results summarised in Table 3. According to Table 3 ap-
plying CTL∗

-X slicing does not yield a great benefit w.r.t. the mean state space,
whereas safety slicing significantly decreases the mean state space yielding a ben-
efit of 36.3% of the states and 26.5% of the state transitions with respect to the
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Fig. 6. Properly effective reduced nets
clustered by their savings w.r.t. the con-
densed state spaces. (a) lists the savings
gained by PROD’s stubborn set reduc-
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Nets left unchanged by the respective re-
ductions are set in italics.
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condensed state space. This benefit is about twice as much as safety slicing could
save on the full state space (cf. Table 1). This is mainly due to three families that
are more effectively condensed by stubborn set reductions when safety sliced.

Table 3 shows that there are (also for CTL∗
-X slicing) many instances where

the application of the reductions increases the state space savings and that the
majority of reducts improves the state space savings. According to Fig. 6 some
nets were reduced so much that they now appear in a higher savings cluster
while all other nets remain in the same savings cluster.

Summary and Conclusions. In this section we examined the effect of safety
slicing—in comparison with CTL∗

-X slicing and in combination with POR. To
examine the general effects of such a combination we used deadlock preserving
stubborn sets of PROD. Safety slicing increased the state space savings on the
full state space as well as on the condensed state space considerably.

6 Conclusion and Future Work

In this paper we introduced Petri net safety slicing in order to alleviate the
state space explosion problem for model checking Petri nets. A safety slice
sliceS(Σ,Crit) satisfies the same stutter-invariant linear-time safety properties ϕ
as the original net, given that ϕ refers to the places of the slicing criterion Crit
only. Safety slicing can yield more aggressive reductions than CTL∗

-X slicing but
sacrifices the preservation of liveness properties.

It seems worthwhile to develop refined slicing algorithms for certain (classes
of) properties that allow to formulate even more aggressive reductions. A good
starting point seems antecedent slicing [14,15], a form of conditional slicing where
information about system input is encoded as antecedent of an LTL formula. If
we study a formula of the form ψ := G (ϕ1 ⇒ Fϕ2), we only need to include
transitions that make the antecedent ϕ1 true, we do not need to include tran-
sitions that are fired when ϕ1 cannot become true [15]. We conjecture that in
this setting a safety slicing like algorithm can be used for the antecedent places,
scope(ϕ1), whereas CTL

∗
-X slicing has to be applied to places in scope(ϕ2). Since

both, safety slicing and CTL∗
-X slicing, are not able to reduce strongly connected

nets, an important aspect is to explore whether the antecedent can be used to
eliminate transitions when their firing implies that the antecedent cannot become
true.

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press (2008); 12,
112–120, 422–425

2. Berthelot, G.: Checking Properties of Nets Using Transformation. In: Rozenberg,
G. (ed.) APN 1985. LNCS, vol. 222, pp. 19–40. Springer, Heidelberg (1986)

3. Brückner, I.: Slicing Integrated Formal Specifications for Verification. PhD thesis.
University of Paderborn (March 2008)



Safety Slicing Petri Nets 287

4. Chang, C.K., Wang, H.: A slicing algorithm of concurrency modeling based on
Petri nets. In: Hwang, K., Jacobs, S.M., Swartzlander, E.E. (eds.) Proc. of the
1986 Int. Conf. on Parallel Processing, pp. 789–792. IEEE Computer Society Press,
Washington (1987)

5. Corbett, J.C.: Evaluating Deadlock Detection Methods for Concurrent Software.
IEEE Transactions on Software Engineering 22(3), 161–180 (1996)

6. Lamport, L.: What Good is Temporal Logic? In: Information Processing 1983:
Proceedings of the IFIO 9th World Computer Congress, pp. 657–668 (1983)

7. Llorens, M., Oliver, J., Silva, J., Tamarit, S., Vidal, G.: Dynamic Slicing Techniques
for Petri Nets. In: Proceedings of the Second Workshop on Reachability Problems in
Computational Models (RP 2008), Liverpool, UK. Electronic Notes in Theoretical
Computer Science, vol. 223, pp. 153–165 (December 2008)

8. Peled, D., Wilke, T.: Stutter-Invariant Temporal Properties are Expressible With-
out the Next-time Operator. Information Processing Letters 63(5), 243–246 (1997)

9. Poitrenaud, D., Pradat-Peyre, J.-F.: Pre- and Post-agglomerations for LTL Model
Checking. In: Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp.
387–408. Springer, Heidelberg (2000)

10. PROD. Pr/T-net reachability analysis tool. Helsinki Univerity of Technology,
http://www.tcs.hut.fi/Software/prod/

11. Rakow, A.: Slicing Petri nets with an Application to Workflow Verification. In:
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Abstract. This paper proposes a Colored Petri Net model capturing
the behaviour of vertical search engines. In such systems a query sub-
mitted by a user goes through different stages and can be handled by
three different kinds of nodes. The proposed model has a modular de-
sign that enables accommodation of alternative/additional search engine
components. A performance evaluation study is presented to illustrate
the use of the model and it shows that the proposed model is suitable
for rapid exploration of different scenarios and determination of feasible
search engine configurations.

Keywords: Web search engines, Petri Net applications.

1 Introduction

Vertical search engines are single-purpose dedicated systems devised to cope with
highly dynamic and demanding workloads. Examples include advertising engines
in which complex queries are executed on a vertical search engine each time a user
displays an e-mail in a large system such as Yahoo! mail. As potentially millions of
concurrent users are connected to e-mail at any time, the workload on the search
engine is expected to be of the order ofmany hundred thousand queries per second.
When vertical search engines are used as part of large scale general purpose search
engines, queries per second intensity is featured by the unpredictable behavior of
users who are usually very reactive to worldwide events.

In such cases, models and tools for performance evaluation are useful to plan
capacity of data center clusters supporting computation of search engines. The
typical questions one would like to quickly answer through a reasonable model
of the actual system are like “given that next year we expect a X% increment
in query traffic, what are the feasible sizes of the different search engine services
so that we make an efficient use of hardware resources deployed in the data
center?”. An appropriate answer to this question could reduce operational costs
at the data center. A model like the one proposed in this paper is also useful
in research when one wants to evaluate alternative ideas for service design and
deployment on cluster of processors.

In this paper we focus on vertical search engines since they are amenable
for modelling as they are built from a small number of fairly simple components
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c© Springer-Verlag Berlin Heidelberg 2012



Capacity Planning for Vertical Search Engines 289

called services. The question of modelling general purpose search engines remains
as an open area of research.

The contribution of this paper is the proposal of a method to model actual
parallel computations of vertical search engines. The method makes use of Petri
nets which is a well-known tool for modelling complex systems. Petri net real-
ization is designed in a modular manner which enables evaluation of different
alternatives for service design and configuration.

Typically each service of a vertical search engine is deployed on a large set of
processors forming a cluster of processors. Both processors and communication
network are constructed from commodity hardware. Each processor is a multi-
core system enabling efficient multi-threading on shared data structures, and
message passing is performed among processors to compute on the distributed
memory supported by the processors. Modelling each of those components is a
complex problem in its own merits.

Fortunately, ours is a coarse grain application where the running time cost of
each service is dominated by a few primitive operations. We exploit this feature
to formulate a model based on coloured Petri nets where tokens represent user
queries which are circulated through different cost causing units in accordance
with the computations performed to solve the query in the actual search engine.
Queries are modeled as directed acyclic graphs whose arcs represent the causality
relationships among the different steps related to processing the query in the
actual system, and vertices represent points in which cost must take place by
considering the effects of other queries under processing. The relative cost of
primitive operations is determined by means of small benchmark programs. The
coarse grain feature allows us to model the effects of actual hardware and system
software by identifying only a few features that have a relevant influence in the
overall cost of computations.

We validated the proposed Petri net model against a complex discrete event
simulator of the same system and an actual implementation of a small search
engine. The advantage of the Petri net model over the simulator is that it is
much simpler and efficient than the simulator, and it is fairly easy to extend to
include new features or change behavior of services by using a graphical language
and model verification tests.

This paper is organized as follows: In Section 2 we review Petri nets concepts,
query processing and related works. Section 3 presents our proposed method to
model vertical search engines. Section 4 shows the model validation and experi-
mental results. Conclusions follow in Section 5.

2 Background

We briefly introduce coloured Petri nets (CPNs), then we describe vertical Web
Search Engines (WSEs) and related work.

CPN is a high-level Petri net formalism, extending standard Petri nets to pro-
vide basic primitives to model concurrency, communication and synchronization.
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The notation of CPNs introduces the notion of token types, namely tokens are
differentiated by colors, which may be arbitrary data values. They are aimed at
practical use because they enable the construction of compact and parameterized
models. CPNs are bipartite directed graphs comprising places, transitions and
arcs, with inscriptions and types allowing tokens to be distinguishable [16,25]. In
Figure 4 we see part of a CPN. Places are ovals (e.g., Queue) and transitions are
rectangles (e.g., start). Places have a type (e.g., Server × Query) and can have an
initial marking which is a multi-set of values (tokens) of the corresponding type.
Arcs contain expressions with zero or more free variables. An arc expression can
be evaluated in a binding using the assignments, resulting in a value. A binding
is a transition and assignment of values to all its free variables. Then, a binding
is enabled if all input places contain at least the tokens prescribed by evaluating
the arc expressions.

Hierarchical Colored Petri Nets (HCPNs) introduce a facility for building a
CPN out of subnets or modules. The interface of a module is described using
port places, places with an annotation In, Out, or I/O. A module can be repre-
sented using a substitution transition, which is a rectangle with a double outline
(e.g., FS in Figure 2). The module concept of CPN is based on a hierarchi-
cal structuring mechanism allowing a module to have sub-modules and reuse
of sub-modules in different parts of the model. Places connected to a substitu-
tion transition are called socket places and are connected to port places using
port/socket assignments.

There are useful software to support CPN modelling like CPN-AMI1, Great-
SPN2 and Helena 3. In particular, CPN-tools 4 supports HCPNs modeling and
provides a way to “walk through” a CPN model by allowing one to investigate
different scenarios in detail and check whether or not the model works as ex-
pected. It is possible to observe the effects of the individual steps directly on
the graphical representation of the CPN model. Also, this tool auto-generates
Java code, a CPN simulator, which can be modified to introduce others metrics
and can be used to fastly run very large numbers of queries without using the
graphical interface. We emphasize that performance metric results are always
highly dependent on the stream of user queries that are passed through the
search engine. Thus any reasonable performance evaluation study must consider
the execution of thousands of millions of actual user queries. In this context, the
graphical definition of the model is useful for model construction and verification,
and then the production model is executed through the Java CPN simulator.

2.1 Query Processing

Large scale general Web search engines are commonly composed of a collection
of services. Services are devised to quickly process user queries in an on-line
manner. In general, each service is devoted to a single operation within the

1 http://www.lip6.fr/cpn-ami
2 http://www.di.unito.it/~greatspn/
3 http://www.lipn.univ-paris13.fr/~evangelista/helena
4 http://cpntools.org/

http://www.lip6.fr/cpn-ami
http://www.di.unito.it/~greatspn/
http://www.lipn.univ-paris13.fr/~evangelista/helena
http://cpntools.org/
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whole process of solving a query. One of such services is the caching service
(CS), which is in charge of administering a distributed cache devoted to keep
the answers for frequent queries (they are query results composed of document
IDs). This service is usually partitioned using a hashing based strategy such as
Memcached [14]. A second service is the Index Service (IS), which is responsible
for calculating the top-k results (document IDs) that best match a query. A third
service, called Front-Service (FS) is in charge of receiving new queries, routing
them to the appropriate services (CS, IS) and performing the blending of partial
results returned from the services. Other related services include: a) construction
of the result Web page for queries, b) advertising related to query terms, c)
query suggestions, d) construction of snippets, which is a small summary text
surrounding the document ID (URL) of each query result, between others. Given
the huge volume of data, each service is deployed on a large set of processors
wherein each processor is dedicated to efficiently perform a single task. Multi-
threading is used to exploit multi-core processing on data stored in the processor.

In this work we focus on vertical WSEs consisting of three main services:
Front-End Service (FS), Caching Service (CS) and Index Service (IS). Each
service is deployed on a different cluster of processors or processing nodes. Figure
1 shows the query processing operations performed by a WSE as explained below.

The Front-End Service (FS) is composed of several processing nodes and each
node supports multi-threading. This service is composed of a set of FS nodes
where each one is mapped onto a different processor. Each FS node receives user
queries and sends back the top-k results to the requester (a user or another ma-
chine requiring service). After a query arrives to a FS node fi, we select a caching
service (CS) machine to determine whether the query has been previously pro-
cessed. For the CS cluster architecture, we use an array of P ×D processors or
caching service nodes. A simple LRU (Least Recently Used) approach is used.
The memory cache partition is performed by means of a distributed memory
object caching system named Memcached [14], where one given query is always
assigned to the same CS partition. Memcached uses a hash function with uni-
form distribution over the query terms to determine the partition csj which
should hold the entry for the query. To increase throughput and to support fault
tolerance, each partition is replicated D times. Therefore, at any given time, dif-
ferent queries can be solved by different replicas of the same partition. Replicas
are selected in a round-robin way.

If the query is cached, the CS node sends the top-k result document IDs to the
FS machine. Afterwards the FS fi sends the query results to users. Otherwise, if
the query is not found in cache, the CS node sends a hit-miss message to the FS
fi. Then, the FS machine sends an index search request to the index service (IS)
cluster. The IS contains an index built from a large set of documents. The index
is used to speed up the determination of what documents contain the query
terms. A document is a generic concept, it can be an actual text present in a
Web page or it can be a synthetic text constructed for the specific application
like a short text for advertisement. The index allows the fast mapping among
query terms and documents.



292 V. Gil-Costa et al.

HTML page
New query

Query search

Response
CS

P

D

IS

Top-K iddoc
identifiers P

D

FS
Front-End

Index search

Fig. 1. Query processing

The amount of documents and indexes are usually huge and thereby they must
be evenly distributed onto a large set of processors in a sharing nothing fashion.
Usually these systems are expected to hold the whole index in the distributed
main memory held by the processors. Thus, for the IS setting, the standard
cluster architecture is an array of P ×D processors or index search nodes, where
P indicates the level of document collection partitioning and D the level of
document collection replication. The rationale for this 2D array is as follows: each
query is sent to all of the P partitions and, in parallel, the local top-k document
IDs in each partition are determined. These local top-k results are then collected
together by the FS node fi to determine the global top-k document IDs.

The index stored in each index search node is the so-called inverted index [5].
The inverted index [5,30,20,23,29,22] (or inverted file) is a data structure used by
all well-known WSEs. It is composed of a vocabulary table (which contains the
V distinct relevant terms found in the document collection) and a set of posting
lists. The posting list for term c ∈ V stores the identifiers of the documents
that contain the term c, along with additional data used for ranking purposes.
To solve a query, one must fetch the posting lists for the query terms, compute
the intersection among them, and then compute the ranking of the resulting
intersection set using algorithms like BM25 or WAND [6]. Hence, an inverted
index allows for the very fast computation of the top-k relevant documents for a
query, because of the pre-computed data. The aim is to speed up query processing
by first using the index to quickly find a reduced subset of documents that
must be compared against the query, to then determine which of them have the
potential of becoming part of the global top-k results.

2.2 Related Work

There are several performance models for capacity planning of different systems
[2,21,26], but these models are not designed in the context of web search engines.
The work in [13] presents a performance model for searching large text databases
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by considering several parallel hardware architectures and search algorithms. It
examines three different document representations by means of simulation and
explores response times for different workloads. More recently the work in [11]
presents an Inquery simulation model for multi-threading distributed IR system.

The work in [12] presents a framework based upon queuing network theory for
analyzing search systems in terms of operational requirements: response time,
throughput, and workload. But the proposed model does not use the workload
of a real system but a synthetic one. A key feature in our context is to properly
consider user behavior through the use of actual query logs. Notice that in prac-
tical studies, one is interested in investigating the system performance by using
an existing query log. This log has been previously collected from the queries
issued by the actual users of the search engine. To emphasize this fact, below
we call it “the query log under study”. Moreover, [12] assumes perfect balance
between the service times of nodes. Another disadvantage is that it does not
verify the accuracy of their model with actual experimental results.

In [9,10] the authors simulate different architectures of a distributed infor-
mation retrieval system. Through this study it is possible to approximate an
optimal architecture. However, they make the unrealistic assumption that ser-
vice times are balanced when the Information Retrieval nodes handle a similar
amount of data when processing a query. This work is extended in [7] to study
the interconnection network of a distributed Information Retrieval system. This
work is also extended in [8] to estimate the communication overhead.

In [17] the authors present algorithms for capacity analysis for general services
in on-line distributed systems. The work in [19] presents the design of simulation
models to evaluate configurations of processors in an academic environment.
The work presented in [18] proposes a mathematical algorithm to minimize the
resource cost for a server-cluster. In our application domain, the problem of using
mathematical models is that they are not capable of capturing the dynamics of
user behavior nor temporarily biased queries on specific query topics. The work
in [18] is extended in [28] to include mechanisms which are resilient to failures.

The work presented in [4] and continued in [3] characterizes the workload of
the search engines and use the approximate MVA algorithm [24,21]. However,
this proposal is evaluated on a very small set of IS nodes, with only eight proces-
sors and just one service, namely IS. The effects of asynchronous multi-threading
is not considered as they assume that each processor serves load using a single
thread. This work also does not consider the effects caused in the distribution
of inter-arrival times when queries arrive at more than one FS node. They also
use the harmonic number to compute average query residence time at the index
service (IS) cluster. This can be used in WSE systems such that every Pi index
partition delivers its partial results to a manager processor (front service node
in our architecture) and stays blocked until all P partitions finish the current
query. This is an unrealistic assumption since current systems are implemented
using asynchronous multi-threading in each processor/node. In the system used
in this work, the flow of queries is not interrupted. Each time an IS partition
finishes processing a query, it immediately starts the next one.
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The limitations of previous attempt to model vertical search engines show that
this problem is not simple to solve. Our proposal is resorting to a more empirical
tool but more powerful tool in terms of its ability to model complex systems.
Namely we propose using Coloured Petri Nets (CPN) to model vertical search
engines computations. To our knowledge this is the first CPN based capacity
planning model proposed in the literature for vertical search engines.

3 Modelling a Vertical Search Engine

Our approach is to model query routing through the search engine services. The
model main objective is to check whether a given configuration of services is able
to satisfy constraints like the following. The services are capable of (1) keeping
query response times below an upper-bound, (2) keeping all resources workload
below 40% and (3) keeping query throughput at the same query arrival speed.
Query throughput is defined as the number of queries processed per unit of time.

In our model we focus on high level operation costs. This is possible because
query processing can be decomposed into a few dominant cost operations such
as inverted list intersection, document ranking, cache search and update, and
blending of partial results. We also represent a few key features of hardware cost
and very importantly these features are directly related to the cost dominant
primitive operations. In the following we explain each component of our model.

Arrivals

Queue

    FS

Completed

CS queueIS queue     CS    IS

Queries

Queries Queries

Query

Fig. 2. Vertical Web Search Engine model using CPN

The high level view of our model is shown in Figure 2. Queries arrive with an
exponential distribution to the system through the Arrival module (the suitabil-
ity of the exponential distribution for this case has been shown in [4]). We have
three more modules which model the front service (FS), the index service (IS)
and the caching service (CS). Each module is associated with a socket place. The
socket place called Completed receives queries that have already been processed.
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The query and its top-k document ID results are sent to the user/requester. The
IS Queue and CS Queue are used to communicate queries that travel from
the FS service to the IS and CS, respectively. Finally the Queue socket place
receives new queries and query results from the IS and CS. This query routing
based approach can be easily extended to more services as needed.

All service clusters support multi-threading. Namely, each service node has
multiple threads. Each thread is idle until a new query arrives to the node. Then
the thread takes and processes the query. When finished, the query goes to the
next state and the thread checks whether there is any waiting query in the queue
of the node. If so, it takes the query to process. Otherwise it becomes idle again.

Each query has four possible states of execution: (1) q.new represents arriving
queries and have to be processed in the CS cluster, (2) q.hit represents queries
found in the cache, (3) q.no hit represents queries that have to be processed in
the IS cluster, and (4) q.done indicates that the query has been finished.

3.1 Modelling the Communication Infrastructure

We apply the communication cost of sending a query through the network. Cluster
processors are grouped in racks. We use a network topology that interconnects
communication switches and processors that is commonly used in data centers.
Namely we use a Fat-Tree communication network [1] with three levels as shown in
Figure 3. At the bottom processors are connected to what is called Edge switches.
At the top we have the so-called Core switches and in the middle we have the
Aggregation switches. Node x sends a message to node y by visiting five switches
before reaching its destination. To send a message from node x to node z it has to
go through three switches (two Edge switches and one Aggregation switch). Only
one Edge switch is visited when sending a message from a node x to other node
in the same rack, e.g. node w. An interesting property of this network is that it
allows to achieve a high level of parallelism and to avoid congestion. Namely, node
x sends a message to node y through path A, meanwhile node x sends a message
to node v through a different path (dotted line path in Figure 3).

Due to its complexity, we do not actually simulate the above Fat-Tree
protocol in the CPN but we empirically estimate the cost of sending messages

Core

Aggregation

Edge

Rack of Processors

switches

FAT-TREE

x y
zw v

send(x,y)
Path A

send(x,v)

Fig. 3. Fat-tree network
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throughout this network. We use this cost in our model to cause transition delays
between services. To this end, we run a set of benchmarks programs on actual
hardware to determine the communication costs. We then used a discrete-event
simulation model of the Fat-Tree, a model that actually simulates the message
passing among switches, to obtain an empirical probability distribution related
to the number of switch-hops required to go from one service node to another.
Therefore, each time we have to send a message from service si to service sj , we
estimate the simulation time by considering the number of hops (using the empir-
ical distribution) and the communication cost obtained through the benchmark
programs.

We also developed a CPN model for a communication switch for LAN net-
works which represents the case of a commodity cluster of processors hosting a
small vertical search engine (details below).

3.2 Front-Service (FS)

The Front-Service (FS) cluster manages the query process and determines its
route. We model the Front-Server cluster as shown in Figure 4 which consists of
a number of servers initially idle. The number of replicas is set by the num of FS
parameter. When a query arrives, we take an idle server and increase simulation
time using the timeFS(query) function. If we are processing a binding of results
we apply an average cost of merging the documents retrieved by the IS nodes.
Otherwise, we apply an average cost of managing the query. Both costs were
obtained through benchmark programs.

If the query execution state is q.new we send the query to the CS cluster. If
the query execution state is q.hit or q.done the query routing is finished and we
deliver the results to the user. Additionally, q.done adds the time required to
merge the partial results obtained by the IS cluster. Finally, the query is sent
to the IS cluster if the state is q.no hit. The FS does not change the execution
state of a query, just decides the route.

3.3 Caching-Service (CS)

The caching-service (CS) keeps track of the most frequent queries and their
results. The CPN CS model includes sub-models as shown in Figure 5. In this
example we develop a CS with three partitions. Each partition models the time
of service and the competition for resources. Namely, the Memcached algorithm
can send queries to one of three sets of processors. Each partition is replicated to
increase throughput. The #CS query variable is used in the model to simulate
the query flow through different CS partitions. As we explained, the Memcached
algorithm is used to partition the CS cluster. This algorithm evenly distributes
the queries among partitions by means of a hashing function on the query terms.
Therefore, each CS partition has the same probability of receiving a query. The
branch condition in the model is evaluated by comparing a random real number,
generated with a uniform distribution in a [0, 1] interval, against the cumulative
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Fig. 4. Front-Service model using CPN

probability of each partition. Namely, if the random number satisfies r < 1
3 , then

the query is sent to the first CS partition.
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Inside a CS partition we have a CPN multi-server system as shown in Figure 6.
When the query arrives to a partition, we select a free server and we increase
simulation time using the timeCS() function. The number of replicas is set by
the num of CS parameter. In this example, the query reports a cache hit with a
probability of 46%. This value can be adjusted according to a desired percentage
of hits observed in an actual execution of the query log under study on a LRU
cache. The CS cluster also changes the execution state of the query.
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We can perform three operations on a CS node: insert a query with their top-k
results, update a query priority and erase a query entry. These operations are
independent of the lengths of the posting lists. The erase and update operations
have constant cost and the insert operation depends on the k size. Therefore,
the number of partitions does not affect the average service time in this cluster.

Figures 7 (a) and (b) show the hit ratio obtained by benchmark programs
executed using the query log under study as we increase the cache size and the
number of partitions. With a memory size of 8GB it is not possible to increase
the number of hits significantly beyond 200 CS partitions. On the other hand,
with a cache size of 50K cache entries we reach the maximum number of hits
with a minimum of 25600 CS partitions.

queue
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Queries
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Fig. 6. Multi-server system model for a CS partition
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3.4 Index-Service (IS)

The Index-Server (IS) cluster accesses the inverted index to search for relevant
documents for the query and performs a ranking operation upon those docu-
ments. The CPN Index-Server (Figure 9) consists of a number of servers initially
idle. Each server processes a query at a time. For a given query every IS partition
performs the same operations (intersection of posting lists and ranking) although
with different parts of the inverted index. As the inverted index is uniformly dis-
tributed among processors all index size partitions tend to be of the same size
with an O(log n) behavior for the maximum size n [3]. We have observed that
this O(log n) feature fades away from the average query cost when we consider
systems constructed by using non-blocking multi-threaded query processing.
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Fig. 8. Average query service times obtained with different IS partitions

The service time of this cluster depends on the posting list size of the query
terms. The intersection and ranking operations over larger posting lists require
larger service time. Figure 8 shows how the IS service time decreases with more
partitions for the query log under study and using a benchmark program that
actually implements the inverted file and document ranking process (notice that
our CPN model is expected to be used as a tool exploited around an actual ver-
tical search engine, from which it is possible to get small benchmark programs
that are executed to measure the different costs on the actual hardware). Almost
with 140 partitions the IS cluster cannot improve performance any longer, be-
cause the inverted index becomes very small. Therefore, in the CPN model the
service time is adjusted according to the number of index partitions ISp. Each
query is associated with a posting list size randomly selected from a set of all
possible posting lists sizes of our query log. This value is used together with the
number of partitions ISp to estimate the document ranking cost in the valuer
variable of Figure 9.

Therefore, from the point of view of the CPN simulation and as it is not of
interest to obtain metrics about the quality of results, we can model just one
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Fig. 9. Index Service model using CPN

IS partition. The number of replicas is set in the global parameter num of IS .
After a query is served in this cluster, it changes its status to q.done.

In this work we estimate the cost of the WAND algorithm for document
ranking [6]. We use results obtained from the WAND benchmark to study the
average running time required to solve a query in the IS cluster. Query running
times reported by the WAND algorithm can be divided into two groups: (1) the
time required to update a top-k heap, and (2) the time required to compute
the similarity between the query and a document. The heap is used to maintain
the local top-k document scores in each index node. The similarity between the
query and a document is given by the score of a document to a given query.

Figure 10.(a) shows that the total running time reported by the WAND al-
gorithm required to compute the similarity among documents and a query is
dominant over the time required to update the heap. Computing the similarity
is less expensive, like 15% of the time required to update the heap. But, the num-
ber of heap updates is much lower than the number of similarity computations.
Figure 10.(b) at left shows the average number of heap updates and similarity
computations per query. Each query performs 0.1% heaps updates of the total
number of operations with P = 32 and top-10 document ID results. This per-
centage increases to 1% with P = 256 because the size of the posting lists are
smaller and the WAND algorithm can skip more similarity computations. For a
larger top-k the number of heap update operations increases.

Results of Figure 10.(b) at right show the variance of the number of similarity
computations. The variance also decreases with more processors, because posting
lists are smaller and the upper bound of each term of the query tends to be
smaller. Thus all processors perform less similarity computations and tend to
perform almost the same amount of work.

4 A Performance Evaluation Study Using the CPN
Model

In this section we first validate our model against the execution of a small vertical
web search engine. Then we use this model to evaluate the impact in performance
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Fig. 10. Benchmarking the WAND document ranking method

of alternative service configurations (number of partitions and replicas). The aim
is to illustrate the potential use of the CPN model in a production environment.
Below we refer to “workload” to mean average utilization of processors hosting
the FS, CS and IS services. Utilization is defined over a given period as the
fraction of time that a given processor is busy performing computations.

4.1 Model Validation

We consider a vertical search engine deployed on a small cluster of 30 processing
nodes with 4 cores each. We run experiments over a query log of 36,389,567
queries submitted to the AOL Search service between March 1 and May 31, 2006.
We pre-processed the query log following the rules applied in [15] by removing
stopwords and completely removing any query consisting only of stopwords.
We also erased duplicated terms and assumed that two queries are identical if
they contain the same words no matter the order. The resulting query trace
has 16,900,873 queries, where 6,614,176 are unique queries and the vocabulary
consists of 1,069,700 distinct query terms. These queries were also applied to a
sample (1.5TB) of the UK Web obtained in 2005 by the Yahoo! search engine,
over which a 26,000,000 terms and 56,153,990 documents inverted index was
constructed. We executed the queries against this index in order to get the top-
k documents for each query by using the WAND method. We set the CPN
simulator with the statistics obtained from this log. The simulator supports
different query arrival rates λ0 (new queries per second).

We are interested in two main measures: workload and query response time.
In Figure 11 the y-axis shows the relative error (difference in percentage between
values) obtained for each measure with the CPN model and the x-axis stands for
different services configurations. A configuration is a tuple 〈FS,CSp, CSr, ISp,
ISr〉 where FS is the number of front service replicas, ISr represents the number
of IS replicas and ISp the number of IS partitions, the same nomenclature is
used for the CS. A low value in the x-axis represents configurations with a small
number of processors where workload is about 85%-95%. On the other hand,
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a high value in the x-axis represents configurations with more processors with
processor workload of about 20%-30%.

Figure 11(a) shows results obtained with λ0 = 1000. We run different services
configurations with a range from 40 to 80 for values of the configuration tuple.
The IS workload presents the higher error rate, about 5.3% for configurations
with few service nodes. The FS workload measure also presents a maximum error
close to 5%. Finally, the CS workload is the closest one to the real result. The
maximum error presented by this service is at most 3.5%. Finally, the average
query response time presents a maximum error of at most 4%.

Figure 11(b) shows results obtained with a larger λ0 = 3000 and a different set
of services configurations. We changed the set of services configurations to avoid
saturating the system early in the simulation. We increase the range of configura-
tion values from 40 to 120. In this experiment, the maximum error rate of about
5% is reported by the IS cluster. Query response time presents an error rate of at
most 3.5%. Therefore, these results verify that our CPN model can predict with
an error close to 5% the relevant costs of the vertical search engine under study.

 0

 1

 2

 3

 4

 5

 0  5  10  15  20

E
rr

or
 (

%
)

Configuration

Query Time
CS
IS
FS

 0

 1

 2

 3

 4

 5

 0  5  10  15  20

E
rr

or
 (

%
)

Configuration

Query Time
CS
IS
FS

(a) (b)

Fig. 11. CPN model validation: (a) query arrival rate λ0 = 1000 and (b) query arrival
rate λ0 = 3000

4.2 Model Assessment

In this section we aim to answer questions like: “Given a number of processors,
What is the query traffic that they can support?”. To this end we stress our
search engine model by increasing the arrival rate λ0. In this way we can de-
termine the workload supported by the search engine and how average query
response time is affected by the increased workload. In the following experi-
ments we set to 8 the number of threads per processor which is consistent with
the current hardware deployed in production for the vertical search engine.

Figure 12 shows the results obtained for query traffic ranging from very low
(A) to very high (I). We start with x = A = λ0 = 800 and we increase the
arrival query rate by 400 in each experiment until we reach x = I = λ0 = 4000.
In Figure 12.(a) we use a total of 355 processors and in Figure 12.(b) we use 463
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Fig. 12. Workload and average query response time obtained with different configura-
tions. Query traffic varies from low (A) to very high (I).

processors. In both figures, workload is above 80% from x = G = λ0 = 3200 but
for different cluster services. In the former we reach this percentage of workload
with the CS and the IS clusters. In the last, we maintain the number of CS
replicas but we increase the number of IS replicas as we decrease the FS replicas.
Thus, the FS cluster reaches this percentage of workload instead the IS cluster.
As expected service time tends to increase as services clusters are saturated.
With more processors, a total of 516 in Figure 12.(c) and 553 in Figure 12.(d),
the workload is kept below 80%. There is no saturation and therefore query
response time is not affected.

With these experiments we can answer our question about the query traffic
that can be supported by a given services configuration. For the first two con-
figurations in Figure 12.(a) and Figure 12.(b) it is clear that with x = C we get
a workload close to 40%. For the two last figures, we get a workload close to
40% in x = E. Beyond these points we cannot meet the second constrain (keep
all resources workload below 40%). This constrain has to be satisfied to support
suddenly peaks in query traffic. The other two constraints (keep query response
time below an upper-bound, and keep query throughput at query arrival speed)
cannot be guaranteed with a workload above 80%-90%. From this point on, the
system is saturated and queries have to wait for too long in services queues.
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4.3 Evaluation Using a Switched LAN

In this section we illustrate with an example that the proposed CPN model
can easily incorporate additional components. We show this by evaluating our
search engine model with a different kind of network. To this end, we replace the
Fat-tree network by a switched LAN network as explained in [27]. In Figure 13
we add a new module WS connecting all services queues. We also have to add
three more places (IS SW, CS SW, FS SW ) to make this connection feasible.
Inside the SW module we have connection components. Each component has
input/output ports and internal buffers represented as places. There are two
transitions: one to model the processing of input packages and one to model the
processing of output packages. We have one component for each service cluster.
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Fig. 13. Web search engine modeled with a switched LAN network

To evaluate the switched LAN network we run some benchmark programs to
determine the time of sending a message from one service node to another over a
Switch Linksys SLM2048 48-ports. We compare it against a Fat-Tree constructed
using the same kind of 48-ports switches. Figure 14.(a) compares CPN simulations
using the two networks. The results show that using a Fat-tree network helps to
reduce the average response query time as we increase the query arrival rate.With
a maximum query arrival rate of λ0 = 4000, the search engine using the Fat-tree
network obtains a gain of 10%. But, the LAN network has a second effect over the
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Fig. 14. Results obtained with two different kind of networks. (a) Average query
response time. (b) Front-Service workload. (c) Caching-Service workload. (d) Index-
Service workload.

search engine. Queries expend more time inside the network and inside the queues
connecting services with the network than inside the services clusters. Therefore,
using a switched LAN network the services workload placed on processors tends to
be lower than in the case of the Fat-tree. In Figure 14.(b) the FS cluster reports
13% higher workload using the Fat-tree. In Figure 14.(c) this difference is only
5% for the CS cluster. In Figure 14.(d) we show that the IS cluster gets 12% lower
workload using the switched LAN network. These results were obtained with a
services configuration 〈10, 3, 5, 1, 33〉.

5 Conclusions

We have presented a model for predicting performance of vertical search engines
which is based on a Coloured Petri Net (CPN). We illustrated the use of the
CPN model through the execution of a corresponding CPN simulator in the
context of a specific vertical search engine currently deployed in production.
From the actual implementation of the search engine, several small pieces of code
are extracted to construct benchmark programs. These programs are executed
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on the same search engine hardware and the results enable the setting of the
simulator parameters. Typically vertical search engines are built from a software
architecture that makes it simple to generate appropriate benchmark programs
for the CPN simulator.

After validating the model results against the search engine results, we used
the CPN simulator to evaluate relevant performance metrics under different
scenarios. This study showed that the proposed CPNmodel is suitable for solving
the problem of determining the number of cluster processors that are required
to host the different services that compose the respective search engine. This is
a relevant question that data center engineers must answer in advance when a
new vertical search engine instance is required to serve a new product deployed
in production, or in accordance with an estimation of query traffic growth for
the next term, to determine how big the different services must be in order to
decide the amount of hardware required to host the new search engine instance.

An advantage of the proposed model is that it has been designed in a mod-
ular manner so that new components (services) can be easily accommodated.
We illustrated this feature by evaluating the impact of introducing an alterna-
tive communication network technology. The enhanced model was simple and
fast to formulate and experimentation was quickly conducted to evaluate the
performance metrics for the new case at hand.

Acknowledgment. This work has been partially supported by FONDEF
D09I1185 R&D project.
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Abstract. Operational support is a specific type of process mining that
assists users while process instances are being executed. Examples are
predicting the remaining processing time of a running insurance claim
and recommending the action that minimizes the treatment costs of a
particular patient. Whereas it is easy to evaluate prediction techniques
using cross validation, the evaluation of recommendation techniques is
challenging as the recommender influences the execution of the process.
It is therefore impossible to simply use historic event data. Therefore,
we present an approach where we use a colored Petri net model of user
behavior to drive a real workflow system and real implementations of
operational support, thereby providing a way of evaluating algorithms
for operational support before implementation and a costly test using
real users. In this paper, we evaluate algorithms for operational support
using different user models. We have implemented our approach using
Access/CPN 2.0.

1 Introduction

Some business processes are unstructured or only very loosely structured. This is
the case where a process has never been formalized or where the process requires
a lot of freedom. Examples of such processes are processes in small very agile
companies, or processes in disaster handling or healthcare, where flexibility and
experience plays a more prominent role than a strictly structured process. While
such freedom may be good for an experienced user, it may not provide enough
support for less experienced users. Using process mining, it is possible to provide
operational support [3] for running processes of this kind. Under operational
support, users are provided with on-line information about the running process,
and can even be given recommendations about the next actions to be taken in
order to arrive at a goal [15].

In [11], we defined a meta-model for operational support. Here, a client sends
a partial execution trace along with a query to an operational support service.
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A query is simply a question to which a response is received. Operational support
allows four types of queries. A simple query checks the performance of the current
partial execution trace, for example, what is the total time since the start of
current execution? A compare query compares the performance of the current
partial trace to other similar traces. For example, is the execution time of the
current trace to this point higher or lower than the average? A predict query
looks into the future of traces similar to the current and uses that to provide
predictions about the current trace. For example, what is the expected total
execution time for this trace? Finally, a recommend query gives the best possible
next action to be done based on the current partial trace. For example, what is
the best action to execute in order to complete the execution as fast as possible?

It is easy to evaluate algorithms for the first two types of queries (simple
and compare). These are basically lookup functions combined with standard
operators computing average, variance, etc. As shown in [1, 4] it is also possible
to evaluate predict queries using cross-validation. For example, when using k-
fold cross-validation, the set of process instances is partitioned in k parts. k− 1
parts are used to learn a predictive model. The instances in the remaining part
are used to evaluate the quality of the predictive model. Because historic data
is used, it is possible to compare the predicted value with the real value. This
experiment can be repeated k times thus providing insight into the quality of
the predictive algorithm.

Algorithms providing recommendations are much more difficult to evaluate.
Since recommendations influence the execution, it is impossible to directly use
historical data. Users will change their behavior based on these recommenda-
tions, so it is impossible to simply use the observed behavior where users got no
recommendations.

Here, we introduce a general setting for testing recommendations as shown
in Fig. 1. At the bottom right we have a User. The user is executing a process.
The process may be implemented using a Workflow System and as shown here
or it may be ad-hoc. The user consults Operational Support to get advice about
which step to execute. The idea we present here is to model the user using a
colored Petri net (CPN) [8] model and have that model interact directly with a
real workflow system, i.e., Declare [2,7] and real implementations of operational
support in the ProM framework [13, 19]. That way we do not need real users,
making the approach much more affordable, yet still interact with real systems,
so we get realistic results. Using real systems instead of modeled counter-parts
also makes it much easier to do the modeling, as we only have to focus on the
user behavior, and not on replicating already existing systems and algorithms.
Our approach also allows rapid prototyping of algorithms by implementing them
using a CPN model and directly integrating them in a real tool for operational
support. We can then use the algorithms directly in tools acting as clients for
operational support, including workflow systems and our testing platform.

The contribution of this paper is two-fold: First and most importantly, we
present the test suite modeled in colored Petri nets that provides a means to
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z 

Fig. 1. Abstract Testing Platform

test simple algorithms for operational support in a cost-effective way. The al-
gorithms we present here are not intended as real examples of algorithms for
providing operational support, but only to illustrate the test-suite. Second, we
provide a framework based on colored Petri nets making it very easy to prototype
algorithms for operational support. Through log generation of the CPN model,
we are able to also provide an evaluation of simple recommendation algorithms
for operational support in a simple but non-trivial setting.

The term operational support refers to a collection of process mining tech-
niques [1] executed while people are still working on cases. Several papers de-
scribe techniques to predict the remaining total execution time of running cases.
See [3, 4] for pointers to such techniques. Another type of operational support,
more relevant for this paper, is providing recommendations. In [16] simple ad-hoc
models are created to support recommendation. In [17], case-based reasoning is
applied to find similar cases. See [14] for a more general overview of recom-
menders. To the best of the authors’ knowledge, there is no preexisting work
on unified testing recommenders except for ad-hoc testing of individual recom-
menders compared to no support.

In [11] a generic framework for operational support based on queries is pro-
posed. This is used in this paper. In [19] the operational support service of ProM
is modeled and analyzed using CPN Tools [6]. The integration of CPN Tools with
other components was described in [18]. In [9] it was shown how CPN compo-
nents and workflow components can be exchanged for testing and simulation.
This approach will also be followed in this paper.



An Infrastructure for Cost-Effective Testing 311

We use Declare [2,7] as an example of a workflow system. It is selected because
it allows more flexibility than procedural approaches to process modeling and
therefore benefits from recommendation techniques.

The remainder of the paper is organized as follows: In Sect. 2, we provide
the background needed to understand the remainder of the paper including a
running example. In Sect. 3, we discuss the user model, focusing on the modeling
of the time needed to execute tasks. In Sect. 4, we discuss the recommendation
algorithms tested in this paper including presenting a generic CPN model that
can be used as a starting point for rapid prototyping of operational support
algorithms. Section 5 provides a description of the experiments carried out to
evaluate the algorithms described using the various user models. Finally, Sect. 6
summarizes our conclusions and provides directions for future work.

2 Background

In this section we provide the background needed to understand the rest of this
paper. We briefly introduce the Declare language which is an example of a work-
flow language that we use for modeling our running example. We also introduce
an architecture for operational support. We summarize the Access/CPN 2.0 [18]
library for running a CPN model together with software components.

Running Example and Declare. Consider the example in Fig. 2, modeling a
study process. This example is created in Declare [7], which is a workflow system
based on a declarative language. Compared to conventional procedural workflow
systems, Declare allows for much more flexibility [2]. In Declare, tasks are shown
as rectangles and can initially be executed in any order. Tasks are constrained by
constraints , shown as arcs. We shall not go into details about the constraints of
Declare but refer the interested reader to [2,7]. Here, we just supply an abstract
overview of the behavior of the model. Basically, a student can choose either an
academic or a practical path to a degree. A student can initially either choose
to go to HighSchool or to get a job (Work). Going to high school allows students
to be admitted for a BSc (the academic path). Alternatively, a student may
decide to get a job. Having had a job allows the student to enter two practical
supplementary courses (PCourse1 and PCourse2). In order to be admitted to the
four theoretical courses (TCourse1–TCourse4), a student must both have had a
job and also been to high school. Having completed all six supplemental courses
is a prerequisite to Qualify for starting a master’s study. A student is also allowed
to start a master’s study if he has completed a BSc. Out of the two master’s
degrees offered, only one can be completed (for financial reasons). Only after
completing a master’s degree in business information systems (MSc, BIS) can a
student become a true Master of BPM.

In our example, we can optimize towards at least two goals: getting a master’s
degree as fast as possible or becoming a master of BPM. The difficulty for a
student is that he has at any point a lot of freedom. For example, he can at
any point in time decide to get a job which may open new possibilities. During
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Fig. 2. A study process model in Declare

the execution many activities may be allowed (e.g., after going to high school
and having a job, BSc, the 6 courses and Work are allowed actions), making
it difficult to select the best action to take. Operational support aims to assist
users in making such decisions. For example, based on historic information we
can recommend particular actions in a given context.
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Fig. 3. Architecture of the opera-
tional support in ProM

Operational Support Architecture.
Operational support can be implemented
in many ways. For example, one way is just
to suggest executing a random task and
another way is to look at what students
did before. In order to support any present
and future algorithms in a coherent way,
we use the architecture for operational sup-
port shown in Fig. 3. Here, a Client commu-
nicates with a Workflow System and with
the operational support service (OS Ser-
vice; OSS in the following). The OSS for-
wards requests to a number of operational
support providers (OS providers; providers
in the following), which may implement different algorithms. The OSS receives
responses from the providers which it sends back to the Client. In [19] we
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� �

1 public interface Prov ider extends S e r i a l i z a b l e {
2 boolean accept ( Ses s ion s ) ;
3 void des t roy ( Ses s i on s ) ;

5 <R, L> Recommendation<R> recommend ( Ses s ion s ,
6 XLog ava i l ab l e I t ems , L query ) ;

8 void updateTrace ( Ses s ion s e s s i on , XTrace t r a c e ) ;
9 }
� �

Listing 1. Provider interface

presented a protocol and architecture making it possible to access different al-
gorithms using a common protocol and this architecture. In [11] we defined a
common meta-model for operational support, allowing a common interface to
all algorithms.

In order to implement an algorithm for the operational support service, we
need to implement the interface in Listing 1. The interface also has methods for
the other kinds of queries, but we have hidden them as we are not interested in
them here. accept and destroy control the life-cycle of the provider, and recom-
mend handles actual queries. Queries get a set of all availableItems to pick among
and a query to optimize towards. The result is a Recommendation, which basically
is an event recommended to execute. updateTrace is called whenever the client
has executed more events. All methods have an additional session parameter
which can be used to store case-local data.

Cosimulation Using Access/CPN 2.0. Our goal is to take a model similar
to the one in Fig. 1 and refine the User using a sub-module described as a colored
Petri net. This is already supported by CPN Tools [6], a tool for editing and
analysis of colored Petri nets. Furthermore, we want to use the actual Declare
workflow system as a replacement for the substitution transitionWorkflow System
and the actual implementation of operational support in ProM as a replacement
for the Operational Support substitution transitions. Access/CPN 2.0 [18] is a
library for interaction between CPN models and Java programs, and supports
exactly this kind of interaction.

Using Access/CPN 2.0, it is possible to implement a simple interface and have
the library run a cosimulation, where the model is executed and synchronized
with the Java code.

3 User Behavior Modeling

In this section, we show how we model user behavior. Our model is a con-
crete implementation of the abstract testing platform in Fig. 1. The model is
parameterized and allows different user behaviors. While we allow configurabil-
ity of probabilities of completing or cancelling a current task, more interesting
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configuration options include which timing model to use and whether a user uses
operational support. Our entire model comprises 14 pages, 127 places, and 41
transitions.

User

User

Workflow
System

Declare

Instances

NAMEDINSTANCE

Close

NAMEDINSTANCE

Consistent

INSTANCExBOOL

Cancelled

WI

Completed

WI

Offers

WIu

Approved

WI

Rejected

WI

Selected

WI

Declare User

1 1`(1,"Study")

1 1`(1,true)

2 1`(1,"HighSchool")++
1`(1,"Work")

1 1`(1,"HighSchool")@0

Fig. 4. Workflow system and user

The top level of our model can be
seen in Fig. 4. It consists of the Work-
flow System (left) and the User (right).
The workflow system has exposes a num-
ber of Instances of the process to be exe-
cuted (cf. instance 1 for the Study process
in Fig. 4). For each instance, it also indi-
cated whether the instance is Consistent,
i.e., if it can safely be terminated. Further-
more, the workflow system also exposes a
number of Offers which are concrete tasks
that can be executed by users. For exam-
ple, from the study model shown in Fig. 2
initially the possible offers for instance 1
are HighSchool and Work as seen as tokens
on the Offers place. A user can pick an of-
fer and inform the workflow system that
is has Selected that work item. The work-
flow system then either approves or rejects
the request. If the request is Rejected, it
is dropped. Otherwise if the request is Ap-
proved, the user starts working, for example, from Fig. 4 HighSchool has been
approved by the workflow system and is seen as a token on the Approved place.
At some point, the user either cancels work or completes it, i.e., the workflow
system is informed using Cancelled and Completed places. When an instance is
consistent, i.e., all the required work items offered to the user have been com-
pleted then the user can Close the instance.

3.1 User Model

A user is modeled as shown in Fig. 5. Users are generated on-demand (depending
on the instances that have sent from the workflow system) by the Assign page,
which generates users as needed up to a certain threshold (Vacancies). A user
starts off being Idle. An idle user can select to Pick Item and start working.
This can be done using the aid of Operational Support. After a task has been
Requested, it can be executed (or cancelled), making sure to inform the workflow
system accordingly. Alternatively, an idle user can Close a consistent instance
(i.e., an instance where all the required work items have been completed).

The operational support service can handle recommendation requests (Re-
commend) and provide Responses. Furthermore, the OSS can be notified when
the user has decided to End Session, which is useful for clean-up. After a user has
executed an event it is sent to Add Event to allow the operational support service
to construct an execution trace. The operational support service is implemented
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Fig. 5. User model

as a Java module using Access/CPN 2.0 [18]. It comprises 683 lines of code, 227
of which handles a very flexible interface to CPN models allowing formatting of
queries in many ways and 143 lines of GUI integration code, making the actual
interface just over 300 lines.

Pick Item Model. In Fig. 6, we see that an idle user first needs to decide
whether to use support or not. We do this before actually asking for support due
to efficiency of simulation. While a more realistic scenario would be to ask for
support and use that as a guide, we can see this as just another algorithm for
support, and we use the No Support to model a completely clueless user picking
at random. The probability for whether support is used or not is configurable.
No matter which branch we pick, we end up with a new work item on Selected
and transferring control to Requested. It is only when we use support that we
send Recommend requests to operational support and get Responses.

When we use operational support, we need a list of all enabled events for
a given instance. We thus do as in Fig. 7: we first Select Instance, i.e., which
instance of the process to work on. Then we build a list of all events enabled in
that instance (Populate Offers for the Selected Instance). From Fig. 7, Selected
Instance will be populated by High School and Work. When we have added all
events to the list, we can Perform Query, sending the list of enabled events to
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Recommend of the operational support service (cf. token on the Recommend in
Fig. 7). We are then Waiting for a Response, and when it arrives, we blindly Pick
Recommended, inform the workflow system of which task we have Selected and
transition to the Requested state. For the modelling notations we use here are
discussed in [5].
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Task Execution. Task execution (Fig. 8)
at the abstract level starts when a task is
Requested. If the workflow system Rejected
the request, it is Aborted and the user re-
turns to the Idle state. If the request is Ap-
proved, it is Executed, the workflow system
is informed of success (Completed) or fail-
ure (Cancelled), and the operational sup-
port service is notified if a new task was
executed (Add Event). We have four differ-
ent implementations of Execute: one with
constant execution times, one where execu-
tion times are sampled from a probability
distribution, one where execution time is
dependent on the previously executed task,
and one where execution time is dependent
on the stress level of the user.

Constant Time or Sample from Probability Distribution. The first two imple-
mentations can be treated together as constant time can be viewed as a specific
probability distribution. Here, we assume that the execution time for tasks is
independent of what was done before and the stress level of the user. Thus, we
start in the Requested state in Fig. 9. Due to the timing model of CPN mod-
els, we need to make the decision of whether to Cancel Work or to Complete
Work as soon as we Start Work. Thus, we pick a random number and if it is
below a configurable threshold (Cancel Rate) then Cancel is selected, otherwise
In Progress (cf. user 1 is executing Work in Fig. 9). This module is only enabled
if the Timing Model is PROB. We get the timing information from shared Time
Database and Cancel Database, which contain the timing information for suc-
cessfully executing and the penalty for cancelling an activity. If we Cancel Work,
we inform the workflow system and go to the Idle state, and when we Complete
Work, we inform the operational support service as well as the workflow system
before transitioning to the Idle state. The transitions all have a guard binding
transtype, which indicated when a work item is started, and either cancelled or
completed. This is used to subsequently import a simulation log into ProM for
further analysis.

Batch Processing. The idea of this timing model is that if one executes similar
tasks one after another, then one becomes faster due to step-up time reduction
and learning effects. To model this “conveyor belt effect”, we need to keep track
of the last executed task and how many times we have executed the same task.
In our example, we consider all the practical courses to be similar enough to
use batch processing and all theoretical courses as well. In Fig. 10 we see the
start of the module for batch processing (the remainder is the same as in Fig. 9).
Instead of just one start transition, we now have two: one to Start New Work and
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Fig. 9. Task execution model based on a probability distribution

one to Start Batch Work. The apparent complexity is due to the two transitions
doing almost the same. Both have access to the two configuration options and
two databases as the Start Work transition in Fig. 9. The place Last keeps track
of which task we executed last and how many times we have executed a similar
task. We read the last task from Last and compare it to the current task to
execute. If they are the same, we Start Batch Work and if they are not the same,
we Start New Work. In both cases, we update Last accordingly and if we execute
batch work, we let the timing be dependent on how many times we have executed
the same task.

Execution Time influenced by Workload. According to “Yerkes-Dodson Law of
Arousal”, the execution speed increases as the stress increases up to a certain
optimal level beyond which the performance decreases [10, 12, 20]. In our model
we let the execution time be dependent on the number of tasks offered in the
queue for a user. This can be modeled as in Fig. 11. Like for batch processing,
we only see the initial fragment as the remainder is the same as in Fig. 9. The
basic idea is that we need to count how many tasks are in Offers. This is the
same construction as we used to build a list of all tasks for operational support
in Fig. 7, and has therefore been hidden in a substitution transition Count Tasks
for legibility. Otherwise, Start Work is the same as in the simple case, except
we compute the execution time with an extra parameter, namely the number of
available tasks (ct) on the Count place for each instance (i).
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Fig. 10. Task execution model implementing batch processing
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Fig. 11. Task execution taking workload into account

4 Recommendation Algorithms

In this section, we describe the four recommendation algorithms evaluated using
simulation. Two of the algorithms are completely general and require no con-
figuration, one is general but requires configuration, and one only works for our
running example.

We can implement an algorithm by directly implementing the interface in
Listing 1. For simple algorithms, this includes a lot of overhead, which may not
be needed for quick testing. For this reason, we have created a generic implemen-
tation of the Provider interface using Access/CPN 2.0. This just requires that
implementers make a simple CPN model. The generic connector comprises 505
lines of Java code including 206 lines of GUI integration code, making for just
under 300 lines of logic.

To make it easy for implementers to get started, we have developed a tem-
plate model which can be used to very quickly prototype operational support
algorithms. The model comprises 7 pages, 30 places and 12 transitions, but a



320 J. Nakatumba, M. Westergaard, and W.M.P. van der Aalst

user typically only has to worry about a single page. In the remainder of this
section, we introduce our generic template model, how to implement the two
simplest providers using this framework, we give a brief overview of a more ad-
vanced provider and show how we developed a provider specific for our running
example. The reason for going through the operational support service instead
of just incorporating the providers directly in the model is to improve reusabil-
ity. First of all, we can use any provider from any model and do not have to
copy one algorithm from one test model to another. Second, we can use the al-
gorithms immediately and directly from any tool allowing operational support.
This decoupling makes it easy to test algorithms on humans interacting with a
workflow system if we do not want to just rely on simulation results.

4.1 Provider Model

Query

Query

Setup

Setup

Recommend
Response

R

Recommend
Query

Q

Predict
Response

P

Predict
Query

Q

Compare
Response

P

Compare
Query

Q

Traces

EVENTS

Simple
Response

STRING

Accept
Response

BOOL

Accept

SxS

Simple
Query

Q

Setup

Query

Fig. 12. Top model of a provider

The provider model quite closely re-
flects the interface in Listing 1. At
the top level (Fig. 12) we handle Ac-
cept calls (corresponding to the accept
method) and the kind of query (cor-
responding to recommend). The up-
dateTrace method is not represented
explicitly; instead the Traces place
contains all currently active partial
traces. The destroy method is not
necessary as resource management is
handled by the plug-in.

Provider setup just decides whether
to accept or ignore a session. The de-
fault implementation unconditionally
accepts sessions. The Query module
separates each of the four kinds of
queries to their own pages.

Random Provider. The random provider just recommends a random enabled
task from the list of available tasks. Thus, we expect this provider to have the
same behavior as using no operational support at all and is put here as a base-
line to compare with the more advanced recommendation techniques. The full
implementation is shown in Fig. 13. We receive a request on Recommend Query.
The request contains evts, a list of available tasks. Our response is just a random
event picked using pickRandomEvent if it exists, or a dummy response otherwise
(so we always provide an answer).

Batch Provider. The batch recommender always recommends, if possible, the
same event as the one executed last. If this is not possible, it just recommends
a random event. This is intended to work together with the batch timing, where
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Fig. 13. Random recommender
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Fig. 14. Batch recommender

executing similar tasks together is faster than executing them interleaved with
others. The implementation of the batch provider shown in Fig. 14 is very similar
to the random provider, except we now also make use of the execution Trace and
use the pickBatchEvent function to pick the event that is similar to the last
executed one if one exists, and otherwise a random event.

Model-Specific Provider. The authors are very familiar with the running
example, and therefore have an idea of the best way to execute it. We can
encode this knowledge in a model-specific recommender. While the previous two
recommenders work with any model, they are also not very intelligent or good
at finding optimal executions (see also the next section on experiments). By
making a model-specific recommender, we can make one that is better, but less
generally applicable.

Creating a recommender using our framework is very simple, so we can im-
plement a strategy recommending the academic route directly as in Fig. 15. The
implementation has a set of events that should always be recommended with
high priority if offered (Preferred). The transition Preferred Activity checks if a
preferred event is among the offered ones and if so recommends it. The transition
has high priority and will thus be selected before others. If no preferred activity
is available, we just return the first (Other Activity). This exploits a known best
(at least in some settings) implementation and the fact that all the events are
only offered once in this model.

4.2 Log-Based Recommender

We want a recommender that provides better advice than guessing randomly,
but at the same time, we would like to avoid models or situation specific
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Fig. 15. Model-specific recommender

recommenders. For this purpose the log-based recommender is designed. This
provider uses a historical log as guidance for providing recommendations. The
idea is that we have a predicate selecting traces from the log we consider to be
the same as the current one. We then compute a value on all such traces and
return the next event of the trace which yields the best result. In our example,
we would consider all traces with the same sequence of completed events similar
to the current trace. Our computation would be the complete execution time,
and our order would prefer shorter execution times.

The log-based provider is implemented in Java and comprises 513 lines of
code, all of which is logic. Furthermore, this provider depends on a complicated
library for querying XML documents using XQuery as discussed in [11]. All in
all, we do not want to duplicate this code in a CPN model.

5 Experiments

In this section we outline how we have used our testing platform (described in
Sect. 3) to test the various providers described in Sect. 4. First of all, we per-
form tests with the random recommender for all timing models to demonstrate
that this yields the same as not using operational support. Also, we use this to
eliminate the simplest timing model (constant time for execution) from future
tests. Then we evaluate the batch and model-specific recommenders for the re-
maining timing models. Finally, we evaluate the log-provider using “historical
logs” generated by the random provider. We evaluate the providers according to
our two goals: shortest execution time and highest success rate, where a trace is
successful if the task Master of BPM is executed.
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Table 1. Random Provider

Support Time Model

CONST PROB BATCH WL

T
im

e

0 3998 4029 3941 2206
50 4024 3971 3905 2207
90 4014 3994 4015 2220
100 4034 4071 4043 2205

S
u
c
c
e
ss 0 9.0 10.3 10.8 9.2

50 11.5 11.2 11.1 10.5
90 11.0 10.8 10.9 11.2
100 10.7 11.4 11.5 10.2

5.1 Random Provider

Our first test is more a sanity test to test that everything works; if tasks are
picked at random with the same probability, it should not matter whether we use
support or not. Furthermore, we expect the execution time to be the same for
the timing models using constant time as a probability distribution. Finally, we
expect the success rate to be nearly the same for all executions, independently
of how much support is used and which timing model is used.

In Table 1 we see the results of our first experiments. The table is split in
two: the top part shows the average execution time for a trace and the bottom
part the success rate as defined above. We show results for each timing model
(CONST = execution time for each task is a constant, PROB = execution is
independent and identically distributed, BATCH = execution time is dependent
on whether you execute the same task more than once, and WL = execution
time decreases as stress increases) and for four different values of support. Here,
0% support means that we always chose at random and 100% support means we
always ask operational support for advice. All numbers represent 1000 traces.

We see that the support percentage has no effect on either the execution time
or the success rate for the tasks with the same time model. We also see that
the CONST and PROB time models have the same behavior: the execution time
and the success rate are very similar for those. The BATCH time model also has
similar though slightly lower execution time whereas the WL time model has a
significantly shorter average execution time. The reason for this is that they are
allowed to execute tasks faster (if randomly batching or having more tasks in
the work list). The qualitative measurement, the success rate does not change
(as expected as we only change how long tasks take, not how they are selected).

5.2 Batch Provider

For our second test we want to evaluate the simple batch heuristics. We do not
need to perform executions for 0% support (it is the same as the numbers in
Table 1). We have also removed the simple time model, CONST as it yields the
same results as PROB and is very far from reality. The results are summarized
in Table 2.
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Table 2. Batch Provider

Support Time Model

PROB BATCH WL

T
im

e 50 4085 3996 2372
90 4178 4095 2595
100 4198 4134 2641

S
u
c
c
e
ss 50 11.5 11.8 11.5

90 8.5 13.4 12.5
100 12.8 15.4 14.4

Table 3. Model-specific Provider

Support Time Model

PROB BATCH WL

T
im

e 50 4047 4001 2376
90 3866 3766 2797
100 3793 3711 2946

S
u
c
c
e
ss 50 31.0 30.8 32.3

90 45.8 46.5 46.1
100 47.3 51.9 51.2

We see generally and sometimes even significantly larger execution times us-
ing the batch provider compared to using the random provider (from Table 1).
Surprisingly, we also see the execution time increase when the support rate goes
up and even for the BATCH time model, which would be expected to benefit from
batching. The reason is that while the batch provider recommends batching to-
gether similar tasks, it also suggests repeating working as we see in Fig. 2 Work
and Master of BPM are the only tasks that can be executed more than once.
Thus, this provider does not force progress, and may even prevent it, leading to
longer execution times even though individual tasks are executed faster.

5.3 Model-Specific Provider

This is the same test as the one performed for the batch provider, except we now
evaluate the provider specially tailored to our model. The results are summarized
in Table 3.

We see that for the simple timing models, this provider significantly outper-
forms the previous, as it successfully picks the shortest path to an education. We
also see that when timing is workload-dependent, this provider performs worse.
The reason is that while the expected time to get a BSc is 3 years and the sum
of the time to take the 6 courses (half a year each) and get a qualifying job (1
year) is 4 years, it is faster to take the 6 courses as the concurrent workload is
faster. Thus our smart solution is suboptimal in this case. Regarding the qual-
itative results, we see that following recommendations leads to higher success
rates. The reason the success rate approaches 50 and not 100 is that we do not
control when an execution ends, so after executing MSc, BIS (or MSc, ES if we
do not listen to operational support) we have a 50% chance of terminating the
execution and a 50% chance of continuing.

5.4 Log Provider

Here we need some historical data. As this is a model created for demonstration
purposes, we do not have any such data. We can, however, generate an execution
log using our model. We simply allow CPN Tools to generate a simulation log
and import it into ProM. In Tables 4 and 5 we see the results of using the log
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Table 4. Log Provider (Running Time)

Support Time Model

PROB BATCH WL

T
im

e 50 3073 3026 1674
90 2191 2032 1110
100 1957 1642 957

S
u
c
c
e
ss 50 9.6 5.7 7.0

90 4.1 10.2 1.3
100 0.4 13.6 0

Table 5. Log Provider (Success)

Support Time Model

PROB BATCH WL

T
im

e 50 4096 4081 2327
90 3920 4639 2278
100 3832 4909 2257

S
u
c
c
e
ss 50 24.5 14.8 15.5

90 45.8 28.7 17.5
100 48.2 44.5 24.0

provider. We have in all cases used a log generated using random selection, but
we make sure to use a log generated using the same time model as the one used to
generate the results. We use the log provider to optimize for shortest execution
time (Table 4) and for highest chance of obtaining a Master of BPM (Table. 5).
This is a good indication of what happens when seeding a recommender with
actual historical data from the group of people about to execute the process in
a similar situation.

We see that when optimizing for shortest running time we in all cases obtain
significantly shorter running time when using support than when we do not. Also,
the running time is in all cases much shorter than for all previous providers. The
success rate is very low, however. This is because it is possible to make a shorter
run by picking MSc, ES as this does not enable Master of BPM. When optimizing
for success, we see that the success rate increases and is as good as for the hand-
crafted provider. The running time is higher than when we optimize for running
time, but the success rate increases and is comparable to the success rate of
the hand-crafted provider. The success rate for the workload timing model is
surprisingly low, which is because the workload path favors the practical path,
which needs to execute more tasks, and hence the historical data may not contain
a trace with the same interleaving of the courses.

Table 6. Using foreign providers

Source Time Model

PROB BATCH WL

PROB 1957 1772 1011
BATCH 1643 1642 1007

WL 1632 1609 957

In Table 6 we have shown the results of
runs using logs generated using a different
timing model. This is an indication of how
well a recommender seeded with randomly
generated data using the correct model but
with wrong assumptions about the user be-
havior. In other words, this is an indication
of the stability of the simulation results.
We have not shown the value of the suc-
cess rate as it is the same as the one measured in Table 4 as we can become a
Master of BPM using both the academic and practical track.

We see that it does not matter much if the log is generated from data with a
BATCH or WL time model. Surprisingly, we get the shortest execution times in
all cases when using data generated with a timing model taking the workload into



326 J. Nakatumba, M. Westergaard, and W.M.P. van der Aalst

account. In fact, the log generated using a simple probability measure performs
worse even when used for the matching time model. This is because there are
other logs favoring a trace that is also beneficial for this timing model.

6 Conclusion and Future Work

In this paper, we have presented a CPN model for testing operational support
providers. The model is connected to the Declare workflow system and the op-
erational support service in ProM using Access/CPN 2.0, making it possible to
test real systems with a model of a user. Our user model is parameterizable,
and can exhibit four different kinds of timing behavior. We have also presented
a CPN model which can be used to quickly prototype an operational support
provider for integration in ProM and subsequent use in both our testing platform
and existing clients of the operational support service. We believe that using this
approach is also useful in other settings where an algorithm modifies the domain
it is doing computations on.

We have used our test suite to test four different recommendation providers.
We see that contrary to what is often observed, simple algorithms fail compared
to more sophisticated adaptive algorithms. We also see that a hand-crafted algo-
rithm using domain knowledge does not necessarily outperform a smart general
algorithm when the domain knowledge builds on wrong assumptions (here about
the user behavior). Even simple algorithms designed to exploit certain traits of
models (like speedup in batch processing) may fail if the assumption is correct,
if some other aspect is ignored (like the need to work towards termination and
not just focus on batching tasks together). We also see that our log provider,
which uses historical data, is surprisingly stable and handles situations when
input data does not completely correctly reflect reality, making seeding such
algorithms with generated data possible. We also see that if the algorithm pro-
viding recommendations is not optimal, user deviations can be a good idea.
Even for the log provider, which proved very efficient, deviations may benefit
execution in the long run as users may reach completely new and more efficient
ways of executing the process by chance, making it possible to provide better
recommendations in the future.

Our experiments show that experimental results may deviate quite a bit from
expectations, making testing invaluable. We of course need to validate that sim-
ulated results show the same tendencies as real life and future work includes
testing recommendations in real life. We also see that the winner by far was
the most sophisticated algorithm, making future research into even better al-
gorithms very interesting. One caveat of the current implementation is that it
completely fails to provide recommendations if the historical data does not con-
tain a similar trace (which is quite likely after executing 5-8 tasks). This can
be alleviated by using a model annotated with timing information for providing
recommendations instead of just a flat log.
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Abstract. The Robot Operating System (ROS) is a popular software
framework to develop and execute software for robot systems. ROS sup-
ports component-based development and provides a communication layer
for easy integration. It supports three interaction patterns that are es-
sential for control systems: the publish-subscribe pattern, the remote
procedure call pattern and the goal-feedback-result pattern. In this pa-
per we apply Petri nets to develop a structured design method for ROS
systems, such that the weak termination property is guaranteed. The
method is based on stepwise refinement using three interaction patterns
and components modeled as state machines. The method is illustrated
with a case study of robot ROSE.

Keywords: Petri nets, Correctness by Construction, Components,
Patterns, Weak Termination, Robot Operating System, Architectural
Framework.

1 Introduction

Robots assist human beings by taking over some of their tasks. In contrast with
industry robots, service robots operate in environments where people live, like
a house, an hospital or an office. So, they have to react very fast in order to be
safe and effective. The software subsystem of a service robot is a complex dis-
tributed system. The complexity arises from the need to interface with hetero-
geneous hardware while executing concurrently a large variety of computations
such as image processing, sensor data processing, planning and control tasks.
Component-based frameworks are attractive for programming robot systems be-
cause they augment the advantages of the traditional programming frameworks
by facilitating the loose coupling between components (asynchronous communi-
cation), promoting reuse and dynamic reconfiguration. Over the years a number
of component based programming frameworks like OROCOS [3], openRTM [2]
and Player/Stage [5] have been developed. A few of them have enjoyed great
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success as demonstrated by the popular Robot Operating System (ROS) [12].
ROS is a widely used component based development framework for robot sys-
tems that runs on top of the Linux operating system. To a large extent, ROS
has been able to address the shortcomings of its predecessors. For this reason, it
saw an unprecedented growth in popularity over the past few years as a common
platform to share knowledge.

ROS provides a communication model (middleware) as a library of the three
most recurring interaction patterns in robot systems, namely the remote pro-
cedure call (RPC) pattern, the publish-subscribe (PS) pattern and the goal-
feedback-result (GFR) pattern. The first two also occur in other types of
distributed systems, whereas the third pattern is typical for control systems
in robots. ROS lacks an integrated formal technique to verify or validate cor-
rectness properties of systems, like deadlock freedom, in a structured way.

In this paper we apply Petri nets to develop a structured design method for
ROS systems, such that the weak termination property is guaranteed. Weak
termination is a combination of freedom of deadlock and freedom of livelock.
It means that a system always must be able to reach a final state from any
reachable state. We present a construction method, based on the stepwise re-
finement principle, that guarantees weak termination at the control flow level. It
is not necessary to fully accord the rules of the design approach, as long as the
final system can be derived according to the construction rules, the system is
ensured to be correct. In fact, our approach is a structured programming tech-
nique for distributed programs, comparable to structural programming methods
for sequential programs of the late sixties [4].

This paper is structured as follows. In Sect. 2 we sketch the context of the
problem: the development of the service robot ROSE. In Sect. 3, we present our
modeling problem: the features of ROS to be modeled, which are modeled using
Petri nets in Sect. 4. Petri nets offer a convenient way of expressing and analyzing
the behavior of asynchronous distributed systems. A component is modeled as a
strongly connected state machine with one special place called ‘idle’. The three
interaction patterns are modeled as a special kind of multi-workflows ([9]). These
multi-workflows have so-called client and server sides, where the clients are open
workflows and the servers are open components. In this section, we also show that
these patterns are weakly terminating. Sect. 5 presents the construction method.
We prove that the method guarantees weak termination of the whole system.
Here we use an architectural diagram as starting point for the design, which
is a graph where the nodes are components and the arcs represent interaction
patterns. The refinement method has two phases. In the first phase we refine
simultaneously a set of places by a RPC or a GFR pattern. The servers of these
patterns form the base for new components. If all components of the system are
created, we enter the second phase in which we add the PS patterns. In Sect. 6
we apply the method for a the navigation subsystem of robot ROSE. Sect. 7
concludes the paper, in which we discuss the lessons learnt.
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Fig. 1. Robot ROSE

2 Robot ROSE

Service robotics is a rather new branch of robotics. They differ fundamentally
from the well-developed industry robots and the experimental humanoids. In-
dustry robots are programmed for a limited set of specified manufacturing tasks.
They are position-controlled, i.e. they are able to move to prescribed coordinates
only. They operate in dedicated environments. Humanoids are robots that are
look-a-likes of human beings that should be able to imitate human behavior.
Service robots on the contrary are not supposed to be look-a-likes, they should
rather be able to assist humans by performing human tasks. These robots have to
operate in unstructured environments where people live. As a consequence, they
need to deal with unpredictable situations. Therefore, instead of being position-
controlled, service robots use visual servo-ing (vision based control) techniques.
These techniques give less accuracy. For these reasons, full autonomy in such en-
vironments is very hard to achieve. We focus on service robots that share their
autonomy with a human at a distance. One of the tasks they should be able to
perform is to autonomously navigate to a user-defined place in a building, while
avoiding collisions with other obstacles. We call such robots tele-operated service
robots.

An example of a tele-operated service robot is ROSE, which is depicted in
Fig. 1. ROSE is a care robot for home care of elderly and disabled people. The
care robot is envisioned to replace the caretaker at the local site by allowing
remote operations. Caretakers operate from a care center and they are able
to help elderly people with simple household activities, like warming a meal
or taking out the garbage, by remotely commanding robot ROSE at the local
site. ROSE is semi-autonomous and realizes shared control with the human
in the loop. So a caretaker is able to service several robots for the elderly or
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disabled people. The robot is equipped with four independently steerable wheels,
two 7-DOF (degrees of freedom) arms, a vision system and a wide array of
sensors. The use-cases for the robot ROSE require the most common collision
free functionalities, such as pick, place, manipulate and map based navigation.
The system is tested in a field lab (see [13]).

3 The Robot Operating System

The internal software system of ROSE integrates a wide variety of self-made
and off-the-shelf software components and comprises of a deep stack consisting
of hardware drivers at the lowest level, continuing up through perception, ab-
stract reasoning and beyond. To manage the complexity, we need a development
framework that supports large-scale software integration.

One such development framework is the Robot Operating System (ROS). ROS
is a component-based development framework focusing in particular on planning
and control systems. It hides the heterogeneity of systems by providing a thin-
structured communications layer comprising of the most recurring interaction
patterns. The general purpose nature of ROS led to the rapid rise in its pop-
ularity as a common platform to share knowledge in the robotics community.
Therefore, it is a logical choice for the development of our service robot.

The availability of many open source components for robots emphasizes the
need for a structured approach for integration that guarantees certain behavioral
properties like weak termination, where we focus on in this paper.

ROS provides a communication model and infrastructure capabilities for com-
ponent instantiation, dynamic configuration and deployment. It comes with a
number of integrated frameworks (like OROCOS [3], Player/Stage [5]), libraries
(like OpenCV [14] and KDL [14]), general purpose configurable software mod-
ules (like platform and arm navigation, generic hardware drivers etc.) and tools
for visualization and simulation (like RViz and Gazebo [5]). ROS is available to
the developer as a set of libraries.

In ROS, blocks of functional code can be instantiated as components, in ROS
terminology referred to as nodes. A component performs iterative computations
and is allowed to communicate with other components via an interaction pattern
provided by the communication model of the framework. An interaction pattern
is a composition of clients and servers that share a set of buffers over which
messages are exchanged. A buffer has an associated data type specifying the
data type of the messages that can be stored. Messages have strictly typed data
structures that can be either simple or compound, the latter can be derived by
arbitrary nesting of simple data structures.

At run-time, a ROS system can be configured dynamically, i.e. one or more
components can be added or removed from the system at run-time. Dynamic
reconfiguration is made possible by the naming and service registration server
called ROS master. A ROS system has one ROS master. The ROS master acts
as a central registry of information about deployed components and their in-
teraction patterns. This allows components to discover each other. In this way
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location transparency is achieved. Both the arrival as well as the departure of
components are registered by the ROS master. Once a component is aware of
the available components and the services they provide, connection negotiation
and an exchange of messages are carried out on a peer to peer basis.

The communication model of ROS is a collection of three very frequently
recurring asynchronous interaction patterns in planning and control systems:
the publish-subscribe (PS) pattern, the remote procedure call (RPC) pattern
and the goal-feedback-result (GFR) pattern. Each interaction pattern is made
of a set of clients and a set of servers. Each client and server have a middleware
module that is responsible for (a) interactions with the ROS master, (b) client-
server connection negotiation and management, (c) message transportation (over
managed connection), and (d) message buffering capabilities. In the remainder
of this section we elaborate on each of these interaction patterns.

Publish-Subscribe Pattern. The PS pattern is an unidirectional notification
pattern supporting many to many message broadcasting, i.e., multiple clients
are allowed to broadcast messages to multiple servers. Messages are published
by the client on some topic. A topic describes a message stream by specifying
its message type and name. The pattern is well suited for the broadcast of
sensor data streams. The ROS Master ensures that during run-time the clients
know which servers are subscribed to their topic. When a server is coupled or
decoupled, the ROS Master informs all the clients about this change.

Remote Procedure Call Pattern. The RPC pattern comprises of a single
server and multiple clients. The server models a set of procedures that can be
executed one at a time. Each procedure can have one or more associated clients.
A procedure waits for a request message from the client, and terminates after
sending back a result message. The client is blocked until the server returns
a result message. No other messages are exchanged between the server and the
client. When a RPC client is instantiated, it requests the ROS master to find out
which server offers the requested procedure. Once located, the client and server
negotiate the connection, and messages are exchanged over this connection on a
peer-to-peer basis.

Goal-Feedback-Result Pattern. The GFR pattern is a more elaborate in-
teraction pattern. The GFR pattern comprises a single server handling many
clients. The GFR pattern is well suited for long running procedures and gives
the client the option to preempt the server. The arrival of a goal message at the
GFR server triggers a process (generally a control algorithm) whose progress
on that goal may be reported via feedback messages to the waiting client. At
any moment in time, an active client waiting for a message from the server is
allowed to cancel the process at the server by sending a cancel message. The
process at the server always terminates after sending a result message to the
client indicating the result (i.e., finished, aborted, or canceled).
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When a GFR client is instantiated, the ROS master enables the client to locate
the GFR server. As in case of the RPC pattern, the GFR client and server
negotiate the connection over which messages are exchanged. Furthermore, the
server enforces the single pending goal policy. This means that at most one
pending goal is allowed. So new goals preempt the current pending goal and the
client is notified.

4 The Logical Model

For each of the three interaction patterns, we will construct a Petri net and show
that these patterns are weakly terminating. The logical model of each interaction
pattern abstracts away implementation details of the middleware module, like
interactions with the ROS master, connection negotiation, connection manage-
ment, message transportation and buffer management. First, we introduce basic
notions needed for the framework.

4.1 Basic Notions

The architectural framework we introduce in this paper is built upon Petri nets
with inhibitor arcs and reset arcs, called inhibitor/reset nets. An inhibitor/reset
net is a 5-tuple (P, T, F, ι, ρ) where P and T are two disjoint sets of places
and transitions respectively, F ⊆ (P × T ) ∪ (T × P ) is the set of arcs, and
ι, ρ : T → P(P ) specify the inhibitor and reset arcs, respectively, with P(P )
denoting the powerset of P . Elements of the set P ∪ T are called nodes. In the
remainder we refer to an inhibitor/reset net as a net. We refer to the individual
elements in a tuple by adding its name in subscript, e.g. we write PN for the set
of places of a net N .

Nets can be depicted graphically. Places and transitions are represented as
circles and squares, respectively, an arc (n,m) is depicted as a directed arc from
node n to node m. A dot-headed arc is drawn from place p to transition t if
p ∈ ι(t), if p ∈ ρ(t), a dashed arc is drawn between p and t.

We define the preset of a node n as •
N n = {m|(m,n) ∈ F} and the postset as

m•
N = {n|(m,n) ∈ F}. As a shorthand, we use the preset (postset) as a function

such that •
N n(m) = 1 (n•

N (m) = 1) if m ∈ •
N n (m ∈ n•

N ) and •
N n(m) = 0

(n•
N (m) = 0) otherwise. If the context is clear, we omit the subscript. A Petri

net is strongly connected if for any two nodes there exists a directed path from
one to the other.

A net models behavior. The state or marking of a net N = (P, T, F, ι, ρ) is a
function m : P → N where N = {0, 1, 2, . . .}. The pair (N,m) is called a marked
net. A place p ∈ P is called marked if m(p) > 0. A transition t ∈ T is enabled
in some marking, denoted by (N,m)[t〉, if •t(p) ≤ m(p) for all places p ∈ P and
m(p) = 0 for all places p ∈ ι(t). An enabled transition may fire, resulting in a
new marking m′ with m′(p) = m(p)− •t(p)+ t•(p) if p ∈ P \ ρ(t) and m′(p) = 0
if p ∈ ρ(t), and is denoted by (N,m)[t〉(N,m′). A marking mn is reachable
from a marked net (N,m0) if markings m1, . . . ,mn−1 and transitions t1, . . . , tn
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exist such that (N,mi−1)[ti〉(N,mi) for all 1 ≤ i ≤ n. A system is a 3-tuple
(N,M0,Mf) where N is a net, M0 is a set of initial markings, and Mf is a set
of desired final markings. A system (N,Mi,Mf) is called weakly terminating if
for every initial marking mi ∈ Mi and every reachable marking m of (N,mi) a
final marking mf ∈ Mf is reachable.

We identify two subclasses of nets. A net N = (P, T, F, ι, ρ) is an S-net if
|•t| ≤ 1 and |t•| ≤ 1 for all transitions t ∈ T . It is a workflow net if a unique
initial place i ∈ P and a unique final place f ∈ P exist such that •i = f• = ∅
and every node is on a path from i to f . A workflow net that is also an S-net is
called an S-WFN.

Given two nets N1 = (P1, T1, F1, ι1, ρ1) and N2 = (P2, T2, F2, ι2, ρ2), their
union is the net (P1 ∪ P2, T1 ∪ T2, F1 ∪ F2, ι, ρ) where ι(t) = ι1(t) ∪ ι2(t) and
ρ(t) = ρ1(t) ∪ ρ2(t) for all t ∈ T1 ∪ T2.

4.2 Components and Their Interaction

Components in ROS communicate asynchronously by message exchange. For
this, we introduce the notion of open nets. An open net (OPN) is a tuple
(P, I,O, T, F, ι, ρ) such that (P ∪ I ∪ O, T, F, ι, ρ) is a net, P ,I and O are pair-
wise disjoint, I is a set of input places and O is a set of output places, i.e.,
•i = o• = ∅ for all i ∈ I and o ∈ O. We call the net S(N) = (P, T, F ′, ι, ρ)
the skeleton of N with F ′ = F ∩ ((P × T ) ∪ (T × P )). An open net is called
an open S-net if its skeleton is an S-net. Likewise, an open net is an open
workflow net (OWN) if its skeleton is a workflow net. If the skeleton is also
an S-Net, it is called an S-OWN. Two OPNs N and M are composable if
(PN ∪ IN ∪ON ∪TN )∩ (PM ∪ IM ∪OM ∪TM ) ⊆ ((IN ∩OM )∪ (ON ∩ IM )). The
composition of two OPNs is defined as their union.

Definition 1 (Component). A component is an OPN C whose skeleton is
a strongly connected S-net with a special place called idle, denoted by vC . The
initial marking of a component has one token in the idle place.

In component-based systems, components cooperate in order to achieve some
goal. Such a cooperation is modeled as a multi workflow net [9]. A multi workflow
net (MWF net) is a generalization of classical workflow nets, having multiple
initial/final pairs, whereas a single workflow net has only a single initial/final
pair.

Definition 2 (Multi-workflow net). A multi-workflow net (MWF net) N is
a tuple (P, T, F, ι, ρ, E,/) where (P, T, F, ι, ρ) is a net, E ⊆ P × P is the set
of initial/final pairs such that |E| = |π1(E)| = |π2(E)|, •π1(E) = π2(E)

•
= ∅,

ι(T ), ρ(T ) ⊆ S and / ⊆ S is the set of idle places with S = P \(π1(E)∪π2(E)),
where π1 and π2 are two projection functions defined on the cartesian product of
two sets.

Simultaneous refinement [9] is a refinement operation that simultaneously re-
fines a set of places of a system with an MWF net. This operation is a natural
extension of the refinement of a single place [10].
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Definition 3 (Simultaneous refinement). Let N be a net and R ⊆ PN be
a set of places to be refined such that no r ∈ R exists with r ∈ ι(t) or r ∈ ρ(t)
for all t ∈ TN . Let M be a MWF net such that N and M are disjoint. Let
α : R → EM be a total bijection. The refinement of N with M , denoted by
N 0α M , is a net N̄ = N 0α M , where N̄ is the net defined as PN̄ = (PN \
R) ∪ PM , TN̄ = TN ∪ TM , FN̄ = (FN \

⋃
q∈R (( •

N q × {q}) ∪ ({q} × q•N ))) ∪
FM ∪

⋃
q∈R (( •

N q × {π1(α(q))}) ∪ ({π2(α(q))} × q•N )), and for all t ∈ TN̄ we
have ιN̄ (t) = ιN (t) ∪ ιM (t) and ρN̄ (t) = ρN (t) ∪ ρM (t).

Components communicate asynchronously. An interaction pattern describes the
communication between different components. It is a parameterized MWF net
that can be inserted into a system. An interaction pattern has two sets, a set of
clients and a set of servers, such that the union of the nets is an MWF net. A
client is an OWN, whereas a server is a component.

Definition 4 (Interaction pattern). An interaction pattern is a pair (C,S)
where C is a set of OWNs, called the clients, and S is a set of components called
the servers, such that IC = OS and OC = IS , and the union N = C ∪ S is a
MWF-net, with EN = {(iX , fX) | X ∈ C, iX , fX ∈ PX , •iX = fX

• = ∅} and
ΔN = {vX | X ∈ S}, where C =

⋃
X∈C X and S =

⋃
X∈S X. We refer to the

MWF-net N as N (C,S).
Given a set of components, we can insert an interaction pattern. For a client
we select a place within a component that will be refined by the client OWN,
a server is inserted into a component by fusing the idle places of the original
component and of the server component. Further, we disallow that a server and
a client are inserted in the same component.

Definition 5 (Insertion of an interaction pattern). Let (C,S) be an inter-
action pattern, and let O be a set of pairwise composable components such that S
and O, and C and O are pairwise disjoint. Let α : C →

⋃
X∈O PX be an injective

function defining which place is refined by which client, and β : S → O be an
injective function defining which server is added to which component, such that
no client and server are inserted in the same component, i.e., α(C) �∈ Pβ(S) for
all C ∈ C and S ∈ S.

The insertion of (C,S) in O, denoted by O �α,β (C,S), is defined by:

O �α,β (C,S)= (O \ {X ∈ O | (∃S ∈ S : β(S) = X) ∨ (∃C ∈ C : α(C) ∈ PX)})
∪ {X 0{α(C) �→(iC ,fC)} C | X ∈ O, C ∈ C, α(C) ∈ PX}
∪ {X[vX �→v] ∪ S[vS �→v] | X ∈ O, S ∈ S, β(S) = X}

where N[p�→r] denotes the renaming of place p into a new place r �∈ PN .

Next, we will formalize each of the three interaction patterns as provided by the
ROS communication model, and show that each pattern weakly terminates.

4.3 The GFR Pattern

The GFR pattern allows multiple clients to communicate with a single server. A
client triggers the server by sending a goal message. It accepts this goal, and it
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Fig. 2. GFR Pattern with n clients

becomes the pending goal of the server. In case the server already has a pending
goal, this goal is canceled, and a reject message is sent to the corresponding
client.

On rejection, the corresponding client terminates. When the server accepts a
pending goal, the server starts processing it. Depending on the goal, the server
may send feedback messages. Finally, the server will send its result and returns
to the initial state to process a new pending goal. When the client has received
the accept message for a goal, it needs to process the feedback sent by the server
before it may accept the result message of the server. The client is also allowed
to cancel the goal at any moment after it has been activated. In case a client
sends a cancel message to the server, the server will report that it has canceled
by sending a result message. Fig. 2 depicts the pattern.

The server of a GFR pattern executes a procedure in a loop. This procedure is
modeled by a place in the server labeled x. A procedure can be further detailed
by first modeling its control flow as an S-WFN and then performing a refinement
of place x.

Definition 6 (GFR pattern). We will use the notations depicted in Fig. 2
to define the GFR pattern consisting of a single server M and clients C =
{C1, . . . , Cn}. The GFR pattern is the pair (C, {M}) with an idle place v.

We define the system GFR(C, {M}) = (N,M0,Mf) with N = N (C, {M}),
M0 is defined by m ∈ M0 iff m(v) = 1, m(ij) ≤ 1 for each client Cj with
1 ≤ j ≤ n and all other places are empty, the set of all final markings Mf is
defined by m ∈ Mf iff m(v) = 1, m(ij)+m(fj) = m0(ij) for each client Cj with
1 ≤ j ≤ n and initial marking m0 ∈ M0, and all other places are empty.
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Based on the properties of the net, we show that for any number of clients, the
GFR pattern is weakly terminating.

Theorem 7 (Weak termination of the GFR pattern). Let (C, {M}) be
the GFR pattern with clients C = {C1, . . . , Cn} as defined in Def. 6. Then, the
system GFR(C, {M}) is weakly terminating.

Proof. (sketch) Let GFR(C, {M}) = (N,M0,Mf ) and let m0 ∈ M0. From the
structure of the GFR pattern it is easy to verify that the following place invari-
ants hold, i.e., for any marking m reachable from (N,m0), we have

1. The single goal policy: m(v) +m(u) ≤ 1;
2. Only one goal is active: m(u) +m(v) +m(w) +m(x) +m(y) +m(z) = 1;
3. A single result is returned: m(w) +m(x) +m(y) +m(a6) +m(a7) ≤ 1;
4. The skeleton of the clients is safe: ∀1 ≤ j ≤ n : m(ij) + m(bj) + m(cj) +

m(dj) +m(fj) = m0(ij);
5. Each goal is accepted or rejected:

∑n
j=1 m(bj) = m(a1) +m(a2) +m(a3) +

m(u);
6. A single instance is handled by the server, and the server returns to the idle

state: m(v) +m(u) +m(a3) +m(a7) +
∑n

j=1(m(cj) +m(dj)) = 1;
7. For each goal there exists at most one cancel message: m(a4) ≤ m(a7) +∑n

j=1 m(dj) ≤ 1

Based on these invariants we conclude:

– Only one client can be active at the same time.
– All places except a1, a2 and a5 are safe.
– If place a3 is marked then j ∈ {1...n} exists such that place bj is not empty.

Let Cj be this active client. Then either place cj or place dj is marked with a
single token. Places a4 and a5 do not influence the desired behavior of N , as all
tokens in places a4 and a5 are respectively removed by transition go-idle, and
by transitions receive-feedbackj or cleanj .

To analyze the behavior note that subnet N1 = {P1, T1, F1} defined by P1 =
{u, v, w, x, y, z, a3, a7}∪

⋃
j∈{1,...,n}{cj, dj}, T1 = •P1 ∪P1

• and F1 = F ∩ ((P1 ×
T1) ∪ (T1 × P1)) is initially marked with a single token in place v. Subnet N1

corresponds to the goal handling of server M . From the invariants it follows that
net N1 is a strongly connected state machine. Thus, it is always possible to reach
the idle place v. Note that place a4 only influences the order in which transitions
send-result on the one hand and receive-result or clean on the other hand fire.

Next, observe that the server autonomously may fire transition send-result
and that client Cj can either fire transition cleanj or transition receive-resultj .
After either one of these two transitions, transition go-idle fires, returning the
subnet to its initial marking. Remark that in each non-empty cycle from and to v
in N1, transition go-active fires only once. Since only either one of the transitions
cleanj and receive-resultj fires once, only a single token is added to place fj in
this cycle.
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As each initially marked client Cj always receives either a reject or accept
message after firing its transition send-goalj , and by invariant 4, each client ends
with a single token either in place fj or ij if and only if initially place ij was
marked with a single token. ��

In any reachable marking for a GFR pattern, a client is either waiting to be
executed, under execution, or already finished. The proof of the theorem above
shows that clients that are not under execution can be added or removed from
the pattern.

Corollary 8 (Dynamic reconfiguration of the GFR pattern). Given a
GFR pattern (C, {M}) as defined in Def. 6 with C = {C1, . . . Cn}, let m be a
reachable marking of GFR(C, {M}). Let X,Y, Z ⊆ C be a partitioning of C such
that Cj ∈ X iff m(ij) = 1, Cj ∈ Y iff either m(fj) = 1 or the net Cj is
unmarked, and Cj ∈ Z otherwise. Then GFR(C′, {M}) is weakly terminating
for any set of clients C′ with Z ⊆ C′ ⊆ C.

4.4 The RPC Pattern

The RPC pattern consists of a single server and multiple clients. The server of
an RPC pattern comprises of a set of procedures and internal behavior. Each
procedure is started on the request of a client, and will in due time send a
response. A server can only execute one procedure at a time. Each client calls
a single procedure and multiple clients may invoke the same procedure. Fig. 3
presents the logical model of an RPC pattern.

The busy places labeled e and ci, i ∈ {1...k} belonging to the server of a
RPC pattern, can be refined. The place e models the internal behavior of the
server and each place ci models the internal behavior of procedures. Similar to
the GFR pattern, busy places can be refined by an S-WFN.

Definition 9 (RPC pattern). We use the notations of Fig. 3 to define the
RPC pattern (C, {S}), where S = W ∪

⋃
Q∈R Q denotes the server and C =

{C1, . . . , Cn} the set of clients, with R = {R1, . . . , Rk} a non-empty set of k
procedures and r : C → {1 . . . k} is a total surjective function denoting the
procedure each client invokes. The RPC pattern is the pair (C, {S}) with an idle
place v.

For the RPC pattern, we define the system RPC(C,S) = (N,M0,Mf) by
N = N (C, {S}), M0 is defined by m ∈ M0 iff m(v) = 1, m(ij) ≤ 1 for each
client Cj with 1 ≤ j ≤ n and all other places are empty, and the set of all final
markings Mf is defined by m ∈ Mf iff m(v) = 1, m(ij) + m(fj) = m0(ij) for
each client Cj with 1 ≤ j ≤ n and initial marking m0 ∈ M0, and all other places
are empty.

Next, we show that the RPC pattern is weakly terminating.

Theorem 10 (Weak termination of the RPC pattern). Let (C, {S}) be
an RPC pattern as defined in Def. 9. Then RPC(C, {S}) is weakly terminating.
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Fig. 3. RPC Pattern with n clients

Proof. (sketch) Let C = {C1, . . . , Cn}, i.e., the RPC pattern consists of n clients,
let R = {R1, . . . , Rk} be the k procedures handled by server S, and r : C →
{1, . . . , k} be the total surjective function defining for each client which procedure
is taken. Let RPC(C,S) = (N,M0,Mf) and let m0 ∈ M0.

From the structure of the RPC pattern it is easy to verify the following place
invariants, i.e., for any marking m reachable from (N,m0), we have:

1. The skeleton of the server is safe: m(v) +m(q) +m(e) +
∑k

j=1 m(cj) = 1

2. Each procedure Ri, i ∈ {1, ..., k} is called at most |r−1(i)| times, i.e., |r−1(i)|
clients call the procedure Ri:

∑
Cj∈r−1(i) m(dj) = m(ai) +m(bi) +m(ci)

Based on these invariants, and the observation that server S is a component
with idle place v, it follows that a client that requests a procedure is always able
to receive a response. Hence, the system weakly terminates. ��

A logical consequence of the definition of the RPC pattern is that clients can be
attached and detached at runtime, as shown in the next corollary.

Corollary 11 (Dynamic reconfiguration of the RPC pattern). Given a
RPC pattern (C, {S}) as defined in Def. 9 with C = {C1, . . . Cn}, let m be a
reachable marking of RPC(C, {S}). Let X,Y, Z ⊆ C be a partitioning of C such
that Cj ∈ X iff m(ij) = 1, Cj ∈ Y iff either m(fj) = 1 or the net Cj is
unmarked, and Cj ∈ Z otherwise. Then RPC(C′, {M}) is weakly terminating
for any set of clients C′ with Z ⊆ C′ ⊆ C.
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Fig. 4. Publish-Subscribe Pattern with n clients and m servers

4.5 The Publish-Subscribe Pattern

The PS pattern consists of multiple servers and multiple clients. The client and
servers of a PS pattern communicate over one topic. A topic is modeled as a set
of interface places. A server is a component with one transition connected to an
input place. A client is a OWN with one transition, firing which produces copies
of the same message in the input place of each server. Fig. 4 presents the logical
model of the publish-subscribe pattern. Note that places of a PS pattern are not
refinable.

Definition 12 (Publish-subscribe pattern). We use the notations of Fig. 3
to define the PS pattern (C,S), where C = {C1, . . . , Cn} denotes the set of n
clients and S = {S1, . . . Sm} denotes the set of m servers. The idle place of each
server Si, 1 ≤ i ≤ m is labeled as vi.

For the publish-subscribe pattern we define the system PS(C,S) = (N,M0,Mf)
by N = N (C,S), M0 is defined by m ∈ M0 iff m(vj) = 1 for all 1 ≤ j ≤ m,
m(ij) ≤ 1 for all 1 ≤ j ≤ n and all other places are empty, and the set of
final markings Mf is defined by m ∈ Mf iff m(vj) = 1 for all 1 ≤ j ≤ m,
m(ij) +m(fj) = m0(ij) for each client Cj with 1 ≤ j ≤ n and initial marking
m0 ∈ M0, and all other places are empty.

Note that if an instance of a PS pattern has no servers, then the output places
of each client yields the empty set. On the other hand, if a PS pattern has no
clients, then all servers are dead, i.e. no transition in any client can fire.

Although the PS pattern does not satisfy the proper completion property [7],
it is easy to verify that any publish-subscribe pattern weakly terminates.

Theorem 13 (Weak termination of the PS pattern). Let PS(C,S) be a
PS pattern as defined in Def. 12. Then PS(C,S) is weakly terminating.

Proof. Let m be a reachable marking of PS(C,S). As for each client C ∈ C either
place i or place f is marked in m, we only need to consider the interface place
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q ∈ IS for each server S ∈ S. By the structure of S, we can fire transition t,
m(q) times, after which place q is empty. This is possible for each server. Hence,
PS(C,S) is weakly terminating. ��

Like for the first two interaction patterns, the PS pattern can be changed at
run-time, by adding or removing clients in their initial marking. In addition, the
server of a PS pattern can also be added or removed if its topic place is empty.

Corollary 14 (Dynamic reconfiguration of publish-subscribe pattern).
Given a PS pattern (C,S) as defined in Def. 12, let m be a reachable marking of
PS(C,S). Let X,Y ⊆ S be a partitioning of S such that Sj ∈ X iff m(qj) > 0
and Sj ∈ Y , otherwise. Then PS(C′,S ′) is weakly terminating for any set of
clients and servers with C′ ⊆ C and X ⊆ S ′ ⊆ S.

5 The Construction Method

In this section we will present a construction method to derive weakly terminat-
ing systems starting from an architectural diagram. An architectural diagram
gives the blue print of the system. From this diagram we proceed in a bottom up
manner consisting of two phases: In the first phase, all RPC and GFR patterns
are introduced in the right order by successive applications of simultaneous re-
finement. In the second phase, successive insertions of the PS patterns are carried
out. We will first describe the architecture diagram.

5.1 Architectural Diagram

Fig. 5 describes the graphical notation to specify the component architecture of
a system. The concept is similar to other component models like SCA [1], Koala
[11] and UML [6] but is extended with pattern and component types.

An architectural diagram is a directed graph with components as nodes and
interaction patterns as edges. To guarantee weak termination, the graph must
be acyclic, without taking into account the PS pattern. It is easy to check that
a cyclic path indicates a deadlock in the system: to handle its clients, the server
needs to finish itself, using a client that can only finish if the server itself finishes,
which clearly is a deadlock.

A component has a type: being either a GFR, a RPC or a basic component. A
GFR or RPC component is a server of the corresponding interaction pattern. All
other components are referred to as basic components. A component is denoted
by a solid rectangle, and labeled with its name and type. Clients and servers
of an interaction pair are depicted by an arc with arrow heads both at its foot
and head. Clients communicating to the same server are connected to the same
arrow head. A filled arrow head indicates the RPC pattern, an unfilled arrow
head the GFR pattern. A server of an RPC pattern has multiple procedures. For
each procedure, an explicit incoming arrow head is drawn. A client and server
of a PS pattern are denoted by a pair of circles that are connected by a directed
arrow from the client to the server.
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Fig. 5. Architectural Diagram of the Platform Control System (ROSE)

To construct a net from an architectural diagram, we use Algorithm 1. The
method prescribes a structured way to introduce communication between com-
ponents. The method progresses in two steps: first the GFR and RPC patterns
are inserted, and next each of the PS patterns. A GFR and RPC pattern can
be further refined with a client of an interaction pattern or S-WFN. All places
except the initial and final place of a S-WFN and basic component are refinable.
We do not require to design a system using this algorithm, it should only be
possible to derive the system in this way. Further, it is easy to verify that with
the construction method we can realize any architectural diagram that is acyclic.

Theorem 15 (Preservation of weak termination). The construction
method preserves weak termination.

Proof. (sketch) The construction method starts with a set of basic components.
From [7,8], we know that each basic component is weakly terminating. From
Thm. 7 and Thm. 10, we conclude that each RPC and GFR pattern has the
same behavior as their clients in isolation as classical workflow nets (i.e. without
interface places). From [7], it is well known that refinement of a safe place by
a weakly terminating workflow net preserves weak termination. Hence, in each
step the refined system is weakly terminating.
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Input : Architecture Diagram
Output: Logical Model of a Weakly Terminating System

1 Identify basic components and define their behavior;
2 The initial system is the union of all basic components;
3 Identify interaction patterns and the components they occur;
4 while not all RPC or GFR patterns have been added do
5 Choose an RPC or GFR pattern such that for all clients there exists

components in the system so far;
6 Identify the set of places to be refined (one for each client) and perform a

simultaneous refinement with the chosen pattern;
7 If necessary, refine a place with an S-WFN;

8 end
9 while not all publish-subscribe patterns have been added do

10 Choose a publish-subscribe pattern for which a set of refinable places (one
for each client) and a set of idle places (one for each server) already exists in
the system so far;

11 Perform an insertion of the chosen pattern (see Def. 5);
12 If necessary, refine a place with an S-WFN;

13 end

Algorithm 1. Construction Method

After all RPC and GFR patterns have been introduced, the PS patterns are
added. From Def. 12, we know that a PS pattern is weakly terminating. The
insertion of a PS pattern (see Def. 5) on top of an already weakly terminating
system does not inhibit or extend the behavior of the original system. The only
difference is that now clients of a PS pattern can put tokens in the topic input
places of server transitions that are inserted in RPC or GFR servers. These
transitions are connected to the idle place of servers with bi-directional arcs.
Since the whole system so far was weakly terminating, it is able to reach the
state with the idle place of a server marked. But then these inserted transitions
can consume the tokens of the topic input places. ��

ROS allows for dynamic reconfiguration. In order to guarantee weak termination
for such systems at run-time, components can only be added or removed when
they are in their initial state. Also interaction pattern can be changed at run-
time. A client can be inserted in a component if the place to be refined is empty.
It can be removed if it is not marked. Introducing a new RPC or GFR pattern,
which is in fact the addition of a new component, can be done at any point in
time, as long as in the other components the places to be refined with a client
are empty. To remove the server of a PS pattern we must first ensure that its
topic place is empty. To remove a server of an RPC or GFR pattern, its set of
clients should be empty and it must be idle.
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6 Case Study: Navigation System

In this section, we will discuss the design of a navigation system for the robot
ROSE. This case study considers only a subset of the hardware capabilities avail-
able on ROSE: (a) four wheel drive mobile platform with individually steerable
wheels, (b) stereo camera, (c) laser scanner and (d) joystick. We begin with a
sketch of the functional requirements for the navigation system.

The user must be able to move the platform using a joystick. The images
streaming from the camera must be displayed on the user interface. The user
must be able to give goals by clicking on locations on this image and then the
robot must be able to plan its path and move to the desired location while avoid-
ing obstacles. The progress of the robot must be visualized on a map displayed
on the user interface. The user always has the possibility to cancel the currently
pursuing navigation goal. Furthermore, the user can always take over/give back
the control from/to the navigation system by pressing a joystick button. During
this switch, the navigation goal being pursued must not be canceled. This leads
to the following set of components:

The Laser Controller is a basic component that reads and transforms range
data from a laser and publishes them on the topic scan. The Camera Controller
is a basic component that connects to a stereo camera and publishes one of the
images on the topic image. The basic component also generates a point-cloud
and publishes them on the topic point cloud. The two basic components also
publish transformations between the coordinate frames of the respective devices
and platform on the topic transform.

The motion of the Platform is controlled by two basic components. The Read
Thread periodically reads encoder values from the four wheels. Using the current
and last read encoder values, odometry data is published on the topic transform.
The Write Thread has a simple control loop that reads the current set point
and generates control signals based on changes in encoder values such that the
platform achieves the desired set point as soon as possible. The Write Thread
has a server of a PS pattern listening on the topic cmd vel. Messages arriving
on this topic carry set point values.

The User Interface consists of three basic components. The UI Display Panel
subscribes to the topics camera images and point cloud published by the camera
controller and displays them. The UI Button Panel waits for a button event
from the user interface containing the initial position of the robot and publishes
it on the topic initial seed. The Image Click Handler waits for a mouse click
event on the cockpit image. The coordinates of the mouse click is correlated to a
3D point in the point cloud which is then kinematically transformed into world
coordinates by invoking the service transform point. The transformed point is
sent as a goal to the GFR server labeled Planner.

The events generated by the Joystick are controlled by two basic components.
The Joystick Axis Handler transforms joystick movements into velocity com-
mands for the platform and is then published on the topic joy vel. The Joystick
Button Handler waits for a joystick button press event. Two types of button
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Step No. Refinement Type Pattern Type Refining 

Components

Components 

Added

1 Place Refinement S-WFN 

(with choice)

Joystick Button 

Handler

None 

2 Simultaneous 

Refinement

RPC Joystick Button 

Handler

Velocity Switch 

3 Place Refinement S-WFN Velocity Switch None

4 Simultaneous 

Refinement

GFR Image Click 

Handler, Joystick 

Button Handler

Planner

5 Place Refinement

S-WFN 

(Navigation 

Algorithm)

Planner None 

6 Simultaneous 

Refinement

RPC Image Click 

Handler, Planner

Kinematic 

Transformer

Refining Components Server Components 

with idle place 

Topic Name

Camera Controller, 

Laser Controller, 

Localization, Read 

Thread 

Kinematic 

Transformer 

transform

Velocity Switch Write Thread cmd_vel

Joystick Axis Handler Velocity Switch joy_vel

Planner Velocity Switch auto_vel

Camera Controller UI Display Panel image

Camera Controller UI Display Panel point cloud

Laser Controller Costmap Manager, 

Localization 

scan

UI Button Panel Localization initial seed

Phase 1: Stepwise Refinement with RPC and GFR patterns Phase 2: Insertion of PP patterns

Fig. 6. Construction Steps

events are distinguished: one of the button events invokes the RPC service flip
switch and the other invokes the GFR server move base with a goal containing
home coordinates for the robot to navigate to.

The Navigation System is made up of three components. The localization sub-
scribes to the topic transform and scan and publishes an estimate of the robot’s
current location on the topic transform. The Planner is a GFR server that takes
a goal describing the destination coordinates and in turn generates a sequence of
velocity commands on the topic auto vel. These commands drive the platform to
the destination while avoiding obstacles. The planner also makes use of an RPC
client to invoke the procedure transform point to perform kinematic transforma-
tions on a goal coordinate. The Costmap Manager maintains a representation
of the immediate environment of the robot by subscribing to the topic scan.

The Velocity Switch is a RPC component with one procedure flip switch, two
PS servers listening on the topics joy vel and auto vel and a PS client that
publishes the last recorded command from either joy vel or auto vel. Every time
the procedure flip switch is invoked by the Joystick, the PS client toggles between
the two commands. Note that the PS client belongs to the internal part of the
RPC server.

The Kinematic Transformer is a RPC component that listens to transforma-
tions between the different joints of the robot on the topic transform and builds
and maintains a kinematic tree of joints. The RPC component has one procedure
to carry out transformations on a coordinate point between coordinate frames.

An architectural diagram of the system is shown in Fig. 5. Fig. 6 describes the
construction of the navigation system in a stepwise manner. The logical model
of the resulting system is shown in Fig. 7. The implementation of the navigation
module for robot ROSE conforms to this logical model.
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Fig. 7. Weakly Terminating Logical Model of the Navigation System

7 Conclusions

In this paper we presented a method to design ROS systems that are weakly ter-
minating by construction. The method is based on familiar stepwise refinement
principles. We used Petri nets to model ROS components as strongly connected
state machines and the three interaction patterns provided by ROS as multi-
workflows. We tested the method on a concrete robot system, ROSE, and it was
straight forward to structure the program code according to this method. As
ROSE is a standard service robot, we expect that the method works for other
robot systems as well. A nice feature of our method is that it allows dynamic
reconfiguration. Petri nets were a good choice because the systems we model
are component-based with asynchronous communication and the weak termina-
tion property is well-studied within the framework of Petri nets. The case study
shows our approach to be a practical method for structured programming of
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ROS systems. We want to generalize the method to other interaction patterns
that have the same structure of clients and servers, i.e., the servers cannot pre-
vent clients to be weakly terminating. Although weak termination at the level
of control flow is an important sanity check for systems, it is only a starting
point for system verification. Data manipulation by transitions can destroy the
weak termination property. We have to check this as well, but this can be done
locally. Robot systems are typical real time systems, and the weak termination
property we considered abstracts from time. Our aim is to extend the framework
with time to be able to make statements about the time needed to reach a final
state from an arbitrary state.
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Abstract. This paper focuses on a nets-within-nets approach to model,
simulate and evaluate innovative space system architectures. Indeed, as
military Earth observation space systems are more and more subjected to
a wide spectrum of emerging space threats and attacks, it is necessary to
devise new architectures and to assess their performance and their threat-
tolerance. We will consider networked constellations of autonomous mi-
crosatellites - or Autonomous Networked Constellations (ANCs) - in
which several heterogeneous interacting entities (satellites and ground
stations), ruled by the space dynamics laws, rely on resources (functions
or sub-systems) to achieve the overall Earth observation mission. Petri
nets are well adapted for modeling ANCs as they feature event-triggered
state changes and concurrent communication accesses. The ANC model
is based on Renew 2.2 which we use to deal with top-down, bottom-
up and horizontal synchronizations so as to represent state propagations
from an entity to its nested resources and vice-versa, and from an entity
to another one. A model and simulation of a simple ANC subjected to
threats are given and discussed.

Keywords: Experience with using nets, case study, nets-within-nets,
Reference nets, space system design, satellite networks, threat-tolerance.

1 Introduction

Traditional Intelligence, Surveillance and Reconnaissance (ISR) space systems
consist of a limited number of very expensive monolithic satellites, performing
optical, infrared or radar observations, or electronic and communications intelli-
gence. Satellite tasking is performed by dedicated Users Ground Centers (UGC),
also known as mission centers. On a periodical basis, UGCs send their requests
to a Command and Control Center (CCC) which computes mission plans. Those
plans are then uploaded to the satellites thanks to a network of Tracking, Teleme-
try and Command (TT&C) ground stations. This network is also used by the
CCC to monitor the state of the satellites. Once raw data have been gathered by
the satellites, they are downloaded back to the UGC through specific Receiving
stations.

ISR space systems are considered as particularly sensitive and require high
availability and robustness. In order to meet those requirements despite the natu-
ral space environment hazards and the limited recovery options, the traditional
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design approach consists in implementing redundant equipments in each mono-
lithic satellite, along with local Fault Detection, Isolation and Recovery (FDIR)
algorithms [19]. This leads to complex integration, validation and verification
processes and thus to very expensive satellites.

Despite those efforts, ISR satellites remain vulnerable to an emerging class of
highly unpredictable threats: a wide range of space negation capabilities, includ-
ing cyber-attacks and directed energy1 or kinetic energy2 weapons, are being
developed throughout the world [10, p.149-160]. In the meantime, collision risks
caused by orbital debris become a growing concern for operational satellites [10,
p.27-43]. As traditional space systems are not designed to resist such threats,
their chances to be damaged or destroyed are thus increasing.

In order to deal with this new paradigm, we propose to apply the traditional
strategy (redundancies + FDIR) to a higher design level, in the context of frac-
tionated spacecraft [2]. This leads us to define two complementary concepts to
improve the robustness of space systems: passive and active robustness.

Passive robustness focuses on the physical architecture of the space segment
of the system, i.e. the types, number and orbits of satellites. Its objective is to
minimize immediate consequences of aggressions. Inspired by the fractionation
concept [2], passive robustness is based on networked constellations of redun-
dant small satellites, called “networked constellations” (NCs) [8]. In NCs, the
military reconnaissance mission is achieved by a constellation of “payload (P/L)
satellites” on very low Earth orbits (VLEO). This constellation is supported by
another constellation of “support satellites” on higher orbits, enabling P/L satel-
lites operations (communication relays, data handling, computation functions,
etc.). P/L and support constellations are two layers of a dynamic space network.
Each layer behaves like a distributed sub-system and the connections between
P/L and supports, performed by intersatellite links (ISLs), create dynamic vir-
tual satellites (Fig.1).

Active robustness aims at increasing the system availability and efficiency in
the aftermath of an aggression. This is achieved thanks to short-term recovery
capabilities accomplished by autonomous on-board algorithms, ground control,
or a combination of both. The detection of off-nominal conditions, the isolation
of the failure to a specific subsystem and the recovery of nominal or degraded
capabilities are performed thanks to FDIR strategies [5, 16].

NC configurations combined with some FDIR strategies have been modeled
and simulated thanks to a set of classical computer simulations, using ephemerids
generated with Satellite Tool Kit 8 ®, the space mission simulator developed by
AGI, and Excel ® and MATLAB ® computations. The operational performance
of the NCs (revisit rate, accessibility, etc.), their communicability (network den-
sity, resource sharing conflicts, etc.) and their robustness (operational conse-
quences of satellite failures) have been evaluated and compared [6–8]. Network
metrics [1], such as routing delays or traffic overload caused by FDIR infor-
mation exchange, have also been assessed. The preliminary results show that

1 Lasers or micro-waves.
2 i.e. antisatellite missiles.
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ground station 
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Fig. 1. Example of NC configuration: orbital configuration (1a) and functional config-
uration (1b)

threat-tolerance of sensitive space systems can be drastically improved thanks
to NC architectures and autonomous FDIR strategies. However they also re-
veal plenty of concurrency issues between the satellites within NCs, that have
to be modeled and assessed. Moreover, in the simulations described above, we
only considered satellite losses to evaluate the degradation of operational per-
formance of nominal systems. Even if this rough approach is sufficient for a
preliminary analysis of threat tolerance of NCs with a large number of satellites,
a more accurate description of consequences of aggressions is required, based on
satellite functions or equipment losses, to design redundancy architectures and
FDIR strategies.

In the remainder of the paper, we propose to call networked constellations
equipped with on-board autonomy for mission achievement and FDIR Autono-
mous Networked Constellations (ANCs). An ANC will be considered as a hi-
erarchical and cooperative multiagent system, including entity-agents (ground
stations, P/L satellites, support satellites) and resource-agents (communication,
Attitude and Orbit Control System (AOCS) or payload equipments, etc.)

The ultimate purpose of this study is to make a trade-off between several ANC
hardware (number, types and distribution of entities, etc.) as well software (au-
tonomy organization pattern, FDIR strategies, etc.) architectures. To this end, we
must be able to simulate and evaluate nominal and degraded performance of vari-
ous ANC configurations in order to rank ANCs’ architectures, which requires to:

– easily create, handle and study several ANC hardware and software con-
figurations, which are large networked space systems with heterogeneous
entities;

– manage transient communication sessions between these entities, which are
ruled by space dynamics laws; interfacing with realistic precomputed epheme-
rids is strongly considered;

– study post-aggression failure propagation within ANCs, from resource-agents
to entity-agents;

– assess several reconfiguration strategies, which imply upward and downward
interactions between entities and resources.



Nets-within-Nets for Space System Modeling 351

This paper is organized as follows: in section 2, we will detail the hierarchical
multiagent description of ANCs. In section 3, we will describe the specific nets-
within-nets approach chosen for our work, namely Reference nets, as well as the
tool, Renew 2.2. Finally in section 4, we will assess a simplified example of an
ANC configuration modeled with Renew as a set of Reference nets and we will
discuss preliminary results.

2 ANC Model Features

In this section, we describe the detailed features of an ANC and specify what is
needed for its modeling.

2.1 ANC Model Structure

The static structure of an ANC model should include the following levels (Fig.2):

SYSTEM 
LEVEL 

RESOURCE 
LEVEL 

ENTITY 
LEVEL 

Knowledge base 

Autonomous Networked Constellation 

ENTITY LEVEL ENTITY LEVEL ENTITY LEVEL P/L satellite 
ENTITY LEVEL ENTITY LEVEL Ground station 

Payload 

OKOK 

Comms 

OKOK 

AOCS 

ENTITY LEVEL ENTITY LEVELENTITY LEVEL ENTITY LEVEL Support satellite 

Knowleddggee bbaKKAOCS

OKOK 

Threats

Environment 

OKOK 

Fig. 2. Multilevel breaking down of the ANC model structure

System Level. It is the highest level of the ANC model. It represents the ANC
in its environment and contains a reference to each satellite and ground station
of the ANC. In this paper, we only consider a limited model of the environment
of ANCs: the Earth, which provides its gravity field and enables orbital moves,
the Earth surface, which is observed by the P/L satellites and on which ground
stations are set up, and the near-Earth space where satellites orbit. Threats,
that can strike any part of an ANC, are also part of the environment.

Entity Level. This level represents the state of each mobile (P/L or support
satellites) or fixed entity (ground stations), within the “system”. Each entity
performs a part of the global ISR mission (data collection or storage, commu-
nication, mission planning, system monitoring, etc.) and requires low-level re-
sources to achieve those goals. The number of P/L satellites, support satellites
and ground stations is set for each considered ANC configuration [6].
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Resource Level. This level describes the availability of low-level physical
or logical components which are considered as resources for “entities”: pay-
load, communication, AOCS, etc. It only comprises the relevant functions to
be conside-red for threat-tolerance analysis, i.e. the most likely to be targeted
by aggression means. The “knowledge” of each entity is also stored in a resource
called “knowledge base”. This knowledge may be about its current state, its
environment or the state of other entities.

2.2 ANC Model Dynamics

The dynamic features of the different levels are as follows:

Communication session Communication session 

TT&C 

Aggression 

Communication session Communication session 

TT&C ISL 

Knowledge base 
OKOK 

Payload 

KOO 

Knowledge base 
OKOK 

1 

2 

4 

3 

Fig. 3. Examples of interactions in an ANC.
➀: inter-entity accesses ruled by the space dynamics laws.
➁: ongoing communication sessions (TT&C and ISL).
➂: synchronization of two knowledge bases thanks to a communication session.
➃: aggression on a P/L satellite - its payload becomes unavailable.

Environment. As it is ruled by the space dynamics laws, the ANC environ-
ment may be considered as deterministic: access periods between entities are
foreseeable and can be computed thanks to ephemerids that sample position
and velocity of each entity over time (Fig.3.➀). As for threats, their activity and
their precise effects remain highly unpredictable. Any aggression may, however,
result in either damages at the resource-level and thus modify the availability of
the entity functions (Fig.3.➃), or destroy an entire entity.

Entity and Resource-Agents. As described in section 2.1, an heterogeneous
set of agents is considered in our model: three types of entity-level agents, also
called entities, (ground stations, P/L and support satellites) and several types
of resource-level agents, also called resources. Although those agents are coop-
erative to achieve the ISR mission, concurrency may emerge, especially between
entities (P/L satellites vs support satellites, or satellites vs ground stations). For
example, a ground station may have a simultaneous access with two satellites.
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For this concurrent situation, either the station has two available antennas and
can communicate with both satellites at the same time, or it has to “choose”
between them, according to rules (order of priority, first-come/ first-served, etc.)
or routing tables. It is noticeable that there is no concurrency between entities
to use resources: we assume that entities, which are mainly satellites, are cor-
rectly designed and have enough resources to achieve their part of the mission
in nominal conditions. In case of an aggression, those resources may however
be affected and failures may propagate within the whole system: for instance,
the jamming of the communication sub-system (a resource) of a satellite (an
entity) may impair the whole system communication pattern. Among the other
resources, one should note the specific role of the “knowledge base”: it is used
to store the current state of each entity with regard to their other resources,
as well as the state of the other entities. This knowledge is updated through
communication sessions between entities (Fig.3.➂).

Communications. By definition, ANCs form dynamic (but deterministic) mesh
networks and each entity is a node of this network [6]. Like in any low Earth
orbit space system, communications between the ANC entities are necessarily
transitory. Those connections are established either by ISLs for communications
between satellites, or by TT&C links for communications between satellites and
ground stations (Fig.3.➁).

Entities can interact in a deterministic and periodical manner [6]. In nom-
inal situations3, communication periods are determined by space dynamics as
well as communication rules and protocols: in order to exchange messages, two
satellites must firstly be in mutual visibility, which is determined by their or-
bits, and secondly be planned to communicate. As we will only focus on those
access/no-access periods, we will consider ANCs as discrete-event dynamic sys-
tems, without taking into account continuous-time dynamics.

Interactions between entities mainly consist in message passing (concerning
the entity current state, operational information, new assignments, communica-
tion relays, etc.) Those messages may be used to update each entity’s knowledge
base, to assign tasks to entities or to broadcast reconfiguration orders.

2.3 Requirements for a Modeling Tool

As shown in the previous two paragraphs an ANC model includes several types
of entities with embedded resources and subjected to different kinds of events
coming from themselves or from the environment. Moreover different ANC con-
figurations including several tens of entities must be modeled easily so that their
performance and robustness to aggressions should be assessed and compared.
Therefore a modeling tool for ANCs should have the following features:

– allow easy entity creation or removal (i.e. when a satellite is destroyed by
an aggression);

– allow a compact representation of the state of an ANC, given the states of
the entities, resources and communications;

3 i.e. with no failures and no aggressions.
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– represent communicating objects;
– represent event-driven state changes (begin/end of visibility; begin/end of

communication; aggressions and failures; reconfiguration orders...)
– represent synchronization and concurrency;
– allow a hierarchical representation of objects (i.e. entity-embedded resources)

with state propagation within the hierarchy:

• horizontal state propagation: entity −→ entity;
• vertical state propagation: top-down (entity −→ its resource(s)) and

bottom-up (resource −→ its entity).

Given these requirements, Petri nets, and especially their high-level extensions,
appear to be an obvious and particularly relevant modeling formalism for ANCs.
Traditional high-level Petri net extensions, like colored Petri-nets [11], are how-
ever not entirely suitable for ANC modeling and simulation as they do not
explicitly allow tokens to be nets themselves and do not implement net instanti-
ation. We finally chose the “nets-within-nets” Petri net extension which will be
reminded in the next section.

It should be noted that although Petri nets have been widely used to study
event-driven and concurrent complex systems [9] as well as multiagent and mul-
tirobot systems [4, 20] or to develop software with agent-oriented paradigms [3],
very few references are available concerning space system design [16].

3 From Nets-within-Nets to Reference Nets

Before modeling and simulating an ANC as a set of nets-within-nets, we have to
determine the precise nets-within-nets formalism as well as the software we will
use.

3.1 Reference Nets and Renew

Over the past decade several “nets-within-nets” approaches have been introduced
to model hierarchical multiagent distributed systems: Elementary Object Petri
Nets [21], Nested Petri Nets [18], Reference Nets [13] or Mobile Object Net
Systems [12].

Each formalism features different inter-net connection schemes: indeed the
number of hierarchical levels may be limited (e.g. two levels [21]), the ability to
communicate or synchronize transition firings may be restricted in order to pre-
serve some formal properties (e.g. decidability [18]), or specific semantics may be
considered (e.g. value semantics [12]). Those limitations or specific features may
appear problematic to model ANCs. Moreover there are few available software
tools to design and run such “nets-within-nets”.

As for Reference nets, they implement the nets-within-nets concept thanks to
a special inscription language using Java expressions, which may control transi-
tion enabling and can also create new instances of subnets. A given net instance
can communicate with another one provided it has a reference of this instance
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and that those nets have linked transitions thanks to so-called “synchronous
channels” inscriptions.

Those features have been implemented in an academic open source Petri net
simulator, called Renew4, whose current version, Renew 2.2, was released in
August 2009 [14, 15]. The developer team still provides support.

3.2 Some Renew Specific Features

Net Instances. Renew differentiates typical static nets that are drawn in the
graphical editor and considered as templates, and net instances that are dynam-
ically created from net templates during the simulation [14, p.43].

As presented previously (section 2.1), ANCs are composed of several “copies”
of a limited number of different entities (and resources): P/L satellites, support
satellites, ground stations, etc. Therefore each type of entity will be modeled
as a specific Petri net template, and their instances will represent the different
P/L satellites, support satellites or ground stations within the considered ANC
configuration.

Transitory communication links (section 2.2) may also be considered as tran-
sitory Petri nets: thanks to Renew features, an unlimited number of communi-
cation nets can be instantiated “on the fly”.

Finally, the hierarchical structure of ANCs is immediately obtained when
instantiating nets within other nets.

However instances cannot be erased or removed from the simulation: if all
transitions of an instance are disabled, this instance is “forgotten” by the simu-
lator, thanks to a garbage collector. Consequently we have to design nets very
carefully in order to be sure that unused instances will not remain active and
disturb the simulation run.

Synchronization Schemes. Synchronous channels are one of the specific fea-
tures of reference nets: they enable nets to influence each other [14, p.43-47].
This feature is mandatory to simulate communicating entities or event-driven
net evolutions, or to synchronize net activities. Synchronizations will be exten-
sively used to model ANCs.

Within the hierarchical architecture of ANCs, we have to consider top-down,
bottom-up and horizontal synchronizations. Even if they are made possible by
Renew, they require different types of techniques:

– Top-down synchronization (Fig.4) is the simplest one as the master “knows”
the slave-instance it creates;

– Bottom-up synchronization (Fig.5): the slave net must “know” its master: a
reference to the master must be passed to the slave instance;

– Horizontal synchronization (Fig.6) is quite similar to the bottom-up syn-
chronization; each slave must “know” the other one.

4 For REference NEts Workshop.
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(a): Thanks to the inscrip-
tion sv:new slave, firing t1
creates one instance of the
slave net (slave[2]). A refer-
ence to slave[2] is stored in
variable sv.
(b): t2 and ts are synchro-
nized thanks to inscriptions
sv:ts() and :ts(). Note the
net-token slave[2] in p2.
(c): Final marking.

Fig. 4. Top-down synchronization
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(a): Thanks to inscription
sv:new slave2(this), firing t1
creates one instance of slave2
net (slave2[2]) and passes
a reference to master2[0] to
slave2[2] thanks to keyword
this. slave2[2] stores this ref-
erence in variable mast.
(b): t2 and ts2 are synchro-
nized thanks to inscriptions
:tm() and mast:tm(). Note
the net-token master2[0] in
ps2.
(c): Final marking.

Fig. 5. Bottom-up synchronization

4 Application

In this paper, our purpose is to validate our choices about formalism and mod-
eling tools. In this section, we thus present an example of a simplified ANC
modeled with Renew as a set of Reference nets. In further works, we will imple-
ment bigger and more complex ANCs5.

4.1 A Simplified ANC

The simplified ANC configuration we are considering here is composed of the
following entities: 2 P/L satellites, 1 support satellite and 1 TT&C ground
station.
5 Renew have been successfully tested with ANCs composed of up to 25 entities and

80 resources.
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Fig. 6. Horizontal synchronization between two slave-nets.
(a): Thanks to inscriptions sv1:ini(sv2) and sv2:ini(sv1), each slaveC net instance receives
a reference to the other slaveC net instance (transition ts1, :ini(x)).
(b): Transitions slaveC[2].ts2 and slaveC[3].ts3 are synchronized thanks to inscriptions
x:coop() and :coop().
(c): Transitions slaveC[3].ts2 and slaveC[2].ts3 are synchronized thanks to inscriptions
x:coop() and :coop().
(d): Final marking.

Each entity embeds the following resources: 1 communication resource + 1
knowledge base; for P/L and support satellites: 1 AOCS resource; for P/L satel-
lites only: 2 payload resources.

Concerning the dynamic behavior of the ANC, we have made the following
simplifying assumptions:

– neither time nor real space dynamics are implemented in our model yet;
accesses between entities are thus triggered randomly while complying with
the following rules:

• inter P/L satellite communications are not allowed;
• the support satellite is a sharable entity: it can simultaneously establish

ISLs with the two P/L satellites;
• the TT&C ground station is an unsharable entity: it can only establish

a link with one satellite at a time;
– communication sessions are ruled by a simple exchange protocol: mutual

identification of entities with no acknowledgment;
– threats can either aggress any kind of resource, or destroy an entire entity.

They are triggered manually.
Although these simplifications make objective performance analysis of ANCs
impossible, they enable us to check the ANC hierarchical model as a set of
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nets-within-nets. Time and accurate space dynamics will be considered in fur-
ther works so as to perform a thorough performance evaluation of several ANC
configurations.

4.2 Nets Description

Each ANC item described in section 2 is modeled as a Petri net.

System Net (Fig.7). It is the highest level net of the ANC and has two main
functions: setting up the simulation by creating entity-net instances (static struc-
ture of the ANC) and managing the system’s dynamics (aggression triggering,
ISL and TT&C accesses).

Simulation initialization (Fig.7, frame 1). The manual transition Init Simu cre-
ates instances of entity nets of the considered ANC configuration thanks to
several creation inscriptions. For example, creation inscription sat1:new satel-
litePL(this,1) creates a new instance of the P/L satellite net and passes the
parameter list (this,1) to this instance, which is assigned to variable sat1. sat0,
sat2 and gst0 are instances of, respectively, satelliteSupp net, satellitePL net and
groundStation net. An instance of the net init6 distributes the references of those
instances so that they can interact. Those references are stored in places Satel-
lite Indices, Satellite List, Station Indices and Station List. Those places are then
used to manage accesses via virtual places which can be seen at the bottom of
the system net in ISL and TT&C accesses management areas (frames 3 and 4),
with the V. prefix. When Start Simu transition is fired, the simulation run starts.

Threat management (Fig.7, frame 2). This area is used to manually trigger ag-
gressions on resources or entities. The upper part is dedicated to satellite destruc-
tion management, which is an irreversible process (e.g. attack of an antisatellite
missile). As net instances cannot be removed (see section 3.2), P/L satellites and
support satellites are dealt with differently: the payload activity in satellitePL
instances is disabled thanks to inscription listSat[sat]:stopPL(). The lower part
is dedicated to resource threat management. It is composed of three frames,
respectively for threats on communications (e.g. jamming), payload (e.g. daz-
zling) and AOCS (e.g. GPS jamming). Transitions with inscriptions thrC(com),
thrP(pl) and thrA(aocs) are fired during the initialization phase. Then a reference
to each resource net is stored in the central place of each net. When transition
:agress is fired manually, one resource is made unavailable until reconfiguration
(manual transition in resource nets).

Access management (Fig.7, frames 3 and 4). Those nets simulate access and com-
munication periods between entities. As neither time nor real space dynamics
are implemented yet, a very simple dynamic model is considered: for ISLs, place
Possible Access ISL contains a list of possible ISL accesses, determined externally
thanks to satellite ephemerids; as for TT&C links, accesses to ground stations are
6 Not detailed here; this net has only a functional role.
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Fig. 7. An instance of system net. The marking is composed of colored tokens which
may be integers (e.g. place Satellite Indices, 3 tokens in the current marking), tuples
(e.g. place Ongoing ISL, 1 token), Java objects (e.g. place Satellite List, 1 token) or
net references (e.g. places in payload, communications or AOCS threat management,
respectively with 4, 4 and 3 tokens). Only the number of tokens is displayed, not their
values.

considered as concurrent. When transition Start Access ISL fires, an access period
between two satellites (e1 and e2) begins (place Ongoing Access ISL) and transi-
tion Start ISL is enabled. If it fires, a communication session between e1 and e2 is
established (inscription C:new commSession(e1,e2)). Transitions End Access ISL
and End ISL put an end to ISL communications and access periods respectively
and disable the ongoing communication session (inscription C:interrupt()). This
description is also suitable for TT&C access management.
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Entity Nets have a common structure:

1. an initialization area that instantiates the suitable number and type of the
entity embedded resources and stores their references in variables and places;

2. a functional area that manages the operational activities of the entity, i.e.
how the resources are used.

The size of the functional area depends on the type of the considered entity.
According to section 4.1, functional areas of support satellite and ground sta-
tion nets are subsets of the P/L satellite net functional area, which is composed
as follows: knowledge base, communication function, AOCS function and pay-
load function (Fig.8). Support satellite and ground station nets are not detailed
here. They have the same structure with less embedded resources: knowledge
base, communications and AOCS for support satellite nets, knowledge base and
communications for ground station nets.

Knowledge base: it is instantiated thanks to inscription kb:new resourceKB(this)
and one token kb is put in place Knowledge Base. Each function of the entity can
update the knowledge base according to its state or its activity thanks to top-
down synchronous channels (e.g. transition Emit with inscription kb:read(msg) on
Fig.8). When a communication session is established (inscription :initSession()),
the knowledge base is accessed and a message is prepared.

Communication function: the communication resource is instantiated thanks
to inscription c01:new resourceCO(this). Token co1 in place Comm OK sets the
resource as “available” for operational use. The right hand part of the commu-
nication resource area is dedicated to communication management implemented
by transitions Emit and Receive, and to synchronous channels (top-down, with
knowledge base: kb:rec(msg) and kb:read(msg); bottom-up, with communication
session net: emit(msg) and receive(msg)).

Token co1 can be removed in case of an aggression on the communication re-
source: a bottom-up synchronous channel (:KO Comm(), from resource to entity)
is activated and the token moves to place Comm KO. This firing also updates
the knowledge base thanks to kb:updateS(0,0). This marking prevents further
operational use of the communication function. The resource can be made avai-
lable again thanks to channel :recovComm(). The availability of the AOCS and
payload functions are managed in the same manner.

Payload Function: in the example, it relies on two P/L resources assigned to
variables pl1 and pl2 in place PL OK. Transition Use PL only requires one P/L
resource: this is how we simulate a hot redundancy7 reconfiguration scheme.
The firing of this transition updates the knowledge base thanks to channel
kb:updateA(1): the integer value 1 is sent to the knowledge base and increments
a counter of operational activity, called activity index.
7 The second resource is immediately available in case the first one becomes

unavailable.
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Fig. 8. An instance of P/L satellite net.
At the top: initialization area. Below: functional areas. The current marking means
that this instance is the number “1” P/L satellite (place Satellite ID) and that it was
created by instance ANC system[0]. Functions are provided by resources resourceKB[23],
resourceCO[24], resourceAO[22], resourcePL[25] and resourcePL[26]. They are all avail-
able.
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Resource Nets (Fig.9). In the considered simplified ANC configuration, com-
munication, payload and AOCS resources have the same net structure. The main
places of the nets are OK, which is initially marked with a black token, and KO.
This token moves to KO when an aggression occurs (inscription :agress()) and
moves back to OK when recovery actions are carried out (e.g. cold redundancy
activation8, reset of an electronic component, etc.).

In further works, more complex resource models will be implemented (more
possible states, various behaviors depending on the resource type, etc.).

The place Entity stores the reference to the upper en-
tity in order to enable bottom-up synchronous chan-
nels ent:KO Comm() and ent:recovComm().

Fig. 9. A communication resource net.

Knowledge Base Net (Fig.10). Its main role is to store the entity’s local know-
ledge about the other entities in a set of tuples that contains the states of all the
entities of the ANC. Each “knowledge tuple” (e.g. [satellitePL[11],[l@8f5944,420]
in Fig.10) is structured as follows:

– the identification of an entity (e.g. satellitePL[11])
– the state of its resources stored in a Java list object (e.g. [l@8f5944)
– the value of its activity index (e.g. 420). This index measures the operational

activity of an entity over time: for example, each time a P/L satellite acti-
vates its payload, the activity index is increased by 1. It is particularly used
during the synchronization phase to compare knowledge freshness between
received and stored data.

This net enables interactions with other nets: top-down synchronization with the
upper entity to update its activity index (transition Update Activity) or resource
state (transition Update State) or bottom-up synchronization when a communi-
cation session is established between two entities to pass messages (e.g. transi-
tions Prepare Msg or Receive Msg).

Knowledge is synchronized between entities when they communicate. Emis-
sion and reception activities are carried out by the lower part of the net. For
emission, the formatted message is only read and sent to the communication
function (:read(msg)). For reception, the received message is stored in a buffer
(place Input Buffer) and its data are sorted: the knowledge base only keeps

8 The second resource is powered off; it needs to be powered up to become available.
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Fig. 10. An instance of a knowledge base net. This instance was created by satellite[11]
(place Entity). Note the structure of the 4 tokens in place Knowledge Base. The value
of the activity index is 420, i.e. the payload of satellite[11] has been activated 420
times since the beginning of the simulation. The Output Buffer is ready for the next
emission. The Input Buffer is processing a received message (2 tokens left, i.e. two tuples
concerning two entities).

up-to-date data about other resources (transition Write Msg with guard inscrip-
tion); out-of-date data or data about its own entity, which is necessarily out-of-
date, are cleared (transition Clear).

Communication Session Net (Fig.11). It is used to model bidirectional com-
munications between two entities. When a communication session starts, each
entity receives the identity of the other one. Then, each entity sends the content
of its knowledge base (transitions Emit 1 and Emit 2) only once. The ongoing
communication session is disabled when the transition :interrupt() is triggered.

Fig. 11. An instance of a communication session net between satelliteSupp[10] and
satellitePL[7]. One message msg is being sent by satelliteSupp[10].
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4.3 Simulation and First Results

As our main goal is to validate our methods and models, we propose to run
the simplified ANC described above with a basic scenario. At this stage of the
study, we expect to confirm some earlier results [6–8]. This section focuses on first
results obtained with a scenario involving an aggression on the communication
resource of the support satellite.

Scenario Description. The simulation starts with the nominal simplified
ANC. After a given duration, the communication resource of the support satel-
lite is jammed and permanently made unavailable. Therefore ISL communication
sessions no longer enable knowledge base synchronization: P/L satellites keep on
emitting messages but the support satellite remains quiet; knowledge base up-
dates cannot be relayed by the support satellite anymore.

Metrics. In ANCs, operational activity of entities is measured through an ac-
tivity index (see description of knowledge base net). Due to space dynamics,
knowledge bases can only be updated during communication sessions: conse-
quently there always remains residual differences between the knowledge bases
of each entity at any simulation step. Those differences are measured through
knowledge discrepancy factors.

Let Ai,j(s) be the activity index of satellite j stored in satellite i at step s
and Ai,i(s) the “real” activity index of satellite i at step s. For the simplified
ANC, we have defined three knowledge discrepancy factors KD (≤ 0) between
P/L satellites “1” and “2” and ground station “g”:

(1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

KDsat−sat(s) = 1
2 · [(A1,2(s) − A2,2(s)) + (A2,1(s) − A1,1(s))]

KDsat−grd(s) = 1
2 · [(A1,g(s) − Ag,g(s)) + (A2,g(s) − Ag,g(s))]

KDgrd−sat(s) = 1
2 · [(Ag,1(s) − A1,1(s)) + (Ag,2(s) − A2,2(s))]

In other words, we calculate the difference between the “real” activity index of
each entity, stored and updated within each entity, and the “believed” activity
index, stored in the other entities’ knowledge bases.

One may consider KD as a performance criterion of ANCs; the less (in ab-
solute value), the better. For a multiagent system, stability can be defined as
its ability to maintain its performance stationary for a given variation in the
system [17]. It is considered as a major property in multiagent system design
and evaluation. The stability of our ANCs may thus be assessed as: how does
the aggression on the communication resource modify the KD factors?

Experimental design. As time is not implemented in our model yet, it is ap-
proximated by a discrete counter of ground station accesses, which are regularly
spread over time in the real world. In the following, one simulation step will be
equivalent to one ground station access, disregarding other Petri net activities.
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The knowledge bases of all entities are recorded every 10 steps thanks to both
a specific part of the system net (not displayed on figure 7) and log files of
simulation traces exported by Renew and computed in Excel ®. For the consid-
ered scenario, the loss of the communication session occurs after 1000 steps. 10
simulation runs have been performed and recorded.

Results. The values of KD factors (average values) are displayed in Fig.12 and
Tab.1.
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Fig. 12. Knowledge discrepancies over time (KDb.a : KD before aggression; KDa.a :
KD after aggression.)

Table 1. Knowledge discrepancies stability (average values, before and after the
aggression)

Knowledge discrepancy Before aggression After aggression Deviation
KDsat−sat(s) -18.8 -37.2 -98.1%
KDsat−grd(s) -2.6 -2.8 -7.7%
KDgrd−sat(s) -16.4 -18.1 -10.3%

One may first notice that the aggression on the communication resource re-
sults in a significant deterioration of the knowledge within the whole ANC : KDs
do not remain stable. From the P/L satellites point-of-view, mutual knowledge
(KDsat−sat) drops of 98.1% on average, and knowledge of the ground station
activity (KDsat−grd) drops of 7.7%. As for the ground station, its knowledge
about P/L satellite activity (KDgrd−sat) also decreases of 10.3%.

Those preliminary results are coherent and comply with previous results: com-
munication jamming on support satellites results in a significant degradation of
the overall performance of the ANC (here the knowledge discrepancy).
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5 Conclusion and Further Work

The nets-within-nets approach allows us to design and simulate clearly orga-
nized models of ANCs that are well adapted for further assessment of the per-
formance and robustness of different ANC configurations subjected to different
kinds of threats. Indeed nets-within-nets allow hierarchical influences to be repre-
sented and the entity-resource hierarchy that we have shown paves the way for
a multiple-level hierarchy with e.g. more detailed resources for a more precise
assessment of threat impacts. The assessment metrics are directly linked to the
semantics of tokens, that carry explicit knowledge of the ANC state.

Moreover reference nets, which are derived from object oriented programing,
enable us to envisage quite easy manipulations as the whole structure of the
model will not be affected by changes within nets, provided we manage to pre-
serve interfaces with other nets.

Further work will focus on the improvement of the ANC model and on the
setting up of more comprehensive simulation scenarios in order to assess several
ANC configurations thoroughly, with various combinations of P/L and support
satellites:

– Larger ANCs: more relevant ANC configurations, with more entities (up to
12 P/L satellites, 12 supports and 5 ground stations);

– Time: the nets need to be modified in order to make them suitable with the
timed Petri net formalism which is a feature of Renew. Time will enable us
to perform more realistic simulations and thus evaluate ANC performance
more accurately;

– Real space dynamics: this will require the development of a plugin for Renew
in order to fire some transitions according to real ephemerids read from
external files;

– Knowledge bases: more complex data structures will be implemented, in-
cluding knowledge on the environment or on the mission plan of the other
entities;

– Communication protocols: different protocols will be implemented to manage
communication session creations.
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Abstract. We are concerned with (strongly deterministic) generalised
state machines (GSMs), a restricted formalism of the nets-within-nets-
family, and further restrict the involved nets to P- and T-nets. While
GSMs with these restrictions are likely to be of little use in modelling
applications, understanding them better might help in future attempts
to analyse more sophisticated formalisms.
We show that, given a strongly deterministic GSM where the system

net and all object nets are P-nets, it is PSpace-complete to decide the
reachability of a given marking. In past work we have already shown that
the same restriction to T-nets remains solvable in polynomial time. We
discuss this work in the context given here. At last we give some initial
results concerning other combinations of restricting the system and/or
the object nets to P- and/or T-nets. Throughout we also discuss the
effect of dropping the restriction to strongly deterministic GSMs.

Keywords: Higher-level net models, nets-within-nets, reachability
problem.

1 Introduction

Many formalisms are known by now which in one way or the other apply the
idea of nesting to Petri nets, that is, formalisms which allow to interpret the
tokens of an ordinary p/t net as p/t nets again. Formalisms of these kind are
for example object nets [28], recursive nets [8], nested nets [24], PN2 [11], hy-
pernets [1], Mobile Systems [23], AHO systems [12], adaptive workflow nets [25],
and Hornets [20]. Another line of research also dealing with nesting, but not in
the field of Petri nets, is concerned with process calculi. Arguably most promi-
nently there are the Ambient Calculus of Gordon and Cardelli [2] and the Seal
Calculus [3] among many others.

All these formalisms are usually quite helpful to model mobility of and in-
teraction between different objects or agents. However, despite the success in
modelling a variety of applications which are rather awkward to model with or-
dinary Petri nets to say the least, the borderline between modelling power on
the one hand and complexity of the algorithms applied for verification issues on
the other is by far not so well understood as for Petri nets where Free Choice
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Petri nets can be seen as the formalism that allows to model a high diversity of
applications while retaining a modest and manageable degree of complexity.

A rather constrained specimen of the above mentioned Petri net formalisms
are generalised state machines (GSM). They are a restriction of elementary ob-
ject systems (Eos), which were originally proposed by Valk [27] for a two levelled
structure and later generalised for arbitrary nesting structures (see [17,18]). De-
spite being suited for modelling (see e.g. [16]), even with their restriction of the
nesting depth they are Turing-powerful (cf. [15]). However, in most cases certain
aspects of elementary net systems are not needed for modelling. Generalised
state machines retain the ability to describe nesting of objects, but the dupli-
cation or destruction of them is not allowed. Therefore they are nicely suited
to model physical entities. While problems like reachability and many others
are now decidable (see Theorem 1) the above mentioned borderline is not well
understood for GSMs, i.e. what is an appropriate net class for the involved nets
such that we enjoy a high modelling capability, yet also have the possibility to
verify the models with affordable resources?

To understand this boundary better, we first restrict GSMs to deterministic
and strongly deterministic GSMs, limiting the interaction between the involved
nets, and then restrict the nets to P- and T-nets. While such nets considered
individually are well understood (cf. [4]), viewed in the context here they become
far more intricate.

After presenting elementary object systems and generalised state machines
in Section 2, we show in Section 3 that the reachability problem for strongly
deterministic GSMs is PSpace-complete if all object nets and the system net
are P-nets. We also repeat the formerly obtained result that the same problem
is solvable in polynomial time if all object nets and the system net are T-nets.
In Section 4 we give initial results for the “mixed cases”, i.e. the cases where the
system net is a T-net and the object nets are all P-nets or vice versa. The paper
end with a conclusion and an outlook.

2 Fundamentals

An elementary object system (Eos) is composed of a system net, which is a p/t

net N̂ = (P̂ , T̂ ,pre,post), and a set of object nets N = {N1, . . . , Nn}, which
are p/t nets given as Ni = (PNi , TNi ,preNi

,postNi
) (cf. Example 1 below). We

assume N̂ �∈ N and the existence of the object netN• ∈ N which has no places or
transitions and is used to model black tokens. Moreover we assume that all sets of
nodes (places and transitions) are pairwise disjoint and set PN = ∪N∈NPN and

TN = ∪N∈NTN . The system net places are typed by the mapping d : P̂ → N
with the meaning, that if d(p̂) = N , then the place p̂ of the system net may
contain only net-tokens of the object net type N . The transitions in an Eos
are labelled with synchronisation channels by the synchronisation labelling l.
For this we assume a fixed set of channels C. In addition we allow the label τ
which is used to describe that no synchronisation is desired (i.e. autonomous

firing). The synchronisation labelling is then a tuple l = (l̂, (lN )N∈N ) where
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l̂ : T̂ → (N → (C ∪ {τ})) and lN : TN → (C ∪ {τ}) for all N ∈ N . All these
functions are total. The intended meaning is as follows: lN(t) = τ means that the
transition t of the object net N may fire (object-)autonomously. lN (t) = c �= τ

means that t synchronises via the channel c with the system net. l̂(t̂)(N) = τ
means that the system net transition t̂may fire independently (or autonomously)

from the object net N . l̂(t̂)(N) = c �= τ means that t̂ synchronises via the channel
c with the object net N . In case of a synchronous event the system net and the
object net transitions have to be labelled with the same channel. A system net
transition t̂ may fire system-autonomously, if l̂(t̂)(N) = τ for all N ∈ N .

A marking of an Eos is a nested multiset, denoted μ =
∑n

k=1 p̂k[Mk], where
p̂k is a place in the system net and Mk is a marking of the net-token of type
d(p̂k). The set of all markings is denoted M. We define the partial order ≤ on
nested multisets by setting μ1 ≤ μ2 iff ∃μ : μ2 = μ1 + μ.

Π1(μ) denotes the projection of the nested marking μ to the system net level
and Π2

N (μ) denotes the projection to the marking belonging to the object net N ,
i.e. Π1(

∑n
k=1 p̂k[Mk]) =

∑n
k=1 p̂k and Π2

N (
∑n

k=1 p̂k[Mk]) =
∑n

k=1 1N (p̂k) ·Mk,

where 1N : P̂ → {0, 1} with 1N(p̂) = 1 iff d(p̂) = N .

Definition 1 (Eos). An elementary object system (Eos) is a tuple OS =

(N̂ ,N , d, l) such that:

1. N̂ is a p/t net, called the system net.
2. N is a finite set of disjoint p/t nets, called object nets.

3. d : P̂ → N is the typing of the system net places.
4. l = (l̂, (lN )N∈N ) is the labelling.

An Eos with initial marking is a tuple OS = (N̂ ,N , d, l, μ0) where μ0 ∈ M is
the initial marking.

The synchronisation labelling generates the set of system events Θ, which con-
sists of the disjoint sets of synchronous events Θl, object-autonomous events Θo,
and system-autonomous events Θs. An event is a pair, denoted t̂[ϑ] in the fol-
lowing, where t̂ is a transition of the system net or ε̂ if object-autonomous firing
is desired and ϑ maps each object net to one of its transitions or to ε if no firing
is desired in this object net, that is ϑ : N → TN ∪ {ε} where ϑ(N) �= ε implies
ϑ(N) ∈ TN for all N ∈ N . If ϑ(N) = ε for all N the system net transition
fires autonomously. We also use the shortcut ϑε for this function. The labelling
functions are extended to lN(ε) = τ and l̂(ε̂)(N) = τ for all N ∈ N .

We now distinguish three cases: For a synchronous event t̂[ϑ] ∈ Θl, the sys-
tem net transition t̂ �= ε̂, fires synchronously with all the object net transi-
tions ϑ(N), N ∈ N . Thus at least one N ∈ N must exist with l̂(t̂)(N) �= τ

and ϑ(N) �= ε. We demand ϑ(N) �= ε ⇔ l̂(t̂)(N) �= τ and that the chan-

nels have to match, i.e. l̂(t̂)(N) = lN(ϑ(N)) for all N ∈ N . Note that for
object nets which do not participate in the event (either because they are
not in the preset of the system net transition or because no object net tran-
sitions fires synchronously) l̂(t̂)(N) = τ holds, which forces ϑ(N) = ε and thus

lN (ϑ(N)) = lN (ε) = τ = l̂(t̂)(N).
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In the case of a system-autonomous event t̂[ϑ] ∈ Θs, t̂ �= ε̂ fires autonomously.

Therefore we demand that l̂(t̂)(N) = τ for all N ∈ N and ϑ = ϑε, that is
ϑ(N) = ε for all N ∈ N .1

In the third case of an object-autonomous event ε̂[ϑ] ∈ Θo, ϑ(N) �= ε for
exactly one object net N . Moreover the transition ϑ(N) must not use a channel,
that is lN (ϑ(N)) = τ has to hold.2

If we write t̂[ϑ] ∈ Θ in the following, this includes the possibility that the
event is an system- or object-autonomous event, i.e. ϑ = ϑε or t̂ = ε̂ is pos-
sible. Moreover, since the sets of transitions are all disjoint, we usually write
t̂[ϑ(N1), ϑ(N2), . . .] and also skip the object nets which are mapped to ε, that
is, we simply list the object net’s transitions with which a system net transition
synchronises.

Example 1. Figure 1 below shows an Eos consisting of a system net N̂ and two
object nets N = {N,N ′}. The typing of the system net is given by d(p̂1) =
d(p̂2) = d(p̂4) = N and d(p̂3) = d(p̂5) = d(p̂6) = N ′.

For now, ignore the net-tokens on p̂4, p̂5, and p̂6. These places are initially
empty and the system has thus four net-tokens: two on place p̂1 and one on p̂2
and p̂3 each. The net-tokens on p̂1 and p̂2 share the same structure, but have
independent markings. The initial marking is thus given by

μ = p̂1[0] + p̂1[a+ b] + p̂2[a] + p̂3[a
′ + b′].

We have two channels ch and ch′. The labelling function l̂ of the system net
is defined by l̂(t̂)(N) = ch and l̂(t̂)(N ′) = ch′. The object net’s labellings are
defined by lN (t) = ch and lN ′(t′) = ch′. Thus there is only one (synchronous)
event: Θ = Θl = {t̂[N �→ t, N ′ �→ t′]}. The event is also written shortly as t̂[t, t′].

To explain firing we distinguish two cases: Firing a system-autonomous or syn-
chronous event t̂[ϑ] ∈ Θl ∪Θs removes net-tokens together with their individual
internal markings. The new net-tokens are placed according to the system net
transition and the new internal markings are determined by the internal mark-
ings just removed and ϑ. Thus a nested multiset λ ∈ M that is part of the
current marking μ, i.e. λ ≤ μ, is replaced by a nested multiset ρ.

The enabling condition is expressed by the enabling predicate φOS (or just φ
whenever OS is clear from the context):

φ(t̂[ϑ], λ, ρ) ⇐⇒ Π1(λ) = pre(t̂) ∧Π1(ρ) = post(t̂) ∧
∀N ∈ N : Π2

N (λ) ≥ preN (ϑ(N)) ∧
∀N ∈ N : Π2

N (ρ) = Π2
N (λ) − preN (ϑ(N)) + postN (ϑ(N)),

(1)

where preN (ε) = postN (ε) = 0 for all N ∈ N .

1 Note that this implies ϑ(N) �= ε ⇔ l̂(t̂)(N) �= τ , the equivalence we had to demand

in the case above. Moreover lN(ϑ(N)) = l̂(t̂)(N) follows, too.
2 Note that the labels match again for all N , i.e. l̂(t̂)(N) = l̂(ε̂)(N) = τ = lN(ϑ(N))

for all N ∈ N , but the equivalence ϑ(N) �= ε ⇔ l̂(t̂)(N) �= τ does not hold for exactly
one N , namely for the N for which ϑ(N) �= ε holds. ϑ(N) ∈ TN is the transition
intended to fire object-autonomously.
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Fig. 1. An Eos firing the synchronous event t̂[t, t′]

For an object-autonomous event ε̂[ϑ] ∈ Θo let N be the object net for which

ϑ(N) �= ε holds. Now φ(ε̂[ϑ], λ, ρ) holds iff Π1(λ) = Π1(ρ) = p̂ for a p̂ ∈ P̂ with
d(p̂) = N and Π2

N (λ) ≥ preN (ϑ(N)) and Π2
N (ρ) = Π2

N (λ) − preN(ϑ(N)) +
postN (ϑ(N)). In case of an object-autonomous event λ and ρ are thus essentially
markings of an object net, but ’preceded’ by a system net place typed with this
object net.

Definition 2 (Firing Rule). Let OS be an Eos and μ, μ′ ∈ M markings. The
event t̂[ϑ] ∈ Θ is enabled in μ for the mode (λ, ρ) ∈ M2 iff λ ≤ μ ∧ φ(t̂[ϑ], λ, ρ)
holds.

An event t̂[ϑ] that is enabled in μ for the mode (λ, ρ) can fire: μ
̂t[ϑ](λ,ρ)−−−−−→

OS
μ′.

The resulting successor marking is defined as μ′ = μ−λ+ ρ. Firing is extend to
sequences w ∈ (Θ ·M2)∗ in the usual way. The set of reachable markings from a
marking μ is denoted by RSOS (μ). The reachability problem asks given an Eos
OS with initial marking μ0 and a marking μ, if μ ∈ RSOS (μ0) holds.

We omit the mode and the Eos in the notations above if they are not relevant
or clear from the context. We also say that t̂[ϑ] is enabled in μ or simply active,
if a mode (λ, ρ) exists such that t̂[ϑ] is enabled in μ for (λ, ρ). This again is
extended to sequences in the usual way.

Example 2. To illustrate the firing rule, we return to the example of Figure 1.
Note that the current marking μ enables t̂[t, t′] in the mode (λ, ρ), where

μ = p̂1[0] + p̂1[a+ b] + p̂2[a] + p̂3[a
′ + b′] = p̂1[0] + λ

λ = p̂1[a+ b] + p̂2[a] + p̂3[a
′ + b′]

ρ = p̂4[a+ 2 · b] + p̂5[0] + p̂6[c
′]

The net-tokens’ markings are added by the projections Π2
N and Π2

N ′ resulting
in the markings Π2

N (λ) and Π2
N ′(λ). Firing the object net’s transitions gener-

ates the (sub-)markings Π2
N (ρ) and Π2

N ′(ρ). This is illustrated above and below
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transition t̂ in Figure 1, where the left net on top is Π2
N (λ) and the right net

on top is Π2
N (ρ). Similar for the nets below t̂ for the object net N ′. After the

synchronisation we obtain the successor marking μ′ with new net-tokens on p̂4,
p̂5, and p̂6:

μ′ = (μ− λ) + ρ = p̂1[0] + ρ
= p̂1[0] + p̂4[a+ 2 · b] + p̂5[0] + p̂6[c

′]

2.1 Generalised State Machines

A generalised state machine (GSM), first introduced in [19], is an Eos such
that every system net transition has either exactly one place in its preset and
one in its postset typed with the same object net or there are no such places.
Additionally the initial marking has at most one net-token of each type.

Definition 3. Let G = (N̂ ,N , d, l, μ0) be an Eos. G is a generalised state
machine (GSM) iff G satisfies for all N ∈ N \ {N•}

1. ∀t̂ ∈ T̂ : |{p̂ ∈ •t̂ | d(p̂) = N}| = |{p̂ ∈ t̂• | d(p̂) = N}| ≤ 1
2.

∑
p̂∈ ̂P,d(p̂)=N Π1(μ0)(p̂) ≤ 1

Note that, the second item holds for all reachable markings, due to the first.
Since there is no restriction on N•, each p/t net is also a GSM. Moreover,

for each GSM G a p/t net, the reference net Rn(G), can be easily constructed
(see [19]). It is obtained by taking as set of places the disjoint union of all places
of G and as set of transitions the events of G. Since the places of all nets in N
are disjoint, given a marking μ of G the projections (Π1(μ), (Π2

N (μ))N∈N ) can
be identified with the multiset

Rn(μ) := Π1(μ) +
∑
N∈N

Π2
N (μ),

denoting the markings in the reference net.3

Definition 4. Let G = (N̂ ,N , d, l, μ0) be a GSM. The reference net, denoted
by Rn(G), is defined as the p/t net:

Rn(G) =
((

P̂ ∪
⋃

N∈N
PN

)
, Θ,preRn,postRn,Rn(μ0)

)
where preRn and postRn are defined for an event t̂[ϑ] by:

preRn(t̂[ϑ]) = pre(t̂) +
∑

N∈N
preN (ϑ(N))

postRn(t̂[ϑ]) = post(t̂) +
∑

N∈N
postN (ϑ(N)),

with pre(ε̂) = post(ε̂) = 0 and preN (ε) = postN (ε) = 0 for all N ∈ N .

3 The term reference net stems from an analogous definition for an Eos OS where
Rn(OS) behaves as if the object nets (in OS) would have been accessed via pointers
and not like values. Since in a GSM each object-net exists at most once, the difference
between references and values does not truly exist (cf. [19]).
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We repeat two easy to prove statements (cf. [15] and [19]) which allow to carry
over results for p/t nets to generalised state machines:

Lemma 1. Let G be a generalised state machine. An event t̂[ϑ] is activated in
G for (λ, ρ) iff it is in Rn(G):

μ
̂t[ϑ](λ,ρ)−−−−−→

G
μ′ ⇐⇒ Rn(μ)

̂t[ϑ]−−−−→
Rn(G)

Rn(μ′)

Theorem 1. The reachability problem is decidable for GSMs.

In the definition of the reference net the set of events is present. Unfortunately,
given a GSM G = (N̂ ,N , d, l, μ0) the number of events may become huge. To

see this, let Ti be the set of transitions of the object net Ni. Let l̂(t̂)(Ni) = ci
for each i and a fixed system net transition t̂, where the ci are channels. Let
lNi(t) = ci for all t ∈ Ti and all i. Now t̂ may fire synchronously with each
transition in N1, each in N2 and so on. Each of these possibilities results in a
different event, so we already have at least |T1| · |T2| · . . . · |Tn| events, a number
exponential in the number of object nets and thus in the size of the GSM. Note
that this is possible for each system net transition resulting in an even larger
number of events.

Lemma 2. Let |T | := max{|TN | | N ∈ N} then the space needed to store Θ is

in O(|T̂ | · |T ||N | · e), where e is the space needed to store one event t̂[ϑ], that is
e = O(|N |).

Although the space to store Θ is exponential in |N |, the space needed to store a
single event is small. Since it is easy to check with a couple of table lookups, if a
given input τ̂ [ϑ] is indeed an event, that is if τ̂ [ϑ] ∈ Θ holds, it is thus possible
to enumerate all elements of Θ one after another and only use a small amount
of space. Furthermore the following proof shows that it is possible to compute,
given a marking μ of a GSM (or an Eos), all immediate successors of μ.

Lemma 3. Given an Eos OS and a marking μ of OS, it is possible to compute
all immediate successor markings of μ.

Proof. We enumerate all events and for each event τ̂ [ϑ] ∈ Θl we enumerate
all modes (λ, ρ) such that λ ≤ μ holds and ρ is in accordance with the condi-
tions in equation 1, that is ρ satisfies Π1(ρ) = post(τ̂ ) and Π2

N (ρ) = Π2
N (λ) −

preN (ϑ(N)) + postN (ϑ(N)) for all N ∈ N .4 For each so chosen event τ̂ [ϑ] and
mode (λ, ρ) we check if τ̂ [ϑ] is indeed enabled in μ for this mode and if so com-
pute the successor marking. ��

Note that Lemma 3 also implies that it is possible to compute all possible suc-
cessor markings given a marking and an event, to test if a given event is active

4 Note that for one λ several modes (λ, ρ) may exist, that is the markings of the object
nets may be distributed in different ways in the successor marking of μ.
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in a given marking, to test if a marking is a deadlock, and given two markings
μ and μ′ to check if an event exists that is active in μ and whose firing results
in μ′.

Also note that the algorithm in the proof of Lemma 3 is not very efficient.
Nonetheless due to the different distributions of the object nets markings that
are usually possible, one in general has to deal with exponentially many successor
markings in the size of the Eos.

Turning back to the reference net of a GSM G, according to Lemma 2 it might
be very expensive to construct Rn(G). Note that this is due to the nondeter-
minism introduced above by the labelling. All transitions of one object net are
labelled with the same channel, so one of the transitions is chosen nondeterminis-
tically to fire synchronously with t̂. To prevent this, we introduced deterministic
GSMs in [9]:

Definition 5. A GSM G is called deterministic if for each N ∈ N the value
of lN (t) differs for all t ∈ TN with lN (t) �= τ . G is strongly deterministic if in

addition for all t̂ and N with l̂(t̂)(N) �= τ the value of l̂(t̂)(N) differs.

Thus, in a deterministic GSM each channel is used at most once in each object
net. In a strongly deterministic GSM each channel is also used at most once in
the system net.

On the one hand GSMs can be used to model mobility and communication of
processes or agents - even if only to a smaller degree compared to Eos or general
object nets. On the other hand a GSM G can be ’flatten’ to the reference net
Rn(G), which is a p/t net and which thus makes it possible to use analysis tech-
niques for p/t nets. Since GSMs are thus as powerful as p/t nets, it is interesting
to investigate if certain restrictions known for p/t nets can be transferred to
GSMs and if they retain their complexity. As stated in the introduction we will
focus on P- and T-nets in the following.

Definition 6. Let N = (P, T, F ) be a p/t net and G = (N̂ ,N , d, l, μ0) be a
GSM.

1. If |•t| = |t•| = 1 holds for every transition t ∈ T , then N is a P-net.
2. If |•p| = |p•| = 1 holds for every place p ∈ P , then N is a T-net.

3. If N̂ is a P-net and all N ∈ N are P-nets, then G is a ppGSM.
4. If N̂ is a T-net and all N ∈ N are T-nets, then G is a ttGSM.
5. If N̂ is a P-net and all N ∈ N are T-nets, then G is a ptGSM.
6. If N̂ is a T-net and all N ∈ N are P-nets, then G is a tpGSM.

For historical reasons P-nets are also called S-nets and T-nets are also called
marked graphs.5

From the definition of a GSM and the restrictions imposed above, one can deduce
that for ppGSMs and ptGSMs there can only be one object net:

5 Sometimes a distinction is made between a P-net N and a P-system (N,m0), where
additionally the initial marking m0 is given (analogous for T-nets). We do not use
this distinction here and also do not introduce it for GSMs.
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Lemma 4. If G = (N̂ ,N , d, l, μ0) is a ppGSM or a ptGSM and the system net

N̂ is connected6, then |d(P̂ )| = 1.

Proof. Assume otherwise and let D be the set of tuples of system net places such
that (p̂, p̂′) ∈ D iff d(p̂) �= d(p̂′). Let dist(p̂, p̂′) be the distance of two system net

places with respect to the relation (F̂ ∪ F̂−1)∗. Choose (p̂1, p̂2) ∈ D such that
dist(p̂1, p̂2) is minimal.

Now, since N̂ is connected and since dist(p̂1, p̂2) is minimal, there is a node

x such that a directed path (possibly of length 0) with respect to the relation F̂
exists from p̂1 to x and also from p̂2 to x. (If no such x exists, there is a node x′

on the path between p̂1 and p̂2 such that (p̂1, x
′) ∈ D or (p̂2, x

′) ∈ D holds and
such that the distance is smaller than dist(p̂1, p̂2), contradicting the choice of p̂1
and p̂2.) Since G is a ppGSM or a ptGSM, |•t̂| = |t̂•| = 1 holds for all t̂ ∈ T̂
and thus x cannot be a transition and must be a place. But now, since every
transition of the system net has exactly one place in its preset and one in its
postset and since these must then be of the same type according to the definition
of a GSM (item 1 in Definition 3), d(x) must equal d(p̂1) due to the path from
p̂1 to x but must also equal d(p̂2) due to the path from p̂2 to x, contradicting
d(p̂1) �= d(p̂2). ��

We assume that N = d(P̂ ) in the following, since a N ∈ N \ d(P̂ ) is never
used. The above lemma thus says that in a connected ppGSM or ptGSM we
always have |N | = 1. Furthermore, we may usually assume connectedness in
the algorithms below, because if a GSM is not connected the single parts do
not effect each other and can be treated in isolation. Since in the case where
N = {N•} holds, a ppGSM or ptGSM is simply a P-Net and thus the theory
for P-Nets is applicable, we assume in the following that N �= {N•} for GSMs.7

Also note that if |N | = 1 holds for a GSM G (and μ0 �= 0), then G has exactly
one object net all the time, because the initial marking has only one net-token
of each type (see the second item in the definition of a GSM, Definition 3).

To sum up, we assume in the following that a given GSM G is connected, that
N = d(P̂ ), and that N �= {N•} holds.

In the following we will focus on the complexity of the reachability problem
for strongly deterministic GSMs which additionally fulfil one of the items 3 to 6
in Definition 6 above.

3 The Reachability Problem for ppGSMs and ttGSMs

While for P- and T-nets the reachability problem can be solved in polyno-
mial time [4], the problem becomes more intricate in the context of ppGSMs
or ttGSMs. It turns out that for ttGSMs reachability can still be decided in
polynomial time, but for ppGSMs the problem becomes PSpace-complete. We

6 A net (P, T, F ) is connected if every two nodes x, y satisfy (x, y) ∈ (F ∪ F−1)∗.
7 ttGSMs and tpGSMs would be the same as T-Nets in this case and a GSM would
be a standard p/t net, it is thus reasonable to exclude this case for all GSMs.
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start with showing PSpace-hardness for the last-mentioned problem and then
continue to show three possibilities to decide the problem in polynomial space.
We used one of these approaches in the past to prove the first mentioned result,
i.e. that for ttGSMs reachability of a given marking can be decided in polynomial
time (see [10]), a result we briefly discuss at the end of this section.

Lemma 5. Given a strongly deterministic ppGSM G = (N̂ ,N , d, l, μ0) and a
marking μ, it is PSpace-hard to decide if μ is reachable from μ0.

Proof. We give a reduction from the problem to decide if, given a linear bounded
automaton A and an input string x, whether A accepts x or not. This problem
is PSpace-complete [14], [7].

Let A = (Q,Σ, Γ,K, q0, F,#) be a linear bounded automata where Z is the
finite set of states, Σ the finite set of input symbols, Γ ⊇ Σ ∪ {#} the finite
set of tape symbols, K ⊆ Q× Γ × {L,R,H}×Q× Γ the transition relation, q0
is the initial state, F the set of final states and # the blank symbol. Without
loss of generality we assume that A uses only the portion of the tape containing
the input (due to the linear tape-compression theorem) and that if A accepts a
word it clears the tape, moves the head to the leftmost cell and enters a unique
final state (i.e. we also assume |F | = 1).

Given a LBA A and an input string x ∈ Σ∗ we now construct in polynomial
time a strongly deterministic ppGSM G and a marking μ such that μ is reachable
in G iff A accepts x.

The idea is to have an event θ for every transition k ∈ K and every tape cell
on which this transition k might occur. Tokens on places are used to memorize
in which state A is, on which cell the read-/write-head resides and what tape
symbol is written on each cell. Since a single transition with only one input and
one output arc cannot do all these changes the information is partly stored in
the system and partly stored in the object net. The system net will save in which
state A is and on which cell the read-/write head currently resides. The object
net will save for each cell used what tape symbol is written on it (see Figure 2).

Let Q = {q0, . . . , qn−1}, where q0 is the start and q1 the final state, K =
{k1, . . . , km}, Γ = {A1, . . . , As}, where A1 = #, |x| = l the input string’s length
and c1, . . . , cl the tape cells used.

The system net consists of n · l places P̂ = {p̂i,j | 0 ≤ i ≤ n− 1, 1 ≤ j ≤ l},
where pi,j is marked if A is in state qi and the read-/write-head is on cell cj .

The (single) object net consists of s · l places P = {pi,j | 1 ≤ i ≤ s, 1 ≤ j ≤ l},
where pi,j is marked if the symbol Ai is written on the cell cj .

Furthermore, for each cell cj and each transition ki ∈ K of the LBA there is
a system net transition t̂i,j and an object net transition ti,j which are labelled
with the same channel ci,j .

8 Let ki = (qa, Ab, X, qa′ , Ab′). The input arc of t̂i,j
is from p̂a,j, the place that encodes that A is in state qa and the read-/write-
head is on cell cj. The input arc of ti,j is from pb,j , the place that encodes
that the cell cj is currently marked with the tape symbol Ab. The output arc of

8 Aside from the cases where the read-/write-head would move from the tape. This is
discussed below.
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Fig. 2. System net (left) and object net (right) of the ppGSM from Lemma 5

ti,j is pb′,j . At last, the output arc of the system net transition depends on X ,
the movement of the LBA’s head. If X = H then the output arc of t̂i,j is to
pa′,j . If X = L then the output arc is to pa′,j−1 and if X = R the output arc is
to pa′,j+1. In the cases where X = L and j = 0 or X = R and j = l, i.e. in the
cases where the LBA’s head would move off the tape no transitions exist. The
situation in Figure 2 is therefore as follows: The LBA is in state qi, reading cell
cj onto which currently symbol Ab is written. The content of the other cells is
not shown in the figure. The pictured transitions - synchronised via the channel
cr,j - correspond to a transition kr = (qi, Ab, R, qi+1, A1) of A.

Since we have only one object net, all places of the system net are typed with
this net.

For the initial marking μ0 let x = Ai1Ai2 . . . Ail be the input of length l. Now
μ0 is given by p̂0,1[pi1,1 + pi2,2 + . . .+ pil,l].

The marking tested for reachability is given by μe := p̂1,1[p1,1+p1,2+. . .+p1,l].
By construction exactly one system net place is marked in each reachable

marking. Also from the object net’s places p1,i, p2,i, . . . , ps,i exactly one place is
marked (and l places are marked altogether in the object net).

Now, if A accepts the input x then there is a finite sequence C1, C2, . . . of
configurations such that for each Ci there is a transition ki ∈ K that is possible in
Ci and that changes the configuration of A to Ci+1. It is easy to prove inductively
that this sequence of configurations corresponds to a sequence of markings in
the constructed net system and that the transition ki ∈ K correspond to exactly
one event consisting of one system net and one object net transition. Firing this
event yields the marking corresponding to the next configuration in the sequence.
If A accepts x then the last configuration is the unique accepting configuration
and so the reached marking in the net system is μe.

Conversely if μe is reachable in G then by construction the sequence of mark-
ings correspond to a sequence of configurations of A and each transition in
G corresponds to a transition in A. (A more rigorous proof would again use
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induction.) Thus if μe is reachable in G, so is the accepting configuration in A
and hence μe is reachable in G iff A accepts x.

Since the constructed net system is clearly a strongly deterministic ppGSM
and the construction can be done in polynomial time9 (actually even in loga-
rithmic space on the work tape), we conclude that the reachability problem for
ppGSMs is PSpace-hard. ��

The negative result above carries over to deterministic ppGSMs and general
ppGSMs, thus the reachability problem for all of them is at least PSpace-hard.
We now prove that PSpace is enough.

In our first approach to prove that the reachability problem for ppGSMs can
be decided in polynomial space we use a technique that dates back to Savitch’s
proof of PSpace = NPSpace [26] and that was in particular used successfully in
the proofs that CTL model checking of 1-safe p/t nets and also of safe Eos is in
PSpace [5], [21], [22]. The technique is based on the following idea: Given a finite
state space of size 2p(n) where p is a polynomial and n the input size, to decide
if a given state s is reachable from the start state s0 in m steps a deterministic
machine iterates through all other states s′ and tests if s′ is reachable from s0 and
s from s′ by m/2 steps, i.e. by half the steps. These tests are done recursively
applying the same technique and reusing space. Since the number of steps is
halved each time and at most 2p(n) steps are possible without entering a loop,
only log 2p(n) = p(n) states need to be stored on a stack and thus the space
needed is polynomial.

This technique works here, too, even if the state space might be rather big.

Lemma 6. Given a strongly deterministic ppGSM G = (N̂ ,N , d, l, μ0) and a
marking μ, it is decidable in polynomial space if μ is reachable from μ0.

Proof. Let N = (P, T, F ) be the sole object net (see Lemma 4). If μ0 = 0 then

the only reachable marking is 0, since N̂ is a P-Net and thus no transition is
active. We thus assume that μ0 �= 0. In this case N is not only the sole object
net type, but actually there is only one object net in any reachable marking μ
due to the second item in Definition 3, i.e. |Π1(μ)| = 1.

Let |Π2
N (μ0)| = m, i.e. in the initial marking the object net is marked with m

black tokens. Since N is a P-net, the number of tokens in N remains constant
and thus the number of reachable markings of N is bounded by (m + 1)|P |.10

Since N can move around in the system net, but only one place of the system net
is marked at any reachable marking, we have a upper bound of |P̂ | · (m + 1)|P |

for the number of reachable markings of G. Let n be the size of the input. From

9 Note that with s := max{|Q|, |Γ |, |K|, |x|} we have |P̂ |, |P |, |T̂ |, |T | ≤ s2 and

|F̂ |, |F | ≤ 2s2. The labelling assigns to each transition one channel and can thus
be stored in O(s2) space. Also μ0 and μe can be stored in O(s) space. Altogether
the output is in O(s2) space and since only a constant amount of computation is
necessary for each output bit, the whole computation is possible in O(s2) time.

10 On each place between 0 and m tokens can reside, resulting in the above bound,
which could actually be strengthen, but is sufficient here.
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n > log(m + 1), |P |, |P̂ | and |P̂ | · (m + 1)|P | = 2log | ̂P | · 2log(m+1)·|P | ≤ 2n
2+n it

follows that we have a finite state space of size 2p(n) where p is a polynomial
and n the input size and thus the technique outlined above is applicable.

A NPSpace-Algorithm A works as follows. Given G, μ0 and μ we first guess
the number i of steps it takes to reach μ. Since we have an upper bound for the
size of the state space, i is known to be between 0 and 2n

2+n.11

Now A guesses a marking μ′ and verifies recursively that μ′ is reachable from
μ0 and μ from μ′ with j = -i/2. resp. j = 1i/22 steps. The recursion ends if j
is 0 or 1. In the first case two markings have to be tested for equality. In the
second case we have to test if one marking is reachable from the other in one
step. For this we can iterate through all events, consistently reusing space, test
if the event is active and, if so, test if it has the desired effect (see Lemma 3). A
accepts if it reaches μ and rejects if it does not reach μ in i steps.

Since the nesting depth of the recursive calls is log i it is at most log 2n
2+n =

n2 + n and thus polynomial in the input size. Furthermore, since only a finite
number of data items (e.g. markings, counters) need to be stored and all these
only require polynomial space and since it is possible to test in polynomial space
if a marking is reachable from another marking and also if a marking is identical
to another, i.e. all subroutines only require polynomial space, polynomial space
is sufficient for the whole computation. ��
Alternatively, one can exploit the fact that the total number of tokens does not
change in a ppGSM. This idea was also used in [13] to prove that the reachability
problem can be decided in polynomial space for 1-conservative p/t nets (i.e. nets
with |•t| = |t•| for all t). We only sketch the proof here.

Alternative Proof of Lemma 6 (Sketch). Since N̂ and the sole object net N are
both P-nets, the total number of tokens does not change. In a nondeterministic
algorithm A one can thus maintain one counter for each place, where the size
of each counter is bounded. By guessing a firing sequence A can thus solve the
reachability problem again exploiting the fact that the state space is finite and
the firing sequence has a length representable in polynomial space. The whole
algorithm works in polynomial space. ��

Both approaches presented above are working directly on a given GSM G. In the
next approach we make use of the reference net Rn(G) instead (see Definition 4),
which allows us to use tools already available for p/t nets.

Lemma 7. Let G = (N̂ ,N , d, l, μ0) be a strongly deterministic ppGSM. Then
the p/t net Rn(G) satisfies |•t| = |t•| = 1 or |•t| = |t•| = 2 for all t ∈ T (Rn(G)).

Proof. Let t ∈ T (Rn(G)) and let N be the unique object net (see Lemma 4).12

We want to show |preRn(t)| = |postRn(t)| ∈ {1, 2}. Since the transitions of

11 Alternatively i can be a loop index, reusing space in each iteration.
12 Note that N is not only the sole object net type present but that actually only one
object net exists in any reachable marking (if μ0 �= 0; but otherwise 0 is the only
reachable marking), due to the second item in Definition 3.
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Rn(G) are the events of G we distinguish the three cases t ∈ Θs (system-
autonomous event), t ∈ Θo (object-autonomous event), and t ∈ Θl (synchronous
event).

The idea is that in the first two cases of autonomous events the pre- and
postset of the event are identical to the pre- resp. postset (of cardinality 1) of a
single system or object net transition and that in the case of a synchronous event
the event is just a combination of one system net and one object net transition
so that the cardinality of the pre- and postset is 2.

Explicitly, we have t = t̂[ϑε] for some system net transition t̂ in the first case.
Since ϑε(N) = ε, the preset of t and t̂ are identical according to Definition 4 as are
the postsets. Thus we have |preRn(t)| = |pre(t̂)| = 1 = |post(t̂)| = |postRn(t)|.

The case of an object-autonomous event is similar. We then have t = ε̂[ϑ] with
ϑ(N) �= ε (usually for exactly one object net, but we only have one object net
here, since G is a ppGSM). Thus again according to Definition 4 we have that
the preset of t and ϑ(N) are the same as are the postsets and their cardinality
is one again.

In the third case of a synchronous event one system net transition t̂ fires
synchronously with exactly one object net transition tN . With Definition 4 and
since pre(t̂) �= preN (tN ) and post(t̂) �= postN (tN ), we have |preRn(t)| =
|postRn(t)| = 2 (where in the preset of t are exactly the two places in the preset
of t̂ and tN and analogously for the postset). ��

A p/t net with the property |•t| = |t•| for each transition t is called 1-conservative
and it is shown in [13] that for these net class the reachability problem can be
decided in polynomial space. Thus, since the above conversion is clearly possible
in polynomial space, we again have that reachability is decidable in polynomial
space.

Note that we did not use the fact that G was a strongly deterministic GSM in
any of the above proofs and actually the proofs work all the same for determinis-
tic ppGSMs and also for general ppGSMs. Thus we have the following corollary
from Lemma 6 or Lemma 7 above:

Corollary 1. The reachability problem for strongly deterministic ppGSMs, de-
terministic ppGSMs and ppGSMs is solvable in polynomial space.

The main reason for the generalisation in Corollary 1 is that the exponential
blow-up of events (see Lemma 2) cannot occur in a ppGSM – due to Lemma 4
there is only one object net and thus we have at most a quadratic number of
events in the size of the input.

From Corollary 1 and from Lemma 5 we deduce the following theorem:

Theorem 2. The reachability problem for strongly deterministic ppGSMs, de-
terministic ppGSMs and ppGSMs is PSpace-complete.

The ttGSM Case. In a ttGSM the system net and all object nets are T-nets.
Unlike before in the case of ppGSMs, a variety of object nets might now be
present and according to Lemma 2 the number of events might become huge.
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Thus for general ttGSMs the approach from Lemma 7 is unlikely to be appli-
cable. But for strongly deterministic ttGSMs the approach works. The proof
of the following lemma is similar in nature to the proof of Lemma 7: it is not
complicated, but rather tedious. It can be found in [10].

Lemma 8. Let G = (N̂ ,N , d, l, μ0) be a strongly deterministic ttGSM. Then
Rn(G) is a T-net.

Since in a (strongly) deterministic GSM the number of events is bounded by
a polynomial13 the reference net can be constructed in polynomial time. Since
reachability can be decided in polynomial time for a marked graph [6], we have:

Theorem 3. The reachability problem for strongly deterministic ttGSMs is solv-
able in polynomial time.

It is interesting to note that for a strongly deterministic ttGSM G the reference
net Rn(G) is a T-net, while for deterministic ttGSMs and general ttGSMs this
is in general not the case. So, not only the size of Rn(G) becomes huge in these
cases, also its structure becomes more intricate. This was actually the very reason
why we introduced deterministic and strongly deterministic GSMs in [10] at all.

On the other hand, even if Rn(G) is not a P-net for none of the ppGSM
formalisms, due to Lemma 7 and the discussion following it, the reference net is
always 1-conservative and thus reachability can be solved in polynomial space.
One of the reasons might be that in a ppGSM G only one object net is present
and thus the number of events is rather limited independently ofG being strongly
deterministic, deterministic or a general ppGSM.

The more sophisticated structure of Rn(G) in the case of deterministic and
general ttGSMs, the increasing number of events and the potential presence of
several object nets, are the reasons why ttGSMs are not as well understood yet
as ppGSMs.

4 The Reachability Problem for ptGSMs and tpGSMs

We now turn our attention to ptGSMs and tpGSMs, i.e. to GSMs which employ
a mixture of P- and T-nets. While in the cases of ttGSM and ppGSM above
we got some positive results in way of algorithms, for ptGSMs and tpGSMs
we up to now only have negative results, i.e. hardness results, or no results
at all. For ptGSMs we already showed in [10] that reachability is NP-hard if
the GSM is deterministic (a result that carries over to general ptGSMs). Here
we strengthen (or rather worsen) this result to PSpace-hardness. Furthermore
we show that for strongly deterministic ptGSMs the problem is NP-hard. For
tpGSMs we conjecture that the problem is solvable in polynomial time and give
some intuition why this might be so.

13 There are at most |T̂ | system- and
∑

N∈N |TN | object-autonomous events. The sum
of these is an upper bound for the number of events, because a synchronous event can
be thought of here as a combination of one system- and several object-autonomous
events, reducing the total number of events below the aforementioned sum.
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Fig. 3. System net (left) and object net (right) of the ptGSM from Theorem 4

Theorem 4. It is NP-hard to decide the reachability problem for strongly de-
terministic ptGSMs.

Proof. We give a reduction from 3-SAT. The ptGSM we construct is outlined in
Figure 3, where only the transitions’ channels are given. Assume we are given an
instance of 3-SAT, i.e. a formula F with n variables A1, . . . , An and m clauses
C1, . . . , Cm, where each clause consists of exactly three literals.

The idea is that the object net moves through the system net and with its
first n steps sets each variable to true or false. The next m moves check if in
each clause one literal is true with this setting. All m moves are only possible if
the setting is a satisfying assignment.

In more detail: For each variable A a pair of transitions exists in the system
net (see Figure 3), one for the positive literal A and one for the negative literal
¬A. The transitions use the channels A and ¬A respectively. To describe the
object net N assume that L is a literal (e.g. A1 or ¬An) that appears in the
clauses Ci1 , . . . , Cik . Then N has one transition tL using channel L and with
empty preset and k outgoing arcs. Each outgoing arc is connected with a place
which is connected to a transition using a channel CijL corresponding to the
clause. In Figure 3 (right side) this is only depicted for the positive literal A1.
Note that such a construct exists for each literal and that all used channels differ.

Further system net transitions exists to encode the clauses. Let Li,1, Li,2, Li,3

be the literals that occur in clause Ci. Then three concurrent transitions exists
in the system net using the channels CiLi,1 to CiLi,3 as depicted in Figure 3 for
the clause C1 (assumed to be A1 ∨ ¬A2 ∨ A3).

The initial marking is μ0 := p̂0[0].
It is easy to see that the object net can reach the place p̂e (to the right of the

system net) iff the given formula is satisfiable. Unfortunately, this only shows
that the marking μe := p̂e[0] can be covered.14

To get rid of the tokens in the object net a more sophisticated gadget needs to
be constructed. The gadget is depicted in Figure 4. It replaces the part between
the places p̂a and p̂b in Figure 3 and an identical structure only using different
channels needs to be added for the other clauses. The gadget has the following
property: At least one of the transitions with channel inscriptions needs to fire
to reach p̂b and apart from the empty set every subset of these transitions is
possible. (The unlabelled transitions fire system-autonomously.)

14 Thus the coverability problem is NP-hard for ptGSMs.
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Fig. 4. Modification of the system net of Figure 3

With this gadget it is possible to fully rid the object net of all tokens. If
for example the transition with channel A1 has fired in the object net, then in
each clause Ci in which A1 appears the system and object net transitions using
channel CiA1 may fire.

Thus the marking μe = p̂e[0] is reachable from μ0 = p̂0[0] in the constructed
net iff F is satisfiable. Since the construction is possible in polynomial time and
the constructed net system is a strongly deterministic ptGSM, we conclude that
the reachability problem is NP-hard for this net class. ��

Dropping the strong determinism property and only requiring deterministic pt-
GSMs we can, by a slight modification of the construction in Lemma 5, show a
stronger result for deterministic ptGSMs.

Theorem 5. The reachability problem for deterministic and general ptGSMs is
PSpace-hard.

Proof. We construct a ptGSM from a given LBA as in the proof of Lemma 5.
The problem is that each place of the object net constructed there might have
many incoming and many outgoing arcs, while here exactly one incoming and
exactly one outgoing arc should exist. To circumvent this our new object net has
the same set of places but for each place p it has one transition t+p with an arc
to p and one transition t−p with an arc from p. The transitions use the channels
c+p and c+p respectively.

The transitions in the system net are replaced by two transitions and one
place as follows. If before we had the transition t̂r,j and the two arcs (p̂i,j , t̂r,j)
and (t̂r,j , p̂i+1,j+1) as depicted to the left of Figure 2, then we replace these
with two transitions t̂−r,j , t̂

+
r,j and the arcs (p̂i,j , t̂

−
r,j), (t̂

−
r,j , t̂

+
r,j), (t̂

+
r,j , p̂i+1,j+1).

The channels used by the two new transitions depend on the LBA’s transition
kr. If kr = (qi, Ab, R, qi+1, A1) (again, as depicted in Figure 2), then the token
denoting that the cell cj is marked with Ab has to be removed and a token
denoting that the cell cj is marked with A1 has to be added, i.e. the transition
t̂−r,j uses channel c−pb,j

and the transition t̂−r,j the channel c+p1,j
.

The construction is still possible in polynomial time, but the constructed net
system is now a ptGSM. Thus the Theorem follows. ��

The tpGSM Case. We now turn to tpGSMs, which on the contrary to ptGSMs
above (see Lemma 4) may employ more than one object net.
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At first glance this thus seems to be a complicated case, too. However, the
structure of the system net is heavily limited by being a GSM and a T-net. In
this setting each object net N resides on a circle CN in the system net. While
these circles may have transitions in common and while thus the object nets may
interact with each other, this interaction is rather limited as are the reachable
system net places for each object net.

For this reason, we suspect that the reachability problem for tpGSMs is solv-
able in polynomial time. So far we have been unable to prove this conjecture. If
true, the results obtained would imply that the restriction of the system net to
a T-net is far more severe than the restriction of the system net to a P-net. This
would also be in line with the results presented here for tt- and ppGSMs, where
reachability is solvable in polynomial time for a strongly deterministic ttGSM,
but requires polynomial space for a ppGSM.

5 Conclusion and Outlook

Table 1 summarizes the results obtained so far concerning the complexity of the
reachability problem for the the different variants of generalised state machines
introduced in this paper. (Note that the problem is decidable for all of them
due to Theorem 1.) While GSMs with the restrictions applied here will probably
not be very useful in a modelling context, the theoretical results obtained might
help in the analysis of less restricted models.

Table 1. The results obtained so far

str. det. GSM det. GSM GSM

ttGSM Pa ? ?

ppGSM PSpace-complete PSpace-complete PSpace-complete

ptGSM NP-hard PSpace-hardb PSpace-hard

tpGSM ? ? ?
a First proved in [10].
b Proved to be NP-hard in [10].

In retrospect we applied many long known techniques to solve problems in
our new setting. For example the idea used in the proof of PSpace-hardness
in Lemma 5 was used in the late seventies by Jones, Landweber, and Lien [13]
and they even state that these technique has already been used by Petri in his
dissertation. Other ideas and techniques we used stem from CTL model checking
and the theory of P- and T-nets. However, it is interesting to note that these
techniques already seem to fail in the case of pt- and tpGSMs. Despite being
just a combination of P- and T-nets and thus quite simple in structure, the
possibility to interact seems to render the techniques used for pp- and ttGSMs
useless. This is especially surprising in the case of ptGSMs where only one object
net is present. In this regard the high complexity evident in the second and
third row is also surprising, since both net classes employ only one object net.
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Recalling the discussion at the end of Section 4 concerning tpGSMs, it seems
that the restriction of the system net to a T-net results in easier cases than the
restriction of the system net to a P-net, despite the fact that more than one
object net might be present. While this speculation still needs to be confirmed,
it is already certain, that the restriction of the system net to a P-net results in
hard cases, regardless of the restriction imposed on the object net.

In future work we want to pinpoint the exact complexity of the open cases in
Table 1. Also, we want to refine the restrictions imposed on the structure of the
system and the object nets and so make the formalism more usable. We hope to
arrive at a handy formalism eventually which serves as a helpful tool, allowing
the modelling of many applications involving systems in systems, moving objects,
and communication, while still permitting algorithmic verification and analysis
of the model used employing only affordable resources.
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15. Köhler, M.: The reachability problem for object nets. Fundamenta Informati-
cae 79(3-4), 401–413 (2007)
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Abstract. Queueing Petri nets are a powerful formalism that can be ex-
ploited for modeling distributed systems and analyzing their performance
and scalability. By combining the modeling power and expressiveness of
queueing networks and stochastic Petri nets, queueing Petri nets pro-
vide a number of advantages. In this paper, we present our tool QPME
(Queueing Petri net Modeling Environment) for modeling and analysis
using queueing Petri nets. QPME provides an Eclipse-based editor for
building queueing Petri net models and a powerful simulation engine for
analyzing these models. The development of the tool started in 2003 and
since then the tool has been distributed to more than 120 organizations
worldwide.

Keywords: Queueing Petri nets, stochastic modeling and analysis,
simulation.

1 Introduction

Introduced in 1993 by Falko Bause [1], the Queueing Petri Net (QPN) formal-
ism combines the modeling power and expressiveness of queueing networks and
stochastic Petri nets. QPNs are commonly used for the performance evaluation
of computer systems because they provide a number of benefits compared to
traditional queueing networks and stochastic Petri nets. QPNs enable the inte-
gration of hardware and software aspects of system behavior in the same model.
In addition to hardware contention and scheduling strategies, QPNs make it
easy to model simultaneous resource possession, synchronization, asynchronous
processing and software contention. Another advantage of QPNs is that they can
be used to combine qualitative and quantitative system analysis. A number of
efficient techniques from Petri net theory can be exploited to verify some impor-
tant qualitative properties of QPNs. The latter not only help to gain insight into
the behavior of the system, but are also essential preconditions for a successful
quantitative analysis [4]. The main idea behind the QPN formalism was to add
queueing and timing aspects to the places of Colored Generalized Stochastic
Petri Nets (CGSPNs). This is done by allowing queues (service stations) to be
integrated into places of CGSPNs. A place of a CGSPN that has an integrated
queue is called a queueing place and consists of two components, the queue and
a depository for tokens which have completed their service at the queue. For a
detailed description of the QPN formalism see [1].

S. Haddad and L. Pomello (Eds.): PETRI NETS 2012, LNCS 7347, pp. 388–397, 2012.
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The major goal of QPME (Queueing Petri net Modeling Environment) is to
support the modeling and analysis of QPN models. The presented tool provides
user-friendly graphical editors enabling the user to quickly and easily construct
QPN models. It offers a highly optimized simulation engine that can be used
to analyze QPN models efficiently. The simulation engine enables the analysis
of QPN models too large to be analyzable with analytical techniques due to
the state space explosion problem [8]. QPME also offers advanced features for
processing and visualizing the results of simulating a QPN model. In addition,
being implemented in Java, QPME runs on all major platforms and is widely
accessible. The QPN formalism can be used for stochastic modeling in many
domains. One major area of application is the performance analysis of computer
systems. The tool has been successfully used in several performance modeling
studies, e.g. in [10, 11, 14, 16].

The development of QPME started in 2003 at the Technische UniversitätDarm-
stadt and has been continuously extended since then. Currently, the tool is devel-
oped and maintained by the Descartes Research Group1 at Karlsruhe Institute of
Technology (KIT). Since May 2011, QPME is available in version 2.0 under an
open-source license (Eclipse Public License 1.0). QPME has been distributed to
more than 120 universities and research organizations worldwide so far.

The rest of this paper is organized as follows: Section 2 provides an overview
of the functionality provided by QPME. Section 3 gives some technical insights
into its implementation. Section 4 describes typical use cases of the tool and
Sect. 5 provides a comparison with other tools for QPNs. Finally, the paper is
wrapped up with some concluding remarks in Sect. 7.

2 Functionality

2.1 Queueing Petri net Editor (QPE)

QPE is a graphical editor for QPNs. The user can create QPN models with a
simple drag-and-drop approach. Figure 1 shows the QPE main window which
is comprised of four views. The Main Editor View displays the graphical rep-
resentation of the currently edited QPN. The palette contains the set of QPN
elements that can be inserted in a QPN model by drag-and-drop, such as places,
transitions, and connections. Furthermore, it provides editors for the central def-
inition of colors and queues used in a QPN model. In the Properties View the
user can edit the properties of the element currently selected in the QPN model.
For queueing places, for instance, the user can specify a scheduling strategy and
service time distributions for each color in this view. The Outline View shows
a list of all elements in the QPN model. The Console View displays the output
when simulating a QPN model.

In a QPN, a transition defines a set of firing modes. An incidence function
specifies the behavior of the transition for each of its firing modes in terms of
tokens destroyed and/or created in the places of the QPN. Figure 2 shows the
1 http://www.descartes-research.net

http://www.descartes-research.net
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Fig. 1. QPE Main Window

Incidence Function Editor, which is used to edit the incidence function of a
transition. Once opened this editor displays the transition input places on the
left, the transition firing modes in the middle and the transition output places
on the right. Each place (input or output) is displayed as a rectangle containing
a separate circle for each token color allowed in the place. The user can create
connections from token colors of input places to modes or from modes to token
colors of output places. If a connection is created between a token color of a place
and a mode, this means that when the transition fires in this mode, tokens of the
respective color are removed from the place. Similarly, if a connection is created
between a mode and a token color of an output place, this means that when the
transition fires in this mode, tokens of the respective color are deposited in the
place.

In addition to the basic features described above, QPE has several character-
izing features that improve the model expressiveness of QPNs and simplify the
creation of complex QPN models. Special mention must be made of the following
features:

– Central color management. The user can define token colors globally for the
whole QPN instead of on a per place basis. Instead of having to define the
color multiple times, the user can define it one time and then reference it
in all places where it is used. This saves time, makes the model definition
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Fig. 2. QPE Incidence Function Editor

more compact, and last but not least, it makes the modeling process less
error-prone since references to the same token color are specified explicitly.

– Shared queues. The user can specify that multiple queueing places share
the same underlying physical queue2. In QPE, queues are defined centrally
(similar to token colors) and once defined they can be referenced from inside
multiple queueing places. This allows to use queueing places to represent
software entities, e.g., software components, which can then be mapped to
different hardware resources modeled as queues [16]. Shared queues are not
supported in standard QPN models [16].

– Hierarchical QPNs. Subnet places can contain complete child QPN mod-
els. Hierarchical QPNs enable to model layered systems and improve the
understandability of huge QPNs. QPE fully supports hierarchical QPNs.

– Departure Disciplines. Departure disciplines determine the order in which
tokens arriving at an ordinary place or a depository of a queueing place be-
come available for output transitions. QPE supports two disciplines: Normal
(used by default) and FIFO. The former implies that tokens become avail-
able for output transitions immediately after arriving at an ordinary place
or depository whereas in the latter case a token can only leave the place or
depository if all tokens that have arrived before it have left. For an exam-
ple of how this extension of the QPN formalism can be exploited and the
benefits it provides we refer the reader to [7].

2.2 Simulation of QPN Model (SimQPN)

SimQPN is a discrete-event simulation engine specialized for QPNs. It simulates
QPN models directly and has been designed to exploit the knowledge of the
2 While the same effect can be achieved by using multiple subnet places mapped to a

nested QPN containing a single queueing place, this would require expanding tokens
that enter the nested QPN with a tag to keep track of their origin as explained in
[3].
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structure and behavior of QPNs to improve the efficiency of the simulation.
Therefore, SimQPN provides much better performance than a general purpose
simulator would provide, both in terms of the speed of simulation and the quality
of output data provided.

Model Support. SimQPN implements most, but not all of the QPN elements
that can be modeled in QPE. It currently supports three different scheduling
strategies for queues: Processor-Sharing (PS), Infinite Server (IS) and First-
Come-First-Served (FCFS). A wide range of service time distributions are
supported including Beta, BreitWigner, ChiSquare, Gamma, Hyperbolic, Expo-
nential, ExponentialPower, Logarithmic, Normal, StudentT, Uniform and
VonMises as well as deterministic and empirical distributions. All of the char-
acterizing features of QPE described in Sect. 2.1 are fully supported by the
SimQPN simulator. A current limitation of SimQPN is the missing support for
timed transitions3 and immediate queueing places. The spectrum of scheduling
strategies and service time distributions supported by SimQPN will be extended.
Support for timed transitions and immediate queueing places is also planned for
future releases.

Output Data. SimQPN offers the ability to configure what data exactly to
collect during the simulation and what statistics to provide at the end of the
run. This can be specified on a per location basis where location is defined to
have one of the following five types: 1. ordinary places, 2. queue of queueing
places (considered from the perspective of the place), 3. depository of queueing
places, 4. queues (considered from the perspective of all places it is part of), and
5. probes.

A probe enables the user to specify a region of interest for which data should
be collected during simulation. The region of a probe includes one or more places
and is defined by one start and one end place. The goal is to evaluate the time
tokens spend in the region when moving between its begin and end place. The
probe starts its measurements for each token entering its region at the start place
and updates the statistics when the token leaves at the end place. Probes are
realized by attaching timestamps to individual tokens. With probes it is possible
to determine statistics for the residence time of tokens in a region of interest.

For each location the user can choose between six modes of data collection .
The higher the mode, the more information is collected and the more statistics
are provided. Since collecting data costs CPU time, the more data is collected,
the slower the simulation would progress. Therefore, with data collection modes
the user can speed up the simulation by avoiding the collection of data that is
not required. The six data collection modes are defined as follows:

– Mode 0. No data is collected.
– Mode 1. Only token throughput data is collected.

3 In most cases a timed transition can be approximated by a serial network consisting
of an immediate transition, a queueing place and a second immediate transition.
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– Mode 2. Additionally, data to compute token population, token occupancy,
and queue utilization is collected

– Mode 3. Token residence time data is collected (maximum, minimum, mean,
standard deviation, steady state mean, and confidence interval of steady
state mean).

– Mode 4. This mode adds a histogram of observed token residence times.
– Mode 5. Additionally token residence times are dumped to a file for further

analysis with external tools.

Steady State Analysis. SimQPN supports two methods for the estimation
of steady state mean residence times of tokens inside the various locations of
the QPN. These are the well-known Method of Independent Replications (in its
variant referred to as replication/deletion approach) and the classical Method of
Non-overlapping Batch Means (NOMB). We refer the reader to [12, 15] for an
introduction to these methods. Both of them can be used to provide point and
interval estimates of the steady state mean token residence time.

We have validated the analysis algorithms implemented in SimQPN by sub-
jecting them to a rigorous experimental analysis and evaluating the quality of
point and interval estimates [9]. Our analysis showed that data reported by
SimQPN is very accurate and stable. Even for residence time, the metric with
highest variation, the standard deviation of point estimates did not exceed 2.5%
of the mean value. In all cases, the estimated coverage of confidence intervals
was less than 2% below the nominal value (higher than 88% for 90% confidence
intervals and higher than 93% for 95% confidence intervals).

Furthermore, SimQPN includes an implementation of the Method of Welch
for determining the length of the initial transient (warm-up period). We have
followed the rules in [12] for choosing the number of replications, their length
and the window size.

2.3 Processing and Visualization of Simulation Results

After a successful simulation run, SimQPN saves the results from the simulation
in an XML file with a .simqpn extension. QPE provides an advanced query en-
gine for the processing and visualization of simulation results. The query engine
allows to define queries on the simulation results in order to filter, aggregate and
visualize performance data for multiple places, queues and colors of the QPN.
The results from the queries can be displayed in textual or graphical form. QPE
provides the following two query editors:

– Simple Query Editor. The user can quickly filter and visualize metrics of a
single location or token color with a few clicks. Currently, three visualization
options are available: "Pie Chart", "Bar Chart" and "Console Output".

– Advanced Query Editor. The user can create complex queries including the
aggregation of metrics over multiple locations and token colors with a pow-
erful user interface. The following two aggregation operators are currently
supported: "Average" and "Sum".
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(a) Metrics context menu (b) Bar Chart

Fig. 3. Simple query editor

Figure 3(a) shows an area of the user interface of the simple query editor.
The statistics for all QPN places are presented in the table in the background.
By opening the context menu on one of the places a context menu with a set of
metrics gets available. When choosing the bar chart for the mean token residence
time, the diagram shown in Fig. 3(b) is displayed.

3 Architecture

QPME is based on the Eclipse OSGi framework and comes as a stand-alone
Rich Client Plattform (RCP) application. QPME is written completely in Java
making it widely accessible on different platforms. The architecture of QPME is
plugin-based and consists of the following three core plugins: qpe.base contains
the set of editors for building QPN models (QPE) and for analyzing simulation
results (simple and advanced query editor), qpe.simqpn.kernel provides the
core of the SimQPN simulator, and qpe.simqpn.ui contains the graphical wiz-
ard for calling the SimQPN simulator from within QPE. The core plugins are
highly integrated with each other while at the same time it is possible to also
use them separately.

The editors of QPE are based on the Graphical Editing Framework (GEF)4.
Being a GEF application, QPE is based on the model-view-controller (MVC)
architecture. The model in our case is the QPN being defined, the views provide
graphical representations of the QPN, and finally the controller connects the
model with the views, managing the interactions among them. The individual
editors (net, incidence function, subnet, queues, and colors) are all realized as
different views which work on one single model. Thus it is ensured that all editors
working on the same QPN model are always up-to-date.

4 http://www.eclipse.org/gef/

qpe.base
qpe.simqpn.kernel
qpe.simqpn.ui
http://www.eclipse.org/gef/
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QPME knows two types of files. Files with the extension .qpe contain a
complete QPN model. They are XML files with an own schema based on the
Petri Net Markup Language (PNML) [6] with some changes and extensions
to support the additional constructs available in QPN models. Files with the
extension .simqpn contain the results of a simulation run. They are also XML
files and can be opened with the simple or advanced query editor.

SimQPN is realized as a discrete-event simulator. It is very light-weight and
optimized to exploit the knowledge of the structure and behavior of QPNs to
improve the efficiency of the simulation. A simulation run consists of five phases.
First the QPN model is loaded from a .qpe file or it is directly imported from an
open editor in QPE. If the QPN contains subnet places, a model transformation
is applied in phase two which integrates the subnets into the main net recursively
resulting in a flat net. This simplifies the simulation of hierarchical QPNs. In
phase three, the configuration of the simulation is processed and the simulation
engine is configured accordingly. Especially, the simulation engine is set up to
collect only the data that is necessary to calculate the requested statistics. By
avoiding the collection of data that is not requested by the user, the simulation
performance can be significantly sped up in a lot of cases. In phase four, the
actual simulation is performed. An event loop advances the simulation clock and
in each iteration all events that are scheduled at the current simulation time are
processed. SimQPN utilizes the Colt open-source library, which is developed at
CERN5, for random number generation. The loop is running until the configured
relative or absolute precision is reached or the configured maximum run length
is reached. After the simulation, the requested statistics are calculated from the
data collected during the simulation and the data is stored in a .simqpn file.

4 Use Cases

In [7], we have developed a methodology for performance modeling of distributed
component-based systems using QPNs. The methodology has been applied to
model a number of systems ranging from simple systems to systems of realistic
size and complexity. Here, QPME can be used as a powerful tool for performance
and scalability analyses. Some examples of modeling studies using QPME can
be found in [10, 11, 14, 16].

Furthermore, QPME can be used at the design time of software systems
for solving architecture-level performance models, e.g., the Palladio Component
Model (PCM) [5]. In [13], we described how to derive QPN models from PCM
models automatically using a formal mapping. In numerous representative case
studies, we showed that SimQPN predicted all mean value metrics with high ac-
curacy while the analysis overhead compared to the standard simulator of PCM
could be significantly reduced, in many cases by an order of magnitude [13].

5 http://acs.lbl.gov/software/colt/

http://acs.lbl.gov/software/colt/
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5 Comparison with Other Tools

While the QPN modeling paradigm provides many important benefits, there
are currently few tools that support the modeling and analysis of systems using
QPNs. According to [17], apart from the QPME tool presented in this paper, the
only tool that is available is the HiQPN-Tool [2] developed at the University of
Dortmund. HiQPN can be used to build and analyze QPN models, however, it
only supports analytical solution techniques. As demonstrated in [8], QPN mod-
els of realistic systems are too large to be analyzable using analytical techniques
due to the state space explosion problem. Furthermore, it is only available on
Sun-OS 5.5.x / Solaris 2, which significantly limits its accessibility. In contrast,
QPME is implemented in Java and runs on all major platforms. It provides a
highly optimized simulation engine capable of analyzing models of realistically
sized systems.

6 Installation

The binaries of QPME for Windows, Linux and MacOS X and the source
code can be obtained from http://qpme.sourceforge.net free-of-charge. The
QPME binary drops are installed by extracting the zipped archive in an arbi-
trary location on the hard disk. QPME is open-source and is distributed under
the Eclipse Public License (EPL) 1.0.

7 Conclusion

In this paper, we presented QPME 2.0, our tool for modeling and analysis using
queueing Petri nets. QPME provides a user-friendly graphical interface enabling
the user to quickly and easily construct QPN models. It offers a highly opti-
mized simulation engine that can be used to analyze models of realistically-sized
systems. In addition, being implemented in Java, QPME runs on all major plat-
forms and is widely accessible. QPME provides a robust and powerful tool for
performance analysis making it possible to exploit the modeling power and ex-
pressiveness of queueing Petri nets to their full potential. The tool is available
free-of-charge under an open-source license.
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Abstract. The tool Snoopy provides a unifying Petri net framework
which has particularly many application scenarios in systems and syn-
thetic biology. The framework consists of two levels: uncoloured and
coloured. Each level comprises a family of related Petri net classes, shar-
ing structure, but being specialized by their kinetic information. Petri
nets of all net classes within one level can be converted into each other,
while changing the level involves user-guided folding or automatic unfold-
ing. Models can be hierarchically structured, allowing for the mastering
of larger networks. Snoopy supports the simultaneous use of several Petri
net classes; the graphical user interface adapts dynamically to the active
one. Built-in animation and simulation (depending on the net class) are
complemented by export to various analysis tools. Snoopy facilitates the
extension by new Petri net classes thanks to its generic design.

Keywords: hierarchical (coloured) qualitative/stochastic/continuous/
hybrid Petri nets, modelling, animation, simulation.

1 Overview

Petri nets may easily serve as a convenient umbrella formalism integrating qual-
itative and quantitative (i.e. stochastic, continuous, or hybrid) modelling and
analysis techniques. Thus Petri nets are immediately ready to address distinctive
modelling demands in systems and synthetic biology, which particularly include
the dealing with biochemical reaction networks in several modelling paradigms.

Motivated by this application scenario, Snoopy is set up as a unifying Petri
net framework (see Fig. 1) which can be divided into two levels: uncoloured
[11] and coloured [17]. Each level comprises a family of related Petri net models,
sharing structure, but being specialized by their kinetic information. Specifically,
the uncoloured level contains qualitative (time-free) Place/Transition Petri nets
(QPN ) as well as quantitative (time-dependent) Petri nets such as stochastic
Petri nets (SPN ), continuous Petri nets (CPN ), and generalised hybrid Petri
nets (GHPN ). The coloured level provides coloured counterparts of the un-
coloured level, and thus consists of coloured qualitative Petri nets (QPN C),
coloured stochastic Petri nets (SPN C), coloured continuous Petri nets (CPN C)
and coloured generalised hybrid Petri nets (GHPN C).

S. Haddad and L. Pomello (Eds.): PETRI NETS 2012, LNCS 7347, pp. 398–407, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Paradigms integrated in Snoopy’s unifying framework

Petri nets of these net classes can be converted into each other. Obviously,
there may be a loss of information in some directions (cf. arrows labelled with
”abstraction” in Fig. 1). The conversion between coloured and uncoloured net
classes is accomplished by means of user-guided folding or automatic unfolding
(cf. arrows labelled with folding and unfolding in Fig. 1). Moving between the
coloured and uncoloured level changes the style of representation, but does not
change the actual net structure of the underlying reaction network. Therefore, all
analysis techniques available for uncoloured Petri nets can be applied to coloured
Petri nets as well.

Snoopy supports the simultaneous use of different net classes, which provides
the grounds to investigate one and the same case study with different modelling
abstractions in various complementary ways [10], [11], [17].

2 Basic Functionalities

Snoopy offers for its net classes a graphical, unified modelling environment. See
Fig. 2 for a snapshot of the user interface with a famous textbook example, the
prey predator system. The user interface mainly consists of:

– graphical elements window (the top left tree control): listing all graphical
elements, e.g. node elements and edge elements,

– hierarchy window (the middle left tree control): showing the model hierarchy,
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– declarations window (the bottom left tree control): containing all declara-
tions, e.g. colour sets, constants, and variables for coloured Petri nets,

– drawing canvas (the right window): drawing and showing models.

Fig. 2. User modelling interface

Basic modelling functions provided by Snoopy include:

– define declarations (only for coloured Petri nets),
– add graphical elements, i.e. places and transitions, from the graphical ele-

ments window to the canvas and connect them using edges,
– edit or modify properties of nodes (e.g. name, initial marking) and edges

(multiplicity) in their property dialogues.

Snoopy supplies two features for the design and systematic construction of larger
Petri nets. Logical nodes (places/transitions) serve as connectors, and coarse
transitions (coarse places) help to hide transition-bordered (place-bordered) sub-
nets in order to design hierarchically structured nets.

Further features consistently available for all Petri net classes include: editing
(cut, copy, paste), colouring of individual net elements and of computed node
sets (e.g. support of place/transition invariants, siphons, traps, Parikh vectors),
layouting (mirror, flip, rotate, and automatic layouting using OGDF [5]), graph-
ical export to eps, Xfig and FrameMaker (selected net classes), and print.

Additionally, Snoopy offers execution capabilities for each net class, see next
section for details.
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3 Net Class Specific Functionalities

3.1 Overview

The hierarchy of the Petri net classes supported by Snoopy is given in Fig. 3.

Netclass

+ name

QPN C

+ color declarations

QPN
+ discrete places
+ discrete transitions
+ standard edges

CPN
+ continuous places
+ continuous transtions
+ standard edges
+ read edges
+ inhibitor edges
+ modifier edges

CPN C

+ color declarations

XPN
+ read edges
+ inhibitor edges
+ equal edges
+ reset edges

XPN C

+ color declarations

SPN
+ immediate transitions
+ deterministic transitions
+ scheduled transitions
+ modifier edges

SPN C

+ color declarations

GHPN
+ continuous places
+ continuous transitions
+ immediate transitions
+ deterministic transitions
+ scheduled transitions
+ modifier edges

GHPN C

+ color declarations

Fig. 3. Snoopy’s class hierarchy

Qualitative Petri nets (QPN ). QPN contain standard Place/Transition nets
(P/T nets) and extended Petri nets (XPN ). They do not involve any timing
aspects; so they allow a purely qualitative modelling of, e.g., biomolecular net-
works. Tokens may represent molecules or abstract concentration levels [11].
XPN enhance standard Petri nets by four special edge types: read edges (often
also called test edges), inhibitor edges, equal edges, and reset edges, see [13], [22]
for details.

Stochastic Petri nets (SPN ). This net class extends QPN by assigning to
transitions exponentially distributed waiting times, specified by firing rate func-
tions. A rate function is generally state-dependent; it can be an arbitrary arith-
metic function deploying the pre-places of a transition as integer variables and
user-defined, real-valued constants (often called parameters). Pre-places can be
associated with transitions by special modifier edges [22]. They may modify
the transition’s firing rate, but do not have an influence on the transition’s
enabledness.

Popular kinetics, e.g. mass-action semantics, level semantics [11], are sup-
ported by pre-defined function patterns. Each transition gets its own rate func-
tion, making up together a list of rate functions. Moreover, several rate functions
lists and parameter lists as well as multiple initial markings can be maintained,
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allowing for quite flexible models and their systematic evaluation by series of
related computational experiments.

SPN have been extended to generalised stochastic Petri nets (GSPN ) and
deterministic and stochastic Petri nets (DSPN ). In our extended stochastic Petri
nets (XSPN )[12], there are the four special edge types as for QPN , and three
special transition types: immediate transitions (zero waiting time), deterministic
transitions (deterministic waiting time, relative to the time point where the
transition gets enabled), and scheduled transitions (scheduled to fire, if any, at
single or equidistant, absolute points of the simulation time). The unrestricted
use of these extended features destroys the Markov property, but the adaptation
of the simulation algorithms is rather straightforward.

To simplify our life, Snoopy does not distinguish between these stochastic net
classes. Thus, Snoopy’s SPN net class is actually XSPN ; see Figure 3.

Continuous Petri nets (CPN ). Continuous Petri nets offer a graphical way to
specify unambiguously systems of ordinary differential equations (ODEs) [10].
The real-valued tokens may denote concentrations. The continuous rate func-
tions have to obey similar rules as for SPN . Likewise, the concepts of function
lists, parameter lists and initial marking lists are also applied to CPN . Snoopy
generates automatically the underlying system of ODEs. CPN and SPN provide
an approximation of each other as it is depicted in Fig. 1.

Generalised hybrid Petri nets (GHPN ). Snoopy integrates all functionalities of
its stochastic and continuous Petri nets into one net class, yielding generalised
hybrid Petri nets [14]. GHPN are specifically tailored (but not limited) to mod-
els that require an interplay between stochastic and continuous behaviour. They
provide a trade-off between accuracy and runtime of model simulation by ad-
justing the number of stochastic transitions appropriately, which can be done
either statically (by the user) or dynamically (by the simulation algorithms). A
typical application of GHPN is the hybrid representation of stiff biochemical
reactions, where slow reactions are represented by stochastic transitions while
fast reactions are modelled by continuous transitions.

Coloured extensions. Each uncoloured net class has a coloured counterpart [17]
which inherits all features of its corresponding uncoloured net class, e.g., SPN C

enjoy all special edge types and transition types of SPN .
Snoopy provides various flexible ways to define declarations to be used in the

annotations of coloured Petri nets. Data types for colour set definitions include:
(1) simple types: dot, integer, string, boolean, enumeration and index, and (2)
compound types: product and union. Variables, constants and functions can be
defined to specify arc expressions, guards, and markings. By defining hierarchical
colour sets using the product type, one can conveniently model a (biological)
system evolving in multi-dimensional, e.g. 2- or 3-dimensional space [8]. Concise
initial marking specifications for larger colour sets and individual rate function
definitions for each transition instance are supported. Syntax checking ensures
the syntactical correctness of constructed models.
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3.2 Executability

Animation. Snoopy offers built-in animation forQPN , SPN ,QPN C and SPN C ,
see Fig. 2 for a snapshot of the animation of a SPN C model. Animation visu-
alizes the token flow, which may give first insights in the behaviour and may
help to better understand the inherent causality of the model. Animation can
be triggered manually or be done in automatic mode with different firing strate-
gies (single/intermediate/maximal step). Snoopy supports a similar animation
within a standard web browser for QPN ; see Snoopy’s website for a sampler.

Stochastic simulation. The underlying core semantics of SPN and SPN C are
continuous time Markov chains (CTMC); so the simulation follows the standard
Gillespie algorithm [9] enhanced by deterministic events of XSPN . Simulation
results are available as tables and can be visualized in diagrams, showing the
evolution over time of the token numbers on selected places or the firing rates
of selected transitions.

Simulation traces can be checked on-the fly for reachability of certain states
specified by logical expressions over places. Additionally, simulation traces can
be exported as averaged/single/exact traces, to be, e.g., evaluated by simulative
model checking of PLTLc with the Monte Carlo Model Checker MC2 [4].

Continuous simulation. Snoopy provides 14 stiff/unstiff solvers for the numerical
integration of CPN and CPN C. These ODE solvers range from simple fixed-step-
size unstiff solvers (e.g. Euler) to more sophisticated variable-order, variable-step,
multi-step stiff solvers (e.g Backward Differentiation Formulas (BDFs)). In the
latter case, we use SUNDIALS CVODE [15] to solve the underlying ODEs. Deter-
ministic simulation traces are available as tables, can be visualized in diagrams,
and written to files to be, e.g., checked against LTLc properties with MC2, see,
e.g., [11].

Hybrid simulation. The simulation of GHPN can be carried out using either
static or dynamic partitioning. In the former case, transition types are decided
off-line by the user before the simulation starts, while in the latter case, the run-
ning simulation decides on-the-fly which transitions are considered as stochastic
or continuous ones based on their current rates. In both cases, continuous tran-
sitions are simulated using an ODE solver with event detection, while stochastic
transitions are simulated using Gillespie’s direct method.

Moreover, the user can choose to simulate a net completely as stochastic or
continuous one despite of the original place and transition types. Then transi-
tions and places are automatically converted to the required type. This function-
ality gives the opportunity to experiment with different simulation algorithms
without having to change the net. For instance, if the user’s Petri net model
is drawn to contain only stochastic transitions, later on, it could be simulated
using stochastic (e.g. Gillespie) or continuous (e.g. BDFs) algorithms. In the
latter case, stochastic transitions will be converted into continuous ones, while
transitions of other types (immediate, deterministic, or scheduled) will remain
unchanged.
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Coloured extensions. Snoopy supports animation for QPN C and SPN C , which
can be run in automatic mode or manually controlled, e.g. with single-step ani-
mation by manually choosing a binding.

Simulation of coloured Petri nets (SPN C , CPN C , GHPN C) is done on auto-
matically unfolded Petri nets, and thus all simulation algorithms for uncoloured
Petri nets are available for coloured Petri nets as well. In order to improve effi-
ciency, the unfolding adopts a constraint satisfaction approach, which is imple-
mented using the Gecode library [2]. Simulation results of coloured or uncoloured
places/transitions can be shown separately or together. In-depth behaviour explo-
ration is supported by auxiliary variables (observers) which depend on coloured
places, allowing for extra measures, e.g. the sum of a group of related places.

3.3 Import/Export

All net classes can be converted into each other through export, which permits to
easily switch from one net class to another one and thus to investigate a system
under study with different modelling abstractions by deploying simultaneously
several Petri net classes.

Additionally, there is export to numerous external analysis tools, among them
Snoopy’s close friends Charlie [24] and Marcie [23] ; see Snoopy’s website for a
complete list. Charlie’s features for P/T nets include structural analysis, P/T
invariants computation, and explicit CTL/LTL model checking. Marcie supports
qualitative analysis and symbolic CTL model checking based on Interval Decision
Diagrams. It also allows a quantitative investigation of SPN by means of CSL
and PLTLc model checking based on numerical and simulative analysis engines.

A crucial point for the addressed main application area is Snoopy’s import and
export of the standard exchange format SBML, Level 2, Version 3 [7]. The Petri
Net Markup Language [21] is not yet supported, but shortlisted for future plans.
Complementary, we developed the Colored Abstract Net Definition Language
(CANDL) [18] as a human-readable exchange format for our own toolbox.

The ODEs induced by a given CPN or GHPN can be written in Latex format
and as plain ASCII text.

4 Architecture

Snoopy’s architecture has been designed to gain three distinguished characteris-
tics. (1) It is extensible; its generic design facilitates the implementation of new
Petri net classes. (2) It is adaptive by supporting the simultaneous use of several
models, with the graphical user interface adapting dynamically to the net class
in the active window. (3) It is platform-independent.

Snoopy is written in the programming language C++ using the Standard
Template Library and the cross-platform toolkit wxWidgets [6]. The main object
in the data structure, see Fig. 4, is the graph object which contains modification
methods and holds the associated node, edge and metadata classes. Every node
class has one prototype and contains a number of nodes that are copied from
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Fig. 4. (a) Internal data structure of Snoopy. (b) Graphics assigned to the graph ele-
ments. (c) Attributes connected with window interactions controls.

this prototype. The edge and metadata class are similarly structured, compare
Fig. 4a. Every node, edge and metadata can have a list of attributes defining
the properties of the graph elements. A graphics is assigned to every displayed
element, see Fig. 4b. Attributes of graph elements may be manipulated with
widgets as it is shown in Fig. 4c.

The object-oriented design uses several design patterns (Model View Con-
troller, Prototype, and Builder), thus special requirements may be added easily.
Due to a strict separation of internal data structures and graphical representa-
tion it is straightforward to extend Snoopy by a new graph class; see [13] for
a demonstration how to do it. Fig. 3 gives the hierarchy of net classes which
Snoopy currently supports.

5 Applications

Snoopy is in worldwide use for teaching (see, e.g., [16], [20]) and research (see,
e.g., [8], [10], [11], [12], [14]); see Snoopy’s website for more references. In the
last year, Snoopy has been downloaded about 1,400 times.

Snoopy’s coloured Petri nets have been applied to investigate a variety of large-
scale biological systems, proving its capability to solve many challenges imposed
by biological multi-scale modelling, e.g. repetition, variant, and organization of
cells [17]. Case studies deploying coloured Petri nets usually require stochastic
and/or continuous simulations over very large underlying uncoloured Petri nets;
for specific case studies and related figures see [8].

6 Comparison with Other Tools

There is no tool on the market which supports a comparable family of Petri
nets classes as Snoopy does. Usually, modelling tools confine themselves to a
few net classes. Contrary, Snoopy provides a set of related net classes: time-free,
stochastic, continuous, hybrid and their coloured extensions, as well as plenty
of analysis techniques, e.g. built-in animation/simulation and export to external
analysis tools. This provides an excellent approach to accomplish the analysis of
a (biological) system from different perspectives by relating all these net classes.
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Herein, we compare Snoopy with three popular tools providing similar func-
tionalities for selected net classes: CPN Tools, GreatSPN, and Cell Illustrator.

CPN Tools [1] are tailored to coloured (timed) Petri nets. They established
a landmark in modelling convenience. Their concept of fusion places inspired
Snoopy’s logical nodes, and the hierarchical organization of substitution transi-
tions triggered Snoopy’s coarse nodes. However, there are no special arcs, and
CPN Tools do not explicitly support any of the quantitative net classes, which
are mandatory for systems and synthetic biology, such as continuous, stochastic
or hybrid Petri nets.

GreatSPN [3] supports modelling and analysis of GSPN and a coloured ex-
tension, but no other net classes. There are neither logical nodes nor hierarchy,
but an interesting layer concept.

Cell Illustrator [19] is a commercially licensed software tool utilising Hybrid
Functional Petri Nets with extensions (HFPNe) to model and simulate biochem-
ical pathways. While Cell Illustrator combines discrete and continuous parts in
one model, it does not offer the full interplay between continuous and stochastic
transitions as it is given in Snoopy. Crucial features such as modifier edges and
immediate or scheduled transitions are not supported. A model can only be sim-
ulated using static partitioning. Advanced modelling features like logical nodes,
hierarchy, or colour – which are imperative when considering large scale models
or models with repeated components – are not provided.

In summary, Snoopy’s rich modelling capabilities make it competitive and
particularly well suited for scenarios suggesting the simultaneous and consistent
use of several modelling paradigms enabling different modelling abstractions.

7 Installation

Snoopy is available for Windows, Mac OS X and Linux. It can be obtained free
of charge for academic use from its website http://www-dssz.informatik.

tu-cottbus.de/snoopy.html. Installation packages contain all dependencies;
no other libraries need to be manually installed. See Snoopy’s website for more
information how to install and use it on different platforms, for Petri net exam-
ples in Snoopy’s proprietary file format, and for Snoopy’s bibliography.

Snoopy comes with several further Petri net classes, including time(d) Petri
nets and modulo Petri nets, as well as a couple of other graph types; see [13].
Snoopy is still evolving – we are open for suggestions.

Acknowledgement. Substantial contributions to Snoopy’s development have
been done by former staff members and numerous student projects at Branden-
burg University of Technology, chairData Structures and Software Dependability.
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Abstract. The paper describes CPN Assistant II, a simulation manage-
ment tool for CPN Tools software. CPN Assistant II cooperates with the
version 3 of CPN Tools and allows to prepare, run and manage multiple
simulation jobs in a networked environment. For each simulation job a
net, a number of simulation runs and transition firings per run and a
selection of monitors to be processed can be specified. The data acquired
by each of the selected monitors during an execution of the simulation
job are merged and stored as a text file at a specified location. If needed,
the tool can also execute user-defined post-processing plug-ins to convert
the text files to another format, compute some statistics or to perform
other required tasks with the files.

Keywords: Coloured Petri nets, CPN Tools, CPN Assistant II, simu-
lation management.

1 Introduction

The CPN Tools [7] software is a widely used and sophisticated tool for a design,
analysis and simulation of coloured Petri net (CPN) models. Thanks to an in-
corporation of concepts such as time, randomness and monitors the tool can be
also used for simulation-based performance analysis of discrete-event systems.
The monitors are special sets of functions primarily used to collect data during
simulations. One of such performance analysis tasks was an evaluation of various
modifications [1] of a parallel raytracing implementation [2], [3] at the home in-
stitution of the authors, which required a large number of simulation runs, each
with more than 260000 transition firings. It soon became obvious that this task
cannot be performed “by hand”, so we started to search for some simulation
automation and management solution that fulfils the following requirements:

1. To be able to execute a desired number of simulation runs, each with a
desired number of transition firings and to combine the data collected by
monitors during the simulation runs.

2. To be able to run and manage multiple simulations in a networked environ-
ment.

S. Haddad and L. Pomello (Eds.): PETRI NETS 2012, LNCS 7347, pp. 408–417, 2012.
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As no available tool provided the required functionality, we developed a new tool,
called CPN Assistant to be used with CPN Tools 2.2. This prototype tool uses
a master-slave communication model and consists of two applications – CPN
Assistant and CPN Assistant Node. The CPN Assistant serves as the master
and provides simulation jobs preparation and assignment of the jobs to available
slave nodes. The job preparation includes recording of a CPN from CPN Tools,
setting a number of simulation runs and transition firings per run and selection of
monitors to be processed. The net recording is a process of capturing a complete
specification of the net when it is sent from the CPN Tools GUI to the CPN
Tools simulator. Its implementation in CPN Assistant is inspired by a similar
process of the BRITNeY suite software [4], [6]. The CPNAssistant Node (a slave)
controls a simulation process on a given machine and collects data obtained by
monitors of a simulated net. After the simulation job is finished the data are
sent to the master. The CPN Assistant is briefly described in [1], together with
simulation experiments performed with its aid.

In this paper we introduce a second version of the tool, called CPN Assistant
II. Contrary to the prototype, the CPN Assistant II consists of only one appli-
cation, which can be run in both master and slave mode. It also allows to run
multiple simulations on a single machine and to post-process the data collected
during the simulations by user-defined plug-ins. The presented version of CPN
Assistant II has been designed and tested for cooperation with CPN Tools 3.2.2.

The rest of the paper is organized as follows: In section 2 we compare the
tool with other extensions of CPN Tools, namely with BRITNeY suite and
Access/CPN [5]. Section 3 describes the tool functionality from user’s point of
view and section 4 is devoted to its architecture and communication processes.
Finally, we conclude with installation instructions and some remarks about a
future development of the tool.

2 Comparison with Other Tools

As it was stated before, no tool has been found that offers the functionality
implemented in CPN Assistant. The CPN Tools itself provides only so-called
simulation replications, which allow to execute a specified number of simulation
runs within a single instance of the tool.

The other tool considered was the BRITNeY suite [4], [6], which supports
visualizations of CPN and other formal models and state-space analysis of CPN
models. From our point of view its valuable features are a pluggable architecture
[4] and a possibility to capture a communication between the CPN Tools GUI
and simulator for later replay without a GUI assistance. The second feature
allows basic simulation automation – even for CPNs that this tool cannot process
(parse) itself. On the other hand, BRITNeY does not offer a management of
multiple simulations and their outputs. We originally intended to re-implement
CPN Assistant as a part of BRITNeY but its compatibility with new releases
of CPN Tools has been dropped. Nevertheless, the BRITNeY suite has been
important for our work as the net recording in CPN Assistant is based on the
communication capturing process of BRITNeY.
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Finally, the third software piece examined has been the Access/CPN frame-
work [5]. It supports the development of extensions for CPN Tools and an in-
tegration of CPN models into external applications. It provides two interfaces
to the CPN Tools simulator. The first one is an SML interface for efficient ac-
cess to the simulator and its primary goal is to allow an implementation of new
and more efficient analysis methods. The second one, a Java interface, offers an
object-oriented representation of CPN models, an importer to load models from
CPN Tools, and an implementation of a protocol for communication with the
simulator [5]. The Access/CPN seems to be a good platform to implement an
extension with the desired functionality, but for a long time, it lacked one impor-
tant thing – a support of monitors. A work on the monitors support started only
recently and the first note about it is from December 2011. When the monitors
support will be finished, we will consider a re-implementation of CPN Assistant
II as a part of the Access/CPN.

3 Functionality

CPN Assistant II is aimed at CPN Tools users that need to run a lot of simula-
tion experiments with their CPN models. For them CPN Assistant II offers an
automated management of simulation jobs execution – on a single computer or
in a networked environment. CPN Tools and CPN Assistant II have to be in-
stalled on each computer utilized. Before the first use CPN Assistant II requires
a single setup. It is also required to set the CPN Tools GUI to remote mode on
a computer used for the CPN recording.

Preparation of simulation experiments consists of starting CPN Assistant II
on each computer used and of a setup of simulation jobs (simulations). Setting up
a simulation job includes selecting a net and specifying a number of simulation
runs and transition firings per run. Of course, nets to be simulated have to be
recorded first – to so-called replication files. Then the simulations themselves
are handled by CPN Assistant II automatically - it distributes simulations to
available computers (nodes), performs simulations by invoking the CPN Tools
simulator and collects and post-processes data captured by monitors.

CPN Assistant II can work in three modes:

Slave mode (node mode). In this mode the tool is only able to perform sim-
ulations ordered by a master (i.e. the tool running in a master mode), collect
results of simulations and send them back to the master. We call the tool
running in this mode a slave or a simulation node.

Master mode. This mode provides the full functionality of the tool. The tool
running in this mode, the master, can prepare simulations, distribute them
to simulation nodes or execute them locally. All simulation results, captured
by selected monitors, are sent from the slaves back to the master where
they can be processed using the post-processing plug-ins. The tool running
in the master mode broadcasts its presence in regular intervals allowing
the slaves to identify and connect to the master without a need of manual
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specification and establishment of connection. Local execution of simulations
can be disabled while in this mode.

Standalone mode. The idea behind this mode is to easily isolate the tool from
the rest of a networked environment, where a presence of another instances
of the tool can be expected. In fact, this mode is the same as the master
mode without broadcasting its presence. So, only the slaves that know an
IP address of the computer running the tool in this mode can connect to it.

A tool running in the slave mode can connect to the master in two ways. The
first is an automatic connection of a simulation node after receiving a broadcast
message from the master. The second way is to configure the node to ignore the
broadcasts and specify the IP address of the master exactly. After setting up the
address the node will try to connect to the specified master in regular intervals.
With these settings, nodes can also connect to a tool instance running in the
standalone mode. If the connection between the master and the simulation node
breaks, the node reverts to listening for the master’s presence broadcasts or to
trying to connect to the specified master according to the node configuration.

Fig. 1. CPN Assistant II main window

In Fig. 1 we can see a main window of CPN Assistant II running in the mas-
ter mode. Its appearance in other modes is essentially the same. The window is
divided into three parts – a toolbar, a queue of waiting simulation jobs and a list
of running (active) and already finished simulations. The buttons on the toolbar
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allow to (from left to right) record a CPN, define and start a simulation, show
available simulation nodes, show debug window, change application settings,
show a user manual and display an about box. The first button is used to capture
a net from CPN Tools and save it to a replication file. Before doing this, however,
we have to be sure that CPN Tools on the master computer is set for a remote
processing with port number 2099 (Fig. 2). After clicking the button a record
simulation window is shown (Fig. 3) where we specify a net to load. Then CPN

Fig. 2. CPN Tools settings for CPN capture by the master

Fig. 3. CPN capture window

Assistant II invokes a CPN Tools instance and captures the net description from
it. In addition, a list of monitor files is automatically populated by “write in file”
and “data collector” monitors of the net while the net is being recorded. In the
list the monitors are represented by names of files they create and fill during a
simulation. When the recording process is finished a tick icon is shown on the
left side and the net can be saved to a replication file. We can also change the
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monitor files list before saving - we can reduce the list or assign post-processing
plug-ins to some monitors. Finally, we close the window and CPN Tools. The
replication file can be used for multiple simulations. Re-capture of the net is
required only if it is changed in CPN Tools. The monitors list can be also edited
later – when creating a simulation job or while the job is waiting for execution.

When all required CPNs are saved as replication files we can prepare and
run simulation jobs. This is done by clicking the second button on the toolbar
and specifying simulation name, replication file, number of simulation runs and
transition firings per run. Optionally, we can also select a specific node for the
job execution. The simulation created is automatically added to the waiting
simulations queue (Fig. 1). The simulation starts immediately after some (or
the selected) simulation node become available. In the CPN Assistant GUI it is
moved from the queue to the running (active) simulations list. Name, node IP
address, replication file and progress are shown for each simulation. By clicking
the button with magnifier icon we can see simulation details and hitting the
cross button cancels the simulation.

Simulations that encounter problems during execution and crash are moved
back to the queue of waiting simulations on the master. Their state is changed
to paused and they are highlighted with a red background (rayTest6 in Fig. 1).
Unlike “normal” simulations the crashed ones do not start automatically. They
can be resumed only manually from the simulation details window where a user
can also review the problems by checking an error list. Resumed simulations
are highlighted with an orange background (rayTest7 in Fig. 1). It should be
also noted that data collected before the crash can be recovered: When an error
on a simulation node occurs and the simulation is cancelled the node creates
a copy of simulation output folder with timestamp and job name as the folder
name within its temporary folder. Error lists can be also viewed from a node
perspective by clicking corresponding buttons in node information window (Fig.
4). The window is available via the third button on the toolbar.

The fourth button on the toolbar opens a debug window where various system
messages are shown. The fifth one accesses an options window (Fig. 5), essential
before the first use of the tool. The settings available include paths to CPN
Tools GUI and simulator, folders for outputs of the monitors, the tool mode and
network settings.

Three settings are dedicated to data collection and post-processing. The out-
put folder is a folder on the master computer where data, collected by monitors
during simulations, are stored. Each simulation has a separate subfolder with
the same name as the simulation. The data (text files) are copied here from
the corresponding slave temporary folder after the simulation is finished. The
temporary folder is used during the simulation. Here the data obtained in an
actual simulation run are appended to the data from previous runs of the same
simulation job. The data are stored in text files (one file per monitor) with the
same names and internal structure as the original files the monitors create and
fill during the simulation. The post-processing plug-ins folder contains plug-ins
for an additional processing of the text files. These plug-ins can be associated
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Fig. 4. Node information window with error list

Fig. 5. Options window with CPN Assistant II setup
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with individual monitors of simulation jobs. This can be done everywhere where
the monitor files list can be edited and also during simulation execution. Plug-in
sample with source code is included with the tool.

4 Tool Architecture and Communication

The CPN Assistant II is written in the C# language and requires .NET frame-
work 4 installed to work. TCP connections carrying custom remote procedure
call protocol are used for communication between simulation nodes and the
master.
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Fig. 6. CPN Assistant II instances in a master-slave configuration. Arrows are TCP
connections.

The tool is internally divided into a master part and a slave part. Communi-
cation between the parts is implemented in the same way as between the tool in
master and slave mode – by a TCP connection (Fig. 6).

When running, the slave part is always connected to the CPN Tools simula-
tor, disconnecting only when an error occurs. The master part is connected to
both the CPN Tools GUI and simulator, albeit to the GUI only during the net
recording.

Lost connection is discovered by sending periodic keepalive packets from both
sides. The packets sent by a simulation node carry state information for every
simulation slot of the node. Number of simulation slots (“max. simulations” in
Fig. 5) determines how many simulations can be executed at once on the node.
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This number can be selected from range 1 to 16 in the slave mode or from 0 to
16 in the master mode.

The master’s presence broadcasts are UDP datagrams sent to the entire sub-
net in fixed periods of 15 seconds. A number of port on which the master listens
for nodes is a part of the broadcasted message, together with a 12 bytes long key
to distinguish between the master’s presence broadcasts and other services that
may be sending broadcasts on the same UDP port. This means that nodes that
do not ignore the master’s broadcasts need only to know a broadcast port to be
able to connect to the master. Connection port is supplied in the broadcasted
messages.

When a simulation node receives a data about a new simulation job it exam-
ines a recorded CPN that is a part of the data and changes the output folder
setting to the temporary folder of the node. Only after this the data are re-sent
to the CPN Tools simulator for simulation run execution. During the simulation
the node generates control packets for the simulator to set a number of transi-
tion firings, rewind a simulation run or start a run. After each simulation run
monitor files specified to be collected are appended to text files, which are sent
back to the master after the last run.

Both CPN Tools GUI and simulator are executed from CPN Assistant II.
The simulator is invoked during start-up of the assistant and closed when the
assistant is closed. CPN Tools GUI is invoked when recording a CPN. During
the recording process a communication between CPN Tools GUI and simulator
passes through CPN Assistant II, which acts as a proxy. The traffic from GUI is
recorded before re-sending to the simulator. Simulator feedback traffic is directly
forwarded to GUI without recording or inspection. For this mechanism to work,
the CPN Tools GUI must be set to use the remote simulator process as shown
in Fig. 2.

The post-processing plug-ins are dynamic libraries that are used to further
process the text files containing data collected during simulations. Such a pro-
cessing can be a conversion of the data to another format, for example a format
of some spreadsheet processor where the data will be analysed. The plug-ins can
be developed independently and have to implement a simple interface. The inter-
face consists of a method Process(string monitorPath) and a single read-only
property Name with the name of the plug-in. The Process method is invoked
when the processing is needed and its argument ( monitorPath) is a path to
the text file to be processed. An exception catching is utilized in CPN Assistant
II while executing the plug-ins to prevent an application crash caused by a bad
plug-in implementation. To cope with a heavy load the plug-ins are executed in
parallel in individual threads within a threadpool.

5 Conclusions

In this paper we introduced CPN Assistant II a simulation management tool
for the CPN Tools software that allows to prepare, run and manage multiple
simulation jobs in a networked environment. The tool is implemented in C#
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language and requires .NET framework 4 or higher to run. It can be downloaded
from [8]. To run the tool it is only required to unzip the downloaded archive.

As a future development of the tool, we plan several extensions. An impor-
tant one could be a load balancing and priority based scheduler, where each
node will be marked by a performance index, entered manually or based on
some microbenchmark, and simulation jobs will have a priority value assigned.
This should allow an out of order execution of simulations and optimization
of node selection for specific simulations with very long simulation time or for
simulations that have higher priority in obtaining results. Another modification
could be a better analysis of captured CPN to allow further modifications during
replaying (simulation) on a node. We also intend to add another method to the
plug-ins interface, a method for a settings dialogue of a plug-in.
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Meier, Philipp 388

Nakatumba, Joyce 308
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