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Abstract. Multivariate time series data often have a very high dimensionality. 
Classifying such high dimensional data poses a challenge because a vast 
number of features can be extracted. Furthermore, the meaning of the normally 
intuitive term "similar to" needs to be precisely defined. Representing the time 
series data effectively is an essential task for decision-making activities such as 
prediction, clustering and classification. In this paper we propose a feature-
based classification approach to classify real-world multivariate time series 
generated by drilling rig sensors in the oil and gas industry. Our approach 
encompasses two main phases: representation and classification.  

For the representation phase, we propose a novel representation of time 
series which combines trend-based and value-based approximations (we 
abbreviate it as TVA). It produces a compact representation of the time series 
which consists of symbolic strings that represent the trends and the values of 
each variable in the series. The TVA representation improves both the accuracy 
and the running time of the classification process by extracting a set of 
informative features suitable for common classifiers.  

For the classification phase, we propose a memory-based classifier which 
takes into account the antecedent results of the classification process. The 
inputs of the proposed classifier are the TVA features computed from the 
current segment, as well as the predicted class of the previous segment.  

Our experimental results on real-world multivariate time series show that 
our approach enables highly accurate and fast classification of multivariate time 
series.  

Keywords: Time Series Classification, Time Series Representation, Symbolic 
Aggregate Approximation, Event Detection. 

1 Introduction 

Multivariate time series data are ubiquitous and broadly available in many fields 
including finance, medicine, oil and gas industry and other business domains. The 
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problem of time series classification has been the subject of active research for 
decades [1, 7]. 

The general time series can be defined as follow: A time series T is a series of 
ordered observations made sequentially through time. We denote the observations by: x୧ሺtሻ; ሾi ൌ 1, … , n; t ൌ 1, … , mሿ where: 

• ݅ is the index of the different measurements made at each time point t, 
• ݊ is the number of variables being observed, and 
• ݉ is the number of observations made.  

If the time series has only one variable (݊ ൌ 1) then this time series is referred to as 
univariate, if it has two variables or more (݊ ൐ 1) then it is referred to as multivariate.  

One example of multivariate time series is drilling rig data; where many 
mechanical parameters such as torque, hook load and block position, are continuously 
measured by rig sensors and stored in real time in the databases. Fig. 1 shows drilling 
multivariate time series consisting of eight variables.  

 

Fig. 1. A multivariate time series of drilling data. This time series consists of eight variables 
representing eight mechanical parameters measured at the rig. 

Multivariate time series classification is a supervised learning problem aimed for 
labeling multivariate series of variable length. Time series classification can be 
divided into two types. In the first type (simple classification) each time series is 
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classified into only one class label, whereas in the second type (strong classification) 
each time series is classified into a sequence of classes. 

This work focuses on the second type of classification. Our approach aims to 
classify multivariate time series (like the one shown in Fig. 1) into a sequence of 
operations or classes opଵሺstଵ, etଵሻ, … , op୬ሺst୬, et୬ሻ where st୧ and et୧ represent the 
start time and end time of the operations respectively. Fig. 2 shows the result of such 
a classification process.  

 

Fig. 2.  A sequence of 10 operations with different durations 

The main contributions of this work are: 

• An approach to represent time series by combining value-based and trend-
based approximations (TVA). It extends Symbolic Aggregate Approximation 
(SAX) [2] by adding new string symbols (U, D and S) to represent the 
directions of the time series. 

• A memory-based classifier for multivariate time series classification. The 
classifier is trained with the TVA features extracted from our representation. 
In addition, it uses the previous predicated class as an additional feature to 
predicate the class of the current segment.  

The remainder of the paper is organized as follows: Section 2 introduces the state-of-
art techniques for time series representation. Section 3 presents the general framework 
of our approach. Section 4 explains the details of TVA representation. Section 5 
discusses the time series classification. Finally, section 6 presents the experimental 
results of the proposed approach using real-world data from the drilling industry, and 
Section 7 concludes the work. 

2 State of the Art 

Time series datasets are typically very large. The high dimensionality, high feature 
correlation, and the large amount of noise that can be present in time series, pose a 
challenge to time series data mining tasks [2]. The high dimensionality of such time 
series increases both the access time to the data and computation time needed by the 
data mining algorithms used [8]. Additionally, visualization techniques need to 
employ data reduction and aggregation techniques to cope with the high volume of data 
that cannot be plotted in details at once. Furthermore, the very meanings of terms such 
as “similar to” and “cluster forming” become unclear in high dimensional space [1].  

The aforementioned reasons make applying machine learning techniques directly 
on raw time series data cumbersome. To overcome this problem, the original “raw” 
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data need to be replaced by a higher-level representation that allows efficient 
computation on the data, and extracts higher order features [2, 3 and 4].  

Several representation techniques, known as dimensionality reduction techniques, 
have been proposed. This includes the Discrete Fourier Transform (DFT), the 
Discrete Wavelet Transform (DWT), Piecewise Linear Approximation (PLA), 
Piecewise Aggregate Approximation (PAA), Adaptive Piecewise Constant 
Approximation (APCA), Singular Value Decomposition (SVD) and Symbolic 
Aggregate Approximation (SAX). Choosing the appropriate representation depends 
on the data at hand and on the problem to be solved. Furthermore, it affects the ease 
and efficiency of time series data mining [1]. 

Trend-based and value-based approximations have been used extensively in the 
last decade. Kontaki et al. [10] propose using PLA to transform the time series to a 
vector of symbols (U and D) denoting the trend of the series. Keogh and Pazzani [8] 
suggest a representation that consists of piecewise linear segments to represent a 
shape; and a weight vector that contains the relative importance of each individual 
linear segment.  

SAX, proposed by Lin et al. [2], is a symbolic approximation of time series. It 
employs a discretization technique that transforms the numerical values of the time 
series into a sequence of symbols from a discrete alphabet. The discretization process 
allows researchers to apply algorithms from text processing and bioinformatics 
disciplines [2]. SAX has become an important tool in the time series data mining, and 
has been used for several applications such as time series classification, events 
detection [5, 6], and anomaly detection [11]. It enables using the Euclidian distance of 
the discretized subsequences [9], and allows both dimensionality reduction and lower 
bounding of ܮ௣ norms [11].  

Although the above mentioned advantages, SAX suffers from some limitations. It 
does not pay enough attention to the directions of the time subsequences and may 
produce similar strings for completely different time series. To overcome this 
problem we propose the TVA representation which extends SAX by adding new 
string symbols in order to represent the trends of time series.  

3 Our Approach 

The general framework of the proposed approach is shown in Fig. 3. The given 
multivariate time series is first divided into a sequence of smaller segments by sliding 
a window incrementally across the time series. Then, the processing is performed in 
two phases: representation and classification 

• In the representation phase each segment ݓ௜  is represented by a pair of 
characters ሺݒ,  represents the linguistic value of the ݒ ሻ. The first characterݐ
time series and takes one of these values: (a = low), (b = normal), (c = high), 
etc. The second character ݐ describes the local trend of the time series and 
takes one of these values: (U = up), (D = down) or (S = straight). 

• In the classification phase, a memory-based classifier is trained and used to 
assign a class label to each segment. 
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Fig. 3.  The general framework of the proposed approach 

4 TVA Representation 

In the classification phase, we are not interested in the exact numerical values of each 
data point in the given time series. What we are interested in are the trends, shapes 
and patterns existing in the data. To recognize these patterns first it is required to 
discover the simple local trends such as “increase in the hookload” and “decrease in 
the torque” and to divide the numerical values of the time series into discrete levels 
such as “high hookload” and “low pressure”.  

The TVA representation transforms the numerical values of each variable in the 
given time series into a sequence of ൏ ,݁ݑ݈ܽݒ ݀݊݁ݎݐ ൐ pairs. The multivariate time 
series ܶ is hence transformed as follows: 

T= ێێۏ
ଵଵݔۍ ଵଶݔ ڮ ଶଵݔଵ௠ݔ ଶଶݔ ڮ ڭଶ௠ݔ ڭ ڮ ௡ଵݔڭ ௡ଶݔ ڮ ۑۑے௡௠ݔ

ې
 ܴ ൌ ێێۏ

,ଵଵݒሺۍ ଵଵሻݐ ሺݒଵଶ, ଵଶሻݐ ڮ ሺݒଵ௦, ,ଶଵݒଵ௦ሻሺݐ ଶଵሻݐ ሺݒଶଶ, ଶଶሻݐ ڮ ሺݒଶ௦, ڭଶ௦ሻݐ ڭ ڮ ,௡ଵݒሺڭ ௡ଵሻݐ ሺݒ௡ଶ, ௡ଶሻݐ ڮ ሺݒ௡௦, ௡௦ݐ ሻۑۑے
ې
  

where ܴ is the matrix that contains the ൏ ,݁ݑ݈ܽݒ ݀݊݁ݎݐ ൐ pairs, ݏ denotes the number 
of the segments, ݒ௜௞  represents the discrete level of the time series variable ݅ in 
segment ݇, and ݐ௜௞ represents the trend (direction) of this variable in the segment.  
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Classification Algorithm 
Input:  

• A multivaite time series ܶ of length ݉ 
Output:  

• A sequence of labels (classes)  
Do 

• Create an empty sequence of classes SC.  
• Divide the original time series ܶ into a set ܹ of smaller equal-sized segments, 

where ܹ ൌ ሼݓଵ, ,ଶݓ … ,  ௦ሽݓ
• For each segment in ܹ  

o Represent the current segment ݓ௜  as mentioned in section 4. 
o Create the feature-vector ܨ௜ 
o Get the predicted class of the previous segment c୧ିଵ 
o Call the prediction method predict (۴ܑ,  ૚) which returns the class ܿ௜ିܑ܋

of the current segment.  
o Add the predicated class ܿ௜ to the sequence SC. 

• End For 
• For all classes in SC 

o Combine the consecutive equal classes ܿଵ, … , ܿ௥  in one class C.  
o Set the start time of C equal to the start time of the first class ܿଵ 
o Set the end time of C equal to the end time of the last class ܿ௥  

• End For All 
• Return ܵܥ 
End 

Fig. 7. The classification algorithm 

Although the memory-based classifiers are simple, as we will show, they improve 
the classification accuracy significantly. The experimental results show that the 
average improvement in accuracy is about 8% compared to a traditional classifier. 

Many classification techniques can be used to classify the time series. In this work 
we tested Naïve Bayes, Support Vector Machine, Rule Induction, K-Nearest Neighbor 
and Decision Trees. Using all these techniques, the classification accuracy was high 
as we show in the next section. Also, the training time is significantly reduced 
because the number of extracted features is small. 

6 Experimental Results 

To evaluate our approach, we tested it with real-world data. Two time series were 
used in our experiments. Table 2 illustrates these two time series: 

Table 2. Time series parameters 

Time Series Length Frequency #Variables #Classes 
1 376,840 0.1 Hz 12 10 

2 195,808 0.2 Hz 10 9 
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For all experiments a sequence of ten classes to the first time series, and a sequence 
of nine classes to the second time series was assigned. Each one of these classes 
represents one particular operation during drilling. The final output of the classification 
task is similar to Fig. 2. The proposed approach to represent the data was applied to 
create the feature space in a first step. Following that, RapidMiner [12] and LIBSVM 
[13] were used to test the classifiers using the cross validation technique.  

Table 3. Classification accuracy 

 Time Series #1 Time Series #2 
Window 

Size 
Traditional 

classifier [%] 
Memory-based 
classifier [%] 

Traditional 
classifier [%] 

Memory-based 
classifier [%] 

2 80.40 90.87 92.38 97.88 
3 78.23 89.58 93.10 97.71 
4 76.62 87.23 92.84 97.51 
5 72.87 83.55 93.82 97.67 
6 71.40 82.61 93.54 97.43 
7 71.03 81.85 93.50 97.14 
8 70.25 82.01 92.92 96.70 

9 69.86 81.10 92.64 96.35 
10 69.41 81.28 92.45 96.33 

To measure the improvement that the memory-based classifier provides, two types 
of classifiers were trained and tested with a varying window size. The first classifier 
was trained only with TVA features. The second classifier (memory-based classifier) 
was trained using the extracted features as well as the previously predicted classes as 
input. Table 3 and Fig. 8 show the results of the Naïve Bayes classifier. 

 

Fig. 8. Classification accuracy vs. window size  
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Table 4 shows the confusion matrix of one of the experiments in which the Naïve 
Bayes classifier is applied to time series #2 using a window size of 2. 

Table 4. Confusion matrix 
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MoveUP 343 8 30 0 0 0 17 0 2 85.7 

MoveDN 16 442 4 0 0 0 1 1 1 95.0 

MakeCN 12 7 1949 8 0 0 0 20 7 97.3 

CircHL 11 1 0 4636 69 27 22 25 61 95.5 

ReamDN 1 0 1 13 2155 7 24 30 12 96.0 

DrlRot 0 0 0 2 5 19028 1 3 1 99.9 

ReamUP 5 0 0 5 32 54 2298 1 22 95.0 

WashDN 0 6 8 7 19 2 1 920 46 91.1 

WashUP 14 1 5 5 2 1 11 27 1632 96.1 

Recall [%] 85.3 95.0 97.6 99.1 94.4 99.5 96.7 89.5 91.4 
 

In addition to Naïve Bayes, four classification techniques were tested. These 
techniques are: Support Vector Machine (SVM), Rule Induction (RI), Decision Trees 
(DT) and K-Nearest Neighbor (K-NN). Table 5 summarizes the results. 

  Table 5. The classification accuracies of different techniques 

 SVM RI DT K-NN 
Time Series#1 92.9% 91.12% 90.0% 92.8% 
Time Series#2 95.23% 98.24% 94.11% 96.9% 

7 Conclusion and Future Work 

The following conclusion can be drawn from the concepts presented in this paper: 

• Representing multivariate time series by combining both the value-based and 
trend-based approximations leads to reduce the dimensionality of the time 
series largely. 

• The reduced representation can be used as alternative to the time series 
without losing any important characteristics or patterns exist in the original 
time series data. 

• Memory-based classifiers can improve the classification accuracy of the time 
series significantly. 
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Our aim for future work is to improve this approach and use it for writing reports 
automatically. TVA will be used as an intermediate representation between the 
numerical values of time series and the human language. 
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