
New Measures

for Maintaining the Quality of Databases

Hendrik Decker�

Instituto Tecnológico de Informática, Universidad Politécnica de Valencia, Spain

Abstract. Integrity constraints are a means to model the quality of
databases. Measures that size the amount of constraint violations are a
means to monitor and maintain the quality of databases. We present and
discuss new violation measures that refine and go beyond previous incon-
sistency measures. They serve to check updates for integrity preservation
and to repair violations in an inconsistency-tolerant manner.

1 Introduction

The quality of databases can be identified with the satisfaction of the integrity
constraints imposed on the data, and the lack of quality with their violation. In
[8,11], we have seen how integrity constrains can be used to model, measure and
monitor the quality of information stored in databases.

Building on that idea, we have shown in [10] how to identify, compute and
measure cases and causes of integrity violations in order to control the qual-
ity of data in terms of their consistency. In [8,11,10], we have defined several
measure-based methods which check updates for integrity preservation in an
inconsistency-tolerant manner. Inconsistency-tolerant integrity checking (abbr.
ITIC) means that only updates that do not increase a measured amount of in-
consistency are acceptable, no matter if any constraint violation may already
exist before the execution of a given update.

In this paper, we take the idea of using constraints and the measurement of
their violation for controlling the quality and integrity of databases two steps
further. Firstly, we present several new measures of integrity violation that enable
a refined assessment of data quality. Secondly, we show how such measures can
be used not only for ITIC, but also for inconsistency-tolerant integrity repair.

In Section 2, we define the formal framework of the remainder. In Section 3,
we refine the axiomatization of violation measures developed in [8,11] and define
several new measures that go beyond those defined in [10]. In Section 4, we show
how the new violation measures can be used to maintain database integrity, by
checking updates and repairing inconsistencies. In Section 5, we conclude.

� Partially supported by FEDER and the Spanish grants TIN2009-14460-C03 and
TIN2010-17139.

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 170–185, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

New Measures for Maintaining the Quality of Databases 171

2 The Framework

In 2.1, we outline some basic preliminaries. In 2.2 we recapitulate the notion of
‘cases’ from [8,11]. In 2.3, we extend the notion of ‘causes’ from [10]. Cases are
instances of constraints that are useful for three objectives: simplified integrity
checking, quantifying constraint violations and tolerating inconsistency. Causes
are the data that are responsible for the violation of constraints, and are of
similar use as cases. We use notations and terminology that are known from
datalog [16] and first-order predicate logic.

2.1 Databases, Completions, Updates, Constraints

An atom is an expression of the form p(t1, ..., tn), where p is a predicate of arity
n (n ≥ 0); the ti are either constants or variables. A literal is either an atom A
or a negated atom ∼A. A database clause is a universally closed formula of the
form A←B, where the head A is an atom and the body B is a possibly empty
conjunction of literals. If B is empty, A is called a fact. If B is not empty, A←B
is called a rule. As is well-known, rules are useful for defining view predicates, as
well as for enabling deductive and abductive reasoning capabilities in databases.
A database is a finite set of database clauses. A datbase is definite if there is no
negated atom in the body of any of its clauses.

Let us assume a universal Herbrand baseH and a universal setN of constants,
represented w.l.o.g. by natural numbers, that underlie each database.

Let comp(D) denote the well-known completion of D [6]. It essentially consists
of the if-and-only-if completions (in short, completions) of all predicates in the
language of D. For a predicate p, let pD denote the completion of p in D.

Definition 1. Let D be a database, p a predicate, n the arity of p, x1, . . . , xn

the ∀-quantified variables in pD, and θ a substitution of x1, . . . , xn.

a) For A = p(x1, . . . , xn)θ, the completion of A in D, be obtained by applying
θ to pD, and be denoted by AD.

b) Let comp(D) = {AD | A∈H}.
c) Let if(D) and only-if(D) be obtained by replacing↔ in each AD ∈ comp(D)
by ← and, resp., →.

d) Let iff(D) = if(D)∪ only-if(D) . Let the usual equality axioms of comp(D)
be associated by default also to iff(D).

Clearly, if(D) is equivalent to the set of all ground instances of clauses in D.
Moreover, comp(D), comp(D) and iff(D) clearly have the same logical conse-
quences. However, the characterization of causes in 2.2.3 by subsets of iff(D) is
more precise than it could be if subsets of comp(D) were used instead.

We may use ‘;’ instead of ‘,’ to delimit elements of sets since ‘,’ is also used to
denote conjunction in the body of clauses. Symbols |=, ⇒ and ⇔ denote logical
consequence (i.e., truth in all Herbrand models), meta-implication and, resp.,
meta-equivalence. By overloading, we use = as identity predicate, assignment in
substitutions, or meta-level equality; �= is the negation of =.

172 H. Decker et al.

An update is a finite set of database clauses to be inserted or deleted. For an
update U of a database D, we denote the database in which all inserts in U are
added to D and all deletes in U are removed from D, by DU . An update request
in a database D is a sentence R that is requested to become true by updating D.
An update U satisfies an update request R in D if DU (R)= true. View updating
is a well-known special kind of satisfying update requests. From now on, repairs
are treated as updates, and repairing as satisfying specific update requests.

An integrity constraint (in short, constraint) is a sentence which can always
be represented by a denial clause, i.e., a universally closed formula of the form
←B, where the body B is a conjunction of literals that asserts what should not
hold in any state of the database. If the original specification of a constraint by
a sentence I expresses what should hold, then a denial form of I can be obtained
by an equivalence-preserving re-writing of ←∼I as proposed, e.g., in [7], that
results in a denial the predicates of which are defined by clauses to be added to
the database. An integrity theory is a finite set of constraints.

From now on, let the symbols D, IC , I, U and adornments thereof always
stand for a database, an integrity theory, a constraint and, resp., an update,
each of which is assumed, as usual, to be range-restricted [7].

For each sentence F , and in particular for each integrity constraint, we write
D(F) = true (resp., D(F) = false) if F evaluates to true (resp., false) in D.
Similarly, we write D(IC)= true (resp., D(IC)= false) if each constraint in IC
is satisfied in D (resp., at least one constraint in IC is violated in D). Let
vioCon(D, IC) denote the set of violated constraints in D.

2.2 Cases

For each constraint I, a case of I is an instance of I obtained by substituting the
variables in I with (not necessarily ground) terms of the underlying language.
This definition of cases is a simpler version of a more encompassing variant in
[12], where cases have been defined for the purpose of inconsistency-tolerant
integrity checking of constraints in a more general syntax.

Reasoning with cases of I instead of I itself lowers the cost of integrity main-
tenance, since, the more variables in I are instantiated with ground values, the
easier the evaluation of the so-obtained case tends to be. Also, to know which
particular cases of a constraint are violated may be useful for repairing, since it
turns out to be easier, in general, to identify and eliminate the causes of integrity
violation if the violated cases are made explicit.

Let Cas(IC) denote the set of all ground cases of each I∈IC . Further, let
vioCon(D, IC)= {I | I ∈ IC , D(I)= false}, i.e., the set of all constraints in IC
that are violated in D, and vioCas(D, IC)= {C | C ∈Cas(IC), D(C)= false},
i.e., the set of all violated ground cases of IC in D.

The usefulness of cases for simplified integrity checking is well-known and
well documented, e.g. in [5]. The use of vioCon(D, IC) and vioCas(D, IC) for
measuring the inconsistency of (D, IC) is addressed in Section 3, their use for
inconsistency-tolerant integrity maintenance in Section 4.

New Measures for Maintaining the Quality of Databases 173

2.3 Causes

As in [10], we are going to define a ‘cause’ of the violation of a constraint I =←B
in a database D as a minimal explanation of why I is violated in D, i.e., why
the existential closure ∃B of B is true in D. However, the definition of causes
below is much more general than its predecessor in [10]. The latter applied only
to definite databases and integrity theories without negation in the body of
denials. In this paper, that restriction is dropped. A significant consequence of
this generalization is that the logic to be used for reasoning with cases and causes
of constraints must comply with the non-monotonicity of negation in databases.

In Section 3, causes are used for measuring inconsistency, and in Section 4 for
measure-based inconsistency-tolerant integrity maintenance.

Definition 2. Let D be a database and I =←B an integrity constraint such
that D(∃B)= true. A subset E of iff(D) is called a cause of the violation of I
in D if E |= ∃B, and for each proper subset E′ of E, E′

�∃B.

We also say that E is a cause of ∃B in D if E is a cause of the violation of
←B in D. Moreover, we say that, for an integrity theory IC , E is a cause of
the violation of IC in D if E is a cause of the violation of a denial form of the
conjunction of all constraints in IC .

Clearly, E is a cause of the violation of each denial form of the conjunction of
all I ∈ IC if and only if E is a cause of the violation of some I ∈ IC and there is
no cause E′ of any constraint in IC such that E′

�E.
For easy reading, we represent elements of only-if(D) in a simplified form, if

possible, in the subsequent examples of causes. Simplifications are obtained by
replacing ground equations with their truth values and by common equivalence-
preserving rewritings for the composition of subformulas with true or false .

Example 1.

a) Let D = {p← q,∼r; q}.
The only cause of the violation of ← p in D is D∪{∼r}.
b) Let D = {p(x)← q(x), r(x); q(1); q(2); r(2); s(1); s(2)}. The only cause
of the violation of ← s(x), ∼p(x) in D is {s(1), p(1)→ q(1)∧ r(1), ∼r(1)}.
c) Let D = {p← q(1, x); q(2, y)← r(y); r(1)}.
The only cause of ∼p in D is {p→∃x q(1, x)}∪ {∼q(1, i) | i∈N}.
d) Let D = {p← q(x, x); q(x, y)← r(x), s(y); r(1); s(2)}. Each cause of ∼p
inD contains {p→∃x q(x, x)} ∪ {q(i, i)→ r(i)∧ s(i)) | i∈N} ∪ {∼r(2), ∼s(1)}
and, for each j > 2 in N , either ∼r(j) or ∼s(j), and nothing else.

e) Let D= {p(x)← r(x); r(1)} and I = ∃x(r(x)∧∼p(x)). A denial form of I is
← vio, where vio is defined by {vio←∼q; q← r(x),∼p(x)}, where q is a fresh
0-ary predicate. Thus, the causes of the violation of I in D are the causes of vio in
D′ =D∪ {vio←∼q; q← r(x),∼p(x)}. Thus, for each K⊆N such that 1∈K,
{vio←∼q} ∪ {p(i)← r(i) | i∈K} ∪ {q→∃x(r(x) ∧∼p(x))} ∪ {∼r(i) | i /∈K} is
a cause of vio in D′.

174 H. Decker et al.

The following example shows that causes are not compositional, i.e., the causes
of the violation of an integrity theory IC are not necessarily the union of the
causes of the violation of the constraints in IC .

Example 2. Let D = {r(1, 1); s(1)}, I1 = ← r(x, x), I2 = ← r(x, y), s(y) and
IC = {I1, I2}. The only cause of the violation of IC in D is {r(1, 1)}, which
is a proper subset of the single cause D of the violation of I2 in D.

Let vioCau(D, IC) be the set of all causes of the violation of IC in D.

Clearly, vioCau(D, IC) is analogous to vioCas as defined in 2.2. While vioCas
locates inconsistency by focusing on violated constraints, vioCau localizes incon-
sistency on the data that are responsible for integrity violations.

3 Violation Measures

Violation measures are a special kind of inconsistency measures [15]. Their pur-
pose is to size the amount of integrity violation in databases. In 3.1, we semi-
formally sketch our approach of violation measures. In 3.2, we define this concept
formally. In 3.3, we first recapitulate some measures already defined in [8,11,10],
and then introduce and discuss some new ones. In 3.4, we discuss some proper-
ties that are commonly associated to measures and investigate to which extent
they apply to violation measures.

3.1 Conceptualizing Violation Measures

In 3.2, we are going to define an abstract concept of violation measures as a
mapping from pairs (D, IC) to a set M that is structured by a partial order �
with an infimum o, a distance δ and an addition ⊕ with neutral element o.

The partial order � allows to compare the amount of inconsistency in two
pairs of databases and integrity theories, and in particular in consecutive states
(D, IC) and (DU , IC). With the distance δ, the difference, i.e., the increase or
decrease of inconsistency between D and DU , can be sized. The addition ⊕
allows to state a standard metric property for δ, and o is, at a time, the smallest
element of � and the neutral element of ⊕.

Thus, there are various measurable criteria according to which an update U
can be checked while tolerating extant inconsistencies, e.g., if U does not increase
the amount of inconsistency, or if DU does not trespass a certain threshold of
inconsistency, or if any increase of inconsistency brought about by U is negligible.

In traditional measure theory [1], a measure μ maps elements of a measure
space S (typically, a set of sets) to a metric space (M,� δ) (typically, M=R

+
0 ,

i.e., the non-negative real numbers, often with an additional greatest element
∞, �=≤, and δ= | – |, i.e., the absolute difference). For S ∈S, μ(S) usually
tells how ‘big’ S is. Standard properties are that μ is positive definite, i.e.,
μ(S)= 0 ⇔ S= ∅, μ is additive, i.e., μ(S ∪S′) = μ(S) + μ(S′), for disjoint sets
S, S′ ∈ S, and μ is monotone, i.e., if S⊆S′, then μ(S)≤μ(S′). The distance δ
maps M×M to itself, for determining the difference between measured entities.

New Measures for Maintaining the Quality of Databases 175

Similarly, for assessing inconsistency in databases, a violation measure ν as
defined in 3.2 maps pairs (D, IC) to a metric space that, like R

+
0 , has a partial

order and an addition with neutral element. The purpose of ν(D, IC) is to size
the amount of inconsistency in (D, IC), e.g., by counting or comparing sets of
cases or causes of constraint violations.

3.2 Formalizing Violation Measures

Definitions 3 and 4 below specialize the traditional concepts of metric spaces and
measures, since they are made up for databases and integrity violations. Yet, in
a sense, these definitions also generalize the traditional concepts, since they al-
low to size and compare different amounts of inconsistency without necessarily
quantifying them numerically. For example, with M=2Cas(IC) (powerset of
Cas(IC) as defined in 2.2.2), �=⊆ (subset), δ=� (symmetric set difference),
⊕=∪ (set union) and o= ∅ (empty set), it is possible to measure the inconsis-
tency of (D, IC) by sizing vioCas(D, IC).

Definition 3. A structure (M,�, δ,⊕, o) is called a metric space for integrity
violation (in short, a metric space) if (M,⊕) is a commutative semi-group with
neutral element o, � is a partial order on M with infimum o, and δ is a distance
on M. More precisely, for each m,m′,m′′ ∈M, the following properties (1)–(4)
hold for �, (5)–(8) for ⊕, and (9)–(11) for δ.

m � m (reflexivity) (1)

m � m′, m′ � m ⇒ m = m′ (antisymmetry) (2)

m � m′, m′ � m′′ ⇒ m � m′′ (transitivity) (3)

o � m (infimum) (4)

m⊕ (m′ ⊕m′′) = (m⊕m′)⊕m′′ (associativity) (5)

m⊕m′ = m′ ⊕m (commutativity) (6)

m⊕ o = m (neutrality) (7)

m � m⊕m′ (⊕-monotonicity) (8)

δ(m,m′) = δ(m′,m) (symmetry) (9)

δ(m,m) = o (identity) (10)

δ(m,m′) � δ(m,m′′)⊕ δ(m′′,m′) (triangle inequality) (11)

Let m≺m′ (m�m′) denote that m�m′ (resp., m′ �m) and m �=m′.

Example 3. (N0,≤, | – |, +, 0) is a metric space for integrity violation, where N0

is the set of non-negative integers. In this space, vioCon(D, IC), vioCas(D, IC)
or vioCau(D, IC) can be counted and compared. As already indicated, these
three sets may also be sized and compared in the metric spaces (2X ,⊆,�,∪, ∅),
where X stands for IC , Cas(IC) or iff(D), respectively.

176 H. Decker et al.

The following definition generically characterizes violation measures, whose
ranges are metric spaces such as those in Example 3.

Definition 4. A violation measure (in short, a measure) is a function ν that
maps pairs (D, IC) to a metric space (M, �, δ, ⊕, o) for integrity violation.

3.3 New Violation Measures

We continue with examples of violation measures that are going to accompany
us throughout the remainder of the paper. Preliminary versions of some of them
have already been presented in [8,11,10]. However, the axiomatization of those
previous versions is more shallow than in 3.2. Also the study of various properties
of violation measures in 3.4 is very scant in the cited predecessors.

Example 4. A coarse measure β is defined by β(D, IC)=D(IC) with the binary
metric space ({true, false},�, τ ,∧, true), where � and τ are defined by stipulat-
ing true≺ false (i.e., satisfaction means lower inconsistency than violation), and,
resp., τ(v, v′)= true if v= v′, else τ(v, v′) = false , for v, v′ ∈{true, false}, i.e., the
value of τ(v, v′) is the truth value of the logical equivalence v ↔ v′. Clearly, β
and its metric space reflect the classical logic distinction that a set of formulas is
either consistent or inconsistent, without any further differentiation of different
degrees of inconsistency. The meaning of τ is that each consistent pair (D, IC)
is equally good, and each inconsistent pair (D, IC) is equally bad.

Example 5. Two measures ι and |ι| that are quite straightforward are character-
ized by comparing and, resp., counting the set of violated constraints in the in-
tegrity theory of the database schema. The formal definition of these measures is
given by the equations ι(D, IC) = vioCon(IC ,D) and |ι|(D, IC) = |ι(D, IC)|,
where | . | is the cardinality operator, with metric spaces (2IC , ⊆, �, ∪, ∅) and,
resp., (N+

0 ,≤, | – |, +, 0).

Example 6. Two measures that are more fine-grained than those in Example 5
are given by ζ(D,IC)= vioCas(IC ,D) and |ζ|(D,IC)= |ζ(D, IC)|, with metric
spaces (2Cas(IC),⊆,�,∪, ∅) and, resp., (N+

0 ,≤, | – |, +, 0).

Example 7. Similar to cases, cause-based measures can be defined by the equa-
tions κ(D, IC) = vioCau(IC ,D) and |κ|(D, IC)= |κ(D, IC)|, with metric spaces
(2iff(D),⊆,�,∪, ∅) and, resp., again (N+

0 ,≤, | – |+, 0). Specific differences be-
tween measures based on cases (as in Example 6) and measures based on causes
(as in this example) have been discussed in [10].

Other violation measures are discussed in [8,11] among them two variants of an
inconsistency measure in [14] that are applicable to databases with integrity con-
straints, based on quasi-classical models [2]. Essentially, both violation measures
size the set of conflicting atoms in (D, IC), i.e., atoms A such that both A and
∼A are true in the minimal quasi-classical model of D∪ IC . Hence, their metric
spaces are (2H

∗
,⊆,�,∪, ∅) where H∗ is the union of H and {∼A |A ∈ H}, and,

resp., (N+
0 ,≤, | – |+, 0).

Some more new measures are going to be identified in 3.4.1 and 4.1.

New Measures for Maintaining the Quality of Databases 177

3.4 Properties of Violation Measures

As opposed to classical measure theory and previous work on inconsistency mea-
sures, Definition 4 does not require any axiomatic property of measures, such as
positive definiteness, additivity or monotony. These usually are required for each
traditional measure μ, as already mentioned in 3.1. We are going to look at such
properties, and argue that positive definiteness is not cogent, and both additivity
and monotony are invalid for many databases.

In 3.4.1, we discuss the standard axiom of positive definiteness of measures,
including some weakenings thereof. In 3.4.2, we show the standard axiom of
additivity of measures is invalid for violation measures. In 3.4.3, also the standard
axiom of monotonicity of measures is dismissed for violation measures, and some
valuable weakenings thereof are proposed.

3.4.1 Positive Definiteness
For traditional measures μ, positive definiteness means that μ(S)= 0 if and only
if S= ∅, for each S ∈S. For violation measures ν, that takes the form

ν(D, IC) = o ⇔ D(IC) = true (positive definiteness) (12)

for each pair (D, IC).
A property corresponding to (12) is postulated for inconsistency measures

in [13]. However, we are going to argue that (12) is not cogent for violation
measures, and that even two possible weakenings of (12) are not persuasive
enough as sine-qua-non requirements.

At first, (12) may seem to be most plausible as an axiom for any reasonable
inconsistency measure, since it assigns the lowest possible inconsistency value o
precisely to those databases that totally satisfy all of their constraints. In fact,
it is easy to show the following result.

Theorem 1. Each of the measures β, ι, |ι|, ζ, |ζ|,κ, |κ| fulfills (12).
Thus, in particular |ζ|, which counts the number of violated ground cases, com-
plies with (12). Now, let the measure ζ′ be defined by the following modification
of |ζ|: ζ′(D, IC)= 0 if |ζ|(D, IC)∈{0,1} else ζ′(D, IC) = |ζ|(D, IC). Thus, ζ′

considers each inconsistency that consists of just a single violated ground case
as insignificant. Hence, ζ′ does not obey (12) but can be, depending on the ap-
plication, a very reasonable violation measure that tolerates negligible amounts
of inconsistency.

Even the weakening

D(IC) = true ⇒ ν(D, IC) = o (13)

of (12) is not a cogent requirement for all reasonable violation measures, as
witnessed by the measure σ, as defined below. It takes a differentiated stance
with regard to integrity satisfaction and violation, by distinguishing between
satisfaction, satisfiability and violation of constraints, similar to [19] [17].

The measure σ be defined by incrementing a count of ‘problematic’ ground
cases of constraints by 1 for each ground case that is satisfiable but not a theorem

178 H. Decker et al.

of the completion of the given database, and by 2 for each ground case that is
violated. Hence, by the definitions of integrity satisfaction and violation in [17],
there are pairs (D, IC) such that IC is satisfied in D but σ(D, IC)> 0.

Another measure ε that does not respect (13) can be imagined as follows,
for databases with constraints of the form I =← p(x), x> th, where p(x) is a
relation defined by some aggregation of values in the database, meaning that I
is violated if p(x) holds for some x that trespasses a certain threshold th. Now,
suppose that ε assigns a minimal non-zero value to (D, IC) whenever I is still
satisfied in D but D(p(th)) = true, so as to indicate that I is at risk of becoming
violated. Hence, there are pairs (D, IC) such that ν= ε contradicts (13).

Also the requirement

ν(D, ∅) = o (14)

which weakens (13) even further, is not indispensable, although analogons of (14)
are standard in the literature on classical measures and inconsistency measures.
In fact, it is easy to imagine a measure that assigns a minimal non-zero value of
inconsistency to a database without integrity constraints. That value can then be
interpreted as a warning that there is a non-negligible likelihood of inconsistency
in a database where no constraints are imposed, be it out of neglect, or for trading
off consistency for efficiency, or due to any other reason.

So, in the end, only the rather bland property ν(∅, ∅)= o remains as a weak-
ening of (12) that should be required from violation measures.

3.4.2 Additivity
For traditional measures μ, additivity means μ(S ∪S′)=μ(S)+μ(S′), for each
pair of disjoint sets S,S′ ∈S. For violation measures ν, additivity takes the form

ν(D ∪D′, IC ∪ IC ′) = ν(D, IC)⊕ ν(D′, IC ′) (additivity) (15)

for each (D, IC), (D′, IC ′) such that D andD′ as well as IC and IC ′ are disjoint.
Additivity is standard for traditional measures. However, (15) is invalid for

violation measures, as shown by the following example.

Example 8. LetD= {p}, IC = ∅,D′ = ∅, IC ′ = {← p}. Clearly,D(IC)= true and
D′(IC ′)= true, thus |ζ|(D, IC)+ |ζ|(D′, IC′) = 0, but |ζ|(D∪D′, IC ∪IC ′)= 1.

3.4.3 Monotony
For traditional measures μ, monotony means S⊆S′ ⇒ μ(S)�μ(S′), for each
pair of sets S,S′ ∈S. For violation measures ν, monotony takes the form

D ⊆ D′, IC ⊆ IC ′ ⇒ ν(D, IC) � ν(D′, IC ′) (ν-monotonicity) (16)

for each pair of pairs (D, IC), (D′, IC ′).
A property corresponding to (16) is postulated for inconsistency measures in

[13]. For definite databases and integrity theories (i.e., the bodies of clauses do
not contain any negative literal), it is easy to show the following result.

New Measures for Maintaining the Quality of Databases 179

Theorem 2. For each pair of definite databases D,D′ and each pair of definite
integrity theories IC , IC ′, each of the measures β, ι, |ι|, ζ, |ζ|,κ, |κ| fulfills (16).
However, due to the non-monotonicity of negation in the body of clauses, (16) is
not valid for non-definite databases or non-definite integrity theories, as shown
by Example 9, in which the foreign key constraint ∀x(q(x, y)→∃z s(x, z)) on the
x-column of q referencing the x-column of s is rewritten into denial form (we
ignore the primary key constraint on the x-column of s since it is not relevant).

Example 9. Let D= {p(x)← q(x, y),∼r(x); r(x)← s(x, z); q(1, 2); s(2, 1)} and
IC = {← p(x)}. Clearly, D(IC) = false and |ζ|(D, IC)= 1. For D′ =D∪{s(1, 1)}
and IC ′ = IC , we have D′(IC ′)= true, hence |ζ|(D′, IC ′)= 0.

Now, we are going to look at two weakenings of (16) that hold also for non-
definite databases and integrity theories. In fact, (16) is already a weakening
of (15), since it is easily shown that (15) and (8) entail (16). Hence, any valid
weakening of (16) can also be understood as a valid weakening of (15).

The first weakening requires that the inconsistency in databases that violate
integrity is never lower than the inconsistency in databases that satisfy integrity.
Formally, for each pair of pairs (D, IC), (D, IC ′), the following property is asked
to hold.

D(IC) = true, D′(IC ′) = false ⇒ μ(D, IC) � μ(D′, IC ′) (17)

It is easy to show the following result.

Theorem 3. Each of the measures β, ι, |ι|, ζ, |ζ|,κ, |κ| fulfills (17).
A property that is slightly stronger than (17) has been postulated in [8,11]. It
is obtained by replacing � in (17) by ≺. It also holds for all measures from
Subsection 3.3. Yet, similar to (12), it does not hold for measures ζ′, σ and ε, as
defined in 3.4.1, while (17) does hold for those measures.

The second weakening of (16) has been postulated in [10]. It requires that,
for each D, the values of ν grow monotonically with growing integrity theories.

IC ⊆ IC ′ ⇒ ν(D, IC) � ν(D, IC ′) (18)

Since (18) weakens (16), the following result is entailed by Theorem3 for β,
ι, |ι|, ζ, |ζ|,κ, |κ|, and can be shown also for ζ′, σ, ε.

Theorem 4. Each of the measures β, ι, |ι|, ζ, |ζ|,κ, |κ|, ζ′,σ, ε fulfills (18).

4 Integrity Maintenance

To maintain integrity, constraint violations should be prevented or repaired. For
prevention, a common approach is to check if updated preserve integrity. For
repairing, methods described, e.g., in [20] may be used. However, it may be im-
practical or unfeasible to avoid inconsistency, or to repair all violated constraints
at once. Thus, an inconsistency-tolerant approach to integrity maintenance is

180 H. Decker et al.

needed. As we are going to see, that can be achieved by violation measures. In
fact, even in the presence of persisting inconsistency, the use of measures can
prevent the increase of inconsistency across updates. Measures also are useful
for controling that the amount of inconsistency never exceeds given thresholds.

In 4.1, we revisitmeasure-based inconsistency-tolerant integrity checking (abbr.
ITIC). Also, we show how inconsistency can be confined by assigning weights to
violated cases of constraints, which goes beyond the measures seen so far. More-
over, we show how to generalize measure-based ITIC by allowing for certain in-
creases of inconsistency that are bounded by some thresholds. In 4.2, we outline
how measure-based inconsistency-tolerant integrity checking can be used also for
making repairing inconsistency-tolerant.

4.1 Measure-Based Inconsistency-Tolerant Integrity Checking

Definition 5, below, characterizes integrity checking methods that may accept
updates if there is no increase of inconsistency, no matter if there is any extant
constraint violation or not. It abstractly captures measure-based ITIC methods
as black boxes, of which nothing but their i/o interface is observable. More
precisely, each methodM is described as a mapping from triples (D, IC , U) to
{ok , ko}. Intuitively, ok means that U does not increase the amount of measured
inconsistency, and ko that it may.

Definition 5. (Inconsistency-tolerant Integrity Checking, abbr. ITIC)
An integrity checking method maps triples (D, IC ,U) to {ok , ko}. For a measure
(ν,�), a method M is called sound (complete) for ν-based ITIC if, for each
(D, IC ,U), (19) (resp., (20)) holds.

M(D, IC, U) = ok ⇒ ν(DU , IC) � ν(D, IC) (19)

ν(DU , IC) � ν(D, IC) ⇒ M(D, IC, U) = ok (20)

EachM that is sound for ν-based ITIC is also called a ν-based method.

Intuitively, (19) says: M is sound if, whenever it outputs ok , the amount of
violation of IC in D as measured by ν is not increased by U . Conversely, (20)
says:M is complete if it outputs ok whenever the update U that is checked by
M does not increase the amount of integrity violation.

As opposed to ITIC, traditional integrity checking (abbr. TIC) imposes the
total integrity requirement. That is, TIC additionally requires D(IC)= true in
the premises of (19) and (20). The measure used in TIC is β (cf. Example 4).
Since ITIC is defined not just for β but for any violation measure ν, and since
TIC is not applicable if D(IC) = false , while ITIC is, Definition 5 generalizes
TIC. Moreover, the definition of ITIC in [12] is equivalent to Definition 5 for
ν= ζ. Hence, the latter also generalizes ITIC as defined in [12].

In [12], we have shown that the total integrity requirement is dispensable
for most TIC approaches. Similar to corresponding proofs in [12], it can be
shown that not all, but most TIC methods, including built-in integrity checks
in common DBMSs, are ν-based, for each ν ∈{ι, |ι|, ζ, |ζ|, κ, |κ|}. The following
results are easily shown by applying the definitions.

New Measures for Maintaining the Quality of Databases 181

Theorem 5. If a methodM is ν-based, then it is |ν|-based, for each ν ∈{ι, ζ, κ}.
If M is κ-based, then it is ζ-based. If M is ζ-based, then it is ι-based. The
converse of none of these implications holds.

Example 10, below, illustrates how the measures |ι|, |ζ|, |κ| that count violated
constraints, cases or causes thereof can be generalized by assigning weight factors
to the counted entities. Such weights are useful for modeling application-specific
degrees of violated integrity. A simple variant of such an assignment comes into
effect whenever ‘soft’ constraints that ought to be satisfied are distinguished from
‘hard’ constraints that must be satisfied.

Example 10. Let lr and hr be two predicates that model a low, resp., high
risk. Further, I1 =← lr(x), I2 =← hr(x), be a soft, resp., hard constraint for
protecting against low and, resp., high risks, where lr and hr are defined by
lr(x)← p(y,z), x = y+ z, x>th, z≥y and hr(x)← p(y,z), x = y+ z, x>th, y>z,
resp., where th is a threshold value that should not be exceded. and p(8, 3) be the
only cause of integrity violation in some database D. Now, for each ν ∈{ι, ζ,κ},
no ν-based method would accept the update U = {delete p(8, 3), insert p(3, 8)},
although the high risk provoked by p(8, 3) is diminished to the low risk produced
by p(3, 8). However, measures that assign weights to cases of I2 that are higher
than those of I1 can avoid that problem. For instance, consider the measure ω
that counts the numbers n1 and n2 of violated cases of I1 and, resp., I2 in D,
and assigns f1n1 + f2n2 to (D, {I1,I2}), where 0<f1<f2. Clearly, each ω-based
method will accept U . In fact, for ν ∈{|ι|, |ζ|, |κ|}, also each ν-based method
would accept U , but it is easy to imagine a slightly more elaborated update U ′

such that ν-based methods would not accept U ′ but ω-based methods would.

4.2 Repairs

Roughly, repairing means to compute and execute an update in order to eliminate
integrity violation. Thus, each repair can be identified with an update.

In 4.2.1, we formalize repairs and illustrate them by examples. In 4.2.2, we
outline how to compute repairs.

4.2.1 Formalizing Repairs
In [12], we have distinguished total and partial repairs. The former eliminate all
inconsistencies, the latter only some. Partial repairs tolerate inconsistency, since
violated constraints may persist, as illustrated by Example 11.

Example 11. Let D = {p(a, b, c), p(b, b, c), p(c, b, c), q(a, c), q(c, b), q(c, c)} and
IC = {← p(x, y, z),∼q(x, z); ← q(x, x)}. Clearly, the violated cases of IC in D
are ← p(b, b, c),∼q(b, c) and ← q(c, c). Each of the updates U1 = {insert q(b, c)}
and U2 = {delete p(b, b, c)} is a partial repair of (D, IC), since both fix the vio-
lation of {← p(b, b, c),∼q(b, c)} in D. Similarly, U3 = {delete q(c, c)} is a partial
repair that fixes the violation of {← q(c, c)} in D.

182 H. Decker et al.

Sadly, partial repairs may cause new violations, as shown in Example 12.

Example 12. Consider again Example 11. As opposed to U1 and U2, U3 causes
a new violation: ← p(c, b, c),∼q(c, c) is satisfied in D but not in DU3 . Thus,
the partial repair U4 = {delete q(c, c); delete p(c, b, c)} is needed to eliminate
the violation of ← q(c, c) in D without causing any violation that did not exist
before executing the partial repair.

Definition 6, below, generalizes the definition of partial repairs by requiring that
each repair must decrease the measured amount of integrity violation.

Definition 6. (Repair) Let D be a database, IC an integrity theory such that
D(IC)= false , ν a violation measure and U an update.

a) U is said to preserve integrity wrt. ν if ν(DU , IC) � ν(D, IC) holds.

b) For a proper subset S of Cas(IC) such that D(S) = false and DU (S)= true,
U is called a partial repair of (D, IC).

c) U is called a ν-based repair of (D, IC) if ν(DU , IC) ≺ ν(D, IC) holds. If,
additionally, DU (IC)= false , U is also called a ν-based patch of (D, IC). Else,
if DU (IC)= true, U is called a total repair of (D, IC).

Definition 6 could be sightly modified by replacing all occurrence of conditions
DU (IC)= false and DU (IC)= true by ν(D, IC)� o and ν(D, IC)= o, respec-
tively. For each ν ∈{ι, |ι|, ζ, |ζ|,κ, |κ|}, that replacement yields a definition that
is equivalent to Definition 6. Moreover, it is easy to show the following.

Theorem 6. For each pair (D, IC) and each ν ∈{ι, |ι|, ζ, |ζ|}, each ν-based
patch of (D, IC) is a partial repair of (D, IC).

Note that the converse of Theorem6 does not hold, as seen in Example 12. The-
orem6 also does not hold for ν ∈{κ, |κ|}, since the violation of some case C may
have n causes, n> 0, in some database D, and a repair U may just eliminate
one of the causes that violate C. Then, for ν ∈{κ, |κ|}, ν(DU , IC)≺ ν(D, IC),
i.e., U a ν-based patch but not a partial repair of (D, IC) since vioCas(D, IC)=
vioCas(DU , IC), hence D(S)=DU (S)= false .

In the literature, repairs usually are required to be total and, in some sense,
minimal. Mostly, subset-minimality is opted for, but several other notions of
minimality exist [4] [18]. Note that Definition 6 does not involve any notion of
minimality. However, each repair in Example 11 is subset-minimal.

Unpleasant side effects of repairs such as U3 can be avoided by checking if a
given partial repair is a patch with any convenient measure-based method, as
expressed in the following result. It follows from Definitions 5 and 6.

Theorem 7. For each tuple (D, IC), each partial repair U of (D, IC), each
measure ν and each ν-based methodM, U is a ν-based patch if M(D, IC , U) =
ok .

New Measures for Maintaining the Quality of Databases 183

4.2.2 Computing Repairs
Repairs can be computed by update methods, defined as follows.

Definition 7. An update method is an algorithm that, for each database D and
each update request R, computes candidate updates U1, . . .,Un (n ≥ 0) such
that DUi(R)= true (1 ≤ i ≤ n). For a measure ν, an update method UM is in-
tegrity-preserving wrt. ν if each Ui computed by UM preserves integrity wrt. ν.

Integrity-preserving update methods can be used to compute patches and repairs
wrt. any measure ν, as shown in [12] for the special case of ν= ζ. Theorem8 below
generalizes that result.

For an update request R in a database D, several update methods in the
literature work in two phases. First, a candidate update U such that DU (R) =
true is computed. Then, U is checked for integrity preservation by some TIC

method. If that check is positive, U is accepted. Else, U is rejected and another
candidate update, if any, is computed and checked. Hence, Theorem 8, below,
follows from Definition 7 and Theorem7.

Theorem 8. For each measure ν, each update method that uses ν-based ITIC

to check its computed candidate updates is integrity-preserving wrt. ν.

Example 13 shows what can go wrong if an update method that is not integrity-
preserving is used.

Example 13. Let D = {q(x)← r(x), s(x); p(a, a)}, R the view update request
to insert q(a), and IC = {← p(x, x); ← p(a, y), q(y)}. To satisfy R, most update
methods compute the candidate update U = {insert r(a); insert s(a)}. To check
if U preserves integrity, most methods compute the simplification ← p(a, a) of
the second constraint in IC . For avoiding a possibly expensive disk access for
evaluating the simplified case ← p(a, a) of ← p(a, y), q(y), TIC methods that
are not inconsistency-tolerant may use the invalid premise that D(IC) = true,
by reasoning as follows. The constraint ← p(x, x) in IC is not affected by U
and subsumes← p(a, a); hence, IC remains satisfied in DU . Thus, such methods
wrongly conclude that U preserves integrity, since the case ← p(a, y), q(y) is
satisfied in D but violated in DU . By contrast, each ITIC method rejects U ,
so that U ′ = U ∪{delete p(a, a)} can be computed for satisfying R. Clearly, U ′

preserves integrity, and even removes the violated case ← p(a, a).

The following example illustrates a general approach of how patches and total
repairs can be computed by update methods off the shelve.

Example 14. Let S= {←B1, . . ., ←Bn} (n ≥ 0) be a set of cases of constraints
in an integrity theory IC of a database D. An integrity-preserving repair of
(D,S) (which is total if S= IC) can be computed by each integrity-preserving
update method, simply by running the update request ∼vioS , where vioS be
defined by the clauses vioS←Bi (1≤ i≤n).

So far, we have said nothing about computing any measure that may be used
in integrity-preserving update methods. In fact, computing measures ι, |ι|, ζ, |ζ|

184 H. Decker et al.

corresponds to the cost of searching SLDNF trees rooted at constraint denials,
which can be exceedingly costly. The same correspondence holds for computing
κ and |κ| in databases and integrity theories without negation in the body of
clauses. If negation may occur, the cost can even be higher, as evidenced in [9].

Fortunately, none of these measures needs to be computed explicitly. Instead
of computing ν(DU , IC) and ν(DU , IC) entirely, it suffices to compute a superset
approximation of the increment δ(ν(D, IC), ν(DU , IC)), as many TIC methods
do, for ν= ζ. As attested by such methods, approximating the increment of
inconsistency in consecutive states is significantly less costly than checking the
inconsistency of entire databases. Moreover, for two integrity-preserving partial
repair candidates U , U ′ of IC in D that do not repair the same set of violations,
U is preferable to U ′ if δ(ν(D, IC), ν(DU ′

, IC)) ≺ δ(ν(D, IC), ν(DU , IC)),
since U eliminates more inconsistency from D than U ′.

5 Conclusion

In theory, database quality can be achieved by either preventing or eliminating
the violation of integrity constraints. In practice, however, integrity violation
cannot always be prevented, and a total elimination of all violations often is
infeasible. Thus, integrity maintenance must be inconsistency-tolerant.

In this paper, we have generalized the concept of inconsistency-tolerant in-
tegrity checking and repairing in [12]. We have axiomatized measures that de-
termine the amount of violation in given databases with associated integrity
theories. Using such measures, each update can be checked and accepted if it
does not increase the measured violation. Similarly, each repair is acceptable if
it decreases the measured violation.

Future work includes an application of the concept of measure-based incon-
sistency tolerance for computing answers that have integrity in databases with
violated constraints, and the use of measure-based ITIC for concurrent transac-
tions in distributed and replicated databases.

References

1. Bauer, H.: Maß- und Integrationstheorie, 2nd edn. De Gruyter (1992)
2. Besnard, P., Hunter, A.: Quasi-Classical Logic: Non-trivializable Classical Reason-

ing from Inconsistent Information. In: Froidevaux, C., Kohlas, J. (eds.) ECSQARU
1995. LNCS, vol. 946, pp. 44–51. Springer, Heidelberg (1995)

3. Ceri, S., Cochrane, R., Widom, J.: Practical Applications of Triggers and Con-
straints: Success and Lingering Issues. In: Proc. 26th VLDB, pp. 254–262. Morgan
Kaufmann (2000)

4. Chomicki, J.: Consistent Query Answering: Five Easy Pieces. In: Schwentick, T.,
Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 1–17. Springer, Heidelberg (2006)

5. Christiansen, H., Martinenghi, D.: On simplification of database integrity con-
straints. Fundam. Inform. 71(4), 371–417 (2006)

6. Clark, K.: Negation as Failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 293–322. Plenum Press (1978)

New Measures for Maintaining the Quality of Databases 185

7. Decker, H.: The Range Form of Databases and Queries or: How to Avoid Flounder-
ing. In: Proc. 5th ÖGAI. Informatik-Fachberichte, vol. 208, pp. 114–123. Springer
(1989)

8. Decker, H.: Quantifying the Quality of Stored Data by Measuring their Integrity.
In: Proc. DIWT 2009, Workshop SMM, pp. 823–828. IEEE (2009)

9. Decker, H.: Answers That Have Integrity. In: Schewe, K.-D., Thalheim, B. (eds.)
SDKB 2010. LNCS, vol. 6834, pp. 54–72. Springer, Heidelberg (2011)

10. Decker, H.: Causes of the Violation of Integrity Constraints for Supporting the
Quality of Databases. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Ap-
duhan, B.O. (eds.) ICCSA 2011, Part V. LNCS, vol. 6786, pp. 283–292. Springer,
Heidelberg (2011)

11. Decker, H., Martinenghi, D.: Modeling, Measuring and Monitoring the Quality of
Information. In: Heuser, C.A., Pernul, G. (eds.) ER 2009. LNCS, vol. 5833, pp.
212–221. Springer, Heidelberg (2009)

12. Decker, H., Martinenghi, D.: Inconsistency-tolerant Integrity Checking.
TKDE 23(2), 218–234 (2011)

13. Grant, J., Hunter, A.: Measuring the Good and the Bad in Inconsistent Informa-
tion. In: Proc. 22nd IJCAI, pp. 2632–2637 (2011)

14. Hunter, A.: Measuring Inconsistency in Knowledge via Quasi-Classical Models. In:
Proc. 18th AAAI & 14th IAAI, pp. 68–73 (2002)

15. Hunter, A., Konieczny, S.: Approaches to Measuring Inconsistent Information.
In: Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS,
vol. 3300, pp. 191–236. Springer, Heidelberg (2005)

16. Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill
(2003)

17. Sadri, F., Kowalski, R.: A theorem-proving approach to database integrity. In:
Foundations of Deductive Databases and Logic Programming, pp. 313–362. Morgan
Kaufmann (1988)

18. ten Cate, B., Fontaine, G., Kolaitis, P.: On the Data Complexity of Consistent
Query Answering. To appear in Proc. 15th ICDT. LNCS, Springer (2012)

19. Vardi, M.: On the integrity of databases with incomplete information. In: Proc.
5th PODS, pp. 252–266. ACM Press (1986)

20. Wijsen, J.: Database repairing using updates. ACM Trans. Database Syst. 30(3),
722–768 (2005)

	New Measures for Maintaining the Quality of Databases
	Introduction
	The Framework
	Databases, Completions, Updates, Constraints
	Cases
	Causes

	Violation Measures
	Conceptualizing Violation Measures
	Formalizing Violation Measures
	New Violation Measures
	Properties of Violation Measures

	Integrity Maintenance
	Measure-Based Inconsistency-Tolerant Integrity Checking
	Repairs

	Conclusion
	References

