

Lecture Notes in Computer Science 7336
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Beniamino Murgante Osvaldo Gervasi
Sanjay Misra Nadia Nedjah
Ana Maria A.C. Rocha David Taniar
Bernady O. Apduhan (Eds.)

Computational Science
and Its Applications –
ICCSA 2012
12th International Conference
Salvador de Bahia, Brazil, June 18-21, 2012
Proceedings, Part IV

13

Volume Editors

Beniamino Murgante
University of Basilicata, Potenza, Italy, E-mail: beniamino.murgante@unibas.it

Osvaldo Gervasi
University of Perugia, Italy, E-mail: osvaldo@unipg.it

Sanjay Misra
Federal University of Technology, Minna, Nigeria, E-mail: smisra@futminna.edu.ng

Nadia Nedjah
State University of Rio de Janeiro, Brazil, E-mail: nadia@eng.uerj.br

Ana Maria A. C. Rocha
University of Minho, Braga, Portugal, E-mail: arocha@dps.uminho.pt

David Taniar
Monash University, Clayton,VIC,Australia, E-mail: david.taniar@infotech.monash.edu.au

Bernady O. Apduhan
Kyushu Sangyo University, Fukuoka, Japan, E-mail: bob@is.kyusan-u.ac.jp

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-31127-7 e-ISBN 978-3-642-31128-4
DOI 10.1007/978-3-642-31128-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012939389

CR Subject Classification (1998): C.2.4, C.2, H.4, F.2, H.3, D.2, F.1, H.5, H.2.8,
K.6.5, I.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This four-part volume (LNCS 7333-7336) contains a collection of research papers
from the 12th International Conference on Computational Science and Its Ap-
plications (ICCSA 2012) held in Salvador de Bahia, Brazil, during June 18–21,
2012. ICCSA is one of the successful international conferences in the field of com-
putational sciences, and this year for the first time in the history of the ICCSA
conference series it was held in South America. Previously the ICCSA conference
series have been held in Santander, Spain (2011), Fukuoka, Japan (2010), Suwon,
Korea (2009), Perugia, Italy (2008), Kuala Lumpur, Malaysia (2007), Glasgow,
UK (2006), Singapore (2005), Assisi, Italy (2004), Montreal, Canada (2003), (as
ICCS) Amsterdam, The Netherlands (2002), and San Francisco, USA (2001).

The computational science community has enthusiastically embraced the suc-
cessive editions of ICCSA, thus contributing to making ICCSA a focal meeting
point for those interested in innovative, cutting-edge research about the latest
and most exciting developments in the field. We are grateful to all those who
have contributed to the ICCSA conference series.

ICCSA 2012 would not have been made possible without the valuable con-
tribution of many people. We would like to thank all session organizers for their
diligent work, which further enhanced the conference level, and all reviewers
for their expertise and generous effort, which led to a very high quality event
with excellent papers and presentations. We specially recognize the contribution
of the Program Committee and local Organizing Committee members for their
tremendous support and for making this congress a very successful event. We
would like to sincerely thank our keynote speakers, who willingly accepted our
invitation and shared their expertise.

We also thank our publisher, Springer, for accepting to publish the proceed-
ings and for their kind assistance and cooperation during the editing process.

Finally, we thank all authors for their submissions and all conference atten-
dants for making ICCSA 2012 truly an excellent forum on computational science,
facilitating the exchange of ideas, fostering new collaborations and shaping the
future of this exciting field. Last, but certainly not least, we wish to thank our
readers for their interest in this volume. We really hope you find in these pages
interesting material and fruitful ideas for your future work.

We cordially invite you to visit the ICCSA website—http://www.iccsa.org—
where you can find relevant information about this interesting and exciting event.

June 2012 Osvaldo Gervasi
David Taniar

Organization

ICCSA 2012 was organized by Universidade Federal da Bahia (Brazil), Universi-
dade Federal do Recôncavo da Bahia (Brazil), Universidade Estadual de Feira de
Santana (Brazil), University of Perugia (Italy), University of Basilicata (Italy),
Monash University (Australia), and Kyushu Sangyo University (Japan).

Honorary General Chairs

Antonio Laganà University of Perugia, Italy
Norio Shiratori Tohoku University, Japan
Kenneth C.J. Tan Qontix, UK

General Chairs

Osvaldo Gervasi University of Perugia, Italy
David Taniar Monash University, Australia

Program Committee Chairs

Bernady O. Apduhan Kyushu Sangyo University, Japan
Beniamino Murgante University of Basilicata, Italy

Workshop and Session Organizing Chairs

Beniamino Murgante University of Basilicata, Italy

Local Organizing Committee

Frederico V. Prudente Universidade Federal da Bahia, Brazil (Chair)
Mirco Ragni Universidade Estadual de Feira de Santana,

Brazil
Ana Carla P. Bitencourt Universidade Federal do Recôncavo da Bahia,

Brazil
Cassio Pigozzo Universidade Federal da Bahia, Brazil
Angelo Duarde Universidade Estadual de Feira de Santana,

Brazil
Marcos E. Barreto Universidade Federal da Bahia, Brazil
José Garcia V. Miranda Universidade Federal da Bahia, Brazil

VIII Organization

International Liaison Chairs

Jemal Abawajy Deakin University, Australia
Marina L. Gavrilova University of Calgary, Canada
Robert C.H. Hsu Chung Hua University, Taiwan
Tai-Hoon Kim Hannam University, Korea
Andrés Iglesias University of Cantabria, Spain
Takashi Naka Kyushu Sangyo University, Japan
Rafael D.C. Santos National Institute for Space Research, Brazil

Workshop Organizers

Advances in High-Performance Algorithms
and Applications (AHPAA 2012)

Massimo Cafaro University of Salento, Italy
Giovanni Aloisio University of Salento, Italy

Advances in Web-Based Learning (AWBL 2012)

Mustafa Murat Inceoglu Ege University, Turkey

Bio-inspired Computing and Applications (BIOCA 2012)

Nadia Nedjah State University of Rio de Janeiro, Brazil
Luiza de Macedo Mourell State University of Rio de Janeiro, Brazil

Computer-Aided Modeling, Simulation, and Analysis
(CAMSA 2012)

Jie Shen University of Michigan, USA
Yuqing Song Tianjing University of Technology and

Education, China

Cloud Computing and Its Applications (CCA 2012)

Jemal Abawajy University of Deakin, Australia
Osvaldo Gervasi University of Perugia, Italy

Computational Geometry and Applications (CGA 2012)

Marina L. Gavrilova University of Calgary, Canada

Organization IX

Chemistry and Materials Sciences and Technologies
(CMST 2012)

Antonio Laganà University of Perugia, Italy

Cities, Technologies and Planning (CTP 2012)

Giuseppe Borruso University of Trieste, Italy
Beniamino Murgante University of Basilicata, Italy

Computational Tools and Techniques for Citizen Science
and Scientific Outreach (CTTCS 2012)

Rafael Santos National Institute for Space Research, Brazil
Jordan Raddickand Johns Hopkins University, USA
Ani Thakar Johns Hopkins University, USA

Econometrics and Multidimensional Evaluation in the
Urban Environment (EMEUE 2012)

Carmelo M. Torre Polytechnic of Bari, Italy
Maria Cerreta Università Federico II of Naples, Italy
Paola Perchinunno University of Bari, Italy

Future Information System Technologies and Applications
(FISTA 2012)

Bernady O. Apduhan Kyushu Sangyo University, Japan

Geographical Analysis, Urban Modeling, Spatial Statistics
(GEOG-AN-MOD 2012)

Stefania Bertazzon University of Calgary, Canada
Giuseppe Borruso University of Trieste, Italy
Beniamino Murgante University of Basilicata, Italy

International Workshop on Biomathematics,
Bioinformatics and Biostatistics (IBBB 2012)

Unal Ufuktepe Izmir University of Economics, Turkey
Andrés Iglesias University of Cantabria, Spain

X Organization

International Workshop on Collective Evolutionary
Systems (IWCES 2012)

Alfredo Milani University of Perugia, Italy
Clement Leung Hong Kong Baptist University, Hong Kong

Mobile Communications (MC 2012)

Hyunseung Choo Sungkyunkwan University, Korea

Mobile Computing, Sensing, and Actuation for Cyber
Physical Systems (MSA4CPS 2012)

Moonseong Kim Korean intellectual Property Office, Korea
Saad Qaisar NUST School of Electrical Engineering and

Computer Science, Pakistan

Optimization Techniques and Applications (OTA 2012)

Ana Maria Rocha University of Minho, Portugal

Parallel and Mobile Computing in Future Networks
(PMCFUN 2012)

Al-Sakib Khan Pathan International Islamic University Malaysia,
Malaysia

PULSES - Transitions and Nonlinear Phenomena
(PULSES 2012)

Carlo Cattani University of Salerno, Italy
Ming Li East China Normal University, China
Shengyong Chen Zhejiang University of Technology, China

Quantum Mechanics: Computational Strategies and
Applications (QMCSA 2012)

Mirco Ragni Universidad Federal de Bahia, Brazil
Frederico Vasconcellos

Prudente Universidad Federal de Bahia, Brazil
Angelo Marconi Maniero Universidad Federal de Bahia, Brazil
Ana Carla Peixoto Bitencourt Universidade Federal do Reconcavo da Bahia,

Brazil

Organization XI

Remote Sensing Data Analysis, Modeling, Interpretation
and Applications: From a Global View to a Local Analysis
(RS 2012)

Rosa Lasaponara Institute of Methodologies for Environmental
Analysis, National Research Council, Italy

Nicola Masini Archaeological and Mconumental Heritage
Institute, National Research Council, Italy

Soft Computing and Data Engineering (SCDE 2012)

Mustafa Matt Deris Universiti Tun Hussein Onn Malaysia, Malaysia
Tutut Herawan Universitas Ahmad Dahlan, Indonesia

Software Engineering Processes and Applications
(SEPA 2012)

Sanjay Misra Federal University of Technology Minna,
Nigeria

Software Quality (SQ 2012)

Sanjay Misra Federal University of Technology Minna,
Nigeria

Security and Privacy in Computational Sciences
(SPCS 2012)

Arijit Ukil Tata Consultancy Services, India

Tools and Techniques in Software Development Processes
(TTSDP 2012)

Sanjay Misra Federal University of Technology Minna,
Nigeria

Virtual Reality and Its Applications (VRA 2012)

Osvaldo Gervasi University of Perugia, Italy
Andrès Iglesias University of Cantabria, Spain

XII Organization

Wireless and Ad-Hoc Networking (WADNet 2012)

Jongchan Lee Kunsan National University, Korea
Sangjoon Park Kunsan National University, Korea

Program Committee

Jemal Abawajy Daekin University, Australia
Kenny Adamson University of Ulster, UK
Filipe Alvelos University of Minho, Portugal
Paula Amaral Universidade Nova de Lisboa, Portugal
Hartmut Asche University of Potsdam, Germany
Md. Abul Kalam Azad University of Minho, Portugal
Michela Bertolotto University College Dublin, Ireland
Sandro Bimonte CEMAGREF, TSCF, France
Rod Blais University of Calgary, Canada
Ivan Blecic University of Sassari, Italy
Giuseppe Borruso University of Trieste, Italy
Alfredo Buttari CNRS-IRIT, France
Yves Caniou Lyon University, France
José A. Cardoso e Cunha Universidade Nova de Lisboa, Portugal
Leocadio G. Casado University of Almeria, Spain
Carlo Cattani University of Salerno, Italy
Mete Celik Erciyes University, Turkey
Alexander Chemeris National Technical University of Ukraine

“KPI”, Ukraine
Min Young Chung Sungkyunkwan University, Korea
Gilberto Corso Pereira Federal University of Bahia, Brazil
M. Fernanda Costa University of Minho, Portugal
Gaspar Cunha University of Minho, Portugal
Carla Dal Sasso Freitas Universidade Federal do Rio Grande do Sul,

Brazil
Pradesh Debba The Council for Scientific and Industrial

Research (CSIR), South Africa
Frank Devai London South Bank University, UK
Rodolphe Devillers Memorial University of Newfoundland, Canada
Prabu Dorairaj NetApp, India/USA
M. Irene Falcao University of Minho, Portugal
Cherry Liu Fang U.S. DOE Ames Laboratory, USA
Edite M.G.P. Fernandes University of Minho, Portugal
Jose-Jesus Fernandez National Centre for Biotechnology, CSIS, Spain
Maria Antonia Forjaz University of Minho, Portugal
Maria Celia Furtado Rocha PRODEB–PósCultura/UFBA, Brazil
Akemi Galvez University of Cantabria, Spain
Paulino Jose Garcia Nieto University of Oviedo, Spain
Marina Gavrilova University of Calgary, Canada

Organization XIII

Jerome Gensel LSR-IMAG, France
Maria Giaoutzi National Technical University, Athens, Greece
Andrzej M. Goscinski Deakin University, Australia
Alex Hagen-Zanker University of Cambridge, UK
Malgorzata Hanzl Technical University of Lodz, Poland
Shanmugasundaram

Hariharan B.S. Abdur Rahman University, India
Eligius M.T. Hendrix University of Malaga/Wageningen University,

Spain/The Netherlands
Hisamoto Hiyoshi Gunma University, Japan
Fermin Huarte University of Barcelona, Spain
Andres Iglesias University of Cantabria, Spain
Mustafa Inceoglu EGE University, Turkey
Peter Jimack University of Leeds, UK
Qun Jin Waseda University, Japan
Farid Karimipour Vienna University of Technology, Austria
Baris Kazar Oracle Corp., USA
DongSeong Kim University of Canterbury, New Zealand
Taihoon Kim Hannam University, Korea
Ivana Kolingerova University of West Bohemia, Czech Republic
Dieter Kranzlmueller LMU and LRZ Munich, Germany
Antonio Laganà University of Perugia, Italy
Rosa Lasaponara National Research Council, Italy
Maurizio Lazzari National Research Council, Italy
Cheng Siong Lee Monash University, Australia
Sangyoun Lee Yonsei University, Korea
Jongchan Lee Kunsan National University, Korea
Clement Leung Hong Kong Baptist University, Hong Kong
Chendong Li University of Connecticut, USA
Gang Li Deakin University, Australia
Ming Li East China Normal University, China
Fang Liu AMES Laboratories, USA
Xin Liu University of Calgary, Canada
Savino Longo University of Bari, Italy
Tinghuai Ma NanJing University of Information Science and

Technology, China
Sergio Maffioletti University of Zurich, Switzerland
Ernesto Marcheggiani Katholieke Universiteit Leuven, Belgium
Antonino Marvuglia Research Centre Henri Tudor, Luxembourg
Nicola Masini National Research Council, Italy
Nirvana Meratnia University of Twente, The Netherlands
Alfredo Milani University of Perugia, Italy
Sanjay Misra Federal University of Technology Minna,

Nigeria
Giuseppe Modica University of Reggio Calabria, Italy

XIV Organization

José Luis Montaña University of Cantabria, Spain
Beniamino Murgante University of Basilicata, Italy
Jiri Nedoma Academy of Sciences of the Czech Republic,

Czech Republic
Laszlo Neumann University of Girona, Spain
Kok-Leong Ong Deakin University, Australia
Belen Palop Universidad de Valladolid, Spain
Marcin Paprzycki Polish Academy of Sciences, Poland
Eric Pardede La Trobe University, Australia
Kwangjin Park Wonkwang University, Korea
Ana Isabel Pereira Polytechnic Institute of Braganca, Portugal
Maurizio Pollino Italian National Agency for New

Technologies, Energy and Sustainable
Economic Development, Italy

Alenka Poplin University of Hamburg, Germany
Vidyasagar Potdar Curtin University of Technology, Australia
David C. Prosperi Florida Atlantic University, USA
Wenny Rahayu La Trobe University, Australia
Jerzy Respondek Silesian University of Technology Poland
Ana Maria A.C. Rocha University of Minho, Portugal
Humberto Rocha INESC-Coimbra, Portugal
Alexey Rodionov Institute of Computational Mathematics and

Mathematical Geophysics, Russia
Cristina S. Rodrigues University of Minho, Portugal
Octavio Roncero CSIC, Spain
Maytham Safar Kuwait University, Kuwait
Haiduke Sarafian The Pennsylvania State University, USA
Qi Shi Liverpool John Moores University, UK
Dale Shires U.S. Army Research Laboratory, USA
Takuo Suganuma Tohoku University, Japan
Ana Paula Teixeira University of Tras-os-Montes and Alto Douro,

Portugal
Senhorinha Teixeira University of Minho, Portugal
Parimala Thulasiraman University of Manitoba, Canada
Carmelo Torre Polytechnic of Bari, Italy
Javier Martinez Torres Centro Universitario de la Defensa Zaragoza,

Spain
Giuseppe A. Trunfio University of Sassari, Italy
Unal Ufuktepe Izmir University of Economics, Turkey
Mario Valle Swiss National Supercomputing Centre,

Switzerland
Pablo Vanegas University of Cuenca, Equador
Piero Giorgio Verdini INFN Pisa and CERN, Italy
Marco Vizzari University of Perugia, Italy
Koichi Wada University of Tsukuba, Japan

Organization XV

Krzysztof Walkowiak Wroclaw University of Technology, Poland
Robert Weibel University of Zurich, Switzerland
Roland Wismüller Universität Siegen, Germany
Mudasser Wyne SOET National University, USA
Chung-Huang Yang National Kaohsiung Normal University, Taiwan
Xin-She Yang National Physical Laboratory, UK
Salim Zabir France Telecom Japan Co., Japan
Albert Y. Zomaya University of Sydney, Australia

Sponsoring Organizations

ICCSA 2012 would not have been possible without tremendous support of many
organizations and institutions, for which all organizers and participants of ICCSA
2012 express their sincere gratitude:

Universidade Federal da Bahia, Brazil
(http://www.ufba.br)

Universidade Federal do Recôncavo da Bahia,
Brazil
(http://www.ufrb.edu.br)

Universidade Estadual de Feira de Santana,
Brazil
(http://www.uefs.br)

University of Perugia, Italy
(http://www.unipg.it)

University of Basilicata, Italy
(http://www.unibas.it)

XVI Organization

Monash University, Australia
(http://monash.edu)

Kyushu Sangyo University, Japan
(www.kyusan-u.ac.jp)

Brazilian Computer Society
(www.sbc.org.br)

Coordenaçāo de Aperfeiçoamento de Pessoal de
Nı́vel Superior (CAPES), Brazil
(http://www.capes.gov.br)

National Council for Scientific and
Technological Development (CNPq), Brazil
(http://www.cnpq.br)

Fundaçāo de Amparo à Pesquisa do Estado
da Bahia (FAPESB), Brazil
(http://www.fapesb.ba.gov.br)

Table of Contents – Part IV

Workshop on Software Engineering Processes
and Applications (SEPA 2012)

Modeling Road Traffic Signals Control Using UML and the MARTE
Profile . 1

Eduardo Augusto Silvestre and Michel dos Santos Soares

Analysis of Techniques for Documenting User Requirements 16
Michel dos Santos Soares and Daniel Souza Cioquetta

Predicting Web Service Maintainability via Object-Oriented Metrics:
A Statistics-Based Approach . 29

José Luis Ordiales Coscia, Marco Crasso, Cristian Mateos,
Alejandro Zunino, and Sanjay Misra

Early Automated Verification of Tool Chain Design 40
Matthias Biehl

Using UML Stereotypes to Support the Requirement Engineering:
A Case Study . 51

Vitor A. Batista, Daniela C.C. Peixoto, Wilson Pádua, and
Clarindo Isáıas P.S. Pádua

Identifying Business Rules to Legacy Systems Reengineering Based on
BPM and SOA . 67

Gleison S. do Nascimento, Cirano Iochpe, Lucinéia Thom,
André C. Kalsing, and Álvaro Moreira

Abstraction Analysis and Certified Flow and Context Sensitive
Points-to Relation for Distributed Programs . 83

Mohamed A. El-Zawawy

An Approach to Measure Understandability of Extended UML Based
on Metamodel . 100

Yan Zhang, Yi Liu, Zhiyi Ma, Xuying Zhao, Xiaokun Zhang, and
Tian Zhang

Dealing with Dependencies among Functional and Non-functional
Requirements for Impact Analysis in Web Engineering 116

José Alfonso Aguilar, Irene Garrigós, Jose-Norberto Mazón, and
Anibal Zald́ıvar

XVIII Table of Contents – Part IV

Assessing Maintainability Metrics in Software Architectures Using
COSMIC and UML . 132

Eudisley Gomes dos Anjos, Ruan Delgado Gomes, and
Mário Zenha-Rela

Plagiarism Detection in Software Using Efficient String Matching 147
Kusum Lata Pandey, Suneeta Agarwal, Sanjay Misra, and
Rajesh Prasad

Dynamic Software Maintenance Effort Estimation Modeling Using
Neural Network, Rule Engine and Multi-regression Approach 157

Ruchi Shukla, Mukul Shukla, A.K. Misra, T. Marwala, and
W.A. Clarke

Workshop on Software Quality (SQ 2012)

New Measures for Maintaining the Quality of Databases 170
Hendrik Decker

A New Way to Determine External Quality of ERP Software 186
Ali Orhan Aydin

Towards a Catalog of Spreadsheet Smells . 202
Jácome Cunha, João P. Fernandes, Hugo Ribeiro, and João Saraiva

Program and Aspect Metrics for MATLAB . 217
Pedro Martins, Paulo Lopes, João P. Fernandes, João Saraiva, and
João M.P. Cardoso

A Suite of Cognitive Complexity Metrics . 234
Sanjay Misra, Murat Koyuncu, Marco Crasso, Cristian Mateos, and
Alejandro Zunino

Complexity Metrics for Cascading Style Sheets . 248
Adewole Adewumi, Sanjay Misra, and Nicholas Ikhu-Omoregbe

A Systematic Review on the Impact of CK Metrics on the Functional
Correctness of Object-Oriented Classes . 258

Yasser A. Khan, Mahmoud O. Elish, and Mohamed El-Attar

Workshop on Security and Privacy in Computational
Sciences (SPCS 2012)

Pinpointing Malicious Activities through Network and System-Level
Malware Execution Behavior . 274

André Ricardo Abed Grégio, Vitor Monte Afonso,
Dario Simões Fernandes Filho, Paulo Ĺıcio de Geus,
Mario Jino, and Rafael Duarte Coelho dos Santos

Table of Contents – Part IV XIX

A Malware Detection System Inspired on the Human Immune
System . 286

Isabela Liane de Oliveira, André Ricardo Abed Grégio, and
Adriano Mauro Cansian

Interactive, Visual-Aided Tools to Analyze Malware Behavior 302
André Ricardo Abed Grégio, Alexandre Or Cansian Baruque,
Vitor Monte Afonso, Dario Simões Fernandes Filho,
Paulo Ĺıcio de Geus, Mario Jino, and
Rafael Duarte Coelho dos Santos

Interactive Analysis of Computer Scenarios through Parallel
Coordinates Graphics . 314

Gabriel D. Cavalcante, Sebastien Tricaud, Cleber P. Souza, and
Paulo Ĺıcio de Geus

Methodology for Detection and Restraint of P2P Applications in the
Network . 326

Rodrigo M.P. Silva and Ronaldo M. Salles

Workshop on Soft Computing and Data Engineering
(SCDE 2012)

Text Categorization Based on Fuzzy Soft Set Theory 340
Bana Handaga and Mustafa Mat Deris

Cluster Size Determination Using JPEG Files . 353
Nurul Azma Abdullah, Rosziati Ibrahim, and
Kamaruddin Malik Mohamad

Semantic Web Search Engine Using Ontology, Clustering and
Personalization Techniques . 364

Noryusliza Abdullah and Rosziati Ibrahim

Granules of Words to Represent Text: An Approach Based on Fuzzy
Relations and Spectral Clustering . 379

Patŕıcia F. Castro and Geraldo B. Xexéo

Multivariate Time Series Classification by Combining Trend-Based and
Value-Based Approximations . 392

Bilal Esmael, Arghad Arnaout, Rudolf K. Fruhwirth, and
Gerhard Thonhauser

XX Table of Contents – Part IV

General Track on High Performance Computing
and Networks

Impact of pay-as-you-go Cloud Platforms on Software Pricing and
Development: A Review and Case Study . 404

Fernando Pires Barbosa and Andrea Schwertner Charão

Resilience for Collaborative Applications on Clouds: Fault-Tolerance
for Distributed HPC Applications . 418

Toàn Nguyên and Jean-Antoine Désidéri

T-DMB Receiver Model for Emergency Alert Service 434
Seong-Geun Kwon, Suk-Hwan Lee, Eung-Joo Lee, and
Ki-Ryong Kwon

A Framework for Context-Aware Systems in Mobile Devices 444
Eduardo Jorge, Matheus Farias, Rafael Carmo, and Weslley Vieira

A Simulation Framework for Scheduling Performance Evaluation on
CPU-GPU Heterogeneous System . 457

Flavio Vella, Igor Neri, Osvaldo Gervasi, and Sergio Tasso

Influence of Topology on Mobility and Transmission Capacity
of Human-Based DTNs . 470

Danilo A. Moschetto, Douglas O. Freitas, Lourdes P.P. Poma,
Ricardo Aparecido Perez de Almeida, and Cesar A.C. Marcondes

Towards a Computer Assisted Approach for Migrating Legacy Systems
to SOA . 484

Gonzalo Salvatierra, Cristian Mateos, Marco Crasso, and
Alejandro Zunino

1+1 Protection of Overlay Distributed Computing Systems:
Modeling and Optimization . 498

Krzysztof Walkowiak and Jacek Rak

Scheduling and Capacity Design in Overlay Computing Systems 514
Krzysztof Walkowiak, Andrzej Kasprzak, Micha�l Kosowski, and
Marek Mizio�lek

GPU Acceleration of the caffa3d.MB Model . 530
Pablo Igounet, Pablo Alfaro, Gabriel Usera, and Pablo Ezzatti

Security-Effective Fast Authentication Mechanism for Network Mobility
in Proxy Mobile IPv6 Networks . 543

Illkyun Im, Young-Hwa Cho, Jae-Young Choi, and Jongpil Jeong

An Architecture for Service Integration and Unified Communication
in Mobile Computing . 560

Ricardo Aparecido Perez de Almeida and Hélio C. Guardia

Table of Contents – Part IV XXI

Task Allocation in Mesh Structure: 2Side LeapFrog Algorithm and
Q-Learning Based Algorithm . 576

Iwona Pozniak-Koszalka, Wojciech Proma, Leszek Koszalka,
Maciej Pol, and Andrzej Kasprzak

Follow-Us: A Distributed Ubiquitous Healthcare System Simulated by
MannaSim . 588

Maria Lúısa Amarante Ghizoni, Adauto Santos, and
Linnyer Beatrys Ruiz

Adaptive Dynamic Frequency Scaling for Thermal-Aware 3D Multi-core
Processors . 602

Hong Jun Choi, Young Jin Park, Hsien-Hsin Lee, and
Cheol Hong Kim

A Context-Aware Service Model Based on the OSGi Framework for
u-Agricultural Environments . 613

Jongsun Choi, Sangjoon Park, Jongchan Lee, and Yongyun Cho

A Security Framework for Blocking New Types of Internet Worms in
Ubiquitous Computing Environments . 622

Iksu Kim and Yongyun Cho

Quality Factors in Development Best Practices for Mobile
Applications . 632

Euler Horta Marinho and Rodolfo Ferreira Resende

ShadowNet: An Active Defense Infrastructure for Insider Cyber Attack
Prevention . 646

Xiaohui Cui, Wade Gasior, Justin Beaver, and Jim Treadwell

Author Index . 655

Modeling Road Traffic Signals Control

Using UML and the MARTE Profile

Eduardo Augusto Silvestre and Michel dos Santos Soares

Federal University of Uberlândia (UFU), Computing Faculty (FACOM),
Av. João Naves de Ávila, 2121, Bloco 1B

Uberlândia - Brazil
eduardosilvestre@iftm.edu.br, mics.soares@gmail.com

Abstract. The problem of software modeling and design of road traffic
signals control has long been taken into consideration. A variety of mod-
eling languages have been applied in this field. However, still no single
modeling language can be considered a standard to model distributed
real-time systems such as traffic signals systems. Thus, further evalu-
ation is necessary. In this article, a UML profile created for designing
real-time systems, MARTE, is applied to model a traffic signals control
system. MARTE is compared with UML and SPT, a former UML pro-
file. The result is that with MARTE, UML models are more specific, but
also more complex.

Keywords: MARTE, UML, Road Traffic Control, Real-Time Systems.

1 Introduction

When designing distributed real-time systems for critical infrastructures, such
as road traffic, system complexity is increased due to the large number of ele-
ments, strict real-time constraints, and reliability factors, as these systems in-
volve human life. There are many characteristics that make the development
of distributed real-time systems difficult. Normally, these systems present high
complexity, being hard to comprehend, design, implement and verify.

Traffic signals are one of the main approaches to control intersections. They
regulate, warn and guide transportation with the purpose of improving safety
and efficiency of pedestrians and vehicles. When not well-designed, traffic signals
may lead to excessive delays when cycle lengths are too long and increase the
risk of collisions.

The behavior of a traffic signal can be modeled as a Discrete Event System
(DES). These systems are often large, distributed systems in which events occur
at specific instants of time [9]. From a DES point of view, a road junction (inter-
section) can be seen as a resource that is shared by vehicles at certain instants of
time. The design of the control logic of a traffic signal must take care of efficiency
and speed, but also of safety and security. The main purpose of traffic signals is
to provide safe, efficient and fair crossing of the junction.

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 1–15, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 E.A. Silvestre and M. dos Santos Soares

The problem of software modeling and design of road traffic signals control
has long been taken into consideration, with a variety of modeling languages
applied in this field, including Fuzzy Logic [40], Statecharts [14] [16], and Petri
nets [21] [33]. Therefore, there is no standard modeling language in this domain.

Since its introduction, UML [29] has been applied to model real-time systems
in a variety of domains [11]. Considering the road traffic domain, which is the one
of interest of this article (Section 3), UML has been applied in previous works [3]
[19]. In many of these works, UML presented flaws that were well-documented.
For instance, the representation of time is considered poor, too informal and
insufficient, and it does not include deadlocks and periods [6] [7] [13]. Behavior
diagrams, such as the Sequence diagram, cannot represent time constraints effec-
tively [34], as they are essentially untimed, expressing only chronological order
[2]. UML does not provide mechanisms to describe aspects of task management
such as priorities [6].

In order to solve these issues, the SPT profile was proposed [23]. Although the
SPT profile was studied and applied in some works [39] [1] [38] [5], it was not
well-received by the real-time community [28], mainly because it lacks character-
istics to represent hardware platforms, the representation of time is insufficient,
and it was not in conformance with UML 2.x. Therefore, a new UML profile for
real-time systems, including distributed and embedded systems, was proposed.
An overview of the MARTE profile is presented in section 2. The practical appli-
cation of MARTE is still very incipient [10], but some results have been published
in domains such as system-on-chip [31], networks [12] and the development of
software product lines [4].

To the best of our knowledge MARTE has not yet been applied to model
traffic signals control, as is done in this article through the case study presented
in Section 4. In addition, a comparison of MARTE with the former UML profile
for real time systems, SPT, and with the pure UML specification is presented in
the discussion (Section 5). The comparison is based on our own experience on
modeling with MARTE, as shown in this article, but mainly considering articles
previously published.

2 Overview on the MARTE Modeling Language

The UML profile MARTE (Modeling and Analysis of Real-Time and Embed-
ded systems) [27] is a recently adopted OMG standard that specializes UML
by adding concepts for modeling and analysis of real-time and embedded sys-
tems. MARTE is an evolution over the former UML profile SPT (Schedulability,
Performance, and Time) [23].

As illustrated in Figure 1, MARTE is organized around three main packages.
The MARTE Foundations package defines concepts for real-time and embed-
ded systems. These concepts cover the modeling of generic applications and
platform artifacts. The Foundations package is composed of the following sub-
packages: Core Elements (CoreElements), Non-Functional Properties Model-
ing (NFPs), Time Modeling (Time), Generic Resource Modeling (GRM) and

Modeling Road Traffic Signals Control Using UML and the MARTE Profile 3

Allocation Modeling (Alloc). These foundation concepts are refined for design
purpose into the MARTE Design Model package and for analysis purpose into
the MARTE Analysis Model package [22].

Fig. 1. The MARTE Profile [28]

The MARTE Design Model package provides support required for a variety
of activities, from specification to detailed design of real-time systems. It is
composed of four sub-packages. The Generic Component Model (GCM) package
presents additional concepts to address the modeling of artifacts in the context
of real-time systems. The GCM extends the UML component model by adding
two specializations of ports: message ports and flow ports.

The High-Level Application Modeling (HLAM) package provides high-level
modeling concepts to deal with real-time and embedded features modeling. The
HLAM package allows to specify temporal properties of calls. HLAM can model
active objects (active components), i.e., entities that provide their own thread
of control. The Detailed Resource Modeling (DRM) package provides a set of
detailed resources for modeling both software and hardware platforms by spe-
cializing the concepts defined within the GRM. DRM is divided into two sub-
packages: Software Resource Modeling (SRM) and Hardware Resource Modeling
(HRM).

The MARTE Analysis Model package offers concepts for the analysis of mod-
els. The analysis of models can detect problems early in the development life cycle
and is useful to reduce cost and risk of software development. The MARTE Anal-
ysis Model is composed of three sub-packages. The Generic Quantitative Analysis
Modeling (GQAM) package supports generic concepts for types of analysis based

4 E.A. Silvestre and M. dos Santos Soares

on system execution behavior, which may be represented at different levels of
detail.

GQAM is used to specify Schedulability Analysis Modeling (SAM) and Per-
formance Analysis Modeling (PAM), offering facilities to annotate models with
information required to perform schedulability or performance analysis.

3 Domain Characteristics

Traffic signals at road intersections are the major control measures applied in
urban networks. The design of the control logic of a traffic signal must take care
of efficiency and speed, but also of safety and security. The main purpose of
traffic signals is to provide safe, efficient and fair crossing of the junction. When
properly installed and operated, traffic signals provide a number of benefits [32],
including the increase of the capacity of critical junction movements, reduction
in the frequency and severity of accidents, and safe crossing of pedestrians and
vehicles by providing interruptions in heavy streams. However, when poorly de-
signed, traffic signals can cause excessive delays when cycle lengths are too long,
increase the number of accidents (especially rear-end collisions), violations of
red light, and lead to sub-optimal rerouting by drivers who want to avoid traffic
signals.

Among the main advantages of traffic signals are the flexibility of the sig-
naling scheme, the ability to provide priority treatment and the feasibility of
coordinated control along streets. Modern traffic controllers implement signal
timing and ensure that signal indications operate consistently and continuously
in accordance with the pre-programmed phases and timing.

Many non-functional requirements are important for road traffic signals sys-
tems. These requirements do not have simple yes/no satisfaction criteria. Instead,
it must be determined to what degree a non-functional requirement has been sat-
isfied. Scalability is of great significance because there may occur changes in the
road network, which may include new sensors and actuators to be accommodated
into the system. Thus, new software objects may be inserted into the software
architecture every time the network grows. This is important to allow the system
to evolve over time.

Performance is also an issue, as there are many components to be controlled.
Real-time constraints must be observed as data should be updated regularly.
Example of available data are road traffic measurements information that are
geographically distributed within the network. Availability of data is of consid-
erable influence to system reliability and overall performance. Finally, flexibility
is essential due to the possible change of component types, interfaces, and func-
tionality.

4 Case Study

This case study is focused on the application of the MARTE profile together
with UML in activities of modeling and design for a road traffic signal intersec-
tion control. The work was initially inspired by the modeling of an intersection

Modeling Road Traffic Signals Control Using UML and the MARTE Profile 5

Fig. 2. Use Case Diagram

with UML proposed in [20]. The user requirements modeled in this case study
are the requirements described in the following subsection. For a more realistic
modeling of the system, the MARTE extensions that are best suitable to the
main characteristics and problems described in Section 1 and 3 were applied.
The following subsections describe the requirements, the structural design and
the dynamic design for the road traffic signal intersection control.

4.1 User Requirements

It is important to notice that the user requirements presented in this subsection
have high degree of abstraction. During system design, these requirements are
refined into more detailed software requirements. The Use Case diagram cor-
responding to these requirements is illustrated in Figure 2. The following user
requirements are used for system modeling.

1. The system shall control the traffic pattern of vehicles at the intersection.
2. The system shall control the traffic pattern of pedestrians at the intersection.
3. The system shall control the traffic flow of vehicles at all road sections related

to the intersection.
4. The system shall control the traffic pattern of vehicles at all road sections

related to the intersection.
5. The system shall allow fixed traffic control policy.
6. The system shall allow actuated traffic control policy.
7. The system shall allow adaptive traffic control policy.
8. The system shall allow green waves.
9. The system shall allow priotities for road sections.
10. The system shall detect the presence of pedestrians.
11. The system shall allow remote maintenance.
12. The system shall keep track of vehicle history at all road sections related to

the intersection.
13. The system shall keep track of traffic policy during all year.
14. The system shall allow the implementation of new traffic policies.
15. The system shall keep track of accidents at the intersection.

6 E.A. Silvestre and M. dos Santos Soares

4.2 Structural Design

Structural design is described in this article using the Class and the Deployment
diagrams.

The class diagram supports the functional requirements and a set of key ab-
stractions, taken in the form of objects. A UML Class diagram utilizing the
extensions from MARTE is depicted in Figure 3. The structure of the class
diagram is centralized mainly in the classes named IntersectionController and
Approach. The intersection controller class is a singleton responsible for manag-
ing all features of the traffic signals control. It contains relationships with the
approaches and phases. The approach class is responsible for managing the in-
dividual features of each approach in the intersection. It contains references to
semaphores and push buttons.

The application of the MARTE profile in the class diagram is concentrated
in new stereotypes. The stereotype <<rtUnit>> is used to represent active
classes. The stereotype<<storageResource>> is used to represent entity classes.
The stereotype <<deviceResource>> represents an external device that may be
manipulated or invoked by the platform.

The stereotype <<clockType>> is related to time, which is a crucial feature
of real time systems. The stereotype creates a new clock. In this case study
two MARTE clock types are added in the class diagram. The first one is the
predefined IdealClock. The IdealClock models the abstract and ideal time which
is used in physical laws, i.e., it is a dense time. The IdealClock should be imported
in models that refer to chronometric clock. The second is used to represent a
scenario. The Scenario represents a scenario of utilization of the system, and the
possible policies that can be applied in the traffic signals intersection control.
The several values - references to quantities - presented in the class diagram are
described using the VSL (Value Specification Language) notation [28].

The representation of resources and their further allocation are key features in
the development of real-time systems. The definition of resources are important
to deal with concurrency, distributed elements, and parallelism. The allocation
of resources represents the allocation of functional application elements onto the
available resources.

The most suitable UML diagram used to model resources and their allocation
is the deployment diagram. The deployment diagram models the run-time con-
figuration in a static view and visualizes the distribution of components in an
application. Figure 4 depicts a deployment diagram to represent resources and
Figure 5 a deployment diagram to represent allocation of resources.

Figure 4 is about the physical view of the software architecture of the inter-
section controller. It contains the main components of the system, such as the
operating system, the application software, the network and also the physical
components where the whole system is executed.

The representation of resources in MARTE is centralized in the stereotype
<<resource>>. In this case study the <<communicationMedia>> is used in
several parts of the deployment diagram. It represents the means to transport
data from one location to another. Thus, its use represents the flow of data. The

Modeling Road Traffic Signals Control Using UML and the MARTE Profile 7

Fig. 3. Class Diagram with MARTE extensions

<<deviceResource>> and the <<storageResource>> stereotypes are the same
as described in the class diagram. The <<computingResource>> represents
either virtual or physical processing devices capable of storing and executing the
software. In this case study, for example, the real-time operating system can be
considered a <<computingResource>>.

8 E.A. Silvestre and M. dos Santos Soares

Fig. 4. Deployment Diagram with MARTE extensions for representation of resources

Figure 5 shows an example of allocation of resources with three layers. The
first layer describes the application, the second layer represents a real-time op-
erating system (RTOS) and the last layer shows the hardware parts.

The top layer is the application view. This view has the same components pre-
sented in Figure 4. The stereotype <<allocated>> is applied to named element
that has at least one allocation relationship with another named element, and
the tagged valued {kind = application} indentifies an allocation end as being on
the application side of the allocation.

The intermediate layer, the RTOS, is not the focus of this case study. It
supports the allocations at different abstraction levels. The RTOS is related to
the hardware through the stereotype <<allocate>> that is a bridge between
elements from a logical context to elements in a more physical context. The
nature is an enumeration type that defines literals used to specify the purpose of
the allocation. The tagged value {nature = timeScheduling} indicates that the
allocation consists of a temporal/behavioural ordering of the suppliers.

The lower layer in the diagram represents the hardware elements. The ele-
ments CPU, Memory, BUS and Disk are annotated with stereotypes described
previously, such as <<computingResource>> and <<communicationMedia>>.
All elements have the tagged value {kind = executionPlatform} that identifies an
allocation end as being on the execution platform side of the allocation. Besides,
this layer shows the relationship <<allocate>> between the components. This
stereotype is attached with the tagged values {nature = spatialDistribution}
and {nature = timeScheduling}. The timeScheduling was described previously

Modeling Road Traffic Signals Control Using UML and the MARTE Profile 9

Fig. 5. Deployment Diagram with MARTE extensions for representation of allocation
of resources

and the spatialDistribution indicates that the allocation consists of a tempo-
ral/behavioural ordering of the suppliers.

4.3 Dynamic Design

Dynamic design is described in this article using the Sequence, State-Machine
and Time diagrams.

The sequence diagram is applied to model the flow of logic within the system
in a visual manner, which focuses on identifying the behavior within the system.
A UML Sequence diagram utilizing the extensions from MARTE is depicted in
Figure 6.

The sequence diagram shows the normal operation of the road traffic signal
control. The diagram depicts the operation from the first action until the normal
flow of the software.

For this purpose, the sequence diagram shows the IntersectionController, Ap-
proach and IntersectionStandard classes. The IntersectionController manages all
system control. The Approach represents a specific approach in the intersection
and the IntersectionStandard represents traffic signals. The vehicles’ traffic sig-
nals is represented by the object vehicleTS and the pedestrians’ traffic signals

10 E.A. Silvestre and M. dos Santos Soares

Fig. 6. Sequence Diagram with MARTE extensions

by the object pedestrianTS. The figure shows the initialization of the system,
the creation of objects and the exchange of messages between the objects.

The sequence diagram focus is on time representation. In order to reach this
purpose, the stereotype <<timedConstraint>> is used together with the VSL
package. The TimedConstraint is an abstract superclass of TimedInstantCon-
straint and TimedDurationConstraint. It allows to constraint when an event
may occur or constraint the duration of some execution or even constraint the
temporal distance between occurrences of two events.

The state machine diagrams are useful in the real-time and embedded domain.
They allow the description of a system behavior in terms of states and transitions
between these states. A UML state machine diagram utilizing the extensions
from MARTE is depicted in Figure 7. The state machine shows states Waiting
Signal and Pedestrian Crossing. The first one represents a moment in which the

Modeling Road Traffic Signals Control Using UML and the MARTE Profile 11

pedestrian is waiting for the signal. The last represents the moment in which
the pedestrian is crossing the signal. The transitions between the two states
represent the response to a pedestrian pressing the push button.

The application of the MARTE profile in the state machine diagram has new
stereotypes as focus. The states are represented by the stereotype <<mode>>.
It identifies an operational segment within the system execution. The transitions
between states are represented by the stereotype modeTransition. It describes
the modeled system under mode switching. The state machine is represented by
two stereotypes. The <<modeBehavior>> specifies a set of mutually exclusive
modes, i.e., only one mode can be active at a given instant. The stereotype
<<timedProcessing>> represents activities that have known start and finish
times or a known duration.

Fig. 7. State Machine with MARTE extensions

The time diagram is used to explore the behaviors of one or more objects
throughout a given period of time. Timing diagrams are often used to design real-
time systems. A UML timing diagram for traffic signals utilizing the extensions
from MARTE is depicted in Figure 8. It shows that pedestrians have the right
to cross when both traffic signals are at a red state.

5 Discussion

The comparison between UML, SPT and MARTE is not yet clear in present
literature. In order to permit a broader view of the potential of MARTE, Table
1 presents a comparison between these OMG specifications based on specific
criteria most common when designing real-time systems.

Table 1 shows the characteristics presented for each modeling language. The
columns are annotated with the symbols �, �� e �. Columns annotated with �
means that the characteristic is not present in the modeling language or it is not
satisfactory. Columns annotated with � means that the characteristic is highly

12 E.A. Silvestre and M. dos Santos Soares

Fig. 8. Time Diagram with MARTE extensions

Table 1. Comparison of UML, SPT and MARTE

Criteria UML [25] SPT [23] MARTE [28]

Modeling of time �[13] [10] ��[24] �
Modeling of processes �[15] �� �[10]

Modeling of resources �� ��[24] �[10]

Modeling of resource allocation ��[15] ��[10] [24] �
Modeling of hardware �[37] [26] �[10] ��[8]

Modeling of performance �[15] ��[30] �[8]

Modeling of schedulability �[11] [15] �� �
Modeling of run-time execution �[10] ��[24] [10] �[10]

Modeling of task management �[6] [15] � �[10]

Modeling of requirements �[15] � �[8]

CBSE � �[30] [24] �[8]

Alignment with UML 2.x not applied ��[10] [24] �
Formalism �[6] [15] � �[8]

Consistency of diagrams �[17] [36] [15] � �[18]

Ease of Use ��[15] �[24] �
Software tools � � �

present in the modeling language, i.e., its application is satisfactory. And columns
annotated with �� means that the characteristics is not yet well-known, was not
fully evaluated, or the language does not fully support the characteristic. Most
evaluations were based on previous references, as indicated, and the languages
specifications (UML [25], SPT [23], and MARTE [28]). Our own evaluation was
considered only for the MARTE profile.

The main highlights to the table in this article are the references to UML and
SPT problems and MARTE strengths and challenges. Overall, UML is weak for
real-time systems design because the language is not capable of representing key
real-time features, for instance, modeling time and processes. The table shows

Modeling Road Traffic Signals Control Using UML and the MARTE Profile 13

the strengths of MARTE for modeling real-time systems. These strengths are
described by previous works, as indicated in the table, and also by the application
of MARTE in the case study shown in this article. For instance, design based
on components (Component Based Software Engineering - CBSE) has improved
with MARTE, as well as modeling time and resources.

Some challenges of MARTE are the same challenges of UML and SPT, such as
increasing its formalism and improving consistency in diagrams. Another exam-
ple is the modeling of requirements at an abstract level. The studied languages
are tailored to model scenarios of requirements, often at a lower abstraction level.
Another UML profile, the SysML, can fill this gap [35]. In addition, with too
many stereotypes, constraints and tagged values, MARTE is a difficult language
to master. Finally, there is a lack of software tools which can fully implement
MARTE capabilities.

6 Conclusion

The design of real-time systems is a complex activity. Many modeling languages
have been applied in this field. However, no single modeling language can be
considered a standard in this area. The purpose of this article is to apply a new
UML profile, MARTE, to model a distributed real-time system in the field of road
traffic control, more specifically, traffic signals control. MARTE is used together
with UML, complementing some UML aspects that are historically considered
weak, including modeling of time, resources and processes. With MARTE, UML
models are more specific. For instance, the modeling of resources has improved.
However, MARTE also has weak characteristics. It is too complex, and it lacks
software tools that implement the proposed stereotypes and extensions. Due to
its complexity, mastering the MARTE language is a hard challenge.

It is worth to note that MARTE is an extensible profile, which means that
further stereotypes can be created and added to the profile when necessary,
which also increases its complexity. The industrial application of MARTE is still
very incipient, and even in academia the language is still not well-known. This
means that further evaluation and discussion on its applicability is necessary. A
first attempt to compare UML, SPT and MARTE was shown in this article, but
it still needs further evaluation in future research.

Acknowledgements. This workwas supported by FAPEMIG (www.fapemig.br
- EDITAL FAPEMIG 01/2011).

References

1. Addouche, N., Antoine, C., Montmain, J.: UML Models for Dependability Analysis
of Real-Time Systems. In: Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, pp. 5209–5214 (2004)

2. André, C., Mallet, F., de Simone, R.: Modeling Time(s). In: Engels, G., Opdyke,
B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 559–573.
Springer, Heidelberg (2007)

14 E.A. Silvestre and M. dos Santos Soares

3. Bate, I., Hawkins, R., Toyn, I.: An Approach to Designing Safety Critical Systems
using the Unified Modelling Language. In: Proceedings of the Workshop on Critical
Systems Development with UML, pp. 3–17 (2003)

4. Belategi, L., Sagardui, G., Etxeberria, L.: MARTE Mechanisms to Model Vari-
ability When Analyzing Embedded Software Product Lines. In: Bosch, J., Lee, J.
(eds.) SPLC 2010. LNCS, vol. 6287, pp. 466–470. Springer, Heidelberg (2010)

5. Bennett, A.J., Field, A.J.: Performance Engineering with the UML Profile for
Schedulability, Performance and Time: A Case Study. In: Proceedings of the The
IEEE Computer Society’s 12th Annual International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunications Systems, pp. 67–
75 (2004)

6. Berkenkotter, K.: Using UML 2.0 in Real-Time Development - A Critical Re-
view. In: International Workshop on SVERTS: Specification and Validation of UML
Models for Real Time and Embedded Systems (2003)

7. Berkenkötter, K., Bisanz, S., Hannemann, U., Peleska, J.: The HybridUML profile
for UML 2.0. International Journal on Software Tools for Technology 8, 167–176
(2006)

8. Boutekkouk, F., Benmohammed, M., Bilavarn, S., Auguin, M.: UML 2.0 Profiles
for Embedded Systems and Systems On a Chip (SOCs). JOT (Journal of Object
Technology) 8(1), 135–157 (2009)

9. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. The In-
ternational Series on Discrete Event Dynamic Systems. Kluwer Academic Publish-
ers, Norwell (1999)

10. Demathieu, S., Thomas, F., André, C., Gérard, S., Terrier, F.: First Experiments
Using the UML Profile for MARTE. In: Proceedings of the 2008 11th IEEE Sym-
posium on Object Oriented Real-Time Distributed Computing, pp. 50–57. IEEE
Computer Society (2008)

11. Douglass, B.P.: Real Time UML: Advances in the UML for Real-Time Systems,
3rd edn. Addison Wesley Longman Publishing Co., Inc., Redwood City (2004)

12. Elhaji, M., Boulet, P., Tourki, R., Zitouni, A., Dekeyser, J.L., Meftali, S.: Modeling
Networks-on-Chip at System Level with the MARTE UML profile. In: M-BED
2011, Grenoble, France (2011)

13. Graf, S., Ober, I., Ober, I.: A Real-Time Profile for UML. International Journal
on Software Tools for Technology Transfer 8, 113–127 (2006)

14. Harel, D.: Statecharts: A Visual Formalism for Complex Systems. Science of Com-
puter Programming 8(3), 231–274 (1987)

15. Henderson-Sellers, B.: Uml - the good, the bad or the ugly? perspectives from a
panel of experts. Software and Systems Modeling 4(1), 4–13 (2005)

16. Huang, Y.S., Liau, S.X., Jeng, M.D.: Modeling and Analysis of Traffic Light Con-
troller using Statechart. In: Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, pp. 557–562 (2010)

17. Jacobson, I.: Use cases - Yesterday, today, and tomorrow. Software and System
Modeling 3(3), 210–220 (2004)

18. Jin, W., Wang, H., Zhu, M.: Modeling MARTE Sequence Diagram with Timing
Pi-Calculus. In: ISORC, pp. 61–66 (2011)

19. Ranjini, K., Kanthimathi, A., Yasmine, Y.: Design of Adaptive Road Traffic Con-
trol System through Unified Modeling Language. International Journal of Com-
puter Applications 14(7), 36–41 (2011)

20. Laplante, P.A.: Real-Time System Design and Analysis. John Wiley & Sons (2004)
21. List, G.F., Cetin, M.: Modeling Traffic Signal Control Using Petri Nets. IEEE

Transactions on Intelligent Transportation Systems 5(3), 177–187 (2004)

Modeling Road Traffic Signals Control Using UML and the MARTE Profile 15

22. Mraidha, C., Tanguy, Y., Jouvray, C., Terrier, F., Gerard, S.: An Execution Frame-
work for MARTE-Based Models. In: 13th IEEE International Conference on En-
gineering of Complex Computer Systems, pp. 222–227 (2008)

23. OMG: UML Profile for Schedulability, Performance, and Time, Version 1.1. Tech.
Rep. formal/2005-01-02, OMG (2005)

24. OMG: MARTE Tutorial: UML Profile for Develop for Real-Time and Embedded
systems. Tech. Rep. formal/2007-03-28, OMG (2007)

25. OMG: OMG Unified Modeling Language (OMG UML) Superstructure, Version
2.3. Tech. Rep. formal/2010-05-03, OMG (2010)

26. OMG: Systems Modeling Language (SysML) - Version 1.2 (2010)
27. OMG: UML Profile for MARTE: Modeling and Analysis of Real-time Embedded

Systems - version 1.1 (2010)
28. OMG: Uml profile for marte: Modeling and analysis of real-time embedded systems

version, 1.1. Tech. Rep. formal/2011-06-02, OMG (2011)
29. OMG: Unified Modeling Language (UML): Superstructure - version 2.4.1 (2011)
30. Petriu, D.C., Woodside, M.: Extending the UML Profile for Schedulability Perfor-

mance and Time (SPT) for Component-Based Systems (2004)
31. Quadri, I.R., Yu, H., Gamatié, A., Meftali, S., Dekeyser, J.L., Rutten, É.: Target-

ing Reconfigurable FPGA based SoCs using the MARTE UML profile: from high
abstraction levels to code generation. International Journal of Embedded Systems,
18 (2010)

32. Roess, R.P., Prassas, E.S., McShane, W.R.: Traffic Engineering, 3rd edn. Prentice
Hall, New Jersey (2003)

33. Soares, M.S.: Modeling and Analysis of Discrete Event Systems Using a Petri Net
Component. In: Proceedings of the IEEE International Conference on Systems,
Man, and Cybernetics, pp. 814–819 (2011)

34. Soares, M.S., Julia, S., Vrancken, J.: Real-time Scheduling of Batch Systems using
Petri Nets and Linear Logic. Journal of Systems and Software 81(11), 1983–1996
(2008)

35. Soares, M.S., Vrancken, J.L.M., Verbraeck, A.: User Requirements Modeling and
Analysis of Software-Intensive Systems. Journal of Systems and Software 84(2),
328–339 (2011)

36. Staines, A.S.: A Comparison of Software Analysis and Design Methods for Real
Time Systems. World Academy of Science, Engineering and Technology, 55–59
(2005)

37. Süß, J., Fritzson, P., Pop, A.: The Impreciseness of UML and Implications for
ModelicaML. In: Proceedings of the 2nd International Workshop on Equation-
Based Object-Oriented Languages and Tools (2008)

38. Thramboulidis, K.: Using UML in Control and Automation: A Model Driven Ap-
proach. In: Proceddings of the IEEE International Conference on Industrial Infor-
matics, pp. 587–593 (2004)

39. Xu, J., Woodside, M., Petriu, D.: Performance Analysis of a Software Design Us-
ing the UML Profile for Schedulability, Performance, and Time. In: Kemper, P.,
Sanders, W.H. (eds.) TOOLS 2003. LNCS, vol. 2794, pp. 291–307. Springer, Hei-
delberg (2003)

40. Zeng, R., Li, G., Lin, L.: Adaptive Traffic Signals Control by Using Fuzzy Logic. In:
ICICIC 2007: Proceedings of the Second International Conference on Innovative
Computing, Information and Control, pp. 527–530 (2007)

Analysis of Techniques for Documenting User

Requirements

Michel dos Santos Soares and Daniel Souza Cioquetta

Federal University of Uberlândia (UFU), Computing Faculty (FACOM),
Av. João Naves de Ávila, 2121, Bloco 1B

Uberlândia - Brazil
mics.soares@gmail.com, michel@facom.ufu.br

Abstract. A number of approaches were proposed in past years to doc-
ument user requirements. Choosing the most suitable one is difficult,
and frequently based on ad-hoc decision. In order to assist the way re-
quirements engineers choose, an evaluation is necessary. The purpose
of this paper is to analyze methods and languages used for user require-
ments documentation considering a number of criteria. This analysis was
performed after extensive literature research and action research at com-
panies that develop software-intensive systems. The objective is not to
show how to find the best technique, the one that will perfectly suit all
software projects. Instead, our purpose is to propose a critical view on a
number of chosen techniques that might be useful for practitioners when
choosing which technique to use on a specific project. The assumption is
that stakeholders can benefit from knowing which techniques fit better
a number of pre-determined evaluation criteria.

Keywords: User Requirements, Technique Evaluation, Requirements
Documentation.

1 Introduction

Requirements for software are a collection of needs expressed by stakeholders
respecting constraints under which the software must operate [44] [43]. Require-
ments can be classified in many ways. The classification used in this article is
related to the level of detail. In this case, the two classes of requirements are user
requirements and system requirements [50]. User requirements are high-level, ab-
stract requirements based on end users’ and other stakeholders’ viewpoint. They
are usually written using natural language, occasionally with the help of domain
specific models such as mathematical equations, or even informal models not
related to any method or language. The fundamental purpose of a user require-
ments specification is to document the needs and constraints gathered in order
to later develop software based on those requirements.

The process by which requirements for systems and software products are
gathered, analyzed, documented and managed throughout the development life
cycle is called Requirements Engineering (RE) [50]. RE is a very influential phase

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 16–28, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Analysis of Techniques for Documenting User Requirements 17

in the software life cycle. According to the SWEBOK [1], it concerns Software
Design, Software Testing, Software Maintenance, Software Configuration Man-
agement, Software Engineering Management, Software Engineering Process, and
Software Quality Knowledge Areas. RE is considered by many authors the most
critical phase within the development of software [33] [35] [18] [39]. Already in
1973, Boehm suggested that errors in requirements could be up to 100 times more
expensive to fix than errors introduced during implementation [10]. According
to Brooks [13], knowing what to build, which includes requirements elicitation
and further technical specification, is the most difficult phase in software devel-
opment. Dealing with ever-changing requirements is considered the real problem
of Software Engineering [9]. Studies conducted by the Standish Group [54] and
other researchers and practitioners [25] [27] found that the main factors for prob-
lems with software projects (cost overruns, delays, user dissatisfaction) are re-
lated to requirements issues, such as lack of user input, incomplete requirements
specifications, uncontrolled requirements changing, and unclear objectives.

RE can be divided into two main groups of activities [42]: i) requirements
development, including activities such as eliciting, documenting, analyzing, and
validating requirements, and ii) requirements management, including activities
related to maintenance, such as tracing and change management of requirements.
This article is about user requirements development, mainly the activities of
documenting and analyzing user requirements for developing software.

This article can be compared to others which main theme is how to select RE
techniques. For instance, 46 techniques are investigated to create a methodology
to select RE techniques in [32]. The authors considered a very broad RE context,
comparing techniques at different levels of detail, and with very different pur-
poses. For instance, they compared Petri nets, interviews, and tests. In another
study, Maiden and Rugg [38] proposed a framework which provides general help
for requirements engineers to select methods for requirements acquisition. In a
well-known RE book, Sommerville and Kotonya [51] proposed high level, general
attributes which can be used for the evaluation and selection of RE techniques in
general. In [14], Browne and Ramesh proposed an idea of technique selection for
requirements elicitation. This technique selection method is built on the human
cognitive model.

There are two important differences between our paper and others previously
cited. The first one is that the focus of our paper is only on requirements docu-
mentation at the user level. Therefore, we are not concerned with other require-
ments levels (implementation, domain) and we do not compare techniques used
at different levels. The second one is that we did our research considering theo-
retical aspects but also practical ones. For that reason, we have also used Action
Research as a research instrument [4] [6]. The reason is because we wanted to
try out our theories with practitioners in real situations and real organizations.
We performed interviews and practical application through Action Research in
two companies. During the interviews, we asked questions about the software
development methodology and the technical environment.

18 M. dos Santos Soares and D.S. Cioquetta

The reminder of the paper is organized as follows. Section 2 presents a (non-
exhaustive) list of eight methods and techniques applied on the activity of re-
quirements documentation. Section 3 brings a list of criteria used for evaluating
the methods presented in the previous section. This list of criteria is based on
interviews with practitioners and researchers and on literarature review. The
resulting evaluation table is presented in Section 4, and conclusion and on going
work in Section 5.

2 Review on Techniques for User Requirements
Documentation

There are a number of languages and methods used in all activities of RE [44]
[43] [50]. In this article we are interested only on requirements documentation.
We start our investigation from the list presented in [32].

From this list, we selected the techniques used for documenting and specifying
requirements, with exception to formal methods. The reason for this decision is
that the applicability and suitability of formal methods in practice is still highly
debated in the Software Engineering community [12] [36] [2] [57]. Practitioners
often consider formal methods inadequate, restricted to critical systems, too
expensive, insufficient, and too difficult [15] [21]. Real-world examples are still
lacking or the application scope is generally considered limited [56]. However,
the most important factor to exclude formal methods in this research is because
formal methods are more likely to be applied to the design and verification phases
of software development, not specifications of user requirements. A number of
other techniques were not taken into account in this study because we would
like to evaluate the most common techniques, the ones that are regularly used
in practice or at least are well-known in academia. The selected techniques are
presented in the following paragraphs. For each item of the list, we propose a
number of evaluation criteria (Section 3).

The most common approach to document user requirements is to write them
using Natural language [37]. The advantages are that natural language is simple
and is the main mean of communication between stakeholders. However, prob-
lems such as imprecision, misunderstandings, ambiguity and inconsistency are
common when natural language is used [34]. As a matter of fact, these prob-
lems occur frequently when natural language is the only means of description of
requirements.

Structured Natural Languages are used with the purpose of giving more struc-
ture to requirements documents. Nevertheless, structured natural languages are
neither formal nor graphical, and can be too much oriented to algorithms and
specific programming languages [17]. Other collateral effects are that structured
specifications may limit too early the programmers’ freedom to coding.

Viewpoints are an approach for requirements elicitation in which require-
ments are organized into a number of views, giving structure to the processes
of eliciting and specifying software requirements. As it is almost impossible to
recognize all information about requirements considering only one perspective,

Analysis of Techniques for Documenting User Requirements 19

it is necessary to collect and to organize requirements at a number of different
viewpoints. The technique is largely used in industry [53]. Viewpoint analy-
sis is considered a simple and flexible technique which supports the grouping
of requirements, requirements management, verification of inconsistencies, and
requirements traceability [52] [24]. A key strength of viewpoint-based documen-
tation is that it recognizes multiple perspectives and provides a framework for
discovering conflicts in requirements proposed by different stakeholders [50]. An-
other characteristic of viewpoints is that it allows the management of inconsis-
tencies by providing support to detect and to solve them [23]. Typically, each
viewpoint provides different types of requirements. One issue with viewpoints is
that, in practice, for a high number of identified viewpoints, it may be difficult
to prioritize requirements [50].

Decision tables [28] provide a notation that translates actions and conditions
into a tabular format. The table can be used as a machine-readable input to a
table-driven algorithm. This technique is useful when a complex set of conditions
and actions are encountered within a component [43].

A well-known diagram used for requirements modeling is the Use Case dia-
gram. Even before UML emerged as the main Software Engineering modeling
language, Use Cases were already a common practice for graphically representing
functional requirements in methodologies such as Object-Oriented Software En-
gineering (OOSE) [30]. Their popularity can be explained due to their simplicity,
making them act as a bridge between technical and business stakeholders. The
compact graphical nature is useful to represent requirements that may be ex-
panded to several pages. Use Cases also have some disadvantages and problems
[47]. They are applied mainly to model functional requirements and are not very
helpful for other types of requirements, such as non-functional ones. Use Case
diagrams lack well-defined semantics, which may lead to differences in interpre-
tation by stakeholders. For instance, the include and the extend relationships
are considered similar, or even the inverse of each other [31]. In addition, Use
Cases may be misused, when too much detail is added, which may incorrectly
transform the diagrams into flowcharts or make them difficult to comprehend.

User Stories have been used as part of the eXtreme Programming (XP) [7]
agile methodology. They can be written by the customer using non-technical
terminology in the format of sentences using natural language. Although XP
offers some advantages in the RE process in general, such as user involvement
and defined formats for user requirements and tasks, requirements are still loosely
related, not graphically specified, and oriented to a specific methodology.

Two SysML diagrams are distinguished as useful mainly for RE activities: the
SysML Requirements diagram and the SysML Use Case diagram [41]. One in-
teresting feature of the SysML Requirements diagram is the flexibility to model
other types of requirements besides the functional ones, such as non-functional
requirements. The SysML Use Case diagram is derived from the UML Use Case
diagram without important modifications. In addition to these diagrams, SysML
Tables can be used to represent requirements in a tabular format. Tabular rep-
resentations are often used in SysML but are not considered part of the diagram

20 M. dos Santos Soares and D.S. Cioquetta

taxonomy [41]. Important decisions on requirements and the correspondent mod-
els are better justified when traceability is given proper attention. SysML Tables
allows the representation of requirements, their properties and relationships in
a tabular format. One way to manage the requirements traceability in SysML is
by using requirements tables.

The SysML Requirements diagram helps in organizing requirements and also
shows explicitly the various kinds of relationships between different requirements.
The diagram is useful to standardize the way to specify requirements through
a defined semantics. As a direct consequence, SysML allows the representation
of requirements as model elements, which means that requirements are part of
the system architecture [5]. A SysML Requirement can also appear on other
diagrams to show its relationship to design. With the SysML Requirements di-
agram, visualization techniques are applied from the early phases of system
development.

The focus of goal-oriented modeling shifts from what and how (data and pro-
cesses) as addressed by traditional analysis to who and why (the actors and the
goals they wish to achieve). Goal-oriented modeling addresses the early analysis
or requirements elicitation. i* is one of the most widely used goal modeling lan-
guages. Its graphical notation is considered clear and easy to use and understand
[58]. The strenghs of i* are the simple semantics and the graphical notation. The
notation supports the modeling of dependencies between actors [58]. These de-
pendencies can be classified into diverse types. However, the adoption of i* in
industry is still very low, even after many years of the introduction of this tech-
nique [19]. i* lacks explicit design rationale for its graphical conventions. Its
semantic constructs and grammatical rules are defined using natural language
[40], which leads to problems of inconsistency, ambiguity, and incompleteness.

3 Criteria Used for Evaluation

The criteria considered for evaluating the techniques and languages used for
documenting requirements are given in this section. These criteria are based
on interviews with practitioners and researchers [46] [49], on Action Research
performed at companies that develop software [48], on the IEEE Recommended
Practice for Software Requirements Specifications [29] criteria for a good re-
quirements document, and on classical textbooks on Software Engineering and
Requirements Engineering [44] [43] [50].

The interviews and the practical application through Action Research were
performed at two companies with diverse characteristics. The first one is a large
financial company that develops software to a wide variety of technical environ-
ments, such as web and mainframe software applications. The company not only
develops software internally, but also hire consulting companies to develop parts
or entire software systems. The second company is a small consulting company
that develops software systems in the field of road traffic management.

Interviews were performed with project managers and senior developers. Dur-
ing the interviews, we asked general questions about the software development

Analysis of Techniques for Documenting User Requirements 21

methodology and technical environment. Specifically about user requirements,
we asked questions such as “What criteria do you use to evaluate a user require-
ments technique”, “What would you expect from techniques to document user
requirements”, and “What techniques do you use to document user requirements
in your company”. The chosen criteria are presented in the following paragraphs.

Graphical modeling Graphical models are an advantage over strictly text-
based approaches in terms of facility to communicating and to understanding
requirements. Naturally, stakeholders must have knowledge about the graphical
notation, otherwise the graphical models would not make sense, or even worse,
would be considered to have different meaning by stakeholders.

Human readable As our approach is to evaluate techniques to document re-
quirements at the user level, the more human readable models the technique can
provide, the better.

Independent towards methodology User requirements are independent of a spe-
cific technology and are considered to have high abstraction level. At this level,
stakeholders are concerned with functionalities and properties, and not so much
about how to design and implement software. Therefore, independency towards
design methodologies allows good separation of concerns and provide freedom
during design and implementation.

Relationship requirements-requirements It is well-known by software engineers
that requirements are related to each other. The survey [45] introduces the disci-
pline of Requirements Interaction Management (RIM), which is concerned with
analysis and management of dependencies among requirements. These interac-
tions affect various software development activities, such as release planning,
change management and reuse. Thus, it is almost impossible to plan systems
releases based only on the highest priority requirements, without considering
which requirements are related to each other.

In addition to identifying the relationship between requirements, it is also
interesting to identify the type of relationship between requirements. For instance,
one can be interested in knowing how a requirement is affected when a related
requirement is changed or even deleted.

Identify and represent types of requirements Most commonly modeling lan-
guages are applicable only to model functional requirements. Despite their im-
portance, non-functional requirements are usually not properly addressed in re-
quirements modeling languages. This is also true for other types of requirements,
such as external and domain ones.

Priority between requirements From a project management point of view, one
important characteristic of a requirement is its priority. Prioritizing requirements
is an important activity in RE [20]. The purpose is to provide an indication of
the order in which requirements should be addressed. The reason is that imple-
menting all requirements at once might be unattractive. It may take too long,
and stakeholders normally want to use the new software as soon as possible.
Therefore, prioritizing requirements is a possible solution to plan software re-
leases.

22 M. dos Santos Soares and D.S. Cioquetta

Grouping related requirements As a consequence of the relationship between
requirements, semantically related requirements can be grouped. Hence, these
groups can be considered high cohesion units. The advantage is that grouping
requirements help in giving shape to the software architecture already in the early
phases of development, which is in accordance with the concept of architecture
first [11].

Flexible With this criteria, we want to know how flexible a technique is to
document user requirements. Probably a balance is the best option here. A tech-
nique with high degree of flexibility will allow designers to create requirements
documents with poor structure. On the other hand, a very strict technique will
inhibit designers at an early phase of software development.

Ranking requirements by stability A great source for problems in software en-
gineering is requirements changing. Therefore, knowing how stable a requirement
is, i.e., how ready it is for further design phases, is essential.

Solve ambiguity Ambiguity in requirements is a major cause for misunder-
standings between stakeholders and designers. Thus, modeling languages should
provide well-defined semantics, which might increase machine readability with
the drawback of diminishing human readability.

Well-defined semantics Having a technique that is based on well-defined se-
mantics helps in the production of software requirements specifications with less
ambiguity.

Verifiable According to [29], one characteristic of a good software requirements
specification is that it should be verifiable. A requirement is verifiable if there
exists some finite cost-effective process with which a person or machine can
check that the software product meets the requirement. In order to facilitate the
writing of verifiable requirements, the technique should allow the use of concrete
terms and measurable quantities.

Expressibility Expressibility is the ability to represent requirements. The tech-
nique should provide means to express requirements in such a way that stake-
holders from diverse backgrounds can understand, and such that communication
of requirements to stakeholders is clear.

Ability in requirements management Stakeholders frequently change require-
ments due to various factors. For example, stakeholders may be unsure about
their own needs in the beginning of a project, and laws and business processes
may change. The main issue is not related to changes in requirements, but
to uncontrolled changes. Through correct requirements management, whenever
stakeholders ask for changes in requirements, developers have the possibility to
uncover where and how this change will impact the system design. Hence, the
technique should be capable of facilitating changes in requirements.

Simplicity It is important to note that, at least in theory, simplicity comes
together with high potential of use (see Technology Acceptance Model [55]).
However, it is hard to evaluate simplicity as it is a quite subjective quality.
One example is the Use Case diagram, which is considered simple enough to be
understandable by most stakeholders [30] [31], but also only understandable by

Analysis of Techniques for Documenting User Requirements 23

stakeholders with technical background [47]. During our interviews, most of the
time the quality of simplicity was very debated.

Ability to facilitate communication Documenting requirements for future ref-
erence and to communicate requirements with stakeholders are core objectives
of requirements documentation. Therefore, the technique should facilitate com-
munication between stakeholders.

Technique maturity The gap between the development of new academic meth-
ods, techniques and processes and their actual application in industry is common
in Systems and Software Engineering [16]. The challenge is not only to develop
better theories, but also to effectively introduce and use these theories in prac-
tice. Thus, one concern during our research was on identifying how mature the
technique is.

Traceability A requirement is traceable if its origin is clear and if it facilitates
its referencing in future development or enhancement documentation. Traceabil-
ity of a requirement is especially important when the software product enters the
operation and maintenance phase. As code and design documents are modified,
it is essential to be able to ascertain the complete set of requirements that may
be affected by those modifications. Therefore, the technique should be able to
enable traceability between requirements, and traceability between requirements
and design.

Used in industry A great challenge with techniques, languages, and methods
in software engineering in general, and in RE in particular, is to put them to
work in practice. Often a successful technique from the industry point-of-view is
poorly defined or not appreciated in academia. For instance, UML has many well-
known flaws. The language is considered too informal and ambiguous [8] [26].
There are too many diagrams, with some rarely used in practice [22], making
it more difficult to chose which one should be used in a specific situation [3].
Despite all of these issues, UML is currently the most used modeling language
in industry. We are interested in knowing how well-established in industry the
technique is.

4 Resulting Table

Table 1 is a result of the evaluation of the proposed techniques against the
defined criteria. In the table, NL stands for Natural Language, SNL stands for
Structured Natural Language, VP stands for Viewpoint-based Documentation,
DT stands for Decision Table, UC stands for Use Cases (both SysML and UML),
SR stands for SysML Requirements diagram, ST stands for SysML Tables, and
i* stands for the goal-oriented modeling i*.

We classified the entries as fully supported (�), half supported (��), or not
supported (�) (or not easily supported, or poorly supported). Some entries were
difficult to evaluate and generated debates. Therefore, we decided to use the
symbol “?” when in doubt, i.e., literature research and the interviews about the
technique for that specific criteria were not conclusive.

Based on the characteristics of each technique, and on the needs expressed
by developers and managers, they can evaluate and select a suitable technique.

24 M. dos Santos Soares and D.S. Cioquetta

Supposing that “Graphical modeling” and “Relationship between requirements”
are the most relevant criteria, then the stakeholders might chose between the
SysML Requirements diagram and i* as most appropriate techniques in this case,
instead of structured natural languages, for instance. Therefore, the table can
be seen as a guideline to help stakeholders to select which technique suits better
their purpose. A decision support tool based on this research was developed in
order to help stakeholders in taking a decision based on the characteristics of
the project at hand.

It should be clear that techniques are not mutually exclusive. Two or more
techniques may be used in combination. That depends on stakeholders’ interest,
on the proper characteristics of each technique, and on characteristics of the soft-
ware to be developed. In addition, when two techniques are considered equally
supporting a set of chosen criteria, the decision should be taken based on other
principle. For instance, previous knowledge of the technique by the developers
should be taken into account.

Table 1. Table relating techniques and evaluation criteria

List of requirements NL SNL VP DT UC SR ST i*

Graphical Modeling � � � �� � � �� �
Human readable � �� � � �� �� � ��
Independent towards methodology � �� � � �� � � �
Relationship requirements-requirements � � �� � �� � � �
Type of relationship between requirements � � ? � �� � � �
Represent types of requirements � � � ? � � � ��
Priority between requirements � � �� � � � � �
Grouping related requirements � � � � � � � �
Flexible � � � � �� �� � �
Ranking requirements by stability � � ? � � � �� �
Solve ambiguity � �� �� � � �� � �
Well-defined semantics � �� � �� � �� � �
Verifiable � �� �� � �� �� � ��
Expressibility � �� � � �� � �� �
Ability in requirements management � � � � �� � � �
Simplicity � �� � � �� ? � ��
Ability to facilitate communication �� �� � � �� �� � ��
Technique maturity � � � � � �� �� �
Traceability: Requirements-Requirements � � � �� �� � � �
Traceability: Requirements-Design � �� ? � � � � ?

Used in industry � � � � � �� �� ��

5 Conclusion

Chosing one technique for Requirements Engineering among the great variety
proposed in past years is a challenge that developers have to face. Currently, the

Analysis of Techniques for Documenting User Requirements 25

decision is frequently based on ad-hoc criteria. The main purpose of this article
is to assist requirements engineers on taking such as important decision.

In this article the evaluation of a number of techniques used for documenting
user requirements against a number of criteria is proposed. The source for eval-
uation was literature review, action research on two companies, and interviews
with practitioners, which help to determine the criteria for the evaluation. The
purpose was not to come to conclusions on which technique is better. Instead,
this research can be seen as a guideline to chose techniques for documenting
user requirements. Therefore, based on the project at hand and on criteria given
by the proper stakeholders, some techniques may be considered more suitable
than others. Stakeholders can benefit from knowing which techniques fit better
a number of pre-determined evaluation criteria. This research shed a light on the
capabilities of the most common techniques applied to model user requirements.

Ongoing research concerns the evaluation of the decision support tool devel-
oped in order to help stakeholders to choose a technique for Requirements En-
gineering documentation based on project characteristics and the stakeholders
interests.

Acknowledgements. This work was supported by PROPP-UFU
(http://www.propp.ufu.br/site/).

References

1. Abran, A., Bourque, P., Dupuis, R., Moore, J.W., Tripp, L.L. (eds.): Guide to the
Software Engineering Body of Knowledge - SWEBOK, 2004 version edn. IEEE
Press, Piscataway (2004)

2. Abrial, J.R.: Formal Methods: Theory Becoming Practice. Journal of Universal
Computer Science 13(5), 619–628 (2007)

3. Anda, B., Hansen, K., Gullesen, I., Thorsen, H.K.: Experiences from Introducing
UML-based Development in a Large Safety-Critical Project. Empirical Software
Engineering 11(4), 555–581 (2006)

4. Avison, D.E., Lau, F., Myers, M.D., Nielsen, P.A.: Action Research. Communica-
tions of the ACM 42(1), 94–97 (1999)

5. Balmelli, L., Brown, D., Cantor, M., Mott, M.: Model-driven Systems Development.
IBM Systems Journal 45(3), 569–586 (2006)

6. Baskerville, R.: Investigating Information Systems with Action Research. Commu-
nications of the AIS 2(4), 1–32 (1999)

7. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
Professional, Boston (1999)

8. Beneken, G., Hammerschall, U., Broy, M., Cengarle, M.V., Jürjens, J., Rumpe, B.,
Schoenmakers, M.: Componentware - State of the Art 2003. In: Proceedings of the
CUE Workshop Venedig (2003)

9. Berry, D.M.: The Inevitable Pain of Software Development: Why There Is No
Silver Bullet. In: Wirsing, M., Knapp, A., Balsamo, S. (eds.) RISSEF 2002. LNCS,
vol. 2941, pp. 50–74. Springer, Heidelberg (2004)

10. Boehm, B.W.: Software and Its Impact: A Quantitative Assessment. Datama-
tion 19(5), 48–59 (1973)

26 M. dos Santos Soares and D.S. Cioquetta

11. Booch, G.: The Economics of Architecture-First. IEEE Software 24, 18–20 (2007)

12. Bowen, J.P., Hinchey, M.G.: Seven More Myths of Formal Methods. IEEE Soft-
ware 12(4), 34–41 (1995)

13. Brooks, F.P.: No Silver Bullet: Essence and Accidents of Software Engineering.
Computer 20(4), 10–19 (1987)

14. Browne, G.J., Ramesh, V.: Improving Information Requirements Determination:
A Cognitive Perspective. Information Management 39(8), 625–645 (2002)

15. Broy, M.: From “Formal Methods” to System Modeling. In: Jones, C.B., Liu,
Z., Woodcock, J. (eds.) Formal Methods and Hybrid Real-Time Systems. LNCS,
vol. 4700, pp. 24–44. Springer, Heidelberg (2007)

16. Connor, A.M., Buchan, J., Petrova, K.: Bridging the Research-Practice Gap in Re-
quirements Engineering through Effective Teaching and Peer Learning. In: ITNG
2009: Proceedings of the 2009 Sixth International Conference on Information Tech-
nology: New Generations, pp. 678–683. IEEE Computer Society (2009)

17. Cooper, K., Ito, M.: Formalizing a Structured Natural Language Requirements
Specification Notation. In: Proceedings of the International Council on Systems
Engineering Symposium, vol. CDROM index 1.6.2, Las Vegas, Nevada, USA,
pp. 1–8 (2002)

18. Damian, D., Zowghi, D., Vaidyanathasamy, L., Pal, Y.: An Industrial Case Study
of Immediate Benefits of Requirements Engineering Process Improvement at the
Australian Center for Unisys Software. Empirical Software Engineering 9(1-2),
45–75 (2004)

19. Davies, I., Green, P., Rosemann, M., Indulska, M., Gallo, S.: How Do Practitioners
Use Conceptual Modelling in Practice? Data Knowledge Engineering 58(3), 358–380
(2006)

20. Davis, A.M.: The Art of Requirements Triage. Computer 36(3), 42–49 (2003)

21. Davis, J.F.: The Affordable Application of Formal Methods to Software Engineer-
ing. ACM SIGAda Ada Letters XXV(4), 57–62 (2005)

22. Dobing, B., Parsons, J.: How UML is Used. Communications of the ACM 49(5),
109–113 (2006)

23. Easterbrook, S., Nuseibeh, B.: Using ViewPoints for inconsistency management.
Software Engineering Journal 11(1), 31–43 (1996)

24. Easterbrrok, S., Nuseibeh, B.: Using ViewPoints for inconsistency management.
Software Engineering Journal 11(1), 31–43 (1996)

25. van Genuchten, M.: Why is Software Late? An Empirical Study of Reasons For
Delay in Software Development. IEEE Transactions on Software Engineering 17(6),
582–590 (1991)

26. Henderson-Sellers, B.: UML - the Good, the Bad or the Ugly? Perspectives from
a panel of experts. Software and System Modeling 4(1), 4–13 (2005)

27. Hofmann, H.F., Lehner, F.: Requirements Engineering as a Success Factor in Soft-
ware Projects. IEEE Software 18(4), 58–66 (2001)

28. Hurley, R.B.: Decision Tables in Software Engineering. John Wiley & Sons, Inc.,
New York (1983)

29. IEEE: IEEE Recommended Practice for Software Requirements Specifications.
Tech. rep. (1998)

30. Jacobson, I.: Object-Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley Professional, Reading (1992)

31. Jacobson, I.: Use Cases - Yesterday, Today, and Tomorrow. Software and System
Modeling 3(3), 210–220 (2004)

Analysis of Techniques for Documenting User Requirements 27

32. Jiang, L., Eberlein, A., Far, B., Mousavi, M.: A Methodology for the Selection of
Requirements Engineering Techniques. Software and Systems Modeling 7, 303–328
(2007)

33. Juristo, N., Moreno, A.M., Silva, A.: Is the European Industry Moving Toward
Solving Requirements Engineering Problems? IEEE Software 19(6), 70–77 (2002)

34. Kamsties, E.: Understanding Ambiguity in Requirements Engineering. In: Au-
rum, A., Wohlin, C. (eds.) Engineering and Managing Software Requirements,
pp. 245–266. Springer, Berlin (2005)

35. Komi-Sirviö, S., Tihinen, M.: Great Challenges and Opportunities of Distributed
Software Development - An Industrial Survey. In: Proceedings of the Fifteenth
International Conference on Software Engineering and Knowledge Engineering
(SEKE 2003), pp. 489–496 (2003)

36. Larsen, P.G., Fitzgerald, J., Brookes, T.: Applying Formal Specification in Indus-
try. IEEE Software 13(3), 48–56 (1996)

37. Luisa, M., Mariangela, F., Pierluigi, I.: Market Research for Requirements Analysis
Using Linguistic Tools. Requirements Engineering 9(1), 40–56 (2004)

38. Maiden, N., Rugg, G.: ACRE: Selecting Methods for Requirements Acquisition.
Software Engineering Journal 11(3), 183–192 (1996)

39. Minor, O., Armarego, J.: Requirements Engineering: a Close Look at Industry
Needs and Model Curricula. Australian Journal of Information Systems 13(1),
192–208 (2005)

40. Moody, D.L., Heymans, P., Raimundas Matulevičius, R.: Visual Syntax Does Mat-
ter: Improving the Cognitive Effectiveness of the i* Visual Notation. Requirements
Engineering 15(2), 141–175 (2010)

41. OMG: Systems Modeling Language (SysML) - Version 1.2 (2010)
42. Parviainen, P., Tihinen, M., Lormans, M., van Solingen, R.: Requirements En-

gineering: Dealing with the Complexity of Sociotechnical Systems Development.,
ch. 1, pp. 1–20. IdeaGroup Inc. (2004)

43. Pressman, R.S.: Software Engineering: A Practitioner’s Approach, 7th edn.
McGraw-Hill, Inc., New York (2010)

44. Robertson, S., Robertson, J.: Mastering the Requirements Process, 2nd edn.
Addison-Wesley Professional, ACM Press/Addison-Wesley Publishing Co., New
York (2006)

45. Robinson, W.N., Pawlowski, S.D., Volkov, V.: Requirements Interaction Manage-
ment. ACM Computing Surveys 35(2), 132–190 (2003)

46. Sharon, I., Soares, M.S., Barjis, J., van den Berg, J., Vrancken, J.L.M.: A Decision
Framework for Selecting a Suitable Software Development Process. In: Proceedings
of ICEIS 2010, 12th International Conference on Enterprise Information Systems.
vol. 3, pp. 34–43 (2010)

47. Simons, A.J.H.: Use Cases Considered Harmful. In: TOOLS 1999: Proceedings of
the Technology of Object-Oriented Languages and Systems, pp. 194–203 (1999)

48. Soares, M.S., Vrancken, J.L.M.: Evaluation of UML in Practice - Experiences in
a Traffic Management Systems Company. In: Proceedings of 12th International
Conference on Enterprise Information Systems, ICEIS 2010, pp. 313–319 (2009)

49. Soares, M.S., Vrancken, J.L.M., Verbraeck, A.: User Requirements Modeling and
Analysis of Software-Intensive Systems. Journal of Systems and Software 84(2),
328–339 (2011)

50. Sommerville, I.: Software Engineering, 9th edn. Addison-Wesley, Essex (2010)
51. Sommerville, I., Kotonya, G.: Requirements Engineering: Processes and Tech-

niques. John Wiley & Sons, Inc., New York (1998)

28 M. dos Santos Soares and D.S. Cioquetta

52. Sommerville, I., Sawyer, P., Viller, S.: Managing process inconsistency using view-
points. IEEE Transactions on Software Engineering 25, 784–799 (1999)

53. Sommerville, I., Sawyer, P., Viller, S.: Viewpoints for Requirements Elicitation:
A Practical Approach. In: Proceedings of the 3rd International Conference on
Requirements Engineering: Putting Requirements Engineering to Practice, ICRE
1998, pp. 74–81 (1998)

54. The Standish Group: CHAOS Chronicles v3.0. Tech. rep., The Standish Group
(2003) (last accessed on the August 20, 2009)

55. Venkatesh, V., Bala, H.: Technology Acceptance Model 3 and a Research Agenda
on Interventions. Decision Sciences 39(2), 273–315 (2008)

56. Wassyng, A., Lawford, M.: Lessons Learned from a Successful Implementation of
Formal Methods in an Industrial Project. In: Araki, K., Gnesi, S., Mandrioli, D.
(eds.) FME 2003. LNCS, vol. 2805, pp. 133–153. Springer, Heidelberg (2003)

57. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal Methods: Prac-
tice and Experience. ACM Computing Surveys 41(4), 1–36 (2009)

58. Yu, E.S.: Towards Modelling and Reasoning Support for Early-Phase Require-
ments Engineering. In: International Symposium on Requirements Engineering,
pp. 226–235 (1997)

Predicting Web Service Maintainability via
Object-Oriented Metrics: A Statistics-Based Approach

José Luis Ordiales Coscia2, Marco Crasso1,2,3, Cristian Mateos1,2,3,
Alejandro Zunino1,2,3, and Sanjay Misra4

1 ISISTAN Research Institute
2 UNICEN University

3 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
4 Department of Computer Engineering, Atilim University, Ankara, Turkey

Abstract. The Service-Oriented Computing paradigm enables the construction
of distributed systems by assembling loosely coupled pieces of software called
services, which have clear interfaces to their functionalities. Service interface de-
scriptions have many aspects, such as complexity and quality, all of which can
be measured. This paper presents empirical evidence showing that services inter-
faces maintainability can be predicted by applying traditional software metrics in
service implementations. A total of 11 source code level metrics and 5 service
interface metrics have been statistically correlated using 154 real world services.

Keywords: Service-Oriented Computing, Web Services, Code-First, Web Ser-
vice Maintainability, Object-Oriented Metrics, Web Service Maintainability
Prediction.

1 Introduction

Service-Oriented Computing (SOC) is a paradigm that allows engineers to build new
software by composing loosely coupled pieces of existing software called services. A
distinguishing feature of SOC is that services may be provided by third-parties who
only expose services interfaces to the outer world. By means of these interfaces, po-
tential consumers can determine what a service does from a functional perspective and
remotely invoke it from their new applications.

The advances in distributed system technologies have caused engineers to materi-
alize SOC in environments with higher levels of distribution and heterogeneity. The
availability of broadband and ubiquitous connections enable to reach the Internet from
everywhere and at every time, creating a global scale marketplace of software services
where providers offer their services interfaces and consumers may invoke them regard-
less geographical aspects, using the current Web infrastructure as the communication
medium. Therefore, services are often implemented using standard Web-inspired lan-
guages and protocols and thus are called Web Services. Nowadays, Web Services are the
technology commonly used when migrating legacy systems [1] to modern platforms or
the technological protocol stack used for accessing information from smartphones [2].

Like any other software artifact, service interface descriptions have a size, complex-
ity and quality, all of which can be measured [3]. In fact, previous research [4,3,5]

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 29–39, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

30 J.L.O. Coscia et al.

has emphasized on the importance of the non-functional concerns of services inter-
faces. Particularly, the work of [4] proposes a catalog of common bad practices found
in services interfaces, which impact on the understandability and discoverability of the
associated services. Understandability is the ability of a service interface description
of being self-explanatory, which means a software engineer can reason about a service
purpose just by looking at its interface description. Discoverability refers to the ability
of a service of being easily retrieved, from a registry or repository, based on a partial
description of its intended functionality such as a Google-like query. At the same time,
in [3] the author describes a suite of metrics to assess the complexity and quality of
services interfaces with respect to various aspects. Likewise, [5] proposes a suite com-
prising 4 metrics to assess service maintainability from service interface descriptions.

Methodologically, in practice service interfaces are not build by hand, but instead
they are automatically generated by mapping programming languages constructors (and
hence service implementations) onto service interface descriptions expressed in the
Web Service Definition Language (WSDL). WSDL is an XML-based format for de-
scribing a service as a set of operations, which can be invoked via message exchange.
In the Java arena, this mapping is usually achieved by tools such as Axis’ Java2WSDL,
Java2WS, EasyWSDL, and WSProvide. The weak point of this methodology is that
engineers partially control WSDL specification and therefore resulting WSDL descrip-
tions may suffer from understandability, discoverability, complexity, quality and main-
tainability problems as measured by the aforementioned metrics catalogs.

We set forth the hypothesis that service developers can indirectly reduce the nega-
tive impact of some of these WSDL-level metrics by following certain programming
guidelines at service implementation time. Particularly, in an attempt to explain the root
causes of most understandability and discoverability problems associated with services
interfaces, in [6] a statistical correlation analysis between service implementation met-
rics and service interface bad practices occurrences has been reported. In this paper,
we study the feasibility of obtaining more maintainable services by exploiting Object-
Oriented metrics (OO) values from the source code implementing services. Similarly
to [6], the approach in this work uses OO metrics as early indicators to guide software
developers towards obtaining more maintainable services.

Interestingly, we have found that there is a statistically significant, high correlation
between several traditional (source code-level) OO metrics and the catalog of (WSDL-
level) service metrics described in [5]. This is the most comprehensive and rigorously
evaluated catalog of metrics for measuring service maintainability from WSDL inter-
faces. A corollary of this finding is that software developers could consider applying
simple early code refactorings to avoid obtaining non-maintainable services upon gen-
erating service descriptions. Although our findings do not depend on the programming
language in which services are implemented, we focus on Java, which is widely used
in back-end and hence service development. To evaluate our approach, we performed
experiments with a data-set of 154 real services, and the most popular Java-to-WSDL
mapping tool, i.e. Java2WSDL (http://ws.apache.org/axis/java).

The rest of the paper is organized as explained next. Section 2 provides the back-
ground necessary to understand the goals and results of our research. Section 3 sur-
veys related works. Section 4 presents detailed analytical experiments that evidence the

http://ws.apache.org/axis/java

Predicting Web Service Maintainability via Object-Oriented Metrics 31

correlation of OO metrics with the Web Service metrics proposed in [5]. Section 5 ex-
plains how this correlation can be exploted to predict and early improve service main-
tainability. Section 6 concludes the paper and describes future research opportunities.

2 Basic Concepts

WSDL is a language that allows providers to describe two main aspects of a service,
namely what it does (its functionality) and how to invoke it (its binding-related infor-
mation). The former aspect reveals the functional service interface that is offered to
potential consumers. The latter aspect specifies technological details, such as transport
protocols and network addresses. Consumers use the former part to match third-party
services against their needs, and the latter part to actually interact with the selected ser-
vice. With WSDL, service functionality is described as a port-type W =

{O0(I0,R0), ..,ON(IN ,RN)}, which lists one or more operations Oi that exchange input
and return messages Ii and Ri, respectively. Port-types, operations and messages are
labeled with unique names, and optionally they might contain some comments.

Messages consist of parts that transport data between providers and consumers of
services, and vice-versa. Exchanged data is represented by using data-type definitions
expressed in XML Schema Definition (XSD), a language to define the structure of an
XML construct. XSD offers constructors for defining simple types (e.g. integer and
string), restrictions, and both encapsulation and extension mechanisms to define com-
plex constructs. XSD code might be included in a WSDL document using the types
element, but alternatively it might be put into a separate file and imported from the
WSDL document or external WSDL documents so as to achieve type reuse.

A requirement inherent to manually creating and manipulating WSDL and XSD def-
initions is that services are built in a contract-first manner, a methodology that encour-
ages designers to first derive the WSDL interface of a service and then supply an im-
plementation for it. However, the most used approach to build Web Services in the
industry is code-first, which means that one first implements a service and then gener-
ates the corresponding service interface by automatically deriving the WSDL interface
from the implemented code. This means that WSDL documents are not directly created
by developers but are instead automatically derived via language-dependent tools. Such
a tool performs a mapping T [6], formally T : C → W.

T maps the main implementation class of a service (C = {M(I0,R0), ..,MN(IN ,RN)})
to the WSDL document describing the service (W = {O0(I0,R0), ..,ON(IN ,RN)}). Then,
T generates a WSDL document containing a port-type for the service implementation
class, having as many operations O as public methods M the class defines. Moreover,
each operation of W is associated with one input message I and another return mes-
sage R, while each message comprises an XSD data-type representing the parameters
of the corresponding class method. Tools like WSDL.exe, Java2WSDL, and gSOAP [7]
rely on a mapping T for generating WSDLs from C#, Java and C++, respectively.

Fig. 1 shows the generation of a WSDL document using Java2WSDL. The map-
ping T in this case has associated each public method from the service code to an
operation containing two messages in the WSDL document and these, in turn, are asso-
ciated with an XSD data-type containing the parameters of that operation. Depending

32 J.L.O. Coscia et al.

on the tool used some minor differences between the generated WSDL documents may
arise [6]. For instance, for the same service Java2WSDL generates only one port-type
with all the operations of the Web Service, whereas WSDL.exe generates three port-
types each bound to a different transport protocol.

Service code Port-types

MessagesTypes

Fig. 1. WSDL generation in Java through the Java2WSDL tool

The fact supporting our hypothesis is precisely that WSDL metrics in the general
sense are associated with API design attributes [6,4]. These latter have been throughly
studied by the software engineering community and as a result suites of OO class-level
metrics exist, such as the Chindamber and Kemerer’s catalog [8]. Consequently, these
metrics tell providers about how a service implementation conforms to specific design
attributes. For example, the CBO (Coupling Between Objects) metric gives a hint on
data model quality in terms of code development and maintenance facilities. Moreover,
the LCOM (Lack of Cohesion Methods) metric measures how well the methods of a
class are semantically related to each other, or the cohesion design attribute.

An interesting approach is then to assess whether a desired design attribute as mea-
sured by an appropriate OO metric is ensured after WSDL generation as measured by a
WSDL-level metric suitable for the attribute (e.g. [5] when targeting maintainability or
[3] when targeting complexity). As a corollary, by using well-known software metrics
on a service code C, a service developer might have an estimation of how the result-
ing WSDL document W will be like in terms of maintainability and complexity since
a known mapping T deterministically relates C with W. Then, based on these code

Predicting Web Service Maintainability via Object-Oriented Metrics 33

metric/WSDL metric relationships, it is possible to determine a wider range of metric
values for C so that T generates W without undesirable WSDL-level metric values.

3 Related Efforts

Although there has been a substantial amount of research to improve services interfaces
quality [3,4,5], the approach to predict quality by basing on traditional OO metrics at
development time remains rather unexplored. Indeed, this approach has been recently
and exclusively explored in [6] to anticipate potential quality problems in services in-
terfaces. Conceptually, the work presented in [6] studies the relationships between ser-
vice implementation metrics and a key quality attribute of target services interfaces in
WSDL, namely discoverability [4].

From services implementations the authors gathered 6 classic OO metrics, namely
Chindamber and Kemerer’s [8] CBO, LCOM, WMC (Weighted Methods Per Class),
RFC (Response for Class), plus the CAM (Cohesion Among Methods of Class) metric
from the work of Bansiya and Davis [9] and the well-known lines of code (LOC) metric.
Additionally, they gathered 5 ad-hoc metrics, namely TPC (Total Parameter Count),
APC (Average Parameter Count), ATC (Abstract Type Count), VTC (Void Type Count),
and EPM (Empty Parameters Methods).

Regarding discoverability, the authors used a sub-set of the WSDL metrics listed
in [4], which are focused on measuring aspects that affect discoverability, namely the
legibility, conciseness, and understandability of WSDL descriptions [10,11,12]. Then,
the authors collected a data-set of publicly available code-first Web Services projects,
which by itself has been a valuable contribution to the field, and in turn analyzed the
statistical relationship among metrics.

In the same direction that [6], this paper analyzes whether there are relations be-
tween service implementation metrics and the suite of metrics proposed by Baski and
Misra [5], which comprises 4 novel metrics for measuring the complexity of the de-
scription of the information exchanged by Web Services. As will be explained later,
these metrics can be statically computed from a service interface in WSDL, since this
metric suite is purely based on WSDL and XSD schema elements occurrences.

3.1 Data Weight Metric

Baski and Misra [5] defined the data complexity as “the complexity of data flowed to
and from the interfaces of a Web service and can be characterized by an effort required
to understand the structures of the messages that are responsible for exchanging and
conveying the data”. The definition of the Data Weight (DW) metric is based on the
above, and computes the complexity of the data-types conveyed in services messages.
To the sake of brevity, we will refer to the complexity of a message C(m) as an indicator
of the effort required to understand, extend, adapt, and test m, by basing on its struc-
ture. C(m) counts how many elements, complex types, restrictions and simple types are
exchanged by messages parts, as it is deeply explained in [5]. Formally:

DW(wsdl) =
nm∑

i=1

C(mi) (1)

34 J.L.O. Coscia et al.

where nm is the number of messages that the WSDL document exchanges. For the
purposes of this paper, we have assumed nm to consider only those messages that are
linked to an offered operation of the WSDL document, thus it does not take into account
dangling messages. The DM metric always returns a positive integer. The bigger the
DM of a WSDL document, the more complex its operations messages are.

3.2 Distinct Message Ratio Metric

The Distinct Message Ratio (DMR) metric complements DW by attenuating the im-
pact of having similar-structured messages within a WSDL document. As the number of
similar-structured messages increases the complexity of a WSDL document decreases,
since it is easier to understand similar-structured messages than that of various-structured
ones as a result of gained familiarity with repetitive messages [5]. Formally:

DMR(wsdl) =
DMC(wsdl)

nm
(2)

where the Distinct Message Count (DMC) metric can be defined as the number of
distinct-structured messages represented by [C(m), nargs] pair, i.e. the complexity value
C(m) and total number of arguments nargs that the message contains [5]. The DMR
metric always returns a number in the range of [0,1], where 0 means that all defined
messages are similar-structured, and 1 means that messages variety increases.

3.3 Message Entropy Metric

The Message Entropy (ME) metric exploits the probability of similar-structured mes-
sages to occur within a given WSDL document. Compared with the DMR metric, ME
also bases on the fact that repetition of the same messages makes a developer more fa-
miliar with the WSDL document and results in ease of maintainability, but ME provides
better differentiation among WSDL documents in terms of complexity. Formally:

ME(wsdl) = −
DMC(wsdl)∑

i=1

P(mi) ∗ log2P(mi) (3)

P(mi) =
nomi

nm

where nomi is the number of occurrences of the ith message, and in turn P(mi) represents
the probability that such a message occurs within the given WSDL document. The
ME metric outputs values greater or equal than zero. A low ME value shows that the
messages are consistent in structure, which means that data complexity of a WSDL
document is lower than that of the others having equal DMR values.

3.4 Message Repetition Scale Metric

The Message Repetition Scale (MRS) metric analyses variety in structures of WSDL
documents. By considering frequencies of [C(m), nargs] pairs, MRS measures the con-
sistency of messages as follows:

Predicting Web Service Maintainability via Object-Oriented Metrics 35

MRS (wsdl) =
DMC(wsdl)∑

i=1

nom2
i

nm
(4)

The possible values for MRS are in the range 1 ≤ MRS ≤ nm. When comparing two or
more WSDL documents, a higher MRS and lower ME show that the developer makes
less effort to understand the messages structures owing to the repetition of similar-
structured messages.

4 Statistical Correlation among Services Metrics

We used the Spearman’s rank coefficient to analyze whether metrics taken on ser-
vice implementations are correlated with metrics from their WSDL documents or not.
Broadly, the experiment consisted on gathering OO metrics from real Web Services, cal-
culating the service interface metrics of the previous section from WSDL documents,
and analyzing the correlation among all pairs of metrics.

To perform the analysis, we employed a data-set of 154 WSDL documents from open
source projects, which was the newest version available of the data-set described in [6]
at the time of writing this article. All projects are written in Java, and were collected via
the source code search engines Merobase, Exemplar and Google Code. Each project
offers at least one Axis’ Java2WSDL Web Service description. Each service within
each project consists of the implementation code and dependency libraries needed for
compiling and generating WSDL documents. All in all, the generated data-set provided
the means to perform a significant evaluation in the sense that the different Web Service
implementations came from real-life software developers.

Regarding the correlation model, the independent variables were the WMC, CBO,
RFC, LCOM, CAM, TPC, APC, ATC, VTC, EPM, and LOC metrics. On the other
hand, the dependent variables were the DW, DMC, DMR, ME and MRS metrics. Met-
rics recollection is an extremely sensitive task for this experiment, but also a task that
would require a huge amount of time to be manually carried on. Therefore, all the em-
ployed metrics have been automatically gathered by using an extended version of the
ckjm [13] tool and a software library to automate the recollection of the WSDL metrics
(http://code.google.com/p/wsdl-metrics-soc-course/).

Table 1. Correlation between OO metrics and WSDL ones

Metric WMC CBO RFC LCOM LOC CAM TPC APC GTC VTC EPM

DW 0.47 0.80 0.47 0.47 0.47 -0.48 0.60 0.38 0.58 0.05 -0.03

DMC 0.82 0.53 0.82 0.82 0.82 -0.83 0.74 0.14 0.39 0.16 0.29

DMR -0.71 0.22 -0.71 -0.71 -0.71 0.43 -0.37 0.34 0.25 -0.10 -0.36

ME 0.72 0.62 0.72 0.72 0.72 -0.79 0.68 0.18 0.45 0.13 0.18

MRS 0.80 -0.13 0.80 0.80 0.80 -0.54 0.49 -0.28 -0.18 0.10 0.37

http://code.google.com/p/wsdl-metrics-soc-course/

36 J.L.O. Coscia et al.

Table 1 and Fig. 2 show the existing relations between the OO metrics (independent
variables) and the WSDL metrics (dependent variables). For denoting those coefficients
that are statistically significant at the 5% level or p-value < 0.05, which is a common
choice when performing statistical studies [14], we employed bold numbers in Table 1,
and circles in Fig. 2. The sign of the correlation coefficients (+, -) are depicted using
black and white circles, respectively. A positive (black) relation means that when the
independent variable grows, the dependent variable grows too, and when the indepen-
dent variable falls the dependent goes down as well. Instead, a negative (white) relation
means that when independent variables grow, dependent ones fall, and vice versa. The
absolute value, or correlation factor, indicates the intensiveness of the relation regard-
less of its sign. Graphically, the diameter of a circle represents a correlation factor, i.e.
the bigger the correlation factor the bigger the diameter in Fig. 2.

Fig. 2. Graphical representation of correlation analysis for rapidly identifying relations

5 A Step towards Early Improving WSDL Maintainability

By looking at Fig. 2 one could state that there is a high statistical correlation between
the analyzed OO metrics and, at least, one metric for assessing the maintainability of
services interfaces descriptions. Initially, this implies that every independent variable
should be somehow “controlled” by software engineers attempting to obtain maintain-
able target WSDL documents. However, as determining the best set of controllable
independent variables would deserve a deeper analysis within a longer paper, we will
focus on determining a minimalist sub-set of OO metrics for this paper.

We employed two criteria for reducing the number of OO metrics. First, by basing
on the study presented in [6] that shows the existence of groups of statistically depen-
dent OO metrics, we select one representative metric for each group. In other words,
if a group of variables in a data-set are strongly correlated, these variables are likely to
measure the same underlying dimension (e.g. cohesion, complexity, or coupling). Ta-
ble 2 shows the statistical correlation among OO metrics for the employed version of
the data-set, which confirms that RFC, LCOM and LOC can be removed while keep-
ing WMC, since these are statistically correlated at the 5% level with correlation factor
of 1.

Predicting Web Service Maintainability via Object-Oriented Metrics 37

Table 2. Correlation among OO metrics

Metric WMC CBO RFC LCOM LOC CAM TPC APC GTC VTC EPM

WMC 1.00 0.20 1.00 1.00 1.00 -0.84 0.76 -0.07 0.17 0.28 0.41

CBO - 1.00 0.20 0.20 0.20 -0.37 0.29 0.26 0.41 -0.07 -0.15

RFC - - 1.00 1.00 1.00 -0.84 0.76 -0.07 0.17 0.28 0.41

LCOM - - - 1.00 1.00 -0.84 0.76 -0.07 0.17 0.28 0.41

LOC - - - - 1.00 -0.84 0.76 -0.07 0.17 0.28 0.41

CAM - - - - - 1.00 -0.63 0.08 -0.24 -0.35 -0.36

TPC - - - - - - 1.00 0.55 0.33 0.28 0.08

APC - - - - - - - 1.00 0.30 0.04 -0.33

GTC - - - - - - - - 1.00 0.03 -0.18

VTC - - - - - - - - - 1.00 0.38

EPM - - - - - - - - - - 1.00

Second, we removed the APC, GTC, VTC, and EPM metrics because they do not
have at least one relationship with its correlation factor above |0.6| at the 5% level. The
rationale of this criterion reduction was to keep only the highest correlated pairs of
variables.

Table 3. Minimalist sub-set of correlated OO and WSDL metrics

Metric WMC CBO RFC LCOM LOC CAM TPC

DW - 0.80 - - - - 0.74

DMC 0.82 - 0.82 0.82 0.82 -0.83 0.68

DMR -0.71 - -0.71 -0.71 -0.71 - 0.60

ME 0.72 0.62 0.72 0.72 0.72 -0.79 -

MRS 0.80 - 0.80 0.80 0.80 - -

Table 3 represents a minimalist sub-set of correlated metrics, and shows that the DW
metric depends on two OO metrics, i.e. CBO and TPC. Then, the DW of a service
may be influenced by the number of classes coupled to its implementation, and by the
number of parameters their operations exchange. The results also show that DW is not
highly influenced by cohesion related metrics, such as LCOM and CAM, neither by
how many methods its implementation invokes (RFC) or methods complexity (WMC).

The DMC and ME metrics may be decreased by reducing the complexity of service
implementation methods. This means that if a software developer modifies his/her ser-
vice implementation and in turn this reduces the WMC, RFC and LOC metrics, such a

38 J.L.O. Coscia et al.

fall will cause a decrement in DMC and ME. At the same time, DMC and ME may be
reduced by improving the cohesion of services implementations. This is because when
the cohesion of services implementations is improved, LCOM falls and CAM rises,
which may produce a lower value for DMC and ME, by basing on the signs of their
respective statistical relations. ME is influenced by CBO as well.

The DMR metric has negative correlations with WMC, RFC, and LOC. Surprisingly,
this means that when the complexity of services implementations methods grows, the
ratio of distinct messages falls. Also, DMR has a positive correlation with TPC, which
means that the higher the number of operations parameters the higher the ratio of dis-
tinct messages. The MRS metric presents high correlations with 3 complexity and 1 co-
hesion service implementation metrics.

The presented evidence shows that pursuing an improvement in the DMR metric
may conflict with other metric-driven goals. This means that if a software developer
modifies his/her service implementation and in turn this produces an increment in the
WMC, RFC, LOC or LCOM metrics, such an increment will cause that DMC, ME, and
MRS alert about an increment in the WSDL document complexity, however the DMR
will fall. Clearly, incrementing DMC, and ME would be undesirable, but this could be
the side-effect of a gaining in the DMR metric. As in general software literature, this
kind of situations could be treated as trade-offs, in which the software engineer should
analyze and select among different metric-driven implementation alternatives.

6 Conclusions

We have empirically shown that when developing code-first Web Services, there is a
high statistical correlation between several traditional code-level OO metrics and some
WSDL-related metrics that measure maintainability at the WSDL level. This enforces
the findings reported in [6], in which a correlation between some OO metrics and met-
rics that measure service discoverability was also found.

As discussed in Section 5, this would allow software engineers and developers to
early adjust OO metrics, for example via M. Fowler’s code refactorings, so that result-
ing WSDLs and hence services are more maintainable. Moreover, modern IDEs provide
specific refactorings that can be employed to adjust the value of metrics such as WMC,
CBO and RFC. For metrics which are not very popular among developers and therefore
have not associated a refactoring (e.g. CAM), indirect refactorings may be performed.
For example, CAM is negatively correlated to WMC (see Table 2), and hence refactor-
ing for WMC means indirectly refactoring for CAM.

At present, we are generalizing our results by analyzing correlation for WSDL doc-
uments built via code-first tools other than Java2WSDL. Besides, we are studying the
correlation of OO metrics and the WSDL metrics proposed by Harry Sneed [3], which
is a comprehensive catalog of metrics for measuring Web Service complexity.

We are also planning to deeply study the aforementioned trade-offs so as to provide
more decision support to engineers. Indeed, refactoring for a particular OO metric may
yield good results as measured by some WSDL metrics but bad results with respect
to other WSDL metrics in the same catalog. Preliminary experiments with the WSDL
complexity metrics catalog presented in [3] also suggest that reducing the value of some

Predicting Web Service Maintainability via Object-Oriented Metrics 39

OO metrics from Table 2 positively impacts on several complexity metrics, but at the
same time negatively affects others. It is then necessary to determine to what extent
these OO metrics are modified upon code refactoring so that a balance with respect to
(ideally) all WSDL metrics in the catalog is achieved. This is however difficult specially
when trying to balance the values of metrics of different catalogs, i.e. when attempting
to build a service that is more maintainable according to Baski and Misra, but less
complex according to Sneed.

Acknowledgments. We acknowledge the financial support provided by ANPCyT
(PAE-PICT 2007-02311). We thank Martín Garriga for his predisposition and valuable
help towards building the software tool that computes the studied Web Service main-
tainability metrics. We also thank Taiyun Wei, the author of the R script for drawing the
correlation matrix of Fig. 2.

References

1. Rodriguez, J.M., Crasso, M., Mateos, C., Zunino, A., Campo, M.: Bottom-up and top-down
COBOL system migration to Web Services: An experience report. IEEE Internet Computing
(2011) (to appear)

2. Ortiz, G., De Prado, A.G.: Improving device-aware Web Services and their mobile clients
through an aspect-oriented, model-driven approach. Information and Software Technol-
ogy 52(10), 1080–1093 (2010)

3. Sneed, H.M.: Measuring Web Service interfaces. In: 12th IEEE International Symposium on
Web Systems Evolution (WSE 2010), pp. 111–115 (September 2010)

4. Rodriguez, J.M., Crasso, M., Zunino, A., Campo, M.: Improving Web Service descrip-
tions for effective service discovery. Science of Computer Programming 75(11), 1001–1021
(2010)

5. Baski, D., Misra, S.: Metrics suite for maintainability of extensible markup language Web
Services. IET Software 5(3), 320–341 (2011)

6. Mateos, C., Crasso, M., Zunino, A., Coscia, J.L.O.: Detecting WSDL bad practices in code-
first Web Services. International Journal of Web and Grid Services 7(4), 357–387 (2011)

7. Van Engelen, R.A., Gallivan, K.A.: The gsoap toolkit for web services and peer-to-peer com-
puting networks. In: 2nd IEEE/ACM International Symposium on Cluster Computing and the
Grid, pp. 128–135. IEEE Computer Society (2002)

8. Chidamber, S., Kemerer, C.: A metrics suite for Object Oriented design. IEEE Transactions
on Software Engineering 20(6), 476–493 (1994)

9. Bansiya, J., Davis, C.G.: A hierarchical model for Object-Oriented design quality assess-
ment. IEEE Transactions on Software Engineering 28, 4–17 (2002)

10. Fan, J., Kambhampati, S.: A snapshot of public Web Services. SIGMOD Record 34(1),
24–32 (2005)

11. Brian Blake, M., Nowlan, M.F.: Taming Web Services from the wild. IEEE Internet Com-
puting 12, 62–69 (2008)

12. Pasley, J.: Avoid XML schema wildcards for Web Service interfaces. IEEE Internet Comput-
ing 10, 72–79 (2006)

13. Spinellis, D.: Tool writing: A forgotten art? IEEE Software 22, 9–11 (2005)
14. Stigler, S.: Fisher and the 5% level. Chance 21, 12–12 (2008)

Early Automated Verification

of Tool Chain Design

Matthias Biehl

Embedded Control Systems
Royal Institute of Technology

Stockholm, Sweden
biehl@md.kth.se

Abstract. Tool chains are expected to increase the productivity of prod-
uct development by providing automation and integration. If, however,
the tool chain does not have the features required to support the product
development process, it falls short of this expectation. Tool chains could
reach their full potential if it could be ensured that the features of a tool
chain are aligned with the product development process. As part of a sys-
tematic development approach for tool chains, we propose a verification
method that measures the extent to which a tool chain design conforms
to the product development process and identifies misalignments. The
verification method can be used early in tool chain development, when
it is relatively easy and cheap to perform the necessary corrections. Our
verification method is automated, which allows for quick feedback and
enables iterative design. We apply the proposed method on an industrial
tool chain, where it is able to identify improvements to the design of the
tool chain.

Keywords: Tool Integration, Process Modeling, Verification, Model-
driven Development.

1 Introduction

Tool chains are becoming increasingly important in the development of complex
systems, since tool chains have the potential to increase development productiv-
ity. In order to reach the goal of higher productivity, tool chains need to support
the product development process. The development process of each product is
different, specific to the company, its traditions, the preferences of the engineers
and the set of development tools used. To provide support in development, a
tool chain cannot be one-size-fits-all solution, but it needs to be customized to
the development context it is used in [7]. It is especially important that the tool
chain is customized and aligned with the product development process, other-
wise practitioners do not accept a new tool chain in their work [5]. It is thus
important to verify that a tool chain is suitable and fits in a specific development
context. We verify by checking the degree to which a tool chain is aligned with
a given product development process.

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 40–50, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Early Automated Verification of Tool Chain Design 41

This work is part of a vision to support the development of a tool chain using
a systematic methodology and tools that manage the complexity of tool chain
development [3]. As part of the systematic development methodology, the design
of a customized tool chain needs to be analyzed and verified early in the tool
chain development process1. When verifying the design of a tool chain, we are
interested in checking how well the design realizes the requirements. A verifica-
tion of the design is a complement - not a replacement - to a verification of the
implementation. Early verification of tool chain design can detect possible mis-
alignments between the product development process and the tool chain, when
corrections are still relatively simple and cheap. In addition, when we automate
the early verification of tool chain design, it can be performed repeatedly with
little effort, allowing for iterative development of tool chains. This leads to the
central research question addressed in this paper: How can early verification
of the alignment between tool chain design and product development process be
performed and automated?

The remainder of this paper is structured as follows. In section 2 we describe
the approach for automated verification. In section 3 we investigate the formal
modeling of the product development process, the tool chain and the relation
between these models. In section 4 we devise a method to identify misalignments
between the development process and the design of the tool chain and we measure
the degree of alignment in section 5. In section 6 we apply the verification method
on an industrial tool chain and discover possible improvements. In sections 7 and
8, we relate our approach to other work in the field, list future work and consider
the implications of this work.

2 Approach

Our goal is to support the development of tool chains by verifying that the tool
chain design is aligned to the product development process. The verification
produces a list of misalignments and a measurement indicating the degree of
alignment between the tool chain and the product development process.

In figure 1 we give an overview of the verification approach. As input we need
a formalized description of the tool chain design (section 3.2) and a description
of the process including the set of tools and their capabilities (section 3.1).
These descriptions need to be in an appropriate language for describing the tool
chain and its needs. An initial verification graph is created based on the two
input models. We automatically add mapping links to the verification graph,
which are constructed according to mapping rules (section 3.3). We then apply
alignment rules (section 4) on the verification graph to find out in how far the
tool chain supports the development process. We also apply metrics (section 5)
to determine the degree of alignment between the tool chain and the process.

1 Note: In this paper we deal with two different development processes: the devel-
opment process of the tool chain, called tool chain development process, and the
development process of some product, where the development process will be sup-
ported by the tool chain (see figure 4), called product development process.

42 M. Biehl

The metrics and the list of misalignments provide feedback for an iterative design
and guide the tool chain designer towards building an improved, more useful tool
chain that is aligned with the process.

Fig. 1. Approach for early automated verification of tool chains

3 Building Up the Verification Graph

In this section, we describe how we build up the data structure used for verifi-
cation. The data structure combines the description of the development process
(section 3.1) and the tool chain design (section 3.2) by adding mapping links
between both descriptions (section 3.3).

3.1 Description of the Product Development Process

We apply the Software & Systems Process Engineering Metamodel (SPEM) [10]
to describe both the product development process and the set of tools used. A
SPEM model can thus be used to describe the process requirements of a tool
chain. A number of concepts are defined in SPEM, we focus here on the core
concepts relevant in this context. A Process is composed of several Activities.

Early Automated Verification of Tool Chain Design 43

An Activity is described by a set of linked Tasks, WorkProducts and Roles. A
Role can�perform� a Task and aWorkProduct can be marked as the�input�
or �output� of a Task. A WorkProduct can be �managed by� a Tool and a
Task can �use� a Tool. An example model is provided in figure 4.

SPEM can be used at several levels of abstraction: A high-level description
may consist only of a process and activities and a low level description may break
down each task into steps and detailed guidances. In the following we assume a
process description on an appropriate level of abstraction that contains at least
instances of all of the above metaclasses.

3.2 Description of the Design of the Tool Chain

We would like to create an early design model that describes all important design
decisions of a tool chain. We chose to apply the Tool Integration Language (TIL)
[3], a domain specific modeling language for tool chains. TIL allows us not only
to model a tool chain, but also to analyze it and generate code from it. Here
we can only give a short overview: In TIL we describe the tool chain in terms
of a number of ToolAdapters and the relation between then. A ToolAdapter
exposes data and functionality of a tool. The relation between the ToolAdapters
is realized as any of the following Channels : a ControlChannel describes a service
call, a DataChannel describes data exchange and a TraceChannel describes the
creation of trace links. An example for using the graphical language of TIL is
provided in figure 5.

3.3 Mapping Rules and the Verification Graph

For the purpose of analysis we create an initial verification graph, which con-
tains all the elements and internal links from both the SPEM model and the
TIL model. We assume that the descriptions of the process and of the tool chain
are internally verified and consistent, i.e. that all used variables have been de-
fined. This graph is the basis for the construction of mapping links that connect
model elements from the SPEM and TIL model. The mappings are constructed
according to the mapping rules defined in table 1.

Table 1. Mapping rules for SPEM and TIL metaclasses

SPEM Metaclass TIL Metaclass

RoleDefinition User
ToolDefinition ToolAdapter
TaskDefinition Channel

The mapping rules introduce mapping links between the model elements of
the given types that also have similar instance names. We measure the similarity
of names by using the Levensthein distance [9]. This ensures that corresponding
elements will be mapped, even if they do not have the exact same name: e.g. a

44 M. Biehl

ToolDefinition in SPEM with name ’UML Tool’ will be mapped to a ToolAdapter
in TIL with name ’Papyrus UML TOOL’. We add the mapping links to the initial
verification graph, which results in a complete verification graph exemplified in
figure 2.

Fig. 2. Example of a complete verification graph

4 Verification by Alignment Checking

In order to verify a given tool chain design, we check for alignment of the require-
ments provided by a SPEM model with the design provided by a TIL model.
We base the alignment check on the verification graph described in the previous
section and a number of alignment rules.

4.1 Alignment Rules

The basic assumption of our alignment rules is that each SPEM TaskDefinition
that has two different SPEM ToolDefinitions associated with it, is a candidate
task for support by the tool chain; we call it integration-related task. Arbitrary
SPEM TaskDefinitions connected to only one tool, are of no interest for tool inte-
gration; for these tasks, users will work directly with the GUI of a single tool. We
distinguish two alignment rules in figure 3: (A) for tool-oriented TaskDefinitions
and (B) for WorkProducts.

(A) For each SPEM TaskDefinition with two SPEM ToolDefinitions associ-
ated with it, this rule expects corresponding TIL ToolAdapters and a TIL Chan-
nel between them. A pair of TIL ToolAdapters and SPEM ToolDefinition are
corresponding if they have mapping links between them (see section 3.3). This
rule requires two such pairs, one pair with name X and one pair with name Y,
where X �= Y. Optionally, for each SPEM RoleDefinition that is connected to the
SPEM TaskDefinition, we expect a corresponding TIL User that is connected
via a TIL ControlChannel with the TIL Channel.

Early Automated Verification of Tool Chain Design 45

(B) For each SPEM TaskDefinition that has associated SPEM WorkProducts
as input and output, where the input SPEM WorkProduct has a different as-
sociated SPEM ToolDefinition than the output SPEM WorkProduct, the rule
expects to find TIL ToolAdapters corresponding to the SPEM ToolDefinition
and a TIL Channel between them.

Fig. 3. Alignment rules and examples: (A) for tool-oriented tasks and (B) for work
products, using the notation of figure 2

The rules contain optional parts, visualized by dashed elements. For both
rules A and B we need to check the (1) realized and (2) necessary alignments,
thus the alignment rules can be interpreted in two directions:

– (1) If the lower part of the rule can be found in the SPEM model, the upper
part needs to be found in the TIL model as well. Each integration-related task
in the process model should also be represented in the tool chain, we call it a
realized alignment, because the requirements provided by the process model
are realized by the tool chain. This direction of rule interpretation checks
if the requirements given by the product development process are actually
realized by the tool chain.

– (2) If the upper part of the rule can be found in the TIL model, the lower
part needs to be found in the SPEM model. Each Channel in the tool chain
design should have a corresponding requirement in the process model, we call
it a necessary alignment, because this part of the tool chain is necessary for

46 M. Biehl

fulfilling the requirements of the process This direction of rule interpretation
checks if the tool chain contains superfluous features that are not used by
the process.

4.2 Alignment Checking

We perform pattern matching of the alignment rules on the verification graph.
As a result of the pattern matching we get a list of alignments and a list of
misalignments. An alignment is a match of an alignment rule, a misalignment
is a mismatches of the alignment rules, where only the upper part (TIL part)
or lower part (SPEM part) of the rule can be found in the verification graph.
Assuming that the product development process is described correctly, we can
add a recommendation for resolving the misalignment by adapting the tool chain
design in TIL. If a Channel is missing, we can suggest to add it to the TIL model
because it would improve the functionality of the tool chain. If the TaskDefinition
is missing in the SPEM model, we can suggest to remove the Channel from the
TIL model, because it is not required.

5 Quantification by Alignment Metrics

Tool chains provide increased automation of integration-related tasks. Moreover,
the automation needs to be appropriate to the needs of the tool chain. Appropri-
ate automation depends on the alignment of tool chain and product development
process, the set of product development tools and their capabilities. We measure
usefulness based on two degrees of alignment.

The degree of alignment can be determined based on the results of the align-
ment checks explained in the previous section. We make the following definitions:

– #matchesSPEM are the number of matches of the SPEM part (lower part)
of rules A and B.

– #matchesTIL are the number of matches of the TIL part (upper part) of
rules A and B.

– #matches are the number of matches of the combined SPEM and TIL part
of rules A and B.

The recall alignment in formula 1 measures the ratio of integration related tasks
in the process model that are realized by a channel in the tool chain. The pre-
cision alignment in formula 2 measures, the ratio of channels in the tool chain
are required by a corresponding integration-related task in the process model.

alignmentrecall =
#matches

#matchesSPEM
(1)

alignmentprecision = #matches
#matchesTIL

(2)

A well-aligned tool chain has both a high degree of precision alignment and a
high degree of recall alignment, typically expressed by F-measure. A high degree
of precision alignment shows that the tool chain has little or no superfluous

Early Automated Verification of Tool Chain Design 47

features. A high degree of recall alignment shows that the tool chain has all or
almost all the features needed. A low degree of precision alignment can be fixed
by reducing unused features from the tool chain. These features will not be used
according to the process description and only increase the development cost of
the tool chain. A low degree of recall alignment might be even more critical. It
needs to be fixed by introducing new features into the tool chain design, so the
integration-related tasks are supported by the tool chain.

6 Case Study

This case-study shows the development process of an embedded system that is
characterized by tightly coupled hardware and software components:

– The requirements of the system are captured in a requirements management
tool. The system architect designs a UML component diagram and creates
trace links between UML components and the requirements.

– The UML model is refined and a fault tree analysis is performed in the
safety analysis tool. When the results are satisfactory, the control engineer
creates a Simulink model for simulation and partitions the functionality for
realization in software and hardware.

– The application engineer uses Simulink to generate C code, which is refined
in the WindRiver tool. The data from UML and Simulink is input to the
IEC-61131-3 conform ControlBuilder tool. The data from ControlBuilder,
Simulink and WindRiver is integrated in the Freescale development tool for
compiling and linking to a binary for the target hardware.

– A hardware engineer generates VHDL code from Simulink and refines it in
the Xilinx ISE tool.

A SPEM model of this development process for hardware-software co-design
used by the company is modeled as shown in figure 4. The tool chain designer
creates the initial tool chain design shown in figure 5. Both models are input to
our algorithm, which identifies the misalignments shown in table 2.

As it turns out, the tool chain designer built the tool chain according to the
verbatim description of the process given above. This description, however, does
not cover the intricate details of the relationships between tools that are present
in the SPEM model. The tool chain design only contains forward links between
tools, as they would be used in a waterfall process model, but neglects the
cross links and dependencies typical for modern engineering processes. In this
case study we have a cross link between Simulink and ControlBuilder and one
between WindRiver and ControlBuilder. In addition, the process model specifies
a pair of links between ControlBuilder and FreeScale and another pair between
Simulink and FreeScale, but the tool chain design only realizes one link out of
each pair.

For the case study the degree of recall is 69%, the degree of precision is 100%.
This tells us that the tool chain has no superfluous features, but does not realize
all necessary ones. The tool chain could be improved by adding the four missing
Channels to the TIL model, as listed in table 2.

48 M. Biehl

Fig. 4. Product development process of the case study as a SPEM model

Fig. 5. Tool chain of the case study as a TIL model

Table 2. The misalignments and suggested improvements for the tool chain design

TaskDefinition Input ToolDefinition Output ToolDefinition Suggested Improvement

Transfer HWD Simulink ControlBuilder Tool Add TIL Channel
Transfer CIT2 WindRiver WorkBench ControlBuilder Tool Add TIL Channel
Transfer 1131 ControlBuilder Tool FreeScale Add TIL Channel
Transfer CIT Simulink Tool FreeScale Add TIL Channel

Early Automated Verification of Tool Chain Design 49

7 Related Work

There are a number of approaches for tool integration, as documented in the
annotated bibliographies [4,12], however, most tool integration approaches do
not explicitly take the development process into account. In this section we
focus on the few approaches that acknowledge a relationship between process
and tool chain. We classify this related work on tool integration according to two
dimensions: Executing the process using (1a) interpretation vs. (1b) compilation
and applying a process modeling formalisms that is (2a) proprietary vs. (2b)
standardized.

(1a) Interpretation-based approaches use the process definition directly to
integrate tools; this techniques is also known as enactment of process models.
Since the description of the process is the same as that of the tool chain, the
two have the advantage to always be aligned. There are two preconditions for
the interpretation approach: the process model needs to be executable and the
access to data and functionality of the development tools needs to be possible.
(2a) The use of a proprietary process model in tool chains is introduced in [6] as
the process-flow pattern. In this approach a workflow realizes control integration
and is executed by interpretation. (2b) A well known standardized process model
is SPEM. SPEM itself is not executable but there are extensions to SPEM [10]
that make the process model executable [8,2]. The orchestration of tools by a
process model is shown in [11]. However, the interpretation of integration related
tasks is often not possible, since the interfaces to the development tools are too
different. Thus the use of process enactment to build tool chains is limited.

(1b) Compilation based approaches transform the process model into another
format, where the process model serves as a set of requirements. (2a) Proprietary
process models provide great flexibility to adapt them to the specific needs of
tool integration. An integration process model is developed in [1], where each
process step can be linked to a dedicated activity in a tool. For execution it is
compiled into a low-level process model. The proprietary process model needs
to be created specifically for constructing a tool chain. (2b) In this work we
assume a compilation-based approach, where a process model is compiled or
manually transformed into a tool chain design. We use the standardized process
metamodel SPEM [10], which allows us to reuse existing process models as a
starting point for creating a tool chain design. The described approach verifies
that a tool chain design fulfills the requirements described in SPEM.

8 Future Work and Conclusion

In this work we propose a verification method for early design that checks the
alignment of a tool chain with a product development process. We formalize this
relationship, which allows us to reason about the relationship in an automated
way and verify the tool chain against the needs of the product development
process using consistency checks and metrics.

The verification rules presented in section 4 may not only be used analyti-
cally for verification, but also constructively for automatically building a design

50 M. Biehl

model for a tool chain from a given process description. In the future we would
like to explore this idea and integrate it into a comprehensive methodology for
developing tool chains. We would also like to apply this approach on several
bigger case studies. The case study should contain a thorough investigation of
the false positives and false negatives found with the approach.

The approach contributes to the vision of a systematic development method-
ology for tool chains with a potential for cost savings and an increased time
to market. An important prerequisite for reaching this potential is a clear de-
scription of the product development process that the tool chain is intended to
support. The approach guides the tool chain designer by analyzing different in-
tegration options and eventually building a tailored tool chain that is suitable
and useful to the tool chain user in the context of a given product development
process.

References

1. Balogh, A., Bergmann, G., Csertán, G., Gönczy, L., Horváth, Á., Majzik, I., Patar-
icza, A., Polgár, B., Ráth, I., Varró, D., Varró, G.: Workflow-Driven Tool Integra-
tion Using Model Transformations. In: Engels, G., Lewerentz, C., Schäfer, W.,
Schürr, A., Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 224–248.
Springer, Heidelberg (2010)

2. Bendraou, R., Combemale, B., Cregut, X., Gervais, M.P.: Definition of an Exe-
cutable SPEM 2.0. In: 14th Asia-Pacific Software Engineering Conference, APSEC
2007, pp. 390–397. IEEE (December 2007)

3. Biehl, M., El-Khoury, J., Loiret, F., Törngren, M.: A Domain Specific Language
for Generating Tool Integration Solutions. In: 4th Workshop on Model-Driven Tool
& Process Integration (MDTPI 2011) (June 2011)

4. Brown, A.W., Penedo, M.H.: An annotated bibliography on integration in software
engineering environments. SIGSOFT Notes 17(3), 47–55 (1992)

5. Christie, A., et al.: Software Process Automation: Interviews, Survey, and Work-
shop Results. Technical report, SEI (1997)

6. Karsai, G., Lang, A., Neema, S.: Design patterns for open tool integration. Software
and Systems Modeling 4(2), 157–170 (2005)

7. Kiper, J.D.: A framework for characterization of the degree of integration of soft-
ware tools. Journal of Systems Integration 4(1), 5–32 (1994)

8. Koudri, A., Champeau, J.: MODAL: A SPEM Extension to Improve Co-design
Process Models. In: Münch, J., Yang, Y., Schäfer, W. (eds.) ICSP 2010. LNCS,
vol. 6195, pp. 248–259. Springer, Heidelberg (2010)

9. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Doklady Akademii Nauk SSSR 163(4), 845–848 (1965)

10. OMG. Software & Systems Process Engineering Metamodel Specification (SPEM).
Technical report, OMG (April 2008)

11. Polgar, B., Rath, I., Szatmari, Z., Horvath, A., Majzik, I.: Model-based Integration,
Execution and Certification of Development Tool-chains. In: Workshop on Model
Driven Tool and Process Integration (June 2009)

12. Wicks, M.N.: Tool Integration within Software Engineering Environments: An An-
notated Bibliography. Technical report, Heriot-Watt University (2006)

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 51–66, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Using UML Stereotypes to Support the Requirement
Engineering: A Case Study

Vitor A. Batista, Daniela C.C. Peixoto, Wilson Pádua, and Clarindo Isaías P.S. Pádua

Computer Science Dept., Federal University of Minas Gerais, Brazil
{vitor,cascini,wilson,clarindo}@dcc.ufmg.br

Abstract. In this paper we discuss the transition of an educational process to
real-life use. Specifically, a Requirements Engineering (RE) process was tai-
lored and improved to comply with the organization business goals. We discuss
challenges faced and proposed solutions, focusing on automation and integra-
tion support for RE activities. We use stereotypes to enhance UML diagram
clarity, to store additional element properties, and to develop automated RE
process support. Stereotypes are one of the core extension mechanisms of the
Unified Modeling Language (UML). The benefits founds in their use in a soft-
ware development organization support the claims that stereotypes play a sig-
nificant role in model comprehension, reduce errors and increase productivity
during the software development cycle.

Keywords: Stereotype, Unified Modeling Language, User Interface Prototyp-
ing, Functional Point, Constraints.

1 Introduction

Requirement Engineering (RE) is a very labor-intensive and critical process. It is by
nature a manual activity, since requirements are informally elicited by analysts from
users, and represented in abstract specifications. It is a critical activity because errors
inevitably lead to later problems in design and implementation, which, usually, are
expensive and difficult to repair. Many studies have shown that project failures often
result from poor quality requirements [1]. It is almost impossible to keep delivery
times, costs and product quality under control if the requirements are not adequately
specified and managed [2]. Baziuk [3] showed that it may cost up to 880 times more
expensive to detect and repair error in the maintenance stage, compared to detecting
and repairing them during the RE phase. In order to produce software that closely
matches the stakeholders’ needs, great attention should be paid to RE activities.

One way to help analysts is to provide some automated and integrated functionali-
ties for RE. This helps to reduce manual labor, and allows the early detection of er-
rors. Indeed, as a naturally manual labor-intensive process, only a few functionalities
can be automated. However, their impact on rework reduction and increasing produc-
tivity can be substantial.

52 V.A. Batista et al.

In this work, we present the adoption and improvement of an RE process in a soft-
ware development organization, Synergia. It adopts a professional version of Praxis
(an educational software development process), called Praxis-Synergia [4]. In this
context, we discuss some challenges faced and proposed solutions, which include an
automated and integrated approach for carrying out RE activities.

Our main contribution lies in the automation approach itself and in the subjacent
steps in the RE activities, such as, automatic prototype generation, support for count-
ing functional size and model verification. These facilities are integrated using a UML
Profile with several stereotypes. The idea of stereotypes usage came from the educa-
tional version of the Praxis process, which applies stereotypes mainly to enhance
UML diagram clarity and to store additional element properties, eliminating the need
for many text and spreadsheet model attachments. In the professional version of this
process, used at Synergia, an additional goal was to extend the usage of stereotypes,
developing automated functionalities to support RE. The expected benefits were im-
proving model comprehension, reducing errors and increasing.

The article is structured as followed. Section 2 introduces basic concepts of Praxis
and Section 3 presents the details of its requirement engineering activities. Section 4
provides the application of these methods in a software development organization,
explaining the problems faced and solutions proposed. Section 5 provides a discus-
sion of the results and open issues. Section 6 presents the related work. Section 7
concludes and presents future work.

2 Background

Praxis is a model-based, use-case-driven process. In its prescribed development se-
quence, a project is divided in iterations, where each iteration implements one or more
functional requirements, modeled as use cases.

Praxis models the development of each use case workflow as a sequence of devel-
opment states. The name of each state evokes how far the use case has advanced to-
wards complete implementation and validation. Each state is associated with a set of
resulting work products [5], which become inputs to the following steps.

The requirements set is captured in a UML Problem model, containing a require-
ments view, that expresses the users’ viewpoint, and an analysis view, the developers’
vision of the problem. The design is captured in a UML Solution model; in its main
views, a use view shows how the user will view the proposed system; a test view
shows the design of the system tests; and a logical view shows the system innards at a
high level. Both product and test code are derived from the Solution model, which
may be partially reverse-engineered from the code, for documentation purposes.

In its original form, Praxis has been mainly used for educational purposes [6]. A
tailored version has been used for professional software development in the authors’
laboratory, Synergia, as described in [4]. This paper focuses on the application of the
professional version.

The Praxis distributed material includes, among other artifacts, a stereotype library
that provides UML stereotypes employed both by the Problem and Solution model, at

 Using UML Stereotypes

the reusable framework lev
provide a number of servi
professional version, this p
is directly accessed by the
ing tool is the IBM Ration
(RSM and RSA respectivel

3 Standard Requi

In this section we summar
standard educational versio
analyses requirements in t
closely follows the IEEE-83

The Requirement view
typed as «appUseCase». Ea
flows (scenarios), classified

• Main flow: represents th
• Alternate flows: represe
• Subflows: represent sequ

Each of these types of flow
Flow», «altFlow» and «sub
with several flows (Activiti

Fig.

The Analysis view descr
stract problem level; it mo
their interactions by stereot

These realize, in concep
using UML Interactions, u

to Support the Requirement Engineering: A Case Study

vel and at the specific application level. Those stereoty
ces. This library is contained in a Profile model. In

profile is deployed within a modeling tool plug-in, whil
modeler, in the educational version. Currently, the mod

nal modeling toolset, in its Modeler or Architect versi
y).

irement Engineering Process Version

rized Requirements and Analysis processes of the Pra
on. As described above, the Problem model captures
two main views, Requirement and Analysis; its struct
30 standard for Requirements Specification.
represents desired functions as UML Use Cases, ster
ach Use Case behavior is described by one or more ev
d as:

he most usual scenario in the use case execution.
ent less usual, optional or exceptional scenarios.
uences of steps invoked in the other kinds of flows.

ws is modeled as a stereotyped UML Activity, with «ma
bFlow» stereotypes, respectively. Figure 1 shows a use c
ies) and a diagram of its Main flow.

1. Use case flow modeled as an Activity

ribes the product as seen by the developer, but still at
odels concepts, procedures and interfaces as classes,
yped UML collaborations.
ptual terms, the functionality described by the use ca
usually represented by Sequence Diagrams. As a gene

53

ypes
the

le it
del-
ions

axis
and
ture

reo-
vent

ain-
case

ab-
and

ses,
eral

54 V.A. Batista et al.

modeling rule, each scenario is realized by an interaction with the same stereotype.
Collaboration attributes represent instances of the participating analysis classes. These
classes apply Jacobson’s standard stereotypes «entity», «control» and «boundary». A
forth stereotype, «persistentEntity», was created to tag data that should or should not
be persisted by application. User’s interfaces are prototyped using MS Office, and the
prototypes are attached to «boundary» classes.

4 Professional Requirement Engineering Process Version

Synergia, the organization where this study was carried out, is a laboratory for soft-
ware and systems engineering, hosted by the Computer Science Department at the
Federal University of Minas Gerais. It has some 75 people in its staff, composed by
undergraduate and graduate students and non-student graduates, mostly with a com-
puter science background. Both standard and professional versions of Praxis have
been recently upgraded to version 3.

During the upgrade of Praxis-Synergia from version 2 to 3, some issues and prob-
lems arose, mainly regarding the execution of manual activities that could be auto-
mated and the storage of additional information. In the next sections we describe each
problem faced and the solution provided, focusing on the RE process. In section 5, we
discuss the achieved benefits.

The core idea of the proposed solutions is extend the original Praxis UML Profile
adding several stereotypes more, tagged values and OCL Constraints. We also devel-
oped some automated functions inside the IBM Rational Software Architect (RSA)
plug-in, to support the engineers’ work.

4.1 Automatic Prototype Generation

As we discussed above, the user interfaces in the Praxis standard version are modeled
as classes with «boundary» stereotype and prototyped using MS Office. Besides pro-
viding the conventional boundary shape, the «boundary» classes record IEEE-830
recommended data, such as information source and destination, format and kind.
Each required user command and interface field are modeled using stereotyped «re-
qOperation» and «reqAttribute» attributes respectively, which record, for example,
valid conditions of the operation, pertinence to (visually distinct) groups, content
types (text, integers, real numbers, enumerations etc.), edition requirements and other
problem-level information. During the first use of the process in actual projects, we
identified the following issues:

• A large amount of fields and commands were used, which made the reading and
understanding of the UML model difficult. In addition, field name prefixes were
used to represent related groups.

• Changes in user interface requirements needed changes in two artifacts: the UML
classes and the prototype. Frequently, they became inconsistent.

 Using UML Stereotypes

Fig. 2. The stereotyped cl

In order to solve these i
new class stereotypes to rep
information, it was possible
sistent by construction with

The list of stereotypes u
«table», «tab» and «report»
their operations. UML com
typed interface components
type screen. Figure 2 show
responding generated proto
types in the class model and

Navigation behavior is m
type which stores a list of «
The HTML prototype is
through JavaScript code.

Automatic prototype gen
add visual information in
values, format, enablement

to Support the Requirement Engineering: A Case Study

lasses used to model a screen, and their respective prototypes

issues, we extended the Praxis stereotypes library, add
present user interfaces and their components. With this n
e to automate the generation of an HTML prototype, c

h the UML model.
sed to elaborate the prototype includes: «screen», «pan

» for classes, «field» for their attributes and «command»
mposition associations between classes indicate how ster
s are integrated with their parent’s component in the pro

ws the UML classes used to represent a screen, and its c
otype. Note the use of «tab», «panel» and «table» ster
d in the prototype.
modeled using directed associations with «navigate» ster
«command» operations that causes this navigation to occ
generated using this information to provide navigat

neration also uses attribute data from «field» stereotype
a popup Windows. Information about mandatory, va
and business rules associated are displayed.

55

ding
new
con-

el»,
» for
reo-
oto-
cor-
reo-

reo-
cur.
tion

s to
alid

56 V.A. Batista et al.

In order to improve model understanding, users can access the complete specifica-
tion of the attributes by clicking on their names on prototypes.

4.2 Counting Function Points

Function Point (FP) counting is a major Synergia concern, since most of its contracts
are based on FP counts, and this information is crucial to measure productivity in FP
per person-month, to be used in the estimation of future projects. We use Unadjusted
Function Points (UFP), since Adjusted Function Points are not standardized by ISO,
and the Praxis process has other means to compute the cost of non-functional re-
quirements.

Use case points (UCP) are sometimes considered as size proxies closer to UML.
Besides the customary use of FP by our clients, we did not use them because they
have no official standardization, such as IFPUG and ISO provide for FP; and because
different levels of use case description, such as superordinate vs. subordinate, may
yield very different counts.

Standard Praxis records FP counting in spreadsheets of the MS Excel. Using this
artifact format brought some specific difficulties to Synergia, because requirements
changes are very common among some of our clients. Monitoring size evolution, by
recording continuously updated FP counts, was an error-prone manual procedure.
Besides, since FP counting was based on the Problem model and recorded in another
artifact, that procedure often caused inconsistencies.

One solution was to count FP directly in the UML model, storing the information
on the stereotypes attributes. This minimizes inconsistencies caused by unavoidable
requirements changes, and allows monitoring project size evolution while its require-
ments are still being elicited. The following sections describe the procedure used to
counting the data and transactional FP. They are discussed in more detail in [30], but
are summarized here for the sake of completeness.

Counting Data Functions
The Problem model uses UML classes stereotyped with «persistentEntity» to
represent persistent data. Since the FP counting procedure uses two different kinds of
Data Functions, these are modeled using two new stereotype specializations:

1. ILF (Internal Logical File), corresponding to data that are maintained by the appli-
cation under development, are modeled by the «internalPersistentEntity» stereo-
type.

2. EIF (External Interface File), corresponding to data that are maintained by other
applications, but read by the application under development, are modeled by the
«externalPersistentEntity» stereotype.

Figure 3 shows the metamodel for those stereotypes. The original educational Praxis
«persistentEntity» becomes an abstract stereotype, holding common properties that
are useful in the FP counting method.

 Using UML Stereotypes to Support the Requirement Engineering: A Case Study 57

Fig. 3. Stereotypes for counting Data Functions

The mapping between the persistent entities and the Data Functions is neither di-
rect nor one-to-one. Automating this mapping is quite complex, and, therefore, in our
method, must be manually performed. The FP counting specialist must decide how
persistent classes should be grouped, in order to be mapped onto Data Functions (for
those not familiar with FP, this is also a standard procedure in manual counting). Fig-
ure 4 illustrates a model with four classes and their proposed grouping, which led the
specialist to count two ILFs. In Data Functions groups with more than one class, one
of them is chosen to stand for the group (in our example, Purchase Order). After
grouping and mapping, the attributes in Table 1 should be filled in each main class.

To support this procedure, the RSA plug-in eases the filling of the stereotype prop-
erties and calculates the complexity and total function points for each Data Function.
Figure 5 shows an example where the RSA plug-in counts the ILF Purchase Order,
mapped to classes Purchase Order and Purchase Order Item.

In the example shown in Figure 4, the list of manually grouped classes is selected
among the classes which are not yet assigned to Data Functions, and corresponding
number of RETs is manually informed. After that, the user may select any attribute of
the grouped classes (including association attributes) as DETs. Additionally, other
DETs, not explicitly derived from attributes (such as messages and commands), might

Fig. 4. Mapping between Classes and Data Functions

58 V.A. Batista et al.

be manually included in the DET counting. Finally, the specialist invokes a command
to calculate and store the counting summary for this Data Function. In our example,
inherited attributes from the abstract Class Merchandise Item were counted as DETs.

Using OCL and Java, we created several UML Constraints associated with our ste-
reotypes. When model validation is executed in RSA, these Constraints are checked
and their violation generates error messages. Examples of the use of Constraints are:
validation of the sum of selected DETs and informed DETs against the stored number
of DETs, when calculating complexity; checking whether required descriptions are
filled; forbidding classes from participation in two different Data Functions; consis-
tency between FP function type and corresponding stereotype.

Counting Transactional Functions
To support Transactional Functions counting, a similar strategy was used. The FP
counting specialist maps the use case event flows, modeled as activities, to Transac-
tional Functions. Often, this mapping is one-to-one, but this depends on modeling
choices, and, therefore, it is not easily amenable to full automation.

The abstract stereotype «eventFlow» was created to represent all types of event flows.
To select the list of Data Functions considered as FTRs in a Transactional Func-

tion, the RSA plug-in offers the specialist the list of all classes that are defined as
Data Functions, and whose instances are roles in the collaboration that realizes the use
case. For instance, if the specialist defines the main flow of the use case Manage Sup-
pliers as an External Inquiry (EQ), the plug-in will list Purchase Order and Merchan-
dise as candidates to FTR.

Fig. 5. RSA plug-in View to support the FP counting procedure

 Using UML Stereotypes to Support the Requirement Engineering: A Case Study 59

In order to count DETs, the RSA plug-in shows the list of all attributes from
boundary classes (representing user interfaces) whose instances are roles in the colla-
boration that realizes the use case. Here, as in the DET counting for Data Functions,
additional DETs could be manually added to the selected DETs.

For Transactional Functions, OCL constraints are also used for validation. Our tool
also provides the ability to copy data from one Transactional Function to another,
since many Transactional Functions share the same FTR and DET information; for
instance, record insert and update, which are both EE type functions.

4.3 Assigning Constraints to Modeling Elements

In the professional Praxis version, constraints bound to stereotypes provide a quick
way to enforce some rules mandated by process standards. These are metamodel-
constraints, unlike stereotyped model constraints such as «businessRule» or «non-
FunctionalReq», used for requirements modeling. Such metamodel constraints were
coded in OCL. Evaluation is carried through the RSA. After constraint-driven valida-
tion, users can check the list of errors presented in the problem view of the tool,
where they may navigate to the source of the problem and quickly fix it.

Currently, our professional Praxis version has 218 constraints distributed over 86
stereotypes. Some are:

1. Verify that the documentation fields of the elements are filled.
2. Verify that each stereotyped model element is presented in at least one diagram

(this class of constraints is coded in Java, since OCL does not support diagrams
and its elements).

3. Verify that mandatory stereotypes attributes are filled.
4. Check some process rules; for instance, verify whether each use case is asso-

ciated with a Collaboration element through a Realization relationship.
5. Check conditional logic in filling stereotype attributes. For example, when a

«field» type is set to String, the “Max Length” attribute must be filled.

Since many rules are enforced by constraints, review and inspection checklists are
reduced, focusing on problems that cannot be found without human intervention.

5 Assessment

In this section we present some benefits of the usage of stereotypes and the RSA plug-
in in the professional Praxis version, at Synergia. We collected benefit data for auto-
mated prototyping and for counting Function Points. All current projects at Synergia
use stereotype constraints, but we were not able to compare them with older projects,
since they also differ in many other aspects.

60 V.A. Batista et al.

5.1 Automatic Prototype Generation

The automated prototype generation feature of the RSA plug-in was first used in a
small requirements specification project (813 FP). We compared the effort needed to
elaborate the specification of two current and similar projects (they used the same
version of the process and the same set of tools). Table 1 presents the results. The
total effort measures the work in activities that directly produce the requirements
specification. Activities like management and training were excluded, but reviews and
rework efforts were included.

Although there is a significant difference between these two projects in size, the
data seem to indicate that automated prototype generation actually increases produc-
tivity and reduces rework. Requirements engineers that participated in both projects
confirmed this impression.

Table 1. Productivity Comparison between Manual and Automated Prototypes

Project # Use Cases # FP Total Effort (h) Productivity (PF/h)

Manual Prototypes 128 2586 6727.32 0.38

Automated Prototypes 37 826 1441.83 0.57

5.2 Counting Function Points

The first project that adopted the RSA plug-in to count FP, referred here as New
Project, had a size of 2586 FP distributed into 128 use cases. When the RSA plug-in
became stable, we started measuring the effort for counting FP. We recorded 31 use
cases data, summing up 882 FP of the 2586 FP (see Table 2).

In the New Project, each Requirement engineer was responsible for counting each
use case that he/she specified, during the use case modeling. In this way, it was possi-
ble to monitor the product size in ‘real time’, during elicitation, and negotiate changes
with the client if needed, since customers often have a predefined scope size target.
Each use case FP size was verified during the requirement reviews, by other Re-
quirement engineer and, after finishing the specification, an IFPUG certified specialist
reviewed all the counting again.

The results collected from the New Project are summarized and compared to
another project, referred here as Old Project. Both projects had similar characteristics
(Web-based, Team maturity and size, etc.), and adopted the IFPUG counting proce-
dures. Unlike development projects, we expected that specification projects would
show an economy of scale, since smaller projects tend to have a larger overhead in
activities such as start-up and closure. Nevertheless, we observed a substantial prod-
uctivity increase (107%) for the counting procedure in the New Project, despite its
smaller size.

During the review process, a certified specialist reviewed the estimation and de-
tected a small deviation error (less than 2% in total FP count). This reduced error was
attributed to the automated verification carried out by the stereotype constraints.

 Using UML Stereotypes to Support the Requirement Engineering: A Case Study 61

Table 2. Productivity Comparison between FP Count with and without RSA Plug-In

Project
Use
Cases

FP
Counted

Total Effort
(h)

Productivity
(FP Counted/h)

Old 138 4673 258.23 18.10

New 31 882 23.44 37.63

In addition to the quantitative results presented above, we also identified the fol-

lowing qualitative benefits:

• The RSA plug-in helps to keep up-to-date the product functional size, as measured
by the FP count. As discussed before, this is a major managerial concern for Syn-
ergia. Counting FP directly in UML Model helps to keep under control the re-
quirements changes, which may be numerous, depending on the customer needs,
and to charge fair prices for them.

• It makes possible to monitor project size while its requirements are still being eli-
cited, giving the project stakeholders a solid base to negotiate project scope.

6 Related Work

This section presents some related works about stereotype usage. In addition, we eva-
luated a number of related works that deployed the same functionalities to support the
RE process. Our approach differs from them mainly by the use UML stereotypes. In
addition, in our approach all the functionalities provided were integrated into one tool,
IBM RSA, using the Problem model.

6.1 Stereotype Usage on Software Development

The idea of stereotyping was first introduced by Wirfs-Brock [7], who used this con-
cept to classify objects according to their responsibilities as well as their modus ope-
randi within a system. In this context, using stereotypes may be understood as a way
of “branding” objects with additional intent-focused roles or properties [8]. In UML,
stereotypes are used as secondary classification ways, adding properties to the ele-
ments, and as means for language extension [9] [10]. They are known to be suitable as
“lightweight” extension mechanisms [10]. Instead of dealing directly with the UML
metamodel, modelers can tailor the language to their own needs. With a growing
number of UML tools that provide support for this extension mechanism, stereotypes
begin to support more precise and detailed code generation and model transformation
rules and mechanisms [11]. In addition, they may play an important role in clarifying
UML diagrams [12] [13]. To summarize, stereotypes allow modelers to clarify or
extend the meaning of model elements, and to introduce new modeling elements
based on the elements already available in the notation.

62 V.A. Batista et al.

6.2 Automatic Prototype Generation

A number of researches have been suggested for generating user interfaces from spe-
cifications of the application domain. Usually, entity-relationship models serve as
input for the selection of interaction objects according to rules based on style guide-
lines such as Common User Access [14]. Example of researches includes Genius
[15] and Janus [16].

In Genius [15], the application domain is represented by an a data model composed
of views, where each view is a subset of entities, relationships, and attributes of the
overall data model. A Petri-net based dialogue description specifies how these views
are interconnected. From these specifications, Genius generates the user interface.

Janus [16] creates different windows of a user interface from object models. Non-
abstract classes are transformed into windows, whereas attributes and methods that
are marked as irrelevant for the user interface are ignored in the transformation
process. Janus does not address the dynamic aspect of user interfaces.

Another approaches use scenarios as an input for the user interface prototype gen-
eration [17] [18]. Scenarios are represented in natural language [17] or in the form of
collaboration diagrams [18] as defined by the Unified Modeling Language (UML). In
these approaches, an intermediary representation or additional information is needed
to the prototype generation, such as a graph or user interface information.

Our approach focused on the prototype generation from the UML class models. It
does not require any model transformation or inclusion of additional descriptions
(using non-UML notations) in the models to allow this process. This translation is
carried out directly from the results produced by the analysts, which can be consumed
by all the stakeholders, including our clients.

Also, our RE process uses low-fidelity prototypes, primarily as an aid to require-
ments elicitation, for the benefit of users who are usually not familiar with UML
models. Going from low-fidelity, problem-level prototypes to high-fidelity, solution-
level prototypes is a highly creative process, where usability is paramount. In this, our
approach differs from several others, because it does not try to derive final user inter-
faces directly from the requirements, in an automated way.

6.3 Counting Function Points

In this work we defined a tool to help FP experts during FP counting based on OO
requirement specifications. A fully automatic tool does not seem to be feasible,
mainly because FP counting requires some human judgment [19]. Coherently with the
FP concepts, we focus on the users’ view of the system, and in estimating size early in
the software development life cycle.

Some tools apply FPA to object-oriented (OO) models [19] [20] [21] [22]. How-
ever, a large amount of these tools deal with design models rather than requirements
models [19]. Our approach derives FP directly from a UML-based requirement mod-
el, conforming to the philosophy that function points must measure the problem size,
not the solution size.

 Using UML Stereotypes to Support the Requirement Engineering: A Case Study 63

Similarly to our explicit mapping from requirement models, other works also pro-
pose rules for mapping OO models to FPA models. Harpurt et al. [19] propose a
semi-automatic model transformation from OO requirements models to FPA models,
based on heuristic rules to be applied by an FPA expert. Harpurt´s work presents
some rules for mapping classes to Data Functions. This same mapping could be done
in our work, but it involves the judgment of the FP analysis expert. To count Trans-
actional Functions, our work relies on use case flows, rather from sequence diagrams
messages. Also, since we use Unadjusted Function Points (UFP), both because they
are better standardized and because they are required by the COCOMO [23] estima-
tion tool, we do not map non-functional requirements to general system characteris-
tics, as Harpurt et al. do.

Uemura et al. [20] describe a system for automatically counting FP from a re-
quirement/design specification based on UML diagrams. Some rules are used to ex-
tract the information needed to count Data Functions, whose complexity is based on
the attributes of the corresponding selected class. For Transactional Functions, the
rules look for patterns in user-system interactions, analyzing their sequence diagram
messages.

Caldiera et al. [21] propose a tool which uses an object-oriented kind function
points, called Object Oriented Function Points (OOPF). Our work focuses on the
traditional definition of FP, since only this one is widely accepted by our customers.

Cantone et al. [22] propose conversion rules to apply FP analysis to UML, sup-
ported by an IBM Rational Rose tools. The emphasis is on UML sequence diagrams
and rules applied to high-level design documents, quite from our work, which uses
requirements specified at pure problem level, as officially required by FP practices.

6.4 Assigning Constraints to Modeling Elements

Much of research has been done using semi-formal specifications, especially UML
diagrams. Examples of tools that check requirements consistency using semi-formal
specifications are BVUML [24], CDET [25] and VIEWINTEGRA [26]. They verify
the consistency between user requirements specifications and class diagrams, or be-
tween such specifications and sequence diagrams.

Other research focuses on a formal analysis technique to check the requirement
specification, which implies the application of more complex concepts and represen-
tations [27] [28] [29]. For example, Hausmann et al. [28] have used a graph transfor-
mation method to detect conflicting functional requirements among use cases.

Our approach defines constraints bound to stereotypes which provide a quick way
to enforce very simple rules mandated by process standards. Since the constraints to
be checked are not complex, a simple OCL implementation was required without any
further formalism.

7 Conclusion and Future Work

In this paper we presented our experience in applying and improving an educational
software development process, Praxis, in a professional environment. We show how

64 V.A. Batista et al.

the usage of UML extension mechanisms can improve software development process.
As shown, stereotypes may be used not only to enhance model clarity, but in many
other applications. We employed many stereotypes with tagged values to store addi-
tional information collected during modeling. In previous versions of the Praxis
process, this information was usually stored in textual and spreadsheet attachments.
Recording this data in a more structured way allowed us to automatically generate
navigable prototypes in HTML, enhancing productivity and understanding. Stereo-
types also helped to keep up-to-date the product functional size, expressed in function
points, since it is directly recorded in Problem model through stereotype attributes.
Data collected from recent projects have shown significant productivity improve-
ments in the FP counting process. We also used stereotype constraints to provide
automated model verification, reducing review checklists and allow model reviewers
to focus on problems that need human judgment.

Regarding the limitations of this study, one could argue that our measured data are
not extensive. Although this is a valid criticism, we collected feedback from the re-
quirements engineers who were very satisfied with the improvement made in the re-
quirement process. They also identified positive points like an expressive reduction of
manual work and detected process standards’ defects. Furthermore, the development
was carried out for one specific proprietary tool, IBM RSA. Since we used strict
UML 2 concepts, without tool-specific notation extensions, the environment should
be portable to other tools that support UML 2.

As future work, we plan to invest in model transformations to generate Java code
and to improve automated prototyping. For example, allowing fields to be editable
based on the attributes’ visibility property associated with user interfaces’ state ma-
chines. We will also collect more data from our projects to observe whether quantita-
tive benefits can be sustained.

References

1. Hall, T., Beecham, S., Rainer, A.: Requirements problems in twelve software companies:
an empirical analysis. IEE Proceedings - Software 149(5), 153 (2002)

2. Niazi, M.: An Instrument for Measuring the Maturity of Requirements Engineering
Process. In: Bomarius, F., Komi-Sirviö, S. (eds.) PROFES 2005. LNCS, vol. 3547,
pp. 574–585. Springer, Heidelberg (2005)

3. Baziuk, W.: BNR/NORTEL: path to improve product quality, reliability and customer sa-
tisfaction. In: Proceedings of Sixth International Symposium on Software Reliability Engi-
neering, pp. 256–262 (1995)

4. Pimentel, B., Filho, W.P.P., Pádua, C., Machado, F.T.: Synergia: a software engineering
laboratory to bridge the gap between university and industry. In: SSEE 2006: Proceedings
of the 2006 International Workshop on Summit on Software Engineering Education,
pp. 21–24 (2006)

5. Filho, W.P.P.: Quality gates in use-case driven development. In: International Conference
on Software Engineering (2006)

6. Pádua, W.: Using Model-Driven Development in Time-Constrained Course Projects. In: 20th
Conference on Software Engineering Education & Training, CSEET 2007, pp. 133–140
(2007)

 Using UML Stereotypes to Support the Requirement Engineering: A Case Study 65

7. Wirfs-Brock, R.: Adding to Your Conceptual Toolkit: What’s Important About Responsi-
bility-Driven Design. Report on Object Analysis and Design 1 (1994)

8. Staron, M., Kuzniarz, L., Thurn, C.: An empirical assessment of using stereotypes to im-
prove reading techniques in software inspections. In: International Conference on Software
Engineering, vol. 30(4) (2005)

9. Staron, M., Kuzniarz, L.: Properties of Stereotypes from the Perspective of Their Role in
Designs. In: Briand, L., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 201–216.
Springer, Heidelberg (2005)

10. Staron, M., Kuzniarz, L., Wallin, L.: Case study on a process of industrial MDA realiza-
tion: determinants of effectiveness. Nordic Journal of Computing 11(3), 254–278 (2004)

11. Staron, M., Kuzniarz, L., Wohlin, C.: Empirical assessment of using stereotypes to im-
prove comprehension of UML models: A set of experiments. Journal of Systems and
Software 79(5), 727–742 (2006)

12. Ricca, F., Di Penta, M., Torchiano, M., Tonella, P., Ceccato, M.: The Role of Experience
and Ability in Comprehension Tasks Supported by UML Stereotypes, pp. 375–384. IEEE
(2007)

13. Genero, M., Cruz-Lemus, J.A., Caivano, D., Abrahão, S., Insfran, E., Carsí, J.A.: Assess-
ing the Influence of Stereotypes on the Comprehension of UML Sequence Diagrams: A
Controlled Experiment. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.)
MODELS 2008. LNCS, vol. 5301, pp. 280–294. Springer, Heidelberg (2008)

14. IBM, Systems Application Architecture: Common User Access – Guide to User Interface
Design – Advanced Interface Design Reference (1991)

15. Janssen, C., Weisbecker, A., Ziegler, J.: Generating user interfaces from data models and
dialogue net specifications. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems - CHI 1993, pp. 418–423 (1993)

16. Balzert, H.: From OOA to GUIs: The janus system. JOOP 8(9), 43–47 (1996)
17. Elkoutbi, M., Khriss, I., Keller, R.K.: Automated Prototyping of User Interfaces Based on

UML Scenarios. Automated Software Engineering 13(1), 5–40 (2006)
18. Shirogane, J., Fukazawa, Y.: GUI prototype generation by merging use cases. In: Proceed-

ings of the 7th International Conference on Intelligent User Interfaces - IUI 2002, p. 222
(2002)

19. Harput, V., Kaindl, H., Kramer, S.: Extending function point analysis to object-oriented
requirements specifications. In: 11th IEEE International Symposium on Software Metrics,
pp. 10–39 (2005)

20. Uemura, T., Kusumoto, S., Inoue, K.: Function point measurement tool for UML design spe-
cification. In: Proceedings of Sixth International Software Metrics Symposium, pp. 62–69
(1999)

21. Caldiera, G., Antoniol, G., Fiutem, R., Lokan, C.: Definition and Experimental Evaluation
of Function Points for Object Oriented Systems. In: Procs. IEEE METRICS 1988 (1998)

22. Cantone, G., Pace, D., Calavaro, G.: Applying function point to unified modeling lan-
guage: Conversion model and pilot study. In: Proceedings of the 10th International Sym-
posium on Software Metrics (METRICS 2004), pp. 280–291 (2004)

23. Boehm, B.W., et al.: Software Cost Estimation with COCOMO II. Prentice Hall PTR
(2000)

24. Litvak, B., Tyszberowicz, S., Yehudai, A.: Behavioral consistency validation of UML dia-
grams. In: Proceedings of First International Conference on Software Engineering and
Formal Methods, pp. 118–125 (2003)

66 V.A. Batista et al.

25. Scheffczyk, J., Borghoff, U.M., Birk, A., Siedersleben, J.: Pragmatic consistency man-
agement in industrial requirements specifications. In: Third IEEE International Conference
on Software Engineering and Formal Methods (SEFM 2005), pp. 272–281 (2005)

26. Egyed, A.: Scalable consistency checking between diagrams - the VIEWINTEGRA ap-
proach. In: Proceedings 16th Annual International Conference on Automated Software
Engineering (ASE 2001), pp. 387–390 (2001)

27. Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated consistency checking of re-
quirements specifications. ACM Transactions on Software Engineering and Methodolo-
gy 5(3), 231–261 (1996)

28. Hausmann, J.H., Heckel, R., Taentzer, G.: Detection of conflicting functional requirements
in a use case-driven approach: A static analysis technique based on graph transformation.
In: Proceedings of the 24th International Conference on Software Engineering ICSE 2002,
pp. 105–115 (2009)

29. De Sousa, T.C., Almeida, J.R., Viana, S., Pavón, J.: Automatic analysis of requirements
consistency with the B method. ACM SIGSOFT Software Engineering Notes 35(2), 1
(2010)

30. Batista, V.A., Peixoto, D.C.C., Borges, E.P., Pádua, W., Resende, R.F., Pádua, C.I.P.S.:
ReMoFP: A Tool for Counting Function Points from UML Requirement Models. Ad-
vances in Software Engineering 2011 article ID 495232, 7 (2011),
doi:10.1155/2011/495232

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 67–82, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Identifying Business Rules to Legacy Systems
Reengineering Based on BPM and SOA

Gleison S. do Nascimento, Cirano Iochpe, Lucinéia Thom,
André C. Kalsing, and Álvaro Moreira

Departamento de Informática, Universidade Federal do Rio Grande do Sul, 15064,
91501-970, Porto Alegre, RS, Brazil

{gsnascimento,ciochpe,lucineia,afmoreira,ackalsing}@inf.ufrgs.br

Abstract. Legacy systems include information and procedures which are
fundamental to the organization. However, to maintain a legacy system is a
complex and expensive task. Currently, researches propose the legacy systems
reengineering using BPM and SOA. The benefits of the reengineering using
BPM and SOA are software reuse and documentation of the business processes.
However, practical experiences demonstrate that reengineering using BPM and
SOA are not easy to apply, because there are no tools that help the developers
understand the legacy system behavior. This paper presents a tool to extract the
legacy system behavior. Based on the business rules concept, we propose a tool
to identify the business rules contained legacy source code. In addition, our
technique also enables the discovery of the partial order execution of the
business rules during the runtime legacy system.

Keywords: business rules, legacy systems, reengineering, BPM, SOA.

1 Introduction

Legacy systems are information systems which execute useful tasks for an
organization, but were developed with technologies no longer in use [1]. Legacy
systems include information and procedures which are fundamental for the operation
of the organization. However, to maintain a legacy system running is a complex and
very expensive task. Reason is that the corresponding source code can be obsolete,
hard to understand, and poorly documented.

To reduce these problems, many organizations are opting for re-implementing their
legacy systems using contemporary technologies. In recent years some approaches
propose the modernization of legacy systems through Business Process Management
(BPM) and Service Oriented Architecture (SOA) [2], [3], [4].

These approaches use BPM and SOA in order to enable the re-implementing of
legacy systems. Basically, they aim at: 1) identifying business processes which are
embedded in legacy systems; and 2) implementing those business processes using
BPM and calls to web services instead of completely re-implementing the legacy code

68 G.S. do Nascimento et al.

in another programming language. The major contributions these approaches can be
summarized as follows:

1. Fragments of the legacy source code can be reused through of web services
that are invoked of the business processes;

2. Once migrated to web services, important procedures inside the legacy
source code can be reused by other organization processes;

3. An explicit documentation of the businesses processes of the organization
that are modeling in a business process management system;

4. The information system execution can be both monitored and coordinated
through a business process management system.

Although the benefits of software reuse and documentation of the business processes
of the organization, reengineering techniques based on BPM and SOA should also be
easy to apply [2], [3]. Some practical experiences demonstrate that the major problem
with these techniques is in the identification of the runtime behavior of the legacy
system [5], [6].

Generally, developers made this work manually, interpreting algorithms
implemented in the source code and converting these algorithms to web-services or
control-flows designed in the business process model. Thus, reengineering techniques
based on BPM and SOA are dependent of the knowledge level of the developers that
analysis the legacy source code. If the knowledge about the legacy system is high, the
reengineering is rapid, correct and secure. Otherwise, the reengineering is slower,
more expensive for the organization and more vulnerable to errors.

1.1 Legacy System Behavior

A legacy system contains a large amount of organizational knowledge [7], [8]. This
organizational knowledge is specified in the source code as business rules [7], [8], [9],
[10], [11]. Business rules have been defined by Bell, as abstract statements that define
how the business is done or constrains some aspect of the business [9].

Usually the business rules are used to specify an information system. For example,
the statement – “If the purchase amount is greater than US$ 3.000, then the system
must calculate a discount of 10%” – is a business rule that defines an action of the
information system. During the implementation phase of the system, the developers
use these statements to write the source code of the information system.

Therefore, we can say that the behavior of an information system is determined by
business rules that are implemented in the source code [7], [8], [10]. Thus, to identify
the behavior of a legacy system is necessary to discover the business rules
implemented in its source code.

1.2 Proposed Solution to Identification of the Legacy System Behavior

Based on the business rules concepts, we define a semi-automatic technique to
identify the legacy system behavior. This technique allows the semi-automatic
identification of the business rules implemented in the legacy source code and

Identifying Business Rules to Legacy Systems Reengineering Based on BPM and SOA 69

automatic discovery of the partial order execution of these business rules during the
runtime legacy system. The identification of the business rules is semi-automatic,
because it requires human intervention to complete the identification of the rules.

The proposed technique consists of five steps:

• Step 1: Identify the business rules in the legacy source code, annotating the
starting and ending points of their encoding as shown in Fig. 1(a). The
annotations are two lines of code introduced in the source code. These lines
generate new entries in the log file during the runtime legacy system.

• Step 2: Run the legacy system to generate a log file that contains the entries
of start and end of the business rule annotated in the source code. Legacy
system must be executed several times, with different data sets. Fig. 1(b)
shows an example of log file generated during the runtime legacy system.

• Step 3: Mine the log file, with a log mining algorithm, which obtains the
partial order execution of the business rules. Fig. 1(c) shows the partial order
that can be expressed in a business process model.

Fig. 1. Example of the steps to discovery the partial order execution of the business rules
implemented in a legacy system

• Step 4: Validate the partial order execution of the business rules with expert
users of the legacy system.

• Step 5: Map the partial order execution of the business rules to a business
process model. A business process also can be specified and implemented
with business rules [13], [14]. Thus, we can use the business rules as
invariants to map parts of the legacy source code into business process
fragments. Therefore, the model obtained through the log mining does not
represent a complete business process model. It is need to replace the
business rules identifiers in the Fig. 1(c) by business process fragments that
implement these business rules in a business process model.

70 G.S. do Nascimento et al.

This paper presents to Step 01 of the proposed technique. The remaining steps have
been presented in previous papers [4], [15].

We studied the business rules concept in the context of legacy systems. Based on
the literature, we define a business rules ontology that groups the main business rules
types used in legacy systems. After the definition of the ontology, we verify how the
business rules types are implemented in the legacy source code, i.e., those
programming language statements are commonly used to implement each business
rule type. With this information, we create a tool that analyses the legacy source code,
identifying the business rules implemented in this source code. Altogether, the main
contributions of this paper are:

• Creation of an business rules ontology with main business rules types that are
used in legacy systems;

• Definition of a tool to identify the business rules implemented in the legacy
source code;

• Presentation of a technique to map the legacy system behavior into business
process models.

The remainder of this paper is organized as follows: Section 2 presents the related
works. Section 3 defines the business rules concept in the context of legacy systems.
Section 4 defines the ontology that is used in the paper. Section 5 defines the
programming language statements that are used to implement the business rules type.
Section 6 demonstrates the soundness and correctness of the ontology. Section 7
presents the tool proposed to identify the business rules implemented in a legacy
system. We conclude with a summary and outlook in Section 8.

2 Related Work

Business rules identification from legacy systems is a common challenge that has
been addressed in the literature for many years. Business rules identification is main
challenge from many approaches for the modernization of legacy systems.

To identify and extract the business logics inside the source code, [8] and [10]
defined business rules as functions with conditions, and consider 1) output and
variable, 2) data flow and dependency, and 3) program slicing to reduce the searching
scope in the source code. In [8], code restructuring and use case identification were
used to extract business logics from COBOL programs. [10] proposed a manual
approach to extract the business logics from the source code and showed the
effectiveness of human identification.

These related works allow identifying business rules from legacy but don’t allow
the identification of business processes associated to these rules. In our research, we
pretend to identify the business processes implemented implicitly in the legacy source
code. Thus, we use the business rules as invariants to map source code fragments into
business activities of the business processes.

Recent researches propose the use of business rules to model business processes. In
[14] the business rules are used to specify conditional flows in web service
compositions. In [17] the business activities are process elements and construct flows

Identifying Business Rules to Legacy Systems Reengineering Based on BPM and SOA 71

based on ECA business rules. By chaining these rules a flow is constructed that can
be translated to an executable process specification. Also, in [13] business rules are
related to workflow patterns with the use of ECA rules.

Therefore, in this paper, we present a technique to identify different business rules
types. Each business rule type identified represents determined business semantics of
the organization. We map the business rules of the legacy code into business activities
from business processes.

Regarding the other researches in business rules identification, we identify more
business rules types. In [8] and [10] are identified conditional business rules that
determine the control flow of the legacy system. However, to model a business
process are required other business activities, such as user interaction activities and
automatic activities. In our approach we identify the conditional business rules and
others business rules types, which can later be mapped to specifics business activities
to model the business processes implemented in the legacy system.

3 Business Rules

Typically, business rules are used to specify an information system. The business
rules are statements that guide developers in the encoding of the information system.
Therefore, we can say that the behavior of an information system is determined by
business rules that are implemented in the source code [7], [8], [10].

Fig. 2 shows the declaration of a business rule that specifies the behavior of an
information system (a). During the encoding of the system, the developers write this
business rule in the source code using programming language statements (b).

Fig. 2. (a) Textual Description of a Business Rule and (b) Implementation of the Business Rule
using the C Programming Language

Business rules can be classified in types [7], [11]. A business rule type defines a set
of words or expressions that must be used to write a business rule in natural language
[11]. These words or expressions are translated into programming language
statements during the encoding of the information system.

Therefore, to identify business rules in the source code is necessary to know the
business rules types, what the properties of each business rule type and how these
properties are implemented using an imperative programming language.

Thus, we define a business rules ontology that has the main business rules types
found in legacy systems. The ontology was defined with different business rules
classification schemes found in the literature [7], [11], [12], [16], [18].

The business rules types of the classification schemes were searched in the
technical documentation (e.g.: textual specification) of legacy systems found in the
Brazilian Public Software Portal [19]. In the documentations we search textual

If the user is 60 years old then the system
calculates 25% of social benefits in the salary.

if (age >= 60) {
 salary += (salary * 0.25);
}

(a) (b)

72 G.S. do Nascimento et al.

sentences that describe business rules (Fig. 3(a)). After, these business rules were
classified in the business rules classification schemes found in the literature. Thus, we
identify the main business rules types used in the legacy systems studied in this work.

For example, the textual sentence “To request a social benefit the user must be
older than 60 years” was found in the documentation of a legacy system. This
sentence has an obligation expression (“must”) and a conditional expression (“older
than 60 years”), which are features of a constraint business rule defined in the
classification scheme of Ross [18]. Therefore, this textual sentence was classified as a
constraint business rule of the classification scheme of Ross [18].

After the classification of the business rules contained in the documentation of the
legacy systems, we create ontology with the main business rules types found in theses
systems (Fig. 3(b)). Subsequently, the ontology is the knowledge base to a tool of
identification of the business rules implemented in the source code of legacy systems.

The classes of the ontology represent the business rules types and the attributes
represent expressions of the natural language that are used to write a business rule of a
particular business rule type. Fig. 3(b) shows an example of class of our ontology.

With the definition of the ontology, we verify how the business rules found in the
documentation have been implemented in the source code of the legacy systems. We
observe which statements of an imperative programming language were used to
implement the business rules types (Fig. 3(c)).

Thus, we define an equivalent class to each business rule class of the ontology. The
equivalent class represents the implementation of a particular business rule type. In
the equivalent class the attributes are mapped to programming language statements, as
shows the Fig. 3(d). The programming language statements normally are used to
implement a particular business rule type.

Fig. 3. Steps followed to define the business rules ontology and the equivalent classes

4 Business Rules Ontology

To find the business rules types that are used in legacy systems, we use the technical
documentation of some systems available in the Brazilian Public Software Portal [19].
As shown in Fig. 3(a), we search in the documentations by textual sentences that

Constraint Business Rule

- hasObligationExpression
- hasConditionalExpression

“To request a social benefit the
user must be older than 60 years.”

(a) Step 01: Search business rules in the
documentation of the legacy systems. (b) Step 02: Business Rule Class

with the features of the sentence
found in Step 01.

(c) Step 03: Search implementations
of the business rules found in Step 01.

if (age > 60) {
 ...
}

Constraint Rule Implement.

- hasIfCommand
- hasBooleanExpression

(d) Step 04: Equivalent Class with attributes
mapped to programming language statements.

Mapping of
the Natural
Language
Expressions
to
Programming
Language
Statements.

Identifying Business Rules to Legacy Systems Reengineering Based on BPM and SOA 73

specify the business rules of such systems. We found 417 sentences that describe
business rules of these systems.

These sentences were categorized into the business rules types found in the
classification schemes defined in the literature [7], [11], [12], [16], [18]. During
the categorization we observe that the classification scheme defined by Ross [18] is
the most complete. All textual sentences found in the documentations of the systems
were classified into some business rule type defined by Ross [18]. Therefore, this
classification scheme was chosen to define our business rules ontology.

Section 5 presents details of the results obtained in the mining of the legacy
systems of the Brazilian Public Software Portal [19]. This section presents two
statistics: support and confidence. Support verifies the probability of a business rule
type appears in the legacy systems. While the confidence checks the probability of a
business rule type to be implemented in the legacy source code, according with the
programming language statements defined in the equivalent classes (Fig. 3(d)).

From the classification scheme defined by Ross [18] we generate ontology to
business rules specified in natural language. For each business rule type were created
a class in the ontology, where the attributes represent expressions that are commonly
used to write a business rule of this type in natural language.

According to the classification scheme defined by Ross [18], a business rule
specifies a relationship among business concepts.

A business concept is a term that expresses an idea or notion about the business of
an organization. A business concept can represent an object or an entity in the
business. It is an abstract representation of the reality of a particular business [18].

Business concepts are related through expressions that indicate actions (e.g. verbs).
In the example “The customer buys cars” there are two business concepts,
“customer” and “cars”, that are related through the action expression, “buys”. Thus,
we can say that a business rule must have at least two business concepts and an action
expression to relate the business concepts.

Thus, the ontology starts with the “Business Rule” and “Business Concept”
classes as presented in Fig. 4. Business Rule Class defines a generic business rule,
which must have two or more business concepts and one action expression. The
“hasBusinessConcept” attribute indicates the requirement of the business concepts to
a sentence textual to be a business rule. The “concepts” attribute indicates the
business concepts involved in the textual sentence. While the “hasActionExpression”
attribute indicates the need of an action expression relating the business concepts.

According to Ross [18], the business rules are divided into six classes: Constraint
Rule; Computation Rule; Derivation Rule; Enabler Rule; Copier Rule; and Executive
Rule. Fig. 4 shows our ontology, where the classes defined by Ross [18] are
specializations of the “Business Rule” class.

The features of the business rules types defined by Ross [18] are transformed into
attributes of the classes in Fig. 4. For example, the “Constraint Business Rule” class
has the “hasObligationExpression” attribute indicating the requirement of an
obligation expression in textual sentences that specify constraint business rules.

Note in Fig. 4 that the “Computation Business Rule” class was specialized in
“Persistence Business Rule” and “Mathematical Business Rule”, because this

74 G.S. do Nascimento et al.

business rule type is characterized by a mathematical or persistence action. Thus, we
specialize the “Computation Business Rule” class to eliminate this ambiguity. If the
textual sentence has a mathematical action (e.g.: to sum) will be classified as
“Mathematical Business Rule”. Otherwise, the textual sentence has a persistence
action (e.g.: to save) and it will be classified as “Persistence Business Rule”.

Fig. 4. Business Rules Ontology with the Features in Natural Language

5 Implementation of the Business Rules Classes

Now, for each business rule class in the ontology, we propose an equivalent class with
the implementation features of such business rule class in an imperative programming
language. The attributes of the equivalent class refers to programming language
statements that are normally used to implement a business rule of that particular class.

The equivalent classes are used in the tool that analyses the legacy source code,
identifying and annotating the business rules of this system.

To define the equivalent classes, we search in the source code of the legacy
systems studied in this work, the implementations of the 417 business rules found in
the technical documentation of the systems (Fig. 3(c)). Thus, we observe the
programming language statements used to implement the business rules classes
defined in the ontology of the Fig. 4 (Fig. 3(d)).

Legacy systems studied in this work are written in C, COBOL, and PHP
programming language. However, we can generalize the programming language,
because the semantics of the statements used in the implementation of the business
rules is identical in the three programming languages.

5.1 Programming Language

Fig. 5 shows the programming language grammar used in the paper. This grammar is
an extension of the programming language defined by Plotkin [20], with the main
statements found in an imperative programming language.

Identifying Business Rules to Legacy Systems Reengineering Based on BPM and SOA 75

Fig. 5. Grammar Programming Language

In the grammar is used e, e1, e2 ... to represent arithmetic expressions, b, b1, b2 ... to
represent boolean expressions, as well as c, c1, c2 ... to represent the commands of the
programming language.

In grammar also is used “n” for numbers, “s” for strings, “v” for variables,
“proc” and “func” to procedures and functions. In addition, “query” is a valid SQL
statement, i.e., “query” is a sentence INSERT, UPDATE, DELETE or SELECT of the
structured query language used to access a database.

The behavior of the programming language statements presented in Fig. 5 is
defined with conceptual graphs [21]. Conceptual graphs have been proposed in [21] to
represent a particular meaning in a format logically precise, humanly readable and
computationally interpretable. Basically, a conceptual graph consists of two nodes
types: Concepts and Relations. Concepts are arranged inside of the rectangles and
are connected through the relations nodes. Relations are arranged into diamonds and
connect the concepts by all sides that they can be linked.

Fig. 6. Conceptual Graphs to the Programming Language Statements

For each programming language statement is defined a conceptual graph that
represents your behavior (Fig. 6). Subsequently, these conceptual graphs are used to
generate conceptual graphs that represent the behavior of the business rules classes.

e ::= n | s | v | e1 + e2 | e1 – e2 | e1 * e2 | e1 / e2

b ::= true | false | e1 = e2 | e1 > e2 | e1 < e2| b1 and b2 | b1 or b2

c ::= v := e | c1;c2 | call proc | v := call func | print(e) |
 read(v) | if b then c end | if b then c1 else c2 end |
 while b do c end | exec sql query | begin sql c end sql

76 G.S. do Nascimento et al.

The conceptual graphs also will be important to the tool of identification of the
business rules implemented in the source code. Our tool uses the graphs defined to
the programming language statements to generate a conceptual graph that represents
the behavior of the legacy source code. In the conceptual graph of the legacy source
code we search fragments that represent the behavior of the business rules.

In the semantics of the programming language the boolean expressions (“b”),
numeric expressions (“e”), the numbers (“n”), variables (“v”) and commands (“c”)
are the concepts. Thus, they are expressed by rectangles in conceptual graphs.

For example, in “e1 + e2” the expressions “e1” and “e2” are concepts, while the
sum operator (+) is a relation that links these concepts to generate a new concept as
shows the Fig. 6(a).

Note that the concepts “e1” and “e2” can be substituted to another subgraph when
“e1” or “e2” are other mathematical expressions. This substitution is done until the
expression to be a variable (“v”) or number (“n”). The assignment command has the
graph shown in Fig. 6(b). The Fig. 6 shows the others conceptual graphs.

5.2 Mapping the Business Rules Classes into Equivalent Classes

The next step is to map the business rules classes presented in Section 3 into
equivalent classes. For each business rule class of the ontology is defined an
equivalent class. In the equivalent class the attributes refer to programming language
statements, which usually are used to implement the business rules of this class in a
programming language.

For example, in the “Business Rule” class, the “concepts” attribute is transformed
“variables” which is the component used in the implementation of the business
concepts using a programming language. Usually the business concepts are
implemented in the source code of an information system using the variable concept
of the programming language.

The equivalent classes were based in the implementations of the 417 business rules
found in the documentations of the legacy systems studied in this work. We search in
the source code files of these systems for code fragments that implement the business
rules found in the documentations. Thus, we can determine the mapping from natural
language expressions used in the textual sentences into programming language
statements, which usually are used in the implementation of each business rule class.

We also define a conceptual graph for each equivalent class. This graph represents
the behavior of the business rule class. We use the graphs defined to the programming
language statements to generate a conceptual graph for each equivalent class. For
example, if a particular class is implemented in the programming language by an “if”
command followed by an assignment command, then the conceptual graph of this
business rule class is the union of the graphs of the Fig. 6(d) and Fig. 6(b).

The first mapping is of the “Business Concept” class. The business concepts are
implemented in source code using variables. Thus, this class is mapped to a
“Variable” class, with the “identifier” attribute equivalent to the “name” attribute of
the “Business Concept” class.

Identifying Business Rules to Legacy Systems Reengineering Based on BPM and SOA 77

The “Business Rule” class is mapped to the “Business Rule Impl.” class. This
same naming is used for the others business rules classes of the Fig. 4.

The “hasBusinessConcepts” attribute of the “Business Rule” class is mapped to
the “hasVariables” attribute in the “Business Rule Impl.” class. Similarly, the
relationship of “Business Rule” class to “Business Concept” class is mapped to a
relationship between the “Business Rule Impl.” and “Variable” classes.

A business rule is implemented through statements that manipulate variables
(business concepts). Consequently, the programming language statements
corresponding to action expressions contained in the “Business Rule” class.
Therefore, the “hasActionExpression” attribute in “Business Rule” class is mapped to
the “hasStatment” attribute in class “Business Rule Impl.” as shows Fig. 7.

Fig. 7. Equivalent Classes with the Features of Implementation of the Business Rules

In the Fig. 7 are presented the equivalent classes for each business rule class shown
in Fig. 4. These definitions follow the same logic presented to the “Business Rule”
class, observing the programming language statements used in the implementation of
the 417 business rules found in the documentation of the legacy systems used in the
context of this study.

Note in Fig. 7 that the equivalent classes have attributes that indicate the
programming language statements that normally are used to implement the business
rules found in the legacy systems studied in this work. Thus, it is possible to generate
a conceptual graph to represent the behavior of each business rule class.

Fig. 8. Conceptual Graph to “Derivation Business Rule Impl.” Class

For example, in “Derivation Business Rule Impl.” class is characterized by one
“if” command and one assignment command. Therefore, we use the conceptual

78 G.S. do Nascimento et al.

graphs of these statements to represent the behavior of this business rule class as
shown in Fig. 8.

6 Support and Confidence

To ensure that the ontology and the equivalent classes are corrects, we collect the
support and confidence statistics [22].

The support and confidence are statistics computed in the mining of association
rules in records of the database [22]. They allow verifying the probability of an
association rule appears in a data set.

These statistics were adapted to the context of this work. We verify the probability
of the business rules classes appear in a legacy system and the probability of them
being implemented in the source code using the programming language statements
presented in the equivalent classes (Fig. 7).

The support and confidence were collected in the analysis of the legacy systems
from the Brazilian Public Software Portal [19]. These systems are implemented in
different technologies (e.g., COBOL, C and PHP), totaling about 30 thousand lines of
source code and 60 pages (e.g., A4 size) of technical documentation.

The support statistic shows the probability of a business rule class to be found in
the legacy systems analyzed in this work.

After identifying and classifying the business rules contained in the documentation
of the legacy systems, we count the occurrences of each business rule class. We
determine the support statistic to a particular business rule class, dividing the number
of occurrences of the business rule class by the total number of business rules found
in the legacy systems. Fig. 9(a) shows the formula used to the support statistic.

Fig. 9. Formulas to the Support and Confidence Statistics of the Business Rules Classes

The confidence statistic verifies if the implementation features of the business rules
classes are consistent, i.e., the probability of an business rule instance to be
implemented through the programming language statements defined for its equivalent
class of the Fig. 7.

For example, of the total number of business rules classified as copier business
rule, we verify how many occurrences have been implemented with the output
command (print(v)). The confidence statistic is obtained dividing the number of
occurrences of the copier business rule implemented with the output command by the
total number of occurrences of the copier business rule found in the legacy systems.
Fig. 9(b) shows the formula used to calculate the confidence statistic.

C = Business Rule Class.
TBR = Total Number of Business Rules in the Legacy Systems.
O(C) = Occurrences of a Particular Business Rule Class in the Legacy Systems.
OI(C) = Occurrences of a Particular Business Rule Class Implementation in the Source Code.

Support (C) = O(C) / TBR Confidence (C) = OI(C) / O(C)
(a) (b)

Identifying Business Rules to Legacy Systems Reengineering Based on BPM and SOA 79

Table 1 shows the results of the support and confidence statistics for each business
rule class. The results summarize the data collected for all legacy systems analyzed in
the context of this work.

Note in the Table 1 that the confidence of the equivalent classes is greater than
90% (except the mathematical business rule that is 88%). This demonstrates that in
the context of the legacy systems studied in this work, there are a high percentage of
business rules that were implemented using the programming language statements
indicated in the equivalent classes of the Fig. 7.

Table 1. Results collected to Support and Confidence Statistics

 Total Number of Business Rules: 417
Business Rule Class (C) O(C) OI(C) Support Confidence

Constraint Business Rule 129 124 0,30 0,96
Mathematical Business Rule 9 8 0,02 0,88
Persistence Business Rule 123 120 0,29 0,97
Derivation Business Rule 32 30 0,07 0,93
Copier Business Rule 46 44 0,11 0,95
Enabler Business Rule 21 20 0,05 0,95
Executive Business Rule 57 54 0,13 0,94

Also note that the confidence of the mathematical business rule was 88% because

of the low number of instances of this business rule type. This number is due to
features of the legacy systems used in this work. Note that the computation business
rule defined by Ross [18], in our ontology was specialized to “Mathematical Business
Rule” and “Persistence Business Rule” class. Therefore, we can sum the results
obtained to mathematical and persistence business rules, obtaining a confidence of
96% to the “Computation Business Rule” class.

The confidence was not higher, because some business rules identified in the
legacy systems have features of two or more classes (i.e., ambiguous classification).
However, this problem can be avoided by a human review of the business rules with
ambiguous classification. The tool of identification of the business rules can indicate
to an expert human the business rules with ambiguous classification. This reduces the
manual work in the analyses of the source code.

All business rules classes have occurrences in the legacy systems studied in the
work. Business rules that have more occurrences are the constraint and computation
business rules, which together has a support of 61%.

The enabler business rule appears 5% because these rules are user inputs, which
are usually grouped into electronic forms. Thus, one electronic form is considered
only one enabler business rule.

7 Tool to Identify Business Rules in the Source Code

Based on the business rules ontology and in the conceptual graphs of the business
rules implementation classes, we define a tool to identify and to annotate the business
rules contained in the source code files from a legacy system.

80 G.S. do Nascimento et al.

The tool receive as input a source code file and return as output the source code file
with the annotations from the starting and ending points of the business rules
contained in the source code, as presented in the Fig. 1(a).

Fig. 10 shows the architecture of the tool divided in two modules: syntactic
analysis module - used to the parsing of the source code; and semantic analysis
module - used to identify the code fragments that implement the business rules.

Fig. 10. Architecture of the Proposed Tool to Identify Business Rules in Legacy Source Code

The tool has four steps as shown in Fig. 10:

• Generate Abstract Syntax Tree: the first step is to generate an abstract
syntax tree (AST) to perform the parsing of the legacy source code. The
parsing generates a data structure that facilitates the interpretation of the
source code, verifying the correctness of the code, i.e., if the source code has
no syntax problems. In this step, we use algorithms that generate an n-ary tree,
where the nodes represent the programming language statements used in the
source code [23].

• Generate Conceptual Graph of the Legacy Source Code: the abstract
syntax tree is transformed in a conceptual graph that represents the legacy
source code. To create the conceptual graph of the legacy source code are used
graphs defined to the programming language statements, as shows the Fig. 6.
For each statement found in the abstract syntax tree, the conceptual graph of
the source code receives the addition of the subgraph that represents this
programming language statement (Fig. 6).

• Identification of Structures that Represent Business Rules
Implementations: the next step is traverse conceptual graph annotating
structures that represent business rules implementations. The identification is
made through the search of subgraphs with identical structure to the graphs
defined to business rules implementation classes. For example, to the
“Derivation Business Rule Impl.” class our tool must traverse the conceptual
graph of the source code, looking for subgraphs with the same structure of the

Identifying Business Rules to Legacy Systems Reengineering Based on BPM and SOA 81

conceptual graph defined in the Fig. 8. When the tool finds a subgraph that
represents the business rule implementation, it annotates in the conceptual graph
of the source code, all the components that make this business rule.

• Check Granularity of the Business Rules Annotated in the Conceptual
Graph: the last step the tool search in the conceptual graph of the source code,
by business rules that can be united in only one business rule. For example, a
sequence of calculations can be annotated in the graph as different business
rules, but to the business this sequence should be only one indivisible
calculation. The analysis of the granularity of the business rules is done
through heuristics and algorithms that analyze the dependence of the variables
involved in the business rules.

At the end of the granularity analysis the tool annotates the legacy source code file
with the information annotated in the conceptual graph of the source code, generating
the final result that is the annotated source code file.

8 Summary and Outlook

In this paper, we present a tool of identification of the business rules implemented in
the source code of legacy systems. Our tool is based on a business rules ontology that
contains the main business rules types that can be found in legacy systems.

We demonstrate statistically what business rules classes are mostly found in legacy
systems. We also show that the business rules classes are normally coding using
standard programming language statements.

All business rules found in the legacy systems were classified in the classes of our
ontology. However, we can not say that there are only these rules classes. Thus, our
ontology has a generic business rule class, where the tool classifies a source code
fragment is not ranked in any business rule class. After the identification, a human
expert analyzes the source code fragment and proposes changes in the ontology.

Now this tool of business rules identification will be used in the reengineering
technique based on BPM and SOA, as presented in Section 1.3. The next phase of the
research will be a full case study of the reengineering technique, applying the
technique in an operational legacy system. Thus, we can generate statistics to
demonstrate the effectiveness of the technique proposed in Section 1.3.

Acknowledgements. We are very grateful for the SticAmSud and PNPD Program
from the Brazilian Coordination for the Improvement of Graduated Students
(CAPES).

References

1. Ward, M.P., Bennett, K.H.: Formal methods for legacy systems. Journal of Software
Maintenance and Evolution 7(3), 203–219 (1995)

2. Borges, M.R.S., Vincent, A.F., Carmen Penadés, M., Araujo, R.M.: Introducing Business
Process into Legacy Information Systems. In: van der Aalst, W.M.P., Benatallah, B.,
Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 452–457. Springer,
Heidelberg (2005)

82 G.S. do Nascimento et al.

3. Kamoun, F.: A Roadmap towards the Convergence of Business Process Management and
Service Oriented Architecture. ACM Ubiquity 8(14), 79–84 (2007)

4. Nascimento, G.S., Iochpe, C., Thom, L.H., Reichert, M.: A Method for Rewriting Legacy
Systems using Business Process Managemet Technology. In: 11th International
Conference on Enterprise Information Systems (ICEIS), pp. 57–62. ISAS, Milan (2009)

5. Acharya, M., Kulkarni, A., Kuppili, R., Mani, R., More, N., Narayanan, S., Patel, P.,
Schuelke, K.W., Subramanian, S.N.: SOA in the Real World – Experiences. In:
Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 437–449.
Springer, Heidelberg (2005)

6. Brahe, S.: Early Experiences on Adopting BPM and SOA: An Empirical Study. Technical
Report TR-2007-96, IT University of Copenhagen (2007)

7. Kolber, A., Hay, D., Healy, K.A., et al.: Defining Business Rules - What Are They Really?
Technical Report, Business Rules Group (2000)

8. Wang, X., Sun, J., Yang, X., He, Z., Maddineni, S.: Business Rules Extraction from Large
Legacy Systems. In: 8th European on Software Maintenance and Reengineering (CSMR),
pp. 249–257. IEEE Press, Washington, DC, USA (2004)

9. Bell, J., Brooks, D., Goldbloom, E., Sarro, R., Wood, J.: Re-Engineering Case Study –
Analysis of Business Rules and Recommendations for Treatment of Rules in a Relational
Database Environment. Technical Report, Information Technologies Group (1990)

10. Sneed, H.M., Erdos, K.: Extracting Business Rules from Source Code. In: 4th IEEE IWPC
1996, pp. 240–247. IEEE Press, Washington, DC, USA (1996)

11. Ross, R.G.: The Business Rule Book: Classifying, Defining and Modeling Rules. Business
Rule Solutions Inc., Houston (1997)

12. Weiden, M., Hermans, L., Schreiber, G., van der Zee, S.: Classification and Representation
of Business Rules. Technical Report, University of Amsterdam (2002)

13. Knolmayer, G.F., Endl, R., Pfahrer, M.: Modeling Processes and Workflows by Business
Rules. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) BPM 2000. LNCS,
vol. 1806, pp. 16–29. Springer, Heidelberg (2000)

14. Charfi, A., Mezini, M.: Hybrid Web Service Composition: Business Processes meet Business
Rules. In: 2th International Conference on Service Oriented Computing, pp. 30–38. ACM,
New York (2004)

15. Kalsing, A.C., Nascimento, G.S., Iochpe, C., Thom, L.H., Reichert, M.: An Incremental
Process Mining Approach to Extract Knowledge from Legacy Systems. In: 14th
International IEEE EDOC Conference, pp. 79–88. IEEE Press, Washington, USA (2010)

16. Von Halle, B.: Business Rules Applied. John Wiley & Sons Inc., Hoboken (2001)
17. Lee, S., Kim, T., Kang, D., Kim, K., Lee, J.: Composition of executable business process

models by combining business rules and process flows. Journal Expert System with
Applications 33, 221–229 (2007)

18. Ross, R.G.: RuleSpeakTM – Templates and Guidelines for Business Rules. Business Rules
Journal 2(5) (2001)

19. Portal do Software Público Brasileiro, http://www.softwarepublico.gov.br
20. Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical Report,

University of Aarhus, Denmark (1977)
21. Sowa, J.F.: Conceptual Graphs (2004), http://www.jfsowa.com/cg
22. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.: Fast discovery of

association rules. In: Fayyad, U.M., et al. (eds.) Advances in Knowledge Discovery and
Data Mining, pp. 307–328. AAAI Press, Menlo Park (1996)

23. Parr, T.J., Quong, R.W.: ANTLR: A predicated-LL(k) parser generator. Software: Practice
and Experience 25, 789–810 (1995)

Abstraction Analysis and Certified Flow

and Context Sensitive Points-to Relation
for Distributed Programs

Mohamed A. El-Zawawy

College of Computer and Information Sciences, Al-Imam M. I.-S. I. University
Riyadh, Kingdom of Saudi Arabia

and
Department of Mathematics, Faculty of Science, Cairo University

Giza 12613, Egypt
maelzawawy@cu.edu.eg

Abstract. This paper presents a new technique for pointer analysis of
distributed programs executed on parallel machines with hierarchical
memories. One motivation for this research is the languages whose global
address space is partitioned. Examples of these languages are Fortress,
X10, Titanium, Co-Array Fortran, UPC, and Chapel. These languages
allow programmers to adjust threads and data layout and to write to
and read from memories of other threads.

The techniques presented in this paper have the form of type sys-
tems which are simply structured. The proposed technique is shown on
a language which is the while langauge enriched with basic commands
for pointer manipulations and also enriched with commands vital for dis-
tributed execution of programs. An abstraction analysis that for a given
statement calculates the set of function abstractions that the statement
may evaluate-to is introduced in this paper. The abstraction analysis is
needed in the proposed pointer analysis. The mathematical soundness
of all techniques presented in this paper are discussed. The soundness is
proved against a new operational semantics presented in this paper.

Our work has two advantages over related work. In our technique,
each analysis result is associated with a correctness proof in the form of
type derivation. The hierarchical memory model used in this paper is in
line with the hierarchical character of concurrent parallel computers.

Keywords: abstraction analysis, certified code, flow and context sensi-
tive points-to relation, distributed programs, semantics of programming
languages, operational semantics.

1 Introduction

The need for distributed programs [20,21] for graphics processors and desktops
was magnified by the creation of multi-core processors which therefore greatly
affected the software development. Large parallel systems were built using multi-
core processors. These systems have memory that uses message passing and

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 83–99, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

84 M.A. El-Zawawy

that is cache-coherent shared, direct-access (DMA or RDMA) distributed, and
hierarchical [17,18]. An appropriate address space model for machines equipped
with multi-core processors is the partitioned global model (PGAS). Examples
of DPLs, distributed programming languages that program machines equipped
with multi-core processors, that use PGAS are Unified Parallel C (UPC), X10,
Chapel, and Titanium which is based on Java.

The objective of pointer analysis [10,8,13,9] is to calculate for every variable
at each program point of the program the set of addresses to which the variable
may point. Pointer analysis of DPLs is a complicated problem as these languages
allow pointers to shared states. A common query concerning pointer analysis of
DPLs is whether the access of a given pointer can be proven to be restricted to
a specific region of the memory hierarchy. Such information is useful in many
directions including the following: (a) pointer representation – fewer bits are
needed to represent pointers with restricted domains; (b) improving performance
of software caching systems – coherence protocols may be limited to a proper
subset of processors; (c) allowing data race to ignore pointers that access private
data of a thread; (d) identifying pointers that access data on chip multiprocessor
and hence need ordering fences [23].

The algorithmic style is the typical manner to analyze distributed program.
This manner relies on data-flow analyses and works on control-flow graphs –
intermediate representations of programs. The type-systems manner is an alter-
native style for analyzing distributing programs and it works on the syntactical
structure of programs [10,8,13,9]. This latter manner is the convenient approach
to analyze distributed programs [2,16,27] when justifications for the correctness
of analysis results are required to be delivered together with analysis results.
These communications are required to clarify the way the analysis results were
obtained. Certified code is an application that requires machine-checkable, sim-
ple, and deliverable justifications. Justifications provided by the type-systems
manner have the form of type derivations which are user-friendly. The type sys-
tems approach has the advantage of relatively simple inference rules.

In previous work [10,8,13,9,11,6], we have shown that the type-systems ap-
proach is indeed a convenient framework for achieving pointer analysis of while
languages enriched with pointer and parallel constructs. In this paper, we show
that this approach extends also to the complex problem of pointer analysis of
distributed programs. Many factors cause the complexity of the problem; (a) the
use of shared memory in distributed programs allows pointing to these locations
and (b) the interference between shared memory concept also complicates the
problem when the studied model langauge contains important real-constructs
like functions.

This paper presents a new approach for pointer analysis of distributed pro-
grams executed on hierarchical memories. The proposed technique has the form
of a type system that is simply structured. The presented method is shown on
a toy language which is the while langauge enriched with basic commands for
pointer manipulations and also enriched with commands vital for distributed
execution of programs. The execution model adopted in this paper is the

Abstraction Analysis and Certified Flow and Context Sensitive 85

single program multiply data (SPMD) model. In this model the same program
is executed on different machines storing different data. Although the language
used is simple, it is powerful enough to study distributing and pointer concepts.
An abstraction analysis that for a given statement calculates the set of function
abstractions that the statement may evaluate to is introduced in this paper.
The abstraction analysis is needed in the proposed pointer analysis. The math-
ematical soundness of all techniques presented in this paper are discussed. The
soundness is proved against a new operational semantics presented in this paper.

Motivation

Figure 1 presents a motivating example of our work. The program of the fig-
ure consists of two parts; the first part (lines 1 and 2) introduces definitions
for statements S1 and S2, and the second part (lines 3, 4, 5 and 6) is the code
that uses these definitions. We suppose that the program is executed on a dis-
tributed system that has two machines labeled m1 and m2. We also assume
that each of the machines has local registers (say x and y) and has local ad-
dresses (say {a, b} for m1 and {c, d} for m2). Therefore the set of global variables,
gVar, is {(m1, x), (m1, y), (m2, x), (m2, y)} and the set of global addresses, gAdrrs, is
{(1,m1, a), (1,m1, b), (2,m1, a), (2,m1, b), (1,m2, a), (1,m2, b), (2,m2, a), (2,m2, b)}. Loc
denotes the union set of global variables and addresses. We consider the par-
allelism mode SPMD. Our paper presents a new technique for analyzing the
pointer content of programs like this one. The proposed technique has the ad-
vantage, over any existing technique, of associating each analysis result with a
correctness proof. The analysis results of the example program are shown in
Figure 2 and Figure 3 for machines m1 and m2, respectively.

1. S1 = x;
2. S2 = y;
3. x � new1;
4. y � new2;
5. y � transmitS1 f rom2;
6. x � convert(S2, 2);

Fig. 1. A motivating example

Contributions

Contributions of this paper are the following:

1. A new abstraction analysis that calculates the set of abstractions that a
statement may evaluate-to.

2. A new pointer analysis technique, that is context and flow-sensitive, for
distributed programs.

86 M.A. El-Zawawy

Program point Pointer information for m1

the first point {l �→ ∅ | l ∈ Loc}
the point between 3 & 4 {(m1, x) �→ {(1, {m1})}, l �→ ∅ | l � (m1, x)}
the point between 4 & 5 {(m1, x) �→ {(1, {m1})}, (m1, y) �→ {(2, {m1})},

l �→ ∅ | l � {(m1, x), (m1, y)}}
the point between 5 & 6 {(m1, x) �→ {(1, {m1})}, (m1, y) �→ {(2, {m1}), (1, {m2})},

l �→ ∅ | l � {(m1, x), (m1, y)}}
the last point {(m1, x) �→ {(1, {m1,m2})}, (m1, y) �→ {(2, {m1}), (1, {m2})},

l �→ ∅ | l � {(m1, x), (m1, y)}}
Fig. 2. Results of pointer analysis of the program in Figure 1 on the machine m1

Program point Pointer information for m2

the first point {l �→ ∅ | l ∈ Loc}
the point between 3 & 4 {(m2, x) �→ {(1, {m2})}, l �→ ∅ | l � (m2, x)}
the point between 4 & 5 {(m2, x) �→ {(1, {m2})}, (m2, y) �→ {(2, {m2})},

l �→ ∅ | l � {(m2, x), (m2, y)}}
the point between 5 & 6 {(m2, x) �→ {(1, {m2})}, (m2, y) �→ {(2, {m2}), (1, {m2})},

l �→ ∅ | l � {(m2, x), (m2, y)}}
the last point {(m2, x) �→ {(1, {m1,m2})}, (m1, y) �→ {(2, {m1}), (1, {m2})},

l �→ ∅ | l � {(m2, x), (m2, y)}}
Fig. 3. Results of pointer analysis of the program in Figure 1 on the machine m2

3. A context insensitive variation for our main context and flow-sensitive
pointer analysis.

4. A new operational-semantics for distributed programs on a hierarchy mem-
ory model.

Organization

The rest of the paper is organized as follows. Section 2 presents our hierarchy
memory model. The language that we use to present our analyses and an opera-
tional semantics to its constructs are also presented in Section 2. Our main anal-
yses are introduced in Section 3. These analyses include an abstraction analysis,
a pointer analysis that is context and flow-sensitive for distributed programs,
and a context insensitive variation of the previous analysis. Related and future
work are briefed in Section 4.

2 Memory Model, Language, and Operational Semantics

Memory models of parallel computers are typically hierarchical [20,21]. In these
models each process is often assigned local stores. Caches and local addresses
are examples of hierarchies inside processors. The Cell game processor provides

Abstraction Analysis and Certified Flow and Context Sensitive 87

an example where each SPE processor is assigned a local store that is accessible
by other SPEs via operations for memory move. It is possible to increase levels
of partitions via partitioning a computational grid memory into clusters which
in turn can be partitioned into nodes (Figure 4).

�

�

�

�The cluster
node 1 node 2

thread 1 thread 2 thread 3 thread 4

�

�

�

�

�

�

�

�

�

�

�

�

� �
�

A B
�α(1) C

�

�

�

�

D

E

�β(2)

�

�

�

�

�
F

�γ(3)�
� � �

C′ D′
�ξ(1)

�

�

�

�

Fig. 4. Grid memory

A memory of two-levels hierarchy is a typical choice for most PGAS [2,16,27].
The two levels are a local one devoted to a particular thread and a shared one
serving all threads. The basic idea in PGAS languages is to assign each pointer
the memory-hierarchy level that the pointer may reference. The memory model
in Figure 4 is a three-levels hierarchy (a cluster, a node, and a thread). For ex-
ample in Figure 4, pointers α and ξ are thread pointers and they can reference
addresses on thread 1 and 4, respectively. However pointers β and γ are node
and cluster pointers, respectively. While β can reference addresses on node 1, γ
can reference addresses on the cluster. Such domains of pointers can be repre-
sented by assigning each pointer a number (width) like edge labels in Figure 4.
Clearly the higher the width of the pointer, the more expensive to manipulate the
pointer. The manipulation costs of pointers include representation costs, access
costs, and dereference costs. The direction in hardware research is to increase
hierarchy levels. Therefore it is extremely important for software to benefit from
the hierarchy [20,21,2].

We use a simple language [17,18], named Whiled, to present the results of
this paper. Whiled is the well-known while language enriched with pointer,
parallelism, and function constructions [20,21]. The model of parallelism used in
Whiled is SPMD which means that the same code is executed on all machines.
We assume that h denotes the hierarchy height of memory. Consequently, widths
of pointers are in the interval [1,h]. Figure 5 presents the syntax of Whiled. The
language uses a fixed set of variables, lVar, each of which is machine-private.
According to the Whiled syntax, each program consists of a sequence of
definitions followed by a statement (Defs : S). The first part of program, Defs,
is assignments of names to statements. These names can be used in S, the

88 M.A. El-Zawawy

name� ’string of characters’.

S ∈ Stmts� n | true | false | x | S1 iop S2 | S1 bop S2 | ∗S | skip | name | x � S | S1 ← S2 |
S1; S2 | if S then St else S f | while S do St | λx.S | S1S2 | letrec x = S in S′ |
newl | convert (S,n) | transmit S1 from S2.

Defs� (name = S);Defs | ε.
Program� Defs : S.

where
x ∈ lVar, an infinite set of variables, n ∈ Z (integers), iop ∈ Iop (integer-valued binary
operations), and bop ∈ Bop (Boolean-valued binary operations).

Fig. 5. The programming language whiled

second part of program. For each program of the langauge Whiled, our semantics
assigns a function fd of the domain Function-defs :

f d ∈ Function-defs = ’strings of characters’→ Stmts.

The map fd is supposed to link each name with its definition. The map fd is
built using the following inference rules:

(fd1)
ε : f d� f d

Defs : f d[name �→ S]� f d′
(fd2)

(name = S);Defs : f d� f d′

Therefore for a program Defs : S, we calculate Defs : ∅ � f d using the above
inference rules to construct f d.

We define the meaning of Whiled statements by their operational semantics,
i .e., by introducing transition relations �m; between pairs of statements and
states and pairs of values and states. Different components used in the inference
rules of the semantics are introduced in the following definition.

Definition 1. 1. The set of global variables, denotes by gVar, is defined as
gVar = {(m, x) | m ∈M, x ∈ lVar}.

2. The set of global addresses, denotes by gAddrs, is defined as gAddrs = {g =
(l,m, a) | l ∈ L,m ∈M, a ∈ lAddrs}.

3. loc ∈ Loc = gAddrs ∪ gVar.
4. v ∈ Values = Z ∪ gAddrs ∪ {true, false} ∪ {λx.S | S ∈ Stmt}.
5. δ ∈ States = Loc −→ Values.
The symbols M,W, and lAddrs denote the set of machines labels (integers),

the set of width {1, . . . , h}, and the set of local addresses located on each single
machine, respectively. The set of labels of allocation sites is denoted by L.

The semantics produces judgments of the form (S, δ)�m (v, δ′). The judgement
means that executing the statement S on the machine m and in the state δ results

Abstraction Analysis and Certified Flow and Context Sensitive 89

in the value v and modifying the state δ to become δ′. The notation δ[x �→ v]
denotes the map λy. if y = x then v else δ(y).

The inference rules of our semantics are as follows:

(n, δ)�m (n, δ) (true, δ)�m (true, δ) (false, δ)�m (false, δ) (x, δ)�m (δ(x), δ)

(λx.S, δ)�m (λx.S, δ)(abs)

(S1, δ)�m (n1, δ
′′) (S2, δ

′′)�m (n2, δ
′)

(int-stmt)

(S1 iop S2, δ)�m

{
(n1 iop n2, δ′), n1 iop n2 ∈ Z;
abort, otherwise.

(S1, δ)�m (b1, δ
′′) (S2, δ

′′)�m (b2, δ
′)

(bo-stmt)

(S1 bop S2, δ)�m

{
(b1 bop b2, δ′), b1 bop b2 is a Boolean value;
abort, otherwise.

(S, δ)�m (g, δ′)
(de-ref)

(∗S, δ)�m

{
(δ′(g), δ′), g ∈ gAddrs;
abort, otherwise.

(skip, δ)�m (0, δ)

(S, δ)�m abort

(x � S, δ)�m abort

(S, δ)�m (v, δ′)

(x � S, δ)�m (v, δ′[x �→ v])

(S1, δ)�m abort

(S1; S2, δ)�m abort

(S1, δ)�m abort or for v � gAddrs. (S1, δ)�m (v, δ′′)
(←1)

(S1 ← S2, δ)�m abort

(S1, δ)�m (v, δ′′) (S2, δ
′′)�m abort

(←2)
(S1 ← S2, δ)�m abort

(S1, δ)�m (g, δ′′) (S2, δ
′′)�m (v, δ′′′) g ∈ gAddrs

(←3)
(S1 ← S2, δ)�m (v, δ′′′[g �→ v])

(S1, δ)�m abort

(S1; S2, δ)�m abort

(S1, δ)�m (v1, δ
′′) (S2, δ

′′)�m (v2, δ
′)

(S1; S2, δ)�m (v2, δ
′)

(S1, δ)�m (v1, δ
′′) (S2, δ

′′)�m abort

(S1; S2, δ)�m abort

(S, δ)�m (true, δ′′) (St, δ
′′)�m abort

(if S then St else S f , δ)�m abort

(S, δ)�m (true, δ′′) (St, δ
′′)�m (v, δ′)

(if S then St else S f , δ)�m (v, δ′)
(S, δ)�m (false, δ′′) (Sf , δ

′′)�m abort

(if S then St else S f , δ)�m abort

(S, δ)�m (false, δ′′) (Sf , δ
′′)�m (v, δ′)

(if S then St else S f , δ)�m (v, δ′)
(S, δ)�m abort

(if S then St else S f , δ)�m abort

(S, δ)�m abort

(while S do St, δ)�m abort

(S, δ)�m (false, δ′′)

(while S do St, δ)�m (skip, δ)

(S, δ)�m (true, δ′′) (St, δ
′′)�m abort

(while S do St, δ)�m abort

(S, δ)�m (true, δ′′) (St, δ
′′)�m (v′′, δ′′) (while S do St, δ

′′)�m (v′, δ′)

while S do St : (δ, p)�m (v′, δ′)
(S, δ)�m (true, δ′′) (St, δ

′′)�m (v′′, δ′′) (while S do St, δ
′′)�m abort

(while S do St, δ)�m abort

(S1, δ)�m (λx.S′1, δ
′′) (S′1[S2/x], δ′′)�m (v, δ′)

(appl)
(S1S2, δ)�m (v, δ′)

90 M.A. El-Zawawy

(S, δ)�m (v, δ′′) (S′[v/x], δ′′)�m (v′, δ′)
(letrec)

(letrec x = S in S′, δ)�m (v′, δ′)

a ∈ lAddrs a is fresh on m

(newl, δ)�m ((l,m, a), δ[(l,m, a) �→ null])

(S, δ)�m (g = (l,m′, a), δ′) hdist(m,m′) ≤ n
(conv)

(convert(S,n), δ)�m (g, δ′)

(f d(name), δ)�m v, δ′)
(name)

(name, δ)�m (v, δ′)
(S2, δ)�m (m′, δ′′) m′ ∈M (S1, δ

′′)�m′ (v, δ′)
(trans)

(transmit S1 from S2, δ)�m (v, δ′)

Some comments on the inference rules are in order. The rules for integer and
Boolean statements ((int-stmt) and (bo-stmt)) and the rule for abstraction are
trivial. The rule (de-ref) makes sure that the value being dereferenced is indeed
a global address. The rules (←1), (←2), and (←3) treat the assignment through
references. The rules make sure that S1 is computable and it is a global addresses,
otherwise the execution aborts. Every allocation site is assigned a label (the
subscription l of newl). Theses labels simplify the problem of pointer analysis.
The allocation statement allocates a fresh local address on the machine m and
initializes the address to null. The rule (conv) makes it clear that the statement
convert(e, n) changes pointer widths. A function, hdist, is used in the rule (conv)
to calculate the distance between machines. Inventing such a function is easy.
According to this rule, the change of the width is only allowed if the distance
between machines is within the provided range, n. The rule (trans) clarifies that
the statement transmit S1 from S2 amounts to evaluating the statement S1 on
the machine S2 and then sending the value to other machines.

Function abstractions and applications are treated in rules (abs) and (appl),
respectively. The rule (appl) asks for S1 to evaluate to an abstraction, say λx.S′1.
The value of the application is then the result of substituting v (value of S2)
for x in S′1. Clearly, the rule applies call by value rather than call by name. The
formal semantics of letrec statement amounts to the application specified in the
rule (letrec). The intuition of this statement is that it is a well known tool for
expressing function recursion.

θ : {1, 2, . . . , |M|} →M
(S, δ)�θ(1) (v1, δ1)�θ(2) (v2, δ2)�θ(3) . . .�θ(|M|) (v|M|, δ|M|)

(main-sem)
(Defs : S, δ)�M (v|M|, δ|M|)

The rule (main-sem) provides the semantics of running the program Defs : S on
our distributed systems. This rules gives an approximal simulation for executing
the program Defs : S using the parallelism model SPMD.

3 Pointer Analysis

This section presents a pointer analysis [10,8,13,9] for the langauge whiled. The
proposed technique is both flow and context-sensitive. An adaptation of our
technique, towards a flow-sensitive and context-insensitive technique, is also pre-
sented. The analysis is presented first for single machines (of set M) and then

Abstraction Analysis and Certified Flow and Context Sensitive 91

a rule that joins results of different machines is presented. The analysis has
the form of a type system that assigns to each program point a type capturing
points-to information. Types assigned to program points are constructed in a
post-type derivation process that starts with the empty set as the type for the
program’s first point. The derivation of calculating the post type serves as a cor-
rectness proof for the analysis results. Such proofs are required in applications
like certified code or proof-carrying code. These proofs make the results of anal-
ysis certified. Therefore in these applications each pointer analysis is assigned
with a proof (type derivation) for the correctness of the analysis results [23].

Now we give intuition of Definition 2. Towards abstracting concrete memory
addresses, the concept of abstract address is introduced in the following defini-
tion. An abstract address is a pair of an allocation site and a set of machines
(subset of M). An order relation is defined on the set of abstract addresses. By
this relation, an abstract location a1 is included in another abstract location a2
if the two addresses have the same location component and the machines set of
a1 is included in that of a2. A set of abstract addresses is compact if it does not
contain two distinct addresses with the same location. The set of all compact
subsets of Addrsa is denoted by C (Definition 2.3). A Hoare ordering style on the
set C is introduced in Definition 2.4. Types, Pointer-types, of our proposed type
system for pointer analysis have the form of maps from Addrsa ∪ lVar to C. A
point-wise ordering on the set Pointer-types is presented in Definition 2.6.

For each of the statements assigned names in the Defs part of programs built in
the language whiled, the function fe (Definition 2.7) stores a pointer effect (type).
These pointer effects are calculated by rules (f e1) and (f e2) introduced below.
The pointer effects capture pointers that executing a statement may introduce
to an empty memory. Not far from the reader expectations, pointer effects are
important for studying context-sensitive pointer analysis of our langauge.

A concrete global address g = (l,m, a) is abstracted by an abstract address
(l′,ms), denoted by g = (l,m, a) |= (l′,ms), if l = l′ and m ∈ ms. A concrete state
δ is of a pointer type p, denoted by δ |= p, if for every x ∈ dom(δ), then if δ(x) is
a global address then δ(x) is abstracted by an abstract address in p(x).

Definition 2. 1. Addrsa = L × P(M).

2. ∀(l1,ms1), (l2,ms2) ∈ Addrsa. (l1,ms1) ≤ (l2,ms2) def⇐⇒ l1 = l2 and ms1 ⊆ ms2.
3. C = {S ∈ P(Addrsa) | (l1,ms1), (l2,ms2) ∈ S =⇒ l1 � l2}.
4. ∀S1, S2 ∈ C. S1 � S2

def⇐⇒ ∀x ∈ S1. ∃y ∈ S2. x ≤ y.
5. p ∈ Pointer-types = Addrsa ∪ lVar→ C.
6. ∀p1, p2 ∈ Pointer-types. p1 � p2

def⇐⇒ ∀x ∈ dom(p1). p1(x)� p2(x).
7. f e ∈ Function-effects = ’strings of characters’→ Pointer-types.

Definition 3. The concretization and abstraction maps between concrete and
abstract addresses are defined as follow:

Con : Addrsa → P(gAddrs) : (l,ms) �→ {(l,m, a) ∈ gAddrs | m ∈ ms}.
Abst : gAddrs→ Addrsa : (l,m, a) �→ (l, {m}).

92 M.A. El-Zawawy

Definition 4. – A concrete address g = (l,m, a) is said to be abstracted by an
abstract address a = (l′,ms), denoted by g |= a, iff l = l′ and m ∈ ms.

– A concrete state δ is said to be of type p, denoted by δ |= p, iff

• ∀x ∈ lVar. δ(x) ∈ gAddrs =⇒ ∃ (l,ms) ∈ p(x). δ(x) |= (l,ms), and
• ∀g ∈ gAddrs. δ(g) ∈ gAddrs =⇒ ((∀a. g |= a). ∃ a′ ∈ p(a)). δ(g) |= a′.

It is not hard to see that the set of pointer types form a complete lattice. Cal-
culating joins in this lattice is an ease exercise which we leave for the interested
reader to do.

3.1 Abstraction Analysis

An analysis that for a given statement calculates the set of abstractions that the
given statement may evaluate to is required for our pointer analysis. For example,
the statement if b > 0 thenλx.u else λy.v may evaluate to the abstraction λx.u
or to the abstraction λy.v depending on the value of b. This section presents
an abstraction analysis, an analysis calculating the set of abstractions that a
statement may evaluate to. The analysis is achieved via the following set of
inference rules:

(n)
n : abs� abs

S2 : abs� abs′
(� ∗p)

S1 ← S2 : abs� abs′
f d(name) : abs� abs′

(nameabs)
name : abs� abs′

St : abs� abst S f : abs� abs f
(ifp)

if S then St else S f : abs� abst ∪ abs f

S2 : abs� abs′
(seqp)

S1; S2 : abs� abs′

S1 : abs� abs′′ ∀(λx.Si) ∈ abs′′. Si[S2/x] : abs� absi
(applpn)

S1S2 : abs� ∪iabsi

(absp)
λx.S : abs� abs ∪ {λx.S}

S : abs� abs′
(whlp)

while S do St : abs� abs′

(λx.S′)S : abs� abs′
(letrecp)

letrec x = S in S′ : abs� abs′
S1 : abs� abs′

(transp)
transmit S1 from S2 : abs� abs′

Some comments on the inference rules are in order. Since integer statements
(n, S1 iop S2) do not evaluate to abstractions the rule (n) does not change the
input set of abstractions, abs. Other statements that do not evaluate to abstrac-
tions (like assignment statement) have inference rules similar to (n). For a given
statement S, we use the inference rules above to find abs′ such that S : ∅� abs′.
The set abs′ contains abstractions that S may evaluate to.

It is straightforward to prove the following lemma:

Lemma 1. Suppose that (S, δ)→ (v, δ′) and S : ∅� abs′. If v is an abstraction,
then v ∈ abs′.

Abstraction Analysis and Certified Flow and Context Sensitive 93

3.2 Context and Flow Sensitive Pointer Analysis

Now we are ready to present the inference rules for our type system for pointer
analysis of distributed programs [20,21,2,16,27]. The pointer analysis treated by
the following rules is of type flow and context-sensitive. The rules illustrate how
different statements update a pointer type, p. Judgement produced by the type
system have the form S : p →m (A, p′); A contains abstractions for all concrete
addresses that may result from executing the statement S in a concrete state
of type p. Moreover, if the execution ended then the resulting concrete memory
state is of type p′.

n : p→m (∅, p)
(xp)

x : p→m (p(x), p)

S : p→m (A, p′)
(∗ �p)

∗S : p→m (sup{p′(a) | a ∈ A}, p′)

skip : p→m (∅, p)

S : p→m (A, p′)
(�p)

x � S : p→m (A, p′[x �→ A])

S1 : p→m (A1, p1) S2 : p1 →m (A2, p2)
(←p)

S1 ← S2 : p→m

(A2, p2[(l1 ,ms′1) �→ p2((l1 ,ms′1)) � {(l2 ,ms′1 ∪ms1 ∪ms2) | (l1,ms1) ∈ A1, (l2,ms2) ∈ A2}])
S1 : p→m (A′′, p′′) S2 : p′′ →m (A, p′)

(seqp)
S1; S2 : p→m (A′, p′)

St : p→m (A, p′) Sf : p→m (A, p′)
(ifp)

if S then St else S f : p→m (A, p′)

S1 : ∅� abs � ∅ ∀λx.S′′1 ∈ abs. S′′1 [S2/x] : p→m (A, p′)
(applp)

S1S2 : p→m (A, p′)

f d(name) : p→m (A, p′)
(namep)

name : p→m (A, p′)

St : p→m (A, p)
(whlp)

while S do St : p→m (A, p)

S : p→m (A, p′)
(absp)

λx.S : p→m (A, p′)

(λx.S′)S : p→m (A, p′)
(letrecp)

letrec x = S in S′ : p→m (A, p′)
(newp)

newl : p→m ({(l, {m})}, p)

S : p→m (A, p′)
(convertp)

convert (S, n) : p→m ({(l, {m′ ∈ ms | hdist(m,m′) ≤ n}) | (l,ms) ∈ A}, p′)
S2 : p→m (A′′, p′′) S1 : p′′ →m (A, p′)

(transp)
transmit S1 from S2 : p→m ({(l,M) | (l,ms) ∈ A}, p′)

p′1 ≤ p1 S : p1 →m (A, p2) A ⊆ A′ p2 ≤ p′2
(csqp)

S : p′1 →m (A′, p′2)

Defs : ∅� f d S : p→m (A′, p′)
(prgp)

Defs : S : p→m (A′, p′)

Some comments on the rules are in order. The statements
true, false, S1 iop S2 and S1 bop S2 have inference rules similar to that of n.
The rules for local variables, integer, and Boolean statements are clear; the
pointer pre-type does not get updated. The allocation rule, (newp), results

94 M.A. El-Zawawy

in the abstract location consists of the allocation site and the number of the
machine on which the allocation is taking place. The de-referencing rule, (∗ �p),
first calculates the set of addresses that S may evaluate to. Then the rule sums
the contents of all these addresses. The sequencing rule, (seqp), is similar to the
corresponding semantics rule. The assignment rule, (�p), copies the abstract
addresses, resulted from evaluating the right hand side, into the points-to set
of the variable x. As the conversion statement only succeeds if S evaluates
to a global address on a machine that is within distance n from m. The rule
(convertp) ignores all abstract addresses that are not within the distance n.

This paper considers the parallelism model SPMD (applied in many lan-
guages) [2,16,27]. In this model, the transmit statement succeeds only if the
target statement (S1) evaluates to abstract addresses that have same cite labels
on the current and target machines. Since the distance between these machines
is not known statically, the abstract addresses calculated by the rule (transp)
assumes maximum possible distance. For the statement S1 ← S2, assignment
via references, we illustrate the following example. Let S1 be a variable r whose
points-to set contains the abstract address a1 = (l1,ms1). Let S2 be a variable s
whose points-to set contains the abstract address a2 = (l2,ms2). Then processing
the rule must include augmenting the points-to set of a1 with a2. However this is
not all; since our parallelism [20,21] model is SPMD, this assignment has to be
considered on the other machines, as well. Hence the set {(l2,ms′1∪ms1∪ms2)} is
added to the points-to set of all addressers (l1,ms′1) whose first component is l1.

The recursion rule, (letrecp), is similar to the corresponding semantics rule.
The abstraction rule, (absp), is straightforward. The function application rule,
(applp), uses the abstraction analysis presented earlier to calculate the set of
abstractions that S1 may evaluate-to. For each of the calculated abstractions, the
rule does the application and achieve the pointer analysis. Finally the obtained
post-pointer-types for all abstractions are summed in the post-pointer-type of
the application statement.

The following rule calculates the pointer information for running a statement
S on all the machine in M using the SPMD model.

∀m ∈M. S : sup{p, pj | j � i} →m (Am, pm)
(main-pt)

S : p→M (∪iAi, sup{p1, . . . , pn})

The following theorem proves the soundness of our pointer analysis on each
single machine of our |M| machines. The soundness of the analysis for the whole
distributed system is inferred in the next corollary.

Theorem 1. Suppose that (S, δ)�m (v, δ′), S : p→m (A′, p′), and δ |= p. Then

1. v ∈ gAddrs =⇒ v is abstracted by some a ∈ A′, and
2. δ′ |= p′.

Proof. The proof is by structure induction on the type derivation. Some cases
are detailed below.

Abstraction Analysis and Certified Flow and Context Sensitive 95

– The case of (xp): in this case v = δ(x), δ′ = δ,A′ = p(x), and p′ = p. If δ(x) is
an address, then it is abstracted by some a ∈ p(x) because δ |= p. Clearly in
this case δ′ |= p′.

– The case of (�p): in this case there exists S′′, δ′′ and p′′ such that S =
x � S′′, (S′′, δ)�m (v, δ′′), and S′′ : p →m (A′, p′′). Moreover, in this case,
δ′ = δ′′[x �→ v] and p′ = p′′[x �→ A′]. Therefore by induction hypothesis on
S′′ : p →m (A′, p′′), we conclude that δ′′ |= p′′ and that if v ∈ gAddrs then v
is abstracted by some a ∈ A′. These two results together with definitions of
p′ and δ′ imply that δ′ |= p′ which completes the proof of this case.

– The case of (∗ �p): in this case there exist g = (l,m, a) ∈ gAddrs, S′′, and
A′′ such that S = ∗S′′, (S′′, δ)�m (g, δ′), and S′′ : p →m (A′′, p′). Moreover,
in this case, A′ = sup{p′(a) | a ∈ A′′} and v = δ′(g). Hence by induction
hypothesis on S′′ : p →m (A′′, p′), we conclude that g is abstracted by some
a = (l,ms) ∈ A′′ and that δ′ |= p′. Hence m ∈ ms. Now we suppose that
δ′(g) ∈ gAddrs and prove that δ′(g) is abstracted by some element in A′.
Since δ′ |= p′, δ′(g) is abstracted by some element in p′(a) ⊆ A′.

– The case of (←p): in this case there exist g ∈ gAddrs, S1, S2, p1, p2,A1,
and A2 such that S = S1 ← S2, S1 : p →m (A1, p1), S2 : p1 →m

(A2, p2), (S1, δ) �m (g, δ′′), and (S2, δ′′) �m (v′, δ′′′). More-
over, in this case, δ′ = δ′′′[g �→ v′],A′ = A2, and p′ =
p2[(l1,ms′1) �→p2((l1,ms′1))�{(l2,ms′1 ∪ms1 ∪ms2) | (l1,ms1)∈A1, (l2,ms2)∈A2}].
Hence by induction hypothesis on S1 : p →m (A1, p1) we conclude that g
is abstracted by some (l1,ms1) ∈ A1 and that δ′′ |= p1. Again by induction
hypothesis on S2 : p1 →m (A2, p2), we conclude that v is abstracted by
some (l2,ms2) ∈ A2 and that δ′′′ |= p2. It remains to show that δ′ |= p′. By
definitions of δ′ and p′ it is enough to show that if v is a concrete address,
then the image of any abstraction of g under p′ contains an abstraction to
v. But any abstraction of g has allocation site l1 and an abstraction of v
exists in A2. Therefore in p′ all images of abstract addresses with allocation
sites l1 are augmented with all abstract addresses of A2 with allocation site
l2. This augmentation guarantees the required.

– The case of (applp): in this case there exist S1 and S2 such that S =
S1S2, (S1, δ) �m (λx.S′1, δ

′′), (S2, δ′′) �m (v′, δ′′′), and (S′1[v′/x], δ′′′) �m

(v, δ′). Moreover, in this case, A′ = A, S1 : ∅ � abs � ∅ and ∀λx.S′′1 ∈
abs(S′′1 [S2/x] : p →m (A, p′)). By Lemma 1, λx.S′1 ∈ abs. Hence S′1[S2/x] :
p→m (A, p′). Therefore by induction hypothesis on λx.S′1 ∈ abs, we conclude
that δ′ |= p′ and that if v ∈ gAddrs then v is abstracted by some a ∈ A′.

– The case of (convertp): in this case there exists S′ such that S =
convert (S′, n), (S, δ) �m (g = (l,m′, a), δ′), hdist(m,m′) ≤ n, and S′ : p →m

(A, p′). Moreover, in this case, A′ = {(l, {m′ ∈ ms | hdist(m,m′) ≤ n}) |
(l,ms) ∈ A}. By induction hypothesis on S′ : p →m (A, p′), we conclude
that δ′ |= p′ and that g is abstracted by some a = (l′,ms′) ∈ A. As
hdist(m′,m′) = 0 ≤ n,m′ ∈ ms′, and a = (l′,ms′) ∈ A, we conclude that g
is abstracted by some element in A which completes the proof for this case.

– The case of (transp): in this case there exist S1 and S2 such that S =
transmit S1 from S2, S2 : p →m (A′′, p′′), S1 : p′′ →m (A, p′), (S2, δ) �m

96 M.A. El-Zawawy

(m′, δ′′),m′ ∈M, and (S1, δ′′)�m′ (v, δ′). Moreover, in this case, A′ = {(l,M) |
(l,m) ∈ A}. By induction hypothesis on S1 and S2, we conclude that δ′ |= p′
and that if v ∈ gAddrs then it is abstracted by some a = (l′,ms′) ∈ A. We
assume that v = (l,m, a) ∈ gAddrs. Then (l,ms) ∈ A, for some ms that con-
tains m. We conclude that (l,M) ∈ A′. But this last element abstracts v. This
completes the proof for this case.

The following corollary follows from Theorem 1 by using the semantics and
pointer rules (main-sem) and (main-pt), respectively. It is noticeable that sub-
scriptions of arrows in Theorem 1 and Corollary 1 are different.

Corollary 1. Suppose that (S, δ)�M (v, δ′), S : p→M (A′, p′) and δ |= p. Then

1. v ∈ gAddrs =⇒ v ∈ A, and
2. δ′ |= p′.

3.3 Flow Sensitive and Context Insensitive Pointer Analysis

Letting the following rules replace their corresponding ones in the type system of
pointer analysis presented above results in a flow sensitive and context insensitive
pointer analysis.

name ∈ dom(f e)
(nameci

1)
name : p→m sup{p, f e(name)}

(fe1)
ε : f e�m f e

S : ∅ → p Defs : f e[name �→ p]�m f e′
(fe2)

(name = S);Defs : (f d, f e)�m (f d′, f e′)
Defs : ∅�m f d Defs : ∅�m f e S : p→m p′

(prgci)
Defs : S : p→m p′

4 Related and Future Work

The langauge that is studied in the current paper is a generalization of those
described in [17,18]. The work in [17] introduces a flow-insensitive pointer anal-
ysis for programs sharing memory and running on parallel machines that are
hierarchical. Beside making the results vague (inaccurate), the insensitivity of
the analysis in [17] forces the pointer analysis to ignore the distributivity of tar-
geted programs which is a major drawback. Also the analysis in [17] does not
treat context-sensitivity, which is a basic aspect in real-life programming. The
current paper overcomes these drawbacks. Using a two-level hierarchy, in [19],
constraint-based analyses to calculate sharing properties and locality informa-
tion of pointers are introduced. These constraint-based analyses are extensions
of the earlier work in [18].

Pointer analysis, that dates back to work in [1], was extended to cover parallel
programs. In [23] a pointer analysis that is flow-sensitive, context-sensitive, and

Abstraction Analysis and Certified Flow and Context Sensitive 97

thread-aware is introduced for the Cilk multithreaded programming language.
Another pointer analysis that is a mix of flow-sensitive and flow-insensitive for
multithreaded languages is introduced in [8]. Examples of flow-insensitive pointer
analyses for multithreaded programs are [15,28]. Probabilistic points-to analysis
is studied in [4,9]. In [4], using the algorithmic style, the probability that a
points-to relationship holds is represented by a quantitative description. On the
other hand [9] uses type systems to provide an analysis that very suitable to
certified codes or proof carrying software. However pointer analysis, that provides
a proof for each pointer analysis, for distributed programs running on hierarchical
machines are not considered by any of these analyses.

The importance of distributed programs makes analyzing them the focus of
much research acclivities [20,21,2,16,27]. The concurrent access of threads of a
multi-threaded process to a physically distributed memory may result in data
racing bugs [5,22]. In [5] a scheme, called DRARS, is introduced for avoidance
and replay of this data race. On DSM or multi-core systems, DRARS assists
debugging parallel programs. An important issue to many distributed systems
applications is the capturing and examining of the concurrent and causal rela-
tionships. In [25], an inclusive graph, POG, of the potential behaviors of sys-
tems is produced via an analysis that considers the source code of each process.
In [26] and on the model of message sending of distributed programs, the classical
problems of algorithmic decidability and satisfiability decidability are studied.
In this study, communicating through buffers are used to represent distributed
programs.

Associating the result of each pointer analysis with a correctness proof is
important and required by applications like certified code or proof carrying code.
One advantage of the work presented in this paper over any other related work is
the constructions of these proofs. The proofs constructed in our approach have
the form of a type derivation and this adds to the value of using type systems.
Examples of other analyses that have the form of type systems are [10,8,13,9].

Mathematical domains and maps between domains can be used to mathe-
matically represent programs and data structures. This representation is called
denotational semantics of programs [3,14,24]. One of our directions for future
research is to translate concepts of data and program slicing to the side of deno-
tational semantics [12,7]. Doing so provide a good tool to mathematically study
in deep heap slicing. Then obtained results can be translated back to the side of
programs and data structures.

References

1. Amme, W., Zehendner, E.: A/D Graphs - a Data Structure for Data Dependence
Analysis in Programs with Pointers. In: Böszörme’nyi, L. (ed.) ACPC 1996. LNCS,
vol. 1127, pp. 229–230. Springer, Heidelberg (1996)

2. Barpanda, S.S., Mohapatra, D.P.: Dynamic slicing of distributed object-oriented
programs. IET Software 5(5), 425–433 (2011)

3. Cazorla, D., Cuartero, F., Ruiz, V.V., Pelayo, F.L.: A denotational model for prob-
abilistic and nondeterministic processes. In: Lai, T.-H. (ed.) ICDCS Workshop on
Distributed System Validation and Verification, pp. E41–E48 (2000)

98 M.A. El-Zawawy

4. Chen, P.-S., Hwang, Y.-S., Ju, R.D.-C., Lee, J.K.: Interprocedural probabilistic
pointer analysis. IEEE Trans. Parallel Distrib. Syst. 15(10), 893–907 (2004)

5. Chiu, Y.-C., Shieh, C.-K., Huang, T.-C., Liang, T.-Y., Chu, K.-C.: Data race avoid-
ance and replay scheme for developing and debugging parallel programs on dis-
tributed shared memory systems. Parallel Computing 37(1), 11–25 (2011)

6. El-Zawawy, M., Daoud, N.: New error-recovery techniques for faulty-calls of func-
tions. Computer and Information Science 4(3) (May 2012)

7. El-Zawawy, M.A.: Semantic spaces in Priestley form. PhD thesis, University of
Birmingham, UK (January 2007)

8. El-Zawawy, M.A.: Flow Sensitive-Insensitive Pointer Analysis Based Memory
Safety for Multithreaded Programs. In: Murgante, B., Gervasi, O., Iglesias,
A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part V. LNCS, vol. 6786,
pp. 355–369. Springer, Heidelberg (2011)

9. El-Zawawy, M.A.: Probabilistic pointer analysis for multithreaded programs. Sci-
enceAsia 37(4) (December 2011)

10. El-Zawawy, M.A.: Program optimization based pointer analysis and live stack-heap
analysis. International Journal of Computer Science Issues 8(2) (March 2011)

11. El-Zawawy, M.A.: Dead code elimination based pointer analysis for multi-
threaded programs. Journal of the Egyptian Mathematical Society (January 2012),
doi:10.1016/j.joems.2011.12.011

12. El-Zawawy, M.A., Jung, A.: Priestley duality for strong proximity lattices. Electr.
Notes Theor. Comput. Sci. 158, 199–217 (2006)

13. El-Zawawy, M.A., Nayel, H.A.: Partial redundancy elimination for multi-threaded
programs. IJCSNS International Journal of Computer Science and Network Secu-
rity 11(10) (October 2011)

14. Guo, M.: Denotational semantics of an hpf-like data-parallel langguage model.
Parallel Processing Letters 11(2/3), 363–374 (2001)

15. Hicks, J.: Experiences with compiler-directed storage reclamation. In: FPCA,
pp. 95–105 (1993)

16. Seragiotto Jr., C., Fahringer, T.: Performance analysis for distributed and parallel
java programs with aksum. In: CCGRID, pp. 1024–1031. IEEE Computer Society
(2005)

17. Kamil, A., Yelick, K.A.: Hierarchical Pointer Analysis for Distributed Programs. In:
Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 281–297. Springer,
Heidelberg (2007)

18. Liblit, B., Aiken, A.: Type systems for distributed data structures. In: POPL,
pp. 199–213 (2000)

19. Liblit, B., Aiken, A., Yelick, K.A.: Type Systems for Distributed Data Sharing. In:
Cousot, R. (ed.) SAS 2003. LNCS, vol. 2694, pp. 273–294. Springer, Heidelberg
(2003)

20. Lindberg, P., Leingang, J., Lysaker, D., Khan, S.U., Li, J.: Comparison and anal-
ysis of eight scheduling heuristics for the optimization of energy consumption and
makespan in large-scale distributed systems. The Journal of Supercomputing 59(1),
323–360 (2012)

21. Onbay, T.U., Kantarci, A.: Design and implementation of a distributed teleradiaog-
raphy system: Dipacs. Computer Methods and Programs in Biomedicine 104(2),
235–242 (2011)

22. Park, C.-S., Sen, K., Hargrove, P., Iancu, C.: Efficient data race detection for
distributed memory parallel programs. In: Lathrop, S., Costa, J., Kramer, W.
(eds.) SC, p. 51. ACM (2011)

Abstraction Analysis and Certified Flow and Context Sensitive 99

23. Rugina, R., Rinard, M.C.: Pointer analysis for multithreaded programs. In: PLDI,
pp. 77–90 (1999)

24. Schwartz, J.S.: Denotational Semantics of Parallelism. In: Kahn, G. (ed.) Semantics
of Concurrent Computation. LNCS, vol. 70, pp. 191–202. Springer, Heidelberg
(1979)

25. Simmons, S., Edwards, D., Kearns, P.: Communication analysis of distributed pro-
grams. Scientific Programming 14(2), 151–170 (2006)

26. Toporkov, V.V.: Dataflow analysis of distributed programs using generalized
marked nets. In: DepCoS-RELCOMEX, pp. 73–80. IEEE Computer Society (2007)

27. Truong, H.L., Fahringer, T.: Soft Computing Approach to Performance Analysis of
Parallel and Distributed Programs. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par
2005. LNCS, vol. 3648, pp. 50–60. Springer, Heidelberg (2005)

28. Zhu, Y., Hendren, L.J.: Communication optimizations for parallel c programs. J.
Parallel Distrib. Comput. 58(2), 301–332 (1999)

An Approach to Measure Understandability

of Extended UML Based on Metamodel

Yan Zhang1,2, Yi Liu3,4, Zhiyi Ma3,4, Xuying Zhao1,
Xiaokun Zhang1, and Tian Zhang2,5,�

1 Department of Computer Science and Technology,
Beijing Electronic Science and Technology Institute, Beijing, P.R. China 100070

zhangyan@besti.edu.cn
2 State Key Lab. for Novel Software Technology, Nanjing University,

Nanjing, P.R. China 210093
3 Institute of Software, School of Electronics Engineering and Computer Science,

Peking University, Beijing, P.R. China 100871
4 Key Laboratory of High Confidence Software Technologies (Peking University),

Ministry of Education, Beijing, P.R. China 100871
{liuyi07,mzy}@sei.pku.edu.cn

5 Department of Computer Science and Technology, Nanjing University,
Nanjing, P.R. China 210093

ztluck@nju.edu.cn

Abstract. Since UML does not provide any guidance for users to select
a proper extension pattern, users are not able to assure the quality of
extended UMLs, such as understandability, when they focus on their
expression power. A metric of understandability for extended UMLs is
proposed, which bases on measuring the deviation of understandability
between the extended UMLs and the standard UML in their metamodel
level. Our proposal can be used to compare different extended UMLs
with the same expression power on the understandability characteristic.
Moreover, the proposal can guide users to select an appropriate extension
pattern to achieve their goal. We give the definition of the metric of
understandability and the empirical validation of the proposed metric. A
case from a real project is used to explain the application of the proposed
metric.

Keywords: understandability, metamodel, UML, extension pattern,
software metrics.

1 Introduction

1.1 Problem

Modeling is a primary activity in the software development. Object Management
Group (OMG) has proposed Unified Modeling Language (UML) as an universal
description language of models. After OMG released UML version 1.1 [1] as the

� Corresponding author.

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 100–115, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Approach to Measure Understandability of Extended UML 101

available specification, UML has been widely studied and used in the academia
and the industry. Hitherto, UML has evolved from version 1.1 to version 2.1 [2]
and become a de facto standard modeling language used to communicate among
software developers.

Although UML is a powerful modeling language, it cannot meet all model-
ing requirements in the real life because of the diversity of applications. For
this reason, users often need to extend UML to meet their specific modeling
requirement and make the extended UML better describe a system to be built.
With the increasing popularity of UML, extending UML has been a prevalent
activity, especially in some application domains such as embedded system and
communication.

Besides some built-in extension mechanisms (e.g., stereotype [3], first-class
mechanism and profile extension mechanism [4]) in UML, OMG does not give any
guidance that can help users to extend UML with a proper extension pattern, i.e.,
a modification of UML metamodel that holds some constraint, to meet a specific
modeling requirement. As a result, users may only focus on the expression power
of the extended UML but cannot assure its quality, such as understandability,
maintainability and usability, when they extend UML for their goal. In this paper
we mainly study the understandability of an extended UML. In other words, we
focus on the understandability of a modeling language, but not a model, which
is described by some modeling language.

1.2 Motivation

Usually, the extension of UML is conducted in the metamodel level of UML,
that is, UML is extended by modifying its metamodel, for example, adding some
model elements or some relationships [5,6,7]. We notice that the extended UMLs
obtained by different extension patterns could have different understandability
even though they have the same modeling power. Because the metamodel of
UML specifies the syntax of UML, the understandability of UML can be reflected
by the understandability of its metamodel.

Based on the observation that more intricate the syntax of a language is, the
more difficult is it to learn or use the language, which means that the under-
standability of the language is worse, we propose a method for measuring the un-
derstandability of extended UMLs by a measurement of their metamodels. This
method can be used to evaluate various extended UMLs with the same modeling
power on the understandability characteristic. Furthermore, it can guide users
to select more appropriate extension patterns to achieve their goals of modeling.
The kernel of our method is that: by using the understandability of the stan-
dard UML metamodel (U0) as a base, i.e., supposing that the standard UML has
been fully understood by an individual, we measure the deviation of understand-
ability (ΔU) between the metamodel of standard UML and the metamodel of
extended UML, furthermore obtain the understandability of the extended UML
metamodel (U = U0 +ΔU) that reflects the understandability of the extended
UML for the same individual. The deviation of understandability is used as an
indicator to evaluate different extended UMLs. The bigger the deviation is, the

102 Y. Zhang et al.

worse is the understandability of an extended UML, which means that users
need more effort to understand it.

In the cognition perspective, the different cognitive subjects that face the same
cognitive object would have different cognitive results. Therefore, the ease of
understanding the same thing is different for different people. In our proposal, we
do not measure the understandability of UML in general sense, but measure the
understandability for a specific individual. In other words, we measure the effect
on the understandability for the same cognitive subject after the original that
had been understood by the cognitive subject is modified partially. The deviation
of understandability is used to eliminate the influence on the understandability
metric, which results from the human cognitive diversity.

We give a metric definition of understandability for an extended UML and the
empirical validation of the proposed metric. Additionally, we apply the proposed
metric to evaluate two extended UMLs with the same modeling power in a real
project.

The remainder of this paper is organized as follows. Section 2 considers related
research works. Section 3 introduces the metamodel of UML and the extension
patterns of UML. Section 4 defines the understandability metric for an extended
UML and gives the empirical validation of the proposed metric. Section 5 dis-
cusses the application of our proposed metric in the evaluation of different exten-
sion patterns of UML. Finally, in Section 6 we conclude this paper and discuss
the future work.

2 Related Works

Although a few researches conducted the metric of understandability of mod-
els [8,9,10,11], they mainly focus on measuring the understandability of a system
model that is described by UML. For example, Genero and his colleagues [8,9,10]
studied the metric of understandability and modifiability about UML class di-
agram. They gave the metric definitions, which were composed of the measure-
ment of size and structural complexity of UML class diagram, and the empirical
validation of their metric. The main difference between our research and theirs is
that our research measures the understandability of a modeling language, which
corresponds to M2 level of the four-layered metamodel architecture [12], but their
research measures the understandability of a system model, which corresponds
to M1 level of the four-layered metamodel architecture. Our research concerns
the quality improvement of a modeling language, but their research concerns
the quality improvement of a system. Although our research refers many results
in [8,9,10], in particular, the controlled experiments in [8] and [10], we do not
directly use the size measurement of generalizations and compositions in our
metric definition. We advance their contribution to understandability into the
computation of the understandability of every class.

Jiang et al. [13] indicated the effect made by different extension patterns on
the quality of UML. They defined four-leveled metamodel extension and quali-
tatively discussed their influence on the readability and expression capability of

An Approach to Measure Understandability of Extended UML 103

the extended UML. Based on their research, this paper quantitatively studies
the extension patterns’ influence on the understandability of the extended UML.

Ma and his colleagues [14] had given an approach based on OO metrics of
metamodel to evaluate the quality of different UML versions, which involves
the understandability. They used some design properties, such as design size,
abstraction, coupling, polymorphism and complexity, to define the metric of
understandability and each design property was mapped to some architectural
metrics, e.g., the average number of ancestors, the number of abstract meta-
classes, the average number of stereotypes and so on. According to their metrics,
the understandability of UML1.1, UML1.4 and UML2.0 are -0.99, -2.02 and
-2.87 respectively. Although the trend of the changes in the understandability
of UML1.1, UML1.4 and UML2.0 that is reflected by their metrics is same as
ours, we disagree with the fact that they assigned the same weight to each design
property in their metric definition. Additionally, a big difference between their
metric and ours is that our metric evaluates the understandability of different
UML versions by the deviation of understandability, i.e., the influence on the
understandability corresponding to different extension patterns, rather than by
directly measuring the understandability for every UML version. Significantly,
our metric can indicate for user the best one among all candidates of extension
pattern, but their metric has not the ability.

3 Background

In this section, we briefly introduce UML metamodel and different extension
patterns of UML in its metamodel level.

3.1 Metamodel of UML

A modeling language’s metamodel provide the constructs, syntax, and semantics
for the language [15]. Every element of a modeling language is an instance of
certain element in its metamodel [15]. Specifically, UML metamodel defines the
abstract syntax of UML. In essence, the metamodel of UML can be considered
as a UML class diagram [4]. We formalize the UML metamodel as follows.

UML metamodel M = 〈C,A,AS,CO,GE〉 is a 5-tuple, where C is the set
of classes, A is the set of attributes, AS is the set of association relationships,
CO is the set of composition relationships and GE is the set of generalization
relationships. For any class c ∈ C, Ac ⊆ A denotes the set of attributes in class
c . For any two classes c1, c2 ∈ C, (c1, c2) ∈ CO represents that c2 is a part of
c1, and c1 is called as the whole-class (of c2) and c2 is called as the part-class (of
c1). For any two classes c1, c2 ∈ C, (c1, c2) ∈ GE represents that c2 inherits c1,
and c1 is called as the superclass (of c2) and c2 is called as the subclass (of c1).

Fig. 1 shows the main body of the metamodel of the class defined in UML1.1.
It represents that a class includes none or more attributes, operations and meth-
ods (which implement some operations), and none or more relationships such as
associations and generalizations may exist among classes.

104 Y. Zhang et al.

Class

Interface ModelElement

AssociationRole

Attribute MethodAssociation Operation

Generalization

*

* * *

*

*

*

*

*

2..*

1

Fig. 1. The metamodel of the class in UML

3.2 Extension Patterns of UML

The syntax of an extended UML, i.e., its metamodel, can be obtained by modify-
ing the metamodel of a standard UML. There are some approaches to modifying
UML metamodel and each one hold some constraints. We call them extension
patterns shown as follows [13]:

– directly modifying the elements in the standard UML metamodel, such as
adding new attributes in original classes (see Fig. 2(a)) or adding new rela-
tionships among original classes (see Fig. 2(b));

– directly adding new classes to the standard UML metamodel (see Fig. 2(c));
– adding new classes to the standard UML metamodel by generalizations, i.e.,

the added classes inherit some original classes (see Fig.2(d));
– adding new relationships between an added class and an original class (see

Fig. 2(e)) or between two added classes (see Fig. 2(f)).

A
attr_1
attr_2

(a)

A

attr_1

B

attr_2

(b)

A

attr_1
attr_2

(c)

A

attr_1

A'

attr_2

(d)

A

attr_1

B

attr_2

(e)

A

attr_1

B

attr_2

A'

(f)

A

attr_1

B

attr_2

A'

attr_3

B'

attr_4

(g)

Fig. 2. The extension patterns of UML. The blue color represents the original elements
and the black color represents the added elements.

Note that from the viewpoint of the users, the same effect can be achieved
by different extension patterns. For example, Fig. 2(a) and Fig. 2(d) have the

An Approach to Measure Understandability of Extended UML 105

same effect, i.e., the modified A and A′ can both meet the user’s need. Similarly,
although the extension patterns are different, the effect of Fig. 2(e) and Fig. 2(f)
are the same in users’ viewpoint. However, different extension patterns have
different effects on the understandability of the extended UMLs.

4 Measurement of Understandability for Extended UML

4.1 Basic Idea

Because UML metamodel amounts to the syntax definition of UML, that is, the
metamodel specifies what model elements and relationships among them should
exist in UML, the understandability of UML can be defined as the ease degree of
understanding the metamodel of UML. Generally, UML is extended by adding
some new model elements (e.g., classes and attributes) or some new relationships
(e.g., associations and generalizations) in UML metamodel. Thus, the definition
of an extended UML (i.e., the extended UML metamodel) is a modified meta-
model of the standard UML. If U0 denotes the understandability of the stan-
dard UML metamodel, the understandability of an extended UML metamodel,
denoted as U , can be defined by U = U0 + ΔU , where ΔU is the deviation of
understandability and it represents the effort increase for re-understanding the
modified metamodel. Since any extension of UML is made on the standard UML
metamodel, for arbitrary two extended UMLs with the same modeling power, the
difference of their understandability, i.e., UI = U0 +ΔUI and UII = U0 +ΔUII ,
results from the difference of ΔUI and ΔUII . The reason of this difference is
the different extension patterns of UML. In other words, different extension
patterns lead to different deviations of understandability, furthermore, different
understandability of extended UMLs. Therefore, the measurment of understand-
ability for extended UMLs can be solved if we can give the metric definition of
the deviation of understandability (i.e., ΔU). Fig. 3 shows the basic ideas about
how to measure the understandability of extended UMLs.

There are three kinds of modifications of the metamodel for extending UML:
modifying (i.e., adding, deleting or changing) some classes, modifying some at-
tributes in original classes and modifying some relationships. For defining the
metric of ΔU , we must find the relation between the change of understandability
and every kind of modification. Based on the relation, we will give the metric
definition of understandability in the following subsection.

4.2 Metric Definition

Suppose that the standard UML metamodel is M0 = 〈C0, A0, AS0, CO0, GE0〉
and the extended UML metamodel is M1 = 〈C1, A1, AS1, CO1, GE1〉 . Let NAc

be the number of attributes in class c and ΔNAc be the number of modified
attributes in class c of the extended UML metamodel different to that of the
standard UML metamodel, which is defined as:

ΔNAc =

{ |Ac
1 \Ac

0|+ |Ac
0 \Ac

1|, if c ∈ C1 ∧ c ∈ C0

|Ac
1| . if c ∈ C1 ∧ c /∈ C0

(1)

106 Y. Zhang et al.

Standard UML
Metamodel

Extended UML
Metamodel II

Standard UML Extended UML II

Extension
Pattern II

Extension

de
fin

es

de
fin

es

Extended UML
Metamodel I

Extended UML I
Extension

de
fin

es

Extension
Pattern I

U0UI UIIΔUI ΔUII+ += =

where U0, UI and UII denote the understandability of the standard UML, extended UML I
 and extended UML II respectively;

ΔUI and ΔUII denote the deviations of understandability caused by extension pattern I
 and II respectively.

Fig. 3. The schematic diagram of measuring the understandability for extended UMLs

Let ΔU c and ΔUa be the deviation of understandability of some class c and
some association a after some extension for the standard UML metamodel re-
spectively. According to the study of Briand and Wüst [16], the structural prop-
erties, such as size and complexity, affect the understandability. Similarly, the
study of Genero et al. [8,9,10] points that structural complexity and size metrics
are strongly correlated with the understandability of a class diagram. Based on
these conclusions, we give the definition of ΔU c and ΔUa as following:

– For any c ∈ C1, if there does not exist c′ ∈ C1 such that (c, c′) ∈ GE1 or
(c, c′) ∈ CO1, then

ΔU c =

{
1 , c /∈ C0 ∧ Ac = ∅
α ·ΔNAc , otherwise

(2)

where α is the impact factor of the number of attributes to understandability.

Equation (2) represents that for a class c that does not relate with other
classes by generalizations or compositions (see class A in Fig. 2(a) and
Fig. 2(c) and class B in Fig. 2(e) and Fig. 2(f)), the number of increased
attributes in c (i.e., ΔNAc) mainly contributes to the change of the ease for
re-understanding the modified c . Specifically, if a new class c is empty, i.e.,
there is no attribute in c, we consider that one unit effort must be taken to
understand c .

– For any c ∈ C1, if there exist C′
1 ⊂ C1 such that for all c′ ∈ C′

1 there is
(c′, c) ∈ GE1 and for all c′ ∈ C1 \ C′

1 there is (c′, c) /∈ GE1, then

ΔU c = α ·ΔNAc + β
∑
c′∈C′

1

ΔU c′ , (3)

An Approach to Measure Understandability of Extended UML 107

where β is the impact factor of the generalization relationships to under-
standability.
Equation (3) means that for a class c (as a subclass) that relates with some

classes (as superclasses) by generalizations (see class A′ in Fig. 2(d)), besides
the number of increased attributes in c, the change of every superclass’s
understandability (i.e., ΔU c′) also contributes to the change of the ease for
re-understanding the modified c . Since there is an inheritance relationship
between a subclass and its every superclass, the ease of understanding the
subclass bases on the ease of understanding its superclasses. Thus, the change
of understandability of every superclass will influence the understandability
of the subclass.

– For any c ∈ C1, if there exist C′
1 ⊂ C1 such that for all c′ ∈ C′

1 there is
(c, c′) ∈ CO1 and for all c′ ∈ C1 \ C′

1 there is (c, c′) /∈ CO1, then

ΔU c = α ·ΔNAc + γ
∑
c′∈C′

1

ΔU c′ , (4)

where γ is the impact factor of the composition relationships to understand-
ability.
Equation (4) means that for a class c (as a whole-class) that relates with

some classes (as part-classes) by compositions, besides the number of in-
creased attributes in c, the change of every part-class’s understandability
(i.e., ΔU c′) also contributes to the change of the ease for re-understanding
the modified c . Since there is a “has-a” relationship between a whole-class
and its every part-class, the ease of understanding the whole-class bases
on the ease of understanding its part-classes. Thus, the change of under-
standability of every part-class will influence the understandability of the
whole-class.

– For any (c1, c2) ∈ AS1 \AS0,

ΔUa =

{
0 , ∃ (c′1, c′2) ∈ AS0 ∧ (c′1, c1), (c

′
2, c2) ∈ GE1

δ , otherwise
(5)

where a = (c1, c2) and δ is the impact factor of the association relationships
to understandability.
In (5), for every increased association a, if there is also an association be-

tween the two classes whose subclasses are linked by a, then the modification
does not change the understandability, that is, no extra effort must be made
to understand a , otherwise we must make some effort to understand a . In-
tuitively, the modification that satisfies the precondition of (5) preserves the
topological relation in the original UML metamodel (see Fig. 2(g)), thus it
does not influence the understandability of the metamodel. Since a modifi-
cation of an association does not influence the understandability of the two
classes at the association ends compared to a modification of a composition
that will influence the understandability of all whole-classes, the definitions
of (4) and (5) are different.

108 Y. Zhang et al.

Let U0 be the understandability of the standard UML defined by M0 and U1

be the understandability of the extended UML defined by M1. There is

U1 = U0 +ΔU, (6)

where

ΔU = U1 − U0 =
∑
c∈C1

ΔU c +
∑
a∈A1

ΔUa . (7)

In the metric definition of the understandability deviation (i.e., (7)), it does not
explicitly express the contribution of the generalizations and compositions to
the change of understandability. The reason is that we have distributed their
contribution to understandability into the computation of the understandability
of classes (see (3) and (4)).

4.3 Empirical Validation

This subsection gives the empirical validation of the metric defined above. Since
UML1.0 is not an available specification of OMG, we select UML1.1 as the
standard UML, and UML1.4 [3], UML2.0 [4] and UML2.1 [2] as three extended
UMLs. We mainly conducted our validation on use case diagram, profile1 and
state machine diagram in the three versions. Applying the proposed metric to
them, we obtained the data shown in Table 1 by a metric tool we had developed.
In [8], using three controlled experiments, authors calculated the correlation
coefficients of the total number of attributes, the total number of generalizations
and the total number of aggregations with the understandability of class diagram
as 0.769, 0.679 and 0.52 respectively. Based on the result, we set the impact
factors, by rounding the values given in [8], in our metric as α = 0.8, β = 0.7,
γ = 0.5 and δ = 0.5 .2

Controlled Experiments. For checking whether the metric results is consis-
tent with our cognition in the real world, we carried out a set of controlled
experiments to get the ease degree of understanding those measured diagrams.
We randomly selected 30 undergraduate students in our school, who had taken
courses about software engineering for one year and learnt object-oriented design
with UML. Those students were divided into three groups and each group had 10

1 This term firstly occurs in UML2.0, whose original is ExtensionMechanisms in
UML1.1 and UML1.4. For simplicity, we do not distinguish the two names in this
paper.

2 In [8], authors had calculated two correlation coefficients of the total number of
associations with the understandability of class diagram by the data in two experi-
ments. According to the authors’ analysis, the difference of the material in the two
experiments resulted in the big difference of the two correlation coefficients (one is
0.3 and the other is 0.8). We get a mean of the two correlation coefficients as the
impact factor of the associations (i.e., δ = 0.5) in this paper.

An Approach to Measure Understandability of Extended UML 109

Table 1. The understandability deviation of use case diagrams, profiles and state
machine diagram in UML1.4, UML2.0 and UML2.1 compared with those in UML1.1
respectively (α = 0.8, β = 0.7, γ = 0.5, δ = 0.5)

UML
Use Case Diagram Profile State Machine
v1.4 v2.0 v2.1 v1.4 v2.0 v2.1 v1.4 v2.0 v2.1

ΔU 9.50 16.23 18.70 5.80 15.60 20.07 0.50 25.01 30.45

people. Firstly, the metamodel of use case diagram in UML1.1 was given to ev-
eryone in the three groups to understand and they must answer some questions
in a questionnaire (see Appendix) that reflects whether they had understood
the diagram. We used Understanding Time (UT) to record the time that the
students spend on answering the questions. UT can be calculated by start time
subtracting finish time. Secondly, we delivered the metamodels of use case di-
agrams in UML1.4, in UML2.0 and in UML2.1 to the first group, the second
group and the third group respectively. At the same time, we required them to
answer the corresponding questionnaires and recorded UTs. For profile and state
machine diagram, we repeated above process, that is, the first step is to give the
metamodels in UML1.1 to all students and calculate the UTs by questionnaires;
the second step is to give metamodels in UML1.4, in UML2.0 and in UML2.1 to
the first group, the second group and the third group respectively, and calculate
the UTs by the corresponding questionnaires. Finally, we calculated the mean of
UTs shown in Table 2 for every diagram in each UML version. With the UTs in
UML1.1 as a base value, we calculated the difference values ΔUT (see Table 2)
between UTs in UML1.4 (resp. UML2.0 and UML2.1) and the base value.

Note that there are many same or similar elements in the metamodels of
different extension versions of UML. One person may understand a extension
versions more easily after he had read another. To avoid this kind of intercrossing
effect, we gave different versions to different groups, except the standard version
(i.e., UML1.1) as a base.

Design of Questionnaire. All questions in these questionnaires were designed
elaborately. Every one reflected a crucial difference between the self language
version and other versions. For example, by comparison with the metamodel
of UML1.1, a new class—Include—is added into the metamodel of UML1.4 by
association relationships. It means that there could exist an include relationship
between two use cases. In order to check whether a testee has perceived it, we
ask a question—“Can an Include relationship exists between two use cases?”.
Similarly, there is a new class—Extend—with a par-class Constraint (but Include
without the part-class) in the metamodel of UML2.0. It means that we could
give the condition that must hold for an extend relationship. In order to inspect
whether a testee has perceived it, we ask a question—“Can we define a constraint
for any relationship between two use cases?”. If a testee wants to answer these
questions, regardless of right and wrong, he must try his best to comprehend the
meaning of the metamodel of certain UML version. The longer the time that a

110 Y. Zhang et al.

Table 2. Mean of Understanding Times and their difference values in the experiment
on UML

UML
Use Case Diagram Profile State Machine

v1.1 v1.4 v2.0 v2.1 v1.1 v1.4 v2.0 v2.1 v1.1 v1.4 v2.0 v2.1

M
ea
n
o
f
U
T

(s
ec
.)

g
ro
u
p

I

120.0 169.0 — — 143.0 179.0 — — 301.0 355.0 — —

g
ro
u
p

II

110.0 — 294.0 — 133.0 — 338.0 — 323.0 — 515.0 —

g
ro
u
p

II
I 116.0 — — 319.0 137.0 — — 364.0 289.0 — — 587.0

ΔUT
— 49.0 184.0 203.0 — 36.0 205.0 227.0 — 54.0 192.0 298.0

(second)

testee spends to answer these questions is, it means, the more difficult is it to
understand the corresponding metamodel.

Additionally, we merely gave a small quantity of questions in one question-
naire, which was to avoid the negative mood of students, due to too many ques-
tions, to bother the objectivity of the experiment results.

Result of Validation. According to the data in Table 1 and Table 2 , we
calculated the correlation coefficient between ΔU and ΔUT , ρ = 0.91 , which
indicates that a strong correlation exists between the metric values of the un-
derstandability deviation and the difference values of UT. We consider that UT
reflects the ease degree of understanding an object. The bigger UT is, the worse
is the understandability. Since the metric results is consistent with our cognition
in the real world, the proposed metric is valid.

5 Evaluation of Extension Patterns for UML by
Understandability Measurement

For modeling the work flow in a service-based project more effectively, our re-
search group extended UML2.0 activity diagram [4]. Initially, we only considered
the expression power of the desired modeling language and the ease of the exten-
sion. Under this consideration, we got the first version of the extended activity
diagram called as Service Process Modeling Language version 1.0 (SPML1.0).
The metamodel of SPML1.0 is shown in Fig. 4(a). However, in the end of the
project, we wanted the modeling language to be used in future similar projects
and decided to change the extension patterns to improve its understandability.
As the result, we got the second version of SPML, i.e. SPML2.0, which had the
same expression power as SPML1.0. The metamodel of SPML2.0 is shown in
Fig. 4(b). Compared with SPML1.0, the main difference of the extension for
SPML2.0 is that the increased elements in SPML2.0 metamodel tried their best
to inherit the existing elements in activity diagram.

An Approach to Measure Understandability of Extended UML 111

ServiceProcessElement

NamedElement
name: String

Constraint
body: String

SubProcess

Process

ProcessActivityData
type:ObjectType

Flow

Data
type: DataType

control

inputData
outputData

flows
controlNodes

Reply Receive

BasicProcessActivity ComplexProcessActivity

subActivities

MessageSynchronizedVariable

Token DataObject

ActivityControlFlow
source: BusinessProcessElement
target : BusinessProcessElement

DataFlow
sourceData : Data
targetData : Data

inputD
ata

outputD
ata

Stop

Decision

Fork

Join

Merge

Start

ExclusiveDecision

InclusiveDecision

inputFlow

outputFlow

inputFlow

outputFlow

inputData

outputData

ActivityEdge

ControNode

messages

messages

ExternalService

ObjectType
UnsignedIntExpr

StringType
body : String

SimpleExpression
symbol: String

DurationExpr

AnyURI BooleanExpr DeadlineExpr

constraints

(a) metamodel of SPML1.0

ServiceProcessElement

NamedElement
name: String

Constraint
body: String

SubProcess

Process

ProcessActivityData
type:ObjectType

Flow

Data
type: DataType

control

inputData
outputData

flows
controlNodes

ReplyReceive

BasicProcessActivity ComplexProcessActivity

subActivities

MessageSynchronizedVariable

Token DataObject

ActivityControlFlow
source: BusinessProcessElement
target : BusinessProcessElement

DataFlow
sourceData : Data
targetData : Data

in
p
u
tD

ata

o
u

tp
u

tD
ata

Stop

Decision

Fork

Join

Merge

Start

ExclusiveDecision

InclusiveDecision

inputFlow

outputFlow

inputF
low

outputF
low

inputData

outputData

ActivityEdge

ControNode

messages

messages

InitialNode

DecisionNode

FinalNode

ForkNode

MergeNode

JoinNode

Activity

ControlFlow

ObjectFlow

ObjectNode

ExternalService

ObjectType UnsignedIntExpr

StringType
body : String

SimpleExpression DurationExpr

AnyURI BooleanExpr DeadlineExpr

DataType Expression
symbol: String

constraints

(b) metamodel of SPML2.0

Fig. 4. The metamodels of SPML1.0 and SPML2.0. The grey is the original in the
metamodel of UML activity diagram.

112 Y. Zhang et al.

Based on the metamodel of UML2.0 activity diagram, we applied the pro-
posed metric to the metamodels of SPML1.0 and SPML2.0 for evaluate their
understandability, and the results is shown in Table 3. From the data in Table 3
we can find that the understandability deviation of SPML2.0 is less than that of
SPML1.0. The metric result indicates that person will make 32.33−17.52 = 14.81
unit effort to understand SPML2.0 less than to SPML1.0, under the precondition
that he had understood UML2.0 activity diagram. Thus, we conclude that the
understandability of SPML2.0 is better than that of SPML1.0. The reason of this
conclusion is that unlike the metamodel of SPML1.0, many new classes in the
metamodel of SPML2.0 inherit from some classes in the metamodel of UML2.0
activity diagram. Since users had been familiar with UML2.0 activity diagram,
it is easier to understand those new elements in the metamodel of SPML2.0.

Table 3. The understandability deviation of SPML1.0 and SPML2.0 compared with
UML2.0 activity diagram (α = 0.8, β = 0.7, γ = 0.5, δ = 0.5)

Version SPML1.0 SPML2.0

ΔU 32.33 17.52

We repeated the controlled experiment mentioned in the subsection 4.3 on
SPML. We divided the 30 students into two groups. Each group had 15 people. In
the first step, we gave the metamodel of UML2.0 activity diagram to all students
and got the UT by a questionnaire. In the second step, we gave the metamodel
of SPML1.0 to the first group and the metamodel of SPML2.0 to the second
group. By the corresponding questionnaires, we got the UTs of SPML1.0 and
SPML2.0. In the last step, we calculated the mean of UTs for UML2.0 activity
diagram, SPML1.0 and SPML2.0. All data are shown in Table 4 . The metric
results are consistent with the experiment data. The practice validates that the
proposed metric is available.

Table 4. Mean of Understanding Times and their difference values in the experiment
on SPML

Diagram Activity Diagram SPML1.0 SPML2.0

Mean of UT group I 500.7 1366.7 —
(second) group II 484.7 — 1008.7

ΔUT (second) — 866.0 524.0

6 Conclusion

We study the measurement of understandability for modeling languages from the
metamodel perspective. Based on measuring the deviation of understandability
between extended UMLs and the standard UML, we propose the metric model
of understandability for extended UMLs. This metric can be used to evaluate

An Approach to Measure Understandability of Extended UML 113

different extended UMLs with the same modeling power on the understandabil-
ity. Furthermore, the proposed metric can guide users to select an extension
patterns of UML with better quality to achieve their goals. The proposed metric
is empirically validated by different UML versions. We also give an example in
a real project to explain the application of the proposed metric. Our work was
conducted on UML, but the method can be applied to other modeling languages.
Currently, we only consider the influence on the understandability of a modeling
language resulting from the complexity of its syntax, rather than its semantic.
In addition, the sample space of our controlled experiments is not big enough.
These are the limitations of this study. In the future, other quality attributes
of modeling languages, such as maintainability and expressive power, will be
studied from metamodel perspective.

Acknowledgments. The authors would like to thank the anonymous referees
for their helpful comments on this paper. This work is supported by the National
Natural Science Foundation of China (No.61003025) and the Jiangsu Province
Research Foundation (BK2010170).

References

1. Object Management Group: UML semantics version 1.1. Document ad/97-08-04,
OMG (1997)

2. Object Management Group: Unified Model Language (UML): Superstructure ver-
sion 2.1.2. Document formal/07-11-02, OMG (2007)

3. Object Management Group: OMG Unified Model Language Specification Version
1.4. Document formal/01-09-67, OMG (2001)

4. Object Management Group: Unified Model Language (UML): Superstructure ver-
sion 2.0. Document formal/05-07-04, OMG (2005)

5. Zhang, Y., Liu, Y., Zhang, L., Ma, Z., Mei, H.: Modeling and checking for non-
functional attributes in extended UML class diagram. In: Proceedings of 32nd
Annual IEEE International Computer Software and Applications Conference
(COMPSAC 2008), pp. 100–107. IEEE Computer Society, Los Alamitos (2008)

6. Wada, H., Suzuki, J., Oba, K.: Modeling non-functional aspects in service oriented
architecture. In: Proceedings of IEEE International Conference on Services Com-
puting (SCC 2006), pp. 222–229. IEEE Computer Society, Los Alamitos (2006)

7. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton, L., Yu, E.: Eval-
uating goal models within the goal-oriented requirement language. International
Journal of Intelligent Systems 25(8), 841–877 (2009)

8. Genero, M., Poels, G., Manso, E., Piattini, M.: Defining and validating metrics for
UML class diagrams. In: Genero, M., Piattini, M., Calero, C. (eds.) Metrics for
Software Conceptual Models, pp. 99–159. Imperial College Press (2005)

9. Genero, M., Piatini, M., Manso, E.: Finding “early” indicators of UML class di-
agrams understandability and modifiability. In: Proceedings of the 2004 Interna-
tional Symposium on Empirical Software Engineering (ISESE 2004), pp. 207–216.
IEEE Computer Society, Los Alamitos (2004)

10. Genero, M., Piattini, M., Manso, E., Cantone, G.: Building UML class diagram
maintainability prediction models based on early metrics. In: Proceedings of the
Ninth International Software Metrics Symposium (METRICS 2003), pp. 263–275.
IEEE Computer Society, Los Alamitos (2003)

114 Y. Zhang et al.

11. Bansiya, J., Davis, C.G.: A hierarchical model for object-oriented design quality
assessment. IEEE Transactions on Software Engineering 28(1), 4–17 (2002)

12. Object Management Group: Meta Object Facility (MOF) specification version 1.3.
Document formal/00-04-03, OMG (2000)

13. Jiang, Y., Shao, W., Zhang, L., Ma, Z., Meng, X., Ma, H.: On the Classification of
UML’s Meta Model Extension Mechanism. In: Baar, T., Strohmeier, A., Moreira,
A., Mellor, S.J. (eds.) UML 2004. LNCS, vol. 3273, pp. 54–68. Springer, Heidelberg
(2004)

14. Ma, H., Shao, W., Zhang, L., Ma, Z., Jiang, Y.: Applying OO Metrics to Assess
UML Meta-models. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.)
UML 2004. LNCS, vol. 3273, pp. 12–26. Springer, Heidelberg (2004)

15. Object Management Group: Meta Object Facility (MOF) core specification version
2.0. OMG Available Specification formal/06-01-01, OMG (2006)

16. Briand, L.C., Wüst, J.: Modeling development effort in object-oriented sys-
tems using design properties. IEEE Transactions on Software Engineering 27(11),
963–986 (2001)

Appendix: The Questionnaires for UML Use Case Diagram

For the limit of space, we only give the questionnaires of use case diagram in
UML1.1, UML1.4, UML2.0 and UML2.1 respectively.

Questionnaire for UML1.1 Use Case Diagram

Diagram: The metamodel of UML1.1 use case diagram (Omitted)

START TIME:
With the metamodel shown above, answer the following questions:

– Does UseCase have attributes and operations?
– Is there a relationship between UseCase and Actor?
– Can an Extend relationship exist between two use cases?
– Can a use case have extension point?

FINISH TIME:

Questionnaire for UML1.4 Use Case Diagram

Diagram: The metamodel of UML1.4 use case diagram (Omitted)

START TIME:
With the metamodel shown above, answer the following questions:

– Can an Extend relationship exists between two use cases?
– Can an Include relationship exists between two use cases?
– Is there a way in which we can describe in a use case where it may be

extended?
– Is UseCaseInstance an instance of UseCase?

FINISH TIME:

An Approach to Measure Understandability of Extended UML 115

Questionnaire for UML2.0 Use Case Diagram

Diagram: The metamodel of UML2.0 use case diagram (Omitted)

START TIME:
With the metamodel shown above, answer the following questions:

– Can an Include relationship exists between two use cases?
– Can we name the relationships between two use cases?
– Does UseCase inherit from BehavioredClassifier or just Classifier?
– Can we define a constraint for any relationship between two use cases?

FINISH TIME:

Questionnaire for UML2.1 Use Case Diagram

Diagram: The metamodel of UML2.1 use case diagram (Omitted)

START TIME:
With the metamodel shown above, answer the following questions:

– Can an Include relationship exists between two use cases?
– Can we name the relationships between two use cases?
– Does Actor inherit from BehavioredClassifier or just Classifier?
– Can we define a constraint for any relationship between two use cases?

FINISH TIME:

Dealing with Dependencies among Functional

and Non-functional Requirements
for Impact Analysis in Web Engineering

José Alfonso Aguilar1, Irene Garrigós2,
Jose-Norberto Mazón2, and Anibal Zald́ıvar1

1 Señales y Sistemas (SESIS)
Facultad de Informática Mazatlán

Universidad Autónoma de Sinaloa, México
{ja.aguilar,azaldivar}@maz.uasnet.mx

2 Department of Software and Computing Systems (DLSI)
University of Alicante, Spain

{igarrigos,jnmazon}@dlsi.ua.es
http://sesis.maz.uasnet.mx

Abstract. Due to the dynamic nature of the Web as well as its heteroge-
neous audience, web applications are more likely to rapidly evolve leading
to inconsistencies among requirements during the development process.
With the purpose to deal with these inconsistencies, web developers need
to know dependencies among requirements considering that the under-
standing of these dependencies helps in better managing and maintaining
web applications. In this paper, an algorithm has been defined and im-
plemented in order to analyze dependencies among functional and non-
functional requirements (in a goal-oriented approach) for understanding
which is the impact derived from a change during the Model-Driven Web
Engineering process. This Impact Analysis would support web developer
in selecting requirements to be implemented ensuring that web applica-
tions finally satisfy the audience.

Keywords: Impact Analysis, Goal-Oriented Requirements Engineering,
Web Engineering, Model-Driven Web Engineering.

1 Introduction

Requirements in web engineering (WE) tend to rapidly evolve due to the dynamic
nature of the Web [1]. This continuous evolution may lead to inconsistencies
among requirements and the web application. This discrepancy may hinder the
web developers to understand how the changes in the requirements affects the
final web application. In this context, a crucial issue inWE is the Impact Analysis
(IA) of requirements, which is the task of identifying the potential consequences
of a change or estimating what needs to be modified to accomplish a change [2].
We define a “change” as any modification on a web requirement, i.e., add or
delete a requirement. Usually, IA has been done intuitively by web applications

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 116–131, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://sesis.maz.uasnet.mx

Dealing with Dependencies among FRs and NFRs 117

developers after some cursory examination of the code and documentation. This
may be sufficient for small web applications, but it is not enough for sophisticated
ones (i.e. a money exchange and transfer web application). In addition, empirical
investigation shows that even experienced web applications developers predict
incomplete sets of change impacts [3].

In order to effectively analyze the impact of requirements in web applications
the dependencies among requirements should be explicitly considered to better
manage changes. Actually, inconsistencies are defined as negative dependencies
among the set of requirements, caused by the fact that requirements often orig-
inate from stakeholders with different or conflicting viewpoints. Commonly, the
IA is performed only on functional requirements (FRs), leaving aside the non-
functional requirements (NFRs) as shown in [4,5]. In software engineering (SE),
FR describes system services, behavior or functions, whereas NFR, or quality
requirements, specify a constraint on the system or on the development process
[6]. According to [7], we believe that the NFRs must be considered from the
beginning of the development process and that the IA should be done on both
kinds of requirements: FR and NFRs.

Interestingly, the inclusion of goal-oriented requirements engineering (GORE)
in WE [8,9,10,11] offers a better analysis in web application design due to the fact
that requirements are explicitly specified in goal-oriented models, thus support-
ing developers in evaluating the implementation of certain requirements (FR and
NFRs) for desigining successful software. In the GORE field, FR are related to
goals and sub-goals whereas NFRs are named softgoals, commonly used to rep-
resent objectives that miss clear-cut criteria. Specifically, finding right tradeoffs
for dependent NFRs is an important step when impact of requirements is being
analyzed [12], i.e., a web application without passwords is usable, but not very
secure, increased usability reduce security or increased security reduce usability.
Unfortunately, finding these tradeoffs among dependent web requirements is not
a trivial task due to the dynamic nature of the Web. Therefore, it is important
to improve the use of the requirements engineering (RE) in further steps of the
web application development process.

There have been many attempts to provide techniques and methods to deal
with some aspects of the RE process for the development of web applications,
but there is still a need for solutions which enable the designer to know which
requirements are affected because of a change in the web application design
besides of considering the NFRs involved in the development process.

The proposal presented through the paper consist in a GORE approach for
supporting web developers in analyzing the impact of a change by considering
both FR and NFRs. To this aim, an algorithm has been defined to support
web developer in (i) clearly identifying dependencies among FR and NFRs, and
(ii) automatically performing the IA by determining right tradeoffs. The main
benefit of our approach is that provides information about the different design
alternatives, thus allowing developers to make more informed design decisions for
implementing a web application that fully-satisfies FR, while there is a tradeoff
among NFRs.

118 J.A. Aguilar et al.

This paper is as extension of our recent work [13] about the importance of
considering IA in our GORE approach. In particular, the novelty of our on-
going work presented in this paper consists of: (i) the implementation of the
UML-Profile to adapt the i* framework in the Web domain as a metamodel, (ii)
the development of a prototype tool for the web requirements specification as
a proof of concept of our approach, (iii) the implementation of model-to-model
transformation rules (with a high degree of automation) to derive the web ap-
plication conceptual models, and (iv) the implementation of the algorithm for
IA in goal-oriented models.

The remainder of this paper is structured as follows: Section 2 presents some
related work relevant to the context of this work. Section 3 describes the GORE
proposal where is found the contribution of this work and introduces a run-
ning example for demonstration purposes. The algorithm for IA in goal-oriented
models and its application is described in Section 4. In Section 5 is presented
the current implementation of this approach. Finally, the conclusion and future
work is presented in Section 6.

2 Related Work

In our previous work [14], a systematic literature review has been conducted for
studying requirement engineering techniques in the development of web appli-
cations. Our findings showed that most of the web engineering approaches focus
on the analysis and design phases and do not give a comprehensive support to
the requirements phase (such as OOHDM [15], WSDM [16] or Hera [17]). Addi-
tionally, we can also conclude that the most used requirement analysis technique
is the UML (Unified Modeling Language) use cases. This technique has proved
to be successful in the common software development process to deal with the
requirements specification in both textual and diagram form. But unfortunately,
this technique is not enough to deal with aspects such as navigation in the web
application development process even though is applied by some of the most
remarkable web engineering approaches such as OOWS [18], WebML [19], NDT
[20] and UWE [21].

In addition, none of the aforementioned WE approaches perform the analysis
and modeling of the users’ needs for ensuring that the web application satisfies
real goals, i.e. users are not overloaded with useless functionalities, while impor-
tant functionalities are not missed. We believe that these facts are an important
issue that limits a broaden use of these approaches. In this sense, to the best
of our knowledge, the only approaches that use GORE techniques for WE have
been presented in [22,23]. Unfortunately, although these approaches use the i*
modeling framework [24,25] to represent requirements in web domain, they do
not benefit from every i* feature because don’t use all the expressiveness of the
i* framework to represent the special type of requirements of the web applica-
tions such as the related with navigational issues. To overcome this situation,
our previous work [10] adapts the well-known taxonomy of web requirements
presented in [26] for the i* framework.

Dealing with Dependencies among FRs and NFRs 119

Regarding approaches that consider NFRs requirements from early stages of
the development process, in [27] the authors propose a metamodel for represent-
ing usability requirements for web applications and in [7] the authors present
the state-of-the-art for NFRs in model-driven development (MDD), as well as
an approach for considering NFRs into a MDD process from the very beginning
of the development process. Unfortunately, these works overlook how to analyze
and evaluate the impact among FRs and NFRs. However, some interesting works
have been done in this area [28] and [29]. These works evaluate i* models based
upon an analysis question (what-if) and the human judgment. To this aim, this
procedure uses a set of evaluation labels that represent the satisfaction or de-
nial level of each element in the i* model. First of all, initial evaluation labels
reflecting an analysis question are placed in the model. These labels are then
propagated throughout the model by using a combination of set propagation
rules and the human judgment. The results of this propagation are interpreted
in order to answer the stated question. Unfortunately, these general approaches
have not been adapted to web engineering.

The motivation regarding this proposal relies in the fact that the works previ-
ously mentioned are focused on how to analyze i* models (goal-oriented models)
to answer a particular question (what-if) without considering the goal satisfac-
tion (the organizational objectives). Thus, our proposal is focused on how to
evaluate the impact derived from a change in the i* requirements model in or-
der to use it to offer to the designer a better form to analyze design options from
the web application. For this purpose, the requirements are classified according
the taxonomy of web requirements defined in [26] in the i* requirements model.
In addition, our proposal brings out alternative paths to satisfy the goals bearing
in mind the softgoals tradeoff considering the softgoals from the beginning of the
web application development process.

3 Goal-Oriented Requirements Analysis in Web
Engineering

This section describes our proposal to specify requirements in the context of
the A-OOH (Adaptive Object-Oriented Hypermedia) Web modeling method
[30] by using goal-oriented models [10]. A-OOH is an extension of the OOH
(Object-Oriented Hypermedia) [31] method with the inclusion of personaliza-
tion strategies. The development process of this method is founded in the MDA
(Model-Driven Architecture). MDA is an OMG’s standard and consists of a
three-tier architecture with which the requirements are specified at the Compu-
tational Independent Model (CIM), from there are derived the Web application
conceptual models which corresponds with the Platform Independent Model
(PIM) of the MDA. Finally, the Web application conceptual models are used to
generate the implementation code; this stage corresponds with the Platform Spe-
cific Model (PSM) from the MDA standard. A crucial part of MDA is the concept
of transformation between models either model-to-model (M2M) or model-to-
text (M2T). With the M2M transformations is possible the transformation from

120 J.A. Aguilar et al.

a model in other one. To use the advantages of MDA, our proposal supports the
automatic derivation of Web conceptual models from a requirements model by
means of a set of M2M transformation rules defined in [10,32].

We shortly describe next an excerpt of the i* framework which is relevant for
the present work. For a further explanation, we refer the reader to [24,25]. The
i* framework consists of two models: the strategic dependency (SD) model to
describe the dependency relationships (represented as) among various actors
in an organizational context, and the strategic rationale (SR) model, used to
describe actor interests and concerns and how they might be addressed. The SR
model (represented as) provides a detailed way of modeling internal intentional
elements and relationships of each actor (). Intentional elements are goals
(), tasks (), resources () and softgoals (). Intentional relationships
are means-end links () representing alternative ways for fulfilling goals; task-
decomposition links () representing the necessary elements for a task to be
performed; or contribution links (

help

hurt) in order to model how an intentional
element contributes to the satisfaction or fulfillment of a softgoal.

Even though i* provides good mechanisms to model actors and relationships
between them, it needs to be adapted to the web engineering domain to reflect
special web requirements that are not taken into account in traditional require-
ment analysis approaches. As the A-OOH approach is UML-compliant, we have
used the extension mechanisms of UML in order to adapt the i* modeling frame-
work to the taxonomy of Web requirements (Content, Service, Navigational, Lay-
out, Personalization and Non-Functional Requirements) presented in [26]. To do
so, (i) we defined a profile to formally represent the adaptation of each one of the
i* elements with each requirement type from the Web requirements clasification
adopted [11]; and (ii) we implemented this profile in an EMF (Eclipse Modeling
Framework) metamodel adding new EMF clases according to the different kind
of Web requirements: the Navigational, Service, Personalization and Layout re-
quirements extends the Task element and the Content requirement extends the
Resource class. It is worth noting that NFRs can be modeled by directly using
the softgoal element. In Figure 1 can be seen an extract of the EMF metamodel
for Web requirements specification using the i* framework. The metamodel has
been implemented in the Eclipse [33] IDE (Integrated Development Enviroment).

Fig. 1. An overview of the i* metamodel implemented in Eclipse (EMF)

Dealing with Dependencies among FRs and NFRs 121

3.1 A Practical Case: A Web Requirements Specification

Based on the i* modeling framework adaptation for the web domain, next is de-
scribed a web requirements specification for the Conference Management System
(CMS) which will be used through the paper as a running example. The purpose
of the system is to support the process of submission, evaluation and selection of
papers for a conference [34]1. The requirements specification is shown in Figure
2, which models a part of the CMS focused in the process of selecting the review
process. Four actors participate in the CMS, but due to space limitations, for
this example only the author, reviewer and system (named “WebApplication”)
actors were considered. It is important to highlight that each element from Fig-
ure 2 corresponds to a requirements type from the taxonomy previously men-
tioned, i.e., the content requirement (Content) from the taxonomy is displayed
with the notation “Resource” from i* and the navigational (Navigational) and
service (Service) requirements with the symbol “Task” from i*, both with their
respective associations (decomposition-links). A decomposition-link between two
elements means that a requirement (“Task”) is decomposed in one or more sub-
requirements (“Sub-Tasks”), Figure 2 depicts a correct scenario of the require-
ment decomposition by introducing the navigational requirement “Blind Review
Process”, decomposed in two sub-requirements named “Download papers without
authors’ name” (Service) and “Review Paper” (Navigational). Also, the labels
() and () are used to represent the requirements currently implemented in
the Web application.

Three actors are detected that depend on each other, namely “Reviewer”,
“Author” and “Conference Management System” (named as “WebApplication”
in Figure 2). The reviewer needs to use the CMS to “Review paper”. The author
depends on the CMS in order to “Paper be reviewed”. These dependencies and
the CMS actor are modeled by a SD and SR models in Figure 2. The goal of
the CMS actor is “Process of review of papers be selected”. To fullfill this goal,
the SR model specifies that one of the two navigational requirements: “Blind re-
view process” or “Normal review process” should be performed. In this running
example, the path to achieve the goal of the CMS actor is by means of the nav-
igational requirement “Blind review process”, all the requirements implemented
for this path are labeled with (). We can observe in the SR model that some
navigational and service requirements are decomposed in other requirements,
some of them affects positively or negatively some non-functional requirements,
i.e., the service requirement “Download paper without authors’ name” needs the
content requirement “Papers”, also, affects positively the softgoal “Privacy be
maximized” and in some negatively form the softgoal “Obtain more complete
info”. This fact is very important to see how to satisfy the goal “Process of
review of papers be selected” considering the web application softgoals. One vi-
able solution to this issue is maximizing or minimizing the contribution from
requirements to softgoals in order to find a path to fully-satisfy the goal.

1 The complete specification of the case study can be found at:
http://users.dsic.upv.es/~west/iwwost01

http://users.dsic.upv.es/~west/iwwost01

122 J.A. Aguilar et al.

Fig. 2. Part of the Conference Management System (CMS) requirements expressed in
a SR and SD (i*) models

4 An Impact Analysis Algorithm for Goal-Oriented
Requirements in Web Engineering

In this section is briefly introduced our algorithm for impact analysis in goal-
oriented models [13]. The algorithm provides a way to analyze the impact of a
change in an A-OOH requirements model. With the algorithm, the Web devel-
oper will be able to evaluate the effect of the change and select the best among
several design options to fully satisfy goals based on maximizing softgoals (it
is worth noting that, in this paper, our focus is the implementation of the i*
metamodel and the development of a prototype tool for the Web requirements
specification besides the implementation of the algorithm for impact analysis
presented in [13]).

The algorithm is designed to be applied in i* requirements model consider-
ing each type of contributions made by the intentional elements to the softgoals
(“Help”, “Hurt”, “Some +”, “Some -”, “Some +”, “Break” and “Make”). Con-
sidering the contributions made by the intentional elements (task element from
i* model) to the softgoals, the algorithm evaluates the impact in the require-
ments model resulting from removing any element of the A-OOH conceptual
models. In this way, it is determined which new requirements should be included
in the A-OOH conceptual models for maximizing softgoal satisfaction although

Dealing with Dependencies among FRs and NFRs 123

some requirements have been removed. To do this, the designer must have to
find tradeoffs between the softgoals.

4.1 Performing the Impact Analysis

For the sake of understandability, the following scenario is assumed along this
section: the Web developer decides deleting from the domain model of A-OOH
the elements that correspond to the requirement “Download papers without au-
thors’ name”. It is necessary to know which other requirements are affected by
this change. In addition, this action implies that the goal “Process of review of
papers be selected” can not be satisfied. Thus, it is necessary to search for alter-
native paths in the i* requirements model (if there any) in order to fully-satisfy
the goal “Process of review papers be selected”. To this aim, our algorithm is
triggered. The execution of the impact analysis algorithm is detailed next.

The first step to execute our algorithm consists of applying a set of precondi-
tions (explained in detail in our previous work [13]). For this running example,
the preconditions result true, it means that there is any problem to the algorithm
has been executed.

Next, it is necessary to develop a list of the requirements (implemented or
not) that contribute to any softgoal in the i* requirements model (see Table 1).
Also, if a softgoal contributes to other one, the softgoal must be added to the
list too.

Table 1. The requirements contributions to softgoals

Requirements “S1” “S2” “S3” “S4” “S5” “S6”

Blind Review Process Help Break Hurt Help - -
Download Papers Without Authors’ Name - - - - Help Some -
Normal Review Process Some - Make Help - - -
Download Paper With AuthorsName - - - Hurt Some - Help
View Review Process Status - - - - - Help
Obtain More Complete Info - - Help - - -

Table 1 highlights in bold the requirement to be removed (“Download papers
without authors’ name”). This table shows a requirements list (FRs and NFRs)
and their type of contributions to the softgoals where S1 corresponds to softgoal
“Be fair in review” from requirements model, S2 to “Review process easier”, S3
represents “Accurate review process”, S4 conforms to “Avoid possible conflicts of
interest”, S5 its the “Privacy be maximized” softgoal and S6 refers to “Obtain
more complete info”.

The next step is to identify the number of softgoals affected by the requirement
to be removed. If necessary, a list of the softgoals that receive a contribution
from the requirement to be removed is made. In this example, the requirement
to be removed is “Download papers without authors’ name”, this one affects two
softgoals: “Privacy be maximized” and “Obtain more complete info” S5 y S6
respectively (see Table 1).

124 J.A. Aguilar et al.

For each softgoal that receives a contribution from the requirement to be
removed, we search for a non-implemented requirement of which contribution
compensates the possible elimination of the requirement to be removed. To do
this, it is necessary to apply a set of heuristics defined in [13]. For example, the
softgoal “Privacy be maximized”, receives a Help from the requirement to be
removed, thus being necessary searching for a non-implemented requirement to
contribute to this softgoal. In this case, only the requirement “Download papers
with authors’ name” contributes negatively to this softgoal (Some -), for this
reason, applying the heuristics described in [13], specifically the heuristic H22,
the requirement “Download papers with authors’ name” could be implemented.

Considering the softgoal “Obtain more complete info”, it receives a Some -
contribution from the requirement to be removed, thus being necessary searching
for a non-implemented requirement to contribute to this softgoal. In this case,
two requirements (positively) contribute to this softgoal, “Download papers with
authors’ name” and “View review process status” with a Help contribution link,
hence, the heuristic H33 applies for this softgoal, thus, these requirements should
be implemented.

After analyzing the softgoals contributions, the next step is searching for any
softgoal in the requirements list that contributes to another softgoal. In this
example, the softgoal “Obtain more complete info” makes a Help contribution
to the softgoal “Accurate review process”, thus, the next step consists of searching
for the requirement that makes a contribution to the softgoal and applying the
heuristics. The requirement that makes a contribution to the softgoal “Accurate
review process” is “Normal review process”, this contribution is Help (see Figure
2), hence, according to H3 this requirement must be implemented.

After these steps, Table 2 shows requirements that could be implemented to
fully-satisfy the goal “Process of review papers be selected” after having removed
the requirement “Download papers without authors’ name”. Next, it is necessary
to evaluate the heuristics assigned to each requirement to know what could be
implemented.

Table 2. Non-implemented requirements that contributes to softgoals

Intentional element “S5” “S4” “S6” “S3” Result

Download Papers With Authors’ Name H2 (Some -) H1 (Hurt) H3 (Help) - Implement
Normal Review Process - - - H3 (Help) Implement
View Review Process Status - - H3 (Help) - Implement

Table 2 shows the results after having performed the algorithm. In this table
the requirements that must be implemented in order to fully-satisfy the goal

2 H2: if the contribution of the requirement to remove is help than the contribution of
the requirement to implement, but the contribution to be implemented is the Some
- type, the requirement could be implemented.

3 H3: if the contribution of the requirement to remove is Hurt or Some -, and the
contribution of the requirement to implement is Help or Some +, the requirement
should be implemented.

Dealing with Dependencies among FRs and NFRs 125

“Process of review papers be selected” are shown. To do this, it is necessary
to evaluate the contribution type of each requirement, i.e., the navigational re-
quirement “Download papers with authors’ name” negatively contributes (Some
-) to the softgoal “Privacy be maximized”, thus hurting the softgoal “Avoid
possible conflicts of interest” and helping the softgoal “Obtain more complete
info”. Therefore, by using the human judgment the navigational requirement
“Download papers with authors’ name” can be implemented. For the naviga-
tional requirement “Normal review process”, it is easier to determine whether it
can be implemented because it only contributes to one softgoal, the “Accurate
review process”, hence its contribution is Help, this requirement must be im-
plemented. Finally, the navigational requirement “View review process status”
positively contributes to the softgoal “Obtain more complete info”, consequently
this requirement must be implemented.

Fig. 3. Conference Management System requirements expressed in a SR and SDModels
with the alternative path to fully satisfy the goal “Process of review papers be selected”

The final step is to apply a postcondition, in this running example it is neces-
sary to implement the navigational requirements “View papers info” and “View
Accepted/Rejected papers” because these requirements are associated with the
navigational requirement “View Review Process Status”. In addition, the con-
tent requirement “Authors” and the service requirement “Send Comments to
Authors” must be implemented too in order to implement the alternative path
to fully satisfy the goal “Process of review papers be selected”. Hence, the content
requirement “Authors” is associated with the navigational requirement “View

126 J.A. Aguilar et al.

Accepted/Rejected papers” and the service requirement “Send Comments to Au-
thors” is related with the navigational requirement “Normal review process”.

After finishing the execution of the algorithm, we obtain the requirements that
are directly and indirectly affected by the deletion of the requirement “Down-
load papers without authors’ name”. Moreover, the algorithm can find out which
requirements must be implemented to continue satisfying the goal considering
the contributions received from the softgoals. In this running example the re-
quirements to implement are: “Download papers with authors’ name”, “Nor-
mal review process” and “View review process status”. Finally, according to the
post-condition the requirements “View papers info”, “View Accepted/Rejected
papers”, “Authors” and “Send Comments to Authors” must be implemented
too. Figure 3 shows the final requirements model with the alternative path im-
plemented to fully-satisfy the goal “Process of review papers be selected”.

5 Open Source Implementation Framework

In this section we describe in detail the implementation of the impact analysis
algorithm within our approach for goal-oriented requirements analysis in Web
engineering. To this aim, we have combined a set of technologies such as Eclipse,
EMF (Eclipse Modeling Framework), GMF (Graphical Modeling Framework)
within the GMP (Graphical Modeling Project) and Java.

Eclipse is an open source IDE used as a software platform to create integrated
development environments; within Eclipse, the EMF project is a modeling frame-
work and code generation facility for building tools and other applications based
on a structured data model (abstract syntax). Also, the facilities for creating
metamodels and models are provided by the metametamodel Ecore; by using
the facilities offered by EMF, it is possible to create a visual representation
of the elements defined within the EMF metamodel by means of GMP (con-
crete syntax). The Eclipse Graphical Modeling Project (GMP) provides a set of
generative components and runtime infrastructures for developing graphical ed-
itors based on EMF and GEF (Graphical Editing Framework). Both the Eclipse
Modeling Framework (EMF) and the Graphical Modeling Framework (GMF)
are capable of generating editor plug-ins. Next, each one of the steps performed
for the implementation framework is described.

The first step is the implementation of the web requirements metamodel. The
requirements metamodel was created using the EMF metamodel to incorporate
a number of taxonomic features for the specification of Web requirements. With
the implementation of this metamodel has been possible to adapt the i* modeling
framework in the Web domain, with which is possible to model the needs and
expectations of the stakeholders of the Web application. The clasification of Web
requirements presented in Section 3, have been incorporated as Ecore classes to
represent each type of the requirements clasification.

Once the metamodel has been implemented it is necessary to provide a graph-
ical tool to assist the designer with the requirements specificaton. To do so, we
have implemented a graphical editor using the GMF technology from the Eclipse
Graphical Modeling Project.

Dealing with Dependencies among FRs and NFRs 127

In Figure 44, it is displayed a screenshot of the graphical editor implemented
(called WebREd) by combining the Web requirements metamodel and the GMF
technology. In the center of the figure is described the requirements specification
for the the Conference Management System from the case study presented in
the Section 3.

Fig. 4. WebREd, Web Requirements Editor

As the reader can see, we have implemented each one of the elements of
the web requirements metamodel in the tool, thus the designer can model each
requirement type from the clasification adopted (described in the Section 3).
Also, WebREd provides the basic elements to model clasical goal-oriented models
such as Task, Resource, Goal and Softgoal. The palette for drawing the different
elements of the i* models for requirements specification can be seen on the
right side of the Figure 4. At the top of the figure, there are those elements
required to specify goal-oriented models according to the i* notation. Also, the
requirements clasification adopted to specify requirements in the Web domain
are in the right-center of the figure. Finally, the different types of relationships
used in the i* modeling framework, with which the elements can be associated,
are the right-botton of the figure.

With regard to the impact analysis support, this is performed in an automatic
manner. When the designer specifies the requirements of the Web application by

4 http://code.google.com/p/webred/

http://code.google.com/p/webred/

128 J.A. Aguilar et al.

using the WebREd editor it is possible to know which requirements are affected
due to a change in the Web application conceptual models. The impact of a
change in the requirements can be consulted by the designer by means of a
screen (window) and by means of a PDF (Portable Document File) report.

Fig. 5. Screenshot of the impact analysis support offered by the Web Requirements
Editor (WebREd)

In Figure 5, it is shown a screenshoot of the impact analysis support offered
by the WebREd editor. At the top of the figure, the main window for the im-
pact analysis option is displayed. At the top we find the name of the element
affected by a change originated in any of the Web application conceptual mod-
els described as “Element to remove”. Also the information about the model
currently selected is shown in the main window. In this particular case, this
information is about the requirements model, thus including the name, descrip-
tion and creation date of the requirements model. Next, there is a tabbed pane
with two options for the designer. The first one shows a list of the requirements
affected if and only if the requirement “Authors” is removed; also, is showed the
type of each one of the affected requirements. Moreover, if the designer selects
one of the requirements listed by double clicking on it, a new window (message
dialog) is showed with a list of the softgoals affected by the requirement selected
from the list (Figure 5, down). This softgoal’s list shows the strength of the
contribution made by the requirement affected to the softgoals. On the other
hand, in the second tab, the requirements to be implemented (only when it is
necessary) by the designer to still continue satisfying the goal are listed.

To conclude, the main window for the impact analysis option in the WebREd
editor allows the designer to print a report in PDF (Portable Document File)
format with which the designer can check the affected requirements.

Dealing with Dependencies among FRs and NFRs 129

6 Conclusions and Future Work

Owing the dynamic idiosyncrasy of the Web, its heterogeneous audience and its
fast evolution, web applications should consider a RE process as complete as
possible with the purpose of manage the requirements reflecting specific needs,
goals, interests and preferences of each user or users types, besides to consider
the NFRs from the early phases of the development process since these are not
considered with sufficiente importance [7].

To sum up, in this work we have presented: (i) a methodology based on
the i* modelling framework to specify web requirements considering the NFRs
(softgoals) so that it allows the designer to make decisions from the beginning
of the development process that would affect the structure of the envision web
application in order to satisfy users needs; (ii) an algorithm to analyze the impact
derived from a change done in the requirements model and the ability to find
an alternative path to fully-satisfy the goal by means of the softgoals tradeoff;
and (iii) an open source prototype tool that assists the web application designer
performing the requirements specification and the impact analysis derived from a
change in requirements. In this form, the designer can improve the quality of the
requirements model analyzing the balance of the softgoals with the stakeholders.

Our short-term future work includes the definition of a metamodel to help
to record the relationships among FR and NFRs improving the impact analysis
report. Besides, it is important to remark that the graphical editor is the basis
for a prototype tool for the development of Web applications using the MDA
paradigm.

Finally, note that this work has been done in the context of the A-OOH
modeling method; however it can be applied to any web modeling approach.

Acknowledgments. This work has been partially supported by: Universi-
dad Autónoma de Sinaloa (Mexico), Consejo Nacional de Ciencia y Tecnoloǵıa
Mexico (CONACYT), Programa Integral de Fortalecimiento Institucional (PIFI
2011), Programa de Mejoramiento del Profesorado (PROMEP) at Secretaŕıa de
Educación Pública, Mexico and MANTRA (GRE09-17) from the University of
Alicante.

References

1. Ginige, A.: Web engineering: managing the complexity of web systems develop-
ment. In: SEKE, pp. 721–729 (2002)

2. Arnold, R., Bohner, S.: Impact analysis-towards a framework for comparison. In:
Conference on Software Maintenance (CSM-93), pp. 292–301. IEEE (2002)

3. Lindvall, M., Sandahl, K.: How well do experienced software developers predict
software change? Journal of Systems and Software 43(1), 19–27 (1998)

4. Zhang, S., Gu, Z., Lin, Y., Zhao, J.: Celadon: A change impact analysis tool
for Aspect-Oriented programs. In: 30th International Conference on Software
Engineering (ICSE), pp. 913–914. ACM (2008)

130 J.A. Aguilar et al.

5. Gupta, C., Singh, Y., Chauhan, D.: Dependency based Process Model for Impact
Analysis: A Requirement Engineering Perspective. International Journal of Com-
puter Applications 6(6), 28–30 (2010)

6. Sommerville, I.: Software Engineering, 6th edn. Addison-Wesley (2001)
7. Ameller, D., Gutiérrez, F., Cabot, J.: Dealing with Non-functional Requirements

in Model-Driven Development. In: 18th IEEE International Requirements Engi-
neering Conference (RE) (2010)

8. Nuseibeh, B., Easterbrook, S.M.: Requirements engineering: a roadmap. In: Inter-
national Conference on Software Engineering (ICSE), pp. 35–46 (2000)

9. Bolchini, D., Mylopoulos, J.: From task-oriented to goal-oriented web requirements
analysis. In: Proceedings of the Fourth International Conference on Web Informa-
tion Systems Engineering (WISE 2003), p. 166. IEEE Computer Society, Washing-
ton, DC, USA (2003)

10. Aguilar, J.A., Garrigós, I., Mazón, J.N., Trujillo, J.: An MDA Approach for Goal-
oriented Requirement Analysis in Web Engineering. J. UCS 16(17), 2475–2494
(2010)

11. Garrigós, I., Mazón, J.-N., Trujillo, J.: A Requirement Analysis Approach for Using
i* in Web Engineering. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE
2009. LNCS, vol. 5648, pp. 151–165. Springer, Heidelberg (2009)

12. Elahi, G., Yu, E.: Modeling and analysis of security trade-offs - a goal oriented
approach. Journal of Data Knowledge Engineering 68, 579–598 (2009)

13. Aguilar, J.A., Garrigós, I., Mazón, J.-N.: Impact Analysis of Goal-Oriented Re-
quirements in Web Engineering. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar,
D., Apduhan, B.O. (eds.) ICCSA 2011, Part V. LNCS, vol. 6786, pp. 421–436.
Springer, Heidelberg (2011)

14. Aguilar, J.A., Garrigós, I., Mazón, J.N., Trujillo, J.: Web Engineering approaches
for requirement analysis- A Systematic Literature Review. In: 6th Web Informa-
tion Systems and Technologies (WEBIST), vol. 2, pp. 187–190. SciTePress Digital
Library, Valencia (2010)

15. Schwabe, D., Rossi, G.: The object-oriented hypermedia design model. Communi-
cations of the ACM 38(8), 45–46 (1995)

16. De Troyer, O.M.F., Leune, C.J.: Wsdm: a user centered design method for web
sites. Comput. Netw. ISDN Syst. 30(1-7), 85–94 (1998)

17. Casteleyn, S., Woensel, W.V., Houben, G.J.: A semantics-based aspect-oriented
approach to adaptation in web engineering. In: Hypertext, pp. 189–198 (2007)

18. Fons, J., Valderas, P., Ruiz, M., Rojas, G., Pastor, O.: Oows: A method to develop
web applications from web-oriented conceptual models. In: International Workshop
on Web Oriented Software Technology (IWWOST), pp. 65–70 (2003)

19. Ceri, S., Fraternali, P., Bongio, A.: Web modeling language (webml): a model-
ing language for designing web sites. The International Journal of Computer and
Telecommunications Networking 33(1-6), 137–157 (2000)

20. Escalona, M.J., Aragón, G.: Ndt. a model-driven approach for web requirements.
IEEE Transactions on Software Engineering 34(3), 377–390 (2008)

21. Koch, N.: The expressive power of uml-based web engineering. In: International
Workshop on Web-oriented Software Technology (IWWOST), pp. 40–41 (2002)

22. Bolchini, D., Paolini, P.: Goal-driven requirements analysis for hypermedia-
intensive web applications, vol. 9, pp. 85–103. Springer (2004)

23. Molina, F., Pardillo, J., Toval, A.: Modelling Web-Based Systems Requirements
Using WRM. In: Hartmann, S., Zhou, X., Kirchberg, M. (eds.) WISE 2008. LNCS,
vol. 5176, pp. 122–131. Springer, Heidelberg (2008)

Dealing with Dependencies among FRs and NFRs 131

24. Yu, E.: Modelling Strategic Relationships for Process Reenginering. PhD thesis,
University of Toronto, Canada (1995)

25. Yu, E.: Towards modeling and reasoning support for early-phase requirements en-
gineering. In: RE, pp. 226–235 (1997)

26. Escalona, M.J., Koch, N.: Requirements engineering for web applications - a com-
parative study. J. Web Eng. 2(3), 193–212 (2004)

27. Molina, F., Toval, A.: Integrating usability requirements that can be evaluated in
design time into model driven engineering of web information systems. Adv. Eng.
Softw. 40, 1306–1317 (2009)

28. Horkoff, J., Yu, E.: Evaluating Goal Achievement in Enterprise Modeling – An
Interactive Procedure and Experiences. In: Persson, A., Stirna, J. (eds.) PoEM
2009. LNBIP, vol. 39, pp. 145–160. Springer, Heidelberg (2009)

29. Horkoff, J., Yu, E.: A Qualitative, Interactive Evaluation Procedure for Goal-and
Agent-Oriented Models. In: CAiSE Forum

30. Garrigós, I.: A-OOH: Extending Web Application Design with Dynamic Personal-
ization. PhD thesis, University of Alicante, Spain (2008)

31. Cachero, C., Gómez, J.: Advanced conceptual modeling of web applications: Em-
bedding operation. In: 21th International Conference on Conceptual Modeling In-
terfaces in Navigation Design (2002)

32. Aguilar, J.A.: A Goal-oriented Approach for Managing Requirements in the
Development of Web Applications. PhD thesis, University of Alicante, Spain (2011)

33. Eclipse (2012), http://www.eclipse.org/
34. Pastor, O.: Conference procedings. In: 1st InternationalWorkshop on Web Oriented

Software Technology (IWWOST), Valencia, Spain (2001)

http://www.eclipse.org/

Assessing Maintainability Metrics

in Software Architectures
Using COSMIC and UML

Eudisley Gomes dos Anjos1,2, Ruan Delgado Gomes3, and Mário Zenha-Rela1

1 Centre for Informatics and Systems,
University of Coimbra, Coimbra, Portugal

{eudis,mzrela}@dei.uc.pt
2 Centre of Informatics,

Federal University of Paraiba, João Pessoa, Brazil
3 Systems and Computer Science Department,

Federal University of Campina Grande, Campina Grande, Brazil
ruan@copin.ufcg.edu.br

Abstract. The software systems have been exposed to constant changes
in a short period of time. The evolution of these systems demands a trade-
off among several attributes to keep the software quality acceptable. It
requires high maintainable systems and makes maintainability one of the
most important quality attributes. This paper approaches the system
evolution through the analysis of potential new architectures using the
evaluation of maintainability level. The goal is to relate maintainability
metrics applied in the source-code of OO systems, in particular CCC,
to notations defined by COSMIC methods and proposes metrics-based
models to assess CCC in software architectures.

Keywords: Maintainability metrics, COSMIC FFP, cohesion, complex-
ity and coupling.

1 Introduction

The software systems are frequently changing because of the technological evo-
lution, the optimization of processes, or because of the integration of existing
systems into the development of new software architectures [7]. The higher the
complexity of theses systems, the higher is the difficulty to maintain them. The
effort spent in software maintenance takes a huge amount of the overall soft-
ware budget. Several surveys state maintenance as one of the most expensive
phases in software development, consuming between 60 and 80% of software
costs [19].

The constant software changes and the unsuitability to replace existing sys-
tems demand that the systems are highly maintainable. A system with this
characteristic allows quick and easy changes in the long term. When the system
evolves, it is important to keep the maintainability in an acceptable level. Many
authors cite the 10 laws of software evolution of Lehman [28] to demonstrate

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 132–146, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Assessing Maintainability Metrics in Software Architectures 133

what happens when the system changes addressing actions that could be taken
to avoid them.

Most of the work spent on software evolution focuses on practices towards
managing code. However, the evolutionary changes typically comprise struc-
tural modifications, which impact the Software Architecture (SA). Modifying
and adapting the SA is faster, cheaper and easier than modifying the code. Fur-
thermore, the architectural design can provide a more structured development
and quality assurance to accomplish the changes required by the system.

One of the problems concerning analysis of the changes in SA is the lack
of metrics. There are many software metrics to assess the maintainability level
from the source code [34,5,26]. Nevertheless, when the system requires an evo-
lution and no source code is available, the maintenance analyses becomes more
difficult. Moreover, the Common Software Measurement International Consor-
tium (COSMIC) has defined measurements for analysing SA. This paper relates
maintainability metrics applied to Object-Oriented (OO) systems, in particular
Complexity, Coupling and Cohesion (CCC), to the methods and notations de-
fined by COSMIC and proposes metrics-based models to assess CCC in software
architectures.

In section 2 is presented some definitions to insert the reader on the field of
this research. The section 3 contains the explanations of object-oriented metrics
used to complexity, coupling and cohesion. The variation of these metrics to
adapt to architectural designs are presented in the section 4. A a case study
to show the results of the use of these metrics is presented in section 5 and
finally, the section 6, contains the conclusions and future works concerning the
continuation of this research.

2 Definitions

This section presents relevant definitions for a better understanding of this paper.

2.1 SA and Evolution

According to IEEE 1471-2000 [20], the software architecture is “the fundamen-
tal organization of a system embodied in its components, their relationships to
each other, and to the environment, and the principles guiding its design and
evolution”.

The relevance of system evolution has been approached in many works [9,31].
There is a need to change software on a constant basis, with major enhancements
being made within a short period of time in order to keep up with new busi-
ness opportunities. So, the approach system evolution is a fundamental element
for making strategic decisions, improving system features, and adding economic
value to the software.

134 E.G. dos Anjos, R.D. Gomes, and M. Zenha-Rela

2.2 Maintainability

The IEEE standard computer dictionary [33] defines maintainability as the
ease with which a software system or component can be modified in order
to correct faults, improve the quality attributes, or adapt to a changed envi-
ronment. The modifications may include corrections, improvements or adapta-
tion of the software to changes in environment, requirements and functional
specifications.

In ISO/IEC 9126 [25] and Khairudin [22] maintainability is described as a
set of sub-characteristics that bear on the effort needed to make specified mod-
ifications such as: modularity, flexibility, adaptability, portability and so forth.
These sub-characteristics are refined to attributes used to evaluate the level of
maintainability in a system. Among these attributes we can mention complexity,
composability, cohesion, coupling, decomposability, etc.

A system with high level of maintainability has low cost for its maintenance
activities. It reduces the total maintenance cost or improves the system by per-
forming more maintenance activities at the same total cost. The level of main-
tainability can be measured applying metrics over its attributes.

2.3 COSMIC

COSMIC is a world-wide group of metric experts which has developed methods
of measuring a functional size of software. The COSMIC Full Function Point
uses Functional User Requirements (FUR) to measure the software size. It also
quantifies the software’s sub-processes (data movements) within each process,
measuring the functionality of the software [15].

The use of COSMIC in this work is due to unify the architectural notation to
be used by the metrics. It is a relevant characteristic for the project this work
is inserted in, which will be continued and improved. With the use of COSMIC
data movements it is possible to classify the processes using a standard notation.
The main data movements defined in COSMIC are:

E: Entry
X: Exit
R: Read
W: Write
N: Number of components
L: Layer

3 Object-Oriented Metrics

A software metric is used to measure some property of a piece of software.
They aim to evaluate the ability of software to achieve predefined objectives.

Assessing Maintainability Metrics in Software Architectures 135

There are many metrics used to evaluate the maintainability attributes in OO
systems [14,8]. This paper focuses on three essential attributes: complexity, cou-
pling and cohesion (CCC). Their metrics can be applied during various software
development phases and are used to evaluate the quality of software [17]. Thus,
the use of these metrics can provide complementary solutions that are potentially
useful for architecture evaluation [8], leading to more secured and dependable
systems [13]. The next subsections describe the CCC attributes and the metrics
approached in this paper.

3.1 Complexity

In IEEE definition, complexity is the degree to which a system or component
has a design or implementation that is difficult to understand and verify. The
definition argues that the complexity is a property of the design implementation,
i.e. source code or design. On the other hand, this definition of complexity also
concerns the effort needed to understand and verify the design implementation.
This means that two different entities are involved in the definition, process
(effort) and product (design or source code) [21].

This work concerns to complexity related to the product. So, it assess the
evolution of structural design and the impact of software changes in the code. In
software systems, the more complex are the structures (or modules), the harder
is to understand, change, reuse, produce and easier to have a defect. The com-
plexity metrics approached here are CCN and FFC.

Cyclomatic Complexity Number (CCN): It is one of the oldest complexity
metrics developed by McCabes [29]. The essence of this metric is to count the
number of linearly independent and executable paths through a module. The
formula to find the CCN is defined as:

CCN = (E −N) + 2P,
Where:
E : Number of edges
N : number of nodes (vertices)
P : number of independent graphs (usually P = 1)

Fan-in Fan-out Complexity (FFC): Henrys and kafura [23] identify a metric
using fun-in and fan-out measures, also called information flow. This metric mea-
sures the level of complexity in a system module. The method suggest identifying
the number of calls from a module and the number of calls to the module. In
the complexity measurement it is also used the length of the module which may
be substituted by the CCN number. The fan-in and fan-out metrics by them-
selves can be considered by some authors as coupling metrics stating values for

136 E.G. dos Anjos, R.D. Gomes, and M. Zenha-Rela

afferent and efferent coupling respectively. The complexity is determined by the
follow formula:

FFC = L ∗ (I ∗O)2,
Where:
L : length of the module (number of lines of code or CCN)
I : Number of calls to the module (fun-in)
O : Number of calls from the module (fun-out)

3.2 Coupling

Coupling is one of the attributes of modularity with most influence on software
maintenance as it has a direct effect on maintainability. Coupling metrics are
used in tasks such as impact analysis [8], assessing the fault-proneness of classes
[35], fault prediction [16], re-modularization [2], identifying of software compo-
nents [27], design patterns [3], assessing software quality [8], etc. In general, the
main goal in the software design is get the lower coupling as possible.

In OO, classes that are strongly coupled are affected by changes and bugs in
other classes [30]. Modules with high coupling have a substantial importance for
software architectures and thus need to be identified.

This work approaches two coupling metrics: CBO and RFC.

Coupling Between Object (CBO): It is one of the metrics proposed by Chi-
damber and Kemerer (CK) [24] used to measure the coupling between classes.
The initial method, according to the specification of the authors, uses two mea-
sures: the number of classes within a package and the relationships between
these classes with others in different packages. Later, other factors were consid-
ered such as: number of methods in the classes relationships, inheritance rela-
tionships between classes, etc. Generically the level of CBO in a package can be
determined by the formula showed below.

CBO = NL
NC

Where,
NL = number of links
NC = number of classes

Response For Class (RFC): RFC is one more metric of CK and calculates
the number of distinct methods and constructors invoked by a class. It is the
number of methods in a particular class plus the number of methods invoked in
other classes. Each method is counted just once, even if that method has many
relationships with methods in other classes. The formula to calculate RFC is
described below.

RFC = M +NC
Where,
M = number of method in the analysed class
NC = number external called methods

Assessing Maintainability Metrics in Software Architectures 137

3.3 Cohesion

A module has high cohesion when the relationships among its elements are tight
and the module provides a single functionality. The higher is the module co-
hesion, the easier the module is to develop, maintain, and reuse. Also, there is
empirical evidence that supports the importance of cohesion in structured design
[10]. Therefore, virtually every software engineering text describes high cohesion
as a very desirable property of a module [12].

Numerous cohesion metrics have been proposed for object oriented modules
[8], [11], and researchers have attempted to take the characteristics of methods
into account in the definition of cohesion metrics [12]. Nevertheless, there is a
lack of these methods in software architecture designs hampering the applica-
tion of metrics. One reason is due to the architecture not contains the internal
content of a component. The cohesion metrics approached here are: TCC and
LCC.

Tight and Loose Class Cohesion (TCC and LCC): The metrics of TCC
and LCC provide a way to measure the cohesion of a class. For TCC and LCC
only visible methods are considered (methods that are not private). TCC rep-
resents a density of attribute-sharing relationships between public methods in a
class. LCC represents extended relationships which are constructed by the tran-
sitive closure of attribute-sharing relationships. The higher is TCC and LCC,
the more cohesive the class is [6].

TCC(C) = NDC(C)
NP (C)

LCC(C) = (NDC(C)+NIC(C)
NP (C)

Where,

NP (C) = N∗(N−1)
2

N: number of methods
NDC(C): Number of direct connectivity between methods.
NIC(C): Number of indirect connections between methods.

4 Architectural Metrics

The metrics approached in the previous section are used to evaluate source-
code of object-oriented systems. This work aims to apply these metrics over
SA designs. Usually, the architectural designs are described using Architecture
Description Languages (ADLs). These languages describe a system at the higher
levels of abstraction and are intended to be both human and machine readable,
although an architect interpretation can differ of other architect. Depending on
the ADL used, software architectures can be designed in different ways.

138 E.G. dos Anjos, R.D. Gomes, and M. Zenha-Rela

The software architecture is the best element to manipulate when a system
evolution is required. The analysis of the changes is simpler, easier and cheaper to
be done using architectural modifications. Moreover, the evaluation of the quality
attributes may be performed. It allows verify if the system has an acceptable
level of maintainability.

There are some works which approach the impact of software changes in soft-
ware architectures. According to [4] it is possible to define metrics to abstract
levels of the system like software architectures. More than that, he discusses the
possibilities to use OO metrics for software architectures and support this paper
to understand the viability in applying such metrics.

The work presented in [32] demonstrates how the evolution can decrease the
level of maintainability of the system. It establishes the need of quality evaluation
before coding the changes for the system evolution. In [18] a tool called Ævol
was developed to define and plan the evolution of systems using the architectural
model.

In [36] Zayaraz approaches the use of COSMIC to define architectural metrics
to evaluate quality attributes. His work uses sub-characteristics of maintainabil-
ity as the target of metrics. However, this work does not explain exactly how
the metrics can be applied. Besides, is missing to propose a validation model to
define the quantification and limits of these metrics.

The work presented here relates maintainability metrics applied over source-
code of OO systems, in particular the CCC metrics mentioned before, to no-
tations defined by COSMIC methods. So, it adapts the COSMIC notations to
UML diagrams and proposes metrics-based models to evaluate software archi-
tectures. Each UML diagram can be considered as an architectural layer and the
COSMIC data movements are linked to diagram elements.

The case study carried out in this paper considers the component diagram as
the main system design description since it is one of the closest to other ADLs
diagrams. Considering the elements of a component diagram and the COSMIC
data movements, the elements adopted are described below.

E: Dependencies from the component.
X: Dependencies to the component.
W: Interfaces provided by the component.
R: Interfaces used by the component.
N: Number of components in a diagram.
L: Layer (in this case UML diagram)
S: Number of sub-components in a component

Using the considerations mentioned above the metrics are adapted to UML as
following:

Complexity

CCN = ((E +X +W +R)−N) + 2L

Assessing Maintainability Metrics in Software Architectures 139

FFC = CCN ∗ ((E +W) ∗ (X +R))2

Coupling

CBO = NL
N

RFC = S + E +R

Where:
NL = Number of links of the component (E +X +W +R)

Cohesion

TCC(C) = E+X+W+R
P (S)

LCC(C) = (E+X+W+R)+NIC(S)
NP (C)

Where:
P (S) = S∗(S−1)

2

NIC(S) =Number of indirect connections between components

It is important to mention that each metric has a scope of application. For exam-
ple, in the complexity metric CCN a component which posses sub-components
is considered as only one element for the layer under evaluation. It has the
whole diagram as scope of application without considering the internal rela-
tions of the component. Nevertheless, in the cohesion metrics the elements of
evaluation is the component itself, so, in this case, the sub-components are rel-
evant to the measurement. If the component has no subcomponents (S = 1)
the calculation of TCC and LCC is not applied because it has the maximum
cohesion. The Table 1 shows the metrics approached and the scope they are
applied.

Table 1. Metrics and scope of application

Metric Scope

CCN Whole diagram

FFC Component

CBO Component

RFC Component

TCC Component

LCC Component

140 E.G. dos Anjos, R.D. Gomes, and M. Zenha-Rela

5 Case Study

The initial case study uses an open-source software, the DCMMS, to validate
the hypotheses of architectural metrics application for maintainability. The DC
Maintenance Management System (DCMMS) is a web-based system used to
store, manage and analyse customer complaints for water and waste-water net-
works. A work order with map is created for every complaint. After completion
of the works in the field, updated information from the work order is entered to
the system for further analysis. This system was chosen because it is small, open-
source, well documented, and therefore more didactic to the study approached
in this paper. The Figure1 shows the UML component diagram for DCMMS
version 1.1.2.

Fig. 1. DCMMS component diagram (source: http://dcmms.sourceforge.net/)

This diagram is transformed in a graph or converted to a file with XMI (XML
Metadata Interchange) extension. It reduces the complexity of the diagram for
large scale systems and allows automatize the measurement process. The graph
obtained for the DCMMS component diagram is presented in Figure 2. This
graph allows a faster view over the diagram limiting to the perception of the
useful elements and connections to the layer over evaluation.

Assessing Maintainability Metrics in Software Architectures 141

Fig. 2. DCMMS graph transformed to evaluation

The CCC metrics were applied over DCMMS in the whole component dia-
gram and for each different component, depending on the scope. The results
are showed in the Table 2. Each column refers to a CCC metric and the lines
to the components. The last line, AVG, includes the average value among all
components in the diagram for a specific metric.

Table 2. Comparison between OO elements and Architectural elements

FFC CBO RFC TCC LCC

Apache Webserver 10 0.25 3 not applied not applied

PEAR packages 0 0.125 1 not applied not applied

DCMMS 1440 1 9 2.7 8.3

Shapefiles 0 0.125 1 not applied not applied

PHP Scripting 4000 1.125 5 not applied not applied

Oracle 0 0.125 1 not applied not applied

ARCsde 40 0.375 3 not applied not applied

Postgree SQL 360 0.625 3 not applied not applied

AVG 731.25 0.47 3.25 not applied not applied

In way to improve the understand of results, some considerations should be
done. In the measurement of components with only entrances connections and
no exit or only exits with no entrance, the coupling is very small and it is not
captured by FCC metric. In these cases, FFC = 0.

142 E.G. dos Anjos, R.D. Gomes, and M. Zenha-Rela

There are many components where the application of TCC and LCC is not
adaptable. It is due to the lack of sub-components inside the component and
hence, the cohesion is maximum.

Among the many tests we can do over the diagram one of them can demon-
strate how to improve the level of maintainability. The test consist in substitute
the component named DCMMS by its subcomponents, increasing the size of the
component diagram. The Figure 3 shows this alternative system. Although no-
ticeably the diagram is more complex, the measurement of CCC in this DCMMS
evolution (or variation) can show better results.

Fig. 3. DCMMS graph after remove DCMMS sub-components

It is possible to see that, although the aspect of the system looks more com-
plex, the level of complexity, cohesion and coupling improved with this modifica-
tion letting to a more maintainable system as it is showed in Table 3. Nonetheless,
the changes do not always let all the attributes to be better or worst. Sometimes
is important realize the trade-off between the attributes to reach the most ap-
propriate architecture.

The metrics used here validate the hypothesis in apply them in architectural
designs but, the final values presented here are analysed using the OO met-
rics limits. It is still necessary to define the limits of the metrics considering
architectural issues to understand better the level of quality.

Assessing Maintainability Metrics in Software Architectures 143

Table 3. Comparison for the modified architecture

FFC CBO RFC TCC LCC

Apache Webserver 9 0.2 3 not applied not applied

PEAR packages 0 0.1 1 not applied not applied

DCMMS pages 144 0.5 5 not applied not applied

Configuration Files 0 0.1 1 not applied not applied

Mapfiles 81 0.4 4 not applied not applied

Shapefiles 0 0.1 1 not applied not applied

PHP Scripting 3600 0.9 5 not applied not applied

Oracle 0 0.1 1 not applied not applied

ARCsde 36 0.3 3 not applied not applied

Postgree SQL 324 0.5 3 not applied not applied

AVG 419.4 0.32 2.7 not applied not applied

6 Conclusions and Future Works

The difficulty and cost to modify the code and evaluate the quality for a possible
system evolution demonstrates the need for such architectural evaluation. As
the metrics for codes, architectural metrics must be general enough to works
in different kinds of systems. Also, more than one evolution can be compared,
helping the architect in tuning the required design. In way to get this goal, this
work might still be refined and improved.

This paper is part of a Ph.D. thesis about assessing maintainability in software
architectures. The work presented here is an initial approach to demonstrate the
viability to assess maintainability in software architectures using well-known
metrics. The results show that such metrics can be applied over SA, although
some changes might be required. Moreover, relevant issues were raised with this
study supporting the authors in the definition of future works to continue this
research.

Some of the guidelines for further work are:

Definition of Metric Limits. It is important to define the limits for the metrics
applied over software architectures. It may be done measuring different systems
versions with several levels of CCC to understand the behaviour of the changes
and compare to source-code results. It allows to know how maintainable the
system is based on the values obtained by the metrics.

Inter-diagrams Metrics. The results for DCMMS system, show that complex-
ity and coupling seems to be more measurable than cohesion. It happens due
to the lack of information in the layer we take as example. If the metrics are
applied over other diagram, different results can be obtained. Thus, using more
than one layer, inter-diagram information can be used to improve the results.

144 E.G. dos Anjos, R.D. Gomes, and M. Zenha-Rela

Definition of New Metrics. The evaluation of different system versions and
different UML diagrams provides a new amount of data. It enables the assess-
ment of existing metrics and the definition of new ones. Also, the comparison
between the level of maintainability in code with the modifications performed in
the system helps to realize the impacts of changes over the levels of complexity,
cohesion and coupling.

Automate the Maintainability Evaluation. When the architectural metrics
have been accomplished, the evaluation process to support the software architect
to tune the architecture design using a simple interface should be automated. It
allows to compare the maintainability level for different evolutions of the system
and chose the best design according to the requirements. This study was initiated
in [1] and drives the development of such architectural tool.

The future works proposed here has as target large scale systems. The process
for development of this work contains three main phases. The first phase consists
in applying the metrics over source-code of several versions of a group of systems
to analyse the behaviour of the results during its evolution. In the second phase
the architectures of these systems are analysed using the same metrics over UML
diagrams, as initially proposed here. Lastly, in the third phase, the final metrics
are defined, adapted to architectural designs and implemented in a set of tools
to assist the software architect.

References

1. Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.): ICCSA
2011, Part V. LNCS, vol. 6786. Springer, Heidelberg (2011)

2. e Abreu, F.B., Pereira, G., Sousa, P.: A coupling-guided cluster analysis approach
to reengineer the modularity of object-oriented systems. In: Proceedings of the
Conference on Software Maintenance and Reengineering, CSMR 2000, p. 13. IEEE
Computer Society, Washington, DC, USA (2000)

3. Antoniol, G., Fiutem, R., Cristoforetti, L.: Using metrics to identify design pat-
terns in object-oriented software. In: Proceedings of the 5th International Sym-
posium on Software Metrics, METRICS 1998, p. 23. IEEE Computer Society,
Washington, DC (1998)

4. Bengtsson, P.: Towards maintainability metrics on software architecture: An adap-
tation of object-oriented metrics. In: First Nordic Workshop on Software Archi-
tecture, NOSA 1998 (1998)

5. Berns, G.M.: Assessing software maintainability. Commun. ACM 27, 14–23 (1984)
6. Bieman, J.M., Kang, B.-K.: Cohesion and reuse in an object-oriented system.

SIGSOFT Softw. Eng. Notes 20, 259–262 (1995)
7. Bode, S.: On the role of evolvability for architectural design. In: Fischer, S.,

Maehle, E., Reischuk, R. (eds.) GI Jahrestagung. LNI, vol. 154, pp. 3256–3263.
GI (2009)

8. Briand, L.C., Bunse, C., Daly, J.W.: A controlled experiment for evaluating qual-
ity guidelines on the maintainability of object-oriented designs. IEEE Trans.
Softw. Eng. 27, 513–530 (2001)

Assessing Maintainability Metrics in Software Architectures 145

9. Cai, Y., Huynh, S.: An evolution model for software modularity assessment. In:
Proceedings of the 5th International Workshop on Software Quality, WoSQ 2007,
p. 3. IEEE Computer Society, Washington, DC, USA (2007)

10. Card, D.N., Church, V.E., Agresti, W.W.: An empirical study of software design
practices. IEEE Trans. Softw. Eng. 12, 264–271 (1986)

11. Chae, H.S., Kwon, Y.R., Bae, D.-H.: A cohesion measure for object-oriented
classes. Softw. Pract. Exper. 30, 1405–1431 (2000)

12. Chae, H.S., Kwon, Y.R., Bae, D.H.: Improving cohesion metrics for classes by
considering dependent instance variables. IEEE Trans. Softw. Eng. 30, 826–832
(2004)

13. Chowdhury, I., Zulkernine, M.: Using complexity, coupling, and cohesion metrics
as early indicators of vulnerabilities. J. Syst. Archit. 57 (March 2011)

14. Daly, J., Brooks, A., Miller, J., Roper, M., Wood, M.: Evaluating inheritance
depth on the maintainability of object-oriented software. Empirical Software En-
gineering 1(2), 109–132 (1996)

15. Efe, P., Demirors, O., Gencel, C.: Mapping concepts of functional size measure-
ment methods. In: COSMIC Function Points Theory and Advanced Practices,
pp. 1–16 (2006)

16. El Emam, K., Melo, W., Machado, J.C.: The prediction of faulty classes using
object-oriented design metrics. J. Syst. Softw. 56, 63–75 (2001)

17. Fenton, N.E.: Software Metrics: A Rigorous and Practical Approach. International
Thomson Computer Press, Boston (1996)

18. Garlan, D., Schmerl, B.R.: A tool for defining and planning architecture evolution.
In: ICSE, pp. 591–594. IEEE (2009)

19. Glass, R.L.: Facts and Fallacies of Software Engineering. Addison-Wesley (2002)
20. IEEE Architecture Working Group. IEEE std 1471-2000, recommended practice

for architectural description of software-intensive systems. Technical report. IEEE
(2000)

21. Habra, N., Abran, A., Lopez, M., Sellami, A.: A framework for the design and
verification of software measurement methods. J. Syst. Softw. 81, 633–648 (2008)

22. Hashim, K., Key, E.: Malaysian Journal of Computer Science 9(2) (1996)
23. Henry, S., Kafura, D.: Software structure metrics based on information flow. IEEE

Transactions on Software Engineering 7(5), 510–518 (1981)
24. Hitz, M., Montazeri, B.: Chidamber and kemerer’s metrics suite: A measurement

theory perspective. IEEE Trans. Softw. Eng. 22, 267–271 (1996)
25. ISO. International Standard - ISO/IEC 14764 IEEE Std 14764-2006. ISO/IEC

14764:2006 (E) IEEE Std 14764-2006 Revision of IEEE Std 1219-1998), pp. 1–46
(2006)

26. Kuipers, T.: Software Improvement Group, and Joost Visser. Maintainability in-
dex revisited - position paper. Complexity, 5–7 (2007)

27. Lee, J.K., Seung, S.J., Kim, S.D., Hyun, W., Han, D.H.: Component identification
method with coupling and cohesion. In: Proceedings of the Eighth Asia-Pacific on
Software Engineering Conference, APSEC 2001, p. 79. IEEE Computer Society,
Washington, DC, USA (2001)

28. Lehman, M.M.: Laws of Software Evolution Revisited. In: Montangero, C. (ed.)
EWSPT 1996. LNCS, vol. 1149, pp. 108–124. Springer, Heidelberg (1996)

29. McCabe, T.J.: A complexity measure. IEEE Transactions on Software Engineer-
ing 2, 308–320 (1976)

30. Poshyvanyk, D., Marcus, A.: The conceptual coupling metrics for object-oriented
systems. In: Proceedings of the 22nd IEEE International Conference on Software
Maintenance, pp. 469–478. IEEE Computer Society, Washington, DC (2006)

146 E.G. dos Anjos, R.D. Gomes, and M. Zenha-Rela

31. Rowe, D., Leaney, J.: Evaluating evolvability of computer based systems architec-
tures - an ontological approach. In: Proceedings of the 1997 International Confer-
ence on Engineering of Computer-Based Systems, ECBS 1997, pp. 360–367. IEEE
Computer Society, Washington, DC (1997)

32. Shen, H., Zhang, S., Zhao, J.: An empirical study of maintainability in aspect-
oriented system evolution using coupling metrics. In: Proceedings of the 2008
2nd IFIP/IEEE International Symposium on Theoretical Aspects of Software
Engineering, pp. 233–236. IEEE Computer Society, Washington, DC (2008)

33. The Institute of Electrical and Eletronics Engineers. IEEE standard glossary of
software engineering terminology. IEEE Standard (1990)

34. Thongmak, M., Muenchaisri, P.: Maintainability metrics for aspect-oriented soft-
ware. International Journal of Software Engineering and Knowledge Engineering
IJSEKE 19(3), 389–420 (2009)

35. Yu, P., Systä, T., Müller, H.A.: Predicting fault-proneness using oo metrics: An
industrial case study. In: Proceedings of the 6th European Conference on Soft-
ware Maintenance and Reengineering, CSMR 2002, pp. 99–107. IEEE Computer
Society, Washington, DC (2002)

36. Zayaraz, G., Thambidurai, P., Srinivasan, M., Rodrigues, P.: Software quality
assurance through cosmic ffp. ACM SIGSOFT Software Engineering Notes 30(5),
1 (2005)

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 147–156, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Plagiarism Detection in Software
Using Efficient String Matching

Kusum Lata Pandey1, Suneeta Agarwal2, Sanjay Misra3, and Rajesh Prasad4

1 Ewing Christian College, Allahabad, India

2 Motilal Nehru National Institute of Technology, Allahabad, India
3 Atilim University, Ankara, Turkey

4 Ajay Kumar Garg Engineering College, Ghaziabad, India
klpandey@gmail.com, suneeta@mnnit.ac.in, smisra@atilim.edu.tr,

rajeshpd18@yahoo.com

Abstract. String matching refers to the problem of finding occurrence(s) of a
pattern string within another string or body of a text. It plays a vital role in
plagiarism detection in software codes, where it is required to identify similar
program in a large populations. String matching has been used as a tool in a
software metrics, which is used to measure the quality of software development
process. In the recent years, many algorithms exist for solving the string
matching problem. Among them, Berry–Ravindran algorithm was found to be
fairly efficient. Further refinement of this algorithm is made in TVSBS and
SSABS algorithms. However, these algorithms do not give the best possible
shift in the search phase. In this paper, we propose an algorithm which gives the
best possible shift in the search phase and is faster than the previously known
algorithms. This algorithm behaves like Berry-Ravindran in the worst case.
Further extension of this algorithm has been made for parameterized string
matching which is able to detect plagiarism in a software code.

Keywords: String matching, plagiarism detection, bad character shift,
parameterized matching and RGF.

1 Introduction

String matching refers to the problem of finding occurrence(s) of a pattern string
within another string or body of text. String matching is a very important subject in
the wider domain of text processing. The main application of string matching
includes: text editor(s), information retrieval, image processing, computational
biology, pattern recognition etc. Also, it plays a vital role in plagiarism detection in
software codes, where it is required to identify similar program in a large populations.
String matching has been used as a tool [1, 2] in a software metrics, which is used to
measure the quality of a software development process. Another type of string
matching called parameterized string matching (p-match) has been used in [4, 7] for
finding duplicated code in a large software text. This type of string matching is able to
find similar codes where systematic renaming of identifiers and variable is done.

148 K.L. Pandey et al.

Fig.1 given below illustrates the three major processes that make up generalized
plagiarism detection system [2]. String matching (or p-match) can be used in software
analyzer to produce the list of program pair with a measure of differences between
their metric representations. The final phase orders the list on metric similarity and
filters out those pairs exhibiting significant metric differences. The submissions listed
as potential plagiarisms are ultimately retrieved for manual examination and
classification.

Since string matching plays an important role in plagiarism detection, therefore we
mainly focus on developing efficient algorithm for solving the string matching
problem. In the recent years [3, 5, 6, 8, 9, 11], many efficient algorithms exist for
solving string matching problem. Among them, Berry-Ravindran [6] algorithm is
found to be fairly efficient. Further refinement of this algorithm is made in TVSBS
[13] and SSABS [8] algorithms. However, these algorithms do not give the best
possible shift in the search phase. In this paper, we propose an algorithm which gives
the best possible shift in the search phase and is faster than the previously known
algorithms. This algorithm behaves like Berry-Ravindran in the worst case. Further
extension of this algorithm has been made for parameterized string matching which is
able to detect plagiarism in a software code.

The paper is organized as follows. Sec. 2 presents related algorithms. Sec. 3
presents the proposed algorithm. Sec. 4 presents the experimental results. Finally, we
conclude in Sec. 5.

Fig. 1. A Plagiarism Detection System

2 Related Algorithms

In this section, we present some related concepts and algorithms. Thorough out the
paper, we assume that the pattern P[0…m-1] and text T[0…n-1] are array of m and n
characters where m ≤ n. Symbols of pattern and text are drawn from some alphabet Σ
of size σ.

Program metric metric diff

 Potential plagiarism

Analyz
er / p-
match

Metric
compar
ator

Similar
ity sort

 Plagiarism Detection in Software using Efficient String Matching 149

2.1 Sunday’s Quick Search Algorithm

Sunday [5, 12] simplifies the Boyer-Moore [3] algorithm further to derive new
algorithm: quick search. It uses only bad character shift to shift the window. At any
moment, if the window is positioned on the text factor T[j...j+m-1], 0 ≤ j ≤ n-m, the
bad character shift is determined by text character c = T[j+m] as follows:

qsBc[c] = min{i | 1 ≤ i ≤ m, P[m-i] = c} if c ∈ P

 m+1 otherwise

In the preprocessing phase, running time of the algorithm is O(m+σ) and space
complexity is O(σ). In the searching phase, running time of the algorithm in average
and worst case is: O(mn) and in best case is: O(n / m).

2.2 Raita Algorithm

Raita [10, 12] developed an algorithm which at each alignment of the pattern P[0…m-
1] on the text window T[j….j+m-1], 0≤j≤n-m, first compares the last character of the
pattern with the rightmost text character of the window, if they match, then it
compares the first character of the pattern with the leftmost character of the window.
In case of successful match, it compares the middle character of the pattern with
middle text character of the window. And finally if they match, it actually compares
the remaining characters from the second to the last. Shifts in this algorithm are
decided by rightmost character of m-length text window of the current alignment.

Running time of the algorithm in preprocessing phase is O(m+σ) and space
complexity is O(σ). In the searching phase, running time of the algorithm in average
and worst case is: O(mn) and in best case is: O(n / m).

2.3 Berry-Ravindran Algorithm

Berry and Ravindran [6, 12] designed an algorithm which performs the shifts by
considering the bad-character shift for the two consecutive text characters
immediately to the right of the m-length text window.

Preprocessing phase of the algorithm consists in computing for each pair of
characters (a, b) with a, b ∈ Σ, the rightmost occurrence of ab in axb.

The preprocessing phase is in O(m+σ) space and time complexity.

 1 if x[m-1] = a
brBc[a, b] = min m-i+1 if x[i] x[i+1] = ab
 m+1 if x[0] = b
 m+2 otherwise

150 K.L. Pandey et al.

After an attempt where the window is positioned on the text factor T[j .. j+m-1], a
shift of length brBc[T[j+m], T[j+m+1]] is performed. The text character T[n] is equal
to the null character and T[n+1] is set to this null character in order to be able to
compute the last shifts of the algorithm.

The searching phase of the Berry-Ravindran algorithm has a O(mn) time complexity.

2.4 TVSBS Algorithm

The TVSBS [13] algorithm is basically a blend of Berry-Ravindran, Raita and Quick
Search algorithm. The order of comparisons is carried out by comparing the last
character of the m-length text window and that of the pattern first and once they
match, the algorithm further compares the first character of this text window and that
of the pattern. This establishes an initial resemblance between the pattern and the
window. The remaining characters are then compared from right to left until a
complete match or a mismatch occurs. After each attempt, shift of the window is
gained by brBc shift value for the two consecutive characters immediately next to the
window. The brBc function has been exploited to obtain the maximal shift and this
reduces the number of character comparisons.

2.5 Parameterized String Matching

In 1992, Baker [7] first time introduces parameterized matching as a model for
identifying duplicated code in a software code. A given pattern P[0…m-1] is said to
parameterized match (p-match) with a substring t of the text T [0…n-1], if there exists
a bijection from the symbols of P to the symbols of t. In this problem, two disjoint
alphabets Σ of size σ and Π of size π (either one may be empty) are used. Σ is used
for fixed symbols and Π is used for parameterized symbols. In the bijection map used
for p-match, the symbols of Σ must match exactly whereas the symbols of Π may be
renamed. Searching of bijection has been made easy by Baker [7] with the proposed
concept of prev-encoding (prev). Prev(S) of a string S assigns a non-negative integer
p to each occurrence of a parameter symbol s (s∈Π) in S, where p is the number of
symbols since the previous occurrence of s in S. Prev of first occurrence of any
parameter symbol is taken as 0. For example, prev(XYABX) = 00AB4 and
prev(ZWABZ) = 00AB4. Here, strings XYABX and ZWABZ are p-matched with the
bijective mapping X↔Z and Y↔W. It is to be noted that their prev-encodes match
exactly. Thus one way of finding p-match is through prev-encoding. However, for
large text, direct prev-encoding may not work [7]. Baker in [7] has proposed a method
which can overcome the problem.

In [14], Boyer-Moore algorithm has been extended to parameterized string
matching for finding duplicate code in a large software text. In [15], a fast
parameterized Boyer-Moore algorithm using q-gram has been developed. This
algorithm uses restricted growth function (RGF) for encoding the text / pattern. A
single alphabet called parameterized alphabet has been used in this algorithm. This
algorithm was shown to be better than Boyer-Moore algorithm of [14].

 Plagiarism Detection in Software using Efficient String Matching 151

2.6 Parameterized Sunday (PSUNDAY) Algorithm

This section presents the parameterized version of Sundays’s quick search algorithm
[16]. In the pre-processing phase of this algorithm, we first form m-q+1 overlapping
q-grams of the pattern P[0…m-1], where q (>0) is the size of the q-gram. We then
take prev-encoding of each q-gram. An integer equivalent (for indexing) of each q-
gram is obtained as in section 3.4.2. These integer equivalent values are concatenated
in order to form a new pattern. The bad character shift is computed from this new
pattern.

Let the text be represented as: T0, T1, T2……Ti Ti+1…..Tn-1 and last character of the
m-length window at any instant is Ti (m-1≤ i ≤ n-1). In the searching phase, we first
calculate integer equivalent (as earlier) of the last q-gram of this m-length text
window. If it matches with last q-gram (integer equivalent) of the pattern, then same
process of matching is repeated one-by-one with preceding q-grams of the text
window. In case, all q-grams of the text window are matched, then the corresponding
valid shift is reported and window is shifted by “SHIFT”. In the case of mismatch at
any point, window is shifted by the same shift “SHIFT”. This shift “SHIFT” is
calculated by using the q-gram ending with character Ti+1. This procedure is followed
until end of the text. Example given below illustrates the algorithm.

Example

Let the pattern P = “abaaba” and text T = “bbabbababa” and q = 3. We assume that all
the symbols of P and T are parameterized symbols. The 3-grams of the pattern are:
aba, baa, aab, and aba. Prev-encodings of pattern are: 002, 001, 010, and 002. By
reserving enough bits for each character, the integer equivalent (index) of each q-
gram are: (0010 ≡ 2, 0001 ≡ 1, 0100 ≡ 4, and 0010 ≡ 2) respectively. The new pattern
becomes “2142”. Table 1 shows the Sunday′s pre-processing table.

Table 1. Sunday′s (Quick search) Bad character (qsBC) Table (* is meant to represent any
other character)

Char (c) ‘2’ ‘1’ ‘4’ *
qsBC [c] 1 3 2 5

Steps of the searching part:

T = [b b a b b a] b a b a.

Using the 3-gram “bab”, shift is first calculated: the integer equivalent of this 3-
gram (bab) is 2, hence the SHIFT is 1 (=qsBC[2]).

Start with the last 3-gram (i.e. bba) of the window. Integer equivalent of prev-
encoded of this 3-gram is 4. This character (i.e. 4) is compared with last character (i.e.
2) of the new form of the pattern “2142”. There is a mismatch (i.e. 4 ≠ 2). Hence there
is no need to consider the preceding 3-grams.
T = b [b a b b a b] a b a

152 K.L. Pandey et al.

Integer equivalent of last 3-gram (i.e. bab) is 2, which is equal to last character of the
pattern “2142”. Hence we repeat the process for preceding 3-grams and so on. Since
there is a match for each 3-gram, therefore pattern (abaaba) parametrically occurs
(with bijective mapping a↔b) in the text with valid shift 1.

3 The Proposed Algorithm

The algorithm proposed here aims to maximize the shift value for each iteration as
well as decrease the time during the searching phase. The proposed algorithm is cross
between Berry-Ravindran and TVSBS algorithm. The Berry-Ravindran bad character
function (brBc) is found to be the most effective in calculating the shift value but
many times even brBc doesn’t give the maximum shift possible. In this paper, we
propose an improvement in the shift. The searching phase is same as in TVSBS
algorithm.

3.1 Pre-processing Phase

This phase is performed by using two bad character functions. This provides
maximum shift most of the times and its worst case is the shift provided by brBc. Pre-
processing phase of the algorithm consists of computing for each pair of characters (a,
b) for all a, b ∈ Σ, the rightmost occurrence of ab in the pattern. First we consider the
pair of characters lies immediately after the window and calculate the bad character
according to them, as done in Berry-Ravindran algorithm known as brBc. It is defined
as:

1 if x[m – 1] =a
m – i + 1 if x[i]x[i + 1] = ab

 brBc[a, b] = min m + 1 if x[0] = b
 m + 2 otherwise

Now it is possible that the shift provided by brBc may sometimes not be the best shift.
Here we propose a new function named as New Bad Character function (newBc)
which sometimes gives better shift than brBc. newBc is computed by taking the pair
of the last character of the m-length text window and the one next to it outside the
window. It is defined as:

 m - i if x[i]x[i+1]=ab,
newBc[a, b] = min m if x[0]=b;

 m+1 otherwise.

Now the maximum shift of both the shift algorithms is taken as valid shift for the
proposed algorithm, i.e. shift = max (brBc[a, b], newBc[a,b]). For efficiency purposes
the shift for all pair of alphabets for both brBc and newBc is stored in 1D-arrays
rather than 2D-arrays, which decreases the access time. In this algorithm, we have
used brBc over Quick Search bad character and Boyer–Moore bad character because

 Plagiarism Detection in Software using Efficient String Matching 153

it gives the better shift most of the times as the probability of the rightmost occurrence
of ab in the pattern is less than the probability of a.

3.2 Searching Phase

Searching is done as in the TVSBS [13] algorithm. It includes three stages.

Step 1: In stage 1, the last character of the m-length text window is compared to the
last character in pattern. If it matches than we compare the first character of window
with first character of the pattern. If it matches too, than we move to the stage 2
otherwise we jump to stage 3.
Step 2: In this we compare all the characters sequentially from second last to the
second character until a complete match or a mismatch occurs. If all the characters are
matched, we get the desired pattern and this is notified and our algorithm moves to
the next stage. If mismatch occurs it directly jumps to the stage 3.
Step 3: Here we shift the window according to the shift calculated in the
preprocessing phase. This shift is obtained by taking the maximum of the shift
provided by brBc and newBc and the window is shifted to the right according to that.
All the three stages of the searching phase are repeated until the window is positioned
beyond n – m + 1.

Table 2 shows a comparison (number of text character comparison) of SSABS,
TVSBS and proposed algorithm for the text (T) and pattern (P) taken in FASTA
format:

T=ATCTAACATCATAACCCGAGTTGGCATTGGCAGGAGAGCCAATCGATG
P = ATTGGCAG

Table 2. Comparison among SSABS, TVSBS and Proposed algorithm

ALGORITHM SSABS TVSBS
Proposed
algorithm

ATTEMPT 15 8 7
COMPARISONS 30 23 17

3.3 Extension to Parameterized Matching

By using the concept of q-gram and RGF string [15], the proposed algorithm has been
extended for parameterized string matching. A sequence of q-characters is being
considered for calculating the bad character shift. Bad character shift in this algorithm
is calculated for q-consecutive RGF encoded characters. During the searching
process, q-consecutive characters of the text are RGF encoded online. Rest algorithm
remains the same.

154 K.L. Pandey et al.

4 Experimental Results

We have implemented our proposed algorithm and existing algorithms on the same
data set in C++, compiled with GCC 4.2.4 compilers on the Pentium 4, 2.14 GHz
processor with 512 MB RAM, running ubuntu 10.04. We performed several
experiment on different pattern length and various text sizes. Pattern and text are
taken from file: http://genome.crg.es/datasets/genomics96/seqs/DNASequences.fasta
over the alphabet {A, C, G, T}. Table 3 gives the number of comparison of the
algorithms for varying pattern length. Table 4 gives the running time of the
algorithms for varying pattern length. Table 5 gives the number of comparison of the
algorithms for varying text length. Table 6 gives the running time of the algorithms
for varying text length. Table 7 shows the behavior of our proposed algorithm on
increasing the duplicity present in the code (for same pattern and text length).

Table 3. No. of comparisons × 100000 of various algorithms

(For varying pattern length)

Pattern length SSABS TVSBS Proposed Algorithm

4 118 160 82

8 62 112 58

12 100 62 38

16 64 66 34

20 78 60 20

24 120 66 24

36 40 60 18

48 56 38 16

Table 4. Running time in seconds of various algorithms

(For varying pattern length)

Pattern length SSABS TVSBS Proposed Algorithm

4 .052 .068 .060

8 .038 .045 .040

12 .054 .032 .030

16 .042 .038 .028

20 .044 .028 .024

24 .054 .028 .024

36 .028 .040 .022

48 .036 .022 .020

 Plagiarism Detection in Software using Efficient String Matching 155

Table 5. No. of comparisons × 100000 of various algorithms

(For varying text length)

Text length
(MB)

SSABS TVSBS Proposed Algorithm

0.5 0.5 0.4 0.2

1 0.8 0.5 0.3

2 1.8 1.2 0.5

3 2.8 1.8 0.8

4 3.6 2.2 1.0

5 4.5 2.8 1.2

6 5.5 3.5 1.5

Table 6. Running time in seconds of various algorithms

(For varying text length)

Text length
(MB)

SSABS TVSBS Proposed Algorithm

0.5 0.05 0.040 0.030

1 0.07 0.050 0.050

2 0.14 0.008 0.008

3 0.18 0.012 0.010

4 0.26 0.016 0.014

5 0.03 0.020 0.018

6 0.36 0.022 0.020

Table 7. Effect on running time on increasing the duplicity present in the text

(For fixed pattern length, q = 3 and text size = 6 MB)

Parameterized
Alphabet

Fixed alphabet Time (s)

- {A, C, G, T} 0.020

{A} {C, G, T} 0.050

{A, C} {G, T} 0.102

{A, C, G} {T} 0.167

{A, C, G, T} - 0.212

5 Conclusions

In this paper, we propose an algorithm which gives the best possible shift in the
search phase and is faster than the previously known algorithms. The proposed

156 K.L. Pandey et al.

algorithm is compared with existing algorithm on the same data set to compare the
relative performance. Tables 3 and 4 shows that on increasing the pattern length, our
algorithm performs the best in terms of number of comparison as well as in the
running time. Tables 5 and 6 shows that, on increasing the text length, our algorithm
is still best among the others. Table 7 shows that on increasing the duplicity present in
code (i.e. increasing the plagiarism), running time increase.

References

1. Roy, C.K., Cordy, J.R.: A survey on software clone detection research, Technical Report
(2007)

2. Whale, G.: Software Metrics and Plagiarism Detection. Journal of System Software 13,
131–138 (1990)

3. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Communication of ACM 20,
762–772 (1977)

4. Amir, A., Navarro, G.: Parameterized Matching on Non-linear Structures. Information
Processing Letters (IPL) 109(15), 864–867 (2009)

5. Sunday, D.M.: A very fast substring search algorithm. Communication of ACM 33, 132–142
(1990)

6. Berry, T., Ravindran, S.: A fast string matching algorithm and experimental results. In:
Holub, J., Simánek, M. (eds.) Proceedings of the Prague Stringology Club Workshop
1999, Collaborative Report DC-99-05, Czech Technical University, Prague, Czech
Republic, pp. 16–26 (2001)

7. Baker, B.S.: A program for identifying duplicated code. In: Computing Science and
Statistics: Proceedings of the 24th Symposium on the Interface, vol. 24, pp. 49–57 (1992)

8. Sheik, S.S., Aggarwal, S.K., Poddar, A., Balakrishnan, N., Sekar, K.: A FAST pattern
matching algorithm. J. Chem. Inf. Comput. Sci. 44, 1251–1256 (2004)

9. Horspool, R.N.: Practical fast searching in strings. Software – Practice and Experience 10,
501–506 (1980)

10. Raita, T.: Tuning the Boyer–Moore–Horspool string-searching algorithm. Software –
Practice Experience 22, 879–884 (1992)

11. Abrahamson, K.: Generalized String Matching. SIAM Journal on Computing 16, 1039–1051
(1987)

12. Charras, C., Lecroq, T.: Handbook of Exact String matching algorithms,
http://www-igm.univ-mlv.fr/~lecroq/string/

13. Thathoo, R., Virmani, A., Laxmi, S.S., Balakrishnan, N., Sekar, K.: TVSBS: A fast exact
pattern matching algorithm for biological sequences. Current Science 91(1) (2006)

14. Baker, B.S.: Parameterized pattern matching by Boyer-Moore type algorithms. In:
Proceedings of the 6th ACM-SIAM Annual Symposium on Discrete Algorithms, San
Francisco, CA, pp. 541–550 (1995)

15. Salmela, L., Tarhio, J.: Fast Parameterized Matching with q-Grams. Journal of Discrete
Algorithms 6(3), 408–419 (2008)

16. Prasad, R., Agarwal, S., Misra, S.: Parameterized String Matching Algorithms with
Application to Molecular Biology. Nigerian Journal of Technological Research, 5 (2010)

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 157–169, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Dynamic Software Maintenance Effort Estimation
Modeling Using Neural Network, Rule Engine

and Multi-regression Approach

Ruchi Shukla1, Mukul Shukla2,3, A.K. Misra4, T. Marwala5, and W.A. Clarke1

1 Department of Electrical & Electronic Engineering Science
University of Johannesburg, South Africa

2 Department of Mechanical Engineering Technology
University of Johannesburg, South Africa
3 Department of Mechanical Engineering

Motilal Nehru National Institute of Technology, Allahabad, India
4 Department of Computer Science and Engineering

Motilal Nehru National Institute of Technology, Allahabad, India
5 Faculty of Engineering and Built Environment

University of Johannesburg, South Africa
{ruchishuklamtech,mukulshukla2k}@gmail.com, akm@mnnit.ac.in,

{tmarwala,willemc}@uj.ac.za

Abstract. The dynamic business environment of software projects typically
involves a large number of technical, demographic and environmental variables.
This coupled with imprecise data on human, management and dynamic factors
makes the objective estimation of software development and maintenance effort
a very challenging task. Currently, no single estimation model or tool has been
able to coherently integrate and realistically address the above problems. This
paper presents a multi-fold modeling approach using neural network, rule
engine and multi-regression for dynamic software maintenance effort
estimation. The system dynamics modeling tool developed using quantitative
and qualitative inputs from real life projects is able to successfully simulate and
validate the dynamic behavior of a software maintenance estimation system.

Keywords: Software maintenance, effort estimation, system dynamics, neural
network, regression.

1 Introduction

In any dynamic business environment a large number of technical, demographic,
environmental and social variables are typically involved [1],[2]. This situation is
particularly valid in case of software projects. The dynamics of software projects
coupled with lack of data on human, management and dynamic factors makes the
objective estimation of dynamic software effort a very challenging task. Current
estimation models and tools are still striving to integrate and address all of the above
problems. The need is to develop a system dynamics model using quantitative and

158 R. Shukla et al.

qualitative inputs to realistically simulate system behavior for software maintenance
estimation [3].

Dynamic simulation models can play a vital role to understand the software
process evolution as compared to static simulation models. Dynamic project
performance estimation aims at ascertaining a software maintenance project’s
performance in terms of expected schedule, effort or defect density, when the project
conditions are dynamically changing during the program execution [4]. The dynamic
simulation model of software projects helps to capture and model the impact of
technological changes in management policies, team dynamics and organizational
maturity level over the entire duration of the project. It objectively represents the
behavioural observations of the software development process and models the change
of system state variables continuously.

The dynamic software process simulation models (SPSMs) are used to understand,
plan, manage and improve software development processes [5]. Caivano et al.
presented a tool for dynamic effort estimation of an aged software system. Method
characteristics like fine granularity and dynamic tuning permit the tool to quickly
react to process dynamics [6]. Many researchers [7],[8],[9] have attempted to develop
SPSMs to address different issues related to software projects. These dynamic models
use number of parameters and functions to characterize the environment (project and
organizational). However, in the absence of historical project databases and due to
software projects uncertainty it becomes difficult to set values for these parameters
and build a new simulation model to validate the relationships among project
variables [10]. Further, customization of the published simulation models for an
organization is often not so easy due to unavailability of sufficient control variables to
represent the specific characteristics of various types of software projects. Choi and
Bae presented a dynamic software process simulation modeling method based on
COCOMO II. Their framework applied expert judgment technique to mitigate the
unavailability of empirical data on the effects of a dynamic project environment. The
developed model could handle unanticipated and uncontrolled creep requirements of
the project [4]. Jorgensen and Ostvold analysed the reasons for occurrence of errors in
software effort estimation. They found that the data collection approach, the role of
the respondents, and the type of analysis had an important impact on the reasons
given for estimation error [1].

Simulation of the dynamics of software development projects helps to investigate
the impact of technological change of different management policies and maturity
level of organizations over the whole project. Bhatt et al. collected outsourced
software maintenance data (unavailable in public domain) and described a system
dynamics model to maintain a software system [11]. However, they did not account
for outliers and missing information, and gave only an empirical model to calculate
the impact of the considered factors on software maintenance effort.

In the past system dynamics with simulation models have been applied
successfully in the context of software engineering estimation. Models have been
built that successfully predicted changes in project cost, staffing needs and schedules
over time, as long as the proper initial values of project development are available to
the estimator [12]. Calzolari et al. suggested how dynamic systems could be

 Dynamic Software Maintenance Effort Estimation Modeling 159

successfully applied in the software maintenance context, to model the dynamic
evolution of software maintenance effort [13]. Baldassarre et al. presented SPEED, a
tool for implementing the dynamic calibration approach for renewal of legacy
systems, where the current and well established approaches tend to fail. They applied
the method of dynamic calibration for effort estimation also and conducted its
experimental validation [14].

Recent approaches of software development and maintenance for dynamic systems
have used hybrid or multiple methods which integrate quantitative and qualitative
information. When quantitative models are unavailable, a correctly trained neural
network (NN) can be used for modeling of non-linear and/or dynamic systems. The
authors used the NN approach previously for modeling of software maintenance effort
based on 14 static effort drivers [15]. However, NNs are unable to provide reasonable
insight into model behavior as they are explicit rather than implicit in form. This
difficulty of NN can be overcome using qualitative modeling or rule-based inference
methods. For example, genetic algortihm can be used together with NNs to enhance
reasoning capabilities [16]. Hence, in the present work a multi-fold modeling
approach using neural network, rule engine and multi-regression has been adopted to
precisely estimate the dynamic software maintenance effort.

2 Software Maintenance Effort Estimation Methodology

Based on a detailed study conducted [17],[18],[19],[20] and various respondents from
industry (Infosys, Syntel, Netlink and IBM) on how practical software maintenance is
carried out in the software industry, the following steps are proposed for software
maintenance effort estimation:

1. Identification of Cost Drivers: Emphasizing on maintenance activities, the main
maintenance cost drivers are identified and information is collected of project
size (LOC, FP), maintenance productivity etc. Their respective values are
obtained from industry and used as input parameters for effort estimation.

2. Evaluate Complexity: Performed by capturing information from a request or
application based on the complexity of change for a particular file or program.

3. Identification of Dynamic Issues: Dynamic issues are identified carefully and
categorized as dynamic factors and their respective complexities are calculated
based on static values.

4. Associating Complexity with Required Effort.
5. Determining Cause-Effect Relationship between Maintenance Effort and

Various Effort Drivers.

3 Dynamic Factors

A large number of variables are involved in a dynamic software business setup. Many
of these factors are time dependent and change dynamically according to the ongoing
changes. From a literature survey of software maintenance effort estimation it was

160 R. Shukla et al.

inferred that while calculating maintenance effort most of the researchers have not
emphasized on the impact of various dynamic issues. Some of these issues include
changing configuration, change in user requirements, volatility, turnover of project
personnel, extension of project deadline and change to modern means of
documentation. It is therefore necessary to bring these dynamic issues in a modeling
approach to realistically simulate the behavior of the system dynamics. In this work,
the following dynamic factors are included for dynamic software maintenance effort
estimation [21]:

1. Traceability factor – As per IEEE standard 610, traceability is defined as a
degree to which a relationship can be established between two or more products
of development process. Traceability factor keeps an account of the dynamic
changes in requirements, specifications, platform etc. While making any
software, attempts are made to use tools to match the requirements, to design, to
code, thus achieving a higher traceability factor. Higher the traceability factor,
higher is the maintainer’s productivity and lower is the maintenance effort [21].

2. Usability factor - Any software should satisfy all levels of requirements from the
user’s perspective. A properly updated user manual helps in minimizing the
maintenance cost, increasing usability and maintenance productivity, thereby
decreasing maintenance effort.

3. Configuration management factor - It has the following tasks: software change
request (SCR) and approval procedures, code (and related work products) and
change management tasks and software configuration, auditing managing and
tracking software documentation, releases etc. If these are followed properly then
accordingly it is rated dynamically. Higher the configuration management factor
lower is the maintenance effort.

4. Volatility factor - This factor accounts for software systems which are known to
have frequent modifications and up gradation (e.g. stock exchange, banking etc).
Higher the volatility factor, higher is the maintenance effort [7].

5. Turnover factor - This factor helps in dynamically analysing the time frame in
which a maintenance project is completed. It plays a vital role in medium to large
sized projects [3].

4 Data Collection and Analysis

In the present work, responses were collected from software maintenance industry
experts (including those from Infosys, Syntel, IBM and others) to generate own
dataset by adopting a questionnaire based survey approach. The data was collected
across professionals of different educational qualifications, job roles and working at
various geographical locations across different companies. Further, these
professionals had various levels of total software experience (minimum 3 years) as
well as with maintenance activities (minimum 2 years) for software in different
application domains.

Information was acquired from experts for rating of the 5 dynamic factors on a
Likert scale (1 to 5) based on the static drivers’ settings for different projects. Details
of the dataset of 36 commercially outsourced SM projects based on 14 cost drivers

 Dynamic Software Maintenance Effort Estimation Modeling 161

and effort are as follows [22]. The estimation was carried out by 6 experts each at
Syntel, an ISO 9001 certified and SEI CMM level 5 application management and e-
business solutions company. This data is based on a legacy insurance system project
running on the IBM platform with a total system size of 0.138 million lines and 1275
number of programs.

The corresponding dynamic effort was also acquired from experts based on the
available static effort and Likert rating of the 5 dynamic factors. A total of 50
questionnaires were forwarded and 11 responses received. Some of the missing
information and superfluous information from the responses received were
supplemented based on inputs and experience of similar projects. Data beyond ±20%
of the upper and lower limits was also appended suitably.

5 Dynamic Effort Estimation

From a literature review and experts feedback the cause-effect relationship of the 8
most dominant static factors and the 5 dynamic factors (traceability factor - TF,
configuration management factor - CMF, usability factor – UF, volatility factor – VF
and turnover factor - TOF) was obtained, as presented in Table 1. For dynamic
software maintenance effort estimation modeling, the effect of only these 8 top ranked
significant (total % contribution to effort nearly 88%) static effort factors (N, D, B,
M, C, L, F and E) was considered.

Table 1. Cause-effect relationship between the eight most significant static factors and the five
dynamic factors

Effort Drivers Code Rank Cause
Effect on

TF CMF UF VF TOF
No. of time zones the users that
need support are spread across

N 1

Average no. of lines per
program

D 2 --- ---

% of the online programs to the
total number of programs

B 3

Nature of SLA M 4

Complexity of file system used C 5

% of the update programs to the
total number of programs

L 6

No. of database objects used by
the system

F 7

No. of files (input, output, sort)
used by the system

E 8

where, indicates decreasing and increasing trend, respectively; --- indicates
insignificant trend; and indicates medium trend)

162 R. Shukla et al.

The dynamic effort has been found using the following two approaches:

1) Input from Experts - Based on the rating of various dynamic factors on a scale
of 1 to 5, and the static effort, the corresponding dynamic effort was acquired
by experts as explained in Section 4.

2) Rule Based System – A Rule Engine has been developed and applied for the
estimation of dynamic effort. From the information acquired by experts for
complexity based rating of various dynamic factors their values have been
found. The detailed steps of the proposed rule based system are explained
below [3]:
i) At first, a schema for assignment of complexity to the 3 levels of the 8 most

significant static effort factors (N, D, B, M, C, L, F and E) was designed,
based on the feedback obtained from practicing software maintenance
personnel. A ternary scheme was adopted to match the 3 levels of static
factors. The finally assigned complexity values to different levels of 8
significant static factors are shown in Table 2.

Table 2. Assigned complexity to different levels of 8 significant static factors

Code Static effort factors
Level 1 Level 2 Level 3

Value Cmplx. Value Cmplx. Value Cmplx.
N Number of time zones

the users that need
support are spread across

1 +1 3 0 5 -1

D Average number of lines
per program

750 +1 2250 0 3750 -1

B Percentage of the online
programs to the total
number of programs

10% +1 30% 0 50% -1

M Nature of SLA 1 -1 5 0 10 +1
C Complexity of the file

system being used
1 -1 2 +1 3 0

L Percentage of the update
programs to the total
number of programs

7% +1 30% 0 53% -1

F Number of database
objects used by the
system

5 +1 20 0 35 -1

E Number of files (input,
output, sort) used by the
system

125 +1 375 0 625 -1

 Dynamic Software Maintenance Effort Estimation Modeling 163

ii) Using the cause-effect relationship of the 8 most dominant static factors
and the 5 dynamic factors (Table 1) the complexity of the 5 dynamic
factors was calculated as follows:

 TF_complexity=N_complexity+D_complexity+B_complexity M_complexity+
 C_complexity + L_complexity + F_complexity + E_complexity

UF_complexity=N_complexity+D_complexity+B_complexity+M_complexity+
 C_complexity - L_complexity + F_complexity + E_complexity

CMF_complexity=N_complexity+B_complexity+M_complexity+C_complexity
 + L_complexity + F_complexity + E_complexity

VF_complexity=-(N_complexity+B_complexity+M_complexity+C_complexity
 +L_complexity + F_complexity + E_complexity)

 TOF_complexity=-(N_complexity+D_complexity+B_complexity+M_complexity
 +C_complexity+L_complexity)

iii) Based on the complexity obtained in the above step the dynamic rating for
the 5 dynamic factors was fixed on a scale of 1 to 5 as per the following
schema:

If (dyn_factor)_complexity > -9 & < -4 then (dyn_factor) rating = 1
If (dyn_factor)_complexity > -5 & < -1 then (dyn_factor) rating = 2
If (dyn_factor)_complexity > -2 & < 2 then (dyn_factor) rating = 3
If (dyn_factor)_complexity > 1 & < 5 then (dyn_factor) rating = 4
If (dyn_factor)_complexity > 4 & < 9 then (dyn_factor) rating = 5

This schema was forwarded to various practicing software maintenance
personnel and based on the feedback obtained from majority of them it was
finalized.

iv) The dynamic effort was eventually calculated using the following
approach:

for i=1 to n (no_of_projects)
 for j=1 to 5 (no_of_dyn_factors)

 Dynamic_effort(i)=Static_effort(i)+∑weight(j)*rating_(dyn_factor(j)) . (1)

All the dynamic factors were assigned equal weights but their relative
impact/ratings kept changing. The final results obtained from the above
steps are shown in Table 3 (columns 7-11, 13).

Finally, a twofold modeling approach based on multi-linear regression and neural
network techniques was adopted for dynamic effort estimation, as explained
underneath in Sections 5.1 and 5.2, respectively. The results obtained from these

164 R. Shukla et al.

techniques were used for validation of the mean dynamic effort estimated by the
experts and that calculated by the rule engine approach (column 13).

5.1 Regression Model for Dynamic Effort Estimation

Based on the 19 (14 static and 5 dynamic) factors along with the corresponding
dynamic effort for different projects (as estimated by experts), multi-variable linear
regression was carried out using the Minitab software, for dynamic software
maintenance effort estimation. An ANOVA based multi-linear regression equation
(Eq. 2) was obtained for estimation of dynamic software maintenance effort.

Dynamic_Effort = 7.94 + 0.215*A + 0.021*B + 0.495*C + 0.0004*D + 0.001*E +
0.035*F+ 0.005*G + 0.063*H + 0.025*I + 0.031*J +
0.052*K - 0.0009*L + 0.12*M + 0.319*N +
0.158*TF + 0.856*UF - 0.586*CMF+ 0.42*TOF . (2)

5.1.1 Analysis and Validation of Results
The fifth dynamic factor (volatility factor - VF), though significant in a dynamically
changing software maintenance project environment, was dropped from the
regression equation, as it was highly correlated to another factor. Based on actual
values of static and dynamic factors the dynamic effort was predicted using the
regression equation (Eq. 2) as shown in column 14 of Table 3. It can be inferred from
the % error values (column 15) between the estimated dynamic effort (using Rule
Based System) and the regression model based dynamic effort that the regression
model is able to successfully predict the dynamic effort with a high accuracy. The
variation in error is of the order of +6.85 to -5.51% with an average % error of 0.002,
validating the proposed approach and the reasonable goodness of fit of the model
(square of coefficient of regression R2 = 0.912; Fig. 1).

Fig. 1. Comparison of rule based system and regression model predicted dynamic effort

 Dynamic Software Maintenance Effort Estimation Modeling 165

Table 3. Comparison of rule based system estimated and regression model predicted dynamic
effort

Proj.

Static factors Dynamic factors Mean
Static
effort

(Rao &
Sarda
[22])

Estimated
Dynamic

effort
(Rule
Based

System)
C13

Regression
model

predicted
Dynamic

effort
(Eq. 2)

C14

% Error
(1-C13/C14)

*100 A B
C
to
L

M N TF UF CMF VF TOF

1 1 10 1 1 4 4 4 2 2 9.8 13 12.95 -0.39
2 1 10 5 3 4 4 4 2 2 14.1 17.3 17.14 -0.92
3 1 10 10 5 2 3 2 4 3 19.2 22 21.94 -0.27
4 1 10 10 5 4 4 3 3 3 14.5 17.9 17.59 -1.75
5 1 10 1 1 4 3 4 2 2 12.7 15.7 15.64 -0.40
6 1 10 5 3 2 2 3 3 3 15.1 17.7 17.51 -1.06
7 2 10 5 5 3 3 2 4 3 14.7 17.7 17.80 0.55
8 2 10 10 1 4 5 4 2 2 14.0 17.4 17.91 2.87
9 2 10 1 3 3 3 4 2 3 14.4 17.4 17.39 -0.06

10 2 10 10 3 4 3 3 3 2 14.2 17.2 17.19 -0.07
11 2 10 1 5 3 3 3 3 3 14.4 17.4 17.75 1.97
12 2 10 5 1 3 4 4 2 3 14.2 17.4 17.31 -0.55
13 1 30 1 3 2 2 2 4 4 13.9 16.7 16.83 0.77
14 1 30 5 5 3 3 3 3 4 15.1 18.3 18.74 2.36
15 1 30 10 1 4 3 4 2 2 13.6 16.6 16.90 1.75
16 1 30 5 1 2 3 2 4 3 14.0 16.8 17.27 2.72
17 1 30 10 3 4 3 4 2 2 15.1 18.1 18.03 -0.41
18 1 30 1 5 3 3 3 3 3 13.6 16.6 17.18 3.40
19 2 30 5 5 3 2 3 3 3 14.8 17.6 17.58 -0.09
20 2 30 10 1 4 4 4 2 2 15.0 18.2 18.10 -0.54
21 2 30 1 3 2 3 2 4 3 15.6 18.4 17.44 -5.51
22 2 30 10 3 2 3 2 4 3 15.1 17.9 18.19 1.59
23 2 30 1 5 3 2 3 3 3 15.6 18.4 17.68 -4.09
24 2 30 5 1 4 4 4 2 2 14.4 17.6 17.26 -1.98
25 1 50 5 3 3 2 3 3 4 15.1 18.1 17.89 -1.15
26 1 50 10 5 3 3 3 3 3 16.0 19 18.22 -4.30
27 1 50 1 1 2 3 2 4 4 15.6 18.6 18.51 -0.46
28 1 50 1 5 1 2 1 5 5 16.3 19.1 19.02 -0.42
29 1 50 5 1 3 3 3 3 2 14.4 17.2 17.31 0.65
30 1 50 10 3 4 4 4 2 3 15.3 18.7 18.73 0.14
31 2 50 1 1 1 1 2 4 4 14.8 17.2 17.19 -0.08
32 2 50 5 3 4 4 3 3 3 14.5 17.9 17.82 -0.47
33 2 50 10 5 3 2 3 3 3 16.4 19.2 18.99 -1.11
34 2 50 10 1 3 3 3 3 3 15.3 18.3 18.18 -0.65
35 2 50 1 3 2 3 2 4 3 15.3 18.1 18.32 1.19
36 2 50 5 5 3 2 3 3 3 16.3 16.7 17.93 6.85

Average % error 0.002

166 R. Shukla et al.

5.2 NN Modeling for Dynamic Effort Estimation

The following NN modeling scheme has been adopted in this work. As compared to
the NN based static effort estimation of [15], instead of 14 static factors, now a total
of 19 (14 static and 5 dynamic) factors along with the corresponding dynamic effort
for different projects (as estimated by experts) were used as input. Back-propagation
NN modeling with incremental (instead of fixed) learning and Bayesian regularization
training algorithm were used for better prediction of dynamic effort. The simplest
possible architecture i.e. a 3 layer NN (19-19-1), with 19 neurons in the input layer,
19 neurons in the first hidden layer and 1 neuron for the single response (dynamic
effort) in the third layer was fixed, as shown in Fig. 2.

Here, the log-sigmoid activation function in hidden layer and linear activation

function in the output layer have been used. The number of hidden nodes was
increased from 19 to 35 and the reduction in SSE observed. During trials, the
minimum SSE varied randomly with increased hidden nodes. Hence, the simplest NN
architecture with 1 hidden layer and minimum hidden neurons was chosen. The NN
was similarly trained using 50% of input dataset and rest 25% each were used for
validation and testing. Once properly trained, the NN successfully dealt with data of
new projects and estimated the values of dynamic maintenance effort and % error.

5.2.1 Analysis and Validation of Results
Further, NN analysis was performed and training results on available data using a 19-
19-1 architecture were obtained. The results were on expected lines as the test set
error and the validation set error had similar characteristics and converged very fast.
The sum of squared errors SSE for training, testing and validation were also fairly
acceptable. A comparison of the NN output with expert estimated experimental values

W194

B191

W11

W1919

W219

W12

Effort

Hidden
Layer Input

Layer

Effort driver 1

Effort driver 2
.
.
.
.

Effort driver 19

Output
Layer 1

2

3

4

19

2

1

19

1

B11

B21

Fig. 2. NN architecture for dynamic effort estimation

 Dynamic Software Maintenance Effort Estimation Modeling 167

of dynamic effort gives an error variation from -18.25% to 9.63%, 8.72% to -7.18%
and 6.12% to -4.39% for training, testing and validation, respectively. The respective
average error though is significantly smaller at 8.39%, 6.48% and 2.86%,
respectively. (Interested readers can refer to [3] for details) Linear regression analysis
between the actual network outputs (A) and the corresponding experimental data
targets (T) was performed as shown in Fig. 3. However, the two outliers still showed
larger simulation errors. Even a simplified NN architecture was able to successfully
model the complex relationship between the 19 input variables and the single output
variable. However, the results are not as accurate as is evident from the correlation
coefficient ‘R’ value (around 0.85) for multiple runs of the code (Fig. 3). Further
studies employing different NN architectures and input parameters as carried out in
[15] can be attempted to improve the above results.

6 AI Based Dynamic Effort Estimation Tool (AIDEE)

Using Java Net Beans IDE 6.8 environment a user friendly, AI Based Dynamic Effort
Estimation Tool (AIDEE) was also developed. A facility of integrating it with
MATLAB 7 based NN code has also been provided for validating the empirical
results with NN. Thus the tool has artificial intelligence based dynamic effort
estimation capability. The tool estimates both the static and dynamic maintenance
effort based on regression models and validates the available/entered values for
respective projects for NN simulation (Fig. 3). Further details of the AIDEE tool are
available in [3].

Fig. 3. Snapshot of NN modeling and regression plot of dynamic effort in AIDEE

168 R. Shukla et al.

7 Conclusions

In this work, for the first time, a set of 5 dynamic factors have been incorporated for
dynamic software maintenance effort modeling. Based on rating of dynamic factors
and the static effort, the corresponding dynamic effort data was acquired by software
maintenance professionals. A rule based system has been proposed which was ratified
by the industry experts to design a methodology to estimate dynamic maintenance
effort. A regression based approach for empirical modeling of the estimated dynamic
effort in software maintenance jobs is also presented. Alternately, the dynamic effort
has also been estimated using the NN approach. A NN based estimation tool AIDEE
is developed to successfully model the complex relationship of 19 different types of
static and dynamic effort drivers with dynamic effort. The effectiveness of the three
proposed approaches is duly emphasized from the closeness of obtained results. For
future research, the present approach can be validated against a wider variety of real
life software maintenance projects in different domains. This multi-approach is likely
to help in accounting for the dynamic environment of modern day software
maintenance projects and accurate estimation of software maintenance effort.

Acknowledgments. The financial assistance provided by the Faculty of Engineering
and Built Environment, University of Johannesburg to RS is greatly acknowledged.

References

1. Jorgensen, M., Ostvold, K.M.: Reasons for Software Effort Estimation Error: Impact of
Respondent Role, Information Collection Approach, and Data Analysis Method. Trans.
Softw. Eng. 30(12), 993–1007 (2004)

2. Bhatt, P., Shroff, G., Misra, A.K.: Dynamics of Software Maintenance. ACM SIGSOFT
SEN 29(5), 1–5 (2004)

3. Shukla, R.: Static and Dynamic Software Maintenance Effort Estimation: An Artificial
Intelligence and Empirical Approach, PhD Thesis, MNNIT Allahabad, India (2011)

4. Choi, K.S., Bae, D.H.: Dynamic Project Performance Estimation by Combining Static
Estimation Models with System Dynamics. Inf. Softw. Tech. 51(1), 162–172 (2009)

5. Donzelli, P., Iazeolla, G.: A Hybrid Software Process Simulation Model. Softw. Proc.
Improv. Pract. 6(2), 97–109 (2001)

6. Caivano, D., Lanubile, F., Visaggio, G.: Software Renewal Process Comprehension Using
Dynamic Effort Estimation. In: Proceedings of the 17th IEEE International Conference on
Software Maintenance, Florence, Italy, pp. 209–218 (2001)

7. Pfahl, D., Lebsanft, K.: Using Simulation to Analyze the Impact of Software Requirements
Volatility on Project Performance. Inf. Softw. Tech. 42(14), 1001–1008 (2000)

8. Mackulak, G., Collofello, J.: Stochastic Simulation of Risk Factor Potential Effects for
Software Development Risk Management. J. Syst. Softw. 59(3), 247–257 (2001)

9. Ruiz, M., Ramos, I., Toro, M.: A Simplified Model of Software Project Dynamics. J. Syst.
Softw. 59, 299–309 (2001)

10. Haberlein, T.: Common Structure in System Dynamics Models of Software Acquisition
Projects. Softw. Proc. Improv. Pract. 9(2), 67–80 (2004)

 Dynamic Software Maintenance Effort Estimation Modeling 169

11. Bhatt, P., Shroff, G., Anantram, C., Misra, A.K.: An Influence Model for Factors in
Outsourced Software Maintenance. J. Softw. Maint. Evol: Res. Pract. 18(6), 385–423
(2006)

12. Hamid, T.K.A., Madnick, S.: Software Project Dynamics: An Integrated Approach.
Prentice-Hall, Englewood Cliffs (1991)

13. Calzolari, F., Tonella, P., Antoniol, G.: Maintenance and Testing Effort Modeled by Linear
and Nonlinear Dynamic Systems. Inf. Softw. Tech. 43(8), 477–486 (2001)

14. Baldassarre, M.T., Boffoli, N., Caivano, D., Visaggio, G.: SPEED: Software Project Effort
Evaluator Based on Dynamic-Calibration. In: Proceedings of the 22nd International
Conference on Software Maintenance, Philadelphia, pp. 272–273 (2006)

15. Shukla, R., Misra, A.K.: Estimating Software Maintenance Effort - A Neural Network
Approach. In: Proceedings of the 1st India Software Engineering Conference (ISEC),
Hyderabad, pp. 107–112. ACM Digital Library (2008)

16. Shukla, K.K.: Neuro-Genetic Prediction of Software Development Effort. Inf. Softw.
Tech. 42, 701–713 (2000)

17. Lucia, A.D., Pompella, E., Stefanucci, S.: Assessing the Maintenance Processes of a
Software Organization: An Empirical Analysis of a Large Industrial Project. J. Syst.
Softw. 65(2), 87–103 (2003)

18. IEEE Standard, ISO/IEC, 14764, Software Engineering - Software Life Cycle Processes -
Maintenance (2006)

19. Hung, V.T. (2007) , http://cnx.org/content/m14719/latest
20. Pigoski, T.M.: Practical software maintenance. John Wiley & Sons, Inc. (1997)
21. Shukla, R., Misra, A.K.: AI Based Framework for Dynamic Modeling of Software

Maintenance Effort Estimation. In: Proceedings of the International Conference on
Computer and Automation Engineering (ICCAE), Bangkok, pp. 313–317 (2009)

22. Rao, B.S., Sarda, N.L.: Effort Drivers in Maintenance Outsourcing - An Experiment Using
Taguchi’s Methodology. In: Proceedings of the 7th IEEE European Conference on
Software Maintenance and Reengineering, Benevento, Italy, pp. 1–10 (2003)

New Measures

for Maintaining the Quality of Databases

Hendrik Decker�

Instituto Tecnológico de Informática, Universidad Politécnica de Valencia, Spain

Abstract. Integrity constraints are a means to model the quality of
databases. Measures that size the amount of constraint violations are a
means to monitor and maintain the quality of databases. We present and
discuss new violation measures that refine and go beyond previous incon-
sistency measures. They serve to check updates for integrity preservation
and to repair violations in an inconsistency-tolerant manner.

1 Introduction

The quality of databases can be identified with the satisfaction of the integrity
constraints imposed on the data, and the lack of quality with their violation. In
[8,11], we have seen how integrity constrains can be used to model, measure and
monitor the quality of information stored in databases.

Building on that idea, we have shown in [10] how to identify, compute and
measure cases and causes of integrity violations in order to control the qual-
ity of data in terms of their consistency. In [8,11,10], we have defined several
measure-based methods which check updates for integrity preservation in an
inconsistency-tolerant manner. Inconsistency-tolerant integrity checking (abbr.
ITIC) means that only updates that do not increase a measured amount of in-
consistency are acceptable, no matter if any constraint violation may already
exist before the execution of a given update.

In this paper, we take the idea of using constraints and the measurement of
their violation for controlling the quality and integrity of databases two steps
further. Firstly, we present several new measures of integrity violation that enable
a refined assessment of data quality. Secondly, we show how such measures can
be used not only for ITIC, but also for inconsistency-tolerant integrity repair.

In Section 2, we define the formal framework of the remainder. In Section 3,
we refine the axiomatization of violation measures developed in [8,11] and define
several new measures that go beyond those defined in [10]. In Section 4, we show
how the new violation measures can be used to maintain database integrity, by
checking updates and repairing inconsistencies. In Section 5, we conclude.

� Partially supported by FEDER and the Spanish grants TIN2009-14460-C03 and
TIN2010-17139.

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 170–185, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

New Measures for Maintaining the Quality of Databases 171

2 The Framework

In 2.1, we outline some basic preliminaries. In 2.2 we recapitulate the notion of
‘cases’ from [8,11]. In 2.3, we extend the notion of ‘causes’ from [10]. Cases are
instances of constraints that are useful for three objectives: simplified integrity
checking, quantifying constraint violations and tolerating inconsistency. Causes
are the data that are responsible for the violation of constraints, and are of
similar use as cases. We use notations and terminology that are known from
datalog [16] and first-order predicate logic.

2.1 Databases, Completions, Updates, Constraints

An atom is an expression of the form p(t1, ..., tn), where p is a predicate of arity
n (n ≥ 0); the ti are either constants or variables. A literal is either an atom A
or a negated atom ∼A. A database clause is a universally closed formula of the
form A←B, where the head A is an atom and the body B is a possibly empty
conjunction of literals. If B is empty, A is called a fact. If B is not empty, A←B
is called a rule. As is well-known, rules are useful for defining view predicates, as
well as for enabling deductive and abductive reasoning capabilities in databases.
A database is a finite set of database clauses. A datbase is definite if there is no
negated atom in the body of any of its clauses.

Let us assume a universal Herbrand baseH and a universal setN of constants,
represented w.l.o.g. by natural numbers, that underlie each database.

Let comp(D) denote the well-known completion of D [6]. It essentially consists
of the if-and-only-if completions (in short, completions) of all predicates in the
language of D. For a predicate p, let pD denote the completion of p in D.

Definition 1. Let D be a database, p a predicate, n the arity of p, x1, . . . , xn

the ∀-quantified variables in pD, and θ a substitution of x1, . . . , xn.

a) For A = p(x1, . . . , xn)θ, the completion of A in D, be obtained by applying
θ to pD, and be denoted by AD.

b) Let comp(D) = {AD | A∈H}.
c) Let if(D) and only-if(D) be obtained by replacing ↔ in each AD ∈ comp(D)
by ← and, resp., →.

d) Let iff(D) = if(D)∪ only-if(D) . Let the usual equality axioms of comp(D)
be associated by default also to iff(D).

Clearly, if(D) is equivalent to the set of all ground instances of clauses in D.
Moreover, comp(D), comp(D) and iff(D) clearly have the same logical conse-
quences. However, the characterization of causes in 2.2.3 by subsets of iff(D) is
more precise than it could be if subsets of comp(D) were used instead.

We may use ‘;’ instead of ‘,’ to delimit elements of sets since ‘,’ is also used to
denote conjunction in the body of clauses. Symbols |=, ⇒ and ⇔ denote logical
consequence (i.e., truth in all Herbrand models), meta-implication and, resp.,
meta-equivalence. By overloading, we use = as identity predicate, assignment in
substitutions, or meta-level equality; �= is the negation of =.

172 H. Decker et al.

An update is a finite set of database clauses to be inserted or deleted. For an
update U of a database D, we denote the database in which all inserts in U are
added to D and all deletes in U are removed from D, by DU . An update request
in a database D is a sentence R that is requested to become true by updating D.
An update U satisfies an update request R in D if DU (R)= true. View updating
is a well-known special kind of satisfying update requests. From now on, repairs
are treated as updates, and repairing as satisfying specific update requests.

An integrity constraint (in short, constraint) is a sentence which can always
be represented by a denial clause, i.e., a universally closed formula of the form
←B, where the body B is a conjunction of literals that asserts what should not
hold in any state of the database. If the original specification of a constraint by
a sentence I expresses what should hold, then a denial form of I can be obtained
by an equivalence-preserving re-writing of ←∼I as proposed, e.g., in [7], that
results in a denial the predicates of which are defined by clauses to be added to
the database. An integrity theory is a finite set of constraints.

From now on, let the symbols D, IC , I, U and adornments thereof always
stand for a database, an integrity theory, a constraint and, resp., an update,
each of which is assumed, as usual, to be range-restricted [7].

For each sentence F , and in particular for each integrity constraint, we write
D(F) = true (resp., D(F) = false) if F evaluates to true (resp., false) in D.
Similarly, we write D(IC)= true (resp., D(IC)= false) if each constraint in IC
is satisfied in D (resp., at least one constraint in IC is violated in D). Let
vioCon(D, IC) denote the set of violated constraints in D.

2.2 Cases

For each constraint I, a case of I is an instance of I obtained by substituting the
variables in I with (not necessarily ground) terms of the underlying language.
This definition of cases is a simpler version of a more encompassing variant in
[12], where cases have been defined for the purpose of inconsistency-tolerant
integrity checking of constraints in a more general syntax.

Reasoning with cases of I instead of I itself lowers the cost of integrity main-
tenance, since, the more variables in I are instantiated with ground values, the
easier the evaluation of the so-obtained case tends to be. Also, to know which
particular cases of a constraint are violated may be useful for repairing, since it
turns out to be easier, in general, to identify and eliminate the causes of integrity
violation if the violated cases are made explicit.

Let Cas(IC) denote the set of all ground cases of each I∈IC . Further, let
vioCon(D, IC)= {I | I ∈ IC , D(I)= false}, i.e., the set of all constraints in IC
that are violated in D, and vioCas(D, IC)= {C | C ∈Cas(IC), D(C)= false},
i.e., the set of all violated ground cases of IC in D.

The usefulness of cases for simplified integrity checking is well-known and
well documented, e.g. in [5]. The use of vioCon(D, IC) and vioCas(D, IC) for
measuring the inconsistency of (D, IC) is addressed in Section 3, their use for
inconsistency-tolerant integrity maintenance in Section 4.

New Measures for Maintaining the Quality of Databases 173

2.3 Causes

As in [10], we are going to define a ‘cause’ of the violation of a constraint I =←B
in a database D as a minimal explanation of why I is violated in D, i.e., why
the existential closure ∃B of B is true in D. However, the definition of causes
below is much more general than its predecessor in [10]. The latter applied only
to definite databases and integrity theories without negation in the body of
denials. In this paper, that restriction is dropped. A significant consequence of
this generalization is that the logic to be used for reasoning with cases and causes
of constraints must comply with the non-monotonicity of negation in databases.

In Section 3, causes are used for measuring inconsistency, and in Section 4 for
measure-based inconsistency-tolerant integrity maintenance.

Definition 2. Let D be a database and I =←B an integrity constraint such
that D(∃B)= true. A subset E of iff(D) is called a cause of the violation of I
in D if E |= ∃B, and for each proper subset E′ of E, E′

�∃B.

We also say that E is a cause of ∃B in D if E is a cause of the violation of
←B in D. Moreover, we say that, for an integrity theory IC , E is a cause of
the violation of IC in D if E is a cause of the violation of a denial form of the
conjunction of all constraints in IC .

Clearly, E is a cause of the violation of each denial form of the conjunction of
all I ∈ IC if and only if E is a cause of the violation of some I ∈ IC and there is
no cause E′ of any constraint in IC such that E′

�E.
For easy reading, we represent elements of only-if(D) in a simplified form, if

possible, in the subsequent examples of causes. Simplifications are obtained by
replacing ground equations with their truth values and by common equivalence-
preserving rewritings for the composition of subformulas with true or false .

Example 1.

a) Let D = {p← q,∼r; q}.
The only cause of the violation of ← p in D is D∪{∼r}.
b) Let D = {p(x)← q(x), r(x); q(1); q(2); r(2); s(1); s(2)}. The only cause
of the violation of ← s(x), ∼p(x) in D is {s(1), p(1)→ q(1)∧ r(1), ∼r(1)}.
c) Let D = {p← q(1, x); q(2, y)← r(y); r(1)}.
The only cause of ∼p in D is {p→∃x q(1, x)}∪ {∼q(1, i) | i∈N}.
d) Let D = {p← q(x, x); q(x, y)← r(x), s(y); r(1); s(2)}. Each cause of ∼p
inD contains {p→∃x q(x, x)} ∪ {q(i, i)→ r(i)∧ s(i)) | i∈N} ∪ {∼r(2), ∼s(1)}
and, for each j > 2 in N , either ∼r(j) or ∼s(j), and nothing else.

e) Let D= {p(x)← r(x); r(1)} and I = ∃x(r(x)∧∼p(x)). A denial form of I is
← vio, where vio is defined by {vio←∼q; q← r(x),∼p(x)}, where q is a fresh
0-ary predicate. Thus, the causes of the violation of I in D are the causes of vio in
D′ =D∪ {vio←∼q; q← r(x),∼p(x)}. Thus, for each K⊆N such that 1∈K,
{vio←∼q} ∪ {p(i)← r(i) | i∈K} ∪ {q→∃x(r(x) ∧∼p(x))} ∪ {∼r(i) | i /∈K} is
a cause of vio in D′.

174 H. Decker et al.

The following example shows that causes are not compositional, i.e., the causes
of the violation of an integrity theory IC are not necessarily the union of the
causes of the violation of the constraints in IC .

Example 2. Let D = {r(1, 1); s(1)}, I1 = ← r(x, x), I2 = ← r(x, y), s(y) and
IC = {I1, I2}. The only cause of the violation of IC in D is {r(1, 1)}, which
is a proper subset of the single cause D of the violation of I2 in D.

Let vioCau(D, IC) be the set of all causes of the violation of IC in D.

Clearly, vioCau(D, IC) is analogous to vioCas as defined in 2.2. While vioCas
locates inconsistency by focusing on violated constraints, vioCau localizes incon-
sistency on the data that are responsible for integrity violations.

3 Violation Measures

Violation measures are a special kind of inconsistency measures [15]. Their pur-
pose is to size the amount of integrity violation in databases. In 3.1, we semi-
formally sketch our approach of violation measures. In 3.2, we define this concept
formally. In 3.3, we first recapitulate some measures already defined in [8,11,10],
and then introduce and discuss some new ones. In 3.4, we discuss some proper-
ties that are commonly associated to measures and investigate to which extent
they apply to violation measures.

3.1 Conceptualizing Violation Measures

In 3.2, we are going to define an abstract concept of violation measures as a
mapping from pairs (D, IC) to a set M that is structured by a partial order �
with an infimum o, a distance δ and an addition ⊕ with neutral element o.

The partial order � allows to compare the amount of inconsistency in two
pairs of databases and integrity theories, and in particular in consecutive states
(D, IC) and (DU , IC). With the distance δ, the difference, i.e., the increase or
decrease of inconsistency between D and DU , can be sized. The addition ⊕
allows to state a standard metric property for δ, and o is, at a time, the smallest
element of � and the neutral element of ⊕.

Thus, there are various measurable criteria according to which an update U
can be checked while tolerating extant inconsistencies, e.g., if U does not increase
the amount of inconsistency, or if DU does not trespass a certain threshold of
inconsistency, or if any increase of inconsistency brought about by U is negligible.

In traditional measure theory [1], a measure μ maps elements of a measure
space S (typically, a set of sets) to a metric space (M,� δ) (typically, M=R

+
0 ,

i.e., the non-negative real numbers, often with an additional greatest element
∞, �=≤, and δ= | – |, i.e., the absolute difference). For S ∈S, μ(S) usually
tells how ‘big’ S is. Standard properties are that μ is positive definite, i.e.,
μ(S)= 0 ⇔ S= ∅, μ is additive, i.e., μ(S ∪S′) = μ(S) + μ(S′), for disjoint sets
S, S′ ∈ S, and μ is monotone, i.e., if S⊆S′, then μ(S)≤μ(S′). The distance δ
maps M×M to itself, for determining the difference between measured entities.

New Measures for Maintaining the Quality of Databases 175

Similarly, for assessing inconsistency in databases, a violation measure ν as
defined in 3.2 maps pairs (D, IC) to a metric space that, like R

+
0 , has a partial

order and an addition with neutral element. The purpose of ν(D, IC) is to size
the amount of inconsistency in (D, IC), e.g., by counting or comparing sets of
cases or causes of constraint violations.

3.2 Formalizing Violation Measures

Definitions 3 and 4 below specialize the traditional concepts of metric spaces and
measures, since they are made up for databases and integrity violations. Yet, in
a sense, these definitions also generalize the traditional concepts, since they al-
low to size and compare different amounts of inconsistency without necessarily
quantifying them numerically. For example, with M=2Cas(IC) (powerset of
Cas(IC) as defined in 2.2.2), �=⊆ (subset), δ=� (symmetric set difference),
⊕=∪ (set union) and o= ∅ (empty set), it is possible to measure the inconsis-
tency of (D, IC) by sizing vioCas(D, IC).

Definition 3. A structure (M,�, δ,⊕, o) is called a metric space for integrity
violation (in short, a metric space) if (M,⊕) is a commutative semi-group with
neutral element o, � is a partial order on M with infimum o, and δ is a distance
on M. More precisely, for each m,m′,m′′ ∈M, the following properties (1)–(4)
hold for �, (5)–(8) for ⊕, and (9)–(11) for δ.

m � m (reflexivity) (1)

m � m′, m′ � m ⇒ m = m′ (antisymmetry) (2)

m � m′, m′ � m′′ ⇒ m � m′′ (transitivity) (3)

o � m (infimum) (4)

m⊕ (m′ ⊕m′′) = (m⊕m′)⊕m′′ (associativity) (5)

m⊕m′ = m′ ⊕m (commutativity) (6)

m⊕ o = m (neutrality) (7)

m � m⊕m′ (⊕-monotonicity) (8)

δ(m,m′) = δ(m′,m) (symmetry) (9)

δ(m,m) = o (identity) (10)

δ(m,m′) � δ(m,m′′)⊕ δ(m′′,m′) (triangle inequality) (11)

Let m≺m′ (m�m′) denote that m�m′ (resp., m′ �m) and m �=m′.

Example 3. (N0,≤, | – |, +, 0) is a metric space for integrity violation, where N0

is the set of non-negative integers. In this space, vioCon(D, IC), vioCas(D, IC)
or vioCau(D, IC) can be counted and compared. As already indicated, these
three sets may also be sized and compared in the metric spaces (2X ,⊆,�,∪, ∅),
where X stands for IC , Cas(IC) or iff(D), respectively.

176 H. Decker et al.

The following definition generically characterizes violation measures, whose
ranges are metric spaces such as those in Example 3.

Definition 4. A violation measure (in short, a measure) is a function ν that
maps pairs (D, IC) to a metric space (M, �, δ, ⊕, o) for integrity violation.

3.3 New Violation Measures

We continue with examples of violation measures that are going to accompany
us throughout the remainder of the paper. Preliminary versions of some of them
have already been presented in [8,11,10]. However, the axiomatization of those
previous versions is more shallow than in 3.2. Also the study of various properties
of violation measures in 3.4 is very scant in the cited predecessors.

Example 4. A coarse measure β is defined by β(D, IC)=D(IC) with the binary
metric space ({true, false},�, τ ,∧, true), where � and τ are defined by stipulat-
ing true≺ false (i.e., satisfaction means lower inconsistency than violation), and,
resp., τ(v, v′)= true if v= v′, else τ(v, v′) = false , for v, v′ ∈{true, false}, i.e., the
value of τ(v, v′) is the truth value of the logical equivalence v ↔ v′. Clearly, β
and its metric space reflect the classical logic distinction that a set of formulas is
either consistent or inconsistent, without any further differentiation of different
degrees of inconsistency. The meaning of τ is that each consistent pair (D, IC)
is equally good, and each inconsistent pair (D, IC) is equally bad.

Example 5. Two measures ι and |ι| that are quite straightforward are character-
ized by comparing and, resp., counting the set of violated constraints in the in-
tegrity theory of the database schema. The formal definition of these measures is
given by the equations ι(D, IC) = vioCon(IC ,D) and |ι|(D, IC) = |ι(D, IC)|,
where | . | is the cardinality operator, with metric spaces (2IC , ⊆, �, ∪, ∅) and,
resp., (N+

0 ,≤, | – |, +, 0).

Example 6. Two measures that are more fine-grained than those in Example 5
are given by ζ(D,IC)= vioCas(IC ,D) and |ζ|(D,IC)= |ζ(D, IC)|, with metric
spaces (2Cas(IC),⊆,�,∪, ∅) and, resp., (N+

0 ,≤, | – |, +, 0).

Example 7. Similar to cases, cause-based measures can be defined by the equa-
tions κ(D, IC) = vioCau(IC ,D) and |κ|(D, IC)= |κ(D, IC)|, with metric spaces
(2iff(D),⊆,�,∪, ∅) and, resp., again (N+

0 ,≤, | – |+, 0). Specific differences be-
tween measures based on cases (as in Example 6) and measures based on causes
(as in this example) have been discussed in [10].

Other violation measures are discussed in [8,11] among them two variants of an
inconsistency measure in [14] that are applicable to databases with integrity con-
straints, based on quasi-classical models [2]. Essentially, both violation measures
size the set of conflicting atoms in (D, IC), i.e., atoms A such that both A and
∼A are true in the minimal quasi-classical model of D∪ IC . Hence, their metric
spaces are (2H

∗
,⊆,�,∪, ∅) where H∗ is the union of H and {∼A |A ∈ H}, and,

resp., (N+
0 ,≤, | – |+, 0).

Some more new measures are going to be identified in 3.4.1 and 4.1.

New Measures for Maintaining the Quality of Databases 177

3.4 Properties of Violation Measures

As opposed to classical measure theory and previous work on inconsistency mea-
sures, Definition 4 does not require any axiomatic property of measures, such as
positive definiteness, additivity or monotony. These usually are required for each
traditional measure μ, as already mentioned in 3.1. We are going to look at such
properties, and argue that positive definiteness is not cogent, and both additivity
and monotony are invalid for many databases.

In 3.4.1, we discuss the standard axiom of positive definiteness of measures,
including some weakenings thereof. In 3.4.2, we show the standard axiom of
additivity of measures is invalid for violation measures. In 3.4.3, also the standard
axiom of monotonicity of measures is dismissed for violation measures, and some
valuable weakenings thereof are proposed.

3.4.1 Positive Definiteness
For traditional measures μ, positive definiteness means that μ(S)= 0 if and only
if S= ∅, for each S ∈S. For violation measures ν, that takes the form

ν(D, IC) = o ⇔ D(IC) = true (positive definiteness) (12)

for each pair (D, IC).
A property corresponding to (12) is postulated for inconsistency measures

in [13]. However, we are going to argue that (12) is not cogent for violation
measures, and that even two possible weakenings of (12) are not persuasive
enough as sine-qua-non requirements.

At first, (12) may seem to be most plausible as an axiom for any reasonable
inconsistency measure, since it assigns the lowest possible inconsistency value o
precisely to those databases that totally satisfy all of their constraints. In fact,
it is easy to show the following result.

Theorem 1. Each of the measures β, ι, |ι|, ζ, |ζ|,κ, |κ| fulfills (12).
Thus, in particular |ζ|, which counts the number of violated ground cases, com-
plies with (12). Now, let the measure ζ′ be defined by the following modification
of |ζ|: ζ′(D, IC)= 0 if |ζ|(D, IC)∈{0,1} else ζ′(D, IC) = |ζ|(D, IC). Thus, ζ′

considers each inconsistency that consists of just a single violated ground case
as insignificant. Hence, ζ′ does not obey (12) but can be, depending on the ap-
plication, a very reasonable violation measure that tolerates negligible amounts
of inconsistency.

Even the weakening

D(IC) = true ⇒ ν(D, IC) = o (13)

of (12) is not a cogent requirement for all reasonable violation measures, as
witnessed by the measure σ, as defined below. It takes a differentiated stance
with regard to integrity satisfaction and violation, by distinguishing between
satisfaction, satisfiability and violation of constraints, similar to [19] [17].

The measure σ be defined by incrementing a count of ‘problematic’ ground
cases of constraints by 1 for each ground case that is satisfiable but not a theorem

178 H. Decker et al.

of the completion of the given database, and by 2 for each ground case that is
violated. Hence, by the definitions of integrity satisfaction and violation in [17],
there are pairs (D, IC) such that IC is satisfied in D but σ(D, IC)> 0.

Another measure ε that does not respect (13) can be imagined as follows,
for databases with constraints of the form I =← p(x), x> th, where p(x) is a
relation defined by some aggregation of values in the database, meaning that I
is violated if p(x) holds for some x that trespasses a certain threshold th. Now,
suppose that ε assigns a minimal non-zero value to (D, IC) whenever I is still
satisfied in D but D(p(th)) = true, so as to indicate that I is at risk of becoming
violated. Hence, there are pairs (D, IC) such that ν= ε contradicts (13).

Also the requirement

ν(D, ∅) = o (14)

which weakens (13) even further, is not indispensable, although analogons of (14)
are standard in the literature on classical measures and inconsistency measures.
In fact, it is easy to imagine a measure that assigns a minimal non-zero value of
inconsistency to a database without integrity constraints. That value can then be
interpreted as a warning that there is a non-negligible likelihood of inconsistency
in a database where no constraints are imposed, be it out of neglect, or for trading
off consistency for efficiency, or due to any other reason.

So, in the end, only the rather bland property ν(∅, ∅)= o remains as a weak-
ening of (12) that should be required from violation measures.

3.4.2 Additivity
For traditional measures μ, additivity means μ(S ∪S′)=μ(S)+μ(S′), for each
pair of disjoint sets S,S′ ∈S. For violation measures ν, additivity takes the form

ν(D ∪D′, IC ∪ IC ′) = ν(D, IC)⊕ ν(D′, IC ′) (additivity) (15)

for each (D, IC), (D′, IC ′) such that D andD′ as well as IC and IC ′ are disjoint.
Additivity is standard for traditional measures. However, (15) is invalid for

violation measures, as shown by the following example.

Example 8. LetD= {p}, IC = ∅,D′ = ∅, IC ′ = {← p}. Clearly,D(IC)= true and
D′(IC ′)= true, thus |ζ|(D, IC)+ |ζ|(D′, IC′) = 0, but |ζ|(D∪D′, IC ∪IC ′)= 1.

3.4.3 Monotony
For traditional measures μ, monotony means S⊆S′ ⇒ μ(S)�μ(S′), for each
pair of sets S,S′ ∈S. For violation measures ν, monotony takes the form

D ⊆ D′, IC ⊆ IC ′ ⇒ ν(D, IC) � ν(D′, IC ′) (ν-monotonicity) (16)

for each pair of pairs (D, IC), (D′, IC ′).
A property corresponding to (16) is postulated for inconsistency measures in

[13]. For definite databases and integrity theories (i.e., the bodies of clauses do
not contain any negative literal), it is easy to show the following result.

New Measures for Maintaining the Quality of Databases 179

Theorem 2. For each pair of definite databases D,D′ and each pair of definite
integrity theories IC , IC ′, each of the measures β, ι, |ι|, ζ, |ζ|,κ, |κ| fulfills (16).
However, due to the non-monotonicity of negation in the body of clauses, (16) is
not valid for non-definite databases or non-definite integrity theories, as shown
by Example 9, in which the foreign key constraint ∀x(q(x, y)→∃z s(x, z)) on the
x-column of q referencing the x-column of s is rewritten into denial form (we
ignore the primary key constraint on the x-column of s since it is not relevant).

Example 9. Let D= {p(x)← q(x, y),∼r(x); r(x)← s(x, z); q(1, 2); s(2, 1)} and
IC = {← p(x)}. Clearly, D(IC) = false and |ζ|(D, IC)= 1. For D′ =D∪{s(1, 1)}
and IC ′ = IC , we have D′(IC ′)= true, hence |ζ|(D′, IC ′)= 0.

Now, we are going to look at two weakenings of (16) that hold also for non-
definite databases and integrity theories. In fact, (16) is already a weakening
of (15), since it is easily shown that (15) and (8) entail (16). Hence, any valid
weakening of (16) can also be understood as a valid weakening of (15).

The first weakening requires that the inconsistency in databases that violate
integrity is never lower than the inconsistency in databases that satisfy integrity.
Formally, for each pair of pairs (D, IC), (D, IC ′), the following property is asked
to hold.

D(IC) = true, D′(IC ′) = false ⇒ μ(D, IC) � μ(D′, IC ′) (17)

It is easy to show the following result.

Theorem 3. Each of the measures β, ι, |ι|, ζ, |ζ|,κ, |κ| fulfills (17).
A property that is slightly stronger than (17) has been postulated in [8,11]. It
is obtained by replacing � in (17) by ≺. It also holds for all measures from
Subsection 3.3. Yet, similar to (12), it does not hold for measures ζ′, σ and ε, as
defined in 3.4.1, while (17) does hold for those measures.

The second weakening of (16) has been postulated in [10]. It requires that,
for each D, the values of ν grow monotonically with growing integrity theories.

IC ⊆ IC ′ ⇒ ν(D, IC) � ν(D, IC ′) (18)

Since (18) weakens (16), the following result is entailed by Theorem3 for β,
ι, |ι|, ζ, |ζ|,κ, |κ|, and can be shown also for ζ′, σ, ε.

Theorem 4. Each of the measures β, ι, |ι|, ζ, |ζ|,κ, |κ|, ζ′,σ, ε fulfills (18).

4 Integrity Maintenance

To maintain integrity, constraint violations should be prevented or repaired. For
prevention, a common approach is to check if updated preserve integrity. For
repairing, methods described, e.g., in [20] may be used. However, it may be im-
practical or unfeasible to avoid inconsistency, or to repair all violated constraints
at once. Thus, an inconsistency-tolerant approach to integrity maintenance is

180 H. Decker et al.

needed. As we are going to see, that can be achieved by violation measures. In
fact, even in the presence of persisting inconsistency, the use of measures can
prevent the increase of inconsistency across updates. Measures also are useful
for controling that the amount of inconsistency never exceeds given thresholds.

In 4.1, we revisitmeasure-based inconsistency-tolerant integrity checking (abbr.
ITIC). Also, we show how inconsistency can be confined by assigning weights to
violated cases of constraints, which goes beyond the measures seen so far. More-
over, we show how to generalize measure-based ITIC by allowing for certain in-
creases of inconsistency that are bounded by some thresholds. In 4.2, we outline
how measure-based inconsistency-tolerant integrity checking can be used also for
making repairing inconsistency-tolerant.

4.1 Measure-Based Inconsistency-Tolerant Integrity Checking

Definition 5, below, characterizes integrity checking methods that may accept
updates if there is no increase of inconsistency, no matter if there is any extant
constraint violation or not. It abstractly captures measure-based ITIC methods
as black boxes, of which nothing but their i/o interface is observable. More
precisely, each method M is described as a mapping from triples (D, IC , U) to
{ok , ko}. Intuitively, ok means that U does not increase the amount of measured
inconsistency, and ko that it may.

Definition 5. (Inconsistency-tolerant Integrity Checking, abbr. ITIC)
An integrity checking method maps triples (D, IC ,U) to {ok , ko}. For a measure
(ν,�), a method M is called sound (complete) for ν-based ITIC if, for each
(D, IC ,U), (19) (resp., (20)) holds.

M(D, IC, U) = ok ⇒ ν(DU , IC) � ν(D, IC) (19)

ν(DU , IC) � ν(D, IC) ⇒ M(D, IC, U) = ok (20)

Each M that is sound for ν-based ITIC is also called a ν-based method.

Intuitively, (19) says: M is sound if, whenever it outputs ok , the amount of
violation of IC in D as measured by ν is not increased by U . Conversely, (20)
says: M is complete if it outputs ok whenever the update U that is checked by
M does not increase the amount of integrity violation.

As opposed to ITIC, traditional integrity checking (abbr. TIC) imposes the
total integrity requirement. That is, TIC additionally requires D(IC)= true in
the premises of (19) and (20). The measure used in TIC is β (cf. Example 4).
Since ITIC is defined not just for β but for any violation measure ν, and since
TIC is not applicable if D(IC) = false , while ITIC is, Definition 5 generalizes
TIC. Moreover, the definition of ITIC in [12] is equivalent to Definition 5 for
ν= ζ. Hence, the latter also generalizes ITIC as defined in [12].

In [12], we have shown that the total integrity requirement is dispensable
for most TIC approaches. Similar to corresponding proofs in [12], it can be
shown that not all, but most TIC methods, including built-in integrity checks
in common DBMSs, are ν-based, for each ν ∈{ι, |ι|, ζ, |ζ|, κ, |κ|}. The following
results are easily shown by applying the definitions.

New Measures for Maintaining the Quality of Databases 181

Theorem 5. If a methodM is ν-based, then it is |ν|-based, for each ν ∈{ι, ζ, κ}.
If M is κ-based, then it is ζ-based. If M is ζ-based, then it is ι-based. The
converse of none of these implications holds.

Example 10, below, illustrates how the measures |ι|, |ζ|, |κ| that count violated
constraints, cases or causes thereof can be generalized by assigning weight factors
to the counted entities. Such weights are useful for modeling application-specific
degrees of violated integrity. A simple variant of such an assignment comes into
effect whenever ‘soft’ constraints that ought to be satisfied are distinguished from
‘hard’ constraints that must be satisfied.

Example 10. Let lr and hr be two predicates that model a low, resp., high
risk. Further, I1 =← lr(x), I2 =← hr(x), be a soft, resp., hard constraint for
protecting against low and, resp., high risks, where lr and hr are defined by
lr(x)← p(y,z), x = y+ z, x>th, z≥y and hr(x)← p(y,z), x = y+ z, x>th, y>z,
resp., where th is a threshold value that should not be exceded. and p(8, 3) be the
only cause of integrity violation in some database D. Now, for each ν ∈{ι, ζ,κ},
no ν-based method would accept the update U = {delete p(8, 3), insert p(3, 8)},
although the high risk provoked by p(8, 3) is diminished to the low risk produced
by p(3, 8). However, measures that assign weights to cases of I2 that are higher
than those of I1 can avoid that problem. For instance, consider the measure ω
that counts the numbers n1 and n2 of violated cases of I1 and, resp., I2 in D,
and assigns f1n1 + f2n2 to (D, {I1,I2}), where 0<f1<f2. Clearly, each ω-based
method will accept U . In fact, for ν ∈{|ι|, |ζ|, |κ|}, also each ν-based method
would accept U , but it is easy to imagine a slightly more elaborated update U ′

such that ν-based methods would not accept U ′ but ω-based methods would.

4.2 Repairs

Roughly, repairing means to compute and execute an update in order to eliminate
integrity violation. Thus, each repair can be identified with an update.

In 4.2.1, we formalize repairs and illustrate them by examples. In 4.2.2, we
outline how to compute repairs.

4.2.1 Formalizing Repairs
In [12], we have distinguished total and partial repairs. The former eliminate all
inconsistencies, the latter only some. Partial repairs tolerate inconsistency, since
violated constraints may persist, as illustrated by Example 11.

Example 11. Let D = {p(a, b, c), p(b, b, c), p(c, b, c), q(a, c), q(c, b), q(c, c)} and
IC = {← p(x, y, z),∼q(x, z); ← q(x, x)}. Clearly, the violated cases of IC in D
are ← p(b, b, c),∼q(b, c) and ← q(c, c). Each of the updates U1 = {insert q(b, c)}
and U2 = {delete p(b, b, c)} is a partial repair of (D, IC), since both fix the vio-
lation of {← p(b, b, c),∼q(b, c)} in D. Similarly, U3 = {delete q(c, c)} is a partial
repair that fixes the violation of {← q(c, c)} in D.

182 H. Decker et al.

Sadly, partial repairs may cause new violations, as shown in Example 12.

Example 12. Consider again Example 11. As opposed to U1 and U2, U3 causes
a new violation: ← p(c, b, c),∼q(c, c) is satisfied in D but not in DU3 . Thus,
the partial repair U4 = {delete q(c, c); delete p(c, b, c)} is needed to eliminate
the violation of ← q(c, c) in D without causing any violation that did not exist
before executing the partial repair.

Definition 6, below, generalizes the definition of partial repairs by requiring that
each repair must decrease the measured amount of integrity violation.

Definition 6. (Repair) Let D be a database, IC an integrity theory such that
D(IC)= false , ν a violation measure and U an update.

a) U is said to preserve integrity wrt. ν if ν(DU , IC) � ν(D, IC) holds.

b) For a proper subset S of Cas(IC) such that D(S) = false and DU (S)= true,
U is called a partial repair of (D, IC).

c) U is called a ν-based repair of (D, IC) if ν(DU , IC) ≺ ν(D, IC) holds. If,
additionally, DU (IC)= false , U is also called a ν-based patch of (D, IC). Else,
if DU (IC)= true, U is called a total repair of (D, IC).

Definition 6 could be sightly modified by replacing all occurrence of conditions
DU (IC)= false and DU (IC)= true by ν(D, IC)� o and ν(D, IC)= o, respec-
tively. For each ν ∈{ι, |ι|, ζ, |ζ|,κ, |κ|}, that replacement yields a definition that
is equivalent to Definition 6. Moreover, it is easy to show the following.

Theorem 6. For each pair (D, IC) and each ν ∈{ι, |ι|, ζ, |ζ|}, each ν-based
patch of (D, IC) is a partial repair of (D, IC).

Note that the converse of Theorem6 does not hold, as seen in Example 12. The-
orem6 also does not hold for ν ∈{κ, |κ|}, since the violation of some case C may
have n causes, n> 0, in some database D, and a repair U may just eliminate
one of the causes that violate C. Then, for ν ∈{κ, |κ|}, ν(DU , IC)≺ ν(D, IC),
i.e., U a ν-based patch but not a partial repair of (D, IC) since vioCas(D, IC)=
vioCas(DU , IC), hence D(S)=DU (S)= false .

In the literature, repairs usually are required to be total and, in some sense,
minimal. Mostly, subset-minimality is opted for, but several other notions of
minimality exist [4] [18]. Note that Definition 6 does not involve any notion of
minimality. However, each repair in Example 11 is subset-minimal.

Unpleasant side effects of repairs such as U3 can be avoided by checking if a
given partial repair is a patch with any convenient measure-based method, as
expressed in the following result. It follows from Definitions 5 and 6.

Theorem 7. For each tuple (D, IC), each partial repair U of (D, IC), each
measure ν and each ν-based method M, U is a ν-based patch if M(D, IC , U) =
ok .

New Measures for Maintaining the Quality of Databases 183

4.2.2 Computing Repairs
Repairs can be computed by update methods, defined as follows.

Definition 7. An update method is an algorithm that, for each database D and
each update request R, computes candidate updates U1, . . .,Un (n ≥ 0) such
that DUi(R)= true (1 ≤ i ≤ n). For a measure ν, an update method UM is in-
tegrity-preserving wrt. ν if each Ui computed by UM preserves integrity wrt. ν.

Integrity-preserving update methods can be used to compute patches and repairs
wrt. any measure ν, as shown in [12] for the special case of ν= ζ. Theorem8 below
generalizes that result.

For an update request R in a database D, several update methods in the
literature work in two phases. First, a candidate update U such that DU (R) =
true is computed. Then, U is checked for integrity preservation by some TIC

method. If that check is positive, U is accepted. Else, U is rejected and another
candidate update, if any, is computed and checked. Hence, Theorem 8, below,
follows from Definition 7 and Theorem7.

Theorem 8. For each measure ν, each update method that uses ν-based ITIC

to check its computed candidate updates is integrity-preserving wrt. ν.

Example 13 shows what can go wrong if an update method that is not integrity-
preserving is used.

Example 13. Let D = {q(x)← r(x), s(x); p(a, a)}, R the view update request
to insert q(a), and IC = {← p(x, x); ← p(a, y), q(y)}. To satisfy R, most update
methods compute the candidate update U = {insert r(a); insert s(a)}. To check
if U preserves integrity, most methods compute the simplification ← p(a, a) of
the second constraint in IC . For avoiding a possibly expensive disk access for
evaluating the simplified case ← p(a, a) of ← p(a, y), q(y), TIC methods that
are not inconsistency-tolerant may use the invalid premise that D(IC) = true,
by reasoning as follows. The constraint ← p(x, x) in IC is not affected by U
and subsumes ← p(a, a); hence, IC remains satisfied in DU . Thus, such methods
wrongly conclude that U preserves integrity, since the case ← p(a, y), q(y) is
satisfied in D but violated in DU . By contrast, each ITIC method rejects U ,
so that U ′ = U ∪{delete p(a, a)} can be computed for satisfying R. Clearly, U ′

preserves integrity, and even removes the violated case ← p(a, a).

The following example illustrates a general approach of how patches and total
repairs can be computed by update methods off the shelve.

Example 14. Let S= {←B1, . . ., ←Bn} (n ≥ 0) be a set of cases of constraints
in an integrity theory IC of a database D. An integrity-preserving repair of
(D,S) (which is total if S= IC) can be computed by each integrity-preserving
update method, simply by running the update request ∼vioS , where vioS be
defined by the clauses vioS ←Bi (1≤ i≤n).

So far, we have said nothing about computing any measure that may be used
in integrity-preserving update methods. In fact, computing measures ι, |ι|, ζ, |ζ|

184 H. Decker et al.

corresponds to the cost of searching SLDNF trees rooted at constraint denials,
which can be exceedingly costly. The same correspondence holds for computing
κ and |κ| in databases and integrity theories without negation in the body of
clauses. If negation may occur, the cost can even be higher, as evidenced in [9].

Fortunately, none of these measures needs to be computed explicitly. Instead
of computing ν(DU , IC) and ν(DU , IC) entirely, it suffices to compute a superset
approximation of the increment δ(ν(D, IC), ν(DU , IC)), as many TIC methods
do, for ν= ζ. As attested by such methods, approximating the increment of
inconsistency in consecutive states is significantly less costly than checking the
inconsistency of entire databases. Moreover, for two integrity-preserving partial
repair candidates U , U ′ of IC in D that do not repair the same set of violations,
U is preferable to U ′ if δ(ν(D, IC), ν(DU ′

, IC)) ≺ δ(ν(D, IC), ν(DU , IC)),
since U eliminates more inconsistency from D than U ′.

5 Conclusion

In theory, database quality can be achieved by either preventing or eliminating
the violation of integrity constraints. In practice, however, integrity violation
cannot always be prevented, and a total elimination of all violations often is
infeasible. Thus, integrity maintenance must be inconsistency-tolerant.

In this paper, we have generalized the concept of inconsistency-tolerant in-
tegrity checking and repairing in [12]. We have axiomatized measures that de-
termine the amount of violation in given databases with associated integrity
theories. Using such measures, each update can be checked and accepted if it
does not increase the measured violation. Similarly, each repair is acceptable if
it decreases the measured violation.

Future work includes an application of the concept of measure-based incon-
sistency tolerance for computing answers that have integrity in databases with
violated constraints, and the use of measure-based ITIC for concurrent transac-
tions in distributed and replicated databases.

References

1. Bauer, H.: Maß- und Integrationstheorie, 2nd edn. De Gruyter (1992)
2. Besnard, P., Hunter, A.: Quasi-Classical Logic: Non-trivializable Classical Reason-

ing from Inconsistent Information. In: Froidevaux, C., Kohlas, J. (eds.) ECSQARU
1995. LNCS, vol. 946, pp. 44–51. Springer, Heidelberg (1995)

3. Ceri, S., Cochrane, R., Widom, J.: Practical Applications of Triggers and Con-
straints: Success and Lingering Issues. In: Proc. 26th VLDB, pp. 254–262. Morgan
Kaufmann (2000)

4. Chomicki, J.: Consistent Query Answering: Five Easy Pieces. In: Schwentick, T.,
Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 1–17. Springer, Heidelberg (2006)

5. Christiansen, H., Martinenghi, D.: On simplification of database integrity con-
straints. Fundam. Inform. 71(4), 371–417 (2006)

6. Clark, K.: Negation as Failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data
Bases, pp. 293–322. Plenum Press (1978)

New Measures for Maintaining the Quality of Databases 185

7. Decker, H.: The Range Form of Databases and Queries or: How to Avoid Flounder-
ing. In: Proc. 5th ÖGAI. Informatik-Fachberichte, vol. 208, pp. 114–123. Springer
(1989)

8. Decker, H.: Quantifying the Quality of Stored Data by Measuring their Integrity.
In: Proc. DIWT 2009, Workshop SMM, pp. 823–828. IEEE (2009)

9. Decker, H.: Answers That Have Integrity. In: Schewe, K.-D., Thalheim, B. (eds.)
SDKB 2010. LNCS, vol. 6834, pp. 54–72. Springer, Heidelberg (2011)

10. Decker, H.: Causes of the Violation of Integrity Constraints for Supporting the
Quality of Databases. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Ap-
duhan, B.O. (eds.) ICCSA 2011, Part V. LNCS, vol. 6786, pp. 283–292. Springer,
Heidelberg (2011)

11. Decker, H., Martinenghi, D.: Modeling, Measuring and Monitoring the Quality of
Information. In: Heuser, C.A., Pernul, G. (eds.) ER 2009. LNCS, vol. 5833, pp.
212–221. Springer, Heidelberg (2009)

12. Decker, H., Martinenghi, D.: Inconsistency-tolerant Integrity Checking.
TKDE 23(2), 218–234 (2011)

13. Grant, J., Hunter, A.: Measuring the Good and the Bad in Inconsistent Informa-
tion. In: Proc. 22nd IJCAI, pp. 2632–2637 (2011)

14. Hunter, A.: Measuring Inconsistency in Knowledge via Quasi-Classical Models. In:
Proc. 18th AAAI & 14th IAAI, pp. 68–73 (2002)

15. Hunter, A., Konieczny, S.: Approaches to Measuring Inconsistent Information.
In: Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS,
vol. 3300, pp. 191–236. Springer, Heidelberg (2005)

16. Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill
(2003)

17. Sadri, F., Kowalski, R.: A theorem-proving approach to database integrity. In:
Foundations of Deductive Databases and Logic Programming, pp. 313–362. Morgan
Kaufmann (1988)

18. ten Cate, B., Fontaine, G., Kolaitis, P.: On the Data Complexity of Consistent
Query Answering. To appear in Proc. 15th ICDT. LNCS, Springer (2012)

19. Vardi, M.: On the integrity of databases with incomplete information. In: Proc.
5th PODS, pp. 252–266. ACM Press (1986)

20. Wijsen, J.: Database repairing using updates. ACM Trans. Database Syst. 30(3),
722–768 (2005)

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 186–201, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A New Way to Determine External Quality
of ERP Software

Ali Orhan Aydin

Department of Computer Engineering
Gelisim University, Istanbul, Turkey
aliorhanaydin@gmail.com

Abstract. Today many production systems plan to use Enterprise Resource
Planning (ERP) software to gain competitive advantage. ERP promises in im-
proving efficiency of business processes. However, inappropriate software se-
lection results in a very complex managerial problem which is implementation
of ERP software. To reduce the relevant risk, ERP software purchasers need to
determine conformance of the software to their requirements. This study aims
to define the requirement levels of external quality characteristics and provide a
guide to production systems to evaluate ERP software in a systematic manner.
In the frame of this reference, a way of evaluating external quality of ERP soft-
ware is put forward to reduce the risk taken before purchasing it.

Keywords: External Software Quality, Enterprise Resource Planning.

1 Introduction

Change in the market conditions increase competition among production systems
since 1970s [1]. Shorter product lifetimes, high quality requirements, demanding cus-
tomers and availability of diverse alternatives are significant factors that affect current
market conditions. These competitive market conditions caused production systems to
seek solutions to survive [2].

By using Information Technologies (IT), companies aim to get competitive advan-
tage. In the beginning, organizations tried to utilize applications of Material Require-
ment Planning (MRP), Manufacturing Resources Planning (MRP II), Distribution
Resources Planning (DRP), Capacity Requirements Planning (CRP) and Computer
Integrated Manufacturing (CIM). The main objective is to use their resources more
effectively and increase competition strength [3].

At the end of the 1980s organizations seek solutions to integrate these types of in-
formation systems to manage their flexible systems, supply customized product de-
mand, control product complexity and plan resources more effectively by the use of
IT [4]. Integration is considered as a key factor for getting advantage and Enterprise
Resource Planning (ERP) begin to be used in organizations in early 1990s [3, 5, 6].

As stated by Davenport [7] ERP systems promise to restructure business processes
of organizations, because they intend to solve problems caused by the lack of coordi-
nation between applications and business processes [8]. Moreover, those enterprise
systems integrate all of the information that flow organization wide [9].

 A New Way to Determine External Quality of ERP Software 187

Today, ERP software and ERP software implementation market became nearly 50
billion EURO (€) [8]. Day after day, ERP software market grows and many organiza-
tions want to benefit from this software. On the other hand, after spending a lot of
time and money some organizations state that they are unable to utilize its benefits
that they intend to get by implementing ERP software [7, 9]. As stated by Hong and
Kim [10], at least the three quarters of ERP projects are judged to be a failure.

Managers emphasize that ERP implementation projects are the most difficult sys-
tem development projects [11]). Especially, ERP applications change procedures and
processes of organizations into a software system. Due to complexity, time and work-
force requirements, after implementation it nearly becomes impossible to rollback [8].

Due to the risks, before purchasing ERP software, it is necessary to determine if
the ERP software bears on the ability to satisfy stated or implied needs of its custom-
ers by the use of Software Quality (SQ) models [12]. As stated in ISO 25000 [13]
there is no general software classification system and the importance of quality char-
acteristics for each type of software depends on the type of software. Requirement
levels of software quality characteristics needs to be determined to evaluate particular
type of software product, by the use of the Software Quality models. As an example,
for web applications studies on determining software quality are performed by Calero
and Olsina [15, 16]. Likewise, such a study is necessary for ERP software.

In this study, we determine requirement levels of software quality characteristics
according to users’ view of quality for ERP software. This set of quality characteris-
tics and their requirement levels can be used as a checklist to evaluate if ERP software
bears on the ability to satisfy stated or implied needs by ERP software purchasers. By
the use of this checklist, it is possible to reduce the risk related to ERP software.

The remainder of this paper is organized as follows. Section 2 gives an overview of
the associated literature on external software quality characteristics. Transactional
backbone of ERP systems is reviewed in Section 3. In Section 4, a checklist including
requirement levels of ERP software according to the user view is given and some
formulas are introduced for the purpose of evaluating particular ERP software. In the
last section of the paper, summary and conclusion are presented.

2 External Software Quality and Its Characteristics

The term quality is defined by Crosby [14] as “conformance of requirements”.
Feigenbaum [17] puts forward another definition of quality as total composite charac-
teristics of a product or service to meet the expectations of customer while Juran [18]
states the phrase “fitness for use”. Although the quality definitions give guidance on
definition of software quality, software quality can be described from five different
perspectives [19]. These perspectives are transcendental view, user view, manufactur-
ing view, product view and value based view. When these perspectives are evaluated
a general definition for software quality can be described as follows: a total composite
of characteristics of software product which bears on the ability to meet the stated or
implied needs [13].

The definition of Software Quality shows that characteristics and requirements are
the most important factors. Characteristics contribute to fulfilment of requirements

188 A.O. Aydin

and software quality arises from characteristics which are appropriate to the require-
ments [20]. The relationship between these factors and software quality is given in
Figure 1.

Fig. 1. Relationship between characteristics, requirements and software product [18]

One of the earliest studies that tried to provide a framework for Software Quality
and its characteristics was proposed by McCall et.al. [21]. Another study is put for-
ward to constitute a set of factors that affect Software Quality by Boehm et.al. [22].
Bowen et.al. [23] are proposed with a larger number of characteristics after few years.
As seen below, these early studies try to constitute software quality model by provid-
ing a set of characteristics.

Fig. 2. Early software quality models

There are a lot of subsequent attempts to provide a software quality model [24-28].
Although, these sets of quality models including early models seem to cover the same
identical characteristics, the definitions of these characteristics are different. ISO
25000 [12] software quality model is developed to establish international agreement
and it is developed further with four parts by ISO [13, 29-31]. The international stan-
dard covers six quality characteristics which are shown in Figure 3 [13].

 A New Way to Determine External Quality of ERP Software 189

Fig. 3. ISO 25000 Software Quality Model [13]

Although international standard consolidated many different views of quality for
software, there are still some other views that are not included into ISO 25000 and
some of them cover more characteristics. In his model, Dromey [32] puts forward one
more software quality characteristic, reusability. The other most significant attempt
for constituting a set of characteristics is put forward by Software Engineering
Committee [33]. Their model includes two more characteristics. These additional
characteristics and sub-characteristics are given in Figure 4.

Fig. 4. Additional software quality characteristics [47, 48]

As it is can be understood from these, there are some objection against interna-
tional standard. However, debate on this issue is settled; since, there is no additional
study after this standard. Therefore, we used software quality model of the standard.

As it is obviously seen in the definitions of quality, meeting the requirements of
users is stressed. Likewise, Software Quality is also highly related to conforming to
the requirements of end-users [34]. Moreover, proposed study aims to provide a guide

190 A.O. Aydin

to ERP purchasers (i.e. end-users) to evaluate software products before implementing
them. Therefore, External Software Quality Characteristics need to be explained.

As it is stated in the standard the relationship between software quality and its
characteristics depends on the type of the user. The end-users are concerned with
functionality, reliability, usability and efficiency characteristics [29]. These character-
istics are called as External Software Quality Characteristics.

Definitions of these characteristics and sub-characteristics are clearly identified in the
standard [29]. Since the study is based on external metrics, descriptions on characteris-
tics are given in Table 1 and descriptions on sub-characteristics are given in Table 2.

Table 1. Descriptions of External Software Quality Characteristics [29]

Characteristics Description
Functionality The capability of the software to provide functions which meet

stated and implied needs when the software is used under
specified conditions.

Reliability The capability of the software to maintain the level of per-
formance of the system when used under specified conditions.

Usability The capability of the software to be understood, learned, used
and liked by the user, when used under specified conditions.

Efficiency The capability of the software to provide the required per-
formance relative to the amount of resources used, under
stated conditions.

Table 2. Descriptions of External Software Quality Sub-Characteristics [29]

Characteristics Sub-Characteristics Description
Functionality Suitability Attribute of software that bears on the

presence and appropriateness of a set of
functions for specified tasks.

Accuracy Attributes of software that bear on the
provision of right or agreed results or
effects.

Interoperability Attributes of software that bear on its
ability to interact with specified systems.

Compliance Attributes of software that make the
software adhere to application-related
standards or conventions or regulations
in laws and similar prescriptions.

Security Attributes of software that bears on its
ability to prevent unauthorized access,
whether accidental or deliberate, to pro-
grams and data.

 A New Way to Determine External Quality of ERP Software 191

Table 2. (continued)

Reliability Maturity Attributes of software that bear on the
frequency of failure by faults in the
software.

Fault Tolerance Attributes of software that bear on its
ability to maintain a specified level of
performance in cases of software faults
or of infringement of its specified inter-
face.

Recoverability Attributes of software that bear on the
capability to re-establish its level of
performance and recover the data di-
rectly affected in case of a failure and on
the time and effort needed for it.

Usability Understandability Attributes of software that bear on the
users' effort for recognizing the logical
concept and its applicability.

Learnability Attributes of software that bear on the
users' effort for learning its application.

Operability Attributes of software that bear on the
users' effort for operation and operation
control.

Efficiency Time Behaviour Attributes of software that bear on re-
sponse and processing times and on
throughput rates in performing its func-
tion.

Resource Behaviour Attributes of software that bear on the
amount of resources used and the dura-
tion of such use in performing its func-
tion.

3 Enterprise Resource Planning Systems

In this section of the study literature review on ERP systems is given; since, it is
aimed to weight (i.e. determine the requirement level) each of the External Software
Quality Characteristics and Sub-Characteristics to evaluate ERP. ERP systems usually
cover a technical infrastructure, transactional backbone and advanced applications
[35]. ERP systems can roughly be described as software that integrates distributed
applications of finance, human resources, production, sales, purchase, supply and
distribution [36].

Stated or implied expectations of production systems to utilize ERP systems can be
found by elaborating on the chronological development processes of these systems.
By this approach user expectations can be better understood.

It dates back to 1960s that the manufacturing systems first discovered Material Re-
quirement Planning (MRP) [36]. MRP was the most effective tool for improving op-
erations by calculating material requirements and requirement periods at that time

192 A.O. Aydin

[37]. In the beginning of 1980s change in the market conditions caused manufacturing
firms to seek innovative techniques. By adding new procedures to MRP, Manufactur-
ing Resources Planning (MRP II) developed. MRP II try to integrate MRP and some
other functional operation areas like marketing and finance [38]. Moreover; MRP II
does not only cover MRP but also plans capacity [39].

After MRP II, Distribution Requirement Planning (DRP) and Computer Integrated
Manufacturing (CIM) emerge. By using DRP, it becomes possible to plan and man-
age distribution channels and product deliveries [40]. CIM covers the applications of
integration of the manufacturing processes and technical functions [3]. A few years
after CIM and DRP, a new way of planning all of the resources of any organization
Enterprise Resource Planning is born [35].

Explicit reason for evolution of ERP systems is to integrate former applications
[6]. On the other hand, it must be noted that this is not the only reason that gives birth
to ERP systems. In the last century small corporations changed into modern and
global enterprises. Moreover, in the last three decades market conditions changed so
quickly that those enterprises face hard competition [2]. Shortening of life cycle of
products and rapid increase in the product diversity are the most significant factors all
of which are shown to put enterprises under a big pressure [3].

Because of these conditions, production systems try to find a systemic idea involv-
ing all aspects of resource planning. They start to seek a way to restructure their proc-
esses flexibly. Most important factors for seeking this kind of integration is to enable
production systems to deliver higher variety of products at lower cost, supply custom-
ized products, develop new production strategies focusing on individual customers
and plan all of the resources more effectively [4].

It seemed possible to use IT in an integrated way to move towards the creation of
appropriate infrastructure [41]. Under these circumstances the idea of Enterprise Re-
source Planning (ERP), which is able to plan all of the resources of organizations in
an integrated way, is born. The main point of view of developing such systems is
restructuring organizations in a process oriented way rather than function oriented [6].
Difference of process and function oriented enterprise structure is shown in Figure 5.

Fig. 5. Structures of process oriented and function oriented enterprises (Skok and Döringer
2001)

 A New Way to Determine External Quality of ERP Software 193

Today ERP systems are utilized as software applications. ERP systems can be de-
fined in three different ways: [42] A commercial software product that is sold and
purchased; (2) A management tool that held all of the data and processes of an or-
ganization; [42] A key factor that gives solutions to the infrastructure of business
processes [43]. In this study, the focus will be on an ERP system as a software prod-
uct; since, the primary goal is to evaluate quality of ERP software.

The term “enterprise” refers to every function of a system that supplies services
and/or products. ERP software provides one database, one application, and one user
interface for distributed functions of enterprises [44]. All properties of ERP systems
are shown in Figure 6.

These distributed functions cover production planning, purchase, inventory control,
finance, human resources and sales and marketing [45]. In the last decade, Customer
Relationship Management (CRM), Supply Chain Management and web applications
are added on ERP systems as advanced applications [35].

Fig. 6. Fundamental properties of ERP software [49]

Shields (2001) gives a framework for an eXtended Enterprise Systems (XES) and
he defines XES as a systems that covers managerial portal, data warehouse, advanced
applications, transactional backbone of ERP and a technical infrastructure. In reality
ERP systems as software products also works on a technical infrastructure and those
technical infrastructures include hardware, network, database management system,
e-mail and gateway. On the other hand, it must be emphasized that in this study ad-
vanced applications and technical infrastructure are not going to be considered as a

194 A.O. Aydin

part of ERP systems’ core. In this study, we focus on transactional backbone of ERP
systems; since, there are a lot of different advanced applications [35].

Definition of Shields [35] gives a good guidance for determining core of ERP sys-
tems. Following his guidance, it can be stated that the finance, sales and distribution,
human resources and manufacturing components constitute transactional backbone of
ERP [7, 35]. Visual representation of the transactional backbone of ERP systems is
given in Figure 7.

Fig. 7. Transactional backbone of ERP systems

It must be noted that ERP systems as a software product is not limited with the
given components. Like the other software products, ERP systems also have security,
authorization and help components and human-computer interfaces [43]. Moreover,
these components are equally important for the users of software products. Therefore,
while evaluating external quality of ERP, not only transactional backbone but also
these additional components (security, authorization and help) must be considered.

4 Determining External Quality of ERP Software

It is obvious that the idea of ERP can satisfy the requirements of production systems.
Although the idea of ERP systems is unique; ERP software products have many
common features and also have significant differences. Therefore, end-users must
consider related risk and evaluate these systems by considering conformance of par-
ticular software to their stated or implied needs.

Today, measuring External Quality Characteristics of a software product is
considered as a valuable tool in Software Quality evaluation to determine confor-
mance to the requirements of its users. In the beginning, External Software Quality

 A New Way to Determine External Quality of ERP Software 195

Characteristics can help them to examine software according to each Sub-
Characteristic. In the frame of this reference, before buying any software product
purchasers can test software and evaluate it according to external metrics.

When evaluating external metrics, end-users can grade software according to Ex-
ternal Software Quality Sub-Characteristics. This grading can be a number between 0
and 100 as it is recommended in the standard. If this grade is denominated as Eij, it
can be explained as follows:

Eij: Evaluation grade assigned by end-users to a Sub-Characteristic for software
where
i: External Software Quality Characteristic (i= 1, 2, 3, 4)
j: External Software Quality Sub-Characteristic (j= 1,… J)

On the other hand, while comparing different ERP software products it is hard to
determine which ERP software best satisfies their requirements; because, each Qual-
ity Characteristic and Sub-Characteristic has different weights. With this respect, the
present study tries to provide a guide by setting up a checklist of weighted Quality
Characteristics to be used by organizations and/or users that intend to purchase ERP
software. These external quality Sub-Characteristics are weighted according to re-
quirement levels when considering core of ERP software. Afterwards, these weights
and examination results of end-users can be used as a tool for determining External
Quality of any ERP software.

To determine requirement levels, first a questionnaire is set up according to the
formerly given External Software Quality Characteristics and Sub-Characteristics.
Questions are set up in such manner that each one indicates a significant Software
Quality Sub-Characteristic. Subsequently, five expert professors all of whose research
areas of interest is Information Technology, Production Systems and ERP Systems
are chosen to answer the questionnaire. While preparing questionnaire the following
rules are taken as a guide:

1. The aim of the questionnaire is presented, a brief explanation is given and formerly
defined transactional backbone of ERP software is elaborated

2. It is tried to be comprehensible while asking questions. Explanations are kept pre-
cise and brief.

3. It is tried to keep questionnaire short and attractive. It is tried not to reference to a
previous question in any questions.

4. It is tried to structure the questionnaire well and experts are expected to follow its
logical order.

5. Answers to the questions are pre-defined and each interviewee is expected to as-
sign a value from 1 to 10 for each question which refers to a particular
Sub-Characteristic. These values refer to a degree of requirement where 1 refers to
lowest degree of requirement and 10 refer to highest degree of requirement. While
assigning those values experts are expected to assign a high value to a question that
is considered of high importance.

6. It is tried to keep questions in such a manner that they do not affect judgements of
experts.

7. The experts are not allowed to impose their opinions by leading to specific answers
while performing questionnaire.

196 A.O. Aydin

Answers to these questions give weights of each external software quality sub-
characteristics since each question indicates requirement levels of a significant Exter-
nal Software Quality Sub-Characteristic. The results are given in Table 3.

Table 3. Weights of each External Software Quality Sub-Characteristics

Charac-
teristics

(i)

Sub-
Charac-
teristics

(j)

Ex-
pert

1

Ex-
pert

2

Ex-
pert

3

Ex-
pert

4

Ex-
pert

5
Wij Dij Wi Di

1.
Func-
tional-
ity

1. Suit-
ability

10 10 10 9 10 9,8 0,212

9,240 0,281

2. Accu-
racy

10 10 10 9 10 9,8 0,212

3. Inter-
operabil-
ity

8 10 10 9 9 9,2 0,199

4. Com-
pliance

9 10 8 8 9 8,8 0,190

5. Secu-
rity

9 10 8 8 8 8,6 0,186

2. Reli-
ability

1. Ma-
turity

10 8 7 7 8 8,0 0,320

8,333 0,253

2. Fault
Toler-
ance

8 10 9 9 7 8,6 0,344

3. Re-
cover-
ability

9 10 10 6 7 8,4 0,336

3. Us-
ability

1.
Under-
stand-
ability

7 7 7 8 7 7,2 0,327

7,333 0,223 2. Learn-
ability 7 8 8 8 7 7,6 0,345

3. Oper-
ability

6 8 8 8 6 7,2 0,327

4. Effi-
ciency

1. Time
Behav-
iour

8 8 9 8 9 8,4 0,525

8,000 0,243 2. Re-
source
Behav-
iour

7 8 8 8 7 7,6 0,475

 A New Way to Determine External Quality of ERP Software 197

Notation for the formula below is explained subsequently:

Wij: Weight of each Sub-Characteristic
Dij: Relativistic degree of importance of each Sub-Characteristic of one Characteristic
Wi: Weight of each Characteristic
Di: Relativistic degree of importance of each Characteristic among all Characteristics

where

i: External Software Quality Characteristic (i= 1, 2, 3, 4)
j: External Software Quality Sub-Characteristic (j= 1,… J)
Weight of each Sub-Characteristic [46] is the average of grades assigned by experts as
seen in the formula. Therefore, weights of each Sub-Characteristic can be calculated
by the following equation.

K

G
W

K

k
kij

ij

== 1

where
Gkij: Grade assigned by the kth expert for the jth Sub-Characteristic of the ith Char-
acteristics
k: Number of expert (k= 1,…5)
As it is seen in the table each Sub-Characteristics is related to one Characteristic
relatively more important than one another. Therefore, to compare each Sub-
Characteristics of one Characteristics relativistic degree of importance for each Sub-
Characteristic can be calculated by using below formula.

=

=
J

j
ij

ij
ij

W

W
D

1
where
Dij: Relativistic degree of importance of a Sub-Characteristic for the ith Characteristic
By calculating average of Sub-Characteristics related to a Characteristic, weights of
Characteristics can be found. For this purpose following equation can be utilized.

J

W

W

J

j
ij

i

== 1

Moreover, relativistic degree of importance of each Characteristic can be calculated
by using following formula.

=

=
4

1i
i

i
i

W

W
D

where
Wi: Weight of the ith Characteristic.
Di: Relativistic degree of importance of the ith Characteristic

198 A.O. Aydin

As an example, the relativistic degree of importance of suitability Sub-Characteristic
which is related to functionality is 21.2%. To give one more example it can be inferred
that the efficiency quality characteristic has 24.3% effect on overall external quality
when considering requirements of systems that intends to use ERP software.

This paper recommends ERP software buyers to use these weights before purchas-
ing ERP software to find best alternative which meets their stated or implied needs.
By using requirement levels, these weights help to evaluate External Software Quality
of ERP software. For this purpose following equation can be used.

=
4

*
i

J

j
ijij EWESQoERP

where
ESQoERP: Weighted External Software Quality of a particular ERP software

The given formula can be used to evaluate different ERP software products. If this
approach is followed and alternatives are graded, selection can be made by choosing
the software which has highest grade.

As it is stated before, transactional backbone of ERP software covers different
components. Moreover, experts that contributed to this study recommended using one
another variable; since, each module has different degree of importance dependent on
the significant differences of the production systems. Especially, manufacturing and
service systems have major differences. Therefore, in this study it is proposed to as-
sign one more weight to each component for manufacturing and service systems.
With this respect, in Table 4 weights of components for those systems are proposed.

Table 4. Proposed weights of components for manufacturing systems and service systems

Components (C) Manufacturing Systems Service Systems
1. Sales and Distribution Com-
ponents

0.20 0.20

2. Manufacturing Components 0.30 0.25
3. Human Resources Compo-
nents

0.15 0.20

4. Finance Components 0.25 0.25
5. Additional Components 0.10 0.10

If it is desired to weight each module individually by using these weights component
based weighted ERP software product quality can be calculated by the subsequent
formula.

 =
5 4

**
l i

J

j
ijijl EWCCbESQoERP

where
CbESQoERP: Component based weighted External Software Quality of particular
ERP software
Cl: Weight of lth Component
l: Number of component (l= 1,…5)

 A New Way to Determine External Quality of ERP Software 199

In some cases due to special conditions according to the requirements of systems
evaluators, different weights than proposed ones can be used. Under such circum-
stances, by following the below constraint evaluators can define their weights.

1
5

=
l

lC

Finally, by using the given formulas a particular ERP software product’s overall ex-
ternal quality can be calculated. These evaluations will help the users to systemati-
cally evaluate ERP software and will give chance to benchmark different products.

5 Conclusion

In the field of IT, the most of the actions can be rolled back by its administrator or
user. Only exception is implementation of ERP software within production systems.
Purchasers of these products explore better ways to evaluate quality of these software
products before making decision on buying one of them. With this respect, it is tried
to determine the requirement levels of ERP software and weight them accordingly. By
providing equations it is tried to provide a guide to make it possible to benchmark
different ERP software products in a systematic manner. Even though proposed ap-
proach can be applied to any other software products, in this study ERP software is
chosen; since, risk related to ERP software is more than other software.

In its current form, the present study proposes a model for evaluating external
software quality of ERP software. In the near future, major ERP software can be
evaluated in a number of production systems and compare the results to figure out the
effectiveness of the model proposed. In addition to these, while using ERP software
quality in use can become an important issue. Therefore, the main limitation of the
current study is that it does not incorporate quality in use. In the near future, model
for evaluating quality in use can be developed for ERP software.

References

1. Goldhard, J.: Business Strategies for the 21st Century Manufacturing Firm-Using CIM for
Competitive Advantage. In: AUTOFACT, USA (1992)

2. Sohal, A.: A Longitudinal Study of Planning and Implementation of Advanced Manufac-
turing Technologies. International Journal of Computer Integrated Manufacturing 10(1-4),
81–95 (1997)

3. Nagalingam, S.V., Lin, G.C.I.: Latest Developments in CIM. Robotics and Computer Inte-
grated Manufacturing 15, 423–430 (1999)

4. Da Silveria, G., Borenstein, D., Fogliatto, F.: Mass Customization: Literature Review and
Research Directions. International Journal of Production Economics 72, 1–13 (2001)

5. Digre, T.: Bussiness Application Components. In: Object Oriented Programming Systems
Languages Application, Austin, USA (1995)

6. Skok, W., Döringer, H.: Potential Impact of Cultural Differences on Enterprise Resources
Planning (ERP) Projects. The Electronic Journal of Information Systems in Developing
Countries 7(5), 1–8 (2001)

200 A.O. Aydin

7. Davenport, T.H.: Putting the Enterprise into the Enterprise System. Harvard Business Re-
view 76(4), 121–132 (1998)

8. Kumar, V., Maheshwari, B., Kumar, U.: An Investigation of Critical Management Issues
in ERP Implementation: Emprical Evidence from Canadian Organizations. Technovation
(2001)

9. Markus, M.L., Tanis, C.: The Enterprise System Experience: From Adoption to Success.
In: Framing the Domains of IT Management: Projecting the Future through the Past. Pin-
naflex Educational Resources Inc., Cincinnati (2000)

10. Hong, K.K., Kim, Y.G.: The Critical Success Factors for ERP Implementation: An Orga-
nizational Fit Perspective. Information & Management (40), 25–40 (2002)

11. Wider, C., Davis, B.: False Starts, Strong Finishes. Information week 711, 41–53 (1998)
12. ISO, ISO 25000: Quality Software Requirements and Evaluation. The International Organ-

ization for Standardization, Geneva (2004)
13. ISO, ISO/IEC 9126: Product Quality - Part 1: Quality Model (2001)
14. Crosby, P.: Quality is Free. McGraw-Hill, New York (1979)
15. Calero, C.: Handbook of Research on Web Information Systems Quality (2008)
16. Olsina, L.: Measuring Web Application Quality with WebQEM. IEEE Multimedia (2002)
17. Feigenbaum, A.V.: Total Quality Control. McGraw-Hill, New York (1991)
18. Juran, J.: Juran on Quality by Design. The Free Press, New York (1992)
19. Xenos, M., Christodoulakis, D.: Evaluating Software Quality by the Use of User Satisfac-

tion Measurements. In: The 4th Software Quality Conference, University of Abertay Dun-
dee (1995)

20. Xenos, M.: Usability Perspective in Software Quality. In: Usability Engineering Work-
shop, The 8th Panhellenic Conference on Informatics with International Participation,
Southern Cyprus (2001)

21. McCall, J.A., Richards, P.K., Walters, G.F.: Factors in Software Quality. Rome Air De-
velopment Centre, Rome (1977)

22. Boehm, B.W.: Characteristics of Software Quality. North Holland Publishing Co, New
York (1978)

23. Bowen, T.P., Wigle, G.B., Tsai, J.T.: Specification of Software Quality Attributes. Rome
Air Development Centre, Rome (1985)

24. Grady, R.B., Caswell, D.L.: Software Metrics: Establishing a Company-Wide Program.
Prentice-Hall, London (1987)

25. Deutsch, M.S., Willis, R.R.: Software Quality Engineering. Prentice-Hall, London (1988)
26. Forse, T.: Qualimetrie des Systems Complexes. Les Editions d’Organisation (1989)
27. Von Maryhauser, A.: Software Engineering Methods and Management. Academic Press

(1990)
28. Khoshgoftaar, T.M., Allen, E.B.: Classification Techniques for Predicting Software Quali-

ty: Lessons Learned. In: Annual Oregon Workshop on Software Metrics, University of
Idaho, USA (1997)

29. ISO, ISO 9126: Product Quality - Part 2: External Metrics (2003)
30. ISO, ISO 9126: Product Quality - Part 3: Internal Metrics (2003)
31. ISO, ISO 9126: Product Quality - Part 4: Quality in Use Metrics (2004)
32. Dromey, R.G.: Software Product Quality: Theory, Model and Practice, Software Quality

Institute, Brisbane, Australia (1998)
33. SEC, Knowledge Area: Software Quality Analysis, The Software Engineering Body of

Knowledge (SWEBOK), Software Engineering Committee, Institute of Electrical and
Electronics Engineers, Inc., Montreal (1999)

 A New Way to Determine External Quality of ERP Software 201

34. Stavrinoudis, D.: Early Estimation of Users’ Perception of Software Quality. Software
Quality Journal 13, 155–175 (2005)

35. Shields, M.G.: E-Business and ERP - Rapid Implementation and Project Planning. John
Wiley & Sons, Inc., New York (2001)

36. Light, B., Holland, C.: Enterprise Resource Planning Systems: Impacts and Future Direc-
tions. In: Systems Engineering for Business Process Change: Collected Papers from the
EPSRC Research Programme. Springer, London (2000)

37. Plenert, G.: Focusing Material Requirements Planning (MRP) towards Performance. Euro-
pean Journal of Operational Research 119, 91–99 (1999)

38. Browne, J., Harhen, J., Shirman, J.: Production Management Systems. Addison-Wesley
(1988)

39. Hatzilygeroudis, I.: MRP II-Based Production Management Using Intelligent Decision
Making. In: Beyound Manufacturing Resource Planning. Advanced Models and Methods
for Production Planning. Springer (1998)

40. Greene, J.: Production and Inventory Control Handbook. McGraw-Hill (1987)
41. Hussein, J.: Providing an Insight on Improving Performance of MRP. Clemson University,

Clemson (2000)
42. Hammer, M., Champy, J.: Reengineering the Corporation: A Manifesto for Business

Revolution. Nicholas Brearley Publishing, London (1993)
43. Alageo, M.E.A., Barkmeyer, E.J.: An Overview of Enterprise Resource Planning Systems

in Manufacturing Enterprises, National Institute of Standards and Technology (1999)
44. Cambashi, Enterprise Resources Planning for Manufacturers. Cambashi Ltd., Cambridge

(1999)
45. Brislen, P., Krishnakumar, K.: What is ERP, Enterprise Resource Planning (1999)
46. Bertrand, J.W.M., Zuijderwijk, M., Hegge, H.M.H.: Using Hierarchical Psuedo Bills of

Material for Customer Order Acceptance and Optimal Material Replenishment in Assem-
ble to Order Manufacturing of Non-Modular Products. In: International Journal of Produc-
tion Economics (2000)

47. Software Engineering Committee, Knowledge Area: Software Quality Analysis, The
Software Engineering Body of Knowledge (SWEBOK). Institute of Electrical and Elec-
tronics Engineers, Inc., Montreal (1999)

48. Dromey, R.G.: A Model for Software Product Quality. IEEE Transactions on Software
Engineering (1995)

49. Hagman, A.: What will be of ERP? Could Component Software Spell a Strategic Inflec-
tion Point for the Industry?, School of Information Systems Queensland University of
Technology, Queensland (2000)

Towards a Catalog of Spreadsheet Smells�

Jácome Cunha1, João P. Fernandes1,2, Hugo Ribeiro1, and João Saraiva1

1 HASLab / INESC TEC, Universidade do Minho, Portugal
{jacome,jpaulo,jas}@di.uminho.pt, pg15970@alunos.uminho.pt

2 Universidade do Porto, Portugal

Abstract. Spreadsheets are considered to be the most widely used pro-
gramming language in the world, and reports have shown that 90% of
real-world spreadsheets contain errors.

In this work, we try to identify spreadsheet smells, a concept adapted
from software, which consists of a surface indication that usually corre-
sponds to a deeper problem. Our smells have been integrated in a tool,
and were computed for a large spreadsheet repository. Finally, the analy-
sis of the results we obtained led to the refinement of our initial catalog.

Keywords: Spreadsheets, Code Smells, EUSES Corpus.

1 Introduction

Spreadsheets are widely used, specially by non-professional programmers, the
also called ”end users” [26]. A typical end user is teacher, an engineer, a student,
or anyone that is not a professional programmer. The number of end-user pro-
grammers vastly outnumbers the amount of professional programmers. In fact,
studies suggest that in the U.S. alone there exist 11 million end users against
2.75 million of professional programmers [30]. In the same study, it is projected
for 2012 a total number of 90 million end users, 55 million of which will be
working on spreadsheets or databases.

The number of spreadsheet users provides enough evidence that millions of
spreadsheets are created every year. The fact is that, since end users are not
professional programmers, they usually do not follow the principles of good pro-
gramming. Instead, they care about getting a concrete task done. This approach,
together with the lack of support for abstraction, testing, encapsulation, or struc-
tured programming in spreadsheets, leads to reports showing that up to 90% of
real-world spreadsheets contain errors [29], with concrete impacts on companies’
profits.

In this paper we present a catalog and a methodology to identify smells in
spreadsheets. The concept of code smell (or simply bad smell) was introduced

� This work is funded by the ERDF through the Programme COMPETE and by the
Portuguese Government through FCT - Foundation for Science and Technology,
project references PTDC/EIA-CCO/108613/2008 and PTDC/EIA-CCO/116796/2010.
The two first authors were funded by FCT grants SFRH/BPD/73358/2010 and
SFRH/BPD/46987/2008, respectively.

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 202–216, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

PTDC/EIA-CCO/108613/2008
PTDC/EIA-CCO/116796/2010
SFRH/BPD/73358/2010
SFRH/ BPD/46987/2008

Towards a Catalog of Spreadsheet Smells 203

by Martin Fowler [18] as a concrete evidence that a piece of software may have a
problem. Usually a smell is not an error in the program, but a characteristic that
may cause problems understanding the software, for example, a long class in an
object-oriented program, and updating and evolving the software. We present a
methodology to define such smells in spreadsheets. We start by defining a set of
possible smells as our initial catalog. Then we use a large repository to evaluate
those smells. Finally, and as a result of this evaluation, we refine our spreadsheet
smells in order to have a more robust catalog. To perform the detection of smells
automatically we have developed a tool: SmellSheet Detective.

This paper is structured as follows. In Section 2 we present the methodology
used to create, validate, evaluate and refine a catalog of bad smells for spread-
sheets. Section 3 presents our initial catalog of bad smells. Then, in Section 5,
we present the evaluation of our initial catalog in the EUSES corpus. In Sec-
tion 4, we validate the results from the previous section. In Section 6 we adjust
the initial catalog according to the results obtained. Section 7 introduces the
developed tool to detect smells. In Section 8 we present related work and finally,
Section 9 concludes the paper.

2 A Methodology to Identify Spreadsheet Smells

The detection of errors in software systems is an important software engineering
technique. Software errors cause programs not to behave as expected and are re-
sponsible for several accidents. Even if not necessarily errors, the presence of bad
smells in software code can make programs harder to understand, maintain, and
evolve, for example. Martin Fowler popularized this notation of program smells
in the context of object-oriented programming and this is now an important area
of research. The detection of bad smells allows programmers to improve their
programs by eliminating them.

In this section we present a methodology to define a catalog of bad smells for
spreadsheets. This methodology is based on four steps: catalog definition, catalog
validation, catalog evaluation and catalog refinement.

Step 1: Catalog Definition - based on our personal experiences, we propose
an initial catalog of spreadsheet bad smells. We consider a bad smell in
spreadsheets a reference in a formula to an empty cell, an empty cell in a
table, etc. The full catalog is presented in Section 3.

Step 2: Catalog Validation - in order to validate the catalog we consider a large
repository of spreadsheets, the EUSES corpus [21], that contains more than
5000 spreadsheets, and we detect smells in a representative sub-set of the
repository, as described in Section 4.

Step 3: Catalog Evaluation - in order to evaluate the results of our empiri-
cal experiment performed in the previous step, we manually inspect all bad
smells detected by our catalog. We classify the detected smells in four cate-
gories: not a smell, low smell, medium smell and high smell. We present this
evaluation in detail in Section 5.

204 J. Cunha et al.

Step 4: Catalog Refinement - based on the evaluation performed in Step 3, we
have adjusted our catalog by identifying wrong smells, by refining previously
defined smells and by adding new smells that showed up when manually
inspecting EUSES spreadsheets. The result of this step is our catalog of
spreadsheet bad smells, which is shown in Section 6.

In order to validate our catalog in a large corpus we need a tool to automati-
cally detect smells in spreadsheets. Thus, the full catalog defined in Step 1 was
implemented as a software tool, SmellSheet Detective, that we present in
Section 7.

3 Spreadsheet Smells: Catalog Definition

The notion of bad smell emerged from the need to identify the cases for which
the internal structure of a piece of software could be improved. A bad smell is
typically something that is easy to spot, and an indicator of a possible concrete
issue. However, a smell is not something that can necessarily be considered an
error. An example of a smell proposed by Fowler and that applies to a software
project is the long method smell, that implements the notion that defining too
long methods (i.e, methods larger than around a dozen lines of code) may lead
to understandability and maintainability problems in the future.

The smells introduced by Fowler consist of a single flat list, but Mantyla has
created a taxonomy for all those smells [25]. Similarly to what Mantyla has done
we also grouped our smells in different categories: Statistical Smells, Type Smells,
Content Smells and Functional Dependencies Based Smells.

In Figure 1 we present a spreadsheet, slightly adapted from a spreadsheet in
the EUSES repository, where we can observe at least one smell belonging to each
of the categories that we have defined. In the next sections, we present in detail
the smells that we have fitted in each of these categories.

3.1 Statistical Smells

This category groups smells that are calculated through statistical analysis,
namely the Standard Deviation smell.

– Standard Deviation

This smell detects, for a group of cells holding numerical values, the ones
that do not follow their normal distribution.

Detection. Most spreadsheets with numeric values are organized either by
rows or columns, and it is often the case that wrong values are introduced
without the user ever noticing. The Standard Deviation smell is detected
by analyzing the rows (or columns) of a spreadsheet and flagging the values
outside the normal distribution of 95,4% (two standard deviations). In the
detection of this smell neither formulas nor labels are taken into account.

Towards a Catalog of Spreadsheet Smells 205

Fig. 1. A spreadsheet for a warehouse of cleaning products

Example. By inspecting Figure 1 we have realized, for instance, that the
standard deviation of column B values is 2.369E8. Then, the values that
are acceptable by normal distribution should be within the range [5.868E8,
1.534E9]. This means that a smell is detected for cell B4, since it contains
the value 123. Cell G12 is also indicated as a smell by standard deviation
analysis.

3.2 Type Smells

In this category we have included the Empty Cell and the Pattern Finder smells,
both analyzing the type of a cell, being it a Label, a Number, a Formula or an
Empty Cell.

– Empty Cell

In order to detect cells that are left empty, but that occur in a context that
suggests they should have been filled in, we have implemented the Empty
Cell smell.

Detection. What we do here is to select all possible windows of five cells
from each row (or column) and verify in each window whether it holds or
not precisely one empty cell.

206 J. Cunha et al.

Example. In the spreadsheet in Figure 1, we can see that cells C6 and G16
are empty. However, they occur in a context where all their neighbor cells
have been filled in; for these cells, a smell is signaled. Notice that, for example
in column I, several other empty cells are not pointed out as smells: indeed,
they occur in windows of 5 cells where more than just a single cell is empty.

– Pattern Finder

For faster development, spreadsheet users often simplify parts of formulas by
introducing in them constant (numeric or label) values. This is a poor design
decision that, if not corrected at some point, may lead to problems. In order
to point out the cells where this situation occurs, we have implemented the
Pattern Finder smell, that in fact works not only for formulas. Indeed, this
smell is able of finding patterns in a sheet such as a row containing only
numerical values except for one cell holding a label or a formula, or being
empty. We flag such a cell as a smell.

Detection. The detection of Pattern Finder smell follows an approach in all
similar to the detection of Empty Cell smells. In Pattern Finder, we use a
four cell window and we search for one cell with type characteristics that
are different from the ones in the other window cells. In this smell, we have
chosen a smaller window since the occurrence of patterns other than empty
cell patterns is also smaller.

Example. In Figure 1 we can see that cell F3 holds the textual value ”o”,
being then a cell of type Label; furthermore, it is surrounded by numbers in
the window constructed as described above: F3 is then a smell, and indeed
it is likely that the value that instead should have been inserted is ”0”.

3.3 Content Smells

In this category we include smells that are found through the analysis of the
content of cells: the String Distance smell and the Reference to Blank Cells
smell.

– String Distance

Typographical errors are frequent when typing in a computer. In order to
try to detect these type of errors, we have implemented the String Distance
smell, that signals string cells that differ minimally with respect to other
cells in a spreadsheet.

Detection. In the detection of this smell we use the algorithm created by
Levenshtein [23]. This algorithm compares two strings and finds the mini-
mum number of edits that are needed to transform one string into another.

Towards a Catalog of Spreadsheet Smells 207

In our case, we apply Levenshtein’s algorithm to each pair of strings in a
row (or column), and signal as a smell the cases for which the result is the
value 1. This means that a single change to a string in the pair is enough
to obtain the other string. We have furthermore limited the comparison to
strings of length greater than three: this prevents, for example, all cells in a
row holding the alphabet letters to be considered smells.

Example. We can see a String Distance smell in Figure 1: in row C, cell C8
holds the plural of cells C9 to C11; this suggests a typing error on cell C8.

– Reference to Empty Cells

The existence of formulas pointing to empty cells is a typical source of errors
in spreadsheets, and we have therefore included in our catalog a smell for
detecting all occurrences of this situation.

Detection. The detection of this smell is implemented by searching for all
formulas in a spreadsheet and by gathering all their references. Then, we
simply check whether each of these references points to an empty cell or not.

Example. Cell J16 of Figure 1 is recognized as a smell since its value is
calculated using the value of cell G16, which is empty.

3.4 Functional Dependencies Based Smells

In this category, we have adapted to spreadsheets data mining techniques that
were first introduced for databases. In particular, we search for dirty values in a
spreadsheet.

– Quasi-Functional Dependencies (QFD)

In [4] it is described a technique to identify dirty values using a slightly
relaxed version of Functional Dependencies [5], and this is the technique that
we use here. Two columns A and B are Functionally Dependent if multiple
occurrences of the same value in A always correspond to the same value in
B. For instance, in the example show in Figure 1, column A functionally
determines column B, as knowing one particular code is enough to know its
associated upc. When equal values in a column correspond to the same value
in another column, except for a small number of cases, this is a situation
that smells, and that we flag.

Detection. The implementation of this smell follows the approach described
in [4]. It involves collecting and matching all data in a spreadsheet in order
to find QFD, actually identifying dirty values and then ranking all these
values.

208 J. Cunha et al.

Example. Cells E12 and E13 of the spreadsheet presented in Figure 1 are
pointed out as smells by the analysis of QFD. Indeed, we may see that the
values (655, 1111147006, SUNLIGHT POWDER AUTO, 85 OZ) in columns A
to F always determine the value 103 in column E, except precisely for cells
E12 and E13.

4 Catalog Validation

In the previous section, we have described the catalog of spreadsheet smells
that we propose in this paper. Now, we need to validate our catalog against
real spreadsheets. For this purpose, we will use the EUSES Corpus [21], a large
spreadsheet repository which has been widely used by the software engineer-
ing community [1,17]. This repository consists of 5606 spreadsheets which have
been divided into six categories: Database, Financial, Grades, Homework, In-
ventory and Modeling. The proportion of spreadsheets per category can be seen
in Figure 2.

Fig. 2. EUSES spreadsheet categories

In order to evaluate our catalog, we have implemented in a tool, Smell-
Sheet Detective, the spreadsheet smells that the catalog includes (this tool
is presented in detail in Section 7). For each smell, the results we obtain are
presented in Table 1: the different smells are listed in rows and the different
EUSES categories are listed in columns.

The results observed in Table 1 consider 180 EUSES spreadsheets only. Still,
smells were identified, in those spreadsheets, 3841 times. This is a number that is
large enough for validation purposes while still enabling the manual validation of
the detected smells. Indeed, the next phase of our methodology was to inspect
individually and in detail each spreadsheet that we considered, and validate
the smells identified for them. The validation tried to establish two things: a)
whether the identification of a smell was accurate or not; b) in case the identified

Towards a Catalog of Spreadsheet Smells 209

Table 1. Number of smells collected for each EUSES category

Smell/Category Database Financial Grades Homework Inventory Modeling Total

Empty cells 53 27 56 42 109 106 393
Patterns 86 62 66 58 111 114 497
Std. Dev. 33 35 134 14 32 7 255
String Dist. 25 3 1357 231 158 658 2442
CFD 12 13 150 2 13 24 204
Ref2empty 0 23 27 0 0 0 50

Total: 209 163 1790 347 423 909 3841

smell was accurately pointed out, how severe we consider it to be, i.e., how much
a smell impacts in the overall quality of the spreadsheet.

5 Catalog Evaluation

The purpose of this section is to establish a model to evaluate the smells that
our catalog identifies as such. For this, we need to define how the smells that
are identified can be measured and classified. We have inspired ourselves in the
technique used by the software quality measurement company Software Improve-
ment Group [19] and empirically classify the smells that we detect under three
categories:

– Low smells (ls): In this category we include the cells that are identified as
smells but that we can not ensure that indeed constitute smells, neither can
we ensure that, on the contrary, do not constitute smells;

– Medium smells (ms): This category includes the cells that we can ensure
are smells with a high degree of certainty, but that belong to spreadsheets
that we can not fully understand;

– High smells (hs): Here, we include all smells that are detected and that
our inspection confirmed as such, without a doubt;

– Not smells (ns): Finally, we include here all smells that we consider to
have been wrongly detected, for example, due to tool malfunctioning;

The creation of this classification model made it possible to uniformly classify
spreadsheet smells. In the remaining of this section, we present different views
of the classification we establish for each smell we identify.

In Table 2, we show the absolute results of classifying each detected smell
under one category of the catalog validation model. As a concrete example of this,
the value 7 in line ’Empty Cells’, column ’Database’, sub-column ’ls’ indicates
that 7 of the smells that were identified by the ’Empty cells’ smell in spreadsheets
of the ’Databases’ EUSES category were identified as low smells.

210 J. Cunha et al.

Table 2. Smell classification (absolute values)

Smell/Level
Database Financial Grades Homework Inventory Modeling
ls ms hs ns ls ms hs ns ls ms hs ns ls ms hs ns ls ms hs ns ls ms hs ns

Empty cells 7 1 0 45 3 2 0 22 15 1 0 40 1 0 0 41 1 0 0 108 88 0 0 18
Patterns 7 1 0 78 6 2 0 54 16 5 0 45 1 1 0 56 1 0 0 110 93 0 0 21
Std. Dev. 10 0 0 23 2 0 0 33 2 0 0 132 5 0 0 9 1 0 0 31 1 0 0 6
String Dist. 0 0 1 24 0 0 0 13 0 0 4 1353 1 0 0 230 1 0 2 155 11 2 0 645
CFDs 4 7 1 0 0 0 3 0 55 5 1 89 1 0 0 1 1 1 0 11 3 0 1 20
Ref2empty 0 0 0 0 9 1 7 6 0 8 1 18 0 0 0 0 0 0 0 0 0 0 0 0

Total: 28 9 2 170 20 5 10 128 88 19 6 1677 9 1 0 337 5 1 2 415 196 2 1 710

Table 3. Smell classification (relative values, per smell)

Smell/Level
Database Financial Grades Homework Inventory Modeling
ls ms hs ns ls ms hs ns ls ms hs ns ls ms hs ns ls ms hs ns ls ms hs ns

Empty cells 13 2 0 85 11 7 0 82 27 2 0 71 2 0 0 98 1 0 0 99 83 0 0 17
Patterns 8 1 0 91 10 3 0 87 24 8 0 68 2 2 0 96 1 0 0 99 82 0 0 18
Std. Dev. 30 0 0 70 6 0 0 94 1 0 0 99 36 0 0 64 3 0 0 97 14 0 0 86
String Dist. 0 0 4 96 0 0 0 100 0 0 0 100 0 0 0 100 1 0 1 98 2 0 0 98
QFD 33 59 8 0 0 0 100 0 37 3 1 59 50 0 0 50 8 8 0 84 13 0 4 83
Ref2empty 0 0 0 0 40 4 30 26 0 30 4 66 0 0 0 0 0 0 0 0 0 0 0 0

Total: 13 4 1 81 12 3 6 79 5 1 0 94 3 0 0 97 1 0 0 98 22 0 0 78

Table 4. Smell classification (relative values, per evaluation model category)

Smell/Level
Database Financial Grades Homework Inventory Modeling
ls ms hs ns ls ms hs ns ls ms hs ns ls ms hs ns ls ms hs ns ls ms hs ns

Empty cells 25 11 0 26 15 40 0 17 17 5 0 2 11 0 0 12 20 0 0 26 45 0 0 3
Patterns 25 11 0 46 30 40 0 42 18 26 0 3 11 100 0 17 20 0 0 27 46 0 0 3
Std. Dev. 36 0 0 14 10 0 0 26 2 0 0 8 56 0 0 3 20 0 0 7 1 0 0 1
String Dist. 0 0 50 14 0 0 0 10 0 0 66 81 11 0 0 68 20 0 100 37 6 100 0 90
QFD 14 78 50 0 0 0 30 0 63 26 17 5 11 0 0 0 20 100 0 3 2 0 100 3
Ref2empty 0 0 0 0 45 20 70 5 0 43 17 1 0 0 0 0 0 0 0 0 0 0 0 0

In Table 3 we present the percentage of automatic detections, per smell, that
were classified in each of the validation model categories. Taking the same cell
as above, it means that 13% of empty cell smells that were identified in database
spreadsheets were classified as low smells.

The information of Table 4 shows the percentage of automatic detections,
per validation model category, for all the smells. Again reading the same table
element, 25% of the smells that we have included in the ’Low Smells’ category,
for database spreadsheets, were identified by the ’Empty Cell’ smell.

Finally, in Table 5, we present the total number of smells, for each of smell
and for each model evaluation category.

Towards a Catalog of Spreadsheet Smells 211

Table 5. Global total results (absolute values)

��������Smell
Level

Low smells Medium smells High smells Not smells Total

Empty cells 115 4 0 274 393
Patterns 124 9 0 364 497
Std. Dev. cells 21 0 0 234 255
String Dist. 13 2 7 2420 2442
QFD 64 13 6 121 204
Ref2empty 9 9 8 24 50

Total: 346 37 21 3437 3841

This table shows that we are able to detect smells in the EUSES corpus.
However, 90% of the smelly cells detected were not confirmed as such after the
manual inspection of those 3841 cells. In the next section we conduct a refinement
on the initial catalog that we have defined, based on the analysis of the results
presented in this section.

6 Catalog Refinement

Having evaluated our initial spreadsheet catalog in a representative set of spread-
sheets of the EUSES repository, firstly, by automatically running a spreadsheet
smell detector and, secondly, by manually validating the results, we can now re-
fine the catalog based on the results and experience obtained. We consider three
different types of refinement:

– Overlapped smells: The pattern smell overlaps the empty cell smell. In fact,
all empty cells were detected by both approaches. Since we want to distin-
guish an empty cell from a pattern in order to have a more precise notion of
the smell itself, then the empty cells should not be considered as a pattern
smell.

– New smells detected: when manually inspecting a large number of EUSES
spreadsheets, we detected several bad smells in spreadsheets that we had
not considered, namely, the use of summation cells where no formulas are
used to do the calculations: constant values are used instead! This is the case,
for example, in the spreadsheet file “FIN hospitaldataset2002 MEMORIAL”,
cell F22. Thus, a smell detecting constant values where formulas should be
used needs to be added to the catalog.

– Wrong smells: The string distances smell produced the highest number of
wrongly detected cells. Because we use the Levenshtein distance algorithm
to find close strings, most of the wrong string distance detected came from
the use of the algorithm in numeric strings or strings with numeric values.
One solution for this problem would be the identification of the character

212 J. Cunha et al.

where the strings were different and if that character was a numeric value
we would ignore it. This would lead to an improvement in this smell of 88%.
The other smells where the results would be improved is the standard devi-
ation smell: in this one we do not have a percentage of improvement because
most of the wrong detections was due the lack of knowledge of the domain
of the spreadsheet.

Next we present the results of running our smell detector according to the catalog
refinements. It should be noticed that no new smells have been implemented.

Table 6. Refined catalog results

��������Smell
Level

Low smells Medium smells High smells Not smells Total

Empty cells 115 4 0 274 393
Patterns 9 5 0 90 101
Std. Dev. cells 21 0 0 234 255
String Dist. 13 2 7 290 312
QFD 64 13 6 121 204
Ref2empty 9 9 8 24 50

Total: 231 33 21 1033 1315

As the results included in Table 6 show, we were able to detect 285 manually
validated smells out of 1315 detected by our smell detector. Thus we have 21.7%
of correct smells detected. Moreover, 54 out of 231 (18.9%) presents a medium
or high level probability of the occurrence of a problem in the spreadsheet. As
a result of our refinement, we have improved our smell detection from 90% to
78% of false positive smells.

Based on our analysis we present in Table 7 the EUSES categories for which
we believe each smell can be effectively used.

Table 7. The use of smells in EUSES categories

��������Smell
Category

Database Financial Grades Homework Inventory Modeling

Empty cells X
Patterns X
Std. Dev. X
String Dist. X X X X X X
QFD X X X X
Ref2empty X X X X X X

The table show that all smells are applicable in at least two categories and
two of them (string distance and references to empty cells) are applicable in all
categories.

Towards a Catalog of Spreadsheet Smells 213

7 SmellSheet Detective

To analyze the selected spreadsheet sample we implemented the tool Smell-
Sheet Detective which detects the smells introduced in the Section 3. This
implementation was made using the Java programming language, the Google
Web Toolkit (GWT)1, the Apache POI library2 and the Google libraries to work
with spreadsheets from the Google Docs3. We decided to support spreadsheets
written in the Google Docs platform because it is becoming more and more used.
In fact, the popular Microsoft Office suite has also its online version4. Indeed,
the migration from desktop to online applications is becoming very common.
Nevertheless, we also support spreadsheet written using desktop applications, as
can be seen in Figure 3.

Fig. 3. SmellSheet Detective architecture

The tool can receive spreadsheets, as we mentioned before, from Google Docs
or directly from the computer where it is running. If the Google Docs source
is used, a valid Google account login is required. The tool then selects all the
spreadsheets in the account and shows them to the user. After selecting a partic-
ular spreadsheet, the user can select a single sheet to be analyzed, or otherwise
the entire spreadsheet is used. If we use the direct upload source, the user can
browse the spreadsheets in the computer and select one. The sheet selection
works in a similar way as explained.

After the selection process, the SmellSheet Detective searches the sheets
selected for bad smells. The detection of smells is done as explained in Section 3.

Finally, the tool generates a comma-separated value file with the outputs.
Each row will contain information about a single sheet: the first value is the

1 http://code.google.com/intl/pt-PT/webtoolkit/
2 http://poi.apache.org
3 http://docs.google.com
4 http://www.officelive.com

http://code.google.com/intl/pt-PT/webtoolkit/
http://poi.apache.org
http://docs.google.com
http://www.officelive.com

214 J. Cunha et al.

name of the spreadsheet/sheet and the next numbers are the ones reported by
the different parts of the tool implementing the detection of the smells empty
cells, standard deviation, string distance, functional dependencies, pattern finder
and references to blank cells.

8 Related Work

Fowler [18] was the first to introduce the concept of smell, to create a list of 22
smells and pointing a possible solution for each one of them. In the sequence of
Fowler study, Mantyla et al. [24] has created a taxonomy for the smells listed
by Fowler so they could be easier to understand. They created five groups of
smells, namely, the bloaters, the object-oriented abusers, the change preventers,
the dispensables and the couplers.

In recent years is becoming a very active area of research. Engels and Erwig
introduced ClassSheets to model the business logic of a spreadsheet [15]. These
models have been extended and embedded in spreadsheet system [10,11] so that
they can guide end users introducing correct data [12] and to provide model-
driven software evolution [8,9,14]. Tools have been defined to debug spread-
sheets [2,3,22], to define type systems for spreadsheets [16], to map spreadsheets
to databases [13] and to infer models from legacy spreadsheets [7,20].

Hermans et al. [17] adapted Fowler’s work to detect inter-worksheets smells.
Their work differs from the work we present here in the fundamental approach to
define spreadsheet smells: while Hermans adapts Fowler’s smells to the spread-
sheet realm, we analyze a large corpus, and based on that, we define, validate,
evaluate and refine spreadsheet specific smells. We believe that the two ap-
proaches are orthogonal and as a consequence a full catalog should include both
smells.

The analysis of possible errors in spreadsheets was also studied by several re-
searchers, namely, Panko et al. [27] who proposed a revised taxonomy for spread-
sheet errors [28], Correia et al. [6] who used Goal Question Metric to measure
the maintainability of spreadsheets, and Abraham et al. [2] who developed a tool
for debugging spreadsheets.

9 Conclusion

In this paper we have presented a detailed study on spreadsheet smell detection.
We have presented a catalog of smells that are spreadsheet specific and we have
validated it using a large spreadsheet repository. Furthermore, we have refined
the catalog by manually evaluating the results obtained. The smell detection has
been implemented in the SmellSheet Detective tool, and we have presented
our preliminary results that show that we are able to detect a significant amount
of smells using our tool. Also, we have confirmed that more than 20% of the
detected smelly cells point to a possible problem in the spreadsheet.

In the future, we intend to extend the work presented in this paper in two
different ways. Firstly, we believe that the number and the type of smells that

Towards a Catalog of Spreadsheet Smells 215

belong to a spreadsheet smell catalog can be further extended. Secondly, ever
since the smells were first proposed for software repositories, they are usually
associated with refactorings that can eliminate them. These are promising re-
search directions that we are already exploring and whose results we plan to
bring out in the near future.

References

1. Abraham, R., Erwig, M.: Inferring templates from spreadsheets. In: Proc. of the
28th Int. Conf. on Software Engineering, pp. 182–191. ACM, New York (2006)

2. Abraham, R., Erwig, M.: Goaldebug: A spreadsheet debugger for end users. In:
ICSE 2007: Proceedings of the 29th International Conference on Software Engi-
neering, pp. 251–260. IEEE Computer Society, Washington, DC (2007)

3. Abreu, R., Riboira, A., Wotawa, F.: Constraint-based debugging of spreadsheets.
In: Proceedings of the XV Ibero-American Conference on Software Engineering
(CibSE 2012) (to appear, 2012)

4. Chiang, F., Miller, R.J.: Discovering data quality rules. The Proceedings of the
VLDB Endowment 1, 1166–1177 (2008)

5. Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377–387 (1970)

6. Correia, J.P., Ferreira, M.A.: Measuring maintainability of spreadsheets in the wild.
In: ICSM, pp. 516–519. IEEE (2011)

7. Cunha, J., Erwig, M., Saraiva, J.: Automatically inferring classsheet models from
spreadsheets. In: 2010 IEEE Symposium on Visual Languages and Human-Centric
Computing, pp. 93–100. IEEE Computer Society (2010)

8. Cunha, J., Fernandes, J.P., Mendes, J., Pacheco, H., Saraiva, J.: Bidirectional
Transformation of Model-Driven Spreadsheets. In: Hu, Z., de Lara, J. (eds.) ICMT
2012. LNCS, vol. 7307, pp. 105–120. Springer, Heidelberg (2012)

9. Cunha, J., Fernandes, J.P., Mendes, J., Saraiva, J.: MDSheet: A Framework for
Model-driven Spreadsheet Engineering. In: Proceedings of the 34rd International
Conference on Software Engineering, ICSE 2012, pp. 1412–1415. ACM (2012)

10. Cunha, J., Fernandes, J.P., Saraiva, J.: From Relational ClassSheets to
UML+OCL. In: The Software Engineering Track at the 27th Annual ACM Sym-
posium On Applied Computing (SAC 2012), Riva del Garda (Trento), Italy,
pp. 1151–1158 (2012)

11. Cunha, J., Mendes, J., Fernandes, J.P., Saraiva, J.: Embedding and evolution of
spreadsheet models in spreadsheet systems. In: IEEE Symp. on Visual Languages
and Human-Centric Computing, pp. 179–186. IEEE CS (2011)

12. Cunha, J., Saraiva, J., Visser, J.: Discovery-based edit assistance for spreadsheets.
In: Proceedings of the 2009 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), VLHCC 2009, pp. 233–237. IEEE Computer So-
ciety, Washington, DC (2009)

13. Cunha, J., Saraiva, J., Visser, J.: From spreadsheets to relational databases and
back. In: Proceedings of the 2009 ACM SIGPLAN Workshop on Partial Evaluation
and Program Manipulation, PEPM 2009, pp. 179–188. ACM, New York (2009)

14. Cunha, J., Visser, J., Alves, T., Saraiva, J.: Type-Safe Evolution of Spreadsheets.
In: Giannakopoulou, D., Orejas, F. (eds.) FASE 2011. LNCS, vol. 6603, pp. 186–201.
Springer, Heidelberg (2011)

216 J. Cunha et al.

15. Engels, G., Erwig, M.: ClassSheets: automatic generation of spreadsheet applica-
tions from object-oriented specifications. In: 20th IEEE/ACM Int. Conf. on Auto-
mated Sof. Eng., Long Beach, USA, pp. 124–133. ACM (2005)

16. Erwig, M., Burnett, M.: Adding Apples and Oranges. In: Adsul, B., Ramakrishnan,
C.R. (eds.) PADL 2002. LNCS, vol. 2257, pp. 173–191. Springer, Heidelberg (2002)

17. Felienne Hermans, M.P., van Deursen, A.: Detecting and visualizing inter-
worksheet smells in spreadsheets. In: Proceedings of the 34rd International Con-
ference on Software Engineering, ICSE 2012. ACM (to appear, 2012)

18. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley,
Boston (1999)

19. Heitlager, I., Kuipers, T., Visser, J.: A practical model for measuring maintainabil-
ity. In: Proceedings of the 6th International Conference on Quality of Information
and Communications Technology, pp. 30–39. IEEE Computer Society, Washington,
DC (2007)

20. Hermans, F., Pinzger, M., van Deursen, A.: Automatically Extracting Class Dia-
grams from Spreadsheets. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 52–75. Springer, Heidelberg (2010)

21. Ii, M.F., Rothermel, G.: The euses spreadsheet corpus: A shared resource for sup-
porting experimentation with spreadsheet dependability mechanisms. In: 1st Work-
shop on End-User Software Engineering, St. Louis, Missouri, USA, pp. 47–51 (2005)

22. Janssen, T., Abreu, R., van Gemund, A.: Zoltar: A toolset for automatic fault
localization. In: 24th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2009, pp. 662–664 (November 2009)

23. Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady 10, 707 (1966)

24. Mäntylä, M., Vanhanen, J., Lassenius, C.: A taxonomy and an initial empirical
study of bad smells in code. In: Proceedings of the International Conference on
Software Maintenance, ICSM 2003, pp. 381–384. IEEE Computer Society, Wash-
ington, DC (2003)

25. Mäntylä, M.V., Lassenius, C.: Subjective evaluation of software evolvability using
code smells: An empirical study. Empirical Softw. Engg. 11, 395–431 (2006)

26. Nardi, B.A.: A Small Matter of Programming: Perspectives on End User Comput-
ing, 1st edn. MIT Press, Cambridge (1993)

27. Panko, R.R., Aurigemma, S.: Revising the panko-halverson taxonomy of spread-
sheet errors. Decision Support System 49, 235–244 (2010)

28. Panko, R.R., Halverson Jr., R.P.: Spreadsheets on trial: A survey of research on
spreadsheet risks. In: Proceedings of the 29th Hawaii International Conference on
System Sciences, HICSS 1996. Decision Support and Knowledge-Based Systems,
vol. 2, pp. 326–335. IEEE Computer Society, Washington, DC (1996)

29. Rajalingham, K., Chadwick, D.R., Knight, B.: Classification of spreadsheet errors.
In: Symposium of the European Spreadsheet Risks Interest Group (EuSpRIG),
Amsterdam (2001)

30. Scaffidi, C., Shaw, M., Myers, B.: The ‘55m end-user programmers’ estimate revis-
ited. Tech. rep., Carnegie Mellon University, Pittsburgh (2005)

Program and Aspect Metrics

for MATLAB�

Pedro Martins1, Paulo Lopes1, João P. Fernandes1,2,
João Saraiva1, and João M. P. Cardoso2

1 HASLab / INESC TEC, Universidade do Minho, Portugal
{prmartins,plopes,jpaulo,jas}@di.uminho.pt

2 Universidade do Porto, Faculdade de Engenharia, Departamento de Eng.
Informatica, Porto, Portugal

jmpc@fe.up.pt

Abstract. In this paper we present the main concepts of a domain-
specific aspect language for specifying cross-cutting concerns of MATLAB
programs, together with a suite of metrics that is capable of assessing
the overall advantage of introducing aspects in the development cycle
of MATLAB software. We present the results of using our own suite to
quantify the advantages of using aspect oriented programming, both in
terms of programming effort and code quality. The results are promising
and show a good potential for aspect oriented programming in MATLAB
while our suite proves to be capable of analyzing the overall characteris-
tics of MATLAB solutions and providing interesting results about them.

Keywords: Aspect Oriented Programming, Matlab, Aspect Metrics.

1 Introduction

MATLAB [1] is a high-level, interpreted, mathematically-oriented domain-specific
language which has some key characteristics such as being based on matrix data
types, not requiring variables declaration and including operator overloading.
Combined with function polymorphism and dynamic type specialization these
features, together with the MATLAB environment provided by MathWorks [2],
create an interesting environment to easily model and simulate complex systems.

The fact is that, in MATLAB as in most programming languages, tasks such as
exploiting non-uniform fixed-point representations, monitoring certain variables
or including handlers to observe specific behaviors are extremely cumbersome,
error-prone and tedious tasks. Indeed, each time one of these features is neces-
sary, invasive changes to the original MATLAB program need to be performed.

� This work is funded by the ERDF through the Programme COMPETE
and by the Portuguese Government through FCT - Foundation for Sci-
ence and Technology, projects ref. PTDC/EIA/70271/2006 and PTDC/EIA-
CCO/108995/2008. The first and third authors were also supported by FCT grants
BI3-2011/PTDC/EIA/70271/2006 and SFRH/BPD/46987/2008, respectively.

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 217–233, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

218 P. Martins et al.

In addition, as MATLAB allows a higher-level of abstraction than, for ex-
ample, the C programming language, the de facto standard embedded systems
programming language, aspect rules may also be used to specialize the MAT-
LAB input program to different target architectures. These specializations may
include data types, array shapes, and implementations of a given function, and
also contribute to the deterioration of the overall quality of MATLAB code.

The goal of this paper is three fold: firstly, we provide software complexity
metrics forMATLAB programs. These metrics, based on the Halsted’s complexity
metrics [3], provide a quantification of the overall quality of a MATLAB program.
Secondly, we present a set of metrics for an aspect oriented extension ofMATLAB,
and thirdly, we also present aspect metrics to quantify the quality of aspect
MATLAB programs. Finally, we present our experimental results of using both
suites of metrics on real MATLAB code and aspect MATLAB programs. We show
the results we obtained by applying our metrics and then we analyze the impact
of using aspects. We also show, using concrete examples, how the quality of a
MATLAB program can see significant increases when an aspects language is used.

In [4], the authors have suggested an aspects language, and a compiler for
it, that is capable of concern modularization and supports specific scientific
computation tasks. Being aware of this Aspects Oriented Programming (AOP)
approach to MATLAB, we use our own aspects language because we are familiar
with it, because it is simple to use and also because it supports the creation
of aspect-oriented versions of MATLAB programs. In this paper we argue that
MATLAB programming can suffer from concerns pollution and that introducing
concerns separation makes programming easier, faster and can help producing
code with more quality. Nevertheless, those improvements are orthogonal to any
aspect oriented approach.

The remainder of this paper is organized as follows. In Section 2 we intro-
duce the MATLAB programming environment and two practical examples. In
Section 3 we introduce our aspect oriented approach, which we use to show how
the examples of the previous section can be improved. In Section 4 we introduce
our suite of metrics to assess the quality of both MATLAB programs and their
aspectualized versions. In Section 5 we show the results of applying the metrics
to a set of MATLAB programs, and in Section 7 we conclude this paper.

2 MATLAB

MATLAB is a high-level matrix-oriented programming language to implement
computationally intensive tasks faster than with traditional programming lan-
guages. The code presented below is an excerpt of a MATLAB function that
implements the Discrete Fourier Transform (function dft custom).

Example of a MATLAB Program:

function [mag] = dft_custom(x, n)

twoPI = 2.0 * pi;

n2 = n/2;

for i = 1:n2

Program and Aspect Metrics for MATLAB 219

xre(i) = x(i);

end

for i = 0:n-1

arg = twoPI * i / n;

...

There are several characteristics to notice regarding MATLAB code. Firstly, to
provide faster development, data types and shapes of variables are not specified.
In the particular case of this example, from the assignment twoPI = 2 ∗ pi , one
could assume twoPI would be stored as a scalar of double-precision floating-point
type1. Internally, twoPI will actually be stored as a single-element array of type
double.

Secondly, array variable shapes are inferred during program execution. Indeed,
the assignments to variables expose, at runtime, the shape of those variables.
At a certain point of a MATLAB program, assigning arg = twoPI * i / n will
imply that arg is a single-element array, while at another point of the code
assigning arg=[1 2; 3 4; 5 6] will imply that arg now refers to a 2× 2 matrix.
While these dynamic features speed up program development, they complicate
the translation of MATLAB to non-dynamic languages. For many systems, the
overhead to implement this dynamic behavior is just not acceptable.

In addition to functions, MATLAB offers the possibility of structuring code in
scripts, which very much resemble bash scripts in UNIX (a simple sequence of
instructions), or even Object Oriented Programming (OOP), by defining classes
and applying standard object-oriented design patterns which allow code reuse,
inheritance, encapsulation, and reference behavior. Despite promising, the intro-
duction of OOP in MATLAB is still very recent and has not yet seen a broad
use, whereas functions are part of most existing MATLAB solutions.

Despite some syntactic similarities with C, semantically they are very differ-
ent. For example, the variable whose value is returned by a function, mag in the
case of the previous example, is declared in the function signature itself, instead
of by a primitive such as return, as in C; also, MATLAB functions may explicitly
return more than one value.

Finally, function calling in MATLAB is easy in the sense that all functions are
polymorphic, so a programmer knows that whatever variable he/she applies to
a function, it will always produce a concrete result. Take as an example the ×
operator, that can be used to multiply integers, floats and even matrices.

2.1 Tracing in MATLAB

Tracing is a specialized method to obtain execution information of a program,
and it is a technique that is frequently used during the debugging of a program.

A concrete scenario where tracing would be of practical interest is the follow-
ing: in case a function, such as dft custom, is not producing the expected results,
the programmer may want to print all values assigned to some variables when

1 pi is a constant in MATLAB representing the value π.

220 P. Martins et al.

executing that function for a particular input. Observing all the printed values
may then help in understanding and identifying the coding error.

In order to implement this tracing, one could follow the strategy of planting
printing instructions throughout the original source code, every time an assign-
ment occurs. For dft custom, this strategy would result in the code shown next:

Example of a MATLAB Program with tracing:

function [mag] = dft_custom_tracing(x, n)

twoPI = 2.0 * pi;

disp(’The value of twoPI is:’); disp(twoPI);

n2 = n/2;

disp(’The value of n2 is:’); disp(n2);

for i = 1:n2

xre(i) = x(i);

disp(’The value of xre(i) is:’); disp(xre(i));

end

for i = 0:n-1

arg = twoPI * i / n;

disp(’The value of arg is:’); disp(arg);

end

While this is a strategy that can be manually performed for small-sized programs,
using it for large-sized applications can be a tedious and unproductive task.
Moreover, the code for tracing must also be manually removed from the final
version of the code. In Section 3, we show how tracing can be achieved, in an
elegant and systematic way, using the notion of program aspects.

2.2 Specialization of MATLAB Programs

The high level features of MATLAB make it a widely used language for fast
development and for focusing on problem solving instead of on implementation
issues. Type declarations, for example, do not exist in MATLAB.

The high level features, however, make it dificult to generate efficient imple-
mentation code from MATLAB programs. Also, and this is particularly true for
embedded systems, it is commonly necessary to specify a particular MATLAB
implementation to a target system, with hardware or computational restrains.

Let us consider the function dft custom again. Transforming its code to a
program in a different programming language used in target embedded systems
can be challenging due to the dynamic nature of MATLAB’s type system: type
information is not explicit. To generate efficient code we do not only need type
information, but we may also need different versions of the specialized function,
one for each of the target systems. Next, we present the redefinition of dft custom,
where a single fixed point data type is explicitly defined by the programmer.

Example of a MATLAB Program with specialization:

function [mag] = dft_custom_specializing(x, n)

q = quantizer(’fixed’,’floor’, ’wrap’, [32 16]);

Program and Aspect Metrics for MATLAB 221

twoPI = 2.0 * pi;

twoPI = quantize(q, twoPI);

n2 = n/2;

n2 = quantize(q, n2);

for i = 1:n2

xre(i) = x(i);

xre(i) = quantize(q, xre(i));

end

for i = 0:n-1

arg = twoPI * i / n;

arg = quantize(q, arg);

end

In order to achieve this specialization, we created the MATLAB object q, defined
using quantizer [5], which itself takes a series of arguments that determine the
properties of q. The properties are used throughout the code to specialize the
variables that are used to the data type whose properties are defined in q. In this
case, we aim at targeting a generic system with variables in signed fixed-point
mode (fixed), rounded towards negative infinity (floor), wrap on overflow (wrap)
and has respectively 32 and 16 bits for the word length and for the fraction2.

Regarding the code for specializing dft custom that we presented above, it is
as cumbersome as the code for tracing that we also present above. Indeed, it
follows the same inefficient methodology that we have followed before. Again,
the problem of data type and shape resolution and the generation of different
implementations according to the target domain and architecture can be solved
using aspect-oriented programming (AOP) [6].

As we discuss in the next section, our aspect language can be used to extend
MATLAB programs with transformation and specialization rules that help the
compiler to achieve more efficient code considering a certain target system. Fur-
thermore, due to the modularity of our solution, the programs we obtain can
easily be adapted to different deployment environments.

3 Aspect MATLAB

As mentioned in the previous section, the flexibility of the MATLAB language
sometimes hinders performance and forces programmers to develop specialized
versions of the same program. Furthermore, when it comes to evaluating spe-
cific features, such as tracing or including handlers to watch certain behaviors,
the programmer is overwhelmed by cumbersome, error-prone and tedious tasks,
which imply invasive code in the original MATLAB program. In [7], we have pro-
posed aspect-oriented features to support triggering conditions and monitoring
variable values, as well as a draft of an aspect language to support these features.
In this paper, we briefly describe our aspect language specification, with primi-
tives to create aspects, specify pointcut expressions, and apply transformations.

2 Besides these options, MATLAB offers a wide range of possibilities to specialize types,
as shown in [5].

222 P. Martins et al.

The original base program is free of language enhancements and sources re-
main legal MATLAB. The proposed Domain Specific Aspects Language (DSAL)
enables programmers to retain the obvious advantages of a single source pro-
gram representation while allowing the implementations to explore a wide range
of specific solutions at reduced programming and maintenance costs.

The template shown below illustrates the structure of an aspect module; the
same file can have various aspect modules.

The structure of an aspect module:

aspect aspect_name

select: Join Point Capture

apply: Action Description :: execute before | after | around

end

Each aspect has a main constructor: aspect, which initializes the aspect and
gives it a name, and two main sections: select and apply, where the join point
and the action are declared. The section apply is followed by a primitive execute
where, similarly to AspectJ [8], we define if the alteration to the join point occurs
before, after, or around the join point, replacing the original code.

Table 1. Primitives for join point capture

Arrays Variables/Constants Functions

add() read() call()

get() write() function()

size() declare() head()

The join points capture works in functions, variables and arrays, and the
functions that capture join points are given in Table 1. In the next sections,
we show how concrete aspects may be defined to achieve the same tracing and
specialization results that we have presented in Section 2.

3.1 Tracing

In Section 2.1, we have shown how to manually change the original dft custom
function to perform tracing. This was achieved by inserting obtrusive instructions
in the original function definition. In this section, we present how to concisely
specify such features using our aspect language, as specified in the next aspect.

The structure of an aspect to implement tracing:

aspect variable_tracing()

select: write()

apply(): "disp(’The value of"++name++"is: ’);disp("++name++");"

:: execute after

end

Program and Aspect Metrics for MATLAB 223

First, we define an aspect with name variable tracing that is responsible for trac-
ing a variable. The join point write detects when a value is written to a variable.
The apply primitive inserts the new code and the execute primitive demands its
insertion to be after the join point.

Aspects are automatically woven to the original code in order to create a new,
valid MATLAB program that has tracing capabilities, as shown in Section 2.1.
This means that the changes performed by the programmer are easy to realize
in practice and that, after they are used, it is easy to discard them. In fact, the
original MATLAB function remains untouched during the entire process.

3.2 Function Specialization

MATLAB types are not mandatory: the dynamic type system allows the pro-
grammer to create variables and functions without specifying their types. When
targeting MATLAB into a specific target, however, type information is crucial
not only to produce efficient code but also to make the solution compatible with
different processor architectures or other hardware requisites.

Specifying generic functions is easily done with our aspect oriented language
for MATLAB and is very similar to the aspects shown in the previous section for
tracing. The main difference here is that instead of only inserting information
after the variables in order to force them to our custom types, we also have to
define the quantizer object, that represents these types. Therefore, we now need
two aspects: one that is executed only once, which is responsible for creating the
quantizer object, and another that acts every time an assignment occurs, forcing
that assignment into the desired type. These two aspects are presented next:

The structure of aspects to implement specialization:

aspect variable_specialization()

select: head(dft_custom)

apply(): "q = quantizer(’fixed’,’floor’, ’wrap’, [32 16]);"

:: execute after

end

aspect variable_specialization()

select: write()

apply(): name ++ "= quantize(q," ++ name ++ ");"

:: execute after

end

The use of our aspect language makes it easier to specialize a MATLAB solution,
but it also allows fast development and deployment of applications on heteroge-
neous environments where traditional programming techniques would not only
be tedious and time-consuming but also prone to generate erros.

4 Metrics for MATLAB Programs

In the previous sections, we introduced both MATLAB and an aspect oriented ex-
tension for it. In this section, we briefly present complexity metrics for MATLAB

224 P. Martins et al.

and we introduce aspect MATLAB metrics. The idea is to use the complexity
metrics to assess the quality of a MATLAB program and compare it to its aspect
version.

4.1 Complexity Metrics for MATLAB

To assess the complexity of MATLAB programs, we use the lines of code metric
and the Halstead’s complexity metric suite [3].

Lines of Code (LOC): this metric is frequently used in software engineering
to assess the quality of source code. Through it one can predict the effort needed
to create the program and the cost of maintaining it after it is produced.

Halstead’s Complexity: this suite of metrics was developed to measure a
program’s complexity directly from source code. The suite is composed by six
measures that emphasize the complexity of a program: Program Vocabulary,
Program Length, Calculated Program Length, Volume, Difficulty, and Effort.

Despite being easy to calculate, in order to automate the measuring process
we have to define strong rules for identifying the operands and operators [9]. Let
n1, n2, N1, and N2 be the number of distinct operators, the number of distinct
operands, the total number of operators, and the total number of operands. The
metrics that constitute the Halstead suite are, then, defined as follows:

– Program Vocabulary (VOC): n = n1 + n2

– Program Length (PL) : N = N1 +N2

– Calculated Program Length (CPL): N̂ = n1× log2n1 + n2 × log2n2

– Volume: V = N × log2n

– Difficulty: D =
n1

2
× N2

n2
– Effort: E = D × V

It is important to notice that these results provided by Halstead are not very
useful by themselves, since they do not have units and therefore there is no
qualitative interpretation for them (which is well-known problem of the Halstead
suite). Consequently, we apply them in the basis that they are useful only when
directly comparing different MATLAB sources.

4.2 Metrics for Aspects in MATLAB

Together with the metrics for MATLAB programs, we introduce a suite of met-
rics to help measuring the impact and the benefits of using an aspects oriented
language when programming in MATLAB. For this we adapt the four software
metrics introduced by [10] and [11] to MATLAB.

Concern Diffusion over Lines of Code (CDLOC): this metric counts the
number of transition points, in the source, in and out of of zones where a concern
starts and ends (shadowed zones). The use of this metric requires a shadowing
process that partitions the code into shadowed areas and non-shadowed areas,

Program and Aspect Metrics for MATLAB 225

being the code inside the shadowed areas lines of code that implements a con-
cern. Transition points are points in the code where there is a transition from a
non-shadowed to a shadowed area and vice-versa [11].

Tangling Ratio (TR): this metric gives an estimation about tangling on the
program source code [10]. In the context of MATLAB, we can define it using the
following formula:

Tangling Ratio =
CDLOC program

LOC program

Concern Impact on LOC (CILOC): this metric gives us the ratio between
a original MATLAB source code free of concerns, and the code after being trans-
formed by our aspect language. This metric allows us to have a first intuition
about the impact of using aspects in terms of lines of code, and it is given by
the formula:

Concern Impact LOC =
LOC of concerns free program

LOC of transformed program

The range of the results ranges from zero to one, where one means there are
no concerns on the MATLAB solution and, therefore, there is no advantage in
using an aspect oriented language. As we will see though, this is very uncommon
since concerns are usually an important part of any software solution, being it
MATLAB or not.

Aspectual Bloat (AB): measures the aspects in terms of LOC bloat in the
MATLAB programs [10]. It is calculated by the following formula:

AspectualBloat =
LOC with concerns− LOC without concerns

LOC of aspects

When the result of this metric is 1, it means that the number of lines written for
the aspects plus the number of lines written on the MATLAB program without
aspects is equal to the number of lines of the MATLAB program with aspect
oriented language. With this result, it might seem that there is no advantage in
using an aspects language, but even if the effort, in terms of lines of code was
the same, the use of an aspects oriented language has other advantages, such as
creating a program which is more modular and, consequently, easier to maintain
and update.

5 Metrics Evaluation

With the metrics presented in the previous section, we extended our MATLAB
front-end (which uses the MATLAB to Tom-IR tool [12]) in order to be able
to apply the metrics to both the original MATLAB source code and its aspect
oriented variants.

226 P. Martins et al.

Fig. 1. CDLOC and Tangling Ratio on the manually transformed versions of dft custom

5.1 Computing Metrics for Aspect MATLAB

In order to present our metrics we will use the examples provided in Section 2,
consisting of both versions of function dft custom: the one with variable tracing,
as shown in Section 2.1 and the one with variable specialization, as shown in
Section 2.2. Before, we had manually and intrusively written the code responsible
for tracing and specialization. After that, we were able to run the first two
metrics presented in Section 4.2, CDLOC and TR. These two metrics give us an
indication of how many concerns exist in the source code and how much impact
they have in the overall code quality. The results are presented in Figure 1.

Fig. 2. Concern Impact and Aspectual Bloat on the aspect-oriented versions of
dft custom

We can see that both versions of the function dft custom would benefit from
the usage of an aspect language. Indeed, they have around thirty transition
points in their code (as shown in the left chart of Figure 1), between a concern
and the functional code of the application, and each transition point has the
potential to be transformed into an aspect. Here, as it is often the case, we do
have various concerns, and therefore transition points handled by a single aspect
makes their usage even more valuable. Regarding TR (right chart of Figure 1),
both functions also show clear signs of a high degree of code tangling.

Program and Aspect Metrics for MATLAB 227

A significant amount of concerns in the source code makes it harder to under-
stand and maintain. The fact that the metrics achieved such expressive results
for dft custom shows a good potential for aspects to be applied: they are partic-
ularly good in modularizing and aiding on implementing such features.

Fig. 3. Metrics for dft custom with tracing and specialization, implemented with and
without our aspects language

Our next step was to write, using our aspect language, modules that auto-
matically generate the traced and specialized versions. These aspects are similar
to the ones presented in Section 3, and make it not only simple and easy to ob-
tain the different dft custom functions, but also to backtrack any transformation
in case we want to revert their application. In fact, the traditional method to
backtrack a manually transformed function is to manually remove all the code
that implements the aspect functionality.

In Figure 2 we show, through the use of metrics CILOC and AB the actual
effect that using AOP had on function dft custom.

The first metric results, presented in the left chart of Figure 2, show the
relation between the lines on a version of the code without concerns and on the
same code after being transformed by our aspect language. This shows how less
effort is needed by using an aspect language. In this case, and particularly on the
case with tracing, the effect was noticeable: we were able to inject a significant
number of lines of code only through the use of a single aspect.

The second metric results, shown in the right chart of Figure 2, seem promising
too. This metric shows how much aspect code we had to write to change the
original source code. The observed results indicate that the programming effort
was greatly reduced by using aspects.

5.2 Computing MATLAB Metrics

So far, we have shown that the use of aspects can help on implementing new
features while minimizing the traditional negative impact of extending source

228 P. Martins et al.

code. In this section we try to assess whether there are quality improvements
in the original program, with added aspects, when compared to the manually
transformed versions. For this, we compute the metrics presented in Section 4.1
on all versions of the dft custom function, whose results are presented in Figure 3.

Fig. 4. Aspect metrics in a set of five MATLAB functions

This metrics suite seems to provide strong evidence that using aspects in-
creases the overall code quality. The version with aspects is always clearer,
shorter and easier to read. Some results actually show a large improvement,
such as the metric Difficulty, that shows improvements in the order of 89% and
VOC, that shows gaps in the order of 88%. Other metrics show smaller advan-
tages, such as CPL that shows improvements in the order of 8%. Still, the overall
analysis of all results leads us to believe that using aspects in MATLAB programs
can create programs with better quality.

5.3 Quality Analysis in Real-Life Applications

To further test the impact of our aspects language, we used a set of five func-
tions taken randomly from MATLAB’s File Exchange [13]. This website is a
community-based repository for MATLAB functions, applications and scripts,
where users can upload their implementations and download programs.

For each application, we took one source code file (very commonly, a MATLAB
solution is made out of various source files) while being careful to pick applica-
tions from the groups with best rating or with the highest number of downloads
or comments. We did so to ensure that our set is actually representative of the
code usually found in MATLAB.

Program and Aspect Metrics for MATLAB 229

Next, we manually inserted new features in the code in order to specialize
it and to trace its variables, similarly to the dft custom examples presented in
Section 2. We also implemented these features using our aspects language, i.e.,
with aspects that transform the MATLAB sources into new versions that support
tracing and specialization.

In Figure 4 we show the aspect metrics applied to this set of functions. The
results are similar to the ones found for dft custom: using aspects reduces the
effort of implementing specialized versions as seen, for example, on the tan-
gled concerns on the code. In Figure 5 we show the metrics used for MATLAB
quality assessment. Again, the overall results prove that using aspects decreases
the size of the solution while keeping the code easier to maintain and reducing
the effort to understanding it. Some metrics are particularly positive, with im-
provements of around 90%, from the traditional implementation to the aspects
oriented version, as for PL on the quadmin function with tracing. The Effort
metric applied to the same function also shows results on the order of 64%. The
charts in Figure 5 confirm the overall promising results of our aspect oriented
approach.

5.4 Quality Analysis of the Matlab Program IMPACTED

In order to further conrm the results obtained so far, we have applied our metrics
suite to the MATLAB program IMPACTED [14,15,16]. This program focuses on
hazard avoidance techniques for controlled landings and has been the object of
several studies. It represents a mature, highly complex solution composed by
various functions and gives us a good environment for testing MATLAB code
regarding both code quality and the potential for AOP introduction.

We have chosen a subset of this package, representing approximately 270
lines of code obtained through profiling, which gave us the hotspot in terms of
the execution, represented by ten functions that represent the most important
computations together and highest overheads. We did so because typically it
is not necessary to separate concerns on all the elements of a solution. Some
elements represent auxiliary functions, simpler and easier to control. The core
computations, on the other hand, represent the core functionalities and therefore
the parts where errors are more crucial, and where code control is harder.

We followed the same analysis strategy we showed throughout Section 5, first
analyzing the potential for aspects implementation, and secondly analyzing the
changes on the final solutions improved with tracing and specialization when
aspects were added to the programming cycle. Figure 6 and Figure 7 show the
results of these two analysis, respectively.

The results show an overall improvement in code quality, increasing as much
as 21% in LOC and PL. The effort to understand the code shows improvements
of 26% and 52% for the versions of IMPACTED where tracing and specializ-
ing were introduced. On other charts we see worse resuls, such as the CPL that

230 P. Martins et al.

shows no improvements at all in the version with tracing and only 37% for the
specialized version. A metric in particular, the Vocabulary, shows an increase in
the implementing effort. This might be due the fact that, by introducing a new
language, we are forcing the programmer to learn a new set of constructors and
primitives. We do not see this as a pitfall though, as it is a one of task and the
overall improvements in all the other metrics prove it is worth it.

Fig. 5. Metrics results for each function with tracing and specialization, implemented
with and without aspects

Program and Aspect Metrics for MATLAB 231

Fig. 6. Aspect metrics in IMPACTED

Fig. 7. Metrics for IMPACTED with tracing and specialization, implemented with and
without our aspects language

6 Implementation

The metrics presented are implemented in ourMATLAB front-end. This font-end
includes parsers and construction of the abstract syntax tree for MATLAB (with
the MATLAB to Tom-IR tool [12]) and for the MATLAB aspect language.

This front-end was developed using advanced language engineering techniques,
like generalised (top-down) parsing (using the ANTLR parser generator [17]),
strategic programming [18,19,20] (implemented with the TOM system [21]), at-
tribute grammars [22,23] (implemented in the Lrc system [24]), and formal pro-
gram calculation techniques to reason about our implementions [25,26]. By using
these we can easily define tree-traversal algorithms, that we heavily use to weave
the abstract data-types of both the aspects and the MATLAB code.

232 P. Martins et al.

These techniques allowed us to implement all metrics presented in this paper
in a concise and generic way. That is, they are independent of the abstract tree.
As a consequence, new metrics can be easily added to our metric suite.

7 Conclusion

In this paper we presented software metrics for assessing the software complexity
of both standard MATLAB programs and aspect oriented MATLAB programs.

We adapted a set of AOP metrics to the Aspect MATLAB realm, by imple-
menting them in ourMATLAB front-end, and used them to assess the complexity
of MATLAB programs when compared to their AOP equivalents. We did so by
applying our suite first to a set of widely used MATLAB functions and later to
a fully developed MATLAB program, consisting of many MATLAB functions.

Our preliminary results are promising and show that aspect oriented program-
ming in MATLAB improves the quality of programs. Both the MATLAB metrics
and the aspect metrics are implemented in our (Aspect) MATLAB frontend.

References

1. MATLAB: version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts
(2010)

2. MathWorks: Front page, http://www.mathworks.com (accessed in February 2012)
3. Halstead, M.H.: Elements of Software Science. Operating and programming sys-

tems series. Elsevier Science Inc., New York (1977)
4. Aslam, T., Doherty, J., Dubrau, A., Hendren, L.: Aspectmatlab: an aspect-oriented

scientific programming language. In: Proceedings of the 9th International Confer-
ence on Aspect-Oriented Software Development (AOSD), pp. 181–192. ACM, New
York (2010)

5. MathWorks: R2012a documentation - fixed-point toolbox,
http://www.mathworks.com/help/toolbox/fixedpoint/ref/quantizer.html

(accessed in February 2012)
6. Cardoso, J., Fernandes, J., Monteiro, M.: Adding aspect-oriented features to mat-

lab. In: Workshop on Software Engineering Properties of Languages and Aspect
Technologies (SPLAT! 2006) (2006)

7. Cardoso, J., Diniz, P., Monteiro, M.P., Fernandes, J.M., Saraiva, J.: A domainspe-
cific aspect language for transforming MATLAB programs. In: Fifth Workshop on
Domain-Specific Aspect Languages (DSAL) (March 2010)

8. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An Overview of AspectJ. In: Lee, S.H. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–353. Springer, Heidelberg (2001)

9. Peckhan, J., Lloyd, S.J.: Practicing Software Engineering in 21st century. IRM
Press (2003)

10. Lopes, C.V.: D: A Language Framework for Distributed Programming. PhD thesis,
College of Computer Science, Northeastern University (1997)

11. Sant’anna, C., Garcia, A., Chavez, C., Lucena, C., v. von Staa, A.: On the reuse
and maintenance of aspect-oriented software: An assessment framework. In: Pro-
ceedings XVII Brazilian Symposium on Software Engineering (SBES) (2003)

http://www.mathworks.com
http://www.mathworks.com/help/toolbox/fixedpoint/ref/quantizer.html

Program and Aspect Metrics for MATLAB 233

12. Nobre, R., Cardoso, J.M.P., Diniz, P.C.: Leveraging type knowledge for efficient
matlab to c translation. In: 15th Workshop on Compilers for Parallel Computing
(CPC) (2010)

13. MathWorks: Matlab central - file exchange,
http://www.mathworks.com/matlabcentral/fileexchange (accessed in February
2012)

14. Devouassoux, J., Reynaud, S., Jonniaux, G., Ribeiro, R.A., Pais, T.C.: Hazard
avoidance developments for planetary exploration. In: 7th International ESA Con-
ference on Guidance, Navigation and Control Systems (2008)

15. Reynaud, S., Drieux, M., Bourdarias, C., Philippe, C., Pham, B.v., Astrium Space
Transportation: Science driven autonomous navigation for safe planetary pin-point
landing 1. Context, 1–10 (2009)

16. Pais, T., Ribeiro, R.A.: Contributions to dynamic multicriteria decision mak-
ing models. In: Proceedings of the International Fuzzy Systems Association
World Congress and European Society for Fuzzy logic and technology Conference
(IFSA-EUSFLAT), pp. 719–724 (2009)

17. Parr, T.: The Definitive ANTLR Reference: Building Domain-Specific Languages,
1st edn. Pragmatic Programmers. Pragmatic Bookshelf (2007)

18. Visser, J., Saraiva, J.: Tutorial on strategic programming across programming
paradigms. In: 8th Brazilian Symposium on Programming Languages, SBLP (2004)

19. Balland, E., Moreau, P.E., Reilles, A.: Rewriting strategies in java. Electron. Notes
Theor. Comput. Sci. 219, 97–111 (2008)

20. Visser, E.: Program Transformation with Stratego/XT: Rules, Strategies, Tools,
and Systems in Strategoxt-0.9. In: Lengauer, C., Batory, D., Blum, A., Vetta,
A. (eds.) Domain-Specific Program Generation. LNCS, vol. 3016, pp. 216–238.
Springer, Heidelberg (2004)

21. Balland, E., Brauner, P., Kopetz, R., Moreau, P.-E., Reilles, A.: Tom: Piggybacking
Rewriting on Java. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 36–47.
Springer, Heidelberg (2007)

22. Knuth, D.E.: Semantics of Context-free Languages. Mathematical Systems The-
ory 2(2), 127–145 (1968); Correction: Mathematical Systems Theory 5(1), 95–96
(March 1971)

23. Saraiva, J., Swierstra, D.: Generating Spreadsheet-Like Tools from Strong At-
tribute Grammars. In: Pfenning, F., Smaradakis, Y. (eds.) GPCE 2003. LNCS,
vol. 2830, pp. 307–323. Springer, Heidelberg (2003)

24. Kuiper, M., Saraiva, J.: Lrc - A Generator for Incremental Language-Oriented
Tools. In: Koskimies, K. (ed.) CC 1998. LNCS, vol. 1383, pp. 298–301. Springer,
Heidelberg (1998)

25. Fernandes, J.P., Pardo, A., Saraiva, J.: A shortcut fusion rule for circular pro-
gram calculation. In: ACM SIGPLAN Haskell Workshop, Haskell 2007, pp. 95–106.
ACM, New York (2007)

26. Pardo, A., Fernandes, J.P., Saraiva, J.: Shortcut fusion rules for the derivation of
circular and higher-order programs. In: Higher-Order and Symbolic Computation,
pp. 1–35. Springer (2011)

http://www.mathworks.com/matlabcentral/fileexchange

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 234–247, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Suite of Cognitive Complexity Metrics

Sanjay Misra1, Murat Koyuncu1, Marco Crasso2,
Cristian Mateos2, and Alejandro Zunino2

1 Department of Computer Engineering, Atilim University, Ankara, Turkey
{smisra,mkoyuncu}@atilim.edu.tr

2 ISISTAN Research Institute. UNICEN University, Tandil, Argentina. Also Consejo Nacional
de Investigaciones Científicas y Técnicas (CONICET).

{mcrasso,cmateos,azunino}@conicet.gov.ar

Abstract. In this paper, we propose a suite of cognitive metrics for evaluating
complexity of object-oriented (OO) codes. The proposed metric suite evaluates
several important features of OO languages. Specifically, the proposed metrics
are to measure method complexity, message complexity (coupling), attributes
complexity and class complexity. We propose also a code complexity by
considering the complexity due to inheritance for the whole system. All these
proposed metrics (except attribute complexity) use the cognitive aspect of the
code in terms of cognitive weight. All the metrics have critically examined
through theoretical and empirical validation processes.

Keywords: software metrics, methods, messages, attributes, class, coupling,
inheritance, cognitive complexity, validation.

1 Introduction

IEEE defines the software quality as ‘Software quality is the degree to which software
possesses a desired combination of attributes (e.g., reliability, interoperability)’ [1].
Software quality is controlled by software metrics. Software metrics are tools to
control the complexity of software. Through metrics, one can easily observe the
several weaknesses of a software system and therefore, by means of it, quality can be
estimated. This is the reason why metrics are indispensable tool in software
development life cycle for achieving the quality.

The recent decades have witnessed the successes of the object-oriented (OO)
languages. Most of the projects are being developed in JAVA, C++ or in Python. The
need to control the complexity of the projects developed in these language is
important. For this purpose, since the beginning of the 1990 several object-oriented
metrics e.g. Chidamber and Kemerer (CK) metrics suite [2], MOOD metrics for OO
Design [3], design metrics for testing [4], product metrics for object-oriented design
[5-6], Lorenz and Kidd metrics [7], Henderson–Seller metrics [8], (slightly) modified
CK metrics [9], size estimation of OO systems[10] , weighted class complexity metric
[11] and several other metrics[12-17] can be found in the literature. All the above
metrics tried to cover some features of the OO languages and used for some quality

 A Suite of Cognitive Complexity Metrics 235

attributes. The quality attributes, are such as correctness, reliability, efficiency,
integrity, usability, maintainability, testability, flexibility, portability, reusability, and
interoperability [18]. Amongst the given quality attributes, maintainability is treated
as the most necessary attribute for software products [19]. In fact, majority of the
metrics are developed for this most important attribute.

In our previous work, we have presented metrics for OO codes [11]. For
inheritance complexity, we have first calculated the cognitive weights of all the
methods of a class, sum up them and then multiply with the weight of their parent
classes (due to inheritance). However, later, we have observed that while considering
complexity due to inheritance, we should not only consider the method complexity
but the complexity due to attributes. In this point of view, while estimating the
complexity of the entire OO codes, we have to calculate the complexity of a class by
considering the impact due to method complexity, message complexity and also due
to attributes [11]. Then, we have to establish a relation between classes to capture the
complexity due to inheritance property. The mentioned requirement is the starting
point of this work and we present a suite of metrics which capture most of features of
the OO programming paradigm in this paper.

The paper is organized as follows: The motivation of the work is given in the next
section. Section 3 presents the proposal of the new suite of complexity metrics. The
metrics are demonstrated with an OO example in Section 4. Finally, a conclusion is
given in Section 5.

2 Motivation

After the CK metric suite, no further attempts have been made seriously in this
direction to develop a more effective suite of metrics for OO languages [2]. All the
metrics in CK metric suite are straight forward and simple to compute. On the other
hand, these metrics do not cover the following issues:

1. The overall complexity of a class due to all possible factors
2. The internal architecture of the class
3. The impact of the relationship due to inheritance in the class hierarchy
4. The number of messages between classes and their complexities (CK metrics

suite counts only the methods coupled with other classes)
5. Cognitive complexity, which is a measure of understandability and therefore

has a great impact on maintainability of the system

The lack of the above features in CK metric suite motivated us to produce a new suite
of metrics, which can be a complimentary set of the CK metric suite. In fact, our
proposed metrics suggest examining the OO properties in more detail. For example,
CBO (one of metrics in CK metric suite) is a measure to show interactions between
objects by counting the number of other classes to which the class is coupled. In our
proposal, coupling is computed by considering the message calls to other classes and

236 S. Misra et al.

the weight of the called methods. One class may have “1” for CBO showing that it
interacts with only one class, but may include many messages to that class which
causes a more complex code (which is considered in our metric). Therefore, we
believe that our metric gives more accurate information about coupling of a class.

3 Proposed Suite of Metrics for Object-Oriented Programming

An object is a class instance and an object-oriented system consists of objects which
collaborate through message exchanges. An object-oriented code includes one or
more classes which may be related to each other by composition or inheritance and
contains related attributes and operations (methods) in the classes. The complexity
metrics developed for object-oriented languages are mainly based on the complexity
of individual classes like number of methods, number of messages etc. However, not
only the numbers of different components are important, but also the internal
complexities of these components are equally important. Furthermore, for calculating
the complexity of the entire system, we have to consider the special features of OO
programs and type of the relations between classes. Accordingly, we propose the
following suite of metrics:

Method Complexity(MC): Method complexity is calculated by considering
corresponding cognitive weights of structures in a method of a class. Cognitive
weights are used to measure the complexity of the logical structures of the software in
terms of Basic Control Structures (BCSs). These logical structures reside in the
method (code) and are classified as sequence, branch, iteration and call with the
corresponding weights of one, two, three and two, respectively. Actually, these
weights are assigned on the classification of cognitive phenomenon as discussed by
Wang [20]. We calculate method complexity in a class by associating a number
(weight) with each member function (method), and then simply add the weights of all
the methods. More formally, the method complexity (MC) is calculated as;

 ∏
= = =

=
q

j

m

k

n

i
c ikjWMC

1 1 1

),,(, (1)

where, Wc is the cognitive weight of the concerned Basic Control Structure (BCS).
The method complexity of a software component is defined as the sum of cognitive
weights of its q linear blocks composed of individual BCSs, since each block may
consist of m layers of nested BCSs, and each layer with n linear BCSs. Equation 1
gives the complexity of a single method.

Message complexity (Coupling Weight for a Class (CWC)): Two classes are coupled
when there is a message call in one class for the other class. In our proposal, if there
are message calls for other classes, we not only count the total number of such
messages, but also we add the weight of the called methods. Accordingly,

 A Suite of Cognitive Complexity Metrics 237

complexities due to message calls are the sum of weights of call and the weight of
called methods. i.e.

=

+=
n

i
iMCCWC

1

)2(, (2)

where, 2 is the weight of the message to an external method and Wi is the weight of
the called method. If there are n numbers of external calls, then the CWC is calculated
as the sum of weights of all message calls.

Attribute Complexity(AC): It reflects the complexity due to data members
(attributes). We simply assign the total number of attributes associated with class as
the complexity due to data members. The attributes are not local to one procedure but
local to objects and can be accessed by several procedures. Accordingly, the attribute
complexity of a class (AC) is given by:

=

=
n

i

AC
1

1 , (3)

where n is the total number of attributes.

Weighted Class Complexity(WCC): OO software development is based on classes
and subclasses whose elements are attributes and methods (including messages).
These elements are identified in class declarations and are responsible for the
complexity of a class. Therefore, the complexity of a class is a function of the
methods and the data attributes. More formally, we suggest the following formula to
calculate the Weighted Class Complexity (WCC):

 p

n

p

MCACWCC
=

+=
1

 (4)

WCC is the sum of the attribute complexity and the sum of all the method
complexities of a class.

Code Complexity (Inheritance): For calculating the complexity of the entire system,
we have to consider not only the complexity of all the classes, but also the relations
among them. That is, we are giving emphasis on the inheritance property because
classes may be either parent or children classes of others. In the case of a child class,
it inherits the features from the parent class. By keeping this property of OO
paradigm, we propose to calculate the code complexity of an entire system as follows:

• If the classes are of the same level then their weights are added.
• If they are subclasses or children of their parent then their weights are

multiplied.

If there are m levels of depth in the object-oriented code and level j has n classes then
the Code Complexity (CC) of the system is given by,

 ∏
= =

=
m

j

n

k
jkWCCCC

1 1

 (5)

238 S. Misra et al.

The unit of CC is defined as the cognitive weight of the simplest software component
(having a single class which includes single method having only a sequential
structure). This corresponds to sequential structure in BCS and hence its unit is taken
as 1 Code Complexity Unit (CCU).

In addition to these metrics, we are also proposing the associated metrics which are
extracted from the above metrics. These metrics may be useful indications for general
information regarding the projects.

Average Method Complexity(AMC): It gives an average method complexity for a
class and is calculated by dividing the sum of complexities of all the methods of a
class to the total number of methods in that class.

 nMCAMC
n

p
p /

1

=

= , (6)

where MC is the complexity of a particular method, n is total number of methods in a
class.

Average Method Complexity per Class(AMCC): It is defined as the average method
complexity for the entire system.

=

=
m

p

mAMCAMCC
1

/ , (7)

where m is total number of classes in a project.

Average Class Complexity(ACC): It is the average complexity of classes in a project
and it is calculated by dividing the sum of the complexity of the classes to the total
number of classes.

 mWCCACC
m

p

/
1

=

= , (8)

where WCC is the complexity a class and m is total number of classes.

Average Coupling Factor(ACF): It is defined as the complexity of all the external
method calls (i.e. coupling weights) to the total number of messages.

 kCWCACF
k

i

/
1

=

= (9)

where k is number of messages to other classes.

Average Attributes per Class(AAC): It shows the average number of attributes per
class in a project and it is calculated by dividing the sum of attribute complexity of all
classes to the total number of classes.

=

=
m

i

mACAAC
1

/ , (10)

where, m is the total number of classes.

 A Suite of Cognitive Complexity Metrics 239

4 Demonstration of the Metrics

The proposed complexity metrics given in Section 3 is demonstrated with a
programming example in this section. The class hierarchy of the example program is
illustrated in Fig.1 and the complete C++ code for the example is given in Appendix.

Fig. 1. An Example Class Hierarchy

The given example processes a personnel database hierarchy. It has one main class
Person and two subclasses, Employee and Student. The class Employee has again
three subclasses, Staff, Faculty, and Assistant. The student class has two subclasses,
Graduate and Undergraduate. This section demonstrates how we calculate the
complexities according to the metrics given in section 3 for an object-oriented
program.

Method Complexity (MC): Method complexity of each method is calculated using
Formula 1. For example, the class Person has two methods named as getName() and
getBirthDate(). Each of these methods has simple structure, called as sequence basic
control structure (BCS), therefore their weights are assigned as 1.

 MCgetName=MCgetBirthDate= ∏
= = =

q

j

m

k

n

i
c ikjW

1 1 1

),,(= 1

So, the method complexity for the class person:

 MCPERSON= MCgetName + MCgetBirthDate =1+1=2 CCU

240 S. Misra et al.

For another example, consider isStudent() method of the Staff class. The method
includes an IF structure (branch). The method complexity is calculated as:

MCisStudent= 1+2 = 3, where 1 is for sequence and 2 is for branch (IF) structure.

The method isStaff() of the class Graduate shows a more detailed example:

MCisStaff= 1+2((2+3)+2) = 15, where 1 is for sequence and 2 is for branch (IF)
structure. The branch structure has a external method call and a nested branch inside.
(2+3) is for the message sent to another class (i.e.,Staff), 2 is the weight of the
message and 3 is the weight of the called method (i.e. isStudent()). The last 2 in the
calculation is for the nested IF structure. Notice that if there is nested structure, we
multiply the weights instead of summing them up.

The method complexity for the classes given in Fig.1 is calculated as follows:

MCPERSON= MCgetName + MCgetBirthDate =1+1=2 CCU
MCEMPLOYEE= MCgetSalary + MCgetSSN =1+1=2 CCU
MCSTUDENT= MCgetMajorDept =1 CCU
MCSTAFF= MCstaff + MCgetPosition + MCisStaff =1+1+3=5 CCU
MCFACULTY= MCfaculty + MCgetRank =1+1=2 CCU
MCASSISTANT= MCassistant + MCgetType =1+3=4 CCU
MCGRADUATE= MCgraduate + MCgetDegreeProgram + MCisStaff =1+1+15=17 CCU
MCUNDERGRADUATE= MCundergraduate+MCisTakenCourse+MCgetClass =4+7+1=12 CCU

All the method complexities can be seen in Appendix along with the code of each
method.

Message complexity (Coupling Weight for a Class (CWC)): In the given example,
there is only one class (Graduate) which includes one external message call to the
Staff class. We can calculate the coupling weight of the class Gradute as the weight of
the called methods. For this example, there is only one external method called from
the Graduate class(isStaff()).

=

+=
n

i
iMCCWC

1

)2(= 2 + 3= 5 CCU

Attribute Complexity (AC): Attribute complexity of a class can be calculated by
counting the total number of attributes in that class. Accordingly, AC values for
classes Person, Employee, Student, Faculty, Staff, Assistant, Graduate and
Undergraduate are 2, 2, 1, 2, 1, 1, 1 and 2, respectively.

Weighted Class Complexity (WCC): WCC for each class can be calculated by
Equation 4, i.e the sum of attribute complexity, method complexity and message
complexity. It is worth mention that while calculating the WCC, we don’t need to
include the message complexity of classes, because, a message is a part of a method
and already calculated in the method complexity. For the given example, WCCs are
calculated as follows:

 A Suite of Cognitive Complexity Metrics 241

 WCCPERSON= 2+2= 4 CCU
 WCCEMPLOYEE= 2+2= 4 CCU
 WCCSTUDENT= 1+1= 2 CCU
 WCCSTAFF= 2+5= 7 CCU
 WCCFACULTY= 1+2= 3 CCU
 WCCASSISTANT= 1+4= 5 CCU
 WCCGRADUATE= 1+17= 18 CCU
 WCCUNDERGRADUATE= 2+12= 14 CCU

Code Complexity(CC): The code complexity of the object-oriented code is calculated
by using Equation 5 as given below:

CC = WCCPERSON *(WCCEMPLOYEE *(WCCSTAFF +
 WCCFACULTY + WCCASSISTANT)+ WCCSTUDENT *
 (WCCGRADUATE + WCCUNDERGRADUATE))

 = 4*(4*(7+3+5) + 2*(18+14))
 = 496 CCU

Average Method Complexity(AMC):

 nMCAMC
n

p
p /

1

=

= ,where W is the weight of a particular method, n is

total number of method in a class.
 AMCPERSON= 2/2= 1 CCU

 AMCEMPLOYEE= 2/2= 1 CCU
 AMCSTUDENT= 1/1= 1 CCU
 AMCSTAFF= 5/3= 1.66 CCU
 AMCFACULTY= 2/2= 1 CCU
 AMCASSISTANT= 4/2= 2 CCU
 AMCGRADUATE= 17/3= 5.66 CCU
 AMCUNDERGRADUATE= 12/3= 4 CCU

Average Method Complexity per Class(AMCC):

=

=
m

p

mAMCAMCC
1

/ , where m is total number of classes in a project

 AMCC= (1 + 1+ 1+ 1.66 + 1+ 2+ 5.66 + 4)/8 = 2.165 CCU

The average method complexity of a class is 2.165. It is worth mentioning that this
number is not the average number of methods per class but it represents the average
complexity/weight of method per class

242 S. Misra et al.

Average Class Complexity(ACC):

 mWCCACC
m

p

/
1

=

= , where WCC is the complexity a class and m is

total number of classes.
 ACC = (4 + 4 + 2 + 7 + 3 + 5 + 18 + 14) / 8 = 7.125 CCU

i.e. the average class complexity of this project is 7.125 CCU.

Average Coupling Factor(ACF):

 kCWCACF
k

i

/
1

=

= , where CWC is the Coupling Weight for a Class

and k is number of messages to other classes.

 ACFGRADUATE = 5/1 = 5

The average coupling factor for class Graduate is 3. There is only one method call to
the outside in that class.

Average Attributes per Class(AAC):

=

=
m

i

mACAAC
1

/ , where AC is the attribute complexity and m in the

total number of classes.

 AAC = (2 + 2 + 1 + 2 + 1 + 1 + 1 + 2)/8 = 1.5

i.e. the average number of attributes per class is 1.5.

5 Conclusions

A suite of object-oriented metrics are proposed in this study. The application of
metric suite is shown on an example object-oriented code. These metrics are capable
to capture most of the features existing in object-oriented codes such as method,
attribute, class, inheritance and coupling. Further, the objective to produce such a
metric suite is to combine most of the feature responsible for complexity. These
metrics calculate the complexity at each level of the code and the code complexity
represents the structural and cognitive complexity of an OO system.

References

1. IEEE Standard 1061-1992: Standard for a Software Quality Metrics Methodology.
Institute of Electrical and Electronics Engineers, New York (1992)

2. Chidamber, S.R., Kermerer, C.F.: A Metrics Suite for Object Oriented Design. IEEE
Transactions on Software Engineering 6, 476–493 (1994)

 A Suite of Cognitive Complexity Metrics 243

3. Harrison, R., Counsell, S.J., Nithi, R.V.: An Evaluation of the MOOD Set of Object
Oriented Software Metrics. IEEE Transactions on Software Engineering 24(6), 491–496
(1998)

4. Binder, R.V.: Object-Oriented Software Testing. Communications of the ACM 37(9),
28–29 (1994)

5. Vaishnavi, V.K., Purao, S., Liegle, J.: Object-Oriented Product Metrics: A Generic
Framework. Information Science 177, 587–606 (2007)

6. Purao, S., Vaishnavi, V.K.: Product Metrics for Object Oriented Systems. ACM
Computing Surveys 35(2), 191–221 (2003)

7. Lorenz, M., Kidd, J.: Object-Oriented Software Metrics. Prentice Hall, Englewood Cliffs
(1994)

8. Henderson-Selles, B.: Object-Oriented Metrics, Measure of Complexity. Prentice-Hall,
Englewood Cliffs (1996)

9. Basily, V.R., Briand, L.C., Melo, W.L.: A Validation of Object Oriented Design Metrics as
Quality Indicators. IEEE Transactions on Software Engineering 22(1), 751–761 (1996)

10. Costagliola, G., Ferrucci, F., Tortora, G., Vitiello, G.: Class Points: An Approach for the
Size Estimation of Object-Oriented Systems. IEEE Transactions on Software
Engineering 31(1), 52–74 (2005)

11. Misra, S., Akman, I.: Weighted Class Complexity: A Measure of Complexity for Object-
Oriented System. Jour. of Information Science and Engineering 24, 1689–1708 (2008)

12. Kan, S.H.: Metrics and Lessons Learned for OO Projects, ch. 12. Metrics and Models in
Software Quality Engineering. Addison-Wesley (2003)

13. Babsiya, J., Davis, C.G.: A Hierarchical Model for Object Oriented Design Quality
Assessment. IEEE Transactions on Software Engineering 28(1), 4–17 (2002)

14. Briand, L., Wust, J.: Modeling Development Effort in Object Oriented System Using
Design Properties. IEEE Transactions on Software Engineering 27(11), 963–986 (2001)

15. Kim, K., Shin, Y., Wu, C.: Complexity Measures for Object-Oriented Program Based on
the Entropy. In: Proc. Asia Pacific Software Engineering, pp. 127–136 (1995)

16. Kim, J., Lerch, J.F.: Cognitive Processes in Logical Design: Comparing Object-Oriented
and Traditional Functional Decomposition Software Methodologies. Carnegie Mellon
University, Graduate School of Industrial Administration, Working Paper (1991)

17. Olague, H.M., Etzkorn, L.H., Gholston, S., Quattlebaum, S.: Empirical Validation of Three
Software Metrics Suites to Predict Fault-Proneness of Object-Oriented Classes Developed
Using Highly Iterative or Agile Software Development Processes. IEEE Transactions on
Software Engineering 33(6), 402–419 (2007)

18. Pfleeger, S.L., Atlee, J.M.: Software Engineering – Theory and Practice. Prentice-Hall
(2006)

19. Sommerville, I.: Software Engineering. Addison Wesley (2004)
20. Wang, Y., Shao, J.: A New Measure of Software Complexity Based On Cognitive

Weights. Canadian Journal of Electrical and Computer Engineering 28, 69–74 (2003)

244 S. Misra et al.

Appendix: Classes for the Case Study

#include <iostream.h>

/*****************CLASS PERSON*******************/
class person {
public:
 char * getName(){return name;}; //WgetName=1
 char * getBirthDate() {return birthDate;}; //WgetBirthDate=1
protected:
 char * name;
 char * birthDate;};

/*****************CLASS EMPLOYEE*******************/
class employee : public person
{
public:
 int getSalary(){return salary;}; //WgetSalary=1
 char * getSSN(){return SSN;}; //WgetSSN=1
protected:
 int salary;
 char * SSN;};

/*****************CLASS STUDENT*******************/
class student : public person
{
public:
 char * getMajorDept(){return majorDept;}; //WgetMajorDept=1
protected:
 char * majorDept;};

/*****************CLASS STAFF*******************/

class staff: public employee
{
public:
 staff(char * tname, char * tSSN, char * tbirthDate,
 int tsalary, char * tposition, bool tstudent);
 char * getPosition(){return position;}; //WgetPosition=1
 bool isStudent();
protected:
 char * position;
 bool student;};

staff::staff(char * tname, char * tSSN, char * tbirthDate,
 int tsalary, char * tposition, bool tstudent){
 name= tname; //Wstaff=1
 SSN=tSSN;

 A Suite of Cognitive Complexity Metrics 245

 birthDate=tbirthDate;
 salary=tsalary;
 position=tposition;
 student=tstudent;};

bool staff::isStudent(){ //WisStudent=1+2=3
 if (student==0)
 return false;
 else
 return true;};

/*****************CLASS FACULTY *******************/
class faculty: public employee
{
public:
 faculty(char * tname, char * tSSN, char * tbirthDate,
 int tsalary, char * trank);
 char * getRank(){return rank;}; //WgetRank=1
protected:
 char * rank;};

faculty::faculty(char * tname, char * tSSN, char * tbirthDate,
 int tsalary, char * trank){ //Wfaculty=1
 name= tname;
 SSN=tSSN;
 birthDate=tbirthDate;
 salary=tsalary;
 rank=trank; };

/*****************CLASS ASSISTANT *******************/
class assistant: public employee
{
public:
 assistant(char * tname, char * tSSN, char * tbirthDate,
 int tsalary, short type);
 char * getType();
protected:
 short type;};

assistant::assistant(char * tname, char * tSSN,
 char * tbirthDate, int tsalary, short ttype){
 name= tname; //Wassistant=1
 SSN=tSSN;
 birthDate=tbirthDate;
 salary=tsalary;
 type=ttype; };

char * assistant::getType(){ //WgetType=1+2=3
 if (type==1)
 return("Research assistant");
 else
 return("Teaching assistant");
 };

246 S. Misra et al.

/*****************CLASS GRADUATE *******************/
class graduate: public student
{
public:
 graduate(char * tname, char * tbirthDate, char * tmajorDept,
 char * tdegreeProgram);
 char * getDegreeProgram(){return degreeProgram;};
 //WdegreeProgram=1
 bool isStaff(staff * s);
protected:
 char * degreeProgram;};

graduate::graduate(char * tname, char * tbirthDate,
 char * tmajorDept, char * tdegreeProgram){ //Wgraduate=1
 name= tname;
 birthDate=tbirthDate;
 majorDept=tmajorDept;
 degreeProgram=tdegreeProgram; };

bool graduate::isStaff(staff * s){ //WisStaff=1+2((2+3)+2)=15
 if (strcmp(name,s->getName())==0){
 bool result=s->isStudent();
 if (result)
 cout<<"This graduate student is an
employee"<<'\n';
 else
 cout<<"This graduate student is not an
employee"<<'\n';
 return(1);}
 else
 return(0);};

/*****************CLASS UNDERGRADUATE *******************/
class undergraduate: public student
{
public:
 undergraduate(char * tname, char * tbirthDate,
 char * tmajorDept, short tclass, char * courses[6]);
 short getClass(){return sclass;}; //WgetClass1=1
 short isTakenCourse(char * course);
protected:
 short sclass;
 char * courses [6];};

undergraduate::undergraduate(char * tname, char * tbirthDate,
 char * tmajorDept, short tclass, char * tcourses[6]){
 name= tname; //Wundergraduate=1+3=4
 birthDate=tbirthDate;
 majorDept=tmajorDept;
 sclass=tclass;
 for (int i=0;i<6;i++)
 courses[i]= tcourses[i];};

 A Suite of Cognitive Complexity Metrics 247

short undergraduate::isTakenCourse(char * tcourse){
 for (int i=0;i<6;i++){ //WisTakenCourse=1+3*2=7
 if (strcmp(tcourse,courses[i])==0)
 return true;
 }
 return false;};

/* ===================Main Program=================*/

int main ()
{
 char * courses[6];
 courses[0]="Database";
 courses[1]="OS";
 courses[2]="Programming in C";
 courses[3]="Networking";
 courses[4]="Data Structure";
 courses[5]="";
 staff * staff1 = new staff ("Aysegul Ozeke", "123456789",
 "10/05/1964", 1000, "secratery", 1);
 faculty * faculty1 = new faculty("Murat Koyuncu",
 "987654321", "10/04/1964", 4000, "Yardımcı Doçent");
 assistant * assistant1 = new assistant("Seda Camalan",
 "9876789", "10/04/1992", 1500, 2);
 graduate * graduate1 = new graduate("Aysegul Ozeke",
 "10/04/1995", "Computer", "Networking");
 undergraduate * undergraduate1 = new undergraduate("Can
 Kara", "10/04/1994", "Computer", 3, courses);
 cout<<staff1->getName()<<staff1->getSalary()<<'\n';
 cout<<faculty1->getName()<<faculty1->getSalary()<<'\n';
 cout<<assistant1->getName()<<assistant1->getType()<<'\n';
 cout<<graduate1->getName()<<graduate1->
 getDegreeProgram()<<graduate1->isStaff(staff1)<<'\n';
 cout<<undergraduate1->getName()<<undergraduate1->
 getClass()<<'\n';
 cout<<undergraduate1->isTakenCourse("Database")<<'\n';
}

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 248–257, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Complexity Metrics for Cascading Style Sheets

Adewole Adewumi1, Sanjay Misra2, and Nicholas Ikhu-Omoregbe1

1 Department of Computer and Information Sciences, Covenant University, Nigeria
2 Department of Computer Engineering, Atilim Univeristy, Ankara, Turkey
{wole.adewumi,nomoregbe}@covenantuniversity.edu.ng

smisra@futminna.edu.ng

Abstract. Web applications are becoming important for small and large com-
panies since they are integrated with their business strategies. Cascading Style
Sheets (CSS) however are an integral part of contemporary Web applications
that are perceived as complex by users and this result in hampering its wide-
spread adoption. The factors responsible for CSS complexity include size,
variety in its rule block structures, rule block reuse, cohesion and attribute defi-
nition in rule blocks. In this paper, we have proposed relevant metric for each of
the complexity factors. The proposed metrics are validated through a practical
framework. The outcome shows that the proposed metrics satisfy most of the
parameters required by the practical framework hence establishing them as well
structured.

Keywords: Cascading Style Sheets, Complexity Metrics, Software Metrics,
Validation Criteria.

1 Introduction

Web applications are becoming important for small and large companies since they
are integrated with their business strategies [10]. In this point of view, it is necessary
that the applications should be reliable, usable and adaptable. However, achieving this
goal is not an easy task. Web applications for large scale are always being complex
and therefore the maintainability of such types of system is high. There exist several
quality attributes: maintainability, usability, efficiency, functionality, reliability, por-
tability and reusability. Maintainability is one of the most important quality attribute,
which must be taken care of in the development process of the web applications oth-
erwise maintaining quality of the web application for large systems will become a
challenge. One of the ways to maintain the quality is by reducing the complexity of
the applications.

The complexity of software is measured in order to be able to predict the maintai-
nability and reliability of such software. Several complexity metrics have been pro-
posed as at today to measure typical software programs. These measures are often
based on cognitive informatics [12], [17], [18], [19], [20] a way of measuring soft-
ware complexity based on cognitive weights [13]. In recent times, complexity metrics
have also been proposed for the web domain particularly XML schema documents

 Complexity Metrics for Cascading Style Sheets 249

[3], Web Services [2][16] and DTDs [1]. These are an integral part of contemporary
web applications. Another integral part of web applications is Cascading Style Sheets
(CSS). This is a style sheet language used to format the presentation of web pages
written in HTML and XHTML. In addition it can also be applied to any kind of XML
document bringing about aesthetically pleasing and user-friendly interfaces. The core
advantage that CSS offers is separation of content from presentation. Despite this
advantage, CSS is perceived as complex by users and this result in hampering its
wide-spread adoption. Though it is perceived as complex, no metric has been pro-
posed to measure its complexity as the field of style sheets is under-researched [7]. To
solve this problem in this present paper, we start in section 2 by identifying the factors
that bring about complexity in a CSS document and propose relevant metrics that can
be used to measure each attribute. In section 3 we demonstrate each metric using suit-
able example(s) and in section 4 we validate the proposed metrics through a frame-
work. Section 5 concludes the paper.

2 Proposed Metrics

The complexity of CSS refers to how easy it is to understand and maintain. All factors
that make CSS difficult to understand or maintain are responsible for its complexity.
Factors that are responsible for the complexity of CSS include: size, variety in its rule
block structures, rule block reuse, cohesion and attribute definition in rule blocks.

The greater the size of a CSS the more complex the CSS will be. Since size is an
important measure we are proposing rule length metric which is similar to lines of
code in procedural programming and number of rule block metric which is similar to
the number of modules in structured programming.

Also, the more dissimilar the rule blocks in a CSS are to one another, the more
complex it will be to understand. Since variety in rule block structure is an important
measure, we are proposing entropy metric.

The less number of modules that are reused in CSS increases the complexity of the
CSS. Since reuse is an important measure, we are proposing number of extended rule
blocks metric.

Furthermore, cohesion plays a vital role in the complexity of CSS as the lower the
level of cohesion among rule blocks, the more complex the CSS. Since cohesion is an
important measure, we are proposing number of cohesive rule blocks as metric.

In addition, the more the attributes defined for a rule block the more complex it
will be. Since attribute definition in rule blocks is an important measure, we are pro-
posing number of attributes defined per rule block as metric. In the paragraphs that
follow, we describe the proposed metrics in detail.

2.1 Rule Length (RL)

A style sheet consists of a list of rules. Rule Length (RL) metric measures the number
of lines of rules (code) in a CSS. This metric does not take into account white spaces

250 A. Adewumi, S. Misra, and N. Ikhu-Omoregbe

or comment lines in the CSS. This is essentially because white spaces and comments
are not executed in CSS. RL is calculated using the following formula:

 RL = ∑ rule statements in a CSS file

A rule statement is any of the following:

• Selector(s) + opening brace of a rule block ({) for example, body {
• the attribute(s) of a selector ending with a semicolon (;) for example color:

#FFFFFF;
• Closing brace of a rule block depicted as (})

We now apply the metric to an example given in CSS code listing 1(Figure 1).

/* CSS Code Listing 1 */
body {
 margin: 0;
 padding: 0;
 background: #1B120B;
 font-family: Arial, Helvetica, sans-serif;
 font-size: 14px;
 color: #402C16;
}
h1, h2, h3 {
 margin: 0;
 padding: 0;
 font-weight: normal;
 color: #FFFFFF;
}

Fig. 1. CSS Code Listing 1

From CSS code listing 1, we can count 14 rule statements. Therefore,

 RL = 14 lines

2.2 Number of Rule Blocks (NORB)

A rule block refers to a selector and its attributes (properties) depicted by the syntax
shown as follows.

/* Syntax of a rule block */
selector [, selector2, ...] [:pseudo-RLass] {
 property: value;
 [property2: value2;
...]
}

A typical CSS file will contain at least one rule block.

 Complexity Metrics for Cascading Style Sheets 251

2.3 Entropy Metric (E)

The word ‘entropy’ was adapted from information theory [5] and is defined as a meas-
ure of uncertainty or variety. The entropy concept has been applied for the assessment
of the rule complexity of procedural software [4] [6] [8] [11]. In recent times, [1] [3]
have applied the concept to assess the structural complexity of XML schema docu-
ments written in W3C Document Type Definition (DTD) language and to measure the
complexity of the schema documents written in W3C XML Schema Language [21]
respectively. This was done by closely following the approach used by [4]. In this pa-
per, we tow the same path to compute the entropy value of CSS documents.

According to [1] the definition is given by E = <S, F, P>, where E is an experiment
with S as the set of elementary events, F is a Borel field [9] over S, and P is a proba-
bilistic function assessing real values to events in F, then for a finite number of events
C1, C2, ..., Cn the entropy of the given experiment E is

 H = -∑P(Ct)log2P(Ct) where t = 1 ... n

Based on this definition the entropy of a given CSS document having n distinct class
of elements can be calculated using the relative frequencies as unbiased estimates of
their probabilities P(Ci), i=1, 2, ..., n. The distinct class of elements means that ele-
ments having the same structural complexities are grouped in the same class called
equivalence class (C). This concept is demonstrated in section 3 using the CSS rule in
CSS code listing 2 in Figure 2 in Appendix.

2.4 Number of Extended Rule Blocks (NERB)

This metric counts the number of rule blocks that are extended in a CSS file. It is
calculated as follows:

 NERB = ∑ extended rule block(i) where i = 1 … n

2.5 Number of Attributes Defined per Rule Block (NADRB)

This metric determines the average number of attributes defined in the rule blocks of
a CSS file. It can be calculated as follows:

 NADRB = (Total no. of attributes in all rule blocks / Total no. of rule blocks)

2.6 Number of Cohesive Rule Blocks (NCRB)

Cohesion can be described as the “single-mindedness” of a component [10]. In the
case of CSS, this can refer to rule blocks possessing a single attribute. NCRB metric
counts all rule blocks that possess only one attribute. It can be calculated as follows:

 NCRB = ∑ rule block (i) possessing only one attribute where i = 1 … n

252 A. Adewumi, S. Misra, and N. Ikhu-Omoregbe

3 Demonstration of the Proposed Metrics

For illustration, we apply all the proposed metrics from section 2 to the example given
in CSS code listing 2 (Figure 2 in Appendix).

RL metric: The value of the rule length metric is 40 lines.

 RL = 40 lines

NORB metric: The value of the NORB metric is 9.

 NORB = 9

Entropy metric: The entropy value of the CSS rule in CSS code listing 2(Figure 2 in
Appendix) is calculated by first determining the equivalence classes – this means
grouping similar rule blocks. This is given as follows:

C1 = {body} = 1 element
C2 = {{h1, h2, h3}} = 1 element
C3 = {h1, h2, h3} = 3 elements
C4 = {a} = 1 element
C5 = {a:hover} = 1 element
C6 = {#page, #content} = 2 elements

The relative frequency of occurrence of the equivalence classes of the CSS document
is the number of elements (i.e. attributes inside the equivalence class), divided by the
total number of rule blocks in the CSS document. There are nine (9) rule blocks in the
CSS document shown in CSS code listing 2 and so the relative frequency of occur-
rence of the equivalence class C5 = {#page, #content}, is P(C6) = 2/9. When all
elements fall into only one equivalence class, then the minimum entropy value is
determined. In that case, P (C1) = 9/9 = 1, this would then imply that entropy value is:

 H = -∑P(Ct)log2P(Ct)

 = P(C1)log2P(C1)

 = 0

On the other hand, the possible maximum entropy occurs when each rule block in the
CSS rule is distinct. In such a case, the number of equivalence classes equal to the
number of rule blocks, i.e. P(Ci) = 1/n, i = 1, 2, ..., n and n is the number of rule
blocks or equivalence classes in the CSS. The entropy value of the CSS rule, in this
case is:

 H = -∑P(Ct)log2P(Ct)

 = -∑(1/n) log2 (1/n)

 Complexity Metrics for Cascading Style Sheets 253

The entropy value for the CSS document shown in CSS code listing 2 is therefore
calculated as:

 E(CSS) = H

 = -∑P(Ct)log2P(Ct) where t = 1.. n

= (1/9)*log2 (1/9) + (1/9)*log2 (1/9) + (3/9)*log2 (3/9) + (1/9)*log2 (1/9) +
(1/9)*log2 (1/9) + (2/9)*log2(2/9)

 = 0.2441 + 0.2441 + 0.3662 + 0.2441 + 0.2441 + 0.3342

 = 1.6768

NERB: There are 2 extended rule blocks in CSS code listing 2 namely: h1, h2, h3
{...} and a {...}.
h1, h2, h3 {...} is extended to give h1{...}, h2{...} and h3{...} while
a{...} is extended to give a:hover{...}. Therefore,

 NERB = 2

NADRB: There are 22 attributes in all inside CSS code listing 2. There are also 9 rule
blocks in all. Applying the formula defined in section 2 we have:

 NADRB = 22/9 = 2.44

In essence, the result shows that on the average two attributes are defined per rule
block. The higher this value is the more complex will be the CSS.

NCRB: The total number of rule blocks that possess one attribute in CSS code listing
2 is 4 namely: h1{...}, h2{...}, h3{...}, and a:hover{...}

Hence,

 NCRB = 4

4 Practical Validation of the Proposed Metrics

To validate the six complexity metrics proposed we use the framework given by Kaner
[14]. It is one of several validation criteria. The framework is more practical than the
formal approach. It is based on answering the following points:

Purpose of the measures
The purpose of the measures is to evaluate the complexity of cascading style sheets.

Scope of usage of the measure: The proposed RL, NORB, entropy, NERB, NADRB
and NCRB metrics are good predictors of understandability of CSS. They are

254 A. Adewumi, S. Misra, and N. Ikhu-Omoregbe

therefore a valuable contribution for maintainability of CSS. The scope of use is by
web development teams that work on styling web interfaces.

Identified attribute to measure
The identified attributes to measure from our suite of metrics are understandability,
reliability and maintainability. All these attributes are directly related to the quality of
CSS.

Natural scale of the attribute
The natural scales of the attributes cannot be defined, since they are subjective and
require the development of a common view about them.

Natural variability of the attribute
Natural variability of the attributes can also not be defined because of their subjective
nature. It is possible that one can develop a sound approach to handle such attribute,
but it may not be complete because other factors also exist that can affect the
attribute’s variability. In this respect, it is difficult to attain knowledge about variabili-
ty of the attribute.

Definition of metric
The metrics have been formally defined in Section 2.

Measuring instrument to perform the measurement: We have counted all the
parameters of the metrics manually and computed the proposed metrics. Further, we
aim at developing a tool/software for measuring the proposed suite of metrics.

Natural scale for the metrics
For the natural scale of the proposed metrics, we have to go through measurement
theory. When we analyze our metrics according to Briand and Morasca [15] we find
that, they are in the ratio scale.

The natural variability of readings from the instrument
Since the reading from our counting instrument is not subjective and does not require
any interpretation, we can say that no variability (i.e. measurement error) on readings
from the instrument can be expected. Note that, in case of automated counting, we
assume that there is no bug in the devised algorithm.

Relationship between the attribute to the metric value
There is a direct relation between the complexity of CSS and our proposed metrics. In
other words all the proposed metrics are predictors of complexity in CSS.

Natural and foreseeable side effects of using the instrument
Once we automate the complexity calculation, it will not require considerable addi-
tional workload of manpower of the company. The only cost will be the automation.

 Complexity Metrics for Cascading Style Sheets 255

Table 1. Results of applying proposed metrics to CSS code listing 2

Metrics Code Listing 2

RL 40
NORB 9
Entropy 1.6768
NERB 2

NADRB 2.44
NCRB 4

5 Concluding Remark and Further Work

In this paper, we identified factors that bring about complexity in CSS and also pro-
posed complexity metrics based on each of these factors for analyzing the complexity
of CSS documents. With these proposed metrics, Web developers and designers can
measure the complexity of CSS documents in terms of size, variety in rule block
structure, rule block reuse, cohesion and the average number of attributes defined per
rule block. The proposed metrics were validated practically through a framework to
prove their usefulness and practical applicability. It was found that the proposed me-
tric satisfies most of the parameters required by the practical evaluation framework.

As future work, we intend to validate each metric through Weyuker’s properties.
Rigorous empirical validation will also be done. In addition, the development of an
automated tool for computing the metrics is also a task of future work.

References

1. Basci, D., Misra, S.: Entropy Metric for XML DTD Documents. ACM SIGSOFT Software
Engineering Notes 33(4) (2008)

2. Basci, D., Misra, S.: Data Complexity Metrics for XML Web Services. Advances in Elec-
trical and Computer Engineering 9(2) (2009)

3. Basci, D., Misra, S.: Entropy as a Measure of Quality of XML Schema Document. The In-
ternational Arab Journal of Information Technology 8(1), 16–24 (2011)

4. Davis, J., LeBlanc, R.: A study of the applicability of complexity measures. IEEE Transac-
tion on Software Engineering 14, 366–372 (1988)

5. Hamming, R.: Coding and information theory. Prentice Hall, Englewood Cliffs (1980)
6. Harrison, W.: An entropy-based measure of software complexity. IEEE Transactions on

Software Engineering 18, 1025–1029 (1992)
7. Marden, P.M., Munson, E.V.: Today’s Style Sheet Standards: The Great Vision Blinded.

Computer (1999)
8. Mohanty, S.N.: Entropy metrics for software design evaluation. The Journal of Systems

and Software 2, 39–46 (1981)
9. Papoulis, A.: Probability, random variables and stochastic processes. McGraw-Hill, New

York (1965)
10. Pressman, R.S.: Software Engineering: A Practitioner’s Approach. McGraw-Hill, New

York (2005)

256 A. Adewumi, S. Misra, and N. Ikhu-Omoregbe

11. Torres, W., Samadzadeh, M.H.: Software reuse and information theory based metrics.
IEEE Transactions on Software Engineering, 437–446 (1990)

12. Wang, Y.: On Cognitive Informatics. In: Second IEEE International Conference on Cogni-
tive Informatics (ICCI 2002), pp. 34–42 (2002)

13. Wang, Y, Shao, J.: A New Measure of Software Complexity based on Cognitive Weights.
Can. J. Electrical and Computer Engineering, 69–74 (2003)

14. Kaner, C.: Software Engineering Metrics: what do they measure and how do we know? In:
Proc. Tenth Int. Software Metrics Symp., Metrics, pp. 1–10 (2004)

15. Briand, L.C., Morasca, S., Basily, V.R.: Property based software engineering measure-
ment. IEEE Transactions on Software Engineering 22, 68–86 (1996)

16. Basci, D., Misra, S.: Metrics Suite for Maintainability of XML Web-Services. IET Soft-
ware 5(3), 320–341 (2011)

17. Misra, S., Cafer, F.: Estimating Complexity Of Programs In Python Language. Technical
Gazette 18(1), 23–32 (2011)

18. Misra, S., Akman, I., Koyuncu, M.: An Inheritance Complexity Metric for Object Oriented
Code: A Cognitive Approach. SADHANA 36(3), 317–338 (2011)

19. Misra, S., Akman, I.: Unified Complexity Measure: a measure of Complexity. The Proc.
National Academy of Sciences India (Sect. A) 80(2), 167–176 (2010)

20. Misra, S., Akman, I.: Weighted Class Complexity: A Measure of Complexity for Object
Oriented Systems. Journal of Information Science and Engineering 24, 1689–1708 (2008)

21. Basci, D., Misra, S.: Measuring and Evaluating a Design Complexity Metric for XML
Schema Documents. Journal of Information Science and Engineering 25(5), 1405–1425
(2009)

Appendix: 1

/* CSS Code Listing 2 */
body {
 margin: 0;
 padding: 0;
 background: #FFFFFF;
 font-family: Arial, Helvetica, sans-serif;
 font-size: 14px;
 color: #402C16;
}
h1, h2, h3 {
 margin: 0;
 padding: 0;
 font-weight: normal;
 color: #2E9F13;
}
h1 {
 font-size: 2em;
}
h2 {

 Complexity Metrics for Cascading Style Sheets 257

 font-size: 2.4em;
}
h3 {
 font-size: 1.6em;
}
a {
 text-decoration: none;
 color: #2E9F13;
}
a:hover {
 text-decoration: underline;
}
/* Page */
#page {
 width: 960px;
 padding: 0;
 border-top: 1px solid #D0D0D0;
}
/* Content */
#content {
 float: right;
 width: 600px;
 padding: 0px 0px 0px 0px;
}

Fig. 2. CSS Code Listing 2

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 258–273, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Systematic Review on the Impact of CK Metrics
on the Functional Correctness of Object-Oriented Classes

Yasser A. Khan, Mahmoud O. Elish, and Mohamed El-Attar

Department of Information & Computer Science
King Fahd University of Petroleum & Minerals

Dhahran, Saudi Arabia
{yasera,elish,melattar}@kfupm.edu.sa

Abstract. The Chidamber and Kemerer (CK) metrics suite is one of the most
popular and highly cited suites for measuring Object-Oriented (OO) designs. A
great amount of empirical studies have been conducted to evaluate these metrics
as indicators of the functional correctness of classes in OO systems. However,
there has been no attempt to systematically review and report these empirical
evidences. To identify the relation of CK metrics with functional correctness, we
have performed a systematic review of empirical evidences published in the
literature that support or reject CK metrics as indicators of functional correctness.
Our search strategy identified 20 papers that contain relevant empirical evidences.
Our results conclude that WMC, CBO, RFC and LCOM metrics are good
indicators of functional correctness of OO classes. Inheritance metrics, DIT and
NOC, are however not useful indicators of functional correctness.

Keywords: Software quality, CK metrics, functional correctness, systematic
literature review.

1 Introduction

The Chidamber and Kemerer (CK) Object-Oriented (OO) design metrics suite was
introduced in 1994 as an alternative to traditional, non OO, software metrics [1]. The
traditional metrics did not capture OO features such as inheritance, coupling and
cohesion. The CK metrics suite was introduced especially to measure these features.
It is strongly rooted in theory, and applicable to OO development practices. Popular
software development tools such as Rational Rose have incorporated the CK metrics
for OO design measurement.

The ISO/IEC 25010 [10] standard defines eight characteristics of software product
quality—functional suitability, maintainability, performance efficiency, compatibility,
usability, security, reliability and portability. These characteristics are further divided
into sub-characteristics. Functional correctness is a sub-characteristic of the
functional suitability characteristic. It is defined as “the degree to which a product or
system provides the correct results with the needed degree of precision” [9]. Inverted
proxy measures for functional correctness include fault count, fault proneness, and
fault density and severity.

 A Systematic Review on the Impact of CK Metrics on the Functional Correctness 259

Several studies have empirically validated the CK metrics as indicators of the
functional correctness of OO classes. To the best of our knowledge, there has been no
effort to systematically report the empirical evidences in literature that support or
reject the CK metrics as indicators of functional correctness. Therefore, there is a
need to conduct a Systematic Literature Review (SLR) of the empirical evidences in
literature that are in favor or against the CK metrics as indicators of the functional
correctness of OO classes. This paper reports the methodological details and the
results of our SLR.

The remainder of this paper is organized as follows. Section 2 contains an
introduction to the CK metrics suite. Section 3 reports the details of our SLR research
methodology. Section 4 contains an overview of the selected primary studies. Main
findings of our SLR are presented in Section 5. Section 6 discusses the limitations of
the review and Section 7 concludes the paper.

2 CK Metrics Suite

The CK metrics suite [1] is one of the most popular and highly cited suites for
measuring OO designs. These metrics help designers in evaluating their design and
detecting design flaws. The suite consists of the following six metrics:

1. Weighted methods per class (WMC): The sum of individual complexity of
each method in a given class.

2. Depth of inheritance tree (DIT): The maximum length from the root to a
given class in an inheritance hierarchy.

3. Number of children (NOC): The number of direct subclasses of a given class
in an inheritance hierarchy.

4. Coupling between object classes (CBO): The number of classes that a class
is coupled with.

5. Response for a class (RFC): The number of methods in a class plus number
of distinct methods called by those methods.

6. Lack of Cohesion in methods (LCOM): The number of methods pairs in a
class that share no instance variables minus number of methods pairs that
share instance variables.

3 Research Method

The research has been carried out by following the guidelines given by Kitchenham
and Charters [2] for conducting SLR in Software Engineering. SLR is a well-defined
methodical way of identifying, assessing and analyzing relevant published literature
in order to answer a research question. The remainder of Section 3 discusses our SLR
procedure in detail.

260 Y.A. Khan, M.O. Elish, and M. El-Attar

3.1 Research Questions

Several empirical studies have validated the effectiveness of the CK metrics as
indicators of functional correctness of OO classes. Our goal is to provide an aggregate
of the empirical evidences reported in literature that support/reject the CK metrics as
indicators of functional correctness. Therefore, our first research question is:

RQ1 - Are CK metrics significant indicators of the functional correctness of OO
classes?

If a CK metric appears as an indicator of the functional correctness of OO classes, it
would be interesting to identify the nature of the relationship—positive or negative. A
positive relationship implies higher the measure of the metric higher the class quality
in terms of functional correctness. A negative relationship implies higher the measure
of the metric lower the class quality in terms of functional correctness and vice versa.
Therefore, our second research question is:

RQ1.1 - What is the nature of the relationships between an individual CK metric and
the functional correctness of OO classes?

3.2 Search Strategy

A search strategy aims to make sure that all relevant literature appears in the search
result without cluttering up with irrelevant studies. We limited our literature search
over two dimensions: publication time period and publications that have cited CK’s
original paper [1]. In terms of publication time period we limited our search to the
papers published between June 1994 and October 2011. This start date was chosen
because the CK metrics suite paper [1] was published in June 1994. The end date is
30 October 2011 since we finished our search on this date. Therefore, any paper
published after 30 October 2011 is not included in our search result. We limited our
search to the electronic database Scopus as it covers the most relevant and respected
journals and conferences proceedings within software engineering. It contained 1223
papers that cited the CK metrics suite paper [1]. Initially, papers were excluded based
on relevance of their title and abstract to our research questions. The remaining papers
were then selected based on our inclusion criteria—studies that empirically
investigate the relationship between CK metrics or a subset of CK metrics with
functional correctness. Based on this, 20 papers were selected as the primary studies
for this SLR. They are listed in the Appendix. It worth mentioning that at least two
members of the research team were involved independently in the study selection
process. Any discrepancies were settled by consensus.

3.3 Data Extraction and Synthesis

The selected studies were read in depth by at least two researchers in parallel in order
to extract the data needed to address the research questions. Important lines and

 A Systematic Review on the Impact of CK Metrics on the Functional Correctness 261

paragraphs in the selected studies were highlighted. This helped us to quickly find and
validate the extracted information and resolve inconsistencies. Data was extracted in a
detailed data extraction form. The fields of our data extraction form are study title,
journal/conference, date of publication, author name(s), study objective, CK metric(s)
measured, proxy metric(s) used to measure functional correctness, system
information, data analysis methodology, metrics measurement method and results of
the study.

In data synthesis step, the extracted data from the extraction forms is compiled and
organized in a suitable form to answer the research questions. We performed
descriptive synthesis of the data and presented it in tabular form for each of the CK
metrics (Tables 2-7).

4 Overview of Selected Studies

The 20 selected studies based on the search strategy and inclusion criteria investigate
the relationship between the CK metrics or a subset of CK metrics and functional
correctness. Functional correctness can be quantified through inverted proxy metrics
such as fault count, fault proneness, fault density, etc. Higher the faultiness of a class
the lower will be its quality in terms of functional correctness. [S13], [S18] and [S19]
are few of the studies that investigated the relationship between the CK metrics and
class-level Fault Count (FC). Fault Proneness (FP) refers to probability of occurrence
of a fault in a class. [S1], [S7] and [S20] are few of the studies that investigated the
relationship between the CK metrics and FP. The relationship between Fault Severity
(FS) (high, medium, low and ungraded) and the CK metrics was investigated in [S5].
Fault Density (FD) refers to the fault count per lines of code (LOC). Its relationship
with the CK metrics was investigated in [S19]. Vulnerability Count (VC) was
correlated with the CK metrics in [S2]. A class is classified as vulnerable if it contains
faults that violate a system’s security policy. Table 1 summarizes the proxy metrics
used by the selected studies.

The different types of systems investigated by the selected studies are
applications, components and middleware. They include both industrial and open-
source systems and, systems developed by students. They are of variable size
ranging from small to large sized categories. C++ is the most frequently used
programming language in the analyzed systems. Sixteen of the analyzed systems are
written in C++. Thirteen of them are written in Java. It is interesting to note that
none of the studies analyzed systems written in other popular OO languages such as
C#, Visual Basic, Smalltalk etc. The different analysis methodologies used by the
studies to find a relationship between CK metrics and functional correctness are as
follows. FP and FS are predicted using logistic regression. Linear regression and
correlation analysis are used for investigating the effect of CK metrics on FC, FD
and VC.

262 Y.A. Khan, M.O. Elish, and M. El-Attar

Table 1. Proxy metrics used by the selected studies

Proxy Definition Study
Fault Count
(FC)

Count of faults in a class. [S4], [S6], [S7], [S8],
[S10], [S11], [S12],
[S13], [S14], [S18],
 [S19]

Fault Proneness
(FP)

Probability of occurrence of a fault
in a class.

 [S1], [S3], [S4], [S7],
 [S8], [S9], [S10], [S11],
 [S12], [S14], [S15],
[S16], [S17], [S20]

Fault Severity
(FS)

Fault Proneness categorized as high
(HSF), medium (MSF), low (LSF)
and ungraded (USF) severity

 [S5]

Fault Density
(FD)

Fault count per LOC. [S19]

Vulnerability
Count (VC)

Count of faults that can violate a
system’s security policy

[S2]

5 Results and Discussion

This section discusses the empirical evidences reported in the selected studies, and
answers the research questions for all six of the CK metrics. Tables 2-7 summarize
results of the selected studies for each of the six CK metrics. They list the proxy
metrics and references to the studies that have shown positive, negative and
insignificant effect of a metric on functional correctness. Studies which have shown
contradictory results for different systems are represented more than once in the same
row.

5.1 WMC

WMC is a measure of class complexity. It is given as the weighted sum of individual
complexities of local methods in a class. In the remainder of this section we refer to
WMC as the version of this metric in which method complexity for all methods is
taken as unity. The version which computes this metric as the sum of McCabe’s
complexity factor [4] of each method is referred as WMC-McCabe. Table 2
summarizes the results of the selected studies with respect to WMC.

Impact on FC. WMC showed moderate to large correlation coefficients with FC for
four versions of Mozilla Rhino, 14R3, 15R1, 15R3 and 15R4 in [S8]. However, small
correlation coefficients were reported for two versions, 15R2 and 15R5. The
correlation coefficients were classified based on the guidelines by Cohen [3]. WMC-
McCabe showed moderate to large coefficients for five versions except 15R5.
However, in [S11], small to large correlation coefficients were reported for versions
14R3, 15R1 and 15R2 according to the Hopkins scale [8]. Harrison et al. [S19]

 A Systematic Review on the Impact of CK Metrics on the Functional Correctness 263

reported significant correlations with number of errors found during system and
integration testing for two student projects. However, four similar student projects
showed insignificant correlations. The average class size of these student projects is,
12, very low so we cannot generalize these results to real world software systems.
They also reported insignificant correlation for an image analysis subsystem.
Subramanyam and Krishnan [S13] analyzed a commercial OO system which was
composed of two sub-systems written in different languages. The C++ subsystem
showed a positive relationship whereas the Java subsystem showed insignificant
relationship. [S13] also reported support for varied results across programming
languages. The Java subsystem contained lower average LOC per class compared to
the C++ subsystem. Additionally, the Java subsystem showed stronger correlation
with class size (LOC) compared to the C++ subsystem. The weak correlations in [S8],
 [S11] and [S19] may be clarified by investigating the effect of class size on WMC.
 [S6], [S7] and [S10] analyzed the same metrics dataset and reported consistent
support for WMC as an indicator of FC. Open source systems, in [S4] and [S12], also
showed likewise results. Kamiya et al. [S18] investigated an inventory control system
and reported a significant correlation. Hence, it can be concluded that WMC is a good
indicator of FC. A class with WMC higher than its peers is at risk of containing more
faults as compared to them. However, as shown in [S13], the effect of WMC on class
size must be investigated prior to establishing a relationship with FC.

Impact on FP. WMC and WMC-McCabe were significant predictors of faulty
classes for six versions of Mozilla Rhino [S8]. These results were reported again in
 [S11]. Basili and Briand [S20] analyzed eight student projects as a whole and showed
that WMC is a significant indicator of FP. [S7] and [S10] analyzed the same dataset
and showed similar effect of WMC on FP. El Emam et al. [S15] also showed similar
results but the effect of WMC on FP diminished after controlling for class size, thus
indicating a confounding effect of class size on the relationship between WMC and
FP. WMC was the best predictor of faulty classes in [S12] for Mozilla version 1.6.
WMC was a reasonably good predictor of faulty classes for the Java Development Kit
(JDK) [S4]. The evidence in [S9] for student projects showed similar results. Hence,
it can be concluded that WMC is a good predictor of faulty classes. A class with
WMC higher than its peers is more fault-prone as compared to them. However, as
mentioned in [S15] the confounding effect of class size on the association between
WMC and FP must be investigated prior to establishing a relationship between WMC
and FP.

Impact on FS, FD, and VC. WMC was significant for predicting HSF, MSF, LSF
and USF [S5]. Harrison et al. [S19] reported an insignificant correlation with FD for
an image analysis subsystem. They also reported insignificant correlations for five
student projects. However, WMC was significant for one similar student project. As
discussed earlier, these results cannot be generalized to real world software systems.
Five releases of Mozilla Firefox showed moderate correlations between WMC and
VC [S2].

264 Y.A. Khan, M.O. Elish, and M. El-Attar

From the above reported empirical evidences it can be concluded that WMC has a
negative impact on the functional correctness of a given class. However, the impact of
WMC on FD cannot be concluded.

Table 2. WMC and functional correctness – Results summary of selected studies

Proxy Positive Negative Insignificant
FC - [S4], [S6], [S7], [S8], [S10], [S11],

 [S12], [S13] [S18], [S19]
 [S8], [S13],
 [S19]

FP - [S4], [S7], [S8], [S9], [S10], [S11],
 [S12], [S15], [S20]

-

HSF, MSF,
LSF, USF

- [S5] -

FD - [S19] [S19]
VC - [S2] -

5.2 DIT

DIT is the depth of a class in an inheritance hierarchy. This section answers the
research questions with respect to DIT. Table 3 summarizes the results of the selected
studies with respect to DIT.

Impact on FC. DIT was not a useful indicator of FC in [S4]. Correlation and
regression analysis both revealed it as a not useful indicator in [S6]. [S10] analyzed
the same dataset, as in [S6], and supported DIT as an insignificant indicator of FC.
Olague et al. [S11] reported insignificant correlation for two version of Mozilla
Rhino–15R3 and 15R5. However, they reported a moderate correlation coefficient for
one version, 15R4. Five student projects showed insignificant correlation coefficients
in [S19]. However, one of them was negatively moderate. As mentioned previosuly,
these results cannot be generalized to real world systems. Two commercial systems
showed insignificant correlation coefficients between DIT and FC in [S14]. On the
contrary, Kamiya et al. reported large correlation with FC in [S18] for a C++ system.
Another C++ system showed high DIT values were associated with higher FC [S13].
The results for these two systems can be explained by the fact that C++ supports
multiple inhertiance. A class which inherits attributes and methods from multiple
classes will be more complex than classes which inhert from a single class. However,
datasets taken from other C++ systems showed DIT was an insignificant indicator of
FC [S6] [S10] [S14]. Multiple inheritance may not have been used as much in these
systems as used in [S13] and [S18]. Hence, we conclude that DIT is not related with
FC. However, the impact of multiple inheritance on FC requires further investigation.

Impact on FP. DIT was shown not related to FP in [S7], [S9] and [S15]. Four
releases of Mozilla Rhino also showed insignificant effect of DIT on FP [S11]. A
dataset consisting of student projects showed high DIT associated with high FP [S17].
Inheritance was sparingly used in these datasets; hence, these results cannot be
generalized to real world systems. Gyimothy et al. [S12] reported DIT was significant

 A Systematic Review on the Impact of CK Metrics on the Functional Correctness 265

for fault prediction. However, they reported that DIT’s accuracy in predicting faults
was very poor compared to other CK metrics. The evidence in [S4] also showed DIT
as poor predictor of faults compared to other CK metrics. [S16] and [S20] concluded
DIT was very significant, however its accuracy in predicting faults was not tested.
Hence, we conclude that DIT is not useful for predicting faulty classes.

Impact on FS, FD, and VC. DIT was insignificant for predicting HSF, MSF, LSF
and USF in [S5]. It showed insignificant correlation coefficients with FD for five
student projects [S19]. As discussed earlier, these results cannot be generalized to real
world software systems. Five releases of Mozilla Firefox showed moderate
correlations between DIT and VC [S2].

From the above reported empirical evidences it can be concluded that DIT has no
impact on the functional correctness of a given class.

Table 3. DIT and functional correctness – Results summary of selected studies

Proxy Positive Negative Insignificant
FC - [S13], [S11], [S18] [S4], [S6], [S10],

[S11] [S14], [S19]
FP - [S4], [S11], [S12], [S16],

 [S17], [S20]
 [S7], [S9], [S11],
[S15]

HSF, MSF,
LSF, USF

- - [S5]

FD - - [S19]
VC - [S2] -

5.3 NOC

NOC is the number of direct subclasses of a given class in an inheritance hierarchy.
This section answers the research questions with respect to NOC. Table 4 summarizes
the results of the selected studies with respect to NOC.

Impact on FC. NOC gave small to moderate correlation coefficients with FC for
three versions of Mozilla Rhino—15R3, 15R4 and 15R5 [S11]. One student project in
 [S19] showed insignificant correaltion coefficients. Correlation and regression
analysis both revealed it as a not useful indicator of FC in [S6]. [S10] analyzed the
same dataset, as in [S6], and concluded similary. Two commercial systems showed
insignificant correlations between NOC and FC [S14]. NOC was not a good indicator
of FC for JDK in [S4]. Hence, we conclude that NOC is not related with FC.

Impact on FP. NOC was associated with lower probability of fault detection for a
dataset comprising of student projects [S20]. The dataset showed a flat inheritance
structure, most of the classes had no children; hence this result cannot be generalized
to real world systems. Another student project dataset showed similar results [S17].
On the contrary, in [S9] a student project dataset showed insignificant effect of NOC
on FP [S9]. NOC was least significant for predicting faulty classes compared to other

266 Y.A. Khan, M.O. Elish, and M. El-Attar

metrics in [S4]. [S7], [S12] and [S16] showed NOC was not useful for predicting
faulty classes. Four version of Mozilla Rhino showed insignificant effect of NOC on
fault-proneness [S11]. Hence, we conclude that NOC is not related to FP.

Impact on FS, FD, and VC. NOC was not useful for predicting HSF and LSF
whereas it was associated with lower probability of MSF and USF [S5]. One
student project in [S19] showed an insignificant correlation between NOC and FD. As
discussed earlier, this result cannot be generalized to real world software systems.
Five releases of Mozilla Firefox showed strong correlations between NOC and
VC [S2].

From the above reported empirical evidences it can be concluded that NOC has no
impact on the functional correctness of a given class.

Table 4. NOC and functional correctness – Results summary of selected studies

Proxy Positive Negative Insignificant
FC - [S11] [S4], [S6], [S10], [S14], [S19]
FP [S17], [S20] [S4], [S11] [S9], [S7], [S11], [S12], [S16]
HSF, LSF - - [S5]
MSF, USF [S5] - -
FD - - [S19]
VC - [S2] -

5.4 CBO

Two classes are said to be coupled if one of them accesses an instance variable or
calls a method from the other. CBO is the count of the number of classes a given class
is coupled with. It gives a measure of interdependence between OO system classes.
This section answers the research questions with respect to CBO. Table 5 summarizes
the results of the selected studies with respect to CBO.

Impact on FC. Harrison et al. [S19] reported an insignificant correlation between
CBO and FC for four student projects. However, two similar projects showed
significant correlations. As discussed earlier, these results cannot be generalized to
real world software systems. They also reported an insignificant correlation for an
image analysis subsystem. Succi et al. [S14] reported conflicting results for two
commercial C++ systems—Project A and Project B; the former showed insignificant
correlation whereas the latter showed significant correlation. These contradicting
results were explained by the fact that less than 30% of classes in Project A
correspond to 80% of faults, whereas only 2% of classes correspond to 80% of faults
in Project B. Subramanyam and Krishnan [S13] also showed contradictory results for
two components of a commercial system. The C++ subsystem showed a positive
relationship whereas the Java subsystem showed a negative relationship. This was
reported due to the fact that the Java subsystem showed an interaction between DIT
and CBO. As the depth of a class in an inheritance hierarchy increased, the effect of
CBO on fault count decreased. However, root level classes (DIT=0) showed an

 A Systematic Review on the Impact of CK Metrics on the Functional Correctness 267

increase in faults with the increase in CBO. The insignificant correlation reported in
 [S19] for an image analysis subsystem may be clarified by investigating the
interaction between DIT and CBO. The design of this system made no use of
inheritance (DIT=0 for all classes). CBO was a good indicator of FC for the JDK in
 [S4]. Kamiya et al. [S18] analyzed an inventory control system and reported a
significant correlation. However, CBOR (coupling with framework classes), showed a
stronger correlation coefficient than CBO. This means that coupling with framework
classes contributes more faults compared to coupling with newly developed classes.
Olague et al. [S11] reported small to moderate correlation coefficients for three
versions of Mozilla Rhino, 15R3, 15R4, and 15R4, according to the Hopkins scale
[8]. Moreover, the correlation coefficients were larger compared to direct class
coupling (DCC) of the QMOOD metrics suite [7]. [S6], [S7] and [S10] analyzed the
same dataset and showed consistent support for CBO as an indicator of FC. Open
source web and email suite, Mozilla version 1.6, also showed likewise results in
 [S12]. Hence, it can be concluded that CBO is a good indicator of FC. A class which
is more coupled than its peers is at risk of containing more faults as compared to
them. However, as shown in [S13] the interaction between DIT and CBO must be
investigated prior to establishing a relationship between CBO and FC.

Impact on FP. Olague et al. [S11] reported CBO as a significant indicator of FP for
five out of six versions of Mozilla Rhino. Moreover, it performed as a better indicator
than DCC [7]. [S9], [S17] and [S20] analyzed student projects and supported CBO as
a significant indicator. El Emam et al. [S15] also showed similar results but the effect
of CBO on FP diminished after controlling for class size, thus indicating a
confounding effect of class size on the relationship between CBO and FP. [S7]
reported CBO as a better predictor of FP than fault count. [S10] analyzed the same
dataset, as in [S7], and concluded that CBO was significant for predicting faulty
classes. The correctness, precision and completeness of CBO in predicting faults were
highest compared to other metrics in [S4]. Precision and completeness in predicting
faults were also highest in [S12]. Hence, it can be concluded that CBO is a good
indicator of FP. A class which is more coupled than its peers is more fault-prone as
compared to them. However, as mentioned in [S15] the confounding effect of class
size on the association between CBO and FP must be investigated prior to
establishing a relationship between CBO and FP.

Impact on FS, FD, and VC. CBO was significant for predicting HSF, MSF, LSF and
USF in [S5]. Harrison et al. [S19] reported an insignificant correlation with FD for an
image analysis subsystem. They also reported positive correlation coefficients for four
student projects. On the contrary, two similar projects showed negative correlation
coefficients. As discussed earlier, these results cannot be generalized to real world
software systems. CBO showed moderate correlation with VC in [S2].

From the above reported empirical evidences it can be concluded that CBO has a
negative impact on the functional correctness of a given class. However, the impact of
CBO on FD cannot be concluded.

268 Y.A. Khan, M.O. Elish, and M. El-Attar

Table 5. CBO and functional correctness – Results summary of selected studies

Proxy Positive Negative Insignificant
FC [S13] [S4], [S6],[S7], [S10], [S11], [S12],

[S13], [S14], [S18], [S19]
 [S14], [S19]

FP - [S4], [S7], [S9], [S10], [S11], [S12],
[S15], [S17], [S20]

 [S11]

HSF, MSF,
LSF, USF

- [S5] -

FD [S19] [S19] [S19]
VC - [S2] -

5.5 RFC

RFC is size of the response set of a class. Response set includes class methods and set
of distinct methods that are called by the class methods. This section answers the
research questions with respect to RFC. Table 6 summarizes the results of the selected
studies with respect to RFC.

Impact on FC. RFC was the best predictor of FC compared to other CK metrics in
 [S4]. Succi et al. [S14] reported conflicting results for two commercial C++
systems—Project A and Project B; the former showed insignificant correlation
whereas the latter showed significant correlation. These contradicting results were
explained by the fact that less than 30% of classes in Project A correspond to 80% of
faults, whereas only 2% of classes correspond to 80% of faults in Project B. RFC
gave strong correlation coefficient with FC in [S18]. However, a variant RFCN, that
considers methods from newly developed classes and excludes methods from
framework classes, gave stronger correlation. This shows that reuse of newly
developed classes can contribute more faults than reuse of framework classes. [S6],
[S7] and [S10] analyzed the same dataset and supported RFC as good indicator of FC.
Three versions of Mozilla Rhino showed significant correlation coefficients between
RFC and FC [S11]. Hence, we conclude that RFC is a good indicator of FC. A class
with RFC higher than its peers is at risk of containing more faults as compared to
them.

Impact on FP. RFC was very significant for predicting faults in [S20]. The
correctness of RFC in predicing faults was high compared to other metrics in [S4]. Its
precision in predicting faults was higher than other CK metrics (except CBO) in
 [S12]. RFC was reported as a better indicator of FP than FC in [S7]. [S10] analyzed
the same dataset, as in [S7], and concluded that RFC was significant for predicting
faulty classes. El Emam et al. [S15] also showed similar results but the effect of RFC
on FP diminished after controlling for class size, thus indicating a confounding effect
of class size on the relationship between RFC and FP. RFC was a significant predictor
of faults for six versions of Mozilla Rhino [S11]. Student projects analyzed in [S9]
and [S17] also concluded significant effect of RFC in predicting faults. Hence, we
conclude that RFC is a good predictor of FP. A class with RFC higher than its peers is

 A Systematic Review on the Impact of CK Metrics on the Functional Correctness 269

more fault-prone as compared to them. However, as mentioned in [S15] the
confounding effect of class size on the association between RFC and FP must be
investigated prior to establishing a relationship between RFC and FP.

Impact on FS and VC. RFC was significant for predicting HSF, MSF, LSF and USF
in [S5]. Five releases of Mozilla Firefox showed moderate correlations between RFC
and VC [S2].

From the above reported empirical evidences it can be concluded that RFC has a
negative impact on the functional correctness of a given class.

Table 6. RFC and functional correctness – Results summary of selected studies

Proxy Positive Negative Insignificant
FC - [S4], [S6], [S7], [S10], [S11], [S14],

[S18]
[S14]

FP - [S4], [S7], [S9], [S10], [S11], [S12],
 [S15], [S17], [S20]

-

HSF, MSF,
LSF, USF

- [S5] -

VC - [S2] -

5.6 LCOM

Cohesion refers to the degree of interrelatedness among the components of a class—
instance variables and methods. LCOM is an inverted measure of class cohesion. A
high LCOM indicates a less cohesive class and vice versa. This section answers the
research questions with respect to LCOM. Table 7 summarizes the results of the
selected studies with respect to LCOM.

Impact on FC. Succi et al. [S14] reported conflicting results for two commercial C++
systems—Project A and Project B. The former showed insignificant correlation
between LCOM and FC whereas latter showed a significant correlation. These
contradicting results were explained by the fact that less than 30% of classes in
Project A correspond to 80% of faults, whereas only 2% of classes correspond to 80%
of faults in Project B. Three versions of Mozilla Rhino showed small to moderate
correlation coefficients between LCOM and FC [S11]. Kamiya et al. [S18] analyzed
an inventory management system and reported signification correlation between
LCOM and FC. Hence, it can be concluded that LCOM is a good indicator of FC. A
class having lower cohesion than its peers is at risk of containing more faults as
compared to them.

Impact on FP. Briand et al. [S17] reported LCOM as the least significant indicator of
faulty classes compared to its variants and other cohesion measures. The Hitz and
Montazeri [5] and the Henderson-Sellers [6] variants of LCOM were significant
indicators. These variants of LCOM performed better because LCOM does not
differentiate between cohesive classes (LCOM=0). Basili et al. [S20] also reported

270 Y.A. Khan, M.O. Elish, and M. El-Attar

LCOM as an insignificant indicator due to this limitation. LCOM was again
insignificant for predicting faults in [S15]. On the contrary, Gyimothy et al. [S12]
analyzed open source systems and reported LCOM as a good predictor of faulty
classes. LCOM’s effectiveness against its negative version (LCOMN) was also
investigated but reported results could not conclude which one was better. Moreover,
their correctness in predicting faults were highest compared to other CK metrics. Al-
Dallal [S1] proposed TLCOM (transitive LCOM) that considers indirect relations
between class attributes and methods and investigated its effectiveness in predicting
faults. The results revealed it as a better indicator of FP than LCOM. Al-Dallal and
Briand [S3] proposed a similarity based cohesion metric and empirically validated it
as a better fault predictor than LCOM. Aggarwal et al. [S9] analyzed student projects
and supported LCOM as a good indicator. It could be argued that these results cannot
be generalized to real world systems. Olague et al [S11] reported LCOM as a
significant indicator of FP for four versions of Mozilla Rhino. However, two versions
showed insignificant relationship. Studies have shown that variants of LCOM are
better indicators of FP ([S1], [S3] and [S17]). Due to the contradictory results and
limitations of LCOM in predicting faulty classes we can conclude that LCOM is not
an indicator of FP.

Impact on FD. Harrison et al. [S19] reported LCOM as an insignificant indicator of
FD for an image analysis subsystem.

From the above reported empirical evidences we conclude that LCOM has a
negative impact on the functional correctness of a given class when FC is used as a
proxy. However, the impact of LCOM on FP and FD cannot be determined.

Table 7. LCOM and functional correctness – Results summary of selected studies

Proxy Positive Negative Insignificant
FC - [S11], [S14], [S18] [S14]
FP - [S1], [S3], [S9], [S11], [S12] [S11], [S15], [S17], [S20]
FD - - [S19]

6 Limitations

This SLR has some limitations which should be considered while interpreting its re-
sults. Since we restricted our literature search to Scopus this SLR may have not
included every published study that can answer the research questions. Moreover, our
search string may have missed some relevant studies. We also found that some papers
which performed correlation analysis lacked sufficient data to support their results —
p-values, significance threshold and level of significance. Some papers did not
mention whether the correlation coefficients were statistically significant or not. For
such papers, we used the guidelines given in [3] to classify the coefficients as small,
moderate or large. Descriptive statistics of the systems investigated were also missing
in few papers.

 A Systematic Review on the Impact of CK Metrics on the Functional Correctness 271

7 Conclusion

Table 8 summarizes the results of this SLR by indicating the relationships between
the CK metrics and the functional correctness of OO classes through the inverted
proxies. It should be noted that relationships are given as positive (+ve) or negative (-
ve) with respect to functional correctness. A positive relationship implies higher the
measure of the metric higher the class quality in terms of functional correctness. A
negative relationship implies higher the measure of the metric lower the class quality
in terms of functional correctness and vice versa. ‘nr’ indicates that the metric is not
useful for predicting functional correctness through the corresponding proxy metric.
Relationships that require further empirical investigation are given by ‘nc’. An empty
cell indicates that none of the selected studies investigated the relationship between
the CK metric and the proxy metric.

As a result of this SLR we conclude that certain CK metrics are indeed good
indicators of functional correctness. WMC, CBO, RFC and LCOM have a negative
relationship with the functional correctness of a class. However, LCOM is useful for
predicting FC rather than classifying classes as faulty. Inheritance metrics, DIT and
NOC, are not related to the functional correctness of a class. The relationship between
CK metrics and FD also could not be determined.

This SLR can help software engineering practitioners in making informed
decisions about the impact of CK design metrics on the functional correctness of OO
classes. For researches, this SLR provides an aggregation of the reported empirical
evidences on the usefulness of the CK metrics as indicators of software quality in
terms of functional correctness.

Table 8. Relationships between CK metrics and functional correctness through inverted proxies

Proxy WMC DIT NOC CBO RFC LCOM
FC -ve nr nr -ve -ve -ve
FP -ve nr nr -ve -ve nr

HSF -ve nr nr -ve -ve -
MSF -ve nr +ve -ve -ve -
LSF -ve nr nr -ve -ve -
USF -ve nr +ve -ve -ve -
FD nc nc nc nc - nr
VC -ve -ve -ve -ve -ve -

+ve – positive, -ve – negative, nr – no relationship, nc – no conclusion

Appendix – Selected Studies

S1. Al-Dallal, J.: Transitive-based object-oriented lack-of-cohesion metric. Procedia CS,
1581--1587 (2011)

S2. Chowdhury, I., Zulkernine, M.: Using complexity, coupling, and cohesion metrics as
early indicators of vulnerabilities. Journal of Systems Architecture 57, 294--313 (2011)

S3. Al-Dallal, J., Briand, L.C.: An object-oriented high-level design-based class cohesion
metric. Information & Software Technology 52, 1346--1361 (2010)

272 Y.A. Khan, M.O. Elish, and M. El-Attar

S4. English, M., Exton, C., Rigon, I., Cleary, B.: Fault Detection and Prediction in an Open-
Source Software Project. In: 5th International Conference on Predictor Models in
Software Engineering (2009)

S5. Singh, Y., Kaur, A., Malhotra, R.: Empirical validation of object-oriented metrics for
predicting fault proneness models. Software Quality Journal 18, 3--35 (2010)

S6. Xu, J., Ho, D., Capretz, L.F.: An Empirical Validation of Object-Oriented Design
Metrics for Fault Prediction. Journal of Computer Science 4, 571--577 (2008)

S7. Goel, B., Singh, Y.: Empirical Investigation of Metrics for Fault Prediction on Object-
Oriented Software. Computer and Information Science, 255--265 (2008)

S8. Olague, H.M., Etzkorn, L.H., Messimer, S.L., Delugach, H.S.: An empirical validation
of object-oriented class complexity metrics and their ability to predict error-prone
classes in highly iterative, or agile, software: a case study. Journal of Software
Maintenance 20, 171--197 (2008)

S9. Aggarwal, K.K., Singh, Y., Kaur, A., Malhotra, R.: Investigating effect of Design
Metrics on Fault Proneness in Object-Oriented Systems. Journal of Object Technology
6, 127--141 (2007)

S10. Pai, G.J., Dugan, J.B.: Empirical Analysis of Software Fault Content and Fault
Proneness Using Bayesian Methods. IEEE Trans. Software Eng. 33, 675--686 (2007)

S11. Olague, H.M., Etzkorn, L.H., Gholston, S., Quattlebaum, S.: Empirical Validation of
Three Software Metrics Suites to Predict Fault-Proneness of Object-Oriented Classes
Developed Using Highly Iterative or Agile Software Development Processes. IEEE
Trans. Software Eng. 33, 402--419 (2007)

S12. Gyimóthy, T., Ferenc, R., Siket, I.: Empirical Validation of Object-Oriented Metrics on
Open Source Software for Fault Prediction. IEEE Trans. Software Eng. 31, 897--910
(2005)

S13. Subramanyam, R., Krishnan, M.S.: Empirical Analysis of CK Metrics for Object-
Oriented Design Complexity: Implications for Software Defects. IEEE Trans. Software
Eng. 29, 297--310 (2003)

S14. Succi, G., Pedrycz, W., Stefanovic, M., Miller, J.: Practical assessment of the models
for identification of defect-prone classes in object-oriented commercial systems using
design metrics. Journal of Systems and Software 65, 1--12 (2003)

S15. Emam, K.E., Benlarbi, S., Goel, N., Rai, S.N.: The Confounding Effect of Class Size on
the Validity of Object-Oriented Metrics. IEEE Trans. Software Eng. 27, 630--650
(2001)

S16. Emam, K.E., Melo, W.L., Machado, J.C.: The prediction of faulty classes using object-
oriented design metrics. Journal of Systems and Software 56, 63--75 (2001)

S17. Briand, L.C., Wüst, J., Daly, J.W., Porter, D.V.: Exploring the relationships between
design measures and software quality in object-oriented systems. Journal of Systems
and Software 51, 245--273 (2000)

S18. Kamiya, T., Kusumoto, S., Inoue, K., Mohri, Y.: Empirical evaluation of reuse
sensitiveness of complexity metrics. Information & Software Technology 41, 297--305
(1999)

S19. Harrison, R., Counsell, S., Nithi, R.V.: An Investigation into the Applicability and
Validity of Object-Oriented Design Metrics. Empirical Software Engineering 3,
255--273 (1998)

S20. Basili, V.R., Briand, L.C., Melo, W.L.: A Validation of Object-Oriented Design Metrics
as Quality Indicators. IEEE Trans. Software Eng. 22, 751-761 (1996)

Acknowledgements. We thank Mohsin Ali, Khalid Wahabi and Mustafa Alsaleh for
helping us in literature search, data collection and synthesis. We also would like to
thank King Fahd University of Petroleum & Minerals for continuous support
throughout this study.

 A Systematic Review on the Impact of CK Metrics on the Functional Correctness 273

References

1. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object Oriented Design. IEEE Trans.
Software Eng. 20, 476–493 (1994)

2. Kitchenham, B., Charters, S.: Guidelines for Performing Systematic Literature Reviews in
Software Engineering. School of Computer Science and Mathematics, Keele University,
EBSE Technical Report Version 2.3 (2007)

3. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences, 2nd edn. L. Erlbaum
Associates (1988)

4. McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. SE 2, 308–320 (1976)
5. Hitz, M., Montazeri, B.: Measuring coupling and cohesion in object-oriented systems.

Angewandte Informatik 50, 1–10 (1995)
6. Henderson-Sellers, B.: Software Metrics. Prentice-Hall, Hemel Hempstaed (1996)
7. Bansiya, J., Davis, C.G.: A Hierarchical Model for Object-Oriented Design Quality

Assessment. IEEE Trans. Software Eng. 28, 4–17 (2002)
8. Hopkins, W.G.: Measures of reliability in sports medicine and science. Sports

Medicine 30, 1–15 (2000)
9. ISO/IEC FDIS 25010, http://pef.czu.cz/ papik/doc/MHJS/pdf/

ISOIEC_FDIS25010_(E).pdf
10. ISO/IEC 25010 (2011), http://www.iso.org/iso/iso_catalogue/

catalogue_tc/catalogue_detail.htm?csnumber=35733

Pinpointing Malicious Activities

through Network and System-Level Malware
Execution Behavior

André Ricardo Abed Grégio1,2, Vitor Monte Afonso2,
Dario Simões Fernandes Filho2, Paulo Ĺıcio de Geus2, Mario Jino2,

and Rafael Duarte Coelho dos Santos3

1 Renato Archer IT Research Center (CTI/MCT), Campinas, SP, Brazil
argregio@cti.gov.br

2 University of Campinas (Unicamp), Campinas, SP, Brazil
{vitor,dario,paulo}@las.ic.unicamp.br, jino@dca.fee.unicamp.br

3 Brazilian Institute for Space Research (INPE/MCT), S. J. dos Campos, SP, Brazil
rafael.santos@lac.inpe.br

Abstract. Malicious programs pose amajor threat to Internet-connected
systems, increasing the importance of studying their behavior in order to
fight against them. In this paper, we propose definitions to the different
types of behavior that aprogramcanpresent during its execution.Based on
those definitions, we define suspicious behavior as the group of actions that
change the state of a target system. We also propose a set of network and
system-level dangerous activities that can be used to denote the malignity
in suspicious behaviors, which were extracted from a large set of malware
samples. In addition, we evaluate the malware samples according to their
suspicious behavior.Moreover,wedeveloped filters to translate from lower-
level execution traces to the observed dangerous activities and evaluated
them in the context of actual malware.

Keywords: computer security, malware analysis, behavioral traces.

1 Introduction

Malicious software are a major threat to Internet-connected systems. This kind
of software ranges from worms and trojan horses to rootkits and botnets and
is generically referred to as “malware”. Thousands of malware variants arise
periodically, hindering their analysis and the creation of effective vaccines by
antiviruses companies. Publicly available dynamic analysis systems (e.g., Anu-
bis [12], CWSandbox [17], Norman [1], ThreatExpert [2]) provide reports that
give an overview of a malware sample behavior. However, they present too many
technical details and/or too much information in a slew of activities that may
confuse a user on finding the activities that characterize the malignity of an
analyzed sample.

We propose a simpler and focused approach to describe malicious activities
that is based on the higher-level behavior extracted from analyzed malware sam-
ples. Thus, we can bridge lower-level and specialized actions, such as a kernel

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 274–285, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Pinpointing Malicious Behavior 275

function call or a write operation performed into a specific registry key, to under-
standable, identifiable high-level activities that emphasizes only the suspicious
behavior. This can be useful to allow the identification of malware variants, to
speed up incident response and to help in the development of malware removal
procedures.

The main contributions of this article can be summarized as follows:

– We introduce a new notion of “execution behavior”, splitting it in subsets
according to the kind of interference perceived on the target system—active,
passive and neutral–modelling a program’s behavior in a simplified way.

– We characterize suspicious behavior by narrowing the scope of malware be-
havioral analysis to a reduced set of actions that change the state of a system.

– We define a “knowledge base” of network and system-level actions that cor-
respond to intelligible activities (behavioral filters) that extends the set of
behaviors described on the field’s literature.

– We developed a prototype tool that is added in our dynamic analysis system
to apply the behavioral filters and automatically extract potentially dan-
gerous activities (i.e., suspicious behaviors) from the execution trace of a
malware sample.

Additionally, we tested our proposed behavioral filters on a large set of actual
malware samples that were gathered from malware collection honeypots [15] and
spam attachments and then executed in our dynamic analysis system,
BehEMOT [3]. At the end of this process, we pinpoint the malicious activi-
ties obtained from these samples and leverage results that allow us to analyze
nuances among malware from different sources and with distinct assigned labels.

2 Related Work

In [9], the authors propose a theoretical model to perform behavior-based de-
tection of infectious actions. Their work presents a strong mathematical basis
to define different types of behavior and is an extension of a previous work that
was only able to handle sequences of bytes [8]. The limiting factor is that their
new approach requires the malware’s source code, which is sometimes difficult
to obtain.

The authors of [11] describe a malicious behavior model that is based on
attribute grammars. They propose an abstraction layer to bridge the semantic
gap between the behavior-based detection of malware and subtleties of platforms
and systems. They trace a behavior by executing the sample inside a virtual
machine and monitoring its system calls, which are then translated to their
malicious behavior language. They examine and formally define four types of
malware behavior.

It is worth to note that, in our approach, we do not consider the malware
sample’s source code, as it would require a decompilation step that could turn
into an impossible task, due to the use of packers. Therefore, our work is based

276 A.R.A. Grégio et al.

solely on the behavior logged during the execution of a program, which can
change due to peculiarities of the monitoring environment [4].

In [14], the authors propose to bridge the semantic gap using behavioral graphs
that were manually built to correlate common actions found in malicious bots,
such as e-mail sending and data leaking. They evaluate seven kinds of behaviors
related to bots, thus their coverage is mostly based on network actions.

Bayer et al. [13] provide a view on different behaviors presented by almost
one million malware samples that were analyzed by Anubis over 2007 and 2008.
They produced statistics and analyze trends, showing the percentage of observed
samples that performed a variety of actions, from a simple file creation to the
installation of a Windows kernel driver. We took some of their observed behav-
ior to compose our suspicious activity definitions, but instead of analyzing the
overall scene we tried to delve into behaviors that we believe that pose more risk
to target systems.

Although the literature’s research works are very rich in their definitions and
findings, we believe that there is still a lack of focus on the practical applicability
of dynamic analysis systems as true generators of heuristics to detection schemes.
In addition, previous works on the subject take only specific malware classes
into account, e.g., spyware [7], bots [14], worms/viruses [11]. In this paper, we
propose to provide high-level behavioral filters to find suspicious behaviors bound
to malware samples independently of their assigned classes.

3 Behavioral Traces

To the extent of this work, we use behavioral traces to pinpoint the security-
relevant activities that a program performs. In this section, we explain how we
extract a malware’s execution trace to identify suspicious activities. Also, we
define different types of “behavior” within the scope of this article.

3.1 Extraction and Processing

The first step to extract a behavioral (execution) trace from a malware sample is
to run it inside a controlled environment and to monitor the important security-
related actions performed during a limited execution time. As the prevalent kind
of current malware targets Microsoft Windows-based systems, we chose them as
the main focus of interest. Hence, we developed a framework [3] to capture some
selected system calls through SSDT hooking [10] and to translate them to high-
level actions, logging the produced trace.

The monitored system calls considered in this paper are related to operating
system’s entities—file, process and registry—that cover a great variety of poten-
tially suspicious actions and are registered in a trace. This trace is, in its raw
form, an ordered set of the performed system calls and their parameters, which
need to be processed to represent a higher-level behavior. To monitor a malware
sample’s network behavior, we developed a layer driver1 which is interposed

1 Layered drivers are kernel modules that can manipulate data flows from the operat-
ing system through a specific driver, such as a device driver.

Pinpointing Malicious Behavior 277

between the network interface driver and the Microsoft Windows operating sys-
tem. Thus, our layer driver is able to capture all network operations that a
malware sample performs during its analysis and that are directed to the drivers
that control the devices related to TCP and UDP communication. Therefore, it
is possible to obtain network connections and attempts to open local ports made
during the analysis time.

To process a behavioral trace we need to translate the monitored system calls
into meaningful actions. This is done to facilitate the interpretation of the ex-
tracted behavior, as in some casesmore than one system call may represent a single
operation. Each action is represented by a number of attributes: the timestamp,
to identify the action’s position in the chain of captured events, the source pro-
cess, which represents the performer of an action, the operation— i.e., the type
of interaction, like CreateProcess, DeleteFile and ConnectNetwork—between the
source and the target of that operation.

To illustrate this process, let’s suppose a program “mw.exe” that wants to
create a process “mwproc.exe”. To do this, it calls the ZwCreateProcess routine.
When this happens, our tool intercepts the system call and produces an action
formatted in the following way:

<ts>,C:\mw.exe,CreateProcess,C:\mwproc.exe

In the same way, the routines ZwSetValueKey and ZwDeleteKey are translated
to the WriteRegistry and RemoveRegistry operations, respectively.

The advantage of processing system calls in the above way is that when several
routines serve to the same purpose, we map them to a single operation. For
example, if an action’s goal is to delete a file, this can be accomplished by
ZwOpenFile, ZwDeleteFile or ZwSetInformationFile with carefully crafted
values as their parameters. By abstracting from the particular variant chosen by
a monitored program, we are able to present a much more meaningful result,
i.e., a DeleteFile operation.

3.2 Definitions of Behavior

The general behavior of a program consists of the set of actions performed during
its execution by an operating system. In the previous section we defined “action”
based on some attributes (timestamp, source, operation, target). Thus, an action
“α” is a tuple composed by the values of the aforementioned attributes and
can be represented as α = {ts, src, op, tgt}. Therefore, to define a behavior we
proceed as follows:

Let B be the general behavior of a malware sample Mk, and AMk be the set
of N actions αi performed during its execution, so that AMk = {αi}i=1..N and
B(Mk) = AMk .

The set of actions that compose a behavior can be divided into groups accord-
ing to their nature: if an action interferes with the environment, i.e. changes the
state of the system, it is part of an active subset of the behavior. This is the case
of actions that involve a file write, delete or creation, for instance. Otherwise,

278 A.R.A. Grégio et al.

the action is passive, meaning that it gathered a piece of information without
modifying anything, for example, read, open or query something.

However, there is a subset of the general behavior that is neutral, i.e., the
actions can be either active or passive, but they do not lead to a malign outcome.
The neutral behavior contains common actions that are performed during a
normal execution of any program, such as to load standard system libraries, to
read or to configure registry keys and to create temporary files.

3.3 Suspicious Behavior

When a malicious program is executed, each of its actions can be considered
suspicious. These actions constitute a suspicious behavior that, when analyzed,
may reveal important details related to the attack. For instance, a malware
sample that downloads another piece of malicious code and use it to spread itself
has to perform a network connection, to write the file containing the malicious
code on the compromised system and to launch the process of the downloaded
file that will handle the spreading process.

Therefore, we are only interested in actions that modify the state of the com-
promised system (the active subset of the behavior, that is, BA) at the same time
that we want to avoid the actions that are considered normal to a program’s
execution (the neutral behavior, that is, BN). Thus, we define the suspicious
behavior of a malware sample Mk as BS(Mk) = BA(Mk)− BN (Mk). From the
analysis of each obtained BS(Mk), we extract a set of network and system-level
actions that represent dangerous activities to the security of a system.

4 Malicious Activities

During execution, a software piece interacts actively and passively with the op-
erating system. Thus, benign software presents active behavior such as creating
new registries, writing values to registry keys, creating other processes, accessing
the network to send debug information or to search for updates, downloading
and writing new files etc.

Therefore, as any piece of software does, malware interact with the operating
system in the same way. However, malware interactions cause undesired changes
on the operating system settings. These changes must be detected to allow for
a damage report and to begin an incident response procedure.

Hence, it is necessary to pinpoint the actions that correspond to dangerous or
malicious activities, so as to allow better understanding of the malware diversity.
To do this, we defined an initial set of network and system-level activities that
present a certain level of risk and that can be obtained from selected actions
extracted from the suspicious behavior.

4.1 Network-Level Risky Activities

Evasion of Information. Information related to the operating system or the
user can be evaded through the network, such as the hostname, hardware data,

Pinpointing Malicious Behavior 279

network interface data, OS version and credentials. An adversary may use this
information to choose targets for an attack, or to map her compromised machines
(e.g., zombie computers that are part of a botnet). In a directed attack, sensitive
documents may be stolen and transferred to an FTP server, for instance. Also,
information can be evaded through a POST (HTTP method) performed on a
compromised server, a FTP transfer, an SQL update query to a remote database
or an e-mail message sent through an open SMTP server.

Scanning. Worm-like malware need to perform scans over the network to find
possible targets for spreading. This involves the search of known vulnerable ser-
vices or unprotected/open network applications. Apart from spreading, a mal-
ware sample may also perform scans to find out a network topology or to find
trampoline systems that could be used to launch attacks anonymously.

DoS. There are classes of malware (e.g., bots) whose features include flooding
attacks to perform denial of service (DoS). This is oftenly done through the
sending of an overwhelming amount of UDP packets, for example, by the nodes
(infected machines) of a botnet.

Downloading. Some types of malware are composed by several pieces that ex-
ecute specialized tasks. Thus, the first piece—the downloader—is responsible for
downloading the other components, such as libraries, configuration files, drivers
or infected executable files. This compartimentalization is also used by malware
developers to try to avoid antiviruses or other security mechanisms. This activity
can also indicate a drive-by download, which is a download commonly performed
during a user’s Web browsing without his/her knowledge.

E-mail Sending. Amalicious program can communicate with its owner through
e-mail to announce the success of an attack or to send out sensitive data from
the compromised machine. Also, a compromised machine can be used as an un-
solicited e-mail server, sending thousands of spam on behalf of an attacker that
is being paid for the service. The victim’s machine is “rented” and acts as a
provider of spam or phishing, aiming to distribute commercial messages or even
malicious links or attached infected files [6].

IRC Connection. If an attacked system becomes part of a botnet, it needs to
“phone home”, i.e., to contact a C&C2 server to receive commands, updates etc.
Botclients commonly connect to an Instant Relay Chat (IRC) server that acts
as a C&C.

4.2 System-Level Risky Activities

Name Resolution File Modification. A trojan-like malware sample can
modify the network name resolution file to forward users to a compromised

2 Command and Control that manages the bots that belong to a botnet.

280 A.R.A. Grégio et al.

server and lure them into supplying their data. These can be credentials (e-mail,
online banking, Web applications such as Facebook and Twitter) or financial
information (credit card numbers). This kind of modification tricks users to
access fake online banking sites as a direct cause of malware known as “bankers”.

Evidence Removal. Some malware disguise themselves as system processes to
deceive security mechanisms or forensic analysis: they can “drop” a file that was
embedded in a packed way inside their main file or download the actual malicious
program from the Internet. In some cases, these droppers/downloaders remove
the evidence of compromise, deleting the installation files after the attack. In
addition, a malware sample that is able to identify that it is being analyzed may
also remove itself from the system.

Critical Registry Key Removal. There are registry keys that are critical
to the normal operation of a system, e.g., the one that allows initialization in
secure mode. The removal of this kind of key can cause instability in the system
and inconvenient obstacles during a disinfection procedure.

Security Mechanisms Corruption. To compromise a target system while
avoiding detection, malware authors usually try to identify and disable security
mechanisms. This activity can be accomplished by turning off the system firewall
or known antivirus engines, through the termination of their processes and/or
removal of the associated registry keys.

Browser’s Proxy Modification. The effect of this activity is similar to that
described on “name resolution file modification”. The difference here is that a
malware sample loads a cofiguration file in the browser’s memory (when it is
running) that changes the proxy on the fly, resulting in an automatic redirection
of the user to a malicious site. Malware usually do this using PAC (proxy auto-
config) files, which are effective on different operating systems and browsers.

Driver Loading. Drivers are kernel modules that access the most privileged
level of a system. A driver makes the interface between the operating system
and the hardware, such as network interfaces, graphic cards and other devices.
However, drivers are also used by rootkits, a kernel-level kind of malware that can
hide their processes, files and network connections in order to remain undetected.

5 Experimental Results

We collected 1,641 malware samples from July, 2010 to July, 2011—463 from hon-
eypots (collector), 1,182 from spam messages (phishing)—and executed them
in our dynamic analysis environment, which is a Qemu-emulated [5] MSWindows
XP SP3. This execution produced a behavior trace for each analyzed sample,
which were also sent to the VirusTotal service (http://www.virustotal.com) so
that we could get their Kaspersky Anti-Virus (KAV) label. We then applied the

Pinpointing Malicious Behavior 281

behavioral filters described in Section 4 to the traces and analyzed the network-
and system-level malicious activities. We discuss, the observed malicious activ-
ities over the full malware set in Section 5.1 and the results regarding different
malware classes (attributed by KAV) in Section 5.2.

5.1 Malicious Activities’ Pinpoint

The purpose of the behavioral filters is to map suspicious actions performed
by a program to intelligible activities. These filters provide high-level and useful
information about a malware sample execution and describe its presented behav-
ior. For example, if a malware sample tries to turn off the security mechanisms
natively running on a Windows OS to avoid detection and weaken the machine
defenses, it commonly launches a script that performs some shell commands,
such as net stop ‘‘Security Center’’, net stop SharedAccess and netsh

firewall set opmode mode=disable. Also, a sample might perform changes
on the FirewallPolicy\StandardProfile registry keys, for instance, by set-
ting the value of EnableFirewall to “0”.

This kind of action causes a positive match against our behavioral filter
and leverages, in the particular aforementioned example, “Security Mechanism
Corruption” as a malicious activity found in the evaluated sample. When the
“pinpointing” process is finished, we have a list of dangerous (and potentially
malicious) activities for each sample from our malware dataset. This process
produced the results from Table 1, divided by source (phishing or collector),
when applied to the complete dataset.

Table 1. Malicious activities discovered through the pinpointing process on our col-
lection; sum may be higher than 100%

Level Activity Phishing (%) Collector (%)

NT1 (Evasion) 3.72 6.69
NT2 (Scan) 14.21 50.54

Network NT3 (DoS) 37.22 29.37
NT4 (Download) 1.10 9.07
NT5 (E-mail) 1.95 3.45
NT6 (IRC) 0.42 9.28

OS1 (Hosts File) 1.10 0.43
OS2 (Evidence) 15.06 4.32

System OS3 (Critical Key) 0.34 0.43
OS4 (Security Bypass) 4.48 5.18
OS5 (PAC) 0.25 0
OS6 (Driver) 5.16 0

We notice that most of the analyzed malware samples performed the same
set of malicious activities, despite their source. Those activities are attempts
to scan networks for vulnerable services or UDP flooding (NT2, NT3) at the

282 A.R.A. Grégio et al.

network-level and self-removal and security mechanism bypass (OS2, OS4) at the
system-level. From the samples that came from our collectors, 15.15% did not
present any behavior, either due to crashing during the execution, to corrupted
binaries or to the use of anti-analysis techniques. From the samples obtained by
e-mail crawling (phishing set), 12.01% either presented an incomplete trace or
did not match any of our defined suspicious behaviors.

5.2 Malware Classes Behavior

As mentioned previously, we obtained the KAV labels from VirusTotal for each
malware sample from our dataset. Then, we processed these labels to extract only
the assigned class (e.g., trojan, worm, backdoor etc) according to the Kasper-
sky naming rules [16]. These rules define a naming system that is composed by
[Prefix:]Behavior.Platform.Name[.Variant], where the parameter Behav-
ior represents the malware class.

Hence, we grouped those samples whose assigned class is the same and ana-
lyzed the ten more populated classes, which correspond to more than 85% of the
samples (excluding the ≈ 7% that are unknown to antivirus engines at the time
of this analysis, i.e., August, 2011). After that, we tested our behavioral filters
on each sample of the ten selected classes to extract their malicious activities
(defined in Section 4).

We show the network-level malicious activities performed by the different
classes in Table 2 and the system-level ones in Table 3, where a checkmark (�)
denotes that at least one of the samples assigned to the class (rows) performed
the suspicious activity (column) and a blank entry denotes that this behavior
was unmatched.

Table 2. Union of network-level risky activities per malware class

Class NT1 NT2 NT3 NT4 NT5 NT6

Worm � � � � �
Backdoor � � � � � �
Trojan � � � �

Downloader � � � �
Virus � �

UNKNOWN � �
Packed � �

Gamethief �
Banker � � �
Dropper � � �

These tables are the union of the pinpointed malicious activities from a specific
AV-assigned class, i.e., if at least one sample from the assigned class performed
the activity, then we put a checkmark. The ideal situation happens when a
malware class is characterized by a specific behavior, for instance, a downloader

Pinpointing Malicious Behavior 283

Table 3. Union of system-level risky activities per malware class

Class OS1 OS2 OS3 OS4 OS5 OS6

Worm � � � � �
Backdoor � � � �
Trojan � � � � �

Downloader � � � �
Virus � �

UNKNOWN � � �
Packed � � �

Gamethief � � �
Banker � � �
Dropper � � � �

obtains something from the Internet and a worm tries to spread. Although this
may be true, antivirus labels are not good to separate malware in meaningful,
representative classes as the assigned name can confuse and mislead the user
about the actual behavior of a sample.

Thus, if we take a closer look on the tables’ results, it is worth noting that
there are classes whose samples share a great amount of suspicious activities
among each other. To illustrate this, lets analyze the three most populated
classes: worm, backdoor and trojan. From Table 2, it seems that worms dif-
fer from backdoors only by “NT6”, whereas trojans differ from worms by “NT5”
and from backdoors by “NT5” and “NT6”. However, due to the fact that our
results are presented as the union of identified suspicious activities, there could
be samples from these three distinct classes that share a common subset of net-
work and system-level presented behavior. One such instance might happen when
some samples from the worm, backdoor and trojan classes perform exclusively
the suspicious network-level activities “NT1”, “NT2”, “NT3” and system-level
activities “OS1” and “OS2”. Therefore, although these samples are classified
by KAV into three distinct classes, if we consider their observed behavior they
should be assigned to a single one. Unfortunately, all antivirus engines share
the same problem, making their malware assigned labels nearly useless to users
when regarding the malicious behavioral information.

Conversely, our approach produces detailed enough information that can pro-
vide a better understanding about the risks related to a program’s execution. It is
also possible to overcome the misclassification of antivirus engines by classifying
the unidentified (UNKNOWN) samples by their traced behavior. This way, our
scheme can be used to generate a malware class characterized by“NT2”, “NT3”,
“OS2”, “OS4” and “OS6”, thus avoiding the false-negative results produced by
antivirus engines.

It is interesting to notice that in Table 3, as expected from malware that
attack online banking sites, only the bankers presented the behavior labeled as
“OS5” (Browser’s Proxy Modification).

284 A.R.A. Grégio et al.

6 Conclusion

In this paper, we divided a program’s execution trace in different types of be-
haviors and proposed the suspicious behavior definition to denote the dangerous
activities that change the state of a system. We leveraged behavioral filters com-
posed by these activities—performed at the network and system-level—to iden-
tify potentially harmful actions and to help with incident response as well as to
provide a better understanding of malware. To evaluate our approach, we tested
it in a dataset of malware collected from different sources. We provided results
that show the percentage of malware samples that presented our behaviors and
that compare them to AV-assigned classes. This latter comparison pointed to
the problems in the current malware naming scheme, which we plan to address
in a future work.

References

1. Norman Sandbox, http://www.norman.com/security_center/security_tools/
2. ThreatExpert, http://www.threatexpert.com/
3. Afonso, V.M., Filho, D.S.F., Grégio, A.R.A., de Geus, P.L., Jino, M.: A hybrid

framework to analyze web and os malware. In: Proceedings of the 2012 IEEE
International Conference on Communications (ICC) (June 2012)

4. Balzarotti, D., Cova, M., Karlberger, C., Kruegel, C., Kirda, E., Vigna, G.: Ef-
ficient detection of split personalities in malware. In: 17th Annual Network and
Distributed System Security Symposium, NDSS 2010 (February 2010)

5. Bellard, F.: Qemu, a fast and portable dynamic translator. In: USENIX Annual
Technical Conference, FREENIX Track, pp. 41–46 (2005)

6. Calais, P.H., Pires, D.E.V., Guedes, D.O., Meira, W., Hoepers, C., Steding-jessen,
K.: A campaign-based characterization of spamming strategies. In: Proceedings of
the Fifth Conference on Email and Anti-Spam (CEAS) (2008)

7. Egele, M., Kruegel, C., Kirda, E., Yin, H., Song, D.: Dynamic Spyware Analysis. In:
Proceedings of the USENIX Annual Technical Conference. USENIX Association,
Berkeley (2007)

8. Filiol, E.: Malware pattern scanning schemes secure against black-box analysis.
Journal in Computer Virology 2(1), 35–50 (2006)

9. Filiol, E., Jacob, G., Le Liard, M.: Evaluation methodology and theoretical model
for antiviral behavioural detection strategies. Journal in Computer Virology 3(1),
23–37 (2007)

10. Hoglund, G., Butler, J.: Rootkits—Subverting the Windows Kernel. Addison-
Wesley (2006)

11. Jacob, G., Debar, H., Filiol, E.: Malware Behavioral Detection by Attribute-
Automata Using Abstraction from Platform and Language. In: Kirda, E., Jha,
S., Balzarotti, D. (eds.) RAID 2009. LNCS, vol. 5758, pp. 81–100. Springer, Hei-
delberg (2009)

12. Kruegel, C., Kirda, E., Bayer, U.: TTAnalyze: A tool for analyzing malware.
In: Proceedings of the 15th European Institute for Computer Antivirus Research
(EICAR 2006) Annual Conference (April 2006)

13. Kruegel, C., Kirda, E., Bayer, U., Balzarotti, D., Habibi, I.: Insights into current
malware behavior. In: 2nd USENIX Workshop on Large-Scale Exploits and Emer-
gent Threats (LEET), Boston (April 2009)

http://www.norman.com/security_center/security_tools/
http://www.threatexpert.com/

Pinpointing Malicious Behavior 285

14. Martignoni, L., Stinson, E., Fredrikson, M., Jha, S., Mitchell, J.C.: A Layered
Architecture for Detecting Malicious Behaviors. In: Lippmann, R., Kirda, E., Tra-
chtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230, pp. 78–97. Springer, Heidelberg
(2008)

15. Provos, N., Holz, T.: Virtual honeypots: from botnet tracking to intrusion detec-
tion, 1st edn. Addison-Wesley Professional (2007)

16. SecureList: Rules for naming detected objects,
http://www.securelist.com/en/%20threats/detect?chapter=136

17. Willems, C., Holz, T., Freiling, F.: Toward Automated Dynamic Malware Analysis
Using CWSandbox. IEEE Security and Privacy 5, 32–39 (2007)

http://www.securelist.com/en/%20threats/detect?chapter=136

A Malware Detection System Inspired

on the Human Immune System

Isabela Liane de Oliveira1, André Ricardo Abed Grégio2,
and Adriano Mauro Cansian1

1 São Paulo State University (Unesp), São José do Rio Preto, SP, Brazil
{isabela,adriano}@acmesecurity.org

2 Renato Archer IT Research Center (CTI/MCT), Campinas, SP, Brazil
andre.gregio@cti.gov.br

Abstract. Malicious programs (malware) can cause severe damage on
computer systems and data. The mechanism that the human immune
system uses to detect and protect from organisms that threaten the hu-
man body is efficient and can be adapted to detect malware attacks.
In this paper we propose a system to perform malware distributed col-
lection, analysis and detection, this last inspired by the human immune
system. After collecting malware samples from Internet, they are dynam-
ically analyzed so as to provide execution traces at the operating system
level and network flows that are used to create a behavioral model and
to generate a detection signature. Those signatures serve as input to a
malware detector, acting as the antibodies in the antigen detection pro-
cess. This allows us to understand the malware attack and aids in the
infection removal procedures.

Keywords: malicious code, human immune system, data mining.

1 Introduction

Malicious programs (malware) are one of the main threats to the security of
Internet users. Venues that can be used in malware attacks include specially
crafted email containing malicious attachments or links to compromised sites and
even the simple Internet browsing procees. When a computer system is attacked
by malware, it has no integrity anymore as sensitive data can be modified, stolen,
shared or exposed, including credentials, passwords, documents and finantial
information. Also, an infected system can be used to attack other networks and
hosts, or to serve as storage to illegal content.

A malware piece can be defined as a program whose instructions perform
actions that are harmful to a system, once the are executed. There are many
classes of malware[2], such as viruses, worms, trojan horses, backdoors, screen-
loggers, rootkits and bots, which may act individually or in association in order
to combine features. Their goal is to compromise a system, to take the control
of it, to attack other devices, to capture user information and to use the system
resources while hiding from security mechanisms or trying to disable or subvert
them.

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 286–301, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Malicious Code 287

Thus, the observed malware behavior can be compared to the antigens (sub-
stances capable of inducing an immune response) behavior present in the human
immune system. As well as it occurs with diseases, new samples of malware may
arise or existing ones can evolve and become stronger, turning the existing pro-
tections ineffective. Therefore, security mechanisms must be constantly updated
to provide acceptable and timely protection.

In this paper, we propose a system to collect, to analyze and to detect malware
that is inspired on the features of the human immune system. The goals of this
system are to ”learn” how new malware samples act through executing them
in target systems and to store this knowledge as signatures in a database to
produce countermeasures. The main contribution of this paper is, besides the
proposed design based on the human immune system, the automated signature
modelling that is used to detect malware, which combines the behavior shown
in the victim’s operating system and the network traffic captured.

The remaining of the paper is divided as follows: In the Section 2 we show
some basic concepts that are need to an adequate comprehension of our work.
Also, there is a summary of some important related works. In the Section 3, we
describe our proposed system, the signature modelling steps and the detection
process. In the Section 4, we discuss the tests performed and the obtained results.
Finally, in the Section 5 we present the concluding remarks.

2 Concepts and Related Work

In this section, we briefly present some features from the human immune system
that inspired us to design the proposed system, as well as the basic concepts
regarding network flows, which are used as part of the detection signatures, and
data mining, which is applied to create the profiles used on the detection scheme.

2.1 Human Immune System

The human immune system is able to ensure the survival of an individual
throughout his life, even when exposed to potentially deadly bacteria and viruses
everyday. Thus, the biological system provides a rich source of inspiration for
the maintenance of computational security[15].

The human immune system[6] has three layers: the anatomic barrier, the in-
nate immunity and the adaptive immunity. Those layers together provide the
defense of the human body. The anatomic barrier consists of the skin and the
surface of mucous membranes and forms the first layer of biological defense.
The innate immunity has an inborn nature and a limited ability to differentiate
pathogens, reacting similarly against most infectious agents. Finally, the adap-
tive immunity is able to specifically recognize a pathogen agent, thus allowing
fairly efficient responses. Another interesting feature of the human immune sys-
tem is its ability to store the information gained about an infectious agent, in
order to respond more vigorously to new exposures to this agent.

288 I.L. de Oliveira, A.R.A. Grégio, and A.M. Cansian

The main function of the immune system is to recognize and to respond to
substances known as antigens, which are able to produces an immune response.
To do this response, the system must perform pattern recognition tasks to dis-
tinguish the body’s cells, called self, from foreign substances, called nonself.
This classification corresponds to the negative selection process.

2.2 Network Flow

A data flow in the Netflow standard (also known as a network flow) is defined
as a unidirectional sequence of packets excahnged between unique source and
destination hosts[4]. A network flow provides an information summary about
the traffic that passed on a specific network device (router or switch). Thus,
flows are tuples in which the following information have the same value: source
and destination IP address; source and destination port; protocol field value
from the IP datagram; Type of Service byte value from the IP datagram and
the logical input interface in the router or switch in which the collection occurs.
These fields allow that a flow represents concisely the traffic through a given
point of observation (e.g., router). All datagrams with the same value in the
fields of their tuples are counted, grouped and packed in a flow record. A scheme
representing the flow collection and the network information captured can be
seen in Figure 1.

Fig. 1. Scheme of Cisco Netflow standard of data flow [3]

The flows that are generated in the collection device are stored and exported,
making it a valuable source of information. It is possible to obtain details from
each connection and by any machine that belongs to the monitored environment,
this being highly relevant to traffic analysis.

In [5], the authors discuss a new architecture for event detection in computer
networks using the NetFlow protocol, storing the information flows in a database.
The storage part of the system proposed in this paper is based on this referred
architecture.

Malicious Code 289

2.3 Data Mining

Data mining, in general, consists in discovering knowledge in large amounts of
data (Knowledge Discovery in Databases or KDD)[11]. However, these knowledge
may not be previously unknown and the data to be analyzed need not to be
organized in databases[10]. The process of knowledge discovery is summarized
basically in three steps:

– Pre-processing: the data is selected (according to its importance) and
prepared (removal of noise and irrelevant data) to serve as input to the next
step.

– Data mining: applies some statistical techniques or artificial intelligence in
order to extract useful information.

– Analysis of results: the results are interpreted, for example, to deter-
mine some additional knowledge or to define the importance of the produced
events.

A data mining process can perform at least one of the following methods: Class
Description, Association, Classification, Prediction, Clustering and Time Series
Analysis[11]. To the extent of this paper, we use the Classification method to
analyze a training data set and then to build a model for each class based on
the data features. Thus, we chose a decision tree, i.e., a rule set produced in
a classification step and that can be used to understand better the data and
to classify future instances. The motivation behind this is that decision trees
are easy to understand and they can be automatically recreated as new data or
phenomena appear.

2.4 Related Works

One of the most important research works related to the application of immunol-
ogy concepts to the security area is the one from Forrest et al. [9]. In their work,
the authors describe a method to distinguish a legitimate user from an unau-
thorized user on a system based on the ”T” cells generation performed by the
human immune system. Kephart [14] proposes a system that develops antibodies
against computer viruses, identifying them in a way that is also inspired on the
biological immune system. Kephart noted that the immune system has some im-
portant properties that can be deployed as a decentralized system whose purpose
is the identification of computer viruses.

In [12], the authors discuss about scalability and coverage problems of the
AIS (Artificial Immune System). The AIS uses negative selection algorithms
(NSA) to perform malicious code detection through the difference between nor-
mal states (self) and unknown substances (nonself). However, it requires a large
number of detectors to avoid a large amount of false negatives and the training
of these detectors demands a long time. To solve this problem, the authors pro-
pose a model entitled “Collaborative Artificial Immune System”. In their model,

290 I.L. de Oliveira, A.R.A. Grégio, and A.M. Cansian

independent immune bodies in different computers are organized in a virtual
structure named “Immune Collaborative Body” (ICB). The ICB allows the de-
tectors’ sharing to improve the detection’s efficiency. A collaboration module is
added to each immune body to communication and coordination. This model is
based on the fact that certain malware classes, such as worms, try to spread in
similar computer systems due to the increased probability that they have the
same vulnerabilities.

In [1], the authors propose a flow analysis and monitoring system based on
the Netflow standard to attend enterprise networks. This system is divided into
three modules:

– Collection and storage of NetFlow flows.
– Web interface for viewing the stored data.
– IDS (Intrusion Detection System) that provides monitoring for anomalous
traffic through two statistical algorithms—one based on variance similarity
and another one based on the Euclidean distance—and the detection of some
malware types and network attacks through a pattern matching algorithm
based on the descriptions of events using data flows.

Their system only detects two malware types: trojan horses and worms. The
detection is performed based on the features obtained from the flows and they
lack the definition of a signature model. Their paper does not discuss how these
features are extracted or how the features of new malware are inserted into their
database.

A new trend related to malicious botnets is the use of alternative commu-
nication channels, such as DNS-tunnelling and HTTP instead of IRC, between
the command and contral (C&C) servers and infected hosts. Based on this fact,
in [16], the authors propose a system to detect botnets that use fast-flux do-
mains using Domain Name Service (DNS) queries. They use C5.0 decission tree
classifier and Naive Bayesian classifier to classifying a domain as fast-flux or legit-
imate. Furthermore, the system analyze textual features of domain names to de-
tect algorithmically generated domain names through Naive Bayesian, Bayesian,
Total Variation distance and Probability distribution. The best results were ob-
tained with Naive Bayesian and had low false positive rates. The results with
Total Variation Distance classifier and Probability classifier were similar to Naive
Bayesian. However, the C5.0 decission tree results shown some limitations and
they recommended her use in conjunction with other detection techniques.

Another work involving malicious code detection through NetFlow flows is [13],
in which the authors propose a malicious website detection system. In this case,
a dataset of normal and malicious web traffic that is collected by a NetFlow
collector is used to create spatial-temporal aggregating variables. These flows
are used by three classification learning methods (Nave Bayesian, Decision Tree
and Support Vector Machine) to build a prediction model that distinguishes be-
tween normal and malicious web traffic. The prediction model generated in the
training step is then used to perform malware detection in real time. Their best
results were obtained using decision trees, but this is not deeply discussed.

Malicious Code 291

3 Proposed System

3.1 Architecture

Computer system interact with several threats available on the Internet as the
human body is exposed to many antigens. Inspired by this fact, we propose a
modular system to collect, to store, to analyze and to detect malware using ideas
from the human immune system.

Our proposed architecture, as a whole, can be divided into three systems,
distributed collection system, malware dynamic analysis system and network
monitoring system, which can be seen in Figure 2.

Fig. 2. Modular architecture for our proposed system

The distributed collection system has two subsystem. The first one contains
several sensors that emulate vulnerable network services so that Internet mal-
ware can exploit them. To do this, we installed Dionaea honeypots that collect
all malware samples that can succesfully complete an attack [7]. The second
subsystem is a web interface composed by the following tools: E-mail Malware
Analyzer (EMA), Web Crawler (WC) and Malware Submitter (MS). EMA looks
for malicious codes present on links or attached to email messages, whereas WC
is responsible for tracking specific sites on the Internet that may be malware-
infected. Finally, MS analyzes whether the submitted file is malware or not.
All collected samples are sent to a dynamic analysis system, which is explained
below.

292 I.L. de Oliveira, A.R.A. Grégio, and A.M. Cansian

The dynamic analysis system is divided into two modules: management and
analysis. The management module is responsible for receiving malware samples
and for controlling the analysis queue and the data produced during the mon-
itoring of a sample’s execution so as to generates reports about the malware
behavior observed. In the analysis module, we dynamically analyze a malware
sample in an automed fashion. This analysis produces information about the
sample’s execution behavior, i.e., the interaction between a malware piece and
the target system. To do the dynamic analysis we use BehEMOT [8], a tool that
monitors the specific malware actions performed at the operating system’s kernel
level, such as creation, delete or changes related files and registry keys, processes
created or terminated, mutex operations and network traffic. From this monitor-
ing, BehEMOT creates an analysis report summarizing the captured behavior,
which is based on the system calls that the malicious process performed. This
report is then used to generate an execution profile of the analyzed malware
sample.

To the BehEMOT basic environment we added a data flow collection module
that is used to characterize the network traffic produced by malware. These flows
pass through a negative selection process, which generates a network signature.
The system calls obtained by dynamic analysis also pass through a negative
selection process, from which a behavior signature is extracted.

These two types of signatures are stored in a database and its purpose is to act
as the antibodies to the monitored environment. Thus, the monitoring system
proposed uses the signatures to perform the detection of a malware sample that is
threatening it. If a malware threat is detected, the immune response is triggered
and an alert message is sent to the monitored environment administrator.

3.2 Signature Generation System

The signature generation system is illustrated in Figure 3. This Figure represents
an analogy between the malware signature generation process and the human
immune system. To generate a consistent signature, a malware sample is exe-
cuted three times in the BehEMOT system. As the malware sample acts as an
antigen for the human immune system, its execution represents the process of
acquiring information about the object that causes damage, in this case, to a
computer system. Thus, for each of the three executions performed, the network
outgoing traffic from the target machine (as data flows) and the system calls
used by the malware process are stored to be analyzed in the next step.

After this information collection step, the negative selection process is ap-
plied to the stored data and the irrelevant data is discarded. To remove the
noise, we extract only those features that appear on all the three executions.
Those common information is then transformed into a signature. In the end of
this maturation process, a network signature and another behavior signature
that characterize the malicious program are generated and stored a database.
This learning process aggregates “memory” (history) to the system, as future
occurrences of this program in a monitored environment may be detected.

Malicious Code 293

Fig. 3. Signature generation process

3.3 Signature Model

As said in the previous section two types of signatures are developed: behavior
and network. The behavior signature model is created based on information
produced by malware dynamic analysis. A malware behavioral profile is pre-
processed in a way that, for each activity captured, a tuple is generated with the

Table 1. Excerpt of behavior signature from a malware sample

Action Action Type Action Source Action Target Parameters

WRITE REGISTRY %HOMEPATH%\ \registry\machine\software\
desktop\MALWA microsoft\windows\current
RE.exe version\internet settings\

cache\paths\path
[...] [...] [...] [...] [...]

CREATE FILE %HOMEPATH%\ %PATH%\nt09.exe
desktop\MALWA
RE.exe

[...] [...] [...] [...] [...]

WRITE REGISTRY %PATH%\nt09.exe \registry\user\{RID}\soft
ware\microsoft\windows\
currentversion\explorer\
shell folders\cookies

294 I.L. de Oliveira, A.R.A. Grégio, and A.M. Cansian

following fields: action (eg, create, delete), action type (eg, file, process, register ,
network, mutex), action source (executor), action destination (target) and action
parameter, if any. An example of behavior signature is shown in the Table 1.

We create the network signature model based on the data that is collected from
a user’s machine network flows. A flow generated by a malware sample passes
through a pre-processing step that generates a tuple. This tuple consists of the
following information, which is extracted from the infected machine outgoing
traffic: total bytes, destination port number and transport layer protocol, as
illustrated in Table 2. The network signature is also composed of one or more
tuples that are extracted from the collected flows.

3.4 Monitoring System

To perform the detection of a malicious program running on the monitored
environment, we developed an agent that analyzes system calls performed on
the machine this agent is installed and then compare them to the behavioral
signatures stored in our database. If there is a match, a warning message is sent
to the environment administrator to inform the detection of a malware threat.
These captured system calls also pass through a negative selection process, which
is made in a pre-processing step. This way, only those system calls that are
relevant from the system’s security point of view are compared to a signature
present on our database.

Another agent was developed to analyze the network flows captured on the
monitored environment and to compare them to the network signatures stored
in the database. Here, the process is the same mentioned earlier, incurring in the
alert message being sent. Figure 4 illustrates the monitoring of an environment.

Due to the high amount of flows that a network can generate, we chose to use
a decision tree within the network agent to classify flows as normal (not caused
by a malware) or suspicious (may have been caused by a malware). Thus, only
those considered as suspicious are compared with the signatures. In Figure 5, we
illustrate the process to create a decision tree that will be used by the network
agent. We used both normal and suspicious data flows (network signature) as
input for the training and the creation of the decision tree classifier. The normal
flows passed through processing in which flows were transformed into tuples
in the same format of those from the network signatures. Then, we used the
WEKA framework [18] to perform the data mining process using the input data
and creating a decision tree. In a later step, this decision tree is included within
the network agent to serve as the flow classifier. A decision tree generated for
this purpose is illustrated in Figure 6.

To train the decision tree, we used 268,853 tuples, being approximately 1.02%
suspicious tuples and 98.98% normal data. This can be justified by the fact
that we expect that the majority of traffic is legitimate (normal dns queries,
e-mail messages, navigation and transfers) and that a small fraction is related to
malicious content (scans, malware spreading etc). The time spent to build the
decision tree was approximately 3.31 seconds and the time to test the model was
approximately 1.09 seconds. The training results showed that 99.99% of the input

Malicious Code 295

Table 2. Excerpt of a network signature from a malware sample

Total Bytes Destination Port Protocol

61 53 UDP
2136 80 TCP
[...] [...] [...]
106 4244 TCP

Fig. 4. Monitoring System

Fig. 5. Process to create the decision tree used by the network agent

296 I.L. de Oliveira, A.R.A. Grégio, and A.M. Cansian

Fig. 6. Example of decision tree used as a classifier for network flows

data were correctly classified and 0.01% were false positives, i.e., normal data
that were misclassified as suspicious. These training results show the benefits of
using decision tree, due to its efficiency, effectivity and ease to deploy (a chain of
if-then-elses). This way, the detection can be performed in a fast way and with
a low complexity.

Both behavior and network detectors can send to the administrator of the
monitored environment an alert that is composed by a general information report
about an identified malware, as previously mentioned. Moreover, the network
detector also sends the IP address of the suspect machine. Figure 7 illustrates
an example of a report from an alert message.

4 Tests and Results

The proposed distributed collection system was deployed in two separate net-
works inside geographically apart institutions. All malware collected using our
sensors are stored to be furtherly sent to our dynamic analisys system. The av-
erage quantity of unique malware samples that were collected per month (from
January 1 to December 31, 2011) in one of the sensors was 53. The second sen-
sor had an average of 23 unique malware samples collected per month between
March 1 and December 31, 2011.

Figure 8 illustrates the report displayed by the web interface (a subsystem of
the distributed collection system) when a malware sample is detected by one of
the following tools: EMA or Web Crawler or Malware Submitter. The output
of the report’s session “Detection” shows the labels assigned by several antivirus
engines and is summarized in the aforementioned Figure.

In the next subsection we show the obtained detection results.

4.1 Detection Results

After the signature model definition, the collected malware samples were sub-
mitted to the subsystem responsible for the signature generation process. All
signatures that are generated in this step are stored in a database and serve as
input for the detection provided by the agents installed in the monitored system.

Malicious Code 297

Fig. 7. Example of an alert report from a network detector

Fig. 8. Example of report produced by the distributed collector system when a malware
is detected and displayed through the developed Web interface

298 I.L. de Oliveira, A.R.A. Grégio, and A.M. Cansian

The 1,021 collected malware samples that produced a signature were sub-
mitted to Virus Total [17], an online service whose aim is to analyze suspicious
files and URLs by scanning them with a variety of antivirus engines in an at-
tempt to identify already known malware. Figure 9 illustrates the total amount
of malware samples that were detected by some of the available antiviruses. In
the cases where the Virus Total service did not show any result from a specific
antivirues engine, we considered the malware sample as undetected.

Fig. 9. Chart showing the detection rate of each antivirus engine

Fig. 10. Percentage of malware (by type) with signature

Malicious Code 299

As we can observe in the figure above, the antivirus with the higher detection
rate is Ikarus (97.65%) and the antivirus with the worst rate is Prevx (16,06%).
Figure 10 illustrates the malware amount according to their type. Note that the
most frequent malware classes are Worm, Trojan and Virus.

5 Conclusion

The threat that a malicious software poses to computer systems, which increases
by the vast amount of variants that arise on a daily basis, demands the devel-
opment of new defense mechanisms and protection methods. In this paper, we
proposed a distributed system to collect, analyze and detect malware based on
their execution behavior on a target operating system and their produced net-
work traffic (in the form of network flows), which is insipired by the human
immune system.

The main advantage of the immune system is its adaptability in face of new
problems and its knowledge gain (memory), which provides a history that helps
to handle already known threats. To populate a database responsible for this mem-
ory, we analyzed hundreds of malware samples that we have collected in our sys-
tem, from which we have extracted network and behavior signatures. This gained
knowledge is then used to detect attacks in actual monitored environments. The
detection is performed by agents that we developed, whose function is to moni-
tor the network and operating system activities in an evironment that must be
protected. If a malware is detected the agent sends an alert email message.

In Table 3, we summarize the analogy between the human immune system
and our proposed system, explained in more details below:

– The malware pieces that threaten computer systems are like the antigens
that attack the human being. To defend against these antigens, the human
immune system performs a negative selection process to separate self sub-
stances from nonself ones. The result of this process is a set of receptors that
identify the antigens. This negative selection process served as a basis for our
signature generation process that store the relevant malware characteristics.
These signatures work as receptors to identify malicious code.

– To identify an antigen, the cells circulate in the human body searching for
any foreign substance. This corresponds to the network and the behavior
agents that analyze data captured on a monitored computer system in order
to detect malware.

– If the immune system detects any antigen, an immune response is triggered
to perform the identification and removal of the antigen. The same happens
in our proposed system. The network and behavior agents generate a detec-
tion report containing information about the identified malware and how to
remove it.

– Finally, the human immune system has learning mechanisms and memory
(knowledge) that help in identifying future occurrences of such antigens. This
feature is performed by the signatures database in the proposed system. This
database enables the detection of new attacks of malware.

300 I.L. de Oliveira, A.R.A. Grégio, and A.M. Cansian

Table 3. Analogy between the human immune system and our proposed system

Human Immune System Malware Detector System proposed

Antigens Malware
Negative selection Signature generation
Cell receptors that identify an antigen Behavior and Network signature
Cell that identify an antigen Behavior and Network agent
Immune response Detection report
Learning and memory mechanisms Signature Database

We performed tests using a monitored environment to validate our approach
and the results were promising, indicating that both the behavior and the net-
work detector are effective in detecting a malware attack, since alerts were issued
for malware samples whose behavior pattern matched a signature stored in our
database. Limitations of our work includes the analysis platform, that is cur-
rently tied to Windows XP operating systems and the need to periodically redo
the training step to update the decision tree e the signature database. As a fu-
ture work, we intend to generalize the detection process to encompass malware
targeting other platforms.

References

1. Bin, L., et al.: A NetFlow based flow analysis and monitoring system in enterprise
networks. Computer Networks 52, 1074–1092 (2008)

2. Cert. Cartilha de Segurança para a Internet - Parte VIII: Códigos Maliciosos (Mal-
ware) (2006), http://cartilha.cert.br/download/cartilha-08-malware.pdf

3. Cisco. Introduction to Cisco IOS NetFlow - A Technical Overview (2007),
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6555/

ps6601/prod white paper0900aecd80406232.pdf

4. Claise, B.: RFC 3954: Cisco Systems NetFlow Services Export Version 9 (2004),
http://www.ietf.org/rfc/rfc3954.txt

5. Corrêa, J.L., Proto, A., Cansian, A.M.: Modelo de armazenamento de fluxos de rede
para análises de tráfego e de segurança. VIII Simpósio Brasileiro em Segurança da
Informação e de Sistemas Computacionais (SBSeg) 8, 73–86 (2008)

6. Dasgupta, D., Niño, L.F.: Immunological Computation Theory and Applications,
vol. 1, p. 296. Taylor and Francis Group (2008)

7. Dionaea. Dionaea — catches bugs (2011), http://dionaea.carnivore.it/
8. Filho, D.S.F., et al.: Análise Comportamental de Código Malicioso através da Mon-

itoração de Chamadas de Sistema e Tráfego de Rede. X Simpósio Brasileiro em Se-
gurança da Informação e de Sistemas Computacionais (SBSeg) 10, 202–212 (2010)

9. Forrest, S., et al.: Self-nonself Discrimination in a Computer. In: Proceedings of the
1994 IEEE Symposium on Research in Security and Privacy, vol. 10, pp. 311–324
(1994)

10. Grégio, A.R.A.: Aplicação de técnicas de Data Minings para a análise de logs de
tráfego TCP/IP. Dissertação de Mestrado do Curso de Pós-Graduação em Com-
putação Aplicada (2007)

http://cartilha.cert.br/download/cartilha-08-malware.pdf
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6555/ps6601/prod_white_paper0900aecd80406232.pdf
http://www.cisco.com/en/US/prod/collateral/iosswrel/ps6537/ps6555/ps6601/prod_white_paper0900aecd80406232.pdf
http://www.ietf.org/rfc/rfc3954.txt
http://dionaea.carnivore.it/

Malicious Code 301

11. Han, J., Kamber, M.: Data Mining Concepts and Techniques, vol. 3, p. 550. Morgan
Kaufmann Publishers (2006)

12. He, Y., Yiwen, L., et al.: A Model of Collaborative Artificial Immune System.
In: 2nd International Asia Conference on Informatics in Control, Automation and
Robotics, vol. 3, pp. 101–104 (2010)

13. Hsiao, H.W., Chen, D.N., Wu, T.J.: Detecting Hiding Malicious Website Using
Network Traffic Mining Approach. In: 2nd International Conference on Education
Technology and Computer (ICETC), vol. 5, pp. 276–280 (2010)

14. Kephart, J.O.: A Biologically Inspired Immune System for Computers. Artificial
Life IV, 130–139 (1994)

15. Paula, F.S.: Uma arquitetura de segurança computacional inspirada no sistema
imunológico. Tese de Doutorado (Doutor em Ciência da Computação) UNICAMP
Instituto de Computação (2004)

16. Stalmans, E., Irwin, B.: A Framework for DNS Based Detection and Mitigation of
Malware Infections on a Network. In: Information Security South Africa (ISSA),
pp. 1–8 (2011)

17. Virus Total. About VirusTotal (2011), http://www.virustotal.com/about.html
18. Witten, I.H., Frank, E.: Data mining: practical machine learning tools and tech-

niques with java implementations, vol. 3, p. 629. Morgan Kaufmann Publishers
(2000)

http://www.virustotal.com/about.html

Interactive, Visual-Aided Tools

to Analyze Malware Behavior

André Ricardo Abed Grégio1,2, Alexandre Or Cansian Baruque2,
Vitor Monte Afonso2, Dario Simões Fernandes Filho2, Paulo Ĺıcio de Geus2,

Mario Jino2, and Rafael Duarte Coelho dos Santos3

1 Renato Archer IT Research Center (CTI/MCT), Campinas, SP, Brazil
argregio@cti.gov.br

2 University of Campinas (Unicamp), Campinas, SP, Brazil
{vitor,dario,paulo}@las.ic.unicamp.br, jino@dca.fee.unicamp.br,

orcansian@gmail.com
3 Brazilian Institute for Space Research (INPE/MCT), S. J. dos Campos, SP, Brazil

rafael.santos@lac.inpe.br

Abstract. Malicious software attacks can disrupt information systems,
violating security principles of availability, confidentiality and integrity.
Attackers use malware to gain control, steal data, keep access and cover
traces left on the compromised systems. The dynamic analysis of mal-
ware is useful to obtain an execution trace that can be used to assess
the extent of an attack, to do incident response and to point to adequate
counter-measures. An analysis of the captured malware can provide an-
alysts with information about its behavior, allowing them to review the
malicious actions performed during its execution on the target. The be-
havioral data gathered during the analysis consists of filesystem and net-
work activity traces; a security analyst would have a hard time sieving
through a maze of textual event data in search of relevant information.
We present a behavioral event visualization framework that allows for an
easier realization of the malicious chain of events and for quickly spot-
ting interesting actions performed during a security compromise. Also,
we analyzed more than 400 malware samples from different families and
showed that they can be classified based on their visual signature. Fi-
nally, we distribute one of our tools to be freely used by the community.

Keywords: Security data visualization, malware analysis.

1 Introduction

Malicious software— malware—is the main current threat to information sys-
tems security. It is usually spread through the Internet and can cause incidents
with severe damage to confidentiality, integrity or availability of systems and
data. Most malware are targetless, attacking as many systems as they can, so
that an attacker can gain control and use of the victim’s resources or steal sen-
sitive data. However, there are cases in which malware have specific targets and
are thoroughly designed to delude the victim, talking the unsuspecting user into

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 302–313, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Interactive, Visual-Aided Tools to Analyze Malware Behavior 303

supplying confidential information, as it happens in attacks directed to a gov-
ernment infrastructure. In both situations, severe incidents caused by malware
can disrupt an entire network of systems by disseminating through headquarters
and then to branch offices or can also cause irreparable damage by exposing
confidential information.

When attacks succeed in breaking into a computer system, forensic procedures
can be followed in order to find out:

– How the attack was perpetrated;
– Where the points of collection of information are (downloading of tools and
sending of data);

– What happened during the attack to the system.

In the case of malware attacks, it is important to collect the binary that infected
the system or was downloaded after the target system was compromised. This
binary may then provide some clues leading to a deeper understanding of the
techniques used by the attacker and the purpose of the attack. This can be done
by running this malware in a controlled environment and monitoring all the
filesystem and network activities to compose a specific behavioral trace.

Malicious behavioral traces are in essence a log of the events performed by a
malware on a compromised system, but this amounts to large chunks of data.
Such logs are difficult to analyze as we have to stress out interesting segments
of behavior (main malicious actions) while simultaneously having to obtain a
general overview of the extension of the damage. However, the information ob-
tained from this analysis is paramount to provide adequate incident response
and mitigation procedures. In those cases of massive amounts of textual data
to analyze, we can apply visualization techniques that can greatly enhance the
analysis of logs and allow us to quickly spot important actions performed by a
specific malware and to better understand the chain of malicious events that led
to the compromise of the target system.

The main contributions of this article are:

– We developed two visualization tools—the behavioral spiral and the mali-
cious timeline—to aid security analysts to observe the behavior that a mali-
cious software presents during an attack. Those tools are interactive and they
allow a user to walk through the behavior while performing zoom, rotate,
and gathering of detailed information for each malware action.

– We discuss visual classification of malware families and show that our tool
can be used to visually identify an unknown malware sample based on its
comparison to previously known malware, and that is a step towards a visual
dictionary of malicious code.

– We distribute online a beta version of our prototype, so that the community
can benefit from it and use it freely.

2 Related Work

There are several research works that use visualization tools to overcome the
plenty of data provided by textual logs related to security. Some of them are not

304 A.R.A. Grégio et al.

open to the public, others are neither intuitive to use nor interactive, and there
are those whose results are more difficult to be visually interpreted by security
analysts than if they search manually through the log files.

Quist and Liebrock [12] applied visualization techniques to understand the be-
havior of compiled executables. Their VERA (Visualization of Executables for
Reversing and Analysis) framework helps the analysts to have a better under-
standing of the execution flow of the executable, making the reverse engineering
process faster.

Conti et al. [3] developed a system that helps the context-independent anal-
ysis of binary and data files, providing a quick view of the big picture context
and internal structure of files through visualization. In a forensic context it is es-
pecially helpful when analyzing files with undocumented formats and searching
for hidden text messages in binary files.

Trinius et al. [15] used visualization to enhance the comprehension of mali-
cious software behavior. They used treemaps and thread graphs to display the
actions of the executable and to help the analyst identify and classify malicious
behavior. While their thread graphs can confuse a human analyst with lots of
overlapped information and lack of interactivity, our timeline (Section 4.1) al-
lows a walk-through over the chain of events performed by different processes
created and related to the execution of a certain malware sample, as well as
the magnification of interesting regions, information gathering about selected
actions and annotation. Furthermore, our behavioral spiral represents temporal
action, whereas their proposed treemaps consist of the actions’ distribution fre-
quency. Again, there is a lack of interactivity and excessive data, as we handle
only actions that can cause changes on the target system. However, similarly to
our work, it is not possible to visually classify every malware family, as variant
samples can pertain to a class while presenting completely different behavior
regarding the order or nature of the performed actions.

Finally, reviewing logs from intrusion detection systems is an important task
to identify network attacks and understand these attacks after they happened.
There are several tools that use visualization for this purpose; each one has its
own approach and is better than others at specific situations. To take advantage
of those tools the DEViSE (Data Exchange for Visualizing Security Events)
framework [13] provides the analysts a way to pass data through different tools,
obtaining a better understanding of the data by aggregating more extracted
information.

3 Data Gathering

To visualize malware behavioral data, we first need to collect malware samples
that have been currently seen in the wild and then analyze them to extract
the actions they would perform in an attack to a target system. In the sections
below, we discuss our approaches to malware collection and behavior extraction.

Interactive, Visual-Aided Tools to Analyze Malware Behavior 305

3.1 Malware Collection

To collect malware samples that spread through the Internet, we use the ar-
chitecture described in [5], which uses mixed honeypots technology (low and
medium interaction) [10] to capture malicious binaries for MS Windows sys-
tems. Honeypots are systems that are deployed to be compromised so as to lure
attackers to reveal their methods and tools by the compromise of a highly con-
trolled environment. The collection architecture consists of a Honeyd [11] node to
forward attacks against certain vulnerable ports to a Dionaea [7] system, which
emulates vulnerable MS Windows services in those forwarded ports and actually
downloads the malware sample. During 2010 we captured more than 400 unique
samples, which are used as our test dataset in this article.

3.2 Behavior Extraction

To extract the behavior of a malicious software, we run it in a controlled envi-
ronment and monitor the actions it performs during the execution in the target
system. Those actions are based on the system calls executed that are relevant
to security, i.e. if they modify the status of the system or access sensitive in-
formation, such as file writing, process creation, changes in registry values or
keys, network connections, mutex creation and so on. The dynamic analysis en-
vironment used for behavior extraction is BehEMOT [6], a system that produces
logs in which each line means one action performed by the monitored malware
sample or a child process and is in the form “timestamp, source, operation, type,
target”. For instance, lets suppose that a malware sample “mw.exe” created a
process entitled “downloader.exe”, which connects to port 80 of an Internet IP
address X.Y.W.Z to download a file a.jpg to a temporary location TEMP. The
log file produced by BehEMOT would have the following three lines:

ts1, mw.exe, CREATE, PROCESS, downloader.exe

ts2, downloader.exe, CONNECT, NET, X.Y.Z.W:80

ts3, downloader.exe, WRITE, FILE, TEMP/a.jpg

Therefore, we use the BehEMOT behavior format to input the textual data
to our visualization tools, which are described in the next section. It is worth
noting that logs produced from malware sample execution can be thousands of
lines long, motivating the use of visual tools to aid the process of human analysis.

4 Interactive Visualization Tools for Behavioral Analysis

The behavior of a malicious program can be interpreted as a chain of sequential
actions performed on a system (as seen in the previous section), which involves
operating system interactions and network connections. The analysis of those op-
erations can provide the steps that were performed in an attack to understand
the incident as a whole, as well as detailed information about what was changed

306 A.R.A. Grégio et al.

in a system, such as libraries that were overwritten, infected files, downloaded
data and even evaded information.

Usually, antivirus developers analyze unknown malware samples to create sig-
natures or heuristics for detection. This is an overwhelming process and involves
plenty of manual work, as a human analyst has to search for pieces of data that
characterize the sample as part of an already known malware class or create a
new identifier to it. Actually, this process is worse due to the increasing amount
of new malware made from ‘do-it-yourself’ kits and variants of older ones. Some-
times, a malware is assigned to a family (and detected by an antivirus engine)
based on the value of a mutex it creates, or on a specific process that it launches
with a particular name, or on the kind of information it sends to the network.

Our motivation to develop visual tools is to make it easy to process and pin-
point very specialized information and then to help a human analyst to focus
in the interesting actions performed by a malware sample. This way, it is pos-
sible to quickly analyze new malware by visualizing their overall behavior and
expanding only those actions that an experienced analyst considers suspicious
or important. Also, public available dynamic analysis systems (e.g. [8], [14], [1])
provide textual reports full of information that would be easier to be interpreted
if an analyst could visually manipulate it. To fill this gap, we developed two
tools that transform a textual report from a dynamic analysis system into an
interactive and visual behavior, which are explained below.

4.1 Timeline and Magnifier

Malware time series events can also be visualized in simple x-y plots, where the
x axis represents the time and the y axis some information about the event.
The time information on the x axis can be any of the following: i) the absolute
time of occurrence of an event; ii) the relative time of occurrence (counted from
a particular initial value); or iii) a simple sequence that implies the order of
occurrence of the events.

The event information can be plotted using several different methods, often
specifically tailored to a particular purpose. The height on the y axis can be used
to represent the frequency of occurrence, severity or intensity of a given event,
if such information is known, or a discrete representation of event types. Dec-
orations such as different marks for additional event characteristics can also be
used to allow representation of more data dimensions than just two. Additional
graphical elements may also be used, but one should always take care not to
overload the plot with too much graphical content, which may confuse the user
and hinder his/her ability to draw quick conclusions from the plot.

An example x-y plot used to represent malware time series events is given
in Figures 1 and 2. They show the corresponding tool in action, as it parses a
malicious behavior file with malware events ordered by action timestamp and
plots the result using a simple, interactive interface. The tool draws the whole
time series in two panels: on the top panel all points on the series are plotted,
with the x axis representing the order in which events occurred and the y axis

Interactive, Visual-Aided Tools to Analyze Malware Behavior 307

representing the action associated with an event (which are not in any particular
order and can be rearranged). Also, events are plotted as dots of different colors,
according to the process id that performed such actions. For example, if the
malware associated process created two child processes and also required service
from an already running process, we would have four different colors in the
graphic: malware, first child, second child and the running process). Not all
possible monitored actions have to be performed by a malware, so the y axis
varies accordingly to what was present in the captured behavioral trace.

Fig. 1. Timeline and Magnifier tool representing malicious events

Fig. 2. Sequence of events selected by the user as a pattern to be searched (light red)
and automatically matched events (dark red)

Plots created by this tool are also interactive. Since there are many events
on the top section of the plot, it is hard to see exactly which one follows which
one, so a region of interest (highlighted under a translucent yellow region on

308 A.R.A. Grégio et al.

the plot) can be selected by the user. Selection is done by dragging the region
with the mouse, which also causes the region of interest to be shown enlarged on
the bottom panel of the plot. The x and y axes and plot colors follows the ones
in the top section. The bottom part of the plot also conveys information about
the diversity and variability of operation types in its gray background: darker
backgrounds suggest a higher diversity, whereas lighter backgrounds point to
higher similarity.

4.2 Malicious Spiral

The goal of this tool is to present an ordered sequence of all malicious actions of
an attack in a spiral format, using an iconic representation. The spiral represen-
tation is useful to show the big picture of a malware sample behavior and also
to allow quick visual comparisons among different malware samples even in the
presence of variants. Instead of using a straight line broken in columns (as seen
in [4]), the spiral format is less prone to confusion as small variances present
in the behavior of malware from the same class usually keep the general visual
appearance that models a family.

By exploiting the viewing abilities available, an investigator can zoom in and
out, turn, tilt, select behavior slices, view the logged action in textual form and
compare it with other behavioral data, if available.Thus, we provide not only an
overview of the attack, but also the possibility of identifying certain behavioral
patterns that could help in the classification of malware samples (Section 5).

The operations and types that are monitored and used to produce a behavior
log are shown in Table 1, as well as all icons that are used to represent them.
We divided the table lines in four groups of operations with similar purpose on
each subsystem type, e.g., a CONNECT operation in a NET type has the same
effect as that of a CREATE REGISTRY, i.e they prepare the environment for an
active operation that will represent a registry value being written or a network
connection being opened that later might send data. In the same way, a READ
FILE or REGISTRY, a RECEIVE NET and a QUERY MUTEX are all passive
operations, and so on.

5 Tests and Analysis of Results

Although we have developed the timeline and the spiral tools based on the same
kind of log format, they have different usage. The timeline and magnifier tool
can be used by any user to do a “behavioral walk-through”, while verifying how
many processes were launched, what actions they performed and from what kind,
etc. On the other hand, the spiral tool can be used to visually identify malware
from the same family, while simultaneously depicting an iconic overview of the
behavior that can be manipulated to show more detailed information (present
in the log file).

Interactive, Visual-Aided Tools to Analyze Malware Behavior 309

Table 1. Monitored operations and types grouped by activity equivalence and differ-
entiated by icons and colors

Action / Type MUTEX FILE PROC REG NET

READ

QUERY

RECEIVE

WRITE

SEND

CONNECT

CREATE

DISCONNECT

DELETE

TERMINATE

RELEASE

In this section, we show how the spiral tool serves as a visual dictionary and
how it can help classify malware from the same family. The current prototype
can be obtained from [9], together with larger screenshots. To the extent of our
tests, we extracted the execution behavior from 425 malware samples collected
by the system described in Section 3.1 and dynamically analyzed them with the
system described in Section 3.2.

All malware samples from our dataset are currently found “in the wild” and
together constitute variants from 31 families. Scanning them with the up to date
ClamAV antivirus engine [2] reveals 94 unidentified samples. In [9] one can also
verify the behavioral spiral pictures for each analyzed malware and its respective
log.

By observing the generated spirals, we realized that it is possible to group
some of them by their visual behavior. Also, malware samples from different
families present similar behavioral patterns among samples from their own class,
while at the same time keeping a dissimilarity from other classes’ samples. This
differentiation factor present in the visual patterns is an important indicative
that clustering algorithms, artificial intelligence and data mining techniques can
be applied to our logs to classify malware based on behavioral similarities.

In Figure 3, we chose two trojan families—Pincav and Zbot—and selected
three samples of each one to be printed side-by-side. Notice that even when the

310 A.R.A. Grégio et al.

Fig. 3. Behavioral spirals from three samples of the trojan families ‘Pincav’ (a) and
‘Zbot’ (b)

malware samples from a family perform variant operations, they still keep a
behavioral pattern that can be used to characterize them in the same class.

Another interesting fact is that if a malware sample tried to do more network
connections than another one from the same family (e.g., malicious scans) or if it
performed fewer actions or crashed, it is possible to clearly notice the similarities
between an incomplete behavior and a larger one, as shown in Figure 4, which
contains three samples of the Allaple family.

In Figure 5, we depict the behavioral spirals from four different malware
families—the worms Palevo and Autorun; the trojans Buzus and FakeSSH. No-
tice that we can visualize the separability of the classes with minor variances
among behaviors from the same family for Palevo, Autorun and FakeSSH. In
the case of Buzus, one can observe that the first two behaviors significantly
differ from the last ones, putting those samples apart from each other is an au-
tomated classification scheme. However, in Figure 6, one can also realize that a
sample whose AV assigned label is “UNKNOWN”—i.e. an unidentified sample—
presents a visual behavior that is quite similar to a sample from the trojan family
“Inject”.

Interactive, Visual-Aided Tools to Analyze Malware Behavior 311

Fig. 4. Three ‘Allaple’ worm variants showing: (a) a sample that could not connect to
the network and stopped its activies; (b) a sample that performed a short network scan;
(c) a sample performing a massive scan, where each red sphere means a connection to
a different IP address

�������	
��� ������������ ������������� ����������
����

�

�

� �
� �

�

� �
� �

�
�

� �
Fig. 5. Visual behavior extracted from four malware families

312 A.R.A. Grégio et al.

Fig. 6. Unidentified malware (right) sample visually classified as a known threat—
Inject trojan (left)

6 Conclusion and Future Work

In this article we propose two interactive, visual-aided tools to increase the ef-
ficiency in malware analysis, which allow an overview of malicious behaviors to
security analysts. Moreover, our tools allow a walkthrough over the logs, the
annotation and emphasis on interesting actions, the searching for patterns, a
deep understanding of the damage performed on a target system and the visual
comparison among malware samples. Hence, the possibility of visual family dif-
ferentiation indicates that we can apply, in the future, an automated technique
to classify, to cluster or to mine behavioral data. Also, it is possible to visualize
which parts of a malware sample behavior are similar to another one’s, indicating
the same functionality or even code reuse. We are developing, as future works, a
behavioral database that can bring some intelligence to the annotation process
of the timeline/magnifier tool, the ability to load multiple logs at the same time
to visualize several spirals in parallel and, finally, a classification algorithm to be
integrated to the spiral tool that will allow us to automatically identify samples
that share a high level of similarity and, after that, visualize their behavior.

References

1. Buehlmann, S., Liebchen, C.: Joebox: a secure sandbox application for windows to
analyse the behaviour of malware, http://www.joebox.org

2. Clam antivirus, http://www.clamav.net
3. Conti, G., Dean, E., Sinda, M., Sangster, B.: Visual Reverse Engineering of Binary

and Data Files. In: Goodall, J.R., Conti, G., Ma, K.-L. (eds.) VizSec 2008. LNCS,
vol. 5210, pp. 1–17. Springer, Heidelberg (2008)

http://www.joebox.org
http://www.clamav.net

Interactive, Visual-Aided Tools to Analyze Malware Behavior 313

4. Eick, S.G., Steffen, J.L., Sumner Jr., E.E.: Seesoft—A Tool for Visualizing Line
Oriented Software Statistics. IEEE Transactions on Software Engineering 18(11),
957–968 (1992)

5. Grégio, A.R.A., Oliveira, I.L., dos Santos, R.D.C., Cansian, A.M., de Geus, P.L.:
Malware distributed collection and pre-classification system using honeypot tech-
nology. In: Proceedings of SPIE, vol. 7344, pp. 73440B–73440B-10 (2009)

6. Grégio, A.R.A., Fernandes Filho, D.S., Afonso, V.M., dos Santos, R.D.C., Jino, M.,
de Geus, P.L.: Behavioral analysis of malicious code through network traffic and
system call monitoring. In: Proceedings of SPIE, vol. 8059, pp. 80590O–80590O-10
(2011)

7. The Honeynet Project. Dionaea, http://dionaea.carnivore.it
8. Kruegel, C., Kirda, E., Bayer, U.: Ttanalyze: A tool for analyzing malware. In: Pro-

ceedings of the 15th European Institute for Computer Antivirus Research (EICAR
2006) Annual Conference (2006)

9. MBS Tool. Malicious Behavior’s Spiral - Beta version,
http://www.las.ic.unicamp.br/~gregio/mbs

10. Provos, N., Holz, T.: Virtual Honeypots: from botnet tracking to intrusion detec-
tion. Addison-Wesley Professional (2007)

11. Provos, N.: Honeyd - A Virtual Honeypot Daemon. In: 10th DFNCERT Workshop
(2003)

12. Quist, D., Liebrock, L.: Visualizing Compiled Executables for Malware Analysis.
In: Proceedings of the Workshop on Visualization for Cyber Security, pp. 27–32
(2009)

13. Read, H., Xynos, K., Blyth, A.: Presenting DEViSE: Data Exchange for Visualizing
Security Events. IEEE Computer Graphics and Applications 29, 6–11 (2009)

14. ThreatExpert, http://www.threatexpert.com
15. Trinius, P., Holz, T., Gobel, J., Freiling, F.C.: Visual analysis of malware behavior

using treemaps and thread graphs. In: International Workshop on Visualization for
Cyber Security(VizSec), pp. 33–38 (2009)

http://dionaea.carnivore.it
http://www.las.ic.unicamp.br/~gregio/mbs
http://www.threatexpert.com

Interactive Analysis of Computer Scenarios
through Parallel Coordinates Graphics

Gabriel D. Cavalcante1, Sebastien Tricaud2,
Cleber P. Souza1, and Paulo Lício de Geus1

1 Institute of Computing, University of Campinas
Albert Einstein, 1251, 13083-852 – Campinas – Brazil

2 Picviz Labs
40 Avenue Guy de Collongue, 69130 – Ecully – France

Abstract. A security analyst plays a key role in tackling unusual incidents, which
is an extenuating task to be properly done, a single service can generate a mas-
sive amount of log data in a single day. The analysis of such data is a challenge.
Among several available techniques, parallel coordinates have been widely used
for visualization of high-dimensional datasets and are also highly suited to plot
graphs with a huge number of data points. Unusual conditions and rare events
may be revealed in parallel coordinates graph when they are interactively visu-
alized, which is a good feature for the analyst to count on. To address that, we
developed the Picviz-GUI tool, adding interactivity to the visualization of paral-
lel coordinates graph. With Picviz-GUI one can shape a graph to reduce visual
clutter and to help finding patterns. With a set of simple actions, such as filter-
ing, changing line thickness and color, and selections, the user can highlight the
desired information, search through the variables for that subtle data correlation.
Picviz-GUI visualization helps the security analyst to understand complex and
innovative attacks, to later tune automatized classification systems. This article
shows how features on top of parallel coordinates graph can be effective to un-
cover complex security issues.

1 Introduction

Nowadays, a security administrator is responsible for the analysis of large amounts of
data that represent activities on the network as a whole. System logs and network traffic
can provide useful information to describe what is going on with the infra-structure.
However, a single service can produce a myriad of lines of log a day. Combined with the
complicated topologies of private networks, this really might constitute a overwhelming
volume of data.

Normally, computer evidence creation is instructed by its operator through service
configuration files. Even so, some useful information might be hidden from inspection,
requiring special tools and techniques for the analyst to become aware of them [6].

A large range of software tools aid investigators in finding illegal activities on af-
fected systems. These tools reduce tedious efforts on the part of the examiner, espe-
cially when searching for some weird event in a very large amount of data. In addition,
the investigators need correlate and interpret such data, which by itself is an error-prone

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 314–325, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Interactive Analysis of Computer Scenarios through Parallel Coordinates Graphics 315

process that consumes an abundance of time and patience. This is especially true in the
absence of a hint or particular reason to suspect anything.

Visualization techniques can help forensic specialists direct their efforts to suspi-
cious events, processes, or hosts, through assisting the data interpretation process. Fur-
thermore, one can draw from the visualization world how to approach the problem.

Since parallel coordinates graph can represent large datasets in multiple dimensions,
handling their multivariate abilities help factor out different categories of computer se-
curity data, whenever this is needed.

Picviz [12] provides mechanisms to automate the static graph creation in a simple
way, but maybe user cannot get all suspicious events only with static images and filters.
In this paper we present Picviz-GUI, that provides a powerful interactive interface to
parallel coordinates.

2 Brief Explanation about Parallel Coordinates

Parallel-coordinates—hereafter called ||-coordinates— is a famous visualization tech-
nique which plots individual data across many dimensions. This is feasible because any
individual data element can be described as a tuple.

Let us imagine how much different information one can grab about a type of data, for
example, a soccer league table (position, team name, number of matches, wins, draws,
losses, goals conceded, goals scored, number of points, etc.). To complete a table like
that we must have many tuples containing a value for each of these data elements.

In a formal way, we could define each line of the soccer table as a vector v described
as a tuple (x1, x2, x3, . . . , xn) which could be represented on an N -dimensional plane
R

N . Unfortunately, when n becomes bigger than 3 it is difficult to plot n-dimensional
vectors using a 3-dimensional physical space.

||-coordinates overcome the 3-dimensional space limitation by adding a parallel axis
to each dimension of v. As such, the vector (x1, x2, x3, . . . , xn) is visualized by plot-
ting x1 on axis 1, x2 on axis 2, and so on through xn on axis n. In this way, each
v ∈ R

N is represented by a polygonal line V̄ .
As goes the old say, a picture is worth a thousand words, so one had better see an

image than read information. Figure 1 shows a trivial representation of ||-coordinates
to a single extract of network activity. It uses a set of parallel lines (not necessarily
vertical), where each one corresponds to an axis of data from the table.

Each row of the table is then represented by a polygonal line across these axes, such
that the point at which it crosses each axis corresponds to the value of the tuple’s data
point on that axis. The data plotted on this example is borrowed from Section 3.2. For
additional understanding and information we highly recommend literature such as [4]
and [16].

3 Creation of Parallel Coordinates

||-coordinates are commonly used for visualizing multivariate data. Recent work has
evaluated how efficient it can be for different tasks, in comparison with other multidi-
mensional techniques [8][3].

316 G.D. Cavalcante et al.

Fig. 1. Picviz-GUI showing the example described in Section 3.2 with layers

Picviz[12] is a suite of tools that automate the creation of ||-coordinates images,
either from logs or any other data representation, though we are mainly concerned with
data from log files here.

The Picviz suite contains a well-defined API that can be used to transform informa-
tion into ||-coordinates points, acting like a library, so that different applications can be
built on top of it to take advantage of its mapping process.

As described in [12], the Picviz suite has a Command Line Interface (CLI) that al-
lows the creation of static ||-coordinates graphs from thousands of lines of information
in a few seconds. The same tool allows a user to filter some characteristics and use some
output plugins like frequency analysis.

Despite the fact that the CLI allows handling a huge number of lines, it forces the
analyst to follow a sequence of steps: adjust filters and plugins; run the application and
then find results in the image output. After many repetitions, this process may become
tedious. In addition, it might be difficult to filter, using generic expressions, a large
number of specific events.

In really, unusual conditions and rare events may also be revealed with the nature
of ||-coordinates graphs when they are interactively visualized, so in that way the user
can filter and apply different attributes to the graph and have on-the-fly response. Picviz-
GUI was built to address this issue.

Interactive Analysis of Computer Scenarios through Parallel Coordinates Graphics 317

3.1 Data Transformation

To transform data into a ||-coordinates plot image, the user first needs access to the
data that will be plotted.

From the security analysis viewpoint, one needs to analyze the largest possible amount
of data that can describe something about the whole scenario.

By following the lead provided by a user’s complaint, for instance, the analyst can
focus on specific data that might be related to suspicious events. For example, if a web
browser has an abnormal behavior, related events might be found on the web browser
log.

Typically, important data result in large amounts of information, and to deal with
it we can use a process called parsing. Parsing, the process of identifying individual
tokens of information, takes here an extra meaning, since data coming from different
sources may be combined to return a single output. The parsing process in the Picviz
workflow should transform captured logs into the Picviz Graph Description Language
(PGDL).

3.2 Picviz Description Language – PGDL

From logs to the graph, the PGDL language aids in structuring the information, allowing
users to define how data will be treated on graph creation through three main sections:
header, data and axes.

The header section defines the title of the graph, whereas the axes define how data
will be represented on the graph, describing each axis of the ||-coordinates graph and
their type.

The data section contains all events that will be represented in the graph; each line
must comply with the format specified in the axes section. In PGDL, each dimension is
represented by an axis, which is defined in the axes section:

h e a d e r {
t i t l e = " See t h e d i f f e r e n t g roups of I P s " ;

}
axes {

t i m e l i n e t [l a b e l = " Time "] ;
i pv4 i ;
i n t e g e r d p o r t [l a b e l = " D e s t i n a t i o n P o r t "] ;

}

The keyword before each axis name defines the way data shall be placed on the
axis. It is similar to variables in programming languages: integer, short, string, timeline,
enum etc.

The types described in the axes section for each variable are tips used by the Picviz
engine for the graph construction process; for example, the engine will predict 232

possible positions for the integer axis in the example above. Once the axes section is
defined, data must be inserted into the data section as shown below:

318 G.D. Cavalcante et al.

d a t a {
l a y e r C _ c l a s s {

t = " 1 4 : 4 3 : 2 3 " , i = " 1 9 2 . 1 6 8 . 1 . 2 8 " , d p o r t = " 8 0 " ;
t = " 1 5 : 4 5 " , i = " 1 9 2 . 1 6 8 . 4 2 . 1 2 " , d p o r t ="443" [c o l o r ="# FF0000 "] ;

}
l a y e r A _ c l a s s {

t = " 2 3 : 5 9 " , i = " 1 0 . 1 . 1 . 2 3 " , d p o r t = " 2 2 " ;
t = " 0 7 : 0 0 " , i = " 1 0 . 1 . 1 . 5 4 " , d p o r t = " 2 2 " ;

}
}

“Data” is the original data from the log file, with dimensions being comma-separated.
If needed, the subsection “layer” could be added to the data section to describe layers.
It is a good way to ease the search for relevant information.

3.3 Picviz-GUI

As mentioned in the introduction, the ||-coordinates graph really shows its potential
when it is used interactively. An interactive frontend was written for this purpose (see
Fig. 1). Picviz-GUI is responsible for the creation and representation of ||-coordinates.
It was written in Python and Trolltech’s QT4 library to provide a skillful interaction
toward finding relations among variables, allowing one to apply filters, drag the mouse
over the lines to see information displayed, change axis order on the fly, zoom, brush
lines and change line thickness.

One of ||-coordinates disadvantages is the choice of a suitable order for the axes
intended to display relationships among variables. There has been a variety of pro-
posed automatic solutions to select the best sequence of axes in ||-coordinates. How-
ever, greater satisfaction comes with user manipulation of the axes order[17]. The top
bar allows the user to reorder axes on the fly, which provides for an effortless search for
the best representation for the data under analysis; this is done without any modifica-
tions to the parser. All of the Picviz Suite tools are open-source under GPLv3 and can
be obtained from [1]1.

4 SSH Authentication Log Analysis

This section shows many operations under Picviz-GUI that conduces analysis through
an interactive ambient. The analyst perceives your actions on-the-fly and is able to cre-
ate layers to isolate events to focus on these subsets. SSH (Secure Shell) is widely used
to provide remote access to a Unix-like host. Its log files keep track of successful and
failed login attempts, time, status and source IP address [9].

As will be showed above, ||-coordinates have inherent property that massive attacks
can have a unique graphical pattern that enables the network administrator to rapidly
detect and respond. But the major asset of Picviz-GUI is your interactive property, so

1 A professional version of Picviz suited to handle even larger amounts of events can be obtained
from Picviz Labs website.

Interactive Analysis of Computer Scenarios through Parallel Coordinates Graphics 319

Fig. 2. Plot of raw data without any analysis

playing with the graph the administrator can understand why your defense systems
maybe are uneffective.

Each log analysis requires from the analyst the knowledge about what is provided by
the logging mechanism for that service and how to tune it if necessary. A traditional log
analysis scarcely allow the detection of anomalies such as distributed brute-force scan
attempts, because critical data are sparsely distributed over long log files encompassing
many days, which helps attack activities to pass unnoticed.

Figure 2 plots the day, hour, auth (authentication status), source IP and login axes for
each entry of an entire month of a SSH server log file. The careful selection of the right
axis and the data plot order depends on the information that needs to be retrieved and
how the analyst wants to view the information. Layers and coloring features help group
suspicious data and provide him/her with a range of possibilities to look into the data
for intelligence gathering.

The first step after plotting raw data is to try and detect concentration areas in order to
isolate events in layers. At the bottom of Day axis, the most active days could be noted.

Another good point to start is the Auth axis, which describe the status about each
remote login attempt. These may indicate abuses in that service as noticed on the auth
and login axes in Figure 2, related primarily to authentication denied status for "Invalid
user" and "User not allowed" attempts. By isolating these candidates it was possible to
confirm the existence of two types of massive login attempts.

By simply picking a color for each of most active days, the first type is clearly iden-
tified: an individual source IP address tries many combinations of usernames and pass-
words in a short time window, as dettached in Figure 3; an attack that was probably
performed by some existing automated tool.

This method is not very effective from the attacker’s point of view because traditional
defense tools are prepared to implement deny rules for these cases, since the high activity
performed by a single IP source address [11] is easily identified by simple heuristics. On
this point of analysis, only authentication errors were selected to be plotted in this excerpt.

As for the second type, many source IP addresses try combinations of usernames and
passwords, but do so by implementing special evasion techniques.

320 G.D. Cavalcante et al.

Fig. 3. Graphic showing a layered version of the data for authentication errors by unknown logins.
Highlighted is a detected single source IP address SSH brute-force attack.

Fig. 4. The most active days, initial 4-day period

The suspect is confirmed with details in Figure 4, where a good concentration of
red (day 7) events could be observed. The red day have a massive amount of login
attempts distributed over different ips, a closer look in the top half of Hour axis reveals
a “coordinated stop” of red login attempts.

This property allows the conclusion that a third element on the network was coordi-
nating the login attempts by a variety of sources, a behavior that characterizes the usage
of botnets2.

2 A group of compromised machines that keep their normal funcionality for valid users but are
simultaneously serving a remotely commanding attacker.

Interactive Analysis of Computer Scenarios through Parallel Coordinates Graphics 321

Fig. 5. SSH scanning over a six-day period on the most active days

Not only that, the coordination required is much more elaborate than previous botnets
have shown in the past:

– A good variation of login ids, representing a coordinated dictionary attack, unfortu-
nately the server was not prepared to record passwords in failed logins (that could
help understand dictionary distribution over the bots);

– At most two attempts are launched each day from the same address.

In the Figure 5 that add some days when in Figure 4, demostrates an effective grow in
quantity of ips attempting to access the SSH server (in the bot of Source IP axis).

Filtering the ip axis to show only ip starting with 200 (200.*) and modifying the
ip axis configuration (to spread ips along the axis) results on Figure 6, that reveal the
uniqueness of the attack. The highlight in Figure 6 shows an absence of large fan-outs
from each point on the Hour and Source IP axes, when compared to the detailed
view in Figure 3.

With different colors for each day, we could easily see that many ips have one on the
most two login attempts in the same day. It represent a very stealth scanning, that sub-
vert standard configurations of defense tools like Denyhosts and Fail2ban. Distributed
attacks and its derivations are difficult to detect and visualize with traditional defense
tools [11].

PicViz-GUI was capable of showing a full view of the distributed SSH brute-force
attack that was passing unnoticed by other means, revealing that present defense tools
need improvements to detect and block this new approach. Shortly after this analysis
was performed, news were seen 3,4 of large botnets actively exploiting a vulnerability
in older versions of the phpMyAdmin tool (described in the Common Vulnerabilities
and Exposures database under the number CVE-2009-1151).

By exploiting this vulnerability—in older phpMyAdmin versions—attackers were
capable of executing malicious code on vulnerable hosts. The botnet herders exploit

3 Botnet Trend: phpMyAdmin & SSH Attacks – Malware city Website
4 SSH - new brute force tool – SANS ISC DIARIES

322 G.D. Cavalcante et al.

Fig. 6. Isolation of IPs from the 200 prefix range shows that individual hosts are trying remote
accesses once a day (each day was colored differently)

this vulnerability and upload a nasty bot named “dd_ssh”; this bot then conducts a
brute-force SSH scan attack on random IP addresses under the command of the herder.

The increasing number of source IP addresses noticed over the days in the plot is re-
lated to the number of hosts successfully infected by the CVE-2009-1151 vulnerability.

Picviz identified this new distributed SSH brute-force attack that went stealth to tra-
ditional defense tools. This tool allows quick identification of complex attack patterns
that are not easily detectable and so allows for quicker mitigation and development of
countermeasures.

Picviz-GUI present new possibilities for security visualization, but interactive visu-
alization tools have to respect one line, maybe too much interaction could overwhelm
user by a jumble of buttons, with no clear narrative path. The dynamic behavior of
Picviz-GUI disposes a lot of benefits in addition to Picviz, the main is to avoid a lot
of rounds of: tunning, generating and looking into images. These steps could be made
with a few clicks.

Another problem of static images are the values in the chart, often the user needs
to guess a value in the graph, because in some times putting labels for all points in the
graph produces a misunderstanding picture. In addition, users can lose a lot of time sim-
ply by changing the colors of the data, because when choose the colors do not exactly
know if they will overlap in the graph, and may get worse if the overlap of two colors
create an undesired effect. Performed by the GUI, we simply select, create a layer and
pick a color for that layer. The biggest advantage of static Picviz is the first insight,
because we can look for a huge number of events, bigger than in the GUI. Maybe it is a
primor step of the analysis in the whole framework.

Interactive Analysis of Computer Scenarios through Parallel Coordinates Graphics 323

The biggest advantage of static Picviz is the first insight, because we can look for a
huge number of events, bigger than in the GUI. Maybe it is a obligatory first step of the
analysis in the whole framework.

5 Related Work

Information Visualization is mature research field with a good range of studies that have
been applied to many domains. Excelent surveys was written about this area[14][15][13],
but recent work have been done to apply it to computer and network security. This new
research field has increased over the past decade, the most of work done is described
by a new security visualization survey[19].

The ||-coordinates technique is a well recognized method to understand multidi-
mensional data, being already used in many research areas including computer secu-
rity. Despite its large use base, most tools suffer from an ad-hoc motivation, focused on
very specific data and not being flexible enough (for instance, being tied to pcap packet
traces or to a specific log format).

The Krasser and Conti approach [5] uses ||-coordinates for realtime and forensic
data analysis, combining ||-coordinates with time-sequence animation of scatter plots,
but their limited scope prevents it to deal with a variety of attack classes. Flowtag [7]
employs collaborative design to visual filtering and network flow tagging, a two axis
||-coordinates graph is used to represent connection ports and source ips, but this tool
is focused in network traffic data. VisFlowConnect [18] draws ||-coordinates to help
administrators understand the big picture in domain-wide behaviors based on network
data flows.

Rumint is a parallel visualization tool designed to provide detailed insights into
packet level network traffic, but not higher network levels[2]. In SHADOW [10], packet
headers match pre-defined rules and then are dumped to a file for examination by a hu-
man operator. The authors describe different ways to plot this data.

By capitalizing on the PGDL structure and its dedicated data types, Picviz may be
applied to any kind of information that can be parsed. In fact, given a suitable parser,
Picviz could be used in other areas of Information Analisys.

6 Conclusion

This article described an interactive tool to analyze and document computer security
incidents through ||-coordinates. Picviz provides simple mechanisms to interpret data
from large data sets, thus allowing for an easier identification and understanding of
complex events, such as those present in security log files.

We tested the tool on log files from the SSH service running on a host that offers
remote access service to its users. Due to the amount of attacks directed to this ser-
vice and constant new approaches employed by attackers to evade detection, these logs
supplied the required data and at the same time buried the critical information that a
security analyst should find. The data used were, however, good enough to explore the
power of visualization tools when applied to security issues.

324 G.D. Cavalcante et al.

||-coordinates provide a simple way to recognize information, whereas Picviz en-
hance that ability. Security log file information was processed to detect attack pat-
terns against the SSH service that were not easily recognizable. The tool allowed the
detection of both simple brute force scanning attacks and more sophisticated attacks
launched through botnets. The latter could not be detected without a visualization tool
that brought all the log information in a unique and consolidated view. The attackers
behavior noticed during the analysis is of substantial importance for the improvement
of tools aimed to detect and block such attacks.

References

1. Picviz homepage (2010)
2. Conti, G., Abdullah, K., Grizzard, J., Stasko, J., Copeland, J.A., Ahamad, M., Owen, H.L.,

Lee, C.: Countering security information overload through alert and packet visualization.
IEEE Computer Graphics and Applications 26(2), 60–70 (2006)

3. da Silva Kauer, A.L., Meiguins, B.S., do Carmo, R.M.C., de Brito Garcia, M., Meiguins,
A.S.G.: An information visualization tool with multiple coordinated views for network traffic
analysis. In: 12th International Conference on Information Visualisation, IV 2008, pp. 151–
156. IEEE (2008)

4. Inselberg, A., Dimsdale, B.: Parallel coordinates: a tool for visualizing multi-dimensional ge-
ometry. In: Proceedings of the 1st Conference on Visualization 1990, p. 378. IEEE Computer
Society Press (1990)

5. Krasser, S., Conti, G., Grizzard, J., Gribschaw, J., Owen, H.: Real-time and forensic network
data analysis using animated and coordinated visualization. In: Proceedings from the Sixth
Annual IEEE SMC on Information Assurance Workshop, IAW 2005, pp. 42–49. IEEE (2005)

6. Kruse, W.G., Heiser, J.G.: Computer forensics: incident response essentials. Addison-Wesley
(2008)

7. Lee, C.P., Copeland, J.A.: Flowtag: a collaborative attack-analysis, reporting, and sharing
tool for security researchers. In: Proceedings of the 3rd International Workshop on Visual-
ization for Computer Security, pp. 103–108. ACM (2006)

8. Notsu, H., Okada, Y., Akaishi, M., Niijima, K.: Time-tunnel: Visual analysis tool for time-
series numerical data and its extension toward parallel coordinates. In: Proceedings of the
International Conference on Computer Graphics, Imaging and Visualization, pp. 167–172.
IEEE Computer Society (2005)

9. Ramsbrock, D., Berthier, R., Cukier, M.: Profiling attacker behavior following ssh compro-
mises, pp. 119–124 (June 2007)

10. Solka, J.L., Marchette, D.J., Wallet, B.C.: Statistical visualization methods in intrusion de-
tection. Computing Science and Statistics 32, 16–24 (2000)

11. Thames, J.L., Abler, R., Keeling, D.: A distributed active response architecture for preventing
ssh dictionary attacks, pp. 84–89 (April 2008)

12. Tricaud, S., Saadé, P.: Applied parallel coordinates for logs and network traffic attack analy-
sis. Journal in Computer Virology 6(1), 1–29 (2010)

13. Tufte, E.R., Goeler, N.H., Benson, R.: Envisioning information, vol. 21. Graphics Press
Cheshire, CT (1990)

14. Tufte, E.R., Howard, G.: The visual display of quantitative information, vol. 7. Graphics
press Cheshire, CT (1983)

15. Tufte, E.R., Weise Moeller, E.: Visual explanations: images and quantities, evidence and
narrative. Graphics Press Cheshire, CT (1997)

Interactive Analysis of Computer Scenarios through Parallel Coordinates Graphics 325

16. Wegman, E.J.: Hyperdimensional data analysis using parallel coordinates. Journal of the
American Statistical Association, 664–675 (1990)

17. Yang, J., Peng, W., Ward, M.O., Rundensteiner, E.A.: Interactive hierarchical dimension or-
dering, spacing and filtering for exploration of high dimensional datasets (2003)

18. Yin, X., Yurcik, W., Treaster, M., Li, Y., Lakkaraju, K.: Visflowconnect: netflow visualiza-
tions of link relationships for security situational awareness. In: Proceedings of the 2004
ACM Workshop on Visualization and Data Mining for Computer Security, pp. 26–34. ACM
(2004)

19. Zhang, Y., Xiao, Y., Chen, M., Zhang, J., Deng, H.: A survey of security visualization for
computer network logs. In: Security and Communication Networks (2011)

Methodology for Detection and Restraint

of P2P Applications in the Network

Rodrigo M.P. Silva and Ronaldo M. Salles

Military Institute of Engineering, Rio de Janeiro RJ, Brazil
rmpraxedes@yahoo.com.br, salles@ieee.org

Abstract. P2P networks are consuming more and more Internet re-
sources, it is estimated that approximately 70% of all Internet carried
traffic is composed by packets from these networks. Moreover, they still
represent the main infection vector for various types of malware and can
be used as command and control channel for P2P botnets, besides being
famous for being notoriously used to distribute a range of pirated files
(movies, music, games,...). In this paper we present some typical charac-
teristics of P2P networks and propose a new architecture based on filters
to detect hosts running P2P applications. We also provide a method-
ology on how to prevent the communication of those hosts in order to
avoid undesirable impacts in the operation of the network as a whole.

1 Introduction

P2P networks replace the Client / Server architecture (centralized) used in tradi-
tional networks, for a decentralized topology consisting of hosts called peers that
behave either as a server or a client, as illustrated in figure 1. The term Peer-
to-Peer was invented by IBM in 1984 with the project Advanced Peer-to-Peer
Networking Architecture, while P2P networks were later implemented through
FidoNet [7] and UseNet [23]. However, it was only in the 90’s with the popular-
ization of the Internet, coupled with an increased availability of bandwidth for
users and the advent of new technologies (e.g. mp3 (1995) and DivX (1999) that
allowed high rates of compression of audio and video files), that these networks
began to become popular and responsible for the distribution of content through
applications such as Napster (1999), eDonkey (2000), Kademlia (2002), among
others [13,20].

Applications that use P2P networks, called P2P applications, have gained an
increasing share of Internet traffic. Statistics from the Sourceforge site show that
among the five most wanted applications, three are P2P applications, totaling al-
most one billion downloads. According to [12], it is estimated that approximately
70% of traffic is generated by this type of application.

Such growth has raised concerns on the part of ISPs, because although P2P
applications are becoming the main source of online information, their rapid
growth has degraded the quality of services provided by them. Moreover, the de-
centralized architecture of such networks together with the fact that there are no
certification authorities to manage and control what is made on P2P networks,

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 326–339, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Methodology for Detection and Restraint of P2P Applications 327

Fig. 1. Representation of a Client / Server topology (centralized) to the left and a P2P
topology (decentralized) to the right

have turned them into an ideal environment for proliferation of pirated files
(audio, video, games, etc). This unregulated behavior has alarmed the authori-
ties that protect intellectual property, as the Recording Industry Association of
America (RIAA) [4], and producers of content on governments and businesses.

Also, as a result of uncontrolled growth of these networks, it was observed
an increased speed in which many malwares (worms, botnets, etc.) have spread.
Wang et al. in [26] showed how botnets can use P2P networks as a vector for
infestation, and use them as a Command and Control Channel. Lin et al. in
[18] showed how the Distributed Hash Table (DHT) in a P2P network can be
changed to spread some kinds of malware.

The contribution of this paper is threefold:

– we propose a novel architecture to detect hosts running P2P applications.
Such architecture is based on a bank of filters that perform packet flow
analysis using short time windows;

– we evaluate the performance of the proposed architecture and compare it
with results obtained from previous approaches. Tests were carried out em-
ploying data sets containing traces from well-known repositories;

– we suggest possible network management actions regarding P2P traffic from
the results obtained by the proposed architecture.

The rest of this paper is organized as follows. Existing works on P2P application
detection are discussed in section 2. The adopted methodology and the system
architecture is defined in section 3. In section 4, the data collection is discussed,
the importance of the utilization of public repositories of traces to facilitate com-
parison among the most different works. In section 5, we show results obtained
and in section 6 a comparison with previous approaches. In Section 7, we high-
light some network management actions that may be used to support security
policies. Finally, the paper is concluded in section 8 together with comments
about future work.

328 R.M.P. Silva and R.M. Salles

2 Related Works

Initially, the most applied scheme to detect P2P applications was to check port
numbers in traffic packets [16,15]. Unfortunately modern applications in order
to circumvent this technique have adopted a great flexibility in the choice of
ports to be used, and can even use well known ports reserved for other typical
applications to avoid being detected by firewalls.

Signature-based techniques have also been widely used, they work by looking
for patterns inserted in the payload to distinguish P2P packets from others. Such
techniques, as used in [9,21] offer low percentage of false positives, however it
is possible to point out several deficiencies in relation to existing networks and
applications, as follows:

– signature-based techniques do not have a good performance in networks with
high bandwidth due to the cost of processing and analysis packet contents;

– not all packet contents are available for analysis, often only the header is
available, as shown in [5]. Data traffic over networks tends to be treated as
confidential information and leaks can result in serious legal implications;

– current P2P applications use encryption to avoid detection, making payload
analysis inefficient.

Moreover, it can be noted that both techniques under consideration, based on
port numbers and payload analysis, do not allow the detection of new P2P
protocols, limiting detection to applications that use known protocols.

In [16], techniques were proposed to use the characteristics of the data flow
among nodes in the analysis. Such techniques look for inherent patterns related
to the behavior of P2P protocols, which made it more difficult for the application
to change behavior and circumvent all its features trying to evade detection. Un-
fortunately with the advent of hosts with more memory and processing capacity,
the number of services running on the same host has largely increased, which
may hinder the analysis of these patterns in the network.

In [24], Spognard et al. focused their work in specific patterns of P2P protocol
that can be revealed by an IP packet level analysis. Such patterns are coded into
rules that are be fed to an IDS. The main limitation of their work is that some
simple alterations in the P2P application can easily avoid the proposed detection
technique.

Liu et al. in [19], developed a new method of P2P traffic identification based
on Support Vector Machine (SVM). The method was implemented by analyzing
packet lengths, remote hosts discreteness, connection success rate and the ratio
of IP and Port numbers at the host level. However, the method presented false
negative rates of up to 12% in some cases according to the authors, which may
be considered high for such a sophisticated approach.

The work in [14] presented a P2P detection technique based on Traffic Disper-
sion Graphs (TDG). The technique searches for inherent patterns in P2P pro-
tocols in the generated graphs and focuses on features of graph metrics instead
of individual flows. Despite having high accuracy it demands high processing

Methodology for Detection and Restraint of P2P Applications 329

time to return a solution, which makes such approach not appropriate for online
detection.

In [17], Kim et al. presented methods for detecting P2P flows by constructing a
graph where each flow is a vertex. Edges are constructed by applying various rules
that consider the ports used by previously detected P2P flows. In the graph, they
found that around 90% of the P2P flows are within a large connected component,
the remaining part is composed of many smaller connected components. Like
other techniques based on graphs, this demands high processing times.

3 The Proposed P2P Detection Architecture

The architecture proposed in this work is illustrated in figure 2. It includes a host
agent, directly linked to the network router, which is responsible for collecting
all packets originating from and destined to the network, converting them into
flows and store them in database tables. All this process and data is limited to a
7 minutes’ interval. Tables are filtered out and the resulting ”P2P” hosts (hosts
running P2P applications) are registered in firewalls in order to block/limit such
communication, according to the policies applied by the network administration.

Our premise is to use short time windows for analysis, because of the dynamics
of networks, where nodes are constantly being swapped in and out of the network.
This requires the analysis to be done as soon as possible to get information in
time to be useful, e.g. take some immediate action.

One of the most important steps in our method is filtering: the process of
separating and classifying the collected data into P2P or non-P2P traffic. Our
proposal is to combine a set of filters to enhance the capacity detection of the
approach. In the proposed architecture, as seen in figure 2, all data flows pass
through a DNS filter and then to a bank of filters. Marked flows are used by
the decision maker to set up firewall rules and/or to apply the security policies
established by administration authorities.

We analyzed the work of several previous authors and select the most promis-
ing filters to compose our architecture. Such filters are discussed in greater detail
in the next subsection.

3.1 Analyzed Filters

All filters used were evaluated in previous works by several authors.

– DNS filter: Zhang et al. in [27] used the DNS requests to reduce the flow
volume to be analyzed, this is due to the fact that P2P communication is
carried out directly through the IP addresses of hosts members in peer lists
of networks. The percentage of peers with domains registered in DNS is
less than 0.5%, according to the authors. By means of analysis of traces of
P2P and non-P2P applications it was proven that it is possible to reach a
reduction of more than 25% of the total flow of the network to be analyzed
(figure 3).

330 R.M.P. Silva and R.M. Salles

Fig. 2. Proposed architecture

Fig. 3. Using DNS for P2P and non-P2P applications

– Filter 1. Sending rate of TCP SYN / UDP: Chen et al. in [8], showed
that when a new node tries to join the established P2P network, it sends
TCP SYN packets to different IP addresses so as to find the best entry to the
network. During this period of time, TCP SYN packets provide a notable
behavior. If a specific IP address sends lots of TCP SYN packets to many
different IP addresses, it can be identified as P2P communications. This
behavior is also valid for UDP connections, except to the fact that there is
no three way handshake.

– Filter 2. Rate of successful connections: [27,25] showed that because
the majority of peers are not servers, they can be turned off at certain
times of day, or even can be with other IP addresses, behind firewalls or
NAT servers. This reduces the chance of other peers to be able to connect,

Methodology for Detection and Restraint of P2P Applications 331

thereby reducing the rate of successful connections when compared to other
services based on the client / server topology.

– Filter 3. Rate IPext / Portext: in [8,25] it was shown that when a P2P
client joins the distributed network, it establishes several connections with
other peers (assume as n) on different ports (assume as m). The authors
found that n � m . Thus when a fix pair composed by IP and Port builds
connection with different peers and the number of different IPs is approxi-
mately equal to the number of different ports (the rate is approximately 1),
the P2P communication channel can be confirmed.

– Filter 4. Port number: Ulliac et al. [25] used port number information as
a feature to detect hosts that run P2P applications. Initially each type of
application was associated to fixed port numbers and such mapping could
be used to detect application type. However, in order to evade simple de-
tection mechanisms, P2P applications tend to pick random ports, as shown
by Kariaginnis et al. in [16]. A host to receive messages from other peers
must select a port, as there are 65,536 ports the likelihood of a given port be
chosen is approximately 0.0015%, which leads to a chance of approximately
98.5% that a P2P application choose a port above 1024.

– Filter 5 (new). Analysis of source ports: a new feature is proposed in
this paper, P2P applications use a single source port to make connections
with other peers. This fact is illustrated in figure 4, which shows two hosts
with and without P2P applications, where each vertex indicates an IP:Port
pair and each edge indicates the communication made. A host running P2P
application opens a large number of calls to several other nodes using the
same source port, a characteristic that can be explored to distinguish hosts
with P2P applications from others. Moreover, this feature allows to create a
specific firewall rule that considers only the used P2P ports and thus avoiding
inconveniences to the user’s host (other application from the same host will
not be blocked by such firewall rules).

Figure 5 shows a flow related to an IP host running P2P applications. It
is possible to see the existence of several UDP sessions originating from the
same port to several different IP addresses, such sessions are peer attempts
to establish communication in the P2P network.

4 Data Collection

The results shown in this paper were reached using data from existing repos-
itories of traces on the Internet. As shown in [5], one of the main difficulties
encountered by researchers in the area is to obtain consistent traces, which are
able to show the heterogeneous reality found on the Internet. Several research
results are based only in academic network traces, which are generated from
machines that are presumably located in a controlled environment, differently
from those found in network companies managed by ISPs. Another widespread
alternative for the validation test is to use synthetic data, however such approach
is also limited to represent all characteristics of P2P applications, compromising
the validation of the proposed methodology.

332 R.M.P. Silva and R.M. Salles

Fig. 4. Linking IP : Portsrc and IP : Portdest between hosts without P2P application
(left) and between hosts with P2P applications (right)

Fig. 5. Trace showing the connections made from some source ports of a peer
(85.189.119.122) to other peers. Columns represent respectively: timestamp , dura-
tion, protocol, source address, source port, direction, destination address, destination
port.

Another problem related to the use of traces is that it is often difficult to
obtain accurate information about its content. The trace should be completely
marked and fully known, otherwise any performance evaluation result (e.g. false
positive and false negative rates) could be compromised. Most real traces carry
unknown traffic patterns from diverse applications and services. In addition to
that, when comparing a novel technique with previous approaches it is important

Methodology for Detection and Restraint of P2P Applications 333

to employ traces from stable repositories and design a standard script of testing
to serve as a benchmark and validate the results obtained.

5 Results

We used four different data sets to perform tests on the proposed architecture,

– D1: contains three traces of a host running a bittorrent application and was
obtained from the repository CRAWDAD [2];

– D2: two traces of a network with no P2P application, such trace was taken
from DARPA [1] and OpenPacket [3] repositories;

– D3: was also obtained from the CRAWDAD repository and belongs to a
network that has online game sessions;

– D4: other traces from the OpenPacket repository containing hosts with and
without P2P applications.

Table 1. Data sets used in the tests

Set Traces Source

D1 3 CRAWDAD

D2 2 DARPA / OpenPacket

D3 2 CRAWDAD

D4 2 OpenPacket

All traces were converted into flows using Argus Auditing Network Activity
(http://www.qosient.com/argus/) and stored in MySQL database tables that
were rotated every 7 minutes. These tables were analyzed separately by the
proposed architecture and hosts marked as potential members of P2P networks
were added in an iptables firewall. The results are summarized in Table 2.

5.1 Set D1: Traces with P2P Applications

This set of traces contains host with P2P applications. It was observed a DNS
percental use below 0.5%, which confirms what was stated in [27] that peers do
not use DNS to get the addresses of the other peers, such addresses are recorded
in peer lists in that host. Thus confirming that the exclusion of any flow that is
related to DNS queries does not jeopardize the detection of P2P applications.

Regarding the rate of TCP / UDP connections made by network hosts we ob-
served that P2P hosts presented rates above 60 connections / minute when using
UDP protocol, which is explained by the fact that P2P applications, as shown in
[22,11], use UDP to exchange control messages (make new connections, update
parameters related to peers or even maintaining the network in operation). On
the other hand, the rate of TCP connections is lower around 16 connections /
minute , as this protocol is mostly used for file transfer only.

334 R.M.P. Silva and R.M. Salles

The rate of unsuccessful connections is also quite high in this type of applica-
tion reaching around 35% in some cases. This is due to the fact that many peers
are not online, are using other IP addresses or are even behind firewalls, which
prevents that connections are made.

The ratio between the number of external ports and external IP addresses
connected to each of the P2P hosts was close to 1, ranging up to 1.23. Regarding
the use of the same source port, it could be seen that approximately 78% of the
flows generated are originated from the same port.

The average value of port numbers is also an excellent detection criterium,
since current P2P applications tend to use random ports for communication, as
shown by [16]. In our samples the average values were all above 45,000.

5.2 Set D2: Traces without P2P Applications

The dataset D2 consists of traces without P2P applications. We observed a DNS
access rate greater than the previous set, with values above 14%.

The average rate of connections was less than 10 connections / minute. Re-
garding the rate of unsuccessful connections, the value obtained was less than
10%, however two hosts presented higher rates (above 40%). This behavior was
motivated by the high number of requests on ports 137 and 139, both used by
the NetBIOS Name service.

The average ratio of the number of connected external ports and the number
of IP addresses is greater than 11 for the hosts in the set. The percentage of
source ports used for connections was similar, the largest percentage obtained
was 8% for a given port.

The average value of the destination ports used was 3,231.

5.3 Set D3: Online Games

This set contains traces related to exchanges of messages between hosts during
the execution of online games. It differs from the other sets by several distinctive
features.

Regarding the use of DNS, it is clear that at no time queries are sent to a
DNS, due to the fact that the hosts of the game session know the IP address
of other hosts. Average rate of connections is less than 2 connections / minute,
for the reason that the number of participants per session is limited and de-
fined, which avoids hosts session members trying to contact other hosts. The
rate of unsuccessful connections is 7% failure, probably motivated by sudden
disconnections.

The ratio between the number of external ports and external IP addresses
presented a high variation making this feature not interesting to be used in traffic
identification. Regarding source ports, the percentage of use was well balanced
among all ports the traces, no prominence of any port was observed.

The set also has an average value of used ports very high, similar to what
happens in P2P applications. This fact is justified by the attempt of many online

Methodology for Detection and Restraint of P2P Applications 335

games to avoid firewall detection mechanisms through the use of random ports
for communication.

5.4 Set D4: Traces with and without P2P Applications

In order to better test the performance of the proposed methodology we used
traces containing hosts with and without P2P applications.

About the use of DNS, the average value obtained for normal hosts was ap-
proximately 16%, while for hosts with P2P applications was around 1.3%. The
average rate of connection for normal hosts was around 2.5 connections / minute,
whereas for P2P hosts that rate reached values above 20 connections / minute.

Regarding the percentage of connection failures, hosts with P2P applications
behaved with an average value above 30%, while other hosts showed a failure
rate lesser than 5%. The ratio of the number of external ports and external IP
address was above 2 for hosts without P2P application and was approximately
2 for hosts with P2P application.

Analyzing the percentage of connections made by source ports, it was observed
that more than 25% of all network connections were made by a single port of the
host with P2P application. In addition, 8% of the connections were made from a
port of a second host without P2P application. All other hosts had a relatively
balanced proportion with no special cases.

The average value of ports used for hosts without P2P application was 8,212,
while for hosts with P2P applications was 15,581.

Table 2. Mean values found for each data set

Set Using
DNS

connections
rate

Connections
unsuccessful

Rate
Portext/IPext

Average value
of ports

Connections
Portsrc

D1 0.43% 65 conn /
min

35% 1,1 48,215 78% (main
port)

D2 14.2% 6 conn
/min

9% 11.6 3,231 8% (no em-
phasis)

D3 0% 1.8 conn /
min

3.5% 1.8 26,323 7% (no em-
phasis)

D4 15.4% 2.5 conn
/min

4.5% 2.4 8,212 8% (no em-
phasis)

D4

(host
P2P)

1.3% 19 conn /
min

33.5% 1.8 15,581 25% (main
port)

6 Comparison with Previous Works

In this section, we aim to draw a comparison on the performance achieved by
the proposed solution and the various solutions proposed in previous works. The
criterion for comparison is based on the following attributes: time required for
detection, false positive rate, scalability and analyzed features.

336 R.M.P. Silva and R.M. Salles

In [16], Karagiannis et al. were the first to use identification of P2P applica-
tions based on features of the transport layer (connection rate, protocols). The
time required for detection depends on the data flow. According to the authors,
the smaller the number of flows analyzed the higher the rate of false positives. In
that paper the false positive rate obtained was about 5%. Such a system given
its properties and construction is not scalable.

In [25], Ulliac et al. defined a detection methodology in two stages. In the first
stage filters were used to discuss features of applications (average value of the
ports, standard deviation of the value of ports) and connections (average number
of connections per host, the average rate of connections). In the following step,
traffic features are analyzed (packet rate). Regarding the rate of false positives
the authors reached a value of 15% in real networks. The algorithm is not scalable
since its accuracy is reduced as the network traffic intensifies.

Bo et al. in [6] developed a distributed architecture where several hosts located
in different networks are responsible for detecting P2P applications on their
networks and share information with others to assist them in the identification.
The main feature used for detection is the connection rate performed by each
host. This method can be used to support other architectures to improve their
scalability and accuracy. Because the detection is based on number of connections
in a short period of time, it can be considered scalable.

Liu et al., in [19] developed a method based on Support Vector Machine (SVM)
for the decision on which traffic is originating from hosts with P2P applications.
The authors analyzed features about connections among hosts (number of con-
nections per host, rate of failed requests). The percentage of false positives in
their proposal reached 7.3%. Moreover, due to the need for processing the SVM,
this system may require a cluster to be scalable.

In [10], Chunzhi et al. developed a method based on a decision tree that exam-
ines features of P2P applications (like ration between TCP and UDP protocols
and packet ratio change) and traffic. The false positive rate was around 3%. The

Table 3. Comparison among methods for detection of P2P applications

Method Detection time Analyzed fea-
tures

Scalability Percentage of
false positives

[16] depends on the
flow on the net-
work

connection no 5%

[25] short applications, con-
nections

no 15%

[6] short connections yes -

[19] short connections yes (cluster-
ing)

7.3%

[10] short signature, traffic yes (cluster-
ing)

3%

Current proposal short connections,
applications,
traffic

yes (cluster-
ing)

3%

Methodology for Detection and Restraint of P2P Applications 337

processing time is dependent on the packet flow in the network. The method can
be considered scalable provided the adequate infrastructure is employed.

In this paper, we studied a methodology based on different sets of features
trying to encompass all important inherent behavior of a P2P application. The
method uses a 7 minute-window of duration to perform flow detection. The rate
of false positives obtained from the traces was around 3%.

7 Proposed Methodology to Restrain P2P Traffic

Given the results presented in previous sections, we propose a simple methodol-
ogy based on levels of alert, as shown in table 4.

Level 0 indicates that no suspicious behavior has been identified therefore
nothing is done. At levels 1 and 2 some suspicious behavior has been detected
and a message is sent to network manager containing the IP address and a
suggestion according to the respective level: ”detailed analysis of the behavior
of the host” or ”insertion of the host in the firewall rules”. At level 4 the host
is immediately inserted in the firewall rules and a message is sent to inform the
network manager.

Table 4. Alert levels and corresponding actions

Level Description Procedure

0 no feature is found nothing is done

1 one feature is found send message suggesting a detailed analy-
sis of the host behavior

2 two or three features are found send message suggesting the insertion of
the host in the firewall rules

3 four or more features are found automatic insertion of the host in the fire-
wall rules and send alert message

8 Conclusion and Future Works

In this paper we discuss how P2P applications are constantly growing, generat-
ing a series of problems in the networks they inhabit. In view of this situation
we proposed a methodology based on mining of packet flows in networks to de-
tect the existence of such applications. Some intrinsic characteristics of these
applications were analyzed and a set of filters were implemented in the proposed
architecture to construct a consistent detection scheme.

Some tests were performed using selected traces. In response to those tests,
hosts with P2P applications had their outstanding features revealed. However,
it was also shown that some hosts that run competing services had such features
distorted, making detection more difficult.

In order to have a method as accurate as possible, each feature was ana-
lyzed in parallel in each host using different short time windows. The proposed
architecture provided a good degree of accuracy and detection.

338 R.M.P. Silva and R.M. Salles

In order to continue the work, the indices of false positives and negatives will
be analyzed in greater detail, as well as its variation when short time windows
are changed in the network.

Furthermore, we intend to look into the differences between networks of P2P
applications and P2P botnets aiming to adapt this technique to detect this type
of malware.

References

1. Intrusion detection evaluation (1999), http://www.ll.mit.edu
2. A community resource for archiving wireless data at dartmouth, (2012),

http://crawdad.cs.dartmouth.edu

3. Open packet (2012), https://www.openpacket.org
4. Recording industry association of america (2012), http://www.riaa.com,

http://www.riaa.com/physicalpiracy.php

5. Aviv, A.J., Haeberlen, A.: Challenges in experimenting with botnet detection sys-
tems. In: Proceedings of the 4th USENIX Workshop on Cyber Security Experi-
mentation and Test (CSET 2011) (2011)

6. Bo, X., Ming, C., Lan, F.: Distributed p2p traffic identification method. In: Pro-
ceedings of the 5th International Conference on Wireless Communications, Net-
working and Mobile Computing, WiCOM 2009, pp. 4229–4232. IEEE Press, Pis-
cataway (2009), http://dl.acm.org/citation.cfm?id=1738467.1738494

7. Bush, R.: Fidonet: technology, tools, and history. Commun. ACM 36, 31–35 (1993),
http://doi.acm.org/10.1145/163381.163383

8. Chen, F., Wang, M., Fu, Y., Zeng, J.: New detection of peer-to-peer controlled
bots on the host. In: 5th International Conference on Wireless Communications,
Networking and Mobile Computing, WiCom 2009, pp. 1–4 (September 2009)

9. Choi, T., Kim, C., Yoon, S., Park, J., Lee, B., Kim, H., Chung, H., Jeong,
T.: Content-aware internet application traffic measurement and analysis. In:
IEEE/IFIP Network Operations and Management Symposium, NOMS 2004, vol. 1,
pp. 511–524 (April 2004)

10. Chunzhi, W., Wei, J., Hong, C., Luo, W., Fang, H.: Research on a method of
p2p traffic identification based on multi-dimension characteristics. In: 2010 5th
International Conference on Computer Science and Education (ICCSE), pp. 1010–
1013 (August 2010)

11. Erman, D., Ilie, D., Popescu, A.: Bittorrent session characteristics and models. In:
Procedings of HETNETS 2005, p. 2007 (2005)

12. Erman, J., Mahanti, A., Arlitt, M., Williamson, C.: Identifying and discriminating
between web and peer-to-peer traffic in the network core. In: Proceedings of the
16th International Conference on World Wide Web, WWW 2007, pp. 883–892.
ACM, New York (2007), http://doi.acm.org/10.1145/1242572.1242692

13. Hong, S.H.: Measuring the effect of napster on recorded music sales: Difference-in-
differences estimates under compositional changes. Journal of Applied Economet-
rics, 1–28 (2011), http://dx.doi.org/10.1002/jae.1269

14. Iliofotou, M., Kim, H.C., Faloutsos, M., Mitzenmacher, M., Pappu, P., Varghese,
G.: Graption: A graph-based p2p traffic classification framework for the internet
backbone. Computer Networks 55(8), 1909–1920 (2011),
http://linkinghub.elsevier.com/retrieve/pii/S1389128611000430

http://www.ll.mit.edu
http://crawdad.cs.dartmouth.edu
https://www.openpacket.org
http://www.riaa.com
http://www.riaa.com/physicalpiracy.php
http://dl.acm.org/citation.cfm?id=1738467.1738494
http://doi.acm.org/10.1145/163381.163383
http://doi.acm.org/10.1145/1242572.1242692
http://dx.doi.org/10.1002/jae.1269
http://linkinghub.elsevier.com/retrieve/pii/S1389128611000430

Methodology for Detection and Restraint of P2P Applications 339

15. Karagiannis, T., Broido, A., Brownlee, N., Claffy, K., Faloutsos, M.: Is p2p dying or
just hiding (p2p traffic measurement). In: IEEE Global Telecommunications Con-
ference, GLOBECOM 2004, November-December 3, vol. 3, pp. 1532–1538 (2004)

16. Karagiannis, T., Broido, A., Faloutsos, M., Claffy, K.: Transport layer identification
of p2p traffic. In: Proceedings of the 4th ACM SIGCOMM Conference on Internet
Measurement, IMC 2004, pp. 121–134. ACM, New York (2004),
http://doi.acm.org/10.1145/1028788.1028804

17. Kim, J., Shah, K., Bohacek, S.: Detecting p2p traffic from the p2p flow graph. In:
IWCMC, pp. 1795–1800. IEEE (2011),
http://dblp.uni-trier.de/db/conf/iwcmc/iwcmc2011.html#KimSB11

18. Lin, H., Ma, R., Guo, L., Zhang, P., Chen, X.: Conducting routing table poisoning
attack in dht networks. In: International Conference on Communications, Circuits
and Systems (ICCCAS), pp. 254–258 (July 2010)

19. Liu, F., Li, Z., Nie, Q.: A new method of p2p traffic identification based on sup-
port vector machine at the host level. In: International Conference on Information
Technology and Computer Science, ITCS 2009, vol. 2, pp. 579–582 (July 2009)

20. Locher, T., Mysicka, D., Schmid, S., Wattenhofer, R.: A peer activity study in
edonkey & kad (1995)

21. Moore, A.W., Papagiannaki, K.: Toward the Accurate Identification of Network
Applications. In: Dovrolis, C. (ed.) PAM 2005. LNCS, vol. 3431, pp. 41–54.
Springer, Heidelberg (2005)

22. Ripeanu, M.: Peer-to-peer architecture case study: Gnutella network. In: Proceed-
ings of First International Conference on Peer-to-Peer Computing, pp. 99–100 (Au-
gust 2001)

23. Sit, E., Morris, R., Kaashoek, M.F.: Usenetdht: a low-overhead design for usenet.
In: Proceedings of the 5th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2008, pp. 133–146. USENIX Association, Berkeley (2008),
http://dl.acm.org/citation.cfm?id=1387589.1387599

24. Spognardi, A., Lucarelli, A., Di Pietro, R.: A methodology for p2p file-sharing
traffic detection. In: Second International Workshop on Hot Topics in Peer-to-Peer
Systems, HOT-P2P 2005, pp. 52–61 (July 2005)

25. Ulliac, A., Ghita, B.V.: Non-intrusive identification of peer-to-peer traffic. In: Pro-
ceedings of the 2010 Third International Conference on Communication Theory,
Reliability, and Quality of Service, CTRQ 2010, pp. 116–121. IEEE Computer
Society, Washington, DC (2010), http://dx.doi.org/10.1109/CTRQ.2010.27

26. Wang, P., Wu, L., Aslam, B., Zou, C.: A systematic study on Peer-to-Peer botnets.
In: Proceedings of 18th Internatonal Conference on Computer Communications and
Networks, ICCCN 2009, pp. 1–8 (August 2009)

27. Zhang, J., Perdisci, R., Lee, W., Sarfraz, U., Luo, X.: Detecting stealthy p2p bot-
nets using statistical traffic fingerprints. In: International Conference on Depend-
able Systems and Networks, pp. 121–132 (2011)

http://doi.acm.org/10.1145/1028788.1028804
http://dblp.uni-trier.de/db/conf/iwcmc/iwcmc2011.html#KimSB11
http://dl.acm.org/citation.cfm?id=1387589.1387599
http://dx.doi.org/10.1109/CTRQ.2010.27

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 340–352, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Text Categorization Based on Fuzzy Soft Set Theory

Bana Handaga and Mustafa Mat Deris

Faculty of Computer Science and Information Technology,
Universiti Tun Hussein Onn Malaysia

handaga.bana@gmail.com, mmustafa@uthm.edu.my

Abstract. In this paper, we proposed a new method for Text Categorization
based on fuzzy soft set theory so called fuzzy soft set classifier (FSSC). We use
fuzzy soft set representation that derived from the bag-of-words representation
and define each term as a distinct word in the set of words of the document col-
lection. The FSSC categorize each document by using fuzzy c-means formula
for classification, and use fuzzy soft set similarity to measure distance between
two documents. We perform the experiments with the standard Reuters-21578
dataset, and using three kind of weigthing such as boolean, term frequency, and
term frequency-invert document frequency to compare the performance of
FSSC with others four classifier such as kNN, Bayesian, Rocchio, and SVM.
We are using precision, recall, F-measure, retun-size, and the running time as a
performance evaluation. Result shown that there is no absolute winner. The
FSSC has precision, recall, and F-measure lower than SVM, and kNN but
FSSC can work faster than both. When compared with the Bayesian and Roc-
chio, the FSSC works more slowly but has a higher precision and
F-measure.

Keywords: Fuzzy soft set theory, bag-of-words, Text Classification.

1 Introduction

In the last 20 years content-based document management tasks, collectively known as
information retrieval (IR), have gained a prominent status inthe information systems
field, due to the increased availability of documents in digital form and the ensuing
need to access them in flexible ways. Text categorization (TC), the activity of labeling
natural language texts with thematic categories from a predefined set, is one such
task. TC dates back to the early '60s, but only in the early '90s did it become a major
subfield of the information systems discipline, thanks to increased applicative interest
and to the availability of more powerful hardware. TC is now being applied in many
contexts, ranging from document indexing based on a controlled vocabulary, to
document filtering, automated metadata generation, word sense disambiguation, popu-
lation of hierarchical catalogues of Web resources, and in general any application re-
quiring document organization or selective and adaptive document dispatching [1].

Many learning algorithms such as k-nearest neighbor, Support Vector Machines
(SVM) [2-4], neural networks [5], fuzzy set [6], intuitionistic fuzzy sets [7], rough set

 Text Categorization Based on Fuzzy Soft Set Theory 341

[8], linear least squares fit, and Naive Bayes [9] have been applied to TC. A compari-
son of these techniques is presented in [10].

Classification based on soft-set theory was made by Mushrif et, al. [11], using the
principle of scoring that has been developed by Roy and Maji [12, 13] in fuzzy soft
set theoretic approach to decision making problems. Unfortunately, this algorithm can
not be applied to classify the text document.

In this paper, we proposed a new method for TC based on fuzzy soft set theory, us-
ing the idea of fuzzy c-means clustering [14] but it is used for classification, using this
method every document has a degree of membership in all classes of documents. A
document will be classified into a particular class if the document has a certain degree
of membership in that class. Formula to calculate the degree of membership of a par-
ticular document on the document class, similar to the formula for calculating the
degree of membership in the fuzzy c-means, but the distance between documents is
measured using the principle of fuzzy similarity[15].

The paper is organized as follows: Section 2 discusses the related work and section
3 discusses the document representation. Section 4 presents the notions of fuzzy soft
set theory and relevant definitions used in the proposed work and Section 5 gives an
overview of the fuzzy soft set classifier. In Section 6, we describe the standard Reu-
ters-21578 dataset we have used in the experiments, our experimental methodology,
evaluation metrics, and the results we have obtained. We conclude in Section 7.

2 Related Work

Most of the studies aimed at solving the TC problem implement the bow structure.
Using a machine learning algorithm that considers the terms in the training and test
data as the basic features is the fundamental and conventional architecture for the text
classification problem [10, 16]. In this approach, documents are represented by the
widely-used vectorspace model introduced by [17]. Each document is represented as a
vector d. Each dimension in the vector d stands for a distinct term (word) in the term
space of the document collection based on the bow approach. Representing the terms
in this way causes the word ordering information within the sentences to be lost.

String kernels with n-gram sequences were proposed to compensate for the order-
ing information and yielded promising results [18]. But this method has to deal with
performance problems in large datasets it suffers big space and time complexities and
thus uses approximation algorithms instead of representing the full structure.

A different approach is making use of a language model (representing a document
by the generation of new sentences from the document itself based on finite automata
and probabilistic models) for text categorization. Language models are sophisticated
approaches used in information retrieval and they are accepted as too complicated
models for text classification [16]. These models are more appropriate for problems
like query generation from texts, speech recognition, etc.

Main machine learning approaches used in the TC domain may be classified as
supervised (e.g. support vector machine) vs. semisupervised (e.g. using naive Bayes
with expectation maximization) methods, parametric (e.g. support vector machine,

342 B. Handaga and M.M. Deris

naive Bayes) vs. non-parametric (e.g. k-nearest neighbor) methods, linear (e.g. sup-
port vector machine with linear kernel) vs. non-linear (e.g. support vector machine
with radial basis kernel) classifiers, vector space (e.g. artificial neural network, Roc-
chio) vs. probabilistic (e.g. naive Bayes) classification, and decision tree modeling
(e.g. rule-based decision trees). Clustering (e.g. k-means, which is unsupervised and
semiparametric) may also be employed in the case of the existence of a dataset with-
out labeled training data. Several studies have compared the performances of these
approaches and in general support vector machine (SVM) with linear kernel was
shown to yield the leading results [2, 4, 10, 19]. For the fundamental challenges in the
text classification domain (high dimensionality, sparse instances, separability of
classes), SVM provides eficient solutions by being more immune to the overfitting
problem, using an additive algorithm with an inductive bias that suits problems with
dense concepts and sparse instances, and employing a basic linear separation model
that fits the discrimination of most of the classes [4].

3 Document Representation

Documents should first be transformed into a representation suitable for the classifica-
tion algorithms to be applied. In our study, documents are represented by the widely
used vector-space model, introduced by [17]. In this model, each document is
represented as a vector d. Each dimension in the vector d stands for a distinct term in
the term space of the document collection. We use the bag-of-words representation
and define each term as a distinct word in the set of words of the document collection.

To obtain the document vectors, each document is parsed, non-alphabetic charac-
ters and mark-up tags are discarded, case-folding is performed (i.e. all characters are
converted to the same case-to lower case), and stopwords (i.e. words such as “an”,
“the”, “they” that are very frequent and do not have discriminating power) are elimi-
nated. We use the list of 571 stopwords used in the Smart system [17, 20]. In order to
define words that are in the same context with the same term and consequently to
reduce dimensionality, we stem the words by using Porters Stemming Algorithm
[21], which is a commonly used algorithm for word stemming in English. We
represent each document vector as d = (w1,w2,…,wn) where wi is the weight of ith
term of document d.

There are various term weighting approaches studied in the literature [22]. Boolean
weighting and tf-idf (term frequencyinverted document frequency) weighting are two
of the most commonly used ones.

In boolean weighting, the weight of a term is considered to be 1 if the term appears
in the document and it is considered to be 0 if the term does not appear in the docu-
ment:

 >

=
.,0

0,1

otherwise

tfif
w i

i
 (1)

 Text Categorization Based on Fuzzy Soft Set Theory 343

where tfi is the raw frequency of term i in document d, tf-idf weighting scheme is
defined as follows:

⋅=

i
ii n

n
tfw log (2)

where tfi is the same as above, n is the total number of documents in the document
corpus and ni is the number of documents in the corpus where term i appears. tf-idf
weighting approach weights the frequency of a term in a document with a factor that
discounts its importance if it appears in most of the documents, as in this case the
term is assumed to have little discriminating power. Also, to account for documents of
different lengths we normalize each document vector so that it is of unit length.

In his extensive study of feature selection metrics for SVM-based text classifica-
tion, Forman used only boolean weighting [19]. However, the comparative study of
different term weighting approaches in automatic text retrieval performed by Salton
and Buckley reveals that the commonly used tf-idf weighting outperforms boolean
weighting [22]. On the other hand, boolean weighting has the advantages of being
very simple and requiring less memory. This is especially important in the high di-
mensional text domain. In the case of scarce memory resources, less memory re-
quirement also leads to less classification time. Thus, in our study, we used both the
boolean weighting and the tf-idf weighting schemes.

4 Soft Set Theory

In this section, we recall the basic notions of soft sets and fuzzy soft sets. Let U be an
initial universe of objects and EU (simply denoted by E) the set of parameters in rela-
tion to objects in U. Parameters are often attributes, characteristics, or properties of
objects. Let P(U) denote the power set of U and A ⊆ E. Following [23, 24], the con-
cept of soft set is defined as follows.

Definition 1. ([24]) Let U be initial universal set and let E be a set of parameters. Let
P(U) denote the power set of U. A pair (F, E) is called a soft set over U, if only if F is
a mapping given by F:A → P(U).

By definition, a soft set (F, E) over the universe U can be regarded as a parameterized
family of subsets of the universe U, which gives an approximate (soft) description of
the objects in U.

4.1 Fuzzy Soft Set

Definition 2. ([25]) Let U be an initial universal set and let E be set of parameters. Let
)(

~
UP denote the power set of all fuzzy subsets of U. Let A ⊂ E. A pair),

~
(EF is

called a fuzzy soft set over U, where F
~ is a mapping given by)(

~
:

~
UPAF → .

344 B. Handaga and M.M. Deris

In the above definition, fuzzy subsets in the universe U are used as substitutes for the
crisp subsets of U. Hence it is easy to see that every (classical) soft set may be consi-

dered as a fuzzy soft set. Generally speaking ()εF
~

 is a fuzzy subset in U and it is

called the fuzzy approximate value set of the parameter ε.

4.2 Similarity between Two Fuzzy Soft Sets

Measuring similarity or distance between two entities is a key step for several data
mining and knowledge discovering task, such as classification and clustering. Similar-
ity measures quantify the extent to which different patterns, signals, images or sets are
alike. Several researchers have studied the problem of similarity measurement be-
tween fuzzy sets, fuzzy numbers and vague sets. Recently, Majumdar and Samanta
[26] have studied the similarity measure of fuzzy soft sets. In their generalisation of
fuzzy soft set, a degree is attached with the parametrization of fuzzy sets while defin-
ing a fuzzy soft set.

Let Fρ and Gδ be two General Fuzzy Soft Set (GFSS) over the parametrized un-
iverse (U, E). Hence, the Fρ ={(F(ei), ρ(ei)), i=1,2,…,m} and Gδ ={(G(ei), δ(ei)),

i=1,2,…,m}. Let F
~

={F(ei), i=1,2,…,m} and G
~

={G(ei), i=1,2,…,m} are two fami-
lies of fuzzy soft sets. Thus, the similarity between the two GFSS, Fρ and Gδ is
denoted as

S(Fρ, Gδ) =)
~

,
~

(GFM • m (ρ,δ). Here)
~

,
~

(GFM = maxi)
~

,
~

(GFMi

where,

 () ()

=

=

+

−
−= n

j ijij

n

j ijij

i
GF

GF
GFM

1

1
~~

~~

1
~

,
~

 (3)

is the similarity between F
~

 and G
~

, and

()).(=)(=,1=),(iiii

ii

ii eandewherem δδρρ
δρ
δρ

δρ
+
−

−

 (4)

is the similarity between two fuzzy sets ρ and δ.
if we used universal fuzzy soft set then 1== δρ and 1=),(δρm , and thus, the

formula for similarity is

()ijij

n

j

ijij

n

j
i

GF

GF

GFMGFS
~~

~~

1=)
~

,
~

(),(

1=

1=

+

−
−=

δρ

 (5)

where)(=
~

)(=
~

)(
~

)(
~ j

ieGijj
ieFij xGandxF μμ

 Text Categorization Based on Fuzzy Soft Set Theory 345

Unfortunately, this similarity formula is less efficient when applied to large dataset
and dataset is sparse. This formula will produce non-sparse element in large numbers
and cause the calculation process to be slow. In the case of text document classifica-
tion, usually size of dataset is very large and is very sparse, so the formula is not
appropriate for the case of text classification, instead we will use a fuzzy similarity
formula from [15]:

)
~

,
~

max(

)
~

,
~

min(

),(

1=

1=

ijij

n

j

ijij

n

j

GF

GF

GFS

=δρ

 (6)

This formula will be used to measure the similarity between two documents or in
other words, measure the distance between two documents.

5 Fuzzy Soft Set Algorithm for Text Categorization

In this section we will discuss some of the algorithms based on fuzzy soft set theory
to categorize text documents, so called Fuzzy Soft Set Classifier (FSSC). This algo-
rithm consists of three important phases. First, pre-processing phase. Second, the
training phase, and the third phase is the determination of the category or classifica-
tion phase. The complete algorithm is as follows,

Pre-processing phase
1. Compute the boolean, tf, or tf-idf for all documents in the data set.
2. Compute fuzzification from step-1, using normalization.

Training phase
1. Given N documents obtained from the data class w.
2. Calculate the cluster center vector Ew using Equation-10

=

=
N

i
wiw E

N
E

1

1
 (7)

3. Obtain a fuzzy soft set model for class w, where),
~

(EFw
, is a cluster center vector

for class w having D features.
4. Repeat step 1-3 for all W classes.

Classification phase

1. Obtain a feature vector Ed. from unknow class document.
2. Obtain the degree of membership, μdw, where d = 1,2,…,D and w = 1,2,…,W is

calculated using Equation-11.

346 B. Handaga and M.M. Deris

1

1

1

2

=

−

=

−

W

j

m

dj

dw
dw D

Dμ (8)

 where

=

=−=−=
N

i widi

N

i widi
dw

CE

CE
wdSD

1

1

),(max

),(min
1),(1

 m = 2 (fuzziness)

 Edi : feature ith of the unknown class document d

 Cwi : feature ith of the cluster center w

3. Assign the unknown class document to class w if

 []() w
W
w thresholdargw >= μ1max=

 (9)

the value of threshold can be set in accordance with the purposes.

6 Experiment Results

Experiments are performed with 70% training data set and 30% test data set are ran-
domly selected, but we guarantee that the five classifier using a portion of the same
data, and classification is done by using one-agains all, so the classifier will mark any
documents included in the class of documents which are tested. For example, testing
was conducted to document the class A and class rather than A. Then the classifier
will provide the sign ‘1’ on the documents included in the document class A, and
gives a sign ‘-1’ for documents that are not included in the document class A. Expe-
riments are carried out to compare between five classifer, FSSC, kNN, Bayesian,
Rocchio, and SVM. For bayesian classifier we used smoothing streng 0.01. while for
the SVM software used SVMLight [27], with a linear kernel type and set the value of
C = 0.1. All experiment performed on a 2.1 GHz Core 2 Duo computer with 2 GB
memory using Octave 3.2.4.

6.1 Document Datasets

In our experiments, we used the Reuters-21578 document collection, which is consi-
dered as the standard benchmark for automatic document categorization systems [28].
The documents in Reuters-21578 have been collected from Reuters newswire in 1987.
This corpus consists of 21,578 documents. 135 different categories have been as-
signed to the documents. The maximum number of categories assigned to a document
is 14 and the mean is 1.24. This dataset is highly skewed. For instance, the earnings

 Text Categorization Based on Fuzzy Soft Set Theory 347

category is assigned to 2,709 training documents, but 75 categories are assigned to
less than 10 training documents. 21 categories are not assigned to any training docu-
ments. 7 categories contain only one training document and many categories overlap
with each other such as grain, wheat, and corn. We selected 12 class that has the high-
est number of document.

6.2 Evaluation Metrics

To evaluate the performance of the soft set classifier we use the commonly used F-
measure metric, which is equal to the harmonic mean of recall (ρ) and precision (π)
[10]. ρ and π are defined as follows

ii

i
i

ii

i
i FNTP

TP

FPTP

TP

+
=

+
= ρπ ; (10)

Here, TPi (True Positives) is the number of documents assigned correctly to class i:
FPi (False Positives) is the number of documents that do not belong to class i but are
assigned to class i incorrectly by the classifier; and FNi (False Negatives) is the num-
ber of documents that are not assigned to class i by the classifier but which actually
belong to class i.

The F-measure values are in the interval (0,1) and larger F-measure values corres-
pond to higher classification quality.

Macro-averaged F-Measure. In macro-averaging, F-measure is computed locally
over each class first and then the average over all classes is taken. and are computed
for each class as in Equation-13. Then F-measure for each category i is computed and
the macro-averaged F-measure is obtained by taking the average of F-measure values
for each category as:

Macro-averaged F-measure gives equal weight to each data and is therefore consi-
dered as an average over all the class pairs. It tends to be dominated by the classifiers
performance on common classes.

M

F
averagedmacroF

M

i i ==− 1)((11)

 Where,
ii

ii
iF

ρπ
ρπ

+
=

2

M is total number of classes. Macro-averaged F-measure gives equal weight to each
class, regardless of its frequency. It is influenced more by the classifier's performance
on rare classes.

6.3 Results and Discussion

The Table 1 shown the results of performance comparison test of five classifier,
namely FSSC, kNN, Bayesan, Rocchio, and SVM. Testing performed for three types
of document representation which is in the form of Term Frequency (TF), Term Fre-
quency – Invert Document Frequency (TF-IDF), and Boolean.

348 B. Handaga and M.M. Deris

We perform five types of measurements, namely precision, recall, f-meassure, run-
ning time, and return size. Precision to measure the number of documents marked ‘1’
(or retrieved) correctly relative to the number of all documents marked as ‘1’, preci-
sion is ideal if all documents are marked ‘1’ represents all the relevant documents
contained in the collection, and no irrelevant documents marked ‘1’. Recall to meas-
ure the number of documents marked as ‘1’ correctly, relative to the number of
relevant documents, the number of all documents belonging to the same class in the
collection. Ideal recall, if all documents are marked as ‘1’ consists of all relevant doc-
uments in the collection. F-measure is a combination of precision and recall, by a
factor of a certain balance. This factor can be set by the user, typically used 0.5 as
value of this balance factor.

Return size is the number of documents marked as ‘1’ by the classifier relative to
total documents in collection. Ideally return size equals the number of relevant docu-
ments in the collection. Running time is the amount of time required to perform the
classification is calculated in units of seconds.

Table 1. Performance comparison between five classifiers

Table 1 shows that in ge
has advantages and disadva
lest among the other, even
the collection (4.2%). SVM
presentations. The highest p
SVM also has the highest f
(27.36 seconds) than the th
Bayesan have performance
presentation, kNN has a u
(69.3%), and f-measure (66
ber of relevant documents
FSSC. Based on these four
the SVM, however, kNN w
of times slower than the oth

Bayesan have a high r
(33.0%), so the f-measure
Rocchio. High recall perfo
return-size that relatively la
size of relevant document
quickly, less than a second
SVM.

Rocchio classifier has a
just 0.5 seconds, quicker th
recall (92.1%), it is also in
among the four other class
(29.4%), among the four
(41.3%).

The FSSC classifier in g
classifier. Works relatively
turn-size with kNN (4.4%),
ments (4.2%). The FSSC h
slightly below the SVM an
FSSC has a precision and f
shows the results of the com

Fig

Text Categorization Based on Fuzzy Soft Set Theory

eneral there is no absolute winner in this comparison, e
antages. SVM classifier has a return-size (4.0%) the sm
smaller than the average size of the relevant document

M also has the best precision for all types of document
precision is achieved for a boolean representation of 82
f-measure, 75%. However, SVM worked relatively lon

hree other classifier, SVM only faster than kNN. kNN
e that is almost not affected by those type of document
uniform value of performance, precision (64.7%), re
6.7%) and has a return-size is slightly larger than the nu
in the collection (4.4%) rate is equal to return-size of
r performance, kNN looks pretty good just slightly bel

works very slowly (240.53 seconds), tens or even hundr
her classifier.
ecall (89.2%) but at the same time have low precis
bayesan has a relatively low (44.6%), only slightly ab
ormance on Bayesan classifier, is influenced also by
arge (10.1%) was almost two times larger than the aver
ts in the collection. However Bayesian work relativ
d (0.75 second), this speed is almost 30 times faster t

performance similar to Bayesan, can work even faster
han the four other classifier. Rocchio also has the high

nfluenced by the high return-size (10.9%) even the high
ifier. However Rocchio classifier has the lowest precis
classifier and Rocchio also has the lowest f-meas

general have a relatively good performance than any oth
y fast (5.77 second) than SVM and kNN, has the same
, only slightly above the average number of relevant do

has a precision (56%), recall (61.3%), and f-measure (58
nd kNN, when compared with the Bayesian and Rocch
f-measure are relatively better. Figure-1 through figure
mparison in graphical form.

g. 1. The result of precision comparison

349

each
mal-
ts in
t re-
2%.
nger
and

t re-
ecall
um-
the

low
reds

sion
ove
the

rage
vely
than

r, in
hest
hest
sion
sure

hers
 re-

ocu-
8.2)
hio,
e-5,

350 B. Handaga and M.M

Fi

Fig.

Fig. 4

Fig.

M. Deris

ig. 2. The result of recall comparison

. 3. The result of f-measure comparison

4. The result of running time comparison

 5. The result of return-size comparison

 Text Categorization Based on Fuzzy Soft Set Theory 351

7 Conclusion and Future Work

In this paper we investigate a new algorithm for text categorization based on fuzzy
soft set theory, so called FSSC. We use the standard Reuters-21578 dataset and tf, tf-
idf, and boolean weighting schemes to compare FSSC with four other types of text
classifier consisting of kNN, Bayesian, Rocchio, and SVM. Classification proses is
done by one-agains all, evaluation is done by using five types of measures, namely
precision, recall, F-measure, return-size, and running time. In general there is no abso-
lute winner in this comparison. Highest precision (79.3%) and F-measure (75.8%)
was achieved by the SVM, while the recall (92.1%) the highest produced by Rocchio.
Running time fastest was obtained by Rochhio too (0.5 second). Nevertheless Roc-
chio have low precision and low F-measure. The kNN has the precision, recall, and F-
measure is relatifly good but it works very slowly. Bayesian can work faster but simi-
lar to Rocchio, have low precision and low F-measure. The FSSC has precision, re-
call, and F-measure lower than SVM, and kNN but FSSC can work faster than both.
When compared with the Bayesian and Rocchio, the FSSC works more slowly but
has a higher precision and F-measure.

From the results above FSSC has a very good chance to be applied in information
retrieval systems. For future research we will apply the FSSC on a search engine.

Acknowledgments. This work was supported by UTHM under the FRGS Grant No.

0736.

References

[1] Sebastiani, F.: Machine learning in automated text categorization. ACM Comput.
Surv. 34(1), 1–47 (2002)

[2] Özgür, A., Özgür, L., Güngör, T.: Text Categorization with Class-Based and Corpus-
Based Keyword Selection. In: Yolum, p., Güngör, T., Gürgen, F., Özturan, C. (eds.)
ISCIS 2005. LNCS, vol. 3733, pp. 606–615. Springer, Heidelberg (2005)

[3] Ozgur, L., Gungor, T.: Text classification with the support of pruned dependency pat-
terns. Pattern Recogn. Lett. 31, 1598–1607 (2010)

[4] Joachims, T.: Text Categorization with Suport Vector Machines: Learning with Many
Relevant Features, pp. 137–142

[5] Ozgur, L., Gungor, T., Gurgen, F.: Adaptive anti-spam filtering for agglutinative lan-
guages: a special case for Turkish. Pattern Recogn. Lett. 25, 1819–1831 (2004)

[6] Yin, S., Wan, B., Qiu, Y., et al.: A Web Text Fuzzy Classification Algorithm on Fuzzy
Comprehensive Weighted Evaluation Reasoning, pp. 1114–1117

[7] Szmidt, E., Kacprzyk, J.: Using Intuitionistic Fuzzy Sets in Text Categorization. In:
Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS
(LNAI), vol. 5097, pp. 351–362. Springer, Heidelberg (2008)

[8] Duan, Q., Miao, D., Chen, M.: Web Document Classification Based on Rough Set. In:
An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.)
RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 240–247. Springer, Heidelberg (2007)

352 B. Handaga and M.M. Deris

[9] McCallum, A., Nigam, K.: A Comparison of Event Models for Nave Bayes Text Classi-
fication. In: Sahami, M. (ed.) Proc. of AAAI Workshop on Learning for Text Categori-
zation, Madison, pp. 41–48 (1998)

[10] Yang, Y., Liu, X.: A re-examination of text categorization methods. In: SIGIR 1999, pp.
42–49 (1999)

[11] Mushrif, M.M., Sengupta, S., Ray, A.K.: Texture Classification Using a Novel, Soft-Set
Theory Based Classification Algorithm. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y.
(eds.) ACCV 2006. LNCS, vol. 3851, pp. 246–254. Springer, Heidelberg (2006)

[12] Feng, F., Jun, Y.B., Liu, X., et al.: An adjustable approach to fuzzy soft set based deci-
sion making. Journal of Computational and Applied Mathematics 234(1), 10–20 (2010)

[13] Roy, A.R., Maji, P.K.: A fuzzy soft set theoretic approach to decision making problems.
Journal of Computational and Applied Mathematics 203(2), 412–418 (2007)

[14] Bezdek, J.C., Ehrlich, R., Full, W.: FCM: The fuzzy c-means clustering algorithm.
Computers & Geosciences 10(2-3), 191–203 (1984)

[15] Widyantoro, D.H., Yen, J.: A fuzzy similarity approach in text classification task, vol. 2,
pp. 653–658

[16] Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cam-
bridge University Press (2008)

[17] Salton, G., Yang, C., Wong, A.: A Vector-Space Model for Automatic Indexing. Com-
munications of the ACM 18(11), 613–620 (1975)

[18] Lodhi, H., Saunders, C., Shawe-Taylor, J., et al.: Text classification using string kernels.
J. Mach. Learn. Res. 2, 419–444 (2002)

[19] Forman, G.: An extensive empirical study of feature selection metrics for text classifica-
tion. J. Mach. Learn. Res. 3, 1289–1305 (2003)

[20] ftp (2010), ftp://ftp.cs.cornell.edu/pub/smart
[21] Porter, M.F.: An algorithm for suffix stripping, pp. 313–316. Morgan Kaufmann Pub-

lishers Inc., San Francisco (1997)
[22] Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval, pp.

513–523
[23] Maji, P.K., Biswas, R., Roy, A.R.: Soft set theory. Computers & Mathematics with Ap-

plications 45(4-5), 555–562 (2003)
[24] Molodtsov, D.: Soft set theory–First results. Computers & Mathematics with Applica-

tions 37(4-5), 19–31 (1999)
[25] Maji, P., Biswas, R., Roy, A.: Fuzzy soft sets. J. Fuzzy Math. 9(3), 589–602 (2001)
[26] Majumdar, P., Samanta, S.K.: Generalised fuzzy soft sets. Computers & Mathematics

with Applications 59(4), 1425–1432 (2010)
[27] Joachims, T.: Making large-scale support vector machine learning practical. In: Ad-

vances in Kernel Methods, pp. 169–184. MIT Press (1999)
[28] Lewis, D.D.: Reuters-21578 Document Corpus V1.0 (2011)

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 353–363, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Cluster Size Determination Using JPEG Files

Nurul Azma Abdullah, Rosziati Ibrahim, and Kamaruddin Malik Mohamad

Faculty of Computer Science and Information Technology
Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
{azma,rosziati,malik}@uthm.edu.my

Abstract. File can be recovered by simply using traditional recovery means.
However, a technique is required to distinguish one file to another when dealing
with hard disk with corrupted filesystem metadata. As in a computer file
system, a cluster is the smallest allocation of disk space to hold a file,
information about the cluster size can help in determining the start of file which
can be used to distinguish one file to another. This paper introduces a method
for acquiring the cluster size by using data sets from DFRWS 2006 and
DFRWS 2007. A tool called PredClus is developed to automatically display the
predicted cluster size according to probabilistic percentage. By using PredClus,
the cluster size used in both DFRWS 2006 and DFRWS 2007 can be
determined. Thus, JPEG images that are not located at the starting address of
any cluster are most probably thumbnails or embedded files.

Keywords: Cluster size, JPEG files, File carving, DFRWS 2006/2007.

1 Introduction

In a computer file system, a cluster or in DOS 4.0 known as an allocation unit or in
UNIX System as block, is the smallest logical set that is created to perform actual
erasure for files and directories [1], [2]. A cluster is a contiguous group of sectors
that contains an identical amount of data [3]. The grouping of sectors into clusters is
performed by the operating system and thus is not a physical delimitation. Every track
on the disk consists of the same number of clusters, and every cluster consists of the
same number of sectors. A cluster usually composed of one to sixty four sectors with
the amount of data for each sector is 512 bytes [3]. For a disk that uses 512-byte
sector, a 512-byte cluster constitutes one sector, whereas a 4kb cluster constitutes
eight sectors. The typical size of cluster varies from 1 sector to 128 sectors which is
equivalent to 64kb [2], [4].

A cluster is the smallest allocation of disk space to hold a file [5], [6]. Files in the
computer are stored in one or more clusters on the disk. A cluster may contain the
whole file or portion of files but a cluster only stores data for one file [3], [7]. Hence,
there will be several sectors available that not been used to store other data even the
file does not contain enough data to fill all the sectors of the cluster. Because of this, it
is an issue for the storage industry whether to allow larger cluster sizes or not. There
are advantages and disadvantages for both options. To store small files on a file

354 N.A. Abdullah, R. Ibrahim, and K.M. Mohamad

system with large clusters will waste disk space which is called slack space [5], [8],
[10]. However, a large cluster size reduces bookkeeping and fragmented files. This
may improve reading and writing speed [1], [5]. Overall, no matter what is the size of
cluster, it is safe to say that the start of one file must be at the beginning of cluster.
Therefore, it is important to determine the cluster’s size to determine the start of file.
This information is useful for both steganography and file carving.

In file carving, the whole content of the hard disk used for evidence need to be
imaged (will be referred to as image file) in preparation for forensics investigation.
The image file contains thousands of hex code representing all files in the hard disk
used for evidence. It is impossible to read line by line manually in order to extract all
files into their original form. Information about the start of file can be used to identify
each file that resides in any dataset.

Information of the start of file is also useful to determine slack space. This area is
used by one of the steganography techniques for hiding message. The slack space size
can be determined by subtracting the size of file from the used cluster size. In this
paper, experiments are done using datasets from DFRWS.

DFRWS is started in 2001 as a non-profit, volunteer organization that is dedicated
to the sharing of knowledge and ideas about digital forensics research. Datasets from
DFRWS 2006 and 2007 challenges [10], [11] are used in the experiment because both
datasets have been widely used in many file carving research such as [12- 18].

DFRWS 2006 and 2007 challenge datasets are prepared using an assumed 512-
byte sector size. However, it is important to know the cluster size for the dataset as it
is the smallest unit used by the computer system for allocating data. This paper
focuses on finding the cluster size for data set of DFRWS 2006 and DFRWS 2007
challenge. The proposed technique, PredClus is developed to automatically display
the predicted cluster size according to probabilistic percentage. This information can
be used as an alternative method in recognizing thumbnail and embedded files.

The remainder of this paper is structured as follows: in the next section is
discussing the proposed technique, PredClus and the experimentation done. Section 3
presents experimental results and the discussion. The conclusion is presented in
Section 4.

2 PredClus

Formally, the size of a cluster is determined by the size of the volume depending on
the type of file system such as NTFS, FAT16, FAT 32 or ExFAT. Table 1 shows the
default cluster size for any operating system that supports FAT [6]. The cluster size
for DFRWS 2006 and 2007 datasets are not following the default cluster size as stated
in Table 1. There is no available information about the cluster size but the sector size
for both datasets is assumed to be 512 bytes. For this experiment, JPEG files are used
to determine the cluster size for these datasets. These JPEG images are recognized
from their standard header with additional validated header [12], [13] for different
types of JPEG. The information for each JPEG file location or offset can be obtained
from the DFRWS website [10-11]. However, embedded JPEG images are not

 Cluster Size Determination Using JPEG files 355

included in the layout. Therefore, standard headers of JPEG images are searched from
the data set by using the hex code header pattern. The header will be paired with
suitable JPEG end of file for retrieving the whole file. With the help of the file layout
prepared in DFRWS, we then reassemble some files that are fragmented manually for
the purpose of this experiment. Then, we checked for each file retrieved and only files
that can be viewed in image editor are used for the experiment.

Table 1. Default cluster size for FAT compatible OS

Drive size
(logical volume)

FAT Type

Sectors

Cluster size

15MB OR less

12 bit

8

4kb

16MB -127MB

16 bit

4

2kb

128MB – 255MB

16 bit

8

4kb

256MB – 511MB

16 bit

16

8kb

512MB–1023MB

16 bit

32

16kb

1024MB-2048MB

16 bit

64

32kb

2048MB-4096MB

16 bit

128

64kb

4096MB-8192MB

16 bit

256

128kb

8192MB-
16384MB

16 bit

512

256kb

According to [19-20], 512 bytes is the common sector size. Thus, the size for a

cluster that contain only one sector is 512 bytes. The maximum cluster size for any
operating system that supports FAT is 256 kb. Nevertheless, Microsoft only use
cluster size of up to 64 kb in an effort to overcome the weakness of their FAT File
systems. Although bigger size cluster can reduce disk accesses and make faster

356 N.A. Abdullah, R. Ibrahim, and K.M. Mohamad

performance, it can also induce space issues. In a condition where a computer system
stores many small files, this will result in many slack spaces (bigger wasted space).
This is because of the characteristic of cluster unit that allows only one file per
cluster. In this case, it will wasted computer storage and reduces its efficiency.
DFRWS 2006 and DFRWS 2007 datasets are 50Mb and 330Mb respectively. The
maximum cluster size tested is up to 8kb. This size is accommodating as
recommended in [7].

2.1 Proposed Architecture

PredClus system architecture is illustrated in Fig. 1. Based on Fig. 1, PredCLus is
used to predict cluster size for dataset used in the digital forensics investigation. In
this research, DFRWS 2006 and 2007 dataset are used as data images. PredClus then
process the data image and finally generate a report on the cluster size used in the data
image.

Fig. 1. PredClus System Architecture

2.2 Proposed Algorithm

In this section, an algorithm (illustrated in Fig. 2) is introduced to predict cluster size
used in both DFRWS 2006 and DFRWS 2007.

First, data from dataset is read. These data are in hex values. The hex values then
matched with the standard JPEG header. However, in this experiment, additional
markers are also used instead of standard JPEG header, 0xFFD8 alone. The additional
markers used are 0xFFE0, 0xFFE1, 0xFFE2, 0xFFC4 and 0xFFDB. When matched,
the offset for each markers matched is retrieved. Using formula as mentioned earlier,
the determinant value is calculated. If the determinant value = 0, then file found is
counted. This is done for each cluster size which are 512-byte, 1-kb, 2-kb, 4-kb and
8-kb cluster as shown in Fig. 3 and Fig. 4.

After the determinant value for all JPEG files in the datasets is extracted, files
found for each cluster size then are summed. The percentage for each cluster size is
calculated. Then, a report is produced.

DFRWS

Cluster

size prediction
Report

Data image
PredClus

 Cluster Size Determination Using JPEG files 357

Fig. 2. Algorithm used in PredClus for predicting data image cluster size

Fig. 3. Example of output from formula used in experiment using data from DFRWS 2006

1. Read data image
2. Initialize ClustSize[] = {512, 1024 (1kb), 2048

(2kb), 4096 (4kb), 8192 (8kb)}
3. Initialize Det_value
4. Initialize Counter[]={0, 0, 0, 0, 0, 0} // to store the

number of headers found for ClustSize[]
5. Initialize Counter[]={0, 0, 0, 0, 0, 0} // to store the

number of headers not at start of ClustSize[]
6. Initialize i = 0 // used for ClustSize index
7. Initialize k= 0 // used for Counter index
8. Find JPEG header
9. If found
10. Read CurrentOffset
11. Det_value = CurrentOffset % ClustSize[i]
12. If Det_value ==0
13. increment Counter[k] by 1
14. Else
15. increment noneCounter[k] by 1
16. if not end of data image, repeat step 7
17. Increment i by 1
18. Increment k by 1
19. If i <= 4, repeat step 7
20. Generate report

358 N.A. Abdullah, R. Ibrahim, and K.M. Mohamad

Fig. 4. Example of output from formula used in experiment using data from DFRWS 2007

2.3 Experimentation

Generally, a cluster size is represented by the data section size of sectors in a cluster
multiplied by the number of sectors [20]. Hence, a cluster size can be derived from
the formula below:

Cluster_size = size_of_cluster x number_of_clusters

For this experiment, as valid cluster size values are powers of two with at least 256
and at most 65536 bytes per cluster [4], we choose to use cluster of 512 bytes, 1kb,
2kb, 4 kb and 8kb. Hence, the cluster size for each group using the formula above is
as listed in Table 2.

Table 2. Values (in bytes) for each cluster group

Cluster group Value of each cluster group
512byte 512 x 1 = 512
1kb 512 x 2 =1024
2kb 512 x 4 =2048
4kb 512 x 8 =4096
8kb 512 x 16 =8192

 Cluster Size Determination Using JPEG files 359

Next, all offset for each JPEG files are derived using a simple program to detect
JPEG header and then manually checked, reassembled and validated for
completeness. The example of offsets for JPEG files in DFRWS 2006 is as shown in
Table 3. Then, using the formula listed below, we can determine which cluster size is
used in DFRWS 2006 and DFRWS 2007.

Determinant_value = Offset mod cluster_size_value

The determinant value is derived from above formula where offset is the offset for the
tested JPEG file and cluster size value is the cluster size for each cluster group 512
bytes, 1kb, 2kb, 4kb or 8kb. This determinant value can result in either 0 or greater
than 0. The simple rule for this formula is, if the determinant value results in 0, it
indicates that the header of the file is at the start of cluster. Otherwise, it does not at
the start of cluster.

Table 3. Offsets prepared for each JPEG files in DFRWS 2006

Number
Offsets

1 240357
2 1980748
3 1995443
4 4241920
5 5948928
6 5949358
7 6257664
8 14134784
9 16115200

10 16144896
11 18581504
12 20806656
13 21304832
14 22238208
15 23329792
16 23330000
17 24017920
18 48561152
19 48561970

3 Result and Discussion

The result of the experiments can be clearly examined in Figure 5 and Figure 6. These
data then are illustrated in a form of bar charts as shown in Figure 7 and Figure 8.

360 N.A. Abdullah, R. Ibrahim, and K.M. Mohamad

From the figures (Figure 5, Figure 6, Figure 7 and Figure 8), clearly we can see
the highest percentage of files found is using 512-byte cluster size which is 9.86%
for DFRWS 2006 dataset and 21.13% for DFRWS 2007 dataset. This is equal to 14
files found for DFRWS 2006 and 30 files found for DFRWS 2007. If we look at the
last cluster size variable which is none, it is refers to any JPEG file offset that could
not fit in any cluster group listed which is 6 and 112 files for DFRWS 2006 and
DFRWS 2007 respectively. This is a very interesting finding. We know that these
files do not at the start of cluster but still some of that files are valid and complete.
We then, check these file and we find out that some of these files are thumbnails
and embedded files. These kinds of file normally do not start at the start of cluster
because they are part of a file. Thumbnails are reduced-size versions of pictures
while embedded files refer to JPEG file that is embedded in other types of file such
as Word, Excel, pdf, etc. Although in DFRWS 2007, the other cluster group fit for
some JPEG files, but overall, we are confident that dataset for both DFRWS 2006
and 2007 use 512-byte cluster. In a conclusion, we find out with the assumption
that the cluster size is 512 bytes, an original JPEG file always start at the start of
cluster, while thumbnails and embedded JPEG files can start at any location within
the original file.

Fig. 5. Statistics result from experiment using DFRWS 2006 dataset

 Cluster Size Determination Using JPEG files 361

Fig. 6. Statistics result from experiment using DFRWS 2007 dataset

Fig. 7. Statistics for DFRWS 2006

362 N.A. Abdullah, R. Ibrahim, and K.M. Mohamad

Fig. 8. Bar chart for DFRWS 2007

Through these finding, we suggest to use cluster size as part of file carving process
to distinguish between the original file and thumbnails or embedded files. Header of
file found not at the start of cluster suggests that the file is not original JPEG file but
may be the thumbnail or embedded JPEG image. Hence, in carving contiguous files,
we can say that a file found not at the start of cluster is not the original JPEG image
while in carving fragmented files, this condition shows that the first file is not
fragmented with another JPEG file but the file contains thumbnail for the original.
Therefore, the second header indicates either a fragmentation point or a thumbnail for
the file. Furthermore, the information about cluster size can be used to determine
available slack space in a cluster.

4 Conclusion

A cluster is the smallest allocation of disk space to hold a file. Therefore, information
about cluster size can help in determining the start of file as its characteristic that does
not allow more than one file in a single cluster. This information can be used both in
improving file carving and steganography technique. There are various techniques to
carve file from corrupted hard disk either using pattern matching, statistical or other
techniques. All of these techniques require the tool to distinguish one file to another.
However, the files that reside in the disk image typically are shown as a single file.
This means that all the files in the corrupted data are seen as one file in a disk image.
This file contains thousand lines of hex code. It is impossible to determine the start of
each file without thoroughly check the file and matched with all patterns available.
Furthermore, from the experiment for both datasets, clearly we can see there are
situations where the header is not at the start of file. Further investigation, we found
out that these situations are because of the JPEG header belongs to either thumbnail
or embedded file. We can say that if any JPEG header found not at the start of file, it
indicates that file is either thumbnail or embedded file. Hence, information about
cluster size do helping in distinguish original JPEG file with thumbnail/s and
embedded image.

 Cluster Size Determination Using JPEG files 363

As in steganography, information about start of file can help to determine the slack
space which is commonly used to hide messages. Hence, to know the start of file is
useful for both file carving and steganography technique.

Acknowledgement. The authors would like to thank Universiti Tun Hussein Onn
Malaysia (UTHM) for supporting this research.

References

1. Ng, S.W.: Advances in Disk Technology: Performance Issues. Computer 31, 75–81 (1998)
2. File Allocation Table, http://en.wikipedia.org/wiki/

File_Allocation_Table#Boot_Sector
3. Jemigan, R.P., Quinn, S.D.: Two-Pass Defragmentation of Compressed Hard Disk Data

with a Single Data Rewrite. U.S Patent 5574907
4. Mkfs.xfs(8)-Linux Man Page, http://linux.die.net/man/8/mkfs.xfs
5. Data Cluster, http://en.wikipedia.org/wiki/Data_cluster
6. The Default Cluster Size for the NTFS and FAT File Systems,

http://support.microsoft.com/kb/314878
7. Default Cluster Size for NTFS, FAT, and ExFAT,

http://support.microsoft.com/kb/140365
8. Linux System Administrator Guide: Chapter 5: Using Disks and Other Storage Media,

http://tldp.org/LDP/sag/html/filesystems.html
9. Vista/XP Install on Large Cluster Sizes, http://www.winvistatips.com/

vista-xp-install-large-cluster-sizes-t801412.html
10. Digital Forensics Research Workshop (DFRWS),

http://www.dfrws.org/2006/challenge/submission.shtml
11. Digital Forensics Research Workshop (DFRWS),

http://www.dfrws.org/2007/challenge/submission.shtml
12. Mohamad, K.M., Mat Deris, M.: Single-byte-marker for Detecting JPEG JFIF Header

using FIRIMAGE-JPEG. In: Proc. of the 2009 Fifth International Joint Conference on
INC, IMS and IDC, 2009, pp. 1693–1698 (2009)

13. Mohamad, K.M., Herawan, T., Deris, M.M.: Dual-Byte-Marker Algorithm for Detecting
JFIF Header. In: Bandyopadhyay, S.K., Adi, W., Kim, T.-h., Xiao, Y. (eds.) ISA 2010.
CCIS, vol. 76, pp. 17–26. Springer, Heidelberg (2010)

14. Mohamad, K.M., Mat Deris, M.: Fragmentation Point Detection of JPEG Images at DHT
Using Validator. In: Proc. of the 2009 FGIT, pp.173–180 (2009)

15. Mohamad, K.M., Patel, A., Herawan, T., Mat Deris, M.: myKarve: Jpeg Image And
Thumbnail Carver. Journal of Digital Forensic Practice 3, 74–97 (2010)

16. Cohen, M.I.: Advanced Carving Techniques. Digital Investigation 4(1-4), 119–128 (2007)
17. Metz, J., Mora, R.J.: Analysis of 2006 DFRWS Forensic Carving Challenge,

http://sandbox.dfrws.org/2006/mora/dfrws2006.pdf
18. Richard III, G.G., Roussev, V.: Scalpel: A Frugal, High Performance File Carver. In: Proc.

of the 2005 Digital Forensics Research Workshop, New Orleans (2005)
19. McKusick, M.K., Joy, W.N., Leffler, S.J., Fabry, R.S.: A Fast File System for UNIX.

ACM Transactions on Computer Systems 2 (1984)
20. Kanagawa, S.K.: Information Reproduction Apparatus and Information Reproduction

Method. U.S. Patent 6,236,663 BI

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 364–378, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Semantic Web Search Engine Using Ontology, Clustering
and Personalization Techniques

Noryusliza Abdullah and Rosziati Ibrahim

Faculty of Computer Science and Information Technology
Universiti Tun Hussein Onn Malaysia, Johor, Malaysia

{yusliza,rosziati}@uthm.edu.my

Abstract. Data accuracy and reliability have been a serious issue in the vast
emergence of information on the web. Advanced web searching has assisted in
knowledge retrieving. However, most knowledge on the Web is presented in
natural-language text that understandable by human but difficult for computers
to interpret. Therefore, Semantic Web approach is widely used to give more
reliable application. This paper presents a framework in enhancing knowledge
retrieval processes using Semantic Web technologies. Instead of using ontology
and categorization alone, we are injecting personalization concept from
Relational Database (RDB) to ensure more reliable data are obtained. The
proposed framework is discussed in details. A case study is presented to see the
viability of the proposed framework in retrieving the meaningful information.

Keywords: Semantic Web Search, Ontology, Clustering, User Profiling.

1 Introduction

Knowledge is so important for us in all aspects. Although many sources have given
good numbers of information but there are still lacking in terms of knowledge
reliability. As organization’s ability to learn and handle knowledge processes or
knowledge product is considered the new key success factor [1], research in
information and knowledge retrieval are actively conducted. They are also useful in
preventing researchers from digging every single document to information searching.
However, retrieving the real meaning of data is often fails to give the desired result.

As Information Technology has evolved to the mature phase, we do not expect
this situation should continue. Something has to be done to ensure we can learn from
other people by capturing as much information or knowledge as we can and make it
meaningful to our purpose. In order to make this determination is fulfilled, knowledge
retrieval is chosen as an enabler to overcome the previous stated problem. It will be
the next generation retrieval systems in order to overcome the rapid increase in data
and information to find the right knowledge [2]. Nonetheless, in retrieving
knowledge, substantial amount of efforts are needed. According to Tao, Li, & Nayak,
[3] interpreting users’ information needs is compulsory in knowledge retrieval.
Hence, they proposed Local Instance Repository (LIR), a personal collection of web
documents recently visited by the user.

Web Search Engine Using Ontology, Clustering and Personalization Techniques 365

The major challenge in implementing either information or knowledge retrieval in
WWW is most knowledge on the Web is presented as natural-language text that
understandable by human but difficult for computers to interpret. So, Semantic Web
approach is widely used to give more reliable application. Mikroyannidis [4] explains
that Semantic Web is able to give information a well-defined meaning and better
cooperation between computers and people. In applying the Semantic Web, ontology
is commonly discussed. It is an explicit specification of a conceptualization.
dâ€™Aquin & Noy [5] states that data interoperability property from ontologies
which permits sharing and reusing features, is a key promises of the Semantic Web.
These advantages are highlighted in 11 ontologies libraries. Four of the libraries
might take into consideration in this study due to the general domain. They are
Cupboard[6], Ontology Design Patterns (ODP) [7], OntoSelect [8], OntoSearch2 [9]
and Schema-Cache [10].

While ontologies are capable in giving good outcome, researchers are trying to
enhance searching method using clustering technique [11] and user
profiling/personalization [12, 13, 14]. Although previous researches are capable to
give good results, we are motivated to improve the output. Therefore, we propose the
hybrid of Semantic Web Search Engine, a knowledge retrieval platform using
Semantic Web Search to ensure reliability criteria is fulfill in retrieving knowledge.
This web searching based on three criteria: ontology, clustering and user
profiling/personalization. The techniques are consolidated to give more reliable
searching particularly in the user’s perspective. The proposed technique will extract
meaningful information and give positive impact in the area of Knowledge Retrieval.

The remainder of this paper is organized as follows. Section 2 lists related works
that relevant to this research. Section 3 discusses the research method while Section 4
provides suggested framework in this study. Finally, section 5 provides the
conclusion.

2 Related Works

In this section we discuss the details of Semantic Web, online ontology resources,
clustering (or categorization) and user profiling (or personalization).

2.1 Semantic Web

In our research, we concentrate on the search engine. Semantic Web search engine
rank semantic web document, RDF graphs, triples and terms. This is different from
conventional search engines where only Web pages are ranked [15]. The functionality
of the Semantic Web is resemble typical search engine such as Google and Yahoo but
referring to Jiang [16] the benefit of using it is the ability for machine-understood
descriptions of meaning. The web helps us to reach information that we search and
other data related to it. Thus, Semantic Web is not just sharing text of a page but data
and facts as well [17].

Other motivation to use Semantic Web is it helps in collecting data together from
the web [17]. Referring to Mikroyannidis [4], Semantic Web is better than
conventional web because of the ability to handle unstructured content. Semantic

366 N. Abdullah and R. Ibrahim

Web can overcome this problem by using software agent that can enhancing search
precision and enabling logical reasoning. Semantic Web is the significant product
among the established companies like Oracle, Vodafone, Amazon, Adobe, Yahoo and
Google wherein they provide a smarter web [18]. Moreover, Joo [19] views semantic
web has a potential to implement semantic integration and reduce information
overload.

According to Janev & Vrane [20] this is the popular area in the Information and
Communication Technology field. Many research efforts are conducted to improve
traditional web and making the content available on the semantic web. In line with
this thought, Edwards [17] explains moving from HTML to XML is the original plan
for the semantic web. Loopholes in HTML addressed by Linked Data that connect
data, information and knowledge on the semantic web using Uniform Resource
Identifier (URI) and Resource Description Framework (RDF).

2.2 Online Ontology Resources

Ontology is the heart of the Semantic Web. It is a domain and knowledge
representation [21, 22]. In consonance with Hepp [23], ontologies are the vocabulary
that can be used to express a knowledge base while Diez-Rodriguez et al. [24]
discussed that the intention to represent concepts in ontologies is to improve
knowledge searching and discovery mechanisms.

In-depth researches are conducted on ontologies because of the function as the
backbone for the semantic web [20]. Joo [19] states that research on ontology is
necessary to ensure the diffusion of the semantic web. In addition, Ontology-based
knowledge organization can contribute to express the contents of information
elements and semantic relations between them. It can also support semantic
reasoning and retrieval [25]. Furthermore, Maier, Hadrich & Peinl [1] stated that
documented knowledge which spread across multiple sources requires identification
and visualization with the help of knowledge maps and integration supported by
ontologies as a manager to semantic content.

However, in the interest of ensuring ontologies and metadata to represent
information correctly, they need constant updates and maintenance [4]. In order to
accomplish the aim, Web Ontology Language (OWL) is used. It is a semantic
markup language for publishing and sharing ontologies on the World Wide Web and
used to describe the classes and relations between them [21]. Still, according to
Cardoso [18], building ontology is more complex in terms of logic and structure
compared to building software. The main goal of ontology engineering is to produce
useful, consensual, rich, current, complete, and interoperable ontologies.

In building ontologies, linking them to the knowledge organization systems is the
main priority to increase interoperability and data accessibility [23]. The highest
methodologies adoption in develop ontology is Methontology. Ontologies
development needed an editor. There are several editors including Protégé, SWOOP,
OntoEdit, OntoStudio and many more. Among all, protégé is the most used editor due
to the support of wide variety of plugin and import formats and it’s free open source.

Web Search Engine Using Ontology, Clustering and Personalization Techniques 367

In accordance with D’Amato et al. [26], combining semantic web search with
ontological background is a promising research approach. New semantic web
applications discover ontologies on the web. Exploring large-scale semantics need to
perform certain tasks: Find relevant resources, Select appropriate knowledge, Exploit
heterogeneous knowledge sources and combine ontologies and resources [27].

Semantic applications that use online knowledge can ensure in obtaining
appropriate semantic resources. D’Aquin et al. [27] lists several Semantic web search
engines such as Swoogle, Sindice, Falcon-S and Watson. Among these search
engines, Watson is better in terms of finding, selecting, exploiting and combining
online resources without having to download the ontologies. It uses a set of crawlers
to explore sources to check for duplicates, copies or prior versions. Analyzing and
indexing are depending on content, complexity, quality and relation to other
resources.

2.3 Clustering/Categorization

Extension to the current approach, Trillo et al.[11] proposes categorization or
clustering method which turns up with a semantic technique to group the output of
searching keywords into different categories. They use online ontologies to define the
possible categories.

2.4 User Profiling/Personalization

Research on personalization or user profiling in the semantic web is actively
conducted. Jie et al. [12] uses information on the homepage for profile extraction.
Data for instance, interest and publications are extracted to get more information on
users. Other researchers are based on the history of visited site for personalization.

In order to improve browsing result, personalization mechanism is used. This
mechanism is based on user preferences and monitoring process of user navigation.
Antoniou et al. [13] suggests the method of suggesting highly accessed pages from
the past users’ navigational patterns to the new users. This method has overcome
very frequent accessibility for short periods of time using advance data structures
technique. Yoo [14] supports effective retrieval of personalized information on the
semantic web by using hybrid query processing method. The hybrid of two methods,
query rewriting method and reasoning method are able to process query when
individual requirements change.

Many researchers are using user profiling and personalization term
interchangeably and refer them as the same entity. However, some researchers adopt
them as two different things. Personalization refers to the navigational behaviour
while user profiling is user’s personal data. We will use user profiling term from now
onwards to avoid confusion. While most researchers are concentrating on browsing
history and using web data for personalization or user profiling, we choose to hybrid
our Semantic Web Search engine using data in our Relational Databases (RDB) to get
more info on users. Due to the absence of Oracle-like RDMBS which implements
RDF model to their databases, we map our RDB to the RDF.

368 N. Abdullah and R. Ibrahim

3 The Framework of Semantic Web Search Engine

In this section, the proposed framework to implement hybrid Semantic Web Search is
presented.

3.1 Semantic Web Search Construction

In retrieving knowledge, there are several techniques can be implemented. Semantic
Web is chosen based on certain advantages stated in the previous section. Ensuring
results obtained are more reliable, method in [11] is used with modification in user
profiling concept.

3.2 Search Result Based on User Profiling

This research focuses on Universiti Tun Hussein Onn Malaysia (UTHM) dataset.
Emphasizing on the user profiling, members’ own data are extracted and used to
ensure results are more reliable in user’s perspective. These are the components need
to be examined:

• Staff ID
• Staff Name
• Faculty ID
• Faculty Name

3.3 Proposed Model

Based on [11], the approach of extracting online ontology from the web is applied.
The results are then categorized to facilitate users. However, searching facilities is
optimized by adopting user profiling technique in the current approach. Figure 1 (b)
shows the adaptation framework from Trillo et al. [11] (Refer Figure 1a).

Figure 1 shows the adaptation of Trillo et al. [11] with the enhancement in user
profiling. Compared to the previous framework, this proposed framework will match
categorized keywords with users’ personal data and rank the output based on the data.
In our approach, user’s own data is compared to the clustered search result.
Computer’s name might be used for identification. Otherwise, users might key-in
simple data for instance staff ID as recognition to give personalized result. Enabling
the semantic search to drill data from the database, need particular method. It is due
to the different RDF format used in the semantic web compared to the Relational
Databases (RDB). RDF format is presented in subject, predicate, object format.
Therefore, RDB to RDF mapping will be conducted. Referring to Matthias et al. [28],
in application scenarios, Direct Mapping is more suitable in RDB to RDF cases. In
this approach, relational tables are map to classes in RDF vocabulary and tables
attributes to properties in the vocabulary. Hence, Direct Mapping is used for our
framework in the user profiling part.

Web Search Engine Using Ontology, Clustering and Personalization Techniques 369

(a) Trillo et al. [11] framework

USER

STEP 1 : Discovery of the Semantics of User Keywords

STEP 2 : Semantics-guided Data Retrieval

Extraction of
Keyword Senses

Disambiguation of
User Keywords

Disambiguition
Algorithm (WSD)

Other
Lexical

Resources

Web

Recollection of Hits

Cleaning & Lexical
Annotation of Hits

Categorization of Hits

Ranking of Categories
and Presentation of
Results to the User

Ranked List of Categories

User Keywords

Extracted Database
Wordnet

Other ontologies
(not indexed)

(b) Proposed framework

Fig. 1. (a) Trillo et al. [11] framework. (b) Proposed framework.

370 N. Abdullah and R. Ibrahim

3.4 Algorithm

An Algorithm shown in Figure 2 is used in the framework. In line 1, users’ entered
ID as identification. The keyword entering, processing and categorizing are done in
Line 2 to 4. In these steps, online ontology is used to specify and conceptualize the
keywords. The main contribution of this research is between line 5 to 17. They
utilized user profiling technique and rank the results. Combining these steps with
online ontology and clustering is not implemented by Trillo et al. [11].

Input:
1. User entered keywords

Output:

1. Mapped clustered/categorized result with user data

Begin
1. User identification
2. Keyword entered
3. If keyword == ontology
4. CategorizeHits, C
5. While C > 0 do
6. If User, U ∈ UTHM database
7. Map RDB to RDF
8. Initialize n = 1
9. If Field data, F == C
10. Rank = n
11. Else
12. Rank = n+1
13. Endif
14. Else
15. Rank = n+2
16. Endif
17. Done

End

Fig. 2. Algorithm used in the Semantic web Search Engine

3.5 Data Description

Important attributes are listed in Table 1 and Table 2 with the structure and
description. The data structure is based on real data from UTHM’s Relational
Database (RDB). In the implementation phases, actual UTHM data will be used as
datasets.

Web Search Engine Using Ontology, Clustering and Personalization Techniques 371

Table 1. Datasets structure – Faculty Table

Field Structure Description
facID Varchar2 (3) Faculty in UTHM.

facName Varchar2 (50) Name of faculty.

Table 2. Datasets structure – Staff Table

Field Structure Description
staff ID Varchar2 (10) ID for every staff.

Unique.
Used as identification.

staffName Varchar2 (50) Name of staff.

facID Varchar2 (3) Faculty for staff.

4 Case Study of the Semantic Web Search Engine

This section describes a case study of Semantic Web Search Engine for UTHM
members using three techniques: ontology online, clustering and user profiling.
Algorithm in Figure 2 is explained in detail. Total of 968 academic staffs from
UTHM are expected to utilize this finding. Table 3 shows academic staffs based on
faculty. However, for testing requirement, only ten percent of them which selected
randomly will undergo the testing phase.

Table 3. Academic staff

Faculty Number of academic staff

Management 88
Civil/Environment 167

Mechanical 200

Electrical 201

Vocational 99
Information Technology (IT) 69

Science & Technology 144

TOTAL 968

* Data as of Wednesday, 18th January 2012

4.1 Step 1 - User Identification

The goal of this process is to capture user’s profile. Figure 3 shows the Graphic User
Interface (GUI) for identification. This search engine classify user’s faculty. To

372 N. Abdullah and R. Ibrahim

facilitate uses, computer’s data stored in web log might be used to avoid users from
enter ID every time they use this application.

Fig. 3. GUI of user identification

4.2 Step 2 - Ontology Searching and Clustering

In this step, user enters keywords. They are then mapped with ontology online. The
results are mixed up and clustering of hits is used and listed into specific group.
These processes are shown in Figure 4.

mouse

IdioSearch / SophSearch

Search

Category Computer
1. ______________________
2. ______________________
3. ______________________

Category Cartoon
1. ______________________
2. ______________________
3. ______________________

Category Environment
1. ______________________
2. ______________________
3. ______________________

Keyword search

Ontology online

Clustering

Fig. 4. Web ontology searching and clustering

Web Search Engine Using Ontology, Clustering and Personalization Techniques 373

By using framework in [11], the expected output is shown in Table 4. Categories
are listed randomly without considering users’ profile. The datasets indicate all users
are obtaining the same results. Enhancement using user profiling technique is
discussed between Step 3 to 5.

Table 4. Results using Trillo et al.[11] framework

Users UTHM Staff Web Category
Yusliza Yes Computer

 Cartoon
 Environment

Azma Yes Computer
 Cartoon
 Environment

Ziela No Computer
 Cartoon
 Environment

4.3 Step 3 - User Profiling Using RDB to RDF Mapping

This process uses Direct Mapping technique. Staff ID entered in Step 1 is used here.
It then mapped to UTHM relational database from Table 1 and 2. Structures from
these tables are shown in Figure 5 and Figure 6. Mapping process coding which use
RDF and SPARQL, query language for RDF is listed in Figure 7.

 facID VARCHAR2 (3) PRIMARY KEY
 facName VARCHAR2(50)

Fig. 5. Faculty table

 staffID VARCHAR2 (10) PRIMARY KEY

 staffName VARCHAR2 (50)

 facID VARCHAR2 (3) FOREIGN KEY

Fig. 6. Staff table

374 N. Abdullah and R. Ibrahim

Fig. 7. RDF and SPARQL coding to map UTHM database

4.4 Step 4 - RDF to UTHM Ontology Comparison

UTHM ontology as shown in Figure 8 is developed to ensure changes are not done to
the database. Modification to the databases will affect current systems since we use
actual UTHM datasets. After clustering, the user’s faculty captured and mapped in
Step 3 is compared with UTHM ontology and find dedicated user’s faculty. Field
derived from this process is compared with Category in Step 2.

<?xml version="1.0" ?>
<rdb2rdf xmlns:xyz="http://xyz.com"
 xmlns:rdf="http://www.uthm.edu.my/rdf-syntax-ns#">

<ClassMap ClassName="xyz:fac" GraphName="xyz:FacGraph">
 <SQLdefString>
 Select '<xyz.com/fac/' || facID || '>' AS facURI
 , facNo
 , facName
 from fac
 </SQLdefString>
 <PropertyMap PropertyName="instURI" ColPosInSQLdefString="1" />
 <PropertyMap PropertyName="fac:facID" ColPosInSQLdefString="2" />
 <PropertyMap PropertyName="fac:facName" ColPosInSQLdefString="3" />
 <KeyPropertyMap KeyPropertyName="fac:c_prm_facID" KeyType="Primary">
 <KeyPropertyDef>
 <PropertyName name="fac:facID" posInKey="1" />
 </KeyPropertyDef>
 </KeyPropertyMap>
 </ClassMap>

<ClassMap ClassName="xyz:staff">
 <SQLDefString>
 Select '<xyz.com/staff/' || staffID || '>' AS staffURI
 , staffID
 , staffName
 , facID
 from staff
 </SQLDefString>
 <PropertyMap PropertyName="instURI" ColPosInSQLdefString="1" />
 <PropertyMap PropertyName="staff:staffID" ColPosInSQLdefString="2" />
 <PropertyMap PropertyName="staff:staffName" ColPosInSQLdefString="3"
/>
 <KeyPropertyMap KeyPropertyName="staff:c_prm_staffID"
KeyType="Primary">
 <KeyPropertyDef>
 <PropertyName name="staff:staffID" posInKey="1" />
 </KeyPropertyDef>
 </KeyPropertyMap>
 <KeyPropertyMap KeyPropertyName="staff:c_ref_facID"
KeyType="Reference" RefKeyPropertyName="fac:c_prm_facID">
 <KeyPropertyDef>
 <PropertyName name="staff:facNum" posInKey="1" />
 </KeyPropertyDef>
 </KeyPropertyMap>
 </ClassMap>
</rdb2rdf>

Web Search Engine Using Ontology, Clustering and Personalization Techniques 375

Fig. 8. UTHM Ontology

4.5 Step 5 - Ranking

In this final stage, clustered/categorized hits are ranked depending on user’s data. As
shown in Table 5, this Semantic Web Search use entered ID as identification. Name
is captured from the RDB. If the user is UTHM staff, the web will get faculty field
obtained from Step 4. Clustered activity conducted in Step 3 which produce web
categories are compared with results from Step 4. Similar result will give highest
rank. Non-similar result but still in the UTHM ontology will be on the lower rank and
lastly, non-similar and not in the ontology will be on the lowest level. If the user is
not UTHM staff, category will be ranked randomly. Figure 9 shows the expected
result in GUI.

Table 5. Web category ranking

ID Name UTHM
Staff

Field Web
Category

Web
Category =
UTHM
Field

Rank

718 Yusliza Yes Computer Environment 1 2
 Cartoon 0 3
 Computer 1 1

615 Azma Yes Environme
nt

Environment 1 1

 Cartoon 0 3
 Computer 1 2

- Ziela No - Environment 0 1
 Cartoon 0 2
 Computer 0 3

376 N. Abdullah and R. Ibrahim

Fig. 9. Semantic Web Search Engine

This framework is based on the previous researchers, Trillo et al. [11]. In contrast
with our research, only list of categories is given from the online ontologies and
clustering processes. Nevertheless, they are mixed up and listed randomly. Excessive
numbers of categories will cause confusion. Conversely, we are expected to produce
results that are reliable towards user preferences by adding user profiling technique.
This technique generates results in Table 5. It produce ranking that does not exist in
Table 4.

5 Conclusion

The propose framework of knowledge retrieval using hybrid Semantic Web Search
has been discussed. They are three criteria namely online ontology, clustering and
user profiling have been used in this research. Enhancement using user profiling
criteria is embedded to the current practice which only uses ontology online and
clustering. It will give more reliable search results by considering users’ own data in
RDB. This paper provides the framework, algorithm, datasets structure and the
expected result. To produce better illustration, example is enclosed in this paper with
detail explanation. This hybrid Semantic Web Search Engine implementation is
capable to give the desired result in terms of user’s profile.

Acknowledgement. This work is supported by Universiti Tun Hussien Onn Malaysia
(UTHM) and Faculty of Computer Science and Information Technology, UTHM.
The authors would like to thank Information Technology Centre, UTHM for
providing statistic and live data.

Web Search Engine Using Ontology, Clustering and Personalization Techniques 377

References

1. Maier, R., Hadrich, T., Peinl, R.: Enterprise Knowledge Infrastructures, 2nd edn. Springer,
Berlin (2009)

2. Yao, Y., Zeng, Y., Zhong, N., Huang, X.: Knowledge Retrieval (KR). Paper Presented at
the 2007 IEEE/WIC/ACM International Conference on Web Intelligence (2007)

3. Tao, X., Li, Y., Nayak, R.: A knowledge retrieval model using ontology mining and user
profiling. Integrated Computer-Aided Engineering 15(4), 313–329 (2009)

4. Mikroyannidis, A.: Toward a Social Semantic Web. Computer 40(11), 113–115 (2007)
5. d’Aquin, M., Noy, N.F.: Where to publish and find ontologies? A survey of ontology

libraries. Web Semantics: Science, Services and Agents on the World Wide Web 11(0),
96–111 (2011)

6. d’Aquin, M., Lewen, H.: Cupboard – A Place to Expose Your Ontologies to Applications
and the Community. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T.,
Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.) ESWC 2009. LNCS,
vol. 5554, pp. 913–918. Springer, Heidelberg (2009)

7. Ontology Design Patterns.org (ODP) (2010),
http://ontologydesignpatterns.org/wiki/Main_Page

8. Buitelaar, P., Eigner, T., Declerck, T.: OntoSelect: A Dynamic Ontology Library with
Support for Ontology Selection. Paper Presented at the International Semantic Web
Conference (2004)

9. Thomas, E., Pan, J.Z., Sleeman, D.: ONTOSEARCH2: Searching Ontologies Semantically
(electronic version) (2008), http://ceur-ws.org/Vol-258/paper26.pdf

10. Schema-cache, http://schemacache.com/
11. Trillo, R., Po, L., Ilarri, S., Bergamaschi, S., Mena, E.: Using semantic techniques to

access web data. Information Systems 36(2), 117–133 (2011)
12. Jie, T., Limin, Y., Duo, Z., Jing, Z.: A Combination Approach to Web User Profiling.

ACM Trans. Knowl. Discov. Data 5(1), 1–44 (2010)
13. Antoniou, D., Paschou, M., Sourla, E., Tsakalidis, A.: A Semantic Web Personalizing

Technique: The Case of Bursts in Web Visits. In: Proceedings of the 2010 IEEE Fourth
International Conference on Semantic Computing (ICSC), pp. 530–535 (2010)

14. Yoo, D.: Hybrid query processing for personalized information retrieval on the Semantic
Web (2011)

15. Bussler, C.: Is Semantic Web Technology Taking the Wrong Turn. IEEE Internet
Computing 12(1), 75–79 (2008)

16. Jiang, H.: Information retrieval and the semantic web. Proceedings of the Chongqing,
China, pp. V3461–V3463. IEEE Computer Society (2010)

17. Edwards, C.: Analysis: Semantic web’s hidden meanings. Engineering and
Technology 5(16), 52–53 (2010)

18. Cardoso, J.: The semantic web vision: Where are we? IEEE Intelligent Systems 22(5), 84–
88 (2007)

19. Joo, J.: Adoption of Semantic Web from the perspective of technology innovation: A
grounded theory approach. International Journal of Human Computer Studies 69(3), 139–
154 (2011)

20. Janev, V., Vrane, S.: Applicability assessment of Semantic Web technologies. Information
Processing and Management 47(4), 507–517 (2010)

21. Wecel, K.: Towards an Ontological Representation of Knowledge on The Web. In:
Abramowicz, W. (ed.) Knowledge-based Information Retrieval and Filtering From the
Web. Kluwer Academic Publisher, USA (2003)

378 N. Abdullah and R. Ibrahim

22. Fluit, C., Sabou, M., van Harmelen, F.: Ontology-based Information Visualization. In:
Geroimenko, V., Chen, C. (eds.) Visualizing the Semantic Web: XML-based Internet and
Information Visualization. Springer (2003)

23. Hepp, M.: Ontologies: State of the Art, Business Potential, and Grand Challenges. In:
Hepp, M., Leenheer, P.D., de Moor, A., Sure, Y. (eds.) Ontology Management. Semantic
Web, Semantic Web Services, and Business Applications. Springer, New York (2008)

24. Diez-Rodriguez, H., Morales-Luna, G., Olmedo-Aguirre, J.O.: Ontology-based Knowledge
Retrieval. Paper presented at the 2008 Seventh Mexican International Conference on
Artificial Intelligence (2008)

25. Hao, Y., Zhang, Y.-F.: Research on Knowledge Retrieval by Leveraging Data Mining
Techniques. In: Proceedings of the 2010 International Conference on Future Information
Technology and Management Engineering, pp. 479–484. IEEE (2010)

26. D’Amato, C., Esposito, F., Fanizzi, N., Fazzinga, B., Gottlob, G., Lukasiewicz, T.:
Inductive reasoning and semantic web search. In: Proceedings of the SAC 2010:
Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 1446–1447.
Association for Computing Machinery (2010)

27. D’Aquin, M., Motta, E., Sabou, M., Angeletou, S., Gridinoc, L., Lopez, V., Guidi, D.:
Toward a new generation of semantic web applications. IEEE Intelligent Systems 23(3),
20–28 (2008)

28. Matthias, H., Gerald, R., Harald, C.G.: A comparison of RDB-to-RDF mapping languages.
In: Proceedings of the Proceedings of the 7th International Conference on Semantic
Systems. ACM, Graz (2011)

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 379–391, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Granules of Words to Represent Text: An Approach
Based on Fuzzy Relations and Spectral Clustering

Patrícia F. Castro1 and Geraldo B. Xexéo1,2

1 Departamento de Engenharia de Sistemas e Computação, COPPE/UFRJ, Rio de Janeiro,
Brasil

2 Departamento de Ciência da Computação, IM/UFRJ, Rio de Janeiro, Brasil
{patfiuza,xexeo}@cos.ufrj.br

Abstract. The amount of data available in semi-structured or unstructured
format grows exponentially. The area of text mining aims at discovering
knowledge from data of this type. Most work in this area uses the model known
as bag of words to represent the texts. This form of representation, although
effective, minimizes the quality of knowledge discovered because it is not able
to capture essential characteristics of this type of data such as semantics and
context. The paradigm of granular computing has been shown effective in the
treatment of complex problems of information processing and can produce
significant results in large-scale environments such as the Web. This paper
explores the granulation process of words with a view to its application in the
subsequent improvement in text representation. We use fuzzy relations and
spectral clustering in this process and present some results.

Keywords: granular computing, fuzzy relation, spectral clustering.

1 Introduction

With the rapid development of the Web, the availability of data in a structured or
semi-structured (XML documents, emails, blog posts, academic articles, etc.) has
grown exponentially. The discovery of useful knowledge from this data source has
been shown to be a complex problem.

Text mining aims to extract knowledge from this type of data by application of
techniques of data mining, machine learning, natural language processing,
information retrieval and knowledge management. Currently, there is a considerable
amount of work with this goal both from databases and from the Web. Most of these
works use a common representation electronic text known as bag of words. This
representation considers texts as vectors of size n, where n represents the total number
of words that appear within a particular collection of documents. Thus, if the word k
appears in a text, then the representation of the text will contain a certain value at
position k of the corresponding vector. If the word does not appear in the text, this
value at position k is equal to zero. There are different approaches to building the
collection of words. Likewise, there are different ways of calculating the values of the
vector, for example, the number of times the word occurs in the text, the relative

380 P.F. Castro and G.B. Xexéo

frequency or frequency multiplied by the inverse of the overall frequency of the word,
the well-known TF-IDF (term frequency inverse document frequency). These vectors
are input to the phase of knowledge construction and validation of algorithms for
knowledge discovery, or used in the comparison between the documents in the
process of information retrieval. This representation, although effective, is not able to
capture many essential features of a text, such as semantics and context.
Consequently, if such features are not captured, cannot be considered by the processes
that manipulate them, minimizing the quality of discovered knowledge.

A paradigm that arises from the treatment of information, known as granular
computing, has attracted the attention of many researchers. According to [1], granular
computing gathers a set of theories, methodologies, techniques, and tools, that employ
granules to solve complex problems. According to [2], the granules permeate any
human task. Humans are constantly abstracting and formulating concepts from these
granules, processing these concepts and returning the results of such treatment. To
give an example, we can make an analogy with the human capability of dealing with
images. At no given moment do we consider the pixels individually. All the time we
build groupings of these pixels using some semantics capable of conveying notions of
texture, colour, etc. Similarly, when analyzing text, the words are not considered
individually. Groupings of these words, representing some semantics, convey their
contents. Moreover, humans can perceive the real world through many levels of
granularity (abstraction) and can easily alternate between these various levels.
Consequently, people abstract and consider only that which serves a specific purpose
and ignore that which is irrelevant [3,4]. By being able to focus on different levels of
granularity, different levels of knowledge can be obtained as well as a deeper
understanding of the structure that is inherent to each type of knowledge. Granular
reasoning is, therefore, essential for human intelligence and, according to [5], it can
have a significant impact on problem-solving methodologies, especially in large-scale
environments such as the Web.

The granulation process is based on the decomposition of objects according to
some kind of relationship whereby these objects stay together. The process is
inherently fuzzy, vague and imprecise. This paper explores this process, through the
use of fuzzy relations. Based on this kind of relationship we use a spectral clustering
algorithm in the creation of the granules and present some results.

Apart from this introductory section, this paper presents some related work in
section 2. Section 3 provides insights into granulation. Sections 4 and 5 give,
respectively, a short review of the concepts of fuzzy relations, and the spectral
clustering used as the basis for this work. Sections 5 and 6 present the evaluation
methodology and results, respectively. Finally, Section 8 provides some conclusions
and the direction of future work.

2 Related Works

Alternative techniques for creating document models have aroused the interest of
many researchers. Some approaches are based on the same vector model [6] and
others suggest alternative ways. [7] proposes the modeling of texts based on the
theory of fuzzy sets. A new algorithm for selecting the terms that characterize a

 Granules of Words to Represent Text: An Approach 381

document is proposed from the fuzzy view point. The experiments produce very
favorable results when compared to other methods for selecting terms. [8] presents a
new paradigm for mining documents that can exploit the semantic features of
documents. The representation scheme, based on graphs, is built through successive
stages of syntactic and semantic analysis. A distance measure is presented to
determine similarities between the contents of the documents. [9] is based on the
cognitive aspects of information retrieval in its proposal. The paper presents the
principle of polyrepresentation which represents documents and their respective
semantics through various aspects within and between documents. [10], proposes a
scheme based on Holographic Reduced Representations (HRR) to encode both
the semantic structure and syntactic structure of documents. Finally, similar to the
proposal presented in this paper, [11] employs granular computing concepts in the
treatment of the problem. In this proposal, the documents assume a representation that
includes the knowledge. The granules are formed by sets of keywords with frequent
co-occurrence. In this context, other techniques have been proposed. Latent Semantic
Analysis (LSA) [12] uses principal component analysis to find groups of words that
co-occur. Topic models [13] is a statistical model for discovering abstract topics in
document collections. Analysis of formal concepts [14] also uses the evaluation of
objects and their relationships in order to identify concepts or topics of interest.We
present a new method for the analysis of co-occurrence of words. We also use an
algorithm that proves very effective for capturing this type of relationship between
words to form granules. We believe this is the greatest contribution of this work.

3 Word Granulation

Granulation means forming aggregates of indiscernible objects. The indiscernibility
between these objects can be treated by a similarity function. There are two terms
used to denote the main types of similarity between words [15] [16]:

• Paradigmatic: two words are paradigmatically similar if they can be replaced
in a specific context. For example, in the sentence and in the context of ‘I
bought a car’, the word car can be replaced by automobile without any loss
in semantics.

• Syntagmatic: two words are similar if they occur significantly in the same
context. For example, the words ‘car’ and ‘transit’ are syntagmatically
similar, as they typically occur together in certain contexts.

Despite this distinction, it is relatively rare in published works, and some studies [15]
refer to the first type as semantic similarity, and to the second [16] as relatedness
similarity. The focus of our work is essentially on the second kind. Both types are
computed using different methods and are used in a wide variety of applications.
Relatedness similarity is generally measured by employing some statistical or

382 P.F. Castro and G.B. Xexéo

algebraic tool. In this paper we present a fuzzy approach for the analysis of this
similarity.

4 Fuzzy Relation

In this section we present a brief review of the theory of fuzzy relations [17] [18]
used in the assessment of the similarity between words and the subsequent creation
of granules.

Definition 1. A fuzzy relation between two finite sets X = {x1,, xu} and Y = {y1,
...., yv} is formally defined as a fuzzy binary relation f: X × Y [0,1], where u and
v represent the number of elements in X and Y, respectively.

Definition 2. Given a set of index terms, T = {t1, ..., ti} and a set of documents, D =
{d1, ..., dj}, each ti is represented by a fuzzy set h(ti) of documents; h(ti) = {F(ti,dj) |

 dj ∈ D}, where F(ti,dj) is the membership degree of ti in dj.

Definition 3. The fuzzy relationship between words is based on the evaluation of
co-occurrence of ti and tj in the set D and can be defined as follows: RT (ti,tj) =

∑ , , , ∑ , , , (1)

A simplification of the fuzzy RT relation based on co-occurrence of words is given
as follows: ri,j =

, , (2)

where

• r i,j represents the fuzzy RT relation between words i and j

• n i,j is the number of documents containing both the ith and jth words

• n i is the number of documents containing the ith word

• n j is the number of documents containing the jth word

5 Spectral Clustering

The spectral clustering technique is characterized by exploring the similarity
between all pairs of objects. This technique has proven to be much more effective
than more traditional techniques such as the k-means method, for example, which
considers only the similarity of the objects to the central elements of their groups
[19].

Given n data points x1 ... xn, the spectral clustering algorithm constructs a similarity
matrix S ∈ Rn x n, where Si,j 0 reflects the relationship between xi and xj. It then uses
similarity information to group x1 ... xn into k clusters. There are several variants of

 Granules of Words to Represent Text: An Approach 383

spectral clustering. Here we consider the commonly used normalized spectral
clustering [20]. An example similarity function is the Gaussian:

 Sij = exp (| |), (3)

Where is a scaling parameter to control how rapidly the similarity Sij reduces with
the distance between xi and xj. Consider the normalized Laplacian matrix:

 / / , (4)

Where D is a diagonal matrix with

 ∑ (5)

Note that / indicates the inverse square root of D. It can be easily shown that
for any S with Sij 0, the Laplacian matrix is symmetric positive semi-definite. In
the ideal case, where the data in one cluster are not related to the data in others,
nonzero elements of S (and hence L) only occur in a block diagonal form:

 (6)

It is known that L has k zero-eingenvalues, which are also the k smallest ones.
These corresponding eigenvectors, written as an Rn x k matrix, are V = [v1, v2, ….., vk]
= D1/2 E, where vi ∈ Rn, i = 1, …, k and

E =

 , (7)

where ei, i=1, …, and k (in different length) are vectors of every one. As D1/2 E has
the same structure as E, simple clustering algorithms such as k-means can easily
cluster V into k groups. Thus, what one needs to do is to find the first k
eigenvectors of L (i.e., eingenvectors corresponding to the k smallest eigenvalues).
However, in practice the eigenvectors are in the form of V= D1/2EQ.

Where Q is an orthonormal matrix. is suggested normalizing V so that ∑ , i = 1, … , n; j=1, .. , k. (8)

Each row of U has a unit length. Due to the orthogonality of Q, the above equation
is equivalent to

384 P.F. Castro and G.B. Xexéo

U = EQ =

 , : , : , : , (9)

where , : indicates the ith row of Q. Then U’s n rows correspond to k orthogonal

points on the unit sphere. The n rows of U can thus be easily clustered by k-means
or other simple techniques.

Instead of analyzing properties of the Laplacian matrix, spectral clustering
algorithms can also be derived from a graph-cut point of view. That is, we partition
the matrix according to the relationship between points. Some representative graph-
cut methods are Normalized Cut[21], Min-Max Cut [22], and Ratio Cut [23].

6 Evaluation

We have created two distinct bases of texts. The first base contains 200 articles on
computational intelligence selected from Google Scholar. These articles are related
to 10 distinct subjects: cognition, fuzzy systems, genetic algorithms, neural
networks, data mining, knowledge management, machine learning, pattern
recognition, optimization and logic. For the second base, 160 articles on text
mining/information retrieval were selected from the same site. In this case, eight
subjects were used: clustering, latent semantic analysis, information retrieval,
ontology, semantics, fuzzy relations, concept extraction and topic models.

Each of these bases was subjected to a pre-processing step where stopwords and
words not classified as nouns were removed through application of a tagger
available in http://dragon.ischool.drexel.edu/. Next, we analyzed the fuzzy
correlation between these words, by applying equation 2, presented in section 4.
Words and their correlations were subjected to the spectral clustering algorithm
with implementation available over http://www. mathworks
.com/matlabcentral/fileexchange/26354 -spectral-clustering-algorithms.The
implementation requires information about the value of k. Initially, we adopted k
values of 10 and 8 for the first and second base, respectively. The justification for
this lies in the fact that we have chosen 10 subjects and, therefore, based on this
choice, we can control the groups generated. In a second evaluation, we reduced
these values by half: 5 and 4, in each of the bases, respectively. The aim was to
examine the clustering algorithm’s ability to make generalizations of the words
contained in their groups. The algorithm parameters were kept at their default
values. Tables 1, 2, 3 and 4 present the most significant words found in each of the
clusters generated in each of the scenarios described above.

 Granules of Words to Represent Text: An Approach 385

Table 1. The 10 clusters/granules of Base 1

GRANULE

SUBJECT

KEYWORDS

1

machine
learning

computer, aspect, behavior,
intelligence, paradigm, years

2

exploration, benchmark,
architecture, variation,

characteristic, interaction, fact

3

neural network

extension, importance, neuron,
goal, stability, property, choice

4

knowledge
management

storage, knowledge, capability,

management, path, business

5

cognition

representation, theory, life,
language, cognition

6

pattern
recognition

conclusion, input, classification,
region, element, application

7

genetic
algorithm

population, fitness, optimum,
member, algorithm, convergence,

solution

8

importance, performance,
definition, statistics,

measurement

9

data mining

attention, data, concept,
generalization, addition,

relationship

10

extraction, example, relations,
variable, analysis, satisfaction

Table 2. The 5 clusters/granules of Base 1

GRANULE

SUBJECT

KEYWORDS

1

genetic

algorithm /
optimization

exploration, performance, fitness,
operator, member, algorithm,

convergence, solution, population,
optimum, crossover

2

neural

networks

extension, input, example,
property, regression, analysis,
neuron, procedure, realization,
synthesis, vector, coefficient,

manner, applicability

386 P.F. Castro and G.B. Xexéo

Table 2. (Continued)

3

data mining /
knowledge

management

user, technique, topic, storage,
knowledge, management,
capability, information,

methodology, data, business,
database

4

cognition /

logic

behavior, theory, life, paradigm,
language, computer, principle,

aspect, manipulation, intelligence

5

cognition

protocol, difference, relations,
complexity, analysis, problem,

role, system, cognition, method,
application

Table 3. The 8 clusters/granules of Base 2

GRANULE

SUBJECT

KEYWORDS

01

semantic

evolution, entity, library,
management, language,

technology, ontology, domain,
description, semantics

02
latent semantic
analysis

subspace, combination,
detection, decomposition,

association, retrieval, matrix,
effectiveness, vector, collection

03 clustering

example, prototype, constraint,
tendency, algorithm, objective,

possibility, principle, data,
problem,

04 information
retrieval

period, kind, property, relations,
decomposition, retrieval,

information, expansion, criterion,
construction

05
concept
extraction

extension, representation,
evaluation, concept, strategy,
selection, explanation, logic,

interpretation, identification, text,
baseline

06 ontology

mechanism, classifier, correlation,
thesaurus, creation, ontology,

context, integration, recognition,
source, module.

07 fuzzy relations
membership, co-occurrence, set,

binary

08 topic models
probability, language,

processing, mixture, model,
generator

 Granules of Words to Represent Text: An Approach 387

Table 4. The 4 clusters/granules of Base 2

GRANULE

SUBJECT

KEYWORDS

01
semantic/
ontology

development, evolution,
entity, library, management,

language, version, technology,
ontology, methodology,

domain, description,
semantics, input, mechanism,

classifier, correlation,
thesaurus, creation, ontology,

context, integration,
identification, recognition,

source, module.

02

latent
semantic
analysis/
concept

extraction

item, user, basis, subspace,
combination, detection,

decomposition, association,
retrieval, matrix, effectiveness,

vector, collection, method,
extension, representation,

evaluation, concept, strategy,
selection, explanation,

addition, logic, interpretation,
identification, text, baseline

03
clustering/

information
retrieval

example, prototype,
constraint, tendency,
algorithm, objective,

possibility, finding, principle,
data, problem, difficulty,

period, user, minimum, kind,
property, relations,

decomposition, retrieval,
information, expansion,

criterion, method, construction

04 topic models
probabilistic, language,

processing, mixture, model,
generative

Aiming to establish a comparison with a well-known approach, we submit on the
same basis, an algorithm for latent semantic analysis (LSA). Tables 5 and 6
represent the degree of similarity between the granules generated with the technique
proposed in this work and the concepts (granules) obtained with LSA. The contents
of each cell in the table represent the percentage of similarity between the granules
and concepts. To facilitate the analysis, we highlighted the cells with the greatest
similarity measures.

388 P.F. Castro and G.B. Xexéo

Table 5. Equivalence between granules and concepts for Base 1

G

R

A

N

U

L

E

LSA

 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.39 0.53 0.50 0.49 0.45 0.42 0.92 0.42 0.42 0.45 0.51 0.32 0.56

2 0.96 0.41 0.55 0.43 0.45 0.60 0.42 0.56 0.38 0.44 0.32 0.45 0.34

3 0.46 0.67 0.43 0.40 0.45 0.56 0.50 0.89 0.42 0.34 0.23 0.56 0.42

4 0.58 0.67 0.76 0.40 0.40 0.54 0.45 0.78 0.23 0.34 0.56 0.56 0.92

5 0.34 0.45 0.76 0.23 0.40 0.54 0.45 0.78 0.95 0.34 0.56 0.56 0.23

6 0.39 0.34 0.50 0.87 0.45 0.42 0.67 0.42 0.42 0.67 0.51 0.68 0.45

7 0.46 0.24 0.43 0.46 0.45 0.56 0.78 0.45 0.42 0.34 0.25 0.56 0.42

8 0.78 0.85 0.36 0.32 0.45 0.60 0.42 0.15 0.38 0.44 0.47 0.45 0.39

9 0.39 0.34 0.36 0.87 0.45 0.42 0.67 0.47 0.68 0.67 0.51 0.68 0.76

10 0.45 0,48 0.50 0.35 0.47 0.42 0.67 0.42 0.65 0.67 0.90 0.68 0.45

 Table 6. Equivalence between granules and concepts for Base 2

G

R

A

N

U

L

E

 LSA

 1 2 3 4 5 6 7 8 9 10

1 0.39 0.53 0.96 0.49 0.32 0.42 0.51 0.42 0.42 0.45

2 0.43 0.41 0.32 0.43 0.45 0.60 0.42 0.96 0.38 0.44

3 0.46 0.67 0.23 0.88 0.68 0.56 0.50 0.47 0.42 0.34

4 0.58 0.67 0.56 0.40 0.56 0.57 0.45 0.78 0.23 0.87

5 0.34 0.45 0.56 0.23 0.56 0.54 0.45 0.78 0.95 0.34

6 0.39 0.34 0.51 0.33 0.68 0.82 0.67 0.42 0.42 0.67

7 0.46 0.24 0.25 0.46 0.56 0.56 0.89 0.45 0.42 0.34

8 0.78 0.92 0.47 0.32 0.45 0.60 0.42 0.15 0.38 0.44

 Granules of Words to Represent Text: An Approach 389

7 Results

Looking through Tables 1 and 3, the proposed technique combines words
significant enough to present the topics in each of the test bases. In Base 1, for
computational intelligence, 7 topics are easily identified from the words associated
with their clusters/granules. In Base 2, on text mining / information retrieval, we
achieved better results, because the eight subjects that make up the base are easily
identified.

The results presented in Tables 2 and 4 show that the technique performs well
against the ability of granule generalization contained in the base text. With respect
to Base 1 which was tested, we give special emphasis to the grouping of words that
describe the topics of genetic algorithms/optimization and data mining/ knowledge
management. Such topics are strongly related. The proposed technique shows
consistency since it captures these relationships by grouping the words contained in
their respective documents.

LSA identified 13 clusters of words for Base 1 text and 10 clusters for Base 2.
Despite the greater number of groups, we can see that in all groups of words created
with the technique presented in this work, both bases are defined by an LSA
equivalence. Thus, we understand that the techniques are equivalent in terms of
effectiveness. Although not measured in terms of processing time for each
technique, we observed that the technique proposed here performs better than LSA.

8 Conclusion

The paper explored the granulation process based on fuzzy relations of co-
occurrence and spectral clustering. The methodology was presented and some
preliminary results were shown. These results demonstrate the real applicability of
the proposal.

Our next step will be to explore the ability of this technique in the generalization
and specialization of granules. This feature will allow the construction of building
ontologies with these granules.

We also intend to study a way to allow overlap between the granules produced.
The clustering algorithm used does not allow this overlap and we understand that
this feature will produce granules much more significant than those produced with
the current method.

We believe the introduction of such features will enable the representation of
documents whose handling is closer to the human way of dealing with granules, as
described in the introduction.

Acknowledgements. The authors would like to thank the financial support of CNPq,
CAPES, FAPERJ and Fundação Coppetec.

References

1. Yao, Y.: The Art of Granular Computing. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H.,
Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 101–112. Springer,
Heidelberg (2007)

390 P.F. Castro and G.B. Xexéo

2. Predycz, W.: Knowledge-Based Clustering: From Data to Information Granules. John
Wiley & Sons, Hoboken (2005)

3. Yao, Y., Zhong, Y.: Granular Computing using Information Tables. In: Lin, T.Y., Yao, Y.,
Zadeh, L.A. (eds.) Data Mining, Rough Sets and Granular Computing, pp. 102–124.
Physica, Heidelberg (2002)

4. Yao, Y. A Ten-year Review of Granular Computing. In: Proceedings of IEEE International
Conference on Granular Computing, pp. 734–739 (2007)

5. Zhong, N., et al.: Towards Granular Reasoning on the Web. In: Proceedings of the 2008
Workshop on New Forms of Reasoning for Semantic Web: Scalable, Tolerant and
Dynamic (NEFORD 2008), the 3rd Asian Semantic Web Conference, ASWC 2008 (2008)

6. Liu, G.: The Semantic Vector Space Model (SVSM): A Text Representation and Searching
Techmique System Sciences. In: Proceedings of the Twenty-Seventh Hawaii International
Conference on Information Systems: Collaboration Technology Organizational Systems
and Technology, vol. IV, pp. 928–937 (1994)

7. Doan, S., Ha, S., Horiguchi, S.: A Fuzzy-Based Approach for text Representation in Text
Categorization. In: 14th IEEE International Conference on Fuzzy Systems, pp. 1008–1013
(2005) ISBN: 0-7803-9159-4

8. Khalled, S.: A Semantic Graph Model for Text Representation and Matching in Document
Mining. PhD Thesis. University of Waterloo, Canadá (2006)

9. Ingersen, P., Skov, B., Larsen, B.: Inter and Intra-document Context Applied in
Polyrepresentation for Best Match IR. Information Processing and Management: an
International Journal 44, 1673–1683 (2008)

10. Fishbein, J.: Integrating Structure and Meaning Using Holographic Reduced
Representation to Improve Automatic Text Classification. Master Thesis, University of
Waterloo (2008)

11. Lin, T.Y.: Granular Computing and Modeling the Human Thoughts in Web Documents.
In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007.
LNCS (LNAI), vol. 4529, pp. 263–270. Springer, Heidelberg (2007) ISBN: 978-3-540-
72917-4

12. Dumais, S., Landauer, T.: A Solution to Plato’s Problem: The Latent Semantic Analysis
Theory of Acquisition, Induction, and Representation of Knowledge. Psychological
Review 104(2), 211–240 (1997)

13. Steyvers, M., Griffiths, T.: Probabilistic Topic Models. In: Landauer, T., et al. (eds.) Latent
Semantic Analysis: A Road to Meaning. Laurence Erlbaum (2007)

14. Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis. LNCS (LNAI),
vol. 3626. Springer, Heidelberg (2005) ISBN 3-540-27891-5

15. Kozima, T.: Similarity Between Words Computed by Spreading Activation on an English
Dictionary. In: Proceedings of the 6th Conference of the European Chapter of the ACL,
pp. 232–239 (1993)

16. Rapp, R.: The Computation of Word Associations: Comparing Syntagmatic and
Paradigmatic Approaches. In: Proceedings of COLING 2002 (2002)

17. Chakrabarti, S.: Mining the Web: Discovering Knowledge from Hypertext Data. Morgan
Kaufmann (2003)

18. Haruechaiyasak, C., Shyu, M., Chen, M.L.: Web Classification Based on Fuzzy
Association. In: Proceedings of the 25th Annual International Computer Software and
Applications Conference (COMPSAC 2002) (2002)

19. Ng, A., Jordan, M.: On Spectral Clustering: Analysis and an Algorithm. In: Advances in
Neural Information Processing Systems, vol. 14 (2001)

 Granules of Words to Represent Text: An Approach 391

20. von Luxburg, U.: A tutorial on Spectral Clustering. Technical Report 149: Max Planck
Institute for Biological Cybernetics (2006)

21. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 22(8), 888–905 (2000)

22. Ding, C., et al.: A Min-mas Cut Algorithm for Graph Partitioning and Data Clustering. In:
Proceedings of the First IEEE International Conference on Data Mining (ICDM), pp. 107–
114. IEEE Computer Society, Washington, DC (2001)

23. Hagen, L., Kahng, A.: New Spectral Methods for Ratio Cut Partitioning and Clustering.
IEEE Transactions Computer-Aided Design 11(9), 1074–1085 (1992)

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 392–403, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Multivariate Time Series Classification by Combining
Trend-Based and Value-Based Approximations

Bilal Esmael1, Arghad Arnaout2, Rudolf K. Fruhwirth2, and Gerhard Thonhauser1

1 University of Leoben
8700 Leoben, Austria

Bilal@stud.unileoben.ac.at,
Gerhard.Thonhauser@unileoben.ac.at

2 TDE GmbH
8700 Leoben, Austria

{Arghad.Arnaout,Rudolf.Fruhwirth}@tde.at

Abstract. Multivariate time series data often have a very high dimensionality.
Classifying such high dimensional data poses a challenge because a vast
number of features can be extracted. Furthermore, the meaning of the normally
intuitive term "similar to" needs to be precisely defined. Representing the time
series data effectively is an essential task for decision-making activities such as
prediction, clustering and classification. In this paper we propose a feature-
based classification approach to classify real-world multivariate time series
generated by drilling rig sensors in the oil and gas industry. Our approach
encompasses two main phases: representation and classification.

For the representation phase, we propose a novel representation of time
series which combines trend-based and value-based approximations (we
abbreviate it as TVA). It produces a compact representation of the time series
which consists of symbolic strings that represent the trends and the values of
each variable in the series. The TVA representation improves both the accuracy
and the running time of the classification process by extracting a set of
informative features suitable for common classifiers.

For the classification phase, we propose a memory-based classifier which
takes into account the antecedent results of the classification process. The
inputs of the proposed classifier are the TVA features computed from the
current segment, as well as the predicted class of the previous segment.

Our experimental results on real-world multivariate time series show that
our approach enables highly accurate and fast classification of multivariate time
series.

Keywords: Time Series Classification, Time Series Representation, Symbolic
Aggregate Approximation, Event Detection.

1 Introduction

Multivariate time series data are ubiquitous and broadly available in many fields
including finance, medicine, oil and gas industry and other business domains. The

 Multivariate Time Series Classification 393

problem of time series classification has been the subject of active research for
decades [1, 7].

The general time series can be defined as follow: A time series T is a series of
ordered observations made sequentially through time. We denote the observations by: x t ; i 1, … , n; t 1, … , m where:

• is the index of the different measurements made at each time point t,
• is the number of variables being observed, and
• is the number of observations made.

If the time series has only one variable (1) then this time series is referred to as
univariate, if it has two variables or more (1) then it is referred to as multivariate.

One example of multivariate time series is drilling rig data; where many
mechanical parameters such as torque, hook load and block position, are continuously
measured by rig sensors and stored in real time in the databases. Fig. 1 shows drilling
multivariate time series consisting of eight variables.

Fig. 1. A multivariate time series of drilling data. This time series consists of eight variables
representing eight mechanical parameters measured at the rig.

Multivariate time series classification is a supervised learning problem aimed for
labeling multivariate series of variable length. Time series classification can be
divided into two types. In the first type (simple classification) each time series is

394 B. Esmael et al.

classified into only one class label, whereas in the second type (strong classification)
each time series is classified into a sequence of classes.

This work focuses on the second type of classification. Our approach aims to
classify multivariate time series (like the one shown in Fig. 1) into a sequence of
operations or classes op st , et , … , op st , et where st and et represent the
start time and end time of the operations respectively. Fig. 2 shows the result of such
a classification process.

Fig. 2. A sequence of 10 operations with different durations

The main contributions of this work are:

• An approach to represent time series by combining value-based and trend-
based approximations (TVA). It extends Symbolic Aggregate Approximation
(SAX) [2] by adding new string symbols (U, D and S) to represent the
directions of the time series.

• A memory-based classifier for multivariate time series classification. The
classifier is trained with the TVA features extracted from our representation.
In addition, it uses the previous predicated class as an additional feature to
predicate the class of the current segment.

The remainder of the paper is organized as follows: Section 2 introduces the state-of-
art techniques for time series representation. Section 3 presents the general framework
of our approach. Section 4 explains the details of TVA representation. Section 5
discusses the time series classification. Finally, section 6 presents the experimental
results of the proposed approach using real-world data from the drilling industry, and
Section 7 concludes the work.

2 State of the Art

Time series datasets are typically very large. The high dimensionality, high feature
correlation, and the large amount of noise that can be present in time series, pose a
challenge to time series data mining tasks [2]. The high dimensionality of such time
series increases both the access time to the data and computation time needed by the
data mining algorithms used [8]. Additionally, visualization techniques need to
employ data reduction and aggregation techniques to cope with the high volume of data
that cannot be plotted in details at once. Furthermore, the very meanings of terms such
as “similar to” and “cluster forming” become unclear in high dimensional space [1].

The aforementioned reasons make applying machine learning techniques directly
on raw time series data cumbersome. To overcome this problem, the original “raw”

 Multivariate Time Series Classification 395

data need to be replaced by a higher-level representation that allows efficient
computation on the data, and extracts higher order features [2, 3 and 4].

Several representation techniques, known as dimensionality reduction techniques,
have been proposed. This includes the Discrete Fourier Transform (DFT), the
Discrete Wavelet Transform (DWT), Piecewise Linear Approximation (PLA),
Piecewise Aggregate Approximation (PAA), Adaptive Piecewise Constant
Approximation (APCA), Singular Value Decomposition (SVD) and Symbolic
Aggregate Approximation (SAX). Choosing the appropriate representation depends
on the data at hand and on the problem to be solved. Furthermore, it affects the ease
and efficiency of time series data mining [1].

Trend-based and value-based approximations have been used extensively in the
last decade. Kontaki et al. [10] propose using PLA to transform the time series to a
vector of symbols (U and D) denoting the trend of the series. Keogh and Pazzani [8]
suggest a representation that consists of piecewise linear segments to represent a
shape; and a weight vector that contains the relative importance of each individual
linear segment.

SAX, proposed by Lin et al. [2], is a symbolic approximation of time series. It
employs a discretization technique that transforms the numerical values of the time
series into a sequence of symbols from a discrete alphabet. The discretization process
allows researchers to apply algorithms from text processing and bioinformatics
disciplines [2]. SAX has become an important tool in the time series data mining, and
has been used for several applications such as time series classification, events
detection [5, 6], and anomaly detection [11]. It enables using the Euclidian distance of
the discretized subsequences [9], and allows both dimensionality reduction and lower
bounding of norms [11].

Although the above mentioned advantages, SAX suffers from some limitations. It
does not pay enough attention to the directions of the time subsequences and may
produce similar strings for completely different time series. To overcome this
problem we propose the TVA representation which extends SAX by adding new
string symbols in order to represent the trends of time series.

3 Our Approach

The general framework of the proposed approach is shown in Fig. 3. The given
multivariate time series is first divided into a sequence of smaller segments by sliding
a window incrementally across the time series. Then, the processing is performed in
two phases: representation and classification

• In the representation phase each segment is represented by a pair of
characters , . The first character represents the linguistic value of the
time series and takes one of these values: (a = low), (b = normal), (c = high),
etc. The second character describes the local trend of the time series and
takes one of these values: (U = up), (D = down) or (S = straight).

• In the classification phase, a memory-based classifier is trained and used to
assign a class label to each segment.

396 B. Esmael et al.

Fig. 3. The general framework of the proposed approach

4 TVA Representation

In the classification phase, we are not interested in the exact numerical values of each
data point in the given time series. What we are interested in are the trends, shapes
and patterns existing in the data. To recognize these patterns first it is required to
discover the simple local trends such as “increase in the hookload” and “decrease in
the torque” and to divide the numerical values of the time series into discrete levels
such as “high hookload” and “low pressure”.

The TVA representation transforms the numerical values of each variable in the
given time series into a sequence of , pairs. The multivariate time
series is hence transformed as follows:

T=

, , ,, , ,, , ,

where is the matrix that contains the , pairs, denotes the number
of the segments, represents the discrete level of the time series variable in
segment , and represents the trend (direction) of this variable in the segment.

4.1 Value-Based Appro

In our TVA representation
the time series. Two steps s

• Transforming the given
• Discretization of the tim

Transforming Step

In this step, PAA is used to
series of length by dividi
then computing the mean va

The time series T is represe

Discretization Step

In this step, a further transf
producing symbols with e
empirical tests on more tha
Gaussian distribution [2].
equal-sized areas under a G
breakpoints, the time seri
coefficients that are below
coefficients greater than or
smallest breakpoint are map

Fig. 4 illustrates how th
the data (hook load data). I
series is mapped to the wor

Fig. 4. A time series (blue lin
line) and then using predeterm

Multivariate Time Series Classification

oximation

n we use the SAX technique to approximate the values
should be followed:

n time series T into PAA segments.
me series based on predefined breakpoints.

o transform the given time series of length m into a ti
ing the original time series into equal-sized segments,
alue for each segment as follows:

ented by a vector of mean values , … ,

formation is applied to obtain a discrete representation
quiprobability. The inventors of SAX mentioned that

an 50 datasets, the normalized subsequences have a hig
This enables determining the “breakpoints” that prod

Gaussian probability density function. After determining
es is discretized in the following manner: All P
the smallest breakpoint are mapped to the symbol “a”,

r equal to the smallest breakpoint and less than the seco
pped to the symbol “b”, and so forth.

he transformation and discretization phases are applied
In this example, with m = 100 and s = 10, the given ti
d hcdacafgfg.

ne) is discretized by first obtaining a PAA approximation (g
mined breakpoints to map the PAA coefficients into symbols

397

s of

ime
and

n by
t in

ghly
duce

the
AA
, all
ond

d on
ime

gray

398 B. Esmael et al.

Indeed, representing the
causes a high possibility to
SAX does not pay enough
produce similar strings f
example.

Fig. 5. Two comple

The above mentioned pr
beside value-based approxim

4.2 Trend-Based Appr

We propose using the tren
trends form an important
approximation of time serie

To generate a trend-base
straight line through the set
best-fit line is the line tha
squares error) from a given

According to the least sq

 ∑
After constructing the line
calculated, and finally the tr
of the slope. Fig. 6 illustrat
the trend approximation for

e time series, using only the value approximation (SA
o miss some important patterns in some time series d
attention to the shapes of the time subsequences and m

for completely different time series. Fig. 5 shows

etely different time series that have the same sax string

roblem is overcome by adding trend-based approximat
mation in order to represent the directions of time series

oximation

nds as basis for classifying time series data because th
characteristic of a time series. In addition, trend-ba

es is closer to human intuition [10].
ed approximation, the least squares method is used to f
t of data points. The least squares method assumes that
at has the minimal sum of the squared deviations (le
set of data.

quares method, the best fitting line has the property that:∑

es that fit the data points, the slopes of these lines
rend characters U, D or S are computed based on the va
tes how the above mentioned steps are applied to constr
r a part of hook load data.

AX),
ata.

may
an

tion
s.

hese
ased

fit a
the

east

s is
alue
ruct

F

Using both, the tren
representation), the gi
“hDcDdDaDcUaDfUgDfSg
upper case is used to repres

5 Time Series Cla

The classification phase
representation of the given
each segment of the time se

Where and represent
 represents the number of

given time series has 10 va
dataset will have 20 feature

After extracting the featu
segment. In this work we pr
output of the classification
classifier are the feature-ve
class of the previou
classification algorithm.

TablSeg# 1 2 … …

Multivariate Time Series Classification

Fig. 6. Trend-based approximation

nd-based and the value-based approximation (T
iven time series is mapped to the str
gS”. Lower case is used to represent SAX values,
ent trends.

assification

starts by extracting a set of features from the T
time series. A feature-vector of fixed length is created

eries. The vector has the following form: , , , , … , , ,

ts the SAX character and trend character respectively,
f the variables in the given time series. For example, if
ariables and is divided into segments, then the extrac
es (columns) and instances (rows) as shown in Table 1
ures, the classifier is trained to assign a class (label) to e
ropose a memory-based classifier which takes the previ
n process into consideration. The inputs of the propo
ector of the current segment as well as the predic
us segment. Fig. 7 illustrates the pseudo-code of

e 1. An example of the extracted dataset

 …

 …

 …

… … … … … …

 …

399

TVA
ring
and

TVA
 for

and
the

cted
.

each
ious
osed
cted
the

400 B. Esmael et al.

Classification Algorithm
Input:

• A multivaite time series of length
Output:

• A sequence of labels (classes)
Do

• Create an empty sequence of classes SC.
• Divide the original time series into a set of smaller equal-sized segments,

where , , … ,
• For each segment in

o Represent the current segment as mentioned in section 4.
o Create the feature-vector
o Get the predicted class of the previous segment c
o Call the prediction method predict (,) which returns the class

of the current segment.
o Add the predicated class to the sequence SC.

• End For
• For all classes in SC

o Combine the consecutive equal classes , … , in one class C.
o Set the start time of C equal to the start time of the first class
o Set the end time of C equal to the end time of the last class

• End For All
• Return
End

Fig. 7. The classification algorithm

Although the memory-based classifiers are simple, as we will show, they improve
the classification accuracy significantly. The experimental results show that the
average improvement in accuracy is about 8% compared to a traditional classifier.

Many classification techniques can be used to classify the time series. In this work
we tested Naïve Bayes, Support Vector Machine, Rule Induction, K-Nearest Neighbor
and Decision Trees. Using all these techniques, the classification accuracy was high
as we show in the next section. Also, the training time is significantly reduced
because the number of extracted features is small.

6 Experimental Results

To evaluate our approach, we tested it with real-world data. Two time series were
used in our experiments. Table 2 illustrates these two time series:

Table 2. Time series parameters

Time Series Length Frequency #Variables #Classes
1 376,840 0.1 Hz 12 10

2 195,808 0.2 Hz 10 9

 Multivariate Time Series Classification 401

For all experiments a sequence of ten classes to the first time series, and a sequence
of nine classes to the second time series was assigned. Each one of these classes
represents one particular operation during drilling. The final output of the classification
task is similar to Fig. 2. The proposed approach to represent the data was applied to
create the feature space in a first step. Following that, RapidMiner [12] and LIBSVM
[13] were used to test the classifiers using the cross validation technique.

Table 3. Classification accuracy

 Time Series #1 Time Series #2
Window

Size
Traditional

classifier [%]
Memory-based
classifier [%]

Traditional
classifier [%]

Memory-based
classifier [%]

2 80.40 90.87 92.38 97.88
3 78.23 89.58 93.10 97.71
4 76.62 87.23 92.84 97.51
5 72.87 83.55 93.82 97.67
6 71.40 82.61 93.54 97.43
7 71.03 81.85 93.50 97.14
8 70.25 82.01 92.92 96.70

9 69.86 81.10 92.64 96.35
10 69.41 81.28 92.45 96.33

To measure the improvement that the memory-based classifier provides, two types
of classifiers were trained and tested with a varying window size. The first classifier
was trained only with TVA features. The second classifier (memory-based classifier)
was trained using the extracted features as well as the previously predicted classes as
input. Table 3 and Fig. 8 show the results of the Naïve Bayes classifier.

Fig. 8. Classification accuracy vs. window size

402 B. Esmael et al.

Table 4 shows the confusion matrix of one of the experiments in which the Naïve
Bayes classifier is applied to time series #2 using a window size of 2.

Table 4. Confusion matrix

M
ov

eU
P

M
ov

eD
N

M
ak

eC
N

C
ir

cH
L

R
ea

m
D

N

D
rl

R
ot

R
ea

m
U

P

W
as

hD
N

W
as

hU
P

Pr
ec

is
io

n
[%

]

MoveUP 343 8 30 0 0 0 17 0 2 85.7

MoveDN 16 442 4 0 0 0 1 1 1 95.0

MakeCN 12 7 1949 8 0 0 0 20 7 97.3

CircHL 11 1 0 4636 69 27 22 25 61 95.5

ReamDN 1 0 1 13 2155 7 24 30 12 96.0

DrlRot 0 0 0 2 5 19028 1 3 1 99.9

ReamUP 5 0 0 5 32 54 2298 1 22 95.0

WashDN 0 6 8 7 19 2 1 920 46 91.1

WashUP 14 1 5 5 2 1 11 27 1632 96.1

Recall [%] 85.3 95.0 97.6 99.1 94.4 99.5 96.7 89.5 91.4

In addition to Naïve Bayes, four classification techniques were tested. These
techniques are: Support Vector Machine (SVM), Rule Induction (RI), Decision Trees
(DT) and K-Nearest Neighbor (K-NN). Table 5 summarizes the results.

 Table 5. The classification accuracies of different techniques

 SVM RI DT K-NN
Time Series#1 92.9% 91.12% 90.0% 92.8%
Time Series#2 95.23% 98.24% 94.11% 96.9%

7 Conclusion and Future Work

The following conclusion can be drawn from the concepts presented in this paper:

• Representing multivariate time series by combining both the value-based and
trend-based approximations leads to reduce the dimensionality of the time
series largely.

• The reduced representation can be used as alternative to the time series
without losing any important characteristics or patterns exist in the original
time series data.

• Memory-based classifiers can improve the classification accuracy of the time
series significantly.

 Multivariate Time Series Classification 403

Our aim for future work is to improve this approach and use it for writing reports
automatically. TVA will be used as an intermediate representation between the
numerical values of time series and the human language.

Acknowledgment. We thank TDE Thonhauser Data Engineering GmbH for
supporting this work and for the permission to publish this paper.

References

1. Ratanamahatana, C.A., Lin, J., Gunopulos, D., Keogh, E., Vlachos, M., Das, G.: In:
Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook 2010,
2nd edn., pp. 1049–1077. Springer (2010)

2. Lin, J., Keogh, E., Lonardi, S., Chiu, B.: A Symbolic Representation of Time Series, with
Implications for Streaming Algorithms. In: Proceedings of the 8th ACM SIGMOD
Workshop on Research Issues in Data Mining and Knowledge Discovery, San Diego, CA,
June 13 (2003)

3. Batal, I., Valizadegan, H., Cooper, G.F., Hauskrecht, M.: A Pattern Mining Approach for
Classifying Multivariate Temporal Data. In: IEEE International Conference on
Bioinformatics and Biomedicine, Atlanta, Georgia (November 2011)

4. Batal, I., Sacchi, L., Bellazzi, R., Hauskrecht, M.: Multivariate Time Series Classification
with Temporal Abstractions. In: Proceedings of the Twenty-Second International Florida
AI Research Society Conference (FLAIRS 2009) (May 2009)

5. Onishi, A., Watanabe, C.: Event Detection using Archived Smart House Sensor Data
obtained using Symbolic Aggregate Approximation. In: PDPTA (2011)

6. Zoumboulakis, M., Roussos, G.: Escalation: Complex Event Detection in Wireless Sensor
Networks. In: Kortuem, G., Finney, J., Lea, R., Sundramoorthy, V. (eds.) EuroSSC 2007.
LNCS, vol. 4793, pp. 270–285. Springer, Heidelberg (2007)

7. Wei, L., Keogh, E.: Semi-Supervised Time Series Classification. In: The Twelfth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, SIGKDD
(2006)

8. Keogh, E., Pazzani, M.: An enhanced representation of time series which allows fast and
accurate classification clustering and relevance feedback. In: 4th International Conference
on Knowledge Discovery and Data Mining, New York, August 27-31, pp. 239–243 (1998)

9. Hung, N.Q.V., Anh, D.T.: Combining SAX and Piecewise Linear Approximation to
Improve Similarity Search on Financial Time Series. In: Proceedings of the 2007 IEEE
International Symposium on Information Technology Convergence (ISITC 2007), Jeonju,
Korea (2007)

10. Kontaki, M., Papadopoulos, A.N., Manolopoulos, Y.: Continuous Trend-Based
Classification of Streaming Time Series. In: Eder, J., Haav, H.-M., Kalja, A., Penjam, J.
(eds.) ADBIS 2005. LNCS, vol. 3631, pp. 294–308. Springer, Heidelberg (2005)

11. Keogh, E., Lin, J., Fu, A.: HOT SAX: Efficiently Finding the Most Unusual Time Series
Subsequence. In: Proceeding of the 5th IEEE International Conference on Data Mining
(ICDM 2005), Houston, Texas, November 27-30, pp. 226–233 (2005)

12. Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M., Euler, T.: YALE: Rapid Prototyping
for Complex Data Mining Tasks. In: Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 2006 (2006)

13. Chih-Chung, C., Chih-Jen, L.: LIBSVM: a library for support vector machines. ACM

Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), Software,
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Impact of pay-as-you-go Cloud Platforms
on Software Pricing and Development:

A Review and Case Study

Fernando Pires Barbosa and Andrea Schwertner Charão

Programa de Pós-Graduação em Informática,
Universidade Federal de Santa Maria, RS - Brasil

fernando.pires.barbosa@gmail.com, andrea@inf.ufsm.br
http://www.ufsm.br/ppgi

Abstract. One of the major highlights of cloud computing concerns the
pay-as-you-go pricing model, where one pays according to the amount of
resources consumed. Some cloud platforms already offer the pay-as-you-
go model and this creates a new scenario in which the rational computing
resource consumption gains in importance. In this paper, we address the
impact of this new approach in software pricing and software develop-
ment. Our hypothesis is that hardware consumption may impact directly
on the software vendor profit and thus it can be necessary to adapt some
software development practices. In this direction, we discuss the need to
revise well-established models such as COCOMO II and some aspects
related to requirements engineering and benchmarking tools. We also
present a case study pointing that disregarding the rational consump-
tion of resources can generate wastes that may impact on the software
vendor profit.

Keywords: Cloud Computing, Software Pricing, Cloud Platform, Soft-
ware Engineering.

1 Introduction

Cloud computing is a new computing paradigm based on economies of scale,
which predicts the existence of a dynamically scalable infrastructure, where re-
sources are allocated and delivered on demand over the Internet [6]. One of cloud
computing highlights is its pricing model, also known as pay-as-you-go. In this
model, IT resources are offered in an unlimited way and one pays an amount
according the actual resources used for a certain period (similarly to the energy
pricing model) [2].

The cloud vendors offer different kind of services, including IaaS, DaaS, PaaS
and SaaS [9]. Although one can deploy applications on any of the layers, the more
natural option for software developers is the platform as a service (PaaS) [2].
Some PaaS vendors currently adopt the pay-as-you-go model and, in some cases,
one can clearly see the financial impact of software optimization techniques ap-
plied to resource consumption. In AppEngine platform, for example, studies

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 404–417, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.ufsm.br/ppgi

Impact of Software Pricing and Development 405

indicate that using cache strategy instead of direct database access can reduce
by about 20 times the total cost of the operation [2]. Issues like that create a new
scenario for software developers, who may have to adapt some of the practices
they currently use.

In this new scenario, rational resource consumption become a strategy to
reduce the amount of hardware used by applications and therefore reduce the
amount to be paid to the vendor’s platform. In this paper, we review software
pricing issues facing this scenario and analyze some of the practices used in soft-
ware development, indicating whether and how they are affected by this new
reality. The paper is organized as follows: Section 2 focus on software pricing
while Section 3 analyze software development aspects. The analysis is focused
on: i) software development estimates (with COCOMO II), ii) requirements engi-
neering (ISO/IEC 25010) and iii) benchmarking tools (SPEC). Section 4 presents
a case study aiming to identify whether a system developed without concern for
the rational resource consumption can generate resource wasting that may re-
sult in financial loss if the system is distributed through a pay-as-you-go cloud
platform. Section 5 presents our final remarks.

2 Software Pricing

Software pricing has been discussed for several years in many ways. Since the ’90s
there has been studies on establishing a fair price for software [5] and new issues
have been addressed recently. One of the recent research topics concerns the
differences between the traditional, perpetual license model and the new software
as a service (SaaS) model [12]. Beyond the SaaS pricing model issues, different
studies on software pricing have been developed, including: models using the
value added to client’s business [12], studies based on stock market [16], pricing
based on cost accounting [19] and use of price sensitivity in order to identify
features that should be prioritized [10]. Even with so many different studies,
software pricing involves basic elements that can be applied to all models [5], as
summarized in Table 1).

Considering the aspects in Table 1, the first item affected by pay-as-you-go
cloud platforms is number 3. Revenue Potential. In the traditional model, the
hardware required to run the software is a customer obligation. In the cloud
model, it will be probably an obligation applied to software vendor. If the soft-
ware is based on a pay-as-you-go platform, the software vendor company will
have part of the revenue gains spent to pay the platform vendor.

Establishing a final software price in this scenario involves estimating not just
the software revenue potential, but also the hardware resources required to use
it. That changes the way we face the hardware resources throughout the software
development process: in the pay-as-you-go model, one must design the software
to use minimal hardware resources, since it will directly impact your profit.
This affects another item in Table 1: number 5. Estimate software development
cost. Section 3 presents an analysis on software development and the first aspect
analyzed, in Section 3.1, is how one of the most used software cost estimation
models can face this situation.

406 F.P. Barbosa and A.S. Charão

Table 1. Software pricing issues [5]

3 Impact on Software Development

Due to changes in software pricing addressed in Section 2, we review some as-
pects of software development that could also change face to the pay-as-ou-go
model. In this section, we analyze software cost estimation (with COCOMO II),
requirements engineering (with ISO/IEC 25010 and the traditional approach of
non-functional requirements based on quality standards) and, at last, bench-
marking tools (the traditional SPEC benchmark suites and new research works
that are going on).

3.1 Software Cost Estimation (COCOMO)

The first studies on software cost estimation begun in ’60s and there has been
significant progress since then. Several models have been proposed during the
’70s and ’80s and some of them have been gradually improved and adapted until
today. One of the most used models is COCOMO II (Constructive Cost Model),
which is the latest major extension to the original COCOMO (COCOMO 81)
model published in 1981 and has several extensions as shown in Fig. 1.

COCOMO II estimates the effort using a person-month value based on 22
items split into 5 software scale drivers and 17 software cost drivers as shown
in Table 2. For each item is assigned a value and, the higher this value, the
greater the effort required. Required Software Reliability (RELY), for example,
means the extent to which the software must perform its intended function over
a period of time. It ranges from very low to very high. If the effect of a software
failure is only a slight inconvenience, the RELY value is very low. If a failure
would risk human life then RELY is very high.

The platform items refers to the target-machine hardware and infrastructure
software. Execution Time Constraint (TIME) is expressed in terms of the per-
centage of available execution time to be used by the software. Main Storage
Constraint (STOR) represents the degree of main storage constraint imposed on
the software. Fig. 2 shows the rating ranges for TIME and STOR.

In a pay-as-you-go platform, it would be impossible to use the approach based
on percentage of available resources as shown in Fig. 2. In a cloud environment,

Impact of Software Pricing and Development 407

Fig. 1. COCOMO extensions, adapted from [3]. Dates mean the first paper published.

Fig. 2. TIME and STORE rating ranges (COCOMO Model Definition Manual [4])

by definition, there is no maximum available resource amount. Resources are
provided on demand according to user needs. So it does not make sense to range
TIME and STOR based on an available resource percentage.

In a paper on the impact of the cloud model in software engineering [8], the
authors propose a change in COCOMO 81, suggesting the creation of a new
software class called Cloud Computing, to represent the complexity added by
cloud platforms. The point is that this steady increase in software complexity
is one of the reasons that led replacing COCOMO 81 by COCOMO II. That is,
the problem that the article is meant to solve has been solved yet (by COCOMO
II). However, even COCOMO II need to be revised. Not just about the cloud
environment and its complexity, but mainly about the pay-as-you-go model. In
such model, the more resources you consume the less its profit. So there is no
way to establish a value for the items TIME and STOR based on a percentage of
available resources. They must be revised to take into account the rational con-
sumption of resources, even though they are always available. Another question
to be addressed on this aspect is: the tools and models currently used allow you
know beforehand the amount of resources that will be consumed by a particular

408 F.P. Barbosa and A.S. Charão

Table 2. COCOMO cost and scale drivers. Highlight on platform factor.

software? And how do you know if a particular piece of code should or should
not be optimized on this perspective? Section 3.2 discusses these issues.

3.2 Requirements and Software Engineering (ISO/IEC 25010)

Requirements engineering is generally accepted to be the most critical and com-
plex process within the software development process [15]. It makes sense, since
the requirements are used to describe software features and its behavior. Re-
quirements engineering is mostly performed in the beginning of the software
development cycle, but its activities cover the entire cycle in order to detail the
software features [15]. Requirements are commonly classified as functional and
non-functional. A functional requirement specifies an action performed by a sys-
tem without considering its environment. Non-functional requirements describes
just the characteristics such as environment, platform, performance, constraints,
reliability, etc.

Functional and non-functional requirements are put together in a Software Re-
quirement Specification (SRS) document. It contains details on each feature and
information about how the application must interact with the system environ-
ment, considering issues such as response time, availability etc. SRS document
is the one which will guide the entire software development process.

Being an important issue, requirements are also taken into account by soft-
ware quality area. ISO/IEC 25010 replaced ISO/IEC 9126 in software quality
standards. It defines 8 characteristics for product quality. There are also 31 sub-
characteristics as shown in Fig. 3 [11].

Impact of Software Pricing and Development 409

Fig. 3. ISO25010 characteristics. Highlight to efficiency characteristics.

Performance efficiency characteristic is defined by ISO 25010 as “the perfor-
mance relative to the amount of resources used under stated condition”. That is
the quality attribute related to resource consumption. It has 3 sub-characteristics:
time behavior, related do response time; resource utilization, amount and type
of resources used; capacity, maximum limits of the product (such as concurrent
users, size of database, throughput transactions etc.)

Thus, in software engineering, performance and resource consumption require-
ments are treated as non-functional requirements and have a direct relation with
quality attributes, specifically the Performance Efficiency characteristic. The
efficiency measurement is made by objective criteria, which are established in
advance and must be attended by the software. An example criteria is: "on a
server with 1GB RAM and two 1,8GHz processors operating with a load of 400
concurrent users, 95% of all requests must return within 5 seconds and 90% of
them in up to 3 seconds using up to 50% of CPU and memory available".

After detailing the efficiency criteria in non-functional requirements at SRS,
it is possible to lead measurements to check if software meets the criteria or
not. It can be done using forms like the one at Fig. 4. This is how the resource
consumption issues are treated in traditional software development process.

Traditional approach induces the software requirement process to identify fea-
tures with huge concurrent use. That is because one must inform the software
designers which features they should provide a special treatment in order to en-
sure the response time required by quality criteria. In the pay-as-you-go model,
the amount of resources consumed affects software vendor profit. Therewith, re-
source consumption is no longer just a matter of quality and must be viewed in
a more strategic way. That brings a new issue to software requirements engineer-
ing: estimating the amount of resources that will be consumed by the software.
Optimize an application to consume the lower amount of resource is different
than optimize it to attempt quality criteria such as response time or throughput.
The new question to be addressed in the software requirement elicitation process
is: “which features will be used more often?”.

410 F.P. Barbosa and A.S. Charão

Fig. 4. Example of form used to software efficiency assessment [17]

The answer to these questions indicates which features should be optimized
as an strategy to reduce the amount paid to platform vendor. That brings a new
concern to software developers about the optimization: optimizing features with
biggest potential to consume resources. All of that indicates another software
development aspect to be reviwed: the performance benchmark tools.

3.3 Benchmarking Tools (SPEC)

Performance evaluation of computer systems has been studied for several years
and one of the most appreciated issues are the benchmarking tools. Until the
’80s, the main measuring instruments were MIPS and Mflops (both related to
CPU speed). But then the systems complexity required new tools [7] and that
has led to corporations like SPEC [18]. SPEC was formed to establish, maintain
and endorse a standardized set of relevant benchmarks, developing and regu-
lating benchmark suites. SPEC has more than 60 members and also reviews
and publishes submitted results from them. Among benchmark suites provided
by SPEC, Java benchmarks are the ones with closer relationship to traditional
software development. The SPECJEnterprise2010 benchmark is the most com-
prehensive of them, since it considers the whole J2EE specification (including
Web Server, Application Server, Database Server and JMS System).

SPECJEnterprise2010 is the third generation of the SPEC organization’s
J2EE industry standard benchmark application. Its performance metric is EjOPS
(Enterprise jAppServer Operations Per Second). Earlier generations also used
a price/performance metric but it was removed and now one must calculate
price/performance separately. That can be done using EjOPS and the BOM
(Bill of Materials) used to reproduce the results. Fig. 5 shows how the results
are provided by SPEC.

Traditionally, hardware resources are a customer’s obligation. In that case,
EjOPS metric can help software vendors to suggest hardware specification to be
acquired. But if one deploys software through a cloud model, the hardware will
probably be in an abstraction layer which is not visible at the customer point of
view. Furthermore, the amount spent on these resources will likely to be paid by

Impact of Software Pricing and Development 411

Fig. 5. Example of SPECJEnterprise2010 result provided by SPEC

the software vendor. In this situation, the EjOPS metric itself makes no sense
if there is no related price. The parameters required to evaluate a pay-as-you-go
cloud platform should be different than ones currently used by SPEC. As shown
in Fig. 5, SPEC results include hardware and software specification. That is
not relevant in a cloud platform evaluation, which should present something like
“how much it will be spent to run a specific workload”. There is also another per-
spective to be considered: benchmark metrics are generally related to processing
power and, in pay-as-you-go cloud model, there are other billable items such as
total storage used, input and output data transfer. Those items should also be
covered by a cloud platform benchmark.

CloudCMP is one of the first efforts in developing a new cloud benchmark
suite [13]. The first CloudCmp results were published in 2010 at the Conference
on Internet Measurement in Australia and the benchmark was publicly released
in November, 2011 [14]. CloudCmp published data covers some of major cloud
vendor such as Amazon, Microsoft, Google and Rackspace. Even not addressing
only platforms 1, as expected for such research on cloud evaluation, the metrics
initially proposed by CloudCmp adhere to the new scenario we describe in the
present paper. CloudCmp compares items like benchmark finishing time vs. cost
or scaling latency vs. cost, which are closely connected to what would be neces-
sary to choose a cloud platform vendor. But, as the paper itself warns, there is
still a lot of work to do. Some of the future work is to build performance pre-
diction models based on CloudCmp’s results to enable cloud provider selection
for arbitrary apps. That could be used at the beginning of the software devel-
opment process as a strategy to estimate the amount to be paid to platform
vendor.

1 OnlyGoogle AppEngine is really a cloud platform (PaaS). The other ones are most
like IaaS.

412 F.P. Barbosa and A.S. Charão

4 Case Study: SIE ERP System

To study how the changes highlighted in Section 3 could interfere in the outcome
of the software development process, we carried out a case study using an ERP
system named SIE. This system is targeted to academic institutions and is cur-
rently deployed in more than 20 Brazilian universities. SIE development started
in mid 1999, using Borland Delphi and a multi-tier architecture where the busi-
ness rules are processed via RPC calls in one or more centralized application
servers [1]. The whole ERP has around 2.500 tables accessed by more than 4.000
applications that work seamlessly to manage different business functions such as
academic and student management, contract and inventory management, human
resources, finance/accounting, etc.

The specific purpose of our study is to check whether and how a software
developed without concern on rational resource consumption can generate wastes
that, in a pay-as-you-go cloud platform, will directly impact the software vendor
profit.

4.1 Case Study Setup

The ideal scenario to perform measurements over a pay-as-you-go platform would
require that SIE was hosted on a cloud platform. This scenario, however, is not
feasible within the scope of this work, because the actual system would need to be
developed with the architecture and/or programming language of the platform.

As that scenario is unfeasible, we chose to monitor actual usage of SIE in
one institution (Universidade Federal de Santa Maria – UFSM), using its pro-
duction environment. This approach allows us to collect fairly comprehensive
information, since the SIE ERP is widely used in UFSM.

The measurement of effectively consumed resources should track all the bill-
able items of a pay-as-you-go platform. Monitoring at this level of detail would
not be feasible within the scope of this work, so we chose to monitor the response
time of each system feature. Then we consider this response time as an indica-
tion of resource consumption as follows: the longer response time of a feature,
the greater the amount of resources it consumed.

In an ERP like SIE, the response time can be affected by issues such as:
CPU usage on the application server; the amount of data transferred between
the server and client side; the system’s CPU and disk usage on the database
server; and the volume of information stored at database along with the required
indexes. Although these aspects may keep some similarity with pay-as-you-go
billed items, measuring the response time is not a substitute for complete detailed
resource monitoring. However, for the purpose of this study, the response time
can be used without major losses.

4.2 Measurement and Analysis

To perform the measurements and collect data, we modified SIE’s source code
to log any RPC call made to the server layer. The log contains, among other

Impact of Software Pricing and Development 413

information, the name of the RPC method called and the time each call took to
be processed. The change was applied to the UFSM’s production environment 2

and kept alive for a 20 minutes period. This time was enough to collect data on
more than 35.000 RPC calls, made by a total of 58 users, who used 62 different
system applications, resulting in calls to 602 different RPC methods. With that
log data, it was possible to obtain information as shown in Fig. 6, which lists
some of the SIE RPC methods and its response time. Taking a look at that list,
one observes that the method named IConsultaLocal.ConsultaAcervoBib has a
considerable total response time (385.336 msec) and it was called 90 times during
the monitoring period. Similarly, the method named ISGCA.GetRotulo got 6.252
calls and a total response time of 71.225 msec.

Fig. 6. Log results obtained for SIE’S RPC

We analyzed the log data aiming to find optimization opportunities that, for
some reason, has been disregarded since the beginnings of the software devel-
opment (more than 10 years ago) and that may impact the total consumption
of system resources. The results showed situations as presented in Fig. 7, which
lists the 10 RPC methods with higher total response time. The proportions of
the 10 methods (in a total of 602 monitored) in relation to the whole system
total response time logged reaches 51.39%.

Fig. 7. SIE RPC methods with higher total response time (20 min. monitoring)

An analysis of the source code of these method showed situations such as the
one of method IConsultaLocal.ConsultaAcervoBib, whose optimization would be
2 The infrastructure of computers where systems are hosted at UFSM and are accessed

by its employees and students.

414 F.P. Barbosa and A.S. Charão

complex since it has too much possible combinations of parameters and database
queries. On the other hand, it also pointed out situations such as the one found on
method ISGCA.GetRotulo, which could be optimized by implementing a cache
system. An analysis of the whole log data pointed out at least another six meth-
ods that could be optimized by a cache implementation. Fig. 8 summarizes that.

Fig. 8. Sample of optimization opportunities found in SIE RPC methods

A previous study suggests that using a cache strategy within the AppEngine
platform could be up to 20 times cheaper than using direct access to database
[2]. Relying on the connection between response time and resource consumption,
if we just use a simple cache implementation to optimize these seven methods
we could reduce their total response time from 346,536 to 17,326 msec. The
total response time measured for the whole system during the 20 minutes of
monitoring was 2,010,011 msec. So it would represent a reduction of 16.38%.
This value of 16.38% represents the savings that the software vendor would have
with these optimizations if it was using a pay-as-you-go cloud platform.

4.3 Discussion

The relationship between response time and resources consumption is not fully
accurate and the numbers presented in this section cannot be considered defini-
tive. However, it became more evident that a system developed with traditional
methods (like SIE ERP was) and without concern for the rational resource con-
sumption can generate wastings that will impact on software vendor profit if the
software is deployed over a pay-as-you-go cloud platform. The case study points
out that the aspects presented in section 3 are really affected by pay-as-you-go
cloud platform and it will be necessary to revise some of them. In COCOMO II
it would be very useful to revise the cost drivers related to platform factor. In
benchmarking tools, there is a lot of work ahead to meet the new needs related

Impact of Software Pricing and Development 415

to pay-as-you-go model. CloudCmp has begun a good work on that but it will be
necessary developing more benchmark suites, similarly to the traditional bench-
marks from SPEC. ISO/IEC 25010 and requirements engineering, on other hand,
may deserve some minor adjustments in the software requirements process to ad-
dress concern for rational resource usage. All of these changes are summarized
in Fig. 9.

Fig. 9. Summary of changes due to pay-as-you-go cloud platform

With these changes in mind, we provide in Fig. 10 a schema that can sup-
port further studies that aim to adapt software development process to the new
scenario. The presented schema is far way from a model proposal. It merely illus-
trates the idea of identify the expected usage degree of each feature while taking
details about that feature and then estimate the amount of resources that will
be consumed to decide if it is significant enough to be designed with the max-
imum optimization possible. This might support the pricing strategy, since the
software price must be huge enough to cover all costs of hardware and generate
a satisfactory profit margin.

416 F.P. Barbosa and A.S. Charão

Fig. 10. Draft schema to software requirement development process in a pay-as-you-go
cloud platform

5 Conclusion

Pay-as-you-go cloud platforms represent a new challenge to software developers:
they will need to address the hardware resources in a different way than they are
used to. This change is related to the fact that, in these platforms, the hardware
consumed by the application usage can directly impact software vendor profit.
This reality leads to an approach based on rational resource consumption, which
is not the focus of traditional software development.

Not all models and tools currently used in software development are ready to
deal with this approach based on rational use of resources. The analysis presented
in this paper has pointed out the need to review models such as COCOMO II, as
well as processes related to requirements engineering. We also identified the need
to review benchmark suites and algorithms, such as those provided by SPEC.

The case study showed that software systems developed without concern for
the rational resource consumption (as ERP SIE) can lead to resource wastes that
will impact on software vendor profit if the software would be hosted on a pay
as-you-go cloud platform. There is still much work to be done in this area and
this paper aims to contribute to raise the problems related to rational resource
consumption. Further studies may include reviewing other aspects that deserve
attention and were not addressed by this work, such as the use of pay-as-you-go
platform during the software development itself and some pricing issues related
to adding new features to existing software in that scenario.

References

1. Barbosa, F.P.: Projeto e implementação de um framework para desenvolvimento
de aplicações em três camadas. Tech. rep., Curso de Ciência da Computação. Uni-
versidade Federal de Santa Maria, Santa Maria (2000)

2. Barbosa, F.P., Charão, A.: Uma análise do impacto das plataformas pay-as-you-go
de computação em nuvem no desenvolvimento e precificação de software. In: Pro-
ceedings of the XXXVII Latin American Informatics Conference (XXXVII CLEI)
(2011)

Impact of Software Pricing and Development 417

3. Boehm, B., Valerdi, R.: Achievements and challenges in Cocomo-based software
resource estimation. IEEE Software 25(5), 74–83 (2008)

4. Bohem, D.: COCOMO II - model definition manual, version 1.4. Tech. rep., USA
(2000), http://sunset.usc.edu/research/COCOMOII/Docs/modelman.pdf

5. Dakin, K.: Establishing a fair price for software. IEEE Software 12(6), 105–106
(1995)

6. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-
degree compared. In: Grid Computing Environments Workshop, GCE 2008, pp.
1–10 (November 2008)

7. Giladi, R., Ahitav, N.: SPEC as a performance evaluation measure. Com-
puter 28(8), 33–42 (1995)

8. Guha, R., Al-Dabass, D.: Impact of web 2.0 and cloud computing platform on soft-
ware engineering. In: 2010 International Symposium on Electronic System Design
(ISED), pp. 213–218 (December 2010)

9. Motahari-Nezhad, H.R., Bryan Stephenson, S.S.: Outsourcing business to cloud
computing services: Opportunities and challenges. Tech. rep., USA (February
2009), http://www.hpl.hp.com/techreports/2009/HPL-2009-23.pdf

10. Harmon, R., Raffo, D., Faulk, S.: Incorporating price sensitivity measurement into
the software engineering process. In: Portland International Conference on Man-
agement of Engineering and Technology, PICMET 2003. Technology Management
for Reshaping the World, pp. 316–323 (July 2003)

11. ISO: ISO/IEC 25010. Systems and software engineering – Systems and software
Quality Requirements and Evaluation (SQuaRE). ISO (2011)

12. Kamdar, A., Orsoni, A.: Development of value-based pricing model for software
services. In: 11th International Conference on Computer Modelling and Simulation,
UKSIM 2009, pp. 299–304 (March 2009)

13. Li, A., Yang, X., Kandula, S., Zhang, M.: CloudCmp: comparing public cloud
providers. In: Proceedings of the 10th Annual Conference on Internet Measurement,
IMC 2010, pp. 1–14. ACM, New York (2010),
http://doi.acm.org/10.1145/1879141.1879143

14. Li, A., Yang, X., Kandula, S., Zhang, M.: CloudCmp - pitting cloud against cloud
(2011), http://cloudcmp.net/download

15. Pandey, D., Suman, U., Ramani, A.: An effective requirement engineering process
model for software development and requirements management. In: International
Conference on Advances in Recent Technologies in Communication and Computing
(ARTCom), pp. 287–291 (October 2010)

16. Qin, W., Ru-xiang, W.: Research of military software pricing based on binomial
tree method. In: 3rd IEEE International Conference on Computer Science and
Information Technology (ICCSIT), vol. 9, pp. 628–632 (July 2010)

17. SEI/PSM: Software quality requirements and evaluation, the ISO 25000 series
(2004), http://www.psmsc.com/Downloads/TWGFeb04/
04ZubrowISO25000SWQualityMeasurement.pdf

18. SPEC: Standard performance evaluation corporation (2011),
http://www.spec.org/

19. Zheng, Y., Cao, R., Sun, W., Zhang, K., Jiang, Z.: Practical application of FDC
in software service pricing. In: IEEE International Conference on e-Business Engi-
neering, ICEBE 2006, pp. 352–357 (October 2006)

http://sunset.usc.edu/research/COCOMOII/Docs/modelman.pdf
http://www.hpl.hp.com/techreports/2009/HPL-2009-23.pdf
http://doi.acm.org/10.1145/1879141.1879143
http://cloudcmp.net/download
http://www.psmsc.com/Downloads/TWGFeb04/04ZubrowISO25000SWQualityMeasurement.pdf
http://www.psmsc.com/Downloads/TWGFeb04/04ZubrowISO25000SWQualityMeasurement.pdf
http://www.spec.org/

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 418–433, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Resilience for Collaborative Applications on Clouds

Fault-Tolerance for Distributed HPC Applications

Toàn Nguyên and Jean-Antoine Désidéri

Project OPALE
INRIA

38334 Saint-Ismier, France
{Toan.Nguyen,Jean-Antoine.Desideri}@inria.fr

Abstract. Because e-Science applications are data intensive and require long
execution runs, it is important that they feature fault-tolerance mechanisms.
Cloud and grid computing infrastructures often support system and network
fault-tolerance. They repair and prevent communication and software errors.
They allow also checkpointing of applications, duplication of jobs and data to
prevent catastrophic hardware failures. However, only preliminary work has
been done so far on application resilience, i.e., the ability to resume normal
execution following application errors and abnormal executions. This paper is
an overview of open issues and solutions for such errors detection and man-
agement. It also overviews the implementation of a workflow management sys-
tem to design, deploy, execute, monitor, restart and resume distributed HPC
applications on cloud infrastructures in cases of failures.

Keywords: High-Performance Computing, Cloud Computing, Distributed
Computing, Scientific Applications, Workflows, Resilience.

1 Introduction

Scientific applications are required today to design, simulate, optimize and manufac-
ture artifacts, ranging from nanotubes to electronic devices and cruisers to airliners.

In order to design quickly these artifacts, long running simulations are executed. For
example, multi-discipline scenarios are implemented, where hydraulic, thermic, fluid
and electromagnetic simulation software collaborate for the design of nuclear plants.

Long running executions lasting days and even weeks on large HPC clusters suffer
from reliability problems concerning the hardware and software infrastructures
[15][17]. Fault-tolerance mechanisms are therefore required. They tend to be multi-
level, each aspect corresponding to a different level with its specific sources of errors:
network communications, distributed middleware, operating systems, collaborating
application codes.

The efforts on application errors tend to be the focus of active research today. This
is due in part to optimization concerns, and to another part for fault-tolerance
concerns [16].

 Resilience for Collaborative Applications on Clouds 419

Optimization concerns target the speed-up of CPU and data intensive demanding
applications [3]. Parallelization techniques take advantage today of multi-core super-
computers. However the 100K+ multi-core HPC clusters today are error-prone and
their mean-time between failures is in the order of minutes [13]. Therefore, effective
and low-overhead fault-tolerance application algorithms and codes are necessary.

Further, applications misbehavior and errors have multiple origins, which are not
necessarily programming errors. They might originate in unforeseen data configura-
tions, especially in simulation applications, unexpected data values, unpredictable
behaviors in case of multiple errors cumulating abnormalities, etc.

Important efforts are required to handle these complex abnormal application situa-
tions [4][8][14].

This paper addresses the management of application errors and abnormal behavior.
It defines terms (section 2), addresses open issues and solutions for error detection
(Section 3) and error management (Section 4). It sketches also implementation issues
using a workflow management system (Section 5). Section 6 is a conclusion.

A prototype system based on a distributed workflow platform for the design, dep-
loyment, execution and monitoring of HPC applications is briefly described. The
platform features resilience capabilities to address the application runtime errors.

2 Definitions

Because many terms are used in the fault-tolerance area, we give in this section a defi-
nition of various terms used in the domain and pave the way for an ontology of the
required concepts.

An interesting definition of errors, faults and failures is given in a system such as
Apache’s ODE [11], system failures and application faults address different types of
errors.

2.1 Errors

The generic term error is used to characterize abnormal behavior, originating from
hardware, operating systems and applications that do not follow prescribed protocols
and algorithms. Errors can be fatal, transient and warnings, depending on their critici-
ty level. Because sophisticated hardware and software stacks are operating on all pro-
duction systems, there is a need to classify the corresponding concepts (Figure 1).

2.2 Failures

A failure to resolve a DNS address is different from a process fault, e.g., a bad expres-
sion. Indeed, a system failure does not impact the correct logics of the application
process at work, and should not be handled by it, but by the system error-handling

420 T. Nguyên and J.-A. Désidéri

software instead: “failures are non-terminal error conditions that do not affect the nor-
mal flow of the process” [11].

2.3 Faults

However, an activity can be programmed to throw a fault following a system failure,
and the user can choose in such a case to implement a specific application behavior,
e.g., a number of activity retries or its termination.

Application and system software usually raise exceptions when faults and failures
occur. The exception handling software then handles the faults and failures. This is the
case for the YAWL workflow management system [19][20], where specific exlets can
be defined by the users [21]. They are components dedicated to the management of
abnormal application or system behavior (Figure 2). The extensive use of these exlets
allows the users to modify the behavior of the applications in real-time, without stop-
ping the running processes. Further, the new behavior is stored as a component
workflow which incrementally modifies the application specifications. The latter can
therefore be modified dynamically to handle changes in the user requirements.

Fig. 1. Resilience domains and concepts

2.4 Fault-Tolerance

Fault-tolerance is a generic term that has long been used to name the ability of systems
and applications to handle errors. Transactional systems for example need to be fault-
tolerant [9]. Critical business and scientific applications need to be fault-tolerant, i.e.,
to resume consistently in case of internal or external errors.

2.5 Checkpoints

Therefore checkpoints need to be designed at specific intervals to backtrack the appli-
cations to consistent points in the application execution, and restart be enabled from
there. They form the basis for recovery procedures.

 Resilience for Collaborative Applications on Clouds 421

In the following, we call checkpoint for a particular task the set including task defi-
nition, parameter specifications and data associated to the task, either input data or
output data and the parameter values.

This checkpoint definition does not include the tasks execution states or contexts,
e.g., internal loop counters, current array indices, etc. Therefore, we assume that
checkpointed tasks are stored stateless. This means that interrupted tasks, whatever the
reasons and errors, cannot be restarted from their exact execution state immediately
prior to the errors.

2.6 Recovery

We assume therefore that the recovery procedures must restart the failed tasks from
previously stored elements in the set of existing tasks checkpoints. A consequence is
that failed tasks cannot be restarted on the fly, following for example a transient non
fatal error. They must be restarted using previously stored checkpoints.

Fig. 2. Error management

2.7 Resilience

Application resilience is the property of software that are able to survive consistently
from data and code errors (Figure 2). This area is a major concern for complex numeric
software that deal with data uncertainties. This is particularly the case for simulation
applications [7].

This is also a primary concern for the applications faced to system and hardware er-
rors. In the following, we include both (application external) fault-tolerance and (inter-
nal) robustness in the generic term resilience [1].

Therefore we do not follow here the definition given in [17]: “By definition a failure
is the impact of an error itself caused by a fault.”

But we fully adhere to the following observation: “the response to a failure or an
error depends on the context and the specific sensitivity to faults of the usage scena-
rios, applications and algorithms” [17].

422 T. Nguyên and J.-A. Désidéri

3 Error Detection

3.1 Error Characterization

We address in this paper application errors, e.g., out of bounds data values, undefined
parameters, execution time-outs, result discrepancies and unexpected values. We do
not address communication, hardware and operating systems errors. We suppose that
they are handled by the appropriate fault-tolerance sub-systems, which might automat-
ically correct some of them or take appropriate corrective action, e.g., re-routing lost
messages. We also suppose that these errors can be signaled to the application-level
software by the appropriate raising of exceptions and posting of signals. Thus, the
applications can take whatever actions are needed, e.g., re-executing tasks on other
resources in case of network partition, out-of-memory execution, etc. This can be de-
fined by the application designers and even by the application users at runtime.

The early characterization of errors is difficult because of the complex software
stack involved in the execution of multi-discipline and multi-scale applications on
clouds. The consequence is that errors might be detected long after the root cause that
initiated them occurred. Also, the error observed might be a complex consequence of
the root cause, possibly in a different software layer.

Similarly, the exact tracing and provenance data may be very hard to sort out, be-
cause the occurrence of the original fault may be hidden deep inside the software stack.

Without explicit data dependency information and real-time tracing of the compo-
nents execution, the impacted components and associated results may be unknown.
Hence there is a need for explicit dependency information [10].

3.2 Error Ranking

The ranking of errors is dependent on the application logic and semantics (e.g., default
values usage). It is also dependent on the logics of each software layer composing the
software stack. Some errors might be recoverable (unresolved address, resource un-
available…), some others not (network partition…). In each case, the actions to recov-
er and resume differ: ignore, retry, reassign, suspend, abort...

In all cases, resilience requires the application to include four components:

• a monitoring component for (early) error detection,
• a (effective) decision system, for provenance and impact assessment,
• a (low overhead) checkpointing mechanism,
• an effective recovery mechanism.

Further, some errors might be undetected and transient. Without explicit data depen-
dency information and real-time tracing of the components execution, the impacted
components and associated results may be unknown. Hence there is a need for explicit
dependency information between the component executing instances and between the
corresponding result data [12].

 Resilience for Collaborative Applications on Clouds 423

Fig. 3. Resilience sub-system

3.3 Resilience Sub-system

A sub-system dedicated to application resilience includes therefore several
components in charge of specific tasks contributing to the management of errors and
consistent resuming of the applications (Figure 3). First, it includes an intelligence
engine in charge of the application monitoring and of the orchestration of the resi-
lience components [5]. This engine runs as a background process in charge of event
listening during the execution of the applications. It is also in charge of triggering the
periodic checkpointing mechanism, depending on the policy defined for the applica-
tions being monitored [22]. It is also in charge of triggering the message-logging
component for safekeeping the messages exchanged between tasks during their ex-
ecution. This component is however optional, depending on the algorithms imple-
mented, e.g., checkpointing only or hybrid checkpoint-message logging approaches.
Both run as background processes and should execute without user intervention.
Should an error occur, an error detection component that is constantly listening to the
events published by the application tasks and the operating system raises the appro-
priate exceptions to the monitoring component. The following components are then
triggered in such error cases: an optional provenance component which is in charge of
root cause characterization, whenever possible. An impact assessment component is
then triggered to evaluate the consequences of the error on the application tasks and
data, that may be impacted by the error. Next, a recovery component is triggered in
charge of restoring the impacted tasks and the associated data, in order to re-
synchronize the tasks and data, and restore the application to a previous consistent
state. A resuming component is finally triggered to deploy and rerun the appropriate
tasks and data on the computing resources, in order to resume the application execu-
tion. In contrast with approaches designed for global fault-tolerance systems, e.g.,
CIFTS [15], this functional architecture describes a sub-system dedicated to applica-
tion resilience. It can be immersed in, or contribute to, a more global fault-tolerance
system that includes also the management of system and communication errors.

424 T. Nguyên and J.-A. Désidéri

Fig. 4. Error detection and assessment

4 Error Management

Many open issues are still the subject of active research concerning application
resilience. The paradigm ranges from code and data duplication and migration, to
the monitoring of application behavior, and this includes also quick correctness
checks on partial data values, the design of error-aware algorithms, as well as
hybrid checkpointing-message logging features (Figure 3). We focus here only on
application errors. We do not address hardware, systems and communication errors.
We suppose that these errors are fully treated by the appropriate system components
[15][22]. We further suppose that they can be signaled to the applications by some
exception events. This allows handling the consequences of the errors, e.g.,
communication failures, by the appropriate application resilience sub-system
(Section 3.3).

The baseline is (Figure 4):

• the early detection of errors
• root cause characterization
• characterization of transient vs. persistent errors
• the tracing and provenance of faulty data
• the identification of the impacted components and their associated corrupted

results
• the ranking of the errors (warnings, fatal, medium) and associated actions

(ignore, restart, backtrack)

 Resilience for Collaborative Applications on Clouds 425

• the identification of pending components
• the identification and purge of transient messages
• the secured termination of non-faulty components
• the secure storage of partial and consistent results
• the quick recovery of faulty and impacted components
• the re-synchronization of the components and their associated data
• the properly sequenced restart of the components

Each of these items needs appropriate implementation and algorithms in order to or-
chestrate the various actions required by the recovery of the faulty application compo-
nents.

Fig. 5. Error handler

4.1 Detection

Error Detection. Hardware and system fault-tolerance mechanisms can intercept
errors [12]. Applications errors however must be explicitly taken into account in the
code. This impacts severely the programming efforts and needs important design and
re-programming efforts for existing codes [13].

Error Characterization. Similarly, error characterization is heavily dependent on the
application logics [14]. It allows for error ranking, ranging from warnings to fatal.
This is necessary to fine tune the fault-tolerance and resilience capabilities to the ap-
plication and user requirements.

Root Cause Detection. Root cause characterization and provenance information is
the most difficult part in complex applications and systems. Most of the time, even
sophisticated tracing mechanisms will fail to provide an accurate characterization of
the multiple root causes that provoke errors and abnormal application behavior [17].

Impact Assessment. The next important step is the assessment of the error impact.
This includes the impact on the subsequent tasks, on the data, and the evaluation of
error propagations. Further, a domino effect is that the errors can impact the messages
exchanged and in transit between tasks as well as the advent of the pending tasks.
This is detailed in the following sections (4.2, 4.3).

426 T. Nguyên and J.-A. Désidéri

4.2 Impacted Tasks and Data

Impacted Tasks. The application definition provides a detailed dependency relation-
ship between tasks and data. It should therefore be straitghtforward to characterize the
impacted tasks and data. However, the latency between error occurrence and their
actual detection makes it difficult to precisely point out the exact time and location
when an error occurred, particularly in distributed systems. Therefore, impacted tasks
and data can bearly be defined without an undefined uncertainty. This paves the way
for drastic backtracking policies and restarts. However, optimized checkpointing
schemes, e.g., asymmetric [1], multi-level [18] and encoded checkpoints [22], alle-
viate somehow crude backtracking and checkpointing approaches by reducing their
overhead, in both CPU and storage terms.

Corrupted Data. Similarly, corrupted data can originate from application errors and
from error propagation (Figure 6):

Application errors. Computation errors on correct data will produce erroneous results,
e.g., specification, algorithmic, programming erros. They can be spotted and corrected
with unpredictable delays. Performance and overhead issues are Performance and
overhead issues are not necessarily fundamental here because CPU and data demand-
ing tasks might have to be backtracked and re-executed, incurring potentially very
long delays.

Error propagation. Correct computations performed on previously polluted data may
generate random errors on data processed subsequently. Errors cannot in this case be
pointed out immediately, if at all. Restarting the application componenents from an-
cestor tasks might be a necessary option here. The exact and most accurate restart
location may in some cases be difficult to characterize. Policy requirements and im-
plementations are in this case the last resort.

4.3 Impact

Transient Messages. Transient messages are potentially emitted before a component
failure. Identifying such data might be very difficult in distributed computing and
collaborative codes. Indeed, failed tasks might have sent unknown numbers of mes-
sages and data to a potentially unknown number of descendant tasks, depending on
the point of failure. Time-outs might here be necessary to consider transient messages
to reach their destinations. Purging all these messages is necessary to backtrack to a
previous consistent checkpoint.

Pending Tasks. Pending tasks are in contrast easily characterized since they are wait-
ing for incoming data or events raised by ancestor tasks. Pause and resuming of such
tasks is an option, without systematically calling for their cold restart from a previous
checkpoint. Opportunistic checkpoints might here be interesting to store already

 Resilience for Collaborative Applications on Clouds 427

produced data and application state. This is related to asymmetric checkpoints [1],
where the users define points of interest in the application runs where checkpoints and
snapshots must be stored in order to prevent potential catastrophic failures later. So,
CPU, storage and communication demanding tasks will in such cases be saved with-
out the need to restart them later in case of application errors.

Fig. 6. Error impact

4.4 Recovery

Termination of Non-faulty Tasks. As mentionned above, recovery of non-faulty
tasks is straightforward if they are not directly linked to faulty tasks, or if they are
explicitly waiting for incoming data or events. If they are directly linked to failed
tasks, i.e., processing data produced by failed tasks, restarting them with the failed
tasks may be necessary. Indeed, without a sophisticated control of the data exchanged
between tasks, it may be impossible to characterize the subsets of data already
processed correctly by subsequent tasks. This is also the case when using data pipelin-
ing between tasks. In this case, restarting the tasks from the beginning is necessary.
Further, resuming the subsequent tasks also requires the ancestor failed tasks to restart
at their adequate execution locations when failed. This is most of the time impossible
in current systems. It requires repetitive incremental and partial checkpoints of state
dta and produced results, which can have an important overhead (Figure 7).

Secured Storage of Non-faulty Data. The secured storage of non-faulty data is es-
sential for the optimization of the recovery process. Although, if it does not succeed,
backtracking to a preceding checkpoint in the execution run is an option.

428 T. Nguyên and J.-A. Désidéri

Restart Selection. There might be several options available for a single coordinated
restart or local partial restarts (Figure 8). Depending on the situation, ranging from
warnings to erros and fatal ones, the distributed configuration of the applications
might render a global coordinated restart unrealistic. Several partial local restarts
might be preferable, and in all cases, less expensive in terms of CPU and resource
consumptions (Section “Coordinated Restart”, below).

Fig. 7. Error recovery

Checkpoint Selection. An adequate checkpoint selection mechanism must be de-
vised, which supports local restart in parallel and/or partial restarts from distributed
and coordinated checkpoints. Here again, the versatility of the checkpointing mechan-
ism, i.e., the support for multi-level checkpoints, is of first importance for reducing
the restart overhead (Figure 9). But the cost is of course, the checkpointing overhead,
both in terms of CPU and storage capacity, incurred. Encoding mechanisms, “sha-
dowed” and “cloned” virtual disk images have been proposed to answer these con-
cerns [23].

Coordinated Restart. Coordinated local restarts is a middle term option, between
global cold restarts and multiple local restarts. As mentioned previously (Section 4.3),
a global coordinated cold restart is unrealistic in distributed systems because it re-
quires stopping all tasks and restarting the whole application, which might require
large computing resources and days of CPU time. Coordination is fundamental here
and related to distributed computations. It follows that coordinated restarts must be
implemented by a specific mechanism that selects timestamped data and check-
points.Italso requires the careful selection of those checkpoints strictly needed for the
restart. The latter will execute local restarts with the appropriate checkpoints selected.

 Resilience for Collaborative Applications on Clouds 429

Fig. 8. Restart

5 Implementation

5.1 Overview

Several proposals have emerged recently dedicated to resilience and fault manage-
ment in HPC systems [14][15][16].

The main components of such sub-systems are dedicated to the management of er-
ror, ranging from early error detections to error assessment, impact characterization,
healing procedures concerning infected codes and data, choice of appropriate steps
backwards and effective low overhead restart procedures.

General approaches which encompass all these aspects are proposed for Linux sys-
tems, e.g., CIFTS [5]. More dedicated proposals focus on multi-level checkpointing
and restart procedures to cope with memory hierarchy (RAM, SSD, HDD), hybrid
CPU-GPU hardware, multi-core hardware topology and data encoding to optimize the
overhead of checkpointing strategies, e.g., FTI [22]. The goal is to design and imple-
ment low overhead, high frequency and compact checkpointing schemes.

Also, new approaches take benefit of virtualization technologies to optimize check-
pointing mechanisms using virtual disks images on cloud computing infrastructures
[23].

Two complementary aspects are considered:

• the detection and management of faults inherent to the hardware and software sys-
tems used

• the detection and management of faults emanating from the application code itself

Both aspects are different and imply different system components to react. However,
unforeseen or incorrectly handled application errors may have undesirable effects on
the execution of system components. The system and hardware fault management
components might then have drastic procedure to confine the errors, which can lead to
the application aborting. This is the case for out of bound parameter and data values,
incorrect service invocations, if not correctly taken care of in the application codes.

430 T. Nguyên and J.-A. Désidéri

This raises an important issue in algorithms design. Parallelization of numeric
codes on HPC platforms is today taken into account in an expanding move towards
petascale and future exascale computers. But so far, only limited algorithmic ap-
proaches take into account fault-tolerance from the start.

5.2 Resilience Sub-system

Generic system components have been designed and tested for fault-tolerance. They
include fault-tolerance backpanes [5] and fault-tolerance interfaces [22]. Both target
general procedures to cope with systematic monitoring of hardware, system and ap-
plications behaviors. Performance consideration limit the design options of such sys-
tems where incremental and multi-level checkpoints become the norm, in order to
alleviate the overhead incurred by checkpoints storage and CPU usage. These can

 Fig. 9. Checkpoints

 Resilience for Collaborative Applications on Clouds 431

indeed exceed 25% of the total wall time requirements for scientific applications [22].
Other proposals take advantage of virtual machines technologies to optimize check-
points storage using incremental (“shadowed” and “cloned”) virtual disks images on
virtual machines snapshots [23].

6 Conclusion

The advent of petascale computers has raised concerns about system fault-tolerance
and application resilience. Because exascale computers are now emerging, these con-
cerns become even more stringent.

Sophisticated and optimized functionalities are therefore required in the upcoming
hardware, systems and application codes to support effectively error management.

Large-scale applications also require distributed and heterogeneous environments
to run collaborative multidiscipline projects. Workflow management systems are
good candidate to deploy and control these applications because they require high-
level and non-expert level dynamic features, e.g., interactive control and visualization.
They also require dynamic reconfiguration capabilities, e.g., in case of task
re-deployment because of hardware and software failures. Overall, they require
resilience support because of potential software errors and erratic and unexpected
behavior, e.g., because of wrong simulation parameters.

This paper defines concepts, details current problems and addresses solutions to
application resilience. This approach is currently implemented and tested on simula-
tion testcases using a distributed platform that operates a workflow management
system interfaced with a cloud infrastructure. An automotive testcase is presented
addressing a vehicle rear-mirror drag optimization.

The platform provides functionalities for application specification, deployment,
execution and monitoring. It features resilience capabilities to handle runtime errors.
It implements the cloud computing “Platform as a Service” paradigm while using a
workflow system interface.

Acknowledgments. This work is supported by the European Commission FP7 Coop-
eration Program “Transport (incl. aeronautics)”, for the GRAIN Coordination and
Support Action (“Greener Aeronautics International Networking”), grant ACS0-GA-
2010-266184.

It is also supported by the French National Research Agency ANR (Agence Natio-
nale de la Recherche) for the OMD2 project (Optimisation Multi-Discipline Distri-
buée), grant ANR-08-COSI-007, program COSINUS (Conception et Simulation).

References

1. Nguyên, T.,Trifan, L., Désidéri, J.-A.: A Distributed Workflow Platform for Simulation.
In: 4th Intl. Conf. on Advanced Engineering Computing and Applications in Sciences, pp.
375–382. IARIA (2010)

432 T. Nguyên and J.-A. Désidéri

2. Deelman, E., Gil, Y.: Managing Large-Scale Scientific Workflows in Distributed Envi-
ronments: Experiences and Challenges. In: 2nd IEEE Intl. Conf. on e-Science and the
Grid, pp. 165–172. IEEE, New York (2006)

3. Simon, H.: Future directions in High-Performance Computing 2009-2018. Lecture given at
the ParCFD 2009 Conference (2009)

4. Dongarra, J., Beckman, P., et al.: The International Exascale Software Roadmap. Interna-
tional Journal of High Performance Computer Applications 25(1), 77–83 (2011),
http://www.exascale.org/

5. Gupta, R., Beckman, P., et al.: CIFTS: a Coordinated Infrastructure for Fault-Tolerant Sys-
tems. In: 38th Intl. Conf. Parallel Processing Systems, pp. 145–156 (2009)

6. Abramson, D., Bethwaite, B., et al.: Embedding Optimization in Computational Science
Workflows. Journal of Computational Science 1, 41–47 (2010)

7. Bachmann, A., Kunde, M., Seider, D., Schreiber, A.: Advances in Generalization and De-
coupling of Software Parts in a Scientific Simulation Workflow System. In: 4th Intl. Conf.
Advanced Engineering Computing and Applications in Sciences, pp. 247–258 (2010)

8. Joseph, E.C., et al.: A Strategic Agenda for European Leadership in Supercomputing: HPC
2020, IDC Final Report of the HPC Study for the DG Information Society of the EC (July
2010), http://www.hpcuserforum.com/EU/

9. Nguyên, T.,Trifan, L., Désidéri, J.-A.: A Workflow Platform for Simulation on Grids. In:
7th Intl. Conf. on Networking and Services (ICNS 2011), pp. 295–302 (2011)

10. Sindrilaru, E., Costan, A., Cristea, V.: Fault-Tolerance and Recovery in Grid Workflow
Mangement Systems. In: Fourth International Conference on Complex, Intelligent and
Software Intensive Systems (CISIS), Krakow, Poland, February 15-18, pp. 475–480
(2010)

11. The Apache Foundation, http://ode.apache.org/
bpel-extensions.html#BPELExtensions-ActivityFailureandRecovery

12. Beckman, P.: Facts and Speculations on Exascale: Revolution or Evolution? Keynote
Lecture. In: 17th European Conf. Parallel and Distributed Computing (Euro-Par 2011),
pp. 135–142. Springer, Heidelberg (2011)

13. Kovatch, P., Ezell, M., Braby, R.: The Malthusian Catastrophe Is Upon Us! Are the Larg-
est HPC Machines Ever Up? In: Alexander, M., D’Ambra, P., Belloum, A., Bosilca, G.,
Cannataro, M., Danelutto, M., Di Martino, B., Gerndt, M., Jeannot, E., Namyst, R., Ro-
man, J., Scott, S.L., Traff, J.L., Vallée, G., Weidendorfer, J. (eds.) Euro-Par 2011, Part II.
LNCS, vol. 7156, pp. 211–220. Springer, Heidelberg (2012)

14. Riesen, R., Ferreira, K.B., Varela, M.R., Taufer, M., Rodrigues, A.: Simulating Applica-
tion Resilience at Exascale. In: Alexander, M., D’Ambra, P., Belloum, A., Bosilca, G.,
Cannataro, M., Danelutto, M., Di Martino, B., Gerndt, M., Jeannot, E., Namyst, R., Ro-
man, J., Scott, S.L., Traff, J.L., Vallée, G., Weidendorfer, J. (eds.) Euro-Par 2011, Part II.
LNCS, vol. 7156, pp. 221–230. Springer, Heidelberg (2012)

15. Bridges, P.G., Hoemmen, M., Ferreira, K.B., Heroux, M.A., Soltero, P., Brightwell, R.:
Cooperative Application/OS DRAM Fault Recovery. In: Alexander, M., D’Ambra, P.,
Belloum, A., Bosilca, G., Cannataro, M., Danelutto, M., Di Martino, B., Gerndt, M., Jean-
not, E., Namyst, R., Roman, J., Scott, S.L., Traff, J.L., Vallée, G., Weidendorfer, J. (eds.)
Euro-Par 2011, Part II. LNCS, vol. 7156, pp. 241–250. Springer, Heidelberg (2012)

16. Proc. 5th Workshop INRIA-Illinois Joint Laboratory on Petascale Computing, Grenoble
(F) (June 2011),
http://jointlab.ncsa.illinois.edu/events/workshop5

 Resilience for Collaborative Applications on Clouds 433

17. Capello, F.: Toward Exascale Resilience, Technical Report TR-JLPC-09-01. INRIA-
Illinois Joint Laboratory on PetaScale Computing, Chicago (Il.) (2009),
http://jointlab.ncsa.illinois.edu/

18. Moody, A., Bronevetsky, G., Mohror, K., de Supinski, B.: Design, Modeling and evalua-
tion of a Scalable Multi-level checkpointing System. In: ACM/IEEE Intl. Conf. for High
Performance Computing, Networking, Storage and Analysis (SC 2010), New Orleans
(La.), pp. 73–86 (2010),
http://library-ext.llnl.gov, alsoTech. ReportL LNL-TR-440491

19. Adams, M., ter Hofstede, A., La Rosa, M.: Open source software for workflow manage-
ment: the case of YAWL. IEEE Software 28(3), 16–19, 211–219 (2011)

20. Russell, N., ter Hofstede, A.: Surmounting BPM challenges: the YAWL story, Special Is-
sue Paper on Research and Development on Flexible Process Aware Information Systems.
Computer Science 23(2), 67–79, 123–132 (2009)

21. Lachlan, A., van der Aalst, W., Dumas, M., ter Hofstede, A.: Dimensions of coupling in
middleware. Concurrency and Computation: Practice and Experience 21(18), 75–82
(2009)

22. Bautista-Gomez, L., et al.: FTI: high-performance Fault Tolerance Interface for hybrid sys-
tems. In: ACM/IEEE Intl. Conf. for High Performance Computing, Networking, Storage
and Analysis (SC 2011), Seattle (Wa.), pp. 239–248 (2011)

23. Nicolae, B., Cappello, F.: BlobCR: Efficient Checkpoint-Retart for HPC Applications on
IaaS Clouds using Virtual Disk Image Snapshots. In: ACM/IEEE Intl. Conf. High Perfor-
mance Computing, Networking, Storage and Analysis (SC 2011), Seattle (Wa.), pp. 145–
156 (2011)

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 434–443, 2012.
© Springer-Verlag Berlin Heidelberg 2012

T-DMB Receiver Model for Emergency Alert Service

Seong-Geun Kwon1, Suk-Hwan Lee2, Eung-Joo Lee3, and Ki-Ryong Kwon4,*

1 Electronics Engineering, KyungIl University,
50, Gamasil-Gil, Hayang-Eup, Gyeongsan-Si, Gyeongbuk, Koea

seonggeunkwon@hanmail.net
2 Department of Information Security, Tongmyong University,

535, Yongdang-dong, Nam-gu, Pusan, Republic of Korea
skylee@tu.ac.kr

3 Department of Information Communication, Tongmyong University,
535, Yongdang-dong, Nam-gu, Pusan, Republic of Korea

ejlee@tu.ac.kr
4 Department of IT Convergence and Application Engineering, Pukyong National University,

599-1, Daeyeon-3dong, Nam-gu, Pusan, Republic of Korea
krkwon@pknu.ac.kr

Abstract. This paper presents the method of emergency warning system operation
based on T-DMB and the design of T-DMB AEAS(Automatic Emergency Alert
Service) receiver model. The proposed receiver model compares the geographical
location of emergency with the location of DMB transmitting station from T-DMB
broadcasting signal and classifies the receiver location into alert region, neighbor-
ing region and non-alert region and transmits the emergency alert message accord-
ing to each region. The geographical location of emergency can be obtained from
FIG(Fast Information Group) 5/2 EWS(Emergency Warning Service) data field for
AEAS message and the location of DMB transmitting station can be estimated
from either the latitude and the longitude in main identifier and sub identifier in
FIG 0/22 data filed for TII(Transmitter Identification Information) or TII distribu-
tion database. Thus, the proposed receiver model consists of the checking process
of AEAS message from the received DMB signal, the verifying process of DMB
transmitting location and the displaying process of AEAS message according to the
classified region. In our experiment, we implemented the proposed receiver model
with display section, storage section, DMB module for receiving broadcasting sig-
nal and control section and performed test emergency alert broadcasting using T-
DMB signal generator. From experimental results, we verified that AEAS message
can be displayed on the receiver that is located on alert region and neighboring re-
gion and cannot be displayed on the receiver that is located on non-alert region.

Keywords: T-DMB, Automatic Emergency Alert Service (AEAS), Transmitter
Identification Information, Emergency Warning Service (EWS).

1 Introduction

Mobile phone has been the necessities of life in most people providing various service
functions of wireless communication, game, scheduling, camera, multimedia playing

* Corresponding author.

 T-DMB Receiver Model for Emergency Alert Service 435

and also DMB(Digital multimedia Broadcasting) service while preserving mobility.
Therefore, mobile phone can be good medium for the alert information service. Wire-
less operators have provided the alert text messaging service to mobile phones in
disaster area for mobile alert information service. But heavy traffic or interruption of
wireless network create the delay of alert text messaging service. Furthermore, 3G
mobile phone can’t be provided this service model because CBS(Cell Broadcasting
Service) providing alert text messaging was ruled out in 3G network service.

Recently AEAS(Automatic Emergency Alert Service) for T-DMB(Terrestrial Digi-
tal Multimedia Broadcasting) [1],[2] has been developed for solving some problems
of alert information service and AEAS standard has being been worked to recommen-
dation of ITU-R BT.2049[3]-[5],[8]. T-DMB AEAS standard will be extended on the
application domain of DMB technique and will be fundamental technique for creating
a new mobile device market. This standard specifies definition, transmission and sig-
naling of AEAS message and functional requirements of T-DMB AEAS transmitting
system and AEAS receiver. This standard designs the format for AEAS message to be
compact and essential information for fast transmission and selects FIG(Fast Informa-
tion Group) 5/2 (EWS) in FIDC(Fast Information Channel Protocol) as transport pro-
tocol of AEAS message. But this T-DMB AEAS is the sub-channel message transport
system and the public emergency alert service for all receivers that transmits AEAS
message collectively without considering the relation of the alert region and the re-
ceiver position. Thus, AEAS message must be transmitted rapidly to only receivers in
the alert region or the intended emergency area.

In this paper, we proposed T-DMB AEAS receiver model using TII(Transmitter
Identification Information) [6],[7] that displays AEAS message according to the
relation of the alert region and the receiver position, together with the method of
emergency warning system operation based on AEAS standard. We consider two
conditions for the proposed receiver model. The first is to keep up T-DMB and AEAS
standards and satisfy service requirements for alert broadcasting that can activate
automatically the receiver and does not interrupt regular program schedule. The sec-
ond is to not only be serviced to all receivers but also display AEAS message to only
receivers that are located at the intended emergency area. Considering two conditions,
the proposed T-DMB AEAS receiver model consists of the EWS checking step, the
extracting step of T-DMB transmitting station position and the AEAS message dis-
playing step. The EWS checking step checks whether the emergency alert of EWS is
announced from FIG 5/2 in T-DMB transmission frame. In case of EWS in FIG 5/2,
the receiver model composes AEAS message from all FIGs and then process next two
steps. The position extracting step extracts the geographical position of DMB trans-
mitting station from TII signal symbol of FIG 0/22 in T-DMB transmission frame.
Finally, the displaying step classifies the receiver position by the relation of the posi-
tion of DMB transmitting station and the alert region and displays AEAS message
according to the classified region. Therefore, the proposed receiver model can provide
LAAS(Location Adaptive Alert Service), AAS(Automatic Alert Service) and
NIAS(Non-interruptive Alert Service). We implemented the proposed receiver model
with radio frequency section, audio section, display section, DMB module for receiv-
ing alert broadcasting and control section and evaluated the receiver performance
from test alert broadcasting in a special region.

436 S.-G. Kwon et al.

2 T-DMB Location AEAS Receiver Model

This paper presents the receiver model for T-DMB AEAS system with the method of
emergency warning system operation based on T-DMB. In this section, we explain
the emergency alert broadcasting process for the emergency warning system opera-
tion and then the T-DMB AEAS receiver model in detail.

Fig. 1. The process of T-DMB Emergency Alert Broadcasting [6]

2.1 Emergency Alert Broadcasting Process

The generalized process of T-DMB emergency alert broadcasting consists of
EMA(Emergency Management Agency or emergency announcement center), T-DMB
broadcasting station, T-DMB transmitting station and mobile receiver as shown in
figure 1. In this figure, EMA collects the information of emergency accidents and
disasters and generates alert message and transmits it to T-DMB broadcasting station.
This broadcasting station segments the received alert message to some FIGs for satis-
fying the AEAS message format and generates the transmission frame with FIG 5/2
EWS and transmits it to T-DMB transmitting station. Then the transmitting station
inserts own geographical position into FIG 0/22 in the received transmission frame
and transmits it to mobile receiver. Mobile receiver extracts TII signal in FIG 0/22 of
the received transmission frame and identifies T-DMB transmitting station and dis-
play AEAS message according to the relation of the alert region and the position of T-
DMB transmitting station.

EMA is the alert agency that provides AEAS message for the environment disaster
with geographic information to T-DMB broadcasting station. It will be managed by
country or city/province. The environment disaster contains the natural disaster of
heavy rain, storm, earthquake, volcano, yellow sand and more or the human disaster
of forest fire, traffic accident, building breakdown and more. The geographical infor-
mation for the emergency alert region can be represented to codes that are allocated at
cities or provinces in a country. Thus, after dividing a country into some administra-
tive districts or geographical districts, each district is allocated to unique code with
fixed bits. Its unique code for each district is used as the geographical information.

T-DMB broadcasting station composes transmission frame with ensemble pro-
grams and their associated information. If the alert message is received from EMA,
this station segments the received alert message into some FIGs and encodes them to
FIG 5/2 EWS of FIDC and inserts FIG 5/2 EWS into transmission frame.

T-DMB transmitting station receives transmission frame from T-DMB broadcast-
ing station and converts the received transmission frame to DMB FR signal for

 T-DMB Receiver Model for Emergency Alert Service 437

transmitting to mobile users. This transmitting station can be established in regular
regional position in a country. T-DMB transmitting station in each regional position
contains own latitude and longitude in LaC, LaF, LoC and LoF in main identifier and
LaO, LoO in sub identifier in TII FIG 0/22 and assigns MainId and SubId to own
code values in TII distribution table. Then this station transmits transmission frame
with own geographical information to mobile users.

Fig. 2. The process of the proposed T-DMB AEAS receiver model

2.2 T-DMB AEAS Receiver Model

The receiver model estimates whether the receiver is in the alert region by comparing
the position of T-DMB transmitting station and the alert region. Thus, if the transmit-
ting position is within the alert region, the receiver model displays AEAS message. Or
if the transmitting position is over the alert region, the receiver position divides the
alert severity into warning alert or non-alert by the distance between two positions.
The receiver model displays AEAS message with lower severity in case of warning
alert and don’t display AEAS message in case of non-alert. The process of mobile
receiver model consists of the alert information checking step, the position extracting
step of T-DMB transmitting station and the AEAS message displaying step, as shown
in figure 2.

The receiver model powered on DMB module displays the tuned ensemble pro-
gram by receiving DMB RF signal of the transmission frame from T-DMB transmit-
ting station. DMB module transforms DMB RF signal to the signal that mobile device

438 S.-G. Kwon et al.

can process and checks D2 value in FIG 5/2 whether EWS(Emergency Warning Sys-
tem) is present in the current transmission frame.

If D2=0 and EWS is not present, the receiver model displays the tuned ensemble
program continuously. Or if D2=1 and EWS is present, the receiver model checks the
overlapping of MessageId in FIG 5/2 EWS data field so that we know whether an
AEAS message in EWS is overlapped or not. Thus, if the current MessageId is over-
lapped in the previous MessageId, the current AEAS message is the previous mes-
sage. In this case, the receiver model displays the previous message continuously
while receiving the transmission frame. If the current MessageId is not overlapped in
the previous MessageId, a new AEAS message is being received. In this case, the
receiver model completes a new AEAS message M

from composing all message

segments])15,0[(∈imi in FIGs. Then from FIG 5/2 EWS data field, the receiver

model extracts event code, severity p , geocode number N and geocode

]),1[(NkRk ∈

an additional text information for displaying message. In general,

AEAS message in the natural disasters will be announced in several regions since the
natural disasters may be arisen in several regions. The receiver model stores Geocode
number and several geocodes of alert regions for comparing the T-DMB transmitting
position and them.

Table 1. TII distribution table for example [6]

District
(Province/State)

City
Broadcasting station A Broadcasting station A

MainId p SubId c MainId p SubId c

P1 Province
C1 City 00 11 10 11
C2 City 00 12 10 12

P2 Province
D1 City 01 11 11 11
D2 City 01 12 11 12

Using the position of regional T-DMB transmitting station, we can estimate nearly the

position where the receiver is located in current. After checking EWS flag and complet-
ing AEAS message, the receiver model extracts the geographical position of T-DMB
transmitting station from TII signal of FIG 0/22 in transmission frame. This position can
be extracted by two methods from TII signal of FIG 0/22. The receiver model process the
extracting step of T-DMB transmitting station position only if EWS is present.

The first method is to extract the latitude TLa and the longitude TLo from main
identifier and sub identifier in TII signal FIG 0/22. Thus, the latitude TLa and the lon-
gitude TLo with full precision of T-DMB transmitting station can be calculated by

191915 2/1802/902/90 ×±×+×= LaOLaFLaCTLa ,

191915 2/1802/902/90 ×±×+×= LoOLoFLoCTLo .

with latitude LaC and longitude LoC of coarse step, latitude LaF and longitude
LoF of fine step and offset latitude LaO and offset longitude LoO . From the above
equation, the receiver model extracts the geographical position],[TLoTLaT = of T-
DMB transmitting station.

 T-DMB Receiver Model for Emergency Alert Service 439

The second method is to extract the code value of MainId p and SubId c from

TII distribution table. MainId p and SubId c represent to double figures 21aap =

(]69,0[∈p) and 21bbc = (]23,1[∈c). In a MainID p , the first figure 1a indicates

broadcasting station IDs and the second figure 2a indicates administrative district IDs

of each T-DMB broadcasting station, such as county, state or province. The double
figures 21bb of a SubId c indicate the regional T-DMB transmitting station that is

located at city, village or town in administrative districts. Table 1 shows the example
of TII distribution table. From this table, 1a s are set to 0 and 1 for T-DMB broadcast-

ing station A and B. 2a s are set to 0 and 1 for P1 province and P2 province. 21bb are

set to 11 and 12 for two cities in each province. For example, a MainId p =00 and a

SubId c =11 indicate T-DMB transmitting station that are located at C1 city in P1
province of T-DMB broadcasting station A.

In the message displaying step, the receiver model firstly compares the alert re-
gions of geocodes in FIG 5/2 EWS and the geographical position of T-DMB transmit-
ting station in TII signal FIG 0/22 and displays an AEAS message according to the
distance relation of the alert region and the transmitting station position. The output of
alarm or shake may be displayed together with an AEAS message. Thus, if the trans-
mitting station position is within the alert region, the receiver model displays an
AEAS message and keeps a user informed of an AEAS message using icon, alarm or
shake. If the transmitting station position is neighbor on the alert region, the receiver
model displays a message and an icon that informs a user that the emergency alert is
announced in the alert regions. If the transmitting station position is far away the alert
region, the receiver model do not display AEAS message and displays an alert icon so
that a user see a message in later. The process for AEAS message displaying will be
performed by two extracting methods of the transmitting position.

The display process is based on the latitude and the longitude],[TLoTLaT = of the
position of the transmitting station as follows:

1) Verify the k th alert region],[kk RLoRLa of the latitude and the longitude from

the geocode kR (],1[Nk ∈).

2) Check whether the position of the transmitting station],[TLoTLa is within the k th
alert region],[kk RLoRLa . If],[],[kk RLoRLaLoOTLoLaOTLa ⊂±± , classify the re-

ceiver position into the alert region and then go to step 4 for displaying the AEAS
message. Alternatively, if],[],[kk RLoRLaLoOTLoLaOTLa ⊄±± , go to step 3.

3) If],[],[kk RLoRLaLoFTLoLaFTLa ⊂±± , classify the receiver position into the

neighbouring region. If not, classify the receiver position into the non-alert re-
gion. Further, if k is N , then go to step 4. If not, go to step 1 after increment-
ing k by one.

4) If the receiver position is classified into the alert region, display the AEAS mes-
sage along with an alarm, a shake, or an icon. Alternatively, if the position is
classified into the neighbouring region, display a warning message and an icon
that informs that an alert has been announced. Alternatively, if the position is
classified into a non-alert region, display an alert icon instead of an AEAS mes-
sage and a warning message.

440 S.-G. Kwon et al.

The other display process that is based on the MainId p and the SubId c in the TII
distribution table is as follows:

1) Verify the k th alert region from the geocode kR (],1[Nk ∈).

2) Check whether the alert region kR is within the administrative district of the

broadcasting station from the MainId 21aap = . If kR is within the administra-

tive district, then go to step 3. If not, classify the receiver position into a non-
alert region and go to step 1 after incrementing k by one.

3) If kR is within the city of the transmitting station as determined from the SubId

21bbc = , classify the receiver position into the alert region and go to step 4 for

displaying the AEAS message. If not, classify the receiver position into a
neighbouring region and go to step 1 after incrementing k by one.

4) Display an alert message according to the classified region in the same manner
as that of step 4 in the previous process.

3 Experimental Results

In our experiment, we implemented T-DMB AEAS receiver model using MainId and
SubId of TII distribution table because it does not matter that the alert is announced
by the city unit. And we performed the test emergency alert broadcasting for evaluat-
ing the receiver model. In this chapter, we explain the organization for implementing
the receiver model and the result of test emergency alert broadcasting in detail.

Fig. 3. The organization for implementing T-DMB AEAS receiver model [2],[6]

The organization of the proposed T-DMB AEAS receiver model consists of radio
frequency section, input section, display section, audio processing section, storage sec-
tion, DMB module of broadcasting receiver module and control section as shown in
figure 3. The display section and the audio processing section are the output section that
outputs an alert message and an alarm that are determined by the relation of the alert
region and the transmitting position. The explanation of each section is as follows.

The radio frequency section sends or receives the signal associated with voice and
data communication, SMS(Short Message Service) and MMS(Multimedia Message
Service) by the control section. The input section contains several input keys and func-
tion keys for the information of number and character and the settings of various

 T-DMB Receiver Model for Emergency Alert Service 441

functions. Thus, the input section generates keys that check the input signal for activat-
ing DMB module and the displayed AEAS message. The audio processing section con-
tains a speaker for playing audio data and a microphone for collecting voice or other
audio signals. This section output alarms that are predefined by the relation of the alert
region and the transmitting position. For example, the receiver model in the neighboring
region outputs a receiving alarm and an inform message that the alert regions are an-
nounced. Or the receiver model in the non-alert region a simple message sound instead
of any alarms. The display section outputs a text of an AEAS message, an image or an
icon to mobile LCD window. If any tuned ensemble program is being played in LCD
window, an AEAS message will be overlaid on the playing program.

Our experiment used T-DMB/DAB+/DAB signal generator with ensemble genera-
tor, OFDM modulator and RF up-converter for T-DMB receiver development, as
shown in figure 4. From this figure, the test AEAS message is generated to
ETI(Ensemble Transport Interface) stream with FIG 5/2 EWS by the stream generator
and this stream is converted to the T-DMB RF signal by ODFM modulator and RF
up-converter. The T-DMB RF signal is transmitted to the T-DMB terminal through
on-air analyzer. The binary code of the proposed receiver model is hard-ported to the
T-DMB terminal. The T-DMB terminal displays an AEAS message by our receiver
model algorithm.

Fig. 4. Experiment test bed for T-DMB AEAS receiver model using T-DMB signal generator

Table 2. Test AEAS messages [6]

Section Message 1 Message 2
Event type CFW(Coastal flood warning) CFA(Coastal flood watching)
Severity Severe(Text+Alarm) Moderate(Text)
Data&Time 15:44, Sept. 11, 2008 15:52, Sept. 11, 2008
Geocode number 1 1

Geocode
4913000000 (Jeju-Do, Segipo
City)

4911000000 (Jeju-Do, Jeju City)

Text

Coastal flood warning driven by
Tsunami in Segipo seashores.
Look for a shelter from Tsunami
urgently.

Coastal flood watching driven by
Tsunami in Jeju seashores. Listen to
news flash until it is cancelled.

We made two test AEAS messages according to event code, severity and geocode as

shown in table 1 and converted them to the ETI stream with FIG 5/2 EWS. Thus, we
announced a severe message 1 of CFW(Coastal flood warning) and a moderate message

442 S.-G. Kwon et al.

2 of CFA(Coastal flood warning) to two cities in the same province. In our test broad-
casting, EMA(emergency management agency) is used as the metropolitan city and the
geocode of alert region is encoded to ASCII code of 10Byte. And the service ID in MCI
signaling part is 0xF1E0024A and the service label is “AEAS”. We produced the stream
of test emergency alert broadcasting in 12 minutes and announced a message 1 and a
message 2 at once. The time schedule of stream is as follows.

1) 00:00, Start stream and send padding message of EWS (D2=0).
2) 05:00, Send AEAS message 1 (D2=1) and stop padding message.
3) 08:00, Send AEAS message 1 and AEAS message 2 simultaneously (D2=1)
4) 10:00, Send padding message (D2=0) and stop AEAS message 1 and AEAS

message 2.
5) 12:00, End stream.

To test receiver model using the above test stream, we changed TII symbol of FIG
0/22 in TII distribution table while sending the fixed geocodes in test stream. Thus,
we ported the changed TII symbol to T-DMB terminal every test measuring.

 (a) (b)

 (c) (d)

Fig. 5. AEAS messages displayed on DMB terminals in alert region

When hard-coded T-DMB terminal receiving TII symbol corresponding to Segipo
city that is alert region of a severe message 1, the text in a severe message could be
displayed on T-DMB terminal as shown in figure 5 (a) and (b). Also, when hard-
coded T-DMB terminal receiving TII symbol corresponding to Jeju city that is alert
region of a moderate message 2, the text in a moderate message could be displayed on
T-DMB terminal as shown in figure 5 (c) and (d). When we changed TII symbol cor-
responding to another city in the same province and hard-ported it to T-DMB termin-
al, a warning message that informs of be announcing CFW and CFA to Segipo city
and Jeju city respectively could be displayed on T-DMB terminal. In TII symbol cor-
responding to cities in other provinces, a simple icon that informs of transmitting an
AEAS message in alert regions could be displayed on T-DMB terminal.

 T-DMB Receiver Model for Emergency Alert Service 443

From the above experimental results, we confirmed that our T-DMB AEAS receiv-
er model can provide all T-DMB terminals with EWS but only terminals that are lo-
cated at alert region can display an AEAS message.

4 Conclusions

This paper presents T-DMB location AEAS receiver model using TII symbol. Our
model compares the geocode of alert region in an AEAS message with the geographic
location of Main/Sub identifier in TII symbol or TII distribution table of
MainId/SubId and displays an AEAS message on only T-DMB terminals that are
located at the alert region. Since our location AEAS model can provide all DMB ter-
minals with LAAS(Location Adaptive Alert Service) based on transmitter,
AAS(Automatic Alert Service) and NIAS(Non-interruptive Alert Service), it can be
presented to the standard T-DMB terminal model for AEAS. Therefore, the proposed
receiver model will provide the reliability service for the emergency warning system.
An AEAS message may include main text as well as additional information of URI
and multimedia in external link. In the future, we will develop T-DMB terminal
model that can provides multimedia services for AEAS.

Acknowledgement. This research was supported by the Korea Research Foundation
Grant funded by the Korean Government (MEST) (KRF-2011-0010902 and KRF-
2011-0023118).

References

1. ETSI EN 300 401, v.1.4.1, Radio Broadcasting Systems; Digital Audio Broadcasting
(DAB) to mobile, portable and fixed receivers (January 2006)

2. Telecommunication Technology Association, Standard of Transmission and Reception for
Digital Terrestrial Television Broadcasting, TTAK.KO-07.0014/R2 (2009)

3. Telecommunication Technology Association, Interface Standard for Terrestrial Digital Mul-
timedia Broadcasting (T-DMB) Automatic Emergency Alert Service, TTAS.KO-
07.0046/R2 (2009)

4. Choi, S.J.: Design of T-DMB Automatic Emergency Alert Service Standard: Part 1 Re-
quirements Analysis. Journal of Broadcast Engineering 12(3), 230–241 (2007)

5. Choi, S.J.: Analysis of Emergency Alert Service and Systems. In: International Conference
on Convergence Information Technology, pp. 657–662 (2007)

6. Kwon, S.-G., Jeon, H., Lee, S.-H., Kwon, K.-R.: Mobile Receiver Model for T-DMB Loca-
tion Automatic Emergency Alert Service. Journal of Korea Information and Communica-
tions Society (KICS) 34(10), 727–813 (2009)

7. Kwon, S.-G., Jeon, H., Lee, S.-H., Kwon, K.-R.: TII based T-DMB location AEAS receiver
model. In: IEEE International Conference on Multimedia and Expo, pp. 1286–1289 (2009)

8. ITU-R, Use of satellite and terrestrial broadcast infrastructures for public warning, disaster
mitigation and relief, Recommendation ITU-R BT.1774-1 (2007)

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 444–456, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Framework for Context-Aware Systems
in Mobile Devices

Eduardo Jorge1, Matheus Farias2, Rafael Carmo2, and Weslley Vieira2

1 Universidade do Estado da Bahia, Professor and Researcher, Bahia, Brazil
Instituto Recôncavo de Tecnologia, Researcher, Bahia, Brazil

emjorge1974@gmail.com
2 Universidade do Estado da Bahia, Researcher, Bahia, Brazil

{matheusmf,rafaelljj,weslleyleandro}@gmail.com

Abstract. The pervasive and ubiquitous computing is a computing paradigm
that aims to integrate the real world with the virtual world so that is not per-
ceived by users. One of the areas of study of this paradigm is the context-aware
systems that are systems that perform some action after collecting information
that characterizes a given context. The objective of this paper is to describe the
specification of a framework that can be utilized for the development of new
context-sensitive applications.

Keywords: Ubiquitous Computing, Pervasive Computing, Mobile Computing,
Android, iOS, Context of Use, CAMobile.

1 Introduction

An important area of research in the domain of mobile devices is what is being
called the context of use. This concept aims to improve the user experience on mobile
device.

The idea is to gather information, imperceptibly to the user, which characterize the
current state of the same at the moment that the device is being utilized. By recogniz-
ing the context, the device must provide services that are of interest at that time for so
improve the experience with the device.

One of the great needs of users is that the device could be adapted to various condi-
tions of use, even when used by different users, for example, the user every time she
goes practice running in a certain place, like to hear certain types of music. By detect-
ing contextual information regarding the location of the user, the device automatically
adapt its interface, so the songs that the user likes to hear are played on the player
device.

To accomplish that objective, applications must make use of present sensors in
mobile devices.

The growing evolution of the resources (such as increased processing capacity and
storage, screen size, touch screen, insertion of GPS sensors, Bluetooth, accelerometer,
camera, etc.) present in mobile devices, mainly smartphones and tablets, allowed

 A Framework for Context-Aware Systems in Mobile Devices 445

several applications emerge. Since mapping applications, audio and video playback,
Internet access to business and educational applications.

At present, the simplest smartphone brings with multiple applications, each de-
signed for a specific purpose, using one or more sensors of the device. At this point, is
a major bottleneck. The various applications installed on the device make use of sen-
sors many times simultaneously. Thus, each application needs to receive information
from a particular sensor, for example GPS, would create an "instance" of this sensor
by overloading the operating system by having to manage multiple identical copies of
the same information, and increasing consumption of resources, such as processing,
battery, memory etc..

Another factor that hinders the development of applications that use context of use,
is that the developer than to worry about the logic of your application, also needs to
worry about how to retrieve the information you need for each sensor.

The aim of this paper is to show the specification of CAMobile (Context-Aware
Mobile), a computational solution where different applications can be build taking
advantage of a common architecture, simplifying the development of context-
sensitive systems for mobile devices.

The use of an architecture like that will be specified, has some advantages, for ex-
ample: Reuse of code, since the code that handles certain sensors would be repeated
in various applications, Reduction of complexity, because the developer need only be
concerned with logic of their application; Reduced battery consumption, as the pro-
posed framework provides centralized access to sensor device.

Some applications using the CAMobile are planned to be developed to validate the
architecture specified. In section 7 of this paper is exemplified some of these applica-
tions.

This article is divided into seven main topics. The first refers to theoretical infor-
mation about Pervasive and Ubiquitous Computing and Context-Aware Computing.

In section 4, CAMobile is specified in a generic form, explaining each of its com-
ponents and their pattern of communication with applications. Section 5.1 explained
the main concepts of the Android platform, while in section 5.2 is shown adaptation
of CAMobile in this platform. Is discussed in section 6.1 the main concepts of iOS
platform, while in section 6.1 is shown adaptation of CAMobile in this platform.

Section 7 gives some scenarios and applications where CAMobile can be used. Fi-
nally in section 8 is made the conclusion of the article.

2 Ubiquitous and Pervasive Computing

The term ubiquitous computing was first used by [12], to describe a vision of the
future where computers would be ubiquitous, that is, would be inserted in various
objects: watches, pens, light switches, cups, etc. and everywhere: in the city, in the
forest, beach, street, etc.

In this view, the various computing devices (computers physically connected to the
network, mobile devices and objects as mentioned above) would be scattered and

446 E. Jorge et al.

fully integrated into the environment and on the lives of users as to not be noticeable
for its performance and its use is as natural to the point of becoming invisible to users.

There are computers, even in a simple form, on cell phones, microwaves, refrigera-
tors, ATMs, etc.. However, for [2], not enough simply to provide user interaction at
all times and everywhere. It is necessary in this model of computation, that applica-
tions adapt to this scenario highly distributed, heterogeneous, dynamic and mobile,
thus providing the information the user needs for a given context. It is this scenario
that the context-sensitive computing is inserted.

3 Context Sensitive Computing

One of the main areas of research in computing ubiquitous is computing context-
sensitive. This paradigm seeks to develop applications that take advantage of context
information at the time of use of computing devices. The first definition of the term
context-aware computing has been defined as "the study of applications that adapt
according to user location, group of persons, objects near the user and the changes
occurred to those objects along the time," by [11].

The definitions for the term context-sensitive computing found in literature closely
resemble the above mentioned: [10]: Applications that dynamically modify or adapt
their behavior based on information in the context of the application or user, [4]: A
system that uses information relating to the context to provide information or services
relevant to the user.

The main purpose of context-sensitive computing is to collect for computing de-
vices (objects cited in ubiquitous computing: watches, pens, computers, cell phones or
any device that has the ability to communicate with others or with the internet) inputs
(information) to enable them to characterize the conditions of a user, the environment
in which he is inserted at the moment, the devices around them, etc..

This information, called "context" was defined by [3] as: "Any information that
could be used to characterize the situation of an entity. An entity can be a person,
place or object considered relevant to the interaction between a user and an applica-
tion, including the user and the application." That is, context refers to information
relevant to a user at a given moment, such as his location, environment in which it is
inserted, the device processing power, energy, memory, nearby devices, time of day,
among others.

The context-sensitive computing is strongly linked to mobile devices, because of
mobility of the users and computational objects and the fact that the user desires in-
formation anywhere at any time, especially in movement, making the user context is
in constantly changing (the user moves from one place to another, thus modifying
the conditions of the environment, other users and / or resources to move in and out of
the application area of interest, restriction of resources available to execution of the
application) [8].

 A Framework for Context-Aware Systems in Mobile Devices 447

4 Framework

This section is specified the CAMobile and shown your workflow.

4.1 CAMobile

The framework CAMobile is divided into three components as presented in Figure 1.

Fig. 1. High-level architecture

The first component called Interface has as main function, to provide for external
applications a set of classes and interfaces that standardize the communication with
the CAMobile. In addition, it also informs what events are available in CAMobile to
be observed and what the possible conditions of notification for each event. This
library should be imported for each application that want to connect with the
CAMobile.

The second and main component is the framework CAMobile itself. It is responsi-
ble for meeting and managing the requests made by applications and observes the
events necessary for can respond to applications. The CAMobile observes the existing
events, following a definite pattern, inspired by the Observer design pattern, where
the CAMobile is notified of the change from the various sensors. It is also responsible
for identifying when events should be initiated and finalized.

448 E. Jorge et al.

The third component, called “Events” is small pieces of code responsible for "ob-
serve" the sensors of the device (camera, clock, accelerometer, gyroscope, etc.) and
notify CAMobile when conditions of sensors attend your request. Each event is im-
plemented to observe a single sensor and its main objective is to isolate the other
components of the access to the sensor, assuming the role of interface between them.
Several events can be coupled to CAMobile, each responsible for monitoring a sensor
device, being limited only by available hardware resources on the device.

4.2 Flow Operation of CAMobile

When an application connect with CAMobile, and require the observation of an event,
need to follow a standard communication defined by the component Interface. This
standard defines the following information must be passed by the applications:

Event: Code known for applications that uniquely identifies that event;

Notification condition: It is the information on which the application is interested. The
framework will start observing the specified event and when the context coincides
with the conditions provided, the application will be notified.

Each event has its own conditions of notification. Some examples are: the event
GPS may have the condition to notify the application when the device is within 10
meters of a certain place, and the event Bluetooth can notify the application when the
device is close to another defined device.

Observer: It informs who should be notified when the conditions are met.

After identifying the requested events, the CAMobile will start just those who are not
already running, being responsible for finalizing them when there are more applica-
tions interested in them. In this way, there is noun necessary power consumption.

Once the events were initiated and are observing the sensors of the device, the
CAMobile will wait new requests from external applications or notifications of events
when conditions are satisfactory. After being notified by the events, the Service will
notify interested applications.

An application may be interested in more than one event. In this particular case,
from the aggregation of two or more simple events, brings up a combined event. This
aggregation is nothing more than a logical combination of the conditions for each
event using the clauses "and" or "or." For example, an application requests the event
date / time and GPS, and wants to be notified all days, 08:00, if the device is in a cer-
tain location.

When the CAMobile receive this request, it will instantiate the events of date / time
and GPS, if not already instantiated, and only notify the application when the two
conditions (when it is 08:00 and at the specified location) are satisfied, if the combi-
nation logic used is "and". Or notify the application so that one of the conditions (or
when it is 08:00 or when at the specified location) is satisfied, if the combination is
logical "or". The application shall inform the logical condition should be used when
more than one event is observed.

 A Fra

5 Definition of the

This section contains the t
level description of a frame

5.1 Android Platform

The Android, released in O
plications whose operating
union of several cellular p
Alliance (OHA). This grou
LG, Motorola, Samsung, So

Fig. 2. The main component
basics/what-is-android.html)

Applications: They are nati
etc. All applications are don

Application Framework: L
features of free access to a
of the device and of the mem

amework for Context-Aware Systems in Mobile Devices

e Framework in the Android Platform

heoretical foundations of the Android platform and hi
ework for context-aware systems in this platform.

October of 2008, is a development platform for mobile
system is based on Linux. Its appearance is a result of

phone companies led by Google called the Open Hand
up currently is formed by 84 members, among which a
ony Ericsson, etc..

ts of the Android (Source: http://developer.android.com/gu

ive Android applications like email client, browser, ma
ne in Java.

Layer that offers a collection of frameworks with seve
applications. Are classes for building interface, data acc
mory card, among others.

449

igh-

ap-
f the
dset
are:

uide/

aps,

eral
cess

450 E. Jorge et al.

Libraries: Libraries in C /
functionalities of these lib
Framework layer.

Android Runtime: Has a s
language and a virtual mach

Linux Kernel: Abstraction
stack.

5.2 Framework in And

In Android, CAMobile can
the device is switched on,
framework will be running
another application has an
simply bind to it. The Serv
guarantees this behavior.

Fig.

Because it is a free proc
ground, in addition to bein
application that has begun
other applications.

In Android, the lifetime
highest priority over any o
terminated in critical condit

C ++ used by various components of the Android. T
braries are available to developers by the Applicat

set of libraries with most of the functionality of the J
hine optimized for devices with limited resources.

layer between the hardware and the rest of the softw

droid

 be initiated in two ways: automatically, immediately a
 or by an external application. Only one instance of
to suit all applications, aiming at energy saving device
interest in CAMobile and this is already running, it w

vice class of the operating system, as shown in Figure

3. Architecture Framework on Android

essing of user interaction, the service will run in the ba
ng independent of any application. This way, even if

will be finalized, the service continues active to answ

of a service is controlled by the operating system and
ther process running in the background. This will only
tion of memory and resources.

The
tion

Java

ware

after
the

e. If
will
e 3,

ack-
the

wer

has
y be

 A Framework for Context-Aware Systems in Mobile Devices 451

Although Android has terminated service CAMobile by limited resources, the
operating system itself will attempt to restart it when conditions are favorable.

However, the events of the framework that will observe the sensors device will use
Android's native APIs to attend requests from external applications (figure 3), such as
LocationManager for geo-information, or the AlarmManager for schedule tasks.

6 Definition of the Framework in the iOS Platform

Here, theoretical fundaments of the iOS platform and high-level description of a
framework for context-aware systems for this platform.

6.1 iOS Platform

The IOS is the operating system base on UNIX that runs on devices such as iPhone,
iPod Touch and iPad. This system controls the hardware devices and provides the
technologies needed to implement native applications.

The iOS's architecture is similar to basic architecture of Mac OS X. So, the system
acts as an intermediary between the hardware and applications. The architecture is
divided into layers, where the lowest level is the services and technologies essential
for all applications, while at the highest level is more sophisticated services and tech-
nologies

Figure 4, shows the layers of the IOS.

Fig. 4. Layers of iOS Platform (Source: http://developer.apple.com/library/ios/documentation/
Miscellaneous/Conceptual/iPhoneOSTechOverview/Art/SystemLayers.jpg)

The Cocoa Touch layer takes care of the visible part of the user that is the interface
that will appear on the screen. It also controls the user interaction with the screen
through touch, the accelerometer or the use of cameras.

This layer is the most used by the developer because in it is the main frameworks
that are used in the building of applications, giving supporting for technologies such
as multi-tasking, touch-based input, push notification and other high-level system
services.

452 E. Jorge et al.

The Media layer is responsible for the multimedia resources of the devices, such as
sounds, images and videos that are played.

The Core Services layer manages the services of the device, as the phone calls, the
sending of text message, services of protocols network communications and of the
database.

The Core OS layer is the lowest level of the system and the most basic. It controls
the functioning of the operating system, managing memory, battery, screen bright-
ness, security, among other functions.

6.2 Framework on iOS

The idea of a service running in the background is not adequate for the iOS platform,
this is because the concept of multitasking is a bit different in this platform.

Table 1 contains the Apple description of the states of a application in this plat-
form.

Table 1. States of applications on iOS

State Description
Not running The app has not been launched or was running but was terminated by the

system.
Inactive The app is running in the foreground but is currently not receiving

events. (It may be executing other code though.) An app usually stays in
this state only briefly as it transitions to a different state.

Active The app is running in the foreground and is receiving events. This is the
normal mode for foreground apps.

Background The app is in the background and executing code. Most apps enter this
state briefly on their way to being suspended. However, an app that re-
quests extra execution time may remain in this state for a period of time.
In addition, an app being launched directly into the background enters
this state instead of the inactive state.

Suspended The app is in the background but is not executing code. The system
moves apps to this state automatically and does not notify them before
doing so. While suspended, an app remains in memory but does not
execute any code.
When a low-memory condition occurs, the system may purge suspended
apps without notice to make more space for the foreground app.

When an application in Active state is interrupted due to a phone call or because

the user pressed the key 'Home' of the device, the application switches to Background
state and has only five seconds to save data and information of the interface for when
the application return to Active state everything is as before. Then, the state goes to
Suspended.

However, it is possible that an application asks for more time to perform some
tasks. But, this execution could take no more than ten minutes, after which time the
operating system changes the state to Suspended.

 A Framework for Context-Aware Systems in Mobile Devices 453

In addition, there are five types of applications that can stay running in the back-
ground for a long period of time without the operating system suspends. Table 2 has
the Apple description of these types.

Table 2. Types of applications that are allowed to run for a long time in the background

Type Description

audio The app plays audible content to the user while in the background.

location The app keeps users informed of their location, even while it is running in the
background.

voip The app provides the ability for the user to make phone calls using an Internet
connection.

newsstand The app is a Newsstand app that downloads and processes magazine or news-
paper content in the background.

external-
accessory

The app works with a hardware accessory that needs to deliver updates on a
regular schedule.

It is necessary notify the iOS that the application belongs to these types through the

declaration of the variable 'UIBackgroundModes' in file 'Info.plist'.
As one service that stay monitoring the existence of contexts of use requires more

than ten minutes executing in the background and does not fit into any of the types
allowed to run over a long period of time is inappropriate to create a service of this
type for this platform.

With this, was taken the service that had in the specification of of the framework
for the Android platform. Figure 5 shows the final iOS's architecture of the frame-
work for the iOS platform. By removing the service, which would work as a unique
instance, would lose the advantage of economy of resources and bacteria. However,
the iOS already managing some of its sensors, and thus, there not is "waste" of re-
sources.

Fig. 5. Framework Architecture in iOS

454 E. Jorge et al.

In the figure 5 shown that an application consists of classes, controllers, xibs (and
other files that comprise it) and by the framework CAMobile, which have some boxes
that are the contexts of use like location and time.

The CAMobile act as an interface between the application classes and the sensors
of the devices that bring context information such as GPS, clock (date / time) and
among others.

Each box that represents a context of use will use frameworks of the iOS to obtain
information of the context of use. For example, the GPS box will use the CoreLoca-
tion Framework to get location information such as latitude and longitude.

The use of sensors that provide information of context of use will be simplified to a
developer of context-sensitive systems. This is because the CAMobile will have me-
thods that will facilitate the verification of certain contexts of use. It can even, leave
the application scheduled to an event be executed when one or more contexts of use
(together) is found.

7 Scenarios and Applications

This section will be exemplified four scenarios where it could build applications that
make use of the framework.

7.1 Shopping Promotions

Products on offer are a store sales grow, because people tend to take advantage of
promotions in order to save.

When a person goes into a mall, many times has no knowledge of promotions exist
in the day. This happens because the mall has many stores and people do not always
have enough time to visit them all.

This way, an application can be made that aims to inform users about the existence
of promotions inside a mall. When the user enters the mall, the application would
perceive it by GPS and then check on a server if a store has a promotion available. If
any, a notice is posted to the user asking if he want to view the promotions.

Through this application a mall can negotiate with the owners of the stores the an-
nouncement of promotions and advertising space.

7.2 Mobile Devices in Traffic

When driving a vehicle, there may be cases where the driver needs to interact with
your mobile device, either to answer or make a call, to locate in the GPS or move to
your favorite music. However, for security reasons, the driver's attention should be
focused on traffic, it is necessary that the driver be able to perform their task with
minimal interaction. To do this, applications to improve the interface of the device for
fast and easy to use are recommended.

However, enable them every time that the driver is driving is a repetitive process
and can be easily forgotten. The ideal would be that the device automatically recog-
nize the moment when the user is driving.

 A Framework for Context-Aware Systems in Mobile Devices 455

This is possible through a context application. With it, the device would be able to
identify the speed with which it is moving and could infer whether the user is driving
or not. With this context recognized the device could automatically change the inter-
face, freeing the user from the obligation to change it manually every time that he will
drive.

7.3 Photos around the World

It is very common during a vacation people go to various places and take pictures
with his cell phones to keep memories of them.

However, in reviewing your photo album, after some time, people can end up for-
getting the exact context in which picture was taken (place, date, time, etc.).

A solution to this problem would be the development of an application that would
give context information for each new captured picture. For this, the application
should be aware of variations in the data store of the device, so that when a new photo
was added, it automatically collects information from the context and bind to the new-
ly captured photo.

With this information, the application could offer to the user an alternative view of
the photos present in the cell. By means of a map, a person could observe exactly the
path taken during the trip and where the photos were taken.

7.4 Parking Locator

It can be seen in recent years, a significant increase in the number of vehicles on city
streets. But the infrastructure of cities did not have followed, creating a major prob-
lem for drivers: Where to find a parking lot near where he meets with available va-
cancies?

To solve this problem, would be developed a context-sensitive application that
would inform the user the parking lots that are close to him at that moment, indicating
whether they have vacancies. The application must observe changes in user`s position
through the GPS sensor of the device, and each change, check whether the new user`s
position is close to some previously registered parking lot, in order to display this
information to the user.

Thus, the user, via a map, could see all the parking spaces nearby and which ones
have vacancies available for parking.

8 Conclusion

This section presents the final considerations of the subject of the article.
The context-sensitive computing is one of the main areas of research in ubiquitous

computing. It aims to develop applications that use context information (for example,
location, time, objects), when the use of computing devices. By obtaining this infor-
mation the applications will execute actions imperceptibly for the user, so that the
user experience with the device becomes nice.

456 E. Jorge et al.

For a developer to build applications of this type he needs to know how to handle
presents sensors in devices such as GPS and accelerometer, something that is not
trivial. To simplify this, was specified in this article an architecture of a framework
called CAMobile, which encapsulates the handling of sensors of the devices and to
provide a communication interface with it. Thus enabling, to schedule an event to be
triggered after being satisfied (detected) the conditions or a set of points (contexts, for
example, location and time) in a given period.

The architecture of CAMobile can be used on any mobile device platform. Can be
adapted depending of the advantages and limitations of each platform. That adapta-
tion was shown to Android and iOS.

In addition, the reuse of the specified architecture provide benefits such as code
reuse, reduced complexity and reduced resource consumption of the device.

References

1. Android developer, What is Android?, http://developer.android.com/
guide/basics/what-is-android.html

2. Barbosa, J., Hahn, R., Rabello, S., Pinto, S.C.C.S., Barbosa, D.N.F.: Computação Móvel e
Ubíqua no Contexto de uma Graduação de Referência. Revista Brasileira de Informática
na Educação 15(3), 53–65 (2007)

3. Dey, A.K.: Understanding and Using Context. Personal Ubiquitous Computing 5(1), 4–7
(2001)

4. Dey, A., Abowd, G.: Towards a Better Understanding of Context and Context Awareness.
In: Proceedings of CHI 2000 (2000)

5. iOS Developer Library. iOS App Programming Guide,
http://developer.apple.com/library/ios/#documentation/iPhone/
Conceptual/iPhoneOSProgramming-Guide/ManagingYourApplications
Flow/ManagingYourApplicationsFlow.html#//apple_ref/doc/uid/TP4
0007072-CH4-SW3

6. iOS Developer Library. iOS Technology Overview,
http://developer.apple.com/library/ios/#documentation/Miscel
laneous/Conceptual/iPhoneOSTechOver-view/
Introduction/Introduction.html#//apple_ref/doc/uid/TP40007898

7. Lecheda, R.: Google Android – Aprenda a criar aplicações para dispositivos móveis com
Android SDK, 2a Edição, Novatec Editora (2010)

8. Loureiro, A.A.F., Oliveira, R.A.R., Silva, T.R.M.B., Júnior, W.R.P., Oliveira, L.B.R., Mo-
reira, R.A., Siqueira, R.G., Rocha, B.P.S., Ruiz, L.B.: Computação Ubíqua Ciente de Con-
texto: Desafios e Tendências. In: Simpósio Brasileiro De Redes De Computadores E Sis-
temas Distribuídos, Recife, vol. 27, pp. 99–149 (2009)

9. Open Handset Alliance, http://www.openhandsetalliance.com/
10. Ryan, N., Pascoe, J., Morse, D.: Enhanced Reality Fieldwork: the Context-Aware Arc-

haeological Assistant. In: Gaffney, M., et al. (eds.) Computer Applications in Archeology.
Tempus, Oxford (1997)

11. Schilit, B., Theimer, M.: Disseminating Active Map Information to Mobile Hosts. IEEE
NetWork 8(5), 22–32 (1994)

12. Weiser, M.: The computer of the 21st Century. Scientific American 265(3), 66–75 (1991)

A Simulation Framework

for Scheduling Performance Evaluation
on CPU-GPU Heterogeneous System

Flavio Vella1, Igor Neri2,3, Osvaldo Gervasi1, and Sergio Tasso1

1 Univerisity of Perugia, Dept. of Mathematics and Computer Science, Perugia, Italy
2 University of Perugia, Dept. of Physics, Perugia, Italy

3 University of Perugia, Dept. of Electronic and Information Engineering,
Perugia, Italy

Abstract. Modern PCs are equipped with multi-many core capabili-
ties which enhance their computational power and address important
issues related to the efficiency of the scheduling processes of the modern
operating system in such hybrid architectures.

The aim of our work is to implement a simulation framework devoted
to the study of the scheduling process in hybrid systems in order to
improve the system performance. Through the simulator we are able to
model events and to evaluate the scheduling policy for heterogeneous
systems. We implemented as a use case a simple scheduling discipline, a
non-prehemptive priority queue.

Keywords: Simulation, Scheduling, Heterogeneous Systems, GPU,
OpenCL, Operating System.

1 Introduction

High Performance Computing with hybrid or heterogeneous systems attracted a
lot of interest in academia and research in the last years. This is most due to the
ubiquity of graphical processing units (GPU) in modern PCs which, thank to the
development of specific framework like CUDA[1] or more recently OpenCL[2],
enables the user to use high performance scalar processors along traditional
computational units. In addition, the modern PCs are often enabled with several
multi-core processors and an efficient scheduling among the various available
resources is an important issue to be addressed.

A system composed by computing units, with different characteristics and
strategies for data processing is usually called hybrid system (H-system) due
to the presence of heterogeneous computing units. Usually the allocation of the
computing resource (especially on the GPU side) is demanded to the user, who
decide which device to use and when. This is resulting in an inappropriate or
inefficient scheduling of jobs and processes and to an unoptimized use of the
hardware resources.

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 457–469, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

458 F. Vella et al.

Some works has been made to try to integrate CPU and GPU resources in
batch system[3], trying to allocate in an appropriate way the computational
resources based on job or user requirements. It is worth to be noticed that in
the modern operating systems the optimization of the process execution in H-
systems it is not well addressed.

In this work we propose an H-system simulator to test scheduling algorithms
for hybrid computing system. The simulator enables the user to write his own
scheduling algorithm, evaluating it in a H-system. Furthermore the simulator
enables the user to select the specific distribution of submitted processes and
the system configuration in terms of CPU and GPU resources. The output in-
formation provides a full report related to the scheduling process, including the
statistics of the mean waiting queue time, the involved devices and the comple-
tion time.

Our paper is organized as follows: the related works is described in section
2; some consideration about programs, processes and threads are presented
in section 3; the simulator structure and implementation details are defined
in section 4; and the concluding remarks and future directions are provided in
section 5.

2 Related Work

The main purpose of a scheduling algorithm is to establish the access method to
system resources by specific jobs. In particular, the Operating System scheduler
enables the multitasking kernels distributing processes and threads on available
resources on the basis of their priority. Recently many works have been made to
study and improve the scheduling performance. In systems with homogeneous
computing elements there are several consolidated scheduling algorithms like
multilevel feedback queue in Windows and Mac OS or Completely Fair Scheduler
(CFS)[4] in recent versions of Linux. Some efforts have been made to try to design
efficient scheduling algorithms also for an H-system (CPU-GPU) like in [5], [6]
and [7].

Scheduling algorithms need to be tested in different environments and condi-
tions, sometimes analytical model can be used to analyze and validate scheduling
efficiency in specific configuration, however a simulation infrastructure is often
needed to perform tests. In [8], the authors present an high performance simula-
tor for a Grid environment; the efficient scheduling of heterogeneous computa-
tional resources is a cool issue for Grid evironments too. In the paper they use
a discrete event simulator adding blocks for grid scheduling. Similar works are
presented in [9] and [10].

Our research scope is to develop an event based simulator to test scheduling
algorithms for hybrid or heterogeneous systems. The presented simulator is able
to evaluate the performance of an H-system scheduler based on classic evalu-
ation metrics [11] like minimization of queuing time and execution time and
maximizing the use of the available resources.

A Simulation Framework for Scheduling Performance Evaluation 459

3 Program, Processes and Threads

A process is an instance of a program, each process has the ability to keep
the state of the program during its execution like variable, hardware state and
the content of an address space in memory. A process can be divided in multiple
threads, each thread share the same address space of memory with other threads
of the same process. Obliviously only one thread can be executed on a CPU at
a given time. Each thread is usually specialized and tends to be CPU-bound or
I/O-bound, quite remarkably the first type spend a lot of time using the CPU
and the other one waiting for I/O operations to complete (keyboard interrupt,
audio and so on). Many schedulers do care about whether or not a thread should
be considered CPU or I/O bound, and thus techniques for classifying threads
represent a relevant scheduler’s component. Some schedulers tend to give CPU
access priority to I/O bound threads, because I/O operations take long time it
is good to start relative threads earlier.

In hybrid systems (CPU/GPU) a classifier able to decide the type of threads
(CPU or I/O bound) can also be used to determine in which device the thread
has to be executed. To understand the work-flow of the processes in a hybrid
system it is important to provide a more detailed description of how GPU threads
are executed. The details of process execution depend on the architecture used
and how heterogeneous computing units interact. In this work we consider the
processes work-flow as defined by OpenCL.

OpenCL is a standard, supported by the Khronos Group, for parallel cross-
platform programming of modern processors such as GPUs and many-core CPUs.
The execution of OpenCL applications can be divided in two parts: host pro-
gram and kernel program. The host program, which is executed on CPU, defines
the context (platform layer) for the kernels and manages their execution. An
instance of the kernel program is executed on each point in the index space,
this means that multiple instance will be executed in parallel. It is important to
highlight that for each execution of a process on the GPU a program is executed
on CPU, meaning that the scheduler has to manage a CPU thread while the
GPU is occupied. Furthermore each execution on GPU is composed by multiple
threads that run in parallel. Since the execution of those threads is simultane-
ous, we can treat it as a single thread execution. In the next sections we will
use the term job to refer both to single CPU thread or parallel job on GPU
composed by several threads. According to [12,13] the jobs have an inter-arrival
time exponentially distributed and an execution time is choosen according to a
Gaussian distribution. The average execution time and its standard deviation
depend on the nature of the type of job, in particular if it is real time (RT) or
not (in the latter case we name it User Job).

4 HPSSim

In this section, a simulation model for CPU-GPU on a H-system is defined
and described. The proposed model aims to simulate a H-system composed by

460 F. Vella et al.

a set of processors (CPUs) and graphics cards (GPUs) used as compute units
to execute heterogeneous jobs, a classifier selecting the type of compute device
(CPU or GPU) and a scheduler which implements the policy to be evaluated.

The proposed CPU-GPU simulation model is defined in terms of a set of state
variables describing the system (such as devices, jobs, queue and scheduler), and
a state transition function which determines its progression through a finite set
of discrete events.

The model is formally defined as a tuple:

Hsm = (S,D,J , E , δ)

where S represents the queue model which will be defined in Section 4.2;D and J
represent, respectively, the system device collection and the set of jobs which will
be processed. Additional details will be provided in Section 4.1. E is the events
set generated and run through the simulator, defined in Section 4.4. Finally, δ
represents the transition states function, defined as δ : (Q,D, ei) → (Q,D, ej),
where e ∈ E describes the system state (queue and device) which changes with
respect to the associated event.

4.1 Abstraction Level

In the present section the job and device concepts adopted in the simulation
model is described. As previously mentioned, a H-system is composed by a fi-
nite collection, D, of heterogeneous compute units used in the simulation. The
collection is a tuple, defined as: D = (di, ..., dncpus, dj , .., dngpu), where ncpus
and ngpus represent the number of CPUs and GPUs respectively. Each device
is qualified by a set of attributes:

Id: unique device numeric identifier
Type: CPU or GPU
Status: describes the device’s status (busy or idle)
Job: identifies the running Job
Cpulock: provides the GPU Id when a CPU is coordinating a Job running on

GPU, Job is running on such device. It is set to 0 when the device
is not coordinating the GPU Job execution

Statistics: stores some device statistical information (such as the total occupa-
tion time and the number of processed jobs)

Each attribute value may change according to a device operation. The most sig-
nificant operations are:

Run Job: a Job is coupled with a free device. To run a GPU job one CPU
device must be free to control its execution.

Terminate Job: the Job is released and the device status switches over to free
status.

Status : get the device status. This operation return the Job Id if the
device is busy.

A Simulation Framework for Scheduling Performance Evaluation 461

For the simulation model, a Job is a collection of temporal and type at-
tributes that define its type (such as RealTime or CPU Bound). In general,
the temporal attributes describe the Job evolution during the simulation. The
temporal attributes are:

Ta: indicates the arrival time of the Job into the system. In Section 4.3
is discussed how to select the input value according to the probability
distribution.

Tq: indicates the arrival time of the Job in the queue.
Te: indicates the instant in which a queued Job starts the execution for the

first time. Such value allows to compute the mean of the job’s waiting
time in the queue.

Trcpu,
Trgpu: indicate, respectively, the service time in CPU and in GPU devices. Such

values, unknown by the scheduler, represent the time required by the
devices to satisfy the Job request. The values assigned to such attributes
are discussed in secton 4.3; however, the range of assigned values depends
on the type attributes.

Tf : indicates the exit time of the job from the system.

In addition to temporal attributes, the type attributes characterize the Jobs
and the simulation process. Such attributes affect the service time and the type
of device able to execute it. The types of Job defined are: Realtime and User.
The RealTime Job represents the generalization of traditional Operating System
RealTime job. This type of job is characterized by a low service time associ-
ated with an high execution priority. In our model it is assumed that the Real-
Time jobs are executed exclusively on a CPU device (more details are given in
Section 4.2).

The second type of Job (User Job) generalizes the CPU Bound Job treated in
Section 3. Generally, the User Job is executed by traditional devices (CPUs) or
GPU devices with different service time depending on the application speedup.

According to the tuning input system, some User Job can be classified as GPU
User Job with Trgpu service time or as CPU User Job with Trcpu service time.
Furthermore, the GPU User Job can be run into CPU device, in this case the
service time will be determined by the Trcpu value. Such assumption is based on
the fact that the Job is a real OpenCL application and consequently it represents
a runnable application on heterogeneous devices. In the simulation model, as well
as in a real system, to execute this kind of Job both a CPU device (devoted to the
Host Program execution) and a GPU (devoted to the Kernel Program execution)
must be available. In the simulation process the Trgpu value takes into account
both the Host Program execution time and the Kernel Program execution time.
In Table 1 a summary of the Job types associated to the simulation model are
shown.

462 F. Vella et al.

Table 1. Resume of the Job types

Type Device Classification Time of service

Realtime CPU - Trcpu
User CPU CPU or GPU CPU Trcpu or Trgpu with Trcpu < Trgpu

User GPU GPU or CPU GPU Trgpu or Trgpu with Trgpu < Trcpu

As mentioned, in our model the Job classification is predetermined and we
suppose by default the real system knows which jobs can be executed in GPU or
CPU devices. The assignment of a class to a Job, changes the scheduler behavior
and influences the system performances. To evaluate the performance of a system
which is not aware of the job-device mapping, a system parameter (Classifica-
tionErrorRate) is added. Such parameter introduces a degree of misclassification
[14] of Jobs into the system, according to an input tuned probability (classifica-
tion performance). A classification error can affect both a CPU and GPU User
Job:

Classification error of GPU User Job: the classifier marks the GPU User Job
as CPU with the service time Trgpu <
Trcpu.

Classification error of CPU User Job: the classifier marks the CPU User Job
as GPU with the service time Trgpu >
Trcpu.

In our case, the scheduler, described in Section 4.2, is not able to detect the
classification errors, since it ignores the Job service time.

Finally, a job is defined by priority attributes. The absolute Job priority
depends on a combination of such attributes. Once properly tuned, it allows
the simulation of different priority assignment strategies of classical scheduling
algorithms such as CFS or O(1) [4,15]. In particular, the attribute Job Priority
(jp), indicates the static priority of the job during the entire life cycle, while
Dynamic Priority (dp), varies during the Job life cycle.

4.2 Scheduling Disciplines Implemented

In this section a simple scheduling discipline for the heterogeneous system, im-
plemented in the simulator as the first use case, is shown. The policy adopted
arrange the Job in a single no-preemptive priority queue. Generally, the selected
Job to run can use the device for a quantum-time (or a credit), qt, before being
released, as in a classical time-shared system [16]. The value of qt depends on
the quantum-time policy described below:

A Simulation Framework for Scheduling Performance Evaluation 463

Static or Dynamic In static fashion the qt, once set, will not change during
scheduling process. Otherwise (dynamic) the qt value
may change, within a range, according to some crite-
ria (for example considering the number of jobs in the
queue).

Homogeneous or
Heterogeneous

In homogeneous fashion, the qt value is the same for
each Job, while in the heterogeneous one, each job has
a different qt value called credit.

Miscellaneous a combination of the two approaches above mentioned.

Our strategy enables the use of homogeneous static or dynamic qt values. The
strategies of scheduling are summarized in the following rules:

Rule 1 Each Realtime Job has higher priority than User job.

Rule 2 Each Realtime Job runs on a CPU device.

Rule 3 Each GPU User Job runs on a GPU device if it is free, otherwise on a
CPU device.

Rule 4 Each CPU User Job runs on a CPU device.

Rule 5 Each Job executed on a CPU device can spend maximum qt cputime
before being released.

The next job to run is selected according to the following sequence:

1. The GPU User Job with higher priority is extracted from the queue and it
is executed by the first available GPU device. The Rule 3 is ensured.

2. The Job with higher priority is extracted if all GPU devices are busy.
3. If the Job with higher priority is a GPU User Job and all GPU devices are

busy, it is executed by CPU device, according to Rule 3.
4. If the Job with higher priority is a CPU User Job, it is executed according

to Rule 4.

Finally, a CPU job execution is released and the job is re-queued if qt CPU
time is spent and at the same time the Job priority is decreased. To avoid the
starvation problem [17] the priority of enqueued jobs is increment. However, to
ensure Rule 1 the system enforce to Realtime jobs a higher priority than user
job during the updating priority phase. The job with same priority run on the
device in a round-robin fashion.

4.3 Input Parameters

The simulation process depends on user-specified input parameters. The user
can specify the following parameters:

464 F. Vella et al.

ncpus, ngpus: number of CPUs and GPUs devices (to simulate the
hardware of the system).

Ta parameters : mean inter-arrival time of Jobs into the system.
Tservice parameters : mean and standard deviation of jobs service time for

RealTime and User jobs. The system load is directly
proportional to Tservice and Ta values.

Realtime rate: rate of Realtime jobs relative to the total according to
probability threshold.

speedup: min and max speedup for GPU execution respect to
CPU execution. According to [18] the range is between
9 and 130 depending on the type of application.

class err : classification error rate, mean the rate of job correctly
classified by the system. When the classifier does not
make mistakes (100% success rate), it is assumed to
simulate a system that knows which applications run
in GPU fashion.

Other parameters such as quantum time and priority parameters are needed and
depend on scheduling policy. The system jobs are generated on the basis of the
previous parameter during the initialization phase.

4.4 Event and Work-Flow

The Simulator design is based on events which characterize the Job scheduling
in a queue. The proposed simulation model handles the following events:

Enqueue: define the arrival (submission) of the Job into the system.
Run: after the submission and the activation of the scheduler is trig-

gered extracting one or several Jobs from the queue to assign
them to eventual available devices.

Reschedule: define the activation of the scheduler having the resources busy to
update the priority of the waiting jobs.

Requeue: occurs when a Job has spent the qt CPU time it is is released and
its priority is decreased.

Finalize: identify the exit of the Job from the system if its work is com-
pleted.

Each event is characterized by the time (tevent) which identifies the instant in
which the event occurs. Every time an event is created it is inserted in a queue
on the basis of its tevent value. The system extracts from the queue the event
having the lowest tevent and executes the actions associated to the event type.

The simulation work-flow consists of two main phases. During the first step,
at the same time of the initialization of the attributes of the job, it is created an
Enqueue event type associated with the job and an event time corresponding to
the value of Ta of the Job. The initialization ends when all jobs have been ini-
tialized and the corresponding Enqueue events were included in the event queue.
During the second phase the events are consumed and produced depending on

A Simulation Framework for Scheduling Performance Evaluation 465

Fig. 1. Simulator work-flow

the characteristics of the job scheduling and the policy adopted. The simulation
ends when all events have been consumed or when the simulation time exceeds
a given threshold. In Figure 1 it is shown the operation flow of the simulation
phase for each type of event extracted from the event queue.

When an event of Enqueue type occurs, the job associated to the event is
inserted into the priority queue of the system and an event of type Run is gener-
ated with event time equal to TCurrentEvent+ tsched with tsched representing the
activation time of the scheduler. The event type Run, which is not associated to
any Job, activates the scheduler, and considering the system status (described

466 F. Vella et al.

considering both the queue and the state of the device) performs the following
actions:

Queue is not empty
and resources busy :

if there are not available devices to execute the Job,
an event of type Reschedule is generated with event
time equal to tevent + tsched.

Queue empty: when there are not jobs in the queue, regardless the
state of resources, it is not generated and nor inserted
any new event.

Queue is not empty
and resources avail-
able:

a Job is extracted according to the Job scheduling
policy (see 4.2) and assigned to a device by placing
it in a busy state; in case of the first execution it is
initialized the Te of the Job equal to the value of the
event time. In general, if the service time of Job has
a value lower than qt, or whether the job is assigned
to a GPU device, an event of type Finalize, having
a tevent equal to the service time of the Job itself, is
created. Otherwise, it is generated an event of type
Requeue with associated the Job and the time event
equal to qt.

As mentioned, the occurrence of the Run event can lead to the generation of
Reschedule, or Finalize Requeue events. The Reschedule event implies the eval-
uation of the priorities of all Jobs in the queue and the generation of an event
of type Run. The strategy and the update of the priorities values are specified
by the user in order to study the impact on the performance of the simulated
system. The event Requeue and the event Finalize are tied with a job. As per
the Requeue event, the following operations are performed:

1. Releasing of the running Job as it has exhausted its time quantum.

2. Decrease its priority according to the chosen strategy, since it has already
consumed a resource.

3. Decrease the service time required for the completion of the Job.

4. Update statistical information.

5. Create an event of type Enqueue associated with the Job (resubmission).

If the Job has a service time less than the quantum time of the system, or it has
been executed in GPU devices (assuming so that the suspension is not possible
on that device), an event Finalize is generated. This event produces the following
operations:

1. Releasing of the Job, which in this case has terminated its execution with
the exit time of the system (Tf) equal to the sum of the execution time and
the service time.

2. Storing the attributes values of the Job for the generation of statistics to
evaluate the system performance.

A Simulation Framework for Scheduling Performance Evaluation 467

From a single Job point of view, Figure 2 shows the transition of the events in
the system. During the initialization, an event Enqueue is generated in a time
equal to Ta. The submission to the queue leads to the generation of a Run event
and the execution of the Job in a device with a time Te. If the Job service time
is less than qt determined by the Scheduling policy, a Finalize event is generated
in time Te+Tservice, which will represents the exit time from the system. If the
service time of Job exceeds qt in such case an event of type Requeue is generated
in time Te + qt and an Enqueue event and the job will be resubmitted to the
system until its completion.

Fig. 2. Transition event

It is important to evaluate how the scheduling strategy influences the genera-
tion of system events. For instance to implement a strategy which immediately
perform a Job once arrived in the system with the highest priority (preemptive
strategy) it is necessary to delete the events generated by the Run event previ-
ously generated by the Job in execution. Consider for example that an event of
type Run, led to the execution of the Job, has generated a Finalize event; the
event should be eliminated from the event queue and replaced with a Requeue
event with a time equal to the arrival time of Job with the highest priority that
in turn would result in the generation of a Requeue or Finalize event.

5 Conclusions and Future Works

This work aims to study the impact of non-conventional devices as general pur-
pose compute units (such as GPUs) in the scheduling process of the modern
operating systems to improve the system performance. To achieve this goal a
simulation framework to model events and to evaluate the scheduling policy for
heterogeneous systems was presented, along with its implementation.

468 F. Vella et al.

The simulator provides the following features:

1. Creation of the user-specified hardware in terms of number of CPUs and
GPUs.

2. Generation of the system load, setting the number of jobs.
3. Tuning of the inter-arrival Job time.
4. Selection of the Job composition. It allows to specify the probability to gen-

erate a given number of Realtime, GPU User and CPU User Job.
5. Setting Classifier simulation.
6. Selection of qt strategy.

In the present version of the Simulator the scheduling policy has to be imple-
mented and customized by the developer. A scheduling policy has been imple-
mented as a use case. The Job are arranged in a single non-preemptive priority
queue. The scheduling discipline is summarized in rules 1-5, described in Section
4.2.

Future works will focus on three main aspects: the first one will concern the
study of inter-arrival of real system and the implementation of the linux scheduler
(CFS) to validate the simulator. The second one will concern the addiction of new
improvements to the simulator such as a graphics interface and an automatic
tools for the generation of charts for the analysis of the performance of the
scheduling strategies. Finally other scheduling policies will be compared and
new strategies will be defined and evaluated.

References

1. NVidia: NVIDIA CUDA - Compute Unified Device Architecture: Programming
Guide (2011),
http://developer.nvidia.com/nvidia-gpu-computing-documentation

2. Khronos OpenCL Working Group, The OpenCL Specification, version 1.0.29
(2008), http://khronos.org/registry/cl/specs/opencl-1.0.29.pdf

3. Vella, F., Cefalá, R., Costantini, A., Gervasi, O., Tanci, C.: Gpu computing in egi
environment using a cloud approach. In: 2011 International Conference on Com-
putational Science and Its Applications, pp. 150–155. IEEE (2011)

4. Pabla, C.: Completely fair scheduler. Linux Journal 2009(184), 4 (2009)
5. Lin, C., Lai, C.: A scheduling algorithm for gpu-attached multicore hybrid systems.

In: 2011 5th International Conference on New Trends in, Information Science and
Service Science (NISS), vol. 1, pp. 26–31. IEEE (2011)

6. Guevara, M., Gregg, C., Hazelwood, K., Skadron, K.: Enabling task parallelism in
the cuda scheduler. Work (2009)

7. Jiménez, V.J., Vilanova, L., Gelado, I., Gil, M., Fursin, G., Navarro, N.: Predictive
Runtime Code Scheduling for Heterogeneous Architectures. In: Seznec, A., Emer,
J., O’Boyle, M., Martonosi, M., Ungerer, T. (eds.) HiPEAC 2009. LNCS, vol. 5409,
pp. 19–33. Springer, Heidelberg (2009)

8. Phatanapherom, S., Uthayopas, P., Kachitvichyanukul, V.: Dynamic scheduling ii:
fast simulation model for grid scheduling using hypersim. In: Proceedings of the
35th Conference on Winter Simulation: Driving Innovation. pp. 1494–1500. Winter
Simulation Conference (2003)

http://developer.nvidia.com/nvidia-gpu-computing-documentation
http://khronos.org/registry/cl/specs/opencl-1.0.29.pdf

A Simulation Framework for Scheduling Performance Evaluation 469

9. Buyya, R., Murshed, M.: Gridsim: A toolkit for the modeling and simulation of
distributed resource management and scheduling for grid computing. Concurrency
and Computation: Practice and Experience 14(13-15), 1175–1220 (2002)

10. Casanova, H.: Simgrid: A toolkit for the simulation of application scheduling. In:
Proceedings of First IEEE/ACM International Symposium on Cluster Computing
and the Grid 2001, pp. 430–437. IEEE (2001)

11. Gupta, A., Tucker, A., Urushibara, S.: The impact of operating system scheduling
policies and synchronization methods of performance of parallel applications. In:
ACM SIGMETRICS Performance Evaluation Review, vol. 19, pp. 120–132. ACM
(1991)

12. Law, A., Kelton, W.: Simulation modeling and analysis, vol. 3. McGraw-Hill, New
York (2000)

13. Gere Jr., W.: Heuristics in job shop scheduling. Management Science, 167–190
(1966)

14. Japkowicz, N., Stephen, S.: The class imbalance problem: A systematic study.
Intelligent Data Analysis 6(5), 429–449 (2002)

15. Brown, R.: Calendar queues: a fast 0 (1) priority queue implementation for the
simulation event set problem. Communications of the ACM 31(10), 1220–1227
(1988)

16. Silberschatz, A., Galvin, P., Gagne, G.: Operating system concepts, vol. 4. Addison-
Wesley (1998)

17. Tanenbaum, A., Tannenbaum, A.: Modern operating systems, vol. 2. Prentice Hall,
New Jersey (1992)

18. Nickolls, J., Dally, W.: The gpu computing era. IEEE Micro 30(2), 56–69 (2010)

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 470–483, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Influence of Topology on Mobility
and Transmission Capacity of Human-Based DTNs

Danilo A. Moschetto2, Douglas O. Freitas1, Lourdes P.P. Poma1,
Ricardo Aparecido Perez de Almeida1, and Cesar A.C. Marcondes1

1 Computer Science Department – Federal University of São Carlos (UFSCar), Brazil
2 Instituto Federal de Educação, Ciência e Tecnologia de São Paulo - IFSP

moschetto@gmail.com,
{douglas_freitas,lourdes.poma,ricardoalmeida,

marcondes}@dc.ufscar.br

Abstract. Casual encounters among people have been studied as a means to de-
liver messages indirectly, using delay tolerant networks (DTNs). This work
analyses the message forwarding in human-based DTNs, focusing on the topol-
ogy of the mobility area. By using simulations, we evaluate the influence of the
environment connectivity on the network performance. Several parameters have
also been considered: network density, forwarding algorithm and storage capac-
ity. In general, considering the already limited capacity of mobile devices and a
reduced network density, the mobility environment interconnectivity seems to
have a relevant effect in message delivery rates.

1 Introduction

The current Internet architecture is based primarily on the TCP/IP protocol stack and
the end-to-end argument [1]. This means the communication intelligence is kept
mostly at the source and destination hosts, while the network core is (relatively) sim-
plified.

Even being one of the biggest factors for the success of the Internet, this simplicity
is also a major factor for its ossification [2]. High-delay and intermittent link connec-
tion, observed by mobile hosts, are particularly difficult to handle with the established
protocols. The desire to support newer envisioned communication models and to fix
existing deficiencies of the current Internet have then stimulated new protocols, such
as the creation of delay-tolerant networks (DTNs) [3]. Communications in DTNs may
occur either directly, when a link from a node to the infrastructure exists long enough,
or using an ad-hoc, circumstantial, link between two nodes for indirect delivery.

Several uses of DTNs have been proposed, such as those described in [4], [5] and
[6]. In general, DTNs are used in areas without a communication infrastructure (rural
or remote), in areas with a damaged infrastructure (natural disasters or conflicts, for
example) and even in urban areas, when the conventional network infrastructure is not
accessible or does not provide the desired quality of service. Applications in different
domains, such as games, tourist information and advertising can benefit from this
form of communication.

Influence of Topology on Mobility and Transmission Capacity of Human-Based DTNs 471

The communication effectiveness in a DTN network is considered in respect with
the delay and the probability of successful delivery of a message. Given the non-
deterministic conditions under which communications in DTNs occur, different heu-
ristics can be applied for message routing. Data about previous encounters between
nodes, the transmission capacity per node, and power consumption and availability
are commonly used in the forwarding decisions. In addition, other features can also be
considered, such as buffer size, available wireless communication technologies, com-
puting power, routing algorithm, node proximity, competition for the wireless chan-
nel, and obstacles to signal propagation.

In this paper, we consider the specific case of human-based DTNs in a central met-
ropolitan region. In this type of network, non-technical factors, such as user mobility
pattern, group formation, encounters and the existence of points of interest, can play a
relevant role in the heuristics, which makes message forwarding challenging.

Although many of the relevant factors for message delivery have been previously
evaluated individually [4], [7], [8], little attention has been devoted to the influence of
the city area (the topology) of the cities on the efficiency of communication. This
paper investigates the impact of the topology of cities in the transmission capacity of
human-based DTNs. The obtained results show the relevance of this factor in the
probability of successful delivery of messages and the average incurred delay.

An evaluation on the impact of the topology complexity of maps is presented,
showing that changes in the connectivity of the streets influence the delivery rate. The
studies were conducted using simulation and statistical analysis, varying parameters
such as network density, buffer size, transmission technology, routing algorithm and
the topology of the user mobility area.

This paper is organized as follows. In section 2 we present a discussion of routing
messages in DTNs and related work. In Section 3 we show the simulation environ-
ment used. Next, in Section 4 we discuss mobility models and present the model used
in this work. In Section 5 we perform a categorization of topologies according to cha-
racteristics of cities. We evaluate the influence of parameters (buffer, node density
and routing protocols) in the transmission capacity of a DTN in Section 6. The influ-
ence of changes in the topology map is investigated in Section 7. Finally, in section 8
we conclude our work and present a discussion about future work.

2 Message Forwarding in DTNs

Message forwarding in human-based DTNs, when there is no communication infra-
structure available, is based on transmission opportunities fostered when mobile de-
vices are near. Different wireless transmission technologies can be used for data
transmission, and the decision on when and to whom messages be forwarded may be
based on different policies and criteria. The efficiency of a routing strategy can then
be measured according to more or less resource consumption, such as temporary sto-
rage space and battery power. Minimizing resource consumption and maximizing
delivery are desirable.

This work investigates the delivery capacity of a human-based DTN formed in
urban environments, and analyzes the impact of the topology (interconnection of
streets, avenues, landforms, etc.) of different cities in the communications. Given the

472 D.A. Moschetto et al.

difficulties in parameterizing the data about the streets and the movement of people
on the existing paths of a city, we chose not to use analytical models but to rely on
simulations of the aspects of interest. Also, no real experiment with the intended pro-
portions would be feasible.

Isolated characteristics of DTNs have been investigated and modeled in previous
works. In [7], a DTN network formed by 3 nodes is modeled using queuing networks
to evaluate the message delivery delay between nodes. The obtained results show that
the delay is influenced by the contact time just in part of the transmission period.
However, that study does not consider the topology of the movement area and is li-
mited to a network with only three nodes, as the number of states for the queuing
network grows exponentially.

The work in [9] presents a framework for the analysis of transmission capacity in
mobile ad hoc networks, showing that if the node mobility process is stationary and
ergodic, the movement pattern is sufficient to determine the transmission network
capacity. That result is related to the hypothesis brought about by this work, once that
if the movement is sufficient to determine the transmission capacity of a network,
then clearly the restriction of movement due to the topological conditions must also
be relevant.

With respect to works considering the topology of movement areas, [10] proposes a
georouting protocol that implements a best effort geocast service based on GPS infor-
mation and mobility maps. The protocol is evaluated by simulation and shows a slight
improvement in delay and message delivery. The proposed heuristic was not tested.

The use of context information about the network and the environment is consi-
dered in [11]. The authors propose an approach to build resource maps to estimate the
availability of resources (battery level, buffer space and bandwidth) of neighbor nodes
in a DTN. Using their approach, network nodes can more effectively determine which
neighbor nodes should receive messages, increasing the number of successful delive-
ries and reducing energy consumption and transmission delays. Another study, [8],
uses simulation to evaluate the impact of different routing protocols for DTNs. The
results suggest that using configurable context-based protocols increases the delivery
rate. It seems that both studies, [11] and [8], could be extended to consider the topol-
ogy of the circulation area in the routing decisions.

That observation justifies our effort to investigate the hypothesis presented here.

3 Simulation Environment

Given the wide range of simulation environments supported, the The One simulator
[12], developed in Java, has been widely adopted in the study of DTN and was used in
our evaluations. Among its main advantages considered, we may highlight the variety of
routing modules supported, its extensibility, and the interoperability with different file
formats, such as WKT files commonly used to represent the topology of cities.

A few extensions had to be developed and incorporated to the simulator to record
the location of where each message delivery occurs during simulation. This was
achieved by adding resources to use the coordinates provided by the class DTNHost,
and the creation of a model, named Stationary Movement, to create reports with the

Influence of Topology on Mobility and Transmission Capacity of Human-Based DTNs 473

saved coordinates of message delivery. From the results produced by the modifica-
tions, it is possible to create a configuration script for the simulator so it may use the
graphical display to show the points of delivery on the map used in the simulation.

Using WKT files, containing vector maps of cities using linestrings, we have been
able to use the simulator to evaluate a variety of maps of metropolitan areas of major
cities around the world. This has allowed us to experiment with different topologies
and to consider their impacts on message delivery. The maps used were obtained from
[13], and are based on the Open Street Map project.

The maps used in the tests correspond to an area of approximately 6 square km,
and vary according to the number of streets and their interconnections. The area
represented in the maps considers the central areas of the selected cities, comprising a
microcosm of the urban area as a whole. Moreover, as this paper focus on the move-
ment of people, longer distances, corresponding to the extended metropolitan areas of
the cities, would not be sensible for walking are not relevant in this context.

It is not in the interest of this study to perform an exhaustive analysis of the specif-
ic routing algorithms, such as the Epidemic [14], which are used in this work. Infor-
mation about this type of study can be found in [8]. A preliminary study of parameters
sensitivity, such as simulation time and buffer size, required to weaken the influence
of these in the used routing algorithms was also conducted. Aspects of energy con-
sumption of the devices were not considered in our tests.

4 Mobility Models

Node mobility is one of the most studied parameters in human-based DTNs. In [15], it
is argued that the Levy Walk mathematical model can be used to reproduce nuances
of human movement, once humans, as also notices with other animals (zebras, for
example), tend to have a mobility pattern based on short movements around points of
interest, interleaved with eventual long movements to other distant points of interest.

The original Levy Walk model considers the random movement in an obstacle-free
environment. This, however, differs from the movement of people in cities, which
walk according to existing streets and avenues. Among the mobility models based on
maps available in the The One simulator, the Shortest Path Map-based Movement
(SPMBM) [12] was considered to have a pattern similar to Levy Walk, once it uses a
selection method based on Dijkstra's Shortest Path Algorithm. Therefore, choosing
the SPMBM for the experiments was considered reasonable, especially regarding the
human behavior of frequently choosing the shortest path to a destination, according to
prior knowledge about the city they live in.

In order to validate the correspondence between SPMBM and Levy Walk, prelimi-
nary simulations were performed comparing the results produced by the two models.
For these simulations, we have considered a network with density as described in
Sections 6 and 7, and an area of 6.25 square km, also similar to the area of all maps
used in this work. To test the SPMBM algorithm, we have selected the map of Ve-
nice, which has a large number of streets and interconnections, contributing to ran-
domness in the movement of people. For tests with Levy Walk, we considered the
movement as happening in an open area. The results are presented in Table 1.

474 D.A. Moschetto et al.

Table 1. Comparison between Levy Walk and Shortest Path models

 Levy Walk Shortest Path (Venice)

 Average Standard Deviation Average Standard Deviation
Delivery Probability 83% 1% 88% 0,7%
Messages Transmitted 813719 1778 879501 1860
Number of encounters 6147 46 15032 421

The simulation time was approximately 4.5 h, which was enough time for the sys-
tem to reach a stationary state. The network was formed by 600 nodes (people)t that
transmitted messages of 1 KB each other via Bluetooth technology, and using the
Epidemic algorithm for message delivery. Epidemic routing presents high delivery
capacity, obtained by replications of each message. The buffer capacity of each node
was set to 1 GB, used for intermediary storage of in-transit messages. This amount of
memory was considered to be available in most current devices. Each node can move
to a distance of up to 1100 meters from its start point. The simulations were per-
formed five times for each mobility model, using different seeds to generate random
node positions.

Table 1 shows that the average delivery probability for both mobility models was
similar, varying by only 5% and with little deviation. In addition, the number of effec-
tively delivered messages remained close in both results (varying up to 8%). We have,
however, found a significant difference when comparing the number of encounters, as
the simulations using the SPMBM movement model was 2,4 times greater than the
value obtained with Levy Walk. This result can be justified by the absence of physical
barriers to restrict the node movement in simulations performed with Levy Walk.
Once a greater number of movement possibilities are available, nodes tend to meet
each other occasionally in Levy Walk model, differently than the SPMBM model, in
which nodes were limited to just move through the existing streets of Venice.

Considering the results presented above, we realized that SPMBM model has a
complementary behavior to Levy Walk, limiting the movement to only the streets,
while maintaining the same delivery probability. Based on it, the SPMBM was chosen
in the simulations.

5 Topology Categorization According to Its Complexity

In order to investigate if different topology complexities influence the likelihood of
message delivery DTN networks, we performed a preliminary categorization that
considers aspects of complexity of the topology graph of the cities.

Initially, 10 maps were randomly selected. Simulations were conducted with the
maps of Cairo, Chennai, Karlsruhe (2 maps), Los Angeles, New Delhi (2 maps),
Richmond, Tokyo and Venice. The simulations were performed using the following
parameters: Epidemic routing, 600 nodes, 1KB message sizes, and transmissions us-
ing Bluetooth. Each experiment was repeated 5 times and focused on the determina-
tion of the number of encounters between nodes (persons). The results are shown in
Figure 1.

Influence of Topology on Mobility and Transmission Capacity of Human-Based DTNs 475

Fig. 1. Average number of encounters for 3-hour simulation

Figure 1 shows that the cities of Cairo and Los Angeles produced larger number of
encounters in the experiments. The maps of Karlsruhe 2 and New Dehli 2 lead to
fewer encounters. However, we see that these maps didn’t show similar behavior
during the simulations, which led to the choice of Venice and Tokyo as your repre-
sentatives containing a smaller number of encounters. The maps of the selected cities
are shown in Figure 2.

Fig. 2. Partial maps of Cairo, Los Angeles, Tokyo and Venice [13]

As can be seen from Figure 2, the maps of the cities of Cairo and Los Angeles ap-
pear to have a smaller number of streets and interconnections, compared to the maps
of Tokyo and Venice. This impression was confirmed by comparing the graphs of
street interconnections for each map, as we evaluated the total number of interconnec-
tions (points of a linestring on the map, which generally corresponds to intersections),
and the connectivity degree. Table 2 and the graph in Figure 3 show, respectively, the
number of interconnections of each map and its distribution according to the connec-
tivity degree.

476 D.A. Moschetto et al.

Table 2. Number of interconnections that compose each map

Cairo Los Angeles Tokyo Venice

Number of interconnections 1464 573 3655 7982

Fig. 3. Distribution according to the connectivity degree

Table 2 shows that the cities of Cairo and Los Angeles have a small number of in-
terconnections than Tokyo and Venice, which could provide fewer opportunities for
changing routes while walking. Additionally, Figure 3 shows that the city of Los An-
geles presents an upward trend of connectivity, although with a smaller number of
interconnections. In other words, there are more interconnections with high degree
than with fewer. Tokyo has a downward trend, with a high number of interconnec-
tions with lower grade. Only Tokyo and Venice present interconnection degrees
greater than 4, while Venice is the only city with grades 7 and 8 nodes.

The observed data suggests we could estimate the encounter rate of different cities
based on their interconnection maps. Moreover, one could assume that, based on the
number of encounters, that Tokyo and Venice should have lesser odds of delivery
than Cairo and Los Angeles, regardless of other parameters considered in the data
forwarding policy. The following Section presents an evaluation of this hypothesis.

6 Analysis of the Transmission Capacity in Human-Based
DTNs

Having selected maps to represent cities of different interconnection degrees for use
in our study, we have analyzed the influence of other parameters on message delivery.
The results were obtained via simulation.

Influence of Topology on Mobility and Transmission Capacity of Human-Based DTNs 477

Each simulation was repeated five times, considering the transmission of messages
ranging from 500KB to 1MB via Bluetooth. Each simulation corresponded to a period
of 4.5 hours. The experimented variables consisted of: size of local buffer at the
nodes, node density in relation to areas of the maps, and routing algorithm. The re-
sults obtained are summarized in the following subsections.

6.1 Influence of Buffer Size

The size of the local buffer at each node can influence the probability of delivery in a
DTN, as small spaces can lead to more messages to be discarded without being for-
warded. For instance, in order to increase the likelihood of delivery, the Epidemic
algorithm generates multiple copies of a message to be transmitted, requiring, there-
fore, more space to prevent other outstanding message from being discarded.

We have evaluated the influence of buffer size when using the Epidemic routing
algorithm. The tests were performed for the city of Cairo, which presented higher
number of meetings and, therefore, greater chances of completing the transmissions.
The results from the simulations are presented in Table 3.

Table 3. Results from varying the buffer size in a network with 600 nodes

Delivery Probability

Buffer(MB) 2 4 8 16 32 64 128 256 512 1024

Average 5.91% 10.25% 21.15% 28.93% 40.46% 51.30% 65.02% 75.54% 86.17% 86.17%

Standard

Deviation 0.99% 0.88% 1.03% 0.47% 2.17% 1.57% 5.06% 1.55% 0.74% 0.74%

Average Delay in seconds

Buffer

(MB) 2 4 8 16 32 64 128 256 512 1024

Average 3889 3843 3713 3567 3418 3309 2846 2404 2283 2283

Standard

Deviation

553.4

6 454.00 459.43 211.87 164.33 87.67 231.28 76.42 70.16 70.16

The results in Table 3 show that the delivery probability increases as the buffer

size grows, but remains stable after reaching 512 MB. In our simulations, larger buf-
fer sizes did not produce better delivery rates or reduced delays before delivery.

6.2 Influence of Node Density on the Map

Whereas the message delivery in a human-based DTN is subject to the encounters, we
aimed to evaluate the influence of network density in each scenario considered in this
study. Thus, simulations were performed considering densities of 200, 400 and 600
nodes, each featuring 1 GB local buffers, given the results in 6.1. The results obtained
are shown in Figure 4.

478 D.A. Moschetto et al.

Fig. 4. Delivery Probability (a) and Average delay by node density (b)

The results in Figure 4 (a) show that even for small densities, the odds of delivery
are higher than 50%. Also, one can note that, as the density increases, the probability
of delivery also rises, reaching results up to 24 points higher.

Comparing the results obtained in each city, the city of Cairo had the best odds of
delivery and the lowest delays for all densities evaluated, followed by Los Angeles,
Tokyo and Venice. These results showed the influence of the topology of a city in the
probability of successfully delivering a message. This can be seen as keeping the
same settings for the network, and given a reasonable transmission time, Cairo
showed the best results. On the other hand, as the density increases, the odds of deli-
very obtained and the average delay becomes very close for all cities examined,
showing that the topology becomes less influential.

Continuing our analysis, Figure 5 shows the results of the number of encounters
between network nodes for each density evaluated.

Fig. 5. Number of encounters per node density

(a) (b)

Influence of Topology on Mobility and Transmission Capacity of Human-Based DTNs 479

As shown in Figure 5, the number of encounters between persons, and their devices
carrying messages, increases as node density – crossings deriving from a corner –grows.
For all densities evaluated, it is seen that the cities of Cairo and Los Angeles allow more
encounters between the nodes, which contributes to a greater number of deliveries.

6.3 Influence of the Routing Protocol

In order to investigate whether the routing protocol used can mitigate the impact of
the topology of a map in the number of transmissions and effective delivery, simula-
tions were performed using the algorithms Epidemic and PROPHET [16]. The
simulations consider DTNs formed by 200, 400 or 600 nodes, using the same values
explained in previous Sections for the other relevant parameters.

The simulation results are presented in Figure 6, which shows that the Epidemic
protocol provided better delivery odds than PROPHET for all studied scenarios. This
differs from the results presented in [8], where it is shown that, for a network with
limited resources (e.g. buffer size), the protocol PROPHET tends to provide better
results. It is worth noting that in the context of this work, limitations as the buffer size
had its impact mitigated.

Analyzing the odds of delivery obtained for the four cities of the study, we ob-
served that both evaluated routing protocols had their best results in the cities of Cairo
and Los Angeles, with variations that reach 10 percent (comparison of Cairo and
Tokyo, with 200 nodes and PROPHET protocol).

Whereas the configuration parameters used were the same, we see that differences
in the topology of the maps end up providing better or worse chances of delivery,
although it is noticeable that, as node density increases, the influence of topology
tends to be attenuated.

For further comparison, it is also possible to use the goodput (GP) metric, which
measures the proportion of messages delivered to recipients in relation to the total
volume of messages transmitted. For the tests, for example, in the city of Venice with
200 nodes, the protocol PROPHET obtained gp = 1.02 * 10-2, while the protocol Epi-
demic obtained gp = 0.84 * 10-2, which represents a variation larger than 20%.

Fig. 6. Delivery Probability using Epidemic and PROPHET

480 D.A. Moschetto et al.

7 Influence of Map Topology in Message Delivery

As observable from the previously presented results, effectiveness and delay vary for
message delivery in the different cities analyzed. In order to investigate the influence
of the topological restriction to urban mobility in human-based DTNs, we made hypo-
thetical changes to the interconnections of one of these cities. Cairo was chosen due to
the apparent reduced number of interconnections between its two parts, top and bot-
tom, as shown in the map. By restricting the movement of people walking in the cen-
tral area with few alternatives paths, the chances of encounters seem to grow, thereby
generating an increased number of opportunities for message forwarding.

To evaluate this assumption, simulations were conducted considering the changes
to the new map. These changes consisted in adding transition points between the top
and bottom areas of the city shown in the map. The simulations used the same para-
meters defined in the previous sections. Figure 7 shows the hypothetical changes
made to the map of Cairo map and the resulting connectivity degree of the intercon-
nections.

Fig. 7. Modified Cairo map (a) e node distribution according to the node degree (b)

In Figure 7 (a), it is possible to observe that a few interconnections were added to
sections of the map. As shown in Figure 7 (b), the modifications made caused only
few changes to the connectivity degree of the map.

The simulation results for this study are presented in Table 4.

Table 4. Simulations with the maps of Cairo and modified Cairo

 Cairo Modified Cairo
 Average Standard Deviation Average Standard Deviation

Number of
Encounters

21095 902 16970 994

Delivery
Probability

84% 1,4% 81% 1%

(a) (b)

Influence of Topology on Mobility and Transmission Capacity of Human-Based DTNs 481

The results presented in Table 4 show that the number of encounters and the deli-
very probability have decreased by 19% and 3%, respectively, in the simulations with
the modified map of Cairo. These results show that small changes in topology can
influence the results obtained in a human-based DTN. In order to observe the use of
the new paths created, Figure 8 shows the original map of Cairo and its modified
version, highlighting the places where the encounters between persons occurred in the
simulations.

Fig. 8. Original (a) and modified (b) Cairo maps

Figure 8 (b) shows that the persons, carrying their mobile communication devices,
have used the new paths included in the map. The green dots indicate the locations in
which message forwarding happened. The difference in movement is caused by the
creation of shorter routes between various points of interest in the map, which are
used by the SPMBM algorithm. Those new path options influence the results obtained
by the DTN.

The interconnection degrees of the maps, original and modified, did not change
significantly. If changes had occurred to the periphery of the map, no significant
chances would be expected in the efficiency of message delivery either.

8 Conclusion and Future Work

Human-based DTNs are a feasible alternative for routing messages in urban areas.
Applications such as alerts, games and advertising can benefit from this form of mes-
sage delivery. However, the efficiency of a network can be influenced by the re-
stricted mobility generated by the topology of the walking area. The results from our
analysis show that the interconnection of urban mobility elements (streets, avenues,
etc.) is an important aspect to be considered, given the limited possibilities of move-
ment. This limitation affects the probability of encounters between humans and may
have consequences for any DTNs.

(a) (b)

482 D.A. Moschetto et al.

Considering the influence of the topology of the movement area, it was observed
that for low-density DTNs (with up to 200 people), and all other network parameters
being fixed, the topology is a more significant factor for message delivery. The con-
nectivity degree of streets and preferential paths showed to be more relevant in this
case. The scenarios evaluated in this study show that the delivery probability can vary
up to 10% just with few changes in the topology.

On the other hand, if the network density (number of possible relays) is higher and
all other operational conditions are maintained (buffer size, moving time), the topolo-
gy does not present a relevant influence, being responsible for a maximum variation
of 2% in the delivery probability.

For networks where the number of possible intermediate nodes is more limited, re-
stricted to personal affinity, as can be observed in social networks, the delivery prob-
ability becomes more dependent on the topology. Delivery mechanisms that are more
or less aggressive in terms of the replication of messages can be configured to use
knowledge about of the connectivity degree of the topology. Similarly, power con-
sumption can be reduced by avoiding unnecessary transmissions.

Adaptive routing algorithms based on an index composed by a list of traditional al-
gorithms (Epidemic, PROPHET, Spread and Wait) may consider the structure of each
city or microregion in their forwarding decisions. An example that applies this strate-
gy could use online map services to extract the connectivity degree of a city and de-
termine the appropriate algorithm. Another possibility is the dynamic change of pa-
rameters of traditional algorithms, also considering the connectivity of the movement
area, which extends the results presented in [8].

References

1. Saltzer, J.H., Reed, D.P., Clark, D.D.: End-to-end arguments in system design. ACM
Transactions on Computer Systems (TOCS) 2(4), 277–288 (1984),
http://dl.acm.org/citation.cfm?doid=357401.357402

2. Spyropoulos, T., Fdida, S., Kirkpatrick, S.: Future Internet: fundamentals and measure-
ment. In: Proceedings of ACM SIGCOMM Computer Communication Review, Tokyo,
Japan, pp. 101–106 (2007), http://doi.acm.org/10.1145/1232919.1232934

3. Fall, K., Farrell, S.: DTN: an architectural retrospective. IEEE Journal on Selected Areas
in Communications 26, 828–836 (2008),
http://dx.doi.org/10.1109/JSAC.2008.080609

4. Juang, P., et al.: Energy-efficient computing for wildlife tracking: Design tradeoffs and
early experiences with ZebraNet. In: Proceedings of International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS), San Jose,
CA, USA, vol. 30, pp. 96–107 (2002),
http://dx.doi.org/10.1145/635506.605411

5. Shah, R., Roy, S., Jain, S., Brunette, W.: Data MULEs: Modeling a Three-tier Architecture
for Sparse Sensor Networks. In: Proceedings of 1st IEEE International Workshop on Sen-
sor Network Protocols and Applications, Anchorage, AK, USA, pp. 30–41 (2003),
http://dx.doi.org/10.1109/SNPA.2003.1203354

Influence of Topology on Mobility and Transmission Capacity of Human-Based DTNs 483

6. Burgess, J., Gallagher, B., Jensen, D., Levine, B.N.: MaxProp: Routing for vehicle-based
disruption-tolerant networks. In: Proceedings of 25th IEEE INFOCOM, Barcelona, Spain,
pp. 1–11 (2006), http://dx.doi.org/10.1109/INFOCOM.2006.228

7. Al Hanbali, A., de Haan, R., Boucherie, R.J., van Ommeren, J.-K.: A Tandem Queueing
Model for Delay Analysis in Disconnected Ad Hoc Networks. In: Al-Begain, K., Heindl,
A., Telek, M. (eds.) ASMTA 2008. LNCS, vol. 5055, pp. 189–205. Springer, Heidelberg
(2008), http://dx.doi.org/10.1007/978-3-540-68982-9_14

8. Oliveira, E., Silva, E., Albuquerque, C.V.N.: Promovendo adaptação a contextos em
DTNs. In: Proceedings of Simpósio Brasileiro de Redes de Computadores, Campo Grande,
MS, Brazil (2011),
http://sbrc2011.facom.ufms.br/files/main/ST03_1.pdf

9. Garetto, M., Giaccone, P., Leonardi, E.: On the Capacity Region of MANET: Scheduling
and Routing Strategy. IEEE Transactions on Vehicular Technology 58, 1930–1941 (2009),
http://dx.doi.org/10.1109/TVT.2008.2004621

10. Piorkowski, M.: Mobility-centric geocasting for mobile partitioned networks. In: Proceed-
ings of IEEE International Conference on Network Protocols, Orlando, FL, USA,
pp. 228–237 (2008), http://dx.doi.org/10.1109/ICNP.2008.4697041

11. Sandulescu, G., Schaffer, P., Nadjm-Tehrani, S.: Vicinity resource cartography for delay-
tolerant networks: A holistic perspective. In: Proceedings of Wireless Days (WD), 2010
IFIP, Venice, Italy, pp. 1–7 (2010),
http://dx.doi.org/10.1109/WD.2010.5657725

12. Keränen, A., Ott, J., Kärkkäinen, T.: The ONE Simulator for DTN Protocol Evaluation. In:
Proceedings of the 2nd International Conference on Simulation Tools and Techniques,
Rome, Italy, pp. 55:1–55:10 (2009),
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5674

13. Mayer, C.P.: osm2wkt - OpenStreetMap to WKT Conversion (November 2010),
http://www.tm.kit.edu/~mayer/osm2wkt/

14. Vahdat, A., Becker, D.: Epidemic routing for partially connected ad hoc networks. Tech-
nical Report CS-2000-06, Duke University (2000),
http://issg.cs.duke.edu/epidemic/epidemic.pdf

15. Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S.J., Chong, S.: On the Levy-walk Nature of
Human Mobility. IEEE/ACM Transactions on Networking, 630–643 (2011),
http://dx.doi.org/10.1109/TNET.2011.2120618

16. Lindgren, A., Doria, A., Schelén, O.: Probabilistic Routing in Intermittently Connected
Networks. ACM SIGMOBILE Mobile Computing and Communications Review 7, 19–20
(2003), http://dx.doi.org/10.1145/961268.961272

Towards a Computer Assisted Approach
for Migrating Legacy Systems to SOA

Gonzalo Salvatierra2, Cristian Mateos1,2,3,
Marco Crasso1,2,3, and Alejandro Zunino1,2,3

1 ISISTAN Research Institute
2 UNICEN University

3 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)

Abstract. Legacy system migration to Service-oriented Architectures (SOA) has
been identified as the right path to the modernization of enterprise solutions need-
ing agility to respond to changes and high levels of interoperability. However, one
of the main challenges of migrating to SOA is finding an appropriate balance be-
tween migration effort and the quality of resulting service interfaces. This paper
describes an approach to assist software analysts in the definition of produced
services, which bases on the fact that poorly designed service interfaces may be
due to bad design and implementation decisions present in the legacy system.
Besides automatically detecting common design pitfalls, the approach suggests
refactorings to correct them. Resulting services have been compared with those
that resulted from migrating a real system by following two classic approaches.

Keywords: Services-oriented architecture, web services, legacy system migra-
tion, direct migration, indirect migration, semi-automatic cobol migration.

1 Introduction

From an operational standpoint, many enterprises and organizations rely on out-dated
systems developed using old languages such as COBOL. These kind of systems are
known as legacy systems. Still, enterprises have to face high costs for maintaining their
legacy systems mainly because three factors [1]. First, these systems usually run on
(expensive) mainframes that must be rented. Second, it is necessary to continuously
hire and retain developers specialized in legacy technologies, which is both expensive
and rather difficult. Third, in time these old systems have suffered modifications or
upgrades for satisfying variable business goals. For example, most banks nowadays
offer Home Banking services, though most bank systems were originally written in
COBOL. Therefore, it is common to find a pre-Web, 50 year old technology working
alongside modern platforms (e.g. JEE or .Net) within the same information system.

In this sense, migration becomes a necessity. Currently, the commonest target for mi-
grating legacy systems is SOA (Service-Oriented Architecture) [2], by which systems
are composed of pieces of reusable functionalities called services. Services are usually
materialized through independent server-side “components” –i.e. Web Services [3]–
that are exposed via ubiquitous Web protocols. Once built, Web Services can be re-
motely composed by heterogeneous client applications, called consumers.

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 484–497, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards a Computer Assisted Approach for Migrating Legacy Systems to SOA 485

Recent literature [4] identifies two broad approaches for migrating a legacy system:
direct migration and indirect migration. The former consists of simply wrapping legacy
system programs with Web Services. This practice is cheap and fast, but it does not
succeed in completely replacing the legacy system by a new one. On the other hand, in-
direct migration proposes completely re-implementing a legacy system using a modern
platform. This is intuitively expensive and time consuming because not only the system
should be reimplemented and re-tested, but also the business logic should be reverse-
engineered because system documentation could have been lost or not kept up-to-date.

In SOA terms, an important difference between direct migration and indirect migra-
tion is the quality of the SOA frontier, or the set of WSDL documents exposed to poten-
tial consumers after migration. Web Service Description Language (WSDL) is an XML
standard for describing a service interface as a set of operations with input and output
data-types. Although service interfaces quality is a very important factor for the success
of a SOA system [5,6,7], most enterprises use direct migration because of its inherent
low cost and shorter time-to-market, but derived WSDLs are often a mere low-quality,
Web-enabled representation of the legacy system program interfaces. Then, services are
not designed with SOA best design practices, which ensure more reusable interfaces.
On the other hand, indirect migration provides the opportunity to introduce improve-
ments into the legacy logic (e.g., unused parameters and duplicate code elimination)
upon migrating the system, therefore improving the SOA frontier.

In this paper, we propose an approach called assisted migration that aims at semi-
automatically obtaining SOA frontiers with similar quality levels to that of indirect
migration but by reducing its costs. The approach takes as input a legacy system mi-
grated using direct migration, which is a common scenario, and performs an analysis
of possible refactoring actions to increase the SOA frontier quality. Although assisted
migration does not remove the legacy system, the obtained SOA frontier can be used as
a starting point for re-implementing it. This allows for a smoother system replacement
because the (still legacy) implementation can be replaced with no harm to consumers
since the defined service interfaces remain unmodified.

To evaluate our approach, we used two real SOA frontiers obtained by directly as
well as indirectly migrating the same legacy COBOL system [1], which is owned by
a large Argentinean government agency. We applied the assisted migration approach
by feeding it with the direct migration version of the original system. After that, we
compared the three obtained SOA frontiers in terms of cost, time, and quality. The re-
sults show that our approach produces a SOA frontier nearly as good as that the indirect
migration, but at a cost similar to that of direct migration.

2 Automatic Detection of SOA Frontier Improvement
Opportunities

We have explored the hypothesis that enhancing the SOA frontier of a migrated system
can be done in a fast and cheap manner by automatically analyzing its legacy source
code, and supplying software analysts with guidelines for manually refining the WSDL
documents of the SOA frontier based on the bad smells present in the source code. This
is because many of the design problems that occur in migrated service interfaces may
be due to design and implementation problems of the legacy system.

486 G. Salvatierra et al.

The input of the proposed approach is a legacy system source code and the SOA
frontier that result from its direct migration to SOA, concretely the CICS/COBOL files
and associated WSDL documents. Then, this approach can be iteratively executed for
generating a new SOA frontier at each iteration. The main idea is to iteratively improve
the service interfaces by removing those WSDL anti-patterns present in them.

A WSDL anti-pattern is a recurrent practice that prevents Web Services from be-
ing discovered and understood by third-parties. In [8] the authors present a catalog of
WSDL anti-patterns and define each of them way by including a description of the un-
derlying problem, its solution, and an illustrative example. Counting the anti-patterns
occurrences within a WSDL-based SOA frontier then gives a quantitative idea of fron-
tier quality, because the fewer the occurrences are, the better the WSDL documents are
in terms of reusability, thus removing WSDL anti-patterns root causes represents SOA
frontier improvement opportunities. Note that this kind of assessment also represents a
mean to compare various SOA frontiers obtained from the same system.

The proposed approach starts by automatically detecting potential WSDL
anti-patterns root causes within the migrated system given as input (“Anti-patterns root
causes detection” activity). Then, the second activity generates a course of actions to
improve the services frontier based on the root causes found (“OO refactorings sug-
gestion” activity). The third activity (“OO refactorings application”) takes place when
software analysts apply all or some of the suggested refactoring actions. Accordingly, at
each iteration a new SOA frontier is obtained, which feds back the first activity to refine
the anti-patterns root causes detection analysis. Figure 1 depicts the proposed approach.

Anti-patterns root causes
detection

<<AUTOMATIC>>

OO refactorings suggestion
<<AUTOMATIC>>

OO refactorings application
<<MANUAL>>

[Improvement
opportunities detected?]

[NO]

[YES]

Fig. 1. Software-assisted SOA frontier definition activities

2.1 WSDL Anti-patterns Root Causes Detection

The anti-pattern root causes detection activity is performed automatically, since manu-
ally revising legacy system source code is a cumbersome endeavor. To do this, we have
defined and implemented the ten heuristics summarized in Table 1. A defined heuris-
tic receives the implementation or the WSDL document of a migrated transaction and
outputs whether specific evidence of anti-patterns root causes is found.

We based on the work of [7] for designing most of the heuristics proposed in this
paper, since [7] presents heuristics for automatically detecting the anti-patterns in a
given WSDL document. Additionally, we have specially conceived heuristics 7 and 8
for analyzing COBOL source, while heuristics 6 and 9 for supporting two relevant
anti-patterns that had not been identified in [7]. Concretely, the heuristic 6 analyzes
names and data-types of service operations parameters to look for known relationships
between names and types. Given a parameter, the heuristic splits the parameter name
by basing on classic programmers’ naming conventions, such as Camel Casing and

Towards a Computer Assisted Approach for Migrating Legacy Systems to SOA 487

Table 1. Heuristics for detecting evidence of WSDL anti-patterns root causes

Id and description Input True when

1. Look for comments in WSDL

<documentation> elements

WSDL

document
At least one operation lacks documentation.

2. Search inappropriate names

for service elements

WSDL

document

The length of a name token is lower than 3 characters, or when token refers to a

technology, or when an operation name contains two or more verbs or an

argument name contains a verb.

3. Detect operations that receive

or return too many parameters

WSDL

document
At least one operation input/output has more than P parameters.

4. Look for error information

being exchanged as output data

WSDL

document

An output message part has any of the tokens: “error”, ”errors”, ”fault”, ”faults”,

”fail”, ”fails”, ”exception, ”exceptions, ”overflow”, ”mistake”, ”misplay”.

5. Look for redundant data-type

definitions

WSDL

document
At least two XSD data-types are syntacticly identical.

6. Look for data-types with

inconsistent names and types

WSDL

document

The name of a parameter denotes a quantity but it is not associated with a

numerical data-type (e.g. numberOfChildren:String).

7. Detect not used parameters
COBOL

code
At least one parameter is not associated with a COBOL MOVE statement.

8. Look for shared dependencies

among services implementations

COBOL

code

The list of COBOL programs that are copied, or included, or called from two or

more service implementations is not empty.

9. Look for data-types that

subsumes other data-types

WSDL

document

An XSD complex data-type contains another complex XSD data-type, or a list

of parameters subsumes another list of parameters.

10. Detect semantically similar

services and operations

WSDL

document

A vectorial representation of the names and associated documentation of two

services or operations, are near in a vector space model.

Hungarian notation. Each name token is compared to a list of keywords with which
a data-type is commonly associated. For example, the token “birthday” is commonly
associated with the XSD built-in xsd:date data-type, but the token “number” with the
xsd:int data-type. Therefore, the heuristic in turn checks whether at least one name
token is wrongly associated with the data-type.

The heuristic 7 receives the COBOL code of a migrated program and checks whether
every parameter of the program output COMMAREA is associated with the COBOL
MOVE assignation statement. In other words, given a COBOL program, the heuristic
retrieves its output COMMAREA, then gets every parameter from within it (including
parameters grouped by COBOL records), and finally looks for MOVE statements hav-
ing the declared parameter. One temporal limitation of this heuristic is that the search
for MOVE statements is only performed in the main COBOL program, whereas copied
or included programs are left aside, and those parameters that are assigned by the exe-
cution of an SQL statement are ignored by this heuristic.

The heuristic 8 receives two COBOL programs as input. Then, for both programs it
separately builds a list of external COBOL programs, copies, and includes, which are
called (it looks for the CALL reserved word) from the main program, and finally checks
whether the intersection of both lists is empty or not.

488 G. Salvatierra et al.

The heuristic 9 receives a WSDL document as input and detects the inclusion of
one or more parameters of a service operation in the operations of another service. To
do this, parameter names and data-types are compared. For comparing names classic
text preprocessing techniques are applied, namely split combined words, remove stop-
words, and reduce names to stems. For comparing data-types the heuristic employs the
algorithm named Redundant Data Model, which is presented in [7].

Once we have all the evidence gathered by the heuristics, the mere presence of anti-
pattern root causes represent opportunities to improve a SOA frontier. Formally, id→
opportunityi means that opportunityi may be present when the heuristic id detects its
associated root causes (i.e. outputs ’true’):

4 → Improveerror handlingde f initions

8 → Expose shared programsas services

10 → Improve serviceoperationscohesion

The first rule is for relating the opportunity to split an output message in two, one
for the output data and another for fault data, when there is evidence of the output
message conveying error data (heuristic 4). The second rule unveils the opportunity to
expose shared programs as Web Services operations, when a COBOL program is called
from many other programs, i.e. its fan-in is higher than a threshold T (heuristic 8). The
third rule associates the opportunity to improve the cohesion of a service with evidence
showing low cohesion among service operations (heuristic 10).

In the cases shown below, however, the evidence gathered by an heuristic does not
support improvement opportunities by itself, and two heuristics must output ’true’:

8and 9 → Removeredundant operations

1and 2 → Improvenamesand comments

The first rule is for detecting the opportunity to remove redundant operations, and
is fired if two or more COBOL programs share the same dependencies (heuristic 8)
but also the parameters of one program subsume the parameters of the other program
(heuristic 9). The rationale behind this rule is that when two service operations not only
call the same programs, but also expose the same data as output –irrespective of the
amount of exposed data– there is an opportunity to abstract these operations in another
unique operation. The second rule indicates that there is the opportunity to improve the
descriptiveness of a service operation when it lacks documentation (heuristic 1) and its
name or the names of its parameters are inappropriate (heuristic 2).

Finally, the rule 3 or 5 or 6 or 7→ Improve business ob ject de f initions combines
more than one evidence for readability purposes, and it is concerned with detecting an
opportunity to improve the design of the operation in/out data-types. The opportunity
is suggested when the operation exchanges too many parameters (heuristic 3), there are
repeated data-type definitions (heuristic 5), the type of a parameter is inconsistent with
its name (heuristic 6), or there are unused parameters (heuristic 7).

2.2 Supplying Guidelines to Improve the SOA Frontier

The second activity of the proposed approach consists of providing practical guidelines
to apply detected improvement possibilities. These guidelines consist of a sequence of

Towards a Computer Assisted Approach for Migrating Legacy Systems to SOA 489

steps that should be revised and potentially applied by software analysts. The proposed
guidelines are not meant to be automatic, since there is not a unique approach to build
or modify a WSDL document and, in turn, a SOA frontier [9].

The cornerstone of the proposed guidelines is that classic Object-Oriented (OO)
refactorings can be employed to remove anti-patterns root causes from a SOA fron-
tier. This stems from the fact that services are described as OO interfaces exchang-
ing messages, whereas operation data-types are described using XSD, which provides
some operators for expressing encapsulation and inheritance. Then, we have organized
a sub-set of Fowler et al.’s catalog of OO refactorings [10], to provide a sequence of
refactorings that should be performed for removing each anti-pattern root cause.

Table 2. Association between SOA frontier refactorings and Fowler et al.’s refactorings

SOA Frontier Refactoring Object-Oriented Refactoring

Remove redundant operations 1: Extract Method or Extract Class

Improve error handling definition 1: Replace Error Code With Exception

1: Convert Procedural Design to Object and Replace Conditional with Polymorphism

2: Inline Class

Improve business objects definition 3: Extract Class and Extract Subclass and Extract Superclass and Collapse Hierarchy

4: Remove Control Flag and Remove Parameter

5: Replace Type Code with Class and Replace Type Code with Subclasses

Expose shared programs as services 1: Extract Method or Extract Class

Improve names and comments 1: Rename Method or Preserve Whole Object or

Introduce Parameter Object or Replace Parameter with Explicit Methods

Improve service operations

cohesion

1: Inline Class and Rename Method

2: Move Method or Move Class

The proposed guidelines associate a SOA frontier improvement opportunity (Table 2,
first column) with one or more OO refactorings, which are arranged in sequences of
optional or mandatory refactoring combinations (Table 2, second column). Moreover,
for “Improve business objects definition” and “Improve service operations cohesion”,
the associated refactorings comprise more than one step. Hence, at each individual step
analysts should apply the associated refactorings combinations as explained.

Regarding how to apply OO refactorings, it depends on how the WSDL documents
of the SOA frontier have been built. Broadly, there are two main approaches to build
WSDL documents, namely code-first and contract-first [9]. Code-first refers to auto-
matically extract service interfaces from their underlying implementation. On the other
hand, with the contract-first approach, developers should first define service interfaces
using WSDL, and supplying them with implementations afterwards. Then, when the
WSDL documents of a SOA frontier have been implemented under code-first, the pro-
posed guidelines should be applied on the outermost components of the services imple-
mentation. Instead, when contract-first has been followed, the proposed OO refactorings
should be applied directly on the WSDL documents.

490 G. Salvatierra et al.

For instance, to remove redundant operations from a code-first Web Service, devel-
opers should apply the “Extract Method” or the “Extract Class” refactorings on the
underlying class that implements the service. In case of a contract-first Web Service, by
extracting an operation or a port-type from the WSDL document of the service, devel-
opers apply the “Extract Method” or the “Extract Class” refactorings, but developers
should also update service implementations for each modified WSDL document.

To sum up, in this section we presented an approach to automatically suggest how
to improve the SOA frontier of a migrated system. This approach has been designed
for reducing the costs of supporting an indirect migration attempt, while achieving a
better SOA frontier than with a direct migration one. In this sense, the next section
provides empirical evidence on the SOA frontier quality achieved by modernizing a
legacy system using the direct, indirect, and this proposed approach to migration.

3 Evaluation

We have compared the service frontier quality achieved by direct and indirect (i.e. man-
ual approaches), and our software-assisted migration (semi-automatic) by migrating a
portion of a real-life COBOL system comprising 32 programs (261,688 lines of source
code) accessing a database of around 0.8 Petabytes. Three different service frontiers
were obtained: “Direct Migration”, “Indirect Migration”, and “Assisted Migration”.
The comparison methodology consisted of analyzing:

– Classical metrics: We employed traditional software metrics, i.e. lines of code
(LOC), lines of comments, and number of offered operations in the service
frontiers. In this context higher values means bigger WSDL documents, which
compromises clarity and thus consuming services is more difficult to application
developers.

– Data model: Data model management is crucial in data-centric software systems
such as the one under study. We analyzed the data-types produced by each migra-
tion approach to get an overview of data-type quality within the service frontiers.
For example, we have analyzed business object definitions reuse by counting re-
peated data-type definitions across WSDL documents.

– Anti-patterns: We used the set of service interface metrics for measuring WSDL
anti-patterns occurrences described in WSDL [8]. We used anti-patterns occur-
rences as an inverse quality indicator (i.e. fewer occurrences means better WSDLs).

– Required Effort: We used classic time and human resources indicators.

Others non-functional requirements, such as performance, reliability or scalability, have
not been considered since we were interested in WSDL document quality only.

3.1 Classical Metrics Analysis

As Table 3 (top) shows, the Direct Migration data-set comprised 32 WSDL documents,
i.e. one WSDL document per migrated program. Contrarily, the Indirect Migration and
Assisted Migration data-sets had 7 WSDL documents and 16 WSDL documents, re-
spectively. Having less WSDL documents means that several operations were grouped

Towards a Computer Assisted Approach for Migrating Legacy Systems to SOA 491

Table 3. Classical metrics and data model analysis: Obtained results

Frontier
of files

Total operations
Average LOC

WSDL XSD Per file Per operation

Direct migration 32 0 39 157 129

Indirect migration 7 1 45 495 88

Assisted migration 16 1 41 235 97

Data-set Defined data-types
Definitions per data-type

(less is better)

Unique data-types

(more is better)

Direct Migration 182 1.29 (182/141) 141 (73%)

Indirect Migration 235 1.00 (235/235) 235 (100%)

Assisted Migration 191 1.13 (191/169) 169 (88%)

in the same WSDL document, which improves cohesion since these WSDL documents
were designed to define functional related operations. Another advantage observed in
the Indirect Migration and Assisted Migration data-sets over the Direct Migration data-
set was the existence of an XSD file for sharing common data-types.

Secondly, the number of offered operations was 39, 45, and 41 for Direct Migration,
Indirect Migration, and Assisted Migration frontiers. Although there were 32 programs
to migrate, the first frontier had 39 operations because one specific program was divided
into 8 operations. This program used a large registry of possible search parameters
plus a control couple to select which parameters to use upon a particular search. After
migration, this program was further wrapped with 6 operations with more descriptive
names each calling the same COBOL program with a different control couple.

The second and third frontiers generated even more operations for the same 32 pro-
grams. This was mainly caused as functionality disaggregation and routine servifica-
tion were performed during frontier generation. The former involves mapping COBOL
programs that returned too many output parameters with various purposes to several
purpose-specific service operations. Furthermore, the latter refers to exposing as ser-
vices “utility” programs called by many other programs. Then, what used to be COBOL
internal routines also become part of the SOA frontier.

Finally, although the Indirect Migration frontier had the highest LOC per file, it also
had the lowest LOC per operation. The Assisted Migration frontier had a slightly higher
LOC per operation than the Indirect Migration frontier. In contrast, the LOC per opera-
tion of the Direct Migration frontier was twice as much as that of the other two frontiers.
Then, more code has to be read by consumers in order to understand what an operation
does and how to call it, and hence WSDL documents are more cryptic.

3.2 Data Model Analysis

Table 3 (bottom) quantitatively illustrates data-type definition, reuse and composition
in the three frontiers. The Direct Migration frontier contained 182 different data-types,
and 73% of them were defined only once. In contrast, there were not duplicated data-
types for the WSDL documents of the Indirect Migration frontier. Concretely, 104 data-
types represented business objects, including 39 defined as simple XSD types (mostly

492 G. Salvatierra et al.

enumerations) and 65 defined as complex XSD types. Finally, 131 extra data-types were
definitions introduced to be compliant with the Web Service Interoperability standards
(http://www.ws-i.org/Profiles/BasicProfile-1.1.html), which define rules
for making Web Services interoperable among different platforms. Last but not least,
191 data-types were defined in the Assisted Migration frontier, including 118 definitions
in the form of business objects (34 simple XSD types + 84 complex XSD types), and
73 definitions for WS-I compliance reasons.

With respect to data-type repetitions, the Direct Migration frontier included 182 data-
types definitions of which 141 where unique. This means that 23% of the definitions
were not necessary and could be substituted by other semantically compatible data-
type definitions. The Indirect Migration frontier, on the other hand, included 235 unique
data-types. The Assisted Migration frontier had 191 data-types, and 169 of them were
unique. Then, our tool generated WSDL documents almost as good as the ones obtained
after indirectly migrating the system completely by hand. Overall, the average data-type
definitions per effective data-type across WSDL documents in the frontiers were 1.29
(Direct Migration), 1 (Indirect Migration), and 1.13 (Assisted Migration).

Moreover, the analyzed WSDL frontiers contained 182, 104, and 118 different def-
initions of business object data-types, respectively. The Indirect Migration frontier had
fewer data-type definitions associated to business objects (104) than the Direct Migra-
tion frontier (182) and the Assisted Migration frontier (118), and therefore a better level
of data model reutilization and a proper utilization of the XSD complex and element
constructors for WS-I related data-types. However, the Assisted Migration frontier in-
cluded almost the same number of business objects than the Indirect Migration frontier,
which shows the effectiveness of the data-type derivation techniques of our tool.

Figure 2 illustrates how the WSDL documents of the Indirect Migration and Assisted
Migration frontiers reused the data-types. The Direct Migration frontier was left out
because its WSDL documents did not share data-types among them. Unlike the Assisted
Migration graph, the Indirect Migration frontier has a reuse graph without islands. This
is because using our tool is not as good as exhaustively detecting candidate reusable
data-types by hand. Nevertheless, only 2 services were not connected to the bigger
graph, thus our tool adequately exploits data-type reuse.

3.3 Anti-pattern Analysis

We performed an anti-pattern analysis in the WSDL documents included in the three
frontiers. We found the following anti-patterns in at least one of the WSDL documents:

– Inappropriate or lacking comments [11] (AP1): A WSDL operation has no com-
ments or the comments do not effectively describe its purpose.

– Ambiguous names [5] (AP2): WSDL operation or message names do not accurately
represent their intended semantics.

– Redundant port-types (AP3): A port-type is repeated within a WSDL document,
usually in the form of one port-type instance per binding type (e.g. HTTP or SOAP).

– Enclosed data model (AP4): The data model in XSD describing input/output data-
types are defined within a WSDL document instead of separate XSD files, which
makes data-type reuse across several Web Services very difficult.

http://www.ws-i.org/Profiles/BasicProfile-1.1.html

Towards a Computer Assisted Approach for Migrating Legacy Systems to SOA 493

Complex data-type definition

Web Service interface (WSDL documents)

The Web Service interface exchanges the data-type. Grey links mean that the WSDL associated with the
service includes just one explicit reference to the data-type, while a black link means that the WSDL document
references two or more occurrences of the data-type.

Keys:

Indirect migration data-type reuse Assisted migration data-type reuse

Fig. 2. Data-type reuse in the Indirect Migration and Assisted Migration frontiers

– Undercover fault information within standard messages [6] (AP5): Error informa-
tion is returned using output messages rather than built-in WSDL fault messages.

– Redundant data models (AP6): A data-type is redundantly defined in a document.
– Low cohesive operations in the same port-type (AP7): Occurs in services that place

operations for checking service availability (e.g. “ping”, “isAlive”) of the service
and operations related together with its main functionality into a single port-type.

Table 4 summarizes the outcomes of the analysis. When an anti-pattern affected only
a portion of the WSDL documents in a frontier, we analyzed which is the difference
between these WSDL documents and the rest of the WSDL documents in the same
frontier. Hence, the inner cells present under which circumstances the former situation
applies. Since spotting some of the anti-patterns (e.g. AP1 and AP2) is inherently sub-
jective [7], we performed a peer-review methodology to prevent biases.

The Direct Migration frontier was affected by more anti-patterns than the Assisted
Migration frontier, while the Indirect Migration frontier was free from anti-patterns. The
first two rows describe anti-patterns that impact on services comments/names. These
anti-patterns affected the Direct Migration frontier since all WSDL documents included
in it were derived from code written in COBOL, which does not offer a standard way to
indicate from which portions and scope of a code existing comments can be extracted
and reused. Besides, COBOL names have length restrictions (e.g. up to 4 characters
in some flavors). Therefore, names in the resulting WSDL documents were too short
and difficult to be read. In contrast, these anti-patterns affected WSDL documents in
Assisted Migration frontier only for those COBOL programs using control couples,
because properly naming and commenting such couples is a complex task [12].

494 G. Salvatierra et al.

Table 4. Anti-patterns analysis: Obtained results

Anti-pattern/Frontier Direct Migration Indirect Migration Assisted Migration

AP1 Always Never
When the original COBOL

programs use control couples

AP2 Always Never
When the original COBOL

programs use control couples

AP3 When supporting several protocols Never Never

AP4 Always Never Never

AP5 Always Never Never

AP6
When two operations use the same

data-type
Never Never

AP7 Never Never
When several related programs

link to non-related operations

The third row analyzes the anti-pattern that ties abstract service interfaces (WSDL
port-types) to concrete implementations (WSDL bindings), and as such hinders black-
box reuse [8]. We observed that this anti-pattern was caused by the WSDL generation
tools supporting the migration process that resulted in the Direct Migration frontier.
Unless properly configured, these tools by default produce redundant port-types when
deriving WSDLs from COBOL programs. Likewise, the fourth row describes an anti-
pattern that is generated by this tool as well as many similar tools, which involves
forcing data models to be included within the generated WSDL documents, making
cross-WSDL data-type reuse difficult. Alternatively, neither the Indirect Migration nor
the Assisted Migration frontiers were affected by these two anti-patterns.

The anti-pattern described in the fifth row of the table deals with errors being trans-
ferred as part of output messages, which for the Direct Migration frontier resulted from
the original COBOL programs that used the same data output record for returning both
output and error information. In contrast, the WSDL documents of the Indirect Migra-
tion frontier and the Assisted Migration frontier had a proper designed error handling
mechanism based on standard WSDL fault messages.

The anti-pattern described in the sixth row is related to badly designed data models.
Redundant data models usually arise from limitations or bad use of WSDL generation
tools. Therefore, this anti-pattern only affected the Direct Migration frontier. Although
there was not intra WSDL data-type repetition, the Assisted Migration frontier suffered
from inter WSDL repeated data-types. For example, the error data-type –which consists
of a fault code, a string (brief description), a source, and a description– was repeated in
all the Assisted Migration WSDL documents because the data-type was derived several
times from the different various programs. This problem did not affect the Indirect Mi-
gration frontier since its WSDL documents were manually derived by designers after
having a big picture of the legacy system.

The last anti-pattern stands for having no semantically related operations within a
WSDL port-type. This anti-pattern neither affected the Direct Migration nor the Indirect
Migration frontier because in the former case each WSDL document included only one
operation, whereas in the latter case WSDL documents were specifically designed to
group related operations. However, our approach is based on an automatic heuristic

Towards a Computer Assisted Approach for Migrating Legacy Systems to SOA 495

that selects which operations should go to a port-type. In our case study, we found
that when several related operations used the same unrelated routines, such as text-
formatting routines, our assisted approach to migration suggested that these routines
were also candidate operations for that service. This resulted in services that had port-
types with several related operations but also some unrelated operations.

3.4 Required Effort Analysis

In terms of manpower, it took 1 day to train a developer on the method and tools used
for building the Direct Migration frontier. Then, a trained developer migrated one trans-
action per hour. Thus, it only took 5 days for a trained developer to build the 32 WSDL
documents. Instead, building the Indirect Migration frontier demanded one year plus
one month, and 8 software analysts, and 3 specialists for migrating the same 32 trans-
actions, from which 5 months were exclusively dedicated to build its WSDL documents.

We also have empirically assessed the time needed to execute our semi-automatic
heuristics. The experiments have been run on a 2.8 GHz QuadCore Intel Core i7 720QM
machine, 6 Gb RAM, running Windows 7 on a 64 bits architecture. To mitigate noise
introduced by underlying software layers and hardware elements, each heuristic has
been executed 20 times and the demanded time was measured per execution. Briefly, the
average execution time of an heuristic was 9585.78 ms, being 55815.15 ms the biggest
achieved response time, i.e. the “Detect semantically similar services and operations”
was the most expensive heuristic in terms of response time.

Furthermore, we have assessed the time demanded for manually applying the OO
refactorings proposed by the approach on the Direct Migration frontier. To do this, one
software analyst with solid knowledge on the system under study was supplied with
the list of OO refactorings produced by the approach. It took two full days to apply the
proposed OO refactorings. In this sense, the approach suggested to “Expose 6 shared
programs as services”, “Remove 7 redundant operations, “Improve the cohesion of 14
services”, and to “Improve error handling definition”, “Improve names and comments”,
and “Improve business objects definition” from all the migrated operations. It is worth
noting that OO refactorings have been applied at the interface level, i.e. underlying
implementations have not been accommodated to interface changes. The reason to do
this was we only want to generate a new SOA frontier and then compare it with the
ones generated by the previous two migration attempts. Therefore, modifying interfaces
implementation, which would require a huge development and testing effort, would not
contribute to assessing service interfaces quality.

4 Related Work

Migration of mainframe legacy systems to newer platforms has been receiving lots of at-
tention as organizations have to shift to distributed and Web-enabled software solutions.
Different approaches have been explored, ranging from wrapping existing systems with
Web-enabled software layers, to 1-to-1 automatic conversion approaches for converting
programs in COBOL to 4GL. Therefore, current literature presents many related experi-
ence reports. However, migrating legacy systems to SOA, while achieving high-quality
service interfaces instead of just “webizing” the systems, is an incipient research topic.

496 G. Salvatierra et al.

Harry Sneed has been simultaneously researching on automatically converting CO-
BOL programs to Web Services [13] and measuring service interfaces quality [14].
In [13] the author presents a tool for identifying COBOL programs that may be serv-
ified. The tool bases on gathering code metrics from the source to determine program
complexity, and then suggests whether programs should be wrapped or re-engineered.
As such, programs complexity drives the selection of the migration strategy. As re-
ported in [13], Sneed plans to inspect resulting service interfaces using a metric suite of
his own, which comprises 25 quantity, 4 size, 5 complexity and 5 quality metrics.

In [15] the authors present a framework and guidelines for migrating a legacy system
to SOA, which aims at defining a SOA frontier having only the “optimal” services and
with an appropriate level of granularity. The framework consists of three stages. The
first stage is for modeling the legacy system main components and their interactions us-
ing UML. At the second stage, service operations and services processes are identified.
The third stage is for aggregating identified service elements, according to a predefined
taxonomy of service types (e.g. CRUD Services, Infrastructure services, Utility ser-
vices, and Business services). During the second and third stages, software analysts are
assisted via clustering techniques, which automatically group together similar service
operations and services of the same type.

5 Conclusions and Future Work

Organizations are often faced with the problem of legacy systems migration. The target
paradigm for migration commonly used is SOA since it provides interoperability and
reusability. However, migration to SOA is in general a daunting task.

We proposed a semi-automatic tool to help development teams in migrating COBOL
legacy systems to SOA. Our tool comprises 10 heuristics that detect bad design and
implementation practices in legacy systems, which in turn are related to some early
code refactorings so that services in the final SOA frontier are as clear, legible and dis-
coverable as possible. Through a real-world case study, we showed that our approach
dramatically reduced the migration costs required by indirect migration achieving at the
same time a close service quality. In addition, our approach produced a SOA frontier
much better in terms of service quality than that of “fast and cheap” approach to migra-
tion (i.e. direct migration). The common ground for comparison and hence assessing
costs and service quality was some classical software engineering metrics, data-type
related metrics, and a catalog of WSDL anti-patterns [8] that hinder service reusability.

At present, we are refining the heuristics of our tool to improve their accuracy. Sec-
ond, we are experimenting with an RM-COBOL system comprising 319 programs and
201,828 lines of code. In this line, we will investigate whether is possible to adapt all
the evidences heuristics to be used with other COBOL platforms. Lastly, even when
direct migration has a negative incidence in service quality and WSDL anti-patterns,
there is recent evidence showing that many anti-patterns are actually introduced by the
WSDL generation tools used during migration [16]. Our goal is to determine to what
extent anti-patterns are explained by the approach to migration itself, and how much of
them depend on the WSDL tools used.

Towards a Computer Assisted Approach for Migrating Legacy Systems to SOA 497

References

1. Rodriguez, J.M., Crasso, M., Mateos, C., Zunino, A., Campo, M.: Bottom-up and top-down
COBOL system migration to Web Services: An experience report. In: IEEE Internet Com-
puting (2011) (to appear)

2. Bichler, M., Lin, K.-J.: Service-Oriented Computing. Computer 39(3), 99–101 (2006)
3. Erickson, J., Siau, K.: Web Service, Service-Oriented Computing, and Service-Oriented Ar-

chitecture: Separating hype from reality. Journal of Database Management 19(3), 42–54
(2008)

4. Li, S.-H., Huang, S.-M., Yen, D.C., Chang, C.-C.: Migrating legacy information systems to
Web Services architecture. Journal of Database Management 18(4), 1–25 (2007)

5. Brian Blake, M., Nowlan, M.F.: Taming Web Services from the wild. IEEE Internet Com-
puting 12(5), 62–69 (2008)

6. Beaton, J., Jeong, S.Y., Xie, Y., Jack, J., Myers, B.A.: Usability challenges for enterprise
service-oriented architecture APIs. In: IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pp. 193–196 (September 2008)

7. Rodriguez, J.M., Crasso, M., Zunino, A., Campo, M.: Automatically Detecting Opportuni-
ties for Web Service Descriptions Improvement. In: Cellary, W., Estevez, E. (eds.) Software
Services for e-World. IFIP AICT, vol. 341, pp. 139–150. Springer, Heidelberg (2010)

8. Rodriguez, J.M., Crasso, M., Zunino, A., Campo, M.: Improving Web Service descrip-
tions for effective service discovery. Science of Computer Programming 75(11), 1001–1021
(2010)

9. Mateos, C., Crasso, M., Zunino, A., Campo, M.: Separation of concerns in service-oriented
applications based on pervasive design patterns. In: Web Technology Track (WT) - 25th
ACM Symposium on Applied Computing (SAC 2010), pp. 2509–2513. ACM Press (2010)

10. Fowler, M.: Refactorings in Alphabetical Order (1999)
11. Fan, J., Kambhampati, S.: A snapshot of public Web Services. SIGMOD Rec. 34(1), 24–32

(2005)
12. Yourdon, E., Constantine, L.L.: Structured Design: Fundamentals of a Discipline of Com-

puter Program and Systems Design. Prentice-Hall, Inc., Upper Saddle River (1979)
13. Sneed, H.: A pilot project for migrating COBOL code to Web Services. International Journal

on Software Tools for Technology Transfer 11, 441–451 (2009) 10.1007/s10009-009-0128-z
14. Sneed, H.: Measuring Web Service interfaces. In: 12th IEEE International Symposium on

Web Systems Evolution, pp. 111–115 (September 2010)
15. Alahmari, S., Zaluska, E., De Roure, D.: A service identification framework for legacy sys-

tem migration into SOA. In: Proceedings of the IEEE International Conference on Services
Computing, pp. 614–617. IEEE Computer Society (2010)

16. Mateos, C., Crasso, M., Zunino, A., Coscia, J.L.O.: Detecting WSDL bad practices in code-
first Web Services. International Journal of Web and Grid Services 7(4), 357–387 (2011)

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 498–513, 2012.
© Springer-Verlag Berlin Heidelberg 2012

1+1 Protection of Overlay Distributed Computing
Systems: Modeling and Optimization

Krzysztof Walkowiak1 and Jacek Rak2

1 Wroclaw University of Technology, Wybrzeze Wyspianskiego 27,
PL-50-370 Wroclaw, PL

2 Gdansk University of Technology, G. Narutowicza 11/12, PL-80-233 Gdansk, PL
krzysztof.walkowiak@pwr.wroc.pl, jrak@pg.gda.pl

Abstract. The development of the Internet and growing amount of data
produced in various systems have triggered the need to construct distributed
computing systems required to process the data. Since in some cases, results of
computations are of great importance, (e.g., analysis of medical data, weather
forecast, etc.), survivability of computing systems, i.e., capability to provide
continuous service after failures of network elements, becomes a significant
issue. Most of previous works in the field of survivable computing systems
consider a case when a special dedicated optical network is used to connect
computing sites. The main novelty of this work is that we focus on overlay-
based distributed computing systems, i.e., in which the computing system
works as an overlay on top of an underlying network, e.g., Internet. In
particular, we present a novel protection scheme for such systems. The main
idea of the proposed protection approach is based on 1+1 protection method
developed in the context of connection-oriented networks. A new ILP model for
joint optimization of task allocation and link capacity assignment in survivable
overlay distributed computing systems is introduced. The objective is to
minimize the operational (OPEX) cost of the system including processing costs
and network capacity costs. Moreover, two heuristic algorithms are proposed
and evaluated. The results show that provisioning protection to all tasks
increases the OPEX cost by 110% and 106% for 30-node and 200-node
systems, respectively, compared to the case when tasks are not protected.

Keywords: distributed computing systems, protection, survivability,
optimization.

1 Introduction

Distributed computing systems are developed to process tasks requiring huge
processing power, which is not obtainable on a single machine. There are two major
categories of such systems: Grids and P2P (Peer-to-Peer) computing systems, also
called public resource computing systems. Grids are issued by organizations and
institutions, and contain a small number (usually up to hundred) of machines
connected by means of network links of high efficiency. P2P computing systems

 1+1 Protection of Overlay Distributed Computing Systems 499

consist of a number of small machines (e.g., PC or Macintosh computers, gaming
consoles) utilizing access links like Fast Ethernet, DSL, WiFi, HSPA, etc. Using
a simple software, each machine can be registered to a selected computing project and
offer spare computing resources. This approach is much simpler than Grid structures,
since the only need is to provide a suitable software and to manage tasks and results
(in case of Grid systems, also physical machines must be maintained) [1]-[4].

Efficiency of distributed computing systems may be remarkably decreased by
failures of network elements (i.e., nodes, or links) most frequently caused by human
errors (e.g., cable cuts), or forces of nature (e.g., earthquakes, hurricanes). Therefore,
network survivability, i.e., ability to provide the continuous service after a failure [5],
becomes a crucial issue. Most commonly, it is assured by means of additional
(backup) resources (e.g., transmission links/paths, computing units) used after the
failure affecting the components of the main communication path (called working
path) as the main network resources of task processing.

It is worth noting that in order to provide protection against failures of nodes/links,
backup paths by definition should not have any common transit node/link with their
working paths, accordingly. In general, survivability approaches can be classified as
either proactive (e.g. protection scheme based on reserving the backup resources in
advance) or reactive methods (using dynamic restoration to find backup paths only
after a failure) [6]. Finally, based on the scope of a backup path protection, they can
be divided into path, segment or link protection/restoration schemes [7]−[9], as shown
in Fig. 1. In the latter two schemes (Figs. 1b and 1c), there is more than one backup
path protecting a given working path.

 (a) (b) (c)

Fig. 1. Examples of a path- (a), segment- (b), and link-protection/restoration scheme

In this paper, we focus on modeling and optimization of survivable distributed
computing systems. In particular, we use the proactive approach based on path
protection scheme that additionally conforms to the 1+1 method applied in
connection-oriented computer networks. The main idea of this method is to transmit
information via two disjoint paths at the same time (“+” is used to denote parallel
transmission). Therefore, in normal operating state (i.e., with no failures) information
is concurrently sent/received to/from two computing nodes. After a failure, one of the
considered disjoint paths remains operational, implying that transmission of
information is provided with no violation at all.

The investigated computing system is to be protected against a failure that leads to
a situation when the results produced by one of the nodes are not transported to the
destination node(s). This can be caused by a wide range of breakdowns including both
networking issues (e.g., access link failure, backbone network link failure, backbone

500 K. Walkowiak and J. Rak

node failure, etc.) and processing issues (node hardware failure, power outage, etc.).
To provide protection against such outages, tasks are allocated to primary and backup
nodes. The objective is to allocate tasks to computing nodes and assign access link
capacity to each computing node in order to minimize the operational (OPEX) cost
and satisfy several constraints including link and node capacity constraints, as well as
additional protection requirements.

The key novelty of this work is that we consider a survivable distributed system
working as an overlay network, i.e., a network that is built on top of an existing
underlying network providing basic networking functionalities including routing and
forwarding. This is in contrast to previous papers covering issues of survivable
computing systems that have been focused on systems using a dedicated optical
network deployed to connect computing sites to construct the Grid systems, e.g., [10]-
[13]. In this overlay structure, underlying network can be based on either wired or
even wireless communications (the latter one realized e.g., according to 802.11s
standard of wireless mesh networks with highly directional antennas providing
mutually non-interfering transmission links).

The main contributions of the paper are as follows: (i) a new protection approach
to provide survivability of overlay distributed computing systems, (ii) introduction of
an ILP model related to survivable overlay distributed computing systems, (iii)
presentation of two heuristic algorithms proposed to solve the formulated problem,
(iv) results of numerical experiments showing the performance of heuristic algorithms
compared against the optimal results given by CPLEX 11.0, and the main
characteristics of survivable distributed computing systems. To the best of our
knowledge, no similar method exists in the literature.

The rest of the paper is organized in the following way. Information on related
works is provided in Section II. Section III describes a novel protection concept for
distributed computing systems. In Section IV, a new ILP model is presented.
Section V includes description of heuristic algorithms. Simulation assumptions and
results are discussed in Section VI.

2 Related Work

Survivability aspects have been extensively studied in the literature in the context of
optical WDM networks, i.e., to protect the flows against failures of nodes/links [5],
[14]-[15]. In particular, majority of these papers refer to unicast (i.e., one-to-one
transmission, where working and backup paths of a given demand have the same
source/destination nodes). Among them, we may distinguish papers on differentiated
scopes of protection (e.g., [16]-[18]), or differentiated protection with respect to
various classes of service [19]-[20].

The authors of [21] introduced a model of an overlay distributed computing
system, which may be used for multiple classifier systems. An ILP model is
formulated. The objective is to optimize allocation of tasks to computing nodes to
minimize the OPEX cost related to processing and transfer of data. An efficient
heuristic algorithm based on the GRASP approach is developed and examined. It

 1+1 Protection of Overlay Distributed Computing Systems 501

should be noted that the model considered in this paper uses similar assumptions to
[21]. However, contrary to [21], additional survivability requirements are included as
well as dimensioning of link capacity is considered here.

Survivability of distributed computing systems (in particular including protection
of computing units), is a relatively new topic, and only a few proposals exist in the
literature. However, most of them assume that the computing system uses a dedicated
optical network, e.g., [10]-[13]. In particular, the authors of [10] extended the
problem of providing survivability in optical networks (which is a well-researched
topic) by incorporating Grid computing assumptions. They introduced an approach to
provide resiliency against failures of network elements, as well as computing units.
The paper [11] addresses the issue of optimization of optical Grids considering
combined dimensioning and workload scheduling problem with additional
survivability requirements. The Divisible Load Theory is applied there to solve the
scalability problem and compare non-resilient lambda Grid dimensioning with the
dimensions needed to survive single-resource failures. The authors of [12] proposed
to extend the existing Shared Path protection scheme by incorporating the anycast
paradigm characteristic for Grids. Consequently, the backup path from the source can
be terminated in a node other than the origin server node, i.e., it is allowed to relocate
the job to another server location. In [13], resilient optical Grids are considered. The
authors examined how to maximize the grade of services for given transport
capacities, while maximizing the protection level, i.e., against single link vs. single
link and node (including server node) failures. A large scale optimization model is
solved with help of Column Generation (CG) technique.

To the best of our knowledge, there are currently no papers considering the
survivability of distributed computing systems working in overlay mode.

3 Survivability of Distributed Computing Systems

3.1 Distributed Computing System Architecture

In this section, we introduce the architecture of a distributed computing system
addressed in this paper. Our assumptions follow from previous works on this topic
(e.g., [2]-[3],[22]), and real systems like Seti@Home using BOINC framework [23].

Distributed computing systems can be built using either a network model, or an
overlay model. In the former case, a dedicated network connecting computing nodes
is created, i.e., network links between these nodes are established and dimensioned.
The latter case assumes that computing nodes form a virtualized network over the
underlying physical network (mostly the Internet), which is used to provide network
connectivity between computing nodes with required Quality of Service guarantees.
Overlay routing allows for a flexible network operation, e.g., any failure encountered
at the overlay system layer can be fixed by the overlay network itself (without the
need to cooperate with the underlying physical layer).

In this paper, we focus on the overlay case. However, presented model can be
easily augmented to consider additional constraints of the network model. In our

502 K. Walkowiak and J. Rak

architecture, it is assumed that computing nodes (peers) constituting the system are
connected through the Internet (an overlay network). Moreover, a full mesh structure
is assumed, i.e., each peer can be connected to any other peer. Thus, there is no need
to provide additional routing. Physically, the direct connectivity between nodes is
provided by the underlying Internet layer. In this paper, we do not consider emulation
of an additional substrate (e.g., Distributed Hash Table - DHT in P2P networks). The
motivation behind this decision is that the predicted number of participants of
computing systems (e.g., several hundred) is not large.

The considered distributed computing system is designed to process various
computational tasks. The workflow of the computing system is as follows. The input
data of the task is transferred from the source node to one or more computing nodes
that process the data. Next, the output data (results of computations) is sent from the
computing node to one or more destination nodes. We assume that computational
tasks are long-lived, i.e., they are established for a relatively long time (days, or
weeks). Examples of such systems include: scientific experimental systems
(e.g., Large Hadrons Collider), classification systems (e.g., anti-spam filters), data
mining (e.g., sales forecasts), weather forecast systems. Therefore, we do not consider
here – as in many other works (e.g., in [2]) the time dependency of each task (starting
time, completion time, etc.). Consequently, the input and output data associated with
the task is continuously generated and transmitted. Therefore, computational and
network resources can be allocated in the system according to the offline optimization
process results.

Each computing node is connected to the overlay by an access link with a specified
capacity that is used only to transmit the data related to task processing. More
precisely, each node can download two kinds of data: task input data (if the particular
node is selected for processing of the considered task), and task output data (if the
particular node is the destination node of the considered task). Similarly, each node
can upload two kinds of data: task input data (if the particular node is the source node
of the considered task), and output data (if the particular node is selected for
processing of the considered task).

Each node is equipped with various kinds of devices that can be applied for
computing (e.g., computers, clusters, game consoles, etc.). Each node has a limited
processing power defined by the number of uniform computational tasks that the node
can calculate in one second. Summarizing, the considered model of a computing
system assumes that each node has two kinds of resources: network (access link to the
overlay), and processing power. In this paper, we focus on static optimization of the
system – the objective is to allocate tasks to computing nodes in order to minimize the
OPEX cost of the computing system including expenses related to processing (task
computation), and network (access link).

A simple example to illustrate the distributed computing system architecture is
presented in Fig. 2. The considered system includes five computing nodes denoted as
A, B, C, D, and E. Nodes are connected to the overlay network. There are three tasks
to be processed. Node A is the source node of all tasks. Therefore, it stores input data
related to the tasks (green rectangles labeled i1, i2 and i3). Orange rectangles
labeled p1, p2, and p3 denote the places where a particular task is processed,

 1+1 Protection of Overlay Distributed Computing Systems 503

i.e., node B processed task 1, node A processed task 2, and node E processed task 3.
Red rectangles labeled o1, o2, and o3 denote results of computations related to tasks
1, 2 and 3, respectively. Nodes B and D are destinations of all tasks. Moreover, in this
figure we show network flows generated to deliver the input and output data. Solid
line denotes the flow of input data. Green circle with a number inside shows the
indices of tasks the input data is related to. For instance, since node B is selected to
compute task 2, the input data of this task is sent from node A to node B. Dotted line
shows the flow of output data. Again, the numbers in red circles indicate task indices
the data belongs to. For instance, since node E processes task 3, this node uploads the
output data to nodes B and D (destination nodes). Notice that the input data related to
task 2 is not sent from node A, as node A itself processes the task. Analogously, the
output data of task 1 calculated in node B is uploaded only to node D, as the second
destination node is B.

Fig. 2. Example of a distributed computing system

3.2 Protection Approach

The growing need to process a large amount of data explains the fact that various
distributed computing systems including P2P systems have been gaining much
attention in recent years. Moreover, many computational tasks processed in
distributed systems are of great importance and need execution guarantees, e.g.,
medical applications, business analysis, weather forecasts, etc. However, considered
computing systems operate on an overlay network. Therefore – similar to
communication networks – they are subject to various unintentional failures caused
by natural disasters (hurricanes, earthquakes, floods, etc.), overload, software bugs,
human errors, and intentional failures caused by maintenance action or sabotage [15].
Such failures influence network infrastructure connecting computing nodes (e.g.,
access link failure, underlying physical network link failure, etc.). Additionally,
elements of distributed computing systems devoted to data processing are also subject
to various breakdowns (e.g., hardware failure, power outage, software bug, etc.).
Therefore, in distributed computing systems, to provide guarantees on computational
tasks completion, execution and delivery of all required results need to be enhanced
with some survivability mechanisms.

504 K. Walkowiak and J. Rak

As a failure scenario, we consider a failure that leads to a situation when the results
to be obtained at one of the computing nodes are not delivered to the requesting
destination nodes (e.g., access link failure, backbone network link failure, backbone
node failure, etc., and processing issues including node hardware failure, power
outage, etc.). To protect the distributed computing system against this kind of
a failure, we propose to apply a similar approach as in connection-oriented networks,
i.e., 1+1 protection developed in the context of Automatic Protection Switching
(APS) networks [5]. In our approach, there is one primary (working) system and
a completely reserved backup system. In a fully operational state (with no failures),
backup system transmits the copied signal. The main advantage of the 1+1 approach
is a very fast reaction after the failure. However, the disadvantage is a relatively large
cost following from the system redundancy. Our idea is to assign to each
computational task two computing nodes: primary and backup. Both nodes
simultaneously process the same input data and next send results to all destination
nodes. Compared to the architecture presented in the previous section, the general
structure of the system is not changed. However, the need to process an additional
copy of the task results in extra network traffic and requires more computational
resources.

In Fig. 3, we show a survivable computing system using the same example as in
Fig. 2. To address the survivability requirements, each of three tasks is processed at
two separate nodes – primary tasks are marked with rectangles p1, p2, and p3, while
backup tasks are labelled b1, b2 and b3, respectively. For instance, task 1 is
processed at nodes B and C. As mentioned above, duplication of tasks generates much
more network traffic compared to the example from Fig. 2. For instance, node A
uploads two copies of task 1 and 3 input data, and one copy of task 2 input data.

Fig. 3. Example of a survivable distributed computing system

4 Integer Programming Model

In this section, we present our Integer Programming model of the survivable
distributed computing system. The motivation is to use the introduced model to apply

 1+1 Protection of Overlay Distributed Computing Systems 505

an offline optimization algorithm (i.e., branch-and-cut) to find the optimal results that
can be used as the lower bounds for other solution approaches (e.g., heuristics).
Additionally, in many cases, distributed computing systems are static (e.g., in
scientific computational projects), and results of offline optimization can be applied
there to improve the system performance.

The considered computing system – as described in the previous section – is
constructed as a set of computing nodes (individual computers or clusters) – denoted
as v = 1,2,…,V. An overlay network is used to connect all computing nodes. As stated
in [24]-[25], the physical network underlying the overlay is assumed to be
overprovisioned. Therefore, we do not consider in this model the capacity constraints
of the underlying physical network – the only network bottlenecks of the overlay
system are access links. Each node v is assigned a maximum processing rate pv
(i.e., each node is already equipped with some computers, and pv denotes the number
of uniform computational tasks that node v can calculate in one second). For each
node v, ψv denotes the OPEX cost related to processing of one uniform task at node v.
The cost ψv is given in euro/month and includes all expenses necessary to process the
uniform computational tasks, e.g., energy, maintenance, administration. The
processing cost ψv can be different for various nodes, since differentiated costs related
e.g., to energy, or maintenance, etc., apply to particular node locations.

Another important parameter of the node is the capacity of the access link. Integer
variable zv denotes the number of capacity modules allocated to the access link of
node v. We assume that each node v is assigned to a particular Internet Service
Provider (ISP) that offers high speed access link with basic capacity modules mv given
in Mbps (e.g., Fast Ethernet). Thus, capacity of node v access link is mv zv. Moreover,
ξv given in euro/month denotes the whole OPEX cost related to one capacity module
allocated for node v. Constant ξv includes the leasing cost of the capacity module paid
to the ISP and all other OPEX costs like energy, maintenance, administration, etc.
Since computing nodes are spread geographically in many countries with various
ISPs, energy and maintenance costs, as well as module size and cost can be different
for each node. Note that – if necessary – a number (more than 1) of capacity modules
can be assigned to node v. Decision variable zv is thus integer.

Network computing system is to process the tasks with indices r = 1, 2, …, R. Each
task is defined by the source node producing the input data, and one or more
destination nodes receiving the output data including results of computations.
Constant srv is 1, if node v is the source node of task r; 0 otherwise. Similarly, trv is 1,
if node v is the destination node of task r; 0 otherwise. Input and output data
transmission rates of task r are given by constants ar and br, respectively.

We consider a survivable distributed computing system, i.e., some tasks are of
great importance and require special protection against potential failures. Constant αr
is used to indicate protection required by task r. Each task r that requires protection
(i.e., αr = 1) is allocated for processing at two different nodes: a primary and a backup
one. Binary variable xrv is equal to 1, if task r is allocated to the primary computing
node v; 0 otherwise. Similarly, yrv is 1, if task r is allocated to the backup computing
node v; 0 otherwise. Note that if a particular task r does not require protection
(i.e., αr = 0), then the backup node is not selected.

506 K. Walkowiak and J. Rak

The objective of the optimization model is to minimize the operating cost of the
computing system including expenses related to network (access links) and
processing. We optimize selection of access links (variable zv), and allocation of tasks
to primary and backup nodes (modeled by variables xrv and yrv, accordingly). It should
be underlined that the OPEX cost is perceived from the perspective of the computing
system, not from the perspective of the network operator. Therefore, the network cost
is limited only to access links and does not include costs related to the backbone
network underlying the overlay computing system.

indices
v = 1,2,…,V computing nodes (peers)
r = 1,2,…,R computing tasks

constants
pv maximum processing rate of node v (number of uniform tasks that node v can

 calculate in one second)
ar transmission rate of task r input data (Mbps)
br transmission rate of task r output data (Mbps)
srv equals 1, if v is the source node of task r; 0 otherwise
trv equals 1, if v is the destination node of task r; 0 otherwise
tr number of destination nodes for task r, i.e., tr = v trv
αr equals 1, if task r requires protection; 0 otherwise
ψv OPEX cost related to processing of one uniform task in node v (euro/month)
ξv OPEX cost related to one capacity module of node v (euro/month)
mv size of the capacity module for node v (Mbps)

variables
xrv equals 1, if task r is allocated to the primary computing node v; 0 otherwise

 (binary)
yrv equals 1, if task r is allocated to the backup computing node v; 0 otherwise

 (binary)
zv capacity of node v access link expressed in terms of the number of capacity

 modules (non-negative integer)

objective

minimize C = v zv ξv + r v (xrvψv + yrvψv) (1)

constraints

r (xrv + yrv)≤ pv v = 1,2,…,V (2)

r (1 – srv)ar(xrv + yrv) +

r trvbr(1 – xrv + αr – yrv) ≤ zvmv v = 1,2,…,V
(3)

 1+1 Protection of Overlay Distributed Computing Systems 507

r srvar(1 – xrv + α r – yrv) +

r (tr – trv)br(xrv + yrv) ≤ zvmv v = 1,2,…,V
(4)

v xrv = 1 r = 1,2,…,R (5)

v yrv = αr r = 1,2,…,R (6)

(xrv + yrv) ≤ 1 r = 1,2,…,R v = 1,2,…,V (7)

Value of the objective function (1) reflects the OPEX cost including two elements:
network cost (v zv ξv), and processing cost (r v (xrvψv + yrvψv)). Notice that the
processing cost comprises costs related to both primary and backup nodes.
Constraint (2) follows from the fact that each computing node v has a limited processing
power pv. Therefore, each node cannot be assigned with more tasks to calculate than it
can process. Since computations on primary and backup nodes are made
simultaneously, the left-hand side of (2) includes variables xrv and yrv.

Formula (3) defines the download capacity constraint of a node access link. The
left-hand side of (3) denotes flow incoming to node v and includes two elements. The
former one r (1 – srv)ar(xrv + yrv) denotes the flow related to transmission of input data
for computations, i.e., node v that is selected as a primary node of task r (xrv = 1), or
a backup node of task r (yrv = 1), must download the input data with transmission rate ar.
Only if the considered node v is the source node of task r (srv = 1), there is no need to
transmit the input data. The latter element r trvbr(1 – xrv + αr – yrv) refers to the output
data transmission – each destination node v of task r (trv = 1) must download the output
data of this task from both primary and backup computing node. However, if the
considered node v is selected as a primary node (xrv = 1), there is no need to download
data to the primary node. Similarly, if the considered task r is protected (αr = 1) and the
considered node v is selected as a backup node (yrv = 1), there is no need to download
data to the backup node. The right-hand side of (3) denotes the access link capacity.

Formula (4) denotes the upload capacity constraints. Analogous to (3), the left-hand
side of (4) defines the flow leaving node v and includes two terms. The first one:
r srvar(1 – xrv + α

r – yrv) denotes the input data flow sent from the task r source node v
(srv = 1) to primary and backup computing nodes. However, if the considered node v is
selected as either the primary computing node (xrv = 1), or the backup computing node
(yrv = 1) of task r, the corresponding flow is set to 0. The second term
r (tr – trv)br(xrv + yrv) is related to delivery of output data to all destination nodes of
task r, i.e., each node v that is selected as either the primary node of task r (xrv = 1), or
the backup node of task r (yrv = 1), must upload the output data to destination nodes of
task r (denoted by tr). If the considered node v is one of destination nodes of task r
(trv = 1), then the flow is decreased adequately. The right-hand side of (4) denotes again
the access link capacity.

508 K. Walkowiak and J. Rak

Condition (5) assures that for each task, exactly one node is selected as the primary
node. Similarly, (6) guarantees that if task r is to be protected (αr = 1), then one backup
node has to be selected. Constraint (7) assures that primary and backup nodes are
disjoint.

Note that in [21], an optimization problem similar to (1)÷(7) is considered. The
main difference is that the model in [21] did not include link capacity assignment and
survivability constraints. Compared to [10]-[13], here we use an overlay network
model, while in [10]-[13] the optical mesh network topology is assumed.

5 Heuristic Algorithms

Due to the complexity of the optimization problem given by formulas (1)÷(7), exact
methods like branch-and-cut can be used to solve only relatively small instances.
Therefore, here we propose two heuristic algorithms. The first one – referred to as
AlgRand – is a random method based on common characteristics of real overlay
systems, which mostly run in a random manner, e.g., BitTorrent [22]. The idea is to
allocate a randomly selected task r to a randomly selected node v. However, only
nodes with free processing resources are taken into account. When all tasks are
allocated, capacity of access links is determined in order to enable distribution of
input and output data. Execution of the algorithm is repeated here for 20 times, and
the final result is the minimum value of the obtained cost.

The second heuristic approach called AlgGreedy is a greedy algorithm that
analyzes all tasks in a single run. Again, only feasible nodes (with free processing
resources) are considered as candidate nodes. In each iteration, the cheapest allocation
of task r to node v is selected according to metric crv being the weighted sum of two
elements. First, we calculate an average cost of task r to node v allocation taking into
account processing cost of node v and the cost related to network capacity. More
precisely, allocation of task r to node v generates flow of input data from the source
node of task r to node v, and next flow of the output data from node v to all
destination nodes of task r. For all these flows, network capacity must be allocated.
Therefore, we estimate the capacity cost.

For instance, the cost related to the download capacity of the computing node v and
task r is given by formula ξvar / mv. All other costs are calculated in analogous way.
The second part of metric crv is calculated in a slightly different way. The idea is to
check if allocation of task r to node v triggers the need to add a new capacity
module(s) to some nodes (to provide enough capacity to send input/output data). It
means that in some cases, allocation of task r to node v does not require augmenting
of capacity, since the already allocated resources are sufficient to send all the required
data.

6 Results

In this section, we report the results of computational experiments. The goal of
experiments was twofold. First, we wanted to evaluate the performance of heuristic

 1+1 Protection of Overlay Distributed Computing Systems 509

algorithms compared against the optimal results given by CPLEX 11.0 [26]. Second,
we examined how additional survivability requirements influence the OPEX cost of
the distributed computing system. Simulations were run on six distributed computing
systems generated at random.

In particular, number of computing nodes was 30, capacity module was 100 Mbps,
other parameters of computing nodes were uniformly distributed in the following
ranges: cost of capacity module in range 120-400; processing cost in range 50-150;
processing limit in range 10-40. Six sets of computing tasks were created at random
with the following settings: number of tasks in range 300-700; number of destination
nodes of each task in range 1-6; input and output data transmission rate in range
5-15 Mbps. Moreover, 11 configurations related to protection requirements were
created with the following values of the protected tasks percentage (PTP): 0%, 10%,
20%,…, 100%. Thus, the overall number of individual cases tests was 396 (i.e.,
6 x 6 x 11).

We used CPLEX solver to obtain the reference results. However, when using the
default setting of the optimality gap (i.e., 0.0001), CPLEX was not able to stop
calculations within one hour for one test. Therefore, we decided to set optimality gap
to 0.01 – then CPLEX average execution time was about 29 seconds, while the
obtained average optimality gap was 0.0087. The average running time of heuristics
was 0.4 and 0.007 seconds for AlgGreedy and AlgRand, respectively. In Table I, we
report the performance characteristics of heuristics compared against the optimal
results returned by CPLEX.

For each algorithm, we show the average gap to the optimal results and present the
95% confidence interval analysis as a function of the protected tasks percentage. We
can see that quality of both heuristics grows with the increase of the protected tasks
percentage. Summarizing all tests, results of AlgGreedy were on average 10.19%
worse than the optimal ones. The corresponding value for AlgRand was 19.73%.

Table 1. Average performance of heuristic algorithms in terms of the OPEX cost compared
with the optimal results as a function of the protected tasks percentage; 30 computing nodes

Protected
tasks

percentage
(PTP)

AlgGreedy AlgRand

Gap to the
optimal
results

Lengths of 95%
confidence
intervals

Gap to the
optimal
results

Lengths of 95%
confidence
intervals

0% 12.42% 0.72% 23.52% 1.87%

10% 11.64% 0.83% 22.72% 1.79%

20% 11.04% 0.76% 21.87% 1.69%

30% 10.62% 0.72% 20.76% 1.86%

40% 10.32% 0.57% 20.17% 1.96%

50% 9.76% 0.61% 19.26% 1.94%

60% 9.47% 0.63% 18.32% 1.68%

70% 9.16% 0.60% 17.60% 1.60%

80% 8.81% 0.69% 16.70% 1.58%

90% 8.69% 0.65% 16.54% 1.38%

100% 8.41% 0.72% 15.71% 1.24%

510 K. Walkowiak and J. Rak

To verify the scalability of the proposed heuristic approach, larger computing
systems including 100 nodes and 60 projects were generated at random in a similar
way as above. Table 2 presents results obtained for these systems. We report
performance of the AlgGreedy algorithm compared to CPLEX. However, in this case
CPLEX did not provide optimal results, since after about 3 minutes, the solver was
stopping calculation with the out-of-memory error. Nevertheless, CPLEX returned the
current solution (non-optimal), as well as the current value of the lower bound. Recall
that the searched optimal result is located between these two values. In Table 2, we
compare AlgGreedy against the lower bound and CPLEX results. Heuristic results
were 14.02% and 12.53 worse on average (taking into account all 396 cases) than the
lower bounds and CPLEX results, respectively. It can be noticed that efficiency of
AlgGreedy for 100-node systems was slightly lower than for 30-node system evaluated
in Table 1. This follows mainly from the fact that the solution space of larger systems
(e.g., 100-node) is significantly larger compared to smaller 30-node systems.
AlgGreedy is also a relatively simple heuristic that looks for the solution is a single
run of the algorithm. However, results of AlgGreedy are still on a satisfactory level.

We also compared AlgGreedy against AlgRand, and the gap between both
algorithms was on a similar level as in the case of 30-node systems. It should be noted
that for systems larger than 100 nodes and 60 projects, CPLEX usually could not
provide any feasible results or lower bounds due to huge memory requirements.
Therefore, only heuristic algorithms can be applied in such cases.

Table 2. Average performance of the AlgGreedy algorithm in terms of the OPEX cost
compared with the lower bound and results of CPLEX as a function of the protected tasks
percentage obtained for 100-node and 60-project systems

Protected
tasks

percentage
(PTP)

AlgGreedy AlgGreedy

Gap to the
lower bound

Lengths of 95%
confidence
intervals

Gap to the
CPLEX
results

Lengths of 95%
confidence
intervals

0% 14.32% 0.45% 12.85% 0.39%

10% 14.23% 0.44% 12.78% 0.41%

20% 13.28% 0.52% 11.91% 0.52%

30% 14.00% 0.47% 12.61% 0.40%

40% 13.71% 0.50% 12.13% 0.48%

50% 13.88% 0.58% 12.41% 0.55%

60% 14.42% 0.56% 12.91% 0.51%

70% 13.97% 0.52% 12.52% 0.46%

80% 13.77% 0.44% 12.17% 0.44%

90% 13.94% 0.56% 12.36% 0.51%

100% 14.74% 0.58% 13.18% 0.54%

 1+1 Protection of Overlay Distributed Computing Systems 511

The next goal was to investigate how additional survivability constraints expressed
by the protected tasks percentage parameter influence the system cost. In addition to
30-node networks, we created larger problem instances including 200 computing
nodes and 1200-4800 tasks. Other parameters were analogous to the case of 30-node
systems. Only the number of destination nodes was different: in range 1-8, and
transmission rate of input and output data was in range 5-10Mbps. For these larger
systems, CPLEX also could not return solutions due to the out-of-memory error.
Therefore, for 200-node networks, only results of AlgGreedy are presented here.

In Figs. 4÷5 we show the average values of the OPEX cost for 30-node and 200-node
systems, respectively. Note that in the case of 30-node systems, Fig. 4 reports results of
CPLEX, while in the case of 200-node systems (Fig. 5), results are obtained by
AlgGreedy. Each figure shows costs related to link capacity and processing. To present
the aggregate results, for each case (unique in terms of the computing system and task
set), we calculated the relative cost (capacity and processing) normalized using the cost
obtained for PTP = 0%. Next, the average value for each PTP was computed. The trend
in both figures is similar, i.e., both kinds of cost grow linearly with the increase of the
PTP parameter. However, processing cost grows in a more dynamic way compared to
the capacity cost. It follows from the fact that relatively cheaper nodes (i.e., with lower
values of capacity and processing costs) are saturated prior to more expensive nodes.

0%

50%

100%

150%

200%

250%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of protected tasks

R
el

at
iv

e
co

st

Capacity cost Processing cost

Fig. 4. Average relative cost as a function of protected tasks percentage for 30-node networks

0%

50%

100%

150%

200%

250%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Percentage of protected tasks

R
el

at
iv

e
co

st

Capacity cost Processing cost

Fig. 5. Average relative cost as a function of protected tasks percentage for 200-node networks

512 K. Walkowiak and J. Rak

Therefore, when the number of tasks to be protected grows, some tasks have to be
allocated to more costly nodes. Moreover, we can notice that the average cost of
systems with full protection (PTP = 100%) is about 110% and 106% higher, compared
to unprotected tasks (PTP = 0%) for 30-node, and 200-node systems, respectively.

7 Conclusion

In this paper, we focused on 1+1 dedicated protection of overlay distributed
computing systems against failures of single nodes. A new ILP model of joint
optimization of task allocation and link capacity assignment has been proposed.
Efficient heuristic algorithms have been introduced to find solutions for large problem
instances. Our approach thoroughly addresses the issue of minimizing the operational
(OPEX) cost of distributed computing systems (i.e., including processing costs and
network capacity costs) designed to provide protection against node failures.
Extensive numerical experiments proved the efficiency of the proposed heuristic
algorithms.

In future work we plan to incorporate the concept of shared protection into our
model (i.e., sharing the backup resources) to reduce the cost of protection
provisioning.

Acknowledgement. This work was supported in part by the National Science Centre
(NCN), Poland.

References

1. Travostino, A., Mambretti, J., Karmous-Edwards, G. (eds.): Grid Networks Enabling Grids
with Advanced Communication Technology. Wiley (2006)

2. Nabrzyski, J., Schopf, J., Węglarz, J. (eds.): Grid Resource Management: State of the Art
and Future Trends. Kluwer Academic Publishers (2004)

3. Milojicic, D., et al.: Peer to Peer computing. HP Laboratories Palo Alto, HPL-2002-57
(2002)

4. Wilkinson, B.: Grid Computing: Techniques and Applications. Chapman & Hall/CRC
Computational Science (2009)

5. Grover, W.D.: Mesh-Based Survivable Networks: Options and Strategies for Optical,
MPLS, SONET, and ATM Networking. Prentice Hall PTR, New Jersey (2003)

6. Ramamurthy, S., et al.: Survivable WDM Mesh Networks. IEEE/OSA Journal of
Lightwave Technology 21(4), 870–883 (2003)

7. Pióro, M., Medhi, D.: Routing, Flow and Capacity Design in Communication and
Computer Networks. Morgan Kaufmann (2004)

8. Molisz, W., Rak, J.: Region Protection/Restoration Scheme in Survivable Networks. In:
Gorodetsky, V., Kotenko, I., Skormin, V.A. (eds.) MMM-ACNS 2005. LNCS, vol. 3685,
pp. 442–447. Springer, Heidelberg (2005)

9. Ramamurthy, S., Mukherjee, B.: Survivable WDM Mesh Networks, Part I – Protection. In:
Proc. IEEE INFOCOM 1999, vol. 17(2), pp. 43–48 (1999)

 1+1 Protection of Overlay Distributed Computing Systems 513

10. Develder, C., et al.: Survivable Optical Grid Dimensioning: Anycast Routing with Server
and Network Failure Protection. In: Proc. of IEEE ICC 2011, pp. 1–5 (2011)

11. Thysebaert, P., et al.: Scalable Dimensioning of Resilient Lambda Grids. Future
Generation Computer Systems 24(6), 549–560 (2008)

12. Buysse, J., De Leenheer, M., Dhoedt, B., Develder, C.: Providing Resiliency for Optical
Grids by Exploiting Relocation: A Dimensioning Study Based on ILP. Computer
Communications 34(12), 1389–1398 (2011)

13. Jaumard, B., Shaikh, A.: Maximizing Access to IT Services on Resilient Optical Grids. In:
Proc. of 3rd International Workshop on Reliable Networks Design and Modeling, RNDM
2011, pp. 151–156 (2011)

14. Rak, J.: Fast Service Recovery under Shared Protection in WDM Networks. IEEE/OSA
Journal of Lightwave Technology 30(1), 84–95 (2012)

15. Vasseur, J.P., Pickavet, M., Demeester, P.: Network Recovery. Elsevier (2004)
16. Luo, H., Li, L., Yu, H.: Insights for Segment Protection in Survivable WDM Mesh

Networks with SRLG Constraints. In: Proc. IEEE GLOBECOM 2008, pp. 1–5 (2006)
17. Tapolcai, J., Ho, P.-H., Verchere, D., Cinkler, T., Haque, A.: A New Shared Segment

Protection Method for Survivable Networks with Guaranteed Recovery Time. IEEE
Transactions on Reliability 57(2), 272–282 (2008)

18. Rak, J.: Capacity Efficient Shared Protection and Fast Restoration Scheme in Self-
Configured Optical Networks. In: Keller, A., Martin-Flatin, J.-P. (eds.) SelfMan 2006.
LNCS, vol. 3996, pp. 142–156. Springer, Heidelberg (2006)

19. Song, L., Mukherjee, B.: Accumulated-Downtime-Oriented Restoration Strategy With
Service Differentiation in Survivable WDM Mesh Networks. IEEE/OSA Journal of
Optical Communications and Networking 1(1), 113–124 (2009)

20. Guo, L., Li, L.: A Novel Survivable Routing Algorithm With Partial Shared-Risk Link
Groups (SRLG)-Disjoint Protection Based on Differentiated Reliability Constraints in
WDM Optical Mesh Networks. IEEE/OSA Journal of Lightwave Technology 25(6), 1410–
1415 (2007)

21. Kacprzak, T., Walkowiak, K., Woźniak, M.: Optimization of Overlay Distributed
Computing Systems for Multiple Classifier System – Heuristic Approach. Logic Jnl IGPL
(2011), doi:10.1093/jigpal/jzr020

22. Shen, X., Yu, H., Buford, J., Akon, M. (eds.): Handbook of Peer-to-Peer Networking.
Springer (2009)

23. Anderson, D.: BOINC: A System for Public-Resource Computing and Storage. In: Proc. of
the Fifth IEEE/ACM International Workshop on Grid Computing, pp. 4–10 (2004)

24. Akbari, B., Rabiee, H.R., Ghanbari, M.: An Optimal Discrete Rate Allocation for Overlay
Video Multicasting. Computer Communications 31(3), 551–562 (2008)

25. Zhu, Y., Li, B.: Overlay Networks with Linear Capacity Constraints. IEEE Transactions on
Parallel and Distributed Systems 19(2), 159–173 (2008)

26. ILOG AMPL/CPLEX software, http://www.ilog.com/products/cplex/

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 514–529, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Scheduling and Capacity Design
in Overlay Computing Systems

Krzysztof Walkowiak, Andrzej Kasprzak, Michał Kosowski, and Marek Miziołek

Department of Systems and Computer Networks, Faculty of Electronics, Wroclaw
Wrocław University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland

Krzysztof.Walkowiak@pwr.wroc.pl

Abstract. Parallel to new developments in the fields of computer networks and
high performance computing, effective distributed systems have emerged to
answer the growing demand to process huge amounts of data. Comparing to
traditional network systems aimed mostly to send data, distributed computing
systems are also focused on data processing what introduces additionally re-
quirements in the system performance and operation. In this paper we assume
that the distributed system works in an overlay mode, which enables fast, cost-
effective and flexible deployment comparing to traditional network model. The
objective of the design problem is to optimize task scheduling and network ca-
pacity in order to minimize the operational cost and to realize all computational
projects assigned to the system. The optimization problem is formulated in the
form of an ILP (Integer Linear Programming) model. Due to the problem com-
plexity, four heuristics are proposed including evolutionary algorithms and
Tabu Search algorithm. All methods are evaluated in comparison to optimal re-
sults yielded by the CPLEX solver. The best performance is obtained for the
Tabu Search method that provides average results only 0.38% worse than op-
timal ones. Moreover, for larger problem instances with 20-minute limit of the
execution time, the Tabu Search algorithm outperforms CPLEX for some cases.

Keywords: distributed computing, overlays, ILP modeling, optimization.

1 Introduction

Recent advances in networking and distributed computing research have enabled
expansion of effective distributed systems including Grid computing systems to sup-
port high-performance applications in many areas of human activity, e.g., medical
data analysis, climate/weather modeling, bioinformatics, experimental data acquisi-
tion, collaborative visualization of large scientific databases, financial modeling,
earthquake simulation, astrophysics and many others [1]-[8]. Deployment of distri-
buted computing systems requires many studies embracing a wide range of various
research challenges. In this work we focus of one of these aspects and address the
problem of scheduling and capacity design in overlay computing systems.

The distributed computing systems like Grids can be developed using special dedi-
cated high-speed networks [1] as well as the Internet can be used as the backbone

 Scheduling and Capacity Design in Overlay Computing Systems 515

network for an overlay-based systems [6]-[8]. In this paper we focus on the second
case, since overlay systems provide considerable network functionalities (e.g., diver-
sity, flexibility, manageability) in a relatively simple and cost-effective way as well as
regardless of physical and logical structure of underlying networks. The considered
system consists of a set of computing elements spread geographically (e.g., clusters or
other hardware equipment). The workflow of the system assumes that input data gen-
erated in one of the nodes is transmitted to a computing nodes that is responsible to
process the data and finally to deliver the results to all destination nodes that are inter-
ested in results of computations. Such a workflow modeling is generic and fits to
numerous applications aimed to be applied in distributed manner, e.g., image
processing, data analysis, numerical computations. The objective of the optimization
is to minimize the operational cost (OPEX) of the computing system including ex-
penses related to two most important resources, i.e., processing equipment and net-
work connections.

The main novelty of this work – comparing to previous papers on the topic of Grid
optimization – is joint optimization of scheduling and network capacity in overlay-
based systems, while most of former papers considered either optical networks (e.g.,
[9]-[11] or only scheduling optimization (e.g., [12]). In this paper we continue our
research on optimization of distributed systems. Note that in our previous work [12]
we studied an optimization problem similar to the model addressed in this paper. The
major modification of the current work is joint optimization of task scheduling and
network capacity, while in [12] only the task allocation was analyzed, since network
capacity was given.

The main contributions of the paper are threefold. (i) A new ILP model of schedul-
ing and capacity design in overlay computing system formulated in accordance with
assumptions following from real overlay and computing systems. (ii) Four heuristic
algorithms proposed to solve the ILP model. (iii) Results of extensive numerical expe-
riments run to adjust tuning parameters of heuristics as well as to examine the per-
formance of the overlay computing system in various conditions.

The rest of the paper is organized as follows. Section 2 discusses the works related
to optimization of networks and distributed computing systems. In Section 3, we
present the system architecture and formulate the scheduling and capacity design in
overlay computing systems as the ILP model. Section 4 introduces four heuristic algo-
rithms proposed to solve the addressed problem. In Section 5, results of numerical
experiments are reported. Finally, the last section concludes the work.

2 Related Works

The authors of [9] introduce several multicost algorithms for a joint scheduling of the
communication and computation resources. They present a multi-cost scheme of po-
lynomial complexity that provides reservations and selects the computation resource
to execute the task and determines the path to route the input data. The result of nu-
merical experiments shows that in a Grid network in which tasks are either CPU- or
data-intensive (or both), it is beneficial for the scheduling algorithm to jointly consid-
er the computational and communication problems.

516 K. Walkowiak et al.

The paper [10] addresses the optimization of optical Grids considering combined
dimensioning and workload scheduling problem with additional survivability re-
quirements. The Divisible Load Theory is applied to tackle the scalability problem
and compare non-resilient lambda Grid dimensioning to the dimensions needed to
survive single-resource failures. For regular network topologies, analytical bounds on
the dimensioning cost are obtained. To validate these bounds, the authors report re-
sults of comparisons for the resulting Grid dimensions assuming a 2-tier Grid opera-
tion as a function of varying wavelength granularity, fiber/wavelength cost models,
traffic demand asymmetry and Grid scheduling strategy for a specific set of optical
transport networks.

The authors of [11] focus on dimensioning problem of computing Grids taking into
account server location and capacity, network routing and capacity. They propose an
integrated solution with joint optimization of the network and server capacity, and
incorporate resiliency against both network and server failures. A case study on a
meshed European network comprising 28 nodes and 41 links is presented. The results
show that compared to classical (i.e., without relocation), they can offer resilience
against both single link and network failures by adding about 55% extra server ca-
pacity, and 26% extra wavelengths.

In [12], the authors consider optimization of overlay computing systems. The main
goal is to allocate tasks to computing nodes in order to minimize the operational cost
related to data transmission and processing. An ILP model is formulated and effective
heuristic based on the GRASP method is proposed and evaluated. Note that the prob-
lem considered in this paper uses similar assumptions as [12]. The main novelty is
that additionally network capacity dimensioning is applied in this work.

For more information related to Grid systems including description of representa-
tive examples of Grid computing projects refer to [1]-[5]. More information on over-
lay systems can be found in [6]-[8].

3 Modeling of Scheduling and Capacity Design in Overlay
Computing System

The optimization model of overlay computing system is formulated consistent with
characteristics of real overlay systems as well as according to assumptions presented
in previous works [6]-[14]. The model is generic as various computing systems, e.g.,
Grids, public resource computing systems fit to the model [1]-[5].

3.1 Notation

The computing system consists of nodes indexed by v = 1,2,…,V. The nodes represent
computing elements (individual computers or clusters) as well as sources of input data
and destinations of output data. The system works on the top of an overlay network
(e.g., Internet) and each node is connected by an access link to the network. The con-
nectivity between nodes is provided by virtual links of the overlay realized by paths
consisting of links realized in the underlying network. The main motivation to use the

 Scheduling and Capacity Design in Overlay Computing Systems 517

overlay idea in computing systems is large flexibility – many currently deployed net-
work systems apply the overlay approach, e.g. Skype, IPTV, Video on Demand,
SETI@home, etc. According to [14], nodes’ capacity constraints are typically ade-
quate in overlay networks. Additionally, in overlays typically the underlay physical
network is assumed to be overprovisioned and the only bottlenecks are access links
[13]. Therefore, the only network capacity constraints in the model refer to access
links. Since the access link capacity is to be dimensioned, integer variable yv denotes
the number of capacity modules allocated to the access link of node v. We assume
that each node v is assigned to a particular ISP (Internet Service Provider), which
offers high speed access link with a capacity module mv given in Mbps (e.g., Fast
Ethernet). We assume that each node is already equipped with some computers and pv
denotes the maximum processing of node v given by a number of uniform computa-
tional tasks that node v can calculate in one second. Nevertheless, the problem can be
easily modified to allow dimensioning of node’s processing power by introducing
additional integer variable.

The computing system is to process a set of computational projects indexed by
r = 1,2,…,R. Each project consists of uniform computational tasks (of the same re-
quired processing power, e.g., a number of FLOPS) – the number of tasks in project r
is given by nr. Each task of the project can be processed independently, i.e., we as-
sume that there is no dependency between individual tasks. Each project is assigned
with a source node that produces the input data and one or more destination nodes that
are to receive the output data including results of computations (processing). Constant
s(r,v) is 1, if node v is the source node of project r; 0 otherwise. In the same way,
t(r,v) is 1, if node v is the destination node of project r; 0 otherwise. In spite of the
assumptions that the uniform task for each project has the same computational re-
quirement, the values of the input and output data transmit rates are specific for each
computational project following from particular features of the project. Thus, con-
stants ar and br denote the transmit rate of input data and output data, respectively, per
one task in project r and are given in bps (bits per second).

The workflow of the system is as follows. The input data of the project is trans-
ferred from the source node providing input data to one or more computing nodes that
processes the data. Next, the output data (results of computations) is sent from each
computing node to one or more destination nodes. We assume similar to [10]-[12]
that computational projects are long-lived, i.e., they are established for a relatively
long time (e.g., days, weeks). As an example of long-lived project we can enumerate
scientific experiments like LHC (Large Hadron Collider). The input and output data
associated with the project is continuously generated and transmitted. Hence, compu-
tational and network resources can be allocated in the system according to an offline
optimization. To keep the model relatively simple and enable optimization of large
problem instances, we do not consider – as in many other works (e.g., [1], [2], [9] –
the time dependency of each task (starting time, completion time, etc.). However, the
model can be modified to incorporate additional constraints. An integer variable xrv
denotes the number of project r tasks allocated to node v. A corresponding auxiliary
binary variable zrv is 1 if node v calculates at least one task of project r, 0 otherwise.

518 K. Walkowiak et al.

We assume that the maximum number of computing nodes involved in one project
cannot be larger than N. For instance, if N = 1, then all uniform tasks of a particular
project can be computed only on one node. When N = V, the number of computing
nodes is not limited. We refer to N as split ratio. The motivation behind this parame-
ter follows from management issues, i.e., less computing node (lower value of the
split ratio) facilitates the management of the computing system.

Fig. 1. Example of a distributed computing system

Fig. 1 presents a simple example to illustrate the computing system architecture.
The system contains five computing nodes denoted as A, B, C, D, and E. Three tasks
are to be computed. Node A is the source node of all tasks. Therefore, it stores input
data related to the tasks (green rectangles labeled i1, i2 and i3). Orange rectangles
labeled p1, p2, and p3 denote the places where a particular task is calculated. Red
rectangles labeled o1, o2, and o3 denote results of computations related to tasks 1, 2
and 3, respectively. Nodes B and D are destinations of all tasks. Additionally, we
show network flows generated to deliver the input and output data. Solid line denotes
the flow of input data. Green circle with a number inside shows the indices of tasks
the input data is related to. Dotted line shows the flow of output data. Again, the
numbers in red circles indicate task indices the data belongs to.

3.2 Objective Function

The objective of the problem is to minimize the operating cost (OPEX) of the compu-
ting system including expenses related to two elements: network and processing.
Since the overlay network is used, from the perspective of the computing system the
only network costs are related to the access link, i.e., we do not include in the model
costs related to the backbone network covered by network operators. Constant ξv giv-
en in euro/month denotes the whole OPEX cost related to one capacity module allo-
cated for node v and includes leasing cost of the capacity module paid to the ISP as
well as all other OPEX costs like energy, maintenance, administration, etc. As com-
puting nodes are spread geographically in many countries with various ISPs, energy
and maintenance costs, values of the module size and cost can be different for each

Destination node
Processing node

of task 1

1
2

A

B

D

E

C

i1

Source node
Processing node

of task 2

i3i2

p1

p2

o1 o3o2

p3

o1 o3o2

Processing
node

of task 3

Destination
node

2

3

1

3
3

 Scheduling and Capacity Design in Overlay Computing Systems 519

node. Note that – if necessary – a number (more than 1) of capacity modules can be
assigned to node v – thus the decision variable yv is integer. For a good survey on
various issues related to network costs see [15].

Constant ψv denotes the OPEX cost related to processing of one uniform task in
node v. The ψv cost is defined in euro/month and contains all expenses necessary to
process the uniform computational tasks including both processing and storage issues
(e.g., energy, maintenance, administration, hardware amortization etc.). Similarly to
the network cost given by ξv – processing cost ψv is different for various nodes. This
follows from the fact that nodes are placed in different countries with various costs
related to energy, maintenance, administration, etc. Various aspects of grid economics
are discussed in [1], [2].

3.3 ILP Model

indices
v,w = 1,2,…,V computing nodes
r = 1,2,…,R projects

constants
pv maximum processing rate of node v
nr size of project r (number of tasks in project)
ar transmit rate of input data per one task in project r (Mbps)
br transmit rate of output data per one task in project r (Mbps)
s(r,v) = 1 if v is the source node of project r; 0 otherwise
t(r,v) = 1 if v is the destination node of project r; 0 otherwise
tr number of destination nodes in project r
M large number
N split ratio
ψv OPEX cost related to processing of one task in node v (euro/month)
ξv OPEX cost related to one capacity module of node v (euro/month)
mv size of the capacity module for node v (Mbps)

variables
xrv number of tasks of project r assigned to node v (integer)
yv capacity of access link for node v expressed in the number of modules

(non-negative integer)
zrv = 1, if project r is calculated on node v; 0, otherwise (binary)

objective

 min C = v yv ξv + vr xrvψv (1)

constraints

 r xrv ≤ pv v = 1,2,…,V (2)

r (1 – s(r,v))arxrv + r:t(r,v)=1 br(nr – xrv) ≤ yvmv v = 1,2,…,V (3)

 r:s(r,v)=1 ar(nr – xrv) + r (tr – t(r,v))brxrv ≤ yvmv v = 1,2,…,V (4)

520 K. Walkowiak et al.

 v xrv = nr r = 1,2,…,R (5)

 xrv ≤ Mzrv r = 1,2,…,R v = 1,2,…,V (6)

 v zrv ≤ N r = 1,2,…,R (7)

The objective (1) is the OPEX cost related to access links selected for each node and
processing costs of computational tasks. Constraint (2) is in the model to guarantee
that the number of tasks assigned to each node cannot be larger than the node’s
processing limit given by pv. Condition (3) assures the download capacity constraint
for each node. The left-hand side of (3) defines the flow entering node v including
two terms. The former one (i.e., r (1 – s(r,v))arxrv) is the transmit rate of input data
of all projects calculated on node v. If the node v is the source node of project r (i.e.,
s(r,v) = 1), then this flow is 0. The latter term (i.e., r:t(r,v)=1 br(nr – xrv)) follows from
the fact that each destination node v of the project r (i.e. t(r,v) = 1) must download the
project results related to (nr – xrv) tasks (all tasks of project r except the tasks assigned
to the node v). The right-hand side of (3) denotes the download capacity of node v.
Similar to (3), constraint (4) defines the upload capacity constraint. Again, the left-
hand side compromises two elements. The first one (i.e., r:s(r,v)=1 ar(nr – xrv)) assures
that the source node v of project r (s(r,v) = 1) must upload input data for computation
of (nr – xrv) tasks (all tasks excluding the tasks assigned to node v). The second ele-
ment (i.e., r (tr – t(r,v))brxrv) means that each node must upload the output data to all
destination nodes of the project r given by tr . Notice that we take into account the
case when node v is among destination nodes of the project r, therefore we use formu-
la (tr – t(r,v)) to define the number of nodes to which the output data is transmitted.
To assure that for each project r = 1,2,…,R all task are assigned for processing we
formulate constraint (5). The model given by (1)-(5) defines the basic version of the
scheduling and capacity design problem for overlay computing systems. Additionally,
we define a limit on the maximum number of nodes involved in each project. The
idea is to minimize the management overhead and reduce the number of nodes
processing tasks related to the same project. Therefore, we introduce constraint (6)
that binds the binary variable zrv with decision variable xrv. Condition (7) is in the
model to meet the requirement that for each project r, the number of nodes involved
in the project cannot exceed the given split ratio N.

4 Heuristic Algorithms

The ILP model given by (1)-(7) is NP-complete (it is equivalent to network design
problem with modular links [15]). Therefore, to solve the model in optimal way, exact
methods including branch-and-bound or branch-and-cut must be applied. However,
only relatively small problem instance can be solved in optimal way in reasonable
time. Consequently, to solve the problem for larger instance, effective heuristic are
required. In this section, we present four heuristics: random algorithm (RA), greedy
algorithm (GA), evolutionary algorithm (EA) and Tabu Search algorithm (TA).

 Scheduling and Capacity Design in Overlay Computing Systems 521

4.1 Random Algorithm

The random method follows from common features of existing Peer-to-Peer overlay
systems, which mostly operate in a random manner, e.g., BitTorrent [6]-[8]. First, the
RA algorithm selects at random a task, which is not yet allocated to a computing
node. Let’s assume that the task is of project r. Next, the task is assigned to a node
according to the following procedure. It the split ratio limit is not achieved (i.e., the
number of nodes involved in the considered project r is lower than N), a node with
free resources of processing power (constraint (2)) is selected at random. Otherwise,
when the current split ratio of project r is N, one of nodes already involved in the
current project and with spare processing resources is chosen at random. When the
processing node is selected, the considered task is allocated to this node. In this way
values of variables xrv are assigned. Note that when there are no feasible nodes (i.e.,
all possible nodes for the selection already meet the processing limit), the algorithm
returns information that no feasible solution exists. Finally, to find values of capacity
variables yv, all nodes are assigned with a sufficient number of capacity modules to
satisfy network flows following from assignment of tasks. Execution of the algorithm
is repeated 20 times, and the final result is the minimum value of the obtained cost.

4.2 Greedy Algorithm

The next algorithm is based on the greedy idea. All tasks are processed in a single run
of the algorithm. As in the case of the random approach, only feasible nodes (with
free processing resources – constraint (2)) are considered as candidate nodes. In each
iteration of the algorithm, the cheapest allocation of one task of project r to node v is
made according to metric crv being the weighted sum of two elements (see below). In
more details, for all not yet allocated projects (i.e., with at least one not allocated
task), the current value of metric crv is calculated. To satisfy the split ratio constraint
(7), when the current number of nodes involved in the project r reached the split ratio
N, only nodes incorporated in project r are taken into account in calculation of crv.
Next, one task of the selected project is assigned to the node v, guaranteeing the low-
est value of crv.

Now we describe the procedure how the GA algorithm calculates the crv metric.
The first component of crv is calculated as an average cost of allocation of one task of
project r to node v taking into account the processing cost as well as the network cost.
The network cost follows from the fact that allocation of the task to node v generates
(i) flow of input data from the source node of the task to node v and (ii) flow of the
output data from node v to all destination nodes of the task. For all these flows, net-
work capacity is required. For instance, the cost related to the download capacity of
the computing node v and one task of project r is estimated by formula ξvar / mv. All
other costs are calculated in analogous way. The second element of crv approximates
the additional costs (both processing and network) that would be required in the cur-
rent system to serve allocation of a new task of project r to node v. The additional
processing cost is simply given by ψv. The additional network cost would be neces-
sary only when the allocation of one task of project r to node v generates the need to
add a new capacity module(s) to some nodes (to provide enough capacity to send
input/output data). Note that allocation of the new task to node v may not require

522 K. Walkowiak et al.

augmenting of existing capacity, since the already allocated resources may be suffi-
cient to send all the required data.

4.3 Evolutionary Algorithm

To solve the optimization problem formulated in Section 3, a new evolutionary algo-
rithm [16], [17] was proposed. Both operators and the scheme were adjusted to the
given problem. First, we introduce the chromosome coding. We assume that the
chromosome is represented as a two dimensional matrix with V columns and R rows
denoting variables xrv (i.e., how many tasks of each project are assigned to each node).
Such a problem representation may seem too complex for the evolutionary algorithm,
but it was applied in the past with success in the context of both transportation and
state assignment problems. This is the most natural representation and also gives the
opportunity to modify represented individuals in many ways. In the case of a sparse
matrix (e.g., when the split ratio has a low value), an additional data structure holding
the position of nonzero values is created to increase the algorithm’s effectiveness.

Now we introduce operators of the algorithm. Two tuning parameters are used in
the mutation operator: mutation_probability_1 and mutation_probability_2. The for-
mer parameter denotes the probability of an individual selection to perform the muta-
tion operation. The latter parameter is the probability of a particular row selection of a
given individual matrix. When row r is selected to run the mutation operator, the fol-
lowing procedure is applied. Two elements of the row are selected, but one of the
selected elements must have value greater than 0, while the second elements must be
equal to 0. Next, values between these two elements from the given row are swapped.
However, it happens only if such a change does not affect constraints of the problem.

The crossover operator is much more complex. It creates one offspring with the use
of two parents. It also works sequentially for each row of the matrix. Operations are
made for each row as long as a right number of tasks is assigned to the project in
offspring individual. Every time a pair of genes, one from each parent is chosen. Gene
in that case means a particular variable xrv (i.e., a number of tasks of project r as-
signed to node v). The selection of the parent genes is based on one of three criteria:
(i) cost of processing on a particular node v (i.e., ψv), (ii) cost of a link capacity mod-
ule of node v (i.e., ξv), (iii) node v is a source or a destination node of project r what
automatically reduces the amount of data that is to be sent in the system. A final
criterion is chosen randomly and it decides, which gene is chosen for the offspring
individual. The number of tasks hold by the gene can be reduced because of existing
constraints. Operations are repeated until a valid offspring satisfying all constraints is
created.

The initial population of the algorithm is created at random, however all individu-
als must be valid. The base population includes population_size individuals. Then, as
long as it is specified according to the time limit, the following operations are ex-
ecuted. At the beginning of the loop, the mutation operator is run. The next operation
is selection. In the proposed algorithm the ranking selection is applied. Comparing to
other methods (i.e., tournament and roulette), this approach yielded the best results
according to initial tests. It selects the parents that will be used to create the offspring.
Then, the crossover operator is used. It is done in a loop executed
offspring_population_size times, so the same number of offsprings is created. Later,

 Scheduling and Capacity Design in Overlay Computing Systems 523

both new and old individuals are used to form the population for the next iteration.
The algorithm chooses the best individuals (those with the lowest overall cost) which
meet the age limitation. Each individual has its age, which is increased at the end of
the algorithm’s iteration. In the proposed algorithm the highest possible age is de-
noted by parameter individual_age. The formed population for the next generation
has population_size valid individuals.

The EA algorithm includes additional operators to cope with the spit ratio con-
straint (7). The operators increase or decrease the split ratio of the individual. The
former operator is executed according to the increase_split_frequency parameter, for
instance, if increase_split_frequency is 10 than this operator is run at 10th, 20th, etc.
population. The execution of the latter operator is triggered consistent with the de-
crease_split_frequency parameter. The split ratio decrease operator is run for each
project r. First, among all nodes that participate in project r (i.e., with xrv > 0) the
most expensive node (in terms of the processing and networking costs) is selected.
Next, all tasks assigned to this node are tried to be reallocated to other nodes in order
to decrement the number of nodes assigned to project r. However, the processing limit
constraint (2) cannot be violated. The split ratio increase operator is applied only to
projects for which the number of nodes involved in the current project is lower than
N. For such a project, the cheapest node (in terms of the processing and networking
costs) not involved in project is identified. Next, tasks from other nodes are reallo-
cated to this node. However, the number of new tasks assigned to this node cannot
exceed its processing limit and one third of the number of tasks in the given project.

4.4 Tabu Search Algorithm

The general scheme of the proposed TA algorithm follows from classical Tabu Search
algorithm [18]. Below we describe the basic operations of the algorithm with a special
focus on new elements. The starting solution is generated at random using a following
procedure in order to create a feasible solution in terms of the problem constraints –
especially the most challenging is the split ratio constraint (7). Projects are processed
sequentially according to decreasing values of nr (number of tasks in the project). For
each project, the following steps are made. First, computing nodes are sorted in des-
cending order by the current residual processing capacity (i.e., the difference between
pv and the number of task already allocated to node v). Next, tasks of analyzed project
r are randomly assigned to N first nodes from the list of previously sorted nodes – in
this way the split ratio constraint (7) is satisfied. If in a particular case, a feasible solu-
tion is not generated (i.e., some constraints are violated), the procedure for the consi-
dered project is repeated. It should be noted that the algorithm as a starting solution
can use also any feasible solution yielded by another algorithm.

The next important operation of the TA algorithm are moves, which describe the
modifications applied to solutions during the neighborhood exploration. Solution of
discussed problem consists of two parts: matrix xrv and vector yv. The former element
defines how many tasks from project r are assigned for processing in node v, the latter
element holds the information about the number of capacity modules assigned to each
node. Any transformation of such a solution consists of moving some number of tasks

524 K. Walkowiak et al.

(e.g., t tasks) of project r from node v to node w and recalculation of variables yv and
yw accordingly. For easier notation, we define a swap operator S [r, v, w, t] denoting
that t tasks of project r are moved from node v to node w.

The subsequent element of the algorithm is to generate a neighborhood of size n
from the current solution to search for a new, better solution. The neighborhood is
generated by taking the current solution and transforming it n times using the swap
operation. Each transformation is unique and is always applied to the current solution.
As a result, we get a list of n solutions created from the current one. Then, the cost of
every neighborhood solution is evaluated and the best one is chosen. Every better
solution in the neighborhood is checked to fulfill the tabu list and aspiration rule re-
quirements. In the end, the neighborhood solution with the lowest cost (which can be
worse than the current one) is chosen as the new current one. All executed transfor-
mations, described as a set of swap operations, are used to update the tabu list.

Two variants of the neighborhood exploration are proposed: exploration by node
and exploration by project. The former method starts with a random selection of a
node denoted by v. Next, for each project r that is assigned to node v (i.e., xrv > 0) the
following procedure is executed. Tasks of the project are tried to be reallocated to
another node – all remaining nodes are analyzed. However, the obtained solution
must be feasible, i.e., the processing limit constraint (2) and the split ratio constraint
(7) must be satisfied. The number of start nodes is defined by parameter called explo-
ration_range. To limit the search time of big neighborhoods, only exploration_deep
moves for each start node are tested. In the exploration by project approach, the algo-
rithm starts from a randomly selected start project r. Then, all nodes which are allo-
cated with tasks of this project are processed. For each of those nodes, an attempt is
made to move all tasks belonging to project r, from the current node to another node
taking into account all remaining nodes. As in the previous case, only moves yielding
feasible solutions in terms of constraint (2) and (7) are considered. Again, parameters
exploration_range and exploration_deep can be applied to tune the procedure.

The main purpose of the tabu list is to avoid the algorithm from falling into cycles
during the search. It is the key element of the Tabu Search algorithm. There are many
theoretical divagations and practical examples of different tabu list constructions [18]-
[20]. The tabu list in the discussed algorithm maintains a list of last t swaps, which
were used for creating the current solution. For the purpose of our algorithm, two
blocking rules were developed with a possibility to use any combination of them:

• Equality rule – each swap operation included in the tabu forbids any move that
contains the same swap.

• Similarity rule – each swap operation included in the tabu forbids any move (swap)
that contains the same to/from node and project, i.e., also swaps with a different
number of moved tasks than the one included in the tabu are forbidden.

The aspiration rule is implemented according to [17]. If a new solution is blocked by
the tabu list, the aspiration rule checks if its cost is lower or equal comparing to the
cost of the best solution already been found. If this condition is met, the tabu blockade
is ignored and a new solution is accepted as a current one and as the best one. The
algorithm’s stop condition is the execution time.

 Scheduling and Capacity Design in Overlay Computing Systems 525

5 Results

In this section, we present the results of computational experiments. All algorithms
described in the previous section were implemented using C++ . Moreover, the ILP
model presented in Section 3 was solved to obtain optimal results using a branch-and-
cut algorithm included in CPLEX 11.0 solver [21]. The goal of experiments was
threefold. First, we wanted to examine the performance of heuristics according to
tuning parameters of the algorithms. Second, we compared results of heuristic meth-
ods against optimal results provided by CPLEX. Finally, we analysed how the split
ratio parameter influences the OPEX cost of the distributed computing system. Simu-
lations were run on a PC computer with IntelCore i7 processor and 4GB RAM.

Various distributed computing systems were generated at random with the follow-
ing two sizes: small systems including 20 nodes and 10 projects and large systems
including 200 nodes and 120 projects. Table 1 contains detailed information about
ranges of system parameters applied in the random generation of the systems. For
each size of the system, 162 unique configurations were tested, i.e., 27 configurations
of nodes and projects and 6 values of split ratio (2, 4, 6, 8, 10 and V).

Table 1. Parameters of tested systems

 Small systems Large systems
Number of computing nodes 20 200
Number of projects 10 120
Cost of capacity module 120-400 120-400
Processing cost of one unit 50-150 50-150
Processing limit of one node 10-40 10-40
Number of destination nodes 1-4 1-8
Input and output data rates 5-15 5-10

The first part of experiments was devoted to tuning of the EA and TA algorithms.
In Table 2, we report information about tuning parameters of the EA algorithm – for
each parameter we present the tested values and the final selection of the parameter
value according to performed experiments for both small and large systems.

Table 2. Tuning parameters of the EA algorithm

 Tested Values Selected Value
population_size 50, 100, 200, 300, 400 100

offspring_population_size 125, 250, 500, 750, 1000 250
mutation_probability_1 0.0, 0.05, 0.01, 0.02, 0.04, 0.05 0.01
mutation_probability_2 0.0, 0.05, 0.01, 0.02, 0.04, 0.05 0.02

individual_age 3, 10, ∞ 10
increase_split_frequency 10 10
decrease_split_frequency 50 50

In the case of the TA algorithm the tuning procedure was done separately for two
sizes of systems and different values of the split ratio. Table 3 shows tested values
regarding each parameter. In Table 4 we report the selected values of parameters.

526 K. Walkowiak et al.

Table 3. Tested values of tuning parameters of the TA algorithm

 Small systems Large systems
exploration_range 10, 20, 30, 40, 50, 60, 70, 80, 100,

120, 150, 200, 300, 350, 400, 450,
500

10, 20, 40, 60, 80, 120, 160, 200,
250, 300, 400, 500, 600

exploration_deep 1 to 10 1 to 10
tabu_list_type Equality, Similar Equality, Similar

tabu_list_length 10 to 180 10 to 800
search_method by project, by node by project, by node
aspiration type better than best

better than current
better than best

better than current

Table 4. Selected values of tuning parameters of the TA algorithm

 Small Large
Split ratio 2, 4, 6 8, 10, 20 2, 4, 6 8, 10, 200

exploration_range 20 30 600 400
exploration_deep 3 8 1 1

tabu_list_type Equality Similar Similar Similar
tabu_list_length 60 50 20 20
search_method by project by node by project by node
aspiration type better than

best
better than

best
better than

best
better than

best

In Fig. 2, we report detailed results related to tuning of two parameters of the TA
algorithm, i.e, exploration range and search method. The results were obtained for an
exemplary large system with the split ratio set to 2. More results related to tuning of
EA and TA algorithms can be found in [22] and [23], respectively.

Fig. 2. Tuning of the TA algorithm – OPEX cost of a large system with split ratio 2 as a func-
tion of the exploration range and search method.

The next goal of experiments was to compare performance of developed heuristic
algorithms described in Section 4 against CPLEX solver [21] that applies a branch-
and-cut algorithm for ILP problems. In Table 5 we present comparison of heuristics
against CPLEX for small and large systems. Note that EA and TA were run 3 times
for each case and the average result was taken into account. The table includes
average gap between particular heuristics and CPLEX as well as the lengths of 95%
confidence intervals. Recall, that for each system size (small and large) 162 unique
experiments were made.

680000

690000

700000

710000

720000

730000

10 20 40 60 80 120 160 200 250 300 400 500 600

O
P

E
X

 c
os

t

Exploration range

by node

by project

 Scheduling and Capacity Design in Overlay Computing Systems 527

Table 5. Heuristics vs. CPLEX – result comparison and lengths of 95% confidence intervals

 Small systems Large systems
 Average gap to

the optimal
results

Lengths of 95%
confidence
intervals

Average gap to
the CPLEX

results

Lengths of 95%
confidence
intervals

RA 22.93% 0.41% 21.97% 0.82%
GA 8.49% 0.31% 12.65% 0.60%
EA 2.99% 0.21% 10.28% 0.55%
TA 0.38% 0.05% 0.54% 0.88%

For small systems the CPLEX was run to find optimal results, i.e., the execution
time of CPLEX was not limited, while the execution time of heuristics was maximally
20 minutes. We can easily notice that the best performance offers the Tabu Search
algorithm – the average gap to optimal results is only 0.38%. For large systems the
CPLEX could not provide optimal results in reasonable time, thus the execution time
of CPLEX was limited to 20 minutes. Consequently, the results of CPLEX were not
optimal. To enable fair comparison with heuristics, the running times of heuristic
algorithms were also limited to 20 minutes. It should be noted that the RA needed
about 10ms, the GA found the final results after 5 minutes, while EA and TA were
stopped exactly after 20 minutes. Again, the TA method provides the best results
among all heuristics. We can notice that performance of the EA in comparison with
CPLEX decreased what suggests that the EA algorithm is not well scalable.

Since the TS significantly outperforms other heuristics, in the rest of this section
we will focus on results of this algorithm. Table 6 reports detailed comparison be-
tween TS and CPLEX for large systems regarding the split ratio. We can notice that
the TS method outperforms CPLEX for small values of split ratio (i.e., 2 and 4).
These cases are the most challenging for optimization since only a very small part of
the solution space is feasible in terms of the split ratio constraint (7). Other heuristics
encountered large difficulties to find feasible results for small values of the split ratio.

Table 6. Tabu Search algorithm versus CPLEX – results obtained for large systems

Split ratio 2 4 6 8 10 200
Average gap between TA

and CPLEX
-9.04% -3.14% 1.86% 3.50% 4.08% 5.64%

Number of cases when
TS>CPLEX

26 20 11 1 0 0

Due to stochastic nature of the TA method, we examined convergence of this algo-
rithm. For selected small and large systems with all tested split ratio values we run the
algorithm 20 times. The obtained results proved that the TS algorithm is very stable,
the value of the standard deviation was always lower than 0.5% of the average value.

The last goal of simulations was to examine performance of the overlay computing
systems according to the split ratio. In Fig. 3, we present the optimal cost of three
exemplary small systems as a function of the split ratio value. We can easily notice
that the OPEX cost decreases with the increase of the split ratio. However, the gap
between two border cases (i.e., the difference in OPEX cost obtained for split ratio

528 K. Walkowiak et al.

values 2 and 20) is very small. Taking into account all tested small systems, this gap
is on average 1.41%. The corresponding value for large systems is calculated for re-
sults of the TA algorithm is 1.58%. Thus, we can conclude that the OPEX cost is not
significantly sensitive to the split ratio value. However, we must underline that the
value of the split ratio had a large impact on the performance of evaluated algorithms
in terms of the result feasibility and differences between particular methods.

Fig. 3. OPEX cost of small systems as a function of the split ratio parameter

6 Concluding Remarks

In this paper we have described a scheduling and capacity design optimization prob-
lem in overlay computing systems. Whereas, most of previous papers on the topic of
distributed systems optimization focus on dimensioning of optical networks, we have
assumed that the considered system works in overlay mode. Due to increasing popu-
larity of virtualization techniques following from cost-effective and flexible deploy-
ment comparing to traditional network model, overlay systems have been gaining
much attention in recent years. The problem has been formulated in the form of ILP
model. Next, four heuristic algorithms have been developed. In extensive numerical
experiments the algorithms have been examined to find the best configuration of tun-
ing parameters. Next, the heuristics have been evaluated in comparison to optimal
solutions provided by the CPLEX solver for small problem instances. The best per-
formance has been observed for the Tabu Search algorithm – the average gap to op-
timal results was only 0.38%. Moreover, for large systems examined with 20-minute
execution time limit, the Tabu Search method outperformed all remaining methods
including the CPLEX solver in the case of small values of the split ratio parameter.

In future work, we plan to consider further optimization problems encountered in
overlay computing distributed systems considering additional constraints like survi-
vability issues and more complex workflows.

Acknowledgement. The work was supported in part by the National Science Centre
(NCN), Poland.

41000

43000

45000

47000

49000

51000

53000

2 4 6 8 10 20

O
P

E
X

 c
os

t

Split ratio

System A

System B

System C

 Scheduling and Capacity Design in Overlay Computing Systems 529

References

1. Wilkinson, B.: Grid Computing: Techniques and Applications. Chapman & Hall/CRC
Computational Science (2009)

2. Nabrzyski, J., Schopf, J., Węglarz, J. (eds.): Grid resource management:state of the art and
future trends. Kluwer Academic Publishers, Boston (2004)

3. Milojicic, D., et al.: Peer to Peer computing. HP Laboratories Palo Alto, Technical Report
HPL-2002-57 (2002)

4. Travostino, F., Mambretti, J., Karmous Edwards, G.: Grid Networks Enabling grids with
advanced communication technology. Wiley (2006)

5. Taylor, I.: From P2P to Web services and grids: peers in a client/server world. Springer
(2005)

6. Buford, J., Yu, H., Lua, E.: P2P Networking and Applications. Morgan Kaufmann (2009)
7. Shen, X., Yu, H., Buford, J., Akon, M. (eds.): Handbook of Peer-to-Peer Networking.

Springer (2009)
8. Tarkoma, S.: Overlay Networks: Toward Information Networking. Auerbach Publications

(2010)
9. Stevens, T., et al.: Multi-Cost Job Routing and Scheduling in Optical Grid Networks. Fu-

ture Generation Computer Systems 25(8), 912–925 (2009)
10. Thysebaert, P., et al.: Scalable Dimensioning of Resilient Lambda Grids. Future Genera-

tion Computer Systems 24(6), 549–560 (2008)
11. Develder, C., et al.: Survivable Optical Grid Dimensioning: Anycast Routing with Server

and Network Failure Protection. In: Proc. of IEEE ICC 2011, pp. 1–5 (2011)
12. Kacprzak, T., Walkowiak, K., Woźniak, M.: Optimization of Overlay Distributed Compu-

ting Systems for Multiple Classifier System – Heuristic Approach. Logic Journal of IGPL
(2011), doi:10.1093/jigpal/jzr020

13. Akbari, B., Rabiee, H., Ghanbari, M.: An optimal discrete rate allocation for overlay video
multicasting. Computer Communications 31(3), 551–562 (2008)

14. Zhu, Y., Li, B.: Overlay Networks with Linear Capacity Constraints. IEEE Transactions
on Parallel and Distributed Systems 19(2), 159–173 (2008)

15. Pioro, M., Medhi, D.: Routing, Flow, and Capacity Design in Communication and Com-
puter Networks. Morgan Kaufmann Publishers (2004)

16. Michalewicz, Z.: Evolutionary Algorithms + Data Structures = Evolution Programs.
Springer (1999)

17. Gendreau, M., Potvin, J.: Handbook of metaheuristics. Springer (2010)
18. Glover, F.: Tabu Search - Part I. ORSA J. on Computing 1(3), 190–206 (1989)
19. Karlsson, L., Yang, L., Lin, M.: Heuristic techniques: scheduling partially ordered tasks in

a multi-processor environment with tabu search and genetic algorithms. In: Proceedings
Seventh International Conference on Parallel and Distributed Systems, pp. 515–523 (2000)

20. Jaziri, W.: Local Search Techniques: Focus on Tabu Search. Inteh (2008)
21. ILOG CPLEX, 12.0 User’s Manual, France (2007)
22. Miziolek, M.: Optimization of distributed computing systems with the use of evolutionary

algorithms. M.Sc. Thesis, Wroclaw University of Technology (2011)
23. Kosowski, M.: Optimization of distributed computing systems with the use of Tabu Search

algorithm. M.Sc. Thesis, Wroclaw University of Technology (2011)

GPU Acceleration of the caffa3d.MB Model

Pablo Igounet1, Pablo Alfaro1, Gabriel Usera2, and Pablo Ezzatti1

1 Instituto de Computación,
Universidad de la República, 11.300–Montevideo, Uruguay

{pigounet,palfaro,pezzatti}@fing.edu.uy
2 Instituto de Mecánica de los Fluidos e Ingeniería Ambiental,

Universidad de la República, 11.300–Montevideo, Uruguay
gusera@fing.edu.uy

Abstract. This work presents a study of porting Strongly Implicit Pro-
cedure (SIP) solver to GPU in order to improve its computational effi-
ciency. The SIP heptadiagonal linear system solver was evaluated to be
the most time consuming stage in finite volume flow solver caffa3d.MB.
The experimental evaluation of the proposed implementation of the solver
demonstrates that a significant runtime reduction can be attained (ac-
celeration values up to 10×) when compared with a CPU version, and
this improvement significantly reduces the total runtime of the model.
This results evidence a promising prospect for a full GPU-based imple-
mentation of finite volume flow solvers like caffa3d.MB.

Keywords: caffa model, finite volume, SIP, HPC, GPU.

1 Introduction

The caffa3d.MB open source flow solver [15] allows the numerical solution of
equations that govern the movement of viscous fluids in complex geometry. The
model was implemented by Ferziger and Peric [6] using the original 2D caffa
model as a baseline. Nowadays, caffa3d.MB is largely used by different laborato-
ries and a typical instance, e.g. a simulation of 12 hours of stratified flow case with
5 million nodes, involving about 40.000 time steps, can be computed on about
300 hours, using a modern CPU with four cores. The source code of caffa3d.MB
is publicly available at the website www.fing.edu.uy/imfia/caffa3d.MB/, and the
model is composed by approximately 50.000 lines of code.

The high runtime involved on fluids simulation motivates the use of high
performance computing (HPC) techniques. However, the traditional HPC tech-
niques usually implies important economical efforts. A modern strategy consist
in using secondaries processors for tackle general problems. Particularly in recent
years, graphics co-processors (GPU) have experienced a spectacular evolution.
The evolution was not only quantitative (i.e. computing power) but also has
largely been qualitative (i.e. GPUs have improved in capacity and flexibility for
programming). Since the release of CUDA (Compute Unified Device Architec-
ture) [8] by NVIDIA in 2007, GPUs have become easily programmable multi-
processors capable of executing parallel algorithms through the SPMD paradigm

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 530–542, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

GPU Acceleration of the caffa3d.MB Model 531

(Single Program - Multiple Data). In fact, the GPU employs a SIMT (Single-
Instruction, Multiple-Thread) a slightly different strategy, defined by NVIDIA.
This situation has motivated many scientists from different fields to take ad-
vantage of the use of GPUs in order to tackle general problems [10] (databases,
scientific computing, etc.). In particular, in the area of numerical linear algebra
(NLA) several studies have been presented, showing significant improvements
regarding performance by using GPUs [2,3,5,14]. A distinctive characteristic of
the CUDA architecture is its memory hierarchy, which consists of several mem-
ory levels: registers, shared, local, global, constant and texture memory. Each of
these levels have different sizes, bandwidth, throughput, etc. and the program-
mer has to explicitly indicate which memory levels are used. Additionally, CUDA
offers various techniques to exchange data between CPU and GPU memories:
common transfer, page locked transfer (using pinned memory) and direct access.

The importance of the numerical model, the high computational cost and
the steady evolution of GPUs motivate this work, which presents the analysis
of porting the caffa3d.MB model to GPU-based computation. An analysis of
the computational performance of caffa3d.MB is performed in order to identify
the most costly stages of the model. Later we present the GPU-based versions
proposed for speeding-up the computation using GPUs. The preliminary results
demonstrate that significant values of the acceleration factor (up to 24% for the
whole model) are obtained when using a GPU card that costs less than a 10%
of the price of a standard multicore server.

This paper is organized as follows. The study of the caffa3d.MB model can be
found in Section 2, where the mathematical model, the iteration scheme and the
evaluation of model runtime are detailed. Section 3 reviews related work about
solving NLA problems on GPUs and the parallelization of SIP method and, later
on, presents and explains the implementations developed. Finally, in Section 4,
the conclusions and the future lines of work are discussed.

2 caffa3d.MB Model

The caffa3d.MB model implements the finite volume method, applied to the
3D numerical simulation of viscous and/or turbulent fluids with generic scalars
transport. The domain geometry is represented by block-structured curvilinear
grids, which allow to describe complex scenarios. The interface between blocks
is fully implicit, in order to avoid downgrading both the performance and the
numerical results of the method. The model allows incorporating rigid objects in
the domain to study their interactions with the fluid, through immersed bound-
ary condition method.

2.1 Mathematical Model

The mathematical model comprises the mass (1) and momentum (2) balance
equations for an incompressible Newtonian fluid, with the Boussinesq approxi-
mation for buoyancy effects due to temperature induced small density variations:

532 P. Igounet et al.

∫
S

(v · n̂S) dS = 0 (1)
∫

Ω

ρ
∂u

∂t
dΩ +

∫
S

ρu (v · n̂S) dS =
∫

Ω

ρβ (T − Tref) g · ê1dΩ+

∫
S

−pn̂S · ê1dS +
∫

S

(2μD · n̂S) · ê1dS (2)

These equations hold in any portion Ω of the domain, being S the boundary
of Ω and n̂S the outward normal vector at the boundary S. The momentum
balance equation (2) has been expressed for the first component u of the velocity
vector v = (u, v, w), with similar expressions holding for the other components.
The buoyancy term in equation (2) involves the density ρ, thermal expansion
coefficient β and temperature T of the fluid, a reference temperature Tref and
gravity g. The viscosity μ of the fluid and the symmetric deformation tensor D
are used in the viscous term.

The conservation law (3) for a generic passive scalar φ with diffusion coefficient
Γ is also considered, which of course includes the heat equation as a particular
case. Other scalar transport equations can be easily incorporated, for example
to construct turbulence models or to address wet air processes which include
evaporation and condensation.∫

Ω

ρ
∂φ

∂t
dΩ +

∫
S

ρφ (v · n̂S) dS =
∫

S

Γ (∇φ · n̂S) dS (3)

These equations were presented in their integral form, in compliance with the
finite volume method and promoting a conservative formulation. The discretized
equations will be obtained by applying equations (1, 2 and 3) to each volume
element.

2.2 caffa3d.MB Iteration Scheme

In each time step, equations for each component of the velocity and equation
for the pressure correction are solved alternately and successively. Equations
for scalar transport, which will not be detailed here, are also solved. Thus, the
solution to the non-linear, coupled, partial differential equation system (1, 2 and
3) is approximated by the solution of a succession of linear equation systems,
as represented in Figure 1. The caffa3d.MB model currently employs, for the
iterative solution of these linear systems, the SIP method [6]. The SIP algorithm
has found widespread use in CFD, both as a solver itself or as a smoother for
multigrid methods. For a complete description of caffa3d.MB please see [16].

2.3 Analysis of caffa3d.MB Model Runtime

Experimental Platform. The experimental evaluation platform consists of
two different CPUs each connected to a different GPU. Table 1 presents details
of the platforms used in the experimental evaluation. Note that E5530 processor
use Hyper-Threading, that is 16 symbolic cores.

GPU Acceleration of the caffa3d.MB Model 533

Fig. 1. Iteration scheme for one time step (adapted from [11])

Table 1. Platforms used for testing

Platform CPU Cores GPU model Multicores Cores
I Intel E5200 @ 2.5 GHz 2GB 2 9800 GTX+ 16 128
II Intel QuadCore E5530 2.4GHz 48GB 8 C1060 30 240

Test Cases. The application considered is the lid-driven flow inside a cubical
cavity with Re=1000. This is a traditional test case for Navier-Stokes solvers,
with good numerical solutions being available in the bibliography [1,7] to validate
the obtained results. Non slip boundary conditions are applied to all walls, with
the top one sliding at constant velocity V o. Given the height h of the cavity
and the lid velocity V o, the fluid viscosity ν is set so that Re = 1000. The
computations were run until steady state was achieved. Figure 2 presents a
sketch of the domain.

Fig. 2. Sketch of lid-driven cavity. Re = V o · h/ν = 1000

We evaluated two test cases which differ on the grid dimension, one for a
64 × 64 × 64 grid and another discretized in 128 × 128 × 128 volumes, named
Cavs64 and Cavs128 respectively.

Evaluation of caffa3d.MB Runtime. To perform the model evaluation only
Platform II was used. We simulate 10 time steps of case Cavs128 with the
original model.

534 P. Igounet et al.

The experiment shows that three routines (calcuv, gradfi, sipsolver) are the
most costly in runtime. Particularly, on a total runtime of 518 seconds the linear
system solver using the SIP method consumed 35% (178 seconds), the calcuv
routine that performs the discretization and resolution of the linearized equations
for momentum components implied 25% (136 seconds) and the computation of
the components of the gradient vectors with the gradfi routine took around
15% (79 seconds). Therefore, the computational cost of these three routines is
roughly 75% of the total runtime of the model.

3 caffa3d.MB on GPU

The runtime evaluation presented in the previous section shows that the time
required to execute the SIP method impacts strongly in the computational effi-
ciency of the caffa3d.MB model. For this reason, we first studied and implemented
a GPU-based version of the SIP method. This strategy of separating the most
costly stage of a model was also employed in other similar efforts, see e.g. [9] a
GPU-based version of WRF model.

3.1 SIP on GPU

SIP [13] is an iterative method for the resolution of band systems (Ax = b, where
A is heptadiagonal or pentadiagonal matrix, related to discretization of differ-
ential equations). Initially, in the SIP method, an incomplete LU factorization
(L̂Û = incLU(A)) is computed, where L̂ and Û are good approximations of L
and U matrices without fill-in.

After that, an iterative procedure for refining an initial solution is performed
until the residual is small enough. The Algorithm SIP presents the SIP method.

Algorithm SIP:
(1) Do incomplete LU decomposition: L̂Û ≈ A
(2) Calculate residual: rn = b − Axn

(3) Calculate vector Rn (forward substitution):
Rn = L̂−1rn

(4) Calculate δx (backward substitution):
Ûδx = Rn

(5) Back to (2), until residual is small enough.

3.2 Related Works

Over the last years, different studies have demonstrated the benefits of using
GPUs to accelerate the computation of general purpose problems and in partic-
ular of linear algebra operations. However, there are no proposals for a GPU-
based SIP solver and no article was found discussing this subject in the review
of related works.

GPU Acceleration of the caffa3d.MB Model 535

Several works about SIP parallelization were presented using traditional HPC
hardware. We highlight the work of [4], that studied the parallelization of the
SIP method on shared memory multiprocessors considering different orderings
to process the nodes for breaking the data dependencies. These orderings are
described next, over a typical 3D-grid, such as shown in Figure 3, with a ni ×
nj × nk dimension.

Fig. 3. An example 3D grid, showing the 7-node computation molecule

Sequential Ordering. This variant processes the coefficients sequentially, ac-
cording to the number of each node. This strategy allows to exploit data locality
on CPU.

Ordering by Hyperlines. Considering the data dependencies of the SIP
method it can be established that:

– The residual calculation does not present restrictions.
– The forward substitution, only presents a dependency between r elements.

Particularly, to compute node l, the values of nodes l−1, l−nj and l−ni×nj

are needed.
– The backward substitution, only presents a dependency between r elements.

Particularly, to compute node l, the values of nodes l+1, l+ni and l+ni×nj

are needed.

So the lines formed by nodes where j + k is constant can be computed in par-
allel mode for both, forward and backward substitution. Inside each line, the
nodes must be computed in ascending order of i for forward substitution, and
descending order for backward substitution.

Ordering by Hyperplanes. In addition to the parallelism attained by ordering
the calculations by hyperlines, another level of parallelism can be reached if the

536 P. Igounet et al.

nodes are grouped by hyperplanes where i+ j +k is constant, this ordering does
not present data locality, however it offers the largest parallelism level.

3.3 Our Proposal

We implement three variants of the hyperplanes SIP method, a CPU implemen-
tation and two variants for GPU (a simple initial version and another which
exploits coalesced access).

Each routine receives as input the seven diagonals (Ap, As, Aw, Ab, An, Ae

y At, following the geographic nomenclature used by Ferziger and Peric [6]),
the α parameter, the independent term, and the maximum number of refining
iterations; and solves the linear system, returning the solution vector, the number
of iterations performed and the final residual. All routines use norm-1 to calculate
the residual.

Computing the hyperplane ordering is a relatively complex stage, and so the
ordering in which the nodes are calculated, as well as other required values (i.e.
the amount of hyperplanes employed), are computed on CPU prior to resolving
the system.

Differences between the versions are discussed next.

SIP on CPU by Hyperplanes (SIPCPU-HP). This variant processes the nodes
on CPU, grouping them by hyperplanes and taking advantage of multicore par-
allel processing. SIPCPU-HP is implemented in C using OpenMP.

SIP on GPU by Hyperplanes (SIPGPU-HP). This variant processes the nodes
on GPU grouping them by hyperplanes. The principal stages of this variant are
(see Figure 4 for a diagram of the algorithm):

1. First the input values are copied from the CPU to the GPU.
2. Later, the solver is executed on the GPU.
3. Finally, the outputs are copied from the GPU to the CPU.

To perform the solver in GPU, each thread processes one node of the grid (cor-
responding to a matrix equation). As we explained before, this calculation is
complex to implement independently on each node, so we first stored the pro-
cessing order in a vector and then copy it to the GPU memory. On each iteration
we have the hyperplanes offset as input and threads access to the vector keeps
the processing order for determined which equation need resolve as shown in
Figure 5.

The number of threads and blocks employed on kernels are computed following
the next recipe:

– if #nodes ≤ #threadsPerWarp
1 block with #nodes threads

– if #nodos/#threadsPerWarp < #multiprocessors
#nodes/#threadsPerWarp blocks with #threadsPerWarp threads

GPU Acceleration of the caffa3d.MB Model 537

Fig. 4. Diagram of SIPGPU-HP version

Fig. 5. Structure for computer processing

– if #nodes/#threadsPerWarp > #multiprocessors

• if #nodes < #multiprocessors × #threadPerBlockLimit
#multiprocessors block with #nodes/#multiprocessors threads

• else
#nodes/#threadsPerBlockLimit blocks with #threadPerBlockLimit
threads

538 P. Igounet et al.

SIP on GPU by Hyperplanes Using Coalesced Access (SIPGPU-HPC).
This variant extends the previous version in order to exploit coalesced access to
memory. The forward and backward steps can be rearranged to achieve coalesced
access, however, to achieve this goal, it is necessary to rearrange the A matrix,
and as that step would increase the computational cost, therefore we only applied
coalesced access to the calculation of the residual and norm computation. In
Figure 6 is specified which order is used in each stage.

Fig. 6. Diagram of SIPGPU-HPC version

3.4 Experiments

All experiments were performed using single precision arithmetic and transfer-
ence times are always included in the reported total runtime of the algorithm.

Tables 2 and 3 present the execution times (in seconds) for the CPU and
GPU implementations of the SIP solver for heptadiagonal matrices of Cavs64
and Cavs128 cases on Platform I and II, respectively. Additionally, the tables
include the acceleration values computed over the CPU method.

The analysis of the results demonstrate that the SIPCPU-HP routine takes
almost 3.86 and 1.57 times longer than the SIPGPU-HPC routine on Platform I
and Platform II respectively. In addition to this, the obtained acceleration scales
on problem dimension, allowing 10.32× and 1.64× on each platform for the

GPU Acceleration of the caffa3d.MB Model 539

Table 2. Runtime of SIP implementations on Platform I

Grid SIPCPU-HP SIPGPU-HP SIPGPU-HPC Best Acceleration
64 × 64 × 64 0.37 0.097 0.096 3.86
128 × 128 × 128 6.251 0.622 0.606 10.32

Table 3. Runtime of SIP implementations on Platform II

Grid SIPCPU-HP SIPGPU-HP SIPGPU-HPC Best Acceleration
64 × 64 × 64 0.099 0.081 0.063 1.57
128 × 128 × 128 0.592 0.535 0.362 1.64

largest case. It should be noticed that Platform II has 8 CPU cores (and Hyper-
Threading) whereas Platform I has only 2, hence the difference in CPU runtimes
and in speed up values.

Another important aspect, is that the use of coalesced access in Platform I
produces a modest improvement on the runtime. This can be motivated because
this platform has compute capabilities 1.1 and the coalesced access is more lim-
ited on such devices.

The execution time of different logical stages of SIPGPU-HPC version of SIP was
computed and analyzed in order to identify the critical section of the code. Table
4 presents the runtime (in seconds) of SIPGPU-HPC version discriminated by
transfer time, factorization time and resolution time. The obtained results show
that the runtime for data transfer, factorization and each step of the iterative
resolution procedure are similar (the resolution time in the table is for ten steps).

Table 4. Runtime of SIP implementations on Platform II

Grid Transfer Factorization Resolution Total
128 × 128 × 128 0.025 0.033 0.298 0.362

We can conclude that GPU versions have better performance than the CPU
implementation, allowing to tackle larger problems with lower economic cost.

3.5 Integration of the GPU-SIP on the caffa3d.MB Model

We included the new GPU-based solver on caffa3d.MB model. In order to achieve
this objective, we implemented a wrapper to call the new routine from the
caffa3d.MB model. Note that the numerical model is implemented on Fortran95
and the solver routine on C and CUDA.

540 P. Igounet et al.

Additionally to the use of the wrapper, other minor modifications were in-
cluded to the GPU SIP solver:

– The vector with processing order is copied only one time, at the beginning
of model execution.

– Since in each step the caffa3d.MB model solve 3 different systems with the
same matrix A, the matrix A is copied only one time each of the three
systems solved.

– For the same reason, the LU factorization is computed only one time for
each of the three systems solved.

Experiments. This section presents the results obtained in the evaluation of
the GPU-based version of the caffa3d.MB model. The analysis was performed on
Platform II solving the Cavs64 and Cavs128test cases. The numerical results
obtained with both model versions (CPU and GPU-based) not showed significant
differences.

Table 5. caffa3d.MB model runtimes in seconds on Platform II

cases Original GPU-based % of acceleration
caffa3d.MB caffa3d.MB

Cavs64 66.64 62.27 7 %
Cavs128 518.33 418.92 24 %

The results in Table 5 demonstrate that good acceleration factor values can be
obtained when using the parallel GPU implementation of the caffa3d.MB model.
The acceleration factor values increase, achieving up to 24 % for the largest
scenario.

It should be noted that the cost of data transfers between CPU and GPU
is considered in the runtimes of our proposal. However, in a numerical model
executed completely in GPU these transfers would not be necessary, allowing
for better performances.

3.6 Other Model Stages on GPU

Such as the SIP solver was migrated to GPU, there is also the possibility of
porting other stages of the model, since other calculations performed by the
model can benefit from a SIMT architecture such as the one available on graphics
processors.

In this way runtimes can be improved not only by accelerating other stages of
the model, but also by eliminating the cost of constantly copying data between
CPU memory and GPU memory. In this manner input data would be sent to
the GPU only at the beginning of the whole process, and results would be copied
back to CPU only at the end of the final calculation step.

GPU Acceleration of the caffa3d.MB Model 541

To evaluate the parallelization potential of other stages of the model the
gradfi routine was implemented on GPU. The gradfi routine computed the com-
ponents of the gradient vectors for all discretized volumes. It was parallelized
using CUDA, having each volume computed by one CUDA thread. Non for-
malized experiments show that an acceleration of around 5× on computing time
(not including transfer time) can be attained with the new GPU version of gradfi
routine.

This preliminary result allows us to predict that porting the overall model to
GPU-based computation can reach dramatically acceleration values.

4 Conclusions and Future Work

This work has presented an initial study on applying GPU computing in order
to speed up the execution of the SIP method. A version of the SIP method was
implemented on GPU using CUDA and was evaluated on different platforms
with several matrices of increasing sizes. The experimental analysis showed that
the GPU implementation reduced significantly the runtime of the solver over a
parallel CPU implementation, e.g. SIPGPU-HPC version obtained an acceleration
value up to 10× on Platform I and 1.64 on Platform II. Additionally, the impact
of this improvement on the total runtime of the complete model is important,
attaining an acceleration of around 24%. Summing up, results show that the
caffa3d.MB model can be accelerated with this kind of low economical cost plat-
forms. Furthermore, the implemented version of SIP method on GPU might be
easily adapted as the solver for other finite volume methods similar to caffa3d.MB
model, and will be made shortly available in open source format together with
next caffa3d.MB release.

Future research lines resulting from this experience will include:

– Tackling large problems.
– Using top line GPUs to further reduce computational times and increase the

dimension of the affordable problems.
– Advancing on the study of a full GPU-based implementation of the model.
– Studying the SIP implementation with an interoperable tool, such as OpenCL.

Acknowledgements. The authors would like to thank Martín Pedemonte for
his help. The equipment employed was financied by CSIC (Comisión Sectorial de
Investigación Científica – Uruguay). Pablo Ezzatti and Pablo Igounet acknowl-
edges support from Programa de Desarrollo de las Ciencias Básicas, and Agencia
Nacional de Investigación e Innovación, Uruguay.

References

1. Albensoeder, S., Kuhlmann, H.C.: Accurate three-dimensional lid-driven cavity
flow. Journal of Computational Physics 206, 536–558 (2005)

2. Barrachina, S., Castillo, M., Igual, F., Mayo, R., Quintana-Ortí, E., Quintana-Ort,
G.: Exploiting the capabilities of modern GPUs for dense matrix computations.
Concurrency and Computation: Practice and Experience 21, 2457–2477 (2009)

542 P. Igounet et al.

3. Benner, P., Ezzatti, P., Quintana-Ortí, E.S., Remón, A.: Using Hybrid CPU-GPU
Platforms to Accelerate the Computation of the Matrix Sign Function. In: Lin,
H.-X., Alexander, M., Forsell, M., Knüpfer, A., Prodan, R., Sousa, L., Streit, A.
(eds.) Euro-Par 2009. LNCS, vol. 6043, pp. 132–139. Springer, Heidelberg (2010)

4. Deserno, F., Hager, G., Brechtefeld, F., Wellein, G.: Basic optimization strategies
for cfd-codes. Technical report, Regionales Rechenzentrum Erlangen (2002)

5. Ezzatti, P., Quintana-Ortí, E., Remón, A.: Using graphics processors to accelerate
the computation of the matrix inverse. The Journal of Supercomputing 58(3), 429–
437 (2011)

6. Ferziger, J., Peric, M.: Computational methods for fluid dynamics. Springer, Berlin
(2002)

7. Iwatsu, R., Hyun, J.M., Kuwahara, K.: Analyses of three dimensional flow calcu-
lations in a driven cavity. Fluid Dynamics Research 6(2), 91–102 (1990)

8. Kirk, D., Hwu, W.: Programming Massively Parallel Processors: A Hands-on Ap-
proach. Morgan Kaufmann (2010)

9. Michalakes, J., Vachharajani, M.: GPU Acceleration of Numerical Weather Pre-
diction. Parallel Processing Letters 18(4), 531–548 (2008)

10. Owens, J.D., et al.: A Survey of General-Purpose Computation on Graphics Hard-
ware. Computer Graphics Forum 26(1), 80–113 (2007)

11. Peric, M.: Numerical methods for computing turbulent flows Course notes (2001)
12. Rhie, C.M., Chow, W.L.: A numerical study of the turbulent flow past an isolated

airfoil with trailing edge separation. AIAA Journal 21, 1525–1532 (1983)
13. Stone, H.: Iterative solution of implicit approximations of multidimensional partial

differential equations. SIAM Journal of Numerical Analysis 1(5), 530–558 (1968)
14. Tomov, S., Dongarra, J., Baboulin, M.: Towards dense linear algebra for hybrid

GPU accelerated manycore systems. MIMS EPrint, 7, Manchester Institute for
Mathematical Sciences, University of Manchester, Manchester, UK (2009)

15. Usera, G.: caffa3d.MB User manual,
http://www.fing.edu.uy/imfia/caffa3d.MB/caffa3d.MB.doc.pdf
(accessed November 20, 2011)

16. Usera, G., Vernet, A., Ferré, J.A.: A Parallel Block-Structured Finite Volume:
Method for Flows in Complex Geometry with Sliding Interfaces. Flow, Turbulence
and Combustion 81, 471–495 (2008)

http://www.fing.edu.uy/imfia/caffa3d.MB/caffa3d.MB.doc.pdf

Security-Effective Fast Authentication

Mechanism for Network Mobility
in Proxy Mobile IPv6 Networks

Illkyun Im, Young-Hwa Cho, Jae-Young Choi, and Jongpil Jeong

College of Information & Communication Engineering, Sungkyunkwan University
Seoul, Korea 110-745, +82-31-299-4260

illkyun.im@samsung.com, choyh2285@naver.com,

{jychoi,jpjeong}@ece.skku.ac.kr

Abstract. This paper reinforced security under the network evaluation
of wire/wireless integration of NEMO (NEwork MObility) supporting
mobility and network-based PMIPv6 (Proxy Mobile IPv6). It also pro-
poses SK-L2AM (Symmetric Key-Based Local-Lighted Authentication
Mechanism) based on simple key which reduces code calculation and
authentication delay costs. Moreover, fast handoff technique was also
adopted to reduce handoff delay time in PMIPv6 and X-FPMIPv6 (eX-
tension of Fast Handoff for PMIPv6) was used to support global mobility.
In addition, AX-FPMIPv6 (Authentication eXtension of Fast Handoff
for PMIPv6) is proposed which integrated SK-L2AM and X-FPMIPv6
by applying Piggybacks method to reduce the overhead of authentica-
tion and signaling. The AX-FPMIPv6 technique suggested in this paper
shows that this technique is better than the existing schemes in authen-
tication and handoff delay according to the performance analysis.

Keywords: AAA, NEMO, MIPv6, HMIPv6, PMIPv6, Symmetric Cryp-
tosystem, Hash Function.

1 Introduction

IETF (Internet Engineering Task Force) which is developing the Internet stan-
dard proposes the network class solution called as NEMO (NEtwork MObility)
[1]. This enables the network to move among other external networks to main-
tain a continuous network connection through the expansion of MIPv6 (Mobile
IPv6) [2]. But, NEMO inherited the disadvantage of handoff latency fromMIPv6.
Further, the method of processing AAA (Authorization, Authentication, and Ac-
counting) in mobile technology network has not been defined. This implies that
the upper network or lower network does not satisfy the stability and security.
Therefore, the research for enhancing effectiveness accompanied by mobility is
required, as secure authentication and fast handoff are accomplished.

This paper proposes SK-L2AM (Symmetric Key-Based Local-Lighted Authen-
tication Mechanism) which is less burden some for the mobile device. Light

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 543–559, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

544 I. Im et al.

and local authentication was completed based on wire/wireless integrated net-
work environment where NEMO supports mobility and network-based PMIPv6
(Proxy Mobile IPv6). Calculation cost and authentication delay factor is also
considered in the proposed SK-L2AM. This has the following characteristics as.
(1) Calculation cost is low. As SK-L2AM is the light weight security mecha-
nism which uses only symmetric cryptosystem and hash function [3] to solve
the problem of high calculation cost of PKI (Public Key Infrastructure). (2)
As SK-L2AM provides local authentication, authentication delay gets reduced
and load of HAAA (Home AAA) server declines as MR (Mobile Router) and
LAAA (Local AAA) do not share the session key in advance. (3) SK-L2AM sat-
isfies the security requirement by creating a session key, such as replay attack
resistance, stolen-verifier attack resistance and mutual authentication to prevent
server spoofing attack.

Besides, to reduce handoff delay under movement within a domain and among
domains, it is extended so that the neighboring link layer address and the
neighboring router information are easily processed. This is done by apply-
ing ND (Neighbor Discovery) protocol [4] in MAG (Mobile Access Gateway)
at prior handoff and by supporting the advantages of FPMIPv6 (Fast Handoffs
for PMIPv6). Global mobility is not supported in the network-based PMIPv6. In
addition, AX-FPMIPv6 (Authentication eXtension of Fast Handoff for PMIPv6)
which integrated SK-L2AM and X-FPMIPv6 by applying piggybacks method to
reduce of telecommunication overhead is suggested. The AX-FPMIPv6 tech-
nique proposed in this paper shows that it is better than the existing scheme in
authentication and handoff delay in the performance analysis.

The rest of this paper is composed as following. In chapter 2, security, handoff
and integrated network architecture where PMIPv6 and NEMO are described.
In chapter 3, the movement procedure of the proposed AX-FPMIPv6 authentica-
tion mechanism is explained in detail. Security analysis is evaluated in chapter
4 and AX-FPMIPv6 technique is evaluated based on performance evaluation
measures in chapter 5. The research results are summarized in chapter 6.

2 Related Work

2.1 Secure Authentication

Many researches on handoff at movement in MIP (Mobile IP) environment as
well as related to authentication using AAA are underway. This is to reduce
the threat on the mobile network environment through secure authentication.
Researches on AAA authentication are mostly concentrated on host mobility
environment [5,6]. IETF proposes AAA model [7,8,9] and Diameter protocol [10]
to solve problems when network is requested of roaming in external network from
mobile node. As in AAA model (Fig. 1), there are 4 SA (Security Association)
relationships in MIPv6. These SA means two network entities share several secret
information with each other. When MR moves in domains, MR should provide
several authentication information before it accesses resources from the domain.

Security-Effective Fast Authentication Mechanism for Network Mobility 545

But as in Fig. 1, direct security connection between MR and LAAA is insuf-
ficient and any information can be shared in advance between MR and LAAA
which requires roaming and traditional authentication mechanism as one of tech-
nological problems. LAAA should resend information to HAAA (Home AAA)
server of MR and wait for the response when there is no information for LAAA
to confirm the authentication information. So, authentication becomes ineffec-
tive. Further, if MR often roams in different domains then, the authentication
loads of MR get increased and it becomes more serious when the distance be-
tween the external network and the home network grows apart. NEMO does
not specify how to process AAA in a mobile network and only a few of the re-
searches have considered AAA authentication in NEMO environment. Fathi et
al. [11] uses AAA model to deal with the security problems in NEMO. Here,
the author proposes LR-AKE (Leakage-Resilient Authenticated Key Exchange)
[12] system. It is based on the concept of PKI (Public Key Infrastructure). PKI
can be used to prevent attacks in general but in this method calculation cost is
excessive. This is shown in Wang et al. [13] that LR-AKE system is vulnerable
to client and server impersonation attack. Chuang et al. [14] proposes local au-
thentication concept to reduce the authentication delay. But, MR still requests
for authentication from the AAA server again, when it moves initially to a new
domain. Also, as it only supports local mobility, it should be registered as it
enters a new domain for global mobility. Fig. 1 is a security association diagram
of AAA model under PMIPv6.

Foreign Domain

HAAA

Home Domain

HA

LAAA

LMA

MR

HAAA : Home AAA Server LAAA : Local AAA Server

SA : Security Association FA : Foreign Agent

HA : Home Agent LMA : Local Mobility Anchor

MR : Mobile Router

SA4

S
A
3

S
A
2

Fig. 1. Security association diagram of AAA model and PMIPv6

2.2 Network Architecture

Wireless network has at least one or more MR which is responsible for main-
taining MNNs sessions. Besides, a domain should have several MAGs and one
or more LAAA servers. When a wireless network enters into a new domain, MR

546 I. Im et al.

should execute the first authentication procedure before it accesses to the new
network. Network phase often gets changed when the MNNs accesses, cuts and
executes handoff. It is a very important task of a wireless communication to
maintain effective secure group communication. The network architecture dis-
played in Fig. 1 can support all kinds of group key management systems of
mobile communication network [15,16,17]. If a roaming agreement is made then,
it should be noted that HAAA and LAAA servers share several secret informa-
tion in advance to facilitate authentication procedure. This is based on AAA
security model (SA4 in Fig. 1). Further, LAAA and MAGs also share common
secret information such as GK (Group Key) (SA3 in Fig. 1). That is why LAAA
and MAGs have security association.

MAG3 MAG4

LAAA2

MAG2

LAAA1

MNNMNN

Mobile Network

MR

LMA2

Global MobilityLocal Mobility

LMA1

PMIPV6 Domain PMIPv6 Domain

MAG1

Internet

CN

LMA

MAG

MR

MNN

CN

: Local Mobility Anchor

: Mobile Access Gateway

: Mobile Router

: Mobile Network Node

: Correspondent Node

First

Authentication

Fig. 2. Network architecture which combines AAA model under NEMO and PMIPv6

2.3 Fast Handoff in PMIPv6

As NEMO was extended from MIPv6, it inherited the disadvantage of long hand-
off delay. To solve this, many approaches [18,19,20] attempted to improve the
long handoff delay of MIPv6. These systems also still possess certain disadvan-
tages. For example, while Malki [18] proposes LLH (Low Latency Handoff) based
on the prior registration method, MNN may cause transmission failure due to
HER (HA Error Registration) problem under Ping-Pong movement. RFC 4068
[19] and RFC 4260 [20] propose FMIPv6 system in order to improve handoff per-
formances of MIPv6. FMIPv6 depends on AR (Access Router) for handoff but
there is no guarantee that MN is connected to AR every time. While supporting
fast handoff among domains if access between the expected MN and AR fails
then, access should be tried again. This can lead to long handoff latency. That

Security-Effective Fast Authentication Mechanism for Network Mobility 547

is why FMIPv6 uses simple 2 layer trigger. Also, MN requires protocol stack
to process signaling for MN in MIPv6. This causes technological difficulties for
supporting MIPv6 to limited MN, excessive resource, battery problem, etc. and
they are turning out to be a hindrance for commercialization of terminals which
supports MIPv6.

Therefore, NetLMN (Network-based Localized Mobility Management) WG of
IETF standardized PMIPv6 as the network-based mobility management proto-
col. This guarantees service continuity under movement without MN modifica-
tion by managing network for the MN’s IP mobility to solve MIPv6 problems
[21]. This implies that the MNmay not have any capability for providing mobility
service in PMIPv6. But for all the packets that are delivered to MN in PMIPv6
through LMA (Local Mobility Anchor), the packet bottleneck problem arises in
LMA. There is a problem that continuity is not guaranteed in movement among
PMIP6 domains as local movement was considered from the initial stage.

So, while IETF proposed various methods such as Giaretta [22] method which
supports mobility among the domains through hierarchical interface of MIPv6-
PMIPv6 in order to support global mobility in NetLMN WG. Na’s method [23]
supports global mobility by defining additional signaling message among PMIPv6
domains, etc. The method of supporting handoff among domains throughMIPv6-
PMIPv6 interface has a problem that is the MN should haveMIPv6 protocol stack
and Na method causes handoff latency due to additional signaling message.

3 Security-Effective Fast Authentication Mechanism

3.1 Symmetric Key-Based Local-Lighted Authentication
Mechanism

In this section, SK-L2AM (Symmetric Key-based Local-Lighted Authentication
Mechanism) based on AAA model indicated in Fig. 1 is explained. There are 3
kinds of procedures for operating SK-L2AM such as home registration, the first
registration in a domain and then, re-authentication registration. MR should
be registered in the HAAA server before accessing into an external network.
When MR first comes into an external network, SK-L2AM performs the first
authentication procedure. When MR moves within the same domain, SK-L2AM
executes fast re-authentication. And then, X-FPMIPv6 which is extended and
improved with fast handoff technique in order to support handoff latency re-
duction within domains and global mobility which is not supported by PMIPv6
by reducing signaling overload is also proposed. Lastly, SK-L2AM is integrated
into X-FPMIPv6 so that signaling overload is not increased. The notation in the
proposed scheme are explained in Table 1.

MR should be executed by the home registration procedure before connecting
MR into network. This registration can be made just by the security channel
or by the manual work done by people. Let’s assume there is security channel
between MR and AAA based on Diameter protocol in AAA model and Diameter
protocol which is explained above. The reason for security association between
MR and HAAA can be seen from Fig. 1. If there is no security association

548 I. Im et al.

Table 1. Notation

Symbol Description

χ Secret value which is shared between HAAA and LAAA

GK Group key of domain

MACi Unique MAC address which I, a mobile communication device

Ri I, an arbitrary value

EK(M) Coded message by using symmetric code (Encryption) K key

DK(M) Plain sentence is decoded in symmetric key K

H() Hash function of work direction open

‖ Character string combination

Xservice All accessing rights in HAAA server

Yservice Yservice ⊆ Xservice: A set of accessing rights of MR

Zservice Zservice ⊆ Yservice: Accessing right which LAAA allowed

SK Session Key

between MR and HAAA then, the system can execute Diffie-Hellman system to
establish security channel.

When MR enters into a new network, MR executes the first authentication
procedure. As MR often moves to other domains in a wireless communication
network, it should perform the re-authentication operation. Generally, the au-
thentication information of MR should be confirmed from the HAAA server. If
a domain is far from the home domain then, it will take a long time for au-
thentication. Therefore, an effective authentication mechanism is required. The
system proposed here provides a local authentication mechanism (Namely, it can
authenticate in local without including a remote server) and it can facilitate a
mutual authentication between MR and LAAA server.

When MR moves within the same domain from the existing MAG to another
MAG, it should receive confirmation again. As in Fig. 3, MAGs executes fast re-
authentication procedure. In the first authentication and fast re-authentication
procedures, SK-L2AM provides local authentication. In the first authentication
procedure, MR uses G key to generate in the home registration procedure to
achieve local authentication. LAAA server substitutes HAAA server to execute
the authentication procedure. That is why G key can be calculated from the
secret value χ which is shared by LAAA server and HAAA server. Similarly,
in the fast re-authentication procedure, MR uses K key which is achieved from
LAAA server in the first authentication procedure. As K key is generated be-
tween external network LAAA server and MAGs, MAG executes authentication
procedure instead of LAAA server to reduce authentication latency.

In key management, cost of symmetric cryptosystem proposed in this paper
is very low. Although it is based on symmetric cryptosystem, all entities need to
save a few of the parameters (i.e., in case of HAAA and LAAA, secret value χ and

Security-Effective Fast Authentication Mechanism for Network Mobility 549

MR

(4) EK(M4),MACMAG2,H(EK(M4)||MACMAG2)

(1) M3=R3||Yservice

MAG2

(2)EG(M3),MACMR,H(EG(M3)|| MACMR)

(3)
1.Check H(EK(M3)||MACMR)
2.Compute K=H(GK||MACMR)
3.Check Yservice

4.Obtain R3

5.Generate R4

6.M4= R3 ||R4||Zservice

7.Generate Session key
SK=H(R3||R4)

(5)
1.Check H(EK(M4)||MACMAG2)
2.Check R3, Zservice

3.Obtain R4

4.Generate Session key
SK=H(R3||R4)

(6)ESK(R4) (7) Check R4

ADV : MACLAAA1 |MACMAG2

LAAA1MAG1

Fig. 3. Re-authentication procedure in the same domain

access right of MR). This is the reason for the LAAA to calculate symmetric G
key to generated by H(χ ‖ MACMR) on time rather than finding the applicable
G symmetric key through key management in the first authentication procedure.

3.2 eXtension & Fast Proxy Mobile IPv6 (X-FPMIPv6)

This paper proposes X-FPMIPv6 which is extended and improved from PMIPv6.
This is done to enable fast handoff process by achieving neighboring L2 layer
and neighboring router information (Namely, including LMAs ‖ MAGs and net-
work prefix information). ND protocol is also applied in MAG to support global
mobility. Moreover, fast handoff is also applied at handoff among domains.

Fig. 4 shows the procedure of X-FPMIPv6 proposed when MR moves within
the same domain. Especially, X-FPMIPv6 added two L2 trigger (prior L2 trig-
ger, p-LT(pre-Link Trigger) and start L2 trigger, s-LT(start-Link Trigger) for
the execution of pre-handoff procedure in advance, and also to reduce the hand-
off latency and provide secure handoff. p-LT operation starts when the signal
strength received from MAG is lower than the threshold designated in advance
in MR. This is to extend the concept of ”DeuceScan” [24] and to avoid the per-
formance decrease due to Ping-Pong effect of X-FPMIPv6 when MR gets apart
from the previous MAG. The start of s-LT means that MR started the procedure
of handoff in advance. X-FPMIPv6 uses two triggers for interaction between L2
and L3. The two triggers of p-LT and s-LT provide more accurate information
to reduce the possibility of handoff failure.

To summarize this, X-FPMIPv6 supports network layer handoff procedure
and uses many triggers L2 to avoid HER problems. Further, as it completed its

550 I. Im et al.

(1) NB-ADV

p-LT

(2) FBU(LMA||MAG2)

s-LT

(6) HO_START(MAG2)

(7) Forwarding
Packets

(8) Link re-establishment

H
a
n
d
o
v
e
r
 P
r
o
c
e
d
u
r
e

Disconnect

(5) FBAck

(10) DL buffered packets

(3) HI

(9) RA(FNA)

P
r
e
-
h
a
n
d
o
v
e
r
 P
r
o
c
e
d
u
r
e

(4) HAck

LMA1 MAG2MAG1MR

Bidirectional Tunnel

(5) FBAck

(2) FBU(LMA||MAG2)

(5) FBAck

(6) HO_START(MAG2)

Fig. 4. Fast handoff procedure within X-FPMIPv6domain

movement search and pre-handoff procedure, the proposed X-FPMIPv6 reduces
handoff latency. After pre-handoff procedure, MR has many PCoAs simultane-
ously. So, even if MR makes a wrong handoff decision, it can be connected to
new MAG immediately if handoff arises.

PMIPv6 does not support global mobility. But this paper improved the advan-
tages of fast handoff method and realized handoff procedure among the domains
by the application of fast PMIPv6. 1∼5 stages are to execute pre-handoff pro-
cedures and 6∼10 stages are real handoff procedure.

To summarize fast handoff in global mobility, the pre-handoff is prepared
by detecting the neighboring MAGs and in case of moving MAGs in the same
domains; the fast handoff procedure (Fig. 4) is executed. But if not MAGs in the
same domain, X-FPMIPv6 reduces handoff latency even under global mobility
as it completes pre-handoff by delivering HI simultaneously to candidate MAGs
of other domains and LMAs to which they belong.

3.3 Integrated Operation of SK-L2AM and X-FPMIPv6
(AX-FPMIPv6)

As AX-FPMIPv6 aims at the reduction of handoff latency in domain changing
regardless of local or global mobility by MR, it should integrate with proper
authentication systems. If the authentication procedure is executed in home
domain then, the design of AX-FPMIPv6 should be discarded. In fact, SK-L2AM
operates along with X-FPMIPv6 while supporting local authentication.

In this section, AX-FPMIPv6 reinforces security in local and global mobility
and it reduces handoff latency with light/fast SK-L2AM and signaling overload
as it describes, how fast the authentication procedure is performed under mobile

Security-Effective Fast Authentication Mechanism for Network Mobility 551

MR

nMAG

Movement

1
:
N
B
-A
D
V

2
: F
B
U
 +
 A
U
T
H

LMA/LAAA

4: AUTH_PROC

6
:
 F
B
A
c
k
+

A
U
T
H
_
R
E
P

p-LT

7: Mutual

AUTH_PROC

d-LT

8
:
H
O
_
S
T
A
R
T

pMAG

Pre-Handover Procedure

Handover Procedure

Fig. 5. AX-FPMIPv6 sequence diagram within the same domain

environment. This supports fast re-authentication procedure where MR supports
global mobility in the same domain while X-FPMIPv6 operates in integration.
Fig. 5 comprises of pre-handoff and real handoff procedure which represents the
integration of handoff and authentication operation in the same domain.

When MR sends FBU message to pMAG(previous MAG) of MR, authentica-
tion message (AUTH) is transmitted by Piggybacks method and MACMR and
M(R3 ‖ Yservice ‖ H(R3 ‖ MACMR)) which is expressed in Fig. 3 are included.
And if MR is proved to be effective at this time then, nMAG(newMAG) transmits
authentication reply message (AUTH REP) by Piggybacks method as a reply of
HAck/FBAck for the MR. Moreover, MACMAG and EK(R3 ‖ R4 ‖ Zservice ‖
H(R4 ‖ MACMAG2)) are included in the message, reduction of signaling overload
and secure/seamless communication is possible as SK-L2AM and X-FPMIPv6
are operating in integration. During movement among domains, AX-FPMIPv6
where signaling and authentication message (AUTH) is integrated is as shown
in Fig. 5 and it operates using Piggybacks method. But if it is not MAG which
is currently accessed but nMAG of a new domain then, HI and AUTH are deliv-
ered to the nMAG and nLAAA(new LAAA) respectively. As for the fast reply for
them, pLMA(previous LMA) and pMAG transmit FBAck and (AUTH REP) to
pLMA. This reduces handoff latency and signaling overload and provides safe and
secure/seamless communication by the operation of SK-L2AM and X-FPMIPv6
with the integration of authentication and signaling even under handoff
among domains, even in movement among domains like movement within the
same domain.

4 Security Analysis

Before explaining security analysis, several considerations are added as follow-
ings. (1) Although it was defined that the group key GK is safely shared between

552 I. Im et al.

LAAA and MAGs in advance, if an attacker has enough time and high-speed
computer then, the key which is used for a long cycle can be under brute force
attack for a long time. Therefore, the length of key is assumed to be long enough
so that the system can endure strongly. Further, the system should change key
timely to reduce the probability of hacking due to brute force attacks. (2) Secu-
rity characteristics of SK-L2AM are based on one-way hash function (for example
SHA-512 [25]) for collision avoidance. If χ value is given for one-way has func-
tion H() then, H(χ) is easy to calculate. But, if H(χ) is not given then, it is very
difficult or it incurs high calculation costs to calculate this. Besides, SK-L2AM
satisfies security characteristics as follows.

1. Replay Attack Resistance: It is difficult for the attackers to guess the value
of the random number as the random numbers are newly created in each
authentication procedure. As the random numbers are included in the au-
thentication information (Mn) in order to prevent replay attack resistance,
the proposed SK-L2AM has resistance in replay attacks.

2. Server Spoofing Attack Resistance: MR authenticates the authentication
server and vice versa in SK-L2AM. This mutual authentication is ineffec-
tive spoofing attacks completely.

3. There is no time synchronization: To cope with replay attack, several authen-
tication systems use time stamp mechanisms. But, time stamp mechanism
may have several disadvantages such as other time zones and long transmis-
sion latency. But this system is the random number based authentication
system. Therefore, this system does not have time synchronization problem.

4. Stolen-verified Attack Resistance: In SK-L2AM, AAA server does not have
to save any verified information. Even if any attacker infiltrates in to the
database of AAA server, he may not acquire any user authentication infor-
mation. Therefore, SK-L2AM is strong to attacks for Stolen-verified Attack.

5. Message Modification Attack Resistance: To create message digest, one-way
hash function is used safely so that information is not modified. If any at-
tacker transmits packets which are modified (malignant) to MR or the au-
thentication server then, the packets can be easily checked as the hash value
is checked.

6. Local authentication: Local authentication has 3 advantages. Local authenti-
cation reduces satisfies authentication time. It also reduces satisfies network
burden. And it provides fault tolerance mechanism. In other words, even if
AAA server is in hacking, MR still carries out authentication procedure in
domains.

7. Generation of session key: To provide safe communication in the first and
fast re-authentication procedures of SK-L2AM, the session key which uses
the random numbers is generated. In AX-FPMIPv6, the key is created in
pre-handoff procedure. To complete the procedure, the MR and MAG can
mutually communicate safely. Specifically, MR and MAG can use the session
key to encrypt messages in order to prevent overhearing of their contents.

8. Known-plaintext Attack Resistance: Known-plaintext attack resistance is a
cryptanalytic attack in which the attacker obtains both the plaintext and its

Security-Effective Fast Authentication Mechanism for Network Mobility 553

corresponding cipher text, and then the attacker tries to discover secret infor-
mation. Although MACMR is transmitted in this system, it does not suffer
from known-plaintext attack. The reason for not being able to attack using
plaintext is because the attacker can obtain only MACMR but the attacker
does not know the applicable secret key G (namely G=H(x ‖ MACMR))
and secret value χ. Therefore, the attacker will know it is difficult to eas-
ily execute plaintext attack. In fast re-authentication procedure, we do not
suffer known-plaintext attack owing to the same reason (the attacker can
acquire only MACMR but does not know the applicable secret key K (i.e.,
K=H(x ‖ MACMR)) and group key GK. Fast re-authentication procedure
can also still resist in attacks. Because the attacker does not the applicable
secret key K (i.e., K=H(GK ‖ MACMR)) and the group key GK.

5 Performance Analysis

5.1 Evaluation Criteria

The proposed mechanisms based on the following performances evaluation cri-
teria would be analyzed in three points of views as follows.

– Calculation Cost (CC): Complexity of the mobile node.
– Authentication Latency (AL): Latency between an authentication request

sent by the MR and receiving of an applicable authentication reply.
– Handoff Latency (HL): Time when MR requires changing of the MR con-

nection. The total handoff latency is the sum of L2 handoff latency, authen-
tication latency and handoff latency in a network layer (L3).

A good authentication mechanism should incur low cost of calculation and pro-
vide low authentication latency. Moreover, low handoff is reinforced in the fast
handoff and the integrated design of authentication and fast handoff should pre-
vent overlapped signaling cost. Through analysis models and numerical results,
our proposed mechanism is to show that it is a better solution for security and
latency problems compared to the existing systems.

5.2 Parameter

Fig. 6 shows the network phases and numerical analysis model. Although sig-
naling messages have different sizes, each signal message is assumed to have the
same transmission latency and calculation costs. In the evaluation, notations as
followings are used.

– DA−B: Average delivery latency between node A and node B and it is pre-
sumed that DA−B = DB−A.

– DRA: Time required to transmit the fast neighboring advertisement message.
– m: hop count between home and domains.
– DPROC(A): Average process latency of procedure A.

554 I. Im et al.

a

b
• • •

m

a

b

a

c c

d

c

b

a

c

d

Fig. 6. Network phases and numerical models for performance evaluation

– Handoff latency can be expressed as the sum of L2 detection latency (DL2),
move detection latency (DMD), overlapping address detection latency
(DDAD), authentication latency (DAUTH) and location registration latency
(DBU). MAG which supports mobility so that router advertisement (RA)
not request in [2] is sent more often suggests it should be established with
more less MinRtrAdvInterval (MinInt) and MaxRtrAdvInterval (MaxInt)
values. To simplify more, in the ground [26], it is assumed that it is half
of the average value for RA message, which did not request the DMD value
(i.e., (MinInt+MaxInt)/2), and the quarter of the average RA message value,
which did not request the DMD value in HMIPv6 (i.e., (MinInt+MaxInt)/4).

– SA: The number of signaling messages which node A sent.

Table 2 is showing that values of parameters used in numerical analysis based
on [26] and default latency value of DAD operation is 1000ms.

Table 2. Parameters used in the numerical analysis

Item DL2 DDAD a b c d MinInt MaxInt DPROC(AUTH)

Time(ms) 50 1000 10 10 10 100 30 7 10

5.3 Analysis Results

Calculation Cost (CC) In this section, calculations costs of SK-L2AM and
LR-AKE systems are compared. The analysis of calculation costs analysis, no-
tations as followings are used. ”-” means there is no calculation costs. n is the
income of MRs which AAA server handles. Ch represents the cost at which one-
way hash function is executed. Csym represents cost for symmetric encryption or
decryption. Casym represents cost for asymmetric encryption or decryption. As
LR-AKE does not support local authentication, the authentication procedure is

Security-Effective Fast Authentication Mechanism for Network Mobility 555

Table 3. Calculation Costs of SK-L2AM System

Item MR HAAA LAAA MAG

Home regist. - nCh - -

proc.

First auth. Cram - Cram+ -

proc. 3Csym + 5Ch

Re-auth. Cram+ - - Cram+

proc. 3Csym + 3Ch 3Csym + 4Ch

performed every time in HAAA. Therefore, under LR-AKE system the bottle-
neck problem can arise in HAAA. Table 3 represents the calculation complexity
of each SK-L2AM.

Authentication Latency (AL) SK-L2AM performances is evaluated by nu-
merical analysis. It is compared with LMAM which is combined with the AAA
system, the simple NEMO protocol, LR-AKE system and the system of Shi et al.
Also. authentication latency is considered in three mobility scenarios. (a) When
MR enters into a domain first (b) MR moves within the same domain (c) Last,
MR moves among the domains. The numerical analysis of authentication latency
is as follows. Table 4 is the result of the numerical analysis for authentication
latency.

Table 4. Comparision of Authentication Latency

Item Domain initially Same domain Another domain

Proposed 2a+ 2c+ 2d (MinInt +MaxInt)/2 (MinInt+MaxInt)/2

LMAM 2a+ 2c+ 2d 2d 2(2a+ 2c+ 2d)

NEMO+AAA 4a+ 2mb+ 2c+ 2d 4a+ 2mb+ 2c+ 2d 2(4a + 2mb+ 2c+ 2d)

LR-AKE 10a + 9mb + 5c+ 5d 10a+ 9mb+ 5c+ 5d 2(10a + 9mb+ 5c+ 5d)

Shi et al. 4a+ 2mb+ 2c+ 2d 2a+ 2c+ 2d 2(4a + 2mb+ 2c+ 2d)

When MR moves into another domain, the authentication latency is defined
in Fig. 7 as follows. SK-L2AM show the way or means to achieve the least
authentication latency out of the other compared approaches. This is the reason
for using local authentication instead of home authentication. While the local
authentication system shows similar results with the LMAM system, on the
contrary LR-AKE system consumes long time on negotiation between HAAA
and LAAA server. If the hop count m is large then the authentication latency
would get more longer. When MR entered into a domain first, the system of Shi
et al. should also send authentication information to HAAA server.

556 I. Im et al.

0 2 4 6 8 10 12 14 16 18 20

0

1000

2000

3000

4000

5000

A
u
th

e
n
ti
c
a
ti
o
n
 L

a
te

n
c
y
(m

s
)

Distance between home domain and foreign domain(Hops)

 Proposed

 LMAM

 simple NEMO

 LR-AKE

 Shi et al

Fig. 7. Authentication latency when moving into another domain

Handoff Latency (HL) After simulating AX-FPMIPv6 performances, it com-
pares with LE-HMIPv6 system, Simple NEMO system, LLH system and HMIPv6
system. Result was acquired as the average of 10 times in this simulation.
HMIPv6 is assumed to support local registration. Total handoff latency is the
sum of L2 handoff latency, authentication latency and L3 handoff latency. As
SK-L2AM provides local authentication without sending information to HAAA
server of MR, it operates effectively in mobility management within the local do-
mains. Additionally, AX-FPMIPv6 uses Piggybacks method in order to reduce
signaling overload and it also uses several L2 trigger to support prior handoff pro-
cedure. Therefore, handoff procedure among domains can be executed rapidly.
Fig. 8 shows average handoff latency within the same domain.

0 2 4 6 8 10 12 14 16 18 20

0

500

1000

1500

2000

2500

H
a
n
d
o
ff

L
a
te
n
c
y
(m
s
)

Distance between home domain and foreign domain(Hops)

 Proposed

 LE-HPMIPv6

 simple NEMO

 LLH

 HMIPv6

Fig. 8. Distance between home domain and foreign domain vs Average handoff latency
within the same domain

Security-Effective Fast Authentication Mechanism for Network Mobility 557

Fig. 8 shows the results of handoff latency among domains at different dis-
tances (i.e., hop count) between home and foreign domains. As LE-HPMIPv6
supports mobility management and local registration systems but the applica-
tion of HMIPv6 protocol improved the handoff from MIPv6. Handoff latency
reduces but it causes the longest handoff latency for movement detection and
DAD latency also it, does not support handoff among domains. A simple NEMO
protocol inherited the disadvantage of long handoff latency in MIPv6 and it does
not support local authentication. Although LLH uses prior registration method
to reduce handoff latency, the authentication procedure should be executed in
the HAAA server and due to this authentication latency arises. As our pro-
posed system completes network-based architecture, local-based authentication,
authentication and movement detection procedure in the pre-handoff stage, AX-
FPMIPv6 mechanism have the lowest handoff latency. Further, to avoid Ping-
Pong effect and the occurrence of HER problem, this paper uses the concept of
”DeuceScan” and L2 triggers start the pre-handoff procedure in time.

6 Conclusions

As the local authentication mechanism called as SK-L2AM is proposed to sup-
port network mobility in this paper. Calculation cost related with code is con-
siderably reduced for this use in the symmetric encryption and hash function.
In order to also reduce the authentication latency, the authentication procedure
can be completed without returning to HAAA or LAAA server. And PMIPv6
is improved to support local handoff and global handoff in a wireless network.
X-FPMIPv6 uses many triggers and many CoAs to increase handoff procedure
speed and avoid HER problem.

Lastly, as SK-L2AM supports local authentication, it does not increase the
signaling overload. So, it is integrated in AX-FPMIPv6. According to the re-
sults of the performances analysis, it is shown to be more excellent than all the
exsting systems in calculation costs, authentication latency, handoff latency and
signaling cost. Related to the security problem, SK-L2AM is very effective in
local authentication, replay attack resistance, stolen verifier attack resistance,
session key creation, mutual authentication to prevent server spoofing attack,
known plaintext attack resistance and message alteration attack resistance.

Acknowledgments. This research was supported by Next-Generation Infor-
mation Computing Development Program (No.2011-0020523) and Basic Science
Research Program (2011-0027030) through the National Research Foundation
of Korea(NRF) funded by the Ministry of Education, Science and Technology.
Corresponding author: Jongpil Jeong and Jae-Young Choi.

References

1. Devarapalli, V., Wakikawa, R., Petrescu, A., Thubert, P.: Network Mobility
(NEMO) Basic Support Protocol. IETF, RFC 3963 (January 2005)

2. Johnson, D., Perkins, C., Arkko, J.: Mobility support in IPv6. IETF, RFC 3775
(June 2004)

558 I. Im et al.

3. Lamport, L.: Password authentication with insecure communication. Communica-
tions of the ACM 24(11), 770–772 (1981)

4. Narten, T., Nordmark, E., Simpson, W.: Neighbor discovery for IP version 6 (IPv6).
RFC 2461 (December 1998)

5. Park, J.H., Jin, Q.: Effective session key distribution for secure fast handover in
mobile networks. Telecommunication Systems 44(1-2), 97–107 (2009)

6. Mishra, A., Shin, M.H., Petroni, N.L., Clancy, J.T., Arbauch, W.A.: Proactive key
distribution using neighbor graphs. IEEE Wireless Communications 11(1), 26–36
(2004)

7. de Laat, C., Gross, G., Gommans, L., Vollbrecht, J., Spence, D.: GenericAAA
architecture. IETF RFC 2903 (August 2000)

8. Glass, S., Hiller, T., Jacobs, S., Perkins, C.: Mobile IP authentication, authoriza-
tion, and accounting requirements. IETF RFC 2977 (October 2000)

9. Perkins, C.E.: Mobile IP joins forces with AAA. IEEE RFC 2976 (August 2000)
10. Calhoun, P., Johansson, T., Perkins, C., Hiller, T.: Diameter Mobile IPv4 applica-

tion. IEEE RFC4004 (August 2005)
11. Fathi, H., Shin, S., Kobara, K., Chakraborty, S., Imai, H., Prasad, R.: LRAKE-

based AAA for network mobility (NEMO) over wireless links. IEEE Journal on
Selected Areas in Communications (JSAC) 24(9), 1725–1737 (2006)

12. Hideki, I., Seonghan, S., Kanukuni, K.: Introduction to Leakage-Resilient Authen-
ticated Key Exchanged Protocols and Their Applications. In: KIISC (December
2008)

13. Wang, Y., Luo, W., Shen, C.: Analysis on Imai-Shin’s LR-AKE Protocol for Wire-
less Network Security. In: Bond, P. (ed.) Communications and Networking in China.
CCIS, vol. 26, pp. 84–89. Springer, Heidelberg (2009)

14. Chubng, M.-C., Lee, J.-F.: A lightweight mutual authentication mechanism for
network mobility in IEEE 802.16e wireless networks. Computer Networks (June
2011)

15. Li, D., Sampalli, S.: An efficient contributory group rekeying scheme based on hash
functions for MANETs. In: IFIP International Conference on Network and Parallel
Computing Workshops, pp. 191–198 (September 2007)

16. Ng, W.H.D., Sun, Z., Cruickshank, H.: Group key management with network mo-
bility. In: 13th IEEE International Conference on Networks (ICON), vol. 2, pp.
716–721 (November 2005)

17. Kim, Y., Perrig, A., Tfsudik, G.: Group key agreement efficient in communication.
IEEE Transactions on Computers 53(7), 905–921 (2004)

18. El Malki, K. (ed.): Low-Latency Handoffs in Mobile IPv4. IETF RFC 4881 (June
2007)

19. Koodli, R. (ed.): Fast Handoffs for Mobile IPv6. IETF, RFC 4068(June 2005)
20. McCann, P.: Mobile IPv6 fast handoffs for 802.11 Networks. IETF RFC 4260

(November 2005)
21. Gundaveli, S., Leung, K., Devarapali, V., Chowdhury, K., Patil, B.: Proxy Mobile

IPv6. IETF RFC 5213 (August 2008)
22. Lee, K.-H., Lee, H.-W., Ryu, W., Han, Y.-H.: A scalable network-based mobility

management framework in heterogeneous IP-based networks. Telecommunication
Systems (June 2011)

Security-Effective Fast Authentication Mechanism for Network Mobility 559

23. Na, J.-H., Park, S., Moon, J.-M., Lee, S., Lee, E., Kim, S.-H.: Roaming Mechanism
between PMIPv6 Domain (July 2008),
draft-park-netmm-pmipv6-roaming-o1.txt

24. Chen, Y.-S., Chuang, M.-C., Chen, C.-K.: DeuceScan:deuce-based fast handoff
scheme in IEEE 802.11 wireless networks. In: IEEE Transaction on Vehicular Tech-
nology Conference, vol. 57(2), pp. 1126–1141 (September 2008)

25. NIST, U.S. Department of Commerce. Secure Hash Standard. U.S.Federal Infor-
mation Processing Standard (FIPS) (August 2002)

26. Thomson, S., Narten, T.: IPv6 stateless address autoconfiguration. IETF RFC
2462 (December 1998)

draft-park-netmm-pmipv6-roaming-o1.txt

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 560–575, 2012.
© Springer-Verlag Berlin Heidelberg 2012

An Architecture for Service Integration
and Unified Communication in Mobile Computing

Ricardo Aparecido Perez de Almeida and Hélio Crestana Guardia

Department of Computer Science,
Federal University of São Carlos, Brazil

{ricardoalmeida,helio}@dc.ufscar.br

Abstract. Mobile communication devices often present different wireless
network interfaces which allow users to access networked services from
anywhere and at any time. Existing services, however, commonly require
specific interfaces and infrastructure to operate, and often fail to convey
different data flows to a device. Little context information is used in adapting
contents to differing devices. This work presents a new context aware
architecture for using the Bluetooth interface as a unifying communication
channel with mobile devices. Content adaptation is provided as well as a
mechanism for offloading services to the support infrastructure. The obtained
results show the developed communication model is viable and effective.

1 Introduction

The advent of mobile computing has caused a revolution in personal computing, and
in how users access their devices and data at any time and place. Different wireless
technologies, such as GSM, UMTS, Wi-Fi and Bluetooth, allow data exchanges and
the access to the Internet from mobile devices. The increasing adoption of mobile
phones, smartphones, and tablets however is in a significant extent due to the new
services which are made available to their users. Besides providing access to web
pages, services range from the direct communication among users to specific enter-
tainment, education, and business applications. All add value to the devices and make
them almost indispensables to many of our daily activities.

News and e-mail reading, mobile learning, u-commerce, mobile marketing, and
social networking interactions are examples of networked services, all of which
commonly involve the transmission of multimedia contents. Framing such contents to
each possible receiving device and adapting the transmissions to changing network
conditions or to the choice of technology available is usually performed on a per-
service basis. Several services just fail in attending these requirements and subject the
users to non-ideal transmissions and poor media presentations. From the user's
perspective, integrating the access to several services into a single interface, with
reduced human interactions for service activation, is desirable. Having appropriate
context information used for the adaptation of incoming contents to the characteristics
of a device and to the user's preferences would also be convenient.

 An Architecture for Service Integration and Unified Communication 561

Considering the significant reduced processing capacity and mainly the power con-
straints of mobile devices, the possibility of offloading applications and activities to
external devices is also relevant.

This work presents a context aware communication architecture aimed at providing
a single service point to mobile devices using wireless interfaces, mainly the
Bluetooth adapter. User preferences and different context information are used in the
adaptation of media information directed at the mobile device. A service offloading
mechanism based on web services is provided to allow users to access different types
of services selected by them in a personal profile. Analysis about content delivery and
encounters with mobile devices are also conducted to show the feasibility of the
proposed architecture.

The remaining of this work is organized as follows: section 2 presents relevant
related work; section 3 presents a quick overview about Bluetooth technology and
some results related to interactions with mobile devices with Bluetooth enabled;
section 4 presents a deep view of the developed communication architecture, focusing
on its characteristics and operation. In section 5 we show the details of a reference
implementation of the architecture and some obtained results, and, finally, section 6
brings the conclusions.

2 Related Work

Besides providing a basic mechanism for the interconnection of devices and
peripherals, the Bluetooth layered architecture allows different protocols to be used
for general purpose communications. TCP/IP and the RFCOMM protocol stacks, for
instance, allow different types of services to be provided over Bluetooth.

The use of a Bluetooth channel from mobile devices in an e-commerce scenario
was explored by the Model for Ubiquitous Commerce Support – MUCS [1]. Using
this system, buyers interests were automatically matched to the offers made available
by the sellers in the same shopping region. Communications occurred using a wireless
interface available to identify the participant devices which run the same specific
application. MUCS was focused on its single purpose and did not consider security
and content adaptation aspects in the data transmissions.

The Bluespots [2] project intends to act as a transmission channel placed into buses
to create a delay tolerant network infrastructure. The idea is to provide passengers
with access to specific services, such as e-mail, Web navigation, and file transfer from
their mobile devices using Wi-Fi and Bluetooth interfaces. Each Bluespot includes a
Wi-Fi access point and a Bluetooth device acting as the master of a piconet, which
forwards user data to and from a repository called Data Store. Each repository acts as
an intermediary cache holding web pages, news and multimedia contents obtained
from eventual interactions with fixed Wi-Fi spots present at the bus stations. E-mails
received from the users may also be forwarded through the Wi-Fi spots for latter
deliver to the Internet. No notice could be found on the effective implementation of
the proposed approach or on the details related to the envisioned data forwarding
schemes. Other aspects related to security and content adaptation could not be
determined.

562 R.A.P. Almeida and H.C. Guardia

iGrocer [3] integrates the use of user profiles and smart-phones for selecting
purchase items in a store. Information provided by the user is kept in a profile
regarding a list of products of interest and nutrition restrictions. A buying list is
defined by the user from what is available in a particular store and which satisfy the
restrictions previously defined. Once a list is concluded, a route map to pick up the
selected items can be generated and the payment can be automated using a credit card.
Help can also be provided to the user in finding the selected products at the store.
Security concerns are taken into account in the communications.

The P-Mall [4] project presents a context-aware communication architecture for
pervasive commerce. Users running a specific application on their mobile
communication devices while walking in a specific shopping area can receive
information about products of interest and suggestions about nearby shops offering
related deals. Detailed information about a product, identified by its RFID tag, can
also be fetched automatically from the Internet and presented in the user's device.

OOKL [5] allows mobile devices to be used to present or capture multimedia
information about nearby places and objects of interest. A web site is used to
centralize the information available. Besides receiving complementary information
users are encouraged to do further research and to contribute contents to the database.
The efficiency of this approach is significant [6], but there are restricting factors
related to the use of 3G communication systems. Content adaptation is sought by
creating versions of the program to each supported device.

Despite the existence of several mechanisms to provide services to mobile devices,
most of the implementations presented are focused only on specific purposes, do not
consider content adaptation and context-aware aspects, or are dependent on an always
on communication system, such as the 3G infrastructure. The communication
architecture presented here was developed to address these aspects.

3 Bluetooth

The Bluetooth technology [7] was created to provide wireless communication
between mobile and stationary devices. Operating over the ISM (Industrial, Scientific
and Medical) radio frequency band, this technology is available at a range of different
types of mobile devices, such as notebooks, netbooks, tablets, MP3 players, PDAs,
cell phones, smartphones, etc. Different versions of Bluetooth technology have been
developed since its creation (1.2, 2.0, 2.1, 3.0 and 4.0) and the standard transmission
rates have increased from 1 Mbps to 3 Mbps, in versions 2.0 and 2.1, and up to 24
Mbps in versions 3.0 and 4.0. Most of the mobile devices with Bluetooth technology
available nowadays support the 2.0 or 2.1 versions.

Considering just cell phones and smartphones, it is estimated that there will be
about 1 billion devices with Bluetooth by 2014 [8]. The widespread presence of this
technology in mobile devices makes it a promising communication channel. The
modular architecture of its implementation also allows an unlimited number of
communication services to operate on top of it. However, using Bluetooth to provide

 An Architecture for Service Integration and Unified Communication 563

services to mobile devices depends on understanding how the data transmission
occurs and how users interact with other devices using this technology.

Using the discovery service of the Bluetooth protocol, we have investigated several
aspects regarding the adoption of this technology and user reachability for short range
transmission. The results refer to data collected during a period of 10 months in a
Computer Science department. Although there was a visible computer screen
displaying information about the project, some of the users may not have been aware
of the data collection experiment. No data from the experiments are made public or
provided to other users. The performed analysis is related to the bulk data.

The obtained data provides an approximate idea on the adoption of different types
of devices, and on how frequently users are seen using their devices in a discoverable
mode. The referred university department has about 600 fixed students, considering
both undergrads, and graduates. A total of 644 different devices were seen by the
experiment, generating about 40.000 encounter records.

The results are presented in Figures 1, 2 and 3, and provide an idea of how wide-
spread the use of such devices is nowadays. Although not shown here, it was possible
to identify an increase in the adoption of devices which support a richer set of
functionalities, mostly smarphones.

Fig. 1. Number of different cell phones and smartphones detected and number of devices
detected by brand

Figure 1 shows that, based on the major and minor numbers that are transmitted
by the Bluetooth adapter during an Inquiry operation, approximately 74% of the
detected devices were identified as cell phones and 26% were smartphones. Using
part of the Bluetooth MAC Address number of a detected device, in most cases it was
also possible to identify the corresponding manufacturer.

564 R.A.P. Almeida and H.C. Guardia

Fig. 2. Number of encounters by day of the week

Figure 2 shows that most of the encounters occurred on Wednesdays, Thursdays
and Fridays, which are the days that concentrate most of the academic activities in the
department. It is also possible to see on Figure 3 that most of the encounters occur
during the time corresponding to the interval between classes, when the students are
mostly nearby the monitoring point.

Fig. 3. Encounter dispersion along the day

Figure 4 presents relevant information about the duration of the encounters, which
indicates the time a user’s device is visible by the monitoring point after it is identi-
fied. The monitoring point was situated in the hallway of the Department, which is a
place most people just pass by. Using a total of 32.609 complete records from the
dataset encounters were seen to vary from just a few seconds to up to 45 seconds.

 An Architecture for Service Integration and Unified Communication 565

Fig. 4. Time encounter duration

From the initial data set it is possible to note that the Bluetooth technology is in
frequent use by a significant number of people, even though the data in this case may
be biased to age and to a natural interest for technology within this group.

4 Architecture Description

The Bluetooth layered architecture includes protocols and services and different de-
vices provide different functionalities on top of it. The plethora of services which run
on Bluetooth varies enormously from the simplest mobile phones to the current
smartphones, and this is a concern if one wishes to provide data directly to the devic-
es. Content adaptation to the varying hardware and Operating System platforms is
also a concern, especially in the case of formatting different media files to enable
them to be displayed according to the display resolution of a device.

Given the varying, usually reduced, processing capacity in the set of currently dep-
loyed mobile devices, service offloading is particularly important. This means the
ability to transfer the execution of different applications from the mobile devices to
servers present in the fixed infrastructure which just sends the results to the devices. A
unified mechanism should be provided for this task. In the same way, the existence of
a uniform mechanism for forwarding different data contents to the devices would be
valuable.

In this sense, this work presents a communication architecture, called BlueYou,
which was designed to provide a comprehensive bidirectional channel by which ap-
plications running in mobile devices can interact with an external service infrastruc-
ture. The developed architecture also allows different incoming data flows to a device
to be properly adapted according to the characteristics of this device or to a user's
preferences. The communication services envisioned that can benefit from the devel-
oped architecture are parts of a distributed environment with communications occur-
ring via wireless transmissions interfaces.

566 R.A.P. Almeida and H.C. Guardia

The main elements that compose the architecture are presented in Figure 5.

Fig. 5. Main elements of the BlueYou architecture

Each user is associated with a mobile device, which contains a unique Bluetooth
MAC address. Information about the users, their corresponding devices, and their
preferences are kept in a database of user profiles. This database includes information
about the users (restricted to contact information), and about communication services
to be performed by the BueYou architecture to each user.

The management of a user's profile information can be performed either using a
standard web page or by a desktop application. A web service interface is also pro-
vided for direct calls to the profile keeper node. Using the predefined web page a user
can select from a list of registered (known) services those that will be delivered to her
mobile device. New processing and communication services can be registered in the
application service using a standardized communication interface.

A PIN number can be informed by the user that will allow future communications
from the infrastructure with the corresponding device to use the OBEX protocol and
the Object Push [9] profile for the authentication of the communication entities.

A Mobile Application Server (MAS), as defined in [10], is also present in the pro-
posed architecture. It is responsible for identifying the users nearby the access point,
for defining the services that should be provided to those users and for adapting any

 An Architecture for Service Integration and Unified Communication 567

contents being transmitted, according to the context information available, prior to
their effective delivery from a Bluetooth access point near a device.

The MAS is also responsible for intermediating the communications with any ser-
vice providers that should be contacted for the services selected by a user in her pro-
file. Web services are used for the interactions between the MAS and the original
service providers, while TLS (Transport Layer Security) is used between the BlueYou
components. A standardized interface is used to provide access to any service pro-
vided by the architecture. Other services can be easily added using the same interface,
which allows the transmission of many content types (e.g. audio, video, image or text)
to the mobile devices.

Bluetooth access points are used for the effective delivery of data to a user's de-
vice. Each access point must then be connected to the Internet or have some transmis-
sion infrastructure that allows the interaction with the MAS using web services.

Bluetooth Inquires are performed constantly at every access point. Every time a
device is identified via a Bluetooth Inquiry procedure, the corresponding access point
will contact the MAS to determine if the newly found device is associated with a reg-
istered user. If a current system user is identified, any pending information associated
with the selected services is forwarded to her. If information about the device is not
found by the MAS, this means a new user is met. Data about the encounter just oc-
curred is kept in the system log and is not subject to disclosure.

The access points may be configured to approach new users just met. Upon request
from the MAS, a new user is approached by sending an image file to her device using
the OBEX protocol. The transmitted file contains a unique code associated to the
device's Bluetooth MAC address. If the user accepts to receive the object being sent,
she can later use the information contained in the file to register as a new BlueYou
user and configure a profile for the corresponding device. The association of informa-
tion about a registered device and the corresponding service profile and the encoun-
ters occurred is obtained from matching the MAC addresses.

Registered users are eligible to receive the contents associated to the selected ser-
vices every time they approach a BlueYou access point with their devices configured
with the Bluetooth interface active and in the discoverable mode. Transmissions from
the access points to the mobile devices can occur with no need to run specific applica-
tion codes on the devices. This is achieved by using the OBEX protocol and the Ob-
ject Push profile, commonly active in most devices with Bluetooth interfaces. On the
other hand, extended transmission functionalities are provided if a specific program is
running on the mobile device. The RFCOMM [11] protocol is used in this case and
allows a mobile device to initiate a communication with a BlueYou access point. An
infinite number of applications can be implemented to benefit from the communica-
tion capability provided by this protocol.

Interactions may also occur as a result from a mobile device’s application initia-
tive. In that case, data generated at the device can be forwarded to a BlueYou access
point. The required communications initiate with an authentication phase during
which the user must provide the appropriate PIN number previously registered in her
profile. Once authenticated, data transmissions may occur from the device to the
access point using encryption for security reasons. Using the RFCOMM protocol it is

568 R.A.P. Almeida and H.C. Guardia

also possible to automate the transmissions for data forwarding within a BlueYou
enabled application with no need for user intervention.

When sending information to a device, context information, as well as data from
the user's device profile, are taken into account for content adaptation. This includes
information about the size of the screen, the file types supported, network adapters
present in the device, transmission rates supported, etc. Some information about the
user's preferences is also considered in the content adaptation, such as the choice for
graphical or textual contents, default font size, etc. Information about the user's
current location and time of day are also considered in determining which services
should be made available. Different information and forms of content adaptation can
also easily be introduced in the system.

5 Implementation

A reference JAVA implementation of the BlueYou architecture was created for vali-
dation purposes and was installed at the Computer Science Department of the Federal
University of São Carlos. The MAS role in BlueYou is implemented as a set of web
services, which are used to receive update information sent from the fixed active
access points about the registered devices/users currently seen. It is the role of the
MAS service to also forward any pending data aimed at these users to the correspond-
ing access points.

Services in the BlueYou architecture are implemented as web services and are ac-
cessed using the REST (REpresentational State Transfer) architectural style. Requests
are sent using URLs and HTTP basic operations (GET, POST, PUT and DELETE).
Responses are encapsulated in standardized JSON (JavaScript Object Notation) doc-
uments (one for services provided over OBEX and another for services provided over
RFCOMM). An authentication mechanism is used for every request to the MAS, in
order to avoid not authorized accesses.

Users can create and maintain a BlueYou profile using a web browser to access the
JSF (JavarServer Faces) web page developed for this project, as shown in Figure 6.
Personal information requested is kept at a minimum, and corresponds basically to a
valid contact e-mail. Other information currently kept in a profile includes details
about the user's mobile device, only used for content adaptation purposes.

A login name must be defined along an associated password. The access code re-
ceived by the device in a previous approach from any BlueYou access point must also
be provided. All the communication with the web page occurs using the TLS proto-
col.

All contact information about a mobile device is kept by the system and are used
solely for profile studies intended to improve future interactions with the users. Any
investigation concerning the gathered data shall be done in an obfuscated data set. As
stated in the BlueYou Privacy Policy, a user can request that her current profile and
all associated information kept be removed at any time.

 An Architecture for Service Integration and Unified Communication 569

Fig. 6. Current BlueYou user profile web page

Two JSE applications are run at a BlueYou access point. The first is used to
forward the data associated with the user's selected services to their devices when they
are near this access point. Once the service data are obtained from the MAS, they are
forwarded to the devices using the OBEX protocol.

The second application is responsible for mediating the data transmissions initiated
at the user devices running a specific JME application. Data transmissions in this case
occur using the RFCOMM protocol.

Other applications can be developed to make use of the BlueYou API, which is al-
so used in the implementation of the applications run at the access points. Using this
API, a single logical interface, accessible via send() and receive() methods, provides
transmissions and receptions over different protocols. OBEX and RFCOMM are cur-
rently supported but the standard socket mechanism could also be used underneath.
The class diagram for the BlueYou API (BY) is presented in Figure 7.

Fig. 7. Classes diagram for the BY API

570 R.A.P. Almeida and H.C. Guardia

The BYFinder class is used for searching other nearby BlueYou enabled devices.
This is done by running Bluetooth inquiries using an object of the BYDevice class. A
list of all devices and services supported is obtained in return, including any service
associated with the standard Bluetooth profiles, such as Object Push. An object of the
class UUIDVector is used in this case. The BYConnection class is used for establish-
ing a connection using the OBEX or the RFCOMM protocols, and returns an object
either of the Server or the Client classes. Both Server and Client possess abstract me-
thods send() and receive() implemented in their inner subclasses.

The application code used at the access points (APs) performs periodic Bluetooth
inquires searching for discoverable devices in the neighborhood. When a device is
found, the AP sends a query to the MAS about the identity of this device and, if it
belongs to a registered user, which service data should be forwarded to it. If a non-
registered device is found, the AP will also probe its list of active Bluetooth services
and their corresponding connection strings. The obtained information is sent to the
MAS, who keeps all received data in a MySQL database. Again, any information in
this database is kept only for personalization purposed and is not subject to any form
of unauthorized disclosure.

After the newly found device is registered, the MAS creates an image file contain-
ing a BlueYou code specific to this device. This file is then sent to the AP, which will
try to forward it to the corresponding nearby device using the OBEX protocol. At this
point, the user is automatically prompted by her device and may decide to accept the
incoming file. Although the file name and the sending access point's name will be
associated with the BlueYou project, there is currently no mechanism to prevent a
spurious device from spoofing a valid BlueYou access point prior to accepting a
transmission.

The file sent from the access point to the device is a harmless image file, which
may promptly be shown to the user if the device's operating system has a default ap-
plication associated with that file type. Using the code visible in the image file, the
user may access the BlueYou web page and register for future interactions.

When a registered user is seen from a BlueYou access point (AP), the MAS sends
back to this AP all pending data associated with the user's currently configured ser-
vices. A content adaptation may happen at this point based on the device's characteris-
tics. Content adaptation is performed by matching the device type and model provided
by the user and databases containing information about known devices, such as the
UAProf [12]. The effective data received by the access point is then forwarded to the
appropriate device using the OBEX protocol.

5.1 Test Cases

A few sample services are currently in use at the experimental testbed, including the
daily menu from the academic restaurant, the weather forecast for the city of São
Carlos, access to tweets posted on Twitter and a user location system based on the
users' contacts with the currently active access points. Figure 8 illustrates the weather
forecast and menu services.

 An Architecture for Service Integration and Unified Communication 571

Fig. 8. Weather forecast and daily menu services

Twitter feeds can also be retrieved as a BlueYou service. Any tweet posted on a
Twitter blog followed by a user can be accessed using a BlueYou service. This is
done by sending a text file to her device, containing the last posts from the followed
blogs. An application was also developed to allow a BlueYou user to forward her
tweets from a mobile device via a BlueYou access point. This application must be
executed in the user's device, which will communicate via Bluetooth with a software
running on the access points. The tweet is forwarded by the AP to the MAS, which
will upload the post using the OAuth (Open Authorization) standard. Figure 9 pro-
vides an example text file containing the tweets received by a user, and the mobile
application used for forwarding one's tweets.

Fig. 9. Reception (left) and transmission (right) of Twitter messages using BlueYou

572 R.A.P. Almeida and H.C. Guardia

A user location service has also been implemented on top of the BlueYou archi-
tecture. This service allows an authorized user to find out about the location of anoth-
er registered user according to where she was last seen near a BlueYou access point.
Different location update mechanisms may also be incorporated to the system. A spe-
cific application must be run in the mobile device to receive and present an image
obtained from the access point. This image is generated from a mashup using the GPS
coordinates of an access point and a map from Google Maps. An example location
image is shown in Figure 10.

A trusted relationship must be established in the user profile to create a list of other
registered users allowed to make probes about her latest contact with a BlueYou
access point.

Fig. 10. BlueYou user location service, based on a mashup using Google Maps

5.2 Performance Results

An evaluation of the current implementation was performed, focusing both on the
ability to interact with different devices and on determining the transmission characte-
ristics for different content types. The tests correspond to 1200 transmission using 5
different mobile devices: Nokia N78 (Bluetooth version 2.0), Nokia 5800 Xpress
Music (Bluetooth version 2.0), Motorola K1 (Bluetooth version 1.2), Samsung i5500
Galaxy 5 (Bluetooth version 2.1) and LG KS360 (Bluetooth version 2.0). The Blu-
etooth access point used was a Class 2 (max. range 20 meters) Bluetooth USB Dongle
(version 2.0).

Four different contents were transmitted to each device 20 times: weather forecast
(18 KB), academic restaurant menu (22 KB), text file with messages from Twitter (50

 An Architecture for Service Integration and Unified Communication 573

KB) and another text file with messages from Twitter (150 KB). In order to evaluate
the effect of distance on the transmissions the tests were performed keeping the de-
vices at 3 different positions relative to the access point, 3m, 6m, and 12 meters. The
results are shown in tables 1, 2 and 3.

Table 1. Time Transmission (in seconds) – devices at 3m from the access point

Device Name
Weather
Forecast
(18KB)

Restaurant
Menu

(22KB)

Text
Message
(50KB)

Text
Message
(150KB)

Overall
Transmission
Rate (KB/s)

Nokia N78 1,68 1,55 2,33 5,68 18,20

Nokia 5800 Xpress Music 2,83 3,36 3,47 7,66 11,72

Motorola K1 10,60 12,62 37,93 38,25 2,17

Samsung i5500 Galaxy 5 1,46 1,93 2,74 6,65 16,13

LG KS360 2,85 2,94 4,63 7,86 10,92

Table 2. Time Transmission (in seconds) – devices at 6m from the access point

Device Name
Weather
Forecast
(18KB)

Restaurant
Menu

(22KB)

Text
Message
(50KB)

Text
Message
(150KB)

Overall
Transmission
Rate (KB/s)

Nokia N78 1,54 1,78 2,92 6,87 15,75
Nokia 5800 Xpress
Music

3,72 3,80 3,73 7,90 10,75

Motorola K1 13,82 15,28 41,62 43,87 1,84

Samsung i5500 Galaxy 5 1,97 2,84 4,76 8,50 11,26
LG KS360 3,01 3,27 4,50 7,98 10,65

Table 3. Time Transmission (in seconds) – devices at 12m from the access point

Device Name
Weather
Forecast
(18KB)

Restaurant
Menu

(22KB)

Text
Message
(50KB)

Text
Message
(150KB)

Overall
Transmission
Rate (KB/s)

Nokia N78 1,71 2,22 2,73 6,81 15,19
Nokia 5800 Xpress Music 4,90 4,38 5,56 9,43 8,40
Motorola K1 16,61 18,56 43,63 45,81 1,67
Samsung i5500 Galaxy 5 2,19 2,84 4,50 8,61 11,12
LG KS360 3,06 3,00 4,60 7,78 10,84

The results show the influence of the Bluetooth version present in the devices. In
most cases, it is possible to transmit to the devices at about 10 KB/s, as shown in the
last column of the tables. For devices using the same version of the Bluetooth proto-
col, other aspects inherent to the chipset, hardware and operating system also seem to
play a significant role. Given the low level of interference in the environment where

574 R.A.P. Almeida and H.C. Guardia

the tests were performed there was not a significant performance variation for the 3
distances evaluated.

Regarding the results obtained for the time devices are in contact when passing by
an access point, most of the devices can be set to receive and transmit relevant infor-
mation using the developed architecture. Comparing the results in tables 1 and 2 with
those on Figure 4, less than 10 seconds is the time necessary for the typical file sizes
tested, while most encounters last up to 45 seconds.

6 Conclusions and Future Work

Besides acting as an interconnection means between computer devices and different
types of accessories, the Bluetooth technology provides a data path between these
devices that can be used by high-level applications. Several different applications
have been developed which explore this communication facility in a circumstantial
way. The architecture presented in this work provides an abstract channel over the
Bluetooth technology, which allows an unlimited number of applications to benefit
from this communication model in a uniform way. The data transmission model pro-
vided by BlueYou is independent of the data transmission protocol used with the Blu-
etooth interface.

The architecture is deeply concerned about security and privacy. Any data trans-
mitted from the services can be encrypted using digital envelops, which also allow the
nodes to authenticate every received information. Considering a scenario where a
wide number of BlueYou access points are deployed, sensitive information about a
user location can be gathered by the system. To avoid risking any of these data to be
accidentally exposed, the access to the MAS server is exclusively based on a re-
stricted set of web services and requires authentication before the communication. A
privacy policy defined in the system also assures its commitment to not disclosure any
data about the registered encounters. Users may request that information associated
with a device be removed from the system logs.

The set of applications currently implemented show the viability of the architectur-
al model developed. Considering a user passing by a BlueYou access point equipped
with a commodity Class 2 device, on average, less than 10 seconds are necessary
for this access point to transmit the available services currently. The current version
of the evaluation scenario has more than 100 users, which frequently access their
services.

Scalability is also inherent to the distributed implementation model used in
BlueYou, as new MAS servers can be added to support a group of access points.

References

1. Franco, L.K., et al.: Um modelo para Exploração de Oportunidades no Comércio Ubíquo.
In: Proceedings of Latin American Informatics Conference, XXXV, Pelotas, RS, Brasil,
pp. 1–10 (2009)

 An Architecture for Service Integration and Unified Communication 575

2. Lebrun, J., Chuah, C.-N.: Bluetooth Content Distribution Stations on Public Transit. In:
Proceedings of International Workshop on Decentralized Resource Sharing in Mobile
Computing and Networking, Los Angeles, CA, pp. 63–65. ACM (2006),
http://doi.acm.org/10.1145/1161252.1161269

3. Shekar, S., Nair, P., Helal, A.S.: iGrocer: a ubiquitous and pervasive smart grocery shop-
ping system. In: Proceedings of ACM Symposium on Applied Computing, pp. 645–652.
ACM, New York (2006), http://doi.acm.org/10.1145/952532.952658

4. Lin, K.-J., Yu, T., Shih, C.-Y.: The Design of A Personal and Intelligent Pervasive-
Commerce System Architecture. In: Proceedings of 2nd IEEE International Workshop on
Mobile Commerce and Services, Munich, Germany, pp. 163–173. IEEE Computer Society
(2005), http://dx.doi.org/10.1109/WMCS.2005.25

5. Ookl: (December 2010), http://www.ooklnet.com/web/whatisthis.php
6. Salaman, A.: Hand-held Learning (December 2008),

http://ookl.files.wordpress.com/2008/10/nmm-gem-article.pdf
7. Bluetooth Sig. Basics (December 2010),

http://bluetooth.com/Bluetooth/Technology/Basics.htm
8. Mawston, N.: Enabling Technologies: Global Bluetooth Phone Sales by Bluetooth Profile

(December 2009), http://www.strategyanalytics.com/
default.aspx?mod=ReportAbstractViewer&a0=4918

9. Bluetooth Sig. Object Push Profile (December 2001), http://
www.bluetooth.com/SiteCollectionDocuments/OPP_SPEC_V11.pdf

10. Jain, R., et al.: The Mobile Application Server (MAS): An Infrastructure Platform for Mo-
bile Wireless Services. Information Systems Frontiers 6(1), 23–34 (2004),
http://dx.doi.org/10.1023/B:ISFI.0000015872.20136.76

11. Bluetooth Sig. RFCOMM with TS 07.10. Bluetooth SIG (December 2003),
http://www.bluetooth.com/SiteCollectionDocuments/rfcomm1.pdf

12. Alliance, O.M.: User Agent Profile (UAProf) (December 2010),
http://www.openmobilealliance.org/Technical/Schemas.aspx

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 576–587, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Task Allocation in Mesh Structure: 2Side LeapFrog
Algorithm and Q-Learning Based Algorithm

Iwona Pozniak-Koszalka, Wojciech Proma, Leszek Koszalka,
Maciej Pol, and Andrzej Kasprzak

Dept. of Systems and Computer Networks, Wroclaw University of Technology,
Wroclaw, Poland

iwona.pozniak-koszalka@pwr.wroc.pl

Abstract. This paper concerns the problem of task allocation on the mesh struc-
ture of processors. Two created algorithms: 2 Side LeapFrog and Q-learning
Based Algorithm are presented. These algorithms are evaluated and compared
to known task allocation algorithms. To measure the algorithms’ efficiency we
introduced our own evaluating function – the average network load. Finally, we
implemented an experimentation system to test these algorithms on different
sets of tasks to allocate. In this paper, there is a short analysis of series of expe-
riments conducted on three different categories of task sets: small tasks, mixed
tasks and large tasks. The results of investigations confirm that the created algo-
rithms seem to be very promising.

Keywords: mesh structure, task allocation, algorithm, reinforcement learning,
Q-learning.

1 Introduction

The popularity of mesh oriented systems is still increasing because of also still in-
creasing demand for computers with higher computational power. Meshes are rela-
tively simply and regular structures [1], therefore they are considered as one of the
best solution for multiprocessor systems.

For all task allocation methods, the priority is to maximize as higher computational
power as it is possible using available source [2]. In real cases, the full computational
power is not achieved because of difficulty with the task allocation on parallel con-
nected processors. In order to increase the efficiency of task allocation process - vari-
ous ideas, approaches, and methods in constructing task allocation algorithms are
used. In this paper, we propose two new task allocation algorithms, including the
algorithm based on reinforcement learning idea [3].

The rest of the paper is organized as follows. In Section 2, the basic terminology
and objective function is presented. Section 3 contains short description of known
task allocation algorithms. In Section 4, the created algorithms are presented. Section
5 contains results of investigations, including a brief analysis of results of series of
simulation experiments made for three categories of sets of tasks. The final remarks
appear in Section 6.

 Task Allocation in Mesh Structure: 2Side LeapFrog Algorithm 577

2 Tasks Allocation

2.1 Terminology

The basic terms used in the task allocation problem can be defined as follows [4]:

• node – the basic element of mesh-oriented system describing one singular
processor; one node has two possible states: free and busy;

• mesh – two-dimensional structure consisted of uniformly distributed
nodes; one mesh is described as M = (w, h), where w is the width and h is
the height of mesh;

• submesh – group of nodes connected in rectangular structure which is a
part of mesh M; one submesh is described as S = (x, y, x’, y’), where x and
y are coordinates of the upper left corner of submesh, x’ and y’ are coordi-
nates of the lower right corner of the submesh; the submesh is busy only if
every nodes in submesh are busy;

• task – treated as group of nodes and described as T = (w’, h’, t’), where w’
is the width, h’ height and t’ time duration of one task; tasks are grouped
in task list; in the allocation process, tasks are being removed from the list
and allocate on mesh creating busy submeshes;

• fragmentation – there are two types: internal and external; internal frag-
mentation is the process of rounding up the task area – in definition, it is a
ratio between the surplus of unused nodes in submesh and the number of
all busy nodes in submesh; external submesh is the ratio between the
number of nodes from the space between tasks already allocated on mesh
and all busy nodes in already allocated tasks (busy submeshes).

An example of the mesh for M = (7, 5) is shown in Fig.1.

Fig. 1. Topology of mesh

578 I. Pozniak-Koszalka et al.

2.2 Problem Statement

The considered allocation problem can be formulated as follows:

For given:
• mesh with given size M = (w, h),
• list of tasks T = T1, T2, T3, …, Tn with known parameters (w’i, h’i, t’i)..

To find:

the sequence of the tasks on the list of tasks.

Such that:

the desirable properties of the defined objective function are fulfilled.

2.3 Objective Functions

In order to compare the task allocation algorithms we need the measure of efficiency,
i.e., the index of performance allowing to access the allocation process made using a
given algorithm. Firstly, we introduce an auxiliary index of performance. The OB rate
is the ratio between all busy nodes in the mesh and all nodes in the mesh. It may be
calculated in the moment, when there is no possibility to allocate (by a given task
allocation algorithm) a latter task (due to the full allocation by just allocated former
tasks on the mesh) and the algorithm must wait until it occurs any free submesh ac-
ceptable by this algorithm. The OB can be expressed by the formula (1):

 OB =
∑

 (1)

where n is the number of already allocated tasks on the mesh. In the numerator of (1)
is the sum of nodes which are currently busy (w’i and h’i are the width and height of
submesh i). In the denominator of (1) is the number of all nodes in a given mesh. The
idea of (1) is presented on a simple example shown in Fig. 2. For this example OB =
(6 + 9 + 15)/42 = 0.714

Fig. 2. Locked state – there is no possibility to allocate task T on mesh M

 Task Allocation in Mesh Structure: 2Side LeapFrog Algorithm 579

The main introduced index of performance of task allocation process is the objec-
tive function SO, called the average network load, defined by (2). It is the arithmetic
mean (m is the number of occurrences of ‘the locked states’) of all measured OBs in a
given allocation process expressed in percent.

 SO =
∑

 100% (2)

As the quality indicator of task allocation process, the end time allocation, denoted as
TIME (3) can also be considered. The value tend is the time-period between the start-
ing time of the allocation process and the time, when the last task from the list T is
allocated.

 TIME = tend (3)

3 The Known Allocation Algorithms – Related Work

First Fit [5]. This algorithm is firstly creating a busy array with the list of all busy
nodes. The binary value indicates the state of the mesh (1 means busy and 0 means
free). Using busy array it can create the coverage array with list of free submeshes.
The disadvantage of using this algorithm is not connected with any fragmentation.
Due to the many searches made in every step, the time-duration of whole algorithm is
increasing. Nevertheless, the First Fit solution is the most common in use because of
the simple implementation.

Two-dimensional Buddy Strategy [6]. The idea consists in allocation the
constructed blocks. Every block is divisible on four smaller blocks called buddies. To
allocate one task, the algorithm is looking for the smallest free block which can be
fulfilled by a given task. Free blocks are divided into buddies until the algorithm finds
the smallest buddy, where the task could be allocated. The disadvantage of this
algorithm is big internal fragmentation caused by rounding up the size of submeshes
and limitation to the square meshes.

Frame Sliding [7]. This algorithm is scanning the mesh using a virtual task, which
has the same size as the task which is going to be allocated on the mesh. The virtual
task, as a frame, is moving. The algorithm is checking, if all nodes in a given location
of frame are free. The stop criterion of this algorithm is fulfilled when the frame finds
free space or the frame scans all nodes in the mesh. The main disadvantage of this
solution is big external fragmentation caused in orderly movement of the frame.

Adaptive Scan [7]. This solution also as First Fit, uses frame. It is also creating a
coverage list of all busy submeshes. Algorithm is checking if nodes scanned by frame
consist into coverage list. If all nodes are not listed in coverage list, the allocation of
task is possible. Such an allocation process has very long time-duration and is totally
useless in cases where the main mesh is very big.

580 I. Pozniak-Koszalka et al.

Stack Based Allocation [8]. This approach can make a possibility to change the
orientation of task if it is necessary. There is a creation of stack with candidates list
and also the coverage list. Candidates form the free spaces around the already allo-
cated space, so left, right, upper and lower candidate can be distinct. All of them are
putting onto the stack. The algorithm finishes the work after dividing all free space on
mesh into candidates. There is only one step afterward consisting in checking whether
any candidate could be a submesh for the next task from the list.

LeapFrog [9]. This algorithm uses a special way of describing the main mesh. It is a
R-Array. Every element of this array describes the ‘situation’ around the singular
node. If the element is positive, it means that around the node there is a sequence of
free nodes. If the element is negative, there is a sequence of busy nodes. Absolute
value of the element gives the information about number of nodes in the sequence. If
the task has size w’ x h’, then R-Array is scanned and checked whether a given ele-
ment has a value smaller than w’. If all values are greater, the process of allocation
ends. In the opposite case, the algorithm is skipping to the next node. This procedure
is quick for big meshes. The disadvantage is complicated implementation.

Quick Allocation [9]. This algorithm is based on the First Fit algorithm. To decrease
the time of allocation process, the algorithm is creating the collection (segments) of
busy nodes in neighborhood for every row of mesh. Every segment shows the candi-
dates, where the task could be allocated. The bottleneck of this solution is the time of
dividing the free space on mesh into segments. The computational complexity is in-
creasing with size of the mesh.

Best Fit [6]. This algorithm, very similarly to the First Fit, firstly creates busy array
and coverage array. The difference is that the Best Fit algorithm is looking for all free
submeshes and after that is choosing the best one. The external fragmentation is very
low, but the time-duration is increasing due to the necessity of full scans of the mesh.

4 The Created Algorithms

4.1 2Side LeapFrog Algorithm

The created algorithm is a modification of a Leap Frog solution. The main modifica-
tion is that the starting point depends on the index of task. If the task has even index
then the algorithm starts working on the upper left corner of the mesh. Otherwise, the
process begins on the lower left corner.

The flowchart of the algorithm is presented in Fig. 3, where w’ and h’ define the
size of a task, w and h are the size of mesh, i and j are the coordinates of a node and
flag is a binary value informing about that the task has changed orientation [5].

 Task Allocation in Mesh Structure: 2Side LeapFrog Algorithm 581

 Fig. 3. Flowchart of 2Side Leapfrog algorithm

582 I. Pozniak-Koszalka et al.

4.2 Q-Learning Based Algorithm

The idea of reinforcement learning [3] is used. The process of learning is based on
studying the behavior of the system depending on the dynamic interaction with the
environment. Interactions are taking place in time instants. The learner is observing
every another state of environment. He behaves in accordance with the adopted strat-
egy. After every action, the learner is receiving an award. The procedure of rein-
forcement learning is as follows. In every discrete time t:

• observe the current state xt;
• choose action at to make it in state xt;
• make action at ;
• observe the reinforcement rt and another state xt+1;
• learn from experience (xt,, at, rt, xt+1).

The Q-learning algorithm [10] consists in learning how to estimate the optimal value
of action function (Q) by using strategy π, i.e., making an action at = π(xt). The value
of action function Q is updated following the expression (4).

 Q(xt, at) = Q(xt, at) + β[rt + γmaxaQ(xt+1, at) - Q(xt, at)] (4)

The factor β is a learning coefficient and its value is from range from 0 to 1. This is
the rate of the size of modification. The discount factor γ is also a value from range
from 0 to 1. It is a variable describing the quality of award.

We have proposed to adopt the task allocation problem in the following way:

• set X is a collection consisted of every possible permutations of tasks (the se-
quences in the queue);

• collection of every actions A consists of all possible changes between tasks on
the task list;

• award rt is the value of the objective function SO after action at in the state xt;
• action function Q is represented by a table for every state x and action a;
• with some probability ε (greedy parameter) greater than 0, an action is chosen

due to the uniform distribution and with 1-ε probability if the action need to be
greedy action following the formula (5):

 , | , | | | , ∈ ,
| | , (5)

5 Investigation

5.1 Investigation Scenario

We tried to design as versatile simulation environment as possible, to be able to eva-
luate all combinations of parameters for various problem instances. As a result we

 Task Allocation in Mesh Structure: 2Side LeapFrog Algorithm 583

have developed a console application (to be run under Microsoft Windows OS), writ-
ten in the C++ language, with various abilities to read parameters for the experiments
and to write their results. We divided our investigation into two parts.

In the part one, we compared task allocation algorithms: First Fit, Frame Sliding,
Adaptive Scan, Best Fit and LeapFrog BF described in Section 3 and the created algo-
rithm 2Side LeapFrog described in Section 4. The three complex experiments for the
three problem instances were carried out. The distinct categories of instances were: (i)
tasks relatively small (as compared with the mesh size), (ii) tasks relatively large, and
(iii) mixed tasks (mixed small and large). The sets of small category contained tasks
with sizes (of their three parameters w, h, t) generated at random from the range 2-10.
The sets of large category contained tasks with sizes (of their three parameters w, h, t)
generated at random from the range 4-12. The sets of mixed category contained tasks
with sizes (of their three parameters w, h, t) generated at random from the range 2-12..
Each complex experiment was repeated for 100 different sets of tasks generated at
random (but the same for every allocation algorithm to be compared) and means val-
ues of indices of performance were calculated.

In the part two, the best algorithm from the first part was chosen as the auxiliary
algorithm for Q-learning Based Algorithm. In this part, the influence of internal pa-
rameters of Q-learning Based Algorithm on its efficiency as well as the influence of
category of sets of tasks was investigated. Moreover, the comparison of efficiencies
of allocation processes performed for 2 Side LeapFrog without and with Q-learning
Based Algorithm was made.

5.2 Part One. Comparison of the Allocation Algorithms

The average network load. We made investigation for different categories of sets of
tasks. The obtained results are shown in Fig. 4 – Fig. 6 (where SO defined by (2) is
denoted here as OS), respectively.

Fig. 4. Comparison of allocation algorithms efficiency for small tasks

584 I. Pozniak-Koszalka et al.

Fig. 5. Comparison of allocation algorithms efficiency for large tasks

Fig. 6. Comparison of allocation algorithms efficiency for mixed tasks

It may be observed that for each category of sets of tasks the best solution was re-
ceived for 2Side Leapfrog algorithm, especially this algorithm outperformed others
for sets of small tasks. We were looking for the highest value of OS and the smallest
value of tend.

Time Duration. In this experiment we were looking for the shortest TIME defined by
(3). The same sets of tasks were allocated on the meshes of different sizes (see Fig. 7).
The best solution was received for Stack Based Allocation algorithm. However, the
2Side Leapfrog algorithm gave similar results for large range of mesh sizes.

 Task Allocation in Mesh Structure: 2Side LeapFrog Algorithm 585

Fig. 7. Time duration of allocation process for different algorithms

5.3 Part Two. Evaluation of Q-learning Based Algorithm.

Adjusting Internal Parameters. Firstly, we were studying the relation between the
number of iteration of Q-learning algorithm and the index of performance SO. We
figure out that the duration time increases in proportion to the number of iteration
(obvious observation) and that the efficiency of Q-learning algorithm is very random
for small number of iterations. The situation became stable (see Fig. 8) above the
number of 2000 iterations. Therefore, for further research we used the number of
iterations equal to 3500, because greater number did not give higher efficiency but
could cost more.

Fig. 8. The efficiency of Q-learning Based Algorithm in relation to the number of iterations

586 I. Pozniak-Koszalka

Next, we tested the influ
ence of the greedy coeffici
observed (Fig. 9) that the a
ter. The reason is that for g
tween local maxima and it
lower range of greedy coef
whole collection of states.

Fig. 9. Influence of greedy c

Efficiency of the Q-learni
from one side, to compare
the categories of sets of ta
learning Based Algorithm i
in Fig. 10. It may be obser
than 1%, but for mixed task

Fig. 10. Efficiency of Q

et al.

uence of greedy ε - coefficient. Next, we checked the in
ient on the efficiency of Q-learning algorithm. It may

algorithm works better with lower range of greedy param
greater greedy coefficients, the algorithm is oscillating
is very hard for the algorithm to change the location. W
fficient the algorithm has bigger possibility to explore

coefficient on the efficiency of the Q-learning Based Algorithm

ing Based Algorithm. The goal of this investigation w
the behavior of Q-learning Based Algorithm in relation
asks, and from the other side, to check, whether the
is better than only the auxiliary one. The results are sho
rved that for small and large tasks the improvement is l
ks is almost 4%.

Q-learning Based Algorithm for different categories of tasks

nflu-
y be
me-
be-

With
the

m

was,
n to

Q-
own
less

 Task Allocation in Mesh Structure: 2Side LeapFrog Algorithm 587

6 Conclusion

We have created two algorithms for solving the problem of task allocation on a multi-
processor mesh, implemented an experimentation environment for testing them and
performed research with it.

The experiments shown, that in general, the proposed 2 Side LeapFrog algorithm
together with Q-learning Based Algorithm perform well in solving the considered task
allocation problem. The advantage of using such approach is remarkable for sets of
mixed tasks and not very large meshes. Moreover, taking into account the introduced
measure of efficiency, it was observed that the 2 Side LeapFrog outperformed other
known task allocation algorithms.

It definitely can not be said that the problem has been fully explored and re-
searched. We are planning in further research: (i) to adapt more deeply ideas pre-
sented in [11] for performing future experiments, (ii) to construct a versatile testing
environment, (iii) to use the full potential of Q-learning idea, and (iv) to implement
new allocation algorithms based on the neural networks.

References

1. Ding, J., Bhuyan, L.N.: An Adaptive Submesh Allocation Strategy for Two-Dimensional
Mesh Connected Systems. Texas A&M University (2002)

2. Das, C.R., Sharma, J., Pradhan, D.K.: A Fast and Efficient Strategy for Submesh Alloca-
tion in Mesh-Connected Parallel Computers. In: Proc. of 5th IEEE Symp. Parallel and Dis-
tributed Processing (1993)

3. Weber, C., Elshaw, M., Mayer, M.: Reinforcement Learning, Theory and Applications. I-
Tech Education and Publishing, Vienna (2008)

4. Yoo, S.M., Youn, H.Y., Shirazi, B.: An Efficient Task Allocation Scheme for 2D Mesh
Architectures. IEEE Transactions on Parallel and Distributed Systems 8 (1997)

5. Goh, L.K., Veeravalli, B.: Design and Performance Evaluation of Combined First-Fit Task
Allocation and Migration Strategies in Mesh Multiprocessor Systems. Parallel Compu-
ting 34, 508–520 (2008)

6. Chuang, P.J., Tzeng, N.F.: An Efficient Submesh Allocation Strategy for Mesh Computer
Systems. In: Proceedings of 11th Int. Conf. on Distr. Comp. Systems (1991)

7. Byung, S., Yoo, B.S., Das, C.R.: A Fast and Efficient Processor Allocation Scheme for
Mesh Connected Multi-computers. IEEE Trans. on Computers, 46–59 (2002)

8. Koszalka, L.: Simulation-Based Evaluation of Distributed Mesh Allocation Algorithms.
In: Thulasiraman, P., He, X., Xu, T.L., Denko, M.K., Thulasiram, R.K., Yang, L.T. (eds.)
ISPA Workshops 2007. LNCS, vol. 4743, pp. 335–344. Springer, Heidelberg (2007)

9. Wu, F., Hsu, C., Chou, L.: Processor Allocation In the Mesh Multiprocessors Using the
Leapfrog Method. IEEE Transactions on Parallel and Distributed Systems 14 (2003)

10. Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8, 279–292 (1993)
11. Koszalka, L., Lisowski, D., Pozniak-Koszalka, I.: Comparison of Allocation Algorithms

for Mesh Structured Networks with Using Multistage Simulation. In: Gavrilova, M.L.,
Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.)
ICCSA 2006, Part V. LNCS, vol. 3984, pp. 58–67. Springer, Heidelberg (2006)

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 588–601, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Follow-Us: A Distributed Ubiquitous Healthcare System
Simulated by MannaSim

Maria Luísa Amarante Ghizoni, Adauto Santos, and Linnyer Beatrys Ruiz

Manna Research Group of Invisible Computing Engineering
State University of Maringá – Brasil

{malu.ghi,adauto.info2006,linnyer}@gmail.com

Abstract.The monitoring of assisted living requires the existence of tools that
capture vital signs from the user and also as well as environment data.
Ubiquitous healthcare aims to use technologies such as: wireless sensor
networks, context awareness, low-power electronics, and so on. This work
employs Information and Communication Technologies (ICT) to provide a
technologically and socially acceptable solution to aid elderly and disabled
people to live a more independent life as long as possible, and to maintain their
regular everyday activities at their own home. As a study case, we have
implement a simulation of a smart home, called Follow-Us, comprised of
networked computational devices. Follow-Us can be used in different ambients
such as hospitals, houses, rest homes, gyms, so on. In particular, we present the
simulation in a house plan.

Keywords: Ubiquitous Healthcare, simulation, elderly healthcare.

1 Introduction

Ubiquitous Systems are equipped with user-friendly interfaces applicable in different
contexts, which are present in the everyday life of common citizens. Wireless Sensor
Networks (WSNs) are covered by the concept of Ubiquitous Computing. They are
basically a network made up of many sensor nodes with low computational power,
working collaboratively to accomplish sensing, processing and communication of
data for a particular environment or phenomenon. [5]

Ubiquitous computing is a technological concept that encompasses Mobile Com-
puting and Pervasive Computing, with the goal of making computers ubiquitous and
invisible to people. Thus, human-computer interaction is made through natural beha-
viors and actions, such as the use of gestures, body movements, speech, and by exter-
nal variables captured from the environment. In this context, the use of a new device
must not require a great deal of learning experience.

Currently, there are several projects that carry out the simulation of WSNs, such as
the ns-2 Network Simulator [14] Simulating TinyOS Networks (TOSSIM) [13] Java
in Simulation Time (JIST) [10], Algorithms for Network Simulator (SinalGo) [11],
among others. The use of these simulators provides a wide range of possibilities.

 Follow-Us: A Distributed Ubiquitous Healthcare System Simulated by MannaSim 589

Through a simulated environment, it is to add new components to the network with-
out requiring the physical components themselves. Also, it is possible to test differ-
ent distances, protocols, forms of sensing and dissemination of information and even
the manipulation of data obtained from the environment. In this work we chose the
Network Simulator, along with the MannaSim package [12], which adds modules for
the simulation of WSNs.

Ubiquitous systems must provide their services all the time and everywhere. In or-
der to increase transparency and personalization, ubiquitous applications are normally
context-aware, i.e., they use information about entities of interest to adapt their ser-
vices. Since they are connected to everyday elements, such systems are frequently
shared by two or more users, who may provide conflicting contextual data. Therefore,
these systems can reach an inconsistent state, in which they are unable to decide how
to perform their intended adaptations [8].

This work proposes a service-based Ubiquitous Healthcare solution in order to
provide support for independent living using different technologies to gather, process,
generate, and disseminate data about humans, the environment, artifacts, and intangi-
ble parameters. In general, these systems communicate through wireless technologies,
in cooperative or competitive stance using collective context information.

Many theoretical works have been proposed using Wireless Sensor Networks
(WSN), context awareness and other technologies in the design of solutions for ubi-
quitous healthcare. These work use simulations in the evaluation of their proposals.

Follow-Us is deployed in a home equipped with information and communications
technologies in order to provide quality of life for the elderly. Using Follow-Us,
healthcare personnel are not required to be physically close to the patients, ensuring
independent living and safety.

The remainder of this article is organized as follows. We define the simulation
chosen as a case study. Then, we present one of the important contributions of this
work, the definition of U-healthcare services developed based on autonomic compu-
ting, wireless sensor networks, domotics and context-awareness concepts. Then, we
present the results of Simulation. Finally, we present our concluding remarks.

2 Application Scenario

Oftentimes, family can be working or is simply too far to assist a loved one with those
daily seemingly easy tasks that may have become too difficult, either physically or
mentally. Follow-Us can prevent social isolation and support by maintaining a multi-
functional network around the individual to promote a better and healthier lifestyle for
individuals at risk or that need special care.

The proposed application represents a class of U-healthcare applications with
enormous potential benefits to the whole scientific community and society. Instru-
menting spaces with networked sensor nodes, and low-power devices can promote a
shared smart home that helps the family, gives freedom to a loved one and maintains
welfare without burdening the health system. Besides this, the proposed solution can
contribute to reduce hospitalization or specialized institutions cost.

As a proof of concept for our application, we simulated this scenario using the Net-
work Simulator (ns-2) using MannaSim. This simulation is described in the next Section.

590 M.L.A. Ghizoni, A. Santos, and L.B. Ruiz

2.1 Network Simulator (ns-2)

The ns-2 [14] is an event simulator for testing and researching networks, currently main-
tained by UC Berkeley, used primarily in academia. It provides support for simulating
transmission and routing protocols for wired and wireless networks, schedulers and their
policies in line, traffic characteristics and much more. Ns-2 uses two languages, C++ to
create and manipulate the structures used in the network (agents, protocols, transmission
methods, byte manipulation, among others) and the OTcl (Object-oriented Tool Com-
mand Language) scripting language, which is used for setting up simulations.

By design, ns-2 is efficient, counting on the performance benefit of C++ for han-
dling low level aspects while also easing the development process, by using OTcl,
which is an interpreted language, and therefore there is no need for a new build if
any simulation parameter changes. The execution of the script through the simulator
is produces an output file known as a trace file. In this file a lot of information about
the work of the network may be gathered, such as: energy level, the protocol beha-
vior, description of events, position of components, due to the fall, the path of the
package and other information’s.

To develop this work, we used ns-2 (version 2.29) with the MannaSim package.
The following packages must also be installed: Tcl (Tool Command Language), Tk
(Toolkit graphical user interface), OTcl (Object-oriented Tool Command Language)
and Tclcl (Classes with Tool Command Language).

2.2 MannaSim

MannaSim [12] is a simulator for wireless sensor networks based on the Network
Simulator, which extends and introduces modules for this particular type of network.
Moreover, it has a front-end tool for TCL code generation (MannaSim Script Genera-
tor), providing ease and accuracy in the development of scenarios and in particular
providing a comprehensive set of algorithms and protocols.

First the main settings are chosen in the simulation, such as the transport protocol
(TCP and UDP), routing protocol (AODV, DSR, TORA, LEACH, Directed Diffusion
and DSDV), the physical layer (914MHz Mica2 and Lucent WaveLAN DSS), the
propagation of radio the signal, the buffer size, the size of the area, the simulation
time and other settings.

After the choice of key parameters, it is necessary to decide the features present in
the common nodes, access points and cluster heads, as the number of devices on the
networkreach, level of initial energy, transmission range, time and form of dissemina-
tion and sensing, and data generators (e.g. temperature and carbon dioxide).

3 Follow-Us: Putting It All Together

Follow-Us is a distributed ubiquitous healthcare system that is intended to be used by
elderly and disabled people and aims to assist them to live a more independent life as
long as possible and to maintain their regular everyday activities at their own home.

Like in [1], our work is about a house that aims to provide self-management style
of health and safety for its inhabitants, for example, self-health monitoring and self-
medication measurements. The house is connected in an intelligent way to access the

 Follow-Us: A Distributed Ubiquitous Healthcare System Simulated by MannaSim 591

Internet to send messages to the back-end professionals, which are continuously in-
formed about the status of the monitored residents to deal with emergency situations
that require intervention.

Work described in [4] takes advantage of advances in electronics technology and low-
power sensors, which lead to small-sized medical body sensors and actuators that are
capable of collecting physiological data from the body of the local monitored and possi-
bly deliver some drugs. This is done through the deployment of a wireless body area
network (WBAN). What is seen as a good step to be incorporated into our future work.

In particular, we decided to monitor the motions in the elderly population because
many common complaints, such as dizziness and loss of balance. Despite the tre-
mendous advances in low-power and nano-sized electronics, invisible sensor nodes
are not yet commercially available. The Follow-Us came to provide a way to integrate
many kinds of artifacts, environments and also the elderly people with sensors that are
among the objects and people, e.g., in their clothes.

We have used the MicaZ sensor node platform as a body wireless sensor node and
the Sensor board (MTS300). This sensor board is composed by accelerometers and
microphones that are fixed on the body (shoulder, chest and legs). In [9], we pro-
posed a tool that uses a WSN to perform patients’ movement detection, assisting the
study of abnormal cardiac rhythm.

The Follow-Us prototype implements a wireless sensor network using MicaZ sensor
node platform and MTS 300 sensor board in order to monitor the ambient considering
thermal comfort, lighting, and humidity. This way, the smart home can decide to perform
some interpretation and actuations services, e.g., to open or close the windows in order to
promote air renewal, to control of temperature without turning on air conditioning.

The prototype also decides to water plants according to data gathering about soil
humidity of the plants. In this case, the prototype uses the WaspMote Sensor Node
with soil moisture, leaf wetness sensor device.

Considering the audiovisual perception service, if any intervention is needed, when
abnormal conditions are detected (e.g. elderly fall), the body sensor nodes also cap-
ture the voice or breath, and a visual sensor node is triggered to make an image and
send all data about the loved one’s accident to family or rescue staff.

The Follow-Us can use wireless sensor networks protocols to route the data into the
WSN. In particular we have performed directed diffusion, LEACH, zigbee and 802.11.
Outside of the WSN, the Follow-Us can use SMS or social networks tools, such as Or-
kut, Facebook, or Twitter in order to send data to relatives. The family or the health
professional may receive, with the desired periodicity, a report, which has processed
intelligently the information gathered from sensors about the elderly person’s activity
and behavior. This data can be used for trend analysis and medical research.

We have adopted the idea to open and close doors and windows with a servomotor
stuck on the house wall pulling each tab of the window by a small steel cable con-
nected to a rod fixed on the window. To receive the command to open and close the
window, a servomotor was connected to an Arduino, which has an ATMEL micro-
controller 186 and a door that connects the PWM servo. This microcontroller is con-
nected to a ZigBee module, which performs communication with the ZigBee network.
Just as the doors and the windows, lamps operate similarly using Arduino and Zig-
Bee, but they were connected to relays in order to use an AC 110V. In this prototype
version, four windows, one door and two lamps are managed in autonomic way.

592 M.L.A. Ghizoni, A. Santos, and L.B. Ruiz

A web service system permits family members from a computer or device that has
Internet access, such as a cell phone or a tablet, to ask for information, images, so on.
Also, the web service also permits to control operation of electrical equipments, such
as electric iron, air conditioning, fans, televisions, and showers, for assisting the elder-
ly in daily tasks. Each device is a button that can be clicked in order to change its
state, as long as the relative has the required permission. In this homepage, graphs are
presented showing the history of temperature and humidity of the house, as well as,
elderly information.

In this way, it is possible the occurrence of conflicts because the limitations due to
ageing ask an action and on the other side the need of security of older people ask an
opposite action. In [8] we proposed a novel methodology called CReMe (Conflict
Resolution Methodology) that detects and solves conflicts of interest for ubiquitous
context-aware applications with different characteristics. Besides, the developed ap-
proach considers the trade-off between users’ satisfaction and resources consumption
in order to select and apply a conflict resolution algorithm. Results obtained showed
that the proposed solution is flexible, dynamic, and able to provide users’ satisfaction
as well as to save system resources.

Considering the abstraction service, the elderly receives some support from Follow-Us
in order to help in his daily life, e.g., the system manages electrical appliances on/off,
main door opened. The solution also has a friendly tool to annotate the elder’s appoint-
ments and can advise their fulfillments (e.g, take medicine, watering plants, exercise of
physiotherapy in the rehabilitation of postural control, associated with senescence). In
this case, messages are shown in TV, tablets, mobile phones, and special sounds.

Internal contexts, like feelings and physiological needs, could also be relevant to
adaptation decisions. Nevertheless, these contexts are hard to be obtained because,
usually, they can be not gathered by physical sensors. The preliminary qualitative
results show that the inference system is accurate when the sentences are well-formed
and do not present types. The smart home can post tweets to the supermarket, the
pharmacy, the family, so on. It can also decide whether to turn on the lights providing
an opportunity to build intelligent and calm interfaces. The shared smart home solu-
tion monitors everyday items in order to warn the patients, friends, family or medical
service about the need for intervention when abnormal conditions are detected as well
as to collect data for trend analysis and medical research. It adopts the incorporation
of ambient sensors, context awareness for improved sensing and episode detection.

The Follow-Us can be customizable for any physical environment (houses, hospit-
als, elderly houses, classes, offices, and so on) and has been designed based on natural
interfaces, hands-free equipment’s suitable for elderly with decreased hand-eye coor-
dination and vision, and devices capable of performing useful computing to the
people around.

4 Simulation

As in [2] we use some criteria to evaluate our self-stimulation, the errors and energy
spent. For evaluation, we simulate a house plan, with just one inhabitant being
monitored in his everyday life, as in Figure 1 which shows the division of 29 common
nodes and three access points in the monitored area.

 Follow-Us: A Distributed

Differently from [6], tha
tion returns a Tcl archive
house simulations, ours an
structure.

Fig. 1. Division of

4.1 Energy Level

In Common Nodes
During operation of the 33
gy of sensor nodes ranged
24.40743. Thus, the averag
5.596 joules.

Then the graph shown i
nodes.

Ubiquitous Healthcare System Simulated by MannaSim

at the information is stored in XML archives, our simu
that is stored in a mysql database. However, both sm

nd theirs, were developed based in an event and mess

f common nodes and access points in the environment

simulations, it was found that the level of remaining en
from 24.35657 to 24.43624 joules and joules average w
ge consumption of network operation in its lifetime, w

in Figure 2 illustrates the level of energy in the comm

593

ula-
mart-
sage

ner-
was
was

mon

594 M.L.A. Ghizoni, A.

Fig

Access Points
During operation of the 33
gy of the access points rang
60.7848 joules. Thus, the a
was 39.2152 joules.

Then the graph shown in

Fig. 3. R

24.3

24.32

24.34

24.36

24.38

24.4

24.42

24.44

24.46

1 3 5 7 9
Minimum

le
ve

l o
f r

em
ai

ni
ng

 e
ne

rg
y

(jo
ul

es
)

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9
Minimum

Santos, and L.B. Ruiz

g. 2. Level of Energy Common Nodes

simulations, it was found that the average remaining en
ged from 34.883 to 91.931 joules and the average stood
average consumption of network operation in its lifeti

n Figure 3 illustrates the energy level of the access point

Remaining energy level of the access points

9 11 13 15 17 19 21 23 25 27 29 31 33
m Average Maximum

Simulations

9 11 13 15 17 19 21 23 25 27 29 31 33
Average Maximum

ner-
d at
me,

ts.

s

 Follow-Us: A Distributed

4.2 Number of Errors

During operation of the 33
simulation, ranged from 44
errors. Next, Figure 4 illust
tions and Figure 5 illustrate
nodes.

Fig.

Fig. 5. Division o

Common Nodes
During operation of the 33
simulation ranged from 398
errors. Next, Figure 6 illustr

438
440
442
444
446
448
450
452
454
456
458

1 3 5 7

Er
ro

rs
 (T

ho
us

an
ds

)

9%

Ubiquitous Healthcare System Simulated by MannaSim

3 simulations, it was found that the amount of errors i
45,053 to 455,977 and the average error was in 448,88
trates the variation of the number of errors among simu
es the division of errors among access points and comm

4. Number of errors among simulations

of errors among the access points and common nodes

3 simulations, it was found that the amount of errors i
8,783 to 416,857 and the average error was in 407,556.6
rates the number of errors in common nodes.

9 11 13 15 17 19 21 23 25 27 29 31

91%

%

Common Nodes

Access Points

595

in a
83.3
ula-
mon

in a
606

33

596 M.L.A. Ghizoni, A. Santos, and L.B. Ruiz

Fig. 6. Number of errors in common nodes

Access Point
During operation of the 33 simulations, it was found that the amount of errors in a
simulationranged from 34,791 to 46,270 and the average error was in 41,326errors.
Next, Figure 7 illustrates number of error in access point.

Fig. 7. Number of errors in access points

4.3 Types of Errors

Access Point
In the experiments, we found that we shared 98% of the errors (1,341,910) are colli-
sion packet errors, such errors are not reported in the trace file representing 2% of the
errors and the others combined do not reach 1%.

385

390

395

400

405

410

415

420

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Er
ro

rs
 (T

ho
us

an
ds

)

Simulations

30

35

40

45

50

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Er
ro

rs
 (T

ho
us

an
ds

)

Simulations

 Follow-Us: A Distributed Ubiquitous Healthcare System Simulated by MannaSim 597

Table 1 shows the division of the types of errors found in access points.

Table 1. Types of errors found in access points

Typesoferrors NumbersofErrors

Uninformed 21,210

ARP 206

CBK 146

COL 1,341,910

NRT 10

RET 298

Total: 1,363,780

Common Nodes
In the experiments, we found that we shared 94% of the errors (12,619,826) have
listed their cause in the simulation trace file, the remaining errors are mostly mistakes
of packet collision (COL - 5%) and errors caused by excess packets in the queue in-
terface (IFQ - 1%).

However, removing errors due to non-informed, it is observed that 73% are errors
related packet collision (COL), 23% are IFQ errors, 2% errors are due to excessive
attempts were sending (RET), 1% error callback (CBK), 1% are errors caused when
there is an excess of ARP packets in the queue (ARP) and the absence of routing er-
rors is less than 1%.

Below, Table 2 and Figure 8 show the breakdown of types of errors we found in
common nodes.

Table 2. Types of errors found in Common Nodes

Typesoferrors NumbersofErrors

Uninformed 12,619,826

ARP 2,773

CBK 9,800

COL 603,044

IFQ 193,115

NRT 1,810

RET 19,000

Total: 13,449,368

598 M.L.A. Ghizoni, A.

Fig. 8. Division of erro

4.4 Division of the Eva

During the operation of 33
vided on the transmission o
curs (18%) and routing of
division of simulations’ eve

Tab

TypeofEvent

Error

Routing

Receipt

Dispatch

Fig

23%

2%

49

Santos, and L.B. Ruiz

or types in common nodes (except for non-reported errors)

luations Events

3 simulations were verified 82,430,928 events that are
of information (49%), receiving (33%), when an error
messages. The following Table 3 and Figure 9 show

ents.

ble 3. Division of the simulations’events

Average Total

448,883.273 14,813,148

13,596.636 448,689

817,909.303 26,991,007

1,217,517.697 40,178,084

Total: 82,430,928

g. 9. Division of the simulations’events

1% 1%

73%

0%

ARP
CBK
COL
IFQ
NRT
RET

18%
0%

33%

9%
Error

Routing

Reception

Send

 di-
oc-
the

 Follow-Us: A Distributed Ubiquitous Healthcare System Simulated by MannaSim 599

4.5 Operation of the Network in Its Lifetime

Analyzing the behavior of the network during its lifetime, it was found that the first
network has a second peak in the number of messages (33,912 posts), but in a few
seconds the number of messages falls dramatically, and in second four it is already
in 16,384 messages.

This trend tends to remain stable up to 149 seconds, which marks the end of the
run of the simulation. Below, Figure 10 illustrates the operation of the network during
its lifetime.

Fig. 10. Operation of the network in its lifetime

5 Conclusions

With the various simulations we were able to see the convergence of the errors so we
can improve our WSN, increasing the number of access points and transmitting only
the necessary number of messages in order to decrease the large number of errors,
before deploying it in a real environment. The consequences of the large number of
errors could be devastating in a real environment because an unreported message
could cause suffering to the elderly. We note that the most common mistakes happen
in common node, which most of these errors are related to packet collision. We also
noticed that they occur in sending messages in most cases.

We also know that energy is a critical resource in WSNs. The rate of energy con-
sumption is referred to as the power. If the power is not managed efficiently, the life-
time of the power supply, such as batteries,will be shortened and the longevity of the
network will suffer. So is possible to see how much energy would be spent in each
node and access point by simulations. We have worked with them in other opportuni-
ties as well [3][7].

As a case study, in this work we proposed a shared smart home simulation, named
Follow-Us, that coordinates elderly care on a full time basis, helping the family with

0

5

10

15

20

25

30

35

40

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5N

um
be

r o
f M

es
sa

ge
s

(T
ho

us
an

ds
)

Number of Errors Number of Hits Total Amount

second

600 M.L.A. Ghizoni, A. Santos, and L.B. Ruiz

insider information and the possible adaptation according to the elder’s and other
resident’s needs. Social, ethical, security and privacy issues related to continuous
monitoring of people, storing and analyzing the data and how to verify the safety,
security and privacy aspects of the system are future work.

This has been a particular experience where we have used different technologies to
experiment the advantages and benefits of applying WSNs, collective context-
awareness and other methodologies to develop and deploy a real U-healthcare solution.

Acknowledgments. Our thanks to CNPq, Capes and INCT Namitec for helping us
financially.

References

1. Agoulmine, N., Deen, M.J., Lee, J.-S., Meyyappan, M.: U-Health Smart Home. IEEE Na-
notechnology Magazine 5(3), 6–11 (2011), doi:10.1109/MNANO.2011.941951

2. Cherkaoui, E.H., Agoulmine, N., Nguyen, T., Toni, L., Fontaine, J.: Taking Advantage of
The Diversity in Wireless Access Networks: On the Simulation of a User Centric Ap-
proach. In: 2011 IFIP/IEEE International Symposium on Integrated Network Management
(IM), pp. 1021–1028 (2011), doi:10.1109/INM.2011.5990516

3. Foleiss, J., Faustino, A., Ruiz, L.B.: An Experimental Evaluation of Compiler Optimiza-
tions on Code Size. In: Proceedings of the Simpósio Brasileiro de Linguagens de Progra-
mação, São Paulo (2011)

4. Kim, J., Choi, H.-S., Wang, H., Agoulmine, N., Deerv, M.J., Hong, J.W.-K.: POSTECH’s
U-Health Smart Home for elderly monitoring and support. In: 2010 IEEE International
Symposium on a World of Wireless Mobile and Multimedia Networks (WoWMoM), pp.
1–6 (2010), doi:10.1109/WOWMOM.2010.5534977

5. Li, Y., Thai, M.T., Wu, W.: Wireless Sensor Networks and Applications. Series: Signals
and Communication Technology. Springer (2008) e-ISBN 978-0-387-49592-7

6. Park, J., Moon, M., Hwang, S., Yeom, K.: Development of Simulation System for Validat-
ing Contextual Rule in Smart Home. This paper appears in: The 9th International Confe-
rence on Advanced Communication Technology, vol. 2, pp. 1143–1146 (2007) ISSN:
1738-9445

7. Ruiz, L.B., Braga, T.R.d.M., Silva, F.A., de Assunção, H.P., Nogueira, J.M.S., Loureiro,
A.A.F.: On the De-sign of a Self_managed Wireless Sensor Network. IEEE Communica-
tions Magazine, Estados Unidos 47(8), 1–10 (2005)

8. Silva, T.R.d.M.B., Ruiz, L.B., Loureiro, A.A.: Towards a Conflict Resolution Approach
for Collective Ubiquitous Context-aware Systems. In: 12th International Conference on In-
formation Integration and Web-based Applications & Services (iiWAS 2010), 2th Interna-
tional Conference on Information Integration and Web-based Applications & Services
(iiWAS2010), Paris, ACM e Austrian Computer Society, New York-Vienna (2010)

9. Zorkot, A.C., Ruiz, L.B., de Assunção, H.P.: A Tool for Moviment Detection Using Wire-
less Sensor Network. In: XXXIII Integrated Simposium of Software and Hardware, 2006,
Campo Grande. Proceedings of the Congresso Da Sociedade Brasileira de Computação
2006 (2006)

10. Cornell University, JIST - Java in Simulation Time,
http://jist.ece.cornell.edu/ (accessed June 19, 2011)

 Follow-Us: A Distributed Ubiquitous Healthcare System Simulated by MannaSim 601

11. Distributed Computing Group, Sinalgo - Algorithms for Network Simulator,
http://www.disco.ethz.ch/projects/sinalgo/ (accessed July 17, 2011)

12. Manna Research Group and Project Sensornet, MannaSim Framework,
http://www.mannasim.dcc.ufmg.br/ (accessed August 15, 2011)

13. UC Berkeley Computer Science Division, Simulating TinyOS Networks,
http://www.cs.berkeley.edu/~pal/research/tossim.html
(accessed June 18, 2011)

14. University of Southern California, Network Simulator (ns-2),
http://isi.edu/nsName/ns/ (accessed July 22, 2011)

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 602–612, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Adaptive Dynamic Frequency Scaling
for Thermal-Aware 3D Multi-core Processors

Hong Jun Choi1, Young Jin Park1, Hsien-Hsin Lee2, and Cheol Hong Kim1,*

1 School of Electronics and Computer Engineering,
Chonnam National University, Gwangju, Korea

2 School of Electrical and Computer Engineering, Georgia Institute of Technology,
Atlanta, Georgia, U.S.A.

chj6083@gmail.com, blueboy24@nate.com,
leehs@gatech.edu, chkim22@jnu.ac.kr

Abstract. 3D integration technology can provide significant benefits of reduced
interconnection delay and low power consumption in designing multi-core
processors. However, the 3D integration technology magnifies the thermal
challenges in multi-core processors due to high power density caused by
stacking multiple layers vertically. For this reason, the 3D multi-core
architecture cannot be practical without proper solutions to the thermal
problems such as Dynamic Frequency Scaling(DFS). This paper investigates
how the DFS handles the thermal problems in 3D multi-core processors from
the perspective of the function-unit level. We also propose an adaptive DFS
technique to mitigate the thermal problems in 3D multi-core processors by
assigning different DFS levels to each core based on the corresponding cooling
efficiency. Experimental results show that the proposed adaptive DFS technique
reduces the peak temperature of 3D multi-core processors by up to 10.35°C
compared to the conventional DFS technique, leading to the improved
reliability.

Keywords: Processor architecture, 3D integration technology, Thermal man-
agement, Dynamic frequency scaling, Multi-core processor.

1 Introduction

As process technology scales down and integration densities continue to increase,
interconnection delay has become one of the major constraints in improving the per-
formance of microprocessors[1-2]. As one of the most promising solutions to reduce
the interconnection delay of multi-core processors, three dimensional(3D) integration
technology has drawn significant attentions[3]. In 3D multi-core processors, multiple
cores are stacked vertically in the same package and components on different layers
are connected through direct through-silicon vias(TSVs)[4]. Therefore, the 3D inte-
gration technology reduces the interconnection delay of multi-core processors by

* Corresponding author.

 Adaptive Dynamic Frequency Scaling for Thermal-Aware 3D Multi-core Processors 603

decreasing the global wire length significantly compared to the 2D technology[5-7].
Reduced wire length also leads to the decreased power consumption [8-9]. For this
reason, the 3D integration technology has drawn considerable attentions in designing
recent multi-core processors.

Despite the benefits mentioned above, the 3D integration technology cannot be prac-
tical without proper solutions to the thermal problems in the processors. As mentioned
in [10], the thermal problems are exacerbated in the 3D multi-core processors compared
to the 2D multi-core processors mainly for two reasons. One is that the vertically
stacked silicon layers cause rapid increase of power sources. The other is that the ther-
mal conductivity of the thermal interface material(TIM) is lower than that of silicon and
metal, resulting in a higher power density as more stacked TIM layers. Unfortunately,
high temperature in the processor causes increased cooling costs, negative impact on the
reliability and performance degradation. Therefore, more advanced cooling methods are
required in designing upcoming 3D multi-core processors[2].

Dynamic thermal management(DTM) techniques using dynamic frequency scal-
ing(DFS), dynamic voltage scaling(DVS), clock gating or computation migration
have been proposed to relieve the thermal stress in 2D chips[11]. These techniques
solve the thermal problems to a great extent by lowering the average temperature or
by keeping the temperature under a given threshold[12]. However, conventional DTM
techniques might not be sufficient to mitigate the thermal problems of 3D multi-core
processors, because the peak temperature of 3D chips is much higher than that of 2D
chips. Therefore, more aggressive DTM techniques for 3D chips should be investi-
gated[13]. In our previous research, we analyzed the detailed thermal behavior of 3D
multi-core processors where the conventional DFS technique is applied[2]. Based on
the results in [2], in this paper, we propose an adaptive DFS technique to reduce the
peak temperature of 3D multi-core processors. In the processor with the proposed
adaptive DFS technique, the cores run with different DFS levels based on the corres-
ponding cooling efficiency of the core, resulting in the reduced peak temperature.

The rest of this paper is organized as follows. Section 2 provides an overview of
3D integration technology and dynamic thermal management techniques. In Section
3, the proposed adaptive DFS technique is described. Section 4 provides the simula-
tion methodology and the detailed results. Finally, Section 5 discusses our conclu-
sions and future work.

2 Related Work

2.1 3D Integration Technology

3D die stacking is a new technology that increases transistor density by integrating
two or more dies vertically[15]. Figure 1 shows the structural comparison between a
2D two-core processor and a 3D two-core processor. The 3D die stacking enables a
significant reduction of wire length both within a die and across dies in the micropro-
cessor. In the 3D microprocessor, blocks can be placed vertically on multiple dies to

604 H.J. Choi et al.

reduce the wire distance, latency and power. For this reason, the 3D integration tech-
nology has the potential to change the processor-design constraints by providing
substantial power and performance benefits compared to the 2D design technology.
Despite the promising advantages, the 3D integration technology brings us some con-
siderable issues. Thermal problem is one of the critical issues for the 3D microproces-
sor. The vertically stacked silicon dies causes rapid increase of power density, and the
increased power density causes increased cooling costs, negative impact on the
reliability and performance degradation. For this reason, more effective cooling tech-
niques are required in designing upcoming 3D multi-core processors.

Fig. 1. Structural comparison between 2D two-core processor and 3D two-core processor

2.2 Dynamic Thermal Management Techniques

For the conventional 2D chips, dynamic thermal management(DTM) techniques have
been widely used to address the thermal problems when the chip temperature exceeds
the thermal limit supported by the cooling solutions[16]. A lot of researches have
provided a large number of DTM techniques. They can be categorized into two dif-
ferent groups: One is hardware-based techniques and the other is software-based
techniques. The hardware-based DTM techniques such as dynamic frequency scal-
ing(DFS), dynamic voltage scaling(DVS) and clock gating[11] are more aggressive
and effective in managing the temperature than the software-based techniques. How-
ever, the hardware-based techniques incur more execution-time overhead compared to
the software-based techniques such as energy-aware process scheduling[17] and OS-
level task scheduling[18].

The thermal problems are expected to be more severe in 3D multi-core processors
compared to 2D multi-core processors. Therefore, more effective DTM techniques are
required for addressing the thermal problems of 3D multi-core processors. The DFS
technique has been regarded as one of the most efficient DTM techniques for 2D
multi-core processors[19]. In this work, we analyze the detailed thermal behavior of
3D multi-core processors with the conventional DFS technique varying application
features, cooling characteristics and frequency levels. We also propose an adaptive
DFS technique to reduce the peak temperature of the 3D multi-core processor by as-
signing different DFS levels to each core depending on the corresponding cooling
efficiency.

 Adaptive Dynamic Frequency Scaling for Thermal-Aware 3D Multi-core Processors 605

3 Adaptive Dynamic Frequency Scaling Technique

In the multi-core processor using the conventional DFS technique, the DFS levels
applied to the cores have no difference because the target processor of the conven-
tional DFS technique is the 2D multi-core processor where all the cores have compa-
rable cooling efficiency. However, there is a significant difference in the cooling
efficiency of the cores in the 3D multi-core processor depending on the vertical loca-
tion of the core. For this reason, so as to mitigate the thermal problems in the 3D mul-
ti-core processor based on the fact that the cores with better cooling efficiency (the
cores located nearer to the heat sink) can be clocked at a higher frequency compared
to the cores with worse cooling efficiency[2], we propose an adaptive DFS technique
which assigns different DFS levels to the cores by considering the corresponding
cooling efficiency. We determine the DFS levels to the cores based on the theory in
[20] to find the optimal frequency according to the temperature[21-22].

Table 1. DFS levels for the conventional DFS vs. DFS levels for the adaptive DFS

 Level-1 Level-2 Level-3 Level-4

core-0 (conventional DFS) 1GHz 2GHz 3GHz 4GHz

core-1 (conventional DFS) 1GHz 2GHz 3GHz 4GHz

core-0 (adaptive DFS) 0.5GHz 1.5GHz 2.5GHz 3.5GHz

core-1 (adaptive DFS) 1.5GHz 2.5GHz 3.5GHz 4.5GHz

The proposed adaptive DFS technique assigns different DFS levels to each core in

the 3D multi-core processor by considering the cooling efficiency of the core. There-
fore, in the 3D multi-core processor using the adaptive DFS technique, a higher base-
line frequency is assigned to the core with better cooling efficiency while a lower
baseline frequency is assigned to the core with worse cooling efficiency. In the 3D
two-core processor depicted in Figure 1, the cooling efficiency of core-1 is better than
that of core-0 owing to the shorter distance from the heat sink. For an example, as
shown in Table 1, the proposed adaptive DFS technique assigns different DFS levels
to the cores while the conventional DFS technique assigns same DFS levels to the
cores. In the table, core-1 represents the core near the heat sink while core-0 means
the core far from the heat sink. Based on the assumption that the conventional DFS
has four DFS levels(1GHz, 2GHz, 3GHz, 4GHz), the higher four DFS levels(1.5GHz,
2.5GHz, 3.5GHz, 4.5GHz) are assigned to the core-1 in the adaptive DFS technique.
To make the sum of the frequency to the same value, the lower four DFS le-
vels(0.5GHz, 1.5GHz, 2.5GHz, 3.5GHz) are assigned to the core-0 in the adaptive
DFS technique. As shown in Table 1, the sum of all the frequencies for the adaptive
DFS is equal to that for the conventional DFS.

The baseline frequency of the core with relatively better cooling efficiency for the
adaptive DFS is higher than that for the conventional DFS, while the baseline fre-
quency of the core with relatively worse cooling efficiency for the adaptive DFS is
lower than that for the conventional DFS. The frequency gap between the DFS levels
for the adaptive DFS is equal to that for the conventional DFS.

606 H.J. Choi et al.

We expect that the proposed adaptive DFS technique can reduce the peak tempera-
ture of the 3D multi-core processor compared to the conventional DFS, since the
cooling efficiency of each core depending on the distance from the heat sink is consi-
dered in the proposed adaptive DFS technique.

4 Experiments

4.1 Experimental Methodology

Our baseline processor for the simulated core is Alpha21264(EV6)[23] without L2
cache, as shown in Figure 2. We extend it to a dual-core configuration for multi-core
simulations. We use SimpleScalar [24] as our system simulator, which provides a
detailed cycle-level modeling of processors. In addition, Wattch [25] is used to obtain
a detailed power trace. We select two applications(mcf, gcc) from SPEC CPU2000
benchmark[26], because the chosen applications show a significant difference in the
perspective of the peak temperature of the processor.

Fig. 2. Floorplan of Alpha21264(EV6)

HotSpot version 5.0 is used as our thermal modeling tool[27] and modeled parame-
ters of the silicon layer and thermal interface material are shown in Table 2. Thermal
modeling parameters can be obtained by considering material properties described in
CRC handbook[28]. In the table, core-0 represents the core far from the heat sink,
while core-1 is near the heat sink.

Table 2. Thermal modeling parameters

Parameter
Value

TIM-0 CORE-0 TIM-1 CORE-1

Specific heat capacity (J/m3K) 4.00e6 1.75e6 4.00e6 1.75e6

Thickness(m) 2.00e-5 1.50e-4 2.00e-5 1.50e-4

Resistivity (mK/W) 0.25 0.01 0.25 0.01

In the experiments, the DFS technique is engaged continuously instead of reacting

to thermal emergencies. The conventional DFS technique is applied with four

 Adaptive Dynamic Frequency Scaling for Thermal-Aware 3D Multi-core Processors 607

levels(1GHZ, 2GHz, 3GHz and 4GHz) and the sum of the frequencies of two cores is
5GHz for all simulations.

4.2 Thermal Impact of DFS on 3D Multi-core Processors

In order to analyze the thermal impact of DFS levels, the simulations are performed
by running the same application(mcf) on both cores, only varying the DFS levels.
Therefore, four schemes can be simulated as follows: 1GHz/4GHz, 2GHz/3GHz,
3GHz/2GHz, 4GHz/1GHz, where the slash separates the frequencies of both cores.
The former represents the frequency of core-0 which is far from the heat sink and the
latter refers to the frequency of core-1 which is near the heat sink.

Fig. 3. Peak temperature(°C) according to DFS levels

The peak temperature according to DFS levels is shown in Figure 3. The peak
temperature for the compared four schemes are 98.09°C(1GHz/4GHz),
97.17°C(2GHz/3GHz), 105.59°C(3GHz/2GHz) and 123.1°C(4GHz/1GHz). For the
first scheme(1GHz/4GHz) and the last scheme(4GHz/1GHz), the same frequency
values are used, just swapping the frequencies on the two cores, while the peak tem-
perature changes from 98.09°C to 123.1°C. The same pattern can be seen in the
second and the third scheme, the peak temperature varies from 97.17°C to 105.59°C.
As shown in the graph, same frequency values yield a totally different thermal profile,
because the cooling efficiency of each core in the 3D multi-core processor is not
comparable. In general, the core near the heat sink shows better cooling efficiency
than the core far from the heat sink. Therefore, to reduce the temperature of the hot
unit in the core, the core with relatively better cooling efficiency should be clocked at
a higher frequency than the core with relatively worse cooling efficiency.

4.3 Thermal Impact of Workload Distribution on 3D Multi-core Processors

In order to identify the thermal pattern according to the workload distribution for 3D
multi-core processors, mcf and gcc applications are chosen to be run because these
two benchmark applications show a great difference in generating thermal impact on

608 H.J. Choi et al.

the processors. In the 2D single-core processor, mcf shows very high peak tempera-
ture(123.5°C), while gcc gets low peak temperature(89.9°C). In the experiments, two
different applications are run on two cores with four DFS levels, resulting in eight
different schemes as follows:

mcf1GHz/gcc4GHz, mcf2GHz/gcc3GHz, mcf3GHz/gcc2GHz,
mcf4GHz/gcc1GHz, gcc1GHz/mcf4GHz, gcc2GHz/mcf3GHz,
gcc3GHz/mcf1GHz, gcc4GHz/mcf1GHz

Fig. 4. Peak temperature(°C) according to workload distribution

The running application and DFS level of the core-0 are shown before the slash
and those of the core-1 are shown after the slash. For the first four schemes, gcc is run
on the core with better cooling efficiency and mcf is run on the other core. Then, ap-
plications are swapped for the last four schemes to observe the thermal impact of the
workload distribution on 3D multi-core processors. As shown in Figure 4, the peak
temperatures of eight simulated schemes are 93.08°C, 94.43°C, 104.1°C, 122.53°C,
97.51°C, 94.12°C, 100.01°C and 114.49°C, respectively. The core-1 yields
lower temperature than the core-0 despite the type of workload because of its near-
heat-sink location advantage(better cooling efficiency) except for fifth
scheme(gcc1GHz/mcf4GHz). For the fifth scheme, the frequency of the core-1 is too
higher than that of the core-0.

For the fourth scheme(mcf4GHz/gcc1GHz) and the eighth scheme(gcc4GHz/
mcf1GHz), the frequency of each core is same, but the temperature of the eighth
scheme is lower than that of the fourth scheme. Same pattern can be seen in the third
and seventh scheme, reflecting the thermal impact of assigning different workloads to
the cores with different cooling efficiency. Therefore, to reduce the temperature of the
cores, the relatively heavier workload should be assigned to the core with relatively
better cooling efficiency.

4.4 Conventional DFS Technique vs. Adaptive DFS Technique for 3D
Multi-core Processors

In the processor using the conventional DFS technique, the DFS levels applied to
each core are identical. However, our simulation results show that the core with better

 Adaptive Dynamic Frequency Scaling for Thermal-Aware 3D Multi-core Processors 609

cooling efficiency can be clocked at a higher frequency to mitigate the thermal
problems in 3D multi-core processors. For this reason, the proposed adaptive DFS
technique assigns different DFS levels to the cores depending on the corresponding
cooling efficiency.

For a dual-core processor using the adaptive DFS technique, the DFS levels ap-
plied to the core with better cooling efficiency are 1.5GHZ, 2.5GHz, 3.5GHz and
4.5GHz, while the DFS levels applied to the core with worse cooling efficiency are
0.5GHz, 1.5GHz, 2.5GHz and 3.5GHz. In the simulations, the sum of the frequencies
of two cores in the adaptive DFS is set to 5GHz, because the sum of the frequencies
of two cores is 5GHz in the conventional DFS. Therefore, for an example, one core is
set to operate at 3.5GHz in the adaptive DFS, the frequency of the other core is set to
1.5GHz. Moreover, in order to make the results comparable with previous simulation
results, same applications(mcf and gcc) are used. Simulated eight schemes for the
adaptive DFS technique can be listed as follows:

mcf0.5GHz/gcc4.5GHz, mcf1.5GHz/gcc3.5GHz, mcf2.5GHz/gcc2.5GHz,
mcf3.5GHz/gcc1.5GHz, gcc0.5GHz/mcf4.5GHz, gcc1.5GHz/mcf3.5GHz,
gcc2.5GHz/mcf2.5GHz, gcc3.5GHz/mcf1.5GHz

The application and DFS level of the core-0 are shown before the slash and those of
core-1 are shown after the slash. The peak temperature of the core in each scheme is
shown in Figure 5.

Fig. 5. Peak temperature(°C) with adaptive DFS

As shown in Figure 4 and Figure 5, the peak temperature with the adaptive DFS is
lower than that with the conventional DFS except for the first scheme(mcf0.5GHz/
gcc4.5GHz) and the fifth scheme(gcc0.5GHz/ mcf4.5GHz). The purpose of the adap-
tive DFS is reducing the frequency of the core with worse cooling efficiency while
the frequency of the core with better cooling efficiency increases. In the simulated
dual-core processor, the core with better cooling efficiency is core-1 while the core-0
has worse cooling efficiency. For the first scheme with the conventional DFS (shown
in Figure 4), the peak temperature of core-1 is similar to that of core-0. For the fifth
scheme with the conventional DFS, the peak temperature of core-1 is higher than that
of core-0. For the first and fifth scheme with the adaptive DFS, the frequency of the

610 H.J. Choi et al.

core-1 is higher than that with the conventional DFS. Therefore, the peak temperature
of two schemes with the adaptive DFS scheme increases. However, the peak tempera-
ture with the adaptive DFS is lower than that with the conventional DFS by 5.01°C on
the average. Especially, for the fourth scheme(gcc3.5GHz/ mcf1.5GHz) with the
adaptive DFS, the peak temperature is lower than that with the conventional DFS by
up to 10.35°C. Simulation results prove that assigning different DFS levels to each
core depending on the cooling efficiency can reduce the peak temperature of the 3D
multi-core processor, resulting in the improved reliability and better performance.

5 Conclusions

In this paper, we analyzed the thermal behavior of 3D multi-core processors varying
DFS levels and workload distribution. We demonstrated that the core near the heat
sink can be clocked at a higher frequency than the core far from the heat sink to keep
the performance without thermal emergencies. The workload with bigger thermal
influence also can be assigned to the core with better cooling efficiency to reduce the
overall temperature of the 3D multi-core processor. We also proposed an adaptive
DFS technique to mitigate the thermal problems in the 3D multi-core processor by
assigning different DFS levels to each core based on the corresponding cooling effi-
ciency. According to our simulation results, the proposed adaptive DFS technique
reduces the peak temperature of the 3D multi-core processor by 5.01°C on the aver-
age compared to the conventional DFS technique. Therefore, we expect that the pro-
posed adaptive DFS can be a good solution to reduce the peak temperature of the
upcoming 3D multi-core processors.

Acknowledgements. This work was supported by the National Research Foundation
of Korea Grant funded by the Korean Government (NRF-2011-013-D00105).

References

1. Joyner, J.W., Zarkesh-Ha, P., Davis, J.A., Meindl, J.D.: A Three-Dimensional Stochastic
Wire-Length Distribution for Variable Separation of Strata. In: Proc. of IEEE International
Interconnect Technology Conference, SanFrancisco, USA, pp. 132–134 (June 2000)

2. Park, Y.J., Zeng, M., Lee, B.S., Lee, J.A., Kang, S.G., Kim, C.H.: Thermal Analysis for
3D Multi-core Processors with Dynamic Frequency Scaling. In: Proc. of IEEE/ACIS In-
ternational Conference on Computer and Information Science, Kaminoyama, Japan, pp.
69–74 (August 2010)

3. Jang, H.B., Yoon, I., Kim, C.H., Shin, S., Chung, S.W.: The impact of liquid cooling on
3D multi-core processors. In: Proc. of the 2009 IEEE International Conference on Com-
puter Design, California, USA, pp. 472–478 (October 2009)

4. Zhu, C., Gu, Z., Shang, L., Dick, R.P., Joseph, R.: Three-dimensional chip-multiprocessor
run-time thermal management. IEEE Transactions on Computer-Aided Design of Lnte-
grated Circuits and Systems 27(8), 1479–1492 (2008)

 Adaptive Dynamic Frequency Scaling for Thermal-Aware 3D Multi-core Processors 611

5. Puttaswamy, K., Loh, G.H.: Dynamic Instruction Schedulers in a 3-Dimensional Integra-
tion Technology. In: Proc. of the ACM Great Lake Symposium On VLSI, Philadelphia,
USA, pp. 153–158 (May 2006)

6. Puttaswamy, K., Loh, G.H.: Implementing Caches in a 3D Technology for High Perfor-
mance Processors. In: Proc. of the International Conference on Computer Design, San
Jose, USA, pp. 525–532 (October 2005)

7. Reed, P., Yeung, G., Black, B.: Design Aspects of a Microprocessor Data Cache using 3D
Die Interconnect Technology. In: Proc. of the International Conference on Integrated Cir-
cuit Design and Technology, pp. 15–18 (May 2005)

8. Puttaswamy, K., Loh, G.H.: Thermal Analysis of a 3D Die Stacked High Performance Mi-
croprocessor. In: Proc. of ACM Great Lakes Symposium on VLSI, Philadelphia, USA, pp.
19–24 (May 2006)

9. Davis, W.R., Wilson, J., Mick, S., Xu, J., Hua, H., Mineo, C., Sule, A.M., Steer, M., Fran-
zon, P.D.: Demystifying 3D ICs: The Pros and Cons of Going Vertical. IEEE Design Test
Computers 22, 498–510 (2005)

10. Cong, J., Luo, G.J., Wei, J., Zhang, Y.: Thermal-Aware 3D IC Placement Via Transforma-
tion. In: Proc. of ASP-DAC (2007), Yokohama, Japan, pp. 780–785 (January 2007)

11. Brooks, D., Martonosi, M.: Dynamic Thermal Management for High-performance Micro-
processors. In: Proc. of the 7th International Symposium on High-Performance Computer
Architecture, Monterrey, Mexico, pp. 171–182 (January 2001)

12. Coskun, A.K., Ayala, J.L., Atienza, D., Rosing, T.S., Leblebici, Y.: Dynamic Thermal
Management in 3D Multicore Architectures. In: Proc. of Design, Automation & Test in
Europe Conference & Exhibition, Nice, France, pp. 1410–1415 (April 2005)

13. Kumar, R., Zyuban, V., Tullsen, D.M.: Interconnections in multi-core architectures: Un-
derstanding mechanisms, overheads and scaling. In: Proc. of the 32th Annual International
Symposium on Computer Architecture, Madison, USA, pp. 408–419 (June 2005)

14. Takahashi, K., Sekiguchi, M.: Through Silicon Via and 3-D Wafer/Chip Stacking Tech-
nology. In: Proc. of the 2006 Symposium on VLSI Circuit Digest of Technical Papers,
Honolulu, USA, pp. 89–92 (June 2006)

15. Black, B., Annavaram, M., Brekelbaum, N., DeVale, J., Jiang, L., Loh, G.H., McCauley,
D., Morrow, P., Nelson, D.W., Pantuso, D., Reed, P., Rupley, J., Shankar, S., Shen, J.,
Webb, C.: Die Stacking (3D) Microarchitecture. In: Proc. the 39th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, Florida, USA, pp. 469–479 (December
2006)

16. Kumar, A., Shang, L., Peh, L.S., Jha, N.K.: System-level dynamic thermal management
for high-performance microprocessors. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 27(1) (January 2008)

17. Mishra, R., Rastogi, N., Zhu, D., Mosse, D., Melhem, R.: Energy Aware Scheduling for
Distributed Real-Time Systems. In: The Proc. International Parallel and Distributed
Processing Symposium, Nice, France, pp. 21–30 (April 2003)

18. Zhou, X., Xu, Y., Du, Y., Zhang, Y., Yang, J.: Thermal Management for 3D Processors
via Task Scheduling. In: Proc. of the 2008 37th International Conference on Parallel
Processing, Portland, USA, pp. 115–122 (September 2008)

19. Skadron, K., Stan, M.R., Sankaranarayanan, K., Huang, W., Velusamy, S., Tarjan, D.:
Temperature-aware microarchitecture: modeling and implementation. ACM Transactions
on Architecture and Code Optimization 1(1), 94–125 (2004)

612 H.J. Choi et al.

20. Shi, B., Zhang, Y., Srivastava, A.: Dynamic Thermal Management for Single and Multi-
core Processors Under Soft Thermal Constraints. In: Proc. of the 16th ACM/IEEE Interna-
tional Symposium on Low Power Electronics and Design, Poster, Austin, USA (August
2010)

21. Li, M., Zhao, W.: Visiting power laws in cyber-physical networking systems. Mathemati-
cal Problems in Engineering 2012, Article ID 302786, 13 pages (2012)

22. Li, M., Zhao, W.: Asymptotic identity in min-plus algebra: a report on CPNS. Computa-
tional and Mathematical Methods in Medicine 2012, Article ID 154038, 11 pages (2012)

23. Kessler, P.E.: The Alpha 21264 Microprocessor. IEEE Micro 19(2), 24–36 (1999)
24. Burger, D.C., Austin, T.M.: The SimpleScalar tool set, version 2.0. ACM SIGARCH

CAN 25(3), 13–25 (1997)
25. Brooks, D., Tiwari, V., Martonosi, M.: Wattch: a framework for architectural-level power

analysis and optimizations. In: Proc. of the 27th International Symposium on Computer
Architecture, pp. 83–94 (June 2000)

26. Henning, J.L.: SPEC CPU 2000: Measuring CPU Performance in the New Millennium.
IEEE Computer 33(7), 28–35 (2000)

27. Hotspot, http://lava.cs.virginia.edu/HotSpot
28. CRC Press, CRC Handbook of Chemistry, http://www.hbcpnetbase.com

A Context-Aware Service Model

Based on the OSGi Framework
for u-Agricultural Environments

Jongsun Choi1, Sangjoon Park2, Jongchan Lee2, and Yongyun Cho3,�

1 School of Computing, Soongsil University,
Sangdo 5 dong 1-1, Seoul, Korea

jongsun choi@gmail.com
2 Dept. of Computer Information Engineering, Kunsan National University,

1170 Daehangno, Gunsan, Jeonbuk, 573-701, Korea
lubimia@kunsan.ac.kr

3 Information and Communication Engineering, Sunchon National University,
413 Jungangno, Suncheon, Jeonnam 540-742, Korea

yycho@sunchon.ac.kr

Abstract. In ubiquitous environments, many services and devices may
be heterogeneous and independent of each other. So, a service frame-
work for ubiquitous environments have to be able to handle the het-
erogeneous applications and devices organically. Furthermore, because
demand changes in ubiquitous environments tend to occur very dy-
namically and frequently, the service architecture also has to handle
the demand changes of services in ubiquitous computing environments
well. Services and devices in ubiquitous agricultural environments also
have each other’s different characteristics. Therefore, we need a service
framework which can negotiate the heterogeneous characteristics of the
services and devices for context-aware services in ubiquitous agricul-
tural environments. In this paper, we propose an OSGi framework-based
context-aware service model for ubiquitous agricultural environments.
The proposed service model is based on OSGi framework, which can
support various context-aware applications based on RFID/USN in ubiq-
uitous agricultural environments regardless of what sensors and devices
in agricultural environments are. Therefore, the proposed service model
can fast reorganize and easily reuse existing service resources for a new
agricultural service demand without all or big change of the established
system architecture of the agricultural environments. Especially, the pro-
posed service model can be greatly helpful in the developments of context-
aware agricultural services in various cultivation environments equipped
with each other’s different sensors.

Keywords: context-aware service model, OSGi Framework, agricultural
environments.

� Corresponding author.

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 613–621, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

614 J. Choi et al.

1 Introduction

Recently, by using the newest information technologies, bio/organic sensor tech-
nologies and wire/wireless network technologies, agricultural environments have
been smarter and more ubiquitous in the growth and development processes of
crops in order to gain high productivity and safe growing of crops [1]. Com-
monly, services in ubiquitous agricultural environments tend to use various envi-
ronmental conditions which related with cultivations of crops[1,2,3,4,5]. That is,
a context-aware service in ubiquitous agricultural environments is based on var-
ious growth data gathered from RFID/USN. However, the devices and sensors
distributed into the ubiquitous agricultural environments are heterogeneous and
have different characteristics. So, the results from the sensors and the devices
may mean various meanings.

This paper proposes an OSGi framework-based context-aware service model
for ubiquitous agricultural environments. The proposed service model is based
on OSGi framework [6], which has the valuable features such as plug-in architec-
ture, open-type service bundles, system-independent service architecture, and so
on. Therefore, the proposed service model is able to reorganize heterogeneous
applications and devices in agricultural environments for a new context-aware
service according to a user’s demand, without any intervention during the exe-
cution of a service system. And, because the proposed service model can handle
the demand changes of services in ubiquitous computing environments which
tend to be changed dynamically and frequently, it is suitable for a context-aware
agricultural service in ubiquitous agricultural environments which has to con-
sider various agricultural environment conditions as important attributes for
cultivation service executions. Therefore, with the suggested service model we
can use it as a system-independent service architecture or a system-flexible ser-
vice model to develop various context-aware service applications in agricultural
environments.

The rest of this paper is organized as follows. In Section 2, we introduce related
works. Section 3 describes the proposed service architecture. Finally, Section 4
concludes this paper.

2 Related Work

OSGi [6] is a set of specifications to offer easy reusing and convenient composing
of service components having different characteristics. Figure 1 shows the OSGi’s
leyered architecture. As shown Figure 1, OSGi contains a few of layers, which
depict their roles. First, Bundles in Figure 1 is a layer to offer a service bundles
which are installed on the OSGi framework by developers of service applications.
Then, Services in Figure 1 is a layer for service application connected to the
appropriate service bundles.

In this time, to connect a service application to a service bundle appropriated
for it, OSGi offers a publish-find-bind method. Life-Cycle is a kind of APIs
for bundles. OSGi framework executes on Java VM, and various components

A Context-Aware Service Model Based on the OSGi Framework 615

based on OSGi can be implemented in Java. OSGi framework offers suitable
architecture for the implementation of any service application which insists of
heterogenous system components.

Fig. 1. The OSGi’s leyered architecture [6]

Until now, there have been many researches for context-aware service model
and architecture based on OSGi [7,8,9,10,11,12]. FollowMe [7] is an OSGi-based
context-aware workflow service framework that unifies a workflow-based appli-
cation model and a context model using an ontology. FollowMe uses a scenario-
based workflowmodel to dynamically handle user’s service demands from various
domains. Figure 2 illustrates the brief middleware architecture of FollowMe.

In Figure 2, the Physical layer is an area to deal with contexts from real sensors
which may be many different from each others. The Device access layer is for
mapping a physical sensor with any service by the sensor. The Platform layer
contains OSGi framework to offer various OSGi-based service bundles and OSGi-
based components. In the Platform layer, a context-aware service implemented

616 J. Choi et al.

by a developer is executed. And, in the Application layer in Figure 2, a developer
can compose or make a context-aware service or application.

Fig. 2. The brief middleware architecture of FollowMe [7]

3 OSGi-Based Context-Aware Service Model for
Ubiquitous Agricultural Environments

3.1 Layered Architecture of the Suggested Service Model

In this paper, we propose an OSGi framework-based context-aware service model
for ubiquitous agricultural environments. To do this, the proposed service model
consists of architectural layers to deal with various contexts based on real sensed
data from different kinds of sensors, devices and hardware components. Figure
3 illustrates the layered architecture of the suggested service model for context-
aware services in ubiquitous agricultural environments.

A Context-Aware Service Model Based on the OSGi Framework 617

Fig. 3. The layered architecture of the suggested service model

618 J. Choi et al.

As shown in Figure 3, the suggested service model’s system architecture con-
sists of four layers, which are a physical layer, a service device layer, a service
execution layer, and a service development layer. Figure 4 shows a sample of a
possible service scenario based on the proposed architecture for a context-aware
agricultural service in ubiquitous agricultural environments.

Fig. 4. A sample of a possible service scenario based on the proposed architecture for
a context-aware agricultural service

As shown in Figure 4, the service devices includes own service device bundle
based on OSGi framework. And the service devices can be connected to each
other through Internet, wire/wireless networks, and WAN.

A Context-Aware Service Model Based on the OSGi Framework 619

Fig. 5. More specific architecture of a service device for remote communication

Figure 5 shows more specific architecture of a service device to communicate
data with any other remote service device. As shown in Figure 5, the architecture
of the service device consists of various service device bundles implemented on
OSGi framework.

Figure 6 shows a sample scenario to execute a context-aware agricultural
service, when a humidity context related with crops is sensed from a humidity
sensor in agricultural environments.

620 J. Choi et al.

Fig. 6. A sample scenario to execute a context-aware agricultural service according to
the context from real sensors

4 Conclusion

In this paper, we proposed anOSGi framework-based context-aware servicemodel
for ubiquitous agricultural environments. For this, we designed a layered system
architecture based onOSGi framework,which supports plug-in architecture, open-

A Context-Aware Service Model Based on the OSGi Framework 621

type service bundles, and system-independent service architecture. Therefore, the
proposed service model is able to efficiently recompose different kinds of sensors
and devices in agricultural environments in order to make a context-aware agri-
cultural service. And, the proposed service model can easily reuse the heteroge-
neous resources according to the demand changes of services in ubiquitous com-
puting environments. Therefore, with the suggested service model we can use it as
a system-independent service architecture or a system-flexible servicemodel to de-
velop various context-aware service applications in agricultural environments.In
future works, we are going to research the implementation of agricultural context-
aware services based on the suggested OSGi framework.

References

1. Cho, Y., Yoe, H., Kim, H.: CAS4UA: A Context-Aware Service System Based
on Workflow Model for Ubiquitous Agriculture. In: Kim, T.-H., Adeli, H. (eds.)
AST/UCMA/ISA/ACN 2010. LNCS, vol. 6059, pp. 572–585. Springer, Heidelberg
(2010)

2. Cho, Y., Park, S., Lee, J., Moon, J.: An OWL-Based Context Model for U-
Agricultural Environments. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar,
D., Apduhan, B.O. (eds.) ICCSA 2011, Part IV. LNCS, vol. 6785, pp. 452–461.
Springer, Heidelberg (2011)

3. Cho, Y., Moon, J., Kim, I., Choi, J., Yoe, H.: Towards a smart service based on a
context-aware workflow model in u-agriculture. IJWGS 7(2), 117–133 (2011)

4. Cho, Y., Yoe, H., Kim, H.: CAS4UA: A Context-Aware Service System Based
on Workflow Model for Ubiquitous Agriculture. In: Kim, T.-h., Adeli, H. (eds.)
AST/UCMA/ISA/ACN 2010. LNCS, vol. 6059, pp. 572–585. Springer, Heidelberg
(2010)

5. Aqeel-ur-Rehman, Shaikh, Z.A.: Towards Design of Context-Aware Sensor Grid
Framework for Agriculture. World Academy of Science, Engineering and Technol-
ogy 38, 244–247 (2008)

6. The OSGi Alliance, http://www.osgi.org/
7. Li, J., Bu, Y., Chen, S., Tao, X., Lu, J.: FollowMe: On Research of Pluggable Infras-

tructure for Context-Awareness. In: Proceedings of 20th International Conference
on Advanced Information Networking and Applications (AINA 2006), vol. 1, pp.
199–204 (2006)

8. Gu, T., Pung, H.K., Zhang, D.Q.: Toward an OSGi-based infrastructure for
context-aware applications. IEEE Pervasive Computing 3(4), 66–74 (2004)

9. Rellermeyer, J., Alonso, G., Roscoe, T.: R-OSGi: Distributed Applications Through
Software Modularization. In: Cerqueira, R., Pasquale, F. (eds.) Middleware 2007.
LNCS, vol. 4834, pp. 1–20. Springer, Heidelberg (2007)

10. Wu, J., Huang, L., Wang, D., Shen, F.: R-osgi-based architecture of distributed
smart home system. IEEE Transactions on Consumer Electronics 54(3), 1166–1172
(2008)

11. Yu, Z., Zhou, Z., Yu, Z., Zhang, D., Chin, C.: An OSGI-based infrastructure for
context-aware multimedia services. IEEE Communications Magazine 44(10), 136–
142 (2006)

12. Lin, W., Sheng, Y.H.: Using OSGi UPnP and Zigbee to provide a wireless ubiq-
uitous home healthcare environment. In: The Second International Conference on
Mobile Ubiquitous Computing, Systems, Services and Technologies, UBICOMM
2008, pp. 268–273 (2008)

http://www.osgi.org/

A Security Framework for Blocking New Types

of Internet Worms
in Ubiquitous Computing Environments

Iksu Kim1 and Yongyun Cho2,�

1 School of Computing, Soongsil University,
Sangdo 5 dong 1-1, Seoul, Korea

iksuplorer@gmail.com
2 Information and Communication Engineering, Sunchon National University,

413 Jungangno, Suncheon, Jeonnam 540-742, Korea
yycho@sunchon.ac.kr

Abstract. In ubiquitous computing environments, many of services may
communicate valuable data with each other through networking based
on Internet. So, a service of ubiquitous computing environments has to
be invulnerable to any type of Internet worms or attacks. Internet worms
can compromise vulnerable servers in a short period of time. The security
systems using signatures cannot protect servers from new types of Inter-
net worms. In this paper, we propose a security framework for blocking
new types of Internet worms, using the Snort and Honeytrap. Honeytrap
are installed on every client, which detects Internet worm attacks. All in-
teractions with Honeytrap are regarded as attacks because it is installed
to lure Internet worms. In the proposed framework, when Honeytraps
detect Internet worm attacks, Snort blocks the attacks.

Keywords: Internet worm, virtual machine, honeytrap.

1 Introduction

As the need for computer security increases, so does the need for computer se-
curity systems to be developed to provide adequate protection to all user. To
improve com-puter security, security systems such as intrusion detection systems
(IDSs) and intru-sion prevention systems (IPSs) have been developed. Most se-
curity systems use the signatures of well-known attacks to detect intrusions and
to protect computers from them. Therefore, it is important to collect informa-
tion about new attacks because the detection rules employed by IDSs and IPSs
are formulated using this information. Honeypots are valuable security resources
which are intended to get compromised. They aim to collect information regard-
ing attackers. All activities within a honeypot are suspicious because it is not
a production system. Honeytrap is a network security tool written to observe

� Corresponding author.

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 622–631, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Security Framework for Blocking New Types of Internet Worms 623

attacks against Internet services. It can relay incoming connec-tions to a hon-
eypot and at the same time record the whole communication. However, it is
almost impossible to immediately generate detection rules from the information
collected by honeypots.

In this paper, we propose a security framework for blocking Internet worm
attacks, using Snort and Honeytrap. Honeytrap is installed on client computers
to detect Inter-net worm attacks and Snort is installed on a firewall to blocking
the attacks. All inter-actions with the honeytrap installed on client computers are
regarded as attacks be-cause the honeytrap is installed to lure Internet worms.
Therefore, Honeytrap can detect the Internet worm attacks when an Internet
worm broadcasts malicious packets to hosts in a network. Honeytrap then sends
the source IP addresses of the attacks to a firewall and it can block the worm
attacks.

The rest of this paper is organized as follows. Section 2 presents the back-
ground of information regarding attacks and previous studies. Section 3 describes
the proposed framework. Finally, Section 4 concludes this paper.

2 Related Work

2.1 Detection Method for Attacks

A general method to detect attacks is to analyze log files. Unlike normal system
logs, when attackers try to intrude a server, abnormal logs are recorded to log
files. Figure 1 presents logs of port scans and a buffer overflow attack. Many
connection logs are recorded in case of the port scans and unreadable characters
are recorded in case of the buffer overflow attack. In order to detect these attacks,
system administrators have to analyze log files periodically. Accordingly, it is
hard to detect the attacks in real-time. For this reason, there have been many
studies on IDSs.

Fig. 1. Logs of port scans and a buffer overflow attack

624 I. Kim and Y. Cho

An IDS monitors a system and network and detects attacks in real-time.
IDSs can be classified in network-based and host-based IDSs. To detect attacks,
network-based IDSs monitor network traffic and host-based IDSs monitor and
analyze log files, pro-cesses, and resources on the system. IDSs can also be clas-
sified into misuse-based and anomaly-based IDSs. Misuse-based IDSs use the
signatures of known attacks to de-tect attacks. Anomaly-based IDSs establish a
baseline of normal usage patterns and regard anomalous behavior as attacks.

RTSD (Real time scan detector) is a network-based and anomaly-based IDS to
deal with illegal invasion attempts, and to try to detect the tactics, tendencies,
and trends in illegal technologies [1]. It consists of the RTSD agent and the
RTSD manager. The RTSD agent is run at various end sites and considers many
connections from a host as port scanning. When the RTSD agent detects the
port scanning, it logs the information and reports alerts to the RTSD manager.
Accordingly, it is possible to collect statistics of scan incidents and to detect and
identify previously unknown attacks. Song, J. and Kwon, Y. proposed a new real-
time scan detection system that uses rules derived from attacker’s behavioral
pattern [2]. It can detect various attacks based on port scanning techniques and
minimize the false positive rate.

Snort is an open source network-based and misuse-based IDS created by
Roesch [3]. Through protocol analysis and content searching and matching, Snort
can detect attack methods, including denial of service, buffer overflow, CGI at-
tacks, stealth port scans, and SMB probes.

Fig. 2. Logs of port scans and a buffer overflow attack

Fig. 2 presents a rule to detect Linux shell code attacks. When Snort detects
incom-ing packets with ”90 90 90 e8 c0 ff ff ff/bin/sh” from an external network,
it displays a message with ”SHELLCODE Linux shellcode” on the screen. It is
important to collect information of new attacks because IDSs use the detection
rules created from the information. Unfortunately, traditional security systems,
including firewalls, IDSs and others, collect vast amounts of data every day. The
vast amounts of data make it difficult to find out new types of attacks.

A honeypot is a security resource whose value lies in being probed, attacked,
or compromised [4]. All activities within a honeypot are suspicious because it
is not a production system. The information collected by honeypots are highly
valuable and provide white hats with a much fuller understanding of the intent,
knowledge level, and modes of operation of attackers [5,6,7,8]. Honeypots have
an advantage that they do not produce vast amounts of logs.

Honeytrap is a network security tool written to observe attacks against net-
work services [9]. As a low-interactive honeypot, it collects information regarding
known or unknown network-based attacks and thus can provide early-warning

A Security Framework for Blocking New Types of Internet Worms 625

information. When Honeytrap daemon detects a request to an unbound port,
it considers the re-quest as suspect. Honeytrap can relay incoming connections
to honeypots and at the same time record the whole communication. However,
it is impossible to immediately generate detection rules from the information
collected by honeypots and Honeytrap.

2.2 A Change of Network Deployment for Security in Ubiquitous
Computing Environments

Figure 3 shows a brief architecture of a traditional network deployment for se-
curity with Internet.

Fig. 3. A traditional network deployment for security with Internet

626 I. Kim and Y. Cho

As shown in Figure 3, a network deployment for the traditional computing
environments with the firewall can enough block various network attacks that
may come into the computer systems through Internet. Figure 4 shows a network
deployment for mobile Internet computing environments in which various mobile
devices equipped with mobile Internet technologies are used.

Fig. 4. A network deployment for security in mobile Internet environment through
mobile devices

As shown in Figure 4, in ubiquitous computing environments, an user can
freely access a network service with his/her hand-held devices with wireless
Internet access technologies such as Wi-Fi, Wibro, and so on. So, a network

A Security Framework for Blocking New Types of Internet Worms 627

Fig. 5. A possible network deployment for security in ubiquitous computing environ-
ments with sensors and contexts

deployment for security in ubiquitous computing environments may be different
from other computing environments. Figure 5 shows a possible network deploy-
ment for security in ubiquitous computing environments with various real sensors
and contexts from the sensors through RFID/USN.

628 I. Kim and Y. Cho

3 Security Framework for Blocking Internet Worm
Attacks

3.1 Network Deployment of the Proposed Framework

As mentioned above, most security systems use the signatures of well-known
attacks to detect and to block intrusions. However, Internet worms can com-
promise many vulnerable servers before creating rules for detecting the Internet
worms. Figure 6 shows an example of network deployment using the proposed
framework.

Fig. 6. An example of network deployment using the proposed framework

The goal of a proposed framework is promptly to detect and to block new types
of Internet worms. In order to achieve the goal, virtual machines are deployed
on every client computer with available unused IP addresses. All interactions
with the virtual ma-chines can be considered suspect interactions because the
virtual machines are not used for services. After virtual machines are installed
on client computers, Honeytraps are installed on the virtual machines. When an
Internet worm broadcasts malicious packets to hosts in a network, client com-
puters receive the packets. After that, the client computers inform an attacker’s
IP address to a firewall, as shown in Figure 6.

A Security Framework for Blocking New Types of Internet Worms 629

3.2 Components for Blocking Internet Worm Attacks

Client components for blocking internet worm attacks are shown in Figure 7.
In the proposed framework, clients cannot use the Internet services without au-
thentication. Therefore, clients have to send an authentication request to the
firewall for using the Internet services. When a client executes Honeytrap, Au-
thentication Requestor (AR) sends the authentication request to the firewall and
the firewall generates the accept rule for the client.

Fig. 7. Client components for blocking Internet worm attacks

Honeytrap opens ports on a client computer to detect malicious packets from
Inter-net worms. The number of ports opened by Honeytrap is the same as the
number of ports opened by production servers. When Honeytrap detects mali-
cious packets from Internet worms, it records the packets and Blocking Requestor
(BR) sends the source IP addresses of the packets to the firewall. The firewall
then generates a drop rule for blocking the packets from the Internet worms.

Firewall components for blocking internet worm attacks are shown in Figure
8. After Receiver receives an authentication request message from AR, it hands
over to Veri-fier. Verifier then generates an accept rule for a client. After that,
the client can use Internet services. Snort can detect and block well-known Inter-
net worm attacks with signature files, but it cannot detect new types of Internet

630 I. Kim and Y. Cho

worms. In the proposed framework, when a new Internet worm broadcasts ma-
licious packets to hosts in a network, Receiver re-ceives the source IP address
of the packets from BR. Receiver then generates a drop rule for blocking access
from the IP address. From now on, all malicious packets from the IP address is
blocked by Ip tables.

Fig. 8. Firewall components for blocking Internet worm attacks

4 Conclusion

Generally, IDS and IPS can detect well-known Internet worm attacks using sig-
nature files, but it cannot detect new Internet worm attacks. In order to solve
the problem, we proposed a security framework for blocking new Internet worm
attacks, using the Snort and Honeytrap. In the proposed framework, the fire-
wall can block new Internet worms as well as well-known Internet worms due to
Honeytrap.

References

1. Lee, H., Lee, S., Chung, H., Jeong, Y., Lim, C.: Analysis of Large Scale Network
Vulner-ability Scan Attacks and Implementation of the Scan-detection Tool. In:
Proc. of the 11th Workshop on Information Security and Cryptography (1999)

A Security Framework for Blocking New Types of Internet Worms 631

2. Song, J., Kwon, Y.: An RTSD System against Various Attacks for Low False Positive
Rate Based on Patterns of Attacker’s Behaviors. IEICE Transactions on Information
and Systems 89(10), 2637–2643 (2006)

3. Snort, http://www.snort.org
4. Spitzner, L.: Honeypots: Tracking Hackers. Addison-Wesley (2003)
5. Balas, E., Viecco, C.: Towards a Third Generation Data Capture Architecture for

Honey-net. In: Proc. of the 6th IEEE Information Assurance Workshop (2005)
6. Dagon, D., Qin, X., Gu, G., Lee, W., Grizzard, J.B., Levine, J., Owen, H.: Honey-

Stat: Local Worm Detection Using Honeypots. In: Jonsson, E., Valdes, A., Almgren,
M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 39–58. Springer, Heidelberg (2004)

7. Levine, J., Grizzard, J., Owen, H.: Using Honeynets to Protect Large Enterprise
networks. IEEE Security and Privacy 2(6), 73–75 (2004)

8. Pouget, F., Dacier, M.: Honeypot-based Forensics. In: Proc. of AusCERT Asia Pa-
cific Information Technology Security Conference (2004)

9. Werner, T., http://sourceforge.net/projects/honeytrap

http://www.snort.org
http://sourceforge.net/projects/honeytrap

Quality Factors in Development Best Practices

for Mobile Applications

Euler Horta Marinho1,2 and Rodolfo Ferreira Resende1

1 Computer Science Department, Universidade Federal de Minas Gerais
Belo Horizonte Minas Gerais 31270-010, Brazil

2 Department of Exact and Applied Sciences, Universidade Federal de Ouro Preto
João Monlevade Minas Gerais 35931-008, Brazil

{eulerhm,rodolfo}@dcc.ufmg.br

Abstract. Smart mobile devices (hereafter, SMDs) are becoming per-
vasive and their applications have some particular attributes. Software
Engineering deals with quality not only with traditional applications but
also with process and product quality of this new application class. Mod-
els of software quality can aid to better understand the software char-
acteristics that affect its quality. In this paper, we review some models
of software quality factors, the best practices for SMD applications de-
velopment proposed by UTI and W3C, and we discuss some of their
relationships. We also discuss some deficiencies of the development best
practices.

Keywords: software quality, development best practices, mobile appli-
cations, smart mobile devices.

1 Introduction

The software quality improvement has an important role in organizations in-
volved with Information Technology. During the software life cycle, deficiencies
in the quality of artifacts cause large scale costs [36].

The software quality definition must be made in order that the quality be
measured in a meaningful way [27]. Measurements can be used to determine if
the techniques improve the software and help understanding how process quality
affects product quality [27]. Moreover, in development processes, the comprehen-
sion of quality characteristics should be associated with requirements specifica-
tion and not only with the design and testing of an implemented system [11].

Several models of software quality factors have been proposed since 1970s
[6]: McCall [28], Boehm [8], Dromey [15], FURPS [19] and, ISO 9126 [22], subse-
quently replaced by ISO 25010 [23] from the SQuaRE (Software product Quality
Requirements and Evaluation) series of standards. As pointed out by Radulovic
and Garćıa-Castro [32], models of software quality factors provide the basis for
software evaluation and give a better insight of the software characteristics that

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 632–645, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Quality Factors in Development Best Practices for Mobile Applications 633

influence its quality. Furthermore, they ensure a consistent terminology for soft-
ware product quality and provide guidance for its measurement. Stakeholders
can perform measurements of software product quality aiming to make decisions
related to software quality improvement, large-scale acquisitions, and contracts
monitoring [25].

The smart mobile devices, for example, smartphones and tablets, are becom-
ing pervasive. These devices are characterized by a wide range of interaction
possibilities and some restrictions, which are not usually considered for non-
portable computers. These aspects influence the use of SMDs and turn them
distinct, but still competitive in relation to other computers.

With the SMDs, Software Engineering deals with the development of a new
applications class [38]. SMDs applications (or mobile applications) have some
particular attributes, for example a runtime environment with hardware con-
straints such as those related to low-power CPU, small memory, and small dis-
play [20]. Also, there may be constraints concerning lost connections, reduced
bandwidth, and lack of network access [14]. As mentioned by Franke and Weise
[17], these issues along with the diversity of platforms and strict time-to-market
are one major reason for the lack of quality in SMDs software.

In this context, the Unified Testing Initiative (UTI), comprising organizations
involved in the SMDs manufacturing and services (AT&T, Motorola, Oracle, and
Samsung), drew up a guidance document containing development best practices
with the aim to encourage adoption of practices to increase the quality of appli-
cation for these devices [37]. Similarly, the World Wide Web Consortium (W3C)
proposed a recommendation related to SMD web applications development. Ac-
cording to Charland and Leroux [9], the SMD applications development is based
either on the programming of native applications or the implementation of sites
and web services that interact with the device.

On the other hand, the literature presents some works analyzing models of
software quality factors taking into account the peculiarities of applications for
SMDs. Kim and Lee [26] used ISO 9126 in order to determine the most rele-
vant software quality characteristics for mobile phones in the range of consumer
electronics product. Franke and Weise [17] mentioned desirable attributes for
a model of mobile software quality factors, some of these from ISO 9126 or
Boehm’s Model. Our work focus on the analysis of the software quality factors
approached by development best practices suggested by the industry.

In this work, we present an evaluation of development best practices proposed
by UTI and W3C regarding their adherence to quality factors from ISO 25010.
We believe that our approach can help initiatives of extension and improvement
of best practices and the quality improvement of the SMDs applications.

This paper is structured as follows. In Section 2, we discuss some models of
software quality factors. In Section 3, we present the development best practices
from UTI and W3C. In Section 4, we perform an evaluation of the development
best practices for smart mobile devices applications. Section 5 presents the final
considerations and future work.

634 E.H. Marinho and R.F. Resende

2 Models of Software Quality Factors

According to the IEEE 1061 standard [21], the software quality is defined as “the
degree to which software possesses a desired combination of quality attributes”.
Also according to this standard, a quality factor is “a management-oriented
attribute of software that contributes to its quality”. In the context of the re-
quirements engineering, these attributes are associated to the non-functional
requirements [18]. Thus, models of software quality factors can be used as frame-
works for software quality specification and evaluation [12].

2.1 McCall’s Model

McCall and others proposed a model of software quality factors including 11
factors, in order to provide guidelines to the objective description of quality
during the requirements specification phase. According to the authors, this allows
the software quality measurement at all phases of the software development
process. The model elements are shown in Table 1.

Table 1. Components of McCall’s Quality Model (Adapted from McCall and others
[28])

Product Activity Quality Factor Quality Criteria

Product Operation Correctness Traceability, Consistency, Completeness

Reliability Error Tolerance, Consistency, Accuracy,
Simplicity

Efficiency Execution Efficiency, Storage Efficiency

Integrity Access Control, Access Audit

Usability Training, Communicativeness, Operability

Product Revision Maintainability Consistency, Simplicity, Conciseness, Mod-
ularity, Self-Descriptiveness

Flexibility Modularity, Generality, Expandability,
Self-Descriptiveness

Testability Simplicity, Modularity, Instrumentation,
Self-Descriptiveness

Product Transition Portability Modularity, Self-Descriptiveness, Machine
Independence, Software System, Indepen-
dence

Reusability Generality, Modularity, Software Sys-
tem, Independence, Machine Indepen-
dence, Self-Descriptiveness

Interoperability Modularity, Communications Commonal-
ity, Data Commonality

According to Table 1, the quality factors are organized in three groups that
represent phases of product life cycle. Product Operation refers to the software’s

Quality Factors in Development Best Practices for Mobile Applications 635

ability to be quickly understood, efficiently operated and able to provide the
results required by the user. Product Revision is related to error correction and
system adaptation [31]. Product Transition determines the software’s ability to
be used in different software and hardware platforms, and to communicate with
other systems. The established criteria can be associated with metrics and allow
the determination of the relationships among the factors [28].

2.2 Boehm’s Model

Boehm and others proposed a model of software quality factors, where the qual-
ity factors are represented in a hierarchical manner. The high-level factors are
associated with the software use, while the low-level factors are related to met-
rics. The model is shown in Figure 1.

The group of factors associated to As-is Utility determines that the software
be reliable, efficient and has some usability aspects (human-engineered). Accord-
ing to Boehm and others [8], As-is-Utility, Maintainability and Portability are
necessary, but not sufficient conditions to General Utility. This is because some
domain specific softwares require additional factors not considered by the model
(e.g. security).

2.3 FURPS Model

Robert Grady, while working at Hewlett-Packard, presented the FURPS model
[19], whose acronym indicates the set of quality factors: Functionality, Usability,
Reliability, Performance, and Supportability. The symbol ‘+’ was later added to
the name of the model to include constraints related to design, implementation,
interfaces and physical requirements. Table 2 shows the details of the FURPS
model of software quality factors.

Table 2. Components of FURPS Model (Adapted from Grady [19])

Quality Factor Description

Functionality Feature Set, Capabilities, Generality, Security

Usability Human factors, Aesthetics, Consistency, Documentation

Reliability Frequency or Severity of failure, Recoverability, Predictability, Ac-
curacy, Mean Time to Failure

Performance Speed, Efficiency, Resource Consumption, Throughput, Response
Time

Supportability Testability, Extensibility, Adaptability, Maintainability, Compati-
bility, Configurability, Serviceability, Installability, Localizability,
Portability

636 E.H. Marinho and R.F. Resende

Fig. 1. Boehm’s Model (Adapted from Boehm and others [8])

Quality Factors in Development Best Practices for Mobile Applications 637

2.4 ISO 25010

ISO 9126 [22] is a standard that has two models of quality factors. The first
gathers characteristics of internal and external quality, and the second, char-
acteristics of quality in use. The model of internal and external quality factors
describes how the product works in its development environment. The internal
quality characteristics are related to the measurement of intermediate results,
in terms of static aspects of artifacts related to the product. The external qual-
ity characteristics are related to behavioral aspects, measured from running the
product code. The factors of quality in use model represent the vision of quality
from the user perspective.

ISO 25010 [23], part of SQuaRE series of standards, replaced ISO 9126. As
part of the review process, the scope of the models of quality factors was ex-
tended to include computer systems, and quality in use from a system perspec-
tive. In this standard, the model of internal and external quality factors was
named product quality model. Figure 2 illustrates this model with eight quality
characteristics, each of them composed of a set of related subcharacteristics.

3 Development Best Practices for SMDs Applications

The UTI proposed development best practices (DBPs) for SMDs applications,
which are platform-independent. The UTI’s DBPs are organized taking account
of several aspects of the use and operation of the application. Table 3 shows the
description of the several aspects considered by UTI’s DBPs.

Some DBPs can only be applied if there is application or hardware support.
For example, the DBPs related to aspects 3 and 13, respectively.

These DBPs are not exhaustive and complete, for example, the security as-
pect can demand specific approaches to vulnerability detection [35,10]. DBPs to
specific classes of systems, such as those with strict time constraints [24], are
not considered. But then, these criteria have the backing of a large group of
organizations.

W3C, standards organization for the Web, proposed a recommendation to aid
the development of SMDs web applications. This recommendation has DBPs
structured in a set of declarations considering several functional areas. Table 4
presents the functional areas descriptions of W3C’s DBPs.

Similarly to the UTI’s DBPs, some of W3C ones are dependent of the hard-
ware support, for example the DBPs related to functional area 6. As noted by
W3C [39], this recommendation does not have the aim to exhaust all the issues
of functional area 2. However, it consider the most relevant aspects related to
SMD web applications.

4 Evaluation of Development Best Practices for SMDs
Applications

Preliminarily, we had to identify the set of quality factors in order to perform
the evaluation. The models of software quality factors discussed in Section 2

638 E.H. Marinho and R.F. Resende

Fig. 2. Product Quality Model (Adapted from ISO 25010 [23])

Quality Factors in Development Best Practices for Mobile Applications 639

Table 3. Aspects of the UTI’s Best Practices

Aspect Description #DBPs

1. Installing and
Launching

Characteristics of the life cycle of the appli-
cation during the installing and launching
stages

2

2. Memory and file
storage

Exception handling during write opera-
tions to the file system

1

3. Connectivity Handling of invalid or unusable network
connections and connections with delays
and loss of connectivity

4

4. Messaging and
Calls

Characteristics of sending and receiving of
text messages and handling of incoming
calls

2

5. External Influence Application behavior after memory card
insertion

1

6. User Interface Usability attributes of the application 17

7. Language Support of local settings (e.g. date and
time formats) and international characters

3

8. Performance Attributes related to application perfor-
mance including responsiveness and re-
source usage

5

9. Media Attributes related to application settings 4

10. Menu Use of standard menu items help and
about

2

11. Functionality Consistency of the implemented applica-
tion functions with respect to their spec-
ifications

2

12. Keys Correct and consistent use of the device
keys

6

13. Device-specific
Tests

State management in opening and closing
actions of the device

1

14. Stability State management in forced close by sys-
tem and non-existence of crashes and
freezes

2

15. Data Handling Use of actions to save game state. Warning
to user about deletion of data and avail-
ability of reversal of deletion

2

16. Security Protection of sensitive user information 2

640 E.H. Marinho and R.F. Resende

Table 4. Functional Areas of the W3C’s Best Practices

Functional Area Description #DBPs

1. Application Data Management of Web application’s data 3

2. Security and Pri-
vacy

Protection of sensitive user information 1

3. User Awareness
and Control

Control of application behavior not appar-
ent

2

4. Conservative Use
of Resources

Minimized use of device’s resource 11

5. User Experience Characteristics of overall user experience 10

6. Handling Varia-
tion in the Delivery
Context

Treatment of application’s content and
navigation structure in according to deliv-
ery context (e.g. different device capabili-
ties)

5

were analyzed and 20 factors were identified (Figure 3). All models refer to
Reliability factor. Three models mention Usability and Portability factors. ISO
25010 identifies some factors from other models as quality subcharacteristics (for
example, Integrity and Modifiability). On the other hand, this standard combines
Performance and Efficiency factors as Performance efficiency. Thus, we adopted
the ISO 25010 framework for evaluating the DBPs presented in Section 3, since
its model of software quality factors has the necessary scope.

In order to determine the quality characteristics related to the DBPs, we used
the following procedure:

1. Determine if the aspect (or the functional area) of the DBP is equivalent
to quality characteristics or subcharacteristics directly (e.g. Security) or by
similarity (e.g. Stability relates to Reliability, User Interface relates to Us-
ability). In this case, the synonyms should be considered.

2. From the DBP description, check if it establishes constraints on the user
experience (e.g. the system must show a progress bar), that suggests the
Usability characteristic or constraints on the software’s operation (e.g. the
application must return to the same state before the interruption), that
suggests the Reliability characteristic. For other quality characteristics or
subcharacteristics, take in consideration the definitions in section 4.2 of ISO
25010 standard.

After applying the procedure, we performed a small scale validation of the re-
sults. Then, we obtained the distribution of quality characteristics depicted in
Figure 4. A DBP may be related to more than one characteristic.

In accordance to Figure 4, the most frequent characteristic in the DBPs is
Usability, followed by Performance efficiency, Portability, Reliability, and Com-
patibility. Portability, an important quality characteristic in SMDs applications
[17], is addressed mainly by its subcharacteristic Adaptability. Functional suit-
ability and Security are marginally approached by the DBPs. But then there is a

Quality Factors in Development Best Practices for Mobile Applications 641

Fig. 3. Quality factors (Adapted from Samadhiya and others [33])

642 E.H. Marinho and R.F. Resende

Fig. 4. Distribution of Quality Characteristics

lack of DBPs to deal with Maintainability, an important characteristic as noted
by Kim and Lee [26].

Our results indicates that the DBPs are in conformity with the constraints
of hardware environment of the SMDs applications mentioned in Section 1. Us-
ability aspects of mobile applications are often different than those of other
applications [5]. Also, this is the case of Performance efficiency [13]. On the
other hand, for approaching the Security characteristic, it is strongly recom-
mended the adoption of best practices throughout the software lifecycle [29,4].
Moreover, software maintenance best practices need to be recognized and better
described [3].

During the evaluation, we noticed problems in the DBPs descriptions which
are sometimes subjectives. An example is the DBP definition related to memory
card insertion while applications are running: “. . . the application should handle
this gracefully” [37]. Also, UTI’s DBPs do not mention the existence of appli-
cation specifications except those described in the help system. In spite of the
argued role of help systems and user’s manuals as requirements specifications,
they may leave out details to the validation of software requirements [7].

5 Conclusion

Software quality improvement is an important issue for the organizations in-
volved with Information Technology. However, quality must be precisely defined
in order to be measured [27]. In this context, models of software quality factors
can offer a consistent terminology, provide insights about relationships among
factors and instruct about their measurement [32].

Quality Factors in Development Best Practices for Mobile Applications 643

Smart mobile devices are becoming pervasive and their applications have par-
ticular attributes. As mentioned by Hu and Neamtiu [20], these attributes and
the developers’ unfamiliarity with mobile platforms make SMDs applications
prone to new kinds of bugs. An specific issue related to the SMD aplications
development is the application lifecycle management that is platform specific
[16].

In this paper, we reviewed some models of software quality factors, the best
practices for SMD applications development proposed by UTI and W3C, and we
discussed some of their relationships. Our evaluation identified the most frequent
factors in DBPs, taking into account the ISO 25010 quality factors. Moreover, we
observed that DBPs exhibit deficiencies on the approach of important quality
factors, such as Security and Maintainability. Despite the recommendation of
the use of best practices throughout the software lifecycle [29,4] to deal with
Security factor, for SMDs applications, it is necessary the use of techniques
often different from those of non-portable computers [30]. Thus, we can realize
the need for initiatives to extend and improve the development best practices
for mobile applications.

As noted by Al-Kilidar and others [2], the generality of a standard such as
ISO 9126 is inversely proportional to its utility. Thus, further investigations
about the applicability of ISO 25010 are required, especially considering classes
of applications such as those for SMDs which have technical and market specific
demands [1,34].

We were able to perform a small scale validation of our approach and we are
planning to perform a more comprehensive validation with a larger number of
experts.

References

1. Abrahamsson, P., Hanhineva, A., Hullko, H., Ihme, T., Jaalinoja, J., Korkala, M.,
Koskela, J., Kyllonen, P., Salo, O.: Mobile-D: an agile approach for mobile applica-
tion development. In: Companion of the 19th ACM SIGPLAN Annual Conference
on Object-Oriented Programming, Systems, Languages, and Applications, pp. 174–
175. ACM, New York (2004)

2. Al-Kilidar, H., Cox, K., Kitchenham, B.: The use and usefulness of the ISO/IEC
9126 quality standard. In: International Symposium on Empirical Software Engi-
neering, p. 7. IEEE, Los Alamitos (2005)

3. April, A., Abran, A.: A software maintenance maturity model (S3M): Measurement
practices at maturity levels 3 and 4. Electronic Notes in Theoretical Computer
Science 233, 73–87 (2009)

4. Ardi, S., Byers, D., Shahmehri, N.: Towards a structured unified process for soft-
ware security. In: 2006 International Workshop on Software Engineering for Secure
Systems, pp. 3–9. ACM, New York (2006)

5. Balagtas-Fernandez, F., Hussmann, H.: A methodology and framework to simplify
usability analysis of mobile applications. In: IEEE/ACM International Conference
on Automated Software Engineering, pp. 520–524. IEEE, Los Alamitos (2009)

6. Behkamal, B., Kahani, M., Akbari, M.K.: Customizing ISO 9126 quality model for
evaluation of B2B applications. Information and Software Technology 51(3), 12–21
(2009)

644 E.H. Marinho and R.F. Resende

7. Berry, D.M., Daudjee, K., Dong, J., Fainchtein, I., Nelson, M.A., Nelson, T., Ou,
L.: User’s manual as a requirements specification: Case studies. Requirements En-
gineering 9, 67–82 (2004)

8. Boehm, B.W., Brown, J.R., Lipow, M.: Quantitative evaluation of software quality.
In: 2nd International Conference on Software Engineering, pp. 592–605. IEEE, Los
Alamitos (1976)

9. Charland, A., Leroux, B.: Mobile application development: Web vs native. Com-
munications of the ACM 54(5), 1–8 (2011)

10. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-
munication in Android. In: 9th International Conference on Mobile Systems, Ap-
plications, and Services, pp. 239–252. ACM, New York (2011)

11. Chung, L., do Prado Leite, J.C.S.: On Non-Functional Requirements in Software
Engineering. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Con-
ceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 363–379.
Springer, Heidelberg (2009)

12. Côté, M.A., Suryn, W., Georgiadou, E.: In search for a widely applicable and
accepted software quality model for software quality engineering. Software Quality
Journal 15(4), 401–416 (2007)

13. Dı́az, A., Merino, P., Rivas, F.J.: Mobile application profiling for connected mobile
devices. IEEE Pervasive Computing 9(1), 54–61 (2010)

14. Doernhoefer, M.: Surfing the net for software engineering notes. SIGSOFT Software
Engineering Notes 35(5), 8–17 (2010)

15. Dromey, R.G.: A model for software product quality. IEEE Transactions on Soft-
ware Engineering 21(2), 146–162 (1995)

16. Franke, D., Elsemann, C., Kowalewski, S., Weise, C.: Reverse engineering of mobile
application lifecycles. In: 18th Working Conference on Reverse Engineering, pp.
283–292. IEEE, Los Alamitos (2011)

17. Franke, D., Weise, C.: Providing a software quality framework for testing of mobile
applications. In: 4th IEEE International Conference on Software Testing, Verifica-
tion, and Validation, pp. 431–434. IEEE, Los Alamitos (2011)

18. Glinz, M.: On non-functional requirements. In: 15th IEEE International Require-
ments Engineering Conference, pp. 21–26. IEEE, Los Alamitos (2007)

19. Grady, R.B.: Practical Software Metrics for Project Management and Process Im-
provement. Prentice Hall, Englewood Cliffs (1992)

20. Hu, C., Neamtiu, I.: Automating GUI testing for android applications. In: 6th
IEEE/ACM International Workshop on Automation of Software Test, pp. 77–83.
ACM, New York (2011)

21. IEEE: IEEE Std 1061-1998: IEEE Standard for a Software Quality Metrics
Methodology (1998)

22. ISO: ISO/IEC 9126-1:2001, Software Engineering - Product Quality - Part1: Qual-
ity Model (2001)

23. ISO: ISO/IEC 25010:2011, Systems and Software Engineering - Systems and soft-
ware Quality Requirements and Evaluation (SQuaRE) - System and Software Qual-
ity Models (2011)

24. Jeong, K., Moon, H.: Object detection using FAST corner detector based on
smartphone platforms. In: 1st ACIS/JNU International Conference on Computers,
Networks, Systems and Industrial Engineering, pp. 111–115. IEEE, Los Alamitos
(2011)

25. Jung, H.W., Kim, S.G., Chung, C.S.: Measuring software product quality: A survey
of ISO/IEC 9126. IEEE Software 21(5), 88–92 (2004)

Quality Factors in Development Best Practices for Mobile Applications 645

26. Kim, C., Lee, K.: Software quality model for consumer electronics product. In: 9th
International Conference on Quality Sofware, pp. 390–395. IEEE, Los Alamitos
(2009)

27. Kitchenham, B., Pfleeger, S.L.: Software quality: The elusive target. IEEE Soft-
ware 13(1), 12–21 (1996)

28. McCall, J.A., Richards, P.K., Walters, G.F.: Factors in Software Quality, vol. 1-3.
Nat’l Tech. Information Service, Springfield, USA (1977)

29. Mead, N.R., McGraw, G.: A portal for software security. IEEE Security & Pri-
vacy 3(4), 75–79 (2005)

30. Oberheide, J., Jahanian, F.: When mobile is harder than fixed (and vice versa):
demystifying security challenges in mobile environments. In: 11th Workshop on
Mobile Computing Systems & Applications, pp. 43–48. ACM, New York (2010)

31. Ortega, M., Pérez, M., Rojas, T.: Construction of a systemic quality model for
evaluating a software product. Software Quality Journal 11(4), 219–242 (2003)

32. Radulovic, F., Garćıa-Castro, R.: Towards a Quality Model for Semantic Technolo-
gies. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.)
ICCSA 2011, Part V. LNCS, vol. 6786, pp. 244–256. Springer, Heidelberg (2011)

33. Samadhiya, D., Wang, S.H., Chen, D.: Quality models: Role and value in soft-
ware engineering. In: 2nd International Conference on Software Technology and
Engineering, pp. V1–320–V1–324. IEEE, Los Alamitos (2010)

34. Scharf, C., Verma, R.: Scrum to support mobile application development projects
in a just-in-time learning context. In: 2010 ICSE Workshop on Cooperative and
Human Aspects of Software Engineering, pp. 25–31. ACM, New York (2010)

35. Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., Glezer, C.: Google
Android: a comprehensive security assesment. IEEE Security & Privacy 8(2), 35–
44 (2010)

36. Streit, J., Pizka, M.: Why software quality improvement fails (and how to succeed
nevertheless). In: 33rd International Conference on Software Engineering, pp. 726–
735. IEEE, Los Alamitos (2011)

37. Unified Testing Initiative, The: Best Practice Guidelines for Developing Quality
Mobile Applications, http://www.unifiedtestinginitiative.org/files/
uti best practices v1 final.pdf (last visited December 19, 2011)

38. Wasserman, A.I.: Software engineering issues for mobile application development.
In: FSE/SDP Workshop on the Future of Software Engineering Research, pp. 397–
400. ACM, New York (2010)

39. World Wide Web Consortium, The: Mobile Web Applications Best Practices (De-
cember 14, 2010), http://www.w3.org/TR/mwabp/,
(last visited December 19, 2011)

http://www.unifiedtestinginitiative.org/files/uti_best_practices_v1_final.pdf
http://www.unifiedtestinginitiative.org/files/uti_best_practices_v1_final.pdf
http://www.w3.org/TR/mwabp/

ShadowNet: An Active Defense Infrastructure

for Insider Cyber Attack Prevention

Xiaohui Cui1, Wade Gasior2, Justin Beaver1, and Jim Treadwell1

1 Oak Ridge National Laboratory
Oak Ridge, TN, USA

{cuix,beaverjm,treadwelljn}@ornl.gov

http://cda.ornl.gov
2 University of Tennessee at Chattanooga

Chattanooga, TN, USA
wadegasior@gmail.com

Abstract. The ShadowNet infrastructure for insider cyber attack pre-
vention is comprised of a tiered server system that is able to dynami-
cally redirect dangerous/suspicious network traffic away from production
servers that provide web, ftp, database and other vital services to cloned
virtual machines in a quarantined environment. This is done transpar-
ently from the point of view of both the attacker and normal users.
Existing connections, such as SSH sessions, are not interrupted. Any
malicious activity performed by the attacker on a quarantined server
is not reflected on the production server. The attacker is provided ser-
vices from the quarantined server, which creates the impression that the
attacks performed are successful. The activities of the attacker on the
quarantined system are able to be recorded much like a honeypot system
for forensic analysis.

1 Introduction

Cyber security has become a national priority. Despite the number of recent
news reports about hacker attacks and external network intrusions, trusted em-
ployees and business partners with authorized access to network still pose the
greatest security risk to the government and private companies [1]. It is usually
assumed that users who are given access to network resources can be trusted.
However, the eighth annual CSI/FBI 2003 report [2] found that insider abuse
of network access was the most cited form of attack or abuse. It is reported
that 80 percent of respondents were concerned about insider abuse, although
92 percent of the responding organizations employed some form of access con-
trol and insider prevention mechanism. There are also large amount of insiders
committing espionage cases have caused tremendous damage to U.S. national
security. Two infamous insider threat cases, one is the case of former FBI agent
R. P. Hanssen, who was convicted for spying for Russia. The another case is the
United States diplomatic cables leak. In the FBI Hanssen case, over a span of
more than 15 years, Hanssen provided his Russian contacts with highly classified

B. Murgante et al. (Eds.): ICCSA 2012, Part IV, LNCS 7336, pp. 646–653, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Active Defense Infrastructure for Insider Cyber Attack Prevention 647

documents and details about U.S. intelligence sources and electronic surveillance
taken directly from his employer, the FBI.

Detecting and preventing insider user misuse involves many challenges because
insiders understand their organization’s computer system and how the computer
network system works. Inside users typically also have greater knowledge than
outsiders do about system vulnerabilities. Therefore, the chances of a successful
attack can be greater for an insider attack than for an outsider attack [4]. For
instance, the knowledge that a malicious insider has about the sensitivity of
information gives him/her a better chance to breach information confidentiality.
Insider user misuse is different from outsider misuse with respect to the nature
of the threats that both cause. However, because of lacking of understanding the
differences in implementation of detection and prevention techniques between
insider misuse and outsider misuse, most institutions intent to apply existing
cyber security techniques to both threats [5].

2 Related work

A Honeypot [6,7] is an internet-attached server that acts as a decoy, luring in
potential hackers in order to study their activities and monitor how they are
able to break into a system [8]. As shown in Fig.1, the traditional Honeypots
are designed to mimic systems that an intruder would like to break into, but
limit the intruder from having access to an entire network. The most widely
used honeypots is the honeyds [9] that run on a honeyd server and represent
unused IP addresses in the organization’s network. They function through em-
ulating operating systems and services, thus allowing them to interact with the
attacker. Any attempted connection to one of the honeypot servers is assumed
to be unauthorized (malicious activity). An outside attacker most likely has lit-
tle knowledge about the enterprise network structure and the network location
(Internal IP address) of the sensitive information stored. Those outsiders have
to depend on NMAP [10] or other network scanning software for mapping the
target network structure and finding out the most vulnerable system for hacking.
It is possible that an intruder might spend days hacking into an old Windows
system that is only used as printer server and contains no valuable information.
This kind of situation gives the traditional honeypot technology a chance for
acting as a decoy vulnerable system and attracting intruder attacks. By using
honeypot in a network, it can reduce the change for intruder find out the real
valuable target.

However, the traditional honeypot may have difficulty in preventing attacker
who has some insider information about the network. Different from outsider,
the insider has more information about the enterprize network architecture and
the computer system he wants to attack. The malicious insider most likely knows
the IP address or machine name where the sensitive information is stored. As
an employee of the enterprize, the intruder can easily access the enterprize in-
ternal network without passing through the enterprize firewall. So, an insider
doesn’t need to use NMAP or other network scan software to randomly discover

648 X. Cui et al.

Fig. 1. Traditional HoneyPot Infrastructure

the vulnerable system in the network. Instead, the valuable system location, IP
address event low privilege user account can be easily discovered by insider by
using social engineering. To protect from being exposed, some insiders might not
steal valuable data that he can legally access. Instead, they will use hacking tools
to acquire information that he can not legally access. Before the insider launch
an attack, he already knows the IP address of the systems that may have valu-
able data and he may even have low-level privileges to legally access the system.
In this case, deploying the traditional honeypot system will not help detect a
malicious insider.

3 An Active Defence Infrastructure

3.1 Overview

In this research, we developed an active defense infrastructure, called Shad-
owNet, for insider attack prevention and forensic analysis. The diagram of the
infrastructure is shown in Fig.2 and Fig.3. The purpose of this ShadowNet is to
help mitigate risk in an organization by actively preventing the malicious insider
to harm a real computer or application and preventing him from spreading his
attack to other computing resources. At the same time, the system provides a
mechanism for real time collecting forensic data without the risk of shutting
down the attacked system or leaking any stored sensitive information.

This infrastructure includes two elements: the ShadowNet client and the Shad-
owNet server. Different from the traditional honeypot strategy where static hon-
eypot servers are placed in the network to lure attackers, the developed infras-
tructure will actively deploy a decoy host system only when host is under attack
or suspicious behaviors are noticed. This capability is achieved by engaging the
attacker with a virtual live clone [13] of the host when the suspicious behaviors
are detected.

3.2 Cyber Attack Prevention Description

As shown in Fig.4, when a suspicious insider conducts suspicious behaviors on
the network, such as logging in to a protected system where he or she has no

An Active Defense Infrastructure for Insider Cyber Attack Prevention 649

Fig. 2. ShadowNet Active Defense Network Topology

Fig. 3. ShadowNet Active Defense Infrastructure

legitimate access rights or logging into the system at an abnormal time, his
behaviors will trigger the intrusion detection sensors installed on the network,
which in turn sends out alarm messages to the IDS fusion system. The fusion
system sends control messages to the ”ShadowNet Client” and ”Shadow Server”
for system live clone action. As shown in Fig.5, a live clone [11] of the system
that is breached by the suspicious insider will be prepared in real-time by the
ShadowNet Client. This clone system will have exactly same status, file system
structure, and network availability as the original system, but will not contain
the original host’s sensitive data. All these sensitive data are eliminated and
replaced with fraud data that contain useless information. The system clone
along with the suspicious network connection will be migrated to another phys-
ical server (ShadowNet Server) without noticed by the attacker. Using the live
system migration technology, the total time for migrating the attacker to the
Server will be within 100 ms. As shown in Fig.5, after the migration, the Shad-
owNet Client will automatically re-route all network connection package from
the suspicious insider to the migrated system clone in ShadowNet Server behind
the ”ShadowNet Bridge”.

The migrated clone has same environment of the original host that the in-
sider breached. Thus, the suspicious user or insider will not aware that his/her

650 X. Cui et al.

connection has been migrated to a closely monitored forensic analysis platform.
A ShadowNet Bridge can be deployed to quarantine the ShadowNet server by
preventing the potential of information leak out. The ShadowNet Bridge is spe-
cial designed ISO second level system that are transparent in the network and
allow inbound network connection in but stop all outbound connection initial
from behind ShadowNet Bridge. This prevents the protected system clone from
being used by the attacker as an ad-hoc attacking machine for attacking other
machine. All network transactions and communications to the system clone can
be collected by ShadowNet bridge for future forensic analysis.

3.3 Core Technologies

The innovative technology behind the ShadowNet system is a real-time system
live clone and migration technology called the ShadowNet live clone. The tech-
nology enables the ShadowNet system construct a system clone, and to move the
system clone along with the suspicious network connection to another physical
server (ShadowNet Server) without being noticed by the attacker. At the same
time, the original system and other users of the system are not impacted.

Fig. 4. Suspicious Connections from Insider User’s Computer

Different from the traditional visualization technology [12], our system needs
the capability to both migrate operating system instances across distinct physi-
cal hosts, and also to keep the current operating system continually running to
support the normal business. This requires the change of MAC address and IP
address of the live virtual clone. Most of the original system network connections
are maintained and only the suspicious network connection ports are disabled
or disconnected. By modifying Xen Virtual machine platform, we built an ex-
periment implementation to demonstrate the ShadowNet system. As shown in
Fig.6. In the implementation, we use a Virtual Machine (VM) Descriptor as a
condensed VMimage that allows swift VM replication to a separate physical host.
Construction of a VM descriptor starts by spawning a thread in the VM kernel
issues a hypercall suspending the VM’s execution. When the hypercall succeeds,
a privileged process in domain0 maps the suspended VM memory to populate

An Active Defense Infrastructure for Insider Cyber Attack Prevention 651

the descriptor. The descriptor contains: (1) metadata describing the VM and its
virtual devices, (2) a few memory pages shared between the VM and the VM
hypervisor, (3) the registers of the main VCPU, (4) the Global Descriptor Tables
(GDT) used by the x86 segmentation hardware for memory protection, and (5)
the page tables of the VM. A monitor and control tool, SXMaster, is developed
and is capable of receiving the alert from the existing IDS enclave to trigger the
clone migration process that moves the suspicious user’s system and network
connection to quarantined ShadowNet server. SXMaster uses socket-based com-
munications to execute commands on the ShadowNet infrastructure machines.
Each instance of the application listens by default on port 4445 for incoming
connections from other instances of the application. The software uses iptables
commands to configure NAT, and uses conntrack-tools commands to assist in
live session migration.

Fig. 5. Active defense for Attack Prevention and Forensics Collections

Fig. 6. Experiment Network Topology

4 Conclusion

According to our research, there are currently no COTS systems that can provide
effective mechanisms to prevent insider attack. Most of the work associated with

652 X. Cui et al.

preventing the insider attack focuses on studying security policies and policy
enforcement. The ShadowNet technology provides a system that will be able to
prevent the attack from suspicious insider who has knowledge about the network
structure and the location of the sensitive information. The ShadowNet system
also provides a real-time forensics data gathering capability to support large,
geographically dispersed networks without disturbing the system’s operations.
This capability will aid in real-time attack analysis, countermeasures develop-
ment, and legal prosecution.

Existing information security technologies such as firewalls or Intrusion Detec-
tion Systems (IDS) cannot provide an adequate defense against insider threats
because they are oriented towards attacks originated from outside the enterprise.
Insider attacks may begin from any of numerous potential attack points in the
enterprise and have too many parameters to be monitored that existing systems
cannot handle. By implementing the ShadowNet infrastructure developed in this
research, the whole network becomes a distributed IDS grid. Any machine in the
network is a potential honeypot to quarantine a malicious insider.

Acknowledgment. This work was supported in part by the Oak Ridge Na-
tional Laboratory LDRD program. The views and conclusions contained in this
document are those of the authors. This manuscript has been authored by UT-
Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department
of Energy. The United States Government retains and the publisher, by accept-
ing the article for publication, acknowledges that the United States Government
retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this manuscript, or allow others to do so, for
United States Government purposes.

References

1. Salem, M.B., Hershkop, S., Stolfo, S.J.: A Survey of Insider Attack Detection Re-
search. Advances in Information Security 39, 69–90 (2008)

2. The eighth annual CSI/FBI 2003 report: Computer Crime and Security Survey
(2003)

3. Stone, C.: Information Sharing in the Era of WikiLeaks: Balancing Security and
Collaboration, Office of The Director of National Intelligence, Washington, DC
(March 2011)

4. Bellovin, S.: The Insider Attack Problem Nature and Scope. Advances in Informa-
tion Security 39, 69–90 (2008)

5. Braz, F.A., Fernandez, E.B., VanHilst, M.: Eliciting Security Requirements through
Misuse Activities. In: Proceedings of the 2008 19th International Conference on
Database and Expert Systems Application (DEXA), pp. 328–333 (2008)

6. Bellovin, S.: There Be Dragons. In: Proc. of the Third Usenix Security Symposium,
Baltimore MD (September 1992)

7. Bellovin, S.M.: Packets Found on an Internet. Computer Communications Re-
view 23(3), 26–31 (July)

8. Spitzner, L.: Honeypots: Catching the Insider Threat. In: 19th Annual Computer
Security Applications Conference (ACSAC 2003), p. 170 (2003)

An Active Defense Infrastructure for Insider Cyber Attack Prevention 653

9. Spitzner, L.: Honeypots: Tracking Hackers. Addison-Wesley Longman Publishing
Co., Inc., Boston (2002)

10. Lyon, G.: Nmap Network Scanning: The Official Nmap Project Guide to Network
Discovery and Security. Insecure Publisher, USA (2009) ISBN 9780979958717

11. Sun, Y., Luo, Y., Wang, X., Wang, Z., Zhang, B., Chen, H., Li, X.: Fast Live Cloning
of Virtual Machine Based on Xen. In: 2009 11th IEEE International Conference
on High Performance Computing and Communications, HPCC 2009, pp. 392–399
(2009)

12. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer,
R., Pratt, I., Warfield, A.: Xen and the art of virtualization. In: Proceedings of the
ACM Symposium on Operating Systems Principles (October 2003)

13. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I.,
Warfield, A.: Live migration of virtual machines. In: Proceedings of the 2nd
ACM/USENIX Symposium on Networked Systems Design and Implementation
(NSDI), Boston, MA, pp. 273–286 (May 2005)

Author Index

Abdullah, Noryusliza IV-364
Abdullah, Nurul Azma IV-353
Abid, Hassan III-368
Adewumi, Adewole IV-248
Afonso, Vitor Monte IV-274, IV-302
Agarwal, Suneeta IV-147
Aguiar, Rui L. III-682
Aguilar, José Alfonso IV-116
Ahmadian, Kushan I-188
Alarcon, Vladimir J. II-578, II-589
Albuquerque, Caroline Oliveira III-576
Alfaro, Pablo IV-530
Ali, Salman III-352
Alizadeh, Hosein III-647
Almeida, Regina III-17
Alonso, Pedro I-29
Alves, Daniel S.F. I-101
Amandi, Anaĺıa A. III-698, III-730
Amaral, Paula III-159
Amjad, Jaweria III-368
Ammar, Reda A. I-161
Amorim, Elisa P. dos Santos I-635
An, Deukhyeon III-272
Anderson, Roger W. I-723
Angeloni, Marcus A. I-240
Antonino, Pablo Oliveira III-576
Aquilanti, Vincenzo I-723
Arefin, Ahmed Shamsul I-71
Armentano, Marcelo G. III-730
Arnaout, Arghad IV-392
Aromando, Angelo III-481
Asche, Hartmut II-347, II-386, II-414,

II-439
Aydin, Ali Orhan IV-186
Ayres, Rodrigo Moura Juvenil III-667
Azad, Md. Abul Kalam III-72
Azzato, Antonello II-686

Bae, Sunwook III-238
Balena, Pasquale I-583, II-116
Balucani, Nadia I-331
Barbosa, Ciro I-707
Barbosa, Fernando Pires IV-404
Barbosa, Helio J.C. I-125

Baresi, Umberto II-331
Barreto, Marcos I-29
Baruque, Alexandre Or Cansian IV-302
Bastianini, Riccardo I-358
Batista, Augusto Herrmann III-631
Batista, Vitor A. IV-51
Battino, Silvia II-624
Beaver, Justin IV-646
Bencardino, Massimiliano II-548
Berdún, Luis III-698
Berenguel, José L. III-119
Bernardino, Heder S. I-125
Berretta, Regina I-71
Biehl, Matthias IV-40
Bimonte, Sandro II-373
Bisceglie, Roberto II-331
Bitencourt, Ana Carla P. I-723
Blecic, Ivan II-481, II-492
Boavida, Fernando II-234
Bollini, Letizia II-508
Boratto, Murilo I-29
Borg, Erik II-347, III-457
Borruso, Giuseppe II-624, II-670
Boulil, Kamal II-373
Braga, Ana Cristina I-665
Brumana, Raffaella II-397
Bugs, Geisa I-477
Burgarelli, Denise I-649
Bustos, Vı́ctor III-607

Caiaffa, Emanuela II-532
Calazan, Rogério M. I-148
Caldas, Daniel Mendes I-675
Callejo, Miguel-Ángel Manso I-462
Camarda, Domenico II-425
Campobasso, Francesco II-71
Campos, Ricardo Silva I-635
Candori, Pietro I-316, I-432
Cannatella, Daniele II-54
Cano, Marcos Daniel III-743
Cansian, Adriano Mauro IV-286
Carbonara, Sebastiano II-128
Cardoso, João M.P. IV-217
Carmo, Rafael IV-444

656 Author Index

Carneiro, Joubert C. Lima e Tiago G.S.
II-302

Carpené, Michele I-345

Carvalho, Luis Paulo da Silva II-181
Carvalho, Maria Sameiro III-30, III-187

Casado, Leocadio G. III-119, III-159
Casado, Leocadio Gonzalez I-57

Casas, Giuseppe B. Las II-466, II-640,
II-686

Casavecchia, Piergiorgio I-331

Castro, Patŕıcia F. IV-379
Cavalcante, Gabriel D. IV-314

Cecchi, Marco I-345
Cecchini, Arnaldo II-481, II-492

Ceppi, Claudia II-517
Cermignani, Matteo I-267

Cerreta, Maria II-54, II-168, II-653
Chanet, Jean-Pierre II-373

Charão, Andrea Schwertner IV-404
Cho, Yongyun IV-613, IV-622

Cho, Young-Hwa IV-543
Choe, Junseong III-324

Choi, Hong Jun IV-602
Choi, Jae-Young IV-543

Choi, Jongsun IV-613
Choi, Joonsoo I-214

Choo, Hyunseung III-259, III-283,
III-324

Chung, Tai-Myoung III-376

Ci, Song III-297
Cicerone, Serafino I-267

Ciloglugil, Birol III-550
Cioquetta, Daniel Souza IV-16

Clarke, W.A. IV-157
Coelho, Leandro I-29

Coletti, Cecilia I-738
Conrado, Merley da Silva III-618

Corea, Federico-Vladimir Gutiérrez
I-462

Coscia, José Luis Ordiales IV-29

Costa, M. Fernanda P. III-57, III-103
Costantini, Alessandro I-345, I-401,

I-417
Crasso, Marco IV-29, IV-234, IV-484

Crawford, Broderick III-607
Crocchianti, Stefano I-417

Cuca, Branka II-397
Cui, Xiaohui IV-646

Cunha, Jácome IV-202

da Luz Rodrigues, Francisco Carlos
III-657

Danese, Maria III-512

Dantas, Sócrates de Oliveira I-228

da Silva, Paulo Caetano II-181
Daskalakis, Vangelis I-304

de Almeida, Ricardo Aparecido Perez
IV-470, IV-560

de Avila, Ana Maria H. III-743

de By, Rolf A. II-286
de Carvalho, Andre Carlos P.L.F.

III-562
de Carvalho Jr., Osmar Ab́ılio III-657

Decker, Hendrik IV-170
de Costa, Evandro Barros III-714

de Deus, Raquel Faria II-565

de Felice, Annunziata II-1
de Geus, Paulo Ĺıcio IV-274, IV-302,

IV-314
Delgado del Hoyo, Francisco Javier

I-529
Dell’Orco, Mauro II-44

de Macedo Mourelle, Luiza I-101, I-113,
I-136, I-148

de Magalhães, Jonathas José III-714

De Mare, Gianluigi II-27
Dembogurski, Renan I-228

de Mendonça, Rafael Mathias I-136
de Miranda, Péricles B.C. III-562

de Oliveira, Isabela Liane IV-286

de Oliveira, Wellington Moreira I-561
de Paiva Oliveira, Alcione I-561

Deris, Mustafa Mat I-87, IV-340

De Santis, Fortunato III-481
Désidéri, Jean-Antoine IV-418

de Souza, Cleyton Caetano III-714

de Souza, Éder Martins III-657
de Souza, Renato Cesar Ferreira I-502

de Souza Filho, José Luiz Ribeiro I-228,
II-712

De Toro, Pasquale II-168
Dias, Joana M. III-1

Dias, Luis III-133

do Nascimento, Gleison S. IV-67
Donato, Carlo II-624

do Prado, Hércules Antonio III-631,
III-657

dos Anjos, Eudisley Gomes IV-132

dos Santos, Jefersson Alex I-620

Author Index 657

dos Santos, Rafael Duarte Coelho
IV-274, IV-302

dos Santos, Rodrigo Weber I-635, I-649,
I-691, I-707

dos Santos Soares, Michel IV-1, IV-16

e Alvelos, Filipe Pereira III-30
El-Attar, Mohamed IV-258
Elish, Mahmoud O. IV-258
El-Zawawy, Mohamed A. III-592, IV-83
Engemaier, Rita II-414
Eom, Young Ik III-227, III-238, III-272
Epicoco, Italo I-44
Esmael, Bilal IV-392
Ezzatti, Pablo IV-530

Falcinelli, Stefano I-316, I-331, I-387,
I-432

Falcone, Roberto II-508
Fanizzi, Annarita II-71
Farage, Michèle Cristina Resende I-675
Farantos, C. Stavros I-304
Farias, Matheus IV-444
Fechine, Joseana Macêdo III-714
Fedel, Gabriel de S. I-620
Felino, António I-665
Fernandes, Edite M.G.P. III-57, III-72,

III-103
Fernandes, Florbela P. III-103
Fernandes, João P. IV-202, IV-217
Ferneda, Edilson III-631, III-657
Ferreira, Ana C.M. III-147
Ferreira, Brigida C. III-1
Ferreira, Manuel III-174
Ferroni, Michele I-358
Fichtelmann, Bernd II-347, III-457
Fidêncio, Érika II-302
Figueiredo, José III-133
Filho, Dario Simões Fernandes IV-274,

IV-302
Filho, Jugurta Lisboa I-561
Fiorese, Adriano II-234
Fonseca, Leonardo G. I-125
Formosa, Saviour II-609
Formosa Pace, Janice II-609
Fort, Marta I-253
França, Felipe M.G. I-101
Freitas, Douglas O. IV-470
Fruhwirth, Rudolf K. IV-392

Garćıa, I. III-119
Garćıa, Immaculada I-57
Garrigós, Irene IV-116
Gasior, Wade IV-646
Gavrilova, Marina I-188
Gentili, Eleonora III-539
Geraldes, Carla A.S. III-187
Gervasi, Osvaldo IV-457
Ghandehari, Mehran II-194
Ghazali, Rozaida I-87
Ghiselli, Antonia I-345
Ghizoni, Maria Lúısa Amarante IV-588
Girard, Luigi Fusco II-157
Gomes, Ruan Delgado IV-132
Gomes, Tiago Costa III-30
Gonschorek, Julia II-208, II-220
Gonzaga de Oliveira, Sanderson Lincohn

I-172, I-198, I-610
Görlich, Markus I-15
Greco, Ilaria II-548
Grégio, André Ricardo Abed IV-274,

IV-286, IV-302
Guardia, Hélio C. IV-560
Gupta, Pankaj III-87

Hahn, Kwang-Soo I-214
Haijema, Rene III-45
Han, Jikwang III-217
Han, JungHyun III-272
Han, Yanni III-297
Handaga, Bana IV-340
Hasan, Osman III-419
Hashim, Rathiah II-728
Hendrix, Eligius M.T. I-57, III-45,

III-119, III-159
Heo, Jaewee I-214
Hong, Junguye III-324
Huang, Lucheng I-447

Ibrahim, Rosziati IV-353, IV-364
Igounet, Pablo IV-530
Ikhu-Omoregbe, Nicholas IV-248
Im, Illkyun IV-543
Imtiaz, Sahar III-339
Inceoglu, Mustafa Murat III-550
Iochpe, Cirano IV-67
Ipbuker, Cengizhan III-471
Ivánová, Ivana II-286
Izkara, Jose Luis I-529

658 Author Index

Jeon, Jae Wook III-311
Jeon, Woongryul III-391
Jeong, Jongpil IV-543
Jeong, Soonmook III-311
Jino, Mario IV-274, IV-302
Jorge, Eduardo IV-444
Jung, Sung-Min III-376

Kalsing, André C. IV-67
Kang, Min-Jae III-217
Karimipour, Farid II-194
Kasprzak, Andrzej IV-514, IV-576
Kaya, Sinasi III-471
Khalid, Noor Elaiza Abdul II-728
Khan, Salman H. III-339
Khan, Yasser A. IV-258
Khanh Ha, Nguyen Phan III-324
Kim, Cheol Hong IV-602
Kim, Hakhyun III-391
Kim, Iksu IV-622
Kim, Jeehong III-227, III-238, III-272
Kim, Junho I-214
Kim, Young-Hyuk III-248
Kischinhevsky, Mauricio I-610
Kluge, Mario II-386
Knop, Igor I-707
Komati, Karin S. II-739
Kopeliovich, Sergey I-280
Kosowski, Micha�l IV-514
Koszalka, Leszek IV-576
Koyuncu, Murat IV-234
Kwak, Ho-Young III-217
Kwon, Keyho III-311
Kwon, Ki-Ryong IV-434
Kwon, Seong-Geun IV-434

Ladeira, Pitter Reis II-548
Laganà, Antonio I-292, I-345, I-358,

I-371, I-387, I-401, I-417
Lago, Noelia Faginas I-387
Laguna Gutiérrez, Vı́ctor Antonio

III-618
Lanorte, Antonio III-481, III-512
Lanza, Viviana II-686
Lasaponara, Rosa III-481, III-497,

III-512
Le, Duc Tai III-259
Lederer, Daniel II-263
Le Duc, Thang III-259
Lee, Dong-Young III-368, III-376

Lee, Eung-Joo IV-434
Lee, Hsien-Hsin IV-602
Lee, Jae-Gwang III-248
Lee, Jae-Kwang III-248
Lee, Jae-Pil III-248
Lee, Jongchan IV-613
Lee, Junghoon III-217
Lee, Kwangwoo III-391
Lee, Sang Joon III-217
Lee, Suk-Hwan IV-434
Lee, Yunho III-391
Leonel, Gildo de Almeida II-712
Leonori, Francesca I-331
Li, Yang III-297
Lim, Il-Kown III-248
Lima, Priscila M.V. I-101
Lin, Tao III-297
Liu, Yi IV-100
Lobarinhas, Pedro III-202
Lobosco, Marcelo I-675, I-691, I-707
Loconte, Pierangela II-517
Lomba, Ricardo III-202
Lombardi, Andrea I-387
Lopes, Maria do Carmo III-1
Lopes, Paulo IV-217
Lou, Yan I-447
Lubisco, Giorgia II-517
Luiz, Alfredo José Barreto III-657

Ma, Zhiyi IV-100
Macedo, Gilson C. I-691, I-707
Maffioletti, Sergio I-401
Maleki, Behzad III-647
Mancini, Francesco II-517
Mangialardi, Giovanna II-116
Manuali, Carlo I-345
Marcondes, Cesar A.C. IV-470
Marghany, Maged III-435, III-447
Marimbaldo, Francisco-Javier Moreno

I-462
Marinho, Euler Horta IV-632
Martins, Lúıs B. III-147
Martins, Pedro IV-217
Martucci, Isabella II-1
Marucci, Alessandro II-532
Marwala, T. IV-157
Marwedel, Peter I-15
Marzuoli, Annalisa I-723
Mashkoor, Atif III-419
Masini, Nicola III-497

Author Index 659

Mateos, Cristian IV-29, IV-234, IV-484
Mazhar, Aliya III-368
Mazón, Jose-Norberto IV-116
McAnally, William H. II-578, II-589
Medeiros, Claudia Bauzer I-620
Mehlawat, Mukesh Kumar III-87
Meira Jr., Wagner I-649
Mele, Roberta II-653
Melo, Tarick II-302
Messine, F. III-119
Miao, Hong I-447
Milani, Alfredo III-528, III-539
Min, Changwoo III-227, III-238
Min, Jae-Won III-376
Misra, A.K. IV-157
Misra, Sanjay IV-29, IV-147, IV-234,

IV-248
Mizio�lek, Marek IV-514
Mocavero, Silvia I-44
Mohamad, Kamaruddin Malik IV-353
Mohamed Elsayed, Samir A. I-161
Monfroy, Eric III-607
Monteserin, Ariel III-698
Montrone, Silvestro II-102
Moreira, Adriano II-450
Moreira, Álvaro IV-67
Moscato, Pablo I-71
Moschetto, Danilo A. IV-470
Müller, Heinrich I-15
Mundim, Kleber Carlos I-432
Mundim, Maria Suelly Pedrosa I-316
Mundim, Maria Suely Pedrosa I-432
Munir, Ali III-352, III-368
Murgante, Beniamino II-640, II-670,

III-512
Murri, Riccardo I-401
Musaoglu, Nebiye III-471

Nabwey, Hossam A. II-316, II-358
Nakagawa, Elisa Yumi III-576
Nalli, Danilo I-292
Nawi, Nazri Mohd I-87
Nedjah, Nadia I-101, I-113, I-136, I-148
Nema, Jigyasu III-528
Neri, Igor IV-457
Nesticò, Antonio II-27
Neves, Brayan II-302
Nguyên, Toàn IV-418
Niu, Wenjia III-297
Niyogi, Rajdeep III-528

Nolè, Gabriele III-512
Nunes, Manuel L. III-147

O’Kelly, Morton E. II-249
Oliveira, José A. III-133
Oliveira, Rafael S. I-649
Oreni, Daniela II-397
Ottomanelli, Michele II-44

Pacifici, Leonardo I-292, I-371
Pádua, Clarindo Isáıas P.S. IV-51
Pádua, Wilson IV-51
Pallottelli, Simonetta I-358
Panaro, Simona II-54
Pandey, Kusum Lata IV-147
Paolillo, Pier Luigi II-331
Park, Changyong III-283
Park, Gyung-Leen III-217
Park, Junbeom III-283
Park, Sangjoon IV-613
Park, Young Jin IV-602
Parvin, Hamid III-647
Parvin, Sajad III-647
Pathak, Surendra II-589
Pauls-Worm, Karin G.J. III-45
Peixoto, Daniela C.C. IV-51
Peixoto, João II-450
Pepe, Monica II-397
Perchinunno, Paola II-88, II-102
Pereira, Gilberto Corso I-491
Pereira, Guilherme A.B. III-133, III-187
Pereira, Óscar Mortágua III-682
Pereira, Tiago F. I-240
Pessanha, Fábio Gonçalves I-113
Pigozzo, Alexandre B. I-691, I-707
Pimentel, Dulce II-565
Pingali, Keshav I-1
Pinheiro, Marcello Sandi III-631
Pirani, Fernando I-316, I-387, I-432
Piscitelli, Claudia II-517
Poggioni, Valentina III-539
Pol, Maciej IV-576
Pollino, Maurizio II-532
Poma, Lourdes P.P. IV-470
Pontrandolfi, Piergiuseppe II-686
Poplin, Alenka I-491
Pozniak-Koszalka, Iwona IV-576
Pradel, Marilys II-373
Prasad, Rajesh IV-147
Prieto, Iñaki I-529

660 Author Index

Proma, Wojciech IV-576
Prudêncio, Ricardo B.C. III-562

Qadir, Junaid III-352
Qaisar, Saad Bin III-339, III-352,

III-407
Quintela, Bárbara de Melo I-675, I-691,

I-707

Ragni, Mirco I-723
Raja, Haroon III-368, III-407
Rajasekaran, Sanguthevar I-161
Rak, Jacek IV-498
Ramiro, Carla I-29
Rampini, Anna II-397
Rasekh, Abolfazl II-275
Re, Nazzareno I-738
Renhe, Marcelo Caniato II-712
Resende, Rodolfo Ferreira IV-632
Rezende, José Francisco V. II-302
Rezende, Solange Oliveira III-618
Ribeiro, Hugo IV-202
Ribeiro, Marcela Xavier III-667, III-743
Riveros, Carlos I-71
Rocha, Ana Maria A.C. III-57, III-72,

III-147
Rocha, Bernardo M. I-649
Rocha, Humberto III-1
Rocha, Jorge Gustavo I-571
Rocha, Maria Célia Furtado I-491
Rocha, Pedro Augusto F. I-691
Rodrigues, António M. II-565
Romani, Luciana A.S. III-743
Rosi, Marzio I-316, I-331
Rossi, Elda I-345
Rossi, Roberto III-45
Rotondo, Francesco I-545
Ruiz, Linnyer Beatrys IV-588

Sad, Dhiego Oliveira I-228
Salles, Evandro O.T. II-739
Salles, Ronaldo M. IV-326
Salvatierra, Gonzalo IV-484
Sampaio-Fernandes, João C. I-665
Samsudin, Nurnabilah II-728
Sanches, Silvio Ricardo Rodrigues

II-699
Sanjuan-Estrada, Juan Francisco I-57
Santos, Adauto IV-588
Santos, Maribel Yasmina III-682

Santos, Marilde Terezinha Prado
III-667, III-743

Santos, Teresa II-565
Sarafian, Haiduke I-599
Saraiva, João IV-202, IV-217
Sarcinelli-Filho, Mario II-739
Schirone, Dario Antonio II-1, II-17,

II-88
Sciberras, Elaine II-609
Scorza, Francesco II-640
Selicato, Francesco I-545, II-517
Selicato, Marco II-144
Sellarès, J. Antoni I-253
Sertel, Elif III-471
Shaaban, Shaaban M. II-316, II-358
Shah, Habib I-87
Shukla, Mukul IV-157
Shukla, Ruchi IV-157
Silva, António I-571
Silva, João Tácio C. II-302
Silva, José Eduardo C. I-240
Silva, Rodrigo I-228
Silva, Rodrigo M.P. IV-326
Silva, Roger Correia I-228
Silva, Valdinei Freire da II-699
Silva Jr., Luneque I-113
Silvestre, Eduardo Augusto IV-1
Simões, Flávio O. I-240
Simões, Paulo II-234
Singh, Gaurav II-286
Skouteris, Dimitris I-331
Soares, Carlos III-562
Song, Hokwon III-227, III-238
Song, Taehoun III-311
Soravia, Marco II-599
Soto, Ricardo III-607
Souza, Cleber P. IV-314
Stanganelli, Marialuce II-599
Stankute, Silvija II-439

Tajani, Francesco II-27
Tasso, Sergio I-358, IV-457
Tavares, Maria Purificac↪ão I-665
Teixeira, Ana Paula III-17
Teixeira, José Carlos III-174, III-202
Teixeira, Senhorinha F.C.F. III-147,

III-202
Tentella, Giorgio I-417
Thom, Lucinéia IV-67

Author Index 661

Thonhauser, Gerhard IV-392
Tilio, Lucia II-466, II-686
Timm, Constantin I-15
Tori, Romero II-699
Torkan, Germano II-17
Torre, Carmelo Maria I-583, II-116,

II-144, II-157
Traina, Agma J.M. III-743
Treadwell, Jim IV-646
Tricaud, Sebastien IV-314
Trofa, Giovanni La II-144
Trunfio, Giuseppe A. II-481, II-492
Tsoukiàs, Alexis II-466
Tyrallová, Lucia II-208, II-220

Usera, Gabriel IV-530

Vafaeinezhad, Ali Reza II-275
Vargas-Hernández, José G. I-518
Varotsis, Constantinos I-304
Vaz, Paula I-665
Vecchiocattivi, Franco I-316, I-432
Vella, Flavio IV-457
Verdicchio, Marco I-371
Verma, Shilpi III-87
Versaci, Francesco I-1
Vieira, Marcelo Bernardes I-228, II-712

Vieira, Weslley IV-444
Vyatkina, Kira I-280

Walkowiak, Krzysztof IV-498, IV-514
Wang, Hao III-283
Wang, Kangkang I-447
Weichert, Frank I-15
Won, Dongho III-391
Wu, Feifei I-447

Xavier, Carolina R. I-635
Xavier, Micael P. I-691
Xexéo, Geraldo B. IV-379
Xu, Yanmei I-447
Xu, Yuemei III-297

Yanalak, Mustafa III-471

Zald́ıvar, Anibal IV-116
Zenha-Rela, Mário IV-132
Zhang, Tian IV-100
Zhang, Xiaokun IV-100
Zhang, Yan IV-100
Zhao, Xuying IV-100
Zito, Romina I-583
Zunino, Alejandro IV-29, IV-234,

IV-484

	Title
	Preface
	Organization
	Table of Contents
	Workshop on Software Engineering Processes and Applications (SEPA 2012)
	Modeling Road Traffic Signals Control Using UML and the MARTE Profile
	Introduction
	Overview on the MARTE Modeling Language
	Domain Characteristics
	Case Study
	User Requirements
	Structural Design
	Dynamic Design

	Discussion
	Conclusion
	References

	Analysis of Techniques for Documenting User Requirements
	Introduction
	Review on Techniques for User Requirements Documentation
	Criteria Used for Evaluation
	Resulting Table
	Conclusion
	References

	Predicting Web Service Maintainability via Object-Oriented Metrics: A Statistics-Based Approach
	Introduction
	Basic Concepts
	Related Efforts
	Data Weight Metric
	Distinct Message Ratio Metric
	Message Entropy Metric
	Message Repetition Scale Metric

	Statistical Correlation among Services Metrics
	A Step towards Early Improving WSDL Maintainability
	Conclusions
	References

	Early Automated Verification of Tool Chain Design
	Introduction
	Approach
	Building Up the Verification Graph
	Description of the Product Development Process
	Description of the Design of the Tool Chain
	Mapping Rules and the Verification Graph

	Verification by Alignment Checking
	Alignment Rules
	Alignment Checking

	Quantification by Alignment Metrics
	Case Study
	Related Work
	Future Work and Conclusion
	References

	Using UML Stereotypes to Support the Requirement Engineering: A Case Study
	Introduction
	Background
	Standard Requirement Engineering Process Version
	Professional Requirement Engineering Process Version
	Automatic Prototype Generation
	Counting Function Points
	Assigning Constraints to Modeling Elements

	Assessment
	Automatic Prototype Generation
	Counting Function Points

	Related Work
	Stereotype Usage on Software Development
	Automatic Prototype Generation
	Counting Function Points
	Assigning Constraints to Modeling Elements

	Conclusion and Future Work
	References

	Identifying Business Rules to Legacy Systems Reengineering Based on BPM and SOA
	Introduction
	Legacy System Behavior
	Proposed Solution to Identification of the Legacy System Behavior

	Related Work
	Business Rules
	Business Rules Ontology
	Implementation of the Business Rules Classes
	Programming Language
	Mapping the Business Rules Classes into Equivalent Classes

	Support and Confidence
	Tool to Identify Business Rules in the Source Code
	Summary and Outlook
	References

	Abstraction Analysis and Certified Flow and Context Sensitive Points-to Relation for Distributed Programs
	Introduction
	Memory Model, Language, and Operational Semantics
	Pointer Analysis
	Abstraction Analysis
	Context and Flow Sensitive Pointer Analysis
	Flow Sensitive and Context Insensitive Pointer Analysis

	Related and Future Work
	References

	An Approach to Measure Understandability of Extended UML Based on Metamodel
	Introduction
	Problem
	Motivation

	Related Works
	Background
	Metamodel of UML
	Extension Patterns of UML

	Measurement of Understandability for Extended UML
	Basic Idea
	Metric Definition
	Empirical Validation

	Evaluation of Extension Patterns for UML by Understandability Measurement
	Conclusion
	References

	Dealing with Dependencies among Functional and Non-functional Requirements for Impact Analysis in Web Engineering
	Introduction
	Related Work
	Goal-Oriented Requirements Analysis in Web Engineering
	A Practical Case: A Web Requirements Specification

	An Impact Analysis Algorithm for Goal-Oriented Requirements in Web Engineering
	Performing the Impact Analysis

	Open Source Implementation Framework
	Conclusions and Future Work
	References

	Assessing Maintainability Metrics in Software Architectures Using COSMIC and UML
	Introduction
	Definitions
	SA and Evolution
	Maintainability
	COSMIC

	Object-Oriented Metrics
	Complexity
	Coupling
	Cohesion

	Architectural Metrics
	Case Study
	Conclusions and Future Works
	References

	Plagiarism Detection in Software Using Efficient String Matching
	Introduction
	Related Algorithms
	Sunday’s Quick Search Algorithm
	Raita Algorithm
	Berry-Ravindran Algorithm
	TVSBS Algorithm
	Parameterized String Matching
	Parameterized Sunday (PSUNDAY) Algorithm

	The Proposed Algorithm
	Pre-processing Phase
	Searching Phase
	Extension to Parameterized Matching

	Experimental Results
	Conclusions
	References

	Dynamic Software Maintenance Effort Estimation Modeling Using Neural Network, Rule Engine and Multi-regression Approach
	Introduction
	Software Maintenance Effort Estimation Methodology
	Dynamic Factors
	Data Collection and Analysis
	Dynamic Effort Estimation
	Regression Model for Dynamic Effort Estimation
	NN Modeling for Dynamic Effort Estimation

	AI Based Dynamic Effort Estimation Tool (AIDEE)
	Conclusions
	References

	Workshop on Software Quality (SQ 2012)
	New Measures for Maintaining the Quality of Databases
	Introduction
	The Framework
	Databases, Completions, Updates, Constraints
	Cases
	Causes

	Violation Measures
	Conceptualizing Violation Measures
	Formalizing Violation Measures
	New Violation Measures
	Properties of Violation Measures

	Integrity Maintenance
	Measure-Based Inconsistency-Tolerant Integrity Checking
	Repairs

	Conclusion
	References

	A New Way to Determine External Quality of ERP Software
	Introduction
	External Software Quality and Its Characteristics
	Enterprise Resource Planning Systems
	Determining External Quality of ERP Software
	Conclusion
	References

	Towards a Catalog of Spreadsheet Smells
	Introduction
	A Methodology to Identify Spreadsheet Smells
	Spreadsheet Smells: Catalog Definition
	Statistical Smells
	Type Smells
	Content Smells
	Functional Dependencies Based Smells

	Catalog Validation
	Catalog Evaluation
	Catalog Refinement
	SmellSheet Detective
	Related Work
	Conclusion
	References

	Program and Aspect Metrics for MATLAB
	Introduction
	MATLAB
	Tracing in MATLAB
	Specialization of MATLAB Programs

	Aspect MATLAB
	Tracing
	Function Specialization

	Metrics for MATLAB Programs
	Complexity Metrics for MATLAB
	Metrics for Aspects in MATLAB

	Metrics Evaluation
	Computing Metrics for Aspect MATLAB
	Computing MATLAB Metrics
	Quality Analysis in Real-Life Applications
	Quality Analysis of the Matlab Program IMPACTED

	Implementation
	Conclusion
	References

	A Suite of Cognitive Complexity Metrics
	Introduction
	Motivation
	Proposed Suite of Metrics for Object-Oriented Programming
	Demonstration of the Metrics
	Conclusions
	References

	Complexity Metrics for Cascading Style Sheets
	Introduction
	Proposed Metrics
	Rule Length (RL)
	Number of Rule Blocks (NORB)
	Entropy Metric (E)
	Number of Extended Rule Blocks (NERB)
	Number of Attributes Defined per Rule Block (NADRB)
	Number of Cohesive Rule Blocks (NCRB)

	Demonstration of the Proposed Metrics
	Practical Validation of the Proposed Metrics
	Concluding Remark and Further Work
	References

	A Systematic Review on the Impact of CK Metrics on the Functional Correctness of Object-Oriented Classes
	Introduction
	CK Metrics Suite
	Research Method
	Research Questions
	Search Strategy
	Data Extraction and Synthesis

	Overview of Selected Studies
	Results and Discussion
	WMC
	DIT
	NOC
	CBO
	RFC
	LCOM

	Limitations
	Conclusion
	References

	Workshop on Security and Privacy in Computational Sciences (SPCS 2012)
	Pinpointing Malicious Activities through Network and System-Level Malware Execution Behavior
	Introduction
	Related Work
	Behavioral Traces
	Extraction and Processing
	Definitions of Behavior
	Suspicious Behavior

	Malicious Activities
	Network-Level Risky Activities
	System-Level Risky Activities

	Experimental Results
	Malicious Activities' Pinpoint
	Malware Classes Behavior

	Conclusion
	References

	A Malware Detection System Inspired on the Human Immune System
	Introduction
	Concepts and Related Work
	Human Immune System
	Network Flow
	Data Mining
	Related Works

	Proposed System
	Architecture
	Signature Generation System
	Signature Model
	Monitoring System

	Tests and Results
	Detection Results

	Conclusion
	References

	Interactive, Visual-Aided Tools to Analyze Malware Behavior
	Introduction
	Related Work
	Data Gathering
	Malware Collection
	Behavior Extraction

	Interactive Visualization Tools for Behavioral Analysis
	Timeline and Magnifier
	Malicious Spiral

	Tests and Analysis of Results
	Conclusion and Future Work
	References

	Interactive Analysis of Computer Scenarios through Parallel Coordinates Graphics
	Introduction
	Brief Explanation about Parallel Coordinates
	Creation of Parallel Coordinates
	Data Transformation
	Picviz Description Language – PGDL
	Picviz-GUI

	SSH Authentication Log Analysis
	Related Work
	Conclusion
	References

	Methodology for Detection and Restraint of P2P Applications in the Network
	Introduction
	Related Works
	The Proposed P2P Detection Architecture
	Analyzed Filters

	Data Collection
	Results
	Set D1: Traces with P2P Applications
	Set D2: Traces without P2P Applications
	Set D3: Online Games
	Set D4: Traces with and without P2P Applications

	Comparison with Previous Works
	Proposed Methodology to Restrain P2P Traffic
	Conclusion and Future Works
	References

	Workshop on Soft Computing and Data Engineering (SCDE 2012)
	Text Categorization Based on Fuzzy Soft Set Theory
	Introduction
	Related Work
	Document Representation
	Soft Set Theory
	Fuzzy Soft Set
	Similarity between Two Fuzzy Soft Sets

	Fuzzy Soft Set Algorithm for Text Categorization
	Experiment Results
	Document Datasets
	Evaluation Metrics
	Results and Discussion

	Conclusion and Future Work
	References

	Cluster Size Determination Using JPEG Files
	Introduction
	PredClus
	Proposed Architecture
	Proposed Algorithm
	Experimentation

	Result and Discussion
	Conclusion
	References

	Semantic Web Search Engine Using Ontology, Clustering and Personalization Techniques
	Introduction
	Related Works
	Semantic Web
	Online Ontology Resources
	Clustering/Categorization
	User Profiling/Personalization

	The Framework of Semantic Web Search Engine
	Semantic Web Search Construction
	Search Result Based on User Profiling
	Proposed Model
	Algorithm
	Data Description

	Case Study of the Semantic Web Search Engine
	Step 1 - User Identification
	Step 2 - Ontology Searching and Clustering
	Step 3 - User Profiling Using RDB to RDF Mapping
	Step 4 - RDF to UTHM Ontology Comparison
	Step 5 - Ranking

	Conclusion
	References

	Granules of Words to Represent Text: An Approach Based on Fuzzy Relations and Spectral Clustering
	Introduction
	Related Works
	Word Granulation
	Fuzzy Relation
	Spectral Clustering
	Evaluation
	Results
	Conclusion
	References

	Multivariate Time Series Classification by Combining Trend-Based and Value-Based Approximations
	Introduction
	State of the Art
	Our Approach
	TVA Representation
	Value-Based Approximation
	Trend-Based Approximation

	Time Series Classification
	Experimental Results
	Conclusion and Future Work
	References

	General Track on High Performance Computing and Networks
	Impact of pay-as-you-go Cloud Platforms on Software Pricing and Development: A Review and Case Study
	Introduction
	Software Pricing
	Impact on Software Development
	Software Cost Estimation (COCOMO)
	Requirements and Software Engineering (ISO/IEC 25010)
	Benchmarking Tools (SPEC)

	Case Study: SIE ERP System
	Case Study Setup
	Measurement and Analysis
	Discussion

	Conclusion
	References

	Resilience for Collaborative Applications on Clouds
	Introduction
	Definitions
	Errors
	Failures
	Faults
	Fault-Tolerance
	Checkpoints
	Recovery
	Resilience

	Error Detection
	Error Characterization
	Error Ranking
	Resilience Sub-system

	Error Management
	Detection
	Impacted Tasks and Data
	Impact
	Recovery

	Implementation
	Overview
	Resilience Sub-system

	Conclusion
	References

	T-DMB Receiver Model for Emergency Alert Service
	Introduction
	T-DMB Location AEAS Receiver Model
	Emergency Alert Broadcasting Process
	T-DMB AEAS Receiver Model

	Experimental Results
	Conclusions
	References

	A Framework for Context-Aware Systems in Mobile Devices
	Introduction
	Ubiquitous and Pervasive Computing
	Context Sensitive Computing
	Framework
	CAMobile
	Flow Operation of CAMobile

	Definition of the Framework in the Android Platform
	Android Platform
	Framework in Android

	Definition of the Framework in the iOS Platform
	iOS Platform
	Framework on iOS

	Scenarios and Applications
	Shopping Promotions
	Mobile Devices in Traffic
	Photos around the World
	Parking Locator

	Conclusion
	References

	A Simulation Framework for Scheduling Performance Evaluation on CPU-GPU Heterogeneous System
	Introduction
	Related Work
	Program, Processes and Threads
	HPSSim
	Abstraction Level
	Scheduling Disciplines Implemented
	Input Parameters
	Event and Work-Flow

	Conclusions and Future Works
	References

	Influence of Topology on Mobility and Transmission Capacity of Human-Based DTNs
	Introduction
	Message Forwarding in DTNs
	Simulation Environment
	Mobility Models
	Topology Categorization According to Its Complexity
	Analysis of the Transmission Capacity in Human-Based DTNs
	Influence of Buffer Size
	Influence of Node Density on the Map
	Influence of the Routing Protocol

	Influence of Map Topology in Message Delivery
	Conclusion and Future Work
	References

	Towards a Computer Assisted Approach for Migrating Legacy Systems to SOA
	Introduction
	Automatic Detection of SOA Frontier Improvement Opportunities
	WSDL Anti-patterns Root Causes Detection
	Supplying Guidelines to Improve the SOA Frontier

	Evaluation
	Classical Metrics Analysis
	Data Model Analysis
	Anti-pattern Analysis
	Required Effort Analysis

	Related Work
	Conclusions and Future Work
	References

	1+1 Protection of Overlay Distributed Computing Systems: Modeling and Optimization
	Introduction
	Related Work
	Survivability of Distributed Computing Systems
	Distributed Computing System Architecture
	Protection Approach

	Integer Programming Model
	Heuristic Algorithms
	Results
	Conclusion
	References

	Scheduling and Capacity Design in Overlay Computing Systems
	Introduction
	Related Works
	Modeling of Scheduling and Capacity Design in Overlay Computing System
	Notation
	Objective Function
	ILP Model

	Heuristic Algorithms
	Random Algorithm
	Greedy Algorithm
	Evolutionary Algorithm
	Tabu Search Algorithm

	Results
	Concluding Remarks
	References

	GPU Acceleration of the caffa3d.MB Model
	Introduction
	caffa3d.MB Model
	Mathematical Model
	caffa3d.MB Iteration Scheme
	Analysis of caffa3d.MB Model Runtime

	caffa3d.MB on GPU
	SIP on GPU
	Related Works
	Our Proposal
	Experiments
	Integration of the GPU-SIP on the caffa3d.MB Model
	Other Model Stages on GPU

	Conclusions and Future Work
	References

	Security-Effective Fast Authentication Mechanism for Network Mobility in Proxy Mobile IPv6 Networks
	Introduction
	Related Work
	Secure Authentication
	Network Architecture
	Fast Handoff in PMIPv6

	Security-Effective Fast Authentication Mechanism
	Symmetric Key-Based Local-Lighted Authentication Mechanism
	eXtension & Fast Proxy Mobile IPv6 (X-FPMIPv6)
	Integrated Operation of SK-L2AM and X-FPMIPv6 (AX-FPMIPv6)

	 Security Analysis
	Performance Analysis
	Evaluation Criteria
	Parameter
	Analysis Results

	Conclusions
	References

	An Architecture for Service Integration and Unified Communication in Mobile Computing
	Introduction
	Related Work
	Bluetooth
	Architecture Description
	Implementation
	Test Cases
	Performance Results

	Conclusions and Future Work
	References

	Task Allocation in Mesh Structure: 2Side LeapFrog Algorithm and Q-Learning Based Algorithm
	Introduction
	Tasks Allocation
	Terminology
	Problem Statement
	Objective Functions

	The Known Allocation Algorithms – Related Work
	The Created Algorithms
	2Side LeapFrog Algorithm
	Q-Learning Based Algorithm

	Investigation
	Investigation Scenario
	Part One. Comparison of the Allocation Algorithms
	Part Two. Evaluation of Q-learning Based Algorithm

	Conclusion
	References

	Follow-Us: A Distributed Ubiquitous Healthcare System Simulated by MannaSim
	Introduction
	Application Scenario
	Network Simulator (ns-2)
	MannaSim

	Follow-Us: Putting It All Together
	Simulation
	Energy Level
	Number of Errors
	Types of Errors
	Division of the Evaluations Events
	Operation of the Network in Its Lifetime

	Conclusions
	References

	Adaptive Dynamic Frequency Scaling for Thermal-Aware 3D Multi-core Processors
	Introduction
	Related Work
	3D Integration Technology
	Dynamic Thermal Management Techniques

	Adaptive Dynamic Frequency Scaling Technique
	Experiments
	Experimental Methodology
	Thermal Impact of DFS on 3D Multi-core Processors
	Thermal Impact of Workload Distribution on 3D Multi-core Processors
	Conventional DFS Technique vs. Adaptive DFS Technique for 3D Multi-core Processors

	Conclusions
	References

	A Context-Aware Service Model Based on the OSGi Framework for u-Agricultural Environments
	Introduction
	Related Work
	OSGi-Based Context-Aware Service Model for Ubiquitous Agricultural Environments
	Layered Architecture of the Suggested Service Model

	Conclusion
	References

	A Security Framework for Blocking New Types of Internet Worms in Ubiquitous Computing Environments
	Introduction
	Related Work
	Detection Method for Attacks
	A Change of Network Deployment for Security in Ubiquitous Computing Environments

	Security Framework for Blocking Internet Worm Attacks
	Network Deployment of the Proposed Framework
	Components for Blocking Internet Worm Attacks

	Conclusion
	References

	Quality Factors in Development Best Practices for Mobile Applications
	Introduction
	Models of Software Quality Factors
	McCall's Model
	Boehm's Model
	FURPS Model
	ISO 25010

	Development Best Practices for SMDs Applications
	Evaluation of Development Best Practices for SMDs Applications
	Conclusion
	References

	ShadowNet: An Active Defense Infrastructure for Insider Cyber Attack Prevention
	Introduction
	Related work
	An Active Defence Infrastructure
	Overview
	Cyber Attack Prevention Description
	Core Technologies

	Conclusion
	References

	Author Index

