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Abstract. The Human Immune System is a complex system responsi-
ble for protecting the organism against diseases. Although understanding
how it works is essential to develop better treatments against diseases,
its complexity makes this task extremely hard. In this work a three-
dimensional mathematical and computational model of part of this sys-
tem, the innate immune system, is presented. The high computational
costs associated to simulations lead the development of a parallel ver-
sion of the code, which has achieved a speedup of about 72 times over
its sequential counterpart.

1 Introduction

Computational model is a popular tool to study the behavior of a complex
system. This study is done through the simulation of distinct scenarios, which
reflects the adjusts done in the parameters of the system under simulation. The
results obtained from the computational experiments can then be used by experts
to improve their understanding about the system. The system under study is
often modelled using an explicit mathematical model, such as an ODE or PDE,
although other implicit mathematical models, multi-agent systems or system
dynamics, can also be used.

One particular complex system that has benefited from the computational
modelling is the Human Immune System (HIS). The HIS is a complex network
composed of specialized cells, tissues and organs that is responsible for pro-
tecting the organism against diseases caused by pathogenic agents. Although
understanding how the HIS is essential to develop better drugs and treatments
against diseases, its complexity and the intense interaction among several com-
ponents, makes this task extremely hard. The use of computational models can
help researchers to better understand how it works and their distinct compo-
nents interacts, allowing them to test a large number of hypotheses in a short
period of time.

This paper focus on the modelling of a part of the HIS, the innate immune
system. The innate immune system is responsible for the first response against
microorganisms or toxins that successfully enter into an organism. The main
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contributions of this paper are the following. First we extend our previous works
[1,2] and present a new three-dimensional model of the innate immune system. In
particular, the current work focus on the simulation of the immune response to a
potent immunostimulant in a microscopic 3D section of tissue, reproducing the
initiation, maintenance and resolution of the innate immune response. Second,
due to its huge computational cost, we present a parallel version of the 3D
code using GPGPUs. A previous attempt to write a parallel version of the one-
dimensional version of the code has used OpenMP and MPI[3]. The preliminary
GPGPU results have shown that the parallelization process was very successful,
yielding speedups up to sixty times.

This paper is organized as follows. In Section 2 the biological background
is presented. Section 3 describes the mathematical model used in this work to
model the innate immune system, while Section 4 presents its computational
implementation and Section 5 presents its numerical results. Section 6 presents
the parallelization of the code and the parallel results are presented and dis-
cussed in Section 7. The concluding remarks and future works are presented in
Section 8.

2 Biological Background

The human body surfaces are protected by epitheliums, that constitutes a phys-
ical barrier between the internal and the external environment. However, it can
eventually be crossed or settled by pathogens, causing infections. After cross-
ing the epithelium, the pathogens find cells and molecules of the innate im-
mune system that immediately develop an immune response. The strategy of
the Human Immune System (HIS) is to keep some resident macrophages, called
resting macrophages, into the tissue to look for any signal of invasion. When
macrophages find such an invader they become active and ask the help of poly-
morphonuclear leukocytes (PMNs), such as the neutrophils. The cooperation
between macrophages and PMNs is essential to mount an effective defense, be-
cause without the macrophages to recruit the PMNs to the location of invasion,
the PMNs would circulate indefinitely in the blood vessels, impairing the con-
trol of huge infections. For example, protein granules produced by neutrophils
contributes to increase the permeability of the walls of the blood vessels, called
endothelium, allowing monocytes to enter into the tissues and mature into rest-
ing macrophages.

This initial response of the HIS starts an inflammatory process that has many
benefits on the control of the infection. Besides recruiting cells and molecules
of innate immunity from blood vessels to the location of the infected tissue, it
increases the lymph flux containing microorganisms and cells that carry antigens
to the neighbors lymphoid tissues, where these cells will present the antigens to
the lymphocytes and will initiate the adaptive response. The adaptive response
is part of the HIS that can adapt to protect the organism against almost any
invader. Once the adaptive response is activated, the inflammation also recruits
the effector cells of the adaptive immune system to the location of infection.
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A component of the cellular wall of Gram-negative bacteria, such as LPS, can
trigger an inflammatory response through the interaction with receptors on the
surface of some cells. When receptors on the surface of macrophages bind to
LPS, the macrophage starts to phagocytosis, degrading the bacteria internally
and secreting proteins known as cytokines and chemokines, as well as other
molecules.

The resolution of the inflammatory response also includes the production of
anti-inflammatory mediators and the apoptosis (or programmed death) of effec-
tor cells of the HIS, such as the neutrophils. The anti-inflammatory cytokines
are a set of immunoregulatory molecules that control the pro-inflammatory re-
sponse. The cytokines act together with specific inhibitors and cytokines soluble
receptors to regulate the immune response[4]. The main anti-inflammatory cy-
tokines include the antagonist receptor of IL-1 (Interleukin 1), and the cytokines
IL-4, IL-6, IL-10, IL-11 e IL-13[4]. The IL-10 is a strong inhibitor of the produc-
tion of many pro-inflammatory cytokines [5], among them the IL-8 and TNF-α
(tumor necrosis factor α) by monocytes [6] and IL-8 by neutrophils [7,8].

The apoptotic cells keep the membrane integrity by a small period of time and
so need to be quickly removed to prevent a secondary necrosis and, consequently,
the release of cytotoxic molecules that causes inflammation and tissue damage
[9]. As a consequence of the phagocytosis of apoptotic cells by macrophages or
dendritic cells, these phagocytic cells produces anti-inflammatory cytokines. For
example, macrophages secrete TGF-β (transforming growth factor β) that pre-
vents the release of pro-inflammatory cytokines induced by LPS [10]. Also, the
binding of the apoptotic cells to macrophage receptor CD36 (cluster of differenti-
ation 36) inhibits the production of pro-inflammatory cytokines such as TNF-α,
IL-1β and IL-12 and also increases the secretion of TGF-β and IL-10[11].

3 Mathematical Model

Biological systems span multiple scales from sub-cellular molecular interactions
to individual complex organisms. The abstraction level of a model depends on
the scale and granularity chosen and it has been a challenge to find a balance
between scale, granularity and computational feasibility during the development
of a model[12]. As models represent the reality, simplifications maintaining the
main components are often used without loosing reliability [13].

This paper models the response of the innate HIS to a potent immunostim-
ulant in a three-dimensional (3D) section of a tissue. In particular, the mathe-
matical model focus on the response to Lipopolysaccharides (LPS), a molecule
that can be found in the membrane of bacteria. Previous works [1,2] has repro-
duced the initiation, maintenance and resolution of the innate immune response
in a microscopic one-dimensional (1D) section of a tissue. The new 3D model
proposed in this work aims to present more realistic results.

In this work, Partial Differential Equations (PDEs) have been employed to
model the spatial and temporal behavior of the following components: LPS (A),
macrophages, neutrophils (N), apoptotic neutrophils (ND), pro-inflammatory
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cytokines (CH), anti-inflammatory cytokine (CA) and proteins granules (G).
In this model, the macrophages are present in two states of readiness: resting
(MR) and hyperactivated (MA). The proinflammatory cytokines, modelled by
an unique equation in the model, are TNF-α and IL-8. The anti-inflammatory
cytokine modelled is the IL-10. The IL-10 inhibits the activation and effector
functions of T cells, monocytes and macrophages [14]. The different subsets of
proteins granules [15] released by neutrophils during their extravasation from
blood vessel to the tissues are represented by an unique equation.

The main differences related to the previous 1D model [1,2] are the following:

– a larger simulation space is used. An hexahedron is used instead of a line;
– the initial and boundary conditions were adapted for the 3D model;
– the diffusion and chemotaxis were applied in three directions, x, y and z.

3.1 LPS

The equations that models LPS are given by Eq. 1:

⎧
⎪⎨

⎪⎩

maActivation = maActivationRate.MR.A/(1 + θCA.CA)
∂A
∂t = −μAA−maActivation− (λN |AN + λMA|AMA).A+DAΔA

A(x, y, z, 0) = 100 | z ≥ 0.9, ∂A(.,.,.,t)
∂n |∂Ω = 0

(1)

The term μAA models the decay of LPS, where μ is the rate of decay. The term
maActivation models the activation of resting macrophages. This activation
occurs when resting macrophages recognizes the LPS. After this recognition, the
macrophages phagocyte the LPS. The term λN |A.N models the phagocytosis
of LPS by the neutrophils, where λN |A is the rate of this phagocytosis. The
term λMA|A.MA models the phagocytosis of LPS by the active macrophages,
where λMA|A is the rate of this phagocytosis. The term DAΔA models the LPS
diffusion, where DA is the diffusion coefficient.

3.2 Macrophage

The equations related to resting macrophages (MR) are given by Eq. 2:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mrpermeability1 = (MrPmax−MrPmin).CH/(CH + keqch) +MrPmin

Mrpermeability2=(MrPmax g −MrPmin g).G/(G+ keq g) +MrPmin g

sourceMR = (Mrpermeability1 +Mrpermeability2).

.(MrmaxT issue− (MR+MA))
∂MR
∂t = −μMRMR−maActivation+DMRΔMR+ sourceMR−

−∇.(χMRMR∇CH)

MR(x, y, z, 0) = 1, ∂MR(.,.,.,t)
∂n |∂Ω = 0

(2)
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The terms Mrpermeability1 and Mrpermeability2 model the increase in the
endothelium permeability and its effects on the extravasation of monocytes in-
duced by pro-inflammatory citokines and proteins granules, respectively. The
permeability of the endothelium of the blood vessels is modelled through a Hill
equation [16].

The calculus of Mrpermeability1 involves the following parameters: a)
MrPmax is the maximum rate of increase in the endothelum permeability in-
duced by the pro-inflammatory cytokine; b) MrPmin is the minimum rate of
increase in the endothelum permeability induced by the pro-inflammatory cy-
tokine and c) keqch is the concentration of pro-inflammatory cytokine that exerts
50% of the maximum effect in the increase in the permeability.

The calculus ofMrpermeability2 is similar to the calculus ofMrpermeability1,
except for the parameters that are involved: MrPmax g, MrPmin g and keq g.
The term sourceMR represents the source term of macrophages, which is related
to the number of monocytes that will enter into the tissue from the blood ves-
sels. This number depends on the endothelium permeability (Mrpermeability1+
Mrpermeability2) and the capacity of the tissue to support the entrance of more
monocytes (MrmaxT issue).

The term μMRMR models the resting macrophage apoptosis, where μMR is
the apoptosis rate. The term maActivation, as explained before, models the ac-
tivation of resting macrophages, representing the number of resting macrophages
that are becoming active. The term DMRΔMR models the resting macrophage
diffusion, where DMR is the diffusion coefficient. The term ∇.(χMRMR∇CH)
models the resting macrophage chemotaxis, where χMR is the chemotaxis rate.

After being activated, the macrophages are modelled by the following set of
equations (Eq. 3):

{
∂MA
∂t = −μMAMA+maActivation+DMAΔMA−∇.(χMAMA∇CH)

MA(x, y, z, 0) = 0, ∂MA(.,.,.,t)
∂n |∂Ω = 0

(3)
The term μMAMA models the active macrophage apoptosis, where μMA is the
rate of apoptosis. The term DMAΔMA models the active macrophage diffusion,
where DMA is the diffusion coefficient. The term ∇.(χMAMA∇CH) models the
active macrophage chemotaxis, where χMA is the chemotaxis rate.

3.3 Neutrophil

The neutrophil equations (N) are given by Eq. 4.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

permeability = (Pmax− Pmin).CH/(CH + keqch) + Pmin

sourceN = permeability.(NmaxT issue−N)
∂N
∂t = −μNN − λA|NA.N +DNΔN + sourceN −∇.(χNN∇CH)

N(x, y, z, 0) = 0, ∂N(.,.,.,t)
∂n |∂Ω = 0

(4)
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The term ((Pmax − Pmin).CH/(CH + Keqch) + Pmin) models the increase
in the endothelium permeability and its effects on neutrophils extravasation. In
this term Pmax represents the maximum rate of increase of endothelium perme-
ability induced by pro-inflammatory cytokines, Pmin represents the minimum
rate of increase of endothelium permeability induced by pro-inflammatory cy-
tokines and keqch is the concentration of the pro-inflammatory cytokine that
exerts 50% of the maximum effect in the increase of the permeability.

The term μNN models the neutrophil apoptosis, where μN is the rate of
apoptosis. The term λA|NA.N models the neutrophil apoptosis induced by the
phagocytosis, where λA|N represents the rate of this induced apoptosis. The
term DNΔN models the neutrophil diffusion, where DN is the diffusion coef-
ficient. The term sourceN represents the source term of neutrophil, i.e., the
number of neutrophils that is entering into the tissue from the blood vessels.
This number depends on the endothelium permeability (permeability) and on
the capacity of the tissue to support the entrance of neutrophils (NmaxT issue).
It can also represent concentration of neutrophils on blood. In this model we
consider NmaxT issue constant over time. The term ∇.(χNN∇CH) models the
chemotaxis process of the neutrophils, where χN is the chemotaxis rate.

The equations of the apoptotic neutrophil (ND) are given by Eq. 5.

{
∂ND
∂t = μNN + λA|NA.N − λND|MAND.MA+DNDΔND

ND(x, y, z, 0) = 0, ∂ND(.,.,.,t)
∂n |∂Ω = 0

(5)

The terms μNN and λA|NLPS.N were explained previously. The term
λND|MAND.MA models the phagocytosis of the apoptotic neutrophil carried
out by active macrophages, where λND|MA is the rate of the phagocytosis. The
term DNDΔND models the apoptotic neutrophil diffusion, where DND is the
diffusion coefficient.

3.4 Cytokines

The equations related to the model of the pro-inflammatory cytokine (CH) are
given by Eq. 6.

⎧
⎪⎨

⎪⎩

∂CH
∂t = −μCHCH + (βCH|N .N + βCH|MA.MA).A.(1− CH/chInf)/

/(1 + θCA.CA) +DCHΔCH

CH(x, y, z, 0) = 0, ∂CH(.,.,.,t)
∂n |∂Ω = 0

(6)

The term μCHCH models the pro-inflammatory cytokine decay, where μCH is
the decay rate. The term βCH|N .N models the pro-inflammatory cytokine pro-
duction by the neutrophils, where βCH|N is the rate of this production. The
term βCH|MA.MA models the pro-inflammatory cytokine production by the ac-
tive macrophages, where βCH|MA is the rate of this production. The saturation
of this production is calculated by the equation (1− CH/chInf), where chInf
is an estimate of the maximum concentration of pro-inflammatory cytokine sup-
ported by the tissue. The production of pro-inflammatory cytokine decreases
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when the anti-inflammatory cytokine acts on the producing cells. This influence
of the anti-inflammatory cytokine is modelled by the term 1/(1+ θCA.CA). The
term DCHΔCH models the pro-inflammatory cytokine diffusion, where DCH is
the diffusion coefficient.

The equations that models anti-inflammatory cytokines (CA) are given by
Eq. 7.

⎧
⎪⎨

⎪⎩

∂CA
∂t = −μCACA+ (βCA|MR.MR.ND + βCA|MA.MA).(1− CA/caInf)+

+DCAΔCA

CA(x, 0) = 0, ∂CA(.,t)
∂n |∂Ω = 0

(7)
The term μCACA models the anti-inflammatory cytokine decay, where μCA is
the decay rate. The term βCA|MR.MR.ND models the anti-inflammatory cy-
tokine production by the resting macrophages in the presence of apoptotic neu-
trophils, where βCA|MR is the rate of the production. The term βCA|MA.MA
models the anti-inflammatory cytokine production by active macrophages, where
βCA|MA is the rate of this production. The saturation of this production is calcu-
lated by equation (1−CA/caInf), where caInf is the maximum concentration
of anti-inflammatory cytokine into the tissue. The term DCAΔCA models the
anti-inflammatory cytokine diffusion, where DCA is the diffusion coefficient.

3.5 Protein Granules

Protein granules (G) are represented by the set of equations presented in Eq. 8.

{
∂G
∂t = −μGG+ βG|N .sourceN.(1−G/gInf) +DGΔG

G(x, y, z, 0) = 0, ∂G(.,.,.,t)
∂n |∂Ω = 0

(8)

The term μGG models the protein granules decay, where μG is the decay rate.
The term βG|N .sourceN models the production of the protein granules by the
neutrophils that extravasate from the blood into inflamed tissue, where βG|N is
the rate of this production. The saturation of the production of protein granules
is calculated by equation (1−G/gInf), where gInf is the maximum concentra-
tion of protein granules. The term DGΔG models the protein granules diffusion,
where DG is the diffusion coefficient.

4 Computational Model

The numerical method employed to implement the mathematical model was
the Finite Difference Method [17], a method commonly used in the numeric
discretization of PDEs. The Finite Difference Method is a method of resolution
of differential equations that is based on the approximation of derivatives with
finite difference.
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Below we have an example of a finite difference operator used in the dis-
cretization of the Laplace operator that simulates the diffusion phenomenon in
3D:

DO(
∂2O(x, y, z)

∂x2
+

∂2O(x, y, z)

∂y2
+

∂2O(x, y, z)

∂z2
) ≈

DO ∗ ((o[x + 1, y, z]− 2 ∗ o[x, y, z] + o[x− 1, y, z])/deltaX2))

+DO ∗ ((o[x, y + 1, z]− 2 ∗ o[x, y, z] + o[x, y − 1, z])/deltaY 2))

+DO ∗ ((o[x, y, z + 1]− 2 ∗ o[x, y, z] + o[x, y, z − 1])/deltaZ2))

(9)

In Eq. 9 O represents the discretization of some types of cells, such as neu-
trophils, resting and activated macrophages; DO is the diffusion coefficient of
these populations of cells; x, y and z are positions in space; and deltaX , deltaY
and deltaZ are the space discretization.

In three dimensions, the chemotaxis flux is as follows:

1 // f l ux at x−ax i s
2 i f ( ( CH [ 0 ] [ x ] [ y ] [ z ]−CH [ 0 ] [ x−1] [ y ] [ z ] ) > 0) {
3 flux_left = −(CH [ 0 ] [ x ] [ y ] [ z ]−CH [ 0 ] [ x−1] [ y ] [ z ] ) ∗ O [ 0 ] [ x−1] [ y ] [ z ] / deltaX ;
4 } e l s e {
5 flux_left = −(CH [ 0 ] [ x ] [ y ] [ z ]−CH [ 0 ] [ x−1] [ y ] [ z ] ) ∗ O [ 0 ] [ x ] [ y ] [ z ] / deltaX ;
6 }
7 i f ( CH [ 0 ] [ x+1] [ y ] [ z ]−CH [ 0 ] [ x ] [ y ] [ z ] > 0) {
8 flux_right = ( CH [ 0 ] [ x+1] [ y ] [ z ]−CH [ 0 ] [ x ] [ y ] [ z ] ) ∗ O [ 0 ] [ x ] [ y ] [ z ] / deltaX ;
9 } e l s e {

10 flux_right = ( CH [ 0 ] [ x+1] [ y ] [ z ]−CH [ 0 ] [ x ] [ y ] [ z ] ) ∗ O [ 0 ] [ x+1] [ y ] [ z ] / deltaX ;
11 }
12 fluxX = ( flux_left + flux_right )/ deltaX ;
13

14 // f l ux at y−ax i s
15 i f ( CH [ 0 ] [ x ] [ y ] [ z ]−CH [ 0 ] [ x ] [ y−1] [ z ] > 0) {
16 flux_left = −(CH [ 0 ] [ x ] [ y ] [ z ]−CH [ 0 ] [ x ] [ y−1] [ z ] ) ∗ O [ 0 ] [ x ] [ y−1] [ z ] / deltaY ;
17 } e l s e {
18 flux_left = −(CH [ 0 ] [ x ] [ y ] [ z ]−CH [ 0 ] [ x ] [ y−1] [ z ] ) ∗ O [ 0 ] [ x ] [ y ] [ z ] / deltaY ;
19 }
20 i f ( CH [ 0 ] [ x ] [ y+1] [ z ]−CH [ 0 ] [ x ] [ y ] [ z ] > 0) {
21 flux_right = ( CH [ 0 ] [ x ] [ y+1] [ z ]−CH [ 0 ] [ x ] [ y ] [ z ] ) ∗ O [ 0 ] [ x ] [ y ] [ z ] / deltaY ;
22 } e l s e {
23 flux_right = ( CH [ 0 ] [ x ] [ y+1] [ z ]−CH [ 0 ] [ x ] [ y ] [ z ] ) ∗ O [ 0 ] [ x ] [ y+1] [ z ] / deltaY ;
24 }
25 fluxY = ( flux_left + flux_right )/ deltaY ;
26

27 // f l ux at z−ax i s
28 i f ( CH [ 0 ] [ x ] [ y ] [ z ]−CH [ 0 ] [ x ] [ y ] [ z−1] > 0) {
29 flux_left = −(CH [ 0 ] [ x ] [ y ] [ z ]−CH [ 0 ] [ x ] [ y ] [ z−1]) ∗ O [ 0 ] [ x ] [ y ] [ z−1]/ deltaZ ;
30 } e l s e {
31 flux_left = −(CH [ 0 ] [ x ] [ y ] [ z ]−CH [ 0 ] [ x ] [ y ] [ z−1]) ∗ O [ 0 ] [ x ] [ y ] [ z ] / deltaZ ;
32 }
33 i f ( CH [ 0 ] [ x ] [ y ] [ z+1]−CH [ 0 ] [ x ] [ y ] [ z ] > 0) {
34 flux_right = ( CH [ 0 ] [ x ] [ y ] [ z+1]−CH [ 0 ] [ x ] [ y ] [ z ] ) ∗ O [ 0 ] [ x ] [ y ] [ z ] / deltaZ ;
35 } e l s e {
36 flux_right = ( CH [ 0 ] [ x ] [ y ] [ z+1]−CH [ 0 ] [ x ] [ y ] [ z ] ) ∗ O [ 0 ] [ x ] [ y ] [ z+1]/ deltaZ ;
37 }
38 fluxZ = ( flux_left + flux_right )/ deltaZ ;
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In this code fragment, ch represents the discretization of the pro-inflammatory
cytokine; O represents the discretization of some types of cells; x, y and z are the
positions in space; and deltaX , deltaY and deltaZ are the spatial discretization.
The final result of the evaluation of the chemotaxis is:

−∇.(χOO∇CH) ≈ −χO ∗ (fluxX + fluxY + fluxZ) (10)

Where the speed of the movement is given by the term ∇CH and χO is the
chemotaxis rate of the correspondent population of cells. This value is then used
to choose between two schemes of finite differences: forward or backward.

Table 1. Initial Conditions. All values are estimated and represent the number of cells.

Parameter Value and Position

A0 100, 0 ≤ x ≤ 1 & 0 ≤ y ≤ 1 & 0.9 ≤ z ≤ 1

MR0 1, 0 ≤ x ≤ 1 & 0 ≤ y ≤ 1 & 0 ≤ z ≤ 1

MA0 0, 0 ≤ x ≤ 1 & 0 ≤ y ≤ 1 & 0 ≤ z ≤ 1

N0 0, 0 ≤ x ≤ 1 & 0 ≤ y ≤ 1 & 0 ≤ z ≤ 1

ND0 0, 0 ≤ x ≤ 1 & 0 ≤ y ≤ 1 & 0 ≤ z ≤ 1

CH0 0, 0 ≤ x ≤ 1 & 0 ≤ y ≤ 1 & 0 ≤ z ≤ 1

G0 0, 0 ≤ x ≤ 1 & 0 ≤ y ≤ 1 & 0 ≤ z ≤ 1

CA0 0, 0 ≤ x ≤ 1 & 0 ≤ y ≤ 1 & 0 ≤ z ≤ 1

Table 2. Time and Space Discretization

Parameter Size Discretization

Time 1day, symbolized by 106 iterations δT = 0.000001

X-axis 1mm, symbolized by 11 points δX = 0.1

Y-axis 1mm, symbolized by 11 points δY = 0.1

Z-axis 1mm, symbolized by 11 points δZ = 0.1

Tables 1 and 2 present the initial conditions, the time discretization (δT )
and the space discretization (δX , δY and δZ). All the parameters used in our
simulations can be found at Table 3. Some values were estimated based on values
found in the literature.



700 P.A.F. Rocha et al.

Table 3. The complete set of parameters used in the simulation
p p

Parameter Value Unit Reference

keqch and keqg 1 cell estimated

θCA 1 1/cell estimated

Pmax 11.4 1/day estimated based on [18]

Pmin 0.0001 1/day estimated

NmaxTissue 8 cell estimated

MrPmax and MrPmaxg 0.1 and 0.5 1/day estimated

MrPmin and MrPming 0.01 and 0 1/day estimated

MrmaxTissue 6 cell estimated

maActivationRate 0.1 1/cell.day estimated

μA and μMR 0 and 0.033 1/day [19]

λN|A 0.55 1/cell.day [19]

λMA|A 0.8 1/cell.day [19]

DA 0.2 mm2/day estimated

DMR 0.00432 mm2/day estimated

XMR 0.0036 mm2/day estimated

μMA 0.07 1/day [19]

DMA 0.003 mm2/day estimated

XMA 0.00432 mm2/day estimated

μN and μCH 3.43 and 7 1/day estimated

λA|N 0.55 1/cell.day [19]

DN 0.012096 mm2/day [20]

XN 0.0144 mm2/day [21]

λND|MA 2.6 1/cell.day [19]

DND 0.000000144 mm2/day [19]

βCH|N 1 1/cell.day estimated

βCH|MA 0.8 1/cell.day estimated

DCH 0.009216 mm2/day [19]

μG and μCA 5 and 4 1/day estimated

βG|N 0.6 1/day estimated

DG 0.009216 mm2/day estimated

βCA|MR 1.5 1/cell.day estimated

βCA|MA 1.5 1/day estimated

DCA 0.009216 mm2/day estimated

caInf and chInf 3.6 cell estimated based on [6]

gInf 3.1 cell estimated
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5 Numerical Results

This section presents the numerical results of the simulation. The simulator was
build using the C programming language. A numerical library, such as NAG[22],
could be used to solve the PDEs. However, we decided to implement the numer-
ical method to solve PDEs because a) we have the possibility to parallelize the
code; b) most of the numerical libraries offer few functions that are suitable to
our problem; and c) functions offered by such numerical libraries are hard to use
because arguments supplied to functions must be in a specific format.

Due to the lack of space, the results obtained from the simulations for some
types of cells are not presented. Figures 1, 2 and 3 depict the spatial and temporal
distribution of antigens, resting macrophages and neutrophils, respectively, in a
1 mm3 tissue.

Fig. 1. Spatial and temporal distribution of antigens. Top left is the initial distribution,
top right shows its distribution after 6 hours, bottom left after 12 hours and bottom
right after 24 hours.

It can be observed that, at first, the number of resting macrophages decreases
because they become active to attack LPS. Citokynes are produced and at-
tract neutrophils to the place of infection. These neutrophils that are attracted
also contributes to produce even more cytokines in the locations of the tissue
where the LPS are more concentrated, resulting in a vigorous and rapid immune
response. LPS are eliminated between 6 and 12 hours. After this, it can be ob-
served that the number of resting macrophages start to increase again, while the
number of neutrophils start to decrease.
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Fig. 2. Spatial and temporal distribution of resting macrophages. Top left is the initial
distribution, top right shows its distribution after 6 hours, bottom left after 12 hours
and bottom right after 24 hours.

6 Parallel Implementation

The long computational cost of the sequential implementation of the simula-
tor leads the development of a parallel version the code using General-purpose
Graphics Processing Units (GPGPUs). GPGPUs were chosen because of their
ability to process many streams simultaneously. The present section describes
the GPU-based version of the implemented code.

6.1 CUDA

NVIDIA’s CUDA (Compute Unified Device Architecture)[23] is a massively
parallel high-performance computing platform on GPGPUs. CUDA includes C
software development tools and libraries to hide the GPGPU hardware from
programmers.

In order to run an application, the programmer must create a parallel function
called kernel. A kernel is a function callable from the CPU and executed on the
GPU simultaneously by many threads. Each thread is run by a stream processor.
They are grouped into blocks of threads or just blocks. The blocks can be one-,
two- or three-dimensional. A set of blocks of threads form a grid, that can be
one- or two-dimensional. When the CPU calls the kernel, it must specify how
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Fig. 3. Spatial and temporal distribution of neutrophils. Top left is the initial distri-
bution, top right shows its distribution after 6 hours, bottom left after 12 hours and
bottom right after 24 hours.

many threads will be created at runtime. The syntax that specifies the number
of threads that will be created to execute a kernel is formally known as the
execution configuration, and is flexible to support CUDA’s hierarchy of threads,
blocks of threads, and grids of blocks. Since all threads in a grid execute the same
code, a unique set of identification numbers is used to distinguish threads and
to define the appropriate portion of the data they must process. These threads
are organized into a two-level hierarchy composed by blocks and grids and two
unique coordinates, called blockId and threadId, are assigned to them by the
CUDA runtime system. These two built-in variables can be accessed within the
kernel functions and they return the appropriate values that identify a thread.

Some steps must be followed to use the GPU: a) the device must be initialized;
b)memory must be allocated in the GPU and data transferred to it; c) the kernel
is called. After the kernel have finished, results are transferred back to the CPU.

6.2 Parallel Version

In the parallel version of the code, each thread is responsible for calculating the
complete set of PDEs for each single point of the tissue’s space. Therefore, for
each point (x, y, z) of the discretized space, there is a thread responsible for the
computation of the PDEs. During the computation, the access to data produced
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by neighbors threads is necessary. To avoid the use of synchronization, a buffer
was implemented to allow that a thread, at time t, gets access to data produced
by its neighbors at the time t-1. The use of a buffer is necessary because a
programmer can not synchronize threads that execute in distinct blocks. Besides,
the synchronization cost would be prohibitive. No race condition occurs because
data being produced in time t are accessed just by the thread that is producing
it. The buffer is implemented in such a way that there are two values associated
for each point (x, y, z) of a given population of cells. One buffer entry is the
data produced in time t-1, while the other one is data being produced in time
t. These two buffer entries change their meaning at each time step, in order to
avoid copy of data.

In order to store the values for each population of cells in each point of the
space, an unidimensional vector was allocated in both CPU and GPU memories.
Its length is equal to 8, which are the number of populations, times the number
of positions in the tissue.

7 Experimental Evaluation

In this section, we present the speedups obtained with the parallel versions of
our code. Both the sequential and parallel implementations have been tested on
a dual Intel Xeon E5620 processors each with 4 cores, so 8 physical cores are
available. Each core with 64 KB cache L1 and 256 KB L2 and Hyper-threading
(HT) which gives the support to 16 simultaneous threads per processor. This
machine has a Tesla M2050 GPU, with 448 cores and 2.6 GB of global memory.
gcc 4.1.2 was used to compile the sequential version of the code, while nvcc release
3.2 was used to compile the parallel version. The execution times obtained by
all versions of the code were measured 5 times and the standard deviation was
lower than 0.13%. Each execution of the code was measured using the Linux
time application.

The speedup factor was used to evaluate gains obtained by the parallel version
of the code over the sequential one. The acceleration can be calculated employing
the following Equation 11:

S(p) =
ts
tp

(11)

where ts is sequential execution time and tp is parallel execution time with p
processors.

In order to evaluate the performance gains obtained by the parallel version of
the code, a tissue of volume equals to 64 mm3 was used in the parallel experi-
ments to simulate one day of infection (about one million of interactions). This
tissue has a total of 64, 000 points. The speedups are presented in Table 4.
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Table 4. Speedup obtained by the CUDA parallel version of the code

Version Runtime average (s) Standard deviation Speedup

Sequential 69,727.68 0.13 % -

Parallel 970.84 0.06 % 71.82

8 Conclusion

This work presented a three-dimensional mathematical and computational model
of the innate immune system. The simulation of one day of infection takes about
20 hours on a sequential machine. This long simulation time leads the devel-
opment of a parallel version of the code. The CUDA version has achieved an
speedup of about 72 times over its sequential counterpart. As future work, we
plan to employ multiple GPU devices to increase the application speedup. The
use of multiple GPU devices allows the allocation of more threads to compute
the equations. The innate immune model will be extended to include more cells,
such as Natural Killers and Dendritic Cells, and other substances, such as the
proteins of the Complement System.
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