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Abstract. The Human Immune System is a complex system responsi-
ble for protecting the organism against diseases. Although understanding
how it works is essential to develop better treatments against diseases,
its complexity makes this task extremely hard. In this work a three-
dimensional mathematical and computational model of part of this sys-
tem, the innate immune system, is presented. The high computational
costs associated to simulations lead the development of a parallel ver-
sion of the code, which has achieved a speedup of about 72 times over
its sequential counterpart.

1 Introduction

Computational model is a popular tool to study the behavior of a complex
system. This study is done through the simulation of distinct scenarios, which
reflects the adjusts done in the parameters of the system under simulation. The
results obtained from the computational experiments can then be used by experts
to improve their understanding about the system. The system under study is
often modelled using an explicit mathematical model, such as an ODE or PDE,
although other implicit mathematical models, multi-agent systems or system
dynamics, can also be used.

One particular complex system that has benefited from the computational
modelling is the Human Immune System (HIS). The HIS is a complex network
composed of specialized cells, tissues and organs that is responsible for pro-
tecting the organism against diseases caused by pathogenic agents. Although
understanding how the HIS is essential to develop better drugs and treatments
against diseases, its complexity and the intense interaction among several com-
ponents, makes this task extremely hard. The use of computational models can
help researchers to better understand how it works and their distinct compo-
nents interacts, allowing them to test a large number of hypotheses in a short
period of time.

This paper focus on the modelling of a part of the HIS, the innate immune
system. The innate immune system is responsible for the first response against
microorganisms or toxins that successfully enter into an organism. The main
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contributions of this paper are the following. First we extend our previous works
[112] and present a new three-dimensional model of the innate immune system. In
particular, the current work focus on the simulation of the immune response to a
potent immunostimulant in a microscopic 3D section of tissue, reproducing the
initiation, maintenance and resolution of the innate immune response. Second,
due to its huge computational cost, we present a parallel version of the 3D
code using GPGPUs. A previous attempt to write a parallel version of the one-
dimensional version of the code has used OpenMP and MPI[3]. The preliminary
GPGPU results have shown that the parallelization process was very successful,
yielding speedups up to sixty times.

This paper is organized as follows. In Section [2] the biological background
is presented. Section [3] describes the mathematical model used in this work to
model the innate immune system, while Section [ presents its computational
implementation and Section [B] presents its numerical results. Section [(] presents
the parallelization of the code and the parallel results are presented and dis-
cussed in Section [11 The concluding remarks and future works are presented in
Section [B

2 Biological Background

The human body surfaces are protected by epitheliums, that constitutes a phys-
ical barrier between the internal and the external environment. However, it can
eventually be crossed or settled by pathogens, causing infections. After cross-
ing the epithelium, the pathogens find cells and molecules of the innate im-
mune system that immediately develop an immune response. The strategy of
the Human Immune System (HIS) is to keep some resident macrophages, called
resting macrophages, into the tissue to look for any signal of invasion. When
macrophages find such an invader they become active and ask the help of poly-
morphonuclear leukocytes (PMNs), such as the neutrophils. The cooperation
between macrophages and PMNs is essential to mount an effective defense, be-
cause without the macrophages to recruit the PMNs to the location of invasion,
the PMNs would circulate indefinitely in the blood vessels, impairing the con-
trol of huge infections. For example, protein granules produced by neutrophils
contributes to increase the permeability of the walls of the blood vessels, called
endothelium, allowing monocytes to enter into the tissues and mature into rest-
ing macrophages.

This initial response of the HIS starts an inflammatory process that has many
benefits on the control of the infection. Besides recruiting cells and molecules
of innate immunity from blood vessels to the location of the infected tissue, it
increases the lymph flux containing microorganisms and cells that carry antigens
to the neighbors lymphoid tissues, where these cells will present the antigens to
the lymphocytes and will initiate the adaptive response. The adaptive response
is part of the HIS that can adapt to protect the organism against almost any
invader. Once the adaptive response is activated, the inflammation also recruits
the effector cells of the adaptive immune system to the location of infection.
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A component of the cellular wall of Gram-negative bacteria, such as LPS, can
trigger an inflammatory response through the interaction with receptors on the
surface of some cells. When receptors on the surface of macrophages bind to
LPS, the macrophage starts to phagocytosis, degrading the bacteria internally
and secreting proteins known as cytokines and chemokines, as well as other
molecules.

The resolution of the inflammatory response also includes the production of
anti-inflammatory mediators and the apoptosis (or programmed death) of effec-
tor cells of the HIS, such as the neutrophils. The anti-inflammatory cytokines
are a set of immunoregulatory molecules that control the pro-inflammatory re-
sponse. The cytokines act together with specific inhibitors and cytokines soluble
receptors to regulate the immune responsefd]. The main anti-inflammatory cy-
tokines include the antagonist receptor of IL-1 (Interleukin 1), and the cytokines
IL-4, IL-6, IL-10, IL-11 e TL-13[4]. The IL-10 is a strong inhibitor of the produc-
tion of many pro-inflammatory cytokines [5], among them the IL-8 and TNF-«
(tumor necrosis factor a)) by monocytes [6] and IL-8 by neutrophils [71§].

The apoptotic cells keep the membrane integrity by a small period of time and
so need to be quickly removed to prevent a secondary necrosis and, consequently,
the release of cytotoxic molecules that causes inflammation and tissue damage
[9]. As a consequence of the phagocytosis of apoptotic cells by macrophages or
dendritic cells, these phagocytic cells produces anti-inflammatory cytokines. For
example, macrophages secrete TGF-§ (transforming growth factor ) that pre-
vents the release of pro-inflammatory cytokines induced by LPS [I0]. Also, the
binding of the apoptotic cells to macrophage receptor CD36 (cluster of differenti-
ation 36) inhibits the production of pro-inflammatory cytokines such as TNF-q,
IL-13 and IL-12 and also increases the secretion of TGF-g and IL-10[11].

3 Mathematical Model

Biological systems span multiple scales from sub-cellular molecular interactions
to individual complex organisms. The abstraction level of a model depends on
the scale and granularity chosen and it has been a challenge to find a balance
between scale, granularity and computational feasibility during the development
of a model[I2]. As models represent the reality, simplifications maintaining the
main components are often used without loosing reliability [I3].

This paper models the response of the innate HIS to a potent immunostim-
ulant in a three-dimensional (3D) section of a tissue. In particular, the mathe-
matical model focus on the response to Lipopolysaccharides (LPS), a molecule
that can be found in the membrane of bacteria. Previous works [1I2] has repro-
duced the initiation, maintenance and resolution of the innate immune response
in a microscopic one-dimensional (1D) section of a tissue. The new 3D model
proposed in this work aims to present more realistic results.

In this work, Partial Differential Equations (PDEs) have been employed to
model the spatial and temporal behavior of the following components: LPS (A),
macrophages, neutrophils (N), apoptotic neutrophils (N D), pro-inflammatory
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cytokines (C'H), anti-inflammatory cytokine (C'A) and proteins granules (G).
In this model, the macrophages are present in two states of readiness: resting
(MR) and hyperactivated (M A). The proinflammatory cytokines, modelled by
an unique equation in the model, are TNF-« and IL-8. The anti-inflammatory
cytokine modelled is the IL-10. The IL-10 inhibits the activation and effector
functions of T cells, monocytes and macrophages [14]. The different subsets of
proteins granules [I5] released by neutrophils during their extravasation from
blood vessel to the tissues are represented by an unique equation.

The main differences related to the previous 1D model [IJ2] are the following:

— a larger simulation space is used. An hexahedron is used instead of a line;
— the initial and boundary conditions were adapted for the 3D model;
— the diffusion and chemotaxis were applied in three directions, x, y and z.

3.1 LPS

The equations that models LPS are given by Eq. [It

maActivation = maActivationRate. MR.A/(1 4+ 0ca.CA)
%‘? = —paA — maActivation — (AnyjaN + AprajaMA). A+ DsAA (1)

A(z,y,2,0) =100 | z>0.9,74GD 0 =0

The term p 4 A models the decay of LPS, where p is the rate of decay. The term
maActivation models the activation of resting macrophages. This activation
occurs when resting macrophages recognizes the LPS. After this recognition, the
macrophages phagocyte the LPS. The term Ayj4.N models the phagocytosis
of LPS by the neutrophils, where Ay|4 is the rate of this phagocytosis. The
term Apra)4.M A models the phagocytosis of LPS by the active macrophages,
where A\js4)4 is the rate of this phagocytosis. The term D4 AA models the LPS
diffusion, where D 4 is the diffusion coefficient.

3.2 Macrophage

The equations related to resting macrophages (M R) are given by Eq.

Mrpermeabilityl = (MrPmax — MrPmin).CH/(CH + keqch) + MrPmin
Mrpermeability2=(MrPmaz g — MrPmin g).G/(G + keq g) + MrPmin g
source M R = (Mrpermeabilityl + Mrpermeability?2).
{MrmazTissue — (MR + MA))
3%}% = —pupmrM R — maActivation + Dy rAM R + source M R—
~V.(xMrMRVCH)
MR(z,y,2,0)=1, 3M%(7;L""’t)|ag =0
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The terms Mrpermeabilityl and Mrpermeability2 model the increase in the
endothelium permeability and its effects on the extravasation of monocytes in-
duced by pro-inflammatory citokines and proteins granules, respectively. The
permeability of the endothelium of the blood vessels is modelled through a Hill
equation [16].

The calculus of Mrpermeabilityl involves the following parameters: a)
MrPmazx is the maximum rate of increase in the endothelum permeability in-
duced by the pro-inflammatory cytokine; b) MrPmin is the minimum rate of
increase in the endothelum permeability induced by the pro-inflammatory cy-
tokine and c¢) kegch is the concentration of pro-inflammatory cytokine that exerts
50% of the maximum effect in the increase in the permeability.

The calculus of M rpermeability2 is similar to the calculus of Mrpermeabilityl,
except for the parameters that are involved: MrPmax g, MrPmin g and keq g.
The term source M R represents the source term of macrophages, which is related
to the number of monocytes that will enter into the tissue from the blood ves-
sels. This number depends on the endothelium permeability (M rpermeabilityl +
Mrpermeability2) and the capacity of the tissue to support the entrance of more
monocytes (MrmaxTissue).

The term pupsrM R models the resting macrophage apoptosis, where ppsr is
the apoptosis rate. The term maActivation, as explained before, models the ac-
tivation of resting macrophages, representing the number of resting macrophages
that are becoming active. The term Dy;r AM R models the resting macrophage
diffusion, where Dy is the diffusion coefficient. The term V.(xpygM RVCH)
models the resting macrophage chemotaxis, where y g is the chemotaxis rate.

After being activated, the macrophages are modelled by the following set of
equations (Eq. B):

OMA = —ppaMA + maActivation + DyyaAMA — V.(xpaMAVCH)
MA(z,y,2,0) =0, M50 55 =0
3)

The term ppr4 M A models the active macrophage apoptosis, where uas4 is the
rate of apoptosis. The term Dj;4 AM A models the active macrophage diffusion,
where Dy 4 is the diffusion coefficient. The term V.(xpra M AVCH) models the
active macrophage chemotaxis, where xr4 is the chemotaxis rate.

3.3 Neutrophil

The neutrophil equations (N) are given by Eq. [l

permeability = (Pmax — Pmin).CH/(CH + keqch) + Pmin
sourceN = permeability.(NmaxzTissue — N)

%IX = —uNN — Ay NA.N + DNAN + sourceN — V.(xnNVCH)
N(z,y,2,0) =0, aN(a';'L"’t) o =0

4)
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The term ((Pmax — Pmin).CH/(CH + Keqch) + Pmin) models the increase
in the endothelium permeability and its effects on neutrophils extravasation. In
this term Pmax represents the maximum rate of increase of endothelium perme-
ability induced by pro-inflammatory cytokines, Pmin represents the minimum
rate of increase of endothelium permeability induced by pro-inflammatory cy-
tokines and keqch is the concentration of the pro-inflammatory cytokine that
exerts 50% of the maximum effect in the increase of the permeability.

The term gy N models the neutrophil apoptosis, where pxn is the rate of
apoptosis. The term A4y A.N models the neutrophil apoptosis induced by the
phagocytosis, where A, represents the rate of this induced apoptosis. The
term Dy AN models the neutrophil diffusion, where Dy is the diffusion coef-
ficient. The term sourceN represents the source term of neutrophil, i.e., the
number of neutrophils that is entering into the tissue from the blood vessels.
This number depends on the endothelium permeability (permeability) and on
the capacity of the tissue to support the entrance of neutrophils (NmazTissue).
It can also represent concentration of neutrophils on blood. In this model we
consider NmaxzTissue constant over time. The term V.(xy NVCH) models the
chemotaxis process of the neutrophils, where xy is the chemotaxis rate.

The equations of the apoptotic neutrophil (N D) are given by Eq. Bl

ND(z,y,z,0) =0, NPt 50 — 0
The terms uyN and Ay nyLPS.N were explained previously. The term
AND|MaND.MA models the phagocytosis of the apoptotic neutrophil carried
out by active macrophages, where Ay p|ar4 is the rate of the phagocytosis. The
term DynpAND models the apoptotic neutrophil diffusion, where Dy p is the

diffusion coefficient.

3.4 Cytokines

The equations related to the model of the pro-inflammatory cytokine (CH) are
given by Eq. [6l

agtH = —ucgCH + (ﬂCH\NuN + 5CH|MA.MA).A.(1 — CH/ChITLf)/
/(1—|—00A.CA)+DCHACH (6)
CH(z,y,2,0) =0, D50 =0

The term pcyCH models the pro-inflammatory cytokine decay, where pcp is
the decay rate. The term Sco g n.N models the pro-inflammatory cytokine pro-
duction by the neutrophils, where Scpn is the rate of this production. The
term Bc g ara-M A models the pro-inflammatory cytokine production by the ac-
tive macrophages, where Sc g ara is the rate of this production. The saturation
of this production is calculated by the equation (1 — CH/chInf), where chinf
is an estimate of the maximum concentration of pro-inflammatory cytokine sup-
ported by the tissue. The production of pro-inflammatory cytokine decreases
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when the anti-inflammatory cytokine acts on the producing cells. This influence
of the anti-inflammatory cytokine is modelled by the term 1/(1+4 60c4.C A). The
term Doy AC H models the pro-inflammatory cytokine diffusion, where Doy is
the diffusion coefficient.

The equations that models anti-inflammatory cytokines (C'A) are given by

Eq.[d

0CA — 10 aCA+ (Boapir- MR.ND + Boapra-MA).(1— CAJcalnf)+
+DCAACA
CA(z,0) =0, %9000 55
(7)
The term pcaCA models the anti-inflammatory cytokine decay, where puc 4 is
the decay rate. The term Bg 4y gr-MR.ND models the anti-inflammatory cy-
tokine production by the resting macrophages in the presence of apoptotic neu-
trophils, where Bcajm g is the rate of the production. The term Beajara-MA
models the anti-inflammatory cytokine production by active macrophages, where
Beajma is the rate of this production. The saturation of this production is calcu-
lated by equation (1 — CA/calnf), where calnf is the maximum concentration
of anti-inflammatory cytokine into the tissue. The term Dca AC A models the
anti-inflammatory cytokine diffusion, where D¢ 4 is the diffusion coefficient.

3.5 Protein Granules

Protein granules (G) are represented by the set of equations presented in Eq.[8
dG = —ugG + BG‘N sourceN.(1 — G/gInf) + DaAG (8)
G(‘ray7270):03 B’n’ ’t)| =0

The term pugG models the protein granules decay, where ug is the decay rate.
The term Bg|n.sourceN models the production of the protein granules by the
neutrophils that extravasate from the blood into inflamed tissue, where S|y is
the rate of this production. The saturation of the production of protein granules
is calculated by equation (1 — G/gInf), where gInf is the maximum concentra-
tion of protein granules. The term DgAG models the protein granules diffusion,
where D¢ is the diffusion coefficient.

4 Computational Model

The numerical method employed to implement the mathematical model was
the Finite Difference Method [I7], a method commonly used in the numeric
discretization of PDEs. The Finite Difference Method is a method of resolution
of differential equations that is based on the approximation of derivatives with
finite difference.
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Below we have an example of a finite difference operator used in the dis-
cretization of the Laplace operator that simulates the diffusion phenomenon in
3D:

0%0(z,y, 2) N 0%0(z,y, 2) N 820(:U,y,z)) -
ox? Oy? 0722
Do * ((ofz +1,y, 2] — 2% o[z, y, 2] + o[z — 1,7y, 2]) /deltaX?)) (9)
+Do * ((o[z,y + 1, 2] — 2% o[z, y, 2] + o[z, y — 1, 2])/deltaY?))
+Do * ((o[z,y, z + 1] — 2 % o[z, y, 2] + o[z, y, z — 1])/deltaZ?))

Do(

In Eq. @ O represents the discretization of some types of cells, such as neu-
trophils, resting and activated macrophages; Do is the diffusion coefficient of
these populations of cells; z, y and z are positions in space; and delta X, deltaY
and deltaZ are the space discretization.

In three dimensions, the chemotaxis flux is as follows:

1 //flux at x—axis

> Gt((or[0][x]y]lz]-CH[0][x—1][y][2]) > 0) {

s fhuxdere = (@ (0) (x] [yl (=1=GH (0] (x~1](y] (2]} + 0(0][x-1][s][2]/ doirax;
4 else

5 flux_left = —(CH[O][x][y][z]—-CH[O][x—1][y][z]) * 0[0][x][y][=z]/deltaX;
6

7

8

flux_right = (CH[O][x+1][y][z]—CH[O
9 } else {

}
if(CcH[0][x+1][y][z]—-cH[O0][x][y][z] > (])
10 flux_right = (CH[O][x+1][y][z]—CH[O]

) A
[=]ly]lz]) = 0[0][x][y][z]/deltaX;
[x][y]lz]) = 0[0][x+1][y][z]/deltaX;

12 fluxX = (flux_left + flux_right)/deltaX;

14 //flux at y—axis

15 if(CH[O][x][y][z]-CH[O][x][y—1][z] > 0) {

o fluxdete = (@ (0] (x](y][=1=Ch[0] (] y~1l[=]) + 0[0][x][y=1][e]/do1zat;
17 else

18 , flux_left = —(CH[O][x][y][z]—-CH[O][x][y—1][z]) * 0[0][x][y][=z]/deltaY;
19

20 if(CH[O][x][y+1][z]—-CH[O][x ][Y][Z] > 0) {

21 ) f}ux-zight = (cH[O][x][y+1][z]-CH[O][x][y][z]) = 0[0][x][y][z]/deltaY;
22 else

23 flux_right = (CH[O][x][y+1][z]-CH[O][x][y][z]) = 0[0][x][y+1][z]/deltaY;
25 fluxY = (flux_left -+ flux_right)/deltaY;

27 //flux at z—axis

28 if(CH[O][x][y][z]-CH[O][x][y][z—1] > 0) {

o tluntets = (@ (0] (x](y] (zl=en 0] (x](y](2-1]) « 0(0][x)(y] (2-1)/devaz;
30 else

31 ) flux_left = —(CH[O][x][y][z]—-CH[O][x][y][z—1]) * 0[0][x][y][z]/deltaz;
32

a3 if(CH[O][x][y][z+1]—CH[O][x][y][z] > 0) {

s | thurige = (SaT0] (2] 1y ) (21 =en 0] Ix][y1[2]) » 0[0)(x][y][2]/asLraz;
35 else

36 flux_right = (CH[O][x][y][z+1]-CH[O][x][y][z]) * 0[0][x][y][z+1]/deltaZ;

38 fluxZ = (flux_left + flux_right)/deltaz;
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In this code fragment, ch represents the discretization of the pro-inflammatory
cytokine; O represents the discretization of some types of cells; z, y and z are the
positions in space; and delta X, deltaY and deltaZ are the spatial discretization.
The final result of the evaluation of the chemotaxis is:

—V.(xoOVCH) ~ —xo * (flur X + fluzY + fluxZ) (10)

Where the speed of the movement is given by the term VCH and yo is the
chemotaxis rate of the correspondent population of cells. This value is then used
to choose between two schemes of finite differences: forward or backward.

Table 1. Initial Conditions. All values are estimated and represent the number of cells.

Parameter Value and Position
Ao 100, 0<z<1 & 0<y<1l & 09<=z<1
MRy 1, <z<1l & 0<y<1l & 0<z<
M Ao 0, <z<l & 0<y<1 & <z<1
No 0, <z<1l & 0<y<1l & <z<1
N Dy 0, <z< & 0<y<1 & <z<1
CHy 0, 0<z<1 & 0<y<1l & 0<=z<1
Go 0, <z<1l & 0<y<1l & <z<1
CAp 0, <z<1l & 0<y<1l & <z<1
Table 2. Time and Space Discretization
Parameter Size Discretization
Time 1day, symbolized by 10° iterations 0T = 0.000001
X-axis 1mm, symbolized by 11 points §X =0.1
Y-axis 1mm, symbolized by 11 points 0Y =0.1
Z-axis 1mm, symbolized by 11 points 62 =0.1

Tables [1] and [ present the initial conditions, the time discretization (67")
and the space discretization (60X, Y and 6Z). All the parameters used in our
simulations can be found at Table[Bl Some values were estimated based on values
found in the literature.
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Table 3. The complete set of parameters used in the simulation

Parameter Value Unit Reference
kegch and keq,q 1 cell estimated
Oca 1 1/cell estimated
Pmax 114 1/day estimated based on [18]
Pmin 0.0001 1/day estimated
NmazTissue 8 cell estimated
MrPmax and MrPmaxg 0.1 and 0.5 1/day estimated
MrPmin and MrPming 0.01 and O 1/day estimated
MrmazTissue 6 cell estimated
maActivationRate 0.1 1/cell.day estimated
pa and pvr 0 and 0.033 1/day [19]
AN|A 0.55 1/cell.day [19]
AMAlA 0.8 1/cell.day [19]
Da 0.2 mm? /day estimated
Dyr 0.00432 mm? /day estimated
Xmr 0.0036 mm?/day estimated
MM A 0.07 1/day [19]
Dnra 0.003 mm?/day estimated
Xnra 0.00432 me/day estimated
pun and pomg 3.43 and 7 1/day estimated
AalN 0.55 1/cell.day [19]
Dy 0.012096 mm?/day [20]
XN 0.0144 mm?/day [21]
AND|MA 2.6 1/cell.day [19]
Dnp 0.000000144 mm? /day [19]
BemN 1 1/cell.day estimated
BeH|MA 0.8 1/cell.day estimated
Dcu 0.009216 mm? /day [19]
pa and pcoa 5 and 4 1/day estimated
Ba|n 0.6 1/day estimated
D¢ 0.009216 mm?/day estimated
Beamr 1.5 1/cell.day estimated
Beaima 1.5 1/day estimated
Dca 0.009216 me/day estimated
calnf and chinf 3.6 cell estimated based on [6]
glnf 3.1 cell estimated
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5 Numerical Results

This section presents the numerical results of the simulation. The simulator was
build using the C programming language. A numerical library, such as NAG[22],
could be used to solve the PDEs. However, we decided to implement the numer-
ical method to solve PDEs because a) we have the possibility to parallelize the
code; b) most of the numerical libraries offer few functions that are suitable to
our problem; and c) functions offered by such numerical libraries are hard to use
because arguments supplied to functions must be in a specific format.

Due to the lack of space, the results obtained from the simulations for some
types of cells are not presented. Figures[Il [2land Bl depict the spatial and temporal
distribution of antigens, resting macrophages and neutrophils, respectively, in a
1 mm? tissue.
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Fig. 1. Spatial and temporal distribution of antigens. Top left is the initial distribution,
top right shows its distribution after 6 hours, bottom left after 12 hours and bottom
right after 24 hours.

It can be observed that, at first, the number of resting macrophages decreases
because they become active to attack LPS. Citokynes are produced and at-
tract neutrophils to the place of infection. These neutrophils that are attracted
also contributes to produce even more cytokines in the locations of the tissue
where the LPS are more concentrated, resulting in a vigorous and rapid immune
response. LPS are eliminated between 6 and 12 hours. After this, it can be ob-
served that the number of resting macrophages start to increase again, while the
number of neutrophils start to decrease.



702 P.A.F. Rocha et al.

T MR(cslly
1122018

1

MR (cellsy
1.1420180 © &

1

e S N

e NN

St 7
| /

T N NS
SN NN
T NN

Z-Axis (0.1 mm)
Z-Axis (0.1 mm)
S
5

MR (cells)
1.1420180

11

MR (cellsy
1.1420186

1

Z-Axis (0.1 mm)
Z-Axis {0.1 mm}

o 2 4 6 8 10
X-Axis (0.1 mm) X-Axis (0.1 mm)

Fig. 2. Spatial and temporal distribution of resting macrophages. Top left is the initial
distribution, top right shows its distribution after 6 hours, bottom left after 12 hours
and bottom right after 24 hours.

6 Parallel Implementation

The long computational cost of the sequential implementation of the simula-
tor leads the development of a parallel version the code using General-purpose
Graphics Processing Units (GPGPUs). GPGPUs were chosen because of their
ability to process many streams simultaneously. The present section describes
the GPU-based version of the implemented code.

6.1 CUDA

NVIDIA’s CUDA (Compute Unified Device Architecture)[23] is a massively
parallel high-performance computing platform on GPGPUs. CUDA includes C
software development tools and libraries to hide the GPGPU hardware from
programmers.

In order to run an application, the programmer must create a parallel function
called kernel. A kernel is a function callable from the CPU and executed on the
GPU simultaneously by many threads. Each thread is run by a stream processor.
They are grouped into blocks of threads or just blocks. The blocks can be one-,
two- or three-dimensional. A set of blocks of threads form a grid, that can be
one- or two-dimensional. When the CPU calls the kernel, it must specify how
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Fig. 3. Spatial and temporal distribution of neutrophils. Top left is the initial distri-
bution, top right shows its distribution after 6 hours, bottom left after 12 hours and
bottom right after 24 hours.

many threads will be created at runtime. The syntax that specifies the number
of threads that will be created to execute a kernel is formally known as the
execution configuration, and is flexible to support CUDA’s hierarchy of threads,
blocks of threads, and grids of blocks. Since all threads in a grid execute the same
code, a unique set of identification numbers is used to distinguish threads and
to define the appropriate portion of the data they must process. These threads
are organized into a two-level hierarchy composed by blocks and grids and two
unique coordinates, called blockld and threadld, are assigned to them by the
CUDA runtime system. These two built-in variables can be accessed within the
kernel functions and they return the appropriate values that identify a thread.
Some steps must be followed to use the GPU: a) the device must be initialized;
b)memory must be allocated in the GPU and data transferred to it; ¢) the kernel
is called. After the kernel have finished, results are transferred back to the CPU.

6.2 Parallel Version

In the parallel version of the code, each thread is responsible for calculating the
complete set of PDEs for each single point of the tissue’s space. Therefore, for
each point (z, y, z) of the discretized space, there is a thread responsible for the
computation of the PDEs. During the computation, the access to data produced
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by neighbors threads is necessary. To avoid the use of synchronization, a buffer
was implemented to allow that a thread, at time ¢, gets access to data produced
by its neighbors at the time t¢-1. The use of a buffer is necessary because a
programmer can not synchronize threads that execute in distinct blocks. Besides,
the synchronization cost would be prohibitive. No race condition occurs because
data being produced in time t are accessed just by the thread that is producing
it. The buffer is implemented in such a way that there are two values associated
for each point (x, y, z) of a given population of cells. One buffer entry is the
data produced in time ¢-1, while the other one is data being produced in time
t. These two buffer entries change their meaning at each time step, in order to
avoid copy of data.

In order to store the values for each population of cells in each point of the
space, an unidimensional vector was allocated in both CPU and GPU memories.
Its length is equal to 8, which are the number of populations, times the number
of positions in the tissue.

7 Experimental Evaluation

In this section, we present the speedups obtained with the parallel versions of
our code. Both the sequential and parallel implementations have been tested on
a dual Intel Xeon E5620 processors each with 4 cores, so 8 physical cores are
available. Each core with 64 KB cache L1 and 256 KB L2 and Hyper-threading
(HT) which gives the support to 16 simultaneous threads per processor. This
machine has a Tesla M2050 GPU, with 448 cores and 2.6 GB of global memory.
gce 4.1.2 was used to compile the sequential version of the code, while nvcc release
3.2 was used to compile the parallel version. The execution times obtained by
all versions of the code were measured 5 times and the standard deviation was
lower than 0.13%. Each execution of the code was measured using the Linux
time application.

The speedup factor was used to evaluate gains obtained by the parallel version
of the code over the sequential one. The acceleration can be calculated employing
the following Equation [ITk

S(p) = (11)

where t, is sequential execution time and ¢, is parallel execution time with p
processors.

In order to evaluate the performance gains obtained by the parallel version of
the code, a tissue of volume equals to 64 mm? was used in the parallel experi-
ments to simulate one day of infection (about one million of interactions). This
tissue has a total of 64,000 points. The speedups are presented in Table El
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Table 4. Speedup obtained by the CUDA parallel version of the code

Version Runtime average (s) Standard deviation Speedup
Sequential 69,727.68 0.13 % -
Parallel 970.84 0.06 % 71.82

8 Conclusion

This work presented a three-dimensional mathematical and computational model
of the innate immune system. The simulation of one day of infection takes about
20 hours on a sequential machine. This long simulation time leads the devel-
opment of a parallel version of the code. The CUDA version has achieved an
speedup of about 72 times over its sequential counterpart. As future work, we
plan to employ multiple GPU devices to increase the application speedup. The
use of multiple GPU devices allows the allocation of more threads to compute
the equations. The innate immune model will be extended to include more cells,
such as Natural Killers and Dendritic Cells, and other substances, such as the
proteins of the Complement System.
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