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Abstract. The Successive Over Relaxation (SOR) is a variant of the
iterative Gauss-Seidel method for solving a linear system of equations
Ax = b. The SOR algorithm is used within the NEMO (Nucleus for
European Modelling of the Ocean) ocean model for solving the ellip-
tical equation for the barotropic stream function. The NEMO perfor-
mance analysis shows that the SOR algorithm introduces a significant
communication overhead. Its parallel implementation is based on the
Red-Black method and foresees a communication step at each iteration.
An enhanced parallel version of the algorithm has been developed by
acting on the size of the overlap region to reduce the frequency of com-
munications. The overlap size must be carefully tuned for reducing the
communication overhead without increasing the computing time. This
work describes an analytical performance model of the SOR algorithm
that can be used for establishing the optimal size of the overlap region.
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1 Introduction

The ocean engine of NEMO (Nucleus for European Modelling of the Ocean) [1]
is a primitive equation model adapted to regional and global ocean circulation
problems. It is a flexible tool for studying the ocean and its interactions with the
other components of the earth climate system over a wide range of space and
time scales. Prognostic variables are the three-dimensional velocity field, the sea
surface height, the temperature and the salinity. In the horizontal direction, the
model uses a curvilinear orthogonal grid and in the vertical direction, a full or
partial step z-coordinate, or s-coordinate, or a mixture of the two. The model
time stepping environment is a three level scheme in which the tendency terms
of the equations are evaluated either centered in time, or forward, or backward
depending on the nature of the term. The model is spatially discretized on a
staggered grid (Arakawa C grid) masking the land points. Vertical discretiza-
tion depends on both how the bottom topography is represented and whether
the free surface is linear or not. Explicit, split-explicit and filtered free surface
formulations are implemented for solving the prognostic equations for the active
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tracers and the momentum. A number of numerical schemes are available for
the momentum advection, for the computation of the pressure gradients, as well
as for the advection of the tracers (second or higher order advection schemes,
including positive ones). When the filtered sea surface height option is used, a
new force that can be interpreted as a diffusion of the vertically integrated vol-
ume flux divergence is added in the momentum equation. The equation is solved
implicitly and it represents an elliptic equation for which two solvers are avail-
able: the SOR and the Preconditioned Conjugate Gradient (PCG) schemes. The
SOR has been retained because it is a linear solver very useful when using the
adjoint model of NEMO. The NEMO model with the MFS16 [2] configuration
has been evaluated on the MareNostrum platform at the Barcelona Supercom-
puting Center. The routine named dyn spg is the most time consuming one; it
computes the surface pressure gradient term using the SOR scheme.

The paper is organized as follows: next section introduces the SOR (Successive
Over Relaxation) method. Section 3 describes our parallel approach, while the
latter sections, 4 and 5, show respectively the analytical performance model of
the parallel algorithm and the iso-efficiency analysis.

2 SOR Overview

The iterative methods for solving the linear equation systems Ax = b iteratively
generates a sequence {pk} of approximate solutions such that the residual vector
(rk = b − Apk) converges to 0. The Gauss-Seidel algorithm [3] is an example
of iterative method for solving a linear equation system. The method can be
applied only if the matrix A is strictly diagonally dominant. Each equation is
solved by the unknown on the diagonal and the approximated values for the
other unknowns are plugged in. The process is then iterated until convergence.
The Gauss-Seidel method is easily derived by examining separately each of the
n equations in the linear system. Let the i-th equation given by:

n∑

j=1

aijxj = bi (1)

At the iteration k, it can be solved by (2) for the value of x
(k)
i assuming the

approximation of the previous iteration (x
(k−1)
j �=i ) for the other unkowns xj �=i.
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(k)
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⎞
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There are two important characteristics of the Gauss-Seidel method that should
be noted. Firstly, the computation appears to be serial: since each component
at the new iteration depends on all of the previously computed components, the
updates cannot be done simultaneously as in the Jacobi method [4]. Secondly,
the new iterate value x(k) depends upon the order in which the equations are
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examined. If it changes, the values at the new iteration (and not just their order)
change accordingly.

The definition of the Gauss-Seidel method can be expressed using the following
matrix notation:

x(k) = (D − L)−1(Ux(k−1) + b) (3)

where the matrices D, −L, and −U represent the diagonal, the strictly lower
triangular, and the strictly upper triangular parts of A, respectively. The SOR
[5] is an iterative method for solving a linear system of equations derived by
extrapolating the Gauss-Seidel algorithm. This extrapolation takes the form of a
weighted average between the previous iteration and the Gauss-Seidel component
computed at the current iteration. Given a value for the weight ω the component
at iteration k is given by:

x
(k)
i = ωx

(k)
i + (1− ω)x

(k−1)
i (4)

where x denotes a Gauss-Seidel approximation. The idea is to choose a value for
ω within the interval (0, 2) that will accelerate the rate of convergence to the
solution. In general, it is not possible to compute in advance the value of ω that
will maximize the rate of convergence of the SOR. Frequently, some heuristic
estimate is used, such as ω = 2 − O(h) where h is the mesh spacing of the
discretization of the underlying physical domain.

In matrix terms, the SOR algorithm can be written as follows:

x(k) = (D − ωL)−1[ωU + (1− ω)D]x(k−1) + ω(D − ωL)−1b (5)

3 Parallel Algorithm

While the matrix notation for the SOR algorithm is useful for a theoretical
analysis, a practical implementation requires an explicit formula to be defined
[6]. Let’s consider a general second-order elliptic equation in x and y, finite
differenced on a square. Each row of the matrix A is an equation of the form:

ai,jui+1,j + bi,jui−1,j + ci,jui,j+1 + di,jui,j−1 + ei,jui,j = fi,j (6)

The iterative procedure is defined by solving the following equation for ui,j.

u∗
i,j =

fi,j − ai,jui+1,j − bi,jui−1,j − ci,jui,j+1 − di,jui,j−1

ei,j
(7)

Then, considering the (4), the unew
i,j is a weighted average given by:

unew
i,j = ωu∗

i,j + (1− ω)uold
i,j (8)

If we consider that the residual at any stage of the iteration is given by:

ξi,j =ai,jui+1,j + bi,jui−1,j + ci,jui,j+1 + di,jui,j−1+

ei,jui,j − fi,j
(9)
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we can calculate the new value at each iteration given by:

unew
i,j = uold

i,j − ω
ξi,j
ei,j

(10)

This formulation is very easy to program, and the norm of the residual vector
ξi,j can be used as a criterion for terminating the iteration. The need to reduce
the time spent by the SOR algorithm without increasing the number of itera-
tions to reach convergence has been the main goal of several previous works.
Different multi-color ordering techniques, such as the Red-Black [7] method for
two dimensional problems, have been investigated; they allow the parallelization
of operations on the same color. Other techniques, overlapping computation and
communication or allowing an optimal scheduling of available processors, have
been designed and implemented producing parallel versions of SOR [8]. Paral-
lel SOR algorithms, suitable for use on an asynchronous MIMD computer, are
presented since 1984 [9]. In the last years, the BPSOR [10], characterized by a
new mesh domain partition and ordering, allows retaining the same convergence
rate of the sequential SOR method with an easy parallel implementation on an
MIMD parallel computing.

This work analyzes a parallel algorithm for the SOR based on the Red-Black
method that supposes to divide the mesh into odd and even cells, like in a
checkerboard. Equation (10) shows that the odd point values depend only on
the even points, and vice versa. Accordingly, we can carry out one half-sweep
updating the odd points and then another half-sweep updating the even points
with the new odd values. The parallel algorithm uses a 2D domain decomposi-
tion based on checkerboard blocks. Let ni and nj be respectively the number of
rows and columns of the global domain, and pi and pj respectively the number of
processes along i and j directions, then each process will compute a subdomain
made of ni/pi x nj/pj elements. If we consider only one overlap line between
neighbors, each parallel process must exchange the computed values at the bor-
der at each iteration of the SOR. Two communication steps must be performed
for each iteration (for the odd and for the even points). At each iteration, the
generic process computes the odd points inside its domain, exchanges the odd
points with its neighbors and updates the boundaries values, computes the inner
even points and finally updates even points on the boundaries exchanging with
neighbors (see Fig. 1). At each iteration, the generic parallel process will then
communicate twice for each neighbor. In order to reduce the frequency of com-
munication, the size of the overlap region could be increased [11]. In that case
the neighboring processes would exchange a wider overlap region, but the values
exchanged can be used for further iterations without the need of communication.
Each process, after exchanging the data, computes a total number of lines given
by Ninner + Nol − 1, where Ninner and Nol are respectively the total number
of lines in the inner domain and the number of overlap lines. At each iteration
only one line of the overlap expires so that the process has no need to exchange
for Nol − 1 iterations. The convergence rate of the algorithm does not change,
since the ordering and partition is the same of the original SOR algorithm. The
algorithm is explained by the following pseudo-code fragment.
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Fig. 1. SOR Red-Back computing algorithm

Require: u //result matrix with initial value
a, b, c, d, e //coefficient matrix
f //known term

ol exp← ol
while ξ(i, j) is not enough small do
if ol exp == 0 then
call data exch //exchange odd points over the overlap

end if
for all even points do
tmp ← (f(i, j) − a(i, j) ∗ u(i, j − 1) − b(i, j) ∗ u(i, j + 1)− c(i, j) ∗ u(i −
1, j)− d(i, j) ∗ u(i+ 1, j))/e(i, j)
ξ(i, j)← tmp− u(i, j)
u(i, j)← ω ∗ tmp+ (1− ω) ∗ u(i, j)

end for
if ol exp == 0 then

call data exch //exchange even points over the overlap
ol exp← ol

end if
for all odd points do
tmp ← (f(i, j) − a(i, j) ∗ u(i, j − 1) − b(i, j) ∗ u(i, j + 1)− c(i, j) ∗ u(i −
1, j)− d(i, j) ∗ u(i+ 1, j))/e(i, j)
ξ(i, j)← tmp− u(i, j)
u(i, j)← ω ∗ tmp+ (1− ω) ∗ u(i, j)

end for
call convergence test (ξ)
ol exp← ol exp− 1

end while
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A similar approach has been used by the HYCOM ocean model [12] where a
maximum number of wide halo lines can be added to reduce the halo communi-
cation overhead.

4 The Analytical Performance Model

The SOR algorithm has been implemented in a test program made by the main
sor routine that (i) calls the data exch routine for exchanging the data between
the neighbors and (ii) evaluates the convergence. Both the routines are then char-
acterized by two kind of operations: computing and communication. data exch
performs some data buffering operations and the actual send and receive of the
data on the boundaries. The size of the overlap region directly impacts on the
frequency of the data exch invocation. The sor routine computes the result ma-
trix and performs a collective communication during the convergence test. If we
increase the size of the overlap, the computation increases, while the time for
collective communication does not change. The total time is the sum of these
four components, three of them depending on the size of the overlap. Which is
the best value of the overlap to get the best benefit? The optimal value is related
to some architectural aspects (i.e. the processor speed and the network band-
width and latency) and changes with both the number of parallel processes and
the domain decomposition. A performance model for estimating the behavior
of the SOR algorithm has been defined, such as in [13]. It takes into consid-
eration the four above mentioned aspects. The total time spent by the solver
(Tsor) is given by: (i) the communication time spent in the sor routine for the
convergence test (Tc sor); (ii) the computing time spent in the sor routine for
evaluating the result matrix at each iteration (Tu sor); (iii) the computing time
spent in the data exch routine for managing the data buffer used for the data
transmission (Tu data) and (iv) the communication time in the data exch for the
data transfer to the neighbors (Tc data). The number of calls of data exch de-
pends on both the overlap size (l) and the number of iterations (m) needed to
reach the convergence. The performance model is summarized as follows:

Tsor = Tc sor + Tu sor +

(
2m

l
+ 1

)
(Tc data + Tu data) (11)

The four timing components can be modeled as in (12)(13)(14).
The time spent by the collective communication depends only on the number

of parallel processes (pipj). The convergence test is performed after the first 100
iterations and has a frequency of 10 iterations through an allreduce MPI col-
lective communication, where the maximum residual value is exchanged among
all of the parallel processes. The amount of data exchanged is constant (it is
independent from the subdomain dimension) and, considering the implementa-
tion of the allreduce with the butterfly parallel scheme, we have a number of
communication steps logarithmic to the total number of processes.

Tc sor = O(
m− 100

10
log pipj) (12)
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The computing time of the sor is related to the domain dimension: di and dj are
the dimensions of the biggest subdomain along the i and j directions respectively
and they are given by di = ni/pi and dj = nj/pj. For each iteration of the SOR a
complete sweep of the subdomain elements plus the overlap region is performed.

Tu sor = O(m(di + l)(dj + l)) (13)

The communication is implemented with four point-to-point sends/receives hence
the communication time is directly proportional to the number of exchanged el-
ements. Here we consider a parallel process with four neighbors, but not all of
the processes have four neighbors like those in the border of the global domain.

Tc data = O(Li + Lj)

Tu data = O(Li + Lj)
(14)

Li and Lj represent the total number of elements exchanged between neighbors,
Li = (di + 2l)l, Lj = (dj + 2l)l.

Considering all of the previous equations, the parallel time of the whole algo-
rithm can be expressed as follows:

Tsor = O(
ninj

pipj
+

nil

pi
+

njl

pj
+ l2 + log pipj) (15)

If we consider a square global domain then ni = nj = n, we can also impose
pi = pj =

√
p. The (15) can be simplified:

Tsor = O(
n2

p
+

nl√
p
+ l2 + log p) (16)

The evaluation of the analytical equation for the performance model has been
defined experimentally on an IBM Power6 cluster. It has 30 IBM p575 nodes,
each of them equipped with 16 Power6 dual-core CPUs at 4.7GHz and 128GB of
shared memory (4GB per core). The nodes are interconnected by an Infiniband
network.

The minimum square method on a set of several runs, for which we fixed the
global domain of 871x253 grid points and a predefined domain decomposition
and modified the overlap size, has been used. For both the data exch terms, when
the overlap size changes, the number of exchanged element changes accordingly:
figs. 2 and 3 show the communication and the computing time with the least
square equation used to evaluate the multiplicative coefficients for the Tc data

and Tu data terms. Regarding the analysis of the sor terms, we have taken into
consideration only the trend of the computing time. Indeed, the communication
time does not depend on the overlap size. Figure 4 shows the computing trend
of the sor routine without considering the time spent calling the data exch. The
optimal value of the overlap size can be analytically defined setting at zero the
derivate of the total execution time respect to the overlap size l, hence solving
(17) by l.
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Fig. 2. data exch communication time depending on the number of elements exchanged
among all of the neighbors

Fig. 3. data exch computing time depending on the number of elements exchanged
among all of the neighbors

Fig. 4. sor computing time depending on the subdomain and the overlap size
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dTsor(n, p, l)

dl
= 0 (17)

As alternative we can easily derive the analytical expression of l considering
that Tu sor increases with l since the computation must be performed also on
the elements of the overlap region (let T+ be the positive delta time) while
the communication start-up time decreases with l (let T− be the negative delta
time). The optimal value of l is such that T+ = T−. Considering that T+ and
T− are given by the following two equations:

T+ = 4(l− 1)

[
n√
p
+ 2(l − 1)

]
tc (18)

T− = (l − 1)ts (19)

where tc denotes the time for executing the SOR operations on one matrix
element and ts is the communication start-up time. Hence the optimal overlap
size is given by:

l =
ts
8tc
− n

2
√
p

(20)

and it is strictly dependent on the architectural parameters and namely on the ra-
tio between the network latency and CPU speed. Moreover, l decreases with the
subdomain perimeter increasing. Indeed when the subdomain perimeter grows
up, the added time T+ increases accordingly while T− depends only on the
number of communication steps.

4.1 Model Validation

The model has been tested and evaluated using three domain sizes: 871x253,
2Kx2K and 10Kx10K grid points. The first domain size has been chosen since
it is used in the NEMO ocean model with MFS16. This is a production config-
uration of strategical scientific interest for the Euro-Mediterranean Center for
Climate Change (CMCC) and it is employed for production experiments. Figure
5 reports a comparison between the model and the experimental data for the
871x253 domain size with a decomposition of 16x4 parallel processes. The theo-
retical model approximates accurately the real behavior with a deviation that is
limited to the 5% of the execution time for l > 1. As we can notice, reducing the
number of calls to data exch, we consequently reduce the communication time.
After a threshold, it is not convenient to increase the overlap size and the model
helps us to define the value of this threshold when the decomposition changes.
It depends on the domain decomposition, and more in particular on the balance
between computing and communication time.

The parallel speedup of the algorithm has been evaluated: for each domain
decomposition the optimal value for the overlap region has been applied.
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Fig. 5. Validation of the analytical performance model

5 Iso-efficiency Analysis

Even if the main goal of this work is to find the optimal value of the overlap size,
the analytical performance model also allows us to study the parallel efficiency
of the SOR algorithm. Given a parallel algorithm with problem size n, executed
on p processes, the iso-efficiency [14] relation is given by:

T (n, 1) ≥ CTo(n, p) (21)

where T (n, 1) is the execution time of the sequential algorithm and To(n, p) is
the time to execute all of those operations introduced by the parallelization, and
namely is given by:

To(n, p) = (p− 1)σ(n) + pk(n, p) (22)

where σ(n) is the sequential part of the algorithm and k(n, p) the communication
time of each processor. The constant C is strictly related to the parallel efficiency.
In order to maintain the same level of efficiency as the number of processes
increases, the parallel system must be cost-optimal [15]. The SOR sequential
algorithm has a computational complexity of O(n2). The sequential time is given
by:

T (n, 1) = O(n2) (23)

The operations added by the parallel algorithm are: (i) the computing of the ele-
ments within the overlap region with a complexity of O(nl

√
p); (ii) the exchange

of the overlap region values among neighbors with a complexity of O(pnl/l
√
p)

and (iii) the communications for evaluating the convergence with a complexity
of O(log p). The total overhead time is given by:

To(n, p) = O

(
nl
√
p+

np√
p
+ log p

)
(24)
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The logarithmic term can be ignored since it has a complexity lower than
√
p.

The iso-efficiency relation is hence given by:

n2 ≥nl√p+ n
√
p

n ≥√p(l + 1)
(25)

Considering for l the optimal value given by (20) we can rewrite the (25) as
follows:

n ≥ 2
√
p

3

(
ts
8tc

+ 1

)
= K
√
p (26)

n ≥ f(p) denotes the iso-efficiency equation. The complexity of the problem
(n2) is proportional to the number of processes (p), then the parallel system is
cost-optimal. The results, showed in Fig. 6, confirm that the parallel scalability
is very poor for small problem sizes while it is good for bigger problems. The
analytical results in Fig. 6 refer to some cases for which the matrix is not square
and the matrix order (n) is not multiple of the number of processes (p). This
could introduce a displacement from the iso-efficiency theoretical analysis.

Fig. 6. Speedup of the SOR algorithm using the optimal size for the overlap region

The maximum problem size we can solve could be limited by the amount
of the available main memory. Considering M(n) the amount of the memory
required to store the data for a problem of size n, the scalability function is
given by M(f(p))/p. It indicates how the amount of memory used per process
must increase as a function of p in order to maintain the same level of efficiency.
For the SOR algorithm the amount of memory required is proportional to the
number of elements in the following result matrix:

M(n) = O(n2) (27)

and hence we have:
M(f(p))/p = O((K

√
p)2/p) (28)
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hence M(f(p))/p = O(1). This implies that the amount of memory required to
solve problems with size that increases according to the iso-efficiency equation,
is constant. The weak scalability is not limited by the given primary memory
per process. We can conclude that the algorithm is perfectly scalable.

6 Conclusions

In this work, we presented the definition of an analytical performance model to
establish the optimal overlap size for the SOR algorithm. The parallel algorithm
can be optimally tuned acting on the size of the overlap region. The optimal
value is given by a trade-off between computing and communication time. The
use of the proposed performance model drives the user decision making strategies
in the choice of the overlap size. An implementation of the algorithm has been
evaluated on an IBM Power6 parallel architecture. The theoretical analysis of
the parallel algorithm demonstrated a perfect weak scalability. Some criticality is
evident when the number of parallel processes is so big that the dimension of the
subdomain is smaller than the optimal value of the overlap region. For these cases
a communication among processes that are not directly bordered is required. For
the future, we plan to (i) modify the SOR parallel algorithm implementation in
order to extend the exchange of data not only to the neighboring processes and
(ii) introduce an overlapping between communication and computing operations
leveraging on the Red-Black method.
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