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Abstract. Pore-water in the funicular and pendular saturation regimes of the 
SWCC (Sr < 90%) assumes a complex fabric consisting of saturated pockets of 
water under negative pressure and a network of liquid bridges formed from me-
nisci at the contact points of particles. Measurement and characterization of this 
liquid fabric for unsaturated soil assemblies over a range of saturation, stress, and 
deformation plays a pivotal role in improving our fundamental understanding of 
unsaturated soil behavior. However, lack of microstructural visualization tech-
niques has hindered the consideration of liquid fabric distribution and evolution in 
macroscale geotechnical formulations. In this study X-ray CT scanning was used 
to monitor the changes in the liquid fabric of unsaturated glass beads. Images 
showing the three distinct phases of unsaturated specimens were successfully ob-
tained. A computer code that automatically analyzes multiple images to quantify 
the components of a second-order fabric tensor was developed and applied to CT 
images obtained along the drying and wetting paths of a SWCC determined by 
digital image processing. Principal values, principal directions and invariants are 
quantified and implications of the changes to better description of unsaturated soil 
behavior are discussed. 
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1   Introduction 

Most flow, stress and deformation related problems are influenced by the engi-
neering properties of unsaturated soils (Lu & Likos 2004). Even though, a consid-
erable research has been conducted in the past (Matyas & Radhakrishna 1968, Li-
kos & Lu 2004, Lu & Likos 2004) further studies are crucially important to fully 
incorporate unsaturated soil mechanics into engineering practice. In addition, in-
vestigations need to include microstructural considerations over ranges of satura-
tion, stress and deformation so as to resolve fundamental issues in unsaturated soil 
behavior. In this study, funicular and pendular saturation regimes of unsaturated 
granular media (see Fig. 1) are investigated at a microstructural level and attempts 
are made to characterize their liquid fabric distribution. 
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Fig. 1. Regimes of SWCC for partially saturated granular soil. 

Nondestructive imaging techniques such as X-ray computed tomography (CT) 
have provided superior tools to quantitatively describe the 3-D microstructure of 
granular materials (Desrues et al. 1996, Wang et al. 2003, Gebrenegus et al. 2006). 
X-ray CT scanning combined with digital image processing can provide direc-
tional data and characterize microstructure of partially saturated specimens. 

The objective of this study is to automate the handling of liquid phase fabric in 
X-ray CT images of unsaturated specimens and obtain their fabric tensor. Direc-
tional data gathered from X-ray CT scanning of 1mm glass beads at different suc-
tions are digitally analyzed. The present interest is not to treat the complete theory 
covering unsaturated specimens, but rather to exemplify the use of image process-
ing in quantifying directional data for phases of interest and combine the tech-
nique with statistical correlations to describe phase distribution. 

2   Fabric Tensor of the Liquid Phase 

Mathematically, fabric had been defined (Scott 1963, Mitchell 1976, Muhunthan 
1991) in a number of ways and most researchers (e.g. Cowin & Satake 1978,  
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Nemat-Nasser & Mehrabadi 1983, Kanatani 1984, Kanatani 1985) studied fabric 
tensor for solid particles only. For two dimensional cases, Oda and Nakayama 
(1989) followed Kanatani's definition of fabric tensor and sought for measures by 
defining a vector along the longest chord of solid particles. 

According to Muhunthan (1991), defining tensor parameters on the void phase 
have a potential of delivering a unified measure for all particulate media. More-
over, the advent of X-ray CT and its application to scanning of geomaterials has 
enabled to distinctly image the solid, liquid, and gas phases at a microstructural 
level. Therefore, in this study, fabric is accepted as a term referring to parameters 
like size, shape and arrangement of the solid particles, the organic inclusions and 
the associated voids. Also, statistical correlations applicable to solid particles are 
assumed to appropriately describe directional distributions on the liquid phase. 
Following the preceding discussion, this study will quantify higher measures of 
fabric on the liquid phase of a partially saturated specimen. 

3   Mathematical Background for Fabric Tensor 

Kanatani (1984) studied and gave mathematical expressions for quantities that 
characterize directional distribution of particles. The subsequent discussion revises 
the mathematical formulation of these quantities. 

Assume directional data n that is observed for a material idealized as an assem-
bly of solid spheres. Assume also, f(n) is the probability distribution density satis-
fying ( ) 1f n dn = . Where, dn is the differential solid angle related to the spherical 

coordinates θ and φ as: 

2

0 0

sindn d d
π π

= θ φ θ    (For 3-D)     (1) 
2

0

dn d
π

= θ   (For 2-D)          (2) 

To estimate the true distribution density, the singular distribution function, f(n) is 
approximated by a smooth function F(n). In this procedure a parametric form is 
first assumed and then a measure of approximation is introduced. Parameters are 
then chosen in such a way that the introduced measure of approximation is maxi-
mized. A polynomial parametric form of F(n) (Kanatani 1984) can take the form 
given by equation (3) where the C terms represent coefficients. 

( ) ...i i i j i j ij k i j kF n C C n C n n C n n n= + + + +                                (3) 

A measure of approximation, invariant to coordinate transformation, is given in 
equation (4) (Kanatani 1984) and is termed the least square error approximation. 
This approximation takes the polynomial parametric form to the spherical harmon-
ics and the Fourier series expansions in the 3-D & 2-D cases respectively. 

2
[ ( ) ( )]F n f n dn Minimum− →                                        (4) 
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Assuming a pair of unit vectors with opposite directions to be generated so that 
f(n)is a symmetric function (i.e. only even powers of n to be included), equations 
(3) and (4) can be combined such that the square error E is minimized, to obtain 
the following form. 

2[( ...) ( )]i j i j ij kl i j k kE C C n n C n n n n f n dn Minimum= + + + − →  (5) 

Kanatani (1984) approximated distribution functions for solid particles and gave 
expressions for fabric tensors of the first, second and third kind as expansions of 
relevant subspace. In three dimensional subspaces, for n = 2, the second (Fij) and 
third (Dij) kind reduce to equations (6) and (7) respectively. The corresponding 
tensor definitions in two dimensional subspaces are given by equations (8)  
and (9). 

15 1

2 5ij ij ijF N
 = − δ    

(6) 
15 1

2 3ij ij ijD N
 = − δ    

(7) 

1
4

4ij ij ijF N
 = − δ    

(8) 
1

4
2ij ij ijD N

 = − δ    
(9) 

4   Experimental Setup 

Spherical glass beads of 1mm were packed into a 10 mm diameter cylindrical 
plexiglass Tempe-cells that can maintain constant suction applied from a hanging 
water column. Samples were scanned with X-ray CT and digital image processing 
was applied on the resulting images. The liquid phase was systematically captured 
by doping the saturating fluid with 6% CsCl solution. The components of higher 
order fabric tensors and associated invariants are computed from image analysis. 
To illustrate the techniques applied, a two dimensional image shown in Fig. 2 is 
considered. In the figure, n(k) represents a unit vector aligned with the longest 
chord of the kth-particle making an angle θ with respect to the horizontal axis. 

 

Fig. 2. Particle Orientation: (a) 2-D slice & global axes; (b) kth particle, local axes, longest 
chord & fitting ellipsoid. 
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Decomposing the unit vector into its orthogonal components, one can obtain 
expressions for n1 and n2 as follows: 

( ) ( )
1 2sin  and     cosk kn n= θ = θ                                      (10) 

In each X-ray CT slice, the total number of data points (i.e. each liquid completely 
or partially surrounded by solid particles) for which directional data is sought is 
represented by M. Following Oda & Nakayama (1989) the components of the fab-
ric tensor can be calculated as: 

( )2
11

1

1
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M
k

k

N
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= θ                                           (11) 
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Image Pro Plus platform is used to run a macro that handles the direction assign-
ment, angle measurement and computations for components of the fabric tensor. 
A typical image from X-ray CT scanning is shown in Fig. 3a. AutoCAD simula-
tion of the same image where the three independent phases (i.e. solid, liquid and 
gas) are distinctively represented is shown in Fig. 3b. In Fig. 3c the liquid phase 
is extracted and shown shaded. Fig. 3d shows the longest chords of each discre-
tized liquid phase constituent. The samples considered for the analysis are  
summarized in Table 1 where each column has a heading that explains what is 
represented. 

 

    
(a) (b) (c) (d) 

Fig. 3. Image from X-ray CT: (a) 1mm Glass Bead at suction of 0.6kPa (Drying); (b) All 
Phases: stripe = gas, black = liquid and white = solid; (c) Liquid Phase (black); (d) Longest 
chords of discretized liquid phases. 
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5   Results and Discussion 

The distributions of N11, N12 and N22 for sample 1 are shown in Figs. 4 through 6. 
These distributions were obtained by coding equations (11) to (13) into Image-Pro 
Plus platform and running on images. Average values for the distribution descrip-
tors and their invariants are summarized in Table 2. From the results, the funda-
mental property of fabric tensors can be proven such that the first invariant, I1, is 
always Unity. The invariants are plotted together (Fig. 7) to show their variation 
as a function of the sample preparation pressure. 

Table 1. Sample details. 

(1) (2) (3) (4) (5) (6) (7) 

Diameter 
Sample  

Suction 
(kPa) pixel mm 

Height 
(mm) 

Calibration 
mm/pixel 

Cropping co-
ordinates 

Threshold 
for Liquid 

1 0.0 236 10 14.32 0.042 (0,0;236,236) 31-127 

2 0.4 236 10 13.97 0.042 (0,0;236,236) 31-127 

3 0.6 234 10 14.58 0.043 (0,0;234,234) 31-127 

4 0.8 271 10 11.95 0.037 (0,0;271,271) 31-127 

5 2.5 238 10 13.98 0.043 (0,0;238,238) 31-127 

Table 2. Average values for Nij and associated invariants. 

Sample 
Suction 
(kPa) 

N11 N12 N22 I1 I2 

1 0 0.504 0 0.496 1.000 0.250
2 0.4 0.503 0 0.497 1.000 0.250 
3 0.6 0.506 0 0.494 1.000 0.250 
4 0.8 0.512 0 0.488 1.000 0.250 
5 2.5 0.502 0 0.498 1.000 0.250 

 
Following the previous assertion, Nij is written in full as a symmetric second 

order tensor and the obtained values for sample 1 are indicated below. 

11 12

21 22

0.504 0

0 0.496

N N

N N

   
=   
  

                                       (15) 

Since Nij is a symmetric second order tensor, the components can be converted to 
two principal values N1 and N2 in the corresponding principal directions. Their 
mathematical formulations and corresponding principal directions are given by 
equations (15) and (16). 

0.5
1 2

11 22 11 22 12
2

1 1 1
[ ] ( ) (1 )

2 4 2

N
N N N N N

N

   = + ± − + = ± Δ     
       (15) 
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                                     (16) 

Curray (1956) introduced an index measure that shows the intensity of a preferred 
orientation of particles. This measure, referred to as the vector magnitude, is given 
as equation (17). 

( ) ( )
0.5

2 2( ) ( )

1 1

1
cos 2 sin 2

M M
k k

k kM = =

 Δ = + 
 
 θ θ                    (17) 

The results for the principal values, principal directions and the vector magnitude 
values are summarized in Table 3. 
 

 

 

 

Fig. 4. N11 distribution 
over height. 

 Fig. 5. N12 distribution 
over height. 

 Fig. 6. N22 distribution over 
height. 
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Fig. 7. Average Nij values for all samples. 

Table 3. Principal values, principal directions and vector magnitudes. 

Sample N11 N12 N22 N1 N2 Δ θ1 θ 2 

1 0.504 0 0.496 0.546 0.454 0.091 0 90 
2 0.503 0 0.497 0.537 0.463 0.074 0 90 
3 0.506 0 0.494 0.556 0.444 0.111 0 90 
4 0.512 0 0.488 0.579 0.421 0.157 0 90 
5 0.502 0 0.498 0.531 0.469 0.061 0 90 

Table 4. Kanatani's fabric tensor of the second kind. 

Sample F11 F12 F22 F1 F2 Δ 
1 1.017 0 0.983 1.184 0.816 0.092 
2 1.011 0 0.989 1.148 0.852 0.074 
3 1.025 0 0.975 1.222 0.778 0.111 
4 1.049 0 0.951 1.314 0.686 0.157 
5 1.007 0 0.993 1.124 0.876 0.062 

Table 5. Kanatani's fabric tensor of the third kind. 

Sample D11 D12 D22 D1 D2 Δ 
1 0.017 0 -0.017 0.184 -0.184 0.092
2 0.011 0 -0.011 0.148 -0.148 0.074
3 0.025 0 -0.025 0.222 -0.222 0.111
4 0.049 0 -0.049 0.314 -0.314 0.157
5 0.007 0 -0.007 0.124 -0.124 0.062

 
The relationship between Fij and Dij can be obtained from equations (8) and (9). 

The principal components of Fij

 
and

 
Dij can also be derived from these same  

equations and employing the representation indicated in equation (14), they can be 
written as equations (18) and (19). Tables 4 and 5 give their numerical values. 

I2 

I1
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D

D
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 
 (18) 

1 1

2 2

1 2 1
F D

F D

   
= ± Δ = +   

   
 (19) 

6   Conclusions 

This study presented an investigation on microstructural evolution of the anisot-
ropic liquid fabric in unsaturated soils.  Since void fabric and the liquid bridge 
vectors change dramatically with wetting and deformation, their characterization 
is important towards the development of effective stress formulations for unsatu-
rated soils. 

Second order fabric descriptors of the anisotropic liquid fabric are quantified 
from X-ray CT scanned images of unsaturated specimens. The results confirm that 
the liquid fabric is anisotropic and that the components satisfy the basic tensorial 
properties such as symmetry and equality of diagonal summation to unity. The re-
sults include principal values, principal directions, and vector magnitudes for the 
liquid fabric. These parameters can be used by researchers in developing advanced 
theories for modeling the behavior of unsaturated soils. 
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