
Deriving Real-Time Action Systems Controllers

from Multiscale System Specifications

Brijesh Dongol1,2 and Ian J. Hayes1

1 School of Information Technology and Electrical Engineering
The University of Queensland, Australia

2 Department of Computer Science, The University of Sheffield, UK
B.Dongol@sheffield.ac.uk, Ian.Hayes@itee.uq.edu.au

Abstract. This paper develops a method for deriving controllers for
real-time systems in which the components of the system operate at dif-
ferent time granularities. To this end, we incorporate the theory of time
bands into action systems, which allows one to structure a system into
multiple abstractions of time. The framework includes a logic that facil-
itates reasoning about different types of sampling errors and transient
properties (i.e., properties that only hold for a brief amount of time),
and we develop theorems for simplifying proofs of hardware/software in-
teraction. We formalise true concurrency and define refinement for the
parallel composition of action systems. Our method of derivation builds
on the verify-while-develop paradigm, where the action system code is
developed side-by-side with its proof.

1 Introduction

Action systems provide a simple framework within which several theories of
program refinement have been developed [3–6]. In its simplest form, an action
system consists of a set of actions (i.e., guarded statements) and a loop that
at each iteration non-deterministically chooses then executes an enabled action
from the set of actions. The loop terminates iff all of the actions are disabled.
Typically, an action system includes actions of both the controller and its envi-
ronment and uses an execution model in which the controller and environment
actions are interleaved with each other. To cope with continuous environments,
action systems have been extended in several ways. Continuous action systems
[2, 27] give a semantics using standard action systems but with an added time
variable. At the end of each iteration of the main loop, time is incremented to
the first time at which some guard of the action system is enabled. Hybrid action
systems [30] take the approach that the actions of the controller are discrete (and
instantaneous) and allow the environment to execute evolution actions, which
describe the (continuous) evolution of the state over the interval in which the
evolution guard is enabled. A prioritised alternating model of execution is used
to ensure that the (discrete) controller actions are able to execute. Hybrid ac-
tion systems have been extended to qualitative action systems [1], but this work

J. Gibbons and P. Nogueira (Eds.): MPC 2012, LNCS 7342, pp. 102–131, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Deriving Real-Time Action Systems Controllers 103

T1

T2

Empty .T1

Reserve.T2

Empty .T2

P1 P2

Full .T2

Limit .T2

Reserve.T1

P1

P2T2

C

T1
w1

w2

On.P1

On.P2

Fig. 1. Two-pump system

is focused on methods for testing real-time systems as opposed to their formal
verification/derivation.

Ultimately, the interleaving execution model is problematic in contexts such
as real-time and multi-core systems where the environment evolves with the
controller in a truly concurrent manner. In such contexts, one must address issues
with sampling multiple variables over a time interval [9, 17, 23] and be able to
reason about transient properties [14, 17]. Furthermore, as software controllers
are increasingly used in complex cyber-physical systems, it becomes important
to be able to reason over multiple time granularities [8, 9, 16, 23].

1.1 Motivating Example

We consider a system consisting of two water tanks T1, T2 and two pumps P1,
P2 depicted in Fig. 1 (also see [1]). The environment (of the system) adds water
to tank T1 and does not affect tank T2. We assume that tank T1 is allowed to
overflow, but T2 is not. Pump P1 removes water from tank T1 and fills tank T2.
Pump P2 only operates if a button B (not shown in Fig. 1) is pressed and removes
water from tank T2. Aichernig et al [1] describe the following requirements. We
have adapted their informal specification to clarify the input/output behaviours
of the pump and to better distinguish safety (S1, S2 and S3) and progress (P1,
P2 and P3). Note that a progress property to turn pump P1 off is not needed
because it is implied by safety properties S1 and S2.

S1. If the water level in T1 is Empty or below, then P1 must be stopped.
S2. If the water level in T2 is Full or above, then P1 must be stopped.
S3. If the water level in T2 is Empty or below, then P2 must be stopped.

P1. If the water level in T2 is definitely below the Reserve and water level in
T1 is definitely above the Reserve, then turn on P1.

104 B. Dongol and I.J. Hayes

P2. If B is definitely pressed and the water level in T2 is definitely above
Reserve, then turn on P2.

P3. If B is definitely not pressed, then turn off P2.

Thus, we must keep track of water levels Reserve.T1 and Empty.T1 in tank T1

and Full .T2, Reserve.T2, Empty.T2 in tank T2. For i ∈ {1, 2}, we distinguish
between signal Oni that starts/stops pump Pi , and Runningi and Stoppedi that
hold iff Pi is physically running and stopped, respectively. Note that pump Pi

may also be associated with other states such as Startingi , etc. We let w1 and w2

denote the water levels in tanks T1 and T2, respectively and say Pressed holds
iff the button B is pressed.

A (digital) controller for pump P2 must sample both the water level in tank
T2 and the state of the button B , perform some processing, then send on/off
signals to pump P2 if necessary. Each of these phases takes time. Furthermore,
the components operate at different time granularities and hence have different
notions of precision (the amount of time that may be regarded as instantaneous
[8, 9]). For example, w1 may have a precision of 30 seconds (i.e., there is no signif-
icant change in the water level in tank T1 within 30 seconds) and pump P2 turns
on/off with precision 1 second (i.e., it takes pump P2 at most 1 second to reach
its operating speed or to come to a stop). Formally reasoning about the system
in a manner that properly addresses each of these timing aspects is complicated
[16, 17, 22]. To reduce the complexity of the reasoning, formal frameworks of-
ten simplify specifications by assuming that certain aspects of the system (e.g.,
sampling) are instantaneous or take a negligible amount of time. However, it
is well-known that such simplifications can cause complications during imple-
mentation. In particular, the developed specifications become unimplementable
because their timing requirements cannot be satisfied by any real system [22, 31].

Properties that use “definitely” are properties that hold over events of a time
band. The progress properties are interpreted in the water time band. For ex-
ample, within P1, “T2 is definitely below the Reserve” is interpreted as “T2 is
definitely below the Reserve for at least the precision of the water time band”.

1.2 Contributions and Overview

In this paper, we use time bands [8, 9] which facilitate reasoning about systems
specified over multiple time granularities. Together with a logic of sampling,
this allows one to properly address transient properties [14, 17]. We develop
a framework using action systems and formalise true concurrency between an
action system and its environment as well as between the parallel composition
of two or more action systems. We define stream-based refinement of action
systems (and their parallel composition) and present our method of derivation
using “enforced properties” [12, 14], which allows one to use a verify-while-
develop method [11, 18, 19]. We develop high-level theories for reasoning about
systems that involve interaction between hardware and software over multiple
time bands and as an example, we present the derivation of a pump controller.

Deriving Real-Time Action Systems Controllers 105

Unlike Burns/Hayes [9] whose framework is based on sets of states, we develop
our semantics using an interval-based framework. We present the background
theory in Section 2, where we define interval predicates, methods of evaluating
state predicates over an interval (including via sampling), our chop and iterated
chop operators [32], and an LTL-like [26] logic for interval predicates. In Sec-
tion 3, we present our formalisation of time bands (which includes time-band
predicates), formalisation of the syntax and semantics of action systems with
time bands and parallel composition of action systems. In Section 4, we present
our methods for deriving action systems using enforced properties that builds
on our previous refinement theories [12, 14, 17]. Section 5 presents our high-level
theorems for reasoning about hardware/software interaction and an example
derivation is given in Section 6.

1.3 Related Work

The idea of reasoning about systems using multiple granularities of time is not
new. Moszkowski presents a method of abstracting between different time gran-
ularities for interval temporal logic using a projection operator for a discrete
interval temporal logic [28]. Guelev and Hung present a projection operator for
the duration calculus. Although computation is assumed to take time, the time
taken is assumed to be negligible [21]. Henzinger presents a theory of timed re-
finement where sampling events are executed by a separate process [25]. Broy [7]
presents a timed refinement framework that formalises the relationships between
dense and discrete time where sampling is considered be a discretisation of dense
streams.

This paper continues our research into methods for program derivation using
the verify-while-develop paradigm. The method of enforced properties [12, 13]
has been extended to enable development of action systems in a compositional
manner [14]. The logic in [14] considers traces that consist of pre/post state rela-
tions, develops a temporal logic on relations and assumes that environment tran-
sitions are interleaved with those of an action system. Although the framework
facilitates compositional derivation of action systems code, the underlying inter-
leaving semantics assumption could not properly address sampling anomalies and
transient properties. Hence, the framework was generalised so that traces con-
sisted of adjoining intervals together with a sampling logic (Section 2.2), which
allowed sampling-related issues to be properly addressed [17]. However, the logic
in [17] does not adequately handle specifications over multiple time granularities.
Instead, hardware is assumed to react and take effect instantaneously, which is
unrealistic.

2 Background Theory

2.1 Interval Predicates

We model time using the real numbers, R, and let Interval denote the set of
all contiguous non-empty subsets of time. An interval may be open or closed at

106 B. Dongol and I.J. Hayes

either end, have a least upper bound∞ or a greatest lower bound −∞ (i.e., not
in R).

We let glb.Δ and lub.Δ denote the greatest lower and least upper bounds of
interval Δ, respectively, where ‘.’ denotes function application. For intervals Δ
and Δ′, we define the length of Δ and adjoins relation between Δ and Δ′ as
follows.

�.Δ =̂ lub.Δ− glb.Δ

Δ ∝ Δ′ =̂ (lub.Δ = glb.Δ′) ∧ (Δ ∪Δ′ ∈ Interval) ∧ (Δ ∩Δ′ = {})
Given that variable names are taken from the set Var , a state space over a set
of variables V ⊆ Var is given by ΣV =̂ V → Val , which is a total function from
variables in V to values in Val . A state is a member of ΣV . The (dense) stream
of states over V is given by StreamV =̂ R→ ΣV , which is a total function from
real numbers to states. A predicate over a type T is given by PT =̂ T → B (e.g.,
a stream predicate is a member of PStreamV), where B is the type of a boolean.
An interval stream predicate, which we shorten to interval predicate, has type
IntvPredV =̂ Interval → PStreamV . We write Σ, Stream and IntvPred for ΣV ,
StreamV and IntvPredV , respectively when the set V is clear from the context.

For an interval predicate p and interval Δ we define the following, where the
stream is implicit in both sides of the definitions.

(prev .p).Δ =̂ ∃Δ′: Interval • (Δ′ ∝ Δ) ∧ p.Δ′

(next .p).Δ =̂ ∃Δ′: Interval • (Δ ∝ Δ′) ∧ p.Δ′

(�p).Δ =̂ ∀Δ′: Interval • Δ′ ⊆ Δ⇒ p.Δ′

Thus (prev .p).Δ and (next .p).Δ hold iff p holds in some interval that immedi-
ately precedes and follows Δ, respectively and (�p).Δ holds iff p holds in each
subinterval of Δ.

We assume pointwise lifting of the boolean operators on stream and interval
predicates in the normal manner, e.g., if p1 and p2 are interval predicates, Δ is
an interval and s is a stream, we have (p1 ∧ p2).Δ.s = (p1.Δ.s ∧ p2.Δ.s). When
reasoning about programs and their properties, we must often state that if an
interval predicate p1 holds over an arbitrarily chosen interval Δ and stream s ,
then an interval predicate p2 also holds over Δ and s . Hence, we define universal
implication over intervals and streams as follows. Operators ‘≡’ and ‘�’ are
similarly defined.

p1.Δ � p2.Δ =̂ ∀s : Stream • p1.Δ.s ⇒ p2.Δ.s

p1 � p2 =̂ ∀Δ: Interval • p1.Δ � p2.Δ

2.2 Evaluating State Predicates over an Interval

Because there are multiple states of a stream within a non-point interval, there
are several possible ways of evaluating a state predicate with respect to a given
interval and stream [23].

Deriving Real-Time Action Systems Controllers 107

We must often determine the value of a variable at the left and right ends of
an interval. Because intervals may be open/infinite at either end, these values
are determined using limits. We use lim

x→a+
f .x and lim

x→a−
f .x to denote the limit

of f .x as x tends to a from above and below, respectively. To ensure that the
limits are well defined, we assume all variables are piecewise continuous [20]. For
a vector of variables v, interval Δ, stream s , time t , we let (v@t).s =̂ (s .t).v
denote the value of v in state s .t and define:

−→v .Δ =̂

{

v@(lub.Δ) if lub.Δ ∈ Δ
lim

t→lub.Δ−
v@t otherwise

←−v .Δ =̂

{

v@(glb.Δ) if glb.Δ ∈ Δ
lim

t→glb.Δ+
v@t otherwise

Thus, if Δ is right closed, then the value of −→v in Δ is the value of v at the
greatest upper bound of Δ, otherwise (i.e., Δ is right-open), the value of −→v is
the value of the v as it approaches lub.Δ from the right. The interpretation of←−v .Δ is similar. Given that vec.c denotes the vector of all free variables of state
predicate c, we define

←−c .Δ.s =̂ c[vec.c \(←−−−vec.c).Δ.s] −→c .Δ.s =̂ c[vec.c \(−−−→vec.c).Δ.s]

We must often specify properties on the actual states of a stream within an
interval. Thus, we define the always and sometime operators as follows1, where
(c@t).s =̂ c.(s .t) for any state predicate c, time t and stream s .

(�c).Δ ≡ ∀t :Δ • (c@t) (�c).Δ ≡ ∃t :Δ • (c@t)

For a state predicate c, variable v and set of variables V :

st .v =̂ ∀k :Val • prev .(−→v = k)⇒ �(v = k) st .V =̂ ∀v :V • st .v

Hence, a variable v is stable, denoted st .v , iff its value does not change from its
value at the right end of some previous interval, and st .V holds iff each variable in
V is stable. Such definitions of stability are necessary because adjoining intervals
are disjoint, and hence prev .(−→v = k) does not necessarily imply←−v = k and vice
versa.

Example 1. Consider a variable x such that (x@0) = 10 and (� x̂).[0, 2] = 1
hold, where x̂ denotes the rate of change of variable x (c.f. [24]). Thus, the value
of x at time 0 is 10 and the rate of change of x throughout the closed interval
[0, 2] is 1. Then for adjoining intervals [0, 1) and [1, 2], both (−→x = 11).[0, 1) and
(←−x = 11).[1, 2] hold. In fact, we can deduce both (�(x < 11)).[0, 1) and (�(x ≥
11)).[1, 2]. However, for adjoining intervals [0, 1] and (1, 2], (�(x ≤ 11)).[0, 1] and
(�(x > 11)).(1, 2] hold.

1 Our notation follows Burns and Hayes [9] and should not be confused with modal
operator ‘always’ (�) (and ‘next’ (�) later). Instead, we ask the reader to focus on
the ‘∗’ within � (and � later), which represents “for all” and ‘·’ within � (and �

later) which represents “for some” as used when writing regular expressions.

108 B. Dongol and I.J. Hayes

x

y

se2 se3se1

Δ1 Δ2 Δ3

Fig. 2. Sampling events se1, se2 and se3

Real-time controllers often evaluate an expression over an interval by sampling
the variables of the expression (once per variable) at different instants within
the interval. Hence, reasoning about an expression evaluation that samples two
or more variables can be problematic. For example, consider the three sampling
events se1, se2 and se3 in Fig. 2, where environment variables x and y are sampled
at different times within the interval. Event se1 will return x < y regardless of
when x and y are read within the sampling interval because x < y definitely
holds for all sampled values of x and y. Event se2 may return either x > y,
x = y or x < y because it is possibly true that x > y, x = y and x < y hold.
Event se3 may have a sampling anomaly. Although x > y holds throughout se3,
because x and y are sampled at different times, it is possible for se3 to return
either x > y, x = y or x < y. If a variable occurs multiple times within an
expression, the same sampled value is used for each occurrence of the variable.
Hence, expression x = x is guaranteed to evaluate to true regardless of how x
changes within the evaluation interval, however, x > y may evaluate to false
even if �(x > y) holds [9, 16, 23] as in se3 in Figure 2.

We use the set of apparent states of s ∈ StreamV within interval Δ (denoted
apparent .Δ.s) to reason about sampling-based expression evaluation. We define:

apparent .Δ.s =̂ {σ:ΣV | (∀ v :V • σ.v ∈ {t :Δ • (s .t).v})}
where {t :Δ • (s .t).v} is equivalent to {x ∈ Val | ∃t :Δ • x = (s .t).v}. To
generate the apparent states, we first generate {t :Δ • (s .t).v}, the set of possible
values of the variables within the interval, then generate the set of all possible
states using these values. We formalise state predicates that are definitely true
(denoted �) and possibly true (denoted �) over a given interval Δ and stream
s as follows:

(�c).Δ.s =̂ ∀σ: apparent .Δ.s • c.σ (�c).Δ.s =̂ ∃σ: apparent .Δ.s • c.σ
Hence, (�c).Δ.s and (�c).Δ.s hold iff c holds in every and in some apparent
state of s within the interval Δ, respectively. For example, for Δ1, Δ2 and Δ3 in
Fig. 2 we can deduce both (�(x < y)).Δ1 and (�(x < y) ∧ �(x ≥ y)).Δ2. For
se3 (the event with a sampling anomaly), (�(x ≤ y)).Δ3 holds, despite the fact
that �(x > y).Δ3 holds. Both �c � �c and �c � �c hold, but the converse
of both implications is not necessarily true.

Lemma 2. For any variable v and constant k, st .v ∧ �(v = k) � �(v = k).

Deriving Real-Time Action Systems Controllers 109

We let vars .c denote the free variables of state predicate c. The following lemma
states that if all but one variable of c is stable over an intervalΔ, then c definitely
holds in Δ iff c always holds in Δ and c possibly holds in Δ iff c holds sometime
in Δ [23].

Lemma 3. For any state predicate c and variable v,
st .(vars .c \{v}) � (�c = �c) ∧ (�c = �c).

2.3 Chop and Iteration

The chop operator ‘;’ is a useful basic operator in interval-based logics [29, 32].
For interval predicates p1 and p2 and interval Δ, we define:

(p1 ; p2).Δ =̂ ∃Δ1, Δ2: Interval • (Δ = Δ1 ∪Δ2) ∧ (Δ1 ∝ Δ2) ∧ p1.Δ1 ∧ p2.Δ2

Thus (p1 ; p2).Δ holds iff Δ can be split into two adjoining intervals so that p1
holds for the first interval and p2 holds for the second. Unlike Moszkowski [29],
we have a dense notion of time and unlike the duration calculus [32], our chop
operator does not requireΔ1 andΔ2 to be closed intervals. Thus, for x as given in
Example 1, both (�(x < 11); �(x ≥ 11)).[0, 2] and (�(x ≤ 11); �(x > 11)).[0, 2]
hold, but (�(x < 11) ; �(x > 11)).[0, 2] does not.

Using chop, we define the weak chop and iterated chop operators as follows:

p1 : p2 =̂ p1 ∨ (p1 ; p2) pω =̂ μ q • p : q

That is, p1 : p2 holds iff either p1 holds or the given interval may be chopped so
that p1 ; p2 holds. The iterated chop pω is the least fixed point of the weak chop
(which defines both finite and infinite iteration of p) assuming that predicates
are ordered using universal reverse entailment (�).

Because we have a dense notion of time, there is a possibility for an iteration
pω to behave in a Zeno-like manner, where p iterates an infinite number of times
within a finite interval. We can rule out Zeno-like behaviour in our implementa-
tions because there is a physical lower limit on the time taken to perform each
iteration and hence a specification that allows Zeno-like behaviour can be safely
ignored. However, we must be careful not to require Zeno-like behaviour, which
would cause our specifications to become unimplementable.

Lemma 4 (ω-unfolding). pω ≡ p ∨ (p ; pω)

Definition 5. We say an interval predicate p splits iff p � �p holds and joins
iff pω � p holds.

For example, �c both splits and joins, � ≤ 42 splits but does not join, � ≥ 42
joins but does not split, and � = 42 neither splits nor joins. In particular, if
(� ≤ 42).Δ holds, then � ≤ 42 holds for all subintervals of Δ. On the other
hand, if (� ≤ 42).Δ1 and (� ≤ 42).Δ2 where Δ1 ∝ Δ2, we cannot guarantee
that (� ≤ 42).(Δ1 ∪ Δ2) holds. Interval predicates that join allow proofs to be
decomposed more easily [16].

110 B. Dongol and I.J. Hayes

2.4 ILTL

To cope with durative behaviour, the traces of an action system are defined using
a sequence of adjoining intervals. Thus, we use an interval-based linear temporal
logic (ILTL) (as opposed to state-based [26]). If p is an interval predicate, the
syntax of basic ILTL formulae is given by

F ::= p | �F | �F | F1 U F2 | �p | ¬F
Given that seq.T denotes the possibly infinite sequences of type T we define

AdjSeq =̂ {z : seq.Interval | ∀i : dom.z \{0} • z .(i − 1) ∝ z .i} .
For the rest of this paper, we let z be a variable of type AdjSeq. The semantics
of ILTL formulae is given below, where notation (z , s)i � F states that the ILTL
formula F holds for the pair (z , s) starting from index i ∈ dom.z .

Definition 6. If p is an interval predicate, F is an ILTL formula, z ∈ AdjSeq,
s is a stream and i ∈ dom.z , and tr = (z , s) then:

tr � F =̂ tr0 � F

tri � p =̂ p.(z .i).s

tri � �F =̂ ∀j : dom.z • j ≥ i ⇒ (trj � F)

tri � �F =̂ i + 1 ∈ dom.z ⇒ (tri+1 � F)

tri � F1 U F2 =̂ ∃j : dom.z • j ≥ i ∧ (trj � F2) ∧ ∀k • i ≤ k < j ⇒ (trk � F1)

tri � �p =̂ p.(
⋃

j∈dom.z∧i≤j (z .j)).s

tri � ¬F =̂ ¬(tri � F)

Thus, (z , s)i � p holds iff p holds in s within the interval z .i . Operators � and �
and U express always, next and until, respectively, and (z , s)i � �p states that
interval predicate p holds for the interval consisting of the union of all intervals
in z from z .i onwards. We define universal implication for temporal formulae F1

and F2 as follows. Both F1 ≡ F2 and F1 � F2 are similarly defined.

F1 � F2 =̂ ∀z :AdjSeq, s ∈ Stream • ((z , s) � F1)⇒ ((z , s) � F2)

Temporal operators eventually, unless and leads-to are defined as follows:

�F =̂ ¬�¬F F1W F2 =̂ �F1 ∨ (F1 U F2) F1 � F2 =̂ �(F1 ⇒ �F2)

Systems often require that a state predicate be maintained unless another prop-
erty is established.Thus, for state predicates c1 and c2, we define a maintained
unless operatorM as follows:

c1M c2 =̂ �(prev .−→c1 ⇒ (�c1W �c2))

That is, if (z , s) � c1M c2 holds, then for any i ∈ dom.z , if (prev .−→c1).(z .i).s ,
then either c1 definitely holds for all j ≥ i , or c2 possibly holds in z .k and c1
definitely holds for all j such that k > j ≥ i .

Deriving Real-Time Action Systems Controllers 111

Like LTL [26], it is difficult to prove general ILTL formulae directly. However,
certain forms of LTL formulae may be transformed into formulae of the form �p
(for an interval predicate p), which is simpler to prove [17].

Lemma 7. For any interval predicate p and state predicates c1 and c2,

(a) if p joins, then �p � �p,
(b) �� p � �p, and
(c) (c1M c2) ≡ �(prev .−→c1 ⇒ �c1 ∨ �c2).

3 Action Systems with Time Bands

3.1 Time Bands

Like Burns, we assume that the set of all time bands is given by the primitive type
TimeBand [8, 9]. Each time band may be associated with events that execute
within the precision of the time band. We use ρ:TimeBand → R

>0 to denote
the precision of the given time band.

To simplify the specification of the behaviour of an event in a time band, we
define the type of a time band predicate as TBPredV :TimeBand → IntvPredV ,
which for a given time band returns an interval predicate. As with interval
predicates, we assume time band predicates are lifted pointwise over boolean
operators and for time band predicates tp1 and tp2, we define tp1 � tp2 =̂
∀β:TimeBand • tp1.β � tp2.β (and similarly � and ≡).

We define the following interval predicates, which are useful for reasoning
about sampling events, where c is a state predicate and n is a real-valued con-
stant.

�nc =̂ (� ≤ n)⇒ �c �nc =̂ (� ≤ n) ∧ �c

Hence, (�nc).Δ holds iff c definitely holds within Δ provided that the length of
Δ is at most n. Similarly, (�nc).Δ holds iff c possibly holds within Δ and the
length of Δ is at most n. Note that ¬�nc ≡ �n¬c.

Because sampling approximates the true value of an environment variable, we
must reason about how the value of a variable changes within an interval [16].
For a real-valued variable v , the maximum difference to v in stream s within Δ
is given by (diff .v).Δ.s , where:

(diff .v).Δ.s =̂ let vs = {t :Δ • (s .t).v} in lub.vs − glb.vs

Note that for any real-valued variable v , st .v � (diff .v = 0).
Sampled real-valued variables in a time band β are related to their true values

within an event of β using the accuracy of the variable in β [16]. In particular,
we let acc.v ∈ TimeBand → R

≥0 denote the accuracy of variable v in a given
time band. The maximum change to v within an event of time band β is an
assumption on the environment. To enable this assumption to be stated more
succinctly, we define a time band predicate:

DIFF .v .β =̂ �(� ≤ ρ.β ⇒ diff .v ≤ acc.v .β)

112 B. Dongol and I.J. Hayes

��(w1 ≤ Empty .T1 ∨ w2 ≥ Full .T2 ⇒ Stopped1) (1)

��(w2 ≤ Empty .T2 ⇒ Stopped2) (2)

�� (�(w2 ≤ Reserve.T2 ∧ w1 ≥ Reserve.T1) ∧ � ≥ ρ.Γ ⇒ �On1 ∨ next .(�On1))(3)

�� (�(w2 > Reserve.T2 ∧ Pressed) ∧ � ≥ ρ.Γ ⇒ �On2 ∨ next .(�On2)) (4)

�� (�¬Pressed ∧ � ≥ ρ.Γ ⇒ �¬On2 ∨ next .(�On2)) (5)

Fig. 3. Formalisation of the two-pump system requirements

The lemma below allows one to relate a sampled variable to its values in the
environment based on its accuracy and generalises the result in [16].

Lemma 8. If x and y are real-valued variables and � ∈ {≥, >} then
DIFF .x ∧ DIFF .y ∧ �ρ(x − acc.x � y + acc.y) � �(x � y).

Corollary 9. If x and y are real-valued variables and � ∈ {≥, >} then
DIFF .x ∧ st .y ∧ �ρ(x − acc.x � y) � �(x � y).

Example 10. The informal requirements of the two-pump system in Section 1
are formalised using the ILTL formulae in Fig. 3.

Safety. We combine S1 and S2 as (1) and formalise S3 as (2). By (1), over the
interval in which the program is executing, in all actual (as opposed to apparent)
states of the stream, if w1 (the water level in tank T1) is below Empty.T1 or w2

(the water level in tank T2) is above Full .T2, then pump P1 must be stopped.
Note that the consequent of (1) states that the P1 has physically come to a stop,
which we distinguish from the signal ¬On1 that causes P1 to stop. Condition
(2) is similar.

Progress. Progress properties P1, P2 and P3 translate into properties (3),
(4) and (5). Each of the progress properties involve time bands of the water.
For simplicity, we assume that the time bands of the water in both tanks is
Γ . Thus, condition (3) states that over the (infinite) interval corresponding to
the execution of the program, in any subinterval say Δ of the interval, if it is
definitely the case that w2 is less than or equal to Reserve.T2 and w1 is greater
than or equal to Reserve.T1 for at least the precision of the water time band,
then the pump must be turned on either within Δ or some interval that follows
Δ. Conditions (4) and (5) are similar.

3.2 Actions

The syntax and semantics of actions are given in Definition 11 and Definition 12,
respectively.

Deriving Real-Time Action Systems Controllers 113

Definition 11. Suppose b is a state predicate, d is a label, y is a vector of
output variables, E is a vector of expressions that has the same length as y, β
is a time band, F is a set of output variables and p is an interval predicate. The
abstract syntax of an action A is given by:

A ::= d : S | A1 � A2 | A † β
S ::= b → idle | b → y := E | b → [[F · p]]

Definition 12. For the syntax of actions defined in Definition 11 and a set of
output variables V , the function behV :A → IntvPred is defined inductively as
follows:

behV.(b → idle) =̂ (�b ; true) ∧ st .V (6)

behV.(b → y := E) =̂ (∃k • (�(b∧ (k = E)) ∧ st .y);−→y = k) ∧ st .(V\y) (7)

behV.(b → [[F · p]]) =̂ (�b ∧ st .V) ; (p ∧ st .(V \F)) (8)

behV.(d : S) =̂ behV.S ∧ �(ξ = d) (9)

behV.(A1 � A2) =̂ behV.A1 ∨ behV.A2 (10)

behV.(A † β) =̂ � ≤ ρ.β ∧ behV.A (11)

The primitive idle is a statement that does nothing but may take time to execute,
y := E is the assignment statement and [[F · p]] is a specification statement.
Action d : b → S is a guarded statement consisting of statement S with guard
b and label d . Action A1 � A2 consists of the non-deterministic choice between
A1 and A2, and A † β defines an action A within time band β. Note that action
d : b → [[F ·p]] is not directly executable, but needs to be refined to an executable
implementation. Further note that we do not allow nested actions, i.e., each
guarded action consists of a guard followed by a statement.

We define a function grd and shorthand else as follows:

grd .(d : b → S) =̂ b

grd .(A1 � A2) =̂ grd .A1 ∨ grd .A2

grd .(A † β) =̂ grd .A

A else d : S =̂ A � (d :¬grd .A → S)

We let labels .A denote the set of all labels within action A. Action ((d : b →
S) † β) � A is only well defined if d �∈ labels .A, i.e., the label of each guarded
statement within a non-deterministic choice is unique. If d ∈ labels .A, we let Ad

denote the guarded statement labelled d in action A. We reserve a “program
counter” variable ξ whose value is the label of the guarded statement that is
currently executing [12].

The following lemma allows one to simplify the behaviour of guarded actions.

Lemma 13. behV.((b → S) † β) � �ρ.βb

Proof. The proof holds because behV.((b → S) †β) � � ≤ ρ.β ∧ (�b ; true) and
(�b ; true) � �b. �

114 B. Dongol and I.J. Hayes

Definition 14. If V is a set of variables, an action A is refined by an action
C , denoted A �V C, iff behV.C � behV.A holds. If A �V C and C �V A, we
write A ��V C.

A refinement may reduce the non-determinism or strengthen the guard of an
action.

3.3 Action Systems

Definition 15. If I is an interval predicate and A is an action such that grd .A
holds, action system A =̂ init I • doAod consists of an initial property I
followed by an infinite loop that executes action A.

We use in.A ⊆ Var and out .A ⊆ Var to distinguish the input and output
variables of action system A and use vars .A =̂ in.A ∪ out .A for the variables
of A . Because we assume true concurrency between an action system A and
its environment, we require that in.A and out .A are disjoint. We use A † β
as shorthand for the action system whose action executes in time band β, i.e.,
A † β =̂ init I • doA † β od.

Execution of an action system starts in an interval for which the initial prop-
erty holds for an immediately preceding interval. Then each successive interval
of the trace is generated by the behaviour of some guarded action.

Definition 16. Given AS =̂ AdjSeq × Stream, the set of all complete traces of
action system A with outputs V =̂ out .A is given by Tr.A , where:

Tr.A =̂ {(z , s):AS | dom.z = N ∧ ((z , s) � prev .I ∧ �(behV.A))}

Thus, for each (z , s) ∈ Tr.A , it is assumed that I holds for some interval that
precedes z .0 and some action executes in each interval z .i . Furthermore, because
the action systems we consider are non-terminating, z is an infinite sequence.

Given any action system A and variable v ∈ out .A , we require a healthiness
condition:

A |= �(prev .−→v =←−v) (12)

i.e., the value of v does not change over the boundary between adjoining intervals.

Lemma 17. If boolean variable x is an output variable, then

behV.(x → S) � prev .−→x (13)

(behV.(x → S)⇒ −→¬x) � ((behV.(x → S))ω = behV.(x → S)) (14)

Proof (13). We first show that behV.(x → S) � (�x ∧ st .x) ; true. The proofs
for S ∈ {idle, [[F · p]]} are trivial because st .V splits and ‘;’ is monotonic. For
S = (y := E), we have:

Deriving Real-Time Action Systems Controllers 115

behV.(x → y := E)
� definition of behV , st .V splits, ‘; ’ is monotonic
∃k • �(x ∧ st .V) ; true

� logic
(�x ∧ st .x) ; true

Thus, we have:

behV.(x → S)
� proof above

(�x ∧ st .x) ; true
� by Lemma 2 �(x= true) (because x is boolean) and for any c, �c �←−c
←−x

� healthiness condition (12)
prev .−→x

Proof (14). (behV.(x → S))ω � behV.(x → S) trivially holds by Lemma 4
(ω-unfolding). Assuming behV.(x → S)⇒ −→¬x , we have

(behV.(x → S))ω

≡ Lemma 4 (ω-unfolding)
behV.(x → S) ∨ (behV.(x → S) ; (behV.(x → S))ω)

� assumption behV.(x → S)⇒ −→¬x and (13)
behV.(x → S) ∨ (−→¬x ; (prev .−→x)ω)

≡ (prev .−→c)ω � (prev .−→c) and ¬(−→¬c ; prev .−→c)
behV.(x → S) �

Definition 18. We say that an action system A satisfies an ILTL formula F
(denoted A |= F) iff ∀tr :Tr.A • tr � F holds.

To show that an action system A with output context V satisfies �p, one may
show that, behV .A � p, i.e., the execution of each guarded action of A satisfies p.

Theorem 19. A |= �p if behout.A.A � p.

Proof. The proof follows by definitions 16 and 18 and the definition of �.

Reactive systems are often structured so that a controller sends signals to the
environment, then becomes idle while changes occur in the environment based
on the controller signals. Using Theorem 19 to prove A |= �p can be difficult
when p includes properties of the environment. Instead, we often use Theorem 21
below which allows one to consider the iterated execution of an action (usually
idle) and the properties that held before the action started executing. We first
prove a preliminary lemma.

Lemma 20. If (z , s) ∈ Tr.A and i ∈ dom.z , there exists a j ∈ dom.z , where j ≤
i and a d ∈ label .A such that (prev .(I ∨ (∃e: label .A\{d} • behout.A.Ae))).(z .j).s
and for all j ≤ k ≤ i, (behout.A.Ad).(z .k).s.

116 B. Dongol and I.J. Hayes

Proof. The proof is trivial for i = 0. For any i ∈ dom.z \ {0}, because (z , s) ∈
Tr.A , there exists a d ∈ label .A such that (behout.A.Ad).(z .i).s . Then, either

– (prev .(I ∨ (∃e: label .A\{d} • behout.A.Ae))).(z .i).s holds, in which case the
proof is trivial, or

– (prev .(behout.A.Ad)).(z .i).s holds, i.e., (behout.A.Ad).(z .(i − 1)).s holds and
the proof follows by induction. �

For a label d ∈ label .A , we define

iterate.A .d =̂ (behout.A .Ad)
ω ∧ prev .(I ∨ ∃e: label .A \{d} • behout.A .Ae)

which holds over an interval Δ iff the action of A labelled d iterates over Δ and
in some interval that precedes Δ, either the initialisation I of A holds or some
action different from e executes.

Theorem 21. If p splits, then A |= �p holds provided that

A |= �� (∀d : label .A • iterate.A .d ⇒ p) (15)

Proof. By Lemma 20, for any (z , s) ∈ Tr.A and i ∈ dom.z ,

∃j : dom.z , d : label .A •
j ≤ i ∧ (prev .(I ∨ (∃e: label .A\{d} • behout.A.Ae))).(z .j).s ∧
(∀k • j ≤ k ≤ i ⇒ (behout.A.Ad).(z .k).s)

Hence,
(iterate.A .d).(

⋃

j≤k≤i z .k).s

holds and therefore by (15), p.(
⋃

j≤k≤i z .k).s holds. Because p splits, p.(z .i).s
holds and because i was arbitrarily chosen, (z , s) � �p holds. �
Like safety properties, it is often simpler to first translate progress properties
into ‘�’ formulae.

Lemma 22. For any state predicates c1 and c2, If A † β |= �c1 � �c2 then
A † β |= �� (�c1 ∧ � ≥ 2ρ.β ⇒ �c2 ∨ next .�c2).

Proof. For any (z , s) ∈ Tr.(A † β), suppose Δ =
⋃

ran.z and Δ′ ⊆ Δ such that
(�c1 ∧ � ≥ 2ρ.β).Δ′. We have:

(z , s) ∈ Tr.(A † β) ∧ (Δ =
⋃

ran.z) ∧ (Δ′ ⊆ Δ) ∧ (�c1 ∧ � ≥ 2ρ.β).Δ′

⇒ definition of A † β
(∀i : dom.z • (� ≤ ρ.β).(z .i)) ∧ (Δ =

⋃

ran.z) ∧
(Δ′ ⊆ Δ) ∧ (�c1 ∧ � ≥ 2ρ.β).Δ′

⇒ logic
∃i : dom.z • (�c1).(z .i) ∧ z .i ⊆ Δ′

⇒ assumption A † β |= �c1 � �c2
∃i : dom.z • z .i ⊆ Δ′ ∧ ∃j : dom.z • i ≥ j ∧ (�c2).(z .j)

⇒ logic
(�c2).Δ

′ ∨ (next .(�c2)).Δ
′ �

Deriving Real-Time Action Systems Controllers 117

3.4 Parallel Composition

We use A
−→‖B to denote the parallel composition of action systems A and B.

For the program A
−→‖B to be well formed, we require:

(in.A ∪ out .A) ∩ out .B = {} (16)

i.e., B cannot modify the inputs and outputs of A but the outputs of A may
be used as inputs to B and furthermore A and B may share inputs. Hence,

A
−→‖B is not necessarily equivalent to B

−→‖ A .

Within A
−→‖B, action systems A and B execute in a truly concurrent manner.

Furthermore, A and B may execute in different time bands. Hence, the adjoining
intervals defined by the execution of A and B are unrelated and we cannot use

Tr.A and Tr.B to define the traces of A
−→‖B. Instead, we consider the whole

interval over which the action systems execute.

Definition 23. For an action system A , interval Δ and stream s, we say A
executes over Δ in s iff (exec.A).Δ.s holds, where:

(exec.A).Δ.s =̂ ∃z • (z , s):Tr.A ∧ Δ =
⋃

ran.z (17)

Definition 24. Suppose A and B are action systems such that (16) holds.
Then,

exec.(A
−→‖B) =̂ exec.A ∧ exec.B

Thus, for any interval Δ and stream s , (exec.(A
−→‖B)).Δ.s holds iff there exist

traces (z1, s) ∈ Tr.A and (z2, s) ∈ Tr.B such that Δ =
⋃

ran.z1 =
⋃

ran.z2, i.e.,
it is possible for A and B execute in the same overall interval and stream.

A special case of parallel composition is simple parallelism, denoted A ‖B,
where no output of A is an input to B and vice versa, i.e., A ‖B is defined iff
(16) ∧ (out .A ∩ in.B = {}) holds. Note that in.A ∩ in.B may be non-empty,

i.e., A and B may share inputs. Unlike A
−→‖B, A ‖B is equivalent to B‖A .

4 Deriving Action System Controllers

4.1 Enforced Properties

Our derivation method uses enforced properties [12, 14], which are ILTL formu-
lae that restrict the traces of an action system to those that satisfy the formulae.
Enforced properties are temporal formulae and hence may be used to state gen-
eral properties on the traces, e.g., we may formalise fairness assumptions on
the scheduler [12]. We first present enforced properties on actions, which allows
finer-grained control over the execution of an action system.

Definition 25. An action A with enforced property p ∈ IntvPred, is an action
A ! p and its behaviour in an output context V ⊆ Var is given by behV .(A ! p) =̂
behV .A ∧ p.

118 B. Dongol and I.J. Hayes

init I1 •
do d0: true → [[On1 · true]]
od †τ1 ?SP1 ?DA.w1 ∧ DA.w2

Fig. 4. Initial action system for P1

init I2 •
do e0: true → [[On2 · true]]
od †τ2 ?SP2 ?DA.w2

Fig. 5. Initial action system for P2

Thus, when executing A ! p, in addition to behaving as specified by behV .A, the
interval predicate p must also hold. We may represent time bands on actions
using enforced properties.

Lemma 26. For an action A, time band β and V ⊆ Var, A†β ��V A !(� ≤ ρ.β)

We obtain straightforward lemmas on actions with enforced properties [17].

Lemma 27. For an action A, interval predicates p and q and set of variables
V ,

(a) A ! (p ∧ q) ��V (A ! p) ! q,
(b) A ! (p ∨ q) ��V (A ! p) � (A ! q) and
(c) if behV .A � p then A ! p ��V A.

Note that it is possible to enforce unimplementable behaviour, e.g., behV .(A !
false). Hence, we typically introduce or strengthen an enforced property to the
weakest possible predicate to allow greater flexibility in an implementation.

We extend the concept of enforced properties on actions to enforced properties
on action systems, which are specified using ILTL formula.

Definition 28. If F is an ILTL formula then action system A with enforced
property F is denoted A ?F, and its traces are given by Tr.(A ?F) =̂ {tr :Tr.A |
tr � F}.
Thus, although Tr.A may contain traces that do not satisfy F , by definition,
A ?F is guaranteed to satisfy F . We have used enforced properties to develop
theories of refinement, where the enforced properties are LTL formulae [12],
relational LTL formulae [14] and ILTL formulae [17].

Example 29. We specify an initial action system controller for the two-pump
system in Section 1. The initial actions are liberal and allow arbitrary modi-
fication of signals On1 and On2. However, execution of the action systems are
constrained by their enforced properties, which ensure that the programs are
correct with respect to the given properties. We develop the system as the sim-
ple parallel composition between the controllers for pumps P1 and P2, which
allows the pumps to be controlled independently (see Fig. 4 and Fig. 5). We
assume that the time band of pump Pi is φi and recall that the time band of
the controller for Pi is τi . Thus, each iteration of the do loop of the controller
for pump P1 can be completed within an interval of length ρ.τ1 and events of
P1 take at most ρ.φ1 time (similarly for P2). The action for the initial version
of the controller of P1 is d0: true → [[On1 · true]], where d0 is a label, guard true

Deriving Real-Time Action Systems Controllers 119

never blocks the action from executing and [[On1 · true]] allows the output On1

to be set to true or false non-deterministically. We collate the properties on P1

and P2 as ILTL formulae SP1 and SP2, respectively:

SP1 =̂ (1) ∧ (3)

SP2 =̂ (2) ∧ (4) ∧ (5)

Both SP1 and SP2 are introduced to the program in Fig. 4 and Fig. 5 as enforced
properties, which guarantees that the programs are correct with respect to these
requirements. That is, although the program without the enforced properties is
able to arbitrarily change the values of On1 and On2, by including the enforced
properties, the traces of the controllers are guaranteed to satisfy the required
properties SP1 and SP2, respectively.

Enforced properties can also be used to specify assumptions about the be-
haviour of the environment. Here, we use enforced properties to ensure that the
accuracies of w1 and w2 bound the maximum possible change to w1 and w2 in
any time band. For i ∈ {1, 2}, we define:

DA.wi =̂ �(DIFF .wi .φi ∧ DIFF .wi .τi)

Hence, the maximum difference between two values of w1 in events of time bands
φ1 and τ1 are bounded by the accuracy of w1 in φ1 and τ1, respectively. By using
� in the formula above, we are stating that DIFF .wi .φi ∧ DIFF .wi .τi holds over
the whole interval in which the action systems executes.

The controllers for P1 and P2 are only partially developed and actions d0 and
e0 are not yet executable. Hence, we perform a series of refinements to obtain
an implementation that can be executed.

4.2 Action System Refinement

Our method of derivation allows programs to be developed in an incremental
manner. In particular, we calculate the effect of (partially) developed actions on
the enforced properties, which generates new properties and actions. However
unlike Dijkstra [11], Feijen/van Gasteren [19] and Dongol/Mooij [18], we disallow
arbitrary modifications to the program; each change must be justified using a
lemma/theorem that ensures that the previous version is refined [14, 17].

Definition 30. Action system C refines A (denoted A � C) iff exec.C �
exec.A .

Thus, for any interval Δ and stream s , if it is possible to execute C within Δ
in s , then it must be possible to execute A within Δ in s . The lemma below
provides a sufficient condition for action system refinement [17].

Lemma 31. Suppose A =̂ init IA; doAod and C =̂ init IC ; doC od. Then
A � C holds if out .C ⊆ out .A and (IC ⇒ IA) ∧ (A �out.C C).

Lemma 32. If A =̂ init I • doAod, then A �� init I • doA � B od if
A �V B.

120 B. Dongol and I.J. Hayes

The following lemma allows trace refinement of action systems with enforced
properties [17].

Lemma 33. For action systems A and C and ILTL formulae F and F ′,

(a) A �� A ? true holds,
(b) A ?F � A ?F ′ holds if F ′ � F,
(c) A ?F � C ?F holds if A � C and
(d) A ?(F ∧ F ′) �� A ?F holds if A ?F |=V F ′.

Thus, introducing true or strengthening existing enforced properties results in
a refinement. Furthermore, if an action system without an enforced property
refines another, then the refinement holds with the enforced property included.
An enforced property F ∧ F ′ may be simplified to F if the action system A ?F
satisfies F ′.

Lemma 34. For an action system A and time band β, A †β �� A ?�(� ≤ ρ.β).

Example 35. Using Lemma 22, given the following relationship between Γ and
the controller time bands τ1 and τ2,

(

ρ.τ1 ≤ ρ.Γ

2

)

∧
(

ρ.τ2 ≤ ρ.Γ

2

)

(18)

progress properties (3), (4) and (5) are implied by leads-to properties (19), (20)
and (21), respectively (see below).

�(w2 ≤ Reserve.T2 ∧ w1 ≥ Reserve.T1) � �On1 (19)

�(w2 > Reserve.T2 ∧ Pressed) � �On2 (20)

�¬Pressed � �¬On2 (21)

By (19), if it is definitely the case that the water level in tank T2 is below
Reserve.T2 and the water level in tank T1 is above Reserve.T1, then pump P1

must eventually be turned on. Conditions (20) and (21) are similar.
Unlike Aichernig et al, we specify maintenance properties to ensure that the

pump does not arbitrarily change its state.

M1. If P1 has been turned on, then it must remain on unless w1 is possibly
below Reserve.T1 or w2 is possibly above Limit .T2.

M2. If P1 has been turned off, then it must remain off unless w1 is possibly
above Reserve.T1 and w2 is possibly below Limit .T2.

M3. If P2 has been turned on, then it must remain on unless w2 is possibly
below Reserve.T2 or the button B is possibly released.

M4. If P2 has been turned on, then it must remain off unless B is possibly
pressed and w2 is possibly above Reserve.T2.

Note that condition M1 must allow pump P1 to be turned off before the water
level drops to empty because by S1, the pump must (physically) be off if the

Deriving Real-Time Action Systems Controllers 121

init I1 •
do d0: true → [[On1 · true]]
od †τ1 ? SPM1 ?DA.w1 ∧ DA.w2

Fig. 6. Refined action system for P1

init I2 •
do e0: true → [[On2 · true]]
od †τ2 ?SPM2 ?DA.w2

Fig. 7. Refined action system for P2

water level ever reaches Empty.T1. The maintenance properties are interpreted
in the controller time band, e.g., within M1, “w1 is possibly below Reserve.T1”
is interpreted as “w1 is possibly below Reserve.T1 for an event of the controller
time band” (see Example 10).

Properties M1, M2, M3 and M4 translate directly to maintained unless
properties (22), (23), (24) and (25), respectively (see below).

On1M (w1 ≤ Reserve.T1 ∨ w2 ≥ Limit .T2) (22)

¬On1M (w1 > Reserve.T1 ∧ w2 < Limit .T2) (23)

On2M (¬Pressed ∨ w2 ≤ Reserve.T2) (24)

¬On2M (Pressed ∧ w2 > Reserve.T2) (25)

By (22) if signal On1 holds at the end of a preceding interval at any point during
the program’s execution, then On1 must continue to hold unless there is an
interval in which w1 ≤ Reserve.T1 or w2 ≥ Full .T2 is possibly true. Conditions
(23), (24) and (25) are similar.

We define:

SPM1 =̂ (1) ∧ (19) ∧ (22) ∧ (23)

SPM2 =̂ (2) ∧ (20) ∧ (21) ∧ (24) ∧ (25)

Then using Lemma 33, we replace SP1 in Fig. 4 by SPM1 to obtain the refined
action system in Fig. 6. Similarly, the action system in Fig. 5 is refined by the
one in Fig. 7.

Note that using a sampling logic over intervals allows one to reason about
transient behaviour and hence avoid formalisation of unimplementable speci-
fications. We say a state predicate is transient in a stream if the predicate
only holds for a brief (e.g., an attosecond) amount of time, whereby it is not
possible to reliably detect that the predicate held [14, 17]. For example, prop-
erty (20) without using a sampling logic would be stated using LTL [26] as
w > Reserve.T2 ∧ Pressed � On2 [10, 14]. Such a property is unimplementable
if the state predicate w > Reserve.T2 ∧ Pressed on the left of � is transient
(which can happen if the button is quickly pressed then released). In this paper,
because we use � on the left of ‘�’ within (19), (20) and (21), the correspond-
ing state predicate must hold for all apparent states, i.e., the state predicate
on the left of ‘�’ is guaranteed to be detected by the controller provided that
the variables are sampled within the sampling interval. For example, in (20),
we can guarantee that w2 > Reserve.T2 ∧ Pressed is detected by the controller

122 B. Dongol and I.J. Hayes

regardless of when the variables w2 and Pressed are sampled within the sampling
interval. If �(w ≤ Reserve.T2 ∨ ¬Pressed) holds over a sampling interval, i.e.,
it is possible for the controller not to detect w > Reserve.T2 ∧ Pressed , then
the controller is not required to turn P2 on.

We define trace refinement of a parallel composition of action systems as
follows.

Definition 36. For action systems A , A ′, B and B′, such that A
−→‖B and

A ′−→‖B′ are well formed, we say A
−→‖B is trace refined by A ′−→‖B′ (i.e.,

A
−→‖B � A ′−→‖B′) iff exec.(A ′−→‖B′) � exec.(A

−→‖B).

Lemma 37. For action systems A , A ′, B and B′, such that A
−→‖B and

A ′−→‖B′ are well formed, A
−→‖B � A ′−→‖B′ holds iff both A � A ′ and B �B′.

5 Hardware/Software Interaction

One of the benefits of using time bands is that it simplifies reasoning about the
interaction between hardware and software. Namely, we may formalise delays
in turning signals on/off within a digital controller, and the effect of the signal
in the physical world. In this section, we present some high-level interval pred-
icates for expressing properties of hardware/software interaction and theorems
for reasoning about such systems.

We assume that the controller sends a boolean signal sig to achieve a boolean
effect eff in the environment, where eff occurs if sig holds continuously over a
long enough interval (i.e., not instantaneously). There are often delays in the
controller setting sig and in the environment reacting to sig to achieve eff . Fur-
thermore, the time bands of the controller and environment may differ (e.g., if
the environment consists of physical hardware). Thus, we define a time band
predicate signal that formalises the behaviour of the controller setting the signal
sig (in the time band of the controller) and a time band predicate effect that
formalises the relationship between sig and eff (in the time band of the environ-
ment). Within the controller, we may distinguish between actions that set and
maintain sig, where the sig is set to true due to a trigger c. Signal sig is set to
true by a single action, but is maintained by the iterated execution of several
“maintenance” actions (e.g., idle). Hence, given time bands β and γ, we define:

signal(c, sig).β =̂ if prev .
−−→¬sig then(� ≤ ρ.β ∧ �c ∧ −→sig) else (prev .−→c ∧ �sig)

effect(sig, eff).γ =̂ �sig ⇒ if prev .
−→
eff then�eff else(� ≤ ρ.γ : �eff)

which describe relationships between the signal predicate sig and the correspond-
ing effect predicate eff . If signal(c, sig).β holds, then if sig does not hold, then
�c is guaranteed to hold and sig is guaranteed to be established within the
precision of β, otherwise c must hold initially and sig must hold continuously
in the interval. In essence, this ensures that the precision of setting sig to true
is ρ.β. For example, the controller for P2 sends a signal On2 (i.e., sig is On2)

Deriving Real-Time Action Systems Controllers 123

and has effect Stopped2 (i.e., eff is Stopped2). The action that sets On2 to true
may guarantee a condition c that actions that maintain On2 can rely on holding
initially. We calculate c for specific problem instances using Theorem 39 below.

If effect(sig, eff).γ holds, then provided that sig is continuously true over an
interval, eff continues to hold if it held at the right end of the previous interval,
otherwise there is a delay of at most ρ.γ before �eff holds. This models the fact
that the effect takes place within the precision of the given time band.

Real-time controllers must often sample a variable in the environment and
control a physical mechanism so that the effect of the mechanism occurs before
the value of the variable in the environment drops below a critical level. The
following lemma provides conditions that allow one to show that in all states of
the stream, either the value of a variable v is above a critical level C , or the
physical effect eff has taken place.

Lemma 38. Suppose v is a real-valued variable, � ∈ {>,≥}, sig and eff are
state predicates, and T ,C ∈ R are constants. Then

(T ≥ C+acc.v) ∧ DIFF .v ∧ effect(sig, eff) ∧ ←−−−−v � T ∧ �sig � �(v � C ∨ eff)

Proof. (T ≥ C + acc.v) ∧ DIFF .v ∧ effect(sig, eff) ∧ ←−−−−v � T ∧ �sig
� definition of effect(sig, eff) using �sig

(T ≥ C + acc.v) ∧ DIFF .v ∧ ←−−−−v � T ∧ (�eff ∨ (� ≤ ρ : �eff))
� Corollary 9

�eff ∨ (�(v � C) : �eff)
� (�c1 : �c2) � �(c1 ∨ c2)

�(v � C ∨ eff) �
We use Lemma 38 in the proof of the theorem below, which defines a relationship
between signals and their effects in the context of an action system controller. In
particular, it provides conditions necessary for a property of the form ��(v �
C ∨ eff) to be established.

Theorem 39. If v is a continuous variable, β and γ are time bands, � ∈ {>
,≥}, sig and eff are state predicates, O =̂ out .A and T ,C ∈ R are constants
such that T ≥ C +max (acc.v .β, acc.v .γ), then A †β |= ��(v � C ∨ eff) holds
if:

A † β |= �� (effect(sig, eff)).γ (26)

A † β |= ��
(∀d : label .A • iterate.A .d ⇒

(�ρ.β(v � C + acc.v .β))ω ∨ (signal(v � T , sig)).β

)

(27)

A † β |= �(DIFF .v .β ∧ DIFF .v .γ) (28)

Proof. By Theorem 21, because �c splits, A † β |= ��(v � C ∨ eff) holds if

A † β |= �� (∀d : label .A • iterate.A .d ⇒ �(v � C ∨ eff))

Using (27) and transitivity, the condition above holds if we prove

A † β |= ��
(

(�ρ.β(v � C + acc.v .β))ω ∨ (signal(v � T , sig)).β ⇒
�(v � C ∨ eff)

)

(29)

124 B. Dongol and I.J. Hayes

We have

(29)
= logic

A † β |= �� ((�ρ.β(v � C + acc.v .β))ω ⇒ �(v � C ∨ eff)) ∧
A † β |= �� ((signal(v � T , sig)).β ⇒ �(v � C ∨ eff))

⇐ Corollary 9 and (28)
A † β |= �� ((signal(v � T , sig)).β ⇒ �(v � C ∨ eff))

= sig is a boolean, logic

A † β |= �� ((signal(v � T , sig)).β ∧ prev .
−→
sig ⇒ �(v � C ∨ eff)) ∧

A † β |= �� ((signal(v � T , sig)).β ∧ prev .
−−→¬sig ⇒ �(v � C ∨ eff))

⇐ definition of signal
A † β |= �� (prev .(−→v � T) ∧ �sig ⇒ �(v � C ∨ eff)) ∧
A † β |= �� (� ≤ ρ.β ∧ �(v � T) ∧ −→sig ⇒ �(v � C ∨ eff))

⇐ first conjunct: (26), (28) and T ≥ C +max (acc.v .β, acc.v .γ)
second conjunct: �(v � T)⇒ �(v � C)

true �
By (26) the effect predicate holds between sig and eff within time band γ. By
(27), either it is possible to sample that the value of v is above C + acc.v .β in
each sampling interval, or sig is set to true. By (28) the difference between two
values of v within events of time bands β and γ does not exceed the accuracy
of v in β and γ, respectively. Conditions (26) and (28) are usually properties
of the environment of the action system and hence are introduced as enforced
properties. On the other hand, properties such as (27) must be guaranteed by
the actions of the action system.

Example 40. We demonstrate the use of Theorem 39 and derive the necessary
conditions on the control signal On2 and the state of pump P2 to prove (2).
Because �c joins for any state predicate c, using Lemma 7, condition (2) holds
if

��(w2 ≤ Empty.T2 ⇒ Stopped2)

which by logic is equivalent to

��(w2 > Empty.T2 ∨ Stopped2)

Using Theorem 39 this holds if for some constant T , (30) ∧ (31) ∧ �(32) holds
(see Fig. 8). Condition (28) is satisfied by enforced property DAw2 in the program
in Fig. 7. Condition (30) establishes a relationship between T and Empty.T2

based on the accuracy of the water in time bands τ2 and φ2. By (31), in any
subinterval of the action system’s execution, the pump must stop if the length of
the subinterval is ρ.φ2 or greater and signal ¬On2 holds continuously. Condition
(32) states that either it is possible to iteratively sample w2 > Empty.T2 +
acc.w2.τ2 or the signal predicate holds, which ensures that ¬On2 holds within an
interval of length ρ.τ2 and ¬On2 is maintained if it already holds.

Deriving Real-Time Action Systems Controllers 125

T ≥ Empty .T2 + max(acc.w2.τ2, acc.w2.φ2) (30)

�� (effect(¬On2,Stopped2)).φ2 (31)

��
(∀d : label .A • iterate.A .d � (�ρ.τ2(w2 > Empty .T2 + acc.w2.τ2)) ∨

(signal(w2 ≥ T ,¬On2)).τ2

)
(32)

�(w2 > Reserve.T2 ∧ Pressed) ⇒ −−→On2 (33)

�¬Pressed ⇒ −−−→¬On2 (34)

prev .
−−→
On2 ⇒ �On2 ∨ �(¬Pressed ∨ w2 ≤ Reserve.T2) (35)

prev .
−−−→¬On2 ⇒ �¬On2 ∨ �(Pressed ∧ w2 > Reserve.T2) (36)

Fig. 8. Transformed properties

6 Example: Two-Tank Pump System

Due to Lemma 37, we may refine the system by refining the controllers of each
pump separately. In this paper, we focus on the controller for pump P2; the
controller for P1 may be derived in a similar manner.

6.1 Formulae Transformation

We first transform the general ILTL formula SPM2, into formulae with conjuncts
of the form �p where p is an interval predicate [14, 17]. We may prove that the
program satisfies �p using Theorem 21.

Safety. The transformation to satisfy safety condition (2) is given in Example 40.

Progress. We may ensure the right hand side of � in (20) and (21) holds
immediately, i.e., without any intermediate intervals. Hence, we obtain (33) and
(34), where (20) and (21) hold if �(33) and �(34) hold, respectively. By (33) if
it is definitely the case that the water in tank T2 is above Reserve.T2 and the
button is pressed, then signal On2 must be set to true. Condition (34) is similar.

Maintenance. Using Lemma 7, (24) and (25) hold if �(35) and �(36) hold,
respectively. By (35), if On2 holds at the end of the previous interval, then it
must hold throughout the current interval, or it must be possible detect that
Pressed does not hold or the water in tank T2 is below Reserve.T2. Condition
(36) is similar. We distinguish between the properties of the controller of P2 and
those of the its environment and define:

RefSPM2 =̂ (32) ∧ (33) ∧ (34) ∧ (35) ∧ (36)

Using Lemma 33, we replace enforced property in SPM2 within the controller
for P2 in Fig. 7 by �RefSPM2 ∧ (31) and we obtain the program in Fig. 9.

126 B. Dongol and I.J. Hayes

do e0: true → [[On2 · true]]
od †τ2 ?(�RefSPM2 ∧ (31)) ?DA.w2

Fig. 9. Replace SPM2

6.2 Action Calculation

Using Theorem 21, for each action a that we introduce, we check that (behV .a)ω

� RefSPM2 holds.

Turning Pump P2 Off. The controller achieves this by setting the output
signal On2 to false under a guard b1 and enforced property p1. Thus, we check
the effect of action (e1: b1 → On2 := false) ! p1, where e1 is a fresh label, b1 is a
state predicate and p1 is an interval predicate. Both b1 and p1 are instantiated
below when calculating the conditions for e1 to establish RefSPM2. To prove
(32), we assert b1 ⇒ On2 and obtain:

(behV .(e1 ! p1))
ω � (32)

⇐ (14) of Lemma 17 because b1 ⇒ On2

behV .(e1 ! p1) � (32)
⇐ (13) of Lemma 17 using b1 ⇒ On2, strengthen consequent

behV .e1 ∧ p1 ∧ prev .
−−→
On2 � (signal(w2 ≥ T ,¬On2)).τ2

⇐ definition of signal, use prev .
−−→
On2

behV .e1 ∧ p1 � � ≤ ρ.τ2 ∧ �(w2 ≥ T) ∧ −−−→¬On2

⇐ definition of behV , � ≤ ρ.τ2 is implicit by †τ2−−−→¬On2 ∧ p1 � �(w2 ≥ T) ∧ −−−→¬On2

⇐ logic, weaken antecedent
p1 � �(w2 ≥ T)

By asserting b1 ⇒ w2 ≤ Reserve.T2 ∨ ¬Pressed , condition (33) may be dis-

charged using Lemma 13. Condition (34) is trivial because behV .e1 � −−−→¬On2.
Condition (35) is trivial by b1 ⇒ w2 ≤ Reserve.T2 ∨ ¬Pressed from above and
Lemma 13, �(w2 ≤ Reserve.T2 ∨ ¬Pressed) holds. Condition (36) holds be-

cause b1 ⇒ On2 holds, which by (13) of Lemma 17 implies prev .
−−−→¬On2. Thus,

our derived action is

(e1:On2 ∧ (¬Pressed ∨ w2 ≤ Reserve.T2) → On2 := false) ! �(w2 ≥ T)

This action contains an enforced property �(w2 ≥ T), which we discharge at a
later stage of the derivation.

Turning Pump P2 On. As with action e1 above, the template for turning
the pump on is (e2: b2 → On2 := true) ! p2. Because the calculations for e2 to
satisfy RefSPM2 are similar to those for e1 above, we only briefly describe the
necessary modifications. For (32), we assert b2 ⇒ w2 > Empty.T2 + acc.w2.τ2,

condition (33) is trivially discharged because
−−→
On2 holds, condition (34) is satisfied

by asserting b2 ⇒ Pressed , which by Lemma 13 ensures �Pressed and (35) is

Deriving Real-Time Action Systems Controllers 127

satisfied by asserting b2 ⇒ ¬On2, which by (13) of Lemma 17 implies prev .
−−→
On2.

Finally, for (36), we assert b2 ⇒ w2 > Reserve.T2 (because b2 ⇒ Pressed already
holds) and by assuming

Reserve.T2 ≥ Empty.T2 + acc.w2.τ2 (37)

we obtain action:

e2:¬On2 ∧ Pressed ∧ w2 > Reserve.T2 → On2 := true

idle Action. Because we are developing a reactive system, idle is executed
when both e1 and e2 are disabled, i.e., when ¬grd .e1 ∧ ¬grd .e2 holds. We may
simplify the (iterated) behaviour of the idle action as follows:

(behV .(e3:¬grd .e1 ∧ ¬grd .e2 → idle))ω

� definition of behV , (p1 ∧ p2)
ω ⇒ pω

1 ∧ pω
2

(

�ρ.τ2

(

(¬On2 ∨ (w2 > Reserve.T2 ∧ Pressed)
∧ (w2 ≤ Reserve.T2 ∨ On2 ∨ ¬Pressed)

))ω

∧ (st .On2)
ω

� (st .On2)
ω ≡ st .On2 and case analysis on prev .

−−→
On2, use st .On2,

then simplify
(

(

�ρ.τ2

(

w2 > Reserve.T2 ∧ Pressed
))ω ∧ prev .

−−→
On2 ∧ �On2

)

∨
(

(

�ρ.τ2

(

w2 ≤ Reserve.T2 ∨ ¬Pressed
))ω ∧ prev .

−−−→¬On2 ∧ �¬On2

)

Hence, we can prove that (behV .(e3:¬grd .e1 ∧ ¬grd .e2 → idle))ω satisfies
RefSPM2 by proving that both of the interval predicates below satisfy RefSPM2:

(�ρ.τ2(w2 > Reserve.T2 ∧ Pressed))ω ∧ prev .
−−→
On2 ∧ �On2 (38)

(�ρ.τ2(w2 ≤ Reserve.T2 ∨ ¬Pressed))ω ∧ prev .
−−−→¬On2 ∧ �¬On2 (39)

Both (38) and (39) trivially satisfy (33), (34), (35) and (36). Condition (38)
trivially satisfies (32) because by (37), Reserve.T2 ≥ Empty.T2+acc.w2.τ2 holds.
To show that (39) satisfies (32), because (39) implies that �¬On2 holds, we use
Lemma 33 to introduce the following enforced property to the program:

�(�(ξ = e3) ∧ prev .(
−−−→¬On2)⇒ prev .(

−−−−−→
w2 ≥ T)) (40)

which states that if e3 is being executed and signal On2 is disabled at the end
of the preceding interval, then the water level in tank T2 must be above T at
the end of the preceding interval. This ensures that (39) satisfies (signal(w2 ≥
T ,¬On2)).τ2.

We prove (40) using Theorem 21, which gives us the following proof obligation:

(behV.e3)
ω ∧ �(ξ = e3) ∧

prev .(
−→
I ∨ (∃k : {e1, e2} • behV.k)) � prev .(

−−−−−−−−−−→
On2 ∨ w2 ≥ T) (41)

For
−→
I , we require that I ⇒ w2 ≥ T , for k = e1, the proof holds by enforced

property
−−−−−→
w2 ≥ T in e1 and for k = e2 the proof holds because behV .e2 implies−−→

On2.

128 B. Dongol and I.J. Hayes

do e0: true → [[On2 · true]]
� e1: On2 ∧ (¬Pressed ∨ w2 ≤ Reserve.T2) → On2 := false ! �(w2 ≥ T)
� e2: ¬On2 ∧ Pressed ∧ w2 > Reserve.T2 → On2 := true
� e3: ¬grd .e1 ∧ ¬grd .e2 → idle
od †τ2 ?((31) ∧ DA.w2)

Fig. 10. Introduce actions

We introduce actions e1, e2 and e3 to the program using Lemma 32, which
gives us the program in Fig. 10. Note that we do not remove e0 at this stage to
enable future modifications to the actions to be made more easily.

6.3 Discharge Enforced Properties on Actions

We now make modifications to remove the enforced property within e1 in Fig. 10.
We refrain from modifying the guards to avoid reproving conditions that have
already been established. Instead, noting that behV .e1 � prev .

−−→
On2 (by (13) of

Lemma 17) and that prev .(
−−−−−−−−−−−−−−→
w2 ≥ T + acc.w2.τ2) ∧ � ≤ ρ.τ2 � �(w2 ≥ T) (by

Corollary 9), �(w2 ≥ T) within e1 holds if the program satisfies

�(
−−→
On2 ⇒ �(w2 ≥ T + acc.w2.τ2)) (42)

Hence, using Lemma 33, we introduce (42) as an enforced property to the pro-
gram. Condition (42) and Lemma 27 allows us to remove the enforced property
�(w2 ≥ T) within e1, however, we must now consider the changes necessary
ensure it holds.

We use Theorem 21, which allows (42) to be proved by showing that for each
i ∈ {1, 2, 3}, if On2 holds at the end of the interval corresponding the execution
of ei , then w2 ≥ T + acc.w2.τ2 must also hold. Action e1 is trivial because
behV .e1 � −−−→¬On2 holds. For e2, we let

Reserve.T2 ≥ T + 2acc.w2.τ2 (43)

which by Corollary 9 ensures behV .e2 � �(w2 ≥ T+acc.w2.τ2). For e3, we have:

(38) ∨ (39) � −−−→¬On2 ∨ �(w2 ≥ T + acc.w2.τ2)

⇐ (39) � −−−→¬On2, strengthen consequent
(38) � �(w2 ≥ T + acc.w2.τ2)

⇐ Corollary 9
(43)

Because grd .e1 ∨ grd .e2 ∨ grd .e3 holds, we may use Lemma 31 to strengthen the
guard of e0 to false without strengthening the guard of the action system. Then
using Lemma 32, we may remove action e0 from the program. Thus, we obtain
the final controller in Fig. 11.

Deriving Real-Time Action Systems Controllers 129

do e1: On2 ∧ (¬Pressed ∨ w2 ≤ Reserve.T2) → On2 := false
� e2: ¬On2 ∧ Pressed ∧ w2 > Reserve.T2 → On2 := true
else e3: idle
od †τ2 ?((31) ∧ DA.w2)

Fig. 11. Final controller

The program in Fig. 11, behaves in time band τ2 and the environment operates
as specified by (31) and DA.w2. Property (31) ensures that Stopped2 holds within
an interval of length ρ.φ2 in which �¬On2 holds and DA.w2 ensures that that
maximum difference of w2 in any time bands τ2 and φ2 are within the accuracies
of w2 in τ2 and φ2, respectively. Combining (30), (37) and (43), we derive a
necessary relationship:

Reserve.T2 ≥ Empty.T2 +max (acc.w2.τ2, acc.w2.φ2) + 2acc.w2.τ2

on the values of Reserve.T2 and Empty.T2.

7 Conclusions

This paper incorporates a time bands theory [9] into action systems and we de-
velop an interval-based semantics for reasoning about sampling over continuous
environments. We use ILTL [17], a temporal logic for sequences of adjoining
intervals, and develop a refinement theory using enforced properties specified
by ILTL formulae. We have developed high-level methods that use time bands
to simplify reasoning about hardware/software interaction. As an example, we
have derived an action systems controller for a real-time pump. Notable in our
derivation is the development of side conditions that formalise the assumptions
on the environment and the derivation of relationships between threshold and
critical levels based on the (different) time bands of the controller and pump.

As part of future work, we aim to further develop the theories for parallel
composition of action systems by developing (compositional) rely/guarantee-
style methods. We also aim to explore the links between action systems and
teleo-reactive programs [15, 16]. In particular it will be interesting to consider a
development method that starts with a teleo-reactive program (whose semantics
are closer to abstract specifications) and refining the teleo-reactive program to
an action system.

Acknowledgements. This research is supported by Australian Research Coun-
cil Discovery Grant DP0987452 and EPSRCGrant EP/J003727/1.We thank our
anonymous reviewers for their insightful comments that have helped improve this
paper.

130 B. Dongol and I.J. Hayes

References

1. Aichernig, B.K., Brandl, H., Krenn, W.: Qualitative Action Systems. In: Breitman,
K., Cavalcanti, A. (eds.) ICFEM 2009. LNCS, vol. 5885, pp. 206–225. Springer,
Heidelberg (2009)

2. Back, R.-J., Petre, L., Porres, I.: Generalizing Action Systems to Hybrid Sys-
tems. In: Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 202–213. Springer,
Heidelberg (2000)

3. Back, R.-J.R., Sere, K.: Stepwise refinement of action systems. Structured Pro-
gramming 12(1), 17–30 (1991)

4. Back, R.-J.R., von Wright, J.: Trace Refinement of Action Systems. In: Jons-
son, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, pp. 367–384. Springer,
Heidelberg (1994)

5. Back, R.-J.R., von Wright, J.: Refinement Calculus: A Systematic Introduction.
Springer-Verlag New York, Inc., Secaucus (1998)

6. Back, R.-J.R., von Wright, J.: Compositional action system refinement. Formal
Asp. Comput. 15(2-3), 103–117 (2003)

7. Broy, M.: Refinement of time. Theor. Comput. Sci. 253(1), 3–26 (2001)
8. Burns, A., Baxter, G.: Time bands in systems structure. In: Structure for Depend-

ability: Computer-Based Systems from an Interdisciplinary Perspective, pp. 74–88.
Springer (2006)

9. Burns, A., Hayes, I.J.: A timeband framework for modelling real-time systems.
Real-Time Systems 45(1), 106–142 (2010)

10. Chandy, K.M., Misra, J.: Parallel Program Design: A Foundation. Addison-Wesley
Longman Publishing Co., Inc. (1988)

11. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

12. Dongol, B.: Progress-based verification and derivation of concurrent programs.
PhD thesis, The University of Queensland (2009)

13. Dongol, B., Hayes, I.J.: Enforcing safety and progress properties: An approach
to concurrent program derivation. In: 20th ASWEC, pp. 3–12. IEEE Computer
Society (2009)

14. Dongol, B., Hayes, I.J.: Compositional Action System Derivation Using Enforced
Properties. In: Bolduc, C., Desharnais, J., Ktari, B. (eds.) MPC 2010. LNCS,
vol. 6120, pp. 119–139. Springer, Heidelberg (2010)

15. Dongol, B., Hayes, I.J.: Reasoning about teleo-reactive programs under parallel
composition. Technical Report SSE-2011-01, The University of Queensland (April
2011)

16. Dongol, B., Hayes, I.J.: Approximating idealised real-time specifications using time
bands. In: AVoCS 2011. ECEASST, vol. 46, pp. 1–16. EASST (2012)

17. Dongol, B., Hayes, I.J.: Deriving real-time action systems in a sampling logic. Sci.
Comput. Program. (2012); accepted October 17, 2011

18. Dongol, B., Mooij, A.J.: Streamlining progress-based derivations of concurrent pro-
grams. Formal Aspects of Computing 20(2), 141–160 (2008)

19. Feijen, W.H.J., van Gasteren, A.J.M.: On a Method of Multiprogramming.
Springer (1999)

20. Gargantini, A., Morzenti, A.: Automated deductive requirements analysis of critical
systems. ACM Trans. Softw. Eng. Methodol. 10, 255–307 (2001)

21. Guelev, D.P., Hung, D.V.: Prefix and projection onto state in duration calculus.
Electr. Notes Theor. Comput. Sci. 65(6), 101–119 (2002)

Deriving Real-Time Action Systems Controllers 131

22. Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust Timed Automata. In: Maler,
O. (ed.) HART 1997. LNCS, vol. 1201, pp. 331–345. Springer, Heidelberg (1997)

23. Hayes, I.J., Burns, A., Dongol, B., Jones, C.B.: Comparing models of nondetermin-
istic expression evaluation. Technical Report CS-TR-1273, Newcastle University
(2011)

24. Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996, pp. 278–292.
IEEE Computer Society, Washington, DC (1996)

25. Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Assume-Guarantee Refinement Be-
tween Different Time Scales. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999.
LNCS, vol. 1633, pp. 208–221. Springer, Heidelberg (1999)

26. Manna, Z., Pnueli, A.: Temporal Verification of Reactive and Concurrent Systems:
Specification. Springer-Verlag New York, Inc. (1992)

27. Meinicke, L.A., Hayes, I.J.: Continuous Action System Refinement. In: Yu, H.-J.
(ed.) MPC 2006. LNCS, vol. 4014, pp. 316–337. Springer, Heidelberg (2006)

28. Moszkowski, B.C.: Compositional reasoning about projected and infinite time. In:
ICECCS, pp. 238–245. IEEE Computer Society (1995)

29. Moszkowski, B.C.: A complete axiomatization of interval temporal logic with infi-
nite time. In: LICS, pp. 241–252 (2000)

30. Rönkkö, M., Ravn, A.P., Sere, K.: Hybrid action systems. Theoretical Computer
Science 290(1), 937–973 (2003)

31. Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robust safety of timed automata.
Form. Methods Syst. Des. 33, 45–84 (2008)

32. Zhou, C., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time
Systems. EATCS: Monographs in Theoretical Computer Science. Springer (2004)

	Deriving Real-Time Action Systems Controllers from Multiscale System Specifications

	Introduction
	Motivating Example
	Contributions and Overview
	Related Work

	Background Theory
	Interval Predicates
	Evaluating State Predicates over an Interval
	Chop and Iteration
	ILTL

	Action Systems with Time Bands
	Time Bands
	Actions
	Action Systems
	Parallel Composition

	Deriving Action System Controllers
	Enforced Properties
	Action System Refinement

	Hardware/Software Interaction
	Example: Two-Tank Pump System
	Formulae Transformation
	Action Calculation
	Discharge Enforced Properties on Actions

	Conclusions
	References

