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Preface

This volume contains the proceedings of MPC 2012, the 11th International
Conference on the Mathematics of Program Construction. This conference series
aims to promote the development of mathematical principles and techniques that
are demonstrably practical and effective in the process of constructing computer
programs, broadly interpreted. The focus is on techniques that combine precision
with conciseness, enabling programs to be constructed by formal calculation.

The conference was held in Madrid, Spain, during June 25–27, 2012. The pre-
vious ten conferences were held in 1989 in Twente, The Netherlands (with pro-
ceedings published as LNCS 375); in 1992 in Oxford, UK (LNCS 669); in 1995 in
Kloster Irsee, Germany (LNCS 947); in 1998 in Marstrand, Sweden (LNCS 1422);
in 2000 in Ponte de Lima, Portugal (LNCS 1837); in 2002 in Dagstuhl, Germany
(LNCS 2386); in 2004, in Stirling, UK (LNCS 3125); in 2006 in Kuressaare,
Estonia (LNCS 4014); in 2008 in Marseille-Luminy, France (LNCS 5133); and
in 2010 in Lac-Beauport, Canada (LNCS 6120).

There were 27 submissions—rather fewer than in previous years. Each sub-
mission was reviewed by at least four members of the Program Committee, with
an additional review by one of the Program Chairs. The Program Committee
selected 13 papers to appear at the conference. Of these 13 papers, 6 had an
additional round of ‘shepherding’ by a member of the Program Committee in
order to improve the presentation and tailor it for the MPC audience. There
were also three invited talks at the conference; these are represented here by one
paper and two abstracts.

The MPC conference series takes great pride in the thoroughness of its re-
viewing. We are very grateful to the members of the Program Committee and
the external referees for their care and diligence in reviewing the submitted pa-
pers. The review process and compilation of the proceedings were greatly helped
by Andrei Voronkov’s EasyChair system, which we can highly recommend.

June 2012 Jeremy Gibbons
Pablo Nogueira
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Probabilistic Relational Hoare Logics

for Computer-Aided Security Proofs

Gilles Barthe1, Benjamin Grégoire2, and Santiago Zanella Béguelin3

1 IMDEA Software Institute
2 INRIA Sophia Antipolis - Méditerranée

3 Microsoft Research

Provable security. The goal of provable security is to verify rigorously the secu-
rity of cryptographic systems. A provable security argument proceeds in three
steps:

1. Define a security goal and an adversarial model;

2. Define the cryptographic system and the security assumptions upon which
the security of the system hinges;

3. Show by reduction that any attack against the cryptographic system can be
used to build an efficient algorithm that breaks a security assumption.

The provable security paradigm originates from the work of Goldwasser and
Micali [10] and plays a central role in modern cryptography. Since its inception,
the focus of provable security has gradually shifted towards practice-oriented
provable security [4]. The central goal of practice-oriented provable security is to
develop and analyze efficient cryptographic systems that can be used for practical
purposes, and to provide concrete guarantees that quantify their strength as a
function of the values of their parameters (e.g. the key size of a public-key
encryption scheme).

The code-based approach [5] realizes the practice-oriented provable security
paradigm by means of programming-language techniques and of a systematic
way of organizing proofs. In the code-based approach, security hypotheses and
goals are cast in terms of the probability of events with respect to distributions
induced by probabilistic programs. Typically, proofs that follow the code-based
approach adopt some form of imperative pseudocode as a convenient and expres-
sive notation to represent programs (equivalently, games). The pWhile language
is a procedural, probabilistic imperative programming language that provides a
precise formalism for programs. Commands in pWhile are defined as follows:

C ::= skip nop
| V ← E assignment
| V $← DE random sampling
| if E then C else C conditional
| while E do C while loop
| V ← P(E , . . . , E) procedure call
| C; C sequence

J. Gibbons and P. Nogueira (Eds.): MPC 2012, LNCS 7342, pp. 1–6, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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where E is a set of expressions, DE is a set of distribution expressions, and
P is a set of procedures. pWhile distinguishes between concrete procedures,
whose code is defined, and abstract procedures, whose code remains unspecified.
Quantification over adversaries in cryptographic proofs is achieved by represent-
ing them as abstract procedures parametrized by a set of oracles; these oracles
must be instantiated as other procedures in the program.

The meaning of games is defined by a denotational semantics: given an inter-
pretation of abstract procedures, the semantics �c� of a game c takes as input
an initial memory, i.e. a mapping from variable to values, and returns a sub-
distribution on memories. Since we typically consider discrete datatypes, the set
M of memories is discrete and sub-distributions on memories are simply maps
d : M → [0, 1] such that

∑
m∈M d m ≤ 1. We let D(M) denote the set of

sub-distributions over M, and we use the notation Pr [c,m : E] to denote the
probability of the event E in the sub-distribution �c� m.

Proofs in provable security are by reduction. For simplicity, assume that the
system under consideration is proved secure under a single assumption. Let A be
an adversary against the security of the system. The goal of the reduction proof
is to show that there exists an adversary B such that the success probability of A
in the attack game is upper bounded by a function of the success probability of B
in breaking the security assumption. A recommended practice is that proofs be
constructive, in the sense that the adversary B is given explicitly as a program
that invokes A as a sub-procedure.

In addition to defining the security goal and hypotheses as probabilistic pro-
grams, the code-based approach recommends that proofs are structured as se-
quences, or trees, of games, so that transitions between two successive games
are easier to justify. A typical transition between two games c1 and c2, requires
establishing an inequality of the form

Pr [c1,m1 : A] ≤ Pr [c2,m2 : B] + ε (∗)

whereA and B are events whose probabilities are taken over the sub-distributions
�c1� m1 and �c2� m2 respectively, and ε is an arithmetic expression that may de-
pend on the resources allocated to the adversary or, when the transition involves
a failure event F , an expression of the form Pr [ci,mi : F ]. The proof concludes
by combining the inequalities proven for each transition to bound the success
probability of the reduction.

Verified security. Verified security [2,1] is an emerging approach to security
proofs of cryptographic systems. It adheres to the same principles as (practice-
oriented) provable security, but revisits its realization from a formal verification
perspective. When taking a verified security approach, proofs are mechanically
built and verified with the help of state-of-the-art verification tools. The idea of
verified security appears in inspiring articles from Halevi [11] and Bellare and
Rogaway [5], and is realized by tools such that CertiCrypt [2] and EasyCrypt [1].
Both support the code-based approach, and capture many common reasoning
patterns in cryptographic proofs. CertiCrypt and EasyCrypt have been used to
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verify examples of prominent cryptographic constructions, including encryption
schemes, signature schemes, hash function designs, and zero-knowledge proofs.
Although they rely on the same foundations, the two tools have a complementary
design: the CertiCrypt framework is entirely programmed and machine-checked
in the Coq proof assistant, from which it inherits expressiveness and strong
guarantees. In contrast, EasyCrypt implements a verification condition generator
that sends proof obligations to SMT solvers, and inherits from them a high
degree of automation.

Relational Hoare Logics and liftings. It is important to note that inequalities of
the form (∗) involve two programs, and hence go beyond program verification.
The common foundation of CertiCrypt and EasyCrypt is pRHL, a relational logic
to reason about probabilistic programs. Its starting point is relational Hoare
logic [6], a variant of Hoare logic that reasons about two programs. Judgments
of Benton’s relational Hoare logic are of the form:

|= c1 ∼ c2 : Ψ ⇒ Φ

where c1 and c2 are While programs and Ψ and Φ are relations on memories,
respectively called the pre-condition and the post-condition. The above judgment
is valid if the post-condition is valid for all executions of c1 and c2 starting
from initial memories that satisfy the pre-condition, i.e. for every pair of initial
memories m1,m2 such that m1 Ψ m2, if the evaluations of c1 in m1 and c2 in
m2 terminate with final memories m′

1 and m′
2 respectively, then m′

1 Φ m′
2 holds.

Probabilistic relational Hoare logic (pRHL) considers similar judgments

|= c1 ∼ c2 : Ψ ⇒ Φ

except that c1 and c2 are pWhile programs. Since the evaluation of a pWhile

program w.r.t. an initial memory yields a sub-distribution over memories, giv-
ing a meaning to a pRHL judgment requires interpreting post-conditions as
relations over sub-distributions. To this end, pRHL relies on a lifting operator
L which transforms a binary relation into a binary relation on the space of sub-
distributions over its underlying sets. Lifting can be used to define the validity
of a pRHL judgment: for any two pWhile programs c1 and c2 and relations on
memories Ψ and Φ, the judgment |= c1 ∼ c2 : Ψ ⇒ Φ is valid if for every pair of
memories m1 and m2, m1 Ψ m2 implies (�c1� m1)L(Φ) (�c2� m2). The ability to
derive probability claims from valid pRHL judgments is essential to justify its
use as an intermediate tool to prove security of cryptographic systems. Formally,
if |= c1 ∼ c2 : Ψ ⇒ Φ and Φ⇒A〈1〉⇒B〈2〉, then for all memories m1 and m2,
m1 Ψ m2 implies Pr [c1,m1 : A] ≤ Pr [c2,m2 : B].

The definition of lifting is adopted from probabilistic process algebra [12]. Let
A and B be two discrete sets, and let R ⊆ A × B. The lifting L(R) of R is the
relation on D(A)×D(B) such that, for every sub-distribution d1 over A and d2
over B, d1 L(R) d2 if there exists d ∈ D(A×B) such that:

1. for every (a, b) ∈ A×B, if d(a, b) > 0 then a R b
2. for every a ∈ A, d1(a) =

∑
b∈B d(a, b)

3. for every b ∈ B, d2(a) =
∑

a∈A d(a, b)
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The definition of lifting has close connections with the Kantorovich metric (see
e.g. [7] for a recent overview), and with flow networks. The relationship with flow
networks is best explained pictorially. Figure 1 represents two sub-distributions
d1 (over some set A) and d2 (over some set B) as a source and a sink respectively.
In both cases, the capacity of an edge between an element of the set and the
source/sink is the probability of this element; we let pi denote d1(ai) and qi
denote d2(bi). Then, let R be a relation between elements of A and elements of
B. We use dashed arrows to represent edges (a, b) such that a R b. The definition
of lifting requires exhibiting a sub-distribution d, called the witness, such that
for every (a, b), if d(a, b) > 0 then a R b. In the picture below, it amounts to
asserting that d is completely defined by the values of the probabilities r1 . . .
r6 that are used to decorate the dashed arrows; more precisely, r6 = d(a5, b5),
r5 = d(a5, b4), r4 = d(a3, b4), r3 = d(a3, b3), r2 = d(a2, b2) and r1 = d(a1, b1).
The remaining constraints can be interpreted as an assertion that d is a maximal
flow. Consider that edges are oriented from left to right; then we can define the
incoming (resp. outgoing) flow of a node as the sum of the probabilities attached
to its incoming (resp. outgoing) edges. Then, constraints 2 and 3 assert that the
incoming flow is equal to the outcoming flow for each node; in other words,
d1 L(R) d2 can be reduced to a maximal flow problem in the network induced
by d1, d2 and R. The constraints for the maximal flow problem are:

p5 = r5 + r6 q5 = r6
q4 = r4 + r5

p3 = r3 + r4 q3 = r3
p2 = r2 q2 = r2
p1 = r1 q1 = r1

Any sub-distribution that satisfies the constraints is a witness of the relationship
of d1 and d2 w.r.t. the lifting of R. Interestingly, the connection between lift-
ing and flow networks opens the possibility of relying on existing flow network
algorithms to check whether two distributions are related by lifting.

While pRHL is sufficient for many purposes, a number of cryptographic no-
tions, such as statistical zero-knowledge proofs, require reasoning about approx-
imate equivalence. Recall that the statistical distance between two distributions
d1 and d2 is defined as

Δ(d1, d2)
def
= max

A
|d1 A− d2 A|

One can define an extension of pRHL that supports approximate reasoning,
via judgments of the form |= c2 ∼δ Ψ : c1 ⇒ Φ, where δ ∈ [0, 1]. Such a
judgment is valid if for every pair of memories m1 and m2, m1 Ψ m2 implies
(�c1� m1)Lδ(Φ) (�c2� m2), where the approximate lifting Lδ(R) of R is defined
by the clause d1 Lδ(R) d2 if there exists d ∈ D(A×B) such that:

1. for every (a, b) ∈ A×B, if d(a, b) > 0 then a R b
2. π1(d) ≤ d1 and Δ(d1, π1(d)) ≤ δ
3. π2(d) ≤ d2 and Δ(d2, π2(d)) ≤ δ

where the sub-distributions π1(d) and π2(d) are defined by the clauses
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p1 q1

p2 q2

p3 q3

p4 q4

p5 q5
r6
r5

r4
r3

r2

r1

Sub-distribution d1
as source

Sub-distribution d2
as sink

Fig. 1. Lifting as a maximal flow problem

π1(d) =
∑
b∈B

d (a, b) π2(d) =
∑
a∈A

d (a, b)

and ≤ denotes the pointwise extension of inequality on the reals, i.e. d ≤ d′

iff for every a ∈ A, we have d a ≤ d′ a. The definition of approximate lifting
was also considered in the context of probabilistic algebra [13,8], and admits a
characterization in terms of flow networks.

CertiCrypt and EasyCrypt implement apRHL [3], an extension of pRHL whose
judgments are of the form |= c2 ∼α,δ Ψ : c1 ⇒ Φ, where α ≥ 1 and δ ∈ [0, 1]. Such
a judgment is valid if for every pair of memories m1 and m2, m1 Ψ m2 implies
(�c1� m1)Lα,δ(Φ) (�c2� m2), where Lα,δ(R) denotes the approximate lifting of
R. Formally, d1 Lα,δ(R) d2 if there exists d ∈ D(A×B) such that:

1. for every (a, b) ∈ A×B, if d(a, b) > 0 then a R b
2. π1(d) ≤ d1 and Δα(d1, π1(d)) ≤ δ
3. π2(d) ≤ d2 and Δα(d2, π2(d)) ≤ δ

where

Δα(d1, d2)
def
= max

A
(max{d1 A− α (d2 A), d2 A− α (d1 A), 0})

This definition coincides with δ-lifting for the case α = 1. The resulting logic
apRHL allows reasoning about statistical distance between programs and about
(computational) differential privacy [9].
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The Laws of Programming Unify

Process Calculi�

Tony Hoare1 and Stephan van Staden2

1 Microsoft Research, Cambridge, United Kingdom
2 ETH Zurich, Switzerland

Stephan.vanStaden@inf.ethz.ch

Abstract. We survey the well-known algebraic laws of sequential pro-
gramming, and propose some less familiar laws for concurrent program-
ming. On the basis of these laws, we derive the rules of a number of classical
programming and process calculi, for example, those due to Hoare, Mil-
ner, and Kahn. The algebra is simpler than each of the calculi derived from
it, and stronger than all the calculi put together. We end with a section
describing the role of unification in Science and Engineering.

1 Introduction

The basic ideas and content of the algebraic laws of sequential programming
are familiar [1]. That paper treated the main program structuring operators,
including sequential composition, choice, and recursion. This paper introduces
additional laws to deal with conjunction and concurrent execution of programs.
The formulation is purely algebraic and lacks negative statements, so all the
earlier axioms and theorems survive the introduction of additional laws.

The unification of process calculi is based on the earlier unification of pro-
grams, program designs, and program specifications. We regard them all as de-
scriptions of the events that occur in and around a computer that is executing
a program. The program itself is the most precise description of its own exe-
cution. The most abstract description is the user specification, which mentions
only aspects of execution that are observable and controllable by the user. An
assertion can be regarded as a description of all executions that end in a state
satisfying the assertion. Each kind of description has a different role in program
development and execution, and they are usually expressed in different nota-
tions. But we ignore the distinctions between them, because they all obey the
same algebraic laws.

The main novel content of the paper is a unifying treatment of a varied collec-
tion of programming calculi, which have been proposed as formalisations of the
meaning of sequential and concurrent programming languages. They have been
successfully applied in human and mechanical reasoning about the properties of
programs expressed in the given calculus. Examples of such calculi are due to

� This paper is dedicated in friendship and admiration to the memory of Robin Milner
and Gilles Kahn.

J. Gibbons and P. Nogueira (Eds.): MPC 2012, LNCS 7342, pp. 7–22, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Hoare [2], Milner [3], Kahn [4], Dijkstra [5], Back [6], Morgan [7], Plotkin [8],
and Jones [9]: in this paper, we shall concentrate on the first three.

The method of unification is to define the basic judgement of each calculus
in terms of one or more inequations between purely algebraic formulae and then
prove all the rules of the calculus as theorems of the algebra. The algebra turns
out to be simpler than each of the calculi derived from it, and stronger than all
of them put together.

We make no claims that our algebraic laws are actually true of the operators of
any particular programming language. We rely on the good will of the readers to
check the individual laws against their intuitive understanding and experience of
the essential concepts of programming. The demonstration that these properties
are true of many historic programming calculi gives some independent evidence
that the algebra is potentially useful, and that it corresponds to a widely held
common understanding of the meaning of programs.

For a survey of omissions and deficiencies in the content and presentation of
this paper, please see the sections on related work in the past and on further
work for the future.

All theorems of this paper have been formally checked with Isabelle/HOL. A
proof script is available online [10].

2 Laws of Programming

Programs, specifications and designs together form the set of descriptions that
we consider. These descriptions are ordered according to refinement: P ⊆ Q
indicates that P refines Q. This refinement has several meanings. For example,
it can say that the program P is more determinate than program Q (i.e. P has
fewer behaviours or executions) or that the specification P is stronger than the
specification Q (i.e. P implies Q). Generally, a description is more abstract or
general compared to the descriptions that refine it, and the refined description
is more deterministic. Refinement obeys three laws that make it a partial order:

• P ⊆ P
• P ⊆ Q & Q ⊆ R ⇒ P ⊆ R
• P ⊆ Q & Q ⊆ P ⇒ P = Q

Among the descriptions, there are three constants taken from programming lan-
guages and propositional logic: skip, ⊥ and �. The constant skip is a basic pro-
gram that does nothing. Bottom ⊥ represents the predicate False: it describes no
execution. Bottom is the meaning of a program containing a fault like a syntax
violation: the implementation is required to detect it, and to prevent the pro-
gram from running. Top � is a program whose execution may have unbounded
consequences. Think of a program with an error (e.g., input buffer overflow) that
makes it vulnerable to virus attack. As a proposition, it can be identified with
the predicate True. It is the programmer’s responsibility to avoid submitting
such a program for execution – the implementation is not required to detect it.

Apart from the constant descriptions, there are operators for forming descrip-
tions in terms of others. The operators are likewise drawn from programming
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languages and propositional logic. For example, sequential composition (;) and
concurrent composition (‖) are binary operators from programming: the for-
mula P ;Q describes the sequential composition of P and Q, while P ‖ Q is a
description of their concurrent behaviour.

Conjunction (∧) and disjunction (∨) are operators familiar from propositional
logic. If P and Q are programs, P ∨Q is the nondeterministic choice between the
components P and Q. The choice may be determined at some later stage in the
design trajectory of the program, or by a specified condition tested at run time;
failing this, it may be determined by an implementation of the language at compile
time, or even nondeterministically at run time. It satisfies the following laws:

• P ⊆ P ∨Q and Q ⊆ P ∨Q.
• Whenever P ⊆ R and Q ⊆ R, then P ∨Q ⊆ R.

These laws say that (∨) is the least upper bound with respect to the refinement
order. Conjunction is its dual and corresponds to the greatest lower bound. Con-
junction between programs is in general very inefficient to implement, because it
may require exploration of all the executions of both operands, to find one that
is common to both of them. Nevertheless, it is the most natural and useful way
of composing a specification from a collection of requirements.

The logical operators satisfy familiar algebraic laws. For instance, conjunction
and disjunction are both commutative and associative. Programming operators
also enjoy similar algebraic properties. For example, saying that (P ;Q) ;R and
P ; (Q ;R) describe the same set of computations is the same as stating that
sequential composition is associative. The properties of most of the operators
considered here are described and intuitively justified in [1]. Table 1 summarizes
how the binary operators behave in isolation from each other.

Table 1. Basic properties of the operators

∨ ∧ ; ‖
Commutative yes yes no yes
Associative yes yes yes yes
Idempotent yes yes no no
Unit ⊥ � skip skip
Zero � ⊥ ⊥ ⊥

.

In addition to such laws, distribution laws state the relationships between two
(or more) operators. All the binary operators in the table distribute through (∨),
i.e. for ◦ ∈ {∨,∧, ;, ‖} we have:

• P ◦ (Q ∨R) = (P ◦Q) ∨ (P ◦R)
• (P ∨Q) ◦R = (P ◦R) ∨ (Q ◦R)

Another distribution law, analogous to the exchange law of category theory,
specifies how sequential and concurrent composition interact:

• (P ‖ Q) ; (R ‖ S) ⊆ (P ;R) ‖ (Q ;S)
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This is a form of mutual distribution between the two operators, where different
components of each operand distribute through to different components of the
other operand. The refinement in the law reflects the fact that concurrency
introduces nondeterminism, whereas sequential composition does not. It says
that the program (P ‖ Q) ; (R ‖ S) has fewer behaviours than (P ;R) ‖ (Q ;S).

But is the law in fact true of implementations of concurrency in real comput-
ers and in usable programming languages? Yes, it is true for all implementations
which interleave the actions from the constituent threads, or which are sequen-
tially consistent, in that they successfully simulate such an interleaving. Here is
an informal proof. The right-hand side of the inclusion describes all interleav-
ings of an execution of (P ;R) with an execution of (Q ;S). The left hand side
describes all interleavings which synchronise at the two semicolons displayed in
(P ;R) and (Q ;S). Thus the left hand side contains <p1, q, p2, r1, s, r2>, but
it does not contain <p1, q, s, p2, r1, r2>, which is an interleaving of the right
side (here the lower case letters denote sub-executions of the executions of the
corresponding upper case programs).

The validity of the law can be exploited in an algorithm to compute one (or
all) of the interleavings of two strings. If one of the arguments is empty, deliver
the other argument as result. Otherwise, split each string arbitrarily into two
parts P ;R and Q ;S. Then (recursively) find an interleaving of P with Q and
an interleaving of R with S. Concatenate the two results.

Iteration is another common programming construct. This unary operator is
typically written as a postfix Kleene star: P ∗ describes the iteration where P
is performed zero or more times in sequence. Iteration interacts with the other
operators according to laws from Kleene algebra [11]:

• skip ∨ (P ;P ∗) ⊆ P ∗

• P ∨ (Q ;R) ⊆ R ⇒ Q∗ ;P ⊆ R
• skip ∨ (P ∗ ;P ) ⊆ P ∗

• P ∨ (R ;Q) ⊆ R ⇒ P ;Q∗ ⊆ R

The first law says that P ∗ has more behaviours than skip, and more behaviours
than P ;P ∗. A valid implementation of an iteration can therefore start by un-
folding it into two cases, one of which does no iterations, and the other of which
does at least one iteration. The second law implies that iteration is the least
solution of the first inequation. It permits inductive proofs of the properties of
an iteration. The other two laws simply swap the arguments of (;).

2.1 Lemmas

The laws mentioned so far are already sufficient to imply the central axioms of
various calculi of programming. The proofs use a number of simple lemmas that
follow from the algebra.
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A binary operator that distributes through (∨) is monotone in both argu-
ments. So for ◦ ∈ {∨,∧, ;, ‖}:

P ⊆ P ′ & Q ⊆ Q′ ⇒ P ◦Q ⊆ P ′ ◦Q′(◦Monotone)

Also, the Exchange law has several consequences that can be proved as theorems
with the help of the properties in Table 1. In particular:

• Two small exchange laws hold:

P ; (Q ‖ R) ⊆ (P ;Q) ‖ R(SmallExchange1)

(P ‖ Q) ;R ⊆ P ‖ (Q ;R)(SmallExchange2)

• Sequential composition refines concurrent composition, since it is a special
case thereof:

P ;Q ⊆ P ‖ Q(SeqRefinesConc)

Although exchange is a less familiar form of distribution law, there are also other
cases where operators exchange. For example,

(P ∧Q) ; (R ∧ S) ⊆ (P ;R) ∧ (Q ;S)(ConjExchange)

The same theorem holds when (;) is replaced by (‖) or any other monotonic
operator. The dual property, where (∨) replaces (∧) and the refinement order is
reversed, also holds.

An interesting property of all our algebraic laws is shared with many of the
fundamental laws of physics: they preserve the symmetry of time-reversal. For-
mally expressed, each law remains valid when sequential composition is replaced
by backward sequential composition (̆;), defined

P ;̆Q
def
= Q ;P

As a consequence, every theorem of our algebra also respects time-reversal: swap-
ping the arguments of every (;) in a theorem yields another theorem. Swapping
the arguments of (;) once again will result in the original theorem, so time-
reversal is a duality.

Of course, there are useful and realistic laws that do not respect time-reversal.
For example, if abort stands for a program that never terminates and never has
any interaction with its environment, it could realistically be stated to satisfy:

P �= ⊥ ⇒ abort ;P = abort

Such a law could be added to our algebra, but it would not respect time-reversal.
The algebra embodies other algebraic structures used in computer science.

For example, if D is the set of descriptions, then:
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• (D,∨, ;, ∗,⊥, skip) is a Kleene algebra;
• (D,∨, ;,⊥, skip) is an idempotent semiring;
• (D,∨,∧,⊥,�) is a bounded lattice.

3 Calculi of Programming

We consider three calculi of programming: Hoare logic, the Milner calculus and
Kahn’s natural semantics. Each of them uses a basic judgement with three
operands. Surprisingly, the judgement of Hoare logic and the Milner calculus
turns out to be the same. A calculus selects one of its judgement’s operands
as the inductive variable, and the semantics of the language is then defined by
cases on the syntactic structure of a term in this position. Thus there is at least
one rule for every constant and operator of the language. Each calculus may
restrict some operands of its judgement to a subclass of expression. For exam-
ple, two operands of the Hoare triple are descriptions of a state of the executing
machine. The elements of a subclass may satisfy additional algebraic properties
that are important for a calculus. Such distinctions may be introduced if and
when necessary, and are not needed in this paper.

3.1 Hoare Logic

The purpose of Hoare’s axiomatic approach to computer programming [2] is to
establish partial or total correctness of computer programs. The basic judgement
of Hoare logic1 is the Hoare triple P {Q}R:

P {Q}R def
= P ;Q ⊆ R

It says that if P is a description of what has happened before Q starts, then R
describes what has happened when Q has finished. In conventional presentations
of Hoare logic, the variables P and R are required to be predicates describing
a single state of the executing computer before and after the execution of Q
respectively. This is just a special case of our more general definition, because a
single-state predicate may be regarded as a description of all executions which
leave the computer in a state that satisfies the predicate when they terminate.
Such an interpretation preserves the intuitive meaning of the triple: in a state
that satisfies the description P , every behaviour of Q conforms to the descrip-
tion R. The more usual interpretation of a predicate in the relational model of
Hoare logic is as a subset of the identity relation [12]. The primitive judgement
P {Q}R of Hoare logic is then defined as P ;Q ⊆ Q ;R. However, a similar defini-
tion is not possible for the Milner calculus, which does not distinguish assertions
from processes.

The basic laws of Hoare logic are defined by structural induction on Q. The
rule (Hconj′) follows directly from lemma (ConjExchange). Floyd’s original law
for conjunction (Hconj) follows from it by idempotence of (∧).
1 Also called axiomatic or deductive semantics.
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P {skip}P(Hskip)

P {Q}R & R {Q′}S ⇒ P {Q ;Q′}S(Hseq)

P {Q}R & P {Q′}R ⇒ P {Q ∨Q′}R(Hchoice)

P {Q}R & P ′ {Q′}R′ ⇒ P ∧ P ′ {Q ∧Q′}R ∧R′(Hconj′)
P {Q}P ⇒ P {Q∗}P(Hiter)

Hoare logic also includes rules that operate only on the structure of assertions,
such as the rule of consequence and rules for conjunction and disjunction. They
too follow from the algebra:

P ′ ⊆ P & P {Q}R & R ⊆ R′ ⇒ P ′ {Q}R′(Hcons)

P {Q}R & P ′ {Q}R′ ⇒ P ∧ P ′ {Q}R ∧R′(Hconj)

P {Q}R & P ′ {Q}R′ ⇒ P ∨ P ′ {Q}R ∨R′(Hdisj)

The Hoare rules that govern concurrent composition are formulated in separation
logic [13,14].

P {Q}R & P ′ {Q′}R′ ⇒ P ‖ P ′ {Q ‖ Q′}R ‖ R′(Hconc)

P {Q}R ⇒ F ‖ P {Q}F ‖ R(Hframe)

The first of these laws permits a modular proof of a concurrent composition.
All that is necessary is to prove each component of the composition separately,
with separate preconditions and postconditions; and then the precondition of
the composition is the composition of the preconditions of the components, and
the postcondition is formed similarly.

The second law is the frame law which lies at the foundation of separation
logic. It says that every Hoare triple can be validly strengthened by concurrent
composition of its precondition and postcondition with the same assertion F . It
was surprising to discover that the frame law is still valid when (‖) is interpreted
as interleaving. Less surprising is the fact that the same frame law also applies
to sequential composition, but only in one direction:

P {Q}R ⇒ F ;P {Q}F ;R(HseqFrame)

Because of time-reversal symmetry, every law of the Hoare calculus gives rise to
another law. The collection of these slightly permuted laws gives a new calculus,
in which the variable chosen for induction is the first element of the triple rather
than the second.

There is a third calculus based on the same judgement P ;Q ⊆ R, where the
variable chosen for the induction is the third parameter R. This variation will
be treated next.

3.2 The Milner Calculus

The purpose of the Milner calculus is to demonstrate an abstract implementa-
tion of a programming language, and thereby provide guidance on its practical
implementations.
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This style of operational semantics was introduced by Milner for CCS in [3],
and has been used to specify the operational meaning of other process calculi.

It adopts the Milner transition P
Q−→ R as fundamental judgement.

P
Q−→ R

def
= P ⊇ Q ;R

The judgement P
Q−→ R says that one possible way of executing P is to execute

Q first and then to execute R. All arguments of the triple are conventionally pro-
grams, and Q is usually confined to be a basic or primitive command, executed
as a single action (in a ‘small-step’ version of the semantics).

The underlying algebra has revealed that the Hoare and the Milner calculi
differ only in the ordering of the three parameters of their basic judgement.
Hence every law of the Hoare calculus can be translated into a law of the Milner

calculus, and vice-versa, using the equivalence P {Q}R ⇐⇒ R
P−→ Q. The

change of order reflects the fact that in a deductive semantics, the proof starts
with the more refined operand, whereas actual execution starts with the less
refined operand. This is because execution of the specified step may require the
implementation to make a nondeterministic choice of options available in the
original program.

The Milner calculus chooses the variable P for induction, and has several laws

that hold as theorems. A judgement P
Q−→ skip says that P can be completely

executed by doing Q, since it remains to do nothing (skip). This is sometimes

written as P
Q−→ √ in process calculi. Hence the Milner rule for executing a

basic action is:

P
P−→ skip(Maction)

The execution of a sequential composition begins with an execution of its first
component. The rule is similar to (HseqFrame), but framing happens to the
right:

P
Q−→ R ⇒ P ;P ′ Q−→ R ;P ′(Mseq1)

When R is skip in the above law, i.e. execution of the first component is finished,
then it remains to execute the second component. Simplifying skip ;P ′ yields the
rule:

P
Q−→ skip ⇒ P ;P ′ Q−→ P ′(Mseq2)

CCS uses prefixing – a restricted form of sequential composition in which the
first operand must be a basic action. Combining (Maction) and (Mseq2) gives
Milner’s axiom:

P ;P ′ P−→ P ′(Mprefixing)

A judgement P
skip−→ R says that without doing real work, the program P can be

validly rearranged/rewritten as R, which is then executed instead. The notation
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P −→ R abbreviates P
skip−→ R, and is equivalent to P ⊇ R. Hence rearrangement

is simply refinement – a reduction in the program’s nondeterminism. Unsurpris-
ingly, a common rearrangement is the resolution of a nondeterministic choice:

P ∨ P ′ −→ P(Mchoice)

The rule for choosing the second operand follows by the commutativity of (∨).
An iteration can be rearranged or unfolded into two cases, one which does no

iterations, and the other which does at least one iteration:

P ∗ −→ skip(Miter1)

P ∗ −→ P ;P ∗(Miter2)

The concurrency law expresses the interleaving of actions from the operands. It
corresponds to (Hframe):

P
Q−→ R ⇒ P ‖ P ′ Q−→ R ‖ P ′(Mconc1)

In the case where R is skip, we can simplify skip ‖ P ′ and get:

P
Q−→ skip ⇒ P ‖ P ′ Q−→ P ′(Mconc2)

The rules for executing the second operand of a concurrent composition follow
by the commutativity of (‖).

The Milner calculus has a counterpart of (Hseq):

P
Q−→ R & R

Q′
−→ S ⇒ P

Q ;Q′
−→ S(Mseq)

This law is typically omitted from small-step calculi, since the action Q ;Q′

in its consequent is not guaranteed to be a basic one. However, (Mseq) can
combine two rearrangements into a single one or combine a basic action with a
rearrangement. Consequently, small-step Milner-style calculi have some freedom
with respect to the choice of rules. For example, by combining a rearrangement
with a basic action, it is simple to derive alternative rules for nondeterministic
choice:

P
Q−→ R ⇒ P ∨ P ′ Q−→ R(Mchoice′)

Finally, the rule (Mcons) corresponds to (Hcons):

P −→ P ′ & P ′ Q−→ R & R −→ R′ ⇒ P
Q−→ R′(Mcons)

3.3 Natural Semantics

The natural semantics2 of Kahn [4] demonstrates an abstract implementation of
a programming language by showing how a program manipulates computational

2 Also called evaluation or big-step semantics.
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states. The fundamental judgement of natural semantics is the Kahn reduction
〈P, s〉 −→ s′. It is not just a re-ordering of the parameters of the two earlier
judgements, because it contains the semicolon on the right of refinement rather
than on the left:

〈P, s〉 −→ s′ def
= s ;P ⊇ s′

The judgement 〈P, s〉 −→ s′ says that if s describes the state before execution
of P , then s′ describes a possible final state. The s describes a single input and
s′ a single output state in conventional presentations, but there is no need to
impose such restrictions. For example, we can think about a state as recording
an execution history, or more generally, a set of possible execution histories.
Then s ;P describes the full set of possible execution histories that result from
executing P in state s. A state s′ describes a possible final state of the execution
when it is contained in s ;P , i.e. every execution history that s′ describes as
possible is indeed possible.

The rules of natural semantics are based on the structure of P . They follow
as theorems from the algebraic properties of the operators involved.

〈skip, s〉 −→ s(Kskip)

〈P, s〉 −→ s′ & 〈P ′, s′〉 −→ s′′ ⇒ 〈P ;P ′, s〉 −→ s′′(Kseq)

〈P, s〉 −→ s′ ⇒ 〈P ∨ P ′, s〉 −→ s′(Kchoice)

The omitted rule for executing the second operand of a nondeterministic choice
follows from the commutativity of (∨).

Iteration is specified with two laws:

〈P ∗, s〉 −→ s(Kiter1)

〈P, s〉 −→ s′ & 〈P ∗, s′〉 −→ s′′ ⇒ 〈P ∗, s〉 −→ s′′(Kiter2)

For concurrency:

〈P, s〉 −→ s′ & 〈P ′, s′〉 −→ s′′ ⇒ 〈P ‖ P ′, s〉 −→ s′′(Kconc)

There is a similar rule for executing the second operand of (‖) first, but the
rules are trivial and not very interesting. As Nielson and Nielson remark [15,
p. 50], “in a natural semantics the execution of the immediate constituents [of
a parallel composition] is an atomic entity so we cannot express interleaving
of computations”. In contrast to this, a small-step semantics like the Milner
calculus can easily express interleaving.

4 Related Work

The results reported in the previous sections are a contribution to a much larger
endeavour, to which many researchers are making essential and complementary
contributions, both published and on-going.
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Our collection of algebraic laws is not intended to be complete. It omits nearly
all the basic actions of programming, such as assignments, inputs, outputs, as-
sumptions, assertions, allocations, disposals, throws. Many of these are treated
in [16]. The technique of concurrent abstract predicates [17] suggests a way that
such primitive commands can be defined algebraically, together with the primi-
tive predicates which specify their intended effect.

Pure algebra is not allowed to express the negation of an equation. As a conse-
quence, algebra cannot be used for disproving false conjectures, or for detecting
program errors. The solution is to accompany the algebra with a collection of
mathematical models, each of which satisfies all its laws. A false conjecture can
be shown to be unproveable by finding one of these models (test case) of which
the conjecture is not true. Modern mechanical model checkers are good at this,
and they are beginning to be used for generating test cases that reveal danger-
ous programming errors [18]. Familiar models of our programming algebra are
Boolean Algebra, regular expressions of Kleene [19], the relational calculus [20],
partial orders [21]. Concurrency in these models has been explored by [22].

Each of the above models represents a program as a set of all its possible ex-
ecutions. An execution of a program is a set of events that have occurred in and
around a computer that has executed the program. The events may be related
to each other by a dependency relation between them. The dependency may be
attributed either to control flow [23] or to data flow [16]. For example, the ‘exe-
cutions’ of a regular expression are the strings of the relevant regular language.
In this case, each event is the occurrence of a character, and the control flow is
a total ordering. Sequential composition is modeled by concatenation of strings,
and concurrent composition by interleaving. The relational calculus requires that
the length of the string is just two. Sequential composition requires that the last
element of the first pair is the same as the initial element of the second pair; this
element is then omitted from the concatenation. In a partial order model, events
that are independent (with no dependency in either direction) are regarded as
‘truly’ concurrent. Of course, in a particular concrete execution, an implemen-
tation may finish one of them before the other one starts, but the model simply
ignores this distinction. Partially ordered executions can be illustrated graphi-
cally, with events drawn as nodes and dependencies drawn as arrows between
them. Such a graph provides a formalisation of the intuition of a programmer
who understands programs in terms of their execution.

4.1 Further Work

Our collection of algebraic laws is not intended to be definitive or prescriptive.
Individual laws can be omitted, or they can be adapted for particular program-
ming languages or implementations. The consequences of such variations can be
explored by algebraic methods. Additional laws can be introduced to simplify
reasoning about useful subsets of programs, like race-free programs that rely
on the ownership protocol of separation logic. This is the subject of on-going
research [24]. And finally, additional axioms can be introduced to describe addi-
tional features of programming, such as throws, catches, contracts, transactions.
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The particular calculi treated in this paper are all weaker than the algebra
from which they are derived. The main source of the weakness is that some of
the parameters of the basic judgement are restricted to a subset of the possible
operands. For example, the precondition and postcondition of a Hoare triple are
required to be assertions, describing a set of machine states. Further restrictions
are imposed by selection of rules. For each operator of the calculus, there is
often only one law, serving as its ‘definition’. In each definition, the operator
occurs in a uniform position. Reducing the power of a calculus in these ways
potentially makes it simpler to use for its intended purpose, and more efficient in
mechanisation. For each calculus, it would be interesting to explore the reason for
each restriction adopted, whether practical, philosophical, or merely a historical
accident.

In general, a program verification tool will be more efficient if it exploits the
characteristics of a particular form of the specification for the program. Since the
results of this paper are completely general, there is plenty of scope for research
into beneficial specialisations. Here are some of the possibilities.

A specification may require only conditional correctness (if execution is finite,
the final state will satisfy a certain predicate), or it may require termination (all
executions of the program are finite). It may specify a relation between initial
and final state (the final value of an array is a sorted permutation of the initial
value). It may specify non-functional properties such as security (e.g. there is no
leakage of data from high to low security threads), persistence (no executions
terminate), fairness (every thread will eventually make progress), liveness (no
infinite internal activity), timing (a response is always given to a request before
a certain deadline), and even probability (as execution progresses, the ratio of
a-events to b-events tends to unity).

Finally, it is possible to specify important properties of a program that are
independent of its application or purpose, for example, conformance to some
declared program design pattern or protocol. For most programs, it is highly
desirable to rule out given generic errors, like overflows, null references, other
exceptions, deadlocks, concurrency races, and space leaks. Absence of generic
error is a specification that is the target of modern program analysis systems.
They are popular, because they can be applied directly to legacy code that has
been written without any other more explicit specification, and even without
assertions.

5 Unification in Science and Engineering

In the natural sciences, the quest for a unifying theory is an integral part of
the scientific culture. The aim is to show that a single theory applies to a wide
range of highly disparate phenomena. For example, the gravitational theory of
Newton applies very accurately both to apples falling towards the earth and to
planets falling towards the sun. In many cases, a more homogeneous subset of
the phenomena is already covered by a more specialised scientific theory. In these
cases, the specialised theories must be derived mathematically from the claimed
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theory that claims to unify them. For example, Newton’s theory of gravitation
unifies the elegant planetary theory of Kepler, as well as the less elegant (and
less accurate) Ptolemaic theories of astronomy.

The benefit of a unified theory to the progress of science is that it is supported
by all the evidence that has already been accumulated for all of the previous
theories separately. Furthermore, each of the previous theories then inherits all
the extra support given by the total sum of evidence contributed by all the other
theories. Unification is a very cost-effective way of approximating more closely
the highest certainty that all of science seeks.

Practising engineers have different concerns from the scientist, including dead-
lines and budgets for their current projects. The engineer will therefore continue
to use familiar more specialised theories that have been found from experience
to be well adapted to the particular features of the current project, or the needs
of the current client. Indeed, the innovative engineer will often specialise the
theory even further, adapting it so closely to current needs that there will never
be an opportunity for repeated use. In conclusion, the separate theories that are
subsumed by a unifying theory often retain all their practical value, and they
are in no way belittled or superseded by the unification.

Unification does not depend on the identity of the theorems being unified.
Quite often, a specialised application does not require all the laws of the unify-
ing theory. For example, Milner’s CCS and other related process calculi do not
require the distribution law P ; (Q ∨ R) = (P ;Q) ∨ (P ;R). Instead, they rely
only on the weaker property that (;) is monotone in its second argument. This is
because Milner wanted to distinguish processes which differ in the time at which
their nondeterminism is resolved. In general, omission of unwanted axioms gives
more flexibility in the implementation of an algebra. In other cases, an axiom in
one theory may be replaced even by an axiom in another theory that contradicts
it. This is valuable too in understanding the conceptual relationships between a
family of theories, because the choice of axioms formalises simply and abstractly
the nature and scale of the differences between them.

The real practical value of unification lies in its contribution to the transfer
of the results of scientific research into engineering practice. One of the main
factors that inhibit the engineer (and the sensible manager) from adopting a
scientific theory is that scientists do not yet agree what that theory should
be. Fortunately, there is an agreed method of resolving a scientific dispute. An
experiment is designed whose result is predicted differently by all the theories
that are party to the dispute. The engineer can then have increased confidence
in the winner.

But sometimes, no such decisive experiment can be discovered. This may be
because, in spite of differences in their presentation, the theories are in fact
entirely consistent. In this case, the only way of resolving the issue is to find
a theory that unifies them all. Quantum theory provides an example. Three
separate mathematical presentations of quantum theory were put forward by
Heisenberg, Schrödinger and Dirac. Then Dirac showed that they were all deriv-
able from a single unified theory. This is what made possible the award of a
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Nobel Prize to all three of them. And quantum theory is now accepted as the
nearest to a theory of everything that physics has to offer.

A second potential contribution of a unified theory to the practising engineer
is in the design and use of a suite of software tools that assist in automation
of the design process. Since every major engineering enterprise today combines
a range of technologies, it is important that all the specialised members of the
tool suite should be based on a common theory, so that they can communicate
consistently among each other on standard interfaces which are based upon
the unification. Standardisation has led to a continuing exponential increase in
the power of proof tools that support software engineering. It also facilitates
competition among the tools, and permits independent evolution of separate
tools for joint use in a design automation toolset.

Finally, the education of the general scientist and engineer will surely be fa-
cilitated by reducing the number of independently developed theories to a single
theory, presented in a single coherent framework and notation. That in itself is
sufficient justification for conduct by academics of research into unification of
theories.

6 Conclusion

One of the criteria of success of a unifying theory is that it is simpler than each
of the theories that can be derived from it. Thus Kepler’s theory of elliptical
orbits for the planets was simpler than each of the many theories of planetary
epicycles which it has now replaced.

In the simpler domain of computer programming, algebra seems simpler than
each of the calculi in several respects. (1) Its primitive operators have only two
operands instead of the triples of a programming calculus. (2) The basic algebraic
properties of these operators can be postulated independently, or (by distribution
laws) just a few at a time. (3) The properties (associativity, commutativity,
. . . ) are familiar from many other branches of algebra. (4) The basic rule of
deduction is the substitution of equals, or (using monotonicity) the substitution
of one member of an ordered pair by another. The calculi include at least one
proof rule for each operator, often with two triples as antecedent and one as
consequent. Of course, perception of simplicity is necessarily subjective, and the
reader will have to make a personal judgement on the validity of these claims.

Another criterion of success of a unifying theory is that it is more powerful
than the conjunction of all the theories that can be derived from it. As a result, it
is possible to conjecture new scientific discoveries on the basis of the theory. For
example, Newton’s theory predicted the existence of yet undiscovered planets
(Uranus), Einstein’s theory predicted atomic weapons, and quantum theory has
predicted the existence of new subatomic particles subsequently confirmed by
experiment.

It is often possible to derive an algebraic law from a rule of a calculus, by
expanding the algebraic definition of the judgement involved (e.g., P ;Q ⊆ R).
In many cases, this gives the same law that was used to derive the rule from
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the algebra. But this equivalent law will always be inequational. If the algebraic
law is also inequational (e.g., the exchange law), the rule and the law will be
equivalent (in the sense of inter-provability). But in general, the algebraic law
will be an equation (for example, an association or a distribution law). In this
way, the algebra will be more powerful than each of our calculi.

However, the conjunction of the calculi is still weaker than the laws, for a
different reason. It is because each calculus places constraints on the operands
of the judgement. The Milner calculus requires one of the three to be a basic
action, and the Hoare calculus requires two of the three to describe just a single
state. In Hoare logic, the restriction on the two assertional arguments can be
mitigated (even circumvented) by allowing the two assertions to share a common
‘logical variable’, which does not appear anywhere in the program given as the
middle argument.

The Milner calculus uses a sophisticated inductive technique (bisimulation) to
prove additional laws. It is based on an induction principle, that the given rules
are the only way of proving equations. Now additional rules can be derived by
induction on the proof of the antecedent. Adding new non-derived rules might
invalidate the results, so incrementality is lost.

It is too early to say whether our unification of theories will lead to unexpected
new insights or new discoveries. The main benefit may be to researchers into
the principles of programming, who will never again have to prove the relative
soundness or relative completeness of deductive and operational presentations
of the semantics of the same language. A second benefit may be the revelation
that concurrency can be treated formally by the same algebraic techniques as
sequential composition.
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22. Hoare, C.A.R.T., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene Algebra.

In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 399–
414. Springer, Heidelberg (2009)

23. Wehrman, I., Hoare, C.A.R., O’Hearn, P.W.: Graphical models of separation logic.
Inf. Process. Lett. 109(17), 1001–1004 (2009)
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Abstract. High-level synthesis or “hardware compilation” is a
behavioural synthesis method in which circuits are specified using con-
ventional programming languages. Such languages are generally recog-
nised as more accessible than hardware description languages, and
it is expected that their use would significantly increase design pro-
ductivity. The Geometry of Synthesis is a new hardware compilation
technique which achieves this goal in a semantic-directed fashion, by
noting that functional programming languages and diagrammatic de-
scriptions of hardware share a common mathematical structure, and
by using the game-semantic model of the programming language to re-
duce all computational effects to signal-like message passing. As a conse-
quence, this technique has mature support for higher-order functions [1],
local (assignable) state [2], concurrency [3] and (affine) recursion [4].
Moreover, the compiler can support features such as separate compi-
lation, libraries and a foreign-function interface [5]. The programming
language of GoS, Verity, is an “Algol-like” language [6] extended with
concurrency features [7]. The interplay between the call-by-name func-
tion mechanism and local effects, an approach specific to Algol, is the
key ingredient which makes it possible for a large class of programs in
this language to have finitely representable semantic models which can
be synthesised as stand-alone static circuits. The compiler is available as
an open-source download. 1
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Abstract. The controlled declassification of secrets has received much
attention in research on information-flow security, though mostly for se-
quential programming languages. In this article, we aim at guarantee-
ing the security of concurrent programs. We propose the novel security
property WHAT&WHERE that allows one to limit what information
may be declassified where in a program. We show that our property
provides adequate security guarantees independent of the scheduling al-
gorithm (which is non-trivial due to the refinement paradox) and present
a security type system that reliably enforces the property. In a second
scheduler-independence result, we show that an earlier proposed security
condition is adequate for the same range of schedulers. These are the first
scheduler-independence results in the presence of declassification.

1 Introduction

When giving a program access to secrets, one would like to know that the pro-
gram does not leak them to untrusted sinks. Such a confidentiality requirement
can be formalized by information-flow properties like, e.g., noninterference [12].

Noninterference-like properties require that a program’s output to untrusted
sinks is independent of secrets. Such a lack of dependence obviously ensures that
public outputs do not reveal any secrets. While being an adequate character-
ization of confidentiality, the requirement is often too restrictive. The desired
functionality of a program might inherently require some correlation between
secrets and public output. Examples are password-based authentication mecha-
nisms (a response to an authentication attempt depends on the secret password),
encryption algorithms (a cipher-text depends on the secret plain-text), and on-
line stores (electronic goods shall be kept secret until they have been ordered).

Hence, it is necessary to relax noninterference-like properties such that a de-
liberate release of some secret information becomes possible. While this desire
has existed since the early days of research on information-flow control (e.g.
in the Bell/La Padula Model secrets can be released by so called trusted pro-
cesses [8]), solutions for controlling declassification are just about to achieve a
satisfactory level of maturity (see [33] for an overview). However, research on de-
classification has mostly focused on sequential programs so far, while controlling
declassification in multi-threaded programs is not yet equally well understood.

Generalizing definitions of information-flow security for sequential programs
to security properties that are suitable for concurrent systems is known to be non-
trivial. Already in the eighties, Sutherland [34] and McCullough [23] proposed
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noninterference-like properties for distributed systems. These were first steps
in a still ongoing exploration of sensible definitions of information-flow security
[19]. The information-flow security of multi-threaded programs, on which we
focus in this article, is also non-trivial. Due to the refinement paradox [14], the
scheduling of threads requires special attention. In particular, it does not suffice
to simply assume a possibilistic scheduler, because a program might have secure
information-flow if executed with the fictitious possibilistic scheduler, but be
insecure if executed, e.g., with a Round-Robin or uniform scheduler.

Our first main contribution is the formal definition of two schemas for nonint-
erference-like properties for multi-threaded programs. Our schemas WHATs and
WHAT&WHEREs are parametric in a scheduler model s. Both schemas can be
used to capture confidentiality requirements, but they differ in how declassifica-
tion is controlled. If the scheduler is known then s can be specified concretely
and, after instantiating one of our schemas with s, one obtains a property that
adequately captures information-flow security for this scheduler.

However, often the concrete scheduler is not known in advance. While, in
principle, one could leave the scheduler parametric and use, e.g., ∀s.WHATs as
security condition, such a universal quantification over all possible schedulers
is rather inconvenient, in program analysis as well as in program construction.
Fortunately, an explicit universal quantification over schedulers can be avoided.

Our second main contribution is the definition of a novel security condi-
tion WHAT&WHERE and a scheduler-independence result, which shows that
WHAT&WHERE implies WHAT&WHEREs for all possible scheduler models
s. A compositionality result shows that our novel property is compatible with
compositional reasoning about security. Based on this result, we derive a security
type system for verifying our novel security property efficiently.

Our third main contribution is a scheduler-independence result showing that
our previously proposed property WHAT1 [20] implies WHATs for all s.

Previous scheduler-independence results were limited to information-flow
properties that forbid declassification (e.g. [31,36,22]). With this article, we close
this gap by developing the first scheduler-independence results for information-
flow properties that support controlled declassification. Scheduler independence
provides the basis for verifying security without knowing the scheduler under
which a program will be run. Our scheduler-independence results also reduce
the conceptual complexity of constructing secure programs. They free the devel-
oper from having to consider concrete schedulers when reasoning about security.

Proofs of all theorems in this article are available on the authors’ web-pages.

2 Preliminaries

2.1 Multi-threaded Programs

Multi-threaded programs perform computations in concurrent threads that can
communicate with each other, e.g. via shared memory. When the number of
threads exceeds the number of available processing units, scheduling becomes
necessary. Usually, the schedule for running threads is determined dynamically
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at run-time based on previous scheduling decisions and on observations about
the current configuration, such as the number of currently active threads.

In this article, we focus on multi-threaded programs that run on a single-core
CPU with a shared memory for inter-thread communication. In this section, we
present our model of program execution (a small-step operational semantics), our
model of scheduler decisions (a labeled transition system), and an integration of
these two models. The resulting system model is similar to the one in [22].

Semantics of Commands and Expressions. We assume a set of commands
C , a set of expressions E , a set of program variables Var , and a set of values Val .
We leave these sets underspecified, but give example instantiations in Section 2.2.

We define the set of memory states by the function space Mem = Var → Val .
A function m ∈ Mem models which values are currently stored in the program
variables. We define the set of program states by Cε = C ∪ {ε}. A program state
from C models which part of the program remains to be executed while the
special symbol ε models termination. We define the set of thread pools by C ∗

(i.e. the set of finite lists of commands). Each command in a thread pool is the
program state of an individual thread in a multi-threaded program. We refer to
threads by their position k ∈ N0 in a thread pool thr ∈ C ∗. If a thread is uniquely
determined by thr [k ], i.e. the command at position k , then we sometimes refer to
the thread by this command. We define #(thr) to equal the number of threads
in the thread pool thr ∈ C ∗. The list 〈c0, c1, . . . , cn−1〉 with c0, c1, . . . , cn−1 ∈ C
models a thread pool with n threads. The list 〈〉 models the empty thread pool.
Note that the symbol ε does not appear in thread pools.

We model evaluation of expressions by the function eval : E ×Mem → Val ,
where eval(e,m) equals the value to which e ∈ E evaluates in m ∈ Mem .

We model execution steps by judgments of the form 〈|c1,m1|〉 α−� 〈|c2,m2|〉 where
c1 ∈ C , c2 ∈ Cε, m1,m2 ∈ Mem , and α ∈ C ∗. Intuitively, this judgment models
that a command c1 is executed in a memory state m1 resulting in a program
state c2 and a memory state m2. The label α ∈ C ∗ carries information about
threads spawned by the execution step. If the execution step does not spawn
new threads then α = 〈〉 holds, otherwise we have α = 〈c0, c1, . . . , cn−1〉 where
c0, c1, . . . , cn−1 ∈ C are the threads spawned in this order.

We assume deterministic commands, i.e. for each c1 ∈ C and m1 ∈ Mem ,
there exists exactly one tuple (α, c2,m2) ∈ C ∗×Cε ×Mem such that 〈|c1,m1|〉 α−�
〈|c2,m2|〉 is derivable. As an alternative notation for the effect of a command on
the memory, we define the function �• � : C → (Mem → Mem) by �c1 �(m1) = m2

iff ∃c2 ∈ Cε. ∃α ∈ C ∗. 〈|c1,m1|〉 α−� 〈|c2,m2|〉.
As a notational convention, we use v ∈ Val to denote values, x ∈ Var to

denote variables, m ∈ Mem to denote memory states, c ∈ Cε to denote program
states, e ∈ E to denote expressions, thr ∈ C ∗ to denote thread pools, and k ∈ N0

to denote positions of threads.

Scheduler Model. We present a parametric scheduler model that can be in-
stantiated for a wide range of schedulers. For modeling the behavior of sched-
ulers, we use labeled transition systems as described below.
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We assume a set of scheduler states S and a set of possible scheduler inputs In .
Scheduler states model the memory of a scheduler and scheduler inputs model the
input to the scheduler by the environment. We leave the set In underspecified,
but require that any in ∈ In reveals at least the number of active threads in the
current thread pool and denote this number by #(in).

We define the set of scheduler decisions by Dec = In ×N0 × [0; 1]. Intuitively,
a scheduler decision (in , k , p) ∈ Dec models that the scheduler selects the k th

thread with the probability p given the scheduler input in . The special case
p = 1 models a deterministic decision.

Definition 1. A scheduler model s is a labeled transition system (S , s0, Dec,
→), where S is a set of scheduler states, s0 ∈ S is an initial state, Dec is the set
of scheduler decisions, and →⊆ S × Dec × S is a transition relation such that:

1. ∀(s1, (in, k , p), s2) ∈ → . (k < #(in) ∧ p �= 0)

2. ∀s1 ∈ S . ∀in ∈ In .
(
#(in) > 0 =⇒

(∑
(s1,(in,k ,p),s2)∈→ p

)
= 1

)
3. ∀s1, s2, s ′2 ∈ S . ∀in ∈ In . ∀k ∈ N0. ∀p, p′ ∈ ]0; 1].

(((s1, (in, k , p), s2) ∈ →) ∧ ((s1, (in , k , p′), s ′2) ∈ →) =⇒ p = p′ ∧ s2 = s ′2)

For a scheduler model s, we write (s1, in) k�s
p s2 iff (s1, (in , k , p), s2) ∈ →.

Conditions 1 and 2 ensure that a scheduler model definitely selects some thread
from the current thread pool. Condition 3 ensures that the probability of a
scheduler decision and the resulting scheduler state are uniquely determined by
the original scheduler state, the scheduler input, and the selected thread.

Our notion of scheduler models is suitable for expressing a wide range of
schedulers, including Round-Robin schedulers as well as uniform schedulers.

For simplicity of presentation we consider only scheduler models without re-
dundant states. Formally, we define the bisimilarity of scheduler states coinduc-
tively by a symmetric relation ∼ = S ×S that is the largest relation such that for
all dec ∈ Dec and for all s1, s ′1, s2 ∈ S , if s1 ∼ s ′1 and (s1, dec, s2) ∈ → then there
exists a scheduler state s ′2 ∈ S with (s ′1, dec, s ′2) ∈ → and s2 ∼ s ′2. We require that
the equivalence classes of ∼ are singleton sets, i.e. ∀s , s ′ ∈ S . (s ∼ s ′ =⇒ s = s ′),
which means that there are no redundant states. Note that any given scheduler
model can be transformed into one that satisfies this constraint by using the
equivalence classes of ∼ as scheduler states.

As a notational convention, we use in ∈ In to denote scheduler inputs, p ∈
[0; 1] to denote probabilities, and s ∈ S to denote scheduler states. For brevity,
we often write scheduler instead of scheduler model.

Integration into a System Model. We now present the system model which
defines the interaction between threads and a scheduler.

We define the set of observation functions by the function space Obs = (C ∗ ×
Mem) → In . A function obs ∈ Obs models the input to a scheduler for a given
thread pool and memory state. We define the set of system configurations by
Cnf = C ∗ × Mem × S . Intuitively, a system configuration 〈|thr ,m, s |〉 ∈ Cnf
models the current state of a multi-threaded program in a run-time environment.
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We model system steps by judgments of the form cnf 1 ⇒s
k ,p cnf 2, where

cnf 1, cnf 2 ∈ Cnf and (k , p) ∈ N0×]0; 1]. Intuitively, this judgment models that,
in system configuration cnf 1, the scheduler selects the k th thread with probabil-
ity p and that this results in cnf 2. We define the rule for deriving this judgment
by:

[SysStep]

(s1, in) k�s
p s2

in = obs(thr 1,m1)
〈|thr1[k ],m1|〉 α−� 〈|c2,m2|〉

thr2 = updatek(thr 1, c2, α)

〈|thr1,m1, s1|〉 ⇒s
k ,p 〈|thr 2,m2, s2|〉

The two premises on the left hand side require the selection of the k th thread with
probability p by scheduler s given the scheduler input obs(thr1,m1). The third
premise requires that the execution step of thread thr1[k ] spawns new threads
α and results in program state c2 and memory state m2. The fourth premise
requires that the resulting thread pool thr2 is obtained by updatek (thr1, c2, α).

Intuitively, updatek replaces the program state at a position k by a program
state c2 and inserts newly created threads (i.e. α) after c2. Formally, we define
updatek (thr , c, α) by sub(thr , 0, k − 1) :: 〈c〉 :: α :: sub(thr , k + 1, #(thr) − 1)
if c �= ε, and otherwise by sub(thr , 0, k − 1) :: α :: sub(thr , k + 1, #(thr) − 1),
where :: is the append operator that has the empty list 〈〉 as neutral element
and sub(thr , i, j) equals the list of threads i to j, i.e. sub(thr , i, j) = 〈thr [i ]〉 ::
sub(thr , i + 1, j) if i ≤ j < #(thr ), and sub(thr , i, j) = 〈〉 otherwise.

We define the auxiliary function stepsTos : (Cnf × P(Cnf )) → P(N0×]0; 1])
by stepsTos(cnf 1,Cnf ) = {(k , p) | ∃cnf 2 ∈ Cnf . cnf 1 ⇒s

k ,p cnf 2}.
That is, applying the function stepsTos to cnf 1 and Cnf returns the labels of

all possible system steps from cnf 1 ∈ Cnf to some configuration in Cnf .
We call a property P : Cnf → Bool an invariant under s if P(cnf 1) and

cnf 1 ⇒s
k ,p cnf 2 imply P(cnf 2) for all cnf 1, cnf 2 ∈ Cnf and (k , p) ∈ N0×]0; 1].

As a notational convention, we use cnf ∈ Cnf to denote system configurations.
Moreover, we introduce the selectors pool(cnf ) = thr , mem(cnf ) = m, and
sst(cnf ) = s for decomposing a system configuration cnf = 〈|thr ,m, s |〉.

2.2 Exemplary Programming Language

We define security on a semantic level. However, to give concrete examples we
introduce a simple multi-threaded while language with dynamic thread creation.
We define E and C of our example language by:

e ::= v | x | op(e, . . . , e)
c ::= skipι | x :=ιe | c;c

| spawnι(c, . . . , c) | ifι e then c else c fi | whileι e do c od
Some commands carry a label ι ∈ N0 that we will use to identify program points.

The operational semantics for our language defines which instances of the
judgment 〈|c1,m1|〉 α−� 〈|c2,m2|〉 are derivable. The only notable aspect of the
semantics is the label α. If the top-level command is spawnι(c0, . . . , cn−1), then
we have α = 〈c0, . . . , cn−1〉 while, otherwise, α = 〈〉 holds.

For readability, we also use infix instead of prefix notation for expressions.
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2.3 Attacker Model and Security Policies

A security policy describes what information a user is allowed to know based on a
classification of information according to its confidentiality. We use sets of secu-
rity domains to model different degrees of confidentiality. Domain assignments
associate each program variable with a security domain.

Definition 2. A multi-level security policy (brief: mls-policy) is a triple (D,
≤, dom), where D is a finite set of security domains, ≤ is a partial order on D,
and dom : Var → D is a domain assignment.

Intuitively, d �≤ d ′ with d , d ′ ∈ D models that no information must flow from
the security domain d to the security domain d ′.

A d-observer is a user who is allowed to observe a variable x ∈ Var , only if
dom(x ) ≤ d . Hence, he can distinguish two memory states only if they differ
in the value of at least one variable x with dom(x ) ≤ d . Dual to the ability to
distinguish memory states is the following d-indistinguishability.

Definition 3. Two memory states m ∈ Mem and m ′ ∈ Mem are d -equal for
d ∈ D (denoted: m =d m ′), iff ∀x ∈ Var . (dom(x ) ≤ d =⇒ m(x ) = m ′(x )).

An attacker is a d -observer who tries to get information that he must not know.
In terms of d -indistinguishability, this means that an attacker tries to distinguish
initially d -equal memory states by running programs. Conversely, a program
is intuitively secure, if running this program does not enable a d -observer to
distinguish any two initial memory states that are d -equal. This intuition will
be formalized by security properties in Section 3.

For the rest of the article, we assume that (D,≤, dom) is an mls-policy.

2.4 Auxiliary Concepts for Relations

For any relation R⊆ A×A, there is at least one subset A′ of A (namely A′ = ∅)
such that the restricted relation R|A′ =R ∩ (A′ × A′) is an equivalence relation
on A′. We characterize the subsets A′ ⊆ A for which R|A′ constitutes an equiv-
alence relation by a predicate EquivOnA ⊆ P(A×A)× P(A) that we define by
EquivOnA(R,A′) if and only if R|A′ is an equivalence relation on A′.

In our definitions of security, we will use partial equivalence relations (brief:
pers), i.e. binary relations that are symmetric and transitive but that need not
be reflexive (see Sections 3 and 4.2). For each per R ⊆ A×A, there is a unique
maximal set A′ ⊆ A such that EquivOnA(R|A′ ,A′) holds. This maximal set is
the set AR,refl = {e ∈ A | e R e}, i.e. the subset of A on which R is reflexive.

Theorem 1. If R ⊆ A×A is a per on a set A then EquivOnA(R|AR,refl ,AR,refl)
holds and ∀A′ ⊆ A. (EquivOnA(R|A′ ,A′) =⇒ A′ ⊆ AR,refl).

For brevity, we will use the symbol R instead of R|A′ when this does not
lead to ambiguities. In particular, we will write EquivOnA(R,A′) meaning that
EquivOnA(R|A′ ,A′) holds. Moreover, if R ⊆ A × A is a per, we will use [e]R to
refer to the equivalence classes of an element e ∈ AR,refl under R|AR,refl .
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Finally, we define a partial function classesA : P(A × A) ⇀ P(P(A)) by
classesA(R) = {[e]R | e ∈ AR,refl} if R is a per, while classesA(R) is undefined
if R is not a per. That is, if R is a per, then classesA(R) equals the set of all
equivalence classes of R (meaning the equivalence classes of R|AR,refl).

If the set A is clear from the context we write classes instead of classesA.

3 Declassification in the Presence of Scheduling

A declassification is the deliberate release of secrets or, in other words, an in-
tentional violation of an mls-policy. Naturally, such a release of secrets must be
rigorously constrained to prevent unintended information leakage.

Example 1. Online music shops rely on not giving out songs for free. Hence,
songs are only delivered to a user after he has paid. However, often downsampled
previews are offered without payment to any user for promotion. The following
example program shall implement this functionality.

P1 = if1 paid then out:=2song else out:=3downsample(song, bitrate) fi

Consider an mls-policy with two domains low and high , and the total order ≤
with high �≤ low . The domain assignment dom is defined such that dom(song) =
high and dom(out) = low hold. Intuitively, this mls-policy means that song is
confidential with respect to out. The program P1 intuitively satisfies the require-
ment that any user may receive a downsampled preview, while only a user who
has paid may receive the full song. Note that some information about the con-
fidential song is released in both branches of P1, i.e. a declassification occurs.
However, what information is released differs for the two branches. ♦
As this example shows, an adequate control of declassification needs to respect
what information (the full song or the preview) is released and where this release
occurs (e.g., after payment has been checked by the program). This corresponds
to the W-aspects What and Where that we address in this article. The W-aspects
of declassification were first introduced in [21] and form the basis for a taxonomy
of approaches to controlling declassification [33].

Before presenting our schema WHAT&WHEREs for scheduler-specific secu-
rity properties that control what is declassified where (see Section 3.3), we in-
troduce the simpler schema WHATs (see Section 3.2) for controlling what is
declassified. We show in Section 3.4 that WHAT&WHEREs implies WHATs

and also satisfies the so called prudent principles of declassification from [33].

3.1 Escape Hatches and Immediate Declassification Steps

As usual, we use pairs (d , e) ∈ D × E , so called escape hatches [29], to specify
what information may be declassified. Intuitively, (d , e) allows a d -observer to
peek at the value of e, even if in e occurs a variable x with dom(x ) �≤ d . Hence, an
escape hatch might enable a d -observer to distinguish memory states although
they are d -equal. Dual to this ability is the following notion of (d ,H )-equality.
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Definition 4. Two memory states m and m ′ are (d ,H )-equal for d ∈ D and
a set of escape hatches H ⊆ D × E (denoted: m ∼H

d m ′ ), iff m =d m ′ and
∀(d ′, e) ∈ H . (d ′ ≤ d =⇒ (eval (e,m) = eval (e,m ′))) hold.
We employ program points to restrict where declassification may occur. For each
program, we assume a set of program points PP ⊆ N0 and a function pp : C → PP
that returns a program point for each sub-command of the program. Moreover,
we assume that program points are unique within a program.

For our example language, we use the labels ι to define the function pp. For
instance, pp(out:=2song) = 2 and pp(if1 paid then . . . else . . . fi) = 1 hold. As
sequential composition does not carry a label ι, we define pp(c1;c2) = pp(c1).
Note that, after unwinding a loop, multiple sub-commands in a program state
might be associated with the same program point. This results from copying the
body of a while loop in the operational semantics if the guard evaluates to true.

We augment escape hatches with program points from PP and call the re-
sulting triples local escape hatches. Like an escape hatch (d , e) ∈ D × E , a local
escape hatch (d , e, ι) ∈ D × E × PP intuitively allows a d -observer to peek at
the value of e. However, (d , e, ι) allows this only while the command at program
point ι is executed. We use a set lH ⊆ D ×E ×PP to specify at which program
points a d -observer may peek at which values. For Example 1, a natural set of
local escape hatches would be {(low , downsample(song, bitrate), 3), (low , song, 2)}.
Definition 5. A local escape hatch is a triple (d , e, ι) ∈ D × E × PP . We call
a set of local escape hatches lH ⊆ D × E × PP global (denoted: Global (lH )) if
(d , e, ι) ∈ lH implies (d , e, ι′) ∈ lH for all d ∈ D, e ∈ E , and ι, ι′ ∈ PP .
To aggregate the information that may be declassified at a given program point,
we define the filter function htchLoc : P(D × E × PP ) × PP → P(D × E) by
htchLoc(lH , ι) = {(d , e) ∈ D × E | (d , e, ι) ∈ lH }. Given a set of points PP ⊆
PP , we use htchLoc(lH ,PP) as a shorthand notation for

⋃{htchLoc(lH , ι) | ι ∈
PP}. Note that if lH is global then ∀ι, ι′∈PP . (htchLoc(lH , ι)=htchLoc(lH , ι′)).

We call a command an immediate d-declassification command for a set of
escape hatches H ⊆ D × E if its next execution step might reveal information
to a d -observer that he should not learn according to the mls-policy, but that
may permissibly be released to him due to some escape hatch in H .
Definition 6. The predicate IDC d on C × P(D × E) is defined by

IDC d (c,H ) ⇐⇒
[

(∃m,m ′ ∈ Mem . m =d m ′ ∧ �c �(m) �=d �c �(m ′))
∧ (∀m,m ′ ∈ Mem . m ∼H

d m ′ =⇒ �c �(m) =d �c �(m ′))

]
The predicate IDC d characterizes the immediate d -declassification commands
for each set of escape hatches H . The predicate requires, firstly, that a release
of secrets could, in principle, occur (i.e. for some pair of d -equal memories, the
next step results in memories that are not d -equal) and, secondly, that no more
information is released than allowed by the escape hatches (i.e. for all pairs of
(d ,H )-equal memories, the next step must result in d -equal memories).

Remark 1. If IDC d(c, htchLoc(lH , ι)) and c ∈ C is the command at program
point ι ∈ PP then c either has the form x :=ιe or the form x :=ιe; c′. ♦
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All concepts defined in this section are monotonic in the set of escape hatches,
and the empty set of escape hatches is equivalent to forbidding declassification.

Theorem 2. For all d ∈ D and H ,H ′ ⊆ D ×E the following propositions hold:
1. ∀m,m ′ ∈ Mem . ((¬(m ∼H ′

d m ′) ∧ H ′ ⊆ H ) =⇒ ¬(m ∼H
d m ′)) ;

2. ∀m,m ′ ∈ Mem . (m ∼∅
d m ′ ⇐⇒ m =d m ′) ;

3. ∀c ∈ C . ((IDC d(c,H ′) ∧H ′ ⊆ H ) =⇒ IDC d (c,H )) ; and
4. ∀c ∈ C . ¬(IDC d(c, ∅)) .

A command is not a d-declassification command if its next execution step does
not reveal any information to a d -observer that he cannot observe directly.

Definition 7. The predicate NDC d on C is defined by

NDC d(c) ⇐⇒ (∀m,m ′ ∈ Mem . m =d m ′ =⇒ �c �(m) =d �c �(m ′))

Note that NDC d (c) cannot hold if IDC d (c,H ) holds for some H ⊆ D ×E . If c
leaks beyond what H permits then neither IDC d(c,H ) nor NDC d (c) holds.

We use ι ∈ PP to denote program points, H ⊆ D ×E to denote sets of escape
hatches, and lH ⊆ D × E × PP to denote sets of local escape hatches.

3.2 The Security Conditions WHATs

Security can be characterized based on pers (brief for partial equivalence rela-
tions, see Section 2.4). Following this approach, one defines a program to be
secure if it is related to itself by a suitable per [30]. Consequently, the set of
secure programs for a per R ⊆ A × A is

⋃
classesA(R). We will characterize

confidentiality by pers that relate two thread pools only if they yield indis-
tinguishable observations for any two initial configurations that must remain
indistinguishable. Which configurations must remain indistinguishable depends
on the observer’s security domain d and on the set H of available escape hatches.
We make this explicit by annotating pers with d and H (as, e.g., in Rd,H ).

Definition 8. Let d ∈ D and H ⊆ D × E . The lifting of a relation Rd,H ⊆
C ∗ × C ∗ to a relation R↑

d,H ⊆ Cnf × Cnf is R↑
d,H = (Rd,H × ∼H

d × ∼).

Note that, if two configurations cnf and cnf ′ are related by R↑
d,H then they look

the same to a d -observer because mem(cnf )∼H
d mem(cnf ′) implies mem(cnf )=d

mem(cnf ′). Moreover, the lifting of a per to the set Cnf results, again, in a per.

Proposition 1. If Rd,H ⊆ C ∗ × C ∗ is a per, then R↑
d,H ⊆ Cnf × Cnf is a per.

Towards a Scheduler-specific Security Condition. Even if two configu-
rations cnf and cnf ′ look the same to a d -observer, he might be able to infer
in which of the configurations a program run must have started based on the
observations that he makes during the run. For instance, he can exclude the
possibility that the run started in cnf ′ if he makes an observation that is in-
compatible with all configurations that are reachable from cnf ′. In this case, he
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obtains information about the actual initial configuration from the fact that cer-
tain observations are impossible if the program is run under a given scheduler.
In addition, an attacker might obtain information about the initial configuration
from the probability of observations. For instance, if he makes certain observa-
tions quite often, when running the program in some initial configuration (which
remains fixed and is initially unknown to the attacker), but the likelihood of this
observation would be rather low if cnf ′ were the initial configuration, then the
attacker can infer that cnf ′ is probably not the unknown initial configuration.1

We aim at defining a security property that rules out deductions of information
about secrets based on the possibility as well as the probability of observations.
We will focus on the latter aspect in the following because deductions based on
possibilities are just a special case of deductions based on probabilities.

The probability of moving from a configuration cnf to some configuration in
a set Cnf depends not only on the program, but also on the scheduler s.

Definition 9. The function probs : Cnf × P(Cnf ) → [0; 1] is defined by:
probs(cnf ,Cnf ) =

∑
(k ,p)∈stepsTos(cnf ,Cnf ) p .

We will use the function probs in our definition of WHATs to capture that the
likelihood of certain observations is the same in two given configurations.

If strict multi-level security were our goal then we could define security based
on a per that relates two thread pools thr and thr ′ only if any two configurations
〈|thr ,m, s |〉 and 〈|thr ′,m ′, s ′|〉 with m =d m ′ and s ∼ s ′ cause indistinguishable
observations. As we aim at permitting declassification, the situation is more
involved. After a declassification occurred, a d -observer might be allowed to
obtain information about the initial configuration that he cannot infer without
running the program. However, such inferences should be strictly limited by the
exceptions to multi-level security specified by a given set of escape hatches.

WHATs. We are now ready to define information-flow security. For each sched-
uler model s, we propose a security condition WHATs that restricts declassifica-
tion according to the constraints specified by a set of escape hatches. Following
the per-approach, we define a multi-threaded program as WHATs-secure if it is
related to itself by some relation Rd,H that satisfies the following property.

Definition 10. Let d ∈ D be a security domain and H ⊆ D × E be a set of
escape hatches. An s-specific strong (d ,H )-bisimulation is a per Rd,H ⊆ C ∗×C ∗

that fulfills the following two conditions:

1. ∀(cnf , cnf ′) ∈ R↑
d,H . ∀Cls ∈ classes(R↑

d,H ).
probs(cnf ,Cls) = probs(cnf ′,Cls)

2. the property λcnf ∈ Cnf . (cnf ∈ ⋃
classes(R↑

d,H )) is an invariant under s.

Condition 1 in Definition 10 ensures that if a single computation step is per-
formed in two related configurations cnf and cnf ′ under a scheduler s then each
1 By increasing the number of runs such inferences are possible with high confidence,

even if the difference between observed frequency and expected frequency is small.
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equivalence class of R↑
d,H is reached with the same probability from the two

configurations. Condition 2 ensures that all configurations that can result after
a computation step are again contained in some equivalence class of R↑

d,H . This
lifts Condition 1 from individual steps to entire runs. The two conditions ensure
that if two configurations are related by R↑

d,H (which means they must remain
indistinguishable for a d -observer who may use the escape hatches in H ) then
they, indeed, remain indistinguishable when the program is run.

Definition 11. A thread pool thr ∈ C ∗ has secure information flow for (D,
≤, dom) and H ⊆ D ×E under s (brief: thr ∈ WHATs) iff for each d ∈ D there
is a set H ′ ⊆ H and a relation Rd,H ′ ⊆ C ∗×C ∗ such that (thr Rd,H ′ thr) holds,
and such that Rd,H ′ is an s-specific strong (d ,H ′)-bisimulation.

Definition 11 ensures that if thr ∈ WHATs and m ∼H
d m ′ and s ∼ s ′ then the

configurations 〈|thr ,m, s |〉 and 〈|thr ,m ′, s ′|〉 yield indistinguishable observations
for d while the multi-threaded program thr is executed under s.

WHATs will serve as the basis of our first scheduler-independence result
in Section 4. More concretely, we will show that our previously proposed se-
curity condition WHAT1 [20] implies WHATs for a wide range of schedulers.
Moreover, we will use WHATs when arguing that our second security condition
WHAT&WHEREs adequately controls what is declassified (see Section 3.4).

3.3 The Security Conditions WHAT&WHEREs

We employ local escape hatches to specify where a particular secret may be
declassified. The annotations of pers are adapted accordingly by replacing H
with a set lH of local escape hatches. Moreover a set of program points PP ⊆ PP
is added as third annotation (resulting in Rd,lH ,PP). The set PP will be used to
constrain local escape hatches in the definition of WHAT&WHEREs.

Definition 12. Let d ∈ D, lH ⊆ D × E × PP , and PP ⊆ PP . The lifting of a
relation Rd,lH ,PP ⊆ C ∗ × C ∗ to a relation R↑

d,lH ,PP ⊆ Cnf × Cnf is defined by
R↑

d,lH ,PP = (Rd,lH ,PP × ∼H
d × ∼), where H = htchLoc(lH ,PP).

Proposition 2. If Rd,lH ,PP ⊆C ∗×C ∗ is a per then R↑
d,lH ,PP ⊆Cnf ×Cnf also

is a per.

Note that 〈|thr ,m, s |〉 R↑
d,lH ,PP 〈|thr ′,m ′, s ′|〉 implies that m ∼htchLoc(lH ,PP)

d m ′

holds. This means that each variable x ∈ Var has the same value in m as in m ′

if x is visible for a d -observer (i.e. m =d m ′). Moreover, an expression e ∈ E has
the same value in m as in m ′ if it may be declassified to d according to lH for at
least one of the program points in PP (i.e. if ∃(d ′, e, ι) ∈ lH . (d ′ ≤ d ∧ ι ∈ PP)).

Towards Controlling Where Declassification Occurs. If NDC d(c) holds
then the next step of the command c respects strict multi-level security (i.e. no
declassification to security domain d occurs in this step). If IDC d(c,H ) holds
then the next step of c might declassify information to d , and any such declassi-
fication is authorized by the escape hatches in H . However, if neither NDC d(c)
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nor IDC d (c,H ) is true then there are memory states m,m ′ ∈ Mem such that
m ∼H

d m ′ holds while �c �(m) =d �c �(m ′) does not hold. This means that infor-
mation might be leaked whose declassification is not permitted by H .

In our definition of the security condition, we need to rule out this third
possibility, i.e. ¬IDC d (c,H ) ∧ ¬NDC d (c) where H is the set of escape hatches
that are enabled. Which escape hatches are enabled in a given computation step
depends on the set of local escape hatches and on the set of program points that
might cause the computation step.

The set of program points that might cause a transition from a configuration
cnf to some configuration in a set Cnf depends on the scheduler.

Definition 13. The function ppss : (Cnf × P(Cnf )) → P(PP ) is defined by:

ppss(cnf ,Cnf ) = {pp(cnf [k ]) | (k , p) ∈ stepsTos(cnf ,Cnf )} .

Using ppss, we define which hatches might be relevant for a computation step.

Definition 14. The function htchss : (P(D × E × PP ) × Cnf × P(Cnf )) →
P(D × E) is defined by htchss(lH , cnf ,Cnf ) = htchLoc(lH , ppss(cnf ,Cnf )).

WHAT&WHEREs. We are now ready to introduce our second schema for
scheduler-specific security conditions. Unlike WHATs, WHAT&WHEREs allows
one to control where a particular declassification can occur. This combined con-
trol of the W-aspects What and Where is needed, for instance, in Example 1.

Like in Section 3.2, we define a class of pers on thread pools to character-
ize indistinguishability from the perspective of a d -observer. A program is then
defined to be secure under a scheduler s if it is related to itself. Which configura-
tions must remain indistinguishable differs from Section 3.2 because information
may only be declassified in a computation step if this is permitted by the set
of local escape hatches that are enabled at this step. That is, declassification is
more constrained than in Section 3.2.

Definition 15. Let d ∈ D be a security domain, lH ⊆ D × E × PP be a set
of local escape hatches, and PP ⊆ PP be a set of program points. An s-specific
strong (d , lH ,PP)-bisimulation is a per Rd,lH ,PP ⊆ C ∗ × C ∗ that fulfills the
following three conditions:

1. ∀(thr , thr ′) ∈Rd,lH ,PP . ∀k ∈ N0.
k < #(thr ) =⇒ (NDC d (thr [k ]) ∨ IDC d (thr [k ], htchLoc(lH , pp(thr [k ]))))

2. ∀(cnf , cnf ′) ∈ R↑
d,lH ,PP . ∀Cls ∈ classes(R↑

d,lH ,PP ).
(htchss(lH , cnf ,Cls) ∪ htchss(lH , cnf ′,Cls)) ⊆ htchLoc(lH ,PP)
=⇒ probs(cnf ,Cls) = probs(cnf ′,Cls)

3. λcnf ∈Cnf . (cnf ∈ ⋃
classes(R↑

d,lH ,PP )) is an invariant under s

Condition 1 in Definition 15 ensures that each thread thr [k ] either causes no
declassification to the security domain d or is an immediate declassification com-
mand for the set of locally available escape hatches. Condition 2 ensures that
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if a single computation step is performed in two related configurations cnf and
cnf ′ then each equivalence class of R↑

d,lH ,PP is reached with the same probability
from the two configurations. In contrast to Condition 1 in Definition 10, this is
only required under the condition that each escape hatch (d ′, e) with d ′ ≤ d ,
that is available at some program point ι that might cause the next compu-
tation step, is also contained in htchLoc(lH ,PP). Note that this precondition
(i.e. (htchss(lH , cnf ,Cls)∪htchss(lH , cnf ′,Cls)) ⊆ htchLoc(lH ,PP)) is trivially
fulfilled if PP = PP holds. However, if PP is a proper subset of PP then the
precondition might be violated. That is, choosing a set PP that is too small
might lead to missing possibilities for information laundering. We will avoid this
pitfall by universally quantifying over all subsets PP ⊆ PP in the definition of
WHAT&WHEREs. Finally, Condition 3 ensures that all configurations that can
result after a computation step are again contained in some equivalence class of
R↑

d,lH ,PP . This lifts Condition 1 and 2 from individual steps to entire runs.

Definition 16. A thread pool thr ∈ C ∗ has secure information flow for (D,
≤, dom) and lH ⊆ D × E × PP under s (brief: thr ∈ WHAT&WHEREs) iff
for each d ∈ D and for each PP ⊆ PP there are a set lH ′ ⊆ lH and a relation
Rd,lH ′,PP ⊆ C ∗×C ∗ such that (thr Rd,lH ′,PP thr) holds, and such that Rd,lH ′,PP

is an s-specific strong (d , lH ′,PP)-bisimulation.

The structure of Definition 16 is similar to the one of Definition 11. The main
differences are, firstly, that a set lH of local escape hatches is used instead of a
set H of escape hatches and, secondly, that the escape hatches, that are available
to a d -observer, are further constrained by a set PP ⊆ PP . The universal quan-
tification over all subsets PP of PP is crucial for achieving the desired control of
where a declassification can occur. It were not enough to require Condition 2 in
Definition 15 just for PP = PP because the resulting security guarantee would
control what is declassified without restricting where declassification can occur.

Example 2. Let P2 = if1 h then spawn2(l:=30,l:=41) else spawn5(l:=61,l:=70) fi and
lH = ∅. We consider a biased scheduler s that selects the second of two threads
with lower, but non-zero probability. Independent of the value of h, P2 might
terminate with a memory state in which l = 0 holds as well as with a memory
state in which l = 1 holds. Nevertheless, a good guess about the initial value of
h is possible after observing several runs with the same initial memory. If l = 0
is observed significantly more often than l = 1, then it is likely that h = False
holds in the initial state. Hence, the program is intuitively insecure.

Running P2 with two memories that differ in h deterministically results in
two different thread pools, namely in 〈l:=30, l:=41〉 and 〈l:=61,l:=70〉. These two
thread pools must be related by Rlow,lH ,PP according to Condition 2 in Defini-
tion 15. However, the probability of moving from these two configurations into
the same equivalence class differs as our biased scheduler chooses the first thread
with a higher probability than the second. Therefore, Condition 2 is violated by
the second computation step and, hence, P2 /∈ WHAT&WHEREs. ♦

Example 3. Let P3 = h2:=1absolute(h2); if2 h1 then l1:=3h2 else l1:=4-h2 fi and lH =
{(low , h2, 3), (low , h2, 4)}. The assignments in both branches do not reveal more
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information than permitted by the respective local escape hatches. However, the
sign of the value stored in l1 after a run reveals information about the initial
value of h1 in addition. Hence, the program is intuitively insecure.

Two consecutive computation steps of P3 in two memories that differ in h1
result in two different thread pools, namely in 〈l1:=3h2〉 and 〈l1:=4-h2〉. According
to Condition 2 in Definition 15, these two thread pools must be related by
Rlow,lH ,PP . However, a third computation step in each of them results in two
memories that are low -distinguishable and, hence, P3 /∈ WHAT&WHEREs. ♦

3.4 Meta-properties of the Scheduler-Specific Security Properties

The security conditions WHAT&WHEREs restrict declassification according to
a set of local escape hatches. This allows one a more fine-grained control of
declassification by restricting what information can be declassified where. In
comparison to WHATs, declassification shall be controlled more rigorously, and
WHAT&WHEREs is indeed at least as restrictive as WHATs.

Theorem 3. Let lH ⊆ D × E × PP and thr ∈ C ∗. If thr ∈ WHAT&WHEREs

with lH then thr ∈ WHATs with H = htchLoc(lH , PP ).

In [32], various so called prudent principles were proposed as sanity checks for
definitions of information-flow security that are compatible with declassification.
In order to convince ourselves about the adequacy of our novel security condition,
we have checked WHAT&WHEREs against these principles, and we have shown
that it satisfies the following prudent principles (based on the formalization of a
slightly augmented set of prudent principles in [16]):

Semantic consistency [32]. The (in)security of a program is invariant under
semantic-preserving transformations of declassification-free subprograms.

Monotonicity of release [32] . Allowing further declassifications for a pro-
gram that is WHAT&WHEREs-secure cannot render it insecure.

Persistence [16] . For every program that satisfies WHAT&WHEREs, all pro-
grams that are reachable also satisfy this security condition.

Relaxation [16] . Every program that satisfies noninterference also satisfies
WHAT&WHEREs.

Noninterference up-to [16] . Every WHAT&WHEREs-secure program also
satisfies noninterference if it were executed in an environment that termi-
nates the program when it is about to perform a declassification.

Another prudent principle proposed in [32] is Non-occlusion. This principle re-
quires that the presence of a declassifying operation cannot mask other covert
information leaks. Unfortunately, a bootstrapping problem occurs. Any ade-
quate formal characterization of non-occlusion itself is an adequate definition
of information-flow security with controlled declassification. If such an adequate
characterization existed then there would be no need to propose a definition of
information-flow security.
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4 Secure Declassification for Multi-threaded Programs

When developing a multi-threaded program, usually a specification of the sched-
uler’s interface is available, but the concrete scheduler is not known. An interface
might reveal to a scheduler information about the current configuration such as
the number of active threads and the values of special program variables (e.g.,
for setting scheduling priorities). However, the scheduler should not have direct
access to secrets via the interface because the scheduling of threads might have
an effect on the probability of an attacker’s observations. Hence, one should treat
all elements of the scheduler’s interface like public sinks in a security analysis.

We specify interfaces to schedulers by observation functions (see Section 2.1)
and assume that interfaces do not give a scheduler access to the value of program
counters as well as of variables that might contain secrets. This is captured by
the following restriction on observation functions.

Definition 17. An observation function obs ∈ Obs is confined wrt. an mls-
policy (D,≤, dom), iff for all thr1, thr ′

1 ∈ C ∗ and all m1,m ′
1 ∈ Mem :

(�(thr 1) = �(thr ′
1) ∧ ∃d ∈ D. m1 =d m ′

1) =⇒ obs(thr1,m1) = obs(thr ′
1,m

′
1) .

If the interface to the scheduler is confined, then the scheduling behavior is
identical for any two configurations that have the same number of active threads
and assign the same value to each variable that is visible for all security domains.

Remark 2. Note that our restriction to confined observation functions does not
eliminate the refinement problem for schedulers. As already pointed out in [35],
a program might have secure information flow if executed with the fictitious
possibilistic scheduler, but be insecure if executed with a uniform scheduler. Since
a uniform scheduler bases its decisions only on the number of active threads, its
interface can be captured by a confined observation function. Another example of
a scheduler with a confined observation function is the biased scheduler described
in Example 2. The program P2 in this example is insecure if run with the biased
scheduler, but it would be secure if run with the possibilistic scheduler. ♦

As the concrete scheduler is usually not known when developing a program,
properties are needed that allow one to reason about security independently of
the concrete scheduler. In this section, we recall the security property WHAT1

from [20] and propose the novel security property WHAT&WHERE. We show
that these properties imply WHATs and WHAT&WHEREs, respectively, for all
schedulers s and confined observation functions. These scheduler-independence
results provide the theoretical basis for reasoning in a sound way about the
security of multi-threaded programs without knowing the concrete scheduler.

4.1 Scheduler-Independent WHAT-Security

The following definition of strong (d ,H )-bisimulations is an adaptation of the
corresponding notion from [20] to the formal exposition used in this article.
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∀thr , thr ′ ∈ C ∗. ∀m1, m
′
1 ∈ Mem . ∀k ∈ N0. ∀α ∈ C ∗. ∀c ∈ Cε. ∀m2 ∈ Mem .⎡⎢⎢⎢⎣

thr Rd,H thr ′ ∧ m1 ∼H
d m ′

1 ∧ 〈|thr [k ], m1|〉 α−� 〈|c, m2|〉
=⇒ ∃α′ ∈ C ∗. ∃c′ ∈ Cε. ∃m ′

2 ∈ Mem .[
〈|thr ′[k ],m ′

1|〉 α′−� 〈|c′,m ′
2|〉 ∧ 〈c〉 Rd,H 〈c′〉 ∧ α Rd,H α′ ∧ m2 ∼H

d m ′
2

]
⎤⎥⎥⎥⎦

Fig. 1. Condition 2 in the definition of strong (d ,H )-bisimulations

Definition 18. Let d ∈ D be a security domain and H ⊆ D × E be a set of
escape hatches. A strong (d ,H )-bisimulation is a per Rd,H ⊆ C ∗×C ∗ that fulfills
the following two conditions:
1. ∀(thr , thr ′) ∈ Rd,H . #(thr) = #(thr ′) and
2. Rd,H satisfies the formula in Figure 1.

If two thread pools thr , thr ′ ∈ C ∗ are strongly (d ,H )-bisimilar, and the scheduler
chooses in some memory state m the k ’th thread of the first thread pool thr for a
step, then the thread at position k in the second thread pool thr ′ can also perform
a computation step in any memory state m ′ that is (d ,H )-equal to m (see
dark-gray boxes in Figure 1). Moreover, the program states as well as the lists
of spawned threads resulting after these two steps are, again, strongly (d ,H )-
bisimilar (see medium-gray box in Figure 1). Finally, the resulting memory states
are, again (d ,H )-equal (see light-gray box in Figure 1).

Definition 19. A thread pool thr has secure information flow for (D,≤, dom)
and H ⊆ D × E (brief: thr ∈ WHAT1) iff for each d ∈ D there is a strong
(d ,H )-bisimulation Rd,H ⊆ C ∗ × C ∗ such that (thr Rd,H thr) holds.

We are now ready to present our scheduler-independence result for WHAT-
security. The theorem states that WHAT1 implies WHATs for each scheduler
model s. Hence, WHAT1 is suitable for reasoning about WHAT-security in a
sound manner without having to explicitly consider scheduling.

Theorem 4. Let (D,≤, dom) be an mls-policy, H ⊆ D × E be a set of escape
hatches, obs ∈ Obs be an observation function that is confined wrt. (D,≤, dom),
and thr ∈ C ∗ be a thread pool. If thr ∈ WHAT1 holds, then thr ∈ WHATs holds
for each scheduler model s.

4.2 Scheduler-Independent WHAT&WHERE-Security

Like in Section 3.3, we use pers that are annotated with a security domain
d , a set lH of local escape hatches, and a set PP of program points. Unlike
in Section 3.3, we constrain pers without referring to system steps, because
system steps depend on the concrete scheduler’s behavior. Our novel security
property WHAT&WHERE shall provide adequate control over what information
is declassified where, independently of the scheduler under that a program is run.
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∀thr , thr ′ ∈ C ∗. ∀m1,m
′
1 ∈ Mem . ∀k ∈ N0. ∀α ∈ C ∗. ∀c ∈ Cε. ∀m2 ∈ Mem .⎡⎢⎢⎢⎢⎢⎢⎣

thr Rd,lH ,PP thr ′ ∧ m1 ∼htchLoc(lH ,PP)
d m ′

1 ∧ 〈|thr [k ],m1|〉 α−� 〈|c, m2|〉
=⇒ ∃α′ ∈ C ∗. ∃c ∈ Cε. ∃m ′

2 ∈ Mem .⎡⎢⎣ 〈|thr ′[k ],m ′
1|〉 α′−� 〈|c′,m ′

2|〉 ∧ 〈c〉 Rd,lH ,PP 〈c′〉 ∧ α Rd,lH ,PP α′

∧
(

m2 ∼htchLoc(lH ,PP)
d m ′

2 ∨ htchLoc(lH , pp(thr [k ])) � htchLoc(lH ,PP)

)
⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎦

Fig. 2. Condition 3 in the definition of strong (d , lH ,PP)-bisimulations

Definition 20. Let d ∈ D be a security domain, lH ⊆ D × E × PP be a set
of local escape hatches, and PP ⊆ PP be a set of program points. A strong
(d , lH ,PP)-bisimulation is a per Rd,lH ,PP ⊆ C ∗ × C ∗ that fulfills the following
three conditions:
1. ∀(thr , thr ′) ∈Rd,lH ,PP . #(thr ) = #(thr ′),
2. ∀(thr , thr ′) ∈Rd,lH ,PP . ∀k ∈ N0.

k < #(thr ) =⇒ (NDC d (thr [k ]) ∨ IDC d (thr [k ], htchLoc(lH , pp(thr [k ])))),
3. Rd,lH ,PP satisfies the formula in Figure 2.

Condition 1 in Definition 20 ensures that related thread pools have equal size
(like Condition 1 in Definition 18). Condition 2 ensures that each thread either
causes no declassification to d or is an immediate declassification command for
the set of locally available escape hatches (like Condition 1 in Definition 15).

Condition 3 bears similarities with Condition 2 in Definition 18 (see Fig-
ure 1). If two thread pools thr , thr ′ ∈ C ∗ are strongly (d , lH ,PP)-bisimilar, and
the scheduler chooses in some memory state m the k ’th thread of thr for a step,
then the k ’th thread of thr ′ can also perform a computation step in any mem-
ory state m ′ that is (d ,H )-equal to m (where H = htchLoc(lH ,PP)), and the
resulting program states as well as lists of spawned threads are, again, strongly
(d , lH ,PP)-bisimilar (see dark-gray boxes in Figure 2). Note that an expression
e that occurs in a local escape hatch (d ′, e, ι) ∈ lH need not have the same value
in m and m ′ if ι /∈ PP . Consequently, Condition 3 only requires the resulting
memory states to be (d ,H )-equal (see medium-gray box in Figure 2), if no such
local escape hatch might affect the computation step under consideration (see
light-gray box in Figure 2). Like in Section 3.3, choosing a set PP that is too
small might lead to missing possibilities for information laundering and, again,
we will avoid this pitfall by universally quantifying over all subsets PP ⊆ PP .

Definition 21. A thread pool thr ∈ C ∗ has secure information flow for an mls-
policy (D,≤, dom) and a set of local escape hatches lH ⊆ D × E × PP (brief:
thr ∈ WHAT&WHERE) iff for each d ∈ D and for each PP ⊆ PP there is a
strong (d , lH ,PP)-bisimulation Rd,lH ,PP such that (thr Rd,lH ,PP thr) holds.

We are now ready to present our second scheduler-independence result.
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[tconstd]
H � v : d

[tvard]
dom(x) = d

H � x : d
[thatchd]

(d , e) ∈ H

H � e : d

[topd]
H � e1 : d1 . . . H � em : dm ∀i ∈ {1, . . . , m}. di ≤ d

H � op(e1, . . . , em) : d

Fig. 3. Security type system for expressions

Theorem 5. Let (D,≤, dom) be an mls-policy, lH ⊆ D × E × PP be a set of
local escape hatches, obs ∈ Obs be an observation function that is confined wrt.
(D,≤, dom), and thr ∈ C ∗ be a thread pool. If thr ∈ WHAT&WHERE holds,
then thr ∈ WHAT&WHEREs holds for each scheduler model s.

The scheduler-independence theorem shows that WHAT&WHERE provides as
much control of what information is declassified where as WHAT&WHEREs, but
without referring to specific schedulers. Hence, WHAT&WHERE is adequate for
reasoning about the security of programs when the scheduler is unknown.

5 Security Type System

Our security property WHAT&WHERE is compositional in the following sense:

Theorem 6. Let c0, . . . , cn−1 ∈ C be commands and e ∈ E be an expression.
If 〈c0〉, . . . , 〈cn−1〉 ∈ WHAT&WHERE and if (m =d m ′ =⇒ eval(e,m) =
eval(e,m ′)) holds for all m,m ′ ∈ Mem and all d ∈ D, then we have:
1. 〈c0;c1〉 ∈ WHAT&WHERE,
2. 〈spawnι(c0, . . . , cn−1)〉 ∈ WHAT&WHERE,
3. 〈whileι e do c0 od〉 ∈ WHAT&WHERE, and
4. 〈ifι e then c1 else c2 fi〉 ∈ WHAT&WHERE.

We will now define a syntactic approximation of WHAT&WHERE for our ex-
ample language in Section 2.2 in the form of a type system. Before we present
the typing rules for the commands, we present typing rules for expressions. The
judgment H � e : d (where H ⊆ D ×E , e ∈ E and d ∈ D) can be derived with
the typing rules in Figure 3. Intuitively, the judgment H � e : d shall model
that the value of e only depends on information that a d -observer is permitted
to obtain (for a given mls-policy and the set H of escape hatches). That the
typing rules capture this intuition is ensured by the following theorem:

Theorem 7. Let H ⊆ D × E , e ∈ E , and d ∈ D. If H �e :d is derivable then
∀m,m ′ ∈ Mem .

[
m∼H

d m ′ =⇒ eval(e,m) = eval (e,m ′)
]

.

For verifying the security of programs we use judgments of the form � c (where
c ∈ C ). Intuitively, � c shall express that c satisfies our novel security condi-
tion WHAT&WHERE from Section 4.2. The typing rules for this judgment are
presented in Figure 4. The typing rules tseq, tspawn, twhile and tif correspond
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[tassign]
htchLoc(lH , ι) � e : d d ≤ dom(x) SubstClosure(lH , x , e)

� x :=ιe

[tseq]
� c1 � c2

� c1 ; c2
[tif]

∅ � e : d ′ ∀d ′′. d ′ ≤ d ′′ � c1 � c2

� ifι e then c1 else c2 fi
[tskip]� skipι

[tspawn]
� c0 . . . � cn−1

� spawnι(c0, . . . , cn−1)
[twhile]

∅ � e : d ′ ∀d ′′. d ′ ≤ d ′′ � c

� whileι e do c od

Fig. 4. Security type system for commands

to the four cases of the compositionality theorem (i.e., Theorem 6). Note that
the first two preconditions of twhile and tif indeed ensure that (m =d m ′ =⇒
eval(e,m) = eval (e,m ′)) holds for all m,m ′ ∈ Mem and all d ∈ D. The first two
preconditions of the rule for assignments (i.e., tassign) ensure that information
only flows into a variable x ∈ Var if this is permissible according to the mls-
policy and to the set of locally available escape hatches. The third precondition
of rule tassign prevents information laundering like in the following example.

Example 4. Let P4 = h2:=10; l:=2h1+h2 and lH = {(low , h1+h2, ι) | ι ∈ PP}.
If the third precondition of rule tassign were not present, then P4 would be
accepted by the type system. However, the program reveals the value of h1 to a
low -observer, which is not permitted by lH under the two-level mls-policy. ♦
In order to avoid such possibilities for information laundering via escape hatches,
we use the predicate SubstClosure in the third precondition of rule tassign:

Definition 22. We define SubstClosure ⊆ P(D × E × PP ) × Var × E by
SubstClosure(lH , x , e)⇐⇒∀(d ′, e ′, ι′) ∈ lH . (d ′, e ′[x\e], ι′) ∈ lH

where e ′[x\e] is the expression that results from substituting all occurrences of
variable x in expression e ′ by the expression e.

The third precondition of rule tassign (i.e., SubstClosure(lH , x , e)) requires that,
if the target x of an assignment occurs in the expression e ′ of some (d ′, e ′, ι′) ∈ lH
then (d ′, e ′[x\e], ι′) ∈ lH must also hold. This ensures that the local escape hatch
(d ′, e ′, ι′) ∈ lH may still be used legitimately, after assigning e to x .

The following soundness theorem shows that the judgment � c indeed captures
WHAT&WHERE:

Theorem 8. Let c ∈ C . If � c is derivable then c ∈ WHAT&WHERE holds.

If a program is typable with our security type system, then it adequately controls
what information is declassified where, no matter under which scheduler the
program is run. This follows from the soundness theorem above in combination
with our scheduler-independence result for WHAT&WHERE (i.e., Theorem 5).

Example 5. We reconsider the program P1 from Example 1 and the set lH =
{(low , downsample(song, bitrate), 3), (low , song, 2)}. The judgment � P1 can be de-
rived by applying the rules tif, tvard (for paid and d = low ), tassign, thatchd
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(for song), tassign, thatchd (for downsample(song, bitrate)). From Theorem 8 and
Theorem 5 we obtain P1 ∈ WHAT&WHEREs regardless of the scheduler s. ♦

Remark 3. The type system presented in this section is suitable for verifying
WHAT&WHERE-security in a sound way. In the definition of the typing rules,
we aimed for conceptual simplicity rather than for maximizing the precision of
the analysis. For instance, a more fine-grained treatment of conditionals could
be developed by using safe approximation relations (like in [21]). ♦

6 Related Work

Research on information-flow security has addressed scheduler independence as
well as declassification, but not yet the combination of these two aspects.

To achieve scheduler-independent information-flow security, three main di-
rections have been explored. Observational determinism [36,13] requires that all
observations of an attacker are deterministically determined by information that
this attacker may obtain. This ensures that security is not affected by how non-
determinism is resolved (including the selection of threads by a scheduler). An al-
ternative approach to achieving scheduler independence requires a non-standard
interface to schedulers. Schedulers can be asked to “hide” or “unhide” threads
via this interface, where threads classified as “unhidden” may only be scheduled
if no “hidden” threads are active [7,28]. Strong security [31] achieves scheduler
independence by defining security based on stepwise bisimulation relations that
match steps of threads at the same position, like in this article. FSI-security [22]
is also a scheduler-independent security condition, although it is less restrictive
than strong security. None of these approaches supports declassification.

Scheduler-independence results can be viewed as solutions to the refinement
paradox [14] in a particular domain. In fact, the approach to define security based
on observational determinism was originally developed as a general solution to
avoid the refinement paradox [27]. Unfortunately, this approach also forbids in-
tended non-determinism. An alternative is to identify notions of refinement that
preserve information-flow security. For event-based specifications, such refine-
ment operators are proposed in [18]. For sequential programs, refinements that
preserve the property “ignorance of secrets” are characterized in [24].

The challenge of certifying information-flow security while permitting declas-
sification is addressed in various publications (see [33] for an overview). In order
to make differences in the goals of different approaches to controlling declassifi-
cation explicit, three aspects of declassification were distinguished in [21]: What
information may be declassified, Where information may be declassified, and
Who may declassify information. Four dimensions of declassification, which are
similar to these W-aspects, are used in [33] to classify existing approaches to de-
classification. Our novel security condition WHAT&WHERE for multi-threaded
programs addresses the aspects What and Where in an integrated fashion.

For sequential programs, there are solutions addressing the aspects What (e.g.,
[29,15,16]), Where (e.g., [10,2,11]), and Who (e.g., [25,26,17]) in isolation. There
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are also approaches that control What information is declassified Where. Local-
ized delimited release [3] and the security conditions in [4] permit to specify from
which program point on the value of a given expression may be declassified.
Delimited non-disclosure [6] and delimited gradual release [5] permit to specify
exactly at which position a given expression may be declassified. For the latter
two, the value that may be declassified is the value to which the expression eval-
uates when the declassification is performed. In all other approaches (including
the approach in this article), the value that may be declassified is the initial
value of the expression. The relation between these two interpretations of escape
hatches is clarified in [16]. All previously proposed approaches to control What
is declassified Where were developed for sequential programs.

In a multi-threaded setting, several approaches adopt the ideas underlying
strong security [31]. Intransitive noninterference [21] and WHERE [20] permit
declassification by dedicated declassification commands that comply with a flow
relation, which may be an intransitive relation. The properties WHAT1 and
WHAT2 in [20] control that what is declassified complies with a given set of
escape hatches. The conditions SIMP∗

D [9] and non-disclosure [1] are also based
on step-wise bisimulations. However, they do not require that matching steps are
executed by threads at the same position, which seems necessary for achieving
scheduler independence. While some of these approaches strive for scheduler
independence, no scheduler-independence result has been published for them.

7 Conclusion

The scheduler-independence results presented in this article constitute the first
two such results for definitions of information-flow security that are compatible
with declassification. We showed that our previously proposed security condition
WHAT1 [20] provides adequate control of what can be declassified, for all sched-
ulers that can be expressed in our scheduler model. When proposing WHAT1,
we had hoped that this condition is scheduler independent, but had no proof for
this so far. Our novel security condition WHAT&WHERE provides adequate
control of what can be declassified where, independent of the scheduler. Our
two scheduler-independence results provide the theoretical basis for reasoning
about the security of multi-threaded programs in a sound way, without having
to explicitly consider the scheduler under which a program runs.

The security guarantees provided by WHAT&WHERE go far beyond a mere
conjunction of the previously proposed conditions WHAT1 and WHERE because
a fine-grained, integrated control of what is declassified where is made possible.

The scheduler model (cf. Definition 1) that we used as basis in this article
is sufficiently expressive to capture a wide range of schedulers, including uni-
form and Round-Robin schedulers. Moreover, to our knowledge, WHATs and
WHAT&WHEREs offer the first scheduler-specific definitions of information-
flow security that are compatible with declassification. We used these schemas
as reference points for our two scheduler-independence results, and they might
serve as role models for other scheduler-specific security conditions in the future.
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With this article, we hope to contribute foundations that lead to a better
applicability and a more wide-spread use of information-flow analysis in practice.
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Abstract. We extend the Eindhoven quantifier notation to elementary
probability theory by adding “distribution comprehensions” to it.

Even elementary theories can be used in complicated ways, and this
occurs especially when reasoning about computer programs: an instance
of this is the multi-level probabilistic structures that arise in probabilistic
semantics for security.

Our exemplary case study in this article is therefore the probabilis-
tic reasoning associated with a quantitative noninterference semantics
based on Hidden Markov Models of computation. But we believe the
proposal here will be more generally applicable than that, and so we
also revisit a number of popular puzzles, to illustrate the new notation’s
wider utility.

1 Context and Motivation

Conventional notations for elementary probability theory are more descriptive
than calculational. They communicate ideas, but they are not algebraic (as a
rule) in the sense of helping to proceed reliably from one idea to the next one:
and truly effective notations are those that we can reason with rather than simply
about. In our recent work on security, the conventional notations for probability
became so burdensome that we felt that it was worth investigating alternative,
more systematic notations for their own sake.

The Eindhoven notation was designed in the 1970’s to control complexity in
reasoning about programs and their associated logics: the forty years since then
have shown how effective it is. But as far as we know it has not been used for
probability. We have done so by working “backwards,” from an application in
computer security (Sec. 9.2), with the Eindhoven style as a target (Sec. 2). That
is the opposite, incidentally, of reconstructing elementary probability “forwards”
from first principles — also a worthwhile goal, but a different one.

We judge our proposal’s success by whether it simplifies reasoning about in-
tricate probabilistic structures in computer science and elsewhere. For that we
give a small case study, based on noninterference-security semantics, both in the
novel notation and in the conventional notation; and we compare them with each
other (Sec. 9). We have also used the new notation more extensively [15].
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Although the notation was developed retroactively, the account we give here
is forwards, that is from the basics towards more advanced constructions. Along
the way we use a number of popular puzzles as more general examples.

2 The Eindhoven Quantifier Notation, and Our Extension

In the 1970’s, researchers at THE in Eindhoven led by EW Dijkstra proposed
a uniform notation for quantifications in first-order logic, elementary set theory
and related areas [3]. By (Q x:T | rng · exp) 1 they meant that quantifier Q binds
variable x of type T within textual scope (· · · ), that x is constrained to satisfy
formula rng, that expression exp is evaluated for each such x and that those
values then are combined via an associative and commutative operator related to
quantifier Q. These examples make the uniformity evident:

(∀x: T | rng · exp) means for all x in T satisfying rng we have exp,

(∃x: T | rng · exp) means for some x in T satisfying rng we have exp,

(
∑

x: T | rng · exp) means the sum of all exp for x in T satisfying rng ,

{x:T | rng · exp} means the set of all exp for x in T satisfying rng .

A general shorthand applying to them all is that an omitted range rng defaults
to true, and an omitted exp defaults to the bound variable x itself.

These (once) novel notations are not very different from the conventional
ones: they contain the same ingredients because they must. Mainly they are a
reordering, an imposition of consistency, and finally a making explicit of what is
often implicit: bound variables, and their scope. Instead of writing {n∈N | n>0}
for the positive natural numbers we write {n:N | n>0}, omitting the “·n” via the
shorthand above; the only difference is the explicit declaration of n via a colon
(as in a programming language) rather than via n∈N which, properly speaking, is
a formula (with both n and N free) and doesn’t declare anything. And instead of
{n2 | n∈N} for the square numbers, we write {n:N · n2}, keeping the declaration
in first position (always) and avoiding ambiguous use of the vertical bar.

In program semantics one can find general structures such as

sets of distributions for probability and nondeterminism [21, 14],

distributions of distributions,
for probabilistic noninterference security [15, 16], and even

sets of distributions of distributions to combine the two [17].

All of these are impeded by the conventional use of “Pr” to refer to probability
with respect to some unnamed distribution “of interest” at the time: we need to
refer to the whole distribution itself.

And when we turn to particular instances, the semantics of individual pro-
grams, we need to build functions corresponding to specific program compo-
nents. The conventional “random variables” are inconvenient for this, since we

1 The original Eindhoven style uses colons as separators; the syntax here with | and ·
is one of many subsequent variations based on their innovation.
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must invent a name for every single one: we would rather use the expressions and
variables occurring in the programs themselves. In the small –but nontrivial– ex-
ample of information flow (Sec. 9), borrowed from our probabilistic security work
[15–17], we compare the novel notation (Sec. 9.2) to the conventional (Sec. 9.3)
in those respects.

Our essential extension of the Eindhoven quantifiers was to postulate a “dis-
tribution comprehension” notation {{s: δ | rng · exp}}, intending it to mean “for
all elements s in the distribution δ, conditioned by rng, make a new distribution
based on evaluating exp.” Thus we refer to a distribution itself (the whole com-
prehension), and we access random variables as expressions (the exp within).
From there we worked backwards, towards primitives, to arrange that indeed
the comprehension would have that meaning.

This report presents our results, but working forwards and giving simple ex-
amples as we go. Only at Def. 13 do we finally recover our conceptual starting
point, a definition of the comprehension that agrees with the guesswork just
above (Sec. 8.5).

3 Discrete Distributions as Enumerations

We begin with distributions written out explicitly: this is by analogy with the
enumerations of sets which list their elements. The notation f.x for application
of function f to argument x is used from here on, except for type constructors
where a distinct font allows us to reduce clutter by omitting the dot.

3.1 Finite Discrete Distributions as a Type

A finite discrete distribution δ on a set S is a function assigning to each element
s in S a (non-negative) probability δ.s, where the sum of all such probabilities
on S is one. The fair distribution on coin-flip outcomes {H,T} takes both H,T
to 1/2; the distribution on die-roll outcomes {1··6} for a fair die gives 1/6 for
each integer n with 1≤n≤6. In general we have

Definition 1. The constructor D for finite discrete distributions
The set DS of discrete distributions over a finite set S is the functions from

S into [0, 1] that sum to one, that is {δ:S→[0, 1] | (
∑

s:S · δ.s) = 1}. The set
S is called the base (type) of δ. �
In Def. 1 the omitted |rng of

∑
is |true, and the omitted ·exp of {· · · } is ·δ.

One reason for using distinct symbols | and · is that in the default cases those
symbols can be omitted as well, with no risk of ambiguity.

3.2 The Support of a Distribution

The support of a distribution is that subset of its base to each of whose ele-
ments it assigns nonzero probability; it is in an informal sense the “relevant” or
“interesting” elements in the distribution. We define
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Definition 2. Support of a distribution For distribution δ:DS with base S,
the support is the subset �δ�:= {s:S | δ.s �=0} of S. �
The “ceiling” notation �·� suggests the pointwise ceiling of a distribution which,
as a function (Def. 1), is the characteristic function of its support.

3.3 Specialised Notation for Uniform Distributions

By analogy with set enumerations like {H,T}, we define uniform-distribution
enumerations that assign the same probability to every element in their support:

Definition 3. Uniform-distribution enumeration The uniform distribution
over an enumerated set {a, b, · · · , z} is written {{a, b, · · · , z}}. �
Thus for example the fair-coin distribution is {{H,T}} and the fair-die distribution
is {{1··6}}. (The empty {{}} would be a sub-distribution [10, 21], not treated here.)

As a special case of uniform distribution we have the point distribution {{a}}
on some element a, assigning probability 1 to it: this is analogous to the singleton
set {a} that contains only a.

3.4 General Notation for Distribution Enumerations

For distributions that are not uniform, we attach a probability explicitly to each

element. Thus we have {{H@ 2
3 ,T@ 1

3 }} for the coin that is twice as likely to give

heads H as tails T, and {{1@ 2
9 , 2@

1
9 , 3@

2
9 , 4@

1
9 , 5@

2
9 , 6@

1
9 }} for the die that is twice

as likely to roll odd as even (but is uniform otherwise). In general we have

Definition 4. Distribution enumeration We write {{a@pa , b@pb , · · · , z@pz}} for
the distribution over set {a, b, · · · , z} that assigns probability pa to element a
etc. For well-formedness we require that pa+pb+ · · ·+pz = 1. �
3.5 The Support of a Distribution is a Subset of Its Base

Strictly speaking one can’t tell, just by drawing samples, whether {{H,T}} rep-
resents the distribution of a fair two-sided coin, or instead represents the dis-
tribution of a three-sided coin with outcomes {H,T,E} that never lands on its
edge E. Similarly we might not know whether {{6}} describes a die that has the
numeral 6 written on every face or a loaded die that always rolls 6.

Saying that δ is uniform over S means it is uniform and its support is S.

3.6 Specialised Infix Notations for Making Distributions

For distributions of support no more than two we have the special notation

Definition 5. Doubleton distribution For any elements a, b and 0≤p≤1 we
write a p⊕ b for the distribution {{a@p, b@1−p}}. �
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Thus the fair-coin distribution {{H,T}} can be written H1/2⊕T. For the weighted
sum of two distributions we have

Definition 6. Weighted sum For two numbers x, y and 0≤p≤1 we define xp+
y:= px+ (1−p)y; more generally x, y can be elements of a vector space.

In particular, for two distributions δ, δ′:DS we define their weighted sum δp+δ′

by (δ p+ δ′).s := p(δ.s) + (1−p)(δ′.s) for all s in S. �
Thus the biased die from Sec. 3.4 can be written as {{1, 3, 5}} 2/3+ {{2, 4, 6}},
showing at a glance that its odds and evens are uniform on their own, but that
collectively the odds are twice as likely as the evens.

As simple examples of algebra we have first x p⊕ y = {{x}} p+ {{y}}, and then

δ 0+ δ′ = δ′ and δ 1+ δ′ = δ
and �δ p+ δ′� = �δ� ∪ �δ′� when 0<p<1.

3.7 Comparison with Conventional Notation2

Conventionally a distribution is over a sample space S, which we have called the
base (Def. 1). Subsets of the sample space are events, and a distribution assigns
a number to every event, the probability that an observation “sampled” from
the sample space will be an occurrence of that event. That is, a distribution is
of type PS→[0, 1] from subsets of S rather than from its elements.

With our odd-biased die in Sec. 3.4 the sample space is S={1··6} and the
probability 2/3 of “rolled odd,” that is of the event {1, 3, 5}⊂S, is twice the
probability 1/3 of “rolled even,” that is of the event {2, 4, 6}⊂S.

There are “additivity” conditions placed on general distributions, among which
are that the probability assigned to the union of two disjoint events should be
the sum of the probabilities assigned to the events separately, that the probabil-
ity assigned to all of S should be one, and that the probability assigned to the
empty event should be zero.

When S is finite, the general approach specialises so that a discrete distribu-
tion δ acts on separate points, instead of on sets of them. The probability of any
event S′⊂S is then just

∑
s∈S′ δ(s) from additivity.

4 Expected Values over Discrete Distributions

4.1 Definition of Expected Value as Average

If the base S of a distribution δ:DS comprises numbers or, more generally, is
a vector space, then the “weighted average” of the distribution is the sum of
the values in S multiplied by the probability that δ assigns to each, that is
(
∑

s:S · δ.s×s). For the fair die that becomes (1+2+3+4+5+6)/6 = 31/2; for
the odd-biased die the average is 42/3.

2 In these comparison sections we will use conventional notation throughout, for ex-
ample writing f(x) instead of f.x and {exp | x∈S} instead of {x:S · exp}.
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For the fair coin {{H,T}} however we have no average, since {H,T} has no
arithmetic. We must work indirectly via a function on the base, using

Definition 7. Expected value By (Es: δ · exp) we mean the expected value of
function (λ s · exp) over distribution δ; it is

(Es: δ · exp) := (
∑

s: �δ� · δ.s×exp) . 3

Note that exp is an expression in which bound variable s probably appears
(though it need not). We call exp the constructor. �
For example, the expected value of the square of the value rolled on a fair die is
(Es: {{1··6}} · s2) = (12 + · · ·+ 62)/6 = 151/6.

For further examples, we name a particular distribution Δ:= {{0, 1, 2}} and
describe a notation for converting Booleans to numbers:

Definition 8. Booleans converted to numbers The function [·] takes Booleans
T,F to numbers 0,1 so that [T]:= 1 and [F]:= 0. 4 �
Then we have

(Es:Δ · smod 2) = 1/3×0 + 1/3×1 + 1/3×0 = 1/3
and (Es:Δ · [s �=0]) = 1/3×0 + 1/3×1 + 1/3×1 = 2/3 ,

where in the second case we have used Def. 8 to convert the Boolean s �=0 to a
number. Now we can formulate the average proportion of heads shown by a fair
coin as (Es: {{H,T}} · [s=H]) = 1/2.

4.2 The Probability of a Subset Rather Than of a Single Element

We can use the expected value quantifier to give the aggregate probability as-
signed to a (sub)set of outcomes, provided we have a formula describing that
set. 5 When exp is Boolean, we have that (Es: δ · [exp]) is the probability as-
signed by δ to the whole of the set {s: �δ� | exp}. This is because the expected
value of the characteristic function of a set is equal to the probability of that set
as a whole. An example of this is given at 4.3(e) below.

4.3 Abbreviation Conventions

The following are five abbreviations that we use in the sequel.

(a) If several bound variables are drawn from the same distribution, we as-
sume they are drawn independently from separate instances of it. Thus
(Ex, y: δ · · · ·) means (Ex: δ, y: δ · · · ·) or equivalently (E(x, y): δ2 · · · ·).

3 Here is an example of not needing to know the base type: we simply sum over the
support of δ, since the other summands will be zero anyway.

4 We disambiguate T for true and T for tails by context.
5 Note that those aggregate probabilities do not sum to one over all subsets of the
base, since the individual elements would be counted many times.
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(b) If in an expected-value quantification the exp is omitted, it is taken to be
the bound variable standing alone (or a tuple of them, if there are sev-
eral). Thus (Es: δ) means (Es: δ · s), and more generally (Ex, y: δ) means
(Ex, y: δ · (x, y)) with appropriate arithmetic induced on �δ�×�δ�.

(c) By analogy with summation, where for a set S we abbreviate (
∑

s:S) by∑
S, we abbreviate (Es: δ) by Eδ. Thus EΔ = E{{0, 1, 2}} = (0+1+2)/3 = 1.

(d) If a set is written where a distribution is expected, we assume implicitly that
it is the uniform distribution over that set. Thus E{0, 1, 2} = EΔ = 1.

(e) If a Boolean expression occurs where a number is expected, then we as-
sume an implicit application of the conversion function [·] from Def. 8. Thus
(Es: {0, 1, 2} · s �=0) = 2/3 is the probability that a number chosen uniformly
from 0, 1, 2 will not be zero.

4.4 Example of Expected Value: Dice at the Fairground

Define the set D to be {1··6}, the possible outcomes of a die roll.
At the fairground there is a tumbling cage with three fair dice inside, and a

grid of six squares marked by numbers from D. You place $1 on a square, and
watch the dice tumble until they stop.

If your number appears exactly once among the dice, then you get your $1
back, plus $1 more; if it appears twice, you get $2 more; if it appears thrice you
get $3 more. If it’s not there at all, you lose your $1.

Using our notation so far, your expected profit is written

−1 + (Es1, s2, s3:D · (∨ i · si=s) + (
∑

i · si=s)) , (1)

where the initial −1 accounts for the dollar you paid to play, and the free variable
s is the number of the square on which you placed it. The disjunction describes
the event that you get your dollar back; and the summation describes the extra
dollars you (might) get as well.

The D is converted to a uniform distribution by 4.3(d), then replicated three
times by 4.3(a), independently for s{1,2,3}; and the missing conversions from
Boolean to 0,1 are supplied by 4.3(e).

Finally we abuse notation by writing si even though i is itself a (bound)
variable: e.g. by (

∨
i · si=s) we mean in fact s1=s ∨ s2=s ∨ s3=s. 6

6 It is an abuse because in the scope of i we are using it as if it were an argument to
some function s(·) — but the name s is already used for something else. Moreover
s1, s2, s3 must themselves be names(not function applications) since we quantify over
them with E . Also we gave no type for i.

Although our purpose is to show how we achieve a concise presentation with
precise notation, we are at the same time arguing that “to abuse, or not to abuse”
should be decided on individual merits. There are times when a bit of flexibility is
helpful: arguably the abuse here gains more in readability than it loses in informality.

A similar use is (∃i · · · ·Hi · · ·) for the weakest precondition of a loop: this fi-
nesse avoided swamping a concise first-order presentation with (mostly unnecessary)
higher-order logic throughout [2].
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While the point of this example is the way in which (1) is written, it’s worth
pointing out that its value is approximately −.08, independent of s, thus an
expected loss of about eight cents in the dollar every time you play and no
matter which square you choose.

4.5 Comparison with Conventional Notation

Conventionally, expected values are taken over random variables that are func-
tions from the sample space into a set with arithmetic, usually the reals (but
more generally a vector space). Standard usage is first to define the sample space,
then to define a distribution over it, and finally to define a random variable over
the sample space and give it a name, say X . Then one writes Pr(X=x) for
the probability assigned by that distribution to the event that the (real-valued)
random variable X takes some (real) value x; and E(X) is the notation for the
expected value of random variable X over the same (implicit) distribution.

In Def. 7 our random variable is (λ s · exp), and we can write it without a
name since its bound variable s is already declared. Furthermore, because we give
the distribution δ explicitly, we can write expressions in which the distributions
are themselves expressions. As examples, we have

(Es: {{e}} · exp) = exp[s\e] – one-point rule
(Es: (δ p+ δ′) · exp) = (Es: δ · exp) p+ (Es: δ′ · exp) – using Def. 6
(Es: (x p⊕ y) · exp) = exp[s\x] p+ exp[s\y] – from the two above,

where exp[s\e] is bound-variable-respecting replacement of s by e in exp.

5 Discrete Distributions as Comprehensions

5.1 Definition of Distribution Comprehensions

With a comprehension, a distribution is defined by properties rather than by
enumeration. Just as the set comprehension {s: �Δ� · s2} gives the set {0, 1, 4}
having the property that its elements are precisely the squares of the elements
of �Δ� = {0, 1, 2}, we would expect {{s:Δ · s2}} to be {{0, 1, 4}} where in this
case the uniformity of the source Δ has induced uniformity in the target.

If however some of the target values “collide,” because exp is not injec-
tive, then their probabilities add together: thus we have {{s:Δ · s mod 2}} =

{{0@ 2
3 , 1@

1
3 }} = 0 2/3⊕ 1, where target element 0 has received 1/3 probability as

0mod 2 and another 1/3 as 2mod 2.
We define distribution comprehensions by giving the probability they assign

to an arbitrary element; thus

Definition 9. Distribution comprehension. For distribution δ and arbitrary
value e of the type of exp we define
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{{s: δ · exp}}.e := (Es: δ · [exp=e]) . 7

�
The construction is indeed a distribution on {s: �δ� · exp} (Lem. 1 in App. C),
and assigns to element e the probability that exp=e as s ranges over �δ�. 8

5.2 Examples of Distribution Comprehensions

We have from Def. 9 that the probability {{s:Δ · smod 2}} assigns to 0 is

{{s:Δ · smod 2}}.0
= (Es:Δ · [smod 2 = 0])
= 1/3×[0=0] + 1/3×[1=0] + 1/3×[0=0]
= 1/3×1 + 1/3×0 + 1/3×1
= 2/3 ,

and the probability {{s:Δ · smod 2}} assigns to 1 is

{{s:Δ · smod 2}}.1
= 1/3×[0=1] + 1/3×[1=1] + 1/3×[0=1]
= 1/3 .

Thus we have verified that {{s:Δ · smod 2}} = 0 2/3⊕ 1 as stated in Sec. 5.1.

5.3 Comparison with Conventional Notation

Conventionally one makes a target distribution from a source distribution by
“lifting” some function that takes the source sample space into a target. We
explain that here using the more general view of distributions as functions of
subsets of the sample space (Sec. 3.7), rather than as functions of single elements.

If δX is a distribution over sample space X , and we have a function f :X→Y ,
then distribution δY over Y is defined δY (Y

′):= δX(f−1(Y ′)) for any subset Y ′

of Y . We then write δY = f∗(δX), and function f∗:DX→DY is called the push-
forward ; it makes the image measure wrt. f :X→Y [5, index].

In the distribution comprehension {{s: δ · exp}} for δ:DS, the source distri-
bution is δ and the function f between the sample spaces is (λ s:S · exp). The
induced push-forward f∗ is then the function (λ δ:DS · {{s: δ · exp}}).
7 Compare {x:X · exp}	e defined to be (∃x:X · exp=e).
8 A similar comprehension notation is used in cryptography, for example the

{s R←− S; s′ R←− S′ : exp}

that in this case takes bound variables (s, s′) uniformly (
R←−) from sample spaces

(S, S′) and, with them, makes a new distribution via a constructor expression (exp)
containing those variables. We would write that as {{s:S; s′:S′ · exp}} with the S, S′

converted to uniform distributions by 4.3(d).
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6 Conditional Distributions

6.1 Definition of Conditional Distributions

Given a distribution and an event, the latter a subset of possible outcomes, a condi-
tioning of that distribution by the event is a new distribution formed by restricting
attention to that event and ignoring all other outcomes. For that we have

Definition 10. Conditional distribution. Given a distribution δ and a “range”
predicate rng in variable s ranging over the base of δ, the conditional distribution
of δ given rng is determined by

{{s: δ | rng}}.s′ :=
(Es: δ · rng × [s=s′])

(Es: δ · rng) ,

for any s′ in the base of δ. We appeal to the abbreviation 4.3(e) to suppress the
explicit conversion [rng] on the right. 9

The denominator must not be zero (Lem. 2 in App. C). �
In Def. 6.1 the distribution δ is initially restricted to the subset of the sample
space defined by rng (in the numerator), potentially making a subdistribution
because it no longer sums to one. It it restored to a full distribution by normal-
isation, the effect of dividing by its weight (the denominator).

6.2 Example of Conditional Distributions

A simple case of conditional distribution is illustrated by the uniform distribution
Δ = {{0, 1, 2}} we defined earlier. If we condition on the event “is not zero” we
find that {{s:Δ | s �=0}} = {{1, 2}}, that when s is not zero it is equally likely to
be 1 or 2. We verify this via Def. 10 and the calculation

{{s:Δ | s �=0}}.1
= (Es: {{0, 1, 2}} · [s �=0]× [s=1]) / (Es: {{0, 1, 2}} · [s �=0])

= 1
3/

2
3

= 1/2 .

6.3 Comparison with Conventional Notation

Conventionally one refers to the conditional probability of an event A given
some (other) event B, writing Pr(A|B) whose meaning is given by the Bayes
formula Pr(A∧B)/Pr(B). Both A,B are names (not expressions) referring to
events defined in the surrounding text, and Pr refers, in the usual implicit way,
to the probability distribution under consideration. Well-definedness requires
that Pr(B) be nonzero.

Def. 10 with its conversions 4.3(e) explicit becomes

(Es: δ · [s=s′ ∧ rng ]) / (Es: δ · [rng]) ,
with Event A corresponding to “is equal to s′ ” and Event B to “satisfies rng.”

9 Leaving the [·] out enables a striking notational economy in Sec. 8.2.
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7 Conditional Expectations

7.1 Definition of Conditional Expectations

We now put constructors exp and ranges rng together in a single definition of
conditional expectation, generalising conditional distributions:

Definition 11. Conditional expectation. Given a distribution δ, predicate rng
and expression exp both in variable s ranging over the base of δ, the conditional
expectation of exp over δ given rng is

(Es: δ | rng · exp) :=
(Es: δ · rng × exp)

(Es: δ · rng) , 10

in which the expected values on the right are in the simpler form to which Def. 7
applies, and rng,exp are converted if necessary according to 4.3(e).

The denominator must not be zero. �
7.2 Conventions for Default Range

If rng is omitted in (Es: δ | rng · exp) then it defaults to T, that is true as a
Boolean or 1 as a number: and this agrees with Def. 7. To show that, in this
section only we use E for Def. 11 and reason

(Es: δ · exp) “as interpreted in Def. 11”

= (Es: δ | T · exp) “default rng is T”

= (Es: δ · [T]× exp) / (Es: δ · [T]) “Def. 11 and 4.3(e)”

= (Es: δ · exp) / (Es: δ · 1) “[T]=1”

= (Es: δ · exp) . “(Es: δ · 1) = (
∑

s:S · δ.s) = 1”

More generally we observe that a nonzero range rng can be omitted whenever
it contains no free s, of which “being equal to the default value T” is a spe-
cial case. That is because it can be distributed out through the (Es) and then
cancelled.

7.3 Examples of Conditional Expectations

In our first example we ask for the probability that a value chosen according to
distribution Δ will be less than two, given that it is not zero.

Using the technique of Sec. 4.2 we write (Es:Δ | s �=0 · s<2) which, via Def. 11,
is equal to 1/2. Our earlier example at Sec. 6.2 also gives 1/2, the probability of
being less than two in the uniform distribution {{1, 2}}.

Our second example is the expected value of a fair die roll, given that the
outcome is odd. That is written (Es:D | smod 2 = 1), using the abbreviation
of 4.3(b) to omit the constructor s. Via Def. 11 it evaluates to (1+3+5)/3 = 3.

10 From (9) in Sec. 11 we will see this equivalently as (Es: {{s: δ | rng}} · exp).
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7.4 Comparison with Conventional Notation

Conventionally one refers to the expected value of some random variableX given
that some other random variable Y has a particular value y, writing E(X |Y=y).
With X,Y and the distribution referred to by E having been fixed in the sur-
rounding text, the expression’s value is a function of y.

Our first example in Sec. 7.3 is more of conditional probability than of condi-
tional expectation: we would state in the surrounding text that our distribution
is Δ, that event A is “is nonzero” and event B is “is less than two.” Then we
would have Pr(A|B) = 1/2.

In our second example, the random variable X is the identity on D, the
random variable Y is the mod 2 function, the distribution is uniform on D and
the particular value y is 1. Then we have E(X |Y=1) = 3.

8 Belief Revision: A Priori and A Posteriori Reasoning

8.1 A-Priori and A-Posteriori Distributions in Conventional Style:
Introduction and First Example

A priori, i.e. “before” and a posteriori, i.e. “after” distributions refer to situations
in which a distribution is known (or believed) and then an observation is made
that changes one’s knowledge (or belief) in retrospect. This is sometimes known
as Bayesian belief revision. A typical real-life example is the following.

In a given population the incidence of a disease is believed to be one
person in a thousand. There is a test for the disease that is 99% accurate.
A patient who arrives at the doctor is therefore a priori believed to have
only a 1/1,000 chance of having the disease; but then his test returns
positive. What is his a posteriori belief that he has the disease?

The patient probably thinks the chance is now 99%. But the accepted Bayesian
analysis is that one compares the probability of having the disease, and testing
positive, with the probability of testing positive on its own (i.e. including false
positives). That gives for the a posteriori belief

Pr(has disease ∧ test positive) / Pr(test positive)
= (1/1000)× (99/100) / ((1/1000)× (99/100) + (999/1000)× (1/100))
= 99 / (99 + 999)
≈ 9% ,

that is less than one chance in ten, and not 99% at all. Although he is believed
one hundred times more likely than before to have the disease, still it is ten times
less likely than he feared.
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8.2 Definition of a Posteriori Expectation

We begin with expectation rather than distribution, and define

Definition 12. A posteriori expectation. Given a distribution δ, an exper-
imental outcome rng and expression exp both possibly containing variable s
ranging over the base set of δ, the a posteriori conditional expectation of exp
over δ given rng is (Es: δ | rng · exp), as in Def. 11 but without requiring rng to
be Boolean. �
This economical reuse of the earlier definition, hinted at in Sec. 6.1, comes from
interpreting rng not as a predicate but rather as the probability, depending on
s, of observing some result. Note that since it varies with s it is not (necessarily)
based on any single probability distribution, as we now illustrate.

8.3 Second Example of Belief Revision: Bertrand’s Boxes

Suppose we have three boxes, identical in apprearance and named Box 0, Box 1
and Box 2. Each one has two balls inside: Box 0 has two black balls, Box 1 has
one white- and one black ball; and Box 2 has two white balls.

A box is chosen at random, and a ball is drawn randomly from it. Given that
the ball was white, what is the chance the other ball is white as well?

Using Def. 12 we describe this probability as (Eb:Δ | b/2 · b=2), exploiting
the box-numbering convention to write b/2 for the probability of observing the
event “ball is white” if drawing randomly from Box b. Since (

∑
b: {0, 1, 2} · b/2)

is 3/2 �= 1, it’s clear that b/2 is not based on some single distribution, even
though it is a probability. Direct calculation based on Def. 12 gives

(Eb:Δ | b/2 · b=2)

= (Eb: {{0, 1, 2}} · b/2× [b=2]) / (Eb: {{0, 1, 2}} · b/2)
= 1

3×
2
2 / (13×

0
2 + 1

3×
1
2 + 1

3×
2
2 )

= 1
3 / 1

2

= 2/3 .

The other ball is white with probability 2/3.

8.4 Third Example of Belief Revision: The Reign in Spain

In Spain the rule of succession is currently that the next monarch is the eldest
son of the current monarch, if there is a son at all: thus an elder daughter is
passed over in favour of a younger son. We suppose that the current king had
one sibling at the time he succeeded to the throne. What is the probability that
his sibling was a brother? 11

11 We see this as belief revision if we start by assuming the monarch’s only sibling is
as likely to be male as female; when we learn that the monarch is a Spanish king,
we revise our belief.
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The answer to this puzzle will be of the form

(E two siblings | one is king · the other is male) ,

and we deal with the three phrases one by one.
For two siblings we introduce two Boolean variables c{0,1}, that is c for “child”

and with the larger subscript 1 denoting the child with the larger age (i.e. the
older one). Value T means “is male,” and each Boolean will be chosen uniformly,
reflecting the an assumption that births are fairly distributed between the two
genders.

For the other is male we write c0 ∧ c1 since the king himself is male, and
therefore his sibling is male just when they both are. We have now reached

(Ec0, c1:Bool | one is king · c0 ∧ c1) . (2)

In the Spanish system, there will be a king (as opposed to a queen) just when
either sibling is male: we conclude our “requirements analysis” with the formula

(Ec0, c1:Bool | c0 ∨ c1 · c0 ∧ c1) . (3)

It evaluates to 1/3 via Def. 12: in Spain, kings are more likely to have sisters.
Proceeding step-by-step as we did above allows us easily to investigate alter-

native situations. What would the answer be in Britain, where the eldest sibling
becomes monarch regardless of gender? In that case we would start from (2)
but reach the final formulation (Ec0, c1:Bool | c1 · c0 ∧ c1) instead of the Span-
ish formulation (3) we had before. We could evaluate this directly from Def. 12;
but more interesting is to illustrate the algebraic possibilities for simplifying it:

(Ec0, c1:Bool | c1 · c0 ∧ c1) “British succession”

= (Ec0, c1:Bool | c1 · c0 ∧ T) “c1 is T, from the range”

= (Ec0, c1:Bool | c1 · c0) “Boolean identity”

= (Ec0:Bool | (Ec1:Bool · c1) · c0) “c1 not free in constructor (·c0): see below”

= (Ec0:Bool | 1/2 · c0) “Def. 7”

= (Ec0:Bool · c0) “remove constant range: recall Sec. 7.2”

= 1/2 . “Def. 7”

We set the above out in unusually small steps simply in order to illustrate its
(intentional) similarity with normal quantifier-based calculations. The only non-
trivial step was the one labelled “see below”: it is by analogy with the set equality
{s:S; s′:S′ | rng · exp} = {s:S | (∃s′:S′ · rng) · exp} that applies when s′ is
not free in exp. We return to it in Sec. 11.

8.5 General Distribution Comprehensions

Comparison of Def. 10 and Def. 12 suggests a general form for distribution
comprehensions, comprising both a range and a constructor. It is

Definition 13. General distribution comprehensions. Given a distribution δ,
an experimental outcome rng in variable s that ranges over the base set of δ
and a constructor exp, the general a posteriori distribution formed via that
constructor is determined by



62 C.C. Morgan

{{s: δ | rng · exp}}.e := (Es: δ | rng · [exp=e]) ,

for arbitrary e of the type of exp. �
Thus {{c0, c1:Bool | c0∨c1 · c0∧c1}} = T 1/3⊕F, giving the distribution of kings’
siblings in Spain.

8.6 Comparison with Conventional Notation

Conventional notation for belief revision is similar to the conventional notation
for conditional reasoning once we take the step of introducing the joint distribu-
tion.

In the first example, from Sec. 8.1, we would consider the joint distribution
over the product space, that is

Joint sample space (Cartesian product) Joint distribution×100, 000

{has disease �, doesn’t have disease �}
× {test positive �, test negative �}

� �� 1×99 1×1� 999×1 999×99

and then the column corresponding to �, i.e. test positive, assigns weights 99 and
999 to � and � respectively. Normalising those weights gives the distribution� 9%⊕� for the a posteriori health of the patient.

Thus we would establish that joint distribution, in the surrounding text, as
the referent of Pr, then define as random variables the two projection functions
H (health) and T (test), and finally write for example Pr(H=�|T=�) = 9% for
the a posteriori probability that a positive-testing patient has the disease.

9 Use in Computer Science for Program Semantics

9.1 “Elementary” Can Still Be Intricate

By elementary probability theory we mean discrete distributions, usually over
finite sets. Non-elementary would then include measures, and the subtle issues
of measurability as they apply to infinite sets. In Sec. 9.2 we illustrate how sim-
ple computer programs can require intricate probabilistic reasoning even when
restricted to discrete distributions on small finite sets.

The same intricate-though-elementary effect led to the Eindhoven notation in
the first place.

A particular example is assignment statements, which are mathematically ele-
mentary: functions from state to state. Yet for specific program texts those func-
tions are determined by expressions in the program variables, and they leave most
of those variables unchanged: working with syntactic substitutions is a better ap-
proach [2, 3], but that can lead to complex formulae in the program logic.

Careful control of variable binding, and quantifiers, reduces the risk of rea-
soning errors in the logic, and can lead to striking simplifications because of the
algebra that a systematic notation induces. That is what we illustrate in the
following probabilistic example.
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9.2 Case Study: Quantitative Noninterference Security

In this example we treat noninterference security for a program fragment, based
on the mathematical structure of Hidden Markov Models [8, 11, 16].

Suppose we have a “secret” program variable h of type H whose value could
be partly revealed by an assignment statement v:= exp to a visible variable v of
type V , if expression exp contains h. Although an attacker cannot see h, he can
see v’s final value, and he knows the program code (i.e. he knows the text of
exp).

Given some known initial distribution δ in DH of h, how do we express what
the attacker learns by executing the assignment, and how might we quantify the
resulting security vulnerability? As an example we define δ={{0, 1, 2}} to be a
distribution on h in H={0, 1, 2}, with v:= hmod 2 assigning its parity to v of
type V={0, 1}.

The output distribution over V that the attacker observes in variable v is

{{h: δ · exp}} , (4)

thus in our example {{h: {{0, 1, 2}} · hmod 2}}. It equals 0 2/3⊕ 1, showing that
the attacker will observe v=0 twice as often as v=1.

The attacker is however not interested in v itself: he is interested in h. When
he observes v=1 what he learns, and remembers, is that definitely h=1. But
when v=0 he learns “less” because the (a posteriori) distribution of h in that
case is {{0, 2}}. In that case he is still not completely sure of h’s value.

In our style, for the first case v=1 the a posteriori distribution of h is given by
the conditional distribution {{h: {{0, 1, 2}} | hmod 2 = 1}} = {{1}}; in the second
case it is however {{h: {{0, 1, 2}} | hmod2 = 0}} = {{0, 2}}; and in general it would
be {{h: {{0, 1, 2}} | hmod 2 = v}} where v is the observed value, either 0 or 1.

If in the example the attacker forgets v but remembers what he learned about
h, then 2/3 of the time he remembers that h has distribution {{0, 2}}, i.e. is equally
likely to be 0 or 2; and 1/3 of the time he remembers that h has distribution
{{1}}, i.e. is certainly 1. Thus what he remembers about h is

{{0, 2}} 2/3⊕ {{1}} , (5)

which is a distribution of distributions. 12 In general, what he remembers about
h is the distribution of distributions Δ given by

Δ := {{v: {{h: δ · exp}} · {{h: δ | exp=v}}}} , (6)

because v itself has a distribution, as we noted at (4) above; and then the a pos-
teriori distribution {{h: δ | exp=v}} of h is determined by that v. The attacker’s
lack of interest in v’s actual value is reflected in v’s not being free in (6).

We now show what the attacker can do with (6), his analysis Δ of the pro-
gram’s meaning: if he guesses optimally for h’s value, with what probability

12 In other work, we call this a hyperdistribution [15–17].
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will he be right? For v=0 he will be right only half the time; but for v=1 he
will be certain. So overall his attack will succeed with probability 1

2 2/3⊕ 1 =
2
3×

1
2 +

1
3×1 = 2/3, obtained from (5) by replacing the two distributions with the

attacker’s “best guess probability” for each, the maximum of the probabilities
in those distributions. We say that the “vulnerability” in this example is 2/3.

For vulnerability in general take (6), apply the “best guess” strategy and then
average over the cases: it becomes (Eη:Δ · (maxh:H · η.h)), that is the maxi-
mum probability in each of the “inner” distributions η of Δ, averaged according
to the “outer” probability Δ itself assigns to each. 13

It is true that (6) appears complex if all you want is the information-theoretic
vulnerability of a single assignment statement. But a more direct expression for
that vulnerability is not compositional for programs generally; we need Δ-like
semantics from which the vulnerability can subsequently be calculated, because
they contain enough additional information for composition of meanings. We
show elsewhere that (6) is necessary and sufficient for compositionality [15].

9.3 Comparison with Conventional Notation

Given the assignment statement v:= exp as above, define random variables F for
the function exp in terms of h, and I for h itself (again as a function of h, i.e.
the identity).

Then we determine the observed output distribution of v from the input
distribution δ of h by the push-forward of F∗(δ), from Sec. 5.3, of F over δ.

Then define function gδ, depending on h’s initial distribution δ, that gives for
any value of v the conditioning of δ by the event F=v. That is gδ(v):= Pr(I|F=v)
where the Pr on the right refers to δ.

Finally, the output hyperdistribution (6) of the attacker’s resulting knowledge
of h is given by the push-forward gδ∗(F∗(δ)) of gδ over F∗(δ) which, because
composition distributes through push-forward, we can rewrite as (gδ◦F )∗(δ).

An analogous treatment of (6) is given at (8) below, where superscript δ in
gδ here reflects the fact that δ is free in the inner comprehension there.

9.4 Comparison with Qualitative Noninterference Security

In a qualitative approach [19, 20] we would suppose a set H := {0, 1, 2} of hidden
initial possibilities for h, not a distribution of them; and then we would execute
the assignment v:=h mod 2 as before. An observer’s deductions are described
by the set of sets {{0, 2}, {1}}, a demonic choice between knowing h∈{0, 2} and
knowing h=1. The general v:= exp gives {v: {h:H · exp} · {h:H | exp=v}},
which is a qualitative analogue of (6). 14

13 This is the Bayes Vulnerability of Δ [23].
14 Written conventionally that becomes {{h∈H | exp=v} | v∈{exp | h∈H}}, where the

left- and right occurrences of “|” now have different meanings. And then what does
the middle one mean?
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With the (extant) Eindhoven algebra of set comprehensions, and some calcu-
lation, that can be rewritten

{h:H · {h′:H | exp=exp′}} , (7)

where exp′ is exp[h\h′]. It is the partition of H by the function (λh:H · exp).
Analogously, with the algebra of distribution comprehensions (see (9) below) we
can rewrite (6) to

{{h: δ · {{h′:H | exp=exp′}}}} (8)

The occurrence of (7) and others similar, in our earlier qualitative security work
[18, App. A], convinced us that there should be a probabilistic notational ana-
logue (8) reflecting those analogies of meaning. This report has described how
that was made to happen.

10 Monadic Structures and Other Related Work

The structure of the Eindhoven notation is monadic: for distributions it is the
Giry monad Π on a category Mes of measurable spaces, with measurable maps
as its morphisms [7]; for sets, it is the powerset monad P on Set. That accounts
for many similarities, among which is the resemblance between (7) and (8).

The functor D takes a base set (actually measure space) to distributions (ac-
tually, measures) on it; and D applied to an arrow is the push-forward ()∗. The
unit transformation η(x):= {{x}} forms the point distribution, and the multiply
transformation μ.Δ:= (Eδ:Δ · δ) = EΔ forms a weighted average of the distri-
butions δ found within a distribution of distributions Δ.

Similarly, functor P takes a set to the set of its subsets; and P applied to an
arrow is the relational image. The unit transformation takes x to singleton {x},
and multiply makes distributed union (

⋃
x:X · x) = ⋃

X from set of sets X .
There are also correspondences with monads in functional programming; and

a number of functional-programming packages have been put together on that
basis [22, 4, 12, 6]. The goal of those is mainly to enable probabilistic functional
programming, except for the last one where the emphasis is also on a notation
for reasoning.

There is an obvious connection with multisets, where the value associated
with elements is a nonnegative integer, rather than a fraction (a probability) as
here, and there is no one-summing requirement. There might thus be a more
general notational treatment applying to sets, multisets and distributions all at
once, if a unifying principle for conditioning can be found.

A notable example of other related work, but with a different background,
is Hehner’s Probabilistic Perspective [9]. A distribution there is an expression
whose free variables range over a separately declared sample space: for each
assignment of values to the free variables, the expression gives the probability
of that assignment as an observation: thus for n:N+ the expression 2−n is an
example of a geometric distribution on the positive integers.

With a single new operator �, for normalisation, and existing programming-
like notations, Hehner reconstructs many familiar artefacts of probability theory
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(including conditional distributions and a posteriori analyses), and convincingly
demystifies a number of probability puzzles, including some of those treated here.

A strategic difference between our two approaches is (we believe) that Hehner’s
aim is in part to put elementary probability theory on a simpler, more rational
footing; we believe he succeeds. In the sense of our comments in Sec. 1, he is
working “forwards.” As we hope Sec. 9 demonstrated, we started instead with
existing probabilistic constructions (essentially Hidden Markov Models as we
explain elsewhere [16]), as a program semantics for noninterference, and then
worked backwards towards the Eindhoven quantifier notation. One of the senses
in which we met Hehner “in the middle” is that we both identify discrete dis-
tributions as first-class objects, for Hehner a real-valued expression over free
variables of a type and for us a function from that type into the reals.

In conventional probability theory that explicit treatment of distributions,
i.e. giving them names and manipulating them, does not occur until one reaches
either proper measures or Markov chains. For us it is (in spirit) the former; we
believe part of Hehner’s approach can be explained in terms of the latter.

A technical difference is our explicit treatment of free- and bound variables,
a principal feature of the Eindhoven notation and one reason we chose it.

11 Summary and Prospects

We have argued that Eindhoven-style quantifier notation simplifies many of the
constructions appearing in elementary probability. As evidence for this we invite
comparison of the single expression (8) with the paragraphs of Sec. 9.3.

There is no space here to give a comprehensive list of calculational identities;
but we mention two of them as examples of how the underlying structure men-
tioned above (Sec. 10) generates equalities similar to those already known in the
Eindhoven notation applied to sets.

One identity is the trading rule

(Es: {{s: δ | rng ′ · exp′}} | rng · exp)
= (Es: δ | rng ′ × rng [s\exp′] · exp[s\exp′]) , (9)

so-called because it “trades” components of an inner quantification into an outer
one. Specialised to defaults for true for rng and s for exp′, it gives an alternative
to Def. 11. An identity similar to this took us from (6) to (8).

A second identity is the one used in Sec. 8.4, that (Es: δ; s′: δ′ | rng · exp)
equals (Es: δ | (Es′: δ′ · rng) · exp) when s′ is not free in exp. As noted there, this
corresponds to a similar trading rule between set comprehension and existential
quantification: both are notationally possible only because variable bindings are
explicitly given even when those variables are not used. This is just what the
Eindhoven style mandates.

The notations here generalise to (non-discrete) probability measures, i.e. even
to non-elementary probability theory, again because of the monadic structure.
For example the integral of a measurable function given as expression exp in a
variable s on a sample space S, with respect to a measure μ, could conventionally
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be written
∫
exp μ(ds). 15 We write it however as(Es:μ · exp), and have access

to (9)-like identities such as

(Es: {{s′:μ · exp′}} · exp) = (Es′:μ · exp[s\exp]) .
(See App. A for how this would be written conventionally for measures.)

We ended in Sec. 9 with an example of how the notation improves the
treatment of probabilistic computer programs, particularly those presented in
a denotational-semantic style and based on Hidden Markov Models for quan-
titative noninterference security [11, 16]. Although the example concludes this
report, it was the starting point for the work.
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Appendices

A Measure Spaces

More general than discrete distributions, measures are used for probability over
infinite sample spaces, where expected value becomes integration [5]. Here we
sketch how “measure comprehensions” might appear; continuous distributions
would be a special case of those.

In Riemann integration we write
∫ b

a x2 dx for the integral of the real-valued

squaring-function sqr := (λx · x2) over the interval [a, b], and in that notation
the x in x2 is bound by the quantifier dx. The scope of the binding is from

∫
to dx.

In Lebesgue integration however we write
∫
sqr dμ for the integral of that

same function over a measure μ.
The startling difference between those two notations is the use of of the con-

crete syntax “d” that in Riemann integration’s dx binds x, while for measures
the μ in dμ is free. To integrate the expression form of the squaring-function over
μ we have to bind its x in another way: two typical approaches are

∫
x2 μ(dx)

and
∫
x2 dμ(x) [1]. 16

An alternative is to achieve some uniformity by using d(·) in the same way
for both kinds of integrals [14]. We use

∫
exp dx for

∫
(λx · exp) in all cases; and

the measure, or the bounds, are always found outside the expression, next to the
integral sign

∫
. Thus we write

∫
μ
(·) for integration over general measure μ, and

then the familiar
∫ b

a (·) is simply a typographically more attractive presentation
of the special case

∫
[a,b]

(·) over the uniform measure on the real interval [a, b]. 17

Then with f := (λx · F ) we would have the equalities∫
{{c}}
F dx =

∫
{{c}}
f = f.c one-point rule

and

∫
g∗.μ
F dx =

∫
g∗.μ
f =

∫
μ

f◦g recall push-forward
from Sec. 5.3.

In the second case we equate the integral of f , over an (unnamed) measure
formed by pushing function g forward over measure μ, with the integral of the
functional composition f◦g over measure μ directly.

For complicated measures, unsuitable as subscripts, an alternative for the
integral notation

∫
μ
exp dx is the expected value (Ex: μ · exp). The one-point

rule is then written (Ex: {{exp}} · F ) = F [x\exp]. In the second case we have

16 And there are more, since “[if] we want to display the argument of the integrand
function, alternate notations for the integral include

∫
x∈X

f(x) dμ. . . ” [13].
17 This is more general than probabiity measures, since the (e.g. Lebesgue) measure

b−a of the whole interval [a, b] can exceed one.
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(Ex: {{y:μ · G}} · F ) = (Ey:μ · F [x\G]) , (10)

where function g has become the lambda abstraction (λy · G). In Lem. 3 below
we prove (10) for the discrete case.

B Exploiting Non-freeness in the Constructor

Here we prove the nontrivial step referred forward from Sec. 8.4: the main as-
sumption is that s′ is not free in exp. But should δ itself be an expression, we
require that s′ not be free there either.

(Es: δ; s′: δ′ | rng · exp)
= (Es: δ; s′: δ′ · rng × exp) / (Es: δ; s′: δ′ · rng) “Def. 11”

=
(
∑

s:S; s′:S′ · δ.s× δ′.s′ × rng × exp)

(
∑

s:S; s′:S′ · δ.s× δ′.s′ × rng)
“Def. 7”

=
(
∑

s:S · δ.s× (
∑

s′:S′ · δ′.s′ × rng)× exp)

(
∑

s:S · δ.s× (
∑

s′:S′ · δ′.s′ × rng))
“s′ not free in exp”

= (Es: δ · (Es′: δ′ · rng)× exp) / (Es: δ · (Es′: δ′ · rng)) “Def. 7”

= (Es: δ | (Es′: δ′ · rng) · exp) . “Def. 11”

C Assorted Proofs Related to Definitions18

Lemma 1. {{s: δ · exp}} is a distribution on {s: �δ� · exp}
Proof: We omit the simple proof that 0≤{{s: δ · exp}}; for the one-summing
property, we write S for �δ� and calculate

(
∑

e: {s:S · exp} · {{s: δ · exp}}.e) “let e be fresh”

= (
∑

e: {s:S · exp} · (Es: δ · [exp=e])) “Def. 9”

= (
∑

e: {s:S · exp} · (∑ s:S · δ.s×[exp=e])) “Def. 7”

= (
∑

s:S; e: {s:S · exp} · δ.s×[exp=e]) “merge and swap summations”

= (
∑

s:S; e: {s:S · exp} | exp=e · δ.s) “trading”

= (
∑

s:S · δ.s) “one-point rule”

= 1 . “δ is a distribution”

�
Lemma 2. {{s: δ | rng}} is a distribution on �δ� if (Es: δ · rng)�=0

18 We thank Roland Backhouse for the suggestion to include the first two of these.
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Proof: We omit the simple proof that 0≤{{s: δ | rng}}; for the one-summing
property, we write S for �δ� and calculate

(
∑

s′:S · {{s: δ | rng}}.s′) “let s′ be fresh”

= (
∑

s′:S · (Es: δ · rng × [s=s′]) / (Es: δ · rng)) “Def. 10”

= (
∑

s′:S · (Es: δ · rng × [s=s′])) / (Es: δ · rng) “s′ not free in denominator”

= (Es: δ · rng) / (Es: δ · rng) “one-point rule; Def. 7”

= 1 . “(Es: δ · rng) �=0”

�
Lemma 3. (Ex: {{y: δ · G}} · F ) = (Ey: δ · F [x\G])

This is Equation (10) in the discrete case.

Proof: Let X be the support of {{y: δ · G}}, for which a more concise notation
is given in App. D below, and let Y be the support of δ; we calculate

(Ex: {{y: δ · G}} · F )
= (

∑
x:X · {{y: δ · G}}.x× F ) “Def. 7”

= (
∑

x:X · (Ey: δ · [G=x])× F ) “Def. 9”

= (
∑

x:X · (∑ y:Y · δ.y × [G=x])× F ) “Def. 7”

= (
∑

y:Y ;x:X · δ.y × [G=x]× F ) “distribution of summations”

= (
∑

y:Y · δ.y × F [x\G]) “one-point rule for summation”

= (Ey: δ · F [x\G]) . “Def. 7”

�
From Lem. 3 we have immediately an analogous equality for distributions, since
distribution comprehensions are a special case of expected values: a more suc-
cinct, point-free alternative to Def. 9 and Def. 13 is given by the equality

{{s: δ | rng · exp}} = (Es: δ | rng · {{exp}}) , 19 (11)

where the right-hand expected value is being taken in a vector space (of discrete
distributions). This is how we simplified (6) to (8) in Sec. 9.

D Further Identities

The identities below are motivated by the first one, i.e. Sec. D.1, justifying the
idea that in a comprehension with both range and constructor one can think in
terms of enforcing the range as a first step, and then the constructor to what
results. The identities are listed in order of increasing generality.

For conciseness in this section we use Enew
old for substitution

and letters R,E instead of words rng, exp for expressions
and �s: δ | rng · exp� for the support �{{s: δ | rng · exp}}�.
19 from (Es: δ | rng · {{exp}}).e = (Es: δ | rng · {{exp}}.e) = (Es: δ | rng · [exp=e]) .
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D.1 —————————

(Es: {{s: δ | R}} · E)
= (Ee: {{s: δ | R}} · Ee

s) “fresh variable e”

= (
∑

e: �s: δ | R� · {{s: δ | R}}.e× Ee
s)

= (
∑

e: �s: δ | R� · (Es: δ | R · [s=e])× Ee
s)

= (
∑

e: �s: δ | R� · (Es: δ · R× [s=e])× Ee
s/(Es: δ · R))

= (
∑

e: �s: δ | R� · δ.e×Re
s × Ee

s/(Es: δ · R)) “one-point rule”

= (
∑

e: �s: δ | R� · δ.e×Re
s × Ee

s )/(Es: δ · R) “e not free in R or δ”

= (Ee: δ · Re
s × Ee

s )/(Es: δ · R) “definition E and �s: δ | R”
= (Es: δ · R× E)/(Es: δ · R) “e not free in R,E”

= (Es: δ | R · E) . “Def. 11”

D.2 ————————— D.1 for distributions

{{s: {{s: δ | R}} · E}}
= {{s: δ | R · E}} . “from Sec. D.1 under the same conditions, using (11)”

D.3 —————————

An elaboration of Sec. D.1 with constructor F , generalising Lem. 3.

(Es: {{s: δ | R · F}} · E)
=

(
∑

e: �s: δ | R · F � · (Es: δ · R× [F=e])× Ee
s/(Es: δ · R))

“as for Sec. D.1. . . ”

=
(
∑

e: �s: δ | R · F � · (∑ s: �δ� · δ.s×R× [F=e])× Ee
s/(Es: δ · R))

“. . . but cannot use one-point wrt. F”

= (
∑

s: �δ�; e: �s: δ | R · F � · δ.s×R× [F=e]× Ee
s/(Es: δ · R))

= (
∑

s: �δ� · δ.s× R× EF
s /(Es: δ · R)) “if δ.s and R both nonzero,

then F∈�s: δ | R · F ;
e not free in R”

= (
∑

s: �δ� · δ.s× R× EF
s )/(Es: δ · R)

= (Es: δ · R× EF
s )/(Es: δ · R)

= (Es: δ | R · EF
s ) .

D.4 ————————— D.3 for distributions

{{s: {{s: δ | R · F}} · E}}
= {{s: δ | R · EF

s }} . “from Sec. D.3, under the same conditions”
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D.5 —————————

An elaboration of Sec. D.3 with range G.

(Es: {{s: δ | R · F}} | G · E)
= (Ee: {{s: δ | R · F}} | Ge

s · Ee
s )

= (Ee: {{s: δ | R · F}} · Ge
s × Ee

s )/(Ee: {{s: δ | R · F}} · Ge
s)

= (Es: δ | R · GF
s × EF

s )/(Es: δ | R · GF
s ) “Sec. D.3”

=
(Es: δ · R×GF

s × EF
s )/(Es: δ · R)

(Es: δ · R×GF
s )/(Es: δ · R)

“if (Es: δ · R) nonzero”

= (Es: δ · R×GF
s × EF

s ) / (Es: δ · R×GF
s )

= (Es: δ | R ×GF
s · EF

s ) .

D.6 ————————— D.5 for distributions

{{s: {{s: δ | R · F}} | G · E}}
= {{s: δ | R×GF

s · EF
s }} . “from Sec. D.5, under the same conditions”

E A Special Notation for Kernel

Expression (8) suggests that distribution δ is partitioned into equivalence classes
based on equality of elements s: �δ� wrt. the function (λs · exp). For sets (i.e.
without probability) this is a well-known construction that partitions a set, con-
verting it into a set of pairwise-disjoint equivalence classes based on equality
with respect to a function. Thus we propose

Definition 14. Distribution kernel The kernel of a distribution δ with respect
to a range rng in variable s is

(Ks: δ/rng) := {{s:Δ · {{s′:Δ | rng=rng [s\s′]}}}} .

�
Def. 14 gives a still more compact alternative (Kh: δ/exp) for the effect of the
assignment v:= exp on incoming distribution δ over hidden variable h.
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Abstract. Lucy-n is a language for programming networks of processes
communicating through bounded buffers. A dedicated type system,
termed a clock calculus, automatically computes static schedules of the
processes and the sizes of the buffers between them.

In this article, we present a new algorithm which solves the subtyping
constraints generated by the clock calculus. The advantage of this algo-
rithm is that it finds schedules for tightly coupled systems. Moreover, it
does not overestimate the buffer sizes needed and it provides a way to
favor either system throughput or buffer size minimization.

1 Introduction

The n-synchronous model [8] is a data-flow programming model. It describes
networks of processes that are executed concurrently and communicate through
buffers of bounded size. It combines concurrency, determinism and flexible com-
munications. These properties are especially useful for programming multimedia
applications.

A language called Lucy-n [17] has been proposed for programming in the
n-synchronous model. It is essentially Lustre [5] extended with a buffer oper-
ator. Lucy-n provides a static analysis that infers the activation conditions of
computation nodes and the related sizes of buffers. This analysis is in the tra-
dition of the clock calculus of the synchronous data-flow languages [10]. A clock
calculus is a dedicated type system that ensures that a network of processes can
be executed in bounded memory. The original clock calculus ensures that a net-
work can be executed without buffering [6]. In the synchronous languages, each
flow is associated with a clock that defines the instants where data is present.
The clocks are infinite binary words where the occurrence of a 1 indicates the
presence of a value on the flow and the occurrence of a 0 indicates the absence
of a value. Here is an example of a flow x and its clock:

x 2 5 3 7 9 4 6 . . .
clock(x) 1 1 0 1 0 1 1 1 0 0 1 . . .

� Presently at Prove & Run.

J. Gibbons and P. Nogueira (Eds.): MPC 2012, LNCS 7342, pp. 74–101, 2012.
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The clock calculus forces each expression to satisfy a typing constraint similar
to the following (e1+e2 is the pointwise application of the addition operator +):

H � e1 : ct1 | C1 H � e2 : ct2 | C2

H � e1 + e2 : ct3 | {ct1 === ct2 === ct3} ∪ C1 ∪ C2

This rule establishes that in the typing environment H , the expression e1 + e2
has a clock of type ct3 if e1 has a clock of type ct1, e2 a clock of type ct2 and if
the constraint ct1 === ct2 === ct3 is satisfied.1 Type equality ensures clock equality.
Thus two processes producing flows of the same type can be composed without
buffers.

The traditional clock calculus of synchronous languages only considers equal-
ity constraints on types; adapting the clock calculus to the n-synchronous model
requires the introduction of a subtyping rule for the buffer primitive. If a flow
whose clock is of type ct can be stored in a buffer of bounded size to be consumed
on a clock of type ct′, we say that ct is a subtype of ct′, denoted ct <:<:<: ct′:

H � e : ct | C
H � buffer(e) : ct′ | {ct <:<:<: ct′} ∪ C

The clock calculus of Lucy-n considers both equality and subtyping constraints.
To solve such constraints, we have to be able to unify types (ct1 === ct2)

and to verify the subtyping relation (ct1 <:<:<: ct2). These two operations depend
very much on the clock language. One especially interesting and useful clock
language can be built from ultimately periodic binary words which comprise a
finite prefix followed by an infinite repetition of a finite pattern. An algorithm to
solve constraints on the types of ultimately periodic clocks is proposed in [17].
The algorithm exploits clock abstraction [9] where the exact “shape” of clocks is
forgotten in favor of simpler specifications of the presence instants of the flows:
their asymptotic rate and two offsets bounding the potential delay with respect
to this rate.

Type constraints on abstract clocks can be solved efficiently. But, the loss of
precise information leads to over-approximations of buffer sizes. Moreover, even
if a constraint system has a solution, the resolution algorithm can fail to find it
because of the abstraction. Therefore, when clocks are simple, we prefer to find
buffer sizes precisely, rather than quickly.

In this article, we present an algorithm to solve the constraints without clock
abstraction. This problem is difficult for two reasons. First, such an algorithm
must consider all the information present in the clocks. If the prefixes and peri-
odic patterns of the words that describe the clocks are long, there may be com-
binatorial explosions. Second, the handling of the initial behaviors (described
by the prefixes of the words) is always delicate [2] and not always addressed [1].
Dealing with the initial and periodic behaviors simultaneously is a source of com-
plexity but, to the best of our knowledge, there is no approach that manages to
treat them in separate phases.

1 The sets C1 and C2 contain the constraints collected during the typing of the ex-
pressions e1 and e2.
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A program (d) is a sequence of node and clock definitions.
d ::= let node f(pat)= e node definition

| let clock c= ce clock definition
| d d sequence of definitions

A pattern (pat) can be a variable or a tuple.
pat ::= x | (pat,...,pat) pattern

The body of a node is defined by an expression (e).
e ::= i constant flow

| x flow variable
| (e,...,e) tuple
| e op e imported operator
| if e then e else e mux operator
| f e node application
| e where rec eqs local definitions
| e fby e initialized delay
| e when ce | e whenot ce sampling
| merge ce e e merging
| buffer(e) buffering

eqs ::= pat= e | eqs and eqs mutually recursive equations

Clock expressions (ce) are either clock names or ultimately periodic words.
ce ::= c | u(v)
u ::= ε | 0.u | 1.u
v ::= 0 | 1 | 0.v | 1.v

Fig. 1. The Lucy-n kernel

Section 2 and 3 we present the Lucy-n language and its clock calculus by way
of an extended example. Section 4 introduces the properties used in Section 5,
which presents an algorithm for resolving constraints. Section 6 discusses results
obtained on examples and compares them with previous resolution algorithms.
Finally, Section 7 concludes the article.

An extended version of the article [16] with additional details and proofs, the
code of the examples, a commented implementation of the algorithm and the
Lucy-n compiler are available at http://www.lri.fr/~mandel/mpc12.

2

2 The Lucy-n Language

The kernel of the Lucy-n language is summarized in Figure 1. In this section, we
present the language through the programming of a GSM voice encoder com-
ponent. This component is a cyclic encoder. It takes as input a flow of bits

2 While the present paper is based on [15], it presents some new results. In particular,
we generalize the first version of the algorithm, which allows us to define both a
semi-decidable and complete algorithm and a decidable algorithm which is complete
on a well defined class of systems. Finally, we also explain how to favor either system
throughput or buffer size minimization.

http://www.lri.fr/~mandel/mpc12
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Fig. 2. Circuit for division [19] by X3 + X + 1. The input flow is the sequence of
fifty coefficients of the polynomial to divide. After consuming the fiftieth input bit, all
the coefficients of the quotient polynomial have been produced at the output and the
registers contain the coefficients of the remainder polynomial.

representing voice samples and produces an output flow that contains 3 new re-
dundancy bits after every 50 data bits. The redundancy bits are the coefficients
of the remainder of the division of the 50 bits to encode, considered as a poly-
nomial of degree 49, by a polynomial peculiar to the encoder, here X3 +X + 1.

The classical circuit to divide a polynomial is shown in Figure 2; the op-
erator ⊕ represents the exclusive-or and boxes represent registers initialized
to false.

The exclusive-or operator can be programmed as follows in Lucy-n (corre-
sponding block diagrams are shown to the right of code samples):

let node xor (a, b) = o where

rec o = (a && (not b)) || (b && (not a))

val xor : (bool * bool) -> bool

val xor :: forall ’a. (’a * ’a) -> ’a

xor

not

&&

not

&&

||

a

b

o

The node xor takes as input two flows a and b and computes the value of the
output flow o. The value of o is defined by the equation o = (a && (not b)) ||

(b && (not a)) where the scalar operators &&, || and not are applied pointwise
to their input flows. Hence, if we apply the node xor to two flows x and y, we
obtain a new flow xor(x,y):

x true false true false false . . .
y false false true true false . . .

xor(x,y) true false false true false . . .

The definition of the xor node is followed by two facts automatically inferred
by the Lucy-n compiler: the data type (val xor : (bool * bool) -> bool), and
the clock type (val xor :: forall ’a.(’a * ’a) -> ’a). In the clock type, the
variable ’a represents the activation condition of the node. The type ’a * ’a

-> ’a means that at each activation, the two inputs are consumed (thus, they
must be present) and the output is produced instantaneously. Since ’a is a
polymorphic variable, this type indicates that the node can be applied to any
input flows that have the same clock as each other, whatever that clock is, and
that it will have to be activated according to the instants defined by this clock.

Using this new node and the initialized register primitive of Lucy-n, fby (fol-
lowed by), we can program the circuit of Figure 2.
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div X3 X 1

xor fby xor fbyfby

back

false false falsei

reg0

reg1

reg2

let node div_X3_X_1 i = (reg0,reg1,reg2) where

rec reg0 = false fby (xor(i, back))

and reg1 = false fby reg0

and reg2 = false fby (xor(reg1, back))

and back = reg2

val div_X3_X_1 : bool -> (bool * bool * bool)

val div_X3_X_1 :: forall ’a. ’a -> (’a * ’a * ’a)

The equation reg1 = false fby reg0 means that reg1 is equal to false at
the first instant and equal to the preceding value of reg0 at the following in-
stants. Note that the definitions of flows reg0, reg1, reg2 and back are mutually
recursive.

In order to divide a flow of polynomials, the div_X3_X_1 node must be mod-
ified. After the arrival of the coefficients of each polynomial, that is after every
50 input bits, the three registers must be reset to false. Since the content of
some registers is the result of an exclusive-or between the feedback edge back and
the preceding register (or the input flow for the first register), to reset the regis-
ters to false, we have to introduce three false values as input and three false
values on the feedback wire, every 50 input bits.3

The clock type of the node div_X3_X_1 modified accordingly is:4

val div_X3_X_1 :: forall ’a. ’a on (1^50 0^3) -> (’a * ’a * ’a)

The notation (1^50 0^3) represents the infinite repetition of the binary word
15003 where 150 is the concatenation of fifty 1s and 03 the concatenation of
three 0s. To understand the type of div_X3_X_1, notice that ’a (the activation
rhythm of the node) defines the notion of instants for the equations of the node.
The clock type of the input flow is ’a on (1^50 0^3). It means that the input
flow has to be present during the first 50 instants, then absent for 3 instants (dur-
ing which the registers are reset). Therefore, this node can compute one division
every 53 instants of the rhythm ’a. Finally, the clock type of the three outputs
is ’a, it means that the values of the registers are produced at each instant.

Now, to define a node redundancy which computes only the redundancy
bits corresponding to a flow of polynomials, we sample the output of the node
div_X3_X_1. In our implementation of the node div_X3_X_1, the remainder of
the division is contained in the registers after the 50th input bit and output at the
51st instant. Thus, the redundancy node has to sample the output of div_X3_X_1
at the 51st instant. For this, we use the when operator. It is parameterized by a
flow and a sampling condition, and it filters the values of the flow following the
pattern defined by the sampler: if the flow is absent, the output of the when is

3 It is implicit, here and in the following, that such behaviors iterate repeatedly.
4 The source code of the modified node is available at
http://www.lri.fr/~mandel/mpc12/gsm.ls.html.

http://www.lri.fr/~mandel/mpc12/gsm.ls.html
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absent; if the input flow is present and the next element of the sampler is 1, the
value of the flow is output; if the input flow is present and the next element of
the sampler is 0, the output of the when is absent. To keep only the 51st element
of a sequence of 53 bits, we use the sampling condition (050100):

let node redundancy i = (bit0,bit1,bit2) where

rec (reg0,reg1,reg2) = div_X3_X_1 i

and bit0 = reg0 when (0^50 100)

and bit1 = reg1 when (0^50 100)

and bit2 = reg2 when (0^50 100)

val redundancy : bool -> (bool * bool * bool)

val redundancy ::

forall ’a. ’a on (1^50 0^3) ->

(’a on (0^50 100) * ’a on (0^50 100) * ’a on (0^50 100))

redundancy

when

(050100)

when

(050100)

when

(050100)

reg0

reg1

reg2

div X3 X 1
i

bit2

bit1

bit0

To append 3 redundancy bits after 50 data bits, we use the merge operator.
Its parameters are a merging condition and two flows; merge ce e1 e2 outputs
the value of e1 when ce is equal to 1 and the value of e2 when ce is equal
to 0. The flows e1 and e2 must be present on disjoint instants of the clock
of ce: when ce is equal to 1, e1 must be present and e2 absent and vice versa
when ce is equal to 0. Thus, to incorporate the first redundancy bit (bit0)
after 50 input bits, we use the merging condition (1500) and obtain a flow
of 51 bits. Then, we use the condition (1510) to incorporate the second re-
dundancy bit, and finally the condition (1520) for the third redundancy bit.

let node join_50_3 (i, bit0, bit1, bit2) = o3 where

rec o1 = merge (1^50 0) i bit0

and o2 = merge (1^51 0) o1 bit1

and o3 = merge (1^52 0) o2 bit2

val join_50_3 : forall ’x.

(’x * ’x * ’x * ’x) -> ’x

val join_50_3 :: forall ’a.

(’a on (1^52 0) on (1^51 0) on (1^50 0) *

’a on (1^52 0) on (1^51 0) on not (1^50 0) *

’a on (1^52 0) on not (1^51 0) * ’a on not (1^52 0)) -> ’a

join 50 3

m
e
r
g
e

(1500)

m
e
r
g
e

(1510)

m
e
r
g
e

(1520)

o1

o2

o3

i

bit0

bit1

bit2

We will see in Section 4 that the clock type of join_50_3 is equivalent to:
∀α. (α on (150000)× α on (050100)× α on (050010)× α on (050001))→ α

This type expresses that the flow containing data must be present for the first
50 instants, and then absent for the following 3 instants. The flows containing
the first, second and third redundancy bits must arrive at the 51st, 52nd, and
53rd instants respectively.

To complete the cyclic encoder, we must use the node redundancy to compute
the three redundancy bits and the node join_50_3 to incorporate them into the
input flow. But the redundancy bits are produced at instant 51 which is too
early for the join_50_3 node which expects them successively at instants 51, 52
and 53. They must thus be stored using the buffer operator:
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39 let node cyclic_encoding i = o where

40 rec (bit0, bit1, bit2) = redundancy i

41 and o = join_50_3 (i, buffer bit0,

42 buffer bit1,

43 buffer bit2)

val cyclic_encoding : bool -> bool

val cyclic_encoding ::

forall ’a. ’a on (1^50 0^3) -> ’a

Buffer line 41, characters 24-35: size = 0

Buffer line 42, characters 24-35: size = 1

Buffer line 43, characters 24-35: size = 1

o

i

cyclic encoding

bit0

bit1

bit2

redundancy

j
o
i
n
5
0
3

The compiler automatically computes the buffer sizes required. We can see that
the buffer at line 41 is not really needed, the inferred size is 0. This buffer
is used for the communication of the first redundancy bit (bit0) between the
redundancy node and the join_50_3 node. This bit is produced at the 51st
instant and consumed immediately. The two other redundancy bits (bit1 and
bit2) are also produced at the 51st instant, but they are consumed later. Thus
the second bit has to be stored in a buffer of size 1 for 1 instant and the third
bit has to be stored in a buffer of size 1 for 2 instants.

Notice that before calculating the buffer sizes, the compiler must infer the
activation rhythm of each node. When the output of one node is consumed
directly by another, i.e., when there is no buffer between them, the nodes must
be activated such that the outputs of the first node are produced at the very
same instants that they are to be consumed as inputs by the second node. When
the output of one node is consumed by another through a buffer, the nodes must
be activated such that the buffer is not read when it is empty and such that there
is no infinite accumulation of data in the buffer.

3 Clock Calculus

We have seen in Section 1 that each expression in a program must satisfy a type
constraint (the rules of the clock calculus are detailed in annex A). To illustrate
the typing inference algorithm which collects the constraints, we return to the
cyclic_encoding node of the previous section.

bit0

bit1

bit2

αj on (150000)

αj on (050100)

αj on (050010)

αj on (050001)

j
o
i
n
5
0
3

i

αi αr on (15003)

cyclic encoding

redundancy
αj

o

αr on (050100)

αr on (050100)

αr on (050100)
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If we associate with the input i the clock type variable αi, the expression
redundancy i generates the equality constraint αi === αr on (15003). Indeed,
once instantiated with a fresh variable αr, the clock type of the node redundancy
is αr on (15003)→ (αr on (050100)×αr on (050100)×αr on (050100)). Hence,
the type of its input must be equal to αr on (15003). Consequently, the equa-
tion (bit0, bit1, bit2) = redundancy i adds to the typing environment
that bit0, bit1 and bit2 are of type αr on (050100).

Similarly, the application of join_50_3 adds some constraints on the types
of its inputs. Once instantiated with a fresh type variable αj , the clock type of
the node join_50_3 is (αj on (150000) × αj on (050100) × αj on (050010) ×
αj on (050001))→ αj . This type imposes the constraint that the type of the first
input (here αi, the type of the data input i) has to be equal to αj on (150000)

and the types of the other inputs (here αr on (050100)) must be, respectively,
subtypes of αj on (050100), αj on (050010) and αj on (050001). For these last
inputs, we do not impose type equality but rather only subtyping (<:<:<:) since they
are consumed through buffers. The subtyping relation ensures that there are
neither reads in an empty buffer nor writes in a full buffer. Finally, the equation
o = join_50_3 (...) augments the typing environment with the information
that the type of o is αj , the return type of join_50_3.

The cyclic_encoding node thus has the clock type αi → αj , with the fol-
lowing constraints:

C =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
αi === αr on (15003)

αi === αj on (15003)

αr on (050100) <:<:<: αj on (050100)

αr on (050100) <:<:<: αj on (050010)

αr on (050100) <:<:<: αj on (050001)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
To finish the typing of this node and to be able to compute the buffer sizes,
we have to find a solution to this constraint system, that is we must find in-
stantiations of the variables αi, αr and αj such that the constraints are always
satisfied. These instantiations have to be Lucy-n clock types, i.e., of the shape:
ct ::= α | (ct on p) where p is an ultimately periodic binary word (formally de-
fined in Section 4.1).

To solve the constraint system of the example, we start with the equality con-
straints and choose the following substitution: θ = {αi ← α on (15003) ;αr ← α ;
αj ← α}. Applying this substitution to C gives:

θ(C)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α on (15003) === α on (15003)

α on (15003) === α on (15003)

α on (050100) <:<:<: α on (050100)

α on (050100) <:<:<: α on (050010)

α on (050100) <:<:<: α on (050001)

⎫⎪⎪⎪⎬⎪⎪⎪⎭⇔
{
α on (050100) <:<:<: α on (050100)

α on (050100) <:<:<: α on (050010)

α on (050100) <:<:<: α on (050001)

}

Remark 1. Notice that there is no complete greedy unification algorithm because
there is no most general unifier for clock types [21]. Therefore, to be complete,
a resolution algorithm must take into account all the constraints globally. As
in this example greedy structural unification leads to a solution, we used it
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+

when

(01)

when

(10)

aux1

α2 on (01) on (01)

α2 on (01) on (10)

α3

i1

α1

i2

α2

α3

oα3

f

+

α1 on 10(1)

10(1)

α2 on (01)α2 on (1100)

when

(1100)

α2 on (01)

aux2

α2 on (01)

α2 on (01)
α2 on (01)

when

when

(01)
+

let node f (i1, i2) = o where

rec aux1 = buffer (i1 when 10(1)) + aux2

and aux2 = buffer (i2 when (1100)) + i2 when (01)

and o = buffer (aux1 when (10)) + buffer (aux1 when (01))

Fig. 3. The node f and its block diagram representation. The diagram is annotated
with the types obtained after the resolution of equality constraints.

for the sake of conciseness. In the general case, a simple way to handle equal-
ity constraints is to consider them as two subtyping constraints (ct1 === ct2 ⇔
(ct1 <:<:<: ct2) ∧ (ct2 <:<:<: ct1)).

After transforming our constraint system to a system that contains only sub-
typing constraints, we notice that all the constraints depend on the same type
variable. So, we apply a result from [17] to simplify the on operators:

θ(C)⇔
{

(050100) <: (050100)
(050100) <: (050010)
(050100) <: (050001)

}
We will see in Section 5.1 that these constraints on words can be checked. Some-
times however, subtyping constraints are not expressed with respect to the same
type variable. For example, the program of Figure 3 generates the following set
of subtyping constraints where only the second constraint can be simplified:

C′=

⎧⎪⎨⎪⎩
α1 on 10(1) <:<:<: α2 on (01)

α2 on (1100) <:<:<: α2 on (01)

α2 on (01) on (10) <:<:<: α3 on (1)

α2 on (01) on (01) <:<:<: α3 on (1)

⎫⎪⎬⎪⎭⇔
⎧⎪⎨⎪⎩

α1 on 10(1) <:<:<: α2 on (01)

(1100) <: (01)
α2 on (01) on (10) <:<:<: α3 on (1)

α2 on (01) on (01) <:<:<: α3 on (1)

⎫⎪⎬⎪⎭
But, in fact, such systems can always be reduced to ones where all the constraints
are expressed with respect to a single type variable. To do so, we introduce word
variables denoted cn and we replace each type variable αn with α on cn. Here, the
application of the substitution θ={α1 ← α on c1; α2 ← α on c2; α3 ← α on c3}
to system C′ gives:

θ(C′) =

⎧⎪⎪⎨
⎪⎪⎩

α on c1 on 10(1) <:<:<: α on c2 on (01)

(1100) <: (01)

α on c2 on (01) on (10) <:<:<: α on c3 on (1)

α on c2 on (01) on (01) <:<:<: α on c3 on (1)

⎫⎪⎪⎬
⎪⎪⎭

⇔

⎧⎪⎪⎨
⎪⎪⎩

c1 on 10(1) <: c2 on (01)

(1100) <: (01)
c2 on (01) on (10) <: c3 on (1)

c2 on (01) on (01) <: c3 on (1)

⎫⎪⎪⎬
⎪⎪⎭
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This succession of operations transforms a system where the unknowns are types
into a system where the unknowns are ultimately periodic binary words. The
operator on and the relation <: on binary words are defined in the following
section. The algorithm that infers ultimately periodic binary words cn to satisfy
the <: relation is presented in Section 5.

4 Algebra of Ultimately Periodic Words

In this section, we present the definitions and properties of ultimately periodic
binary words that underlie the constraint resolution algorithm presented in Sec-
tion 5. Proofs are provided in the extended version of the article [16].

4.1 Ultimately Periodic Binary Words

We write w for an infinite binary word (w ::= 0w | 1w), u or v for finite binary
words (u, v ::= 0u | 1u | ε), |u| for the size of u and |u|1 for the number of 1s
it contains. The buffer analysis relies on the instants of presence of data on the
flows. Therefore, it mainly manipulates indexes of 1s in the words:

Definition 1 (index of the jth 1 in w: Iw(j))
Let w be a binary word that contains infinitely many 1s.

Iw(0)
def
= 0

Iw(1)
def
= 1 if w = 1w′

∀j > 1, Iw(j)
def
= 1 + Iw′(j − 1) if w = 1w′

∀j > 0, Iw(j)
def
= 1 + Iw′(j) if w = 0w′

For example, the index of the third 1 in w1 = 11010 11010 . . . is 4, i.e., Iw1(3) = 4.

Remark 2 (increasing indexes) . Iw is increasing: ∀j ≥ 1, Iw(j) < Iw(j + 1).

Remark 3 (sufficient indexes) . As a direct consequence of Remark 2, the index
of the jth 1 is greater than or equal to j: ∀j ≥ 1, Iw(j) ≥ j.

A word w can also be characterized by its cumulative function which counts the
number of 1s since the beginning of w.

Definition 2 (cumulative function of w: Ow)
5

Ow(0)
def
= 0 ∀i ≥ 1, Ow(i)

def
=

∑
0≤i′≤i

w[i′]

In this article, we consider ultimately periodic clocks u(v) which comprise a
finite word u as prefix followed by the infinite repetition of a non-empty finite
word v:

5 The notation w[i] represents the ith element of a word w.
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Definition 3 (ultimately periodic word). p = u(v)
def⇔ p = uw with w = vw

For example, p = 1101(110) = 1101 110 110 110 . . . We use the notation p.u
for the prefix of a word p (e.g. (1101(110)).u = 1101) and p.v for its periodic
pattern (e.g. (1101(110)).v = 110).

An ultimately periodic binary word has an infinite number of different rep-
resentations. For example, (10) = (1010) = 1(01) = . . .. But, there exists
a normal form which is the representation where the prefix and the periodic
pattern have the shortest size. For some binary operations, however, it is more
convenient to put the two words in a form which is longer than the normal form.
For example, for some operations we would prefer that the operands have the
same size, or the same number of 1s, or even that the number of 1s in the first
word is equal to the size of the second word.

Remark 4. We can change the shape of an ultimately periodic binary word with
the following manipulations:
– Increase prefix size: u(vv′) = uv(v′v). For example, we can add two elements

to the prefix of the word p = 1101(110) to obtain the form 1101 11(0 11).
Increasing the size of the prefix can be used to increase the number of 1s it
contains.

– Repeat periodic pattern: u(v) = u(vk) with k > 0. For example, we can
triple the size of the periodic pattern of p = 1101(110) (and thus triple its
number of 1s) to obtain 1101(110 110 110).

The following two properties ensure that a periodic word is well formed.

Remark 5 (periodicity). Two successive occurrences of the same 1 of a periodic
pattern are separated by a distance equal to the size of the pattern:

∀j > |p.u|1, Ip(j + |p.v|1) = Ip(j) + |p.v|
As a direct consequence of this property, the distance between any 1 in a rep-
etition of a periodic pattern and the corresponding 1 in the first occurrence of
the pattern is a multiple of the size of the pattern.

∀j, |p.u|1 < j ≤ |p.u|1 + |p.v|1, Ip(j + l × |p.v|1) = Ip(j) + l × |p.v|
For example, if p = 101(10010), Ip(3 + 2) = Ip(3) + 5 and Ip(4 + 2× 2) =
Ip(3) + 2× 5.

Remark 6 (sufficient size). The size of the periodic pattern of a word p (i.e., |p.v|)
is greater than or equal to the number of elements between the indexes of the
first and last 1 of the periodic pattern of p (for words with at least one 1 in the
periodic pattern):

|p.v| ≥ 1 + Ip(|p.u|1 + |p.v|1)− Ip(|p.u|1 + 1)

For example, if p = 101(10010), |p.v| ≥ 1 + 7− 4.

The rate of a word w is the proportion of 1s in the word w:

Definition 4 (rate of p). rate(w) = lim
i→+∞

Ow(i)

i
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For an ultimately periodic binary word p, the rate is the ratio between the
number of 1s and the size of its periodic pattern:

Proposition 1 (rate of p). rate(p) =
|p.v|1
|p.v|

In the following, we only consider words of non-null rate, i.e., such that the
periodic pattern contains at least one 1 (these words have an infinite number
of 1s and are the clocks of flows that produce values infinitely often).

4.2 Adaptability Relation

We now define the relation <: on binary words, called the adaptability relation.
The relation w1 <: w2 holds if and only if a flow of clock w1 can be stored in a
buffer of bounded size and consumed at the rhythm of the clock w2. It means
that data does not accumulate without finite bound in the buffer, and that reads
are not attempted when the buffer is empty. The adaptability relation is the
conjunction of precedence and synchronizability relations. The synchronizability
relation between two words w1 and w2 (written w1 � w2) asserts that there is
a finite upper bound on the number of values present in the buffer during an
execution. It states that the asymptotic numbers of reads and writes from and
to the buffer are equal. The precedence relation between the words w1 and w2

(written w1 ! w2) asserts the absence of reads from an empty buffer. It states
that the jth write to the buffer always occurs before the jth read.

Two words w1 and w2 are synchronizable if the difference between the number
of occurrences of 1s in w1 and the number of occurrences of 1s in w2 is bounded.

Definition 5 (synchronizability �).

w1 � w2
def⇔ ∃b1, b2, ∀i ≥ 0, b1 ≤ Ow1(i)−Ow2(i) ≤ b2

To test this synchronizability relation on ultimately periodic binary words, we
have only to check that the periodic patterns of the two words have the same
proportion of 1s. For example, 1(1100) � (101001) because 2

4 = 3
6 .

Proposition 2 (synchronizability test). p1 � p2 ⇔ rate(p1) = rate(p2)

A word w1 precedes a word w2 if the jth 1 of w1 always occurs before or at the
same time as the jth 1 of w2.

Definition 6 (precedence !). w1 ! w2
def⇔ ∀j ≥ 1, Iw1(j) ≤ Iw2(j)

To check this relation on ultimately periodic words, we only have to consider
this relation until a “common” periodic behavior is reached.6 For example,
1(1100) ! (110100) because I

1(1100)(j) ≤ I(110100)(j) for all j such that
1 ≤ j ≤ 7 and the relative behavior between the two words from the 8th 1 is

6 A common periodic behavior of two ultimately periodic words p1 and p2 is defined by
an index h and a size k such that ∀j > h, Ip2(j)−Ip1(j) = Ip2(j − k)−Ip1(j − k).
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exactly the same as the one from the 2nd 1. It can be seen if we rewrite 1(1100)
as 1(110011001100) and (110100) as 1(101001101001), the periodic patterns
within these two words recommence simultaneously.

Proposition 3 (precedence test). Consider p1 and p2 such that p1 � p2.
Let h = max(|p1.u|1, |p2.u|1) + lcm(|p1.v|1, |p2.v|1). Then:

p1 ! p2 ⇔ ∀j, 1 ≤ j ≤ h, Ip1(j) ≤ Ip2(j)

The intuition for the value of the bound h is the following. By Remark 4, we
can adjust the respective components of p1 and p2 to have the same number
of 1s. We obtain two words p′1 and p′2 (equivalent to p1 and p2) such that the
number of 1s in their prefixes is max(|p1.u|1, |p2.u|1) and the number of 1s in
their periodic pattern is lcm(|p1.v|1, |p2.v|1). Hence, after the traversal of h 1s
in p′1 and p′2 (with h = |p′1.u|1+ |p′1.v|1 = |p′2.u|1+ |p′2.v|1), the periodic patterns
of both words restart simultaneously. And since the two words have the same
rate, we are in exactly the same situation as we were at the beginning of the
first traversal of the periodic patterns. So, if the condition holds until the hth 1,
it always holds.

The adaptability relation is the conjunction of the synchronizability and prece-
dence relations.

Definition 7 (adaptability test). p1 <: p2 ⇔ p1 � p2 ∧ p1 ! p2

4.3 Buffer Size

To compute the size of a buffer, we must know the number of values that are
written and read during an execution.

Consider a buffer that takes as input a flow with clock w1, and gives as
output the same flow but with clock w2. The number of elements present at
each instant i in the buffer is the difference between the number of values that
have been written into it (Ow1(i)) and the number of values that have been
read from it (Ow2(i)). The necessary and sufficient buffer size is the maximum
number of values present in the buffer during any execution.

Definition 8 (buffer size). size(w1, w2) = maxi∈IN(Ow1(i)−Ow2(i))

To compute this size on adaptable ultimately periodic binary words, we need
only to consider the initial patterns of the two words before their “common”
periodic behavior is reached.

Proposition 4 (buffer size)

Consider p1 and p2 such that p1 <: p2.
Let H = max(|p1.u|, |p2.u|) + lcm(|p1.v|, |p2.v|). Then:

size(p1, p2) = max1≤i≤H(Op1(i)−Op2(i))

Note that the bound H is not the same as the one of Proposition 3, because here
we iterate over indexes (not over 1s).
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4.4 Sampled Clocks

The on operator computes the rhythm of a sampled flow. It can express the
output clock of the when operator that keeps or suppresses values of a flow of
clock w1 depending on a condition w2:

w2

when w1 on w2

x when w2x
w1

Fig. 4. If x has clock w1, x when w2 has clock w1 on w2

Definition 9 (on operator). 0w1 on w2
def
= 0(w1 on w2)

1w1 on 1w2
def
= 1(w1 on w2)

1w1 on 0w2
def
= 0(w1 on w2)

For example, ifw1 = 11010111...andw2 = 101100..., thenw1 on w2 = 10010100...
Consider the sampling of a flow x with clock w1 by a condition w2:

x 2 5 3 7 9 4 . . .
w2 1 0 1 1 0 0 . . .
x when w2 2 3 7 . . .

w1 1 1 0 1 0 1 1 1 . . .
w2 1 0 1 1 0 0 . . .
w1 on w2 1 0 0 1 0 1 0 0 . . .

At each instant, if x is present, that is, the corresponding element of w1 is equal
to 1, the next element of the sampling condition w2 is considered. If this element
is 1, then the value of x is sampled and the flow x when w2 is present (w1 on w2

equals 1). If the element is 0, the value of x is not sampled and the flow x when w2

is absent (w1 on w2 equals 0). If x is absent (w1 equals 0), the sampling con-
dition w2 is not considered, and the flow x when w2 will be absent (w1 on w2

equals 0).

To compute the on operator on two ultimately periodic binary words p1
and p2, we first compute the size of the expected result, i.e., |(p1 on p2).u|, the
size of the prefix, and |(p1 on p2).v|, the size of the periodic part. Then, we com-
pute the value of the elements of the prefix and the periodic part by applying
Definition 9.

Proposition 5 (computation of p1 on p2). Let p1 = u1(v1) and p2 = u2(v2).
Then p1 on p2 = u3(v3) with: |u3| = max (|u1|, Ip1(|u2|))

|v3| = lcm(|v1|1,|v2|)
|v1|1 × |v1|

and ∀i, 1 ≤ i ≤ |u3|, u3[i] = (p1 on p2)[i]
∀i, 1 ≤ i ≤ |v3|, v3[i] = (p1 on p2)[|u3|+ i]

Intuitively, the prefix of p1 on p2 is obtained after completely processing the
prefixes of p1 and p2. One element of p1 is processed to produce one element
of p1 on p2. Thus, the processing of the elements of p1.u for the computation of
the on terminates at the index |p1.u|. An element of p2 is processed only when
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there is a 1 in p1. Thus the processing of the elements of p2.u terminates at the
index Ip1(|p2.u|). Therefore, the size of the prefix of p1 on p2 is the maximum
of |p1.u| and Ip1(|p2.u|). The size of the periodic pattern is obtained by the
computation of the common period of p1 and p2 when p2 is processed at the
rhythm of the 1s of p1.

The result of the on operation can be computed more simply for certain shapes
of arguments. The simplest case is the one where the number of 1s in the prefix
and in the periodic pattern of the first word are, respectively, equal to the size
of the prefix and the size of the periodic pattern of the second word as in the
following example:

p1 1 1 0 1 ( 1 1 1 0 0 1 1 0 )
p2 1 0 1 ( 1 0 0 1 0 )

p1 on p2 1 0 0 1 ( 1 0 0 0 0 1 0 0 )

Proposition 6. Consider p1 and p2 such that |p1.u|1 = |p2.u| and |p1.v|1= |p2.v|.
Then: |(p1 on p2).u| = |p1.u| |(p1 on p2).u|1 = |p2.u|1

|(p1 on p2).v| = |p1.v| |(p1 on p2).v|1 = |p2.v|1
As explained in Remark 4, it is possible to increase the size and the number of 1s
in the prefixes and periodic patterns of words. Therefore, we can always adjust
the operands of the on such that they satisfy the assumptions of Proposition 6.
Proposition 6 can be generalized to the case where the number of 1s of p1 is
increased by any multiple of the size of p2.v.

Proposition 7. Consider p1 and p2 such that |p1.u|1 = |p2.u|+ k × |p2.v|
and |p1.v|1 = k′ × |p2.v| with k ∈ IN and k′ ∈ IN− {0}. Then:

|(p1 on p2).u| = |p1.u| |(p1 on p2).u|1 = |p2.u|1 + k × |p2.v|1
|(p1 on p2).v| = |p1.v| |(p1 on p2).v|1 = k′ × |p2.v|1

Finally, to compute the index of the jth 1 of w1 on w2 (Iw1 on w2(j)), there is no
need to compute the word w1 on w2 and then to apply the I function since it
can be computed directly from Iw1 and Iw2 .

Proposition 8 (index of the jth 1 of w1 on w2)

∀j ≥ 1, Iw1 on w2(j) = Iw1(Iw2(j))

Indeed, in the computation of w1 on w2, the elements of w2 are given when there
is a 1 in w1. Therefore the index of the ith element of w2 is at index Iw1(i).
Since the 1s of w1 on w2 are the 1s of w2, the jth 1 of w1 on w2 is the Iw2(j)th
element of w2 and thus at the index Iw1(Iw2(j)).

We now have all the algebraic tools needed to define an algorithm for the
resolution of adaptability constraints on ultimately periodic binary words.

5 Adaptability Constraints Resolution Algorithm

We saw in Section 3 that subtyping constraints can be reduced to adaptabil-
ity constraints where the unknowns are no longer types but rather ultimately
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S1. Subtyping constraints: αx on p1 on ... <:<:<: αy on p2 on ...

⇔ { introduction of word variables cn ;
simplification of type variables }

S2. Adaptability constraints: p1 on ... <: p2 on ...
cx on p′1 on ... <: cy on p′2 on ...⇔ { computation of on ;

simplification of p1 <: p2 constraints }
S3. Simplified adaptability constraints: cx on px <: cy on py

⇔ { for each cn, equalization of the size of its samplers }
S4. Adjusted adaptability constraints: cx on px <: cy on py

⇐ { choice of the number of 1s of the cns ;
splitting of the adaptability constraints }

S5. Synchronizability cx on px �� cy on py
and precedence constraints: cx on px � cy on py

⇔ { simplification of synchronizability
and precedence constraints ;
introduction of well formedness constraints }

S6. Indexes of 1s and size constraints:
synchronizability: |py .v|1 × |cx.v| = |px.v|1 × |cy .v|
precedence: Icx(Ipx(j)) ≤ Icy (Ipy (j))
periodicity: Icn(j + l × |cn.v|1)− Icn(j) = l × |cn.v|
sufficient size: 1 + Icn(|cn.u|1 + |cn.v|1)− Icn(|cn.u|1 + 1) ≤ |cn.v|
sufficient indexes: Icn(j) ≥ j
increasing indexes: Icn(j′)− Icn(j) ≥ j′ − j

Fig. 5. Summary of the subtyping constraints resolution algorithm. The form of the
constraints is given for each system.

periodic binary words. This is the first step of the subtyping constraints res-
olution algorithm which is summarized in Figure 5.7 This section details the
remaining steps.

In Section 5.1, we explain how to simplify an adaptability constraint sys-
tem (S2) to obtain a system (S3) where all the adaptability constraints have
the form cx on px <: cy on py. In Section 5.2, we explain the transformation of
adaptability constraints (S3) into a system (S6) of linear inequalities where the
unknowns are the size and the indexes of 1s of the sought words. This last sys-
tem can be solved using standard techniques from Integer Linear Programming,
and the resulting solutions can be used to reconstruct the unknown words. In
Section 5.3, we discuss the choice of the objective function for the resolution
of the linear inequalities. Finally, we discuss the correctness, completeness and
complexity of the algorithm.

Before the detailed explanation of the algorithm, we note that, as was the case
for the equality constraints, there is no greedy algorithm for solving adaptability

7 A detailed and commented implementation of the algorithm in OCaml is provided
at http://www.lri.fr/~mandel/mpc12.

http://www.lri.fr/~mandel/mpc12
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constraints. Indeed, if the words (c1, c2) satisfy a constraint c1 on p1 <: c2 on p2,
then (1dc1, 1

dc2) and (0dc1, 0
dc2) also satisfy it whatever d is. Hence, contrary

to a classical subtyping system, we cannot simply take the greatest word for
a variable on the left of an adaptability constraint, and the smallest one for a
variable on the right. In our case, the inference of values satisfying constraints
must necessarily be performed globally to choose words big enough, and/or small
enough to satisfy all constraints.

5.1 Constraint System Simplification

We begin by considering adaptability constraint systems. After the computa-
tion of on operators (Proposition 5), these systems comprise constraints of the
form px <: py and cx on px <: cy on py, where px and py are known words of
non-null rate and cx and cy are unknown words.

Since a constraint of the form px <: py contains no variables, its truth value
cannot be altered. We need only to check that each such constraint is satisfied,
which is done by applying Definition 7. If any are false, then the whole system
is unsatisfiable. The true constraints can be removed from the system.

Returning to the cyclic_encoding example, the adaptability constraint sys-
tem was: {

(050100) <: (050100)
(050100) <: (050010)
(050100) <: (050001)

}

Through the application of the adaptability test, we can check that each con-
straint is always satisfied. Here, after simplification, the system is empty and
thus the node cyclic_encoding is well typed.

In the general case, after simplification all the remaining constraints contain
variables. For example, the subtyping constraint system C′ of Section 3 can be
rewritten to the adaptability constraint system A′:

θ(C′)⇔

⎧⎪⎨⎪⎩
c1 on 10(1) <: c2 on (01)

(1100) <: (01)
c2 on (01) on (10) <: c3 on (1)

c2 on (01) on (01) <: c3 on (1)

⎫⎪⎬⎪⎭⇔
{

c1 on 10(1) <: c2 on (01)

c2 on (0100) <: c3 on (1)

c2 on (0001) <: c3 on (1)

}
=A′

All the remaining constraints are of the form cx on px <: cy on py.

5.2 Constraint System Solving

The goal now is to solve adaptability constraint systems of the form:

{cxi on pxi <: cyi on pyi}i=1..number of constraints

The values pxi , pyi are some known ultimately periodic binary words of non-
null rate. The variables cxi , cyi are the unknowns of the system. Note that some
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unknown variables can appear several times in a system like in A′ (we only know
that cxi �= cyi since simplification has been performed):8{

c1 on p1 <: c2 on p2
c2 on p′2 <: c3 on p3
c2 on p′′2 <: c3 on p′3

}
Solving the system means associating ultimately periodic words of non-null rate
to the unknowns (c1, c2, c3), such that the constraints are satisfied.

Remark 7. If solutions containing null rates are allowed, all systems have a so-
lution. For example, the instantiation ∀n. cn = (0) is a trivial solution of all
systems. A solution containing a null rate gives a system that will be executed
at only a finite number of instants. We are not interested in such solutions.

An adaptability constraint cx on px <: cy on py can be decomposed into a syn-
chronizability constraint and a precedence constraint:

cx on px <: cy on py ⇔ { by Definition 7 }
(cx on px �� cy on py) ∧ (cx on px � cy on py)

The synchronizability constraint can itself be rewritten:
cx on px �� cy on py ⇔ { by Proposition 2 and Proposition 1 }

|(cx on px).v|1
|(cx on px).v| =

|(cy on py).v|1
|(cy on py).v|

As can the precedence constraint:
cx on px � cy on py ⇔ { by Proposition 3 and Proposition 8 }

∀j, 1 ≤ j ≤ h, Icx(Ipx(j)) ≤ Icy (Ipy (j))
with h = max(|(cx on px).u|1, |(cy on py).u|1) + lcm(|(cx on px).v|1, |(cy on py).v|1)

We are thus interested in the size of, and the number of 1s in, the prefixes and
periodic patterns of cx on px and of cy on py forms.

We have seen in Section 4 (Proposition 7) that the size and number of 1s in
the prefix and in the periodic pattern of cn on pn can easily be expressed as a
function of the size and number of 1s in the prefixes and periodic patterns of cn
and pn in the following case: |cn.u|1 = |pn.u|+k×|pn.v| and |cn.v|1 = k′×|pn.v|.

To put the system into this “simple” form, we adjust the known words of
the system to satisfy the property: for any unknown cn, all its samplers9 pn,
p′n, . . . have the same prefix size (|pn.u| = |p′n.u| = . . .) and the same periodic
pattern size (|pn.v| = |p′n.v| = . . .). This operation is always possible (thanks to
Remark 4) and does not change the semantics of the system.

We can then choose the number of 1s in the unknown cn.

Choice 1 (number of 1s in the cn). Let k ∈ IN and k′ ∈ IN− {0}.
|cn.u|1 = |pn.u|+ k × |pn.v| (= |p′n.u|+ k × |p′n.v| = . . .)
|cn.v|1 = k′ × |pn.v| (= k′ × |p′n.v| = . . .)

where pn, p
′
n, . . . are the samplers of cn.

8 We choose the same index for a variable cn and the words pn, p
′
n, . . . that sample cn.

9 A word pn is a sampler of cn if cn on pn is in the constraint system.



92 L. Mandel and F. Plateau

Remark 8. The algorithm is parameterized by constants k and k′, which restrict
the number of 1s in any solution and may thus lead to failures in the resolution
of constraints. We will discuss this choice in Section 5.4.

This choice allows us to express the size and the number of 1s in the prefixes
and periodic patterns of the cn on pn in terms of those of cn and pn. Hence, a
synchronizability constraint becomes:

cx on px �� cy on py ⇔ { by Proposition 7 }
k′ × |px.v|1
|cx.v| =

k′ × |py.v|1
|cy .v|

⇔ |py.v|1 × |cx.v| = |px.v|1 × |cy .v| (1)

And a precedence constraint becomes:
cx on px � cy on py ⇔ { by Proposition 7 }

∀j, 1 ≤ j ≤ h, Icx(Ipx(j)) ≤ Icy (Ipy (j))
with h = max(|px.u|1 + k × |px.v|1, |py.u|1 + k × |py.v|1) +

lcm(k′ × |px.v|1, k′ × |py.v|1)
(2)

For example, we can adjust the system A′ such that all the samplers of a par-
ticular variable have the same size:

A′ =

{
c1 on 10(1) <: c2 on (01)

c2 on (0100) <: c3 on (1)

c2 on (0001) <: c3 on (1)

}
⇔

{
c1 on 10(1) <: c2 on (0101)

c2 on (0100) <: c3 on (1)

c2 on (0001) <: c3 on (1)

}
Then, we choose the number of 1s for the cns to be equal to the size of the
respective samplers:

|c1.u|1 = 2 + k × 1 |c2.u|1 = 0 + k × 4 |c3.u|1 = 0 + k × 1
|c1.v|1 = k′ × 1 |c2.v|1 = k′ × 4 |c3.v|1 = k′ × 1

By Formula (1), the synchronizability constraints become a system of linear
equations on the size of the periodic patterns of the cns:⎧⎨
⎩
|(0101).v|1 × |c1.v| = |(10(1)).v|1 × |c2.v|
|(1).v|1 × |c2.v| = |(0100).v|1 × |c3.v|
|(1).v|1 × |c2.v| = |(0001).v|1 × |c3.v|

⎫⎬
⎭⇔

⎧⎨
⎩

2× |c1.v| = |c2.v|
|c2.v| = |c3.v|
|c2.v| = |c3.v|

⎫⎬
⎭ (Sync)

By Formula (2), if we choose the constants k and k′ to be equal to 0 and 1,
the precedence constraints become a system of linear inequalities on the indexes
of 1s in the cns:⎧⎨⎩

∀j, 1 ≤ j ≤ 3, Ic1(I10(1)(j)) ≤ Ic2(I(0101)(j))
∀j, 1 ≤ j ≤ 1, Ic2(I(0100)(j)) ≤ Ic3(I(1)(j))
∀j, 1 ≤ j ≤ 1, Ic2(I(0001)(j)) ≤ Ic3(I(1)(j))

⎫⎬⎭
which is equivalent to the following system after the computation of the Ipn(j):⎧⎪⎪⎪⎨⎪⎪⎪⎩

Ic1(1) ≤ Ic2(2)
Ic1(3) ≤ Ic2(4)
Ic1(4) ≤ Ic2(6)
Ic2(2) ≤ Ic3(1)
Ic2(4) ≤ Ic3(1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (Prec)
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Now, to give a value to each unknown cn, we must find its size (satisfying Sync)
and the positions of its 1s (satisfying Prec). Hence, the sizes |cn.v| and the
indexes Icn(j) will no longer be considered as function applications, but rather
as the new unknowns of the problem. These new unknowns must also satisfy the
constraints of Remarks 2, 3, 5 and 6 which ensure that the solution will be a well
formed ultimately periodic binary word. So, we have to augment Sync and Prec
with the following four sets of constraints:10

Periodicity: Per = {Icn(j + l × |cn.v|1)− Icn(j) = l × |cn.v|}Icn (j+l×|cn.v|1)∈Prec
∧ |p.u|1<j≤|p.u|1+|p.v|1

Sufficient size: Size = {1 + Icn(|cn.u|1 + |cn.v|1)− Icn(|cn.u|1 + 1) ≤ |cn.v|}
Sufficient indexes: Init = {Icn(j) ≥ j}Icn (j)∈Prec ∪Per ∪ Size

Increasing indexes:Incr = {Icn(j′)− Icn(j) ≥ j′ − j}(Icn (j), Icn (j′))∈Prec ∪Per ∪ Size

Finally, we can use a generic solver for Integer Linear Programming (ILP) prob-
lems to solve the system: S = Sync ∪ Prec ∪ Per ∪ Size ∪ Init ∪ Incr .

Applying a solver to the system associated with A′ produces the results:

|c1.v| = 2 Ic1(1) = 1 Ic1(3) = 3 Ic1(4) = 5
|c2.v| = 4 Ic2(1) = 1 Ic2(2) = 2 Ic2(4) = 4 Ic2(6) = 6
|c3.v| = 4 Ic3(1) = 4

Thanks to this information and the number of 1s in the prefixes and periodic
patterns of the cns chosen previously, we can build the following solution to
the A′ system: c1 = 11(10) c2 = (1111) = (1) c3 = 000(1000) = (031).

We now know all the clock types of the system of Figure 3. The result gives
us the clock type of the node f which is ∀α, α on c1 × α on c2 → α on c3, that
is: f :: ∀α, α on 11(10)× α on (1)→ α on (031).

And since we have the types of the buffers, we can compute their sizes.
For example, we know that the writing clock of the first buffer is of type
α on c1 on 10(1) = α on 11(10) on 10(1) and that the reading clock is of type
α on c2 on (01) = α on (1) on (01). By Proposition 4, the size of this buffer is:
size(11(10) on 10(1), (1) on (01)) = 1.

5.3 Guiding the Resolution Algorithm

The resolution algorithm requires the solution of linear inequalities on the in-
dexes of 1s and on the size of the unknown words. Tools for solving such in-
equalities are parameterized by an objective function determining the criterion
to optimize. In the previous example, we choose to optimize the sum of the
indexes of 1s to produce a kind of As-Soon-As-Possible schedule. But we can
also use the objective function to favor either system throughput or buffer sizes
minimization. We illustrate this trade-off on an example:

let node g (i1, i2) = o where

rec aux1 = i1 when (1001)

and aux2 = i2 when (0110)

and o = buffer aux1 + buffer aux2 aux2

aux1i1

i2

g

when

(0110)

when

(1001)

+
o

10 The notation Icn(j) ∈ S designates the presence of the unknown Icn(j) in S.
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If we assign the type ∀α. (α× α)→ α on (01) to the node g, the buffers will
be of size 1. But, this node can be executed without buffers if we give it the
type: g :: ∀α.(α on (011110)× α on (110011))→ α on (010010) .

The first solution can be obtained by an objective function that minimizes
the size of the solution. Indeed, since the number of 1s in the solution is fixed,
minimizing the size increases the rate.

The second solution is obtained by an objective function that, for all precedence
constraints Icx(j1) ≤ Icy (j2), minimizes the value Icy (j2)−Icx(j1). It means that
we minimize the number of instants between the writing and the reading of a value
in a buffer which has the consequence of reducing the buffer sizes.

5.4 Correctness, Completeness and Complexity

The resolution algorithm shown in Figure 5 relies on the step-by-step transfor-
mation of the adaptability constraint system (S2) into linear inequalities (S6),
for which there exist algorithms that find a solution if it exists [20]. Each step,
except the one between S4 and S5, is a rewriting of a constraint system into an
equivalent one (thanks to the equivalence properties stated in Section 4). The
step from S4 to S5 is the choice of the number of 1s in the cns. It is correct to
seek a solution in a subset of all possible words. Nevertheless, it may lead to
incompleteness, since it is possible that a system has no solution in the subset
of words considered.

We have parameterized our resolution algorithm by two constants k and k′

which modify the number of 1s in the sought solution. A semi-decidable al-
gorithm to solve adaptability constraints iterates the previous algorithm with
k = 0, 1, 2, . . . and k′ = k + 1 until it finds a solution. We can prove that this
algorithm is complete because if a system of adaptability constraints has a so-
lution S, then there exists a solution S′ such that ∀c′n ∈ S′,

|c′n.u|1 = |pn.u|+ k × |pn.v| (= |p′n.u|+ k × |p′n.v| = . . .)
|c′n.v|1 = (k + 1)× |pn.v| (= (k + 1)× |p′n.v| = . . .)

where k can be computed from the original solution S. The idea of the proof
is to use Remark 4 to rewrite S into S′ (the detailed proof is in the extended
version of the paper).

Moreover, note that the step that equalizes of the size of the samplers (from S3
to S4, Figure 5) can be adapted such that the choice k = 0 and k = 1 always leads
to a solution, if it exists, for (1) systems that do not have prefixes, (2) systems
where the prefixes of the samplers of a variable are made of 0s and have the
same size, and (3) systems with only one constraint. The algorithm is given in
the extended version of the paper.

Remark that we can sometimes find solutions that allow faster execution of a
system if we choose a number of 1s different than the one proposed by k = 0
and k′ = 1. For example, consider the following adaptability constraints:{

c1 on (1) <: c2 on (110)
}

If we are seeking a solution with one 1 for c1, we compute the solution {c1 = (10);

c2 = (1011)} where rate(c1) =
1
2 and rate(c2) =

3
4 . Whereas, if we are seeking
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(b) GSM speech decoder.

In the GSM protocol [13], speech is divided into samples of 20ms, each of which is encoded
as a frame of 260 bits. These frames are then encoded, such that it is possible to detect and
sometimes to correct errors introduced by radio transmission.
The 260 bits are divided into three classes: Ia, Ib, II. Class Ia contains the first 50 and most
important bits, class Ib contains the following 132 moderately important bits and class II contains
the last and least important 78 bits. The 50 bits of class Ia go through the cyclic encoder that
is presented in Section 2. Then the 132 bits of class Ib are appended to the 50 bits of class Ia
followed by the 3 cyclic redundancy bits. The 185 bits thus obtained are encoded by a convolution
encoder which builds packets of 378 bits, to which the 78 bits of class II are appended.
The decoder has the reverse behavior. It starts by separating the bits of class I from the bits
of class II that have not been encoded. The bits of class I are then processed by a convolution
decoder that detects and corrects some errors. Finally, a cyclic decoder is applied to the bits of
class Ia to check that there are no errors (if errors remain, the bits of the preceding frame are
transmitted).

Fig. 6. Excerpt of the GSM speech encoder/decoder

a solution with two 1s for c1, we compute the solution {c1 = (110); c2 = (16)}
where rate(c1) =

2
3 and rate(c2) = 1. The guarantee provided by the resolution

algorithm is that for a given number of 1s, the result is optimal with respect
to the objective function given to the ILP solver. It follows the fact that each
transformation of the adaptability constraint system, except Choice 1, maintains
equivalence. Therefore, there is no loss of information.

The complexity of the resolution algorithm is dominated by the resolution of
the constraint system on the indexes of 1s and the sizes. This is an ILP problem
which is known to be NP-complete [20]. Even if there is only one adaptability
constraint per buffer, the size of the complete ILP problem can be big (e.g.,
millions of variables): it depends on the size of the samplers in the adaptability
constraint system.

6 Comparison with Previous Resolution Algorithms

Three algorithms for the resolution of adaptability constraints have been pro-
posed. The first one [8] is based on the successive application of local simplifi-
cation rules. This algorithm does not always succeed because some systems can
only be simplified globally, that is, by resolving all of their constraints simulta-
neously (one such example is given in the long version of this article).

A second algorithm [17], the abstract resolution algorithm, is based on the
abstraction of clocks by sets of clocks defined by an asymptotic rate and two
offsets bounding the potential delay with respect to this rate [9]. Thanks to this
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abstraction, the adaptability relation can be tested by some simple operations
on rational numbers.

Section 5 of this article presents the third resolution algorithm, the concrete
resolution algorithm. Technically, the first steps of the algorithm (from S1 to S3,
Figure 5) are similar to the ones of the abstract resolution algorithm. The subse-
quent steps that solve the adaptability constraints (from S3 to S6) differ. In the
rest of the section, we will focus on the comparison of the concrete resolution
algorithm and the abstract resolution algorithm via some specific examples.

The concrete resolution algorithm allows us to type an excerpt of a GSM
speech encoder/decoder. The principle of the encoder/decoder is described in
Figure 6 and the source code is available at http://www.lri.fr/~mandel/mpc12.
This example illustrates the advantages of concrete resolution.

The encoder is depicted in Figure 6(a). The different nodes contain buffers,
but they are connected without buffers. The global unification mentioned in
Remark 1 is essential to type this node. It can find a rhythm for consuming the
input flow such that all the constraints imposed by the processing of the three
branches are satisfied.

The abstract resolution algorithm cannot type this node because it cannot
treat a unification constraint as a pair of inverse subtyping constraints as pro-
posed in Remark 1. Indeed, when clocks are abstracted, we do not have suffi-
ciently precise information about them to guarantee equality. So, to type the
gsm_encoding node with the abstract resolution algorithm, we would have to
add buffers to communicate the values of the flows Ia, Ib and II, which would
transform the unification constraints into subtyping constraints which could be
solved. With this new version of the gsm_encoding node, the buffer sizes esti-
mated by abstract resolution are 50, 132 and 78, whereas the concrete resolution
showed that, for the same throughput, such buffers are not necessary.

The GSM encoder example shows that the concrete resolution algorithm can
handle programs that need subtle node scheduling. This advantage is also evi-
dent in programs that contain cycles with few initialization values such as the
following one:

let node tight_cycle (init, i1, i2) = o where

rec x = i1 when (100001) + buffer y

and y = merge 1(0) init o

and o = i2 when 0(100001) + buffer x

when

0(100001)

oxy
init

i2

i1

tight cycle

++

when

(100001)

m
e
r
g
e

1(0)

Here, since there is only one initial value in the cycle, the activations of the
two + operators are tightly coupled: they must alternate. The abstract resolu-
tion algorithm cannot find such a schedule because, in this case, due to the lost
information, it cannot guarantee safe communication through the buffers. The
concrete resolution algorithm, on the other hand, finds a correct schedule.

Let us now consider the GSM speech decoder depicted in Figure 6(b). Notice
that the flows Ia, Ib are II are buffered. The concrete resolution
algorithm infers buffer sizes of, respectively, 1, 132 and 156, while the abstract
resolution algorithm gives 51, 264 and 234. The buffer sizes estimated by the

http://www.lri.fr/~mandel/mpc12
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abstract resolution algorithm are almost twice as large as those found by the
concrete algorithm.

This example shows that when buffers are necessary, the concrete resolution
algorithm can give better estimates of buffer sizes.

Notice, however, that the abstract resolution algorithm is still interesting for
cases like the video application Picture in Picture [17]. Running the concrete
resolution algorithm on this example takes several days of computer time! Indeed,
because the size of the clock words involved in the system are on the order of two
million bits, our algorithm generates a system of linear inequalities containing
numbers of variables and constraints of the same order of magnitude. Constraint
systems of this size cannot be handled efficiently with tools like GLPK [12] that
solve systems of linear inequalities. Finally, the algorithm with abstraction can
handle systems where some words are not exactly periodic [9], that is, those with
some jitters.

For a given program, one algorithm may be more appropriate than the other.
When the periodic words are well balanced, i.e., when the 1s are regularly
spread (as is the case for the nodes of the Picture in Picture application), the al-
gorithm with abstraction gives good results quickly. However, it fails when there
are some constraints that are difficult to satisfy: e.g. those requiring global uni-
fication or those containing cycles. When words are not well balanced, i.e., when
the 1s come in bursts (as in the GSM example) and they are not too long (only
hundreds of elements), then the concrete algorithm is better: there is less risk of
rejecting a system that has a solution, and the buffer size estimates are better.
Finally, unlike the abstract algorithm, the concrete algorithm is not limited to
optimizing system throughput. For example, it can find a schedule for Picture
in Picture that reduces throughput in order to avoid buffering.

7 Conclusion

In this article, we have presented an algorithm that computes schedules and
buffer sizes for networks of ultimately periodic processes described as Lucy-n
programs.

Scheduling and finding buffer sizes for networks of processes is an old problem.
Our particularity is to work in the context of a programming language. In that
respect, the most related approaches are those of Ptolemy [11] and StreamIt [22]
which are implementations of the Synchronous Data-Flowmodel [14]. In Ptolemy,
the computation nodes are programmed in a host language and the production
and consumption rates of nodes are declared by the user. If the values declared
by the user are not correct, a program will fail at run-time. The approach of
Lucy-n is different: the whole program is written in a single language and the
production and consumption rates are inferred automatically from the source
code. StreamIt follows the same approach as Lucy-n, but provides only a small
number of combinators which restricts the set of networks that can be described.

The main contribution of this paper is to define a resolution algorithm of sub-
typing constraints that uses all the information contained in the types. Therefore,
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it can accept more programs than previous algorithms and it does not overesti-
mate buffer sizes.

Even if the algorithm presented in this paper is computationally more complex
than the abstract algorithm presented in [17], our new algorithm can type some
programs that would be impossible to type with the other one. In particular, the
concrete resolution algorithm has been used [18] to type programs that model
latency insensitive design [3]. The types that are obtained for the different nodes
of such programs define static schedules for the modeled circuit [7,2,4]. Because
of their shape, all these programs make the abstract algorithm fail.

Finally, a great advantage of the concrete resolution algorithm presented
in this article is that it does not restrict the trade-off between buffering and
throughput. A direction for future work is to provide new language constructs
to declare resource constraints and to use them to guide the resolution algorithm.
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A Clock Constraints Collection

Clock types are separated into three categories: type schemes (σ) which represent
the types of nodes, types of expressions (t) and types of streams (ct).

σ ::= ∀β1, . . . , βm.∀α1, . . . , αn. ct→ ct
t ::= β | t× t | ct
ct ::= α | ct on ce | ct on not ce

The typing environment H is a triple which contains the types of the flow vari-
ables, the types of the nodes and the type of the clocks:

H ::= ([x1 : ct1, . . . , xp : ctp ],
[ f1 : σ1, . . . , fm : σm ],
[ c1 : ce1, . . . , cn : cen ])

We use the notation H + [z : t] to add the association z : t to the appropriate
part of the triple. We define the notation [pat : t] as follows:

[pat : t] =

{
[x : t] if pat = x

[pat1 : t1] + · · ·+ [patn : tn] if pat = (pat1,...,patn) and t = t1 × · · · × tn

http://www.gnu.org/software/glpk/
http://www.lri.fr/~mandel/mpc12
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H 	 i : α | ∅

H 	 ce

H 	 ce : α | ∅ H 	 x : H(x) | ∅

H 	 e1 : t1 |C1 . . . H 	 en : tn |Cn

H 	 (e1,...,en) : t1 × · · · × tn |C1 ∪ · · · ∪ Cn

H 	 e1 : t1 |C1 H 	 e2 : t2 |C2

H 	 e1 op e2 : ct | {t1 === t2 === ct} ∪ C1 ∪ C2

H 	 e : t |C H 	 e1 : t1 |C1 H 	 e2 : t2 |C2

H 	 if e then e1 else e2 : ct | {t === t1 === t2 === ct} ∪ C ∪ C1 ∪ C2

t1 → t2 ∈ inst(H(f)) H 	 e : t3 |C

H 	 fe : t2 | {t1 === t3} ∪ C

H 	 eqs : H′ |C1 H + H′ 	 e : ct |C2

H 	 e where rec eqs : ct |C1 ∪ C2

H 	 e1 : t1 |C1 H 	 e2 : t2 |C2

H 	 e1 fby e2 : ct | {t1 === t2 === ct} ∪ C1 ∪ C2

H 	 e : t |C H 	 ce : ct | ∅

H 	 e when ce : ct on ce | {t === ct} ∪ C

H 	 e : t |C H 	 ce : ct | ∅

H 	 e whenot ce : ct on not ce | {t === ct} ∪ C

H 	 ce : ct | ∅ H 	 e1 : t1 |C1 H 	 e2 : t2 |C2

H 	 merge ce e1 e2 : ct | {ct on ce === t1, ct on not ce === t2, } ∪ C1 ∪ C2

H 	 e : t |C

H 	 buffer(e) : α |C ∪ {t <:<:<: α}

H + [pat : β] 	 e : t |C

H 	 pat= e : [pat : t] | {β === t} ∪ C

H + H2 	 eqs1 : H1 |C1 H + H1 	 eqs2 : H2 |C2

H 	 eqs1 and eqs2 : H1 + H2 |C1 ∪ C2

H + [x : β] 	 e : t |C

H 	 let node f(x)= e : [f : gen(β → t, C)]

H 	 ce

H 	 let clock c= ce : [c : ce]

H 	 d1 : H1 H + H1 	 d2 : H2

H 	 d1; d2 : H1 + H2

Fig. 7. Clock type constraints collection
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Types can be instantiated and generalized using the following rules:

inst(∀β1, ... , βm.∀α1, ... , αn. t) =
{ t′ | t′ = t[β1 ← t1, ... , βm ← tm, α1 ← ct1, ... , αn ← ctn] }

gen(t, C) = ∀β1, ... , βm.∀α1, ... , αn. t
′

where t′ = θ(t) such that θ(C) is satisfied
and {β1, ..., βm, α1, ..., αn} = FV(t′)

The typing rules which collect the clocking constraints are given in Figure 7. The
typing rules have the shape H " e : t |C which means that in the typing environ-
ment H , the expression e has type t and must satisfy the set of constraints C.

Finally, notice that ct × ct ≡ ct. Therefore, constraints such as t1 × t2 === ct
can be split into t1 === ct and t2 === ct.



Deriving Real-Time Action Systems Controllers

from Multiscale System Specifications

Brijesh Dongol1,2 and Ian J. Hayes1

1 School of Information Technology and Electrical Engineering
The University of Queensland, Australia

2 Department of Computer Science, The University of Sheffield, UK
B.Dongol@sheffield.ac.uk, Ian.Hayes@itee.uq.edu.au

Abstract. This paper develops a method for deriving controllers for
real-time systems in which the components of the system operate at dif-
ferent time granularities. To this end, we incorporate the theory of time
bands into action systems, which allows one to structure a system into
multiple abstractions of time. The framework includes a logic that facil-
itates reasoning about different types of sampling errors and transient
properties (i.e., properties that only hold for a brief amount of time),
and we develop theorems for simplifying proofs of hardware/software in-
teraction. We formalise true concurrency and define refinement for the
parallel composition of action systems. Our method of derivation builds
on the verify-while-develop paradigm, where the action system code is
developed side-by-side with its proof.

1 Introduction

Action systems provide a simple framework within which several theories of
program refinement have been developed [3–6]. In its simplest form, an action
system consists of a set of actions (i.e., guarded statements) and a loop that
at each iteration non-deterministically chooses then executes an enabled action
from the set of actions. The loop terminates iff all of the actions are disabled.
Typically, an action system includes actions of both the controller and its envi-
ronment and uses an execution model in which the controller and environment
actions are interleaved with each other. To cope with continuous environments,
action systems have been extended in several ways. Continuous action systems
[2, 27] give a semantics using standard action systems but with an added time
variable. At the end of each iteration of the main loop, time is incremented to
the first time at which some guard of the action system is enabled. Hybrid action
systems [30] take the approach that the actions of the controller are discrete (and
instantaneous) and allow the environment to execute evolution actions, which
describe the (continuous) evolution of the state over the interval in which the
evolution guard is enabled. A prioritised alternating model of execution is used
to ensure that the (discrete) controller actions are able to execute. Hybrid ac-
tion systems have been extended to qualitative action systems [1], but this work

J. Gibbons and P. Nogueira (Eds.): MPC 2012, LNCS 7342, pp. 102–131, 2012.
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T1
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P1 P2

Full .T2

Limit .T2

Reserve.T1
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P2T2

C

T1
w1

w2

On.P1

On.P2

Fig. 1. Two-pump system

is focused on methods for testing real-time systems as opposed to their formal
verification/derivation.

Ultimately, the interleaving execution model is problematic in contexts such
as real-time and multi-core systems where the environment evolves with the
controller in a truly concurrent manner. In such contexts, one must address issues
with sampling multiple variables over a time interval [9, 17, 23] and be able to
reason about transient properties [14, 17]. Furthermore, as software controllers
are increasingly used in complex cyber-physical systems, it becomes important
to be able to reason over multiple time granularities [8, 9, 16, 23].

1.1 Motivating Example

We consider a system consisting of two water tanks T1, T2 and two pumps P1,
P2 depicted in Fig. 1 (also see [1]). The environment (of the system) adds water
to tank T1 and does not affect tank T2. We assume that tank T1 is allowed to
overflow, but T2 is not. Pump P1 removes water from tank T1 and fills tank T2.
Pump P2 only operates if a button B (not shown in Fig. 1) is pressed and removes
water from tank T2. Aichernig et al [1] describe the following requirements. We
have adapted their informal specification to clarify the input/output behaviours
of the pump and to better distinguish safety (S1, S2 and S3) and progress (P1,
P2 and P3). Note that a progress property to turn pump P1 off is not needed
because it is implied by safety properties S1 and S2.

S1. If the water level in T1 is Empty or below, then P1 must be stopped.
S2. If the water level in T2 is Full or above, then P1 must be stopped.
S3. If the water level in T2 is Empty or below, then P2 must be stopped.

P1. If the water level in T2 is definitely below the Reserve and water level in
T1 is definitely above the Reserve, then turn on P1.
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P2. If B is definitely pressed and the water level in T2 is definitely above
Reserve, then turn on P2.

P3. If B is definitely not pressed, then turn off P2.

Thus, we must keep track of water levels Reserve.T1 and Empty.T1 in tank T1

and Full .T2, Reserve.T2, Empty.T2 in tank T2. For i ∈ {1, 2}, we distinguish
between signal Oni that starts/stops pump Pi , and Runningi and Stoppedi that
hold iff Pi is physically running and stopped, respectively. Note that pump Pi

may also be associated with other states such as Startingi , etc. We let w1 and w2

denote the water levels in tanks T1 and T2, respectively and say Pressed holds
iff the button B is pressed.

A (digital) controller for pump P2 must sample both the water level in tank
T2 and the state of the button B , perform some processing, then send on/off
signals to pump P2 if necessary. Each of these phases takes time. Furthermore,
the components operate at different time granularities and hence have different
notions of precision (the amount of time that may be regarded as instantaneous
[8, 9]). For example, w1 may have a precision of 30 seconds (i.e., there is no signif-
icant change in the water level in tank T1 within 30 seconds) and pump P2 turns
on/off with precision 1 second (i.e., it takes pump P2 at most 1 second to reach
its operating speed or to come to a stop). Formally reasoning about the system
in a manner that properly addresses each of these timing aspects is complicated
[16, 17, 22]. To reduce the complexity of the reasoning, formal frameworks of-
ten simplify specifications by assuming that certain aspects of the system (e.g.,
sampling) are instantaneous or take a negligible amount of time. However, it
is well-known that such simplifications can cause complications during imple-
mentation. In particular, the developed specifications become unimplementable
because their timing requirements cannot be satisfied by any real system [22, 31].

Properties that use “definitely” are properties that hold over events of a time
band. The progress properties are interpreted in the water time band. For ex-
ample, within P1, “T2 is definitely below the Reserve” is interpreted as “T2 is
definitely below the Reserve for at least the precision of the water time band”.

1.2 Contributions and Overview

In this paper, we use time bands [8, 9] which facilitate reasoning about systems
specified over multiple time granularities. Together with a logic of sampling,
this allows one to properly address transient properties [14, 17]. We develop
a framework using action systems and formalise true concurrency between an
action system and its environment as well as between the parallel composition
of two or more action systems. We define stream-based refinement of action
systems (and their parallel composition) and present our method of derivation
using “enforced properties” [12, 14], which allows one to use a verify-while-
develop method [11, 18, 19]. We develop high-level theories for reasoning about
systems that involve interaction between hardware and software over multiple
time bands and as an example, we present the derivation of a pump controller.
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Unlike Burns/Hayes [9] whose framework is based on sets of states, we develop
our semantics using an interval-based framework. We present the background
theory in Section 2, where we define interval predicates, methods of evaluating
state predicates over an interval (including via sampling), our chop and iterated
chop operators [32], and an LTL-like [26] logic for interval predicates. In Sec-
tion 3, we present our formalisation of time bands (which includes time-band
predicates), formalisation of the syntax and semantics of action systems with
time bands and parallel composition of action systems. In Section 4, we present
our methods for deriving action systems using enforced properties that builds
on our previous refinement theories [12, 14, 17]. Section 5 presents our high-level
theorems for reasoning about hardware/software interaction and an example
derivation is given in Section 6.

1.3 Related Work

The idea of reasoning about systems using multiple granularities of time is not
new. Moszkowski presents a method of abstracting between different time gran-
ularities for interval temporal logic using a projection operator for a discrete
interval temporal logic [28]. Guelev and Hung present a projection operator for
the duration calculus. Although computation is assumed to take time, the time
taken is assumed to be negligible [21]. Henzinger presents a theory of timed re-
finement where sampling events are executed by a separate process [25]. Broy [7]
presents a timed refinement framework that formalises the relationships between
dense and discrete time where sampling is considered be a discretisation of dense
streams.

This paper continues our research into methods for program derivation using
the verify-while-develop paradigm. The method of enforced properties [12, 13]
has been extended to enable development of action systems in a compositional
manner [14]. The logic in [14] considers traces that consist of pre/post state rela-
tions, develops a temporal logic on relations and assumes that environment tran-
sitions are interleaved with those of an action system. Although the framework
facilitates compositional derivation of action systems code, the underlying inter-
leaving semantics assumption could not properly address sampling anomalies and
transient properties. Hence, the framework was generalised so that traces con-
sisted of adjoining intervals together with a sampling logic (Section 2.2), which
allowed sampling-related issues to be properly addressed [17]. However, the logic
in [17] does not adequately handle specifications over multiple time granularities.
Instead, hardware is assumed to react and take effect instantaneously, which is
unrealistic.

2 Background Theory

2.1 Interval Predicates

We model time using the real numbers, R, and let Interval denote the set of
all contiguous non-empty subsets of time. An interval may be open or closed at
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either end, have a least upper bound∞ or a greatest lower bound −∞ (i.e., not
in R).

We let glb.Δ and lub.Δ denote the greatest lower and least upper bounds of
interval Δ, respectively, where ‘.’ denotes function application. For intervals Δ
and Δ′, we define the length of Δ and adjoins relation between Δ and Δ′ as
follows.

�.Δ =̂ lub.Δ− glb.Δ

Δ ∝ Δ′ =̂ (lub.Δ = glb.Δ′) ∧ (Δ ∪Δ′ ∈ Interval) ∧ (Δ ∩Δ′ = {})

Given that variable names are taken from the set Var , a state space over a set
of variables V ⊆ Var is given by ΣV =̂ V → Val , which is a total function from
variables in V to values in Val . A state is a member of ΣV . The (dense) stream
of states over V is given by StreamV =̂ R→ ΣV , which is a total function from
real numbers to states. A predicate over a type T is given by PT =̂ T → B (e.g.,
a stream predicate is a member of PStreamV ), where B is the type of a boolean.
An interval stream predicate, which we shorten to interval predicate, has type
IntvPredV =̂ Interval → PStreamV . We write Σ, Stream and IntvPred for ΣV ,
StreamV and IntvPredV , respectively when the set V is clear from the context.

For an interval predicate p and interval Δ we define the following, where the
stream is implicit in both sides of the definitions.

(prev .p).Δ =̂ ∃Δ′: Interval • (Δ′ ∝ Δ) ∧ p.Δ′

(next .p).Δ =̂ ∃Δ′: Interval • (Δ ∝ Δ′) ∧ p.Δ′

(�p).Δ =̂ ∀Δ′: Interval • Δ′ ⊆ Δ⇒ p.Δ′

Thus (prev .p).Δ and (next .p).Δ hold iff p holds in some interval that immedi-
ately precedes and follows Δ, respectively and (�p).Δ holds iff p holds in each
subinterval of Δ.

We assume pointwise lifting of the boolean operators on stream and interval
predicates in the normal manner, e.g., if p1 and p2 are interval predicates, Δ is
an interval and s is a stream, we have (p1 ∧ p2).Δ.s = (p1.Δ.s ∧ p2.Δ.s). When
reasoning about programs and their properties, we must often state that if an
interval predicate p1 holds over an arbitrarily chosen interval Δ and stream s ,
then an interval predicate p2 also holds over Δ and s . Hence, we define universal
implication over intervals and streams as follows. Operators ‘≡’ and ‘�’ are
similarly defined.

p1.Δ � p2.Δ =̂ ∀s : Stream • p1.Δ.s ⇒ p2.Δ.s

p1 � p2 =̂ ∀Δ: Interval • p1.Δ � p2.Δ

2.2 Evaluating State Predicates over an Interval

Because there are multiple states of a stream within a non-point interval, there
are several possible ways of evaluating a state predicate with respect to a given
interval and stream [23].
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We must often determine the value of a variable at the left and right ends of
an interval. Because intervals may be open/infinite at either end, these values
are determined using limits. We use lim

x→a+
f .x and lim

x→a−
f .x to denote the limit

of f .x as x tends to a from above and below, respectively. To ensure that the
limits are well defined, we assume all variables are piecewise continuous [20]. For
a vector of variables v, interval Δ, stream s , time t , we let (v@t).s =̂ (s .t).v
denote the value of v in state s .t and define:

−→v .Δ =̂

{
v@(lub.Δ) if lub.Δ ∈ Δ

lim
t→lub.Δ−

v@t otherwise
←−v .Δ =̂

{
v@(glb.Δ) if glb.Δ ∈ Δ

lim
t→glb.Δ+

v@t otherwise

Thus, if Δ is right closed, then the value of −→v in Δ is the value of v at the
greatest upper bound of Δ, otherwise (i.e., Δ is right-open), the value of −→v is
the value of the v as it approaches lub.Δ from the right. The interpretation of
←−v .Δ is similar. Given that vec.c denotes the vector of all free variables of state
predicate c, we define

←−c .Δ.s =̂ c[vec.c \(←−−−vec.c).Δ.s ] −→c .Δ.s =̂ c[vec.c \(−−−→vec.c).Δ.s ]

We must often specify properties on the actual states of a stream within an
interval. Thus, we define the always and sometime operators as follows1, where
(c@t).s =̂ c.(s .t) for any state predicate c, time t and stream s .

(�c).Δ ≡ ∀t :Δ • (c@t) (�c).Δ ≡ ∃t :Δ • (c@t)

For a state predicate c, variable v and set of variables V :

st .v =̂ ∀k :Val • prev .(−→v = k)⇒ �(v = k) st .V =̂ ∀v :V • st .v

Hence, a variable v is stable, denoted st .v , iff its value does not change from its
value at the right end of some previous interval, and st .V holds iff each variable in
V is stable. Such definitions of stability are necessary because adjoining intervals
are disjoint, and hence prev .(−→v = k) does not necessarily imply←−v = k and vice
versa.

Example 1. Consider a variable x such that (x@0) = 10 and (� x̂).[0, 2] = 1
hold, where x̂ denotes the rate of change of variable x (c.f. [24]). Thus, the value
of x at time 0 is 10 and the rate of change of x throughout the closed interval
[0, 2] is 1. Then for adjoining intervals [0, 1) and [1, 2], both (−→x = 11).[0, 1) and
(←−x = 11).[1, 2] hold. In fact, we can deduce both (�(x < 11)).[0, 1) and (�(x ≥
11)).[1, 2]. However, for adjoining intervals [0, 1] and (1, 2], (�(x ≤ 11)).[0, 1] and
(�(x > 11)).(1, 2] hold.

1 Our notation follows Burns and Hayes [9] and should not be confused with modal
operator ‘always’ (�) (and ‘next’ (�) later). Instead, we ask the reader to focus on
the ‘∗’ within � (and � later), which represents “for all” and ‘·’ within � (and �
later) which represents “for some” as used when writing regular expressions.
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x

y

se2 se3se1

Δ1 Δ2 Δ3

Fig. 2. Sampling events se1, se2 and se3

Real-time controllers often evaluate an expression over an interval by sampling
the variables of the expression (once per variable) at different instants within
the interval. Hence, reasoning about an expression evaluation that samples two
or more variables can be problematic. For example, consider the three sampling
events se1, se2 and se3 in Fig. 2, where environment variables x and y are sampled
at different times within the interval. Event se1 will return x < y regardless of
when x and y are read within the sampling interval because x < y definitely
holds for all sampled values of x and y. Event se2 may return either x > y,
x = y or x < y because it is possibly true that x > y, x = y and x < y hold.
Event se3 may have a sampling anomaly. Although x > y holds throughout se3,
because x and y are sampled at different times, it is possible for se3 to return
either x > y, x = y or x < y. If a variable occurs multiple times within an
expression, the same sampled value is used for each occurrence of the variable.
Hence, expression x = x is guaranteed to evaluate to true regardless of how x
changes within the evaluation interval, however, x > y may evaluate to false
even if �(x > y) holds [9, 16, 23] as in se3 in Figure 2.

We use the set of apparent states of s ∈ StreamV within interval Δ (denoted
apparent .Δ.s) to reason about sampling-based expression evaluation. We define:

apparent .Δ.s =̂ {σ:ΣV | (∀ v :V • σ.v ∈ {t :Δ • (s .t).v})}

where {t :Δ • (s .t).v} is equivalent to {x ∈ Val | ∃t :Δ • x = (s .t).v}. To
generate the apparent states, we first generate {t :Δ • (s .t).v}, the set of possible
values of the variables within the interval, then generate the set of all possible
states using these values. We formalise state predicates that are definitely true
(denoted �) and possibly true (denoted �) over a given interval Δ and stream
s as follows:

(�c).Δ.s =̂ ∀σ: apparent .Δ.s • c.σ (�c).Δ.s =̂ ∃σ: apparent .Δ.s • c.σ

Hence, (�c).Δ.s and (�c).Δ.s hold iff c holds in every and in some apparent
state of s within the interval Δ, respectively. For example, for Δ1, Δ2 and Δ3 in
Fig. 2 we can deduce both (�(x < y)).Δ1 and (�(x < y) ∧ �(x ≥ y)).Δ2. For
se3 (the event with a sampling anomaly), (�(x ≤ y)).Δ3 holds, despite the fact
that �(x > y).Δ3 holds. Both �c � �c and �c � �c hold, but the converse
of both implications is not necessarily true.

Lemma 2. For any variable v and constant k, st .v ∧ �(v = k) � �(v = k).
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We let vars .c denote the free variables of state predicate c. The following lemma
states that if all but one variable of c is stable over an intervalΔ, then c definitely
holds in Δ iff c always holds in Δ and c possibly holds in Δ iff c holds sometime
in Δ [23].

Lemma 3. For any state predicate c and variable v,
st .(vars .c \{v}) � (�c = �c) ∧ (�c = �c).

2.3 Chop and Iteration

The chop operator ‘;’ is a useful basic operator in interval-based logics [29, 32].
For interval predicates p1 and p2 and interval Δ, we define:

(p1 ; p2).Δ =̂ ∃Δ1, Δ2: Interval • (Δ = Δ1 ∪Δ2) ∧ (Δ1 ∝ Δ2) ∧ p1.Δ1 ∧ p2.Δ2

Thus (p1 ; p2).Δ holds iff Δ can be split into two adjoining intervals so that p1
holds for the first interval and p2 holds for the second. Unlike Moszkowski [29],
we have a dense notion of time and unlike the duration calculus [32], our chop
operator does not requireΔ1 andΔ2 to be closed intervals. Thus, for x as given in
Example 1, both (�(x < 11); �(x ≥ 11)).[0, 2] and (�(x ≤ 11); �(x > 11)).[0, 2]
hold, but (�(x < 11) ; �(x > 11)).[0, 2] does not.

Using chop, we define the weak chop and iterated chop operators as follows:

p1 : p2 =̂ p1 ∨ (p1 ; p2) pω =̂ μ q • p : q

That is, p1 : p2 holds iff either p1 holds or the given interval may be chopped so
that p1 ; p2 holds. The iterated chop pω is the least fixed point of the weak chop
(which defines both finite and infinite iteration of p) assuming that predicates
are ordered using universal reverse entailment (�).

Because we have a dense notion of time, there is a possibility for an iteration
pω to behave in a Zeno-like manner, where p iterates an infinite number of times
within a finite interval. We can rule out Zeno-like behaviour in our implementa-
tions because there is a physical lower limit on the time taken to perform each
iteration and hence a specification that allows Zeno-like behaviour can be safely
ignored. However, we must be careful not to require Zeno-like behaviour, which
would cause our specifications to become unimplementable.

Lemma 4 (ω-unfolding). pω ≡ p ∨ (p ; pω)

Definition 5. We say an interval predicate p splits iff p � �p holds and joins
iff pω � p holds.

For example, �c both splits and joins, � ≤ 42 splits but does not join, � ≥ 42
joins but does not split, and � = 42 neither splits nor joins. In particular, if
(� ≤ 42).Δ holds, then � ≤ 42 holds for all subintervals of Δ. On the other
hand, if (� ≤ 42).Δ1 and (� ≤ 42).Δ2 where Δ1 ∝ Δ2, we cannot guarantee
that (� ≤ 42).(Δ1 ∪ Δ2) holds. Interval predicates that join allow proofs to be
decomposed more easily [16].
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2.4 ILTL

To cope with durative behaviour, the traces of an action system are defined using
a sequence of adjoining intervals. Thus, we use an interval-based linear temporal
logic (ILTL) (as opposed to state-based [26]). If p is an interval predicate, the
syntax of basic ILTL formulae is given by

F ::= p | �F | �F | F1 U F2 | &p | ¬F

Given that seq.T denotes the possibly infinite sequences of type T we define

AdjSeq =̂ {z : seq.Interval | ∀i : dom.z \{0} • z .(i − 1) ∝ z .i} .

For the rest of this paper, we let z be a variable of type AdjSeq. The semantics
of ILTL formulae is given below, where notation (z , s)i " F states that the ILTL
formula F holds for the pair (z , s) starting from index i ∈ dom.z .

Definition 6. If p is an interval predicate, F is an ILTL formula, z ∈ AdjSeq,
s is a stream and i ∈ dom.z , and tr = (z , s) then:

tr " F =̂ tr0 " F

tri " p =̂ p.(z .i).s

tri " �F =̂ ∀j : dom.z • j ≥ i ⇒ (trj " F )

tri " �F =̂ i + 1 ∈ dom.z ⇒ (tri+1 " F )

tri " F1 U F2 =̂ ∃j : dom.z • j ≥ i ∧ (trj " F2) ∧ ∀k • i ≤ k < j ⇒ (trk " F1)

tri " &p =̂ p.(
⋃

j∈dom.z∧i≤j (z .j )).s

tri " ¬F =̂ ¬(tri " F )

Thus, (z , s)i " p holds iff p holds in s within the interval z .i . Operators � and �
and U express always, next and until, respectively, and (z , s)i " &p states that
interval predicate p holds for the interval consisting of the union of all intervals
in z from z .i onwards. We define universal implication for temporal formulae F1

and F2 as follows. Both F1 ≡ F2 and F1 � F2 are similarly defined.

F1 � F2 =̂ ∀z :AdjSeq, s ∈ Stream • ((z , s) " F1)⇒ ((z , s) " F2)

Temporal operators eventually, unless and leads-to are defined as follows:

�F =̂ ¬�¬F F1W F2 =̂ �F1 ∨ (F1 U F2) F1 � F2 =̂ �(F1 ⇒ �F2)

Systems often require that a state predicate be maintained unless another prop-
erty is established.Thus, for state predicates c1 and c2, we define a maintained
unless operatorM as follows:

c1M c2 =̂ �(prev .−→c1 ⇒ (�c1W �c2))

That is, if (z , s) " c1M c2 holds, then for any i ∈ dom.z , if (prev .−→c1).(z .i).s ,
then either c1 definitely holds for all j ≥ i , or c2 possibly holds in z .k and c1
definitely holds for all j such that k > j ≥ i .



Deriving Real-Time Action Systems Controllers 111

Like LTL [26], it is difficult to prove general ILTL formulae directly. However,
certain forms of LTL formulae may be transformed into formulae of the form �p
(for an interval predicate p), which is simpler to prove [17].

Lemma 7. For any interval predicate p and state predicates c1 and c2,

(a) if p joins, then �p � &p,
(b) &� p � �p, and
(c) (c1M c2) ≡ �(prev .−→c1 ⇒ �c1 ∨ �c2).

3 Action Systems with Time Bands

3.1 Time Bands

Like Burns, we assume that the set of all time bands is given by the primitive type
TimeBand [8, 9]. Each time band may be associated with events that execute
within the precision of the time band. We use ρ:TimeBand → R>0 to denote
the precision of the given time band.

To simplify the specification of the behaviour of an event in a time band, we
define the type of a time band predicate as TBPredV :TimeBand → IntvPredV ,
which for a given time band returns an interval predicate. As with interval
predicates, we assume time band predicates are lifted pointwise over boolean
operators and for time band predicates tp1 and tp2, we define tp1 � tp2 =̂
∀β:TimeBand • tp1.β � tp2.β (and similarly � and ≡).

We define the following interval predicates, which are useful for reasoning
about sampling events, where c is a state predicate and n is a real-valued con-
stant.

�nc =̂ (� ≤ n)⇒ �c �nc =̂ (� ≤ n) ∧ �c

Hence, (�nc).Δ holds iff c definitely holds within Δ provided that the length of
Δ is at most n. Similarly, (�nc).Δ holds iff c possibly holds within Δ and the
length of Δ is at most n. Note that ¬�nc ≡ �n¬c.

Because sampling approximates the true value of an environment variable, we
must reason about how the value of a variable changes within an interval [16].
For a real-valued variable v , the maximum difference to v in stream s within Δ
is given by (diff .v).Δ.s , where:

(diff .v).Δ.s =̂ let vs = {t :Δ • (s .t).v} in lub.vs − glb.vs

Note that for any real-valued variable v , st .v � (diff .v = 0).
Sampled real-valued variables in a time band β are related to their true values

within an event of β using the accuracy of the variable in β [16]. In particular,
we let acc.v ∈ TimeBand → R≥0 denote the accuracy of variable v in a given
time band. The maximum change to v within an event of time band β is an
assumption on the environment. To enable this assumption to be stated more
succinctly, we define a time band predicate:

DIFF .v .β =̂ �(� ≤ ρ.β ⇒ diff .v ≤ acc.v .β)
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��(w1 ≤ Empty .T1 ∨ w2 ≥ Full .T2 ⇒ Stopped1) (1)

��(w2 ≤ Empty .T2 ⇒ Stopped2) (2)

�� (�(w2 ≤ Reserve.T2 ∧ w1 ≥ Reserve.T1) ∧ 	 ≥ ρ.Γ ⇒ �On1 ∨ next .(�On1))(3)

�� (�(w2 > Reserve.T2 ∧ Pressed) ∧ 	 ≥ ρ.Γ ⇒ �On2 ∨ next .(�On2)) (4)

�� (�¬Pressed ∧ 	 ≥ ρ.Γ ⇒ �¬On2 ∨ next .(�On2)) (5)

Fig. 3. Formalisation of the two-pump system requirements

The lemma below allows one to relate a sampled variable to its values in the
environment based on its accuracy and generalises the result in [16].

Lemma 8. If x and y are real-valued variables and ' ∈ {≥, >} then
DIFF .x ∧ DIFF .y ∧ �ρ(x − acc.x ' y + acc.y) � �(x ' y).

Corollary 9. If x and y are real-valued variables and ' ∈ {≥, >} then
DIFF .x ∧ st .y ∧ �ρ(x − acc.x ' y) � �(x ' y).

Example 10. The informal requirements of the two-pump system in Section 1
are formalised using the ILTL formulae in Fig. 3.

Safety. We combine S1 and S2 as (1) and formalise S3 as (2). By (1), over the
interval in which the program is executing, in all actual (as opposed to apparent)
states of the stream, if w1 (the water level in tank T1) is below Empty.T1 or w2

(the water level in tank T2) is above Full .T2, then pump P1 must be stopped.
Note that the consequent of (1) states that the P1 has physically come to a stop,
which we distinguish from the signal ¬On1 that causes P1 to stop. Condition
(2) is similar.

Progress. Progress properties P1, P2 and P3 translate into properties (3),
(4) and (5). Each of the progress properties involve time bands of the water.
For simplicity, we assume that the time bands of the water in both tanks is
Γ . Thus, condition (3) states that over the (infinite) interval corresponding to
the execution of the program, in any subinterval say Δ of the interval, if it is
definitely the case that w2 is less than or equal to Reserve.T2 and w1 is greater
than or equal to Reserve.T1 for at least the precision of the water time band,
then the pump must be turned on either within Δ or some interval that follows
Δ. Conditions (4) and (5) are similar.

3.2 Actions

The syntax and semantics of actions are given in Definition 11 and Definition 12,
respectively.
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Definition 11. Suppose b is a state predicate, d is a label, y is a vector of
output variables, E is a vector of expressions that has the same length as y, β
is a time band, F is a set of output variables and p is an interval predicate. The
abstract syntax of an action A is given by:

A ::= d : S | A1 	 A2 | A † β
S ::= b → idle | b → y := E | b → [[F · p]]

Definition 12. For the syntax of actions defined in Definition 11 and a set of
output variables V , the function behV :A → IntvPred is defined inductively as
follows:

behV.(b → idle) =̂ (�b ; true) ∧ st .V (6)

behV.(b → y := E) =̂ (∃k • (�(b∧ (k = E)) ∧ st .y);−→y = k) ∧ st .(V\y) (7)

behV.(b → [[F · p]]) =̂ (�b ∧ st .V ) ; (p ∧ st .(V \F )) (8)

behV.(d : S ) =̂ behV.S ∧ �(ξ = d) (9)

behV.(A1 	 A2) =̂ behV.A1 ∨ behV.A2 (10)

behV.(A † β) =̂ � ≤ ρ.β ∧ behV.A (11)

The primitive idle is a statement that does nothing but may take time to execute,
y := E is the assignment statement and [[F · p]] is a specification statement.
Action d : b → S is a guarded statement consisting of statement S with guard
b and label d . Action A1 	 A2 consists of the non-deterministic choice between
A1 and A2, and A † β defines an action A within time band β. Note that action
d : b → [[F ·p]] is not directly executable, but needs to be refined to an executable
implementation. Further note that we do not allow nested actions, i.e., each
guarded action consists of a guard followed by a statement.

We define a function grd and shorthand else as follows:

grd .(d : b → S ) =̂ b

grd .(A1 	 A2) =̂ grd .A1 ∨ grd .A2

grd .(A † β) =̂ grd .A

A else d : S =̂ A 	 (d :¬grd .A → S )

We let labels .A denote the set of all labels within action A. Action ((d : b →
S ) † β) 	 A is only well defined if d �∈ labels .A, i.e., the label of each guarded
statement within a non-deterministic choice is unique. If d ∈ labels .A, we let Ad

denote the guarded statement labelled d in action A. We reserve a “program
counter” variable ξ whose value is the label of the guarded statement that is
currently executing [12].

The following lemma allows one to simplify the behaviour of guarded actions.

Lemma 13. behV.((b → S ) † β) � �ρ.βb

Proof. The proof holds because behV.((b → S ) †β) � � ≤ ρ.β ∧ (�b ; true) and
(�b ; true) � �b. �
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Definition 14. If V is a set of variables, an action A is refined by an action
C , denoted A (V C, iff behV.C � behV.A holds. If A (V C and C (V A, we
write A ()V C.

A refinement may reduce the non-determinism or strengthen the guard of an
action.

3.3 Action Systems

Definition 15. If I is an interval predicate and A is an action such that grd .A
holds, action system A =̂ init I • doAod consists of an initial property I
followed by an infinite loop that executes action A.

We use in.A ⊆ Var and out .A ⊆ Var to distinguish the input and output
variables of action system A and use vars .A =̂ in.A ∪ out .A for the variables
of A . Because we assume true concurrency between an action system A and
its environment, we require that in.A and out .A are disjoint. We use A † β
as shorthand for the action system whose action executes in time band β, i.e.,
A † β =̂ init I • doA † β od.

Execution of an action system starts in an interval for which the initial prop-
erty holds for an immediately preceding interval. Then each successive interval
of the trace is generated by the behaviour of some guarded action.

Definition 16. Given AS =̂ AdjSeq × Stream, the set of all complete traces of
action system A with outputs V =̂ out .A is given by Tr.A , where:

Tr.A =̂ {(z , s):AS | dom.z = N ∧ ((z , s) " prev .I ∧ �(behV.A))}

Thus, for each (z , s) ∈ Tr.A , it is assumed that I holds for some interval that
precedes z .0 and some action executes in each interval z .i . Furthermore, because
the action systems we consider are non-terminating, z is an infinite sequence.

Given any action system A and variable v ∈ out .A , we require a healthiness
condition:

A |= �(prev .−→v =←−v ) (12)

i.e., the value of v does not change over the boundary between adjoining intervals.

Lemma 17. If boolean variable x is an output variable, then

behV.(x → S ) � prev .−→x (13)

(behV.(x → S )⇒ −→¬x) � ((behV.(x → S ))ω = behV.(x → S )) (14)

Proof (13). We first show that behV.(x → S ) � (�x ∧ st .x ) ; true. The proofs
for S ∈ {idle, [[F · p]]} are trivial because st .V splits and ‘;’ is monotonic. For
S = (y := E), we have:
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behV.(x → y := E)
� definition of behV , st .V splits, ‘; ’ is monotonic
∃k • �(x ∧ st .V ) ; true

� logic
(�x ∧ st .x ) ; true

Thus, we have:

behV.(x → S)
� proof above

(�x ∧ st .x) ; true
� by Lemma 2 �(x= true) (because x is boolean) and for any c, �c �←−c
←−x

� healthiness condition (12)
prev .−→x

Proof (14). (behV.(x → S ))ω � behV.(x → S ) trivially holds by Lemma 4
(ω-unfolding). Assuming behV.(x → S )⇒ −→¬x , we have

(behV.(x → S ))ω

≡ Lemma 4 (ω-unfolding)
behV.(x → S ) ∨ (behV.(x → S ) ; (behV.(x → S ))ω)

� assumption behV.(x → S )⇒ −→¬x and (13)
behV.(x → S ) ∨ (−→¬x ; (prev .−→x )ω)

≡ (prev .−→c )ω � (prev .−→c ) and ¬(−→¬c ; prev .−→c )
behV.(x → S ) �

Definition 18. We say that an action system A satisfies an ILTL formula F
(denoted A |= F) iff ∀tr :Tr.A • tr " F holds.

To show that an action system A with output context V satisfies �p, one may
show that, behV .A � p, i.e., the execution of each guarded action of A satisfies p.

Theorem 19. A |= �p if behout.A.A � p.

Proof. The proof follows by definitions 16 and 18 and the definition of �.

Reactive systems are often structured so that a controller sends signals to the
environment, then becomes idle while changes occur in the environment based
on the controller signals. Using Theorem 19 to prove A |= �p can be difficult
when p includes properties of the environment. Instead, we often use Theorem 21
below which allows one to consider the iterated execution of an action (usually
idle) and the properties that held before the action started executing. We first
prove a preliminary lemma.

Lemma 20. If (z , s) ∈ Tr.A and i ∈ dom.z , there exists a j ∈ dom.z , where j ≤
i and a d ∈ label .A such that (prev .(I ∨ (∃e: label .A\{d} • behout.A.Ae))).(z .j ).s
and for all j ≤ k ≤ i, (behout.A.Ad ).(z .k).s.
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Proof. The proof is trivial for i = 0. For any i ∈ dom.z \ {0}, because (z , s) ∈
Tr.A , there exists a d ∈ label .A such that (behout.A.Ad).(z .i).s . Then, either

– (prev .(I ∨ (∃e: label .A\{d} • behout.A.Ae))).(z .i).s holds, in which case the
proof is trivial, or

– (prev .(behout.A.Ad)).(z .i).s holds, i.e., (behout.A.Ad ).(z .(i − 1)).s holds and
the proof follows by induction. �

For a label d ∈ label .A , we define

iterate.A .d =̂ (behout.A .Ad)
ω ∧ prev .(I ∨ ∃e: label .A \{d} • behout.A .Ae)

which holds over an interval Δ iff the action of A labelled d iterates over Δ and
in some interval that precedes Δ, either the initialisation I of A holds or some
action different from e executes.

Theorem 21. If p splits, then A |= �p holds provided that

A |= &� (∀d : label .A • iterate.A .d ⇒ p) (15)

Proof. By Lemma 20, for any (z , s) ∈ Tr.A and i ∈ dom.z ,

∃j : dom.z , d : label .A •
j ≤ i ∧ (prev .(I ∨ (∃e: label .A\{d} • behout.A.Ae))).(z .j ).s ∧
(∀k • j ≤ k ≤ i ⇒ (behout.A.Ad).(z .k).s)

Hence,
(iterate.A .d).(

⋃
j≤k≤i z .k).s

holds and therefore by (15), p.(
⋃

j≤k≤i z .k).s holds. Because p splits, p.(z .i).s
holds and because i was arbitrarily chosen, (z , s) " �p holds. �
Like safety properties, it is often simpler to first translate progress properties
into ‘�’ formulae.

Lemma 22. For any state predicates c1 and c2, If A † β |= �c1 � �c2 then
A † β |= &� (�c1 ∧ � ≥ 2ρ.β ⇒ �c2 ∨ next .�c2).

Proof. For any (z , s) ∈ Tr.(A † β), suppose Δ =
⋃
ran.z and Δ′ ⊆ Δ such that

(�c1 ∧ � ≥ 2ρ.β).Δ′. We have:

(z , s) ∈ Tr.(A † β) ∧ (Δ =
⋃
ran.z ) ∧ (Δ′ ⊆ Δ) ∧ (�c1 ∧ � ≥ 2ρ.β).Δ′

⇒ definition of A † β
(∀i : dom.z • (� ≤ ρ.β).(z .i)) ∧ (Δ =

⋃
ran.z ) ∧

(Δ′ ⊆ Δ) ∧ (�c1 ∧ � ≥ 2ρ.β).Δ′

⇒ logic
∃i : dom.z • (�c1).(z .i) ∧ z .i ⊆ Δ′

⇒ assumption A † β |= �c1 � �c2
∃i : dom.z • z .i ⊆ Δ′ ∧ ∃j : dom.z • i ≥ j ∧ (�c2).(z .j )

⇒ logic
(�c2).Δ

′ ∨ (next .(�c2)).Δ
′ �
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3.4 Parallel Composition

We use A
−→‖B to denote the parallel composition of action systems A and B.

For the program A
−→‖B to be well formed, we require:

(in.A ∪ out .A ) ∩ out .B = {} (16)

i.e., B cannot modify the inputs and outputs of A but the outputs of A may
be used as inputs to B and furthermore A and B may share inputs. Hence,

A
−→‖B is not necessarily equivalent to B

−→‖ A .

Within A
−→‖B, action systems A and B execute in a truly concurrent manner.

Furthermore, A and B may execute in different time bands. Hence, the adjoining
intervals defined by the execution of A and B are unrelated and we cannot use

Tr.A and Tr.B to define the traces of A
−→‖B. Instead, we consider the whole

interval over which the action systems execute.

Definition 23. For an action system A , interval Δ and stream s, we say A
executes over Δ in s iff (exec.A ).Δ.s holds, where:

(exec.A ).Δ.s =̂ ∃z • (z , s):Tr.A ∧ Δ =
⋃

ran.z (17)

Definition 24. Suppose A and B are action systems such that (16) holds.
Then,

exec.(A
−→‖B) =̂ exec.A ∧ exec.B

Thus, for any interval Δ and stream s , (exec.(A
−→‖B)).Δ.s holds iff there exist

traces (z1, s) ∈ Tr.A and (z2, s) ∈ Tr.B such that Δ =
⋃
ran.z1 =

⋃
ran.z2, i.e.,

it is possible for A and B execute in the same overall interval and stream.
A special case of parallel composition is simple parallelism, denoted A ‖B,

where no output of A is an input to B and vice versa, i.e., A ‖B is defined iff
(16) ∧ (out .A ∩ in.B = {}) holds. Note that in.A ∩ in.B may be non-empty,

i.e., A and B may share inputs. Unlike A
−→‖B, A ‖B is equivalent to B‖A .

4 Deriving Action System Controllers

4.1 Enforced Properties

Our derivation method uses enforced properties [12, 14], which are ILTL formu-
lae that restrict the traces of an action system to those that satisfy the formulae.
Enforced properties are temporal formulae and hence may be used to state gen-
eral properties on the traces, e.g., we may formalise fairness assumptions on
the scheduler [12]. We first present enforced properties on actions, which allows
finer-grained control over the execution of an action system.

Definition 25. An action A with enforced property p ∈ IntvPred, is an action
A ! p and its behaviour in an output context V ⊆ Var is given by behV .(A ! p) =̂
behV .A ∧ p.
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init I1 •
do d0: true → [[On1 · true]]
od †τ1 ?SP1 ?DA.w1 ∧ DA.w2

Fig. 4. Initial action system for P1

init I2 •
do e0: true → [[On2 · true]]
od †τ2 ?SP2 ?DA.w2

Fig. 5. Initial action system for P2

Thus, when executing A ! p, in addition to behaving as specified by behV .A, the
interval predicate p must also hold. We may represent time bands on actions
using enforced properties.

Lemma 26. For an action A, time band β and V ⊆ Var, A†β ()V A !(� ≤ ρ.β)

We obtain straightforward lemmas on actions with enforced properties [17].

Lemma 27. For an action A, interval predicates p and q and set of variables
V ,

(a) A ! (p ∧ q) ()V (A ! p) ! q,
(b) A ! (p ∨ q) ()V (A ! p) 	 (A ! q) and
(c) if behV .A � p then A ! p ()V A.

Note that it is possible to enforce unimplementable behaviour, e.g., behV .(A !
false). Hence, we typically introduce or strengthen an enforced property to the
weakest possible predicate to allow greater flexibility in an implementation.

We extend the concept of enforced properties on actions to enforced properties
on action systems, which are specified using ILTL formula.

Definition 28. If F is an ILTL formula then action system A with enforced
property F is denoted A ?F, and its traces are given by Tr.(A ?F ) =̂ {tr :Tr.A |
tr " F}.

Thus, although Tr.A may contain traces that do not satisfy F , by definition,
A ?F is guaranteed to satisfy F . We have used enforced properties to develop
theories of refinement, where the enforced properties are LTL formulae [12],
relational LTL formulae [14] and ILTL formulae [17].

Example 29. We specify an initial action system controller for the two-pump
system in Section 1. The initial actions are liberal and allow arbitrary modi-
fication of signals On1 and On2. However, execution of the action systems are
constrained by their enforced properties, which ensure that the programs are
correct with respect to the given properties. We develop the system as the sim-
ple parallel composition between the controllers for pumps P1 and P2, which
allows the pumps to be controlled independently (see Fig. 4 and Fig. 5). We
assume that the time band of pump Pi is φi and recall that the time band of
the controller for Pi is τi . Thus, each iteration of the do loop of the controller
for pump P1 can be completed within an interval of length ρ.τ1 and events of
P1 take at most ρ.φ1 time (similarly for P2). The action for the initial version
of the controller of P1 is d0: true → [[On1 · true]], where d0 is a label, guard true
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never blocks the action from executing and [[On1 · true]] allows the output On1

to be set to true or false non-deterministically. We collate the properties on P1

and P2 as ILTL formulae SP1 and SP2, respectively:

SP1 =̂ (1) ∧ (3)

SP2 =̂ (2) ∧ (4) ∧ (5)

Both SP1 and SP2 are introduced to the program in Fig. 4 and Fig. 5 as enforced
properties, which guarantees that the programs are correct with respect to these
requirements. That is, although the program without the enforced properties is
able to arbitrarily change the values of On1 and On2, by including the enforced
properties, the traces of the controllers are guaranteed to satisfy the required
properties SP1 and SP2, respectively.

Enforced properties can also be used to specify assumptions about the be-
haviour of the environment. Here, we use enforced properties to ensure that the
accuracies of w1 and w2 bound the maximum possible change to w1 and w2 in
any time band. For i ∈ {1, 2}, we define:

DA.wi =̂ &(DIFF .wi .φi ∧ DIFF .wi .τi)

Hence, the maximum difference between two values of w1 in events of time bands
φ1 and τ1 are bounded by the accuracy of w1 in φ1 and τ1, respectively. By using
& in the formula above, we are stating that DIFF .wi .φi ∧ DIFF .wi .τi holds over
the whole interval in which the action systems executes.

The controllers for P1 and P2 are only partially developed and actions d0 and
e0 are not yet executable. Hence, we perform a series of refinements to obtain
an implementation that can be executed.

4.2 Action System Refinement

Our method of derivation allows programs to be developed in an incremental
manner. In particular, we calculate the effect of (partially) developed actions on
the enforced properties, which generates new properties and actions. However
unlike Dijkstra [11], Feijen/van Gasteren [19] and Dongol/Mooij [18], we disallow
arbitrary modifications to the program; each change must be justified using a
lemma/theorem that ensures that the previous version is refined [14, 17].

Definition 30. Action system C refines A (denoted A ( C ) iff exec.C �
exec.A .

Thus, for any interval Δ and stream s , if it is possible to execute C within Δ
in s , then it must be possible to execute A within Δ in s . The lemma below
provides a sufficient condition for action system refinement [17].

Lemma 31. Suppose A =̂ init IA; doAod and C =̂ init IC ; doC od. Then
A ( C holds if out .C ⊆ out .A and (IC ⇒ IA) ∧ (A (out.C C ).

Lemma 32. If A =̂ init I • doAod, then A () init I • doA 	 B od if
A (V B.
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The following lemma allows trace refinement of action systems with enforced
properties [17].

Lemma 33. For action systems A and C and ILTL formulae F and F ′,

(a) A () A ? true holds,
(b) A ?F ( A ?F ′ holds if F ′ � F,
(c) A ?F ( C ?F holds if A ( C and
(d) A ?(F ∧ F ′) () A ?F holds if A ?F |=V F ′.

Thus, introducing true or strengthening existing enforced properties results in
a refinement. Furthermore, if an action system without an enforced property
refines another, then the refinement holds with the enforced property included.
An enforced property F ∧ F ′ may be simplified to F if the action system A ?F
satisfies F ′.

Lemma 34. For an action system A and time band β, A †β () A ?�(� ≤ ρ.β).

Example 35. Using Lemma 22, given the following relationship between Γ and
the controller time bands τ1 and τ2,(

ρ.τ1 ≤
ρ.Γ

2

)
∧
(
ρ.τ2 ≤

ρ.Γ

2

)
(18)

progress properties (3), (4) and (5) are implied by leads-to properties (19), (20)
and (21), respectively (see below).

�(w2 ≤ Reserve.T2 ∧ w1 ≥ Reserve.T1) � �On1 (19)

�(w2 > Reserve.T2 ∧ Pressed) � �On2 (20)

�¬Pressed � �¬On2 (21)

By (19), if it is definitely the case that the water level in tank T2 is below
Reserve.T2 and the water level in tank T1 is above Reserve.T1, then pump P1

must eventually be turned on. Conditions (20) and (21) are similar.
Unlike Aichernig et al, we specify maintenance properties to ensure that the

pump does not arbitrarily change its state.

M1. If P1 has been turned on, then it must remain on unless w1 is possibly
below Reserve.T1 or w2 is possibly above Limit .T2.

M2. If P1 has been turned off, then it must remain off unless w1 is possibly
above Reserve.T1 and w2 is possibly below Limit .T2.

M3. If P2 has been turned on, then it must remain on unless w2 is possibly
below Reserve.T2 or the button B is possibly released.

M4. If P2 has been turned on, then it must remain off unless B is possibly
pressed and w2 is possibly above Reserve.T2.

Note that condition M1 must allow pump P1 to be turned off before the water
level drops to empty because by S1, the pump must (physically) be off if the
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init I1 •
do d0: true → [[On1 · true]]
od †τ1 ? SPM1 ?DA.w1 ∧ DA.w2

Fig. 6. Refined action system for P1

init I2 •
do e0: true → [[On2 · true]]
od †τ2 ?SPM2 ?DA.w2

Fig. 7. Refined action system for P2

water level ever reaches Empty.T1. The maintenance properties are interpreted
in the controller time band, e.g., within M1, “w1 is possibly below Reserve.T1”
is interpreted as “w1 is possibly below Reserve.T1 for an event of the controller
time band” (see Example 10).

Properties M1, M2, M3 and M4 translate directly to maintained unless
properties (22), (23), (24) and (25), respectively (see below).

On1M (w1 ≤ Reserve.T1 ∨ w2 ≥ Limit .T2) (22)

¬On1M (w1 > Reserve.T1 ∧ w2 < Limit .T2) (23)

On2M (¬Pressed ∨ w2 ≤ Reserve.T2) (24)

¬On2M (Pressed ∧ w2 > Reserve.T2) (25)

By (22) if signal On1 holds at the end of a preceding interval at any point during
the program’s execution, then On1 must continue to hold unless there is an
interval in which w1 ≤ Reserve.T1 or w2 ≥ Full .T2 is possibly true. Conditions
(23), (24) and (25) are similar.

We define:

SPM1 =̂ (1) ∧ (19) ∧ (22) ∧ (23)

SPM2 =̂ (2) ∧ (20) ∧ (21) ∧ (24) ∧ (25)

Then using Lemma 33, we replace SP1 in Fig. 4 by SPM1 to obtain the refined
action system in Fig. 6. Similarly, the action system in Fig. 5 is refined by the
one in Fig. 7.

Note that using a sampling logic over intervals allows one to reason about
transient behaviour and hence avoid formalisation of unimplementable speci-
fications. We say a state predicate is transient in a stream if the predicate
only holds for a brief (e.g., an attosecond) amount of time, whereby it is not
possible to reliably detect that the predicate held [14, 17]. For example, prop-
erty (20) without using a sampling logic would be stated using LTL [26] as
w > Reserve.T2 ∧ Pressed � On2 [10, 14]. Such a property is unimplementable
if the state predicate w > Reserve.T2 ∧ Pressed on the left of � is transient
(which can happen if the button is quickly pressed then released). In this paper,
because we use � on the left of ‘�’ within (19), (20) and (21), the correspond-
ing state predicate must hold for all apparent states, i.e., the state predicate
on the left of ‘�’ is guaranteed to be detected by the controller provided that
the variables are sampled within the sampling interval. For example, in (20),
we can guarantee that w2 > Reserve.T2 ∧ Pressed is detected by the controller
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regardless of when the variables w2 and Pressed are sampled within the sampling
interval. If �(w ≤ Reserve.T2 ∨ ¬Pressed) holds over a sampling interval, i.e.,
it is possible for the controller not to detect w > Reserve.T2 ∧ Pressed , then
the controller is not required to turn P2 on.

We define trace refinement of a parallel composition of action systems as
follows.

Definition 36. For action systems A , A ′, B and B′, such that A
−→‖B and

A ′−→‖B′ are well formed, we say A
−→‖B is trace refined by A ′−→‖B′ (i.e.,

A
−→‖B ( A ′−→‖B′) iff exec.(A ′−→‖B′) � exec.(A

−→‖B).

Lemma 37. For action systems A , A ′, B and B′, such that A
−→‖B and

A ′−→‖B′ are well formed, A
−→‖B ( A ′−→‖B′ holds iff both A ( A ′ and B (B′.

5 Hardware/Software Interaction

One of the benefits of using time bands is that it simplifies reasoning about the
interaction between hardware and software. Namely, we may formalise delays
in turning signals on/off within a digital controller, and the effect of the signal
in the physical world. In this section, we present some high-level interval pred-
icates for expressing properties of hardware/software interaction and theorems
for reasoning about such systems.

We assume that the controller sends a boolean signal sig to achieve a boolean
effect eff in the environment, where eff occurs if sig holds continuously over a
long enough interval (i.e., not instantaneously). There are often delays in the
controller setting sig and in the environment reacting to sig to achieve eff . Fur-
thermore, the time bands of the controller and environment may differ (e.g., if
the environment consists of physical hardware). Thus, we define a time band
predicate signal that formalises the behaviour of the controller setting the signal
sig (in the time band of the controller) and a time band predicate effect that
formalises the relationship between sig and eff (in the time band of the environ-
ment). Within the controller, we may distinguish between actions that set and
maintain sig, where the sig is set to true due to a trigger c. Signal sig is set to
true by a single action, but is maintained by the iterated execution of several
“maintenance” actions (e.g., idle). Hence, given time bands β and γ, we define:

signal(c, sig).β =̂ if prev .
−−→¬sig then(� ≤ ρ.β ∧ �c ∧ −→sig) else (prev .−→c ∧ �sig)

effect(sig, eff ).γ =̂ �sig ⇒ if prev .
−→
eff then�eff else(� ≤ ρ.γ : �eff )

which describe relationships between the signal predicate sig and the correspond-
ing effect predicate eff . If signal(c, sig).β holds, then if sig does not hold, then
�c is guaranteed to hold and sig is guaranteed to be established within the
precision of β, otherwise c must hold initially and sig must hold continuously
in the interval. In essence, this ensures that the precision of setting sig to true
is ρ.β. For example, the controller for P2 sends a signal On2 (i.e., sig is On2)
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and has effect Stopped2 (i.e., eff is Stopped2). The action that sets On2 to true
may guarantee a condition c that actions that maintain On2 can rely on holding
initially. We calculate c for specific problem instances using Theorem 39 below.

If effect(sig, eff ).γ holds, then provided that sig is continuously true over an
interval, eff continues to hold if it held at the right end of the previous interval,
otherwise there is a delay of at most ρ.γ before �eff holds. This models the fact
that the effect takes place within the precision of the given time band.

Real-time controllers must often sample a variable in the environment and
control a physical mechanism so that the effect of the mechanism occurs before
the value of the variable in the environment drops below a critical level. The
following lemma provides conditions that allow one to show that in all states of
the stream, either the value of a variable v is above a critical level C , or the
physical effect eff has taken place.

Lemma 38. Suppose v is a real-valued variable, ' ∈ {>,≥}, sig and eff are
state predicates, and T ,C ∈ R are constants. Then

(T ≥ C+acc.v) ∧ DIFF .v ∧ effect(sig, eff ) ∧ ←−−−−v ' T ∧ �sig � �(v ' C ∨ eff )

Proof. (T ≥ C + acc.v) ∧ DIFF .v ∧ effect(sig, eff ) ∧ ←−−−−v ' T ∧ �sig
� definition of effect(sig, eff ) using �sig

(T ≥ C + acc.v) ∧ DIFF .v ∧ ←−−−−v ' T ∧ (�eff ∨ (� ≤ ρ : �eff ))
� Corollary 9

�eff ∨ (�(v ' C ) : �eff )
� (�c1 : �c2) � �(c1 ∨ c2)

�(v ' C ∨ eff ) �
We use Lemma 38 in the proof of the theorem below, which defines a relationship
between signals and their effects in the context of an action system controller. In
particular, it provides conditions necessary for a property of the form ��(v '
C ∨ eff ) to be established.

Theorem 39. If v is a continuous variable, β and γ are time bands, ' ∈ {>
,≥}, sig and eff are state predicates, O =̂ out .A and T ,C ∈ R are constants
such that T ≥ C +max (acc.v .β, acc.v .γ), then A †β |= ��(v ' C ∨ eff ) holds
if:

A † β |= &� (effect(sig, eff )).γ (26)

A † β |= &�
(
∀d : label .A • iterate.A .d ⇒

(�ρ.β(v ' C + acc.v .β))ω ∨ (signal(v ' T , sig)).β

)
(27)

A † β |= &(DIFF .v .β ∧ DIFF .v .γ) (28)

Proof. By Theorem 21, because �c splits, A † β |= ��(v ' C ∨ eff ) holds if

A † β |= &� (∀d : label .A • iterate.A .d ⇒ �(v ' C ∨ eff ))

Using (27) and transitivity, the condition above holds if we prove

A † β |= &�
(
(�ρ.β(v ' C + acc.v .β))ω ∨ (signal(v ' T , sig)).β ⇒

�(v ' C ∨ eff )

)
(29)
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We have

(29)
= logic

A † β |= &� ((�ρ.β(v ' C + acc.v .β))ω ⇒ �(v ' C ∨ eff )) ∧
A † β |= &� ((signal(v ' T , sig)).β ⇒ �(v ' C ∨ eff ))

⇐ Corollary 9 and (28)
A † β |= &� ((signal(v ' T , sig)).β ⇒ �(v ' C ∨ eff ))

= sig is a boolean, logic

A † β |= &� ((signal(v ' T , sig)).β ∧ prev .
−→
sig ⇒ �(v ' C ∨ eff )) ∧

A † β |= &� ((signal(v ' T , sig)).β ∧ prev .
−−→¬sig ⇒ �(v ' C ∨ eff ))

⇐ definition of signal
A † β |= &� (prev .(−→v ' T ) ∧ �sig ⇒ �(v ' C ∨ eff )) ∧
A † β |= &� (� ≤ ρ.β ∧ �(v ' T ) ∧ −→sig ⇒ �(v ' C ∨ eff ))

⇐ first conjunct: (26), (28) and T ≥ C +max (acc.v .β, acc.v .γ)
second conjunct: �(v ' T )⇒ �(v ' C )

true �
By (26) the effect predicate holds between sig and eff within time band γ. By
(27), either it is possible to sample that the value of v is above C + acc.v .β in
each sampling interval, or sig is set to true. By (28) the difference between two
values of v within events of time bands β and γ does not exceed the accuracy
of v in β and γ, respectively. Conditions (26) and (28) are usually properties
of the environment of the action system and hence are introduced as enforced
properties. On the other hand, properties such as (27) must be guaranteed by
the actions of the action system.

Example 40. We demonstrate the use of Theorem 39 and derive the necessary
conditions on the control signal On2 and the state of pump P2 to prove (2).
Because �c joins for any state predicate c, using Lemma 7, condition (2) holds
if

��(w2 ≤ Empty.T2 ⇒ Stopped2)

which by logic is equivalent to

��(w2 > Empty.T2 ∨ Stopped2)

Using Theorem 39 this holds if for some constant T , (30) ∧ (31) ∧ �(32) holds
(see Fig. 8). Condition (28) is satisfied by enforced property DAw2 in the program
in Fig. 7. Condition (30) establishes a relationship between T and Empty.T2

based on the accuracy of the water in time bands τ2 and φ2. By (31), in any
subinterval of the action system’s execution, the pump must stop if the length of
the subinterval is ρ.φ2 or greater and signal ¬On2 holds continuously. Condition
(32) states that either it is possible to iteratively sample w2 > Empty.T2 +
acc.w2.τ2 or the signal predicate holds, which ensures that ¬On2 holds within an
interval of length ρ.τ2 and ¬On2 is maintained if it already holds.
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T ≥ Empty .T2 + max(acc.w2.τ2, acc.w2.φ2) (30)

�� (effect(¬On2,Stopped2)).φ2 (31)

��
(∀d : label .A • iterate.A .d � (�ρ.τ2(w2 > Empty .T2 + acc.w2.τ2)) ∨

(signal(w2 ≥ T ,¬On2)).τ2

)
(32)

�(w2 > Reserve.T2 ∧ Pressed) ⇒ −−→
On2 (33)

�¬Pressed ⇒ −−−→¬On2 (34)

prev .
−−→
On2 ⇒ �On2 ∨ �(¬Pressed ∨ w2 ≤ Reserve.T2) (35)

prev .
−−−→¬On2 ⇒ �¬On2 ∨ �(Pressed ∧ w2 > Reserve.T2) (36)

Fig. 8. Transformed properties

6 Example: Two-Tank Pump System

Due to Lemma 37, we may refine the system by refining the controllers of each
pump separately. In this paper, we focus on the controller for pump P2; the
controller for P1 may be derived in a similar manner.

6.1 Formulae Transformation

We first transform the general ILTL formula SPM2, into formulae with conjuncts
of the form �p where p is an interval predicate [14, 17]. We may prove that the
program satisfies �p using Theorem 21.

Safety. The transformation to satisfy safety condition (2) is given in Example 40.

Progress. We may ensure the right hand side of � in (20) and (21) holds
immediately, i.e., without any intermediate intervals. Hence, we obtain (33) and
(34), where (20) and (21) hold if �(33) and �(34) hold, respectively. By (33) if
it is definitely the case that the water in tank T2 is above Reserve.T2 and the
button is pressed, then signal On2 must be set to true. Condition (34) is similar.

Maintenance. Using Lemma 7, (24) and (25) hold if �(35) and �(36) hold,
respectively. By (35), if On2 holds at the end of the previous interval, then it
must hold throughout the current interval, or it must be possible detect that
Pressed does not hold or the water in tank T2 is below Reserve.T2. Condition
(36) is similar. We distinguish between the properties of the controller of P2 and
those of the its environment and define:

RefSPM2 =̂ (32) ∧ (33) ∧ (34) ∧ (35) ∧ (36)

Using Lemma 33, we replace enforced property in SPM2 within the controller
for P2 in Fig. 7 by �RefSPM2 ∧ (31) and we obtain the program in Fig. 9.
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do e0: true → [[On2 · true]]
od †τ2 ?(�RefSPM2 ∧ (31)) ?DA.w2

Fig. 9. Replace SPM2

6.2 Action Calculation

Using Theorem 21, for each action a that we introduce, we check that (behV .a)ω

� RefSPM2 holds.

Turning Pump P2 Off. The controller achieves this by setting the output
signal On2 to false under a guard b1 and enforced property p1. Thus, we check
the effect of action (e1: b1 → On2 := false) ! p1, where e1 is a fresh label, b1 is a
state predicate and p1 is an interval predicate. Both b1 and p1 are instantiated
below when calculating the conditions for e1 to establish RefSPM2. To prove
(32), we assert b1 ⇒ On2 and obtain:

(behV .(e1 ! p1))
ω � (32)

⇐ (14) of Lemma 17 because b1 ⇒ On2

behV .(e1 ! p1) � (32)
⇐ (13) of Lemma 17 using b1 ⇒ On2, strengthen consequent

behV .e1 ∧ p1 ∧ prev .
−−→
On2 � (signal(w2 ≥ T ,¬On2)).τ2

⇐ definition of signal, use prev .
−−→
On2

behV .e1 ∧ p1 � � ≤ ρ.τ2 ∧ �(w2 ≥ T ) ∧ −−−→¬On2

⇐ definition of behV , � ≤ ρ.τ2 is implicit by †τ2−−−→¬On2 ∧ p1 � �(w2 ≥ T ) ∧ −−−→¬On2

⇐ logic, weaken antecedent
p1 � �(w2 ≥ T )

By asserting b1 ⇒ w2 ≤ Reserve.T2 ∨ ¬Pressed , condition (33) may be dis-

charged using Lemma 13. Condition (34) is trivial because behV .e1 � −−−→¬On2.
Condition (35) is trivial by b1 ⇒ w2 ≤ Reserve.T2 ∨ ¬Pressed from above and
Lemma 13, �(w2 ≤ Reserve.T2 ∨ ¬Pressed) holds. Condition (36) holds be-

cause b1 ⇒ On2 holds, which by (13) of Lemma 17 implies prev .
−−−→¬On2. Thus,

our derived action is

(e1:On2 ∧ (¬Pressed ∨ w2 ≤ Reserve.T2) → On2 := false) ! �(w2 ≥ T )

This action contains an enforced property �(w2 ≥ T ), which we discharge at a
later stage of the derivation.

Turning Pump P2 On. As with action e1 above, the template for turning
the pump on is (e2: b2 → On2 := true) ! p2. Because the calculations for e2 to
satisfy RefSPM2 are similar to those for e1 above, we only briefly describe the
necessary modifications. For (32), we assert b2 ⇒ w2 > Empty.T2 + acc.w2.τ2,

condition (33) is trivially discharged because
−−→
On2 holds, condition (34) is satisfied

by asserting b2 ⇒ Pressed , which by Lemma 13 ensures �Pressed and (35) is
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satisfied by asserting b2 ⇒ ¬On2, which by (13) of Lemma 17 implies prev .
−−→
On2.

Finally, for (36), we assert b2 ⇒ w2 > Reserve.T2 (because b2 ⇒ Pressed already
holds) and by assuming

Reserve.T2 ≥ Empty.T2 + acc.w2.τ2 (37)

we obtain action:

e2:¬On2 ∧ Pressed ∧ w2 > Reserve.T2 → On2 := true

idle Action. Because we are developing a reactive system, idle is executed
when both e1 and e2 are disabled, i.e., when ¬grd .e1 ∧ ¬grd .e2 holds. We may
simplify the (iterated) behaviour of the idle action as follows:

(behV .(e3:¬grd .e1 ∧ ¬grd .e2 → idle))ω

� definition of behV , (p1 ∧ p2)
ω ⇒ pω

1 ∧ pω
2(

�ρ.τ2

(
(¬On2 ∨ (w2 > Reserve.T2 ∧ Pressed)
∧ (w2 ≤ Reserve.T2 ∨ On2 ∨ ¬Pressed)

))ω

∧ (st .On2)
ω

� (st .On2)
ω ≡ st .On2 and case analysis on prev .

−−→
On2, use st .On2,

then simplify((�ρ.τ2

(
w2 > Reserve.T2 ∧ Pressed

))ω ∧ prev .
−−→
On2 ∧ �On2

)
∨((�ρ.τ2

(
w2 ≤ Reserve.T2 ∨ ¬Pressed

))ω ∧ prev .
−−−→¬On2 ∧ �¬On2

)
Hence, we can prove that (behV .(e3:¬grd .e1 ∧ ¬grd .e2 → idle))ω satisfies
RefSPM2 by proving that both of the interval predicates below satisfy RefSPM2:

(�ρ.τ2(w2 > Reserve.T2 ∧ Pressed))ω ∧ prev .
−−→
On2 ∧ �On2 (38)

(�ρ.τ2(w2 ≤ Reserve.T2 ∨ ¬Pressed))ω ∧ prev .
−−−→¬On2 ∧ �¬On2 (39)

Both (38) and (39) trivially satisfy (33), (34), (35) and (36). Condition (38)
trivially satisfies (32) because by (37), Reserve.T2 ≥ Empty.T2+acc.w2.τ2 holds.
To show that (39) satisfies (32), because (39) implies that �¬On2 holds, we use
Lemma 33 to introduce the following enforced property to the program:

�(�(ξ = e3) ∧ prev .(
−−−→¬On2)⇒ prev .(

−−−−−→
w2 ≥ T )) (40)

which states that if e3 is being executed and signal On2 is disabled at the end
of the preceding interval, then the water level in tank T2 must be above T at
the end of the preceding interval. This ensures that (39) satisfies (signal(w2 ≥
T ,¬On2)).τ2.

We prove (40) using Theorem 21, which gives us the following proof obligation:

(behV.e3)
ω ∧ �(ξ = e3) ∧

prev .(
−→
I ∨ (∃k : {e1, e2} • behV.k))

� prev .(
−−−−−−−−−−→
On2 ∨ w2 ≥ T ) (41)

For
−→
I , we require that I ⇒ w2 ≥ T , for k = e1, the proof holds by enforced

property
−−−−−→
w2 ≥ T in e1 and for k = e2 the proof holds because behV .e2 implies−−→

On2.
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do e0: true → [[On2 · true]]
� e1: On2 ∧ (¬Pressed ∨ w2 ≤ Reserve.T2) → On2 := false ! �(w2 ≥ T )
� e2: ¬On2 ∧ Pressed ∧ w2 > Reserve.T2 → On2 := true
� e3: ¬grd .e1 ∧ ¬grd .e2 → idle
od †τ2 ?((31) ∧ DA.w2)

Fig. 10. Introduce actions

We introduce actions e1, e2 and e3 to the program using Lemma 32, which
gives us the program in Fig. 10. Note that we do not remove e0 at this stage to
enable future modifications to the actions to be made more easily.

6.3 Discharge Enforced Properties on Actions

We now make modifications to remove the enforced property within e1 in Fig. 10.
We refrain from modifying the guards to avoid reproving conditions that have
already been established. Instead, noting that behV .e1 � prev .

−−→
On2 (by (13) of

Lemma 17) and that prev .(
−−−−−−−−−−−−−−→
w2 ≥ T + acc.w2.τ2) ∧ � ≤ ρ.τ2 � �(w2 ≥ T ) (by

Corollary 9), �(w2 ≥ T ) within e1 holds if the program satisfies

�(
−−→
On2 ⇒ �(w2 ≥ T + acc.w2.τ2)) (42)

Hence, using Lemma 33, we introduce (42) as an enforced property to the pro-
gram. Condition (42) and Lemma 27 allows us to remove the enforced property
�(w2 ≥ T ) within e1, however, we must now consider the changes necessary
ensure it holds.

We use Theorem 21, which allows (42) to be proved by showing that for each
i ∈ {1, 2, 3}, if On2 holds at the end of the interval corresponding the execution
of ei , then w2 ≥ T + acc.w2.τ2 must also hold. Action e1 is trivial because
behV .e1 � −−−→¬On2 holds. For e2, we let

Reserve.T2 ≥ T + 2acc.w2.τ2 (43)

which by Corollary 9 ensures behV .e2 � �(w2 ≥ T+acc.w2.τ2). For e3, we have:

(38) ∨ (39) � −−−→¬On2 ∨ �(w2 ≥ T + acc.w2.τ2)

⇐ (39) � −−−→¬On2, strengthen consequent
(38) � �(w2 ≥ T + acc.w2.τ2)

⇐ Corollary 9
(43)

Because grd .e1 ∨ grd .e2 ∨ grd .e3 holds, we may use Lemma 31 to strengthen the
guard of e0 to false without strengthening the guard of the action system. Then
using Lemma 32, we may remove action e0 from the program. Thus, we obtain
the final controller in Fig. 11.
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do e1: On2 ∧ (¬Pressed ∨ w2 ≤ Reserve.T2) → On2 := false
� e2: ¬On2 ∧ Pressed ∧ w2 > Reserve.T2 → On2 := true
else e3: idle
od †τ2 ?((31) ∧ DA.w2)

Fig. 11. Final controller

The program in Fig. 11, behaves in time band τ2 and the environment operates
as specified by (31) and DA.w2. Property (31) ensures that Stopped2 holds within
an interval of length ρ.φ2 in which �¬On2 holds and DA.w2 ensures that that
maximum difference of w2 in any time bands τ2 and φ2 are within the accuracies
of w2 in τ2 and φ2, respectively. Combining (30), (37) and (43), we derive a
necessary relationship:

Reserve.T2 ≥ Empty.T2 +max (acc.w2.τ2, acc.w2.φ2) + 2acc.w2.τ2

on the values of Reserve.T2 and Empty.T2.

7 Conclusions

This paper incorporates a time bands theory [9] into action systems and we de-
velop an interval-based semantics for reasoning about sampling over continuous
environments. We use ILTL [17], a temporal logic for sequences of adjoining
intervals, and develop a refinement theory using enforced properties specified
by ILTL formulae. We have developed high-level methods that use time bands
to simplify reasoning about hardware/software interaction. As an example, we
have derived an action systems controller for a real-time pump. Notable in our
derivation is the development of side conditions that formalise the assumptions
on the environment and the derivation of relationships between threshold and
critical levels based on the (different) time bands of the controller and pump.

As part of future work, we aim to further develop the theories for parallel
composition of action systems by developing (compositional) rely/guarantee-
style methods. We also aim to explore the links between action systems and
teleo-reactive programs [15, 16]. In particular it will be interesting to consider a
development method that starts with a teleo-reactive program (whose semantics
are closer to abstract specifications) and refining the teleo-reactive program to
an action system.
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paper.
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Abstract. We calculate two iterative, polynomial-time graph
algorithms from the literature: a dominance algorithm and an algorithm
for the single-source shortest path problem. Both algorithms are calcu-
lated directly from the definition of the properties by fixed-point fusion of
(1) a least fixed point expressing all finite paths through a directed graph
and (2) Galois connections that capture dominance and path length.

The approach illustrates that reasoning in the style of fixed-point cal-
culus extends gracefully to the domain of graph algorithms. We thereby
bridge common practice from the school of program calculation with
common practice from the school of static program analysis, and build
a novel view on iterative graph algorithms as instances of abstract inter-
pretation.

Keywords: graph algorithms, dominance, shortest path algorithm,
fixed-point fusion, fixed-point calculus, Galois connections.

1 Introduction

Calculating an implementation from a specification is central to two active
sub-fields of theoretical computer science, namely the calculational approach
to program development [1, 12, 13] and the calculational approach to abstract
interpretation [18, 22, 33, 34]. The advantage of both approaches is clear: the
resulting implementations are provably correct by construction. Whereas the
former is a general approach to program development, the latter approach is
mainly used for developing provably sound static analyses (with notable ex-
ceptions [19, 25]). Both approaches are anchored in some of the same discrete
mathematical structures, namely partial orders, complete lattices, fixed points
and Galois connections.

Graphs and graph algorithms are foundational to computer science as they
capture the essence of networks, compilers, social connections, and much more.
One well-known class of graph algorithms is the shortest path algorithms, ex-
emplified by Dijkstra’s single-source shortest path algorithm [28,16]. Dominance

� This work was carried out while the first author was visiting Aarhus University in
the fall of 2011.

J. Gibbons and P. Nogueira (Eds.): MPC 2012, LNCS 7342, pp. 132–156, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Calculating Graph Algorithms for Dominance and Shortest Path 133

algorithms are another class of widespread use: for transforming programs into
static single assignment form [5], for optimizing functional programs [30], for
ownership typing [35], for information flow analysis [10], etc. In this paper we
reconsider the calculational foundations for such algorithms in the context of
fixed-point calculus and Galois connections.

In order to bridge two worlds, namely, calculational program development
and semantics-based program analysis, we employ the toolset of both fixed-point
calculus [1] and abstract interpretation [22], and show that solutions for finite
path properties in graphs can be obtained by these means, yielding polynomial-
time algorithms that are correct by construction. In doing so, we utilize Galois
connections to extract properties (namely dominance and shortest path) from
sets of paths in graphs similar to how Galois connections are used to extract
properties from program executions in abstract interpretation.

2 Background

We first highlight the relevant mathematical preliminaries. Readers familiar with
lattices and orders [27] as found in the fixed-point calculus [1], basic abstract
interpretation [26], and relational algebra [7] may wish to proceed directly to
Section 3.

2.1 Notation

We use the standard notation ℘(X) for the powerset of X . When working with
sets and relations, we will make use of Eindhoven notation for quantified expres-
sions [40]. The general pattern is 〈Q x : p(x) : t(x)〉, where Q is some quantifier
(e.g., “∀” or “∃”), x is a sequence of free variables (also called dummies), p(x) is
a predicate, which must be satisfied by the dummies, and t(x) is an expression,
defined in terms of the dummies. For instance, for cases “∀” or “∃”, we have the
following relations with the standard notation:

〈∀x : p(x) : q(x)〉 ⇐⇒ ∀x.(p(x)⇒ q(x))

〈∃x : p(x) : q(x)〉 ⇐⇒ ∃x.(p(x) ∧ q(x))

Following the same notation, we use set comprehensions {x : p(x) : q(x)} as a
shorthand for 〈∪x : p(x) : {q(x)}〉, where x contains components to union over, p
is a filtering condition and {q(x)} is a yielded result for a particular combination
from x.1 The square brackets around a formula indicate a universal quantification
over any free variables, not mentioned in the preamble. For instance, [ x ∨ ¬x ].

In the proofs, we will overload the equality sign “=” to mean equivalence
between two subsequent steps of a derivation, supplying a textual explanation
in fancy brackets: 
 . . . �.

1 This notation is equivalent to the traditional notation {q(x) | p(x)}, which does not
make explicit which variables are bound and which variables are free.
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2.2 Basics of Domain Theory and Abstract Interpretation

A complete lattice 〈C;(,⊥,�,*,+〉 is a partial order 〈C;(〉 such that there
exists a least upper bound (or join) *S and a greatest lower bound (or meet)
+S of all subsets S ⊆ C. In particular *C = � and +C = ⊥.

A point x is a fixed point of a function f if f(x) = x. Given two par-
tial orders, 〈C,(〉 and 〈A,≤〉, a function f of type C → A is monotone if
[ x ( y =⇒ f(x) ≤ f(y) ]. By the Knaster-Tarski fixed-point theorem a mono-
tone endo-function f over a complete lattice has a least fixed point lfp�f =
+{x | f(x) ( x}. Algorithmically the least fixed point of a monotone function
f over a complete lattice of finite height2 can be computed by Kleene iteration:
⊥ ( f(⊥) ( f2(⊥) ( f3(⊥) ( . . . since lfp�f = *i≥0f

i(⊥).
A Galois connection is a pair of functions α, γ (in the present case, between

two partial orders 〈C,(〉 and 〈A,≤〉), such that [ α(c) ≤ a ⇐⇒ c ( γ(a) ]. The
function α is referred to as the lower adjoint and the function γ is referred to as
the upper adjoint.3 We typeset Galois connections as:

〈C,(〉 −−−→←−−−α
γ
〈A,≤〉

sometimes with double arrow heads to stress that an adjoint is surjective. Galois
connections enjoy a number of properties of which we only highlight a few. Both
adjoints of a Galois connection are monotone. Furthermore, for a Galois connec-
tion between two complete lattices the lower adjoint distributes over the least
upper bound: [ α(*X ) =

∨
α(X ) ]. Finally if a function between two complete

lattices distributes over the least upper bound, then it is the lower adjoint of a
Galois connection with its corresponding upper adjoint uniquely determined by
γ(a) = *{c | α(c) ≤ a} [23].

Galois connections can be constructed compositionally: given 〈C,(〉 −−−→←−−−
α1

γ1

〈A1,≤1〉 and 〈A1,≤1〉 −−−→←−−−
α2

γ2 〈A2,≤2〉, one has 〈C,(〉 −−−−−−→←−−−−−−
α2◦α1

γ1◦γ2 〈A2,≤2〉.
Galois connections interact with least fixed points by fixed-point fusion [1]:

α ◦ Fc ≤̇ Fa ◦ α =⇒ α(lfp Fc) ≤ lfp Fa (1)

α ◦ Fc = Fa ◦ α =⇒ α(lfp Fc) = lfp Fa (2)

for monotone functions Fc and Fa (where we have written f ≤̇ g for the pointwise
ordering [ f(x) ≤ g(x) ]).4 Note that we overload the notation for a least fixed
point lfp, using it for different domains and orders, without specifying them
explicitly, when it is obvious from the context. For instance, in the definitions (1)
and (2) we use lfp in both cases, assuming in fact lfp� for Fc and lfp≤ for Fa,
respectively.

2 Traditionally, the height of a lattice 〈C;�,⊥,�,�,�〉 denotes the maximal length
of a (possibly infinite) strictly increasing chain of elements x0 � x1 � . . . � xi ∈ C.

3 In the abstract interpretation literature where they are typically associated with
some information loss they are known as the abstraction and concretization func-
tions, respectively [23].

4 The first implication is also referred to as the fixed-point transfer theorem [22] and
the latter implication is known as a complete abstraction [23].
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2.3 Elements of Relational Algebra

Composition is a well-known operation on relations. For given relations R ⊆
A×B and S ⊆ B × C, their composition R ◦ S ⊆ A× C is defined as follows:

R ◦ S ≡ {x, y, z : 〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ S : 〈x, z〉}. (3)

A particular case of relation composition is function composition. In order for
function composition to be consistent with the right-to-left ◦-notation, we also
think of a function of type A→ B as a relation over B ×A [12].

Another important notion we are going to use is factors [7]. Given three
relations R ⊆ A×B, S ⊆ B × C and T ⊆ A × C, the left factor T/S ⊆ A× B
and the right factor R\T ⊆ B × C are defined pointwise as follows:

[ x T/S y ≡ 〈∀z : y S z : x T z〉 ] (4)

[ x R\T y ≡ 〈∀z : z R x : z T y〉 ] (5)

Both the notions of composition and factors are helpful for reasoning in point-
free style: while composition eliminates existential quantifications, the factor
operations eliminate universal quantification. It is also notable that

[ R ◦ S ⊆ T ⇐⇒ S ⊆ R\T ] (6)

[ R ◦ S ⊆ T ⇐⇒ R ⊆ T/S ] (7)

so we have

[ T/S ⊇ R ⇐⇒ S ⊆ R\T ] (8)

which makes it possible to consider the eta-expanded factors (T/) = λX .T/X
and (\T ) = λX .X\T as the adjoints of a Galois connection:

〈℘(B × C),⊆〉 −−−−−→←−−−−−
(T/)

(\T )
〈℘(A×B),⊇〉 (9)

3 Calculating a Dominance Algorithm

In this section we derive an algorithm to compute a dominance relation of a
directed graph. We first express dominance as a lower adjoint over a set of finite
paths. We then calculate the dominance computation algorithm using fixed-point
fusion with a least fixed point expressing all finite paths through a graph.

3.1 Graphs and Finite Paths

Definition 1 (Directed Graph). A rooted directed graph is a triple G =
〈V,E, v0〉, where V is a set of nodes, E ⊆ V × V is a set of edges and v0 ∈ V is
a designated initial node.
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We use the notation (u→ v) to indicate the edge 〈u, v〉 ∈ E. A non-empty path
σ ∈ V + in a graph G is a sequence of nodes σ = u0 . . . un, such that for all
i ∈ 1 . . . n, (ui−1 → ui). Given a graph G = 〈V,E, v0〉, all finite paths starting
from v0 can be obtained by “walking through the set of edges”, which leads to
the following definition:

Definition 2 (Finite path functional). 5 Given a fixed graph G = 〈V,E, v0〉,
a finite path functional pG : ℘(V +)→ ℘(V +) is defined as follows:

pG(X ) = {σ, v : σ ∈ X ∧ (last(σ)→ v) : σv}, (10)

where the function last of type V + → V on non-empty paths is defined by

last(σu) = u. (11)

In some cases, we will also consider last as a relation (i.e., last ⊆ V × V +) in
order to compose it with other relations.

Using the well-known observation [7,26] that 〈℘(V +),⊆〉 is a complete lattice
with * = ∪, + = ∩, ⊥ = ∅ and � = V +, and the fact that pG is monotone,
one can express the set of finite paths through a graph G, starting in v0 as the
following least fixed point :

PG = lfp(λX .{v0} ∪ pG(X )) (12)

By a simple inductive argument any finite path through G starting in v0 belongs
to PG. In the remainder of this section we consider a fixed graph G = 〈V,E, v0〉.

3.2 Dominance in Finite Paths

A classical definition of dominance in a graph is stated as follows [36]:

A node u dominates node v if u belongs to every path
from the initial node v0 of the graph to v.

Our goal is to derive an algorithm for computing dominators directly from
the definition above. Clearly, the set of all finite paths cannot be examined in
general, since it is infinite in the presence of cycles in the graph. Nevertheless,
we start from the definition of dominance in a set of paths.

Definition 3. The function dom of type ℘(V +) → ℘(V × V ) is defined for all
X ⊆ V + as follows:

[ u dom(X ) v = 〈∀σ : σ ∈ X ∧ last(σ) = v : u in σ〉 ], (13)

5 The same functional is traditionally used within the partial trace collecting seman-
tics [26].
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where the relation in ⊆ V × V + is defined by:

in = lfp(λX .last ∪ X ◦ pre) (14)

and pre ⊆ V + × V + is {σ, v : σ ∈ V + ∧ σv ∈ V + : 〈σ, σv〉}

In words, Definition 3 says that u antecedes v for all paths in X trailed by v.
One can notice that if there are no paths in X that end with v, then all nodes
u dominate v. Also, a node u dominates itself for any X .

3.3 A Galois Connection between Sets of Finite Paths and
Dominance Relations

We proceed by building a Galois connection between the lattice of finite paths
through a graph and a lattice of relations on the nodes, using the dominance
function dom from Definition 3 as a lower adjoint:

〈℘(V +),⊆〉 −−−−→−→←−−−−−
dom

dom 〈℘(V × V ),⊇〉 (15)

In order to do so, we first reformulate dominance in point-free style using factors
(see Section 2). The new equivalent definition is established by the following
lemma:

Lemma 1
dom = (in/) ◦ f (16)

where
f(X ) = {σ : σ ∈ X : 〈last(σ), σ〉} (17)

If we consider last as a relation, we can construct its powerset, ℘(last). If we
furthermore view the latter as a type, f ’s signature is ℘(V +)→ ℘(last).

Proof. For all u, v ∈ V

u dom(X ) v
= 
 by definition (13) �
〈∀σ : σ ∈ X ∧ last(σ) = v : u in σ〉

= 
 by definition of f (17), definition of / (4) �
u in/f(X ) v

+*

Second, we show that dom is indeed a lower adjoint of the desired Galois connec-
tion. Since dom is equivalent to a composition of in/ and f and we already know
that in/ is a lower adjoint from 〈℘(last),⊆〉 to 〈℘(V × V ),⊇〉 (see Section 2.3),
we only need to show that f is a lower adjoint from 〈℘(V +),⊆〉 to 〈℘(last),⊆〉.
The following lemma delivers this result.
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Lemma 2. f is a lower adjoint in a Galois connection

〈℘(V +),⊆〉 −−−→−→←−−−−
f

f
〈℘(last),⊆〉.

Proof. Suppose, X ⊆ V + and T ⊆ last (i.e., [ u T σ ⇒ u = last(σ) ]). Then

f(X ) ⊆ T

= 
 by definition (17) �
〈∀σ : σ ∈ X : last(σ) T σ〉

= 
 by definition of ⊆ �
X ⊆ {σ : last(σ) T σ : σ}

= 
 T ⊆ last, taking T ′ = {v, σ : v T σ : σ} �
X ⊆ T ′

Therefore, f is a lower adjoint with upper adjoint the function that maps a
relation T which is a subset of last to its right component:

f(T ) = {v, σ : v T σ : σ}

+*
The following corollary states the fixed-point fusion property (2) with respect
to dom:

Corollary 1. The function dom is a lower adjoint in a Galois connections be-
tween sets of paths ordered by the ⊆ relation and subsets of V × V ordered by
the ⊇ relation. Furthermore, if h is a monotone function of type 〈℘(V +),⊆〉 →
〈℘(V +),⊆〉 and g is a monotone function of type 〈℘(V × V ),⊇〉 → 〈℘(V × V ),⊇〉,
then

dom ◦ h = g ◦ dom⇒ dom(lfp⊆ h) = lfp⊇ g,

where the least fixed points are computed with respect to the appropriate order
relations: ⊆ for h and ⊇ for g.

Proof. Follows from the fact that dom = (in/) ◦ f (Lemma 1), the composition
property of Galois connections applied to (2) and Lemma 2. +*

3.4 A Dominance Computation Functional

Having a Galois connection between the lattice of sets of finite paths and the
lattice of dominance relations enable us to derive a functional for computing the
dominance relation, induced by the set of all paths, which we defined as PG. In
this section, we extract an algorithm to compute the actual dominance relation
corresponding to all finite paths in the graph.
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We construct the dominance computation functional FD from the finite
path functional pG and the lower adjoint dom, such that:

dom ◦ pG = FD ◦ dom (18)

Then we can just apply Corollary 1, taking h = pG and g = FD .
We derive FD by a two-staged derivation. First, we find a function k, such

that
f ◦ pG = k ◦ f (19)

Second, we find FD such that

(in/) ◦ k = FD ◦ (in/) (20)

One can then see that for FD defined in such a way we have:

dom ◦ pG
= 
 by Lemma 1 �
(in/) ◦ f ◦ pG

= 
 by (19) �
(in/) ◦ k ◦ f

= 
 by (20) �
FD ◦ (in/) ◦ f

= 
 by Lemma 1 �
FD ◦ dom

and hence satisfy the requirement from equation (18).
Informally, we obtain the function k from (19) by “pushing” the lower adjoint

f under the function definition pG, a well-known “recipe” within the abstract
interpretation community [24]:

f(pG(X ))
= 
 by definition (17) �
{σ : σ ∈ pG(X ) : 〈last(σ), σ〉}

= 
 by definition (10) �
{σ, v : σ ∈ X ∧ (last(σ)→ v) : 〈last(σv), σv〉}

= 
 one-point rule, definition of last �
{σ, u, v : σ ∈ X ∧ last(σ) = u ∧ (u→ v) : 〈v, σv〉}

= 
 by definition (17) �
{σ, u, v : 〈u, σ〉 ∈ f(X ) ∧ (u→ v) : 〈v, σv〉}

= 
 taking k(X ) = {σ, u, v : 〈u, σ〉 ∈ X ∧ (u→ v) : 〈v, σv〉} �
k(f(X ))
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Hence the following lemma:

Lemma 3

f ◦ pG = k ◦ f,

where k : 〈℘(last),⊆〉 → 〈℘(last),⊆〉 is defined as follows:

k(X ) = {σ, u, v : 〈u, σ〉 ∈ X ∧ (u→ v) : 〈v, σv〉} (21)

Now, we obtain FD using the same technique as in the previous derivation.
Assume R ∈ ℘(last), then for all u, v ∈ V ,

u (in/k(R)) v

= 
 by definition (4) �
〈∀σ : v k(R) σ : u in σ〉

= 
 by definition of k (21) �
〈∀σ : 〈∃w : w→ v : w R σ〉 : u in σv〉

= 
 by definition of in (14) �
〈∀σ : 〈∃w : w→ v : w R σ〉 : u = v ∨ u in σ〉

= 
 by distributivity and range splitting �
u = v ∨ 〈∀w : w → v : 〈∀σ : w R σ : u in σ〉〉

= 
 taking [ v pred w ≡ w→ v ] �
u = v ∨ u ((in/R)/pred) v

= 
 taking FD(X ) = id ∪ X/pred �
u FD(in/R) v

The presented derivation proves the following lemma:

Lemma 4

(in/) ◦ k = FD ◦ (in/),

where FD : 〈℘(V × V ),⊇〉 → 〈℘(V × V ),⊇〉 is defined by

FD(X ) = id ∪ X/pred (22)

with id denoting the identity relation and pred defined as [ v pred u ≡ u→ v ].

We now have all the ingredients to express dom(PG) in terms of FD :

Theorem 1

dom(PG) = lfp⊇(λX .dom({v0}) ∩ (id ∪ X/pred)) (23)

where the least fixed point lfp⊇ is computed with respect to the partial order
〈℘(V × V ),⊇〉.
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Proof. First, we note that for all X ∈ ℘(V +)

dom({v0} ∪ pG(X ))
= 
 by corollary 1 and distributivity of adjoints �
dom({v0}) ∩ dom(pG(X ))

= 
 by the properties of FD (18) �
dom({v0}) ∩ FD(dom(X ))

Applying Corollary 1, one can see that

dom(PG) = lfp⊇(λX .dom({v0}) ∩ FD(X )), (24)

where the least fixed point lfp⊇ is computed with respect to the ⊇ ordering.
Finally, unfolding the definition of FD (22) concludes the proof of the theorem.

+*

3.5 Dominance Equations

From a practical point of view, one is usually more interested in computing a
representation of the dominance relation as a map Dom, such that Dom(v) =
{u : u dom(PG) v : u}. In this section we construct equivalent data-flow equations
and iterative algorithms based on this representation, on the definition of the
dominance functional FD (22), and on the result of Theorem 1. We thereby
bridge the computation of dominance as a least fixed point of the path functional
and the more traditional approaches [15].

First, we notice that

u dom({v0}) v
= 
 definition (13) �
〈∀σ : σ ∈ {v0} ∧ last(σ) = v : u in σ〉

= 
 since σ ∈ {v0} ⇐⇒ σ = v0 and u in v0 ⇐⇒ u = v0 �
v = v0 ⇒ u = v0

Therefore, we obtain

u dom(PG) v0

= 
 definition (12) �
u dom({v0} ∪ pG(PG)) v0

= 
 since dom is distributive �
u dom({v0}) v0 ∧ u dom(pG(PG)) v0

= 
 by the observation above, taking v = v0, [ u dom(PG) u ] �
u = v0
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So, we have an equivalence

[ u dom(PG) v0 ⇐⇒ u = v0 ] (25)

Also, for v �= v0,

u dom(PG) v

= 
 by Theorem 1, since lfp is a fixed-point operator �
u (dom({v0}) ∩ (id ∪ dom(PG)/pred)) v

= 
 by assumption v �= v0, so u dom({v0}) v �
u (id ∪ dom(PG)/pred) v

= 
 by definitions of / (4) and pred �
u = v ∨ [ ∀w : w→ v : u dom(PG) w ]

So, we obtain the second equivalence

[ u dom(PG) v ⇐⇒ u = v ∨ 〈∀w : w→ v : u dom(PG) w〉 ] (26)

Taking Dom = dom(PG) not as a relation, but as a function of type V → ℘(V )
defined as [ u ∈ Dom(v) ≡ u dom(PG) v ] and the equivalences (25) and (26), we
discover the following equivalent data-flow equations for Dom [2]:6

Dom(v0) = {v0}

Dom(v) =
⋂

w∈pred(v)
Dom(w) ∪ {v} (27)

The statement of Theorem 1 can also be exploited to obtain a simple iterative
algorithm for computing the least fixed point of the functional FD using Kleene
iteration. Figure 1 presents such an algorithm, writing dom({v0}) for the map
λv.(v = v0 ? {v0} : V ).

Initially, the dominance set for every node is the entire set of nodes, according
to the lattice 〈℘(V × V ),⊇〉 (i.e., ⊥ = V × V ). This dominance set is then be-
ing “shrunk”, as the algorithm proceeds to consider more paths. In the output of

1: for v ∈ V do
2: Dom[v] ← V
3: Dom’ ← dom({v0}) ∩ FD(Dom)
4: while Dom �= Dom’ do
5: Dom ← Dom’
6: Dom’ ← dom({v0}) ∩ FD(Dom)

Fig. 1. A straightforward algorithm for computing dominance

6 In order to mimic the traditional presentation [2], we consider pred as a function of
type V → ℘(V ) defined as [ w ∈ pred(v) ≡ w→ v ].
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1: for v ∈ V do
2: Dom[v] ← V
3: Dom[v0] ← {v0}
4: Changed ← true
5: while Changed do
6: Changed ← false
7: for v ∈ V do
8: newSet ←

(⋂
w∈pred(v) Dom[w]

)
∪ {v}

9: if newSet �= Dom[v] then
10: Dom[v] ← newSet
11: Changed ← true

Fig. 2. An optimized iterative dominator algorithm [15]

the algorithm every node is dominated by itself. The initial node v0 in particular
is dominated only by itself. All disconnected nodes in the graph are dominated
by all nodes.

This algorithm can be optimized further although we make no attempt to
calculate our way to these changes. For example, rather than maintaining two
dominance maps Dom and Dom’ one can make do with a single map. In each
iteration one then needs to keep track of stabilization by other means than map
comparison, e.g., using a Boolean flag to signal changes to an entry. By unfolding
FD and making these changes we arrive at the classic algorithm from Figure 2
(see Cooper et al. [15] for more details on the implementation).

3.6 Complexity

The complexity of the derived algorithm is polynomial: the height of the lat-
tice of dominance functions is O(|V |2), which is an upper bound on the number
of iterations. Each iteration of the first algorithm in Figure 1 requires (1) an
O(|V |2)-time equality test between two lattice elements and (2) computing an in-
tersection for each node over all its predecessors in FD which takes O(|V | × |E|)
operations. As a consequence the algorithm takes O(|V |2(|V |2 + |V | × |E|)) =
O(|V |4 + |V |3 × |E|) time. The optimized algorithm in Figure 2 uses a con-
stant time stabilization test, but still requires computing an intersection over
all predecessors for each node. As a result it has O(|V |3 × |E|) worst case time
complexity.

The bottleneck of the optimized algorithm is the strategy by which it chooses
a node to process in line 7 of Figure 2. By instead iterating through the vertices
in reverse postorder [3] (i.e., a node is visited before all its successor nodes
have been visited), we can avoid a general fixed-point computation. By this
strategy we can obtain a O(|V | × |E|) time algorithm. By a clever choice of
data structures, representing sets using dominator trees, this can be improved
to O(|V |2) [15].
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Even linear time dominance algorithms exist [4], but the O-notation for these
hide a non-negligible constant factor. For practical purposes they do not fare as
well as a well-engineered iterative algorithm [32]. We refer to Cooper, Harvey,
and Kennedy [15] for a historical account of dominator algorithms.

4 Calculating a Shortest Path Algorithm

In this section, we calculate an algorithm solving the single-source shortest path
problem for a weighted graph with non-negative edge costs. We augment the
definition of directed graphs from Section 3.1 with a function assigning weights to
edges. The shortest distance from the source to a target node is then formulated
for sets of finite weighted paths and an iterative algorithm is derived by fixed-
point fusion. Finally, we modify the property to compute the actual shortest
paths and not only the shortest distances.

4.1 Weighted Graphs and Paths

Definition 4 (Weighted rooted graph). A weighted rooted graph Gw =
〈V,E, v0,W 〉 is a rooted directed graph 〈V,E, v0〉 with a weight function W :
E → N.

For nodes u, v ∈ V , we use the notation (u
w−→ v) to indicate the edge 〈u, v〉 ∈ E

and W (〈u, v〉) = w. A weighted path τ ∈ V +
w is a non-empty sequence of

interleaving nodes and weights τ = u0w1 . . . un−1wnun, starting and ending by

a node, such that for all i ∈ 1 . . . n, (ui−1
wi−→ ui).

Definition 5 (Weight of a path [16]). The weight of a weighted path τ =
u0w1 . . . un−1wnun is the sum of the weights of its constituent edges:

‖τ‖ =
n∑

i=1

wi (28)

In the remainder of this section we consider a fixed weighted graph Gw =
〈V,E, v0,W 〉.

4.2 The Single-Source Shortest Path Property for Finite Paths

In this section we will focus on the single-source shortest-path problem,
which can be defined as follows:

Given a node u0 and a set of weighted paths
X = {τ : τ = u0w1 . . . un−1wnun : τ}, for each v, such that

τv = u0 . . . v ∈ X , what is the minimum of ‖τv‖?
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Again, our goal is to compute an iterative algorithm for the defined property
directly from its definition. In order to do so, we first define the shortest-path
weight for a set of paths similarly to the canonical property by Cormen et al. [16].

Definition 6 (Shortest-path weight). Given a set of weighted paths X , then
the shortest-path weight from u to v in X is

dist(X )(u, v) = min{τ : τ ∈ X ∧ τ = u . . . v : ‖τ‖}, where

min(∅) =∞.

By overloading notation, the single-source shortest-path weight from v0 to any
other node in X is defined naturally using the function last (11) for weighted
paths:

dist(X ) = λv.min{τ : τ ∈ X ∧ last(τ) = v : ‖τ‖}. (29)

As in the canonical definition [16], we define the shortest-path weights as a
function from a set of finite paths to natural numbers extended with infinity.
Still, an arbitrary weighted graph can contain a possibly infinite number of
paths from a node u to v. We connect the world of weighted graphs with sets of
weighted paths by redefining the path functional from Section 2 for the single-
source weighted paths of a weighted graph Gw.

Definition 7 (Weighted finite path functional). Given a weighted graph
Gw = 〈V,E, v0,W 〉, a weighted finite path functional pGw : ℘(V +

w ) → ℘(V +
w ) is

defined as follows:

pGw(X ) = {τ, w, v : τ ∈ X ∧ (last(τ)
w−→ v) : τwv}. (30)

Similarly to Section 3.1, 〈℘(V +
w ),⊆〉 is a complete lattice, so the set of all

weighted single-source finite paths in the graph is defined as the following least
fixed point:

PGw = lfp(λX .{v0} ∪ pGw(X )) (31)

Again by a simple inductive argument any finite weighted path starting in v0
belongs to PGw . In this setting, dist(PGw) specifies the single-source shortest
path property for the whole graph. In the remainder of this section we will
derive an algorithm to compute it using fixed-point fusion.

4.3 A Galois Connection between Sets of Finite Paths and the
Shortest Path Weights

The function dist defined in Section 4.2 maps a set of paths to a function,
mapping a node to a non-negative weight or infinity (in case a node is unreachable
from v0), so the codomain of dist is E = V → N ∪ {∞}. In order to make it a
complete lattice we extend natural arithmetic to infinity:

∀n ∈ N : n+∞ =∞+ n =∞+∞ =∞
∀n ∈ N : n <∞

∞ ≤∞
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Next, we introduce a partial order and the least upper bound on elements δ of E :

[ δ1 ≥̇ δ2 ≡ ∀u ∈ V : δ1(u) ≥ δ2(u) ] (32)

[ δ1 * δ2 = λu.min{δ1(u), δ2(u)} ] (33)

Finally, one can observe that 〈E , ≥̇〉 is a complete lattice with the meet operation
provided by (33), ⊥E = λv.∞ and �E = λv.0. This follows, e.g, from realizing
that 〈N ∪ {∞},≥〉 is a complete lattice7 that can be lifted into a complete lattice
over functions with the above pointwise operations.

In order to build the Galois connection between 〈℘(V +
w ),⊆〉 and 〈E , ≥̇〉 using

dist as a lower adjoint, we need to show that dist is distributive with respect
to *.

Lemma 5 [ ⊔
i

dist(Xi) = dist(
⋃
i

Xi)

]

Proof Let a sequence Xi ∈ ℘(V +
w ) be given

⊔
i

dist(Xi)

= 
 by definition of * �
λu.min

i
(dist(Xi)(u))

= 
 by definition of dist �
λu.min

i
(min{τ : τ ∈ Xi ∧ last(τ) = u : ‖τ‖})

= 
 min is associative and commutative �
λu.min{τ : τ ∈

⋃
i

Xi ∧ last(τ) = u : ‖τ‖}

= 
 by definition of dist �
dist(

⋃
i

Xi)

+*

Recall from Section 2.2 that Lemma 5 guarantees the existence of a Galois
connection between the two complete lattices, including a unique upper adjoint
dist:

〈℘(V +
w ),⊆〉 −−−−→−→←−−−−−

dist

dist 〈E , ≥̇〉

7 The construction corresponds roughly to half an interval domain formalized by
Cousot and Cousot as a complete product lattice ({−∞} ∪ Z)× (Z ∪ {∞}) [20].
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4.4 A Shortest-Path Functional

In this section, we extract an algorithm to compute the shortest-path weight
function corresponding to all finite paths in the graph. In order to do so, first,
we derive the shortest-path functional Fδ by the “pushing” the lower adjoint
dist under pGw :

dist(pGw (X ))
= 
 by the definition of pGw (30) �
dist({τ, w, v : τ ∈ X ∧ (last(τ)

w−→ v) : τwv})
= 
 by definition of dist (29) �
λv.min{τ, w : τ ∈ X ∧ (last(τ)

w−→ v) : ‖τwv‖}
= 
 by definition of ‖τwv‖ (28) �
λv.min{τ, w : τ ∈ X ∧ (last(τ)

w−→ v) : ‖τ‖ + w}
= 
 taking u = last(τ) �
λv.min{τ, u, w : τ ∈ X ∧ (u

w−→ v) ∧ last(τ) = u : ‖τ‖+ w}
= 
 by the property of min �

λv.min{u,w : (u
w−→ v) :

dist(X )(u)︷ ︸︸ ︷
min{τ : τ ∈ X ∧ last(τ) = u : ‖τ‖}+w}

= 
 by folding definition of dist (29) �
λv.min{u,w : (u

w−→ v) : dist(X )(u) + w}
= 
 taking pred(v) = {u : u

w−→ v : u} and W (〈u, v〉) = w �
λv.min{u : u ∈ pred(v) : dist(X )(u) +W (〈u, v〉)}

= 
 defining Fδ(Y) = λv.min{u : u ∈ pred(v) : Y(u) +W (〈u, v〉)} �
Fδ(dist(X ))

The derivation above proves the following lemma:

Lemma 6
dist ◦ pGw = Fδ ◦ dist

where Fδ is of type 〈E , ≥̇〉 → 〈E , ≥̇〉 is defined for all X by

Fδ(X ) = λv.min{u : u ∈ pred(v) : X (u) +W (〈u, v〉)} (34)

We can now notice that dist({v0}) = λv.(v = v0 ? 0 : ∞), so the following
theorem follows naturally:

Theorem 2

dist(PGw) = lfp≥̇ (λX .(λv.(v = v0 ? 0 :∞)) * Fδ(X )) (35)

where the least fixed point lfp≥̇ is computed with respect to the ordering ≥̇ over
E , starting from ⊥E = λv.∞.
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Proof. Similarly to the proof of Theorem 1, using distributivity of dist, Lemma 6,
fixed-point fusion (2) and inlining dist({v0}). +*

1: for v ∈ V do
2: δ(v)←∞
3: δ′ ← dist({v0}) � Fδ(δ)
4: while δ′ �= δ do
5: δ ← δ′

6: δ′ ← dist({v0}) � Fδ(δ)

Fig. 3. A straightforward algorithm for single-source shortest paths

Figure 3 provides a first iterative algorithm for computing the least fixed point
of the functional Fδ using Kleene iteration. Again the algorithm has room for
improvement.

1: for u ∈ V do
2: δ[u] ←∞
3: δ[v0] ← 0
4: Changed ← true
5: while Changed do
6: Changed ← false
7: for v ∈ V do
8: for u ∈ pred(v) do
9: if δ[u] + W [u, v] < δ[v] then
10: δ[v] ← δ[u] + W [u, v]
11: Changed ← true

Fig. 4. An optimized imperative single-source shortest path algorithm

By unfolding Fδ and maintaining only a single δ-map as in Section 3.5 we
arrive at the single-source shortest-path algorithm in Figure 4. The resulting
algorithm is strikingly similar to Bellman’s iterative algorithm [11] for computing
shortest paths: as Bellman’s algorithm proceeds by computing a “monotone
sequence” of “successive approximations” so does the derived algorithm. The
algorithms differ in that Bellman assumes that all nodes are connected, which
allows him initialize the distance to a node with the weight of the direct edge from
the source node. For an account of the early history of shortest path algorithms
we refer to Schrijver [37].

4.5 Complexity

As Bellman’s algorithm [11] the derived algorithm has polynomial time com-
plexity. One can see that the lattice 〈E , ≥̇〉 is noetherian, i.e., it satisfies the
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ascending chain condition [29] (i.e., every strictly ascending chain x1 ≥̇x2 ≥̇ . . .
of elements eventually terminates), which guarantees termination of the iterative
algorithm, since Fδ is monotone. Now let the constant L be the maximal weight
of an edge between any two nodes in a given graph. For each node an initial
path from the source node cannot contain cycles. Moreover its distance from the
source node cannot be improved more than L×|V | times by a strictly increasing
chain. Therefore, for a fixed graph, the length of a corresponding ascending chain
in 〈E , ≥̇〉 is O(|V |2) which bounds the number of while-loop iterations.

Both the first algorithm in Figure 3 and the optimized algorithm in Figure 4
iterate through the predecessors of each node, which takes O(|V |+ |E|) oper-
ations for each while-loop iteration. In addition the first algorithm requires an
O(|V |) time stabilization test. Therefore, the worst-case time complexity of both
algorithms is O(|V |3 + |V |2 × |E|), or O(|V |2 × |E|) for a connected graph.

The bottleneck of the optimized algorithm is again the non-optimized iteration
in lines 7–11. Since u ∈ pred(v) if and only if v ∈ next(u), looping through all
nodes u, v such that u ∈ pred(v) is equivalent to looping through all nodes u, v
such that v ∈ next(u). We can therefore rewrite the for-loops into:

for u ∈ V do
for v ∈ next(u) do
if δ[u] + W [u, v] < δ[v] then
δ[v] ← δ[u] + W [u, v]
Changed ← true

Using an observation from Dijkstra’s algorithm, we can process the nodes with
less distance from v0 first. As a consequence each edge will be examined only
once, which leads to the original complexity O(|V |2 + |E|) = O(|V |2). By further
improving the algorithm to quickly locate the next node to process (employing
a binary min-heap), we obtain the complexity O((|V |+ |E|)× log(|V |)) (which
is an improvement for sparse graphs [16]).

4.6 Computing the Shortest Paths

Usually, one wants to compute not only shortest-path weights, but the vertices
on shortest paths as well. Traditionally, the representation for shortest paths
is implemented by a predecessor map π. In the canonical literature on graph
algorithms [16], for a given graph node v, π(v) is either another node or NIL,
which means that the node is either the source or that it is unreachable. The
shortest-paths algorithms traditionally set the values of π so that the chain of
predecessors, originating at a vertex v, runs backwards along some shortest path
from v0 to v. In practice, it means that there might be several shortest paths from
v0 to v, however, the canonical algorithm chooses one of them arbitrarily [16].

In order to compute the predecessors for the shortest path, we will use the
shortest-path weight property from Section 4.2. The shortest path predecessors
of v with respect to the set of finite paths X are then defined as the predecessors
of v on paths from v0 with the minimal possible weight:
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distπ(X ) = λv.〈dist(X )(v), {τ, u, w : τuwv ∈ X ∧ ‖τ‖ = dist(X )(v) : u}〉
(36)

where the codomain of distπ is

P = V → (N ∪ {∞})× ℘(V ) (37)

To derive an algorithm to compute the shortest path predecessors for a given
graph, we formulate P as a complete lattice with an order (, build a Galois
connection between 〈℘(V +

w ),⊆〉 and 〈P ,(〉, and employ fixed-point fusion.
In order to simplify the notation, in the remainder of this section we use ↓1

and ↓2 to refer to the first and second projections of a pair, respectively. The
partial order and meet operations on elements π1, π2 of P use a function-lifted
lexicographical ordering with respect to componentwise orders ≥ and ⊆:

[
π1 ( π2 ≡ ∀u ∈ V : π1(u) ↓1> π2(u) ↓1 ∨

(π1(u) ↓1= π2(u) ↓1 ∧ π1(u) ↓2⊆ π2(u) ↓2)

]
(38)

[ π1 * π2 = λu.φ(π1(u), π2(u)) ], where

φ(〈m1, r1〉, 〈m2, r2〉) =

⎧⎨⎩
〈m2, r1〉 if m1 > m2

〈m1, r2〉 if m2 > m1

〈m1, r1 ∪ r2〉 otherwise

(39)

One can see, that 〈P,(〉 is a complete lattice with ⊥P = λu.〈∞, ∅〉. Similarly
to Section 4.3, in order to build a Galois connection between 〈℘(V +

w ),⊆〉 and
〈P,(〉, using distπ as a lower adjoint, we show again that distπ is distributive
with respect to *:

Lemma 7 [ ⊔
i

distπ(Xi) = distπ(
⋃
i

Xi)

]

Proof. Similar to the proof of Lemma 5, using case analysis on the arguments
to the helper function φ (39). +*

The computation of the functional Fπ for the shortest-path predecessors, such
that

distπ ◦ pGw = Fπ ◦ distπ (40)

is similar to the derivation from Section 4.3, using Lemma 7. The final result is
stated by the following lemma:

Lemma 8
distπ ◦ pGw = Fπ ◦ distπ

where Fπ is of type 〈P,(〉 → 〈P ,(〉 is defined for all X by
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Fπ(X ) = λv.〈m, r〉, where m = min{u : u ∈ pred(v) : X (u) ↓1 +W (〈u, v〉)}

r =

⎧⎨⎩u

∣∣∣∣∣∣
u ∈ pred(v)
X (u) ↓1<∞
X (u) ↓1 +W (〈u, v〉) = m

⎫⎬⎭
(41)

Thus, the sets of predecessors in the single-source shortest paths are then com-
puted as a least fixed point according to the following theorem:

Theorem 3

distπ(PGw) = lfp� (λX .(λv.〈(v = v0 ? 0 :∞), ∅〉) * Fπ(X )) (42)

where the least fixed point lfp� is computed with respect to the ordering ( over
P, starting from ⊥P = λu.〈∞, ∅〉.

Proof. Similarly to the proof of Theorem 2, using distributivity of dist, Lemma 8,
fixed-point fusion (2) and inlining distπ({v0}) = λv.〈(v = v0 ? 0 :∞), ∅〉 +*

Note that unlike traditional algorithms for the single-source shortest path prob-
lem [11,28], our algorithm computes all possible shortest paths from the source
node. The complexity of the algorithm is determined by the height of the lat-
tice 〈P,(〉, which is O(|V |3). However, updating the minimum and the set of
predecessors can be performed within the same loop (lines 8–11 in Figure 4):

for v ∈ V do
for u ∈ pred(v) do
d← δ[u] + W [u, v]
if d ≤ δ[v] then
δ[v] ← d
if d < δ[v] then
π[v] ← {u}

else
π[v] ← π[v] ∪ {u}

Changed ← true

This gives the same complexity boundary as in Section 4.5: O(|V |3 × |E|) in
the worst case. By rewriting the algorithm with next() instead of pred() and
applying observations from Dijkstra’s algorithm analysis, one can obtain the
complexity bound O(|V |2) for the optimized iteration through the set of nodes.

5 Related Work

Two different schools have been working in parallel for the last forty years: the
school of program calculation and the school of static program analysis. The
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intrinsic goal of the first school is to derive algorithms from the specification of
properties of interest. The second school was historically interested in computing
a sound approximation of a property of a program semantics. In this section we
give a brief overview of these two lines of research which we have attempted to
bridge in the present paper.

Calculational approaches to graph algorithms. A number of approaches have been
applied to derive graph algorithms since the seventies, originating in formulat-
ing path problems in terms of linear algebra. Carré [14] presented an algebraic
structure to solve extremal network routing problems, such that a function is
minimized or maximized on a particular path in a graph. He showed how ex-
tremal problems from this class can be expressed in terms of matrix equations
and solved using a toolset from linear algebra. Later, Backhouse and Carré [8]
showed the correspondence of the algebra for extremal graph problems and the
algebra of regular languages. The idea was later extended to derive the exact
implementation of Dijkstra’s shortest path algorithm [9].

In the beginning of the nineties ideas from domain theory were applied to
compute extremal properties on paths of graphs using fixed-point computations:
Van den Eijnde [39] considered computation of path properties in graphs us-
ing monotone operators, satisfying certain restrictions and called these opera-
tors conservative. Van den Eijnde formulated a generalized fixed-point theorem,
stating computation of a least fixed point of a monotone functional as a Kleene
iteration. The property of interest was then defined as an under-approximation
of the monotone function. As an example, this approach was applied to the as-
cending reachability problem. In contrast to our work, Van den Eijnde did not
apply the Galois connection machinery to define the properties and prove them
appropriate for an algorithm derivation. All the used toolset was later formal-
ized as the fixed-point calculus [1]. The interplay between Galois connections and
fixed points has later been established by Backhouse [6].

Abstract interpretation and distributive frameworks. In parallel with the above
line of research, Cousot and Cousot developed and refined the abstract interpre-
tation framework [20,21]. In their 1979 paper [22], they mention various instances
of distributive frameworks for imperative program analysis as particular cases of
abstract interpretation, i.e., constant propagation, trace (or path) reachability
properties, where Galois connections are defined appropriately [22]. In the same
work, they prove a connection between properties, defined as meet-over-all paths
and ones described by monotone functions: the former is generally more precise
than the latter but the two are identical in a distributive framework. Ten years
later, Cai and Paige describe a nondeterministic iterative schema that in the
case of finite iteration generalizes the “chaotic iteration” of Cousot and Cousot
for computing fixed points of monotone functions efficiently (in particular, in-
crementally) and show how to apply this technique to design fast non-numerical
algorithms, such as variable reachability and cycle detection in a program flow
graph [13]. Whereas the current paper illustrates how to get from a graph spec-
ification to a provably correct (but not necessarily O-optimal) algorithm, we
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believe that such chaotic iteration techniques may be the key to derive opti-
mized versions of our calculated graph algorithms in a more principled manner.

Cousot and Cousot [22] initially formalized programs as flow graphs, but the
framework was later generalized to transition systems [17, 23] which are not
limited to describing formal semantics. Since then the abstract interpretation
framework has been used to formalize other concepts than static analyses, e.g.,
program transformations [25] and to connect various forms of formal seman-
tics [19].

Cooper, Harvey and Kennedy [15] point out that the equations to compute
dominance form a distributive framework [31]. This fact allows them to state
that the iterative algorithm for dominance computation will discover the maxi-
mal fixed-point solution and halt. Notably, the equations for Dom, presented by
Cooper, Harvey and Kennedy in [15] are given as is, i.e., with no connection
to the definition of dominance in terms of paths. In contrast we justify these
equations by deriving them and a corresponding algorithm directly from the
definition.

Backhouse [6, Section 6.2] used shortest paths as a motivating example for
introducing fixed-point fusion in his lecture notes. In a later work on the shortest-
path problem, Backhouse applied the fixed-point fusion theorem to a set of
all paths, considered as a context-free language [7, Example 57], which gave
the same solution as we obtained. We have nevertheless chosen to include the
detailed development along with our complexity boundary discussion, as a second
example of the technique.

Future Work. A natural next step is to incorporate more benefits of point-
free style, such as those provided by relational compositions and factors for
the systematic calculation of program analyses, as well as make use of tool
support [38] for deriving graph algorithms.

6 Conclusion

In this work we explored two classical graph problems, formulated in terms of
finite paths through a graph: dominance and the single-source shortest paths.
Applying the toolset traditional to fixed-point calculus and semantics-based pro-
gram analysis, we derived iterative, polynomial-time algorithms for both proper-
ties. We formalized definitions of the properties as adjoints in appropriate Galois
connections. By fusing these with a least fixed point of a monotone path func-
tional, we obtained polynomial-time algorithms for computing the properties
directly.

The derived algorithms obtained are strikingly similar to independently dis-
covered algorithms from the literature. Their calculations constitute construc-
tive correctness proofs in contrast to, e.g., an invariant argument for Dijkstra’s
algorithm by contradiction [16]. The derivations further witness the wide appli-
cability of the toolset behind fixed-point calculus and abstract interpretation.
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Abstract. Informally, a first-past-the-post game is a (probabilistic)
game where the winner is the person who predicts the event that occurs
first among a set of events. Examples of first-past-the-post games include
so-called block and hidden patterns and the Penney-Ante game invented
by Walter Penney. We formalise the abstract notion of a first-past-the-
post game, and the process of extending a probability distribution on
symbols of an alphabet to the plays of a game.

Analysis of first-past-the-post games depends on a collection of simul-
taneous (non-linear) equations in languages. Essentially, the equations
are due to Guibas and Odlyzko but they did not formulate them as
equations in languages but as equations in generating functions detail-
ing lengths of words.

Penney-Ante games are two-player games characterised by a collection
of regular, prefix-free languages. For such two-player games, we show
how to use the equations in languages to calculate the probability of
winning. The formula generalises a formula due to John H. Conway for
the original Penney-Ante game. At no point in our analysis do we use
generating functions. Even so, we are able to calculate probabilities and
expected values. Generating functions do appear to become necessary
when higher-order cumulatives (for example, the standard deviation) are
also required.

Keywords: algorithmic problem solving, regular language, generating
function, probabilistic game, Penney-Ante, block pattern, hidden
pattern.

Penney-Ante is the name of a game with pennies invented by Walter Penney
[Pen74]. The two-player game is interesting because it is non-transitive; the game
is also used to demonstrate the use of generating functions in the calculation of
probability distributions [GO81, GKP94]. Our interest in the game began as a
simple, (for us) introductory exercise in probability generating functions. It has
turned out to be an exercise in applying the calculational method to the analysis
of the game in the general case of an arbitrary number of players — an exercise
with the surprising conclusion that generating functions are not needed for the
calculation of probabilities and expected values.

Analysis of the game is substantially facilitated by a collection of simultaneous
(non-linear) equations between languages. In the literature, either the equations
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are stated without proof [GKP94] or the equations are not given explicitly but
translated directly into generating functions detailing lengths of words [GO81].
The contribution of this paper is to record a derivation of the equations and the
associated probability distributions in which naming of word length and the use
of generating functions is avoided.

Our derivation has several novel features. We introduce the abstract notion of
a first-past-the-post game, and we formalise the process of extending a probabil-
ity distribution on symbols of an alphabet to the plays of such a game (section
2). (Multi-player) Penney-Ante games and so-called block and hidden patterns
[FS09] are shown to be instances of first-past-the-post games. Such games are
characterised by a collection of regular, prefix-free languages. We derive a col-
lection of simultaneous non-linear equations in these languages and use these to
show how to calculate the probability of winning (section 4).

The equations are essentially the basis for the equations in generating func-
tions derived by Guibas and Odlyzko [GO81]. The formula we derive generalises
a formula due to John Horton Conway for the original two-player Penney-Ante
game. Another instance is the formula due to A.D.Solov’ev [Sol66] for the ex-
pected number of coin tosses until a given (contiguous) pattern appears. Like
Guibas and Odlyzko [GO81], we also consider the generalisation of Penney-Ante
games to an arbitrary number of players.

We show in section 5 that the equations in languages do not have a unique
solution. This is surprising and demands further investigation.

1 Preliminaries

We assume familiarity with the use of regular expressions to denote languages. To
avoid confusion with ordinary addition, the usual symbol “∪” is used to denote
set union, and not “+” (as often used in regular expressions). The symbol ε
denotes the empty word and T denotes a finite set (which is fixed throughout the
paper). In line with other literature on the Penney-Ante game, capital letters at
the beginning of the alphabet (A, B, etc.) denote words and capital letters at the
end of the alphabet (U ,V , etc.) denote sets of words. The elements of T are called
symbols and sets of words are called languages. Symbols are denoted by lower
case letters (a, b, etc.). The length of word A is denoted by #A. Concatenation
of words and of languages is denoted by juxtaposition.

For any word A different from the empty word, pre.A is the prefix of A
obtained by discarding the last symbol in A. The function pre is extended to
sets by the definition: for all languages V ,

pre.V = {A,a : A∈T ∗ ∧ a∈T ∧ Aa∈V : A} .

(We use the Eindhoven notation for quantifications [Bac86, GS93, Bac03]. The
notation {vars : rng : term} abbreviates 〈∪ vars : rng : {term}〉. In conventional
notation, the dummy a in the definition of pre would be existentially quantified.)

Repeated application of pre one or more times is denoted by pre+ and zero
or more times by pre∗. Thus pre+.V is the set of all proper prefixes of words in
V , and pre∗.V is V ∪ pre+.V . Note that pre distributes through set union.
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For calculational purposes the following property of pre+ is used. For all words
C and languages V ,

C ∈ pre+.V ≡ {C}T+∩V �= ∅ .

2 First-Past-the-Post Games

Penney-Ante is an instance of a class of probabilistic games for which winning
is characterised by the first occurrence of one of a set of events, and the events
are words. We begin by formalising this class of games.

Definition 1. Suppose S is a subset of T ∗. The set S is said to be a first-
past-the-post game if

(a) pre+.S ∩ S = ∅ .
In words, no proper prefix of a word in S is a word in S.

(b) pre∗.S = {ε} ∪ (pre+.S)T .
In words, appending an arbitrary symbol of the alphabet T to a proper prefix
of a word in S gives a word that prefixes a word in S.
(This informal statement expresses only that the right side of the equation is
included in the left side. The opposite inclusion is obvious from the definitions
of pre∗ and pre+.)

A play of the game is an element of pre∗.S. A complete play of the game is an
element of S. �

A play of the game can be thought of as repeatedly throwing a die with sides
labelled by the elements of T . The play starts with the empty word and, as
the die is thrown, the symbol that occurs is appended to the end of the play.
The play is complete when the play is in S. Property (a) states that no proper
prefix of a word in S is an element of S. That is, the game ends —the play is
complete— immediately an element of S is recognised. Property (b) states that
the plays are the empty word or arbitrary continuations of an incomplete play.
It has the consequence that any throw of the die continues an incomplete play
of the game. A second consequence is that S is non-empty (because the right
side of the equation is a non-empty set).

Example 1. With T = {a,b}, the table below shows examples of languages and
whether or not they fulfill properties (a) and (b) of definition 1.

Language (a) (b)
{a} √ ×
{a,ab} × ×
T k (0≤k)

√ √

T≤k (0<k) × √

{a,ba,bb} √ √

{b}∗{a} √ √

{b}∗{a}{a}∗{b}{b}∗{a} √ √
�
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The set T k, where k is some fixed natural number, exemplifies the set of
complete plays in a first-past-the-post game. (See example 1.) It is the game
where a die is thrown exactly k times.

Generally, the set S may be assumed to be split into disjoint sets each of which
is owned by one of the players. When the play is complete, the owner of the play
is the winner. The Penney-Ante game assumes that two players each choose one
word. The reason for this assumption is that the game is then non-transitive: if
one player chooses one word it is always possible for the second player to choose
a word that gives a better than evens chance of winning. This, however, is not
the focus of our investigation. For our purposes, the number of players can be
arbitrary as can be the number of words each player chooses. There is no reason
why games with fewer or more than two players should not be allowed, or why
each player should choose just one word. “Games” with one player are associated
with pattern-matching problems. See section 4.

We assume that the outcome of each single throw of the die is given by some
probability distribution p. The outcomes of separate throws are assumed to be
independent. This suggests the following definition.

Definition 2. Let p be a function with domain T and range the set of real
numbers. We define the function hp with domain T ∗ inductively by

(a) hp.ε = 1 ,
(b) hp.Ba = hp.B×p.a , for all B∈T ∗ and a∈T .

The function hp is extended to languages by defining, for all V , where V ⊆T ∗,

hp.V = 〈ΣA : A∈V : hp.A〉 .

The function ep is defined on languages by, for all V , where V ⊆T ∗,

ep.V = 〈ΣA : A∈V : hp.A×#A〉 .

(Note: these definitions assume that the summations are well defined. In all the
concrete examples discussed in this paper, this is indeed the case.) �

Theorem 1 shows that, if p is a probability distribution on T , hp is a probability
distribution on a first-past-the-post game S. The value of ep.S is then interpreted
as the “expected” length of the game. It is important to note, however, that defi-
nition 2 does not assume that p is a probability distribution. We apply definition
2 just as often when p and/or hp cannot be viewed as probability distributions.

Typically languages are defined syntactically — by a combination of regular
expressions and equations (aka grammars). Unambiguity of syntactic definitions
is useful in the evaluation of the functions hp and ep. This is made precise in the
following definitions and lemmas.

Definition 3 (Unambiguous Expressions). Let U and V be expressions de-
noting languages L.U and L.V , respectively. We say that the expression “U∪V ”
is unambiguous if L.U ∩ L.V = ∅ (i.e. the languages are disjoint). We say that
the expression “UV ” is unambiguous if, for all words A, A′, B and B′,

A,A′ ∈L.U ∧ B,B′ ∈L.V ∧ AB=A′B′ ⇒ A=A′ ∧B=B′ .
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We say that the expression “U∗” is unambiguous if, for all natural numbers k
and k′, and sequences of words Ai (1≤ i≤k) and Bj (1≤ j≤k′) all of which are
elements of L.U ,

A1 . . . Ak =B1 . . . Bk′ ⇒ k=k′ ∧ 〈∀i : 1≤ i≤k :Ai=Bi〉 . �

Expressions and languages are, of course, different in the same way that names
and people are different. (“Winston Churchill” is the name of a famous English-
man. The name consists of a forename and a surname, whilst the person has a
mother and father, etc.) Definition 3 has been formulated in a way that makes
the difference clear. Henceforth however, we are not so precise and we leave it
to the reader to determine whether we are referring to the syntactic form of an
expression or to the language that is denoted by the expression. So, for example,
a less precise formulation of the first clause of definition 3 is

“the expression U∪V is unambiguous if U ∩V = ∅”.

We trust that the reader will have no difficulty in understanding what is meant.
An example of unambiguity is the expression {ε}∪ (pre+.S)T in definition

1. Obviously {ε}∩ (pre+.S)T = ∅ because {ε} is the set of words of length zero
whilst (pre+.S)T contains only words of length at least one. So the “∪” operator
is unambiguous. Also obvious on length considerations is that the (implicit)
concatenation operator in the expression (pre+.S)T is unambiguous. In general,
an expression denoting the concatenation of two languages of which one is a
subset of T k for some k (i.e. all the words in the language have the same length)
is unambiguous. Deterministic finite-state machines also exemplify the use of
unambiguous expressions in order to define a language. A deterministic finite-
state machine corresponds to a system of equations in languages; the right sides
of the equations are disjoint unions of expressions of the form ε or aU (where U
denotes the language recognised by some state of the machine).

The following lemma is the key to evaluating probabilities and expected val-
ues in the context of first-past-the-post games. Note how the equations for ep
resemble the equations for calculating derivatives.

Lemma 1. If U∪V is an unambiguous expression,

hp.(U∪V ) = hp.U +hp.V , and

ep.(U∪V ) = ep.U + ep.V .

If UV is an unambiguous expression,

hp.UV = hp.U ×hp.V , and

ep.UV = hp.U × ep.V + ep.U ×hp.V .

Proof. Straightforward manipulation of quantifier expressions. �
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We now consider the consequences of the function p being a probability distri-
bution. Recall that we use S to denote a first-past-the-post game. Because it
plays an important role in what follows, we use N throughout to denote pre+.S.
(The symbol “N” is the one used in [GKP94]; it may be read as a mnemonic
for “N”ot complete.) With this notation, the two clauses in definition 1 of a
first-past-the-post game become:

N ∩S = ∅ , and(1)

N ∪S = {ε} ∪ NT .(2)

From (2), it is easy to see that hp.T =1 ⇒ hp.S=1. See the calculation below.

hp.S = 1

= { heading towards (2) in definition of a game,
we add hp.N to both sides }

hp.N + hp.S = hp.N + 1

= { by definition, 1=hp.{ε}; assumption: hp.T =1 }
hp.N + hp.S = hp.N × hp.T + hp.{ε}

= { expressions N∪S and NT ∪{ε} are unambiguous,
lemma 1 }

hp.(N ∪S) = hp.(NT ∪{ε})
= { definition of a game: (2) }

true .

This suggests that, if p is a probability distribution on T , hp is a probability
distribution on complete plays. This fact appears to be taken for granted in
[GKP94] and [GO81]. (At least, we have been unable to find anything that we
would recognise as a proof.) We think it is important to make the theorem
explicit and provide a proof. (The proof is not calculational because it links the
formal definitions with the informal notion of relative frequencies.)

Theorem 1. If p is a probability distribution on the alphabet T (i.e. p.a is the
relative frequency of the occurrence of symbol a when the die is thrown and, thus,
hp.T =1) and throws of the die are independent, the function hp is a probability
distribution on complete plays of a first-past-the-post game S. Specifically, for
an arbitrary word A in S, hp.A is the relative frequency that the word A is a
complete play of the game. Moreover, hp is a probability distribution on 2S (the
set of subsets of S); if U ⊆S, then hp.U is the relative frequency with which a
word in U occurs as a complete play.

Proof. Suppose A ∈ pre∗.S. We prove by induction on the length of A that hp.A
is the relative frequency with which the word A occurs as a prefix of a complete
play of the game.
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When the length of A is zero, A= ε. The empty word occurs in every play of
the game. That is, the relative frequency of ε as a prefix of a complete play of
the game is 1, which equals hp.ε by definition. This proves the basis.

Now suppose the length of A is at least one. Suppose A=Ba for some B ∈T ∗

and a∈T . Since B ∈ pre∗.S, and the length of B is less than the length of A,
we may assume inductively that hp.B is the relative frequency with which the
word B occurs as a prefix of a complete play of the game. But B ∈ pre+.S
and so, by definition 1(b), hp.B is the relative frequency with which words of
the form Bb, for some b∈T , occur as a prefix of a complete play. Since p.a is
the relative frequency that a occurs, the independence assumption implies that
hp.B×p.a is the relative frequency with which Ba occurs as a prefix of a com-
plete play. But hp.A = hp.B×p.a by definition. In this way, the induction step is
verified.

A corollary of this inductive argument and definition 1(a) is that, when A
is a complete play, hp.A is the relative frequency of A among complete plays.
(Because of definition 1(a), a complete play only occurs as a prefix of itself and
no other plays.)

By the definition of a probability distribution, it is an immediate corollary
that the extension of hp to subsets of S is a probability distribution. �

Note that hp is just a function on arbitrary languages. As shown above, it is a
probability distribution on S and on 2S whenever p is a probability distribution
on T but we apply it elsewhere to arbitrary languages. An example of where hp

is used in this way is the following lemma.

Lemma 2. Suppose S is the set of complete plays in a first-past-the-post
game and N is the set of incomplete plays. Suppose the symbols in T occur with
probability distribution given by p. Then

ep.S = hp.N .

Proof. First,

ep.S = hp.N

= { heading towards (2) in definition of a game,
we add ep.N to both sides }

ep.N + ep.S = ep.N + hp.N .

But

ep.N + ep.S

= { expression N∪S is unambiguous, lemma 1 }
ep.(N∪S)

= { (2) }
ep.(NT ∪{ε})
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= { expression NT ∪{ε} is unambiguous, lemma 1 }
hp.N × ep.T + ep.N ×hp.T + ep.{ε}

= { p is a probability distribution on T , so hp.T =1;
also, for each A∈T , #A=1. So ep.T =1.
By definition, ep.{ε}=0. }

hp.N + ep.N .

The lemma follows by combining the two calculations (using symmetry of addi-
tion). �

Example 2. If S= {a,ba,bb} and p.a= q and p.b= r, where q+r=1, then
N = {ε,b} and ep.S = 1×q+2×r×q+2×r×r = 1+r = hp.N .

If S = {b}∗{a} and p.a= q and p.b= r, then N = {b}∗; so ep.S=(1−r)−1.
(Note how much easier it is to use the lemma than to calculate ep.S directly
from its definition.) �

3 Prefix-Free Languages

A requirement on games is that complete plays are prefix-free languages (defi-
nition 1(a)). Any language V can be reduced to a maximal, prefix-free language
by selecting the words that have no proper prefixes in V . Specifically, if V is a
language, the set PF .V , called the prefix-free reduction of V , is defined by

PF .V = V ∩ ¬(V T+) .

The element-wise formulation of PF .V is that, for all languages V and all words
C,

C ∈PF .V ≡ C∈V ∧ ¬
〈
∃D,E : D∈V ∧ E∈T+ : DE=C

〉
.

That is, PF .V is the set of words in V that do not have a proper prefix in V .

Example 3. It is sometimes of interest to determine the expected length of
a sequence of observations that culminates in a given “pattern”. Patterns are
classified as either block or hidden [FS09]. Formally, let A be an arbitrary word
over the alphabet T . Then PF .T ∗{A} models the process of observing sequences
of letters until the word A first occurs contiguously (i.e. as a “block” pattern). If
1≤n and A= a1a2 . . . an, then PF.T ∗{a1}T ∗{a2} . . . T ∗{an} models the process
of observing sequences of letters until all the letters of A occur in order but not
necessarily contiguously (i.e. as a “hidden” pattern).

Lemma 6 establishes that PF .T ∗W is a first-past-the-post game for arbitrary
non-empty set W . Thus PF .T ∗{A} and PF .T ∗{a1}T ∗{a2} . . . T ∗{an} are both
first-past-the-post games.

(Of course, PF .W is not a first-past-the-post game for arbitrary non-empty
set W . A simple counter-example is W = {a} since PF.{a}= {a}. When T �= {a}
this is not a first-past-the-post game. See example 1.) �

The following lemma expresses formally the process of “reducing” V to PF .V .
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Lemma 3. Every word in V has a unique prefix in PF .V .

Proof. Let C be a word in V . Consider a linear search of the prefixes of C,
starting with the empty word and iteratively increasing the length of the prefix,
to find a word that is an element of V . The search will eventually terminate
successfully because C is itself such a word. An invariant of the algorithm is
that the current prefix is an element of ¬(V T+). The prefix that is found is
thus an element of both V and ¬(V T+). It is clearly unique because any other
prefixes of C are either not in V or in V T+. �

Several properties of the function PF will be used later.

Lemma 4. PF .V is prefix-free. That is, for all V such that V ⊆T ∗,

pre+.(PF .V ) ∩ PF .V = ∅ .

Proof. This is, in fact, a corollary of lemma 3 but is proved directly as follows.
We have, for all words C,

C ∈ pre+.(PF .V ) ∩ PF .V

= { definition of pre+ }
〈∃E : E ∈PF.V : E ∈{C}T+〉 ∧ C ∈PF.V

⇒ { PF .V ⊆V }
〈∃E : E ∈PF.V : E ∈V T+〉

⇒ { PF .V ⊆¬(V T+) }
false . �

Remark: The prefix-free reduction of V is a maximal prefix-free reduction in
the sense that it is prefix-free (lemma 4) and it is the largest prefix-free subset
of V , i.e. for all languages U ,

(U ⊆V ≡ U ⊆PF .V ) ⇐ U ∩ pre+.U = ∅ .

End of Remark

Lemma 5. For all languages V and U , the expression (PF .V )U is unambigu-
ous. That is, for all languages V and all words C, C′, D and D′,

CD=C′D′ ∧ C ∈PF .V ∧ C′ ∈PF .V ⇒ C=C′ ∧ D=D′ .

Proof. We begin with a simple property of words.

CD=C′D′

⇒ { case analysis on #C and #C′, definition of pre+ }
C=C′ ∨ C ∈ pre+.C′ ∨ C′ ∈pre+.C .

We now show that, assuming C ∈PF .V ∧ C′ ∈PF .V , the second and third dis-
juncts are false.
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C ∈pre+.C′ ∧ C′ ∈PF .V

⇒ { definition of pre+ }
C ∈ pre+.(PF .V )

⇒ { lemma 4 }
¬(C ∈PF .V ) .

We conclude that

C ∈ pre+.C′ ∧ C ∈PF .V ∧ C′ ∈PF .V ≡ false .

Interchanging the roles of C and C′, the third disjunct is also false. The lemma
follows straightforwardly. �

4 Block Patterns and Penney-Ante Games

We now specialise the analysis to block patterns and Penney-Ante-type games.
In Penney-Ante games, each player chooses a word. A die (with |T | faces each
of which bears one of the elements of T , but not necessarily fair) is then thrown
repeatedly until one of the chosen words occurs as a suffix of the play. The
player who made the choice is declared the winner. For example, suppose the
alphabet has two symbols a and b, one player chooses the word a and the second
player chooses the word bb. There are just three complete plays of this game: the
words a, ba and bb. The first player wins in the first two cases and the second
player wins in the third case. Note that this is a first-past-the-post game — see
example 1. Recognition of a block pattern (see example 3) is a special case of a
Penney-Ante game with one player.

Consider a set W of words over an alphabet T . Note that we do not assume
at this stage that W is finite.

The set S is defined to be the set of minimal-length words that end in a word
in W . Formally, (in standard regular-language notation)

S = T ∗W ∩ ¬(T ∗WT+) .

Equivalently, S=PF .T ∗W .
Returning to the example above, taking W to be {a,bb} we have:

S = {a,b}∗{a,bb} ∩ ¬({a,b}∗{a,bb}{a,b}+) = {a,ba,bb} .

In this very simple example, the set S is finite; this is not the case in general.

Lemma 6. For all W such that W ⊆T ∗ and ∅ �=W , PF .T ∗W is a first-past-
the-post game.

Proof. Let S denote PF .T ∗W and let N denote pre+.S. Then that S satisfies
1(a) in the definition of a first-past-the-post game,

N ∩S = ∅ ,(3)

is immediate from lemma 4 by instantiating V to T ∗W .
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It remains to verify the property 1(b). Now,

pre∗.S = {ε} ∪ (pre+.S)T

= { pre∗.S = S ∪ pre+.S , N = pre+.S }
S ∪N = {ε}∪NT

= { T is the alphabet }
(S ∪N)∩T ∗ = ({ε}∪NT )∩T ∗

= { T ∗ = {ε} ∪ T+ }
(S ∪N) ∩ ({ε} ∪ T+) = ({ε}∪NT ) ∩ T ∗

= { distributivity of intersection over union,
assumption: ∅ �=W . So {ε}⊆S ∪N }

{ε} ∪ ((S ∪N)∩T+) = {ε} ∪ (NT ∩T ∗)

= { NT ⊆ T+ ⊆ T ∗,
cancellation property of languages: ε has length 0
and words in T+ have length at least 1 }

(S ∪N)∩T+ = NT

= { definition of set concatenation and equality }
〈∀B,a : B∈T ∗ ∧ a∈T : Ba∈S ∪N ≡ B∈N〉 .

Now, for all B ∈T ∗ and a∈T , we have

Ba∈S ∪N
⇒ { definition of pre }

B ∈pre.(S ∪N)

= { S ∪N = pre∗.S }
B ∈ pre+.S

= { N = pre+.S }
B∈N .

For the opposite implication, choose an arbitrary word C in W . Then, for all
B∈T ∗ and a∈T , we have

B∈N
= { C∈W }

B∈N ∧ BaC ∈T ∗W

⇒ { lemma 3, definition of S }
B∈N ∧

〈
∃k : 0≤k≤#(BaC) : prek.(BaC)∈S

〉
⇒ { pre∗.B ∩ S
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⊆ { assume: B∈N }
pre∗.N ∩ S

= { pre∗.N = pre∗.(pre+.S) = pre+.S = N }
N ∩S

= { (3) }
∅ .

That is, assuming B∈N ,〈
∀k : #(aC)≤ k≤#(BaC) : ¬(prek.(BaC)∈S)

〉
}〈

∃k : 0≤k≤#C : prek.(BaC)∈S
〉

⇒ { range splitting on k=#C, definition of N }
Ba∈S ∨ Ba∈N

= { definition of set union }
Ba∈S ∪N . �

4.1 Equations in Languages

In this section, we show how to construct from a given languageW a (non-linear)
system of simultaneous equations in languages. The system has one equation
for each word in W (which is not necessarily finite); as we show in section 5,
these equations together with the equation 1(b) uniquely characterise PF.T ∗W .
Although W need not be finite, we do assume that it is “reduced”, as defined
below.

The setW is said to be reduced if, for all words A and B in W , A is a subword1

of B equivales A equals B. The assumption that W is reduced is sensible because
without it the game would be either unfair or ill-defined — if A is a proper suffix
of B, the winner of complete play B is not well-defined, and if A is a proper
subword of B and not a proper suffix, the player who chooses B can never win.
For example the set {a,ba,bb} in example 2 is not reduced. (If the complete
play is ba, it is not clear whether the winner is the player choosing a or the
player who chooses ba.) The need for the assumption also appears formally in
our calculations.

If A is a word in W , SA is defined by

SA = T ∗{A} ∩ ¬(T ∗W T+) .

Note that S= 〈∪A : A∈W : SA〉. The language SA is the set of complete plays
that end in the word A.

As in lemma 6, the set N is defined to be the set of all proper prefixes of S :

N = pre+.S .

1 A is a subword of B equivales there are words C and D such that B=CAD.
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(It is straightforward to show that N =¬(T ∗W T ∗). That is, N is the set of
words of which no word in W is a subword. This is the definition of N used by
Guibas and Odlyzko [GO81].)

The crucial properties of S and N are as follows. If W is reduced then, for all
A∈W ,

N{A} = 〈∪B : B∈W : SB(B⊃⊂A)〉(4)

where

B⊃⊂A = {E,F : #E<#A ∧ #F<#B ∧ BE=FA : E} .(5)

We pronounce B⊃⊂A as B match A. Note that, in spite of the symbol by which
it is denoted, the match operator is not symmetric. See example 4 below for
instances of the match operator and equations (4) and (5).

For the proof of (4), we first note that

N{A} = 〈∪B : B∈W : SB(B⊃⊂A)〉
≡ 〈∀C :: C∈N ≡ 〈∃B : B∈W : CA∈SB(B⊃⊂A)〉〉 .

(This is a simple application of the definition of equality of sets, set concatenation
and set union.)

Now, for all words C and all words A in W ,

〈∃B : B∈W : CA∈SB(B⊃⊂A)〉
= { definition of B⊃⊂A }
〈∃B,E,F : B∈W ∧ #E<#A ∧ #F <#B ∧ BE=FA : CA∈SB{E}〉

= { word calculus, #(XY ) = #X+#Y }
〈∃B,D,E,F : B∈W ∧ 1≤#D≤#B ∧ A=DE ∧ B=FD : CD∈SB〉

= { SB ⊆ T ∗{B} }
〈∃B,D,E : B∈W ∧ 1≤#D≤#B ∧ A=DE : CD∈SB〉

= { #B<#D ∧ A=DE ∧ CD∈SB

⇒ { SB ⊆ T ∗{B} }
B is a proper subword of A

⇒ { W is reduced, A∈W and B∈W }
false }

〈∃B,D,E : B∈W ∧ 1≤#D ∧ A=DE : CD∈SB〉
= { S = 〈∪B : B∈W : SB〉 }
〈∃D,E : 1≤#D ∧ DE=A : CD∈S〉

= { (⇒) definition of N ,
(⇐) A∈W , so CA∈T ∗W ; lemma 3 }

C∈N .

This completes the proof of (4).
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Example 4. Suppose the alphabet has two symbols h and t. Suppose the set
W has three elements hh, ht and th. The set S is {t}∗{hh,ht,th} and the sets
Shh, Sth and Sht are, respectively, {t}∗{hh}, {t}∗{th} and {t}∗{ht}; the set N
is {ε} ∪ {t}∗{h,t}.

The following table shows B⊃⊂A for each of the 9 combinations of B and A.
(Rows are indexed by B and columns by A.)

⊃⊂ hh ht th
hh {ε,h} {t} ∅
ht ∅ {ε} {h}
th {h} {t} {ε}

The appropriate instances of (4) are thus as follows:

N{hh} = Shh{ε,h} ∪ Sth{h}
N{ht} = Shh{t} ∪ Sht ∪ Sth{t}
N{th} = Sht{h} ∪ Sth

(Some simplification has been applied to these equations. So, for example, in
the first equation the term Sht∅ has been omitted and, in the second equation,
Sht{ε} has been simplified to Sht.)

These equations are complemented by the equations:

N ∪S = {ε} ∪ N{h,t}
S = Shh∪Sht ∪Sth

The combination of the two sets of equations is the basis for calculating the
probabilities of winning a game with three players who each choose the three
words hh, ht and th as the eventual outcome of the game, as we discuss in the
next section. �

4.2 Solov’ev’s Equation and Conway’s Equation

Suppose we are given a probability distribution p on the elements of the alphabet
T . Suppose W is a language and S equals PF.T ∗W . Then, for each word A in
W , hp.SA is the relative frequency that a word ending in A is a complete play of
the game (theorem 1). We show how to use (4) to evaluate hp.SA for each A. In
the case that W has one element, this gives Solov’ev’s equation for the expected
length of a sequence of observations culminating in (the “block pattern”) A; see
theorem 2. In the case that W has two elements, this gives Conway’s formula
for the probability that each person wins in a two-person Penney-Ante game;
see theorem 3.

Lemma 7. Suppose V is a function from words in W to languages. Suppose
W is reduced and finite. Then 〈∪B : B∈W : SBVB〉 is unambiguous.
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Proof. By lemma 5, each term SBVB is unambiguous. Also, for all words D, D′,
E and E′, and all words B and C in W ,

DE=D′E′ ∧ D∈SB ∧ D′∈SC

⇒ { SB∪SC ⊆ PF .T ∗W , lemma 5 }
DE=D′E′ ∧ D∈SB ∧ D′∈SC ∧ D=D′

⇒ { W is reduced, SB⊆T ∗{B}, SC ⊆T ∗{C} }
D=D′ ∧ E=E′ ∧ B=C . �

Corollary 1. For all A in W ,

hp.N ×hp.{A} = 〈ΣB : B∈W : hp.SB×hp.(B⊃⊂A)〉 .

Also, for all A and B in W ,

hp.(B⊃⊂A) = 〈ΣE,F : #E<#A ∧ #F<#B ∧ BE=FA : hp.E〉 .

Proof. The expressionN{A} is obviously unambiguous. So, by lemma 1, hp.N{A}
is the product of hp.N and hp.{A}. Applying hp to both sides of (4), this gives
the left side of the first equation above. The right side is immediate from lemma
1 and lemma 7.

The second equation is immediate from lemma 1. (Obviously the right side of
(5) is unambiguous.) �

We are now in a position to formulate the theorems attributed to Sovol’ev and
Conway. In the statement of the theorems, the binary operator “:” is defined on
pairs of words by, for all C and D,

C : D =
hp.(C⊃⊂D)

hp.D
.

This operator generalises the one with the same name in [GKP94]. See theorem
3, below, for further explanation of the generalisation.

Note that C : D has no interpretation as a probability. Indeed, C : C is
typically greater than 1; it is the expected length of the first occurrence of block
pattern C, as shown in the next theorem.

Theorem 2 (Sovol’ev’s formula). Suppose S=PF .T ∗{A}. Then

ep.S = A : A .

Proof. We have:

ep.S

= { lemma 2 }

hp.N
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= { corollary 1 with W := {A} (using hp.S=1

and one-point rule to simplify the summation) }
hp.(A⊃⊂A)

hp.A

= { definition }

A : A . �

Example 5. Suppose the alphabet has two symbols h and t (for heads and
tails). Suppose k is a natural number and A is the word hkt and B is the word
hk+1. Then

A⊃⊂A = {ε}
B⊃⊂B =

{
j : 0≤ j≤k :hj

}
Suppose further that p.h= q and p.t= r, where q+r=1. It follows that

hp.(A⊃⊂A) = 1

hp.(B⊃⊂B) =
1−qk+1

1−q
Since hp.A is qk×r and hp.B is qk+1,

A : A =
1

qk×r
and

B : B =
1−qk+1

(1−q)×qk+1
.

It follows from theorem 2 that

ep.(PF .T ∗{B})
ep.(PF .T ∗{A}) =

1−qk+1

q
.

The expected number of coin-tosses before hk+1 is encountered is thus approx-
imately 1

q times greater than the expected number of coin-tosses before hkt is

encountered. In the words of [GKP94]: “patterns with no self-overlaps occur
sooner than overlapping patterns do!” �

Theorem 3. Suppose W = {A,B}. Suppose W is reduced. Then

hp.SA

hp.SB
=

B : B − B : A

A : A − A : B
.

Proof. Straightforward instantiation of corollary 1. �

Corollary 2 (Conway’s formula). If A and B have equal length, and p
assigns equal values to each element of T then

hp.SA

hp.SB
=

hp.(B⊃⊂B)− hp.(B⊃⊂A)

hp.(A⊃⊂A)− hp.(A⊃⊂B)
.
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(The latter is equivalent to the formula attributed to John Horton Conway in
[GKP94] for the odds of A winning against B in a Penney-Ante game where a
coin is tossed and the probability of a head or tail occurring is 1

2 . In Conway’s
formula, the notation B : A is used for hp.(B⊃⊂A)× 2#A− 1. It is not clear from
the published literature whether or not Conway derived the general formula
given in theorem 3.) �

The examples below test the use of theorem 3 on cases where it is easy to predict
the relative frequency of occurrence of words in SA and in SB.

Example 6. Suppose the alphabet has two symbols h and t (for heads and
tails). Suppose k is a natural number and A is the word hkt and B is the word
hk+1. Suppose further that p.h= q and p.t= r, where q+r=1. A simple argument
establishes that the relative frequency of A compared to B in a Penney-Ante
game is r

q . We can check that this is predicted by theorem 3 as follows. We first
calculate that

A⊃⊂A = {ε}
A⊃⊂B = ∅
B⊃⊂A =

{
j : 0≤ j <k :hjt

}
.

Then.

hp.(A⊃⊂B) = 0

hp.(B⊃⊂A) =
(qk−1)×r

q−1 .

Combining these with the calculations in example 5 and substituting in theorem
3 (top formula), we get, for example,

B : A =
(qk−1)×r

(q−1)× (qk×r)
Hence, applying theorem 3 (top formula) (and a lot of simplification!), we get

hp.SA

hp.SB
=

r

q

as expected. �

Example 7. Suppose the alphabet has two symbols a and b . Suppose the set
W has two elements, A and B, equal to a and bb, respectively. Suppose p.a= q
and p.b= r, where q+r=1. As observed earlier, PF .({a,b}∗{a,bb})= {a,ba,bb}.
If q and r model the relative frequency of occurrences of a and b, respectively,
it is clear that the relative frequency of SA, which equals {a,ba}, is q+ r×q and
the relative frequency of SB, which equals {bb}, is r2. Let us check that this is
what is predicted by theorem 3.

We calculate that A⊃⊂A equals {ε}, B⊃⊂B equals {ε,b} and both A⊃⊂B and
B⊃⊂A equal the empty set. The hp values are now easily calculated. Applying
theorem 3, we get

hp.SA

hp.SB
=

(1+r)×q− 0

1×r2− 0
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which simplifies to (1+r)×q
r2 . Since q+r=1 and hp.SA+hp.SB = 1, it follows that

hp.SA equals 1−r2 and hp.SB equals r2. �

The next example is of a game with an infinite number of players.

Example 8. Suppose the alphabet has three symbols a, b and c. Suppose
W = {a}{b}∗{c}. (So each word in W is of the form abkc for some k, 0≤k. Note
that W is not finite but it is reduced.) It is easy to verify that abkc⊃⊂abkc= {ε}
and, when j �=k, abjc⊃⊂abkc = ∅. Thus:

N{abkc} = Sabkc

N ∪S = {ε} ∪ N{a,b,c}
S = 〈∪k : 0≤k :Sabkc〉

It is immediate from these equations that S=N{a}{b}∗{c}. However, it is diffi-
cult to “solve” them in the sense of determining a regular expression defining N .
Indeed, it is not even clear that there is a unique solution for N ; see section 5.

Suppose now that p.a= q, p.b= r and p.c= s, where q+r+s=1. Then, exploit-
ing the above equation for S, we obtain:

hp.N × q× rk× s = hp.Sabkc

hp.N + hp.N × q× r∗× s = 1 + hp.N × (q+r+s)

(where we write r∗ for 1
1−r ). It follows that hp.N = 1−r

q×s and hp.Sabkc=(1−r)×rk.
So the expected length of a game is 1−r

q×s (which equals 1
q+

1
s ) and the probability

that the recognised pattern is abkc is (1−r)×rk. �

5 Uniqueness

In the case that a Penney-Ante game has just two players, theorem 3 together
with the equation hp.SA+hp.SB = 1 enables one to calculate both hp.SA and
hp.SB. In other words, it is possible to determine the probability that each of
the players wins. This raises the question whether or not the system of equations
(4) together with the equations

N ∪S = {ε} ∪ NT(6)

S = 〈∪A :A∈W :SA〉(7)

(cf. definition 1(b)) viewed as equations in the unknowns N , S and SA (for each
A∈W ), has a unique solution independently of the size of W .

The answer is no. A very simple example demonstrates this fact. Suppose
T = {a}=W . Then, since a⊃⊂ a= {ε}, we get just two equations (equation (7)
is trivial):

N ∪S = {ε} ∪ N{a}
N{a} = S
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As is easily checked, one solution to these equations is N = {ε} and S= {a}.
(This is the desired solution.) A second solution is N = {a}∗ and S= {a}+.

Note that, although these two equations do not have a unique solution, we
can use them to determine hp.N and hp.S. Specifically, since inevitably hp.a=1,
we get the equations:

hp.N +hp.S = 1+hp.N

hp.N = hp.S

Unsurprisingly, the expected length of a complete play is 1. (Apply lemma 2.)
Note, however, that hp.{a}∗ is undefined. (Recall that {a}∗ is a solution for N .)

It was a surprise to us that the equations in languages do not have a unique
solution since Guibas and Odlyzko [GO81] claim that the derived equations in
generating functions do have unique solutions. Their argument is based on the
fact that, when {A,B} is reduced, ε∈A⊃⊂B ≡ A=B for all words A and B.
We have as yet been unable to use this fact to show that the equations in hp

values have unique solutions and the question remains open. (Whether or not the
equations have unique solutions when we add the equation N∩S= ∅ is irrelevant
since this property is not reflected in the generating functions.)

6 Conclusion

The purpose of this paper has been to fully understand the reasoning behind
the derivation of Conway’s formula for solving the Penney-Ante game. Our un-
derstanding has improved considerably. In [GKP94] equations are formulated
for hp.N and hp.SA (for each A) —albeit using a different notation— and it
is claimed that hp.SA is the probability that the event A occurs. However, this
claim does not appear to be properly justified, as evidenced by the fact that
no claim is made about the meaning of hp.N . Similarly, we find the arguments
given by Guibas and Odlyzko [GO81] somewhat difficult to understand because
they involve events that can never occur in a first-past-the-post game: Guibas
and Odlyzko appear to ascribe meaning to hp.SB×hp.(B⊃⊂A) as a probability,
whereas, for B �=A, the frequency that a word in SB(B ⊃⊂A) ever occurs is 0
— the game would be terminated before such an event occurs. Here we have
made clear that hp is a probability distribution on the sample space PF.T ∗W .
In the derivation of theorem 3, the function is also applied to languages not in
this sample space, in which case it is typically not a probability distribution.

We make no use whatsoever of generating functions. Generating functions
enable one to derive properties related to word length; our derivations show
that word length is irrelevant to deriving Conway’s formula (and also Solov’ev’s
formula). Even in the case of calculating the expected length of a complete play
of a game, where word length is part of the definition, lemma 2 is all that is
needed.

On the other hand, we have been unable to calculate a formula for the standard
deviation of the length of complete games (or for other higher-order cumulants).
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The conclusion would appear to be that the versatility of generating functions
is best demonstrated by their use in determining higher-order cumulants.

The fact that we have been unable to establish uniqueness of the system of
equations in languages whilst the system of equations in hp values does have
a unique solution (since the equations in generating functions have a unique
solution) requires further investigation.

Acknowledgement. I am very grateful to the anonymous referees all five of
whom gave very detailed and supportive comments on the submitted paper,
including correcting some errors. I hope I have done justice to their efforts.
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Abstract. Recent research has pointed out the importance of the in-
equational exchange law (P ∗Q) ; (R∗S) ≤ (P ;R)∗(Q ;S) for concurrent
processes. In particular, it has been shown that this law is equivalent to
validity of the concurrency rule for Hoare triples. Unfortunately, the law
does not hold in the relationally based setting of algebraic separation
logic. However, we show that under mild conditions the reverse inequa-
tion (P ; R) ∗ (Q ; S) ≤ (P ∗ Q) ; (R ∗ S) still holds there. Separating
conjunction ∗ in that calculus can be interpreted as true concurrency on
disjointly accessed resources. From the reverse exchange law we derive
slightly restricted but still reasonably useful variants of the concurrency
rule. Moreover, using a corresponding definition of locality, we obtain
also a variant of the frame rule. By this, the relational setting can also
be applied for modular and concurrency reasoning. Finally, we present
several variations of the approach to further interpret the results.

Keywords: True concurrency, relational semantics, Hoare logic, con-
current separation logic, locality, frame rule.

1 Introduction

Algebraic techniques nowadays have found widespread application, especially
in the area of program logics. In particular, separation logic [14] has proved to
be very useful in the domain of modular and concurrency reasoning [1,12] —
although originally it was only developed to facilitate reasoning about shared
mutable data structures. For this logic there are already different abstract ap-
proaches that capture corresponding calculi [2,4]. Recent investigations on these
topics resulted in a general algebraic structure called Concurrent Kleene Alge-
bra [8]. A central concept of that algebra is that it allows easy soundness proofs
of important rules like the concurrency and frame rules used in logics for con-
currency and modular reasoning.

The concurrency and frame rules have the form

{P1}Q1 {R1} {P2}Q2 {R2}

{P1 ∗ P2 }Q1 ∗Q2 {R1 ∗R2}
(conc)

{P}Q {R}

{P ∗ S }Q {R ∗ S}
(frame) .
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HereQ and Qi denote programs while all other letters denote assertions. Now the
separating conjunction ∗, as it is called in the literature, is used in the conclusion
of these rules to ensure disjointness of states or resources characterised by as-
sertions. When used on programs, such as the Qi above, separating conjunction
can be interpreted as concurrent execution of programs.

Interestingly, it has been shown in [7] that validity of the exchange law

(P1 ∗ P2) ; (Q1 ∗Q2) ≤ (P1 ;Q1) ∗ (P2 ;Q2) ,

for programs Pi and Qi and validity of the concurrency rule are equivalent. An
analogous connection holds between the small exchange law

(P1 ∗ P2) ;Q1 ≤ (P1 ;Q1) ∗ P2

and the frame rule. In these laws, semicolon denotes sequential composition,
while ≤ denotes a partial ordering expressing refinement. The exchange laws
can be seen as an abstract characterisation of the interplay between sequential
and concurrent composition. Each of them expresses that the program on the
right-hand side has fewer sequential dependences than the one on the left-hand
side.

Several models for algebraic structures obeying those laws exist; details may
be found in [8,7]. However, they either do not model concurrency adequately
enough or fail to satisfy other important laws in connection with nondetermin-
istic choice. The purpose of the present paper is to investigate an extension of
the relational model of separation logic presented in [4] by a generalised sepa-
rating conjunction. As a relational structure it copes well with nondeterminacy;
moreover, it allows the re-use of a large and well studied body of algebraic laws
in connection with assertion logic. Surprisingly, it turns out that, although the
model satisfies neither of the mentioned exchange laws, it validates an exchange
law with the reversed refinement order. Moreover, this entails variants of the
concurrency and frame rules with similarly simple soundness proofs as in the
original Concurrent Kleene Algebra approach. Also, we establish an analogous
equivalence between the concurrency rule and the reverse exchange law as in [7].
Hence, the relational calculus can be applied in reasoning about programs in-
volving true concurrency and modularity. To underpin this further, we also study
a number of variations of our main relational model and discuss their adequacy
and usefulness.

2 Basic Definitions and Properties

We start by repeating some basic definitions from [4] and some direct conse-
quences. Summarised, the central concept of this paper is a relational structure
enriched by an operator that ensures disjointness of program states or executions.
Notationally, we follow [4,7].

Definition 2.1. A separation algebra is a partial commutative monoid (Σ, •, u);
the elements of Σ are called states and denoted by σ, τ, . . .. The operator • de-
notes state combination and the empty state u is its unit. A partial commutative
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monoid is given by a partial binary operation satisfying the unity, commutativity
and associativity laws w.r.t. the equality that holds for two terms iff both are de-
fined and equal or both are undefined. The induced combinability or disjointness
relation # is defined by

σ0#σ1 ⇔df σ0 • σ1 is defined .

As a concrete example one can instantiate the states to heaps. For this we set
Σ =df IN � IN, i.e., the set of partial functions from naturals to naturals.
Moreover • =df ∪ and u =df ∅, the empty heap. A possible combinability
relation for this domain would be h0#h1 ⇔df dom(h0) ∩ dom(h1) = ∅ for
heaps h0, h1. More concrete examples can be found in [2].

Definition 2.2. We assume a separation algebra (Σ, •, u). A command is a re-
lation P ⊆ Σ × Σ between states. Relational composition is denoted by ; . The
command skip is the identity relation between states. A test is a subidentity,
i.e., a command P with P ⊆ skip. In the remainder we will denote tests by
lower case letters p, q, . . . . A particular test that characterises the empty state
u is provided by emp =df {(u, u)}. Moreover, the domain of a command P ,
represented as a test, will also be denoted by dom(P ). It is characterised by the
universal property

dom(P ) ⊆ q ⇔ P ⊆ q ; P .

In particular, P ⊆ dom(P ) ; P and hence P = dom(P ) ; P .

Note that tests form a Boolean algebra with skip as its greatest and ∅ as its
least element. Moreover, on tests ∪ coincides with join and ; with meet. In
particular, tests are idempotent and commute under composition, i.e., p ; p = p
and p ; q = q ; p.

Next we give some definitions to introduce separation relationally. Separating
conjunction of commands can be interpreted as their parallel execution on dis-
joint portions of the state or, in the special case of tests, by asserting disjointness
of certain resources.

Definition 2.3. We will frequently work with pairs of commands. Union, inclu-
sion and composition of such pairs are defined componentwise. The Cartesian
product P ×Q of commands P,Q is given by

(σ1, σ2) (P ×Q) (τ1, τ2) ⇔df σ1 P τ1 ∧ σ2 Q τ2 .

We assume that ; binds tighter than × . It is clear that skip× skip is the identity
of composition. Note that × and ; satisfy an equational exchange law:

P ;Q × R ; S = (P ×R) ; (Q× S) . (1)

Definition 2.4. Tests in the set of product relations are again subidentities;
as before they are idempotent and commute under ; . The Cartesian product of
tests is a test again. However, there are other tests, such as the combinability
check # [4], on pairs of states:

(σ1, σ2) # (τ1, τ2) ⇔df σ1#σ2 ∧ σ1 = τ1 ∧ σ2 = τ2 .
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Definition 2.5. We define split � and its converse join � as in [4] by

σ� (σ1, σ2) ⇔df (σ1, σ2)� σ ⇔df σ1#σ2 ∧ σ = σ1 • σ2 .

Lemma 2.6. We have # = � ;� ∩ skip and hence # ⊆ � ;�. Moreover
# ;� =� and symmetrically � ; # =�.

One might conjecture skip×skip ⊆� ;� at first. However, this is not true, since
the left-hand side of the inequation also considers incombinable pairs of states
which are not included in the right-hand side according to Lemma 2.6. We will see
in the next section that this fact requires us to impose an additional compatibility
condition on commands for proving soundness of the reverse exchange law, i.e.,
the exchange law with the inequation reversed.

Definition 2.7. Generalising [4], we define the parallel composition (separating
conjunction) of commands as P ∗Q =df � ; (P ×Q) ;� .

By this definition, a relation σ (P ∗Q) τ holds iff σ can be split as σ = σ1•σ2 with
disjoint parts σ1, σ2 on which P and Q can act and produce results τ1, τ2 that
are again disjoint and combine to τ = τ1 • τ2. Hence P ∗Q may be viewed as a
program that runs P and Q in a truly concurrent fashion as indivisible actions, at
least conceptually. An actual implementation may still do this in an interleaved
or even truly concurrent fashion, as long as non-interference is guaranteed. We
note that for tests p, q the command p∗q is a test again. Moreover, ∗ is associative
and commutative and emp is its unit. Finally, there is the following interplay
between ∗ and the domain operator.

Lemma 2.8. For commands P,Q we have dom(P ∗Q) ⊆ dom(P ) ∗ dom(Q).

The proof can be found in the Appendix.

3 Compatibility and the Reverse Exchange Law

According to the general results in [7], soundness of the concurrency rule in the
relational setting would follow immediately if the exchange law

(P ∗Q) ; (R ∗ S) ⊆ (P ;R) ∗ (Q ; S)

with relational inclusion ⊆ as the refinement order were to hold there.
However, as also shown in [7], we have

Lemma 3.1. The exchange law implies skip ⊆ emp .

On the other hand, by definition emp ⊆ skip, so that by antisymmetry skip and
emp would be equal, a contradiction.

Therefore the exchange law is not valid in the relational setting. Instead, and
surprisingly, we were only able to show soundness of a restricted variant of the
exchange law with the reversed inclusion order. The proof uses a restriction on
pairs (P,Q) of commands: when P and Q start from combinable pairs of input
states they produce combinable pairs of output states, or the other way around.
This is formalised as follows.
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Definition 3.2. Commands P and Q are forward compatible iff

# ; (P ×Q) ⊆ (P ×Q) ; # .

Symmetrically P andQ are backward compatible iff (P×Q);# ⊆ #;(P×Q) . Two
commands are called compatible iff they are forward and backward compatible,
i.e., # ; (P ×Q) = (P ×Q) ; # .

Again for a more concrete example of such commands we recapitulate our in-
stantiation of states to heaps described in Section 2. Intuitively two compatible
commands would work on disjoint portions of a heap, e.g. by only altering dis-
joint ranges of heap cells. Hence they ensure disjointness before and after their
execution. In the following we list a few consequences of Definition 3.2.

Lemma 3.3. All test commands are compatible with each other.

Proof. For test commands p, q the relation p×q is a test in the algebra of relations
on pairs. Since # is a test there, too, they commute, which means forward and
backward compatibility of p and q. +*

Since the combinability check # is a test on pairs of commands, it induces some
useful closure properties.

Corollary 3.4. If P,Q are forward compatible and R ⊆ P then also R,Q are
forward compatible. This result also holds for backward compatibility, hence com-
patibility is downward closed, too.

Proof. We assume ; binds tighter than ∩ . Now we show the following more
general result: Let C,D,E be relations on pairs of states such that C is a test. If
C is an invariant of D, i.e., C ;D ⊆ D ;C, and E ⊆ D then C is also an invariant
of E. For this we calculate

C ;E = C ; (D ∩ E) = C ;D ∩ C ;E ⊆ D ; C ∩ C ;E =
D ∩ C ; E ; C = C ; E ; C ⊆ E ; C .

The last but one step follows since C is a test. A proof can e.g. be found in [10].
Now the main claim follows by setting C = #, D = P ×Q and E = R×Q. +*

We note that this proof extends to arbitrary test semirings.

Corollary 3.5. Let P,Q and R,S be forward compatible. Then also P ; R and
Q ; S are forward compatible. Again the same holds for backward compatibility.

Proof

# ; (P ;R×Q ; S) = # ; (P ×Q) ; (R× S) ⊆ (P ×Q) ; # ; (R× S) ⊆
(P ×Q) ; (R× S) ; # = (P ;R×Q ; S) ; # .

+*
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Now we are ready for the central result mentioned at the beginning of this
section. For forward or backward compatible commands we are able to prove
soundness of a variant of the reverse exchange law using the inclusion order.
Note that validity of the exchange law in [7] is proved for arbitrary predicate
transformers. In the next section we will see that specialising validity of the
reversed law to compatible commands does not impose any restrictions on our
treatment.

Lemma 3.6 (Reverse Exchange). If P,Q are forward compatible or R,S are
backward compatible then

(P ; R) ∗ (Q ; S) ⊆ (P ∗Q) ; (R ∗ S) .

In particular, if P,R or Q,S are tests the inequation holds.

Proof. We assume that P and Q are forward compatible.

(P ; R) ∗ (Q ; S)

= {[ definition of ∗ ]}
� ; (P ; R×Q ; S) ;�

= {[ ; /× exchange (1) ]}
� ; (P ×Q) ; (R × S) ;�

= {[ Lemma 2.6 ]}
� ; # ; (P ×Q) ; (R × S) ;�

⊆ {[ forward compatibility ]}
� ; (P ×Q) ; # ; (R × S) ;�

⊆ {[ Lemma 2.6 ]}
� ; (P ×Q) ;� ;� ; (R × S) ;�

= {[ definition of ∗ ]}
(P ∗Q) ; (R ∗ S) .

The proof for backward compatibility and R,S is symmetric. +*

The reverse exchange law expresses an increase in granularity: while in the left-
hand side program P ; R and Q ; S are treated as indivisible, they are split in
the right-hand side program, at the expense of a “global” synchronisation point
marked by the semicolon (which is the reason for the compatibility requirement).

4 Hoare Triples and the Concurrency Rule

To prepare our variants of the concurrency rule we now define Hoare triples in
our setting.

Definition 4.1. For general commands P,Q,R, the general Hoare triple [7] is
defined as

P {Q}R ⇔df P ;Q ⊆ R .
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For tests p, r and arbitrary command Q the standard Hoare triple [9] {p}Q {r}
is defined by

{p}Q {r} ⇔df p ;Q ⊆ Q ; r .

General Hoare triples also admit programs as assertions, in contrast to the stan-
dard ones that only allow tests to denote pre- and postconditions. As shown
in [4], we have the relationship

{p}Q {r} ⇔ (U ; p){Q} (U ; r)

where U denotes the universal relation. Hence our results for standard Hoare
triples can be immediately translated into ones for general triples. The compo-
sition U ; p maps a test p to a command that makes no assumption about its
starting state. Intuitively, starting from an arbitrary state that command will
end up in one satisfying p. Trivially, a symmetrical command p ; U makes no
restriction on the ending state or codomain.

Next we turn to the definition of properties and conditions that will allow us
to prove variants of the concurrency rule for standard Hoare triples using the
reverse exchange law.

The following observation is trivial, but useful for our first variant of the
concurrency rule.

Corollary 4.2. {p}Q {r} ⇔ {p} p ;Q {r}.

Proof. By idempotence of test p,

{p}Q {r} ⇔ p ;Q ⊆ Q ; r ⇔ p ; p ;Q ⊆ Q ; r ⇔ {p} p ;Q {r} .

+*

The command p;Q can be viewed as asserting the precondition p before executing
Q.

The condition we need for our first variant of the concurrency rule is that the
commands Qi enforce the preconditions pi in that all their starting states satisfy
the respective pi. Algebraically this is expressed by the formula Qi ⊆ pi ; Qi,
which is equivalent to Qi = pi ;Qi and to dom(Qi) ⊆ pi. This restriction is not
essential: by Cor. 4.2 and the idempotence of tests we can always replace Qi by
Q′

i =df pi ;Qi to achieve this.

Lemma 4.3 (Concurrency Rule I)

{p1}Q1 {r1} {p2}Q2 {r2} dom(Q1) ⊆ p1 dom(Q2) ⊆ p2

{p1 ∗ p2 }Q1 ∗Q2 { r1 ∗ r2}

Proof. (p1 ∗ p2) ; (Q1 ∗Q2)

⊆ {[ p1 ∗ p2 a test, hence a subidentity ]}
Q1 ∗Q2
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⊆ {[ Qi ⊆ pi ;Qi ]}
(p1 ;Q1) ∗ (p2 ;Q2)

⊆ {[ by {pi}Qi {ri} ]}
(Q1 ; r1) ∗ (Q2 ; r2)

⊆ {[ reverse exchange law (Lemma 3.6), since r1 and r2 are tests
and hence compatible by Lemma 3.3 ]}

(Q1 ∗Q2) ; (r1 ∗ r2) .
+*

Note that compatibility of the commands Qi is not needed.
The proof might suggest that the preconditions pi do not really matter, since

they are discarded in the first step. However, they are re-introduced in the next
step and hence indeed do matter.

A brief discussion of the relevance and use of this rule can be found at the
end of the next section.

To round off this section, we prove the following result which, together with
Lemma 4.3, provides the analogue of the equivalence between the full exchange
law and the concurrency rule shown in [7].

Lemma 4.4. Validity of Concurrency Rule I implies a special case of the reverse
exchange law: for arbitrary commands Pi and tests ri,

(P1 ; r1) ∗ (P2 ; r2) ⊆ (P1 ∗ P2) ; (r1 ∗ r2) .
Proof. In Concurrency Rule I we set Qi = Pi ; ri and pi = dom(Qi). By this the
premise of the rule becomes valid since

{dom(Qi)}Qi {ri} ⇔ dom(Qi) ;Qi ⊆ Qi ; ri ⇔ Qi ⊆ Qi ; ri

and Qi ; ri = (Pi ; ri) ; ri = Pi ; ri = Qi . Hence, by the conclusion of the rule we
have

(dom(Q1) ∗ dom(Q1)) ; (Q1 ∗Q2) ⊆ (Q1 ∗Q2) ; (r1 ∗ r2) . (†)
Now we calculate:

(P1 ; r1) ∗ (P2 ; r2)

= {[ definitions of Qi ]}
Q1 ∗Q2

= {[ property of domain ]}
dom(Q1 ∗Q2) ; (Q1 ∗Q2)

⊆ {[ by Lemma 2.8 ]}
(dom(Q1) ∗ dom(Q2)) ; (Q1 ∗Q2)

⊆ {[ by (†) ]}
(Q1 ∗Q2) ; (r1 ∗ r2)

= {[ definitions of Qi ]}
((P1 ; r1) ∗ (P2 ; r2)) ; (r1 ∗ r2)

⊆ {[ by ri ⊆ skip ]}
(P1 ∗ P2) ; (r1 ∗ r2) .

+*
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We conclude by showing that the symmetric special case already follows without
assuming reverse exchange or Concurrency Rule I or even mentioning the notion
of compatibility.

Lemma 4.5. For arbitrary commands Qi and tests pi,

(p1 ;Q1) ∗ (p2 ;Q2) ⊆ (p1 ∗ p2) ; (Q1 ∗Q2) .

Proof. We calculate:

(p1 ;Q1) ∗ (p2 ;Q2)

= {[ property of domain ]}
dom((p1 ;Q1) ∗ (p2 ;Q2)) ; ((p1 ;Q1) ∗ (p2 ;Q2))

⊆ {[ by Lemma 2.8 ]}
(dom(p1 ;Q1) ∗ dom(p2 ;Q2)) ; ((p1 ;Q1) ∗ (p2 ;Q2))

= {[ property of domain ]}
((p1 ; dom(Q1)) ∗ (p2 ; dom(Q2))) ; ((p1 ;Q1) ∗ (p2 ;Q2))

⊆ {[ by dom(Qi) ⊆ skip and pi ⊆ skip ]}
(p1 ∗ p2) ; (Q1 ∗Q2) .

+*

Since Lemma 2.8 holds analogously for the codomain operator, this proof could
also be adapted to a direct proof of the property in Lemma 4.4.

Finally, the special case of reverse exchange mentioned in Lemma 4.5 in turn
implies Lemma 2.8:

dom(P ∗Q) ⊆ dom(P ) ∗ dom(Q)

⇔ {[ universal characterisation of domain ]}
P ∗Q ⊆ (dom(P ) ∗ dom(Q)) ; (P ∗Q)

⇐ {[ special case of reverse exchange ]}
P ∗Q ⊆ (dom(P ) ; P ) ∗ (dom(Q) ;Q)

⇔ {[ property of domain ]}
P ∗Q ⊆ P ∗Q

⇔ {[ reflexivity of ⊆ ]}
TRUE .

5 Another Concurrency Rule

We now present a second variant of the concurrency rule. Its main idea is inspired
by a more special property given in [4], which will also figure again in the next
section.

Definition 5.1. Two commands Q1, Q2 have the concurrency property iff

(dom(Q1)× dom(Q2)) ;� ;Q1 ∗Q2 ⊆ (Q1 ×Q2) ;� . (2)
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This property is “angelic” in the sense that whenever two combinable states σ1

and σ2 provide enough resource for the execution of the programs Qi then each
Qi will be able to acquire its needed resource from the joined state σ1 • σ2.

To see that this is not always possible, we present a concrete example again
in the heap model (mentioned in Section 2) with two commands that do not
satisfy the concurrency property. Consider

Q1 =df ([1] := 1) ∪ ([2] =: 1) and Q2 =df ([1] := 2) ∪ ([2] := 2)

where [x] := y represents a command that changes the content of the heap cell
x to y and ∪ denotes non-deterministic choice. Clearly, the commands show
interference with each other since both may access the same heap locations.

To see that Q1 and Q2 do not satisfy the concurrency property, first note
dom(Q1) = dom(Q2) = {(h, h) : 1 ∈ dom(h) ∨ 2 ∈ dom(h)}. Next, we consider
heaps h1 = {(1, 0)} and h2 = {(2, 0)} with (hi, hi) ∈ dom(Qi). Thus, using h =
h1•h2 and h1#h2, we have (h, h) ∈ dom(Q1∗Q2). Moreover, a possible execution
of Q1 ∗ Q2 is (h, {(1, 1), (2, 2)}). Hence, ((h1, h2), {(1, 1), (2, 2)}) is included in
the left hand side of the instantiated concurrency property but not in the right
hand side since we only have ((h1, h2), {(1, 2), (2, 1)}) there.

We are now interested in relating concurrency property to the exchange law
for concurrent processes. It turns out that the property is sufficient for validat-
ing a special case of the exchange law which we use to prove soundness of the
concurrency rule.

Definition 5.2. We call two commands Q1, Q2 pre-concurrent iff we have for
all tests p1, p2

p1 ⊆ dom(Q1) ∧ p2 ⊆ dom(Q2) ⇒ (p1 ∗ p2) ; (Q1 ∗Q2) ⊆ (p1 ;Q1) ∗ (p2 ;Q2) .

Lemma 5.3. If commands Q1 and Q2 have the concurrency property then they
are pre-concurrent.

Proof. Assume pi ⊆ dom(Qi). Then

(p1 ∗ p2) ; (Q1 ∗Q2)

= {[ definition of ∗, pi ⊆ dom(Qi) for i = 1, 2 ]}
� ; (p1 ; dom(Q1)× p2 ; dom(Q2)) ;� ; (Q1 ∗Q2)

= {[ ; /× exchange (1) ]}
� ; (p1 × p2) ; (dom(Q1)× dom(Q2)) ;� ; (Q1 ∗Q2)

⊆ {[ concurrency property (2) ]}
� ; (p1 × p2) ; (Q1 ×Q2) ;�

= {[ ; /× exchange (1) ]}
� ; (p1 ;Q1 × p2 ;Q2) ;�

= {[ definition of ∗ ]}
(p1 ;Q1) ∗ (p2 ;Q2) .

+*
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Interestingly, this special case of the exchange law already suffices to prove our
second variant of the concurrency rule although the complete exchange law is
needed for the concurrency rule in [7]; note also that the inclusion relations
between the preconditions and the domains of the commands are the reverses of
the ones in Lemma 4.3.

Lemma 5.4 (Concurrency Rule II) . Let Q1 and Q2 have the concurrency
property. Then

{p1}Q1 {r1} {p2}Q2 {r2} p1 ⊆ dom(Q1) p2 ⊆ dom(Q2)

{p1 ∗ p2 }Q1 ∗Q2 { r1 ∗ r2}
.

Proof. (p1 ∗ p2) ; (Q1 ∗Q2)

⊆ {[ Lemma 5.3 ]}
(p1 ;Q1) ∗ (p2 ;Q2)

⊆ {[ {pi}Qi {ri} ]}
(Q1 ; r1) ∗ (Q2 ; r2)

⊆ {[ reverse exchange law (Lemma 3.6),
since r1, r2 as tests are compatible ]}

(Q1 ∗Q2) ; (r1 ∗ r2) .
+*

In summary, we have presented two variations of the concurrency rule in our
relational calculus. An advantage of Lemma 4.3 is that it only requires that
the domains of the commands Qi coincide with the respective preconditions,
but needs no connection between the Qi. Contrarily, Lemma 5.4 is more liberal
w.r.t. the preconditions but requires the Qi to have the concurrency property.

Still, usually at least one of the concurrency rules can be applied. Consider,
for instance, parallel mergesort ms [11]:

{array(a, i,m)} ms(a, i,m) {sorted(a, i,m)}
{array(a,m+ 1, j)} ms(a,m+ 1, j) {sorted(a,m+ 1, j)}

{array(a, i,m) ∗ array(a,m+ 1, j) }
ms(a, i,m) ∗ ms(a,m+ 1, j)

{ sorted(a, i,m) ∗ sorted(a,m+ 1, j)}

where array(a, i, j), assuming i < j, asserts that the store range with addresses
a+i to a+j forms an array, i.e., contains elements of equal type, and sorted(a, i, j)
ensures that the content in that range is sorted. It is easy to define ms(a, i,m) in
such a way that its domain is characterised by array(a, i,m). Moreover, in any
reasonable implementation the commands ms(a, i,m) and ms(a,m + 1, j) even
satisfy the concurrency property.

Thus, the concurrency rules in our relational calculus represent a feasible
approach to enable reasoning about disjoint true concurrency.
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6 Locality and the Frame Rule

We now turn to another important proof rule for modular reasoning. Validity
of that rule is based on the concept of locality which describes the behaviour
of programs that only access certain subsets of the available resources. Hence
locality allows embedding a program into a larger context so that any resource
not accessed by that program remains unchanged. This fact is expressed by the
frame rule

{p}Q {q}

{p ∗ r }Q { q ∗ r}
.

To obtain a suitable version of the frame rule in our relational calculus we first
remind the reader of a central result of [7]. A predicate transformer F in that
model is called local iff it satisfies the equation

F ∗ skip = F .

This equation characterises exactly the above-mentioned modularity concept.
Each execution of the program F can be replaced by one that only operates on
the necessary and possible smaller part of the state while the rest of it remains
unchanged (abstractly denoted by the program skip). In the following we derive
the same compact characterisation for commands.

First remember that emp is the unit of ∗ and emp ⊆ skip.

Lemma 6.1. For arbitrary commands Q we have Q ⊆ Q ∗ skip .

Proof. Q = Q ∗ emp ⊆ Q ∗ skip . +*

To get the other inclusion, i.e., Q ∗ skip ⊆ Q, we need an additional assumption
about Q. Surprisingly, this inequation can be derived from a property given
in [4] which was called test preservation and used there to prove soundness of
the frame rule.

Definition 6.2. A command Q preserves a test r iff

� ; (Q× r) ; # ⊆ Q ;� ; (skip× r) . (3)

We call a command Q local iff Q preserves all tests.

Formula (3) means that when running Q on a part of the state such that the
remainder of the state satisfies r one might also run Q first on the complete state
and will still find an r-part in the result state.

Preservation of r by Q is an abstraction of the property that Q does not
modify the free variables of r; a more refined version of this definition was given
in [4] and another one was studied in [3]. Locality as preservation of all tests,
does not seem very realistic in that domain. Nevertheless, it turns out to be
equivalent to the algebraic formulation of [7]:

Theorem 6.3 A command Q is local iff Q ∗ skip ⊆ Q .
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The proof can be found in the Appendix.
By Theorem 6.3 we may, as in [7], define local commands as fixpoints of the

localising operation ( · ) ∗ skip.
With this definition of locality we now prove our variant of the frame rule. We

take a similar direction as in Section 4 by defining sufficient conditions needed
for a soundness proof. First notice that in [7] the compact definition of locality
and the full exchange law are used to get validity of the small exchange law for
local predicate transformers. The small exchange law reads

(P ∗Q) ; R ≤ (P ;R) ∗Q

for programs P,Q,R and the refinement order≤ of a locality bimonoid. Moreover
this law is equivalent to soundness of the frame rule in such a structure. In our
approach locality has the same definition, but the small exchange law does not
hold. Therefore again a further sufficient condition is needed to simulate the
relevant part of the small exchange law.

Definition 6.4. Call command Q pre-framed iff for all test commands p, r

p ⊆ dom(Q) ⇒ (p ∗ r) ;Q ⊆ (p ;Q) ∗ r .

The premise p ⊆ dom(Q) informally states that p already ensures enough re-
sources for the execution of Q. We will see that this is a sufficient condition to
prove soundness of the frame rule. Notice that the conclusion is only a special
case of the small exchange law.

In [4] we used a relational variant of the frame property to prove the frame
rule. We will use it in this paper in a simplified form.

Definition 6.5. A command Q has the frame property iff

(dom(Q)× skip) ;� ;Q ⊆ (Q× skip) ;� .

This property can be derived as a special case of the concurrency property by
setting Q2 = skip and assuming locality for Q1, i.e., Q1 ∗ skip = Q1. Again, this
property is sufficient for pre-framedness.

Lemma 6.6. If Q has the frame property then Q is pre-framed.

Proof. Assume p ⊆ dom(Q). Then

(p ∗ r) ;Q
= {[ assumption ]}

((p ; dom(Q)) ∗ r) ;Q
= {[ definition of ∗ and ; /× exchange (1) ]}

� ; (p× r) ; (dom(Q)× skip) ;� ;Q

⊆ {[ frame property ]}
� ; (p× r) ; (Q × skip) ;�

= {[ ; /× exchange (1) and definition of ∗ ]}
(p ;Q) ∗ r .

+*
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Now we can easily prove the frame rule.

Lemma 6.7 (Frame Rule) . Let Q be local and have the frame property. More-
over, assume p ⊆ dom(Q). Then

{p}Q {q}

{p ∗ r}Q {q ∗ r}
.

Proof. (p ∗ r) ;Q
⊆ {[ p ⊆ dom(Q) and Q pre-framed by Lemma 6.6 ]}

(p ;Q) ∗ r
⊆ {[ by {p}Q {q} ]}

(Q ; q) ∗ r
⊆ {[ r = skip ; r and reverse exchange law (Lemma 3.6),

since r, skip as tests are compatible ]}
(Q ∗ skip) ; (q ∗ r)

⊆ {[ Q local ]}
Q ; (q ∗ r) .

+*

Next, we compare the structure of our proofs with the corresponding ones in [7]
to point out the main differences. Since the small exchange law is not valid in our
relational setting (not even for local commands), it was necessary to constrain
the set of commands considered in the frame rule by an additional assumption.
It turned out in [4] that the relational version of the frame property was an
adequate substitute. We have shown here that this property also relates to pre-
framed commands which already ensure the relevant part of the small exchange
law. Structurally, the proof of this frame rule becomes as simple as the one for the
predicate transformer approach in [7]. Due to the angelic character of relations,
the rule itself needs the additional premise p ⊆ dom(Q).

As a further remark, the approach of [7] requires special functions for the
semantics of Hoare triples. They are called best predicate transformers and are
used as an adequate substitute for assertions. Intuitively these functions simulate
the allocation of resources that are characterised by pre- and postconditions. In
our calculus this can be handled by composing tests with the universal relation.
However, since we have a non-trivial test algebra in the relational setting, tests
by themselves already admit a suitable representation of pre- and postconditions.

7 Dual Correctness Triples

The previous sections presented an approach to include the concurrency and
frame rules in the given relational approach to separation logic [4] by requir-
ing additional assumptions and hence restricting the proof rules. In this section
we present some further applications for the reverse exchange law. We link it with
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the definitions of triples dual to the ones of Hoare. By this we will again see that
the concurrency and frame rules can be easily derived using the reverse exchange
law.

Definition 7.1. As in [6], for commands P,Q,R we define Plotkin triples by

〈P,Q〉 → R ⇔df R ⊆ P ;Q

and dual partial correctness triples by

P [Q]R ⇔df P ⊆ Q ; R .

Intuitively, the former characterise possible states satisfying the postcondition R
after the execution of Q starting from P while the latter symmetrically describes
possible starting states of P that end in R after the execution of Q. The notation
is inspired by Plotkin’s structural operational semantics [13] in which 〈C, s〉 → t
means that evaluation of term C starting in state smay lead to term t. According
to [6], dual partial correctness triples can e.g. be used as a method for the
generation of test cases. Assuming R represents erroneous final states of Q then
P characterises some conditions that will lead to such error situations. Plotkin
triples can used for a dual application.

Using the relationship between tests and commands given in Section 4, in our
calculus the dual partial correctness triples transform into

(p ; U) [Q] (q ; U) ⇔ p ; U ⊆ Q ; (q ; U) ⇔ p ⊆ (Q ; q) ; U ⇔ p ⊆ dom(Q ; q)

and, symmetrically, Plotkin triples into

〈U ; p ,Q〉 → U ; q ⇔ U ; q ⊆ (U ; p) ;Q ⇔ q ⊆ U ; (p ;Q) ⇔ q ⊆ cod(p ;Q) .

We concentrate on dual partial correctness triples and use the abbreviation
p [[ Q ]] q ⇔df (p ;U) [Q] (q ;U) ⇔ p ⊆ dom(Q ; q). Dual results hold for Plotkin
triples.

The central interest of these new triples lies in the following result.

Lemma 7.2. The concurrency rule for dual partial correctness or Plotkin triples
holds iff the reverse exchange law holds.

A proof for this lemma can be derived dually to [7]. Unfortunately, in our setting
the reverse exchange law does not hold unconditionally. However, we will see that
under an assumption of compatibility the concurrency and frame rules can still
be derived. Note that it was not needed to assume compatibility for the proof
rules with Hoare triples since tests already come with that property. In contrast,
the new triples do not need additional assumptions besides the compatibility
condition.

We begin with an auxiliary result.

Lemma 7.3. Assume P,Q are forward compatible. Then dom(P ) ∗ dom(Q) =
dom(P ∗Q), i.e., ∗ distributes over domain.
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A proof can be found in the Appendix.

Lemma 7.4. If Q1, Q2 are forward compatible then the concurrency rule for
dual partial correctness triples holds, i.e., for tests p1, p2, q1, q2

p1 [[ Q1 ]] q1 p2 [[ Q2 ]] q2

p1 ∗ p2 [[ Q1 ∗Q2 ]] q1 ∗ q2
.

Again this holds also when Q1 and Q2 are backward compatible and Plotkin
instead of dual partial correctness triples are used.

Proof. By assumption we have p1 ⊆ dom(Q1 ; q1), p2 ⊆ dom(Q2 ; q2) and the
restricted variant of the reverse exchange law. Hence

p1 ∗ p2
⊆ dom(Q1 ; q1) ∗ dom(Q2 ; q2)
= dom((Q1 ; q1) ∗ (Q2 ; q2))
⊆ dom((Q1 ∗Q2) ; (R1 ∗R2)) .

+*

We characterised the behaviour of the triples “dual” on purpose since the cal-
culations given above are symmetric to the algebraic approach of [7]. It is not
hard to see that a further application of the compact characterisation of locality
presented in Section 6 also gives the following result.

Lemma 7.5. If Q is local and forward compatible with skip then the frame rule
for dual partial correctness triples holds, i.e.,

p [[ Q ]] q

p ∗ r [[ Q ]] q ∗ r
.

(A dual result again holds for Plotkin triples).

Proof. Assume p ⊆ dom(Q ; q) for a command Q and test q. Hence

p ∗ r
⊆ dom(Q ; q) ∗ (skip ; r)
= dom(Q ; q) ∗ dom(skip ; r)
= dom((Q ; q) ∗ (skip ; r))
⊆ dom((Q ∗ skip) ; (q ∗ r))
⊆ dom(Q ; (q ∗ r)) .

+*

8 Further Variations

Both proof rules of the previous section have the restriction that compatible
pairs of commands are needed. The reason for this is that, by Lemma 2.6, in the
relational approach only # ⊆ �;� holds. If we would have skip×skip ⊆ �;�
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the proof of the reverse exchange law would not have any restrictions. However
this requires an extension of the definition of� such that the composition�;�
has the same behaviour as skip on incombinable pairs of states.

An idea would be to lift commands to relations between sets containing at
most a single state. The empty set is then the result of joining incombinable
pairs of states. We define Σs =df {{σ} : σ ∈ Σ} ∪ {∅} and, for sets X,Y ∈ Σs,

X ∗s Y � (X,Y ) (4)

where X ∗s Y =df {σ1 • σ2 : σ1 #σ2, σ1 ∈ X, σ2 ∈ Y }. In the special case with
X = {σ1} �= ∅ and Y = {σ2} �= ∅ we have that

{σ1} ∗s {σ2}� ({σ1}, {σ2}) .

We denote the lifting of this operation to relations by ∗s again.
This modification allows a relational model of the algebraic structure of a

locality bimonoid defined in [7].

Definition 8.1. A locality bimonoid is an algebraic structure (S,≤, ∗, 1∗, ;, 1;)
where (S,≤) is partially ordered and ∗, ; are monotone operations on S. More-
over, (S, ∗, 1∗) needs to be a commutative monoid and (S, ;, 1;) a monoid. Addi-
tionally, the structure has to satisfy the exchange law and 1 ∗ 1 = 1.

To obtain a relational model for this structure one may interpret the order
≤ as the reverse set inclusion order ⊇ . Of course, by this the mentioned re-
verse exchange law turns into the normal one and the relational approach into
a refinement-based setting. Moreover, we have the following result.

Lemma 8.2. skip is idempotent w.r.t. ∗, i.e., skip ∗ skip = skip .

Proof. Since skip ∗ skip is a test the ⊆ -direction is immediate. +*

In summary, we summarise the following result.

Lemma 8.3. (P(Σs ×Σs), ⊇ , ∗s, emp, ;, skip) forms a locality bimonoid.

Note that by this modification * and + turn into ∩ and ∪ . In particular,
the test subalgebra is used as an algebraic counterpart to model assertions.
Hence, the interpretation of the notion of a test becomes very unnatural, since
e.g. p ∧ q will be identified, unusually, in the algebra with p * q and p ∨ q with
p+q. Algebraically these modifications of the model entail simplifications. There
are no additional constraints needed to validate the reverse exchange law and
hence the original concurrency and frame rules hold. The reason for this is the
inequation skip×skip ⊆ � ;� that requires the introduction of an extra failure-
state to capture the join of incombinable states. However, considering this extra
failure-state makes the whole approach more complicated and artificial from the
model-theoretical view.
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9 Conclusion

Although neither the full nor small exchange law holds in the relational calculus,
we were still able to obtain reasonable variants of the concurrency and frame
rules. The proofs greatly benefit from the (restricted) reverse exchange law and
hence are almost as simple as the ones in [7]. The advantage of the relational
framework is that it admits choice and the corresponding distributivity laws
without effort by using relational union.

Further work on this approach includes investigations on so-called interference
relations [5]. The intention with such relations is to provide admissible behaviour
of commands in a concurrent context so that interference between these com-
mands is excluded. By this we hope to include more concrete models for the
application domain of the presented relational approach.
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10 Appendix: Deferred Proofs

Proof of Lemma 2.8.
For arbitrary σ we have

σ dom(P ∗Q) σ

⇔ {[ definitions of ∗ and domain ]}
∃σ1, σ2, τ1, τ2 . σ1#σ2 ∧ σ = σ1 • σ2 ∧ τ1#τ2 ∧ σ1 P τ1 ∧ σ2 Q τ2

⇒ {[ omitting conjunct τ1#τ2 and shifting quantification over τ1, τ2 ]}
∃σ1, σ2 . σ1#σ2 ∧ σ = σ1 • σ2 ∧ ∃ τ1, τ2 . σ1 P τ1 ∧ σ2 Q τ2

⇔ {[ definition of domain ]}
∃σ1, σ2 . σ1#σ2 ∧ σ = σ1 • σ2 ∧ σ1 dom(P ) σ1 ∧ σ2 dom(Q) σ2

⇔ {[ definition of ∗ ]}
σ (dom(P ) ∗ dom(Q)) σ .

+*
In Def. 6.2 we stated that a command Q preserves a test r iff

� ; (Q× r) ; # ⊆ Q ;� ; (skip× r)

and called a command Q local iff Q preserves all tests.
We first list a few useful properties in connection with these notions.

Lemma 10.1

1. skip preserves skip .
2. For arbitrary Q and r we have

� ; (Q × r) ; # ⊆ (Q ∗ skip) ;� ; (skip× r) .

3. If Q preserves a test r then Q ∗ r ⊆ Q ; (skip ∗ r) .
In particular, skip ∗ skip ⊆ skip . Hence if Q is local then Q ∗ skip ⊆ Q .
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Proof

1. The claim follows immediately by setting Q = skip = r in Definition 6.2.
2. We calculate:

� ; (Q× r) ; #

= {[ neutrality of skip ]}
� ; (Q ; skip× skip ; r) ; #

= {[ ; /× exchange (1) ]}
� ; (Q× skip) ; (skip× r) ; #

= {[ by Definition 2.4 ]}
� ; (Q× skip) ; # ; (skip× r)

⊆ {[ # ⊆ � ;� and isotony ]}
� ; (Q× skip) ;� ;� ; (skip× r)

= {[ definition of ∗ ]}
(Q ∗ skip) ;� ; (skip× r) .

3. The first claim is immediate from the definition of locality by right-com-
posing both sides of the inclusion with �, isotony and the definition of
∗. Hence the second claim is trivial by isotony. The third claim follows by
setting r = skip and using skip ∗ skip = skip .

+*
We can now give the

Proof of Theorem 6.3

The direction (⇒) is just Lemma 10.1.3. For (⇐) we obtain by Lemma 10.1.3
and the assumption, for arbitrary test r,

� ; (Q × r) ; # ⊆ (Q ∗ skip) ;� ; (skip× r) ⊆ Q ;� ; (skip× r) .

+*
Corollary 10.2. Q ∗ skip ⊆ Q ⇔ � ; (Q × skip) ; # ⊆ Q ;� .

Proof The direction (⇐ ) follows from isotony. For the other direction we im-
mediately get by definition and isotony � ; (Q × skip) ;� ;� ⊆ Q ;� since
Q ∗ skip ⊆ Q. Now the claim follows from Lemma 2.6 using # ⊆� ;� . +*

Next we turn to Section 7. To prove Lemma 7.3 we first sum up a few results.

Corollary 10.3. # ; (U × U) ;� =� ; U .

For a proof we refer to [4].

Lemma 10.4 If commands P,Q are forward compatible then (P ;U)∗ (Q ;U) =
(P ∗Q) ; U .
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Proof. We calculate

(P ; U) ∗ (Q ; U)

= {[ definition of ∗ ]}
� ; (P ; U ×Q ; U) ;�

= {[ Lemma 2.6, Equation (1) ]}
� ; # ; (P ×Q) ; (U × U) ;�

⊆ {[ P,Q forward compatible ]}
� ; (P ×Q) ; # ; (U × U) ;�

= {[ Corollary 10.3 ]}
� ; (P ×Q) ;� ; U

= {[ definition of ∗ ]}
(P ∗Q) ; U .

The reverse inequation follows similarly from Corollary 10.3 and isotony. +*

Finally we are able to prove Lemma 7.3.

Proof of Lemma 7.3

First note that dom(P ) = P ; U ∩ skip. The same holds for Q. By this we
calculate

dom(P )∗dom(Q) = (P ;U ∩ skip)∗(Q;U ∩ skip) ⊆ (P ;U)∗(Q;U) = (P ∗Q);U .

Moreover dom(P ) ∗ dom(Q) ⊆ skip since both are tests. Hence we can conclude
dom(P ) ∗ dom(Q) ⊆ (P ∗Q) ; U ∩ skip = dom(P ∗Q) .

The reverse inclusion was shown in Lemma 2.8. +*
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Abstract. Partial, total and general correctness and further models of
sequential computations differ in their treatment of finite, infinite and
aborting executions. Algebras structure this diversity of models to avoid
the repeated development of similar theories and to clarify their range of
application. We introduce algebras that uniformly describe correctness
statements, correctness calculi, pre-post specifications and loop refine-
ment rules in five kinds of computation models. This extends previous
work that unifies iteration, recursion and program transformations for
some of these models. Our new description includes a relativised domain
operation, which ignores parts of a computation, and represents bound
functions for claims of termination by sequences of tests. We verify all
results in Isabelle heavily using its automated theorem provers.

1 Introduction

Sequential computations have many different models with varying degrees of pre-
cision as regards their ability to distinguish finite, infinite and aborting executions
(which terminate due to an error; ‘finite’ means ‘normally terminating’). Partial
correctness models [10, 23, 29, 33] ignore infinite and aborting executions, general
correctness models [2–4, 11, 13, 27, 32, 34, 38] represent but do not distinguish in-
finite and aborting executions, and total correctness models [7, 10, 18, 25, 31, 39]
ignore finite executions in the presence of infinite and aborting ones. Yet other
models ignore finite and infinite executions when aborting ones are present [17, 22]
or represent finite, infinite and aborting executions independently [16].

Having a variety of models is useful: better precision is not always desired
as it entails more details (which might be unnecessary or distracting for some
applications) and typically a more complex theory (which might hinder compre-
hension or automation). However, this diversity of models should be structured
to avoid the repeated development of similar theories for similar models, to im-
prove our understanding of their connections and characterising properties and
to encourage a systematic exploration with an eye to discovering new models.

Algebra provides the required structure. Key aspects of the models, such as the
semantics of iteration or the infinite executions of a computation, are described
by operations and axioms which are general enough to capture various com-
putation models, yet powerful enough for the derivation of results known from
particular models. These results are then recognised to hold in all models satis-
fying the common axioms. Examples include complex program transformations,
separation rules and refinement laws, for which one common proof establishes
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validity across several models [14, 16, 17]. Individual models are characterised
by adding specific axioms to the common ones. Moreover, the axioms are suited
to support by automated theorem provers and SMT solvers [16, 19].

The present paper extends this unifying approach to correctness statements
and their calculi. Correctness statements similar to Hoare triples claim that a
computation has only restricted kinds of executions, for example, that there are
no aborting executions or that all finite executions end in a given set of states.
Clearly, such guarantees can be given only in a computation model which is pre-
cise enough to talk about the kinds of executions involved. But in general there
are several computation models capable of expressing a particular statement. At
the level of concrete models, we therefore distinguish between the computation
models and the kinds of correctness statements each supports. At the algebraic
level, our approach is unifying in both dimensions: one statement applies in
various models to various correctness claims.

We give a propositional correctness calculus for the unified correctness state-
ments and show its soundness and completeness. The latter presumes bound-
edly non-deterministic programs. The calculus, too, unifies different computation
models and correctness claims. We furthermore extend our unifying approach to
pre-post specifications and loop refinement rules useful for program construction.
Innovations which facilitate our development are a relativised domain operation
and the representation of bound functions by sequences of tests.

Thus the contributions of the present paper are as follows:

– A generalisation of domain semirings [8, 9]: the new operation uniformly
describes the domain of a part of a computation, such as its aborting, infinite
or finite executions or combinations thereof. This is a form of relativisation:
the operation gives the domain up to certain executions which are ignored.
Technically, an element Z is singled out and the domain axioms are relaxed
so as to ignore parts of elements contained in Z. Most of the theory of domain
and antidomain semirings is relativised this way, including modal semirings
with their diamond and box operators.

– An algebraic description of termination arguments known, for example, from
the total correctness while-loop rule of the Hoare calculus. This is done by
capturing the loop variant or bound function by a sequence of tests.

– An extension of algebraic accounts of correctness statements and their calculi
[13, 14, 19, 29, 33, 34], which unifies existing propositional Hoare calculi in
two ways. First, it applies to several computation models, which vary in their
ability to describe aborting and infinite executions. Second, for each model, it
applies to several kinds of correctness statements, which vary in their claims
about aborting, infinite and finite executions or combinations thereof, up to
the precision allowed by the model. In particular, this uniformly describes
claims of partial, total and general correctness.

– An algebraic description of pre-post specifications and loop refinement rules
based on the above correctness statements. This generalises previous works
[12–14, 39] again by uniformly applying to several computation models and
several kinds of correctness claims.
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Together they achieve the main contribution: a framework that unifies correct-
ness reasoning for various computation models and correctness claims.

All results are verified in Isabelle making heavy use of its integrated automated
theorem provers. The proofs can be found in the theory files, which are available
at http://www.uni-ulm.de/en/in/pm/staff/guttmann/algebra/.

We deal with computation models at various levels of abstraction. Concrete
models appear in the literature, for example, in terms of relations over extended
state spaces, predicates or predicate transformers. In Section 2 we describe a
number of these models in a uniform setting, namely matrices of relations, and
discuss the different kinds of correctness statements they feature. Abstracting
from the matrix representation, in Section 3 we introduce relative domain semi-
rings, which allow us to express the correctness statements in a uniform way.
At the same level we express iteration in Section 4. Finally, in Section 5 we
axiomatise properties of preconditions and while-programs, based on which we
introduce the unified correctness calculus, pre-post specifications and loop re-
finement laws.

2 Models

This section gives an overview of the models and various kinds of correctness
statements which will be algebraically captured in the remainder of this paper.
We distinguish between the computation models and the correctness statements
applicable for each model. The models vary according to precision as regards
their ability to describe infinite and aborting executions in addition to finite
ones. Each model may support different kinds of correctness statements about
the executions of a computation limited by its precision.

All of the following models describe sequential, non-deterministic computa-
tions and are based on relations over a state space given by the possible values
of program variables. The program

R = (while x ≤ 1 do x := x/x)

is our running example. Its variable x has values in N and x/x is integer division.
Execution of R leaves x unchanged unless x = 1, in which case the execution does
not terminate, or x = 0, in which case it aborts due to division by zero. However,
not all computation models can represent aborting or infinite executions.

2.1 Partial Correctness

In the first model, the program R is a binary relation over the state space N. A
pair (x, x′) in R specifies that there is an execution of R which starts in state x
and terminates in x′. Hence

R = {(x, x) | x ≥ 2}

comprises the finite executions of the program. Because it is deterministic, R is a
partial function; in general there may be more than one final state x′ related to a

http://www.uni-ulm.de/en/in/pm/staff/guttmann/algebra/
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single initial state x. This simple model has no provision for representing aborting
or infinite executions. The partiality of R indicates ‘missing’ finite executions,
but is otherwise unrelated to the presence of aborting or infinite executions; see
also [38].

Therefore the typical correctness claim in this model is about partial correct-
ness. For conditions or sets of states p and q, the Hoare triple p{R}q expresses
that every execution of R which starts in a state in p and terminates normally,
does so in a state in q. This triple claims nothing about infinite or aborting
executions.

The Hoare triple p{R}q is algebraically formalised by p ·R · q′ ≤ 0 using tests
p and q [29]. Tests correspond to subsets of the identity relation and act as filters
in a sequential composition. The test q′ is the complement of q, the operation ·
is relational composition, ≤ is subset and 0 is the empty relation. According to
the inequality there is no execution in R which starts in p and ends in a state
not in q.

2.2 Total Correctness

The second model augments the above relational model to represent executions
that do not terminate normally [18, 31]. It is an abstraction of the ‘designs’ of
the Unifying Theories of Programming [25]. The program R is a 2 × 2 matrix
whose entries are relations over N, namely

R =

(
� �
W X

)
,

W = {(x, x′) | x ≤ 1}
X = {(x, x) | x ≥ 2} ∪W

For every program in this model, both entries in the top row are the universal
relation � = N ×N. They are chosen so as to appropriately propagate the in-
formation captured in W through a sequential composition. Subsequent models
feature matrices with other combinations of 0 and � entries providing a charac-
teristic, constant structure for each model.

The entry W represents the states from which executions exist that do not
terminate normally. It is a vector, that is, a relation in which every state is related
either to all states or to none, and therefore corresponds to a set of states. No
distinction is made between infinite and aborting executions: (x, x′) ∈W means
that there is an execution starting in x which does not terminate normally.

The entry X represents the finite executions of the program with the proviso
W ⊆ X . This requirement leads to a demonic non-deterministic choice: for ex-
ample, the endless loop is the matrix with four � entries, which is an annihilator
of the non-deterministic choice given by componentwise union. Because of this,
computations with both finite and infinite or aborting executions starting in the
same state cannot be represented properly. For example, consider R + skip us-
ing the non-deterministic choice + and the program skip that does not change
the state. The matrix representation of skip has the empty relation as W and
the identity relation as X . In the initial state x = 1 there is both an infinite
and a finite execution in the computation R + skip, but in the current model
R = R+ skip. Thus the finite execution of skip is ignored in the presence of R.
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This model supports total correctness claims. The Hoare triple p{R}q now
expresses that every execution of R which starts in p terminates normally in q.
Again this is formalised by p ·R · q′ ≤ 0 [39]. The order ≤ is the subset relation
lifted componentwise to matrices. The test p is represented just as a program by
a 2 × 2 matrix of the above form, using W = 0 and a subset U of the identity
relation as X ; a similar representation is used for the test q′. The computation 0
with no executions is represented by a matrix with W = X = 0. The relational
operations are lifted to matrices in the standard way, so that p · R · q′ ≤ 0
elaborates as(

� �
0 U

)
·
(
� �
W X

)
·
(
� �
0 Y ′

)
=

(
� �

UW UW+UXY ′

)
≤
(
� �
0 0

)
which is equivalent to UW ⊆ 0 ∧ UXY ′ ⊆ 0. As here, we frequently omit the
operator · for relational composition, and we contrast ⊆ on the components with
its lifted counterpart ≤. The first term UW ⊆ 0 expresses that all executions
starting in p terminate normally. The second term UXY ′ ⊆ 0 claims partial
correctness: no execution starting in p terminates in q′. Their conjunction holds,
for example, using U = {(x, x) | 2 ≤ x ≤ 5} and Y = {(x, x) | x ≤ 5}.

However, partial correctness cannot be claimed alone. In particular, the ‘weak
correctness’ claim p ·R = p ·R ·q of [39] reduces to UXY ′ ⊆ UW . This expresses
that no execution starting in a state in p terminates in q′, provided all executions
starting in the same state terminate normally (whence UW = 0).

2.3 General Correctness

The third model removes the restriction imposed by the previous one, so that
finite executions can be represented independently of executions which do not
terminate normally [13, 31]. It is an abstraction of the ‘prescriptions’ of the Uni-
fying Theories of Programming [11]. The independence is achieved by modifying
the structure of the 2× 2 matrices. The program R becomes

R =

(
� 0
W X

)
,

W = {(x, x′) | x ≤ 1}
X = {(x, x) | x ≥ 2}

Now the top-right entry is the empty relation 0 instead of � and the restriction
W ⊆ X is abandoned. Otherwise the interpretations of W and X remain as in
the total correctness model. In the current model, R �= R + skip and R + skip
has precisely the two expected executions starting in the state x = 1. Still there
is no distinction between infinite and aborting executions.

This model supports both partial and total correctness claims, and is typically
called ‘general correctness’ [27]. First, observe that(

� 0
0 U

)
·
(
� 0
W X

)
·
(
� 0
0 Y ′

)
=

(
� 0

UW UXY ′

)
≤
(
� 0
� 0

)
is equivalent to the partial correctness claim UXY ′ ⊆ 0. The matrix on the
right-hand side of the inequality represents the program loop which has only
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infinite executions. On the level of programs the partial correctness claim is thus
formalised by p · R · q′ ≤ loop [13]. This is equivalent to p · R = p · R · q in the
current model. Second, set Y ′ = 0 and observe that(

� 0
0 U

)
·
(
� 0
W X

)
·
(
� 0
0 0

)
=

(
� 0

UW 0

)
≤
(
� 0
0 0

)
is equivalent to UW ⊆ 0, which expresses that all executions starting in p ter-
minate normally. On the level of programs this is formalised by p · R · 0 ≤ 0.

The conjunction of the two inequalities amounts to a total correctness claim,
but it is not required to use the same precondition p in both inequalities. This
makes it possible to state claims about termination independently from claims
about finite executions. For example, for the computation R + skip the partial
correctness claim holds using U = Y = {(x, x) | x ≤ 5} and the claim about
normal termination holds using U = {(x, x) | x ≥ 2}.

2.4 Extended Designs

The fourth model called ‘extended designs’ distinguishes aborting and infinite
executions [17, 22]. In this model the program R is the 3× 3 matrix

R =

⎛⎝� � �0 � 0
V W X

⎞⎠,
V = {(x, x′) | x = 0}
W = {(x, x′) | x = 1} ∪ V
X = {(x, x) | x ≥ 2} ∪ V

The extra row/column stores the main extension with respect to the previously
discussed models, namely the entry V which is a vector similar to W . The
vector V represents the states from which aborting executions exist, while W
analogously represents the infinite executions. Like designs, extended designs
make the restrictions V ⊆ W and V ⊆ X . Because of them, in the presence of
an aborting execution there is no way to distinguish finite or infinite executions.
For example, consider the program S = (if x = 1 then loop else skip). In the
current model R = R + S and the finite execution of S in the state x = 0 is
ignored in the presence of R.

Several kinds of correctness claims are possible in this model. For the first,
observe that V ⊆W implies UV ⊆ UW and therefore⎛⎝� � �0 � 0

0 0 U

⎞⎠ ·
⎛⎝� � �0 � 0
V W X

⎞⎠ ·
⎛⎝� � �0 � 0
0 0 Y ′

⎞⎠ =

⎛⎝ � � �
0 � 0

UV UW UV+UXY ′

⎞⎠ ≤
⎛⎝� � �0 � 0
0 0 0

⎞⎠
is equivalent to UW ⊆ 0 ∧ UXY ′ ⊆ 0. Hence p · R · q′ ≤ 0 formalises a total
correctness claim, namely that all executions starting in p terminate in q. In
particular, no infinite executions start in p and therefore also no aborting ones.
Another correctness claim is obtained by⎛⎝� � �0 � 0

0 0 U

⎞⎠ ·
⎛⎝� � �0 � 0
V W X

⎞⎠ ·
⎛⎝� � �0 � 0
0 0 Y ′

⎞⎠ =

⎛⎝ � � �
0 � 0

UV UW UV+UXY ′

⎞⎠ ≤
⎛⎝� � �0 � 0
0 � 0

⎞⎠
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which is equivalent to UV ⊆ 0 ∧ UXY ′ ⊆ 0. The matrix on the right-hand side
of the inequality represents loop in this model. Hence the claim is formalised
by p · R · q′ ≤ loop and expresses that no aborting executions start in p and
all finite executions starting there end in q. It states nothing about the infinite
executions.

Two further claims are obtained by setting Y ′ = 0 again. First, p · R · 0 ≤ 0
expresses that no infinite and therefore no aborting executions start in p. Second,
p · R · 0 ≤ loop expresses that no aborting executions start in p. It is thus
possible to make statements about aborting and infinite executions, but partial
correctness cannot be claimed alone. In particular, p · R = p · R · q reduces
to UXY ′ ⊆ UV , which expresses that no execution starting in a state in p
terminates in q′, provided no execution starting in the same state aborts.

2.5 Finite, Infinite and Aborting Executions

The fifth model treats finite, infinite and aborting executions independently [16].
The independence is achieved by modifying the structure of the 3 × 3 matrices
of extended designs. The program R becomes

R =

⎛⎝� 0 0
0 � 0
V W X

⎞⎠,
V = {(x, x′) | x = 0}
W = {(x, x′) | x = 1}
X = {(x, x) | x ≥ 2}

Now the second and third entries in the top row are the empty relation 0 instead
of � and the restrictions V ⊆ W and V ⊆ X are abandoned. Otherwise the
interpretations of V , W and X remain as for extended designs. In the current
model, R �= R + S using S = (if x = 1 then loop else skip) again. Moreover, the
computation R + S has an aborting and a finite execution starting in the state
x = 0, and the computation R+ S + loop additionally has an infinite one. Thus
finite, infinite and aborting executions may occur independently.

Claims about finite, infinite and aborting executions can be stated indepen-
dently, too (see [20] for a derivation from different execution methods based on
computation trees). Observe that⎛⎝� 0 0

0 � 0
0 0 U

⎞⎠ ·
⎛⎝� 0 0
0 � 0
V W X

⎞⎠ ·
⎛⎝� 0 0
0 � 0
0 0 Y ′

⎞⎠ =

⎛⎝ � 0 0
0 � 0

UV UW UXY ′

⎞⎠ .

An inequality may be formed with either 0, loop, abort or loop + abort on the
right-hand side, where the computations 0, loop and abort are represented by
the matrices

0 =

⎛⎝� 0 0
0 � 0
0 0 0

⎞⎠, loop =

⎛⎝� 0 0
0 � 0
0 � 0

⎞⎠, abort =

⎛⎝� 0 0
0 � 0
� 0 0

⎞⎠.
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Using p · R · q′ or p · R · 0 on the left-hand side, we obtain the following seven
kinds of claims:

(7) p · R · q′ ≤ 0 ⇔ UV ⊆ 0 ∧ UW ⊆ 0 ∧ UXY ′ ⊆ 0
(6) p · R · q′ ≤ abort ⇔ UW ⊆ 0 ∧ UXY ′ ⊆ 0
(5) p · R · q′ ≤ loop ⇔ UV ⊆ 0 ∧ UXY ′ ⊆ 0
(4) p · R · q′ ≤ loop+ abort⇔ UXY ′ ⊆ 0
(3) p · R · 0 ≤ 0 ⇔ UV ⊆ 0 ∧ UW ⊆ 0
(2) p · R · 0 ≤ abort ⇔ UW ⊆ 0
(1) p · R · 0 ≤ loop ⇔ UV ⊆ 0

Of particular interest are claims (1), (2) and (4) since the other ones are obtained
as their conjunctions. Claim (1) expresses the absence of aborting executions
from states in p, and claim (2) expresses the absence of infinite executions. Claim
(4) is partial correctness and equivalent to p ·R = p ·R · q in the current model.
For another example, the total correctness claim (6) expresses the absence of
infinite executions in addition to partial correctness.

2.6 Summary

We have discussed five computation models that vary in the precision with which
they can describe finite, infinite and aborting executions. These models support
various kinds of correctness claims limited by their precision. Most claims take
the form p ·R ·q′ ≤ Z for a constant Z depending on the model. The computation
Z is either 0, loop, abort or loop+ abort. The test p is the precondition, and the
test q′ is the complement of the postcondition or 0 if nothing is claimed about
finite executions.

In the following we give a uniform algebraic description of all of these models
and all of these correctness statements.

3 Relative Domain Semirings

Correctness statements in our models have the form p ·R · q′ ≤ Z for a constant
Z. In the partial and total correctness models Z = 0 holds, and claims of this
special form p · R · q′ ≤ 0 are well known in semirings with tests [29] or with a
domain operation [8, 33]. In this section we generalise domain semirings to be
able to encode claims of the form p · R · q′ ≤ Z for various values of Z.

3.1 Relative Domain

In relational computation models the domain d(x) of the computation x is a
test representing the set of states from which x has executions. Its Boolean
complement, the antidomain a(x), represents the set of states from which x has
no executions. These operations satisfy the characteristic properties

x ≤ d(y) · x⇔ d(x) ≤ d(y)
a(y) · x ≤ 0⇔ a(y) ≤ a(x)
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which are at the centre of our generalisation. By Boolean algebra d(x) ≤ d(y)
holds if and only if a(y) ≤ a(x) does. According to the first equivalence, d(x) is
the least test p such that x ≤ p·x, that is, all executions of x start in p. According
to the second equivalence, a(x) is the greatest test p such that p · x ≤ 0, that is,
x to has no executions starting in p. We generalise these properties as follows:

x ≤ d(y) · x+ Z⇔ d(x) ≤ d(y)
a(y) · x ≤ Z⇔ a(y) ≤ a(x)

Hence d(x) is the least test p such that all executions of x start in p, except
those executions that are in Z. This means that the executions of x that are in Z
are ignored in the calculation of the domain. Similarly, a(x) is the greatest test
p such that x has no executions starting in p, except perhaps executions in Z.
Setting Z = 0 gives the characterisations of the usual domain and antidomain
operations.

In the following we axiomatise the domain and antidomain operations relative
to an element Z, which captures executions that are to be ignored. First, an
idempotent semiring without right zero – simply called semiring in the remainder
of this paper – is an algebraic structure (S,+, ·, 0, 1) satisfying the axioms

x+ (y + z) = (x + y) + z x(y + z) = xy + xz x(yz) = (xy)z
x+ y = y + x (x + y)z = xz + yz 1x = x
x+ x = x 0x = 0 x1 = x
0 + x = x

where x · y is conventionally abbreviated as xy. In particular, the operation + is
idempotent and x0 = 0 is not an axiom. The semilattice order x ≤ y ⇔ x+y = y
has least element 0, least upper bound + and isotone operations + and ·. A
semiring is bounded if it has a greatest element � satisfying x+� = �.

In computation models, the operation + represents non-deterministic choice,
the operation · sequential composition, 0 the computation with no executions,
1 the program which does not change the state, � the computation with all
possible executions, and ≤ the refinement relation. All computation models of
Section 2 are semirings, and most of them do not satisfy the law x0 = 0.

A relative domain semiring is an algebraic structure (S,+, ·, d, 0, 1,Z) such
that the reduct (S,+, ·, 0, 1) is a semiring and the axioms

d(Z) = 0 d(x + y) = d(x) + d(y) x ≤ d(x)x + Z
d(x) ≤ 1 d(d(x)y) = d(x)d(y) d(xy) = d(xd(y))

are satisfied. Counterexamples generated by Mace4 show that none of these
axioms follows from the remaining ones and the semiring axioms. Setting Z = 0
gives the domain semiring axioms of [9], in which case d(d(x)y) = d(x)d(y)
follows from the remaining axioms.

Theorem 1. Let S be a relative domain semiring and x, y ∈ S. Then
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– (d(S),+, ·, 0, d(1)) is a bounded distributive lattice,
– d is isotone,
– d(0) = 0,
– d(d(x)) = d(x),
– d(xy) ≤ d(x) ≤ d(1),
– Zx ≤ Z,
– x+ Z = d(x)x + Z,
– d(x) = 0⇔ x ≤ Z,
– xy ≤ Z⇔ xd(y) ≤ Z,
– x ≤ d(y)x + Z⇔ d(x) ≤ d(y).

In particular, 1+Z = d(1)+Z holds, but d(1) = 1 does not hold in general. Each
computation model of Section 2 is a relative domain semiring where Z is any
one of the values 0, loop, abort or loop+ abort available in the model. In these
models the relative domain d(x) is given by first omitting the executions of x
that are in Z and then taking the usual domain. The element Z cannot be chosen
arbitrarily; for example, Z = 1 implies d(x) ≤ d(1) = d(Z) = 0 and therefore
x ≤ d(x)x + Z = 1 which does not hold in any model given in Section 2.

A relative antidomain semiring is an algebraic structure (S,+, ·, a, d, 0, 1,Z)
such that the reduct (S,+, ·, 0, 1) is a semiring, d(x) = a(a(x)) and the axioms

a(Z) = 1 a(x+ y) = a(x)a(y) a(x)x ≤ Z
a(x)d(x) = 0 a(d(x)y) = a(x) + a(y) a(xy) = a(xd(y))

are satisfied. Counterexamples generated by Mace4 show that none of these
axioms follows from the remaining ones and the semiring axioms. Setting Z = 0
gives axioms which are equivalent to the antidomain axioms of Boolean domain
semirings [9].

Theorem 2. Let S be a relative antidomain semiring and x, y, z ∈ S. Then

– (S,+, ·, d, 0, 1,Z) is a relative domain semiring,
– (a(S),+, ·, a, 0, 1) is a Boolean algebra with complement a,
– a(S) = d(S),
– d(a(x)) = a(d(x)) = a(x),
– a(x) ≤ a(xy),
– a(x) = 1⇔ x ≤ Z,
– d(x)y ≤ z ⇔ d(x)y ≤ d(x)z,
– x ≤ y + Z⇔ x ≤ d(x)y + Z,
– ya(z) ≤ a(x)y ⇔ ya(z) = a(x)ya(z)⇔ d(x)ya(z) = 0,
– d(x)y ≤ yd(z)⇔ d(x)y = d(x)yd(z)⇔ d(x)ya(z) = d(x)y0⇔

d(x)ya(z) ≤ y0,
– a(y)x ≤ Z⇔ a(y) ≤ a(x).

In particular, a is antitone, a(1) = 0 and d(1) = a(0) = 1. Using the Boolean
complement of the relative domain, each computation model of Section 2 is a rela-
tive antidomain semiring where Z is any of the values 0, loop, abort or loop+abort
available in the model and different from �. We can therefore represent tests and
their Boolean complements by domain elements d(x) and their antidomain a(x).
The correctness claim p·R·q′ ≤ Z is thus expressed as d(x)ya(z) ≤ Z in a relative
antidomain semiring. By Theorem 2 this is equivalent to d(x) ≤ a(ya(z)).
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3.2 Relative Modal Operators

Domain and antidomain semirings give rise to modal diamond and box operators.
We generalise them to relative (anti)domain semirings.

In a relative domain semiring the binary diamond operator is defined by
|x〉y = d(xy), which is the same as d(xd(y)). This means that its second argu-
ment is effectively a test p, and |x〉p represents the states from which there is
an execution of x that is not in Z and that terminates in p if it terminates nor-
mally. In particular, |x〉p contains the starting states of all infinite and aborting
executions of x if Z = 0, but these executions are filtered out if Z = loop+ abort.
The diamond operator satisfies many properties known from the unrelativised
setting.

Theorem 3. Let S be a relative domain semiring and x, y, z ∈ S and p, q ∈
d(S). Then

– |·〉· is isotone,
– |x+ y〉z = |x〉z + |y〉z,
– |x〉y + z = |x〉y + |x〉z,
– |xy〉z = |x〉(yz) = |x〉|y〉z,
– |x〉(pq) = |x〉p · |x〉q,
– |px〉y = p|x〉y,
– p|x〉q ≤ Z⇔ pxq ≤ Z,
– |x〉q ≤ p⇔ xq ≤ px+ Z.

In a relative antidomain semiring the dual box operator is defined by |x]y =
a(xa(y)). Again its second argument is effectively a test p, and |x]p represents
the states from which all executions are in Z or terminate in p. Also the box
operator satisfies many properties known from the unrelativised setting.

Theorem 4. Let S be a relative antidomain semiring and x, y, z ∈ S and p, q ∈
d(S). Then

– |x]y = a(|x〉a(y)),
– |x〉y = a(|x]a(y)),
– |x]· is isotone,
– |·]x is antitone,
– |x+ y]z = |x]z · |y]z,
– |xy]z = |x]|y]z,
– |x](pq) = |x]p · |x]q,
– |px]y = a(p) + |x]y,
– |x〉q ≤ p⇔ a(p)xq ≤ Z,
– p ≤ |x]q ⇔ pxa(q) ≤ Z⇒ px ≤ xq + Z.

Consequently, the correctness claim p ·x · q′ ≤ Z with tests p and q is formalised
by p ≤ |x]q.

It is known that the box operator corresponds to wlp in partial correctness
models [33] and to wp in general correctness [34] and total correctness models
[31]. These cases are captured by using Z = 0 in our setting. We furthermore
find that
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– with Z = 0 box corresponds to a variant of wp, which avoids aborting exe-
cutions in addition to infinite ones, for extended designs and the model of
Section 2.5,

– with Z = loop box corresponds to wlp in general correctness models, and to
a variant of wlp, which avoids aborting executions, for extended designs and
the model of Section 2.5,

– with Z = abort box corresponds to wp in the model of Section 2.5,
– with Z = loop+ abort box corresponds to wlp in the model of Section 2.5.

Similar variants of wp are observed in [20, 21] and related to different execution
methods without a unified treatment; see [37] for variants of wlp.

4 Iteration

In this section we give axioms for operations that describe iteration in various
computation models. They facilitate a unified semantics of while-programs as
we show in Section 5.3.

A Kleene algebra [28] is a semiring expanded by an operation ∗ satisfying the
axioms

1 + yy∗ ≤ y∗ z + yx ≤ x⇒ y∗z ≤ x
1 + y∗y ≤ y∗ z + xy ≤ x⇒ zy∗ ≤ x

It follows that y∗z is the least fixpoint of λx.yx + z and that zy∗ is the least
fixpoint of λx.xy + z. The Kleene star describes finite iteration, but is not ap-
propriate for models with infinite executions which require other fixpoints. We
therefore use the following, more general structure.

An itering [16] is a semiring expanded by an operation ◦ satisfying the axioms

(x+ y)◦ = (x◦y)◦x◦ zx ≤ yy◦z + w ⇒ zx◦ ≤ y◦(z + wx◦)
(xy)◦ = 1 + x(yx)◦y xz ≤ zy◦ + w ⇒ x◦z ≤ (z + x◦w)y◦

The equations are the sumstar and productstar axioms of [6]. The other two
axioms generalise simulation properties such as zx ≤ yz ⇒ zx◦ ≤ y◦z, which is
known in Kleene algebra and omega algebra [5]. Its dual xz ≤ zy ⇒ x◦z ≤ zy◦

holds in Kleene algebras, but not in other target models, whence we weaken its
consequent. Properties of the operation ◦ are shown in the following result.

Theorem 5. Let S be an itering and x, y, z ∈ S. Then ◦ is isotone and

– 0◦ = 1 ≤ (x0)◦ = 1 + x0 ≤ x◦,
– x◦ = x◦x◦ = (x◦x)◦ = 1 + xx◦ = 1 + x◦x,
– x ≤ xx◦ = x◦x ≤ x◦,
– x◦ ≤ x◦1◦ = 1◦x◦ = (1 + x)◦ = x◦◦ = x◦◦◦,
– x◦y◦ ≤ (x+ y)◦ ≤ (x◦y◦)◦ = (y◦x◦)◦ = x◦(y◦x◦)◦,
– (yx◦)◦ = y◦ + y◦yxx◦(yx◦)◦ = (yy◦x◦)◦,
– x(yx)◦ = (xy)◦x.

Moreover, y◦z is a fixpoint of λx.yx + z and zy◦ is a fixpoint of λx.xy + z.
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The following result gives six models of iterings which cover all computation
models of Section 2 [16].

Theorem 6. Iterings have the following models:

1. Every Kleene algebra is an itering using x◦ = x∗.
2. Every omega algebra [5] is an itering using x◦ = xω0 + x∗.
3. Every omega algebra with �x = � is an itering using x◦ = xω + x∗.
4. Every demonic refinement algebra [39] is an itering using x◦ = xω.
5. Extended designs [17, 22] form an itering using x◦ = d(xω)loop+ x∗.
6. The model of Section 2.5 forms an itering using x◦ = n(xω)loop+x∗, where

n(x) captures the infinite executions of x as a test [16].

A modal itering is a structure (S,+, ·, a, d, ∗, ◦, 0, 1,Z) such that the reduct
(S,+, ·, a, d, 0, 1,Z) is a relative antidomain semiring, the reduct (S,+, ·, ∗, 0, 1)
is a Kleene algebra and the reduct (S,+, ·, ◦, 0, 1) is an itering. The operations ∗

and ◦ may be identical as in Kleene algebras or different as in the other models.

5 Correctness Statements

The box operator of Section 3.2 expresses various kinds of preconditions de-
pending on the model and the value of the constant Z. In this section we give
an axiomatic description of such preconditions suitable, in particular, for total
correctness claims. This extends our previous work on preconditions for partial
correctness [19]. We then use the preconditions to obtain a correctness calculus,
pre-post specifications and loop refinement rules, all of which uniformly apply
to the computation models and correctness statements of Section 2.

5.1 Tests

Preconditions are represented as tests, which we introduce first. A test algebra
[16, 19] is a structure (S, ·,′ ) satisfying the axioms

x′(y′z′) = (x′y′)z′ x′ = (x′′y′)′(x′′y′′)′

x′y′ = y′x′ x′y′ = (x′y′)′′

They are derived from Huntington’s axioms and make S′ = {x′ | x ∈ S} a
Boolean algebra with meet ·, complement ′, order x′ ≤ y′ ⇔ x′y′ = x′, least
element 0 = x′x′′ for any x, and greatest element 1 = 0′. The operation x′+y′ =
(x′′y′′)′ is the join in S′. The extension (S,+, ·,′ , 0, 1) is also called a test algebra;
elements of S′ are tests. This axiomatisation imposes fewer constraints than
antidomain semirings, which induce tests as the following result shows, without
introducing a separate sort for tests.

Theorem 7. Let S be a relative antidomain semiring. Then (S,+, ·, a, 0, 1) is a
test algebra with S′ = d(S).

A test algebra is complete if S′ is a complete Boolean algebra. Then every set
of tests has a supremum in S′ and the meet operation · on S′ distributes over
suprema.
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5.2 Preconditions

A precondition algebra (S, ·, «,′ ) is a test algebra (S, ·,′ ) expanded with a binary
operation « satisfying the axioms

x«q = (x«q)′′ xy«q = x«(y«q)
p«q = (pq′)′ x«pq = (x«p)(x«q)

for x, y ∈ S and p, q ∈ S′.
The first axiom states that the result of « is a test, making « an operation

which takes an element and a test and yields a test. The axiom p«q = (pq′)′ =
p′ + q reduces the precondition of tests to an implication; it is slightly stronger
than our original in [19]. The remaining axioms express the effect of « on the
sequential composition of elements and the conjunction of postconditions.

Theorem 8. Let S be a precondition algebra and x, y ∈ S and p, q, r ∈ S′. Then

– x«· is isotone,
– p(x«q) = p(px«q),
– px«q = p′ + (x«q),
– xp«q = xp«pq,
– p(p«q) = pq,
– p′(p«q) = p′,
– 0«q = 1,
– 1«q = q,
– xy«1 ≤ x«1,
– x«q ≤ x«1 ≤ 1,
– p ≤ x«q ∧ q ≤ y«r ⇒ p ≤ xy«r.

As the following result shows, the box operator expresses preconditions. Thus
wp, wlp and their variants discussed in Section 3.2 are instances of «.
Theorem 9. Let S be a relative antidomain semiring and x, y ∈ S and p, q ∈
d(S). Then S is a precondition algebra with x«q = |x]q. Moreover,

– (x+ y)«q = (x«q) · (y«q),
– ·«q is antitone,
– (x«q)x+ Z = (x«q)xq + Z,
– (x«q)xq′ ≤ Z,
– p ≤ x«q ⇔ pxq′ ≤ Z,
– x«1 = 1⇔ x0 ≤ Z.

In a complete precondition algebra S, the progressively bounded states of an
element x ∈ S are given by b(x) = sup{xn«0 | n ∈ N}. The test b(x) describes
the states which have an upper bound on the lengths of the emerging x-transition
paths. This means that for every state in b(x) there is a bound n such that x can
be iterated at most n times starting from the state; the bound n may depend
on the state.

This should be contrasted with the progressively finite states characterised,
for example, by the convergence operation of [34]. These require the absence of
infinite transition paths without giving bounds on the lengths of finite paths,
and coincide with the progressively bounded states for deterministic programs.
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5.3 While-Programs

A while algebra (S,��, ·, «, �,′ ) is a precondition algebra (S, ·, «,′ ) expanded
with a ternary operation �� and a binary operation � satisfying the axioms

(x� p� y)«q = p(x«q) + p′(y«q)
(p � x)«q = (x(p � x)� p� 1)«q

for x, y ∈ S and p, q ∈ S′. The element x � p � y represents the conditional
statement if p then x else y and the corresponding axiom characterises the two
branches under a postcondition; see [24, 26] for more comprehensive axioma-
tisations. The element p � x represents the while loop while p do x and the
corresponding axiom describes its fixpoint unfolding, again under a postcondi-
tion. Both axioms are equations of tests, weakening our original axioms in [19].
As we show below, they hold in a wide range of computation models.

Theorem 10. Let S be a while algebra and x, y ∈ S and p, q, r ∈ S′. Then

– p((x� p� y)«q) = p(x«q),
– p′((x � p� y)«q) = p′(y«q),
– pq ≤ x«r ∧ p′q ≤ y«r ⇒ q ≤ (x � p� y)«r,
– p((p � x)«q) = p(x«(p � x)q),
– p′((p � x)«q) = p′q,
– p′ ≤ (p � x)«p′ ≤ (p � x)«1,
– q ≤ (p � x)«1⇔ pq ≤ (p � x)«1.

In Section 5.4, the test � = (1 � 1)«1 helps us to treat total correctness claims
and claims which do not involve termination in a uniform way. The element 1�1
represents the endless loop while true do skip. It establishes the postcondition true
if and only if the infinite executions are ignored. Claims which do not involve
termination are thus obtained in instances with � = 1, whereas instances with
� = 0 yield total correctness. In particular, a convenient way to obtain partial
correctness is to add the axiom x«1 = 1, a characteristic property of wlp [10].

As the following result shows, the operations�� and � can be defined in modal
iterings, hence in all models given in Section 2. This gives a unified semantics of
while-programs.

Theorem 11. Let S be a modal itering and x, y ∈ S and p ∈ d(S). Then S is
a while algebra with x� p� y = px+ a(p)y and p � x = (px)◦a(p). In particular,
� = a(1◦0).

Consider a while algebra S, a subset A ⊆ S of atomic programs and a subset
T ⊆ S′ of atomic tests. We assume that 1 ∈ A and 0 ∈ T , that is, skip is an
atomic program and false is an atomic test. There are no further requirements
on A and T ; in concrete models they typically contain basic statements such as
assignments and basic conditions.

Test expressions are constructed from atomic tests by the operations ′ for
negation and · for conjunction. Hence they are tests and closed under 0, 1,
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finite sums and finite products. While-programs are constructed from atomic
programs and test expressions by the operations · for sequential composition,
�� for conditionals and � for while loops. Hence they are closed under 1 and
finite products. Assertions are test expressions extended by preconditions; they
are constructed from test expressions and while-programs by the operations ′

for negation, · for conjunction and « for preconditions. Hence they are tests and
closed under 0, 1, �, finite sums and finite products.

5.4 Correctness Calculus

A correctness algebra is a complete while algebra satisfying the additional axiom

pq ≤ x«q ⇒ q� ≤ (p � x)«p′q

for x ∈ S and p, q ∈ S′. It expresses soundness of the partial correctness rule for
while loops in the correctness calculus.

A correctness statement p{x}q is composed of a while-program x and two as-
sertions p and q. The statement p{x}q is valid if and only if p ≤ x«q. Its meaning
depends on the model and the interpretation of the precondition operation «. In
some models, p ≤ x«q amounts to partial correctness, that is, all finite execu-
tions of x starting in p establish the postcondition q. In other models, p ≤ x«q
amounts to total correctness, which additionally requires that all executions of x
starting in p are finite. In yet other models, p ≤ x«q requires that no execution
of x starting in p aborts.

To derive correctness statements, we use a calculus with the following rules,
for atomic program z, while-programs x and y, test expression p, assertions q,
r, s and t, and tests ti:

(atom)
z«q{z}q

(seq)
q{x}r r{y}s

q{xy}s

(cond)
pq{x}r p′q{y}r
q{x� p� y}r

(while)
pq{x}q q ≤ �+ t<∞ ∀n ∈ N : tnpq{x}�+ t<n

q{p � x}p′q

(cons)
q ≤ r r{x}s s ≤ t

q{x}t

The rule for while loops is abstracted from the Hoare calculus for total correct-
ness [1]. The test t<n is defined by t<n = sup{ti | 0 ≤ i < n} for n ∈ N ∪ {∞}.
If � = 0, the sequence of tests ti describes the bound function; each test tn rep-
resents a set of states from which the loop terminates after at most n iterations,
the inequality q ≤ �+t<∞ expresses that the bound is non-negative while the in-
variant q holds, and tnpq{x}�+ t<n expresses that every iteration decreases the
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bound. If � = 1, the premises simplify to pq{x}q, which expresses that the loop
invariant q is preserved by the loop body. The rule concludes that the invariant
is preserved by the while loop.

Theorem 12. The calculus is sound, that is, only valid correctness statements
can be derived. Let (p � x)«1 ≤ � + b(px) for every test expression p and while-
program x. Then the calculus is complete, that is, every valid correctness state-
ment can be derived.

The condition for completeness is satisfied if the body px of a while loop is
boundedly non-deterministic in total correctness models. Namely, (p � x)«1 con-
tains the states from which the loop p � x has only finite executions, and they
have to be among the progressively bounded states b(px) if � = 0.

As usual, completeness is relative to having all true inequalities p ≤ q available
in the calculus. The bound function ti = (px)i«0 is used in the completeness
proof. Termination after a given number of iterations is described by domain
elements in [18].

Our calculus unifies and generalises previous algebraic calculi for partial, total
and general correctness [13, 14, 19, 29, 33, 34]. In particular, it applies to fur-
ther computation models and facilitates total correctness claims by algebraically
representing the bound function.

Example 13. We prove correctness of a program for integer division along the
lines of [1], namely

(q, r := 0, x) ; while (r ≥ y) do (q, r := q + 1, r − y)

with four variables q, r, x, y ranging over N. It computes the quotient q and the
remainder r of the division of x by y. Using tests p1, p2, p3, tn and assignments
z1, z2 defined by

p1 = (y > 0) p3 = (r ≥ y) z1 = (q, r := 0, x)
p2 = (x = q × y + r) tn = (r = n) z2 = (q, r := q + 1, r − y)

the program is abstractly expressed as z1(p3 � z2) and the following correctness
statements hold:

– p1{z1}p1p2 since z1 does not affect y and r = 0× y + r holds,
– p3p1p2{z2}p1p2 since z2 does not affect y and x = q × y + r implies x =

(q + 1)× y + (r − y), and
– tnp1p3{z2}t<n for each n ∈ N since n = r ≥ y > 0 implies r−y = n−y < n;

more precisely, tn−y is established.

Furthermore t<∞ = 1, whence we derive

p1{z1}p1p2
p3p1p2{z2}p1p2 p1p2 ≤ �+ t<∞

∀n ∈ N : tnp1p3{z2}t<n

∀n ∈ N : tnp3p1p2{z2}�+ t<n

p1p2{p3 � z2}p′3p1p2
p1{z1(p3 � z2)}p′3p1p2
p1{z1(p3 � z2)}p′3p2
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using the loop invariant p1p2 and the bound function tn. Hence the precondition
y > 0 suffices to establish the postcondition x = q × y + r and r < y, by which
q is the quotient and r is the remainder of the division of x by y.

At the same time, this derivation establishes total correctness: the program
terminates when started in a state with y > 0. Moreover, it establishes that the
program does not abort when started in such a state. These consequences hold
because the assumed correctness statements and the derivation are valid in all
our computation models and for any Z ∈ {0, loop, abort, loop+ abort} \ {�}.

The following result shows how to define correctness statements in modal iterings
subjected to two additional axioms.

Theorem 14. Let S be a modal itering – which is a test algebra, a precondition
algebra and a while algebra according to Theorems 7, 9 and 11 – such that the
test algebra is complete and

xZ ≤ x0 + Z |x∗]y ≤ |�x◦]y

for each x, y ∈ S. Then S is a correctness algebra. Moreover, the induction laws

p ≤ |x]p⇒ p ≤ |x∗]p
p ≤ |x]p⇒ �p ≤ |x◦]p

hold for x ∈ S and p ∈ d(S).

In particular, p{x}q is valid if and only if p ≤ |x]q. The axiom xZ ≤ x0 + Z
separates the executions of x in the composition xZ. All finite executions of x
reach Z; this part is subsumed by Z. The executions of x which do not reach Z
because they are infinite or abort are subsumed by x0. The axiom |x∗]p ≤ |�x◦]p
expresses that for claims not involving termination, whence � = 1, iteration
reduces to finite iteration as infinite executions are ignored.

5.5 Pre-post Specifications

Consider the correctness statement p{x}q. For given x and q, the test x«q is the
greatest precondition that suffices to establish the postcondition q; all tests p
with p ≤ x«q are sufficient, too. Another viewpoint is obtained for given p and
q: the pre-post specification p/q [30, 35, 36, 39] is the greatest computation for
which p suffices to establish q; all computations x with x ≤ p/q satisfy p ≤ x«q as
well. Pre-post specifications can therefore be introduced by a Galois connection.

A pre-post algebra is an algebraic structure (S,+, ·, «,/,′ , 0, 1,�) such that
the reduct (S,+, ·, 0, 1,�) is a bounded semiring, the reduct (S,+, ·, «,′ , 0, 1) is
a precondition algebra, and the operation / satisfies

x ≤ p/q ⇔ p ≤ x«q

for x ∈ S and p, q ∈ S′. This axiom is an order-reversing Galois connection
between S and S′.
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Theorem 15. Let S be a pre-post algebra and x, y ∈ S and p, q, r, s ∈ S′. Then

– ·«q is antitone,
– ·/q is antitone,
– p/· is isotone,
– (x+ y)«q = (x«q) · (y«q),
– pq/r = (p/r) + (q/r),
– p/(q + r) = (p/q) + (p/r),
– x ≤ (x«q)/q,
– p ≤ (p/q)«q,
– (p/q)r = (p/qr)r = (p/(q + r′))r,
– r(p/q) = r(rp/q) = r((r′ + p)/q),
– p/q = (1/q) + p′�,
– p(p/q) = p(1/q),
– p′(p/q) = p′�,
– (1/q)«q = 1 ≤ p/p,
– 0/q = �,
– q ≤ r ⇒ (p/q)(r/s) ≤ p/s,
– (p/q)(q/r) ≤ p/r,
– (p/p)(p/q) = (p/q)(q/q) = p/q,
– (p/p)(p/p) = p/p,
– x«1 = 1⇔ x ≤ 1/1,
– x ≤ pq/r ⇔ px ≤ q/r.

Example 16. In a structure which is both a pre-post algebra and a correctness
algebra, such as every model in Section 2, the correctness rule for while loops
translates as

x ≤ pq/q ∧ q ≤ �+ t<∞ ∧ (∀n ∈ N : x ≤ tnpq/�+ t<n) ⇒ p � x ≤ q/p′q .

This rule introduces a while loop by refining a pre-post specification. We give
two instances in the computation model of Section 2.5. The first instance is a
partial correctness rule obtained by setting Z = �0, whence � = 1 by Theorem
9 and therefore

x ≤ pq/q ⇒ p � x ≤ q/p′q

because pq/q ≤ tnpq/1 by Theorem 15. The second instance is a total correctness
rule obtained by setting Z = 0, whence � = 0. Using q = t<∞, a consequence of
the rule is

r ≤ t<∞ ∧ (∀n ∈ N : x ≤ tnp/t<n) ⇒ p � x ≤ r/1 .

Both instances are obtained in the same model, with different values of Z, and
therefore apply to the same while loop p � x. This achieves a separation of the
invariant q and the termination condition r as advocated by [12, 13]. Moreover,
by using Z = loop a further separation can be obtained to specify the states from
which the execution of the loop does not abort independently of q and r.
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The following result shows how to define pre-post specifications in antidomain
semirings subjected to two additional axioms taken from [15]. They are equiv-
alent to x0 ≤ y ⇔ x ≤ y + H and introduce the element H representing the
program havoc, which is the greatest program that has only finite executions.

Theorem 17. Let S be a bounded relative antidomain semiring, which is a pre-
condition algebra according to Theorem 9. Let H ∈ S such that

H0 = 0 x ≤ x0 + H

for each x ∈ S. Then S is a pre-post algebra with p/q = Z+ a(p)�+ Hq.

6 Conclusion

Five computation models with varying representations of finite, infinite and
aborting executions support similar correctness statements. These are captured
uniformly by a relativisation of domain semirings and, more generally, by an
algebra for preconditions. It facilitates the definition of correctness claims, their
calculus and pre-post specifications in a unified way for various models and cor-
rectness statements.

Future work concerns a question raised by a referee, namely whether the
approach can be extended to general refinement algebra [39] which models dual
non-determinism.
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Abstract. Mella is a minimalistic dependently typed programming lan-
guage and interactive theorem prover implemented in Haskell. Its main
purpose is to investigate the effective integration of automated theorem
provers in this pure and simple setting. Such integrations are essential
for supporting program development in dependently typed languages.
We integrate the equational theorem prover Waldmeister and test it on
more than 800 proof goals from the TPTP library. In contrast to previ-
ous approaches, the reconstruction of Waldmeister proofs within Mella
is quite robust and does not generate a significant overhead to proof
search. Mella thus yields a template for integrating more expressive the-
orem provers in more sophisticated languages.

1 Introduction

Dependently typed programming languages (DTPLs) such as Adga [11] or
Epigram [22] are currently receiving considerable attention. By combining the el-
egance of functional programming with more expressive type systems, they intro-
duce a new mathematically principled style of program development. In contrast
to traditional functional programming, types are powerful enough to support
detailed specifications of program properties. This however requires type-level
reasoning that is no longer decidable. DTPLs are at the same time interactive
theorem proving (ITP) systems similar to Nuprl [17] or Coq [9]. On the one
hand this supports developing programs that are correct by construction. On
the other hand it puts an additional burden on programmers.

To support program development at an appropriate level of abstraction, it is
essential that programmers can focus on more creative aspects of proofs, whereas
trivial and routine proof tasks are automated. Yet how can this be achieved?

Traditionally, automation is obtained in ITP systems by implementing large
libraries of tactics, internally verified solvers and sophisticated simplification
techniques, or by using external solvers as oracles. More recently, external au-
tomated theorem proving (ATP) systems, satisfiability modulo theories (SMT)
solvers and other decision procedures have been integrated in a more trust-
worthy way into ITP systems by internally reconstructing proofs provided by
the external tools. This approach is preferable because ITP systems are usually
much more simple and transparent than ATP and SMT systems which depend
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on approximations and elaborate heuristics. A prime example for this approach
is Isabelle’s Sledgehammer tool (cf. [10]), which includes a relevance filter for
selecting hypotheses, an interface for passing proof tasks to external tools, and
a mechanism for internally reconstructing external proofs.

A sledgehammer style approach seems particularly promising for DTPLs where
it could make program development more lightweight and less time consuming.
Unfortunately however, ATP integration for DTPLs is not straightforward. First,
state-of-the-art ATP technology is designed for classical reasoning whereas DT-
PLs require constructive logic. Second, the logical kernels of DTPLs tend to be
much more complex than those of traditional ITP systems, hence proof recon-
struction establishes relatively less trust. Third, proof reconstruction for DTPLs
has been highly inefficient in practice due to proof normalisation, whereas in
theory it should be linear in the size of input proofs [15].

Due to these issues, ATP integrations for DTPLs certainly deserve to be stud-
ied in a pure and simple setting. This essentially amounts to building a simple
trustworthy DTPL kernel around an ATP system as its most important proof
engine. In this paper we focus in particular on the communication between ATP
and ITP and the efficiency of proof reconstruction. For this purpose we imple-
ment the extended calculus of constructions with universes as a minimalistic
DTPL, called Mella, in Haskell. Details of this implementation can be found in
a technical report [2]; since they do not contain any significant research con-
tribution, they are not included in this paper. The complete Mella tool can be
obtained online1. Our main contributions are as follows:

First, we design and implement a simple proof scripting language for Mella
inspired by Isabelle/Isar and Agda. Apart from commands for executing interac-
tive proofs it calls external ATP systems within the Proof General interface [3].

Second, we provide interfaces for executing Mella proofs in the ATP system
Waldmeister and for reconstructing Waldmeister proofs within Mella. Proof re-
construction amounts to building a Mella proof term and type checking it; proof
normalisation is avoided where possible for efficiency.

Third, we test the performance of the ATP integration on more than 800
proof tasks from the TPTP2 library [31]. In contrast to previous approaches,
proof reconstruction is very effective and does not create a significant overhead
to Waldmeister proof search. However, a small number of proof reconstructions
currently fail due to dynamic scoping problems.

In many ways, Mella is still a prototype and our approach to proof recon-
struction requires refinement. The DTPL implemented has neither recursion nor
data types. It is just expressive enough to support proofs in many-sorted first-
order constructive logic with equality. But for the main purpose of this paper—
exploring effective ATP integrations for DTPLs—this is certainly no limitation.

Two particular features of Mella proof reconstruction are that proof search
and proof normalisation are avoided wherever possible. Our micro-step recon-
struction is in contrast to Isabelle’s current macro-step approach based on the

1 www.dcs.shef.ac.uk/~alasdair
2 Thousands of Problems for Theorem Provers. www.cs.miami.edu/~tptp

www.dcs.shef.ac.uk/~alasdair
www.cs.miami.edu/~tptp
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internally verified ATP system Metis [19], and it seems more robust and effi-
cient. In contrast to Agda or Coq, we only type check the internal proof terms
corresponding to external proofs. These proof terms provide proof certificates
that could be further normalised if needed. Whenever type checking succeeds,
correctness of Mella’s type theory guarantees that normalisation is possible.

2 Calculus of Constructions

This section reviews the basics of the calculus of constructions, which is Mella’s
underlying type theory. We assume familiarity with basic type systems [6,28,26].
The typing rules of this calculus are given in Figure 1; its details are explained
in the remainder of this section,

T-Axiom s : s′ ∈ A� s :↑ s′

x : T ∈ Γ
T-Named

Γ � x :↑ T
Δ !n ≡β T

T-Unnamed
Δ � n :↑ T

Γ ;Δ � x :↓ T Γ ;Δ � S :↑ s
Γ -Weakening s ∈ S and y is fresh

Γ, y : S;Δ � x :↓ T

Δ � n :↑ T
Δ-Weakening Δ′ is valid

Δ′++Δ � n :↑ T

Γ ;Δ � S :↑ s Γ ;Δ,S � t :↓ T
T-Abs s ∈ S

Γ ;Δ � λ t :↓ Π S . T

Γ ;Δ � f :↑ Π S . T Γ ;Δ � x :↓ S
T-App

Γ ;Δ � f x :↑ ↓1 [0 #→ ↑1x]T

Γ ;Δ � S :↑ s1 Γ ;Δ,S � T :↑ s2
T-Pi (s1, s2, s3) ∈ R

Γ ;Δ � Π S . T :↑ s3

Γ ;Δ � T :↑ s Γ ;Δ � t :↑ T ′ T ≡β T ′
T-Inf s ∈ S

Γ ;Δ � t :↓ T

Γ ;Δ � T :↑ s Γ ;Δ � t :↓ T
T-Ann s ∈ S

Γ ;Δ � t :: T :↑ T

Fig. 1. Typing rules for CCω
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The set of terms of the calculus of constructions (CC) is inductively defined
by the following grammar.

t ::= x ∈ V | Πx : t . t | λx : t . t | t t

Here, V is a set of variables.Πx : t . t is the dependent product type; it essentially
amounts to universal quantification. λx : t . t is lambda abstraction and t t is
application. In CC, types themselves are terms. They are distinguished, and
their mutual dependencies are expressed, by the type inference rules. Terms that
are not types are called non-type terms, or briefly terms if the context allows. A
type of a non-type term is called proper, whereas types of types are called sorts.

Judgements are expressions Γ " t : T , where Γ is an environment that pro-
vides types for variables, t is a term and T a type. They can be proved by the
type inference rules.

In CC, every proper type has sort �, while � is defined to have sort �.
The dependencies between terms and types for CC can be modelled by the
set {(�, �), (�,�), (�, �), (�,�)}. The statement (�, �), for instance, says that
terms may depend on terms; the statement (�, �) says that terms may depend
on types.

To make our calculus rich enough for a DTPL we extend it with universes.
The calculus of constructions with universes, CCω, extends CC with an infinite
set �0, . . . ,�n, . . . of sorts [8,23]. A pure type system (PTS) is given by a triple
(S,A,R), where S is a set of sorts and A a set of typing relations s1 : s2 with
s1, s2 ∈ S. The set R consists of triples (s1, s2, s3), where s1, s2, s3 ∈ S. This set,
in combination with the typing rule T-Pi in Figure 1 controls the dependencies
of terms and types. The PTS for CCω [8] is given by:

S = {�} ∪ {�i | i ∈ N},
A = {� : �0} ∪ {�i : �i+1 | i ∈ N},
R = {� � �, � � �i,�i � � | i ∈ N} ∪ {(�i,�j ,�max(i,j)) | i ∈ N},

The notation s1 � s2 is shorthand for (s1, s2, s2). � � � means that terms can
depend on terms, � � �i means that types can depend on terms (dependent
types) and �i � � means that terms can depend on types. The set of all triples
(�i,�j ,�max(i,j)) defines how types are allowed to depend on types. If a type
�i depends on another type �j , it must be at the same level in the hierarchy as
the highest type �max(i,j) it depends on.

The syntax of CCω terms is defined by the following grammar, which extends
and refines that for CC:

t ::= s ∈ S | n ∈ N | x ∈ V | λt | Π t . t | t t | t :: t .

We use de Bruijn indices to represent variables introduced via λ or Π binders,
whereas top-level declarations are named [13]. Named variables are elements of
V , the set of valid identifiers. Both named and unnamed variables can have free
or bound occurrences. For example, in the term λ 3, the index 3 is free because
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it is pointing outside the term. A term without free de Bruijn indices is called
locally closed.

The dependent product type Π A .B corresponds to the logical statement
∀a ∈ A . B(a). To prove ∀a ∈ A . B(a) constructively, one needs to show that
for every possible a ∈ A an inhabitant of B can be constructed. A function of
type Π A .B is therefore a proof of the statement ∀a ∈ A. B(a). If B does not
depend on A, then the dependent product type is A→ B. The additional syntax
t :: t is type annotation. It allows us to explicitly state that a given term has
some type.

Because there are two kinds of variables—named and unnamed ones—judge-
ments take the form Γ ;Δ " t : T , where Γ and Δ are the typing contexts for
named and unnamed variables. The syntax for these contexts is

Γ ::= ∅ | Γ, x : T, Δ ::= ∅ | Δ,T.

Both contexts are lists, but since Γ names must be unique in Γ , it can be treated
as a set. We use ∅ to represent empty contexts. We often omit empty contexts
and write " t : T rather than ∅; ∅ " t : T . We write Γ, x : T to denote that
context Γ is extended with the new binding x : T , whereas for Δ, only a type is
supplied. We write x : T ∈ Γ to assert that T is the type of x in Γ . We write
[k 0→ t′]t for the substitution of term t′ for the index k in the term t.

Unlike variables in Γ , those in Δ are nameless and cannot be looked up by
name. Instead we define two lookup operators ! and !! with and without index
shifting to retrieve the types of variables from Δ.

Δ,T !!n =

{
T if n = 0,
Δ !! (n− 1) otherwise,

Δ !n = ↑n+1 (Δ !!n).

↑dc t is the d-place shift of a term t above cutoff c [28], where any index under the
cutoff is left unshifted. We write ↑d t if the cutoff is zero. An unnamed context
is well-formed only if all the terms within it are either proper types or sorts.
Unnamed contexts can be concatenated using the ++ operator.

To implement this calculus, a bidirectional type checker is used [27,21]. This
means that for any term t of type T , one can either infer the type, written t :↑ T ,
or check that the term has the type, written t :↓ T . Type inference requires t and
returns T , whereas type checking requires both t and T . The two rules T-Inf

and T-Ann (the rule for type annotations) provide a conversion between type
checking and type inference. Bidirectional type checking ensures that the rules
are directly implementable without need for further transformation.

3 An Extended Calculus

Mella requires additional features for equational and incremental interactive rea-
soning: identity types and metavariables. We call this extension CC+

ω .
Firstly, we add identity types to CCω. The identity type IdA(a, b) for any type

A, where a, b : A, denotes that a and b represent identical proofs of proposition
A [24]. This captures propositional equality within Mella and supports equational
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reasoning. Our identity type corresponds to the implementation of propositional
equality as an inductive family in Agda. Several new terms need to be added to
the grammar of CCω:

t ::= λx . t | . . . | refl | Idt(t, t) | elimJ .

The reflexivity term refl works exactly like refl in Agda [25]. It allows the
construction of identity types IdA(a, b) where a ≡β b. The typing rules for the
reflexivity term Eq-Refl and the identity term Eq-Id are as follows [4]:

Γ ;Δ " A :↑ s Γ ;Δ " a, b :↓ A a ≡β b
Eq-Refl s ∈ S

Γ ;Δ " refl :↓ IdA(a, b)

Γ ;Δ " A :↑ s Γ ;Δ " a, b :↓ A
Eq-Id s ∈ S

Γ ;Δ " IdA(a, b) :↑ s

The J rule below eliminates identity types [14], which corresponds to the term
elimJ. It can be used in combination with refl to define the standard functions
of equational logic in Mella, namely, substitutivity, congruence, transitivity and
symmetry. Because displaying the J rule with the locally nameless syntax dis-
cussed in Section 2 would render it almost unreadable, we present it in Mella
syntax (see Section 5 for details):

theorem elimJ : "(A : *) (C : (x y : A) -> Id A x y -> *)

-> (e : (x : A) -> C x x refl)

-> (x y : A) (P : Id A x y) -> C x y P".

"\A C e x y P -> e x".

qed.

Like Isabelle’s proof scripting language Isar, Mella uses two levels of syntax.
The inner syntax, surrounded by quotation marks, is used for CC+

ω terms. The
outer syntax is for proof scripting. For user interaction, the locally nameless term
representation is extended to a more readable named representation. The inner
syntax is essentially a simplification of Agda’s syntax for terms without implicit
arguments or mixfix operators.

Secondly, metavariables are used in Mella. Just as in Agda, these represent
“holes” within terms that can incrementally be filled in—or refined—during
proofs. Metavariables require one final language extension:

t ::= λx . t | . . . | ? .

As an example, consider checking that term λ ? has type Π � .Π 0 . 1.

T-Axiom
Γ ;Δ " � :↑ �1 Γ ;Δ, � " ? :↓ Π 0 . 1

T-Abs
Γ ;Δ " λ ? :↓ Π � .Π 0 . 1

When we try to check that ? :↓ Π 0 . 1, the type checker cannot proceed, so it
stores a continuation which allows type checking to resume once a term for the
metavariable has been supplied. This forms the basis for interactive theorem
proving in Mella.
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4 Automated Theorem Proving Technology

Having outlined the type-theoretic foundations of Mella, we now discuss the
ATP technology which serves as its proof engine.

ATP systems have been designed and implemented for many decades, but
mainly for classical first-order logic with equations. They provide fully auto-
mated proof search based on sophisticated term orderings, rewriting techniques
and heuristics. They can often prove mathematical statements of moderate dif-
ficulty and deal with large hypothesis sets, which makes them ideally suited for
discharging “trivial” first-order proof goals in ITP systems. A prime example of
an ATP integration is Isabelle’s Sledgehammer tool (cf. [10] for an overview),
which calls a number of external ATP systems and SMT solvers. A relevance
filter selects hypotheses for the proof, and the external proof output is internally
reconstructed to increase trustworthiness. Proof reconstruction is based on the
Metis tool [19], an Isabelle-verified automated theorem prover, which replays the
external proof search with the hypotheses used by the external provers.

An integration of ATP systems into DTPLs is, however, much less straight-
forward, as discussed in the introduction. We therefore start with the simplest
case—pure equational logic—for which classical and constructive reasoning co-
incide. We integrate the Waldmeister system [18], which is highly effective for
this fragment and supports sorts3.

Waldmeister accepts a set of equations as hypotheses and a single equation
as a conclusion. It also requires a term ordering to use rewriting techniques
for enhanced proof search. Technically, Waldmeister is based on the unfailing
completion procedure [5], a variant of Knuth-Bendix completion [20] that at-
tempts to construct a (ground) canonical term rewrite system from the equa-
tional hypotheses. This construction need not be finite, but it is guaranteed that
a (rewrite) proof of a valid goal can be found in finite time. Apart from effi-
cient proof search, Waldmeister offers two additional features that benefit an
integration into Mella. First, it provides extremely detailed proof output, down
to the level of positions and substitutions for rewrites in terms. In contrast to
Sledgehammer’s macro-step proof reconstruction that replays proof search, we
can therefore check individual proof steps efficiently and without search. Sec-
ond, Waldmeister extracts lemmas from proofs. This memoisation of subproofs
further enhances proof reconstruction.

These features can be demonstrated by a simple example from group theory.
Let (G, ◦,−1, 1) be a group with carrier G, multiplication ◦, inversion −1 and
unit 1. It satisfies the axioms of associativity, right identity and right inverse

x ◦ (y ◦ z) = (x ◦ y) ◦ z, x ◦ 1 = x, x ◦ x−1 = 1.

Assume that we have implemented groups in Mella and want to prove that every
right identity is also a left identity: x−1 ◦ x = x ◦ x−1. We then need to pass the
axioms and the proof goal to Waldmeister and let it search for a proof. Figure 2
shows the Waldmeister input file that corresponds to this proof task.

3 We are using the last publicly available version of Waldmeister, released in 1999.
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NAME group

MODE PROOF

SORTS

ANY

SIGNATURE

one: -> ANY

inv: ANY -> ANY

op: ANY ANY -> ANY

a: -> ANY

ORDERING

LPO

inv > op > one > a

VARIABLES

x,y,z : ANY

EQUATIONS

op(x,one) = x

op(x,inv(x)) = one

op(op(x,y),z) = op(x,op(y,z))

CONCLUSION

op(a,inv(a)) = op(inv(a),a)

Fig. 2. Waldmeister group input file

The group signature is declared in prefix notation, using sort ANY, and func-
tions op: ANY ANY -> ANY, inv:ANY -> ANY and one: -> ANY for multiplica-
tion, inverse, and unit. A constant a is also introduced to express the conclusion.
Waldmeister’s term ordering is declared in the ORDERING block: a lexicographic
path ordering (lpo) is constructed from a precedence on the group signature and
the constant a. The next block declares three variables x, y and z of type ANY.
The EQUATIONS block lists the group axioms in Waldmeister syntax. Finally, the
proof goal is declared in Waldmeister syntax for the constant a, since universal
goals are Skolemised.

After Waldmeister is called, it returns the proof in Figure 3 within millisec-
onds. Here, the --details flag has been set to obtain precise information for
each proof step. In the third step of the proof of Lemma 1,

f(x1,f(i(x1),i(i(x1)))) = f(x1,e)

for instance, the right identity axiom f(x1,i(x1)) = e has been used to rewrite
from left to right the subterm at position 2 by matching or substituting i(x1)

for x1. This level of detail allows efficient micro-step proof reconstruction; the
lemmas generated support proof reconstruction by memoisation. Details of the
communication between Mella and Waldmeister, in particular proof reconstruc-
tion, are covered in the following section.
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Lemma 1: op(one,inv(inv(x1))) = x1

op(one,inv(inv(x1)))

= by Axiom 2 RL at 1 with {x1 <- x1}

op(op(x1,inv(x1)),inv(inv(x1)))

= by Axiom 3 LR at e with {x3 <- inv(inv(x1)), x2 <- inv(x1), x1 <- x1}

op(x1,op(inv(x1),inv(inv(x1))))

= by Axiom 2 LR at 2 with {x1 <- inv(x1)}

op(x1,one)

= by Axiom 1 LR at e with {x1 <- x1}

x1

Lemma 2: ...

Lemma 3: ...

Lemma 4: ...

Theorem 1: op(a,inv(a)) = op(inv(a),a)

op(a,inv(a))

= by Axiom 2 LR at e with {x1 <- a}

one

= by Axiom 2 RL at e with {x1 <- inv(a)}

op(inv(a),inv(inv(a)))

= by Lemma 4 LR at 2 with {x1 <- a}

op(inv(a),a)

Fig. 3. Waldmeister group output file

5 ATP Integration

Our general approach to ATP integration is depicted in Figure 4. Mella proof
tasks are represented as judgements Γ ;Δ " ? : T . They encode that from a set
of hypotheses given by the contexts Γ and Δ a proof term t—represented by
metavariable ?—of type T (the proof goal) is to be inferred. This is achieved
by serialising Γ , Δ and T and passing them on to Waldmeister. In our group
example, Γ and Δ contain the group axioms, whereas T contains the proof goal.
More generally, the contexts can also contain lemmas that have been proved
before. If Waldmeister fails to find a proof within a certain time limit, the user
is notified. Otherwise, its proof output is translated into a proof term t in Mella,
which is then type checked. Since Waldmeister produces intermediate lemmas,
as we have seen, an additional context Γ ′ is added to Γ . Constructing a proof
term from a Waldmeister proof and type checking it yields proof reconstruction.
We now discuss the individual steps in more detail.

Users interact with Mella via the Proof General Emacs interface, which is
standard for many ITP systems [3]. User level terms with explicit variables are
parsed to an internal Haskell representation using de Bruijn indices correspond-
ing to the type theory discussed in Section 2. A Mella file consists of a list of
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Γ ;Δ � ? : T

ATP Input

Γ+Γ ′ ;Δ � t : T

ATP Output
Run ATP

ReconstructSerialise

Mella Terms

ATP Integration

Fig. 4. Overview of Waldmeister Integration

commands delimited by periods, each of which can be processed and undone
individually by Proof General. There are about 20 commands available to the
user, which can be displayed using the commands command. The help command
provides documentation for every command in the system. The command fun

introduces a new top-level function or value. The following commands, for in-
stance, introduce an identity function and a constant function in Mella.

fun id : "(A : *) -> A -> A"

"\_ x -> x".

fun const : "(A B : *) -> A -> B -> A"

"\_ _ x _ -> x".

To declare a theorem and start a proof, the theorem command is used. It takes
the name of the theorem and its type T . To prove the theorem, the user must
construct a proof term t such that t :↓ T . Proofs are built up incrementally from
commands and terms that may themselves contain metavariables.

As an example, assume we want to prove that

f(x, g(y, g(x, z))) = x and g(x, f(y, f(x, z))) = x

imply
f(x, g(y, x)) = x.
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A “manual” Mella proof without using Waldmeister is as follows:

theorem example : "(A : *) (f g : A -> A -> A)

-> (axiom1 : (x y z : A) -> Id A (f x (g y (g x z))) x)

-> (axiom2 : (x y z : A) -> Id A (g x (f y (f x z))) x)

-> (x y : A) -> Id A (f x (g y x)) x".

intro A f g ax1 ax2 x y.

= "f x (g y (g x (f x (f x x))))" by "ax2 x x x" at ’2,2RL’.

= "x" by "ax1 x y (f x (f x x))".

refl.

qed.

normalize example.

describe example.

Mella commands can be terms, which are surrounded by quotation marks, the-
orem definitions, function definitions, or command expressions. The command
intro args generates a term of the form λ args → ?. The command

= "f x (g y (g x (f x (f x x))))" by "ax2 x x x" at ’2,2RL’.

says that the left-hand term in the proof goal is equal to the term provided
by applying the second axiom at position 2,2 to variable x from right to left,
in a notation similar to Waldmeister. The second proof step is similar. The
remaining step is reflexivity of equality. The commands normalize example and
describe example normalise the proof and print out the proof term (which we
do not show). We can also use the agda command to compile Mella files into
Agda files. This is very useful for testing the correctness of our implementation.

Command expressions form a large part of Mella’s syntax. Examples are
intro, = and qed as displayed above. Commands consist of a command name,
followed by zero or more arguments and a list of keywords. Each keyword can
again be associated with a list of arguments:

command arg1...argn :keyword1 karg1...kargn :keyword2 ...

Alternatively to the above manual proof we can use Waldmeister to prove our
goal. The type is the same as above, so we omit it for brevity.

theorem example : "...".

intro A f g ax1 ax2 x y.

waldmeister :signature f g x y :axioms ax1 ax2 :kbo :timeout 2.

qed.

The waldmeister command is now used to instantiate the metavariable opened
by the intro command. Waldmeister is given the functions and values it may use
in the proof via the :signature keyword, which maps to the SIGNATURE section
of the Waldmeister input file. We give each function or variable in the signature
an identifier sn. The number n is the de Bruijn index corresponding to that
function in Δ. The axioms to be used when constructing the proof are listed after
the :axioms keyword, and are used in the EQUATIONS section of the Waldmeister
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input file. The :kbo option tells Waldmeister to use a Knuth-Bendix ordering as
the syntactic ordering for terms (based on the precedence given by the order of
expressions declared after :signature). Finally, the :timeout keyword lets one
specify the amount of time Waldmeister will be given for proof search.

6 Proof Reconstruction

We now describe proof reconstruction. As already mentioned, Waldmeister splits
proofs into lemmas. While this process is primarily intended to increase readabil-
ity, it also enhances proof reconstruction by memoising subproofs. Were we to
reconstruct the Waldmeister proof as a single term, lemmas would be repeated
hundreds of times. This would dramatically slow down type checking to the
point where it would become infeasible. This is also why we avoid normalisation
of the final proof term, as it would reduce the proof to a single term, unmemo-
ising all the lemmas found by Waldmeister and vastly reducing the efficiency of
our system. This problem has affected previous integrations of Waldmeister into
Agda [15]. Mella is designed in such a way as to avoid such issues, and as such
our micro-step proof reconstruction is much more efficient.

The Waldmeister output for the example proof above is shown below. Wald-
meister renames axioms in its output; so during reconstruction, they must be
matched with the correct terms within Mella. The proof shows that the term
s5(s1,s4(s0,s1)) is equal to s1. It consists of two steps. First, Waldmeister
applies Axiom 2 from right to left at position 2.2 in s5(s1,s4(s0,s1)), which
results in the term shown on the next line. Secondly, Waldmeister uses Axiom 1
to reduce the term down to s1, proving the goal.

Theorem 1: s5(s1,s4(s0,s1)) = s1

s5(s1,s4(s0,s1))

= by Axiom 2 RL at 2.2 with {x3 <- y, x2 <- z, x1 <- s1}

s5(s1,s4(s0,s4(s1,s5(z,s5(s1,y)))))

= by Axiom 1 LR at e with {x3 <- s5(z,s5(s1,y)), x2 <- s0, x1 <- s1}

s1

Our proof reconstruction algorithm is relatively simple, and works as follows:
We start by parsing the output provided by Waldmeister. Each Waldmeister
lemma can be converted to an equation consisting of two terms, and a sequence
of rewrite justifications which tell us how one of these terms can be rewritten to
the other. A rewrite justification consists of a rule, which can either be an axiom
provided to Waldmeister or a previously proven lemma, as well as information
telling us where and how the rule is applied. In other words, to prove a goal
x = y each step of a proof applies a lemma or axiom to a subterm of x.

As mentioned above, once we have parsed the proof output, we must try to
match each axiom in the output with its corresponding term in Mella. This stage
is trickier than necessary, as Waldmeister numbers each axiom in a seemingly
random order, so we create a list of Mella identifiers corresponding to that order,
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which are associated with the Mella axioms in Δ. To do this we must inspect
the structure of each axiom in the Waldmeister output, and search for the corre-
sponding Mella term in Δ. This association implicitly maps between the typing
context Δ and the Waldmeister proof output.

Lemmas are numbered sequentially by Waldmeister in a similar manner. Each
time we reconstruct a lemma we remove it from the context of the goal we are
proving and add it to Γ ′. We store a list of identifiers referring to these new
terms in Γ ′. This does not yet provide all the information needed for proof recon-
struction, since Waldmeister also explicitly displays information about particular
matchings and term positions.

To proceed further with proof reconstruction we must therefore assign types to
all the terms within each lemma. Since we encoded the index for each element of
the signature in its name, we can easily map it back to the Mella typing context.
This is also where the advantages of our bidirectional approach to type checking
become clear. Since each Waldmeister expression consisists of a function applied
to either variables or other function applications, the types of all terms provided
to us by Waldmeister can be inferred by simply invoking the typing rule T-App

from Section 2.
Next we can transform the list of typed rewrite justifications into a single Mella

term. For each rewrite step, we must use congruence (to select the subterm) and
symmetry (to choose the direction). If neither congruence nor symmetry is re-
quired for a step, they are omitted from the proof output, as is the case for
the second step above. The above Waldmeister proof has two steps, hence we
need to use transitivity to join both steps together, resulting in the final recon-
structed Mella proof term for our example below. This proof term is somewhat
unreadable; it has been indented to make the structure of the proof clearer.

trans A (f x (g y x)) (f x (g y (g x (f y (f x y))))) x

(cong A A x (g x (f y (f x y))) (\rc-cong-var -> f x (g y rc-cong-var))

(sym A (g x (f y (f x y))) x

(ax2 x y y)))

(ax1 x y (f y (f x y)))

7 Proof Experiments

We tested the Waldmeister integration on 850 proof goals from the TPTP li-
brary [31], among them 115 on Boolean algebras (BOO), 156 on lattices (LAT),
415 on groups (GRP), 106 on relation algebras (REL) and 58 on rings (RNG).
The letters in brackets indicate the name given to these problem sets in TPTP.
The library contains non-theorems and non-equational theorems that are beyond
Waldmeister’s scope. In fact, in our experiments, Waldmeister has not been able
to find proofs for all goals for principal reasons, but may also have failed to find
proofs of equational theorems due to timeout. Here, however, we are only inter-
ested in relative success rates for proof reconstruction, that is, the number or
percentage of successful Waldmeister proofs that Mella was able to reconstruct,
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Table 1. Proof Reconstruction Experiments

Waldmeister Proof Reconstruction

CPU Time Timeout Error Unprovable Fail Success %

BOO 300 9 51 1 10 44 81.5
30 41 21 1 10 42 80.8
10 62 0 1 10 42 80.8
5 64 0 1 10 40 80
1 66 0 1 10 38 79.2

LAT 300 91 14 0 11 40 78.4
30 107 0 0 11 38 77.6
10 110 0 0 11 35 76.1
5 110 0 0 11 35 76.1
1 113 0 0 9 34 79.1

GRP 300 39 4 0 213 159 42.7
30 53 1 0 202 159 44.0
10 57 0 0 199 159 44.4
5 66 0 0 192 157 45
1 91 0 0 185 139 42.9

REL 300 20 2 0 2 82 97.6
30 34 0 0 2 70 97.2
10 58 0 0 2 46 95.8
5 61 0 0 0 45 100
1 66 0 0 0 40 100

RNG 300 35 5 0 0 18 100
30 41 0 0 0 17 100
10 44 0 0 0 14 100
5 44 0 0 0 14 100
1 45 0 0 0 13 100

and in the running times of proof reconstruction relative to proof search. The
outcome of these experiments are shown in Table 1.

The first column in the table shows the TPTP problem sets. The first four
columns are related to Waldmeister. The first of them shows the Waldmeister
CPU time limits for proof search—1s, 5s, 10s, 30s and 300s. The second one gives
the number of proofs searches that exceeded the time limit. The third one gives
the number of proofs that aborted, for instance, due to out of memory errors. In
the case of Boolean algebras, the fourth column shows that Waldmeister refuted
one proof goal. The final three columns contain data on proof reconstruction.
The first of them shows the number of proofs for which reconstruction failed;
the second one the number of successfully reconstructed proofs. The row-wise
sums of these columns give the numbers of successful Waldmeister proofs. The
third row gives the percentage of successful proof reconstructions.

First, it turns out that the CPU time limit for Waldmeister has little impact
on success rates. The number of successful Waldmeister proofs increases only
slightly with proof search time; the success rates for reconstruction remain almost
unaffected. This suggests that there is little correlation between proof search time
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and the difficulty of reconstructing the resulting proof. Waldmeister could spend
a long time traversing a search space only to find a very short and simple proof
which is trivial to reconstruct.

Second, success rates are surprisingly different for different problem sets. For
groups, proof reconstruction was particularly poor, succeeding only 45% of the
time for proofs returned after a 5 second timeout. For rings and relation algebras,
reconstruction succeeded almost always, with a 100% reconstruction success rate
at 5 seconds. For lattices and Boolean algebras reconstruction was also overall
successful; it is 80% for Boolean algebras and 76.1% for lattices (again with a 5
second timeout). Some explanations for this are given below.
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Fig. 5. Waldmeister running times versus proof reconstruction times

Next we have investigated the correlation between proof search and proof
reconstruction times. A graph is plotted in Figure 5. Unfortunately, these times
were very short for most of our proofs, which makes it very difficult to draw
convincing conclusions. For some proofs, proof search took rather long whereas
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reconstruction was fast. In other cases, proof search was fast, but the proof
could not be reconstructed or type checked efficiently. We have inspected the
proof for each goal that took longer than 2s to reconstruct. In each of these
cases, either proof terms are extremely long, with more than 100 lemmas, or
there are extremely large substitutions.

As an example, consider the following line from Figure 3:

= by Axiom 2 LR at 2 with {x1 <- i(x1)}

In the substitution x1 <- i(x1), for instance, the term i(x1) can be enormous.
In fact, our experiments contain substitutions of terms thousands of characters
long, resulting in extremely large and unwieldy lemmas. This underscores the
benefit of Waldmeister’s lemma generation, which allows us to type check each
one individually. As soon as proof terms become large, type checking slows down.
These observations confirm what one would expect: proof reconstruction times
depend on proof sizes rather than proof search times, whereas proof search time
and proof size are often only weakly correlated. Proof length, however, is not
a key factor for using ATP systems in DTP program development. Ultimately,
our experiments suggest that the Waldmeister integration into Mella is feasible,
and proof reconstruction yields little overhead to proof search.

There are several reasons why proof reconstruction may fail. Firstly, Wald-
meister sometimes introduces fresh Skolem constants in proofs. These currently
cannot be handled by the proof reconstruction code and cause it to fail. More
precisely, such constants, which are dynamically generated by Waldmeister, can
currently not be associated with an environment during proof reconstruction.
Secondly, rules such as the right inverse axiom x ◦ x−1 = 1 for groups, when
applied from right to left to a (sub)term 1, can lead Waldmeister to introduce
fresh variables in a proof. Mella would then have to introduce this value to the
type signature of the lemma and supply it as a parameter. This currently assigns
lemmas the wrong types in proofs and causes proof reconstruction to fail. For
certain problem sets such as groups, “creative” proof steps of this kind seem par-
ticularly frequent, whereas in others (such as Boolean algebras, relation algebras
or rings), they are present, but seem less significant.

As an example, consider the proof discussed in Section 5:

theorem proof : "(A : *) (f g : A -> A -> A)

-> (axiom1 : (x y z : A) -> Id A (f x (g y (g x z))) x)

-> (axiom2 : (x y z : A) -> Id A (g x (f y (f x z))) x)

-> (x y : A) -> Id A (f x (g y x)) x".

intro A f g ax1 ax2 x y.

waldmeister :signature f g x y :axioms ax1 ax2 :kbo :timeout 2.

qed.

Waldmeister uses the following lemma in its proof:

Lemma 1: s10(x1,s14(x2,x1)) = x1

s10(x1,s14(x2,x1))
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= by Axiom 7 RL

s10(x1,s14(x2,s14(x1,s10(z,s10(x1,y)))))

= by Axiom 8 LR

x1

The second line of this proof introduces the new variables y and z. They are not
mentioned in that lemma’s type, hence the lemma cannot be easily reconstructed.
We have implemented heuristics that guess instances of correct type for z and
y (in this case x1 and x2) which are present in the context. In this particular
lemma, these heuristics make proof reconstruction succeed. In many other case,
we still obtain confusing error messages.

Most of these problems seem to stem from the fact that we reconstruct each
lemma individually without taking the rest of the proof into consideration. If we
took a more global approach to reconstructing Waldmeister proofs we could use
more contextual information to solve such problems without having to resort
to heuristics, or in the case of fresh Skolem constants, simply giving up. More
precisely, we could preprocess the entire proof before reconstructing it in order
to identify all variables and functions occurring in it. This information could
then be used to update the proof context in Mella before proof reconstruction.
This extended proof context would then prevent the proof reconstruction algo-
rithm from failing. Therefore we believe that the reconstruction failures described
above are not insurmountable, and with some improvements to the algorithm
described in Section 5 we could reconstruct almost 100% of the proofs returned
by Waldmeister, while still reconstructing each lemma individually, which is es-
sential for efficiency reasons.

8 Related Work

The general question of proof automation for ITPs is covered in a wide variety
of literature. Barendregt and Barendsen [7] identify three approaches, namely
accepting, skeptical, and autarkic. The accepting approach uses ATP systems
and SMT solvers as oracles, requiring no proof output. The skeptical approach
requires that external tools provide evidence or certificates which allow ITP
systems to internally reconstruct external proofs to increase trust. The autar-
kic approach solely relies on internal implementations of solvers and provers or
alternatively by verifying external tools.

The accepting approach has, for many years, been pursued in the PVS ITP
system, for instance by integrating the Yices SMT solver [30]. This approach has
also been applied to Agda in [12]. However, this approach is often insufficient
for constructive logic as proofs have computational content and may require
execution, hence proof reconstruction.

The autarkic approach is the ideal, as an internally verified solver is guar-
anteed to produce correct output. The omega, tauto and ring tactics in Coq,
and Isabelle’s blast and metis tactics for instance, are autarkic. Other autarkic
approaches allow the user to implement proof automation within the proof lan-
guage itself using reflection [16]. The disadvantage of this approach however is
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clear: there is a need to efficiently re-implement provers in the proof system,
rather than using more powerful external provers.

The approach taken in this paper approach is skeptical. We believe this yields
an adequate balance between efficiency and trust. Our approach is heavily in-
spired by Isabelle’s Sledgehammer tool, which however is predominantly based
on macro-step proof reconstruction. Additionally, ATP integration in Mizar—
so far without proof reconstruction—is currently under development [29]. The
skeptical approach has also been used in the context of dependent types, in
a Waldmeister integration into Agda [15]. The relative inefficiency of this ap-
proach due to Agda proof normalisation was another main inspiration for Mella.
Work on proof irrelevance in the most recent version of Agda, may however lead
to a solution to this problem within Agda. More recently, using the skeptical
approach, an SMT solver has been integrated into Coq [1].

9 Conclusion and Future Work

We have integrated the equational theorem prover Waldmeister into the pro-
totypical dependently typed programming language Mella which is based on
the extended calculus of constructions with universes. In contrast to previous
approaches, where theorem provers were added a posteriori to existing ITP sys-
tems to complement existing internal tactics and proof strategies, we take the
ATP system as a core proof engine for the programming language and build the
language around it. As a user front end we have implemented a proof scripting
language in the Proof General environment. This provides an interface between
Mella and Waldmeister. Since Waldmeister provides highly detailed proof out-
put we can perform micro-step proof reconstruction, translating the proof output
into a Mella proof term and type checking that term.

Proof terms in Mella are not normalised. On the one hand, this makes proof
reconstruction much more efficient. On the other hand this yields a proof certifi-
cate rather than a proper normalised proof. The strong normalisation property
of the underlying type system, however, guarantees that all proofs that have
been successfully checked can also be normalised. In the case of an equational
proof this amounts to a refl term.

In sum, our findings suggest that integrating ATP systems into dependently
typed languages can be very beneficial for program development in this setting,
and that the approach taken with Mella may serve as a template for future
approaches to integrate more expressive ATP systems in more sophisticated
languages.

There are various interesting directions for future work.
First, already the minimalist formalism of Mella without recursion or data

types requires proofs in full multi-sorted first-order constructive logic with equa-
tions. However, state-of-the-art ATP systems are essentially all based on classical
first-order logic and often do not support sorts. Our current Waldmeister inte-
gration deals only with multi-sorted equational logic, a fragment where classical
and constructive reasoning coincide. While using classical ATP systems for more
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expressive fragments of first-order logic, such as Harrop formulae, is still possible,
specific ATP systems for constructive or intuitionistic logic should be designed
for applications in dependently typed programming.

Second, many state-of-the-art ATP systems adhere to a common input stan-
dard (TPTP), but many of them do not provide any detailed proof output or
use a proprietary format. Detailed proof output is often perceived as detrimen-
tal to proof search efficiency. In the context of dependently typed programming,
however, its absence is detrimental to proof reconstruction. As Sledgehammer
shows, macro-step proof reconstruction, that is, replaying proof search with an
internally verified theorem prover, has the disadvantage that many proofs pro-
vided by the external ATPs will not be accepted by the ITP system. Our proof
experiments show that micro-step reconstruction of individual proofs steps is
superior to this approach, but it requires detailed ATP output. Proof standard-
isation as in the TSTP project [32] is a valuable step in this direction. While
sheer proof power was the main emphasis of ATP development in the past, ap-
plications in the context of ITP systems require this to be balanced with detailed
proof output and support for types.

Third, in its current version, Mella still suffers from the fact that Waldmeis-
ter proofs, which introduce new constants or variables, cannot always be recon-
structed. We could work around this by reconstructing proofs as they are, with
additional constants and variables included, and proving that such reconstructed
proofs are equivalent to the desired proofs. The simple heuristics currently used
should further be refined to cover more proofs. Alternatively, when heuristics
fail, the presence of lemmas in Waldmeister proof outputs allows local manual
proof reconstruction. Often, reconstruction failures are caused by a very small
number of lemmas. These could be replaced by metavariables so that the proof
can be delegated to users. Thus, even when an ATP system cannot completely
finish a proof, it might still produce a number of simpler proof goals for the user
and at least simplify the global proof goal.

Fourth, Mella needs to be extended with features found in more sophisticated
DTPLs and ITP tools. First we could extend CC+

ω with data types, induction or
Σ-types. Alternatively we could extend the proof scripting language by adding
more automation, or by providing a more structured method of proof construc-
tion, similar to Isar. Some features like induction might only require proof man-
agement such as induction tactics, and would not affect the ATP integration,
while others, such as the addition of Σ-types seem to require modifications to
how ATP systems are integrated.
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Abstract. Preference algebra, an extension of the algebra of database
relations, is a well-studied field in the area of personalized databases. It
allows modelling user wishes by preference terms; they represent strict
partial orders telling which database objects the user prefers over other
ones. There are a number of constructors that allow combining simple
preferences into quite complex, nested ones. A preference term is then
used as a database query, and the results are the maximal objects accord-
ing to the order it denotes. Depending on the size of the database, this
can be computationally expensive. For optimisation, preference queries
and the corresponding terms are transformed using a number of algebraic
laws. So far, the correctness proofs for such laws have been performed
by hand and in a point-wise fashion. We enrich the standard theory of
relational databases to an algebraic framework that allows completely
point-free reasoning about complex preferences. This black-box view is
amenable to a treatment in first-order logic and hence to fully automated
proofs using off-the-shelf verification tools. We exemplify the use of the
calculus with some non-trivial laws, notably concerning so-called prefer-
ence prefilters which perform a preselection to speed up the computation
of the maximal objects proper.

Keywords: relational algebra, preferences, preference algebra, prefilter.

1 Introduction

In many database applications, the queries are based on multiple, and sometimes
conflicting, goals. For example, a tourist may be interested in hotels in Nassau
(Bahamas) which are cheap, have reasonable ratings (say, 3-star) and are close to
the beach. Unfortunately, these goals are conflicting, as the hotels near the beach
tend to be more expensive. Thus, there may be no single optimal answer: it is
unlikely that there exists a single 3-star hotel that is cheapest among all 3-star
hotels and closest to the beach. Still, users are looking for satisfactory answers.
But what does “satisfactory” mean? For the same query, different users, guided
by their personal preferences, may find different answers appealing. For example,
a person may be willing to pay a little more to be closer to the beach; another
may be contented with a cheaper hotel as long as it is convenient to reach the
beach from it. Thus, in our example one would like to find a whole set of budget
hotels, where those closer to the beach are slightly more expensive.
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Therefore it is important for a database system to present all interesting
answers that may fulfil a user’s need. Still, most current database search engines
only deal with hard constraints : a tuple belongs to the search result if and only
if it fulfils all given conditions.

As a remedy, queries with soft constraints are investigated, especially the so-
called “skyline queries” [BKS01], which combine multiple, equally important,
goals. An extension of this leads to the more comprehensive approach of prefer-
ence relations which has been investigated in [Kie02, KH03, KEW11]. A prefer-
ence allows users to establish a strict partial order that expresses which database
objects are better for them than others. Based on this, a query selects according
to the “best matches only (BMO)” model [Kie02] those objects that are not
dominated by any others in the preference relation. To give the user more flexi-
bility, a large set of predefined operators for constructing preference relations is
provided.

Depending on the size of the database, the selection of the best matches ac-
cording to a complex preference relation can be computationally expensive. To
improve the process, preference queries and the corresponding terms are trans-
formed using a number of algebraic laws for heuristically driven optimisation.
So far, the correctness proofs for such laws have been performed by hand and in
a point-wise fashion.

The contribution of the present paper is to enrich the standard theory of
relational databases with an algebraic framework that allows completely point-
free reasoning about (complex) preferences and their best matches. This “black-
box view” is amenable to a treatment in first-order logic and hence to fully
automated proofs using off-the-shelf verification tools. We exemplify the use of
the calculus with some non-trivial laws, notably concerning so-called preference
prefilters (introduced in [End11]), which perform a preselection to speed up
the computation of the best matches proper, in particular, for queries involving
expensive join operations. It turns out that the original laws hold under much
weaker assumptions; moreover, several new ones are derived.

2 Types and Tuples

In this section we present the formal framework to model database objects as
tuples. We introduce typed relations whose types represent attributes, i.e. the
columns of a database relation. Conceptually and notationally, we largely base
on [Kan90].

2.1 Typed Tuples

Definition 2.1. Let A be a set of attribute names. For A ∈ A the set DA is
called the domain of A, and (DA)A∈A is a family of domains. We define the
following notions:
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– A type T is a subset T ⊆ A.
– An attribute A ∈ A is also used for the type {A}, omitting the set braces.
– A T -tuple is a mapping

t : T →
⋃
A∈A

DA where ∀A ∈ T : t(A) ∈ DA.

– For a T -tuple t and a sub-type T ′ ⊆ T we define the projection πT ′(t) to T ′

as the restriction of the mapping t to T ′: πT ′(t) : T ′ →
⋃

A∈A DA, A 0→ t(A).
– The domain DT for a type T is the set of all T -tuples, i.e., DT =

∏
A∈T

DA.

– The set U =df

⋃
T⊆A

DT is called the universe.

– For a tuple t, and a set of tuples M we introduce the following abbreviations:

t :: T ⇔df t ∈ DT , M :: T ⇔df M ⊆ DT .

Definition 2.2 (Join). The join of two types T1, T2 is the union of their
attributes:

T1 � T2 =df T1 ∪ T2.

For sets of tuples Mi :: Ti (i = 1, 2), the join is defined as the set of all consistent
combinations of Mi-tuples:

M1 � M2 =df {t :: T1 � T2 | πTi(t) ∈Mi, i = 1, 2} .

We illustrate this concept with the following example.

Example 2.3. Assume a database of cars with a unique ID and further attributes
for model and horsepower. Hence the attribute names, i.e. types, are ID,model
and hp. The tuples are written as explicit mappings. Assume the following sets:

M1 =df {{ID 0→ 1, model 0→ ’BMW 7’}, {ID 0→ 3, model 0→ ’Mercedes CLS’}},
M2 =df {{ID 0→ 2, hp 0→ 230}, {ID 0→ 3, hp 0→ 315}}.

The sets have the types M1 :: ID � model and M2 :: ID � hp. Now we consider
the join M1 � M2 :: ID � model � hp. We have (ID � model)∩ (ID � hp) = ID.
The only tuple t :: ID � model � hp which fulfills both πT1(t) ∈ M1 and
πT2(t) ∈M2 is the one with t : ID 0→ 3. Hence the join is given by:

M1 � M2 = {{ID 0→ 3, model 0→ ’Mercedes CLS’, hp 0→ 315}} .

Corollary 2.4. The following laws hold:

1. � is associative and commutative and distributes over ∪.
2. � preserves the inclusion order, i.e. M � N ⊆M ′ � N for M ⊆M ′.
3. Assume Mi, Ni :: Ti (i = 1, 2). Then the following exchange law holds:

(M1 ∩N1) � (M2 ∩N2) = (M1 � M2) ∩ (N1 � N2).
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Proof. (1) and (2) follow directly from definition. Using the definition of the join
and the usual intersection of sets we show the exchange law as follows:

x ∈ (M1 ∩N1) � (M2 ∩N2)

⇔ πT1(x) ∈ (M1 ∩N1) ∧ πT2(x) ∈ (M2 ∩N2)

⇔ πT1(x) ∈M1 ∧ πT1(x) ∈ N1 ∧ πT2(x) ∈M2 ∧ πT2(x) ∈ N2

⇔ x ∈M1 � M2 ∧ x ∈ N1 � N2

⇔ x ∈ (M1 � M2) ∩ (N1 � N2) .

2.2 Typed Relations

Definition 2.5 (Typed homogeneous binary relations). For a type T we
define the following abbreviations:

(t1, t2) :: T
2 ⇔df ti ∈ DT , R :: T 2 ⇔df R ⊆ DT ×DT .

We say that the typed relation R has type T . There are some special relations:
The full relation �T =df DT ×DT , the identity 1T =df {(x, x) | x ∈ DT } and
the empty relation 0T =df ∅.

This concept of typed relations also appears in the relation-based logical, but not
primarily algebraic, approach to database notions of [MO04]. We will generalise
it in Section 3.2.

Definition 2.6 (Join of relations). Let Ri :: T
2
i (i = 1, 2). Then the compo-

sition R1 � R2 :: (T1 � T2)
2 is defined by

t (R1 � R2)u ⇔df πT1(t)R1 πT1(u) ∧ πT2 (t)R2 πT2(u).

Corollary 2.7

1. Assume Mi, Ni :: Ti (i = 1, 2). Then the following exchange law holds:

(M1 � M2)× (N1 � N2) = (M1 ×N1) � (M2 ×N2).

2. For types T1, T2 and X ∈ {0, 1,�} we have XT1�T2 = XT1 � XT1 .

Proof

1. Straightforward from Definition 2.6.
2. Using part (1), (DT1 � DT2)× (DT1 � DT2) = (DT1 ×DT1) � (DT2 ×DT2).

By definition of the join for types we have that T1 � T2 = T1 ∪T2. From the
definition of the join for sets we infer that DT1�T2 = DT1 � DT2 . This shows
the claim for X = �. For X = 1 we show the equality component-wise using
again the argument DT1�T2 = DT1 � DT2 . For X = ∅ the claim is obvious.

Corollary 2.8

1. For M,N :: T we have M � N = M∩N . In particular, we have N � N = N .
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2. For R1, R2 :: T we have R1 � R2 = R1 ∩R2.
3. For Mi :: Ti (i = 1, 2) with disjoint Ti, i.e., with T1 ∩ T2 = ∅, the join

M =df M1 � M2 is isomorphic to the cartesian product of M1 and M2.

Proof

1. By the definition of join and the typing assumptions we have

t ∈M � N ⇔ t ∈M ∧ t ∈ N .

2. Similarly we conclude for all x, y :: T :

x (R1 � R2) y ⇔ πT (x)Ri πT (y) (i = 1, 2) ⇔ xR1 y ∧ xR2 y

3. For x ∈M , the two join conditions πTi(x) ∈Mi are independent. Hence all
elements of M1 can be joined with all elements of M2. Thus, by definition,

t ∈M ⇔ πT1(t) ∈M1 ∧ πT2(t) ∈M2 ⇔ (πT1 (t), πT2(t)) ∈M1 ×M2.

2.3 Inverse Image and Maximal Elements

Definition 2.9 (Inverse image). For a relation R :: T 2 the inverse image of
a set Y :: T under R is formally defined as

〈R〉Y =df {x :: T | ∃y ∈ Y : xR y} .

The notation stems from the fact that in modal logic the inverse-image operator
is a (forward) diamond.

Lemma 2.10. Assume Ri :: T
2
i and Yi :: Ti (i = 1, 2) with disjoint T1, T2. Then

the following exchange law for the join and the inverse image holds:

〈R1 � R2〉 (Y1 � Y2) = 〈R1〉Y1 � 〈R2〉Y2 .

Proof. Using the definition of the inverse image and the composition of relations
we infer:

x ∈ 〈R1 � R2〉 (Y1 � Y2)

⇔ ∃y ∈ (Y1 � Y2) : x (R1 � R2) y

⇔ ∃y ∈ (Y1 � Y2) : πT1(x)R1 πT1(y) ∧ πT2(x)R2 πT2(y)

⇔ ∃y1 ∈ Y1 : ∃y2 ∈ Y2 : πT1(x)R1 y1 ∧ πT2(x)R2 y2
⇔ πT1(x) ∈ 〈R1〉Y1 ∧ πT2 (x) ∈ 〈R2〉Y2

⇔ x ∈ (〈R1〉Y1 � 〈R2〉Y2) .

Note that splitting y into y1 and y2 in the third step is justified by disjointness of
the types: because of T1 ∩ T2 = ∅ the two join conditions πTi(y) ∈ Yi for i = 1, 2
are independent of each other, hence the substitution yi := πTi(y) is allowed.
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Assume that R1, R2 are strict orders (irreflexive and transitive), which is the case
in our application domain of preferences. Then, together with Corollary 2.8.3,
this lemma means that, under the stated disjointness assumption, R1 � R2

behaves like the product order of R1 and R2 on the Cartesian product DT1×DT2 .
The inverse image of a set Y under a relation R, when viewed the other way

around, consists of the objects that have an R-successor in Y , i.e., are R-related
to some object in Y or, in the preference context, dominated by some object in
Y . For this reason we can characterise the set of R-maximal objects within a set
Y , as follows.

Definition 2.11 (Maximal elements). For a relation R :: T 2 and a set Y :: T
we define

R  Y =df Y − 〈R〉Y ,

where “−” is set difference.

These are the Y -objects that do not have an R-successor in Y , i.e., are not
dominated by any object in Y . The mnemonic behind this notation is that in an
order diagram for a preference relation R the maximal objects within Y are the
peaks in Y ; rotating the diagram clockwise by 90◦ puts the peaks to the right.
Hence R  Y might also be read as “R-peaks in Y ”.

To develop the central properties of our algebra and the maximality operator
it turns out useful to abstract from the concrete setting of binary relations over
sets of tuples, which will be done in the next section.

3 An Algebraic Calculus

Since we have shown how to characterise the maximal elements concisely using a
diamond operation, it seems advantageous to reuse the known algebraic theory
around that. This also allows us to exhibit clearly which assumptions are really
necessary; it turns out that most of the development is completely independent
of the properties of irreflexivity and transitivity that were originally assumed
for preference relations in [Kie02], and in fact also independent of the use of
relations at all.

3.1 Semirings

Definition 3.1. An idempotent semiring consists of a set S of elements together
with binary operations + of choice and · of composition. Both are required
to be associative, choice also to be commutative and idempotent. Moreover,
composition has to distribute over choice in both arguments. Finally, there have
to be units 0 for choice and 1 for composition.

Binary homogeneous relations over a set form an idempotent semiring with
choice ∪ and composition “;”, which have ∅ and the identity relation as their
respective units.
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Definition 3.2. Every idempotent semiring induces a subsumption order by
x ≤ y ⇔ x + y = y. A test is an element x ≤ 1 that has a complement ¬x
relative to 1, i.e., which satisfies

x+ ¬x = 1 , x · ¬x = 0 .

It is well known (e.g. [MB85]) that the complement is unique when it exists
and that the set of all tests forms a Boolean algebra with + as join and · as
meet. Tests are used to represent subsets or assertions in an algebraic way. In
the semiring of binary relations over a set M the tests are subidentities, i.e.,
subsets of the identity relation, of the form IN =df {(x, x) |x ∈ N} for some
subset N ⊆ M and hence in one-to-one correspondence with the subsets of M .
Because of that we will, by a slight abuse of language, say that x lies in IN when
(x, x) ∈ IN .

We will use small letters a, b, c, ... at the beginning of the alphabet to denote
arbitrary semiring elements and p, q, ... to denote tests.

Based on complementation, the difference of two tests p, q can be defined as
p− q =df p · ¬q. It satisfies, among other laws,

(p+q)−r = (p−r)+(q−r) , (p−q)−r = p−(q+r) , p−(q+r) = (p−q)·(p−r) .

For the interaction between the complement and the subsumption ordering we
can use the shunting rule

p · q ≤ r ⇔ p ≤ ¬q + r .

A special case of applying this rule twice with p = 1 is the contraposition rule

q ≤ r ⇔ ¬r ≤ ¬q .

Tests can be used to express domain or range restrictions. For instance, when a
is a relation and p, q are tests, p ·a and a · q are the subrelations of a all of whose
initial points lie in p and end points in q, respectively. Hence, all initial points
of a lie in p if and only if a ≤ p · a.

With these properties we can give an algebraic characterisation of the test
〈a〉 q that represents the inverse image under a of the set represented by q or,
equivalently, the set of initial points of a · q.

Definition 3.3. Following [DMS06], the (forward) diamond is axiomatised by
the universal property

〈a〉 q ≤ p ⇔ a · q ≤ p · a · q ⇔ a · q ≤ p · a .

Following the terminology of [DMS06], it would be more accurately termed a
pre-diamond, since we do not require the axiom 〈a · b〉 q = 〈a〉 〈b〉 q, which is not
needed for our application. In the relational setting of [BW93], test and diamond
are called monotoype and monotype factor, respectively.

The diamond enjoys the following useful algebraic properties:

〈a〉 0 = 0 , 〈a+ b〉 p = 〈a〉 p+ 〈b〉 p , 〈a〉 (p+ q) = 〈a〉 p+ 〈a〉 q .
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The latter two imply that diamond is isotone (i.e., monotonically increasing) in
both arguments:

a ≤ b ⇒ 〈a〉 p ≤ 〈b〉 p , p ≤ q ⇒ 〈a〉 p ≤ 〈a〉 q .

A special role is played by the test

�a =df 〈a〉 1 .

It represents the set of all objects that have an a-successor at all and therefore
is called the domain of a. From the isotony of diamond we conclude, for test p,

〈a〉 p ≤ �a .

3.2 Representing Types

There are a number of ways to represent types algebraically, among then hetero-
geneous relation algebras [SHW97], relational allegories [BD97] or typed Kleene
algebra [Koz98]. All these involve some amount of machinery and notation, which
we want to avoid here.

More simply, we now interpret the largest test 1 as representing the universe U
and use other tests to stand for subsets of it, e.g., for the domains associated with
types. With every type T ⊆ A, we associate a test 1T representing its domain
DT . An assertion p :: T means that p is a test, representing a set of tuples,
with p ≤ 1T . Arbitrary semiring elements a, b, c, ... will stand for preference
relations. A type assertion a :: T 2 is short for a ≤ 1T · a · 1T . By 1T ≤ 1 this
can be strengthened to an equality. Hence, since tests are idempotent under
composition, a :: T 2 implies 1T · a = a = a · 1T .

This latter property entails that the diamond respects types, i.e., for a :: T 2

and q :: T we calculate

〈a〉 q :: T ⇔ 〈a〉 q ≤ 1T ⇔ a · q ≤ 1T · a · q ⇔ a · q ≤ a · q ⇔ TRUE .

To express that x is either an element which represents a relation or a test, we
introduce the following notation:

x :: T (2) ⇔ x :: T ∨ x :: T 2 .

We will also need the infimum for elements a1, a2 :: T 2, which is axiomatised as
follows:

∀x :: T 2 : x ≤ a1 + a2 ⇔df x ≤ a1 ∧ x ≤ a2 .

In the semiring of binary relations this coincides with the intersection of two
relations. For tests p, q we have, in every semiring, p + q = p · q.

Finally, we assume for every type T a greatest element �T in {x |x :: T (2)},
i.e. we have ∀x :: T (2) : x ≤ �T .
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3.3 Join Algebras

We now deal with the central notion of join. For this, we assume the typing
mechanism of the previous section.

Definition 3.4 (Join algebra). A join algebra is an idempotent semiring with
an additional binary operator � satisfying the following requirements.

1. Join is associative, commutative and idempotent and distributes over choice
+ in both arguments. Hence � is isotone in both arguments.

2. If ai :: T
(2)
i (i = 1, 2) then a1 � a2 :: (T1 � T2)

(2).
3. For types Ti (i = 1, 2) we have

1T1�T2 = 1T1 � 1T2 and �T1�T2 = �T1 � �T2 .

4. Join and composition satisfy, for ai, bi :: T
(2)
i (i = 1, 2) with disjoint Ti, the

exchange law

(a1 � a2) · (b1 � b2) = (a1 · b1) � (a2 · b2).

5. The diamond operator respects joins of elements with disjoint types: for
a :: T 2

1 , p :: T1 and b :: T 2
2 , q :: T2 with T1 ∩ T2 = ∅ we have the exchange law

〈a � b〉 (p � q) = 〈a〉 p � 〈b〉 q .

Our typed relations from Section 2.2 form a join algebra.

3.4 Representation of Preferences

Preferences introduced in [Kie02] are strict partial orders, i.e. a special kind of
binary homogeneous relations. These relations are defined on domains of types,
and the objects compared are “database tuples” contained in a “database rela-
tion”, i.e., a set of tuples.

To avoid confusion between the two uses of the word “relation” we call tuples
database elements here and the database relation the basic set of objects. This
means that we consider a “static” snapshot of the database at the time of the
respective preference-based query and assume that no data is deleted or inserted
into the database while the query being evaluated.

Abstractly, preferences can now be modelled as typed elements a :: T 2 for
some type T . If one wants to express transitivity or irreflexivity of a, this can be
done by requiring a · a ≤ a or a + 1T = 0, respectively. However, as we will see,
for the most part these assumptions are inessential for the laws we will derive.

4 Maximal Element Algebra

Now we are ready for the algebraic treatment of our central notion.
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4.1 Basic Definitions and Results

Definition 4.1. The best or maximal objects w.r.t. element a :: T 2 and test
p :: T are represented by the test

a  p =df p− 〈a〉 p .

In particular, the test a  1T represents the a-best objects overall.
This definition is also given, in different notation, in [DMS06]. An analogous

formulation, however, with tests encoded as vectors, i.e., right-universal rela-
tions, can be found in [SS93].

To give a first impression of the algebra at work, we show a number of useful
basic properties of the  operator. Proofs of the following two lemmas can be
found in Appendix B.1 and B.2.

Lemma 4.2. Assume a, b :: T 2, p :: T . Then the following holds:

1. a  1T = ¬�a.
2. �b ≤ �a ⇔ a  1T ≤ b  1T .
3. a  p ≤ p.
4. a  1T ≤ p ⇔ a  1T ≤ a  p.
5. a  1T ≤ a  (a  1T ).
6. a  (a  p) = a  p.
7. (a+ b)  p = (a  p) · (b  p).
8. b ≤ a ⇒ a  p ≤ b  p.
9. 1T ≤ a ⇒ a  p = 0T .

Lemma 4.3. Let p, q :: T be a disjoint decomposition of 1T , i.e. p + q = 1T ,
p · q = 0T . Then we have ¬p = q.

4.2 Basic Applications

Now we want to demonstrate how the maximality operator  works.

Example 4.4. Let a :: T 2 be a preference relation and suppose p1, p2 :: T are
tests that form a disjoint decomposition of 1T . Assume that all elements in p2
are better than all elements in p1, i.e.,

〈a〉 p2 = p1, 〈a〉 p1 = 0T .

We show that p2 represents the maximal elements, i.e. p2 = a  1T :

a  1T

= {[ definition ]}
¬ 〈a〉 1T

= {[ p1 + p2 = 1T ]}
¬(〈a〉 (p1 + p2))
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= {[ distributivity of diamond ]}
¬(〈a〉 p1 + 〈a〉 p2)

= {[ assumptions of a ]}
¬p1

= {[ Lemma 4.3 ]}
p2

By this tiny example one can see how the maximality operator works in general,
because one can always decompose 1T into tests representing the non-maximal
(p1) and the maximal (p2) elements, where p1 and p2 are disjoint.

4.3 Prefilters

In practical applications, e.g., in databases, the tests, in particular the test 1
representing all objects in the database, can be quite large. Hence it may be
very expensive to compute a  1 for a given a. However, it can be less expensive
to compute b  1 for another element b; ideally, that set is much smaller and the
a-best objects overall coincide with the a-best objects within b1. This motivates
the following definition.

Definition 4.5. Assume a, b :: T 2. We call b a prefilter for a, written as b pref a,
if and only if

a  1T = a  (b  1T ) .

Note that no connection between a and b is assumed. By Lemma 4.2.6 we have
a pref a for all a. A concrete example of a prefilter will be given in Section 5.1.

We can give another, calculationally useful, characterisation of prefilters. The
proof of the following theorem can be found in appendix B.3.

Theorem 4.6. b pref a ⇔ �b ≤ �a ∧ �a ≤ �b+ 〈a〉 ¬�b.
So far, we have not required any special properties of the elements a that rep-
resent, e.g., preference relations. Instead of transitivity or irreflexivity we need
an assumption that such elements admit “enough” maximal objects. This is ex-
pressed by requiring every non-maximal object to be dominated by some max-
imal one. In a setting with finitely many objects, such as a database, and a
preference relation on them this property is always satisfied and hence is no
undue restriction for our purposes. We forego a discussion of this assumption
for infinite sets of objects, since there it is related to fundamental issues such
as Zorn’s Lemma and Hausdorff’s maximality principle, hence to the axiom of
choice.

Definition 4.7. We call an element a :: T 2 normal if it satisfies ¬(a  1T ) ≤
〈a〉 (a  1T ).

This is a compact algebraic formulation of the above domination requirement.
By Lemma 4.2.1 it is equivalent to �a ≤ 〈a〉 ¬�a.

First we show that any relation on a subset of the domain of a normal relation
provides a prefilter.
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Theorem 4.8. Assume a, b :: T 2.

1. Let a be normal. Then �b ≤ �a ⇒ b pref a.
2. Let a+ b be normal. Then a pref (a+ b).

Proof

1. The assumption about b is the first conjunct of the right hand side in The-
orem 4.6. For the second conjunct we calculate

TRUE

⇔ {[ a normal ]}
�a ≤ 〈a〉 ¬�a

⇒ {[ �b ≤ �a, contraposition and isotony of diamond ]}
�a ≤ 〈a〉 ¬�b

⇒ {[ x ≤ x+ y and transitivity of ≤ ]}
�a ≤ �b+ 〈a〉 ¬�b .

2. Since a ≤ a+ b, isotony of diamond and hence of domain imply �a ≤ �(a+ b)
and the claim follows from Part 1.

Next we show that under certain conditions prefilters can be nested.

Theorem 4.9. Assume a, b, c :: T 2, where b  1T ≤ c  1T and b pref a with
normal a. Then also c pref a.

Proof. First, by Theorem 4.6 we have �b ≤ �a ∧ �a ≤ �b + 〈a〉 ¬�b. Second, by
Lemma 4.2.1 and contraposition the assumption b  1T ≤ c  1T is equivalent
to �c ≤ �b. Hence by transitivity of ≤ we infer �c ≤ �a. Now normality of a and
Theorem 4.8.1 show the claim.

5 Complex Preferences

We have seen how some laws of single preference relations can be proved in
point-free style in our algebra.

Now we want to compose preferences into complex preferences. To this end
we will introduce some special operators. The standard semiring operations like
multiplication, addition and meet also lead to some kind of complex preferences,
but they are rarely used in the typical application domain of preference algebra
[Kie02, KEW11]. Instead the so-called Prioritisation and Pareto composition are
the most important constructors for complex preferences.

5.1 Complex Preferences as Typed Relations

To motivate our algebraic treatment we first repeat the definitions of these pref-
erence combinators in the concrete setting of typed relations [Kie02].
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For basic sets M,N and preference relations R ⊆M2, S ⊆ N2 the prioritisa-
tion R& S is defined as:

(x1, x2) (R & S) (y1, y2) ⇔df x1 Ry1 ∨ (x1 = y1 ∧ x2 S y2)

where xi ∈M, yi ∈ N . The Pareto preference is defined as:

(x1, x2) (R⊗ S) (y1, y2) ⇔df x1 Ry1 ∧ (x2 S y2 ∨ x2 = y2) ∨
x2 S y2 ∧ (x1 Ry1 ∨ x1 = y1)

In order theory the prioritisation is well-known as lexicographical order.
We now want to get rid of the point-wise notation in favour of operators on

relations. The technique is mostly standard; we exemplify it for the prioritisation.
We calculate, assuming first M :: A,N :: B with distinct attribute names A,B,

(x1, x2) (R & S) (y1, y2)

⇔ {[ definition ]}
x1 Ry1 ∨ (x1 = y1 ∧ x2 S y2)

⇔ {[ logic ]}
(x1 Ry1 ∧ true) ∨ (x1 = y1 ∧ x2 S y2)

⇔ {[ definitions of �B and 1A ]}
(x1 Ry1 ∧ x2�B y2) ∨ (x1 1A y1 ∧ x2 S y2)

⇔ {[ definition of cartesian product of relations ]}
(x1, x2) (R ×�B) (y1, y2) ∨ (x1, x2) (1A × S) (y1, y2)

⇔ {[ definition of relational union ]}
(x1, x2) ((R ×�B) ∪ (1A × S)) (y1, y2) .

A similar calculation can be done for the Pareto composition. Now we can write
the point-free equations

R& S = (R×�B) ∪ (1A × S) ,
R⊗ S = (R× (S ∪ 1B)) ∪ ((R ∪ 1A)× S) .

This is close to an abstract algebraic formulation. However, since we want to
cover also the case of non-disjoint, overlapping tuples, we will replace the Carte-
sian product × by the join � . From now on a preference x has type Tx, i.e.
a :: T 2

a , b :: T
2
b , ....

Definition 5.1. For the sake of readability we define for x :: T 2:

0x =df 0T , 1x =df 1T , �x =df �T

Definition 5.2 (Prioritisation/Pareto composition of preferences). As-
sume a join algebra. For a :: T 2

a , b :: T 2
b the Prioritisation a & b :: Ta � Tb is

defined by
a& b =df a � �b + 1a � b.
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The Pareto compositions a <⊗ b, a⊗> b, a⊗ b :: Ta � Tb are defined by

a <⊗ b =df a � (b+ 1b),

a⊗> b =df (a+ 1a) � b,

a⊗ b =df a <⊗ b+ a⊗> b.

a<⊗ b and a⊗>b are called left and right Semi-Pareto compositions, while a⊗ b
is the standard Pareto composition.

Remark 5.3. Under certain circumstances the term 〈�T 〉 q occurring, for exam-
ple, in 〈a& b〉 (p � q) can be simplified. Call an idempotent semiring weakly
Tarskian if for all types T and tests q :: T we have

〈�T 〉 q =

{
1T if q �= 0T ,
0T if q = 0T .

For instance, the semiring of binary relations is weakly Tarskian. This implies
that in a term like 〈a � �b〉 (q1 � q2) with a :: T 2

a the test q2 is irrelevant as long
as q2 �= 0b. This is exactly what we want, because q1 � 0b (= 0a�b) is a zero
element and must not have successors in any relation.

A semiring with � is called Tarskian when a �= 0 ⇒ � · a · � = �. This
property was first stated for the semiring of binary relations (see, e.g., [SS93]).
By the standard theory of diamond and domain [DMS06], a Tarskian semiring
is also weakly Tarskian, but generally not vice versa.

In our hotel example from the introduction, the user would typically express
her preference as the Pareto composition of price and distance to the beach.

The definition of the Pareto compositions immediately yields an important
optimisation tool.

Corollary 5.4. The preferences a<⊗b and a⊗>b are prefilters for a⊗b. Likewise,
a � �B is a prefilter for a& b.

Proof. By definition, a <⊗ b, a ⊗> b ≤ a ⊗ b and a � �B ≤ a & b; hence Theo-
rem 4.8.1 applies.

Hence, in our hotel example from the introduction, we may prefilter by price or
by distance to the beach to speed up the overall filtering. Further applications
of this principle are discussed in detail in [End11].

5.2 Maximality for Complex Preferences

We first state the behaviour of the maximality operator for joins of preference
elements.

Lemma 5.5. For a :: T 2
a , p :: Ta and b :: T 2

b , q :: Tb with Ta ∩ Tb = ∅ we have

(a � b)  (p � q) = (a  p) � q + p � (b  q) .
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Proof. We observe that, under the disjointness assumption, by Corollary 2.8.3
and a standard law for Cartesian products, for r :: Ta, s :: Tb, we have

(p � q)− (r � s) = (p− r) � q + p � (q − s) .

Hence, by the definitions and Lemma 2.10,

(a � b)  (p � q)

= (p � q)− 〈a � b)〉 (p � q)

= (p � q)− (〈a〉 p � 〈b〉 q)
= (p− 〈a〉 p) � q + p � (q − 〈b〉 q)
= (a  p) � q + p � (b  q) .

Since both prioritisation and Pareto composition are defined as sums of joins,
we can now use this together with Lemma 4.2.7, 4.2.1 and the exchange axiom
of Definition 3.4.4 to calculate their maximal elements.

Lemma 5.6. For a :: T 2
a , p :: Ta and b :: T 2

b , q :: Tb with Ta ∩ Tb = ∅ we have

(a <⊗ b)  (p � q) = (a  p) � q ,
(a⊗> b)  (p � q) = p � (b  q) ,
(a⊗ b)  (p � q) = (a  p) � (b  q) ,
(a& b)  (p � q) = (a  p) � (b  q) .

The proofs are straightforward and hence omitted.

Remark 5.7. It follows directly from the above lemma that

(a& b)  (p � q) = (b & a)  (q � p) = (a⊗ b)  (p � q) ,

i.e. Pareto composition and Prioritisation are identical on tests of the form p � q.
Note that this does not hold for general tests. Consider, for instance, the

basic set {0, 1}2 and its subset N =df {(0, 1), (1, 0)}, both represented by tests.
Assume a preference order Ri in the i-th component which fulfills 0Ri 1, for
i = 1, 2. Then (R1 & R2)  N = {(1, 0)}, whereas (R1 ⊗ R2)  N = N . This
does not contradict our above result, since N cannot be represented in the form
L×M with L,M ⊆ {0, 1}.

5.3 Equivalence of Preference Terms

Corollary 5.8. Let a :: T 2
a and b, b′ :: T 2

b . Then we have:

a& (b+ b′) = a& b+ a& b′.

Proof. Follows from definition of & and distributivity of � over +.

Corollary 5.9. For a :: T 2
a we have a <⊗ a = a⊗> a = a⊗ a = a.

Proof. a<⊗ a =df (a+1a) � a = (a+1a)+ a = a. For Right Semi-Pareto and
Pareto an analogous argument shows the claim.
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Theorem 5.10. For a :: Ta we have that (a &) distributes over <⊗,⊗> and ⊗.

Proof. Let b :: T 2
b , c :: T

2
c . We use the auxiliary equation (see Appendix B.4 for

a proof)
a& b+ 1a� b = a& (b + 1B). (1)

Now we calculate:

(a& b)⊗> (a& c)

= {[ definition of ⊗> ]}
(a& b + 1a�b) � (a& c)

= {[ equation (1) ]}
(a& (b + 1b)) � (a& c)

= {[ definition of & ]}
(a � �b + 1a � (b + 1b)) � (a � �c + 1a � c)

= {[ distributivity of � ]}
a � �b � a � �c + a � �b � 1a � c +
1a � (b + 1b) � a � �c + 1a � (b+ 1b) � 1a � c

= {[ a � a = a and a � 1a = a + 1a, compare Corollary 2.8.2 ]}
a � �b � �c + (a + 1a) � �b � c +
(a + 1a) � (b+ 1b) � �c + 1a � (b+ 1b) � c

= {[ a + 1a ≤ a, c ≤ �c, subsumption order ]}
a � �b � �c + 1a � (b+ 1b) � c

= {[ �b�c = �b � �c, definition of & ]}
a& ((b + 1b) � c)

= {[ definition ⊗> ]}
a& (b ⊗> c)

A symmetric argument holds for <⊗, so that (a &) distributes over <⊗ and ⊗>.
Using this we infer the distributivity over ⊗, see Appendix B.4 for details.

The proof of this theorem shows that the framework of typed relations is rich
enough to prove non-trivial preference term equivalences.

We have proved this theorem using Prover9. The input for the auxiliary
equation (1) can be found in Appendix A and the input for the entire theorem
is given in [MR12].

Such equivalences are useful for an optimized evaluation of preferences, be-
cause the evaluation of an equivalent term may be faster.

6 Conclusion and Outlook

The present work intends to advance the state of the art in formalising preference
algebra. Besides the point-wise “semi-formal” proofs by hand that had been
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used originally we wanted to use automatic theorem provers like Prover9 to
get the theorems of preference algebra machine-checked. But we realized that
there was no straightforward way to put theorems like the prefilter properties or
the distributive law for Prioritisation/Pareto into a theorem prover. Especially
for the latter problem, the main reason is that originally the equivalence of
preference terms was defined, e.g. in [Kie02], in a very implicit manner: two
preference terms are equivalent if and only if the corresponding relations are
identical on the basic set. This definition is not very useful if one tries to find
(automatically) general equivalence proofs.

The presented concept of a typed join algebra makes it possible to define such
equivalences explicitly: two preference terms are identical, if and only if their
algebraic representations are equal in the algebra.

Other theorems for which proofs are necessary do not just involve preference
terms, but properties of the maximality operator and prefilters. With the inverse
image we have employed a well-known algebraic concept to define the maximality
operator in quantifier-free form. This reformulation led us to point-free proofs.

The relevance of this topic stems from the demand for optimizing the evalu-
ation of preference queries (e.g. [KH03, HK05]. The paper [REM+12] presents
a practical application of preference algebra, where complex preference terms
and huge data sets occur, and therefore optimisation methods are of essential
interest.

Our algebra is rich enough to cover the concept of preferences and their com-
plex compositions as well as the application of the maximality operator to them.
Simultaneously, the algebra is simple enough to be encoded in theorem provers
like Prover9.

With this we have produced a framework which hopefully will be the first
step for a comprehensive algebraic description of preference algebra. Our work
also covers some aspects of databases in general and thus contributes to the
formal description of database-related problems. A project in which our calculus
is applied systematically at a larger scale, using machine assistance, is under
way.

Acknowledgements. We are grateful to Jeremy Gibbons (MPC Co-Chair) and
the anonymous referees for valuable comments.
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A Sample Prover Input

For a :: T 2
a and b :: T 2

b we show the auxiliary equation (1) from Theorem 5.10:

a& b+ 1a� b = a& (b + 1b).

We use the following operators:
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Prover-Input mathematically
a typed T a a :: T 2

a

a join b a � b
T a tjoin T b Ta � Tb

a prior b a& b
a + b a+ b

The assumptions are given as follows:

% all elements are typed
exists T (x typed T).

% addition is associative , commutative and idempotent
(x + y) + z = x + (y + z).
x + y = y + x.
x + x = x.

% addition preserves type
x typed z & y typed z -> (x+y) typed z.

% subsumption order
x <= y <-> y = x + y.

% top is greatest element
x typed z -> x <= top(z).

% typing of top
top(z) typed z.
top(z1 tjoin z2) = top(z1) join top(z2).

% typing of one
one(z) typed z.
one(z1 tjoin z2) = one(z1) join one(z2).

% abbreviated typing
x typed z -> top(x) = top(z).
x typed z -> one(x) = one(z).

% distributivity of the join over addition
x join (y1 + y2) = x join y1 + x join y2.

% typing of join
x typed z1 & y typed z2 -> (x join y) typed (z1 tjoin z2).

% prioritisation (without resulting type)
x prior y = x join top(y) + one(x) join y.

Finally our goal is:

% auxiliary equation for distributive law
u prior v + one(u join v) = u prior (v + one(v)).

The entire input for the proof of theorem 5.10 can be found in [MR12].

B Proofs

In the proofs of section 4 we omit the type-index of 1 and assume type-compat-
ibility.
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B.1 Proof of Lemma 4.2

1. Immediate from the definitions and 1− q = ¬q.
2. Immediate from Part 1 and shunting.
3. a  p

= {[ definitions of  and − ]}
p · ¬ 〈a〉 p

≤ {[ property of intersection ]}
p .

4. a  1 ≤ a  p

⇔ {[ definition of  and Part 1 ]}
¬�a ≤ p− 〈a〉 p

⇔ {[ definition of − and universal property of intersection ]}
¬�a ≤ p ∧ ¬�a ≤ ¬〈a〉 p

⇔ {[ shunting in second conjunct ]}
¬�a ≤ p ∧ 〈a〉 p ≤ �a

⇔ {[ second conjunct true by (3.1) ]}
¬�a ≤ p

⇔ {[ definition of  ]}
a  1 ≤ p .

5. Immediate from the previous property by setting p = a  1.
6. a  (a  p)

= {[ definition of  ]}
(p− 〈a〉 p)− 〈a〉 (p− 〈a〉)

= {[ property of difference ]}
p− (〈a〉 p+ 〈a〉 (p− 〈a〉))

= {[ distributivity of 〈〉 ]}
p− 〈a〉 (p+ (p− 〈a〉))

= {[ since p− 〈a〉 ≤ p ]}
p− 〈a〉 p

= {[ definition of  ]}
a  p .

7. (a+ b)  p

= {[ definition of  ]}
p− 〈a+ b〉 p

= {[ distributivity of 〈〉 ]}
p− (〈a〉 p+ 〈b〉 p)

= {[ property of difference ]}
(p− 〈a〉 p) · (p− 〈b〉 p)
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= {[ definition of  ]}
(a  p) · (b  p) .

8. Assume b ≤ a, i.e., b+ a = a.

a  p

= {[ assumption ]}
b+ a  p

= {[ previous property ]}
(b  p) · (a  p)

≤ {[ property of intersection ]}
b  p .

9. By isotony of the diamond we have p = 〈1〉 p ≤ 〈a〉 p and hence a  p =
p− 〈a〉 p = 0.

B.2 Proof of Lemma 4.3

q = (p+ ¬p) · q =

=0︷︸︸︷
p · q + ¬p · q ≤ ¬p

¬p = (p+ q)︸ ︷︷ ︸
=1

·¬p = p · ¬p+ q · ¬p ≤ q

By antisymmetry we have ¬p = q.

B.3 Proof of Theorem 4.6

We split the left-hand side of the claim equivalently into

b pref a ⇔ a  1 ≤ a  (b  1) ∧ a  (b  1) ≤ a  1 .

By Parts 4 and 2 of Lemma 4.2 the first conjunct is equivalent to �b ≤ �a. For
the second conjunct we calculate

a  (b  1) ≤ a  1

⇔ {[ definition of  and Lemma 4.2.1 ]}
¬�b− 〈a〉 ¬�b ≤ ¬�a

⇔ {[ contraposition and De Morgan ]}
�a ≤ �b+ 〈a〉 ¬�b .

B.4 Proof of Theorem 5.10

Auxiliary equation (1):
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a& b+ 1a� b

= {[ definition of & ]}
a � �b + 1a � b+ 1a � 1b

= {[ distributivity of � ]}
a � �b + 1a � (b+ 1b)

= {[ definition of & ]}
a& (b + 1b)

Distributivity of (a &) over ⊗:

a& (b ⊗ c)

= {[ definition of ⊗ ]}
a& (b <⊗ c+ b⊗> c)

= {[ distributivity of & over +, cor. 5.8 ]}
a& (b <⊗ c) + a& (b ⊗> c)

= {[ distributivity of (a &) over <⊗ and ⊗> ]}
(a& b)<⊗ (a& c) + (a& b)⊗> (a& c)

= {[ definition of ⊗ ]}
(a& b)⊗ (a& c)
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Abstract. Tree automata are traditionally used to study properties of
tree languages and tree transformations. In this paper, we consider tree
automata as the basis for modular and extensible recursion schemes.
We show, using well-known techniques, how to derive from standard
tree automata highly modular recursion schemes. Functions that are de-
fined in terms of these recursion schemes can be combined, reused and
transformed in many ways. This flexibility facilitates the specification of
complex transformations in a concise manner, which is illustrated with
a number of examples.

1 Introduction

Functional programming languages are an excellent tool for specifying abstract
syntax trees (ASTs) and defining syntax-directed transformations on them: al-
gebraic data types provide a compact notation for both defining types of ASTs
as well as constructing and manipulating ASTs. As a complement to that, re-
cursively defined functions on algebraic data types allow us to traverse ASTs
defined by algebraic data types.

For example, writing an evaluation function for a small expression language
is easily achieved in Haskell [19] as follows:

data Exp = Val Int | Plus Exp Exp

eval :: Exp → Int
eval (Val i) = i
eval (Plus x y) = eval x + eval y

Unfortunately, this simple approach does not scale very well. As soon as we have
to implement more complex transformations that work on more than just a few
types of ASTs, simple recursive function definitions become too inflexible and
complicated.

Specifying and implementing such transformations is an everyday issue for
compiler construction and thus has prompted a lot of research in this area. One
notable approach to address both sides is the use of attribute grammars [15, 22].
These systems facilitate compact specification and efficient implementation of
syntax-directed transformations.

J. Gibbons and P. Nogueira (Eds.): MPC 2012, LNCS 7342, pp. 263–299, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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In this paper, we take a different but not unrelated approach. We still want
to implement the transformations in a functional language. But instead of writ-
ing transformation functions as general recursive functions as the one above,
our goal is to devise recursion schemes, which can then be used to define the
desired transformations. The use of these recursion schemes will allow us reuse,
combine and reshape the syntax-directed transformations that we write. In ad-
dition, the embedding into a functional language will give us a lot of flexibility
and expressive power such as a powerful type system and generic programming
techniques.

As a starting point for our recursion schemes we consider various kinds of tree
automata [3]. For each such kind we show how to implement them in Haskell.
From the resulting recursion schemes we then derive more sophisticated and
highly modular recursion schemes. In particular, our contributions are the fol-
lowing:

– We implement bottom-up tree acceptors (Section 2), bottom-up tree trans-
ducers (Section 4) and top-down tree transducers (Section 5) as recursion
schemes in Haskell. While the implementation of the first two is well-known,
the implementation of the last one is new but entirely straightforward.

– From the thus obtained recursion schemes, we derive more modular variants
(Section 3) using a variation of the well-know product automaton construc-
tion (Section 3.1) and Swierstra’s data types à la carte [23] (Section 3.2).

– We decompose the recursion schemes derived from bottom-up and from top-
down tree transducer into a homomorphism part and a state transition part
(Section 4.5 and Section 5.3). This makes it possible to specify these two
parts independently and to modify and combine them in a flexible manner.

– We derive a recursion scheme that combines both bottom-up and top-down
state propagation (Section 6).

– We illustrate the merit of our recursion schemes by a running example in
which we develop a simple compiler for a simple expression language. Util-
ising the modularity of our approach, we extend the expression language
throughout the paper in order to show how the more advanced recursion
schemes help us in devising an increasingly more complex compiler. In addi-
tion to that, the high degree of modularity of our approach not only simplifies
the construction of the compiler but also allows us to reuse earlier iterations
of the compiler.

Apart from the abovementioned running example, we also include a number of
independent examples illustrating the mechanics of the presented tree automata.

The remainder of this paper is structured as follows: we start in Section 2 with
bottom-up tree acceptors and their implementation in Haskell. In Section 3, we
introduce two dimensions of modularity that can be exploited in the recursion
scheme obtained from bottom-up tree acceptors. In Section 4, we will turn to
bottom-up tree transducers, which, based on a state that is propagated upwards,
perform a transformation of an input term to an output term. In Section 4.5 we
will then introduce yet another dimension of modularity by separating the state
propagation in tree transducers from the tree transformation. This will also allow
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us to adopt the modularity techniques from Section 3. In Section 5, we will do
the same thing again, however, for top-down tree transducers in which the state
is propagated top-down rather than bottom-up. Finally, in Section 6, we will
combine both bottom-up and top-down state transitions.

The library of recursion schemes that we develop in this paper is available as
part of the compdata package [2]. Additionally, this paper is written as a literate
Haskell file1, which can be directly loaded into the GHCi Haskell interpreter.

2 Bottom-Up Tree Acceptors

The tree automata that we consider in this paper operate on terms over some
signature F . In the setting of tree automata, a signature F is simply a set of
function symbols with a fixed arity and we write f/n ∈ F to indicate that f is
a function symbol in F of arity n. Given a signature F and some set X , the set
of terms over F and X , denoted T (F ,X ), is the smallest set T such that X ⊆ T
and if f/n ∈ F and t1, . . . , tn ∈ T then f(t1, . . . , tn) ∈ T . Instead of T (F , ∅) we
also write T (F) and call elements of T (F) terms over F . Tree automata run on
terms in T (F).

Each of the tree automata that we describe in this paper consists at least of
a finite set Q of states and a set of rules according to which an input term is
transformed into an output term. While performing such a transformation, these
automata maintain state information, which is stored in the intermediate results
of the transformation. To this end each state q ∈ Q is considered as a unary
function symbol and a subterm t is annotated with state q by writing q(t). For
example, f(q0(a), q1(b)) represents the term f(a, b), where the two subterms a
and b are annotated with states q0 and q1, respectively.

The rules of the tree automata in this paper will all be of the form l→ r with
l, r ∈ T (F ′,X ), where F ′ = F 3 {q/1 | q ∈ Q}. The rules can be read as term
rewrite rules, i.e. the variables in l and t are placeholders that are instantiated
with terms when the rule is applied. Running an automaton is then simply a
matter of applying these term rewrite rules to a term. The different kinds of tree
automata only differ in the set of rules they allow.

2.1 Deterministic Bottom-Up Tree Acceptors

A deterministic bottom-up tree acceptor (DUTA) over a signature F consists of
a (finite) set of states Q, a set of accepting states Qa ⊆ Q, and a set of transition
rules of the form

f(q1(x1), . . . , qn(xn))→ q(f(x1, . . . , xn)), with f/n ∈ F and q, q1, . . . , qn ∈ Q

The variable symbols x1, . . . , xn serve as placeholders in these rules and states in
Q are considered as function symbols of arity 1. The set of transition rules must
be deterministic – i.e. there are no two different rules with the same left-hand

1 Available from the author’s web site.
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side – and complete – i.e. for each f/n ∈ F and q1, . . . , qn ∈ Q, there is a rule
with the left-hand side f(q1(x1), . . . , qn(xn)). The state q on the right-hand side
of the transition rule is also called the successor state of the transition.

By repeatedly applying the transition rules to a term t over F , initial states
are created at the leaves which then get propagated upwards through function
symbols. Eventually, we obtain a final state qf at the root of the term. That is,
an input term t is transformed into qf (t). The term t is accepted by the DUTA
iff qf ∈ Qa. In this way, a DUTA defines a term language.

Example 1. Consider the signature F = {and/2, not/1, tt/0,ff/0} and the DUTA
over F with Q = {q0, q1}, Qa = {q1} and the following transition rules:

ff → q0(ff)

tt→ q1(tt)

not(q0(x))→ q1(not(x))

not(q1(x))→ q0(not(x))

and(q1(x), q1(y))→ q1(and(x, y))

and(q0(x), q1(y))→ q0(and(x, y))

and(q1(x), q0(y))→ q0(and(x, y))

and(q0(x), q0(y))→ q0(and(x, y))

Terms over signature F are Boolean expressions and the automaton accepts such
an expression iff it evaluates to true.

Note that the rules are complete – for each function symbol, every combination
of input states occurs in the left-hand side of some rule – and deterministic –
there are no two rules with the same left-hand side.

The transition rules are applied by interpreting them as rules in a term rewrit-
ing system, where variables are placeholders for terms. For the term and(tt,ff),
we get the following derivation:

and(tt,ff)→ and(q1(tt),ff)→ and(q1(tt), q0(ff))→ q0(and(tt,ff))

The result of this derivation is the final state q0; the term is rejected.
The following picture illustrates a run of the automaton on the bigger term

not(and(not(ff), and(tt,ff))):
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For the sake of conciseness, we applied rules in parallel where possible. At first
we apply the rules to the leaves of the term, performing three rewrite steps in
parallel. This effectively produces the initial states of the run. Subsequent rule
applications propagate the states according to the rules until we obtain the final
state at the root of the term.

Note that in both runs, apart from the final state at the root, the result term
is the same as the one we started with. This is expected. The only significant
output of a DUTA run is the final state.
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The rules of a DUTA contain some syntactic overhead as they explicitly copy the
function symbol from the left-hand side to the right-hand side. This formulation
serves two purposes: first, it makes it possible to describe the run of a DUTA as
a term reduction as in the above example. Secondly, we will see that the more
sophisticated automata that we will consider later are simply generalisations of
the rules of a DUTA, which for example do not require copying the function
symbol but allow arbitrary transformations.

2.2 Algebras and Catamorphisms

For the representation of recursion schemes in Haskell, we consider data types
as fixed points of polynomial functors:

data Term f = In (f (Term f ))

Given a functor f that represents some signature, Term f constructs its fixed
point, which represents the terms over f . For example, the data type Exp from
the introduction may be instead defined as Term Sig with2

data Sig e = Val Int | Plus e e

The functoriality of Sig is given by an instance of the type class Functor :

instance Functor Sig where
fmap f (Val i) = Val i
fmap f (Plus x y) = Plus (f x ) (f y)

The function eval from the introduction is defined by a simple recursion scheme:
its recursive definition closely follows the recursive definition of the data type
Exp. This recursion scheme is known as catamorphism (or also fold). Given an
algebra, i.e. a functor f and type a together with a function of type f a → a, its
catamorphism is a function of type Term f → a constructed as follows:

cata :: Functor f ⇒ (f a → a)→ (Term f → a)
cata φ (In t) = φ (fmap (cata φ) t)

In the definition of the algebra for the evaluation function, we make use of
the fact that the arguments of the Plus constructor are already the results of
evaluating the corresponding subexpressions:

evalAlg :: Sig Int → Int
evalAlg (Val i) = i
evalAlg (Plus x y) = x + y

eval :: Term Sig → Int
eval = cata evalAlg

Programming in algebras and catamorphisms or other algebraic or coalgebraic
recursion schemes is a well-known technique in functional programming [20]. We
shall use this representation in order to implement the recursion schemes that
we derive from the tree automata.
2 Term Sig is “almost” isomorphic to Exp. The only difference stems from the fact
that the constructor In is non-strict.
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2.3 Bottom-Up State Transition Functions

If we omit the syntactic overhead of the state transition rules of DUTAs, we see
that DUTAs are algebras – in fact, they were originally defined as such [5]. For
instance, the algebra of the automaton in Example 1 is an algebra that evaluates
Boolean expressions. Speaking in Haskell terms, a DUTA over a signature functor
F is given by a type of states Q , a state transition function in the form of an
F -algebra trans :: F Q → Q , and a predicate acc ::Q → Bool . A term over F is
an element of type Term F . When running a DUTA on a term t of type Term F ,
we obtain the final state cata trans t of the run. Afterwards, the predicate acc
checks whether the final state is accepting:

runDUTA :: Functor f ⇒ (f q → q)→ (q → Bool )→ Term f → Bool
runDUTA trans acc = acc . cata trans

Example 2. We implement the DUTA from Example 1 in Haskell as follows:

data F a = And a a
| Not a
| TT | FF

data Q = Q0 | Q1

acc ::Q → Bool
acc Q1 = True
acc Q0 = False

trans :: F Q → Q
trans FF = Q0
trans TT = Q1
trans (Not Q0 ) = Q1
trans (Not Q1 ) = Q0
trans (And Q1 Q1 ) = Q1
trans (And ) = Q0

The automaton is run on a term of type Term F as follows:

evalBool :: Term F → Bool
evalBool = runDUTA trans acc

The restriction to a finite state space is not crucial for our purposes as we are not
interested in deciding properties of automata. Instead, we want to use automata
as powerful recursion schemes that allow for modular definitions of functions on
terms. Since we are only interested in the traversal of the term that an automaton
provides, we also drop the predicate and consider the final state as the output
of a run of the automaton. We, therefore, consider only the transition function
of a DUTA:

type UpState f q = f q → q

runUpState :: Functor f ⇒ UpState f q → Term f → q
runUpState = cata

With the functions evalAlg from Section 2.2 and trans from Example 2, we have
already seen two simple examples of bottom-up state transition functions. In
practice, only few state transitions of interest are that simple, of course.

In the following, we want to write a simple compiler for our expression lan-
guage that generates code for a simple virtual machine with a single accumulator
register and a random access memory indexed by non-negative integers. At first,
we devise the instructions of the virtual machine:
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type Addr = Int
data Instr = Acc Int | Load Addr | Store Addr | Add Addr
type Code = [Instr ]

For simplicity, we use integers to represent addresses for the random access
memory. The four instructions listed above write an integer constant to the
accumulator, load the contents of a memory cell into the accumulator, store
the contents of the accumulator into a memory cell, and add the contents of a
memory cell to the contents of the accumulator, respectively.

The code that we want to produce for an expression e of type Term Sig should
evaluate e, i.e. after executing the code, the virtual machine’s accumulator is
supposed to contain the integer value eval e:

codeSt :: UpState Sig Code
codeSt (Val i) = [Acc i ]
codeSt (Plus x y) = x ++ [Store a ] ++ y ++ [Add a ]
where a = . . .

In order to perform addition, the result of the computation for the first summand
has to be stored into a temporary memory cell at some address a. However, we
also have to make sure that this memory cell is not overwritten by the compu-
tation for the second summand. To this end, we maintain a counter that tells us
which address is safe to use:

codeAddrSt ::UpState Sig (Code ,Addr)
codeAddrSt (Val i) = ([Acc i ], 0)
codeAddrSt (Plus (x , a′) (y, a)) = (x ++ [Store a ] ++ y ++ [Add a ],

1 +max a a′)
code :: Term Sig → Code
code = fst . runUpState codeAddrSt

While this definition yields the desired code generator, it is not very elegant as
it mixes the desired output state – the code – with an auxiliary state – the fresh
address. This flaw can be mitigated by using a state monad to carry around the
auxiliary state. In this way we can still benefit from computing both states side
by side has, which means that the input term is only traversed once.

This however still leaves the specification of two computations uncomfortably
entangled, which is not only more prone to errors but also inhibits reuse and
flexibility: the second component of the state, which we use as a fresh address, is
in fact the height of the expression and might be useful for other computations:

heightSt ::UpState Sig Int
heightSt (Val ) = 0
heightSt (Plus x y) = 1 +max x y

Moreover, as we extend the expression language with new language features, we
might have to change the way we allocate memory locations for intermediate
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results. Thus, separating the two components of the computation is highly de-
sirable since it would then allow us to replace the heightSt component with a
different one while reusing the rest of the code generator.

The next section addresses this concern.

3 Making Tree Automata Modular

Our goal is to devise modular recursion schemes. In this section, we show how to
leverage two dimensions of modularity inherent in tree automata, viz. the state
space and the signature. For each dimension, we present a well-know technique
to make use of the modularity in the specification of automata. In particular,
we shall demonstrate these techniques on bottom-up state transitions. However,
due to their generality, both techniques are applicable also to the more advanced
tree automata that we consider in later sections.

3.1 Product Automata

A common construction in automata theory combines two automata by simply
forming the cartesian product of their state spaces and defining the state transi-
tion componentwise according to the state transitions of the original automata.
The resulting automaton runs the original automata in parallel. We shall follow
the same idea to construct the state transition codeAddrSt from Section 2.3 by
combining the state transition heightSt with a state transition that computes
the machine code using the state maintained by heightSt .

However, in contrast to the standard product automaton construction, the two
computations in our example are not independent from each other – the code
generator depends on the height in order to allocate memory addresses. There-
fore, we need a means of communication between the constituent automata.

In order to allow access to components of a compound state space, we define
a binary type class ∈ that tells us if a type is a component of a product type
and provides a projection for that component:

class a ∈ b where
pr :: b → a

Using overlapping instance declarations, we define the relation a ∈ b as follows:

instance a ∈ a where pr = id

instance a ∈ (a, b) where pr = fst

instance (c ∈ b)⇒ c ∈ (a, b) where pr = pr . snd

That is, we have a ∈ b if b is of the form (b1, (b2, ...)) and a = bi for some i .
We generalise bottom-up state transitions by allowing the successor state of

a transition to be dependent on a potentially larger state space:

type DUpState f p q = (q ∈ p)⇒ f p → q
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The result state of type q for the state transition of the above type may depend
on the states that are propagated from below. However, in contrast to ordi-
nary bottom-up state transitions, these states – of type p – may contain more
components in addition to the component of type q.

Every ordinary bottom-up state transition such as heightSt can be readily
converted into such a dependent bottom-up state transition function by precom-
posing the projection pr :

dUpState :: Functor f ⇒ UpState f q → DUpState f p q
dUpState st = st . fmap pr

A dependent state transition function is the same as an ordinary state transition
function if the state spaces p and q coincide. Hence, we can run such a dependent
state transition function in the same way:

runDUpState :: Functor f ⇒ DUpState f q q → Term f → q
runDUpState f = runUpState f

When defining a dependent state transition function, we can make use of the
fact that the state propagated from below may contain additional components.
For the definition of the state transition function generating the code, we declare
that we expect an additional state component of type Int .

codeSt :: (Int ∈ q)⇒ DUpState Sig q Code
codeSt (Val i) = [Acc i ]
codeSt (Plus x y) = pr x ++ [Store a ] ++ pr y ++ [Add a ]
where a = pr y

Using the method pr of the type class ∈, we project to the desired components
of the state: pr x and the first occurrence of pr y are of type Code whereas the
second occurrence of pr y is of type Int .

The product construction that combines two dependent state transition func-
tions is simple: it takes two state transition functions depending on the same
(compound) state space and combines them by forming the product of their
respective outcomes:

(⊗) :: (p ∈ c, q ∈ c)⇒ DUpState f c p → DUpState f c q
→ DUpState f c (p, q)

(sp ⊗ sq) t = (sp t , sq t)

We obtain the desired code generator from Section 2.3 by combining our two
(dependent) state transition functions and running the resulting state transition
function:

code :: Term Sig → Code
code = fst . runDUpState (codeSt ⊗ dUpState heightSt)

Note that combining state transition functions in this way is not restricted to
such simple dependencies. State transition functions may depend on each other.
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The construction that we have seen in this section makes it possible to decompose
state spaces into isolated modules with a typed interface to access them. This
practice of decomposing state spaces is not different from the abstraction and
reuse that we perform when writing mutual recursive functions. Functions which
can be defined in this way are also known as mutumorphisms [6].

There are still two minor shortcomings, which we shall address when we con-
sider other types of automata below. First, the extraction of components from
compound states is purely based on the type information, which can easily result
in confusion of distinct state components that happen to have the same type.
This can be seen in the instance declarations for the type class ∈, which are
overlapping and will simply select the left-most occurrence of a type. Secondly,
we only allow access to the state of the children of the current node. In principle,
this restriction is no problem as we can use the states of the children nodes to
compute the state of the current node. For example, if, in the code generation, we
needed the height of the current expression instead of the height of the right sum-
mand, we could have computed it from the height of both summands. However,
this means that code as well as the corresponding computations are duplicated
since the state of the current node is already computed by the corresponding
state transition.

3.2 Compositional Data Types

We also want to leverage the modularity that stems from the data types on
which we want to define functions. This modularity is based on the ability to
combine functors by forming coproducts:

data (f ⊕ g) e = Inl (f e) | Inr (g e)

instance (Functor f ,Functor g)⇒ Functor (f ⊕ g) where
fmap f (Inl e) = Inl (fmap f e)
fmap f (Inr e) = Inr (fmap f e)

Using the ⊕ operator, we can extend the signature functor Sig with an increment
operation, for example:

data Inc e = Inc e
type Sig ′ = Inc ⊕ Sig

In order to make use of this composition of functors for defining automata on
functors in a modular fashion, we will follow Swierstra’s data types à la carte
[23] approach, which we will summarise briefly below.

The use of coproducts entails that each (sub)term has to be explicitly tagged
with zero or more Inl or Inr tags. In order to add the correct tags automatically,
injections are derived using a type class:

class sub ! sup where
inj :: sub a → sup a
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Similarly to the type class ∈, we define the subsignature relation ! as follows:

instance f ! f where inj = id

instance f ! (f ⊕ g) where inj = Inl

instance (f ! g)⇒ f ! (h ⊕ g) where inj = Inr . inj

That is, we have f ! g if g is of the form g1 ⊕ (g2 ⊕ ...) and f = gi for some i .
From the injection function inj , we derive an injection function for terms:

inject :: (g ! f )⇒ g (Term f )→ Term f
inject = In . inj

Additionally, in order to reduce syntactic overhead, we assume, for each signature
functor such as Sig or Inc, smart constructors that comprise the injection, e.g.:

plus :: (Sig ! f )⇒ Term f → Term f → Term f
plus x y = inject (Plus x y)

inc :: (Inc ! f )⇒ Term f → Term f
inc x = inject (Inc x )

Using these smart constructors, we can write, for example, inc (val 3‘plus ‘val 4)
to denote the expression inc(3 + 4).

For writing modular functions on compositional data types, we use type
classes. For example, for recasting the definition of the heightSt state transition
function, we introduce a new type class and make it propagate over coproducts:

class HeightSt f where
heightSt ::UpState f Int

instance (HeightSt f ,HeightSt g)⇒ HeightSt (f ⊕ g) where
heightSt (Inl x ) = heightSt x
heightSt (Inr x ) = heightSt x

The above instance declaration lifts instances of HeightSt over coproducts in a
straightforward manner. Subsequently, we will omit these instance declarations
as they always follow the same pattern and thus can be generated automatically
like instances declarations for Functor .

We then instantiate this class for each (atomic) signature functor separately:

instance HeightSt Sig where
heightSt (Val ) = 0
heightSt (Plus x y) = 1 +max x y

instance HeightSt Inc where
heightSt (Inc x ) = 1 + x

Due to the propagation of instances over coproducts, we obtain an instance of
HeightSt for Sig ′ for free.
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With the help of the type class HeightSt , we eventually obtain an extensible
definition of the height function.

height :: (Functor f ,HeightSt f )⇒ Term f → Int
height = runUpState heightSt

Since we have instantiated HeightSt for the signature Sig ′ and all its subsigna-
tures, the function height may be given any argument of type Term f , where
f is the Sig ′ or any of its subsignatures. Moreover, by simply providing further
instance declarations for HeightSt , we can extend the domain of height to further
signatures.

4 Bottom-Up Tree Transducers

A compiler usually consists of several stages that perform diverse kinds of trans-
formations on the abstract syntax tree, e.g. renaming variables or removing
syntactic sugar. Representing syntax trees as terms, i.e. values of type Term f ,
such transformations are functions of type Term f → Term g that map terms
over some signature to terms over a potentially different signature. Tree trans-
ducers are a well-established technique for specifying such transformations [3, 7].
Moreover, there are a number of composition theorems that permit the compo-
sition of certain tree transducers such that the transformation function denoted
by the composition is equal to the composition of the transformation functions
denoted by the original tree transducers [7]. These composition theorems permit
us to perform deforestation [26], i.e. eliminating intermediate results by fusing
several stages of a compiler to a single tree transducer [16, 25], thus making tree
transducers an attractive recursion scheme.

4.1 Deterministic Bottom-Up Tree Transducers

A deterministic bottom-up tree transducer (DUTT ) defines – like a DUTA –
for each function symbol a successor state. But, additionally, it also defines an
expression that should replace the original function symbol. More formally, a
DUTT from signature F to signature G consists of a set of states Q and a set of
transduction rules of the form

f(q1(x1), . . . , qn(xn))→ q(u), with f ∈ F and q, q1, . . . , qn ∈ Q

where u ∈ T (G,X ) is a term over signature G and the set of variables X =
{x1, . . . , xn}. Compare this to the state transition rules of DUTAs, which are
simply a restriction of the transduction rules above with u = f(x1, . . . , xn), thus
only allowing the identity transformation. By repeatedly applying its transduc-
tion rules in a bottom-up fashion, a run of a DUTT transforms an input term
over F into an output term over G plus – similarly to DUTAs – a final state at
the root.
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Example 3. Consider the signature F = {and/2, not/1,ff/0, tt/0, b/0} and the
DUTT from F to F with Q = {q0, q1, q2} and the following transduction rules:

tt→ q1(tt)

ff → q0(ff)

b→ q2(b)

not(q0(x))→ q1(tt)

not(q1(x))→ q0(ff)

not(q2(x))→ q2(not(x))

and(q(x), p(y))→ q0(ff) if q0 ∈ {p, q}

and(q1(x), q1(y))→ q1(tt)

and(q1(x), q2(y))→ q2(y)

and(q2(x), q1(y))→ q2(x)

and(q2(x), q2(y))→ q2(and(x, y))

The signature F allows us to express Boolean expression containing a sin-
gle Boolean variable b. When applied to such an expression, the automaton
performs constant folding, i.e. it evaluates subexpression if possible. With the
states q0 and q1 it signals that a subexpression is false respectively true; q2
indicates uncertainty. For example, applying the automaton to the expression
and(not(b), not(and(ff, b))) yields the following derivation:
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The rules for the constant symbols do not perform any transformation in this
example and simply provide initial states. Then the first real transformation is
performed, which collapses the subterm rooted in and to q0(ff). The run of the
automaton is completed as soon as a state appears at the root, the final state of
the run.

4.2 Contexts in Haskell

In order to, represent transduction rules in Haskell, we need a representation of
the set T (F ,X ) of terms over signature F and variablesX . We call such extended
terms contexts. These contexts appear on the right-hand side of transduction
rules of DUTTs. We obtain a representation of contexts by simply extending the
definition of the data type Term by an additional constructor:

data Context f a = In (f (Context f a)) | Hole a

We call this additional constructor Hole as we will use it also for things other
than variables. For example, the holes in a context may be filled by other contexts
over the same signature. The following function substitutes the contexts in the
holes into the surrounding context.

appCxt :: Functor f ⇒ Context f (Context f a)→ Context f a
appCxt (Hole x ) = x
appCxt (In t) = In (fmap appCxt t)
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Context f is in fact the free monad of the functor f with Hole and appCxt as
unit and multiplication operation, respectively. The functoriality of Context f is
given as follows:

instance Functor f ⇒ Functor (Context f ) where
fmap f (Hole v) = Hole (f v)
fmap f (In t) = In (fmap (fmap f ) t)

Recall that the set of terms T (F) is defined as the set T (F , ∅) of terms without
variables. We can do the same in the Haskell representation and replace our
definition of the type Term with the following:

data Empty
type Term f = Context f Empty

Here, Empty is simply an empty type.3 This definition of Term allows us to use
terms and context in a uniform manner. For example, the function appCxt de-
fined above can also be given the type Context f (Term f )→ Term f . Moreover,
this encoding allows us to give a more general type for the injection function:

inject :: (g ! f )⇒ g (Context f a)→ Context f a

The definition of inject remains the same. The same also applies to smart con-
structors; for example, the smart constructor plus has now the more general
type

plus :: (Sig ! f )⇒ Context f a → Context f a → Context f a

Most of the time we are using very simple contexts that only consist of a single
functor application as constructed by the following function:

simpCxt :: Functor f ⇒ f a → Context f a
simpCxt t = In (fmap Hole t)

4.3 Bottom-Up Transduction Functions

The transduction rules of a DUTT use placeholder variables x1, x2, etc. in order
to refer to arguments of function symbols. These placeholder variables can then
be used on the right-hand side of a transduction rule. This mechanism makes it
possible to rearrange, remove and duplicate the terms that are matched against
these placeholder variables. On the other hand, it is not possible to inspect
them. For instance, in Example 3, not(q0(ff)) → q1(tt) would not be a valid
transduction rule as we are not allowed to pattern match on the arguments of
not. We can only observe the state.

3 Note that in Haskell, every data type – including Empty – is inhabited by ⊥. Thus
the definition of Term is not entirely accurate. However, for the sake of simplicity,
we prefer this definition over a more precise one such as in [1].
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When representing transduction rules as Haskell functions, we have to be
careful in order to maintain this restriction on DUTTs. In their categorical rep-
resentation, Hasuo et al. [11] recognised that the restriction due to placeholder
variables in the transduction rules can be enforced by a naturality condition.
Naturality, in turn, can be represented in Haskell’s type system as paramet-
ric polymorphism. Following this approach, we represent DUTTs from signature
functor f to signature functor g with state space q by the following type:

type UpTrans f q g = ∀ a . f (q, a)→ (q,Context g a)

In the definition of tree automata, states are used syntactically as a unary func-
tion symbol – an argument with state q is written as q(x) in the left-hand side.
In the Haskell representation, we use pairs and simply write (q, x ).

In the type UpTrans , the type variable a represents the type of the placeholder
variables. The universal quantification over a makes sure that placeholders can
only be used if they appear on the left-hand side and that they cannot be in-
spected.

Example 4. We implement the DUTT from Example 3 in Haskell. At first we
define the signature and the state space.

data F a = And a a | Not a | TT | FF | B
data Q = Q0 | Q1 | Q2

For the definition of the transduction function, we use the smart constructors
and , not, tt , ff and b for the constructors of the signature F . These smart
constructors are defined as before, e.g.

and :: (F ! f )⇒ Context f a → Context f a → Context f a
and x y = inject (And x y)

The definition of the transduction function is a one-to-one translation of the
transduction rules of the DUTT from Example 3.

trans ::UpTrans F Q F

trans TT = (Q1 , tt); trans (Not (Q0 , x )) = (Q1 , tt)
trans FF = (Q0 ,ff ); trans (Not (Q1 , x )) = (Q0 ,ff )
trans B = (Q2 , b); trans (Not (Q2 , x )) = (Q2 , not (Hole x ))

trans (And (q, x ) (p, y))
| q ≡ Q0 ∨ p ≡ Q0 = (Q0 ,ff )

trans (And (Q1 , x ) (Q1 , y)) = (Q1 , tt)
trans (And (Q1 , x ) (Q2 , y)) = (Q2 ,Hole y)
trans (And (Q2 , x ) (Q1 , y)) = (Q2 ,Hole x )
trans (And (Q2 , x ) (Q2 , y)) = (Q2 , and (Hole x ) (Hole y))

Since we do not constrain ourselves to finite state spaces, DUTTs do not add
any expressive power to the state transition functions of DUTAs. Each DUTT
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can be transformed into an algebra whose catamorphism is the transformation
denoted by the DUTT:

runUpTrans :: (Functor f ,Functor g)⇒ UpTrans f q g
→ Term f → (q,Term g)

runUpTrans trans = cata (appCxt ′ . trans)
where appCxt ′ (x , y) = (x , appCxt y)

For instance, we run the DUTT from Example 4 as follows:

foldBool :: Term F → (Q ,Term F )
foldBool = runUpTrans trans

As we have seen in Section 3.1, a tree acceptor with a compound state space
comprises several computations which may be disentangled in order to increase
modularity. A tree transducer intrinsically combines two computations: the state
transition and the actual transformation of the term. We will see in Section 4.5
how to disentangle these two components. Before that, we shall look at a special
case of DUTTs.

4.4 Tree Homomorphisms

To simplify matters, Bahr and Hvitved [1] focused on tree transducers with a
singleton state space, also known as tree homomorphisms [3]:

type Hom f g = ∀ a . f a → Context g a

runHom :: (Functor f ,Functor g)⇒ Hom f g → Term f → Term g
runHom hom = cata (appCxt . hom)

Tree homomorphisms can only transform the tree structure uniformly without
the ability to maintain a state. Nonetheless, tree homomorphisms provide a use-
ful recursion scheme. For example, desugaring, i.e. transforming syntactic sugar
of a language to the language’s core operations, can in many cases be imple-
mented as a tree homomorphism. Reconsider the signature Sig ′ = Inc⊕Sig that
extends Sig with an increment operator. The increment operator is only syntac-
tic sugar for adding the value 1. The corresponding desugaring transformation
can be implemented as a tree homomorphism:

class DesugHom f g where
desugHom :: Hom f g

-- instance declaration lifting DesugHom to coproducts omitted

desugar :: (Functor f ,Functor g,DesugHom f g)⇒ Term f → Term g
desugar = runHom desugHom

instance (Sig ! g)⇒ DesugHom Inc g where
desugHom (Inc x ) = Hole x ‘plus ‘ val 1

instance (Functor g, f ! g)⇒ DesugHom f g where
desugHom = simpCxt . inj
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The first instance declaration states that as long as the target signature g con-
tains Sig , we can desugar the signature Inc to g by mapping inc(x) to x + 1.
Using overlapping instances, the second instance declaration then defines the
desugaring for all other signatures f – provided f is contained in the target
signature – by leaving the input untouched.

The above instance declarations make it now possible to use the desugar
function with type Term Sig ′ → Term Sig. That is, desugar transforms a term
over signature Sig ′ to a term over signature Sig .

As an ordinary recursive Haskell function we would implement desugaring as
follows:

data Exp = Val Int | Plus Exp Exp
data Exp′ = Val ′ Int | Plus ′ Exp′ Exp′ | Inc′ Exp′

desugExp :: Exp′ → Exp
desugExp (Val ′ i) = Val i
desugExp (Plus ′ e f ) = desugExp e ‘Plus ‘ desugExp f
desugExp (Inc′ e) = desugExp e ‘Plus ‘Val 1

Note that we have to provide two separate data types for the input and out-
put types of the function instead of using the compositionality of signatures.
Moreover, the function desugar is applicable more broadly. It can be used as a
function of type Term (f ⊕ Inc) → Term f for any signature f that contains
Sig , i.e. for which we have Sig ! f . Apart from these advantages in modularity
and extensibility we also obtain all the advantages of using a transducer, which
we shall discuss in more detail in Section 7.

4.5 Combining Tree Homomorphisms with State Transitions

We aim to combine the simplicity of tree homomorphisms and the expressivity
of bottom-up tree transducers. To this end, we shall devise a method to combine
a tree homomorphism and a state transition function to form a DUTT. This
construction will be complete in the sense that any DUTT can be constructed
in this way.

At first, compare the types of automata that we have considered so far:

type Hom f g = ∀ a . f a → Context g a
type UpState f q = f q → q
type UpTrans f q g = ∀ a . f (q, a)→ (q,Context g a)

We can observe from this – admittedly suggestive – comparison that a bottom-
up tree transducer is roughly a combination of a tree homomorphism and a state
transition function. Our aim is to make use of this observation by decomposing
the specification of a bottom-up tree transducer into a tree homomorphism and
a bottom-up state transition function. Like for the product construction of state
transition functions from Section 3.1, we have to provide a mechanism to deal
with dependencies between the two components. Since the state transition is
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independent from the tree transformation, we only need to allow the tree ho-
momorphism to access the state information that is produced by the bottom-up
state transition.

A stateful tree homomorphism can thus be (tentatively) defined as follows:

type QHom f q g = ∀ a . f (q, a)→ Context g a

Since q appears to the left of the function arrow but not to the right, functions of
the above type have access to the states of the arguments, but do not transform
the state themselves. However, we want to make it easy to ignore the state if
it is not needed as the state is often only needed for a small number of cases.
This goal can be achieved by replacing the pairing with the state space q by an
additional argument of type a → q.

type QHom f q g = ∀ a . (a → q)→ f a → Context g a

We can still push this interface even more to the original tree homomorphism
type Hom by turning the function argument into an implicit parameter [18]:

type QHom f q g = ∀ a . (?state :: a → q)⇒ f a → Context g a

In a last refinement step, we add an implicit parameter that provides access to
the state of the current node as well:

type QHom f q g = ∀ a . (?above :: q, ?below :: a → q)⇒ f a → Context g a

Functions with implicit parameters have to be invoked in the scope of appropriate
bindings. For functions of the above type this means that ?below has to be bound
to a function of type a → q and ?above to a value of type q. We shall use the
following function to make implicit parameters explicit:

explicit :: ((?above :: q, ?below :: a → q)⇒ b)→ q → (a → q)→ b
explicit x ab be = x where ? above = ab; ?below = be

In particular, given a stateful tree homomorphism h of type QHom f q g, we
thus obtain a function explicit h of type q → (a → q)→ f a → Context g a.

The use of implicit parameters is solely for reasons of syntactic appearance
and convenience. One can think of implicit parameters as reader monads with-
out the syntactic overhead of monads. If, in the definition of a stateful tree
homomorphism, the state is not needed, it can be easily ignored. Hence, tree
homomorphisms are, in fact, also syntactic special cases of stateful tree homo-
morphisms.

The following construction combines a stateful tree homomorphism of type
QHom f q g and a state transition function of type UpState f q into a tree
transducer of type UpTrans f q g, which can then be used to perform the
desired transformation:

upTrans :: (Functor f ,Functor g)⇒
UpState f q → QHom f q g → UpTrans f q g
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upTrans st hom t = (q, c) where
q = st (fmap fst t)
c = fmap snd (explicit hom q fst t)

runUpHom :: (Functor f ,Functor g)⇒
UpState f q → QHom f q g → Term f → (q,Term g)

runUpHom st hom = runUpTrans (upTrans st hom)

Often the state space accessed by a stateful tree homomorphism is compound.
Therefore, it is convenient to have the projection function pr built into the
interface to the state space:

above :: (?above :: q, p ∈ q)⇒ p
above = pr ? above

below :: (?below :: a → q, p ∈ q)⇒ a → p
below = pr . ?below

In order to illustrate how stateful tree homomorphisms are programmed, we
extend the signature Sig with variables and let bindings:

type Name = String
data Let e = LetIn Name e e | Var Name
type LetSig = Let ⊕ Sig

We shall implement a simple optimisation that removes let bindings whenever
the variable that is bound is not used in the scope of the let binding. To this
end, we define a state transition that computes the set of free variables:

type Vars = Set Name

class FreeVarsSt f where
freeVarsSt ::UpState f Vars

instance FreeVarsSt Sig where
freeVarsSt (Plus x y) = x ‘union‘ y
freeVarsSt (Val ) = empty

instance FreeVarsSt Let where
freeVarsSt (Var v) = singleton v
freeVarsSt (LetIn v e s) = if v ‘member ‘ s then delete v (e ‘union‘ s)

else s

Note that the free variables occurring in the right-hand side of a binding are
only included if the bound variable occurs in the scope of the let binding. The
transformation itself is simple:

class RemLetHom f q g where
remLetHom ::QHom f q g

instance (Vars ∈ q,Let ! g,Functor g)⇒ RemLetHom Let q g where
remLetHom (LetIn v s) | ¬ (v ‘member ‘ below s) = Hole s
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remLetHom t = simpCxt (inj t)

instance (Functor f ,Functor g, f ! g)⇒ RemLetHom f q g where
remLetHom = simpCxt . inj

The homomorphism removes a let binding whenever the bound variable is not
found in the set of free variables. Otherwise, no transformation is performed.
Notice that the type specifies that the transformation depends on a state space
that at least contains a set of variables. In addition, we make use of overlapping
instances to define the transformation for all signatures different from Let . We
then obtain the desired transformation function by combining the stateful tree
homomorphism with the state transition computing the free variables:

remLet :: (Functor f ,FreeVarsSt f ,RemLetHom f Vars f )
⇒ Term f → Term f

remLet = snd . runUpHom freeVarsSt remLetHom

In particular, we can give remLet the type Term LetSig → Term LetSig but also
Term (Inc ⊕ LetSig)→ Term (Inc ⊕ LetSig).

4.6 Refining Dependent Bottom-Up State Transition Functions

The implicit parameters ?below and ?above of stateful tree homomorphisms pro-
vide an interface to the states of the children of the current node as well as the
state of the current node itself. The same interface can be given to dependent
bottom-up state transition functions as well. We therefore redefine the type of
these state transitions from Section 3.1 as follows:

type DUpState f p q = ∀ a . (?below :: a → p, ?above :: p, q ∈ p)⇒ f a → q

While the definition of the product operator ⊗ remains the same, we have to
change the other functions slightly to accommodate this change:

dUpState :: Functor f ⇒ UpState f q → DUpState f p q
dUpState st = st . fmap below

upState :: DUpState f q q → UpState f q
upState st s = res where
res = explicit st res id s

runDUpState :: Functor f ⇒ DUpState f q q → Term f → q
runDUpState = runUpState . upState

Note that definition of res in upState is cyclic and thus crucially depends on
Haskell’s non-strict semantics. This also means that dependent state transition
functions do not necessarily yield a terminating run since one can create a cyclic
dependency by defining a state transition that depends on its own result such
as the following:

loopSt ::DUpState f p q
loopSt = above
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The definition of the code generator from Section 3.1 is easily adjusted to the
slightly altered interface of dependent state transitions. Since we intend to extend
the code generator in Section 6, we also turn it into a type class:

class CodeSt f q where
codeSt :: DUpState f q Code

code :: (Functor f ,CodeSt f (Code , Int),HeightSt f )
⇒ Term f → (Code ,Addr)

code = runDUpState (codeSt ⊗ dUpState heightSt)

instance (Int ∈ q)⇒ CodeSt Sig q where
codeSt (Val i) = [Acc i ]
codeSt (Plus x y) = below x ++ [Store a ] ++ below y ++ [Add a ]
where a = below y

Note that the access to the state of the current node – via above – solves one of
the minor issues we have identified at the end of Section 3.1. In order to obtain
the state of the current node, we do not have to duplicate the corresponding state
transition anymore. Moreover, we can use the same interface when we move to
top-down state transitions in the next section.

5 Top-Down Automata

Operations on abstract syntax trees are often dependent on a state that is prop-
agated top-down rather than bottom-up, e.g. typing environments and variable
bindings. For such operations, recursion schemes derived from bottom-up au-
tomata are not sufficient. Hence, we shall consider top-down automata as a
complementary paradigm to overcome this restriction.

Unlike the bottom-up case, we will not start with acceptors but with trans-
ducers. Our interest for bottom-up acceptors was based on the fact that such
automata produce an output state. For top-down acceptors this application van-
ishes since such automata rather consume an input state than produce an output
state. We will however come back to top-down state transition in order to make
the state transition of top-down transducer modular – using the same stateful
tree homomorphisms that we introduced in Section 4.5.

5.1 Deterministic Top-Down Tree Transducers

Deterministic top-down tree transducers (DDTTs) are able to produce transfor-
mations that depend on a top-down flow of information. They work in a fash-
ion similar to bottom-up tree transducers but propagate their state downwards
rather than upwards. More formally, a DDTT from signature F to signature G
consists of a set of states Q, an initial state q0 ∈ Q and a set of transduction
rules of the form

q(f(x1, . . . , xn))→ u with f ∈ F and q ∈ Q
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where u ∈ T (G, Q(X )) is a term over G and Q(X ) = {p(xi) | p ∈ Q, 1 ≤ i ≤ n}.
That is, the right-hand side is a term that may have subterms of the form p(xi)
with xi a variable from the left-hand side and p a state in Q. In other words,
each occurrence of a variable on the right-hand side is given a successor state.

In order to run a DDTT on a term t ∈ T (F), we have to provide an initial
state q0 and then apply the transduction rules to q0(t) in a top-down fashion.
Eventually, this yields a result term t′ ∈ T (G).

Example 5. Consider the signature F = {or/2, and/2, not/1, tt/0,ff/0, b/0} and
the DDTT from F to F with the set of states Q = {q0, q1}, initial state q0 and
the following transduction rules:

q0(b)→ b q0(tt)→ tt q0(ff)→ ff

q1(b)→ not(b) q1(tt)→ ff q1(ff)→ tt

q0(not(x))→ q1(x)

q1(not(x))→ q0(x)

q0(and(x, y))→ and(q0(x), q0(y)) q0(or(x, y))→ or(q0(x), q0(y))

q1(and(x, y))→ or(q1(x), q1(y)) q1(or(x, y))→ and(q1(x), q1(y))

Terms over F are Boolean expressions with a single Boolean variable b. The
above DDTT transforms such an expression into negation normal form by mov-
ing the operator not inwards. For instance, applied to the Boolean expression
not(and(not(b), or(tt, b))), the automaton yields the following derivation:
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and

not

b

or

tt b
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In order to start the run of a DDTT, the initial state q0 has to be explicitly
inserted at the root of the input term. The run of the automaton is completed
as soon as all states in the term have vanished; there is no final state.

5.2 Top-Down Transduction Functions

Similar to bottom-up tree transducers, we follow the placeholders-via-naturality
principle of Hasuo et al. [11] in order to represent top-down transduction func-
tions:

type DownTrans f q g = ∀ a . (q, f a)→ Context g (q, a)

Now the state comes from above and is propagated downwards to the holes of the
context, which defines the actual transformation that the transducer performs.

Running a top-down tree transducer on a term is a straightforward affair:
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runDownTrans :: (Functor f ,Functor g)⇒ DownTrans f q g → q
→ Term f → Term g

runDownTrans tr q t = run (q, t) where
run (q, In t) = appCxt (fmap run (tr (q, t)))

A top-down transducer is run by applying its transduction function – tr (q, t) –
then recursively running the transformation in the holes of the produced context
– fmap run – and finally joining the context with the thus produced embedded
terms – appCxt .

Example 6. We implement the DDTT from Example 5 in Haskell as follows:

data F a = Or a a | And a a | Not a | TT | FF | B
data Q = Q0 | Q1

trans ::DownTrans F Q F

trans (Q0 ,TT ) = tt ; trans (Q0 ,B) = b
trans (Q1 ,TT ) = ff ; trans (Q1 ,B) = not b

trans (Q0 ,FF ) = ff ; trans (Q0 ,Not x ) = Hole (Q1 , x )
trans (Q1 ,FF ) = tt ; trans (Q1 ,Not x ) = Hole (Q0 , x )

trans (Q0 ,And x y) = Hole (Q0 , x ) ‘and ‘ Hole (Q0 , y)
trans (Q1 ,And x y) = Hole (Q1 , x ) ‘or ‘ Hole (Q1 , y)

trans (Q0 ,Or x y) = Hole (Q0 , x ) ‘or ‘ Hole (Q0 , y)
trans (Q1 ,Or x y) = Hole (Q1 , x ) ‘and ‘ Hole (Q1 , y)

The definition of the transduction function trans is a one-to-one translation of
the transduction rules of the DDTT from Example 5. Note, that we use the smart
constructors or , and , not, tt , ff and b on the right-hand side of the definitions.
We apply the thus defined DDTT to a term of type Term F as follows:

negNorm :: Term F → Term F
negNorm = runDownTrans trans Q0

5.3 Top-Down State Transition Functions

Unfortunately, we cannot provide a full decomposition of DDTTs into a state
transition and a homomorphism part in the way we did for DUTTs in Section 4.5.
Unlike in DUTTs, the state transition in a DDTT is inherently dependent on
the transformation: since a placeholder variable may be copied on the right-hand
side, each copy may be given a different successor state! For example, a DDTT
may have a transduction rule

q0(f(x))→ g(q1(x), q2(x))

which transforms a function symbol f into g and copies the argument of f .
However, the two copies are given different successor states, viz. q1 and q2.
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In order to avoid this dependency of state transitions on the transformation,
we restrict ourselves to DDTTs in which successor states are given to placeholder
variables and not their occurrences. That is, for each two occurrences of subterms
q1(x) and q2(x) on the right-hand side of a transduction rule, we require that
q1 = q2. The DDTT given in Example 5 is, in fact, of this form.

The top-down state transitions we are aiming for are dual to bottom-up state
transitions. The run of a bottom-up state transition function assigns a state to
each node by an upwards state propagation, performing the same computation
as an upwards accumulation [8]. The run of a top-down state transition function,
on the other hand, should do the same by a downwards state propagation and
thus perform the same computation as a downwards accumulation [9, 10].

However, representing top-down state transitions is known to be challeng-
ing [8, 9, 10]. A first attempt yields the type ∀ a . (q, f a) → f q. This type,
however, allows apart from the state transition also a transformation. The result
is not required to have the same shape as the input. For example, the following
equation (partially) defines a function bad of type ∀ a . (Q , Sig a)→ Sig Q :

bad (q,Plus x y) = Val 1

In order to assign a successor state to each child of the input node without
permitting changes to its structure, we use explicit placeholders to which we can
assign the successor states:

type DownState f q = ∀ i .Ord i ⇒ (q, f i)→ Map i q

The type Map i q represents finite mappings from type i to type q. Since such
finite mappings are implemented by search trees, we require that the domain
type i is of class Ord , which provides a total ordering.

The idea is to produce, from a state transition function of the above type, a
function of type ∀ a . (q, f a)→ f q that does preserve the structure of the input
and only produces the successor states. This is achieved by injecting unique
placeholders of type i into a value of type f a – one for each child node. We can
then produce the desired value of type f q from the mapping of type Map i q
given by the state transition function. A placeholder that is not mapped to a
state explicitly is assumed to keep the state of the current node by default.

To work with finite mappings, we assume an interface with ∅ denoting the
empty mapping, x 0→ y the singleton mapping that maps x to y, m ∪ n the left-
biased union of two mappings m and n, and a lookup function lookup ::Ord i ⇒
i → Map i q → Maybe q. Moreover, we define the lookup with default as follows:

findWithDefault ::Ord i ⇒ q → i → Map i q → q
findWithDefault def i m = case lookup i m of

Nothing → def
Just q → q

At first, we need a mechanism to introduce unique placeholders into the structure
of a functorial value. To this end, we will use the standard Haskell type class
Traversable that provides the method
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mapM :: (Traversable f ,Monad m)⇒ (a → m b)→ f a → m (f b)

which allows us to apply a monadic function to the components of a functorial
value and then sequence the resulting monadic effects. Every polynomial functor
can be made an instance of Traversable . Declarations to that effect can be derived
automatically.

Ultimately, we want to number the elements in a functorial value to make
them unique placeholders. To this end, we introduce a type of numbered values.

newtype Numbered a = Numbered (Int , a)

unNumbered ::Numbered a → a
unNumbered (Numbered ( , x )) = x

instance Eq (Numbered a) where
Numbered (i , ) ≡ Numbered (j , ) = i ≡ j

instance Ord (Numbered a) where
compare (Numbered (i , )) (Numbered (j , )) = compare i j

The instance declarations allow us to use elements of the type Numbered a as
placeholders.

With the help of the mapM combinator, we define a function that numbers
the components in a functorial value by counting up using a state monad:

number :: Traversable f ⇒ f a → f (Numbered a)
number x = fst (runState (mapM run x ) 0) where
run b = do n ← get

put (n + 1)
return (Numbered (n, b))

where runState :: State s a → s → (a, s) runs a state monad with state type s ,
put :: s → State s m () sets the state and get :: State s s queries the state inside
a state monad.

Using the above numbering combinator to create unique placeholders, we
construct the explicit top-down propagation of states from a mapping of place-
holders to successor states. Since the mapping of placeholders to successor states
is partial, we also have to give a default state:

appMap :: Traversable f ⇒ (∀ i .Ord i ⇒ f i → Map i q)
→ q → f a → f (q, a)

appMap qmap q s = fmap qfun s ′ where
s ′ = number s
qfun k = (findWithDefault q k (qmap s ′), unNumbered k)

Finally, we can combine a top-down state transition function with a stateful tree
homomorphism by propagating the successor states using the appMap combina-
tor. As the default state, we take the state of the current node, i.e. by default
the state remains unchanged.
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downTrans :: Traversable f ⇒ DownState f q → QHom f q g
→ DownTrans f q g

downTrans st f (q, s) = explicit f q fst (appMap (curry st q) q s)

runDownHom :: (Traversable f ,Functor g)⇒ DownState f q
→ QHom f q g → q → Term f → Term g

runDownHom st h = runDownTrans (downTrans st h)

Note that we use the same type of stateful tree homomorphisms that we intro-
duced for bottom-up state transitions. The roles of ?above and ?below are simply
swapped: ?above refers to the state propagated from above whereas ?below pro-
vides the successor states of the current subterm. Stateful tree homomorphisms
are ignorant of the direction in which the state is propagated.

Example 7. We reconstruct the DDTT from Example 6 by defining the state
transition and the transformation separately:

state :: DownState F Q
state (Q0 ,Not x ) = x 0→ Q1
state (Q1 ,Not x ) = x 0→ Q0
state = ∅
hom ::QHom F Q F
hom TT = if above ≡ Q0 then tt else ff
hom FF = if above ≡ Q0 then ff else tt
hom B = if above ≡ Q0 then b else not b
hom (Not x ) = Hole x
hom (And x y) = if above ≡ Q0 then Hole x ‘and ‘ Hole y

else Hole x ‘or ‘ Hole y
hom (Or x y) = if above ≡ Q0 then Hole x ‘or ‘ Hole y

else Hole x ‘and ‘ Hole y

Note that in the definition of the state transition function, we return the empty
mapping for all constructors different from Not . Consequently, the input state
for these constructors is propagated unchanged by default.

By combining the state transition function and the stateful homomorphism,
we obtain the same transformation function as in Example 6.

negNorm ′ :: Term F → Term F
negNorm ′ = runDownHom state hom Q0

Instead of introducing explicit placeholders in order to distribute the successor
state, we could have also simply taken the encoding we first suggested, i.e. via
a function ρ of type ∀ a . (q, f a) → f q, and required as (an unchecked)
side condition that ρ must preserve the shape of the input. This approach was
taken in Gibbons’ generic downwards accumulations [10] in which he requires
the accumulation operation to be shape preserving.
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Alternatively, we could have also adopted Gibbons’ earlier approach to down-
wards accumulations [9], which instead represents the downward flow of infor-
mation as a fold over a separately constructed data type called path. This path
data type is constructed as the fixed point of a functor that is constructed from
the signature functor. Unfortunately, this functor is quite intricate and not easy
to program with in practice. Apart from that, it would be difficult to construct
this path functor for each signature functor in Haskell.

In the end, our approach yields a straightforward representation of downward
state transitions that is easy to work with in practise. Moreover, the ability to
have a default behaviour for unspecified transitions makes for compact specifi-
cations as we have seen in Example 7. However, this default behaviour may also
lead to errors more easily due to forgotten transitions.

5.4 Making Top-Down State Transition Functions Modular

Analogously to bottom-up state transition functions, we also define a variant of
top-down state transition functions that has access to a bigger state space whose
components are defined separately.

type DDownState f p q = ∀ i . (Ord i , ?below :: i → p, ?above :: p, q ∈ p)
⇒ f i → Map i q

Translations between ordinary top-down state transitions and their generalised
variants are produced as follows:

dDownState ::DownState f q → DDownState f p q
dDownState f t = f (above, t)

downState ::DDownState f q q → DownState f q
downState f (q, s) = res where
res = explicit f q bel s
bel k = findWithDefault q k res

Similarly to their bottom-up counterparts, dependent top-down state transition
functions that depend on the same state space can be combined to form a product
state transition:

(�) :: (p ∈ c, q ∈ c)⇒ DDownState f c p → DDownState f c q
→ DDownState f c (p, q)

(sp � sq) t = prodMap above above (sp t) (sq t)

prodMap ::Ord i ⇒ p → q → Map i p → Map i q → Map i (p, q)

This construction is based on the pointwise product of mappings defined by
prodMap, which we do not give in detail here. Since the mappings are partial,
we have to provide a default state that is used in case only one of the mappings
has a value for a given index. In accordance with the default behaviour of top-
down state transition functions, this default state is the state from above.
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As an example, we will define a transformation that replaces variables bound
by let expressions with de Bruijn indices. For the sake of demonstration, we will
implement this transformation using two states: the scope level, i.e. the number
of let-bindings that are in scope, and a mapping from bound variables to the
scope level of their respective binding site.

The scope level state simply counts the nesting of let bindings:

class ScopeLvlSt f where
scopeLvlSt ::DownState f Int

instance ScopeLvlSt Let where
scopeLvlSt (d ,LetIn b) = b 0→ (d + 1)
scopeLvlSt = ∅

instance ScopeLvlSt f where
scopeLvlSt = ∅

Here we use the fact that if a successor state is not defined for a subexpression,
then the current state is propagated by default.

The state that maintains a mapping from variables to the scope level of their
respective binding site is dependent on the scope level state:

type VarLvl = Map Name Int

class VarLvlSt f q where
varLvlSt ::DDownState f q VarLvl

instance (Int ∈ q)⇒ VarLvlSt Let q where
varLvlSt (LetIn v b) = b 0→ ((v 0→ above) ∪ above)
varLvlSt = ∅

instance VarLvlSt f q where
varLvlSt = ∅

Note that the first occurrence of above is of type Int – derived from the type
constraint Int ∈ q – whereas the second occurrence is of type VarLvl – derived
from the type constraint VarLvl ∈ q in the type DDownState f q VarLvl .

Since we want to replace explicit variables with de Bruijn indices, we have to
replace the signature Let with the following signature in the output term:

data Let ′ e = LetIn ′ e e | Var ′ Int
type LetSig ′ = Let ′ ⊕ Sig

The actual transformation is defined as a stateful tree homomorphism:

class DeBruijnHom f q g where
deBruijnHom ::QHom f q g

instance (VarLvl ∈ q, Int ∈ q,Let ′ ! g)⇒ DeBruijnHom Let q g where
deBruijnHom (LetIn a b) = letIn ′ (Hole a) (Hole b)
deBruijnHom (Var v) = case lookup v above of

Nothing → error "free variable"
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Just i → var ′ (above − i)

instance (Functor f ,Functor g, f ! g)⇒ DeBruijnHom f q g where
deBruijnHom = simpCxt . inj

Note that we issue an error if we encounter a variable that is not bound by
a let expression. Otherwise, we create the de Bruijn index by subtracting the
variable’s scope level from the current scope level.

Finally, we have to tie the components together by forming the product state
transition and providing an initial state:

deBruijn :: Term LetSig → Term LetSig ′

deBruijn = runDownHom stateTrans deBruijnHom init
where init = (∅, 0) :: (VarLvl , Int)

stateTrans ::DownState LetSig (VarLvl , Int)
stateTrans = downState (varLvlSt � dDownState scopeLvlSt)

Due to its open definition, we can give the function deBruijn also the type
Term (Inc ⊕ LetSig)→ Term (Inc ⊕ LetSig ′), for example.

6 Bidirectional State Transitions

We have seen recursion schemes that use an upwards flow of information as well
as recursion schemes that use a downwards flow of information. Some compu-
tations, however, require the combination of both. For example, if we want to
extend the code generator from Section 4.6 to also work on let bindings, we
need to propagate the generated code upwards but the symbol table for bound
variables downwards.

In this section, we show two ways of achieving this combination.

6.1 Avoiding the Problem

The issue of combining two directions of information flow is usually circumvented
by splitting up the computation in several runs instead. For the code generator,
for instance, we can introduce a preprocessing step that translates let bindings
into explicit assignments to memory addresses and variables into corresponding
references to memory addresses.

This preprocessing step is easily implemented by modifying the stateful tree
homomorphism from Section 5.4 that transforms variables into de Bruijn indices.
Instead of de Bruijn indices we generate memory addresses.

At first, we define the signature that contains explicit addresses for bound
variables:

data LetAddr e = LetAddr Addr e e | VarAddr Addr
type AddrSig = LetAddr ⊕ Sig

The following stateful homomorphism then transforms a term over a signature
containing Let into a signature containing LetAddr instead. The homomorphism
depends on the same state as the de Bruijn homomorphism from Section 5.4:
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class AddrHom f q g where
addrHom ::QHom f q g

instance (VarLvl ∈ q, Int ∈ q,LetAddr ! g)⇒ AddrHom Let q g where
addrHom (LetIn x y) = letAddr above (Hole x ) (Hole y)
addrHom (Var v) = case lookup v above of

Nothing → error "free variable"

Just a → varAddr a

instance (Functor f ,Functor g, f ! g)⇒ AddrHom f q g where
addrHom = simpCxt . inj

By combining all components of the computation including the state transi-
tion functions varLvlSt and scopeLvlSt from Section 5.4, we obtain the desired
transformation:

toAddr ::Addr → Term LetSig → Term AddrSig
toAddr startAddr = runDownHom stateTrans addrHom init
where init = (∅, startAddr) :: (VarLvl , Int)

stateTrans ::DownState LetSig (VarLvl , Int)
stateTrans = downState (varLvlSt � dDownState scopeLvlSt)

The additional argument of type Addr allows us to control from which address
we should start when assigning addresses to variables.

The actual code generation can then proceed on the signature LetAddr instead
of Let :

instance CodeSt LetAddr q where
codeSt (LetAddr a s e) = below s ++ [Store a ] ++ below e
codeSt (VarAddr a) = [Load a ]

To this end, we must also extend the HeightSt type class, which is used by the
code generator:

instance HeightSt LetAddr where
heightSt (LetAddr x y) = 1 +max x y
heightSt (VarAddr ) = 0

Now, we can use the function code from Section 4.6 with the type

code :: Term AddrSig → (Code,Addr )

Combining this function with the above defined transformation toAddr , yields
the desired code generator:

codeLet :: Term LetSig → Code
codeLet t = c
where t ′ = toAddr (addr + 1) t

(c, addr ) = code t ′
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When combining the two functions toAddr and code, we have to be careful
to avoid clashes in the use of addresses for storing intermediate results on the
one hand and for storing results of let bindings on the other hand. To this
end, we use the result addr of the code generator function code, which is the
highest address used for intermediate results, to initialise the address counter
for the transformation toAddr . This makes sure that we use different addresses
for intermediate results and bound variables.

6.2 A Direct Implementation

An alternative approach performs the bottom-up and the top-down computa-
tions side-by-side, taking advantage of the non-strict semantics of Haskell. This
approach avoids the construction of an intermediate syntax tree that contains
the required information.

For implementing a suitable recursion scheme, we make use of the fact that
both bottom-up as well as top-down state transition functions in their dependent
form share the same interface to access other components of the state space via
the implicit parameters ?above and ?below .

The following combinator runs a bottom-up and a top-down state transition
function that both depend on the product of the state spaces they define:

runDState :: Traversable f ⇒ DUpState f (u, d) u
→ DDownState f (u, d) d → d → Term f → u

runDState up down d (In t) = u where
bel (Numbered (i , s)) =
let d ′ = findWithDefault d (Numbered (i ,⊥)) qmap
in Numbered (i , (runDState up down d ′ s , d ′))

t ′ = fmap bel (number t)
qmap = explicit down (u, d) unNumbered t ′

u = explicit up (u, d) unNumbered t ′

The definition of runDState looks convoluted but follows a simple structure: the
two lines at the bottom apply both state transition functions at the current node.
To this end, the state from above and the state from below is given as (u, d) and
unNumbered, respectively. The latter works as t ′ is computed by first numbering
the child nodes and then using the numbering to lookup the successor states
from qmap as well as recursively applying runDState at the child nodes.

Note that the definition of runDState is cyclic in several different ways and
thus essentially depends on Haskell’s non-strict semantics: the result u of the
bottom-up state transition function is used also as input for the bottom-up state
transition function. Likewise the result qmap of the top-down state transition
function is fed into the construction of t ′, which is given as argument to the
top-down state transition function. Moreover, the definition of both u and qmap
depend on each other.

The above combinator allows us to write a code generator for the signature
LetSig without resorting to an intermediate syntax tree. However, we have to be
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careful as this requires combining state transition functions with the same state
space type: both heightSt and scopeLvlSt use the type Int .

However, the ambiguity can be easily resolved by “tagging” the types using
newtype type synonyms. For the scopeLvlSt state transition, we define such a
type like this:

newtype ScopeLvl = ScopeLvl {scopeLvl :: Int }

The tagging itself is a straightforward construction given the isomorphism be-
tween the type and its synonym in the form of a forward and a backward function:

tagDownState :: (q → p)→ (p → q)→ DownState f q → DownState f p
tagDownState i o t (q, s) = fmap i (t (o q, s))

We thus obtain a tagged variant of scopeLvlSt :

scopeLvlSt ′ :: ScopeLvlSt f ⇒ DownState f ScopeLvl
scopeLvlSt ′ = tagDownState ScopeLvl scopeLvl scopeLvlSt

The state maintained by scopeLvlSt ′ can now be accessed via the function
scopeLvl in any compound state space containing ScopeLvl . A similar combi-
nator can be defined for bottom-up state transitions.

Using the above state, we define a state transition function that assigns a
memory address to each bound variable.

type VarAddr = Map Name Addr

class VarAddrSt f q where
varAddrSt ::DDownState f q VarAddr

instance (ScopeLvl ∈ q)⇒ VarAddrSt Let q where
varAddrSt (LetIn v e) = e 0→ ((v 0→ scopeLvl above) ∪ above)
varAddrSt = ∅

instance VarAddrSt f q where
varAddrSt = ∅

Here, we use again overlapping instance declarations to give a uniform instance
of VarAddrSt for all signatures different from Let .

We can now extend the type class CodeSt for the signature Let :

instance HeightSt Let where
heightSt (LetIn x y) = 1 +max x y
heightSt (Var ) = 0

instance (ScopeLvl ∈ q,VarAddr ∈ q)⇒ CodeSt Let q where
codeSt (LetIn b e) = below b ++ [Store a ] ++ below e
where a = scopeLvl above

codeSt (Var v) = case lookup v above of
Nothing → error "unbound variable"

Just i → [Load i ]
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Again, we have to be careful to avoid clashes in the use of addresses for storing
intermediate results on the one hand and for storing results of let bindings on the
other hand. Similar to our implementation in Section 6.1, we use the output of
the bottom-up state transition to obtain the maximum address used for storing
intermediate results.

Thus, we tie the different components of the computation together as follows:

codeLet ′ :: Term LetSig → Code
codeLet ′ t = c
where (c, addr ) = runDState (codeSt ⊗ dUpState heightSt)

(varAddrSt � dDownState scopeLvlSt ′)
(∅ :: VarLvl , ScopeLvl (addr + 1)) t

Note that in both implementations, we could have avoided the use of the result of
the state transition function heightSt to initialise the address counter for bound
variables. The modularity of our recursion schemes makes it possible to replace
the heightSt state transition function with a different one. In this way, we could
avoid clashes by using even address numbers for intermediate results and odd
address numbers for variables.

We already observed that stateful tree homomorphisms cannot discern the
direction in which the state is propagated. Thus we can supply them with a
state using either bottom-up or top-down state transitions. In fact, following the
bidirectional state transitions we considered above, we can provide a stateful
tree homomorphism with a combined state given by both a bottom-up and a
top-down state transition function. Such a transformation can for example be
used to rename apart all bound variables or inline simple let bindings.

7 Discussion

We have seen that with some adjustments tree automata can be turned into
highly modular recursion schemes. These recursion schemes allow us to take ad-
vantage of two orthogonal dimensions of modularity: modularity in the state
that is propagated and – courtesy of Swierstra’s [23] data types à la carte –
modularity in the structure of terms. In addition to that, we also showed how to
decompose transducers into a homomorphism and into a state transition part.
This high level of modularity makes our automata-based recursion schemes es-
pecially valuable for constructing modular compilers as we have illustrated in
our running example. However, we should point out that there are many more
aspects to consider when constructing compilers in a modular fashion [4].

The dependent forms of bottom-up and top-down state transitions that we
have developed in this paper are nothing else than the synthesised and inher-
ited attributes known from attribute grammars [22]. In fact, the combinator
runDState that runs both a bottom-up and a top-down state transition can
be seen as a run of an attribute grammar with corresponding synthesised and
inherited attributes. Viera et al. [24] have developed a Haskell library that allows
to specify such attribute grammars in Haskell in a very concise way.
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We also obtain an added value by using a powerful functional language for
the embedding of our recursion schemes. One immediate benefit that we obtain
is the use of further generic programming techniques. For example, the heightSt
state transition function could have been defined entirely generically, without
having to extend the definition for every new signature.

Why Tree Transducers?. In principle, tree transducers offer no increase in
expressiveness over (dependent) bottom-up state transition functions since we
allow for infinite state spaces anyway. However, due to their additional structure
they provide at least two advantages.

First of all, tree transducers are very flexible in the way they can be manipu-
lated in order to form new transformations. For example, we can extend a given
signature functor f with annotations of some type a by using the construction

data (f :&: a) e = f e :&: a

A term over the signature (f :&: a) is similar to a term over f but it additionally
contains annotations of type a at every subterm. We can provide a combinator
that modifies a tree transducer from F to G into one from F :&: A to G :&: A
that propagates the annotations from the input term to the output term [1].

Secondly, tree transducers can be composed. That is, given two bottom-up (re-
spectively top-down) tree transducers – one from F to G, the other one from G
to H , we can generically construct a bottom-up (respectively top-down) trans-
ducer from F to H whose transformation is equal to the composition of the
transformations denoted by the original transducers [7]. The resulting trans-
ducer then only has to traverse the input term once and avoids the construction
of the intermediate term [26]. Note that tree homomorphisms can be considered
both a special case of bottom-up and of top-down tree transducers and can thus
be composed with either kind.

The two abovementioned features also set tree transducers apart from other
generic programming approaches such as Scrap your Boilerplate [13, 12, 17] or
Uniplate [21]. We do not give the full technical details of the two features here
but the implementation can be found in the compdata package [2].

Extensions & Future Work. While we only considered single recursive data
types, this restriction is not essential: following the construction of Yakushev
et al. [27] and Bahr and Hvitved [1], our recursion schemes can be readily ex-
tended to work on mutually recursive data types as well.

Note that the runDState combinator of Section 6.2 constructs the product of
the two state spaces u and d . Consequently, if u is a compound state space, we
obtain a product type that is not a right-associative nesting of pairs which we
require for the type class ∈ to work properly. However, this can be remedied by
a more clever encoding of compound state spaces as heterogeneous lists [14] or
generating instance declarations for products of a limited number of components
via Template Haskell.
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The transducers that we have considered here have one severe limitation. This
limitation can be seen when looking at the implementation of these transducers
in Haskell: the parametric polymorphism of the type for placeholder variables
prevents us from using these placeholder variables in the state transition. This
would allow us to store and retrieve subterms that the placeholder variables
are instantiated with. The ability to do that is necessary in order to perform
“non-local” transformations such as inlining of arbitrary let bindings or applying
substitutions. However, we can remedy this issue by making the state a functor.
The type of bottom-up respectively top-down transducers would then look as
follows:

type UpTrans f q g = ∀ a . f (q a, a)→ (q (Context g a),Context g a)
type DownTrans f q g = ∀ a . (q a, f a)→ Context g (q (Context g a), a)

We can then, for example, instantiate q with Map Var such that the state is
a substitution, i.e. a mapping from variables to terms (respectively term place-
holders).

The above types represent a limited form of macro tree transducers [7]. Wile
the decomposition of such an extended bottom-up transducer into a homomor-
phism and a state transition function is again straightforward, the decomposition
of an extended top-down transducer is trickier: at least the representation with
explicit placeholders that we used for dependent top-down state transition func-
tions does not straightforwardly generalise to polymorphic states.

Note that the abovementioned limitation only affects transducers, not state
transition functions. We can, of course, implement inlining and substitution as
a bidirectional state transition. However, if we want to make use of the nice
properties of transducers, we have to move to the extended tree transducers
illustrated above.
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Abstract. Applicative functors define an interface to computation that
is more general, and correspondingly weaker, than that of monads. First
used in parser libraries, they are now seeing a wide range of applications.
This paper sets out to explore the space of non-monadic applicative func-
tors useful in programming. We work with a generalization, lax monoidal
functors, and consider several methods of constructing useful functors
of this type, just as transformers are used to construct computational
monads. For example, coends, familiar to functional programmers as ex-
istential types, yield a range of useful applicative functors, including left
Kan extensions. Other constructions are final fixed points, a limited sum
construction, and a generalization of the semi-direct product of monoids.
Implementations in Haskell are included where possible.

1 Introduction

This paper is part of a tradition of applying elementary category theory to the
design of program libraries. Moggi [16] showed that the notion of monad could be
used to structure denotational descriptions of programming languages, an idea
carried over to program libraries by Wadler [20]. It turns out that the monads
useful in semantics and programming can be constructed from a small number
of monad transformers also identified by Moggi [17].

Applicative functors [15] provide a more limited interface than monads, but
in return have more instances. All monads give rise to applicative functors,
but our aim is to explore the space of additional instances with applications
to programming. We are particularly interested in general constructions, with
which programmers can build their own applicative functors, knowing that they
satisfy the required laws. It is already known that applicative functors, unlike
monads, can be freely composed. We identify a number of further general con-
structions, namely final fixed points, a limited sum construction, a generalization
of semi-direct products of monoids, and coends (including left Kan extensions).
By combining these constructions, one can obtain most of the computational
applicative functors in the literature, with proofs of their laws. General con-
structions also clarify the relationships between seemingly unrelated examples,
and suggest further applications.

Elementary category theory provides an appropriately abstract setting for the
level of generality we seek. An idealized functional language corresponds to a type
of category with first-class functions (a cartesian closed category). Applicative
functors on such a category are equivalent to a simpler form called lax monoidal

J. Gibbons and P. Nogueira (Eds.): MPC 2012, LNCS 7342, pp. 300–323, 2012.
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functors, which are more convenient to work with. We can build up lax monoidal
functors in more general ways by ranging across several different categories, as
long as the end result acts on the category of our functional language, and is
thus applicative. Familiarity with the basic definitions of categories and functors
is assumed. The other notions used are mostly shallow, and will be explained
along the way.

In the next section, we introduce applicative and lax monoidal functors. The
rest of the paper describes the general constructions, illustrated with examples in
Haskell where possible. Two proof styles are used throughout the paper. When
making statements that apply to any category, we use standard commuting
diagrams. However many statements assume a cartesian closed category, or at
least a category with products. For these we use the internal language of the
category, which provides a term language with equational reasoning that will be
familiar to functional programmers.

2 Applicative Functors

The categorical notion of “functor” is modelled in Haskell with the type class

class Functor f where

fmap :: (a -> b) -> f a -> f b

Instances include a variety of computational concepts, including containers, in
which fmap modifies elements while preserving shape. Another class of instances
are “notions of computation”, including both monads and applicative functors,
in which terms of type F a correspond to computations producing values of type
a, but also having an “effect” described by the functor F , e.g. modifying a state,
possibly throwing an exception, or non-determinism. The requirement that F be
a functor allows one to modify the value returned without changing the effect.

The applicative interface adds pure computations (having no effect) and an
operation to sequence computations, combining their results. It is described by
a type class:

class Functor f => Applicative f where

pure :: a -> f a

(<*>) :: f (a -> b) -> f a -> f b

If we compare this with the type class of monads:

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

we see that pure corresponds to return; the difference lies in the sequencing
operations. The more powerful >>= operation available with monads allows the
choice of the second computation to depend on the result of the first, while in
the applicative case there can be no such dependency. Every monad can be made
an applicative functor in a uniform way, here illustrated with the Maybe monad:
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instance Functor Maybe where

fmap f m = m >>= \ x -> return (f x)

instance Applicative Maybe where

pure = return

mf <*> mx = mf >>= \ f -> mx >>= \ x -> return (f x)

For functors that are also monads the monadic interface is often more convenient,
but here we shall be more interested in applicative functors that are not also
monads. A simple example is a constant functor returning a monoid [15]. Here
is that functor expressed in Haskell using the Monoid class, which defines an
associative binary operation <> with identity mempty:

newtype Constant a b = Constant a

instance Functor (Constant a) where

fmap f (Constant x) = Constant x

instance Monoid a => Applicative (Constant a) where

pure _ = Constant mempty

Constant x <*> Constant y = Constant (x <> y)

The more limited applicative interface has many more instances, some of which
will be presented in later sections. For example, the constrained form of sequenc-
ing offered by the applicative interface makes possible instances in which part
of the value is independent of the results of computations, e.g. parsers that pre-
generate parse tables [18]. Unlike monads, applicative functors are closed under
composition.

However many applications of monads, such as traversal of containers, can be
generalized to the applicative interface [15].

2.1 Lax Monoidal Functors

The applicative interface is convenient for programming, but in order to explore
relationships between functors we shall use an alternative form with a more
symmetrical sequencing operation:

class Functor f => Monoidal f where

unit :: f ()

mult :: f a -> f b -> f (a, b)

This interface, with identity and associativity laws, is equivalent to the applica-
tive interface—the operations are interdefinable:

pure x = fmap (const x) unit

a <*> b = fmap (uncurry id) (mult a b)

unit = pure ()

mult a b = fmap (,) a <*> b
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If we uncurry the operation mult of the Monoidal class, we obtain an oper-
ation � : F a × F b → F (a × b). This suggests generalizing from products to
other binary type constructors, a notion known in category theory as a monoidal
category.

A monoidal category [13] consists of a category C, a functor ⊗ : C × C → C
and an object � of C, with coherent natural isomorphisms

λ : �⊗ a ∼= a (left identity)
ρ : a⊗� ∼= a (right identity)
α : a⊗ (b⊗ c) ∼= (a⊗ b)⊗ c (associativity)

A symmetric monoidal category also has

σ : a⊗ b ∼= b ⊗ a (symmetry)

Both products and coproducts are examples of monoidal structures, and both
are also symmetric. Given a monoidal category 〈C,�,⊗, λ, ρ, α〉, the category
Cop, obtained by reversing all the morphisms of C, also has a monoidal struc-
ture: 〈Cop,�,⊗, λ−1, ρ−1, α−1〉. The product of two monoidal categories is also
monoidal, combining the isomorphisms of the two categories in parallel.

Often we simply refer to the category when the monoidal structure is clear
from the context.

Some functors preserve this structure exactly, with �′ = F � and F a⊗′F b =
F (a⊗ b); a trivial example is the identity functor. Others, such as the product
functor × : A×A → A preserve it up to isomorphism:

1 ∼= 1× 1

(a1 × a2)× (b1 × b2) ∼= (a1 × b1)× (a2 × b2)

We obtain a larger and more useful class of functors by relaxing further, requiring
only morphisms between the objects in each pair, thus generalizing the class
Monoidal above from products to any monoidal category.

A lax monoidal functor between monoidal categories 〈C,⊗,�〉 and 〈C′,⊗′,�′〉
consists of a functor F : C → C′ with natural transformations

u : �′ → F � (unit)
� : F a⊗′ F b→ F (a⊗ b) (multiplication)

such that the following diagrams commute:

�⊗ F a

u⊗F a

��

λ �� F a

F �⊗ F a �
�� F (�⊗ a)

F λ

�� F a⊗�

F a⊗u

��

ρ �� F a

F a⊗ F � �
�� F (a⊗�)

F ρ

��

F a⊗ (F b⊗ F c)

α

��

F a⊗� �� F a⊗ F (b⊗ c)
� �� F (a⊗ (b ⊗ c))

F α

��
(F a⊗ F b)⊗ F c �⊗F c

�� F (a⊗ b)⊗ F c �
�� F ((a⊗ b)⊗ c)
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The first two diagrams state that u is the left and right identity respectively of
the binary operation �, while the last diagram expresses the associativity of �.

2.2 Weak Commutativity

Although the definition of a lax monoidal functor neatly generalizes the Monoidal
class, it lacks the counterpart of pure. We will also want an associated axiom stat-
ing that pure computations can be commuted with other computations. (There
is a notion of symmetric lax monoidal functor, but requiring the ability to swap
any two computations would exclude too many functors useful in computation,
where the order in which effects occur is often significant.)

Thus we define an applicative functor on a symmetric monoidal category C
as consisting of a lax monoidal functor F : C → C, with a natural transfor-
mation p : a → F a (corresponding to the pure function of the Applicative

class) satisfying p� = u and p ◦ � = � ◦ p ⊗ p, plus a weak commutativity
condition:

a⊗ F b
p⊗F b ��

σ

��

F a⊗ F b
� �� F (a⊗ b)

F σ

��
F b⊗ a

F b⊗p
�� F b⊗ F a �

�� F (b⊗ a)

We could also express the weak commutativity condition as a constraint on
functors with a tensorial strength, but here we shall avoid such technicalities by
assuming that function spaces are first-class types, with primitives to perform
application and currying, or in categorical terms that we are working in a carte-
sian closed category (ccc). In particular, if A is a ccc, any lax monoidal functor
F : A → A is also applicative. To show this, we make use of another advantage
of working in a ccc, namely that we can conduct proofs in the internal λ-calculus
of the category [12], in which variables of type a stand for arrows of A(1, a), and
we write f (e1, . . . , en) for f ◦ 〈e1, . . . , en〉. The result is a convenient language
that is already familiar to functional programmers. When working in categories
with products we shall calculate using the internal language; when products are
not assumed we shall use diagrams.

In the internal language, we can define p : I
.→ F with the counterpart of the

above definition of pure for any Monoidal functor:

p x = F (const x)u

The proof of weak commutativity is then a simple calculation in the internal
language:
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F σ (p x� y) = F σ (F (const x)u � y) definition of p
= F (σ ◦ (const x)× id) (u� y) naturality of �
= F (σ ◦ (const x)× id) (F λ−1 y) left identity
= F (id × (const x) ◦ σ) (F λ−1 y) naturality of σ
= F (id × (const x) ◦ σ ◦ λ−1) y functor
= F (id × (const x) ◦ ρ−1) y symmetry
= F (id × const x) (F ρ−1 y) functor
= F (id × const x) (y � u) right identity
= y � F (const x)u naturality of �
= y � p x definition of p

It is also known that lax monoidal functors in a ccc are equivalent to closed func-
tors [5], which resemble the Applicative interface, but again the lax monoidal
form is more convenient for defining derived functors.

Thus our strategy will be to construct a lax monoidal functor over the product
structure of a ccc, but we may construct it from constituents involving other
monoidal categories. As a simple example, we have seen that the product functor
× : A×A → A is lax monoidal, and we can compose it with the diagonal functor
from A to A× A (also lax monoidal) to obtain a lax monoidal functor from A
to A:

F a = a× a

though in this case the resulting functor is also monadic. In Section 5 we also
use auxiliary categories with monoidal structures other than products.

3 Fixed Points, Limits and Colimits

A standard example of a computational monad is the list monad, which may
be used to model backtracking. There is another lax monoidal functor on lists,
with a unit constructing infinite lists and multiplication forming the zip of two
lists [15]:

data ZipList a = Nil | Cons a (ZipList a)

instance Functor ZipList where

fmap f Nil = Nil

fmap f (Cons x xs) = Cons (f x) (fmap f xs)

instance Monoidal ZipList where

unit = Cons () unit

mult (Cons x xs) (Cons y ys) = Cons (x,y) (mult xs ys)

mult _ _ = Nil

It turns out that this instance, and the proof that it satisfies the lax monoidal
laws, follow from a general construction. We can observe that ZipList is a fixed
point through the second argument of the binary functor F (a, b) = 1 + a × b.
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That is, F is the functor Maybe ◦×, a composition of two lax monoidal functors
and therefore lax monoidal.

There are two canonical notions of the fixed point of a functor, the initial and
final fixed points, also known as data and codata. Initial fixed points can be used
to define monads; here we use final fixed points to define lax monoidal functors.
Recall that a parameterized final fixed point of a functor F : A×B → B consists
of a functor νF : A → B with an isomorphism c : F (a, νF a) ∼= νF a and an
unfold operator [(·)] constructing the unique morphism satisfying

b
[(f)] �����������

f

��

νF a

F (a, b)
F (a,[(f)])

�������� F (a, νF a)

c

��

If F is lax monoidal, we can define the unit and multiplication morphisms of a
lax monoidal structure on νF as two of these unfolds:

�
uF

��

uνF=[(uF )] ���������� νF �

F (�,�)
F (�,uνF )

�������� F (�, νF )

c

��

νF a1 ⊗ νF a2

c−1⊗c−1

��

�νF=[(�F ◦c−1⊗c−1)] �������������� νF (a1 ⊗ a2)

F (a1, νF a1)⊗ F (a2, νF a2)

�F

��
F (a1 ⊗ a2, νF a1 ⊗ νF a2)

F (a1⊗a2,�νF )
�������� F (a1 ⊗ a2, νF (a1 ⊗ a2))

c

��

In particular, for F = Maybe◦×, this construction yields a lax monoidal functor
equivalent to ZipList above.

One can prove using fusion that this definition does indeed satisfy the lax
monoidal laws, but we shall prove a more general result instead.

3.1 Limits

Ignoring the parameter A for the moment, another way to define the final fixed
point of a functor F : B → B starts with the terminal object 1. Using with the
unique morphism !F 1 : F 1→ 1, we can define a chain of objects and morphisms:

· · · �� F 3 1
F 2 !F 1

�� F 2 1
F !F 1

�� F 1
!F 1

�� 1
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The final fixed point ν F is defined as the limit of this chain, an object with a
commuting family of morphisms (a cone) to the objects of the chain:

νF

���
��

��
��

�

�����
���

���
���

���
�

������
�����

�����
�����

�����
��

�������
������

������
������

������
������

· · · �� F 3 1
F 2 !F 1

�� F 2 1
F !F 1

�� F 1
!F 1

�� 1

such that any other such cone, say from an object B, can be expressed as a
composition of a unique morphism B → νF and the cone from νF .

This construction is sufficient for final fixed points of regular functors like
ZipList, but for the general case we need to lift the whole thing to the category
Fun(A,B), whose objects are functors A → B, and whose morphisms are natural
transformations. Given a functor Φ on this category, we can repeat the above
construction in the functor category, starting with the constant functor 1:

νΦ

���
��

��
��

�

�����
���

���
���

���
�

������
����

�����
�����

�����
��

�������
������

������
������

������
�����

· · · �� Φ3 1
Φ2 !Φ 1

�� Φ2 1
Φ !Φ 1

�� Φ 1
!Φ 1

�� 1

A standard result holds that limits in Fun(A,B) may be constructed from point-
wise limits in B [13, p. 112].

On the way to defining the final fixed point of Φ as a lax monoidal func-
tor, we wish to require that Φ preserve lax monoidal functors. To state this,
we need a specialized notion of natural transformation for lax monoidal func-
tors: a monoidal transformation between lax monoidal functors 〈F,�,�〉 and
〈F ′,�′,�′〉 is a natural transformation h : F

.→ F ′ that preserves the lax
monoidal operations:

�
u

				
		
		
		 u′



�
��

��
��

�

F �
h

�� F ′�

F a⊗ F b
h⊗h ��

�
��

F ′ a⊗ F ′ b

�′

��
F (a⊗ b)

h
�� F ′ (a⊗ b)

Then given monoidal categories A and B, we can define a category Mon(A,B)
with lax monoidal functors as objects and monoidal transformations between
them as morphisms. Now suppose we have a diagram in Mon(A,B), e.g. the
chain

· · · �� F3
f2

�� F2
f1

�� F1
f0

�� F0
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We can construct a limit in Fun(A,B) (from pointwise limits in B):

F

t3 ��















����
���

���
���

���
�

���
����

����
����

����
����

t0

������
�����

�����
�����

�����
�����

��

· · · �� F3
f2

�� F2
f1

�� F1
f0

�� F0

To extend F to a limit of this diagram in Mon(A,B), we want to define opera-
tions u and � on F such that the ti are monoidal transformations, i.e. satisfying
the following equations in B:

�
u

			
	
	
	

ui











F �
ti

�� Fi�

F a⊗ F b
ti⊗ti ��

�
���
�
� Fi a⊗ Fi b

�i

��
F (a⊗ b)

ti �� Fi (a⊗ b)

These equations imply that u and � are mediating morphisms to the limits
in B, and thus uniquely define them. It remains to show that � is a natural
transformation, and that u and� satisfy the identity and associativity laws. Each
of these four equations is proven in the same way: we show that the two sides
of the equation are equalized by each ti, as a consequence of the corresponding
equation on Fi, and thus, by universality, must be equal. For example, for the
left identity law we have the diagram

�⊗ F a

u⊗F a

��

λ ��

�⊗ti ����
���

���
���

F a

ti�����
���

���
���

�⊗ Fi a

ui⊗Fi a

��

λ �� Fi a

Fi�⊗ Fi a �i

�� Fi (�⊗ a)

Fi λ

��

F �⊗ F a �
��

ti⊗ti

��������������
F (�⊗ a)

F λ

��

ti

������������

The central panel is the left identity law for Fi, while the four surrounding panels
follow from the definitions of u and � and the naturality of λ and ti. Thus the
two morphisms �⊗ F a→ F a on the perimeter of the diagram is equalized by
ti. Since the universality of the limit implies that such a morphism is unique,
they must be equal. We have proven:

Proposition 1. If B is complete, then so is Mon(A,B).

Applying this to the chain of the fixed point construction, we have the immediate
corollary that the final fixed point of a higher-order functor Φ on lax monoidal
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functors is a uniquely determined extension of the final fixed point of Φ on
ordinary functors. For example, ZipList is the final fixed point of the higher-
order functor Φ is defined by ΦZ a = Maybe (a× Z a).

3.2 Sums

The dual notion, colimits, is not as easily handled. We can construct sums in
special cases, such as adding the identity functor to another lax monoidal functor:

data Lift f a = Return a | Others (f a)

instance Functor f => Functor (Lift f) where

fmap f (Return x) = Return (f x)

fmap f (Others m) = Others (fmap f m)

instance Monoidal f => Monoidal (Lift f) where

unit = Return ()

mult (Return x) (Return y) = Return (x, y)

mult (Return x) (Others my) = Others (fmap ((,) x) my)

mult (Others mx) (Return y) = Others (fmap (flip (,) y) mx)

mult (Others mx) (Others my) = Others (mult mx my)

Here pure computations (represented by the identity functor and the constructor
Return) may be combined with mult, but are converted to the other functor if
either computation involves that functor.

Applying this construction to the constant functor yields a form of computa-
tions with exceptions that collects errors instead of failing at the first error [4,15]:

type Except err a = Lift (Constant err) a

That is, in a computation mult e1 e2, after a failure in e1, the whole computa-
tion will fail, but not before executing e2 in case it produces errors that should
be reported together with those produced by e1.

The fixed point L ∼= Lift (I × L) expands to non-empty lists combined with
a “long zip”, in which the shorter list is padded with copies of its last element
to pair with the remaining elements of the longer list, as suggested by Jeremy
Gibbons and Richard Bird1:

data PadList a = Final a | NonFinal a (PadList a)

instance Functor PadList where

fmap f (Final x) = Final (f x)

fmap f (NonFinal x xs) = NonFinal (f x) (fmap f xs)

instance Monoidal PadList where

unit = Final ()

1 Personal communication, 5 July 2011.
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mult (Final x) (Final y) = Final (x, y)

mult (Final x) (NonFinal y ys) =

NonFinal (x, y) (fmap ((,) x) ys)

mult (NonFinal x xs) (Final y) =

NonFinal (x, y) (fmap (flip (,) y) xs)

mult (NonFinal x xs) (NonFinal y ys) =

NonFinal (x, y) (mult xs ys)

A straightforward generalization is L ∼= Lift (I × (F ◦L)) for any lax monoidal
F , defining forms of long zip for various kinds of tree.

The Lift construction is able to combine computations in the identity func-
tor with those of another lax monoidal functor F because there is a monoidal
transformation between the two, namely the arrow pure. We can generalize:

Proposition 2. If J is an upper semi-lattice and B is a ccc with finite coprod-
ucts, a diagram Δ : J →Mon(A,B) has a colimit.

Proof. Define a functor F by

F a =
∑
j∈J

Cj (Δj a)

F f (Cj x) = Cj (f x)

where the Cj : Δj
.→ F are tagging injections (constructors) marking the terms

of the sum. Then we can define a lax monoidal structure on F as follows:

u = C⊥ u⊥
Cj a� Ck b = Cj�k (Δj≤j�k a,Δk≤j�k b)

Naturality of � and the identity and associativity laws follow from simple cal-
culations. +*

For example, in the case of Lift, J is a two-element lattice 0 ≤ 1, with Δ0 = I,
Δ1 = F and Δ0≤1 = p.

4 Generalized Semi-direct Products

A pioneering instance of the applicative interface was the parser combinator
library of Swierstra and Duponcheel [18], which we here rehearse in a greatly
cut-down form.

These parsers are applied to the output of lexical analysis. Given a type
Symbol enumerating symbol types, parser input consists of a list of Tokens,
recording the symbol type and its text:

type Token = (Symbol, String)
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For example, there might be a Symbol for numeric literals, in which case the
corresponding String would record the text of the number. Parsers take a list
of tokens and return either an error string or a parsed value together with the
unparsed remainder of the input:

newtype Parser a = P ([Token] -> Either String (a, [Token]))

This type is a monad (built by adding to an exception monad a state consisting
of a list of tokens), and therefore also an applicative functor. Parsers can be built
using primitives to peek at the next symbol, to move to the next token returning
the string value of the token read, and to abort parsing reporting an error:

nextSymbol :: Parser Symbol

advance :: Parser String

throwError :: String -> Parser a

In order to construct recursive descent parsers corresponding to phrases of a
grammar, one needs to keep track of whether a phrase can generate the empty
string, and also the set of symbols that can begin a phrase (its first set). Swierstra
and Duponcheel’s idea was to define a type containing this information about a
phrase, from which a deterministic parser for the phrase could be constructed:

data Phrase a = Phrase (Maybe a) (Map Symbol (Parser a))

The two components are:

– The type Maybe a indicates whether the phrase can generate the empty
string, and if so provides a default output value.

– The type Map Symbol (Parser a) records which symbols can start the
phrase, and provides for each a corresponding deterministic parser.

The Functor instance for this type follows from the structure of the type:

instance Functor Phrase where

fmap f (Phrase e t) = Phrase (fmap f e) (fmap (fmap f) t)

The idea, then, is to build a value of this type for each phrase of the grammar,
with the following conversion to a deterministic parser:

parser :: Phrase a -> Parser a

parser (Phrase e t)

| null t = def

| otherwise = do

s <- nextSymbol

findWithDefault def s t

where

def = case e of

Just x -> return x

Nothing -> throwError ("expected " ++ show (keys t))
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A parser for a single symbol, returning its corresponding text, is

symbol :: Symbol -> Phrase String

symbol s = Phrase Nothing (singleton s advance)

Alternatives are easily built:

(<|>) :: Phrase a -> Phrase a -> Phrase a

Phrase e1 t1 <|> Phrase e2 t2 =

Phrase (e1 ‘mplus‘ e2) (t1 ‘union‘ t2)

In a realistic library, one would want to check that at most one of the alterna-
tives could generate the empty string, and that the first sets were disjoint. The
information in the Phrase type makes it possible to determine this check before
parsing, but we omit this in our simplified presentation.

Now the lax monoidal structure corresponds to the empty phrase and con-
catenation of phrases. A phrase αβ can generate the empty string only if both
the constituent phrases can, but the emptiness information for α also determines
whether the initial symbols of αβ include those of β in addition to those of α:

instance Monoidal Phrase where

unit = Phrase unit empty

mult (Phrase e1 t1) (~p2@(Phrase e2 t2)) =

Phrase (mult e1 e2) (union t1’ t2’)

where

t1’ = fmap (‘mult‘ parser p2) t1

t2’ = maybe empty (\ x -> fmap (fmap ((,) x)) t2) e1

In Haskell, a tilde marks a pattern as lazy, meaning it is not matched until its
components are used. It is used here so that Phrase values can be recursively
defined, as long as one avoids left recursion.

We might wonder whether this definition is an instance of a general con-
struction. We note that the Phrase type is a pair, and the first components
are combined using the lax monoidal operations on Maybe, independent of the
second components. This is similar to a standard construction on monoids, the
semi-direct product, which takes a pair of monoids 〈A, ∗, 1〉 and 〈X,+, 0〉 with
an action (·) : A×X → X , and defines a monoid on A×X , with binary operation

(a, x)4 (b, y) = (a ∗ b, x+ (a · y))

and identity (1, 0). For example Horner’s Rule for the evaluation of a polynomial
anx

n+ · · ·+a1x+a0 can be expressed as a fold of such an operation over the list
[(x, a0), (x, a1), . . . , (x, an)], with the immediate consequence that the calculation
can be performed in parallel (albeit with repeated calculation of the powers of
x).

We shall consider a generalization of the semi-direct product on lax monoidal
functors, requiring

– a lax monoidal functor 〈F,�, u〉 : 〈A,⊗,�〉 → 〈B,×, 1〉
– a functor G : A → B with a natural family of monoids ⊕ : Ga×Ga→ Ga

and ∅ : 1→ Ga.
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– an operation � : Ga× (F b×Gb)→ G (a⊗ b) distributing over G:

∅� q = ∅ (1)

(x⊕ y)� q = (x� q)⊕ (y � q) (2)

– an operation � : (F a×Ga)×Gb→ G (a⊗ b) distributing over G:

p� ∅ = ∅ (3)

p� (x⊕ y) = (p� x)⊕ (p� y) (4)

also satisfying

(p� y)� r = p� (y � r) (5)

Proposition 3. Given the above functors and operations, there is a lax monoidal
functor 〈H,�H , uH〉 : 〈A,⊗,�〉 → 〈B,×, 1〉 defined by

H a = F a×Ga

uH = (u, ∅)
(a, x)�H (b, y) = (a� b, (x� (b, y))⊕ ((a, x)� y))

provided that � and � are left and right actions on G, i.e.

uH � z = z (6)

(p�H q)� z = p� (q � z) (7)

x� uH = x (8)

x� (q �H r) = (x� q)� r (9)

Proof. It follows from their definitions that H is a functor and �H a natural
transformation. Next, we show that uH is the left and right identity of �H :

uH �H (b, y) = (1� b, (∅� (b, y))⊕ (uH � y)) definition of �H , uH

= (1� b, ∅ ⊕ y) equations (1) and (6)
= (b, y) monoid laws

(a, x)�H uH = (a� 1, (x� uH)⊕ ((a, x) � ∅)) definition of �H , uH

= (a� 1, x⊕ ∅) equations (8) and (3)
= (a, x) monoid laws

Finally, we must show that �H is associative:

((a, x)�H (b, y))�H (c, z)
= (a� b� c, (((x� (b, y))⊕ ((a, x)� y))� (c, z))⊕

(((a, x)�H (b, y))� z))
definition of �H

= (a� b� c, ((x� (b, y))� (c, z))⊕ (((a, x) � y)� (c, z))⊕
(((a, x)�H (b, y))� z))

equation (2)

= (a� b� c, (x� ((b, y)�H (c, z)))⊕
((a, x)� (y � (c, z)))⊕ ((a, x) � ((b, y)� z)))

(9), (5) and (7)

= (a� b ∗ c, (x� ((b, y)�H (c, z)))⊕
((a, x)� (y � (c, z))⊕ ((b, y)� z)))

equation (4)

= (a, x)�H ((b, y)�H (c, z)) definition of �H

+*
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In particular, Proposition 3 identifies the properties we need to establish to
demonstrate that Phrase is lax monoidal, and thus applicative.

5 Existentials and Coends

Many applicative functors are constructed using existential quantification, hiding
a private representation type. We shall consider the corresponding categorical
notion, called a coend.

Abbott, Altenkirch and Ghani [1] consider containers of the form

L c = ∃m.Km→ c

Here m is drawn from a set of shapes M (a discrete category), the functor
K : M → C assigns to each shape a set of positions within containers of that
shape, and the function provides a value for each of these positions. For example,
the shape of a list is a natural number n giving its length, which K maps to the
set of positions {0, 1, . . . , n− 1}, the indices of the list.

There are several ways that we can extend container functors to obtain useful
lax monoidal functors.

If we letM be the natural numbers plus an upper bound ω, and K n = {i |
i < n}, then L represents finite and infinite lists. We can define lax monoidal
operations:

u = (ω, const �)
(m, f)� (n, g) = (m + n, 〈f, g〉)

That is, u yields an infinite list, and � constructs a list of pairs, whose length is
the smaller of the lengths of the arguments. We recognize this functor as another
version of the ZipList functor defined in Section 3. More generally, ifM has a
monoidal structure that is a lower semi-lattice, and K (m1 +m2) ⊆ Kmi, then
the lax monoidal structure on L computes zips on containers.

A type comprising arrays of different dimensions can be represented using a
shape functor K satisfying K � ∼= 1 and K (a ⊗ b) ∼= K a × K b. Then we can
define lax monoidal operations with with u constructing a scalar and � being
cartesian product:

u = (�, const ())
(m, f)� (n, g) = (m⊗ n, f × g)

We can approximate such multi-dimensional arrays using a Haskell existential
type (specified by using the quantifier keyword forall before the data construc-
tor):

data MultiArray a = forall i. Ix i => MA (Array i a)

instance Functor MultiArray where

fmap f (MA a) =

MA (array (bounds a) [(i, f e) | (i, e) <- assocs a])
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The unit operation constructs a scalar, while mult forms the cartesian product
of two arrays:

instance Monoidal MultiArray where

unit = MA (array ((), ()) [((), ())])

mult (MA xs) (MA ys) =

MA (array ((lx, ly), (hx, hy))

[((i, j), (x, y)) | (i, x) <- assocs xs,

(j, y) <- assocs ys])

where

(lx, hx) = bounds xs

(ly, hy) = bounds ys

We could extend multi-dimensional arrays by adding a distinguished position,
i.e. a cursor within the container:

L c = ∃m.Km× (Km→ c)

When two arrays are combined with mult, their cursors are also paired to form
a cursor on the product array.

Another example arises in Elliott’s analysis of fusion [6], where folds are reified
using a type

data FoldL b a = FoldL (a -> b -> a) a

The type constructor FoldL is not a functor, because its argument a occurs
in both the domain and range of function types. Wishing to apply functorial
machinery to these reified folds, Elliott introduced a related type that could be
defined as a functor:

data WithCont z c = forall a. WC (z a) (a -> c)

instance Functor (WithCont z) where

fmap g (WC z k) = WC z (g . k)

Although FoldL is not a functor, it nevertheless has operations similar to unit

and mult. These can be described using a type class similar to Monoidal, but
without the Functor superclass:

class Zip z where

zunit :: z ()

zmult :: z a -> z b -> z (a, b)

The above type constructor FoldL is an instance:

instance Zip (FoldL b) where

zunit = FoldL const ()

zmult (FoldL f1 z1) (FoldL f2 z2) =

FoldL (\ (x,y) b -> (f1 x b, f2 y b)) (z1, z2)
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This class is sufficient to define WithCont as a lax monoidal functor:

instance Zip z => Monoidal (WithCont z) where

unit = WC zunit (const ())

mult (WC t1 k1) (WC t2 k2) =

WC (zmult t1 t2) (\ (x,y) -> (k1 x, k2 y))

5.1 Left Kan Extensions

We now consider the general case. Kan extensions are general constructions that
have also found applications in programming. The right Kan has been used to
construct generalized folds on nested types [10], to fuse types [7], and to construct
a monad (the codensity monad) that can be used for program optimization [19,8].
The lax monoidal functors discussed above are instances of the other variety, the
left Kan.

Kan extensions have an elegant description at the level of functors. Given a
functor K :M → C, the left and right Kan extensions along K are defined as
the left and right adjoints of the higher-order functor (◦K) that maps to each
functor C → A to a functor M → C [13]. That is, the left Kan extension a
functor T : M → A along K is a functor L : C → A with a universal natural
transformation η : T

.→ L ◦K:

M

T ��














K �� C

L���
�
�
�

A

η
=⇒

For our purposes, it will be more convenient to use the standard pointwise
construction of the left Kan extension as a coend, corresponding to existen-
tial quantification in programming languages. For convenience, we assume that
the category A is cartesian closed, and that C is an A-category [11], i.e. that
the “hom-sets” of C are objects of A, with identity and composition morphisms
satisfying the usual laws. Using the more familiar notation ∃ in place of the in-
tegral sign favoured by category theorists, the left Kan extension of T :M→A
along K :M→ C is the functor L : C → A defined by

L c = ∃m.T m× C (Km, c)

The examples discussed above are instances of left Kan extensions:

– In the container example, T is the constant functor mapping to 1, and the
monoidal structure onM has � = ω and with ⊗ as minimum.

– In the example of arrays with cursors, T is identified with K.
– In the WithCont example, M is the subcategory of isomorphisms of A. T

can model any type constructor, as although type constructors (like FoldL

above) need not be functorial, they still preserve isomorphisms.
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To state that L c is a coend is to say that there is an initial dinatural transfor-
mation ω : T m × C (Km, c) → L c. This dinaturality of ω is expressed by the
equation

ω (T hx, k) = ω (x, k ◦K h)

That is, the existentially qualified type m is abstract: we can change the rep-
resentation without affecting the constructed value. The natural transformation
η : T

.→ L ◦K is defined as

η x = ω (x, id)

Initiality of ω means that a natural transformation from L is uniquely determined
by its action on terms of the internal language of the form ω (x, k). For example,
we can define the action of L on arrows as

Lf (ω (x, k)) = ω (x, f ◦ k)

In order to make L lax monoidal, we shall assume that the functor K :M→ C
is a colax monoidal functor, or equivalently a lax monoidal functorMop → Cop.
That is, there are natural transformations

s : K (a⊗M b)→ K a⊗C K b

n : K �M → �C

such that the following diagrams commute:

K (�⊗ a)

K λ

��

s �� K �⊗K a

n⊗K a

��
K a �⊗K a

λ
��

K (a⊗�)

K ρ

��

s �� K a⊗K �

K a⊗n

��
K a K a⊗�ρ

��

K (a⊗ (b⊗ c))

K α

��

s �� K a⊗K (b⊗ c)
K a⊗s �� K a⊗ (K b⊗K c)

α

��
K ((a⊗ b)⊗ c) s

�� K (a⊗ b)⊗K c
s⊗K c

�� (K a⊗K b)⊗K c

In the special case where the monoidal structure on C is that of products, there is
only one choice for n, namely the unique arrow K � → 1. Moreover in that case
s : K (a⊗b)→ K a×K b can be broken down into two components: s = 〈s1, s2〉.

Proposition 4. IfM and C are monoidal and A has finite products, K is colax
monoidal and T is lax monoidal, then L is lax monoidal, with

uL = ω (uT , nK)

ω (x1, k1)�L ω (x2, k2) = ω (x1 �T x2, k1 × k2 ◦ sK)
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This is a special case of Proposition 5, which we shall prove in the next section.
A degenerate example hasM as the trivial category with one object and one

morphism, so that T defines a monoid and K selects some object, with si = id .
This describes computations that write output and also read an environment,
but in which the output is independent of the environment:

L c = T × (K → c)

This applicative functor is a composition of two applicative functors that are
also monads, but the composition is not a monad.

Another simple case arises whenM is a cartesian category, in which case an
arbitrary functor K :M→ C can be made colax monoidal by setting si = K πi.
Thus we obtain the following Haskell version of the left Kan:2

data Lan t k c = forall m. Lan (t m) (k m -> c)

instance (Functor t, Functor k) => Functor (Lan t k) where

fmap f (Lan x k) = Lan x (f . k)

instance (Monoidal t, Functor k) => Monoidal (Lan t k) where

unit = Lan unit (const ())

mult (Lan x1 k1) (Lan x2 k2) =

Lan (mult x1 x2)

(\ y -> (k1 (fmap fst y), k2 (fmap snd y)))

Although this implementation has the form of a general left Kan extension, it is
limited to the Haskell category.

A richer example occurs in the modelling of behaviours of animations using
applicative functors by Matlage and Gill [14]. The basic functor comprises a
function over a closed interval of time, which can be modelled as pairs of times:

data Interval = Between Time Time

instance Monoid Interval where

mempty = Between inf (-inf)

Between start1 stop1 <> Between start2 stop2 =

Between (min start1 start2) (max stop1 stop2)

We would like to represent continuous behaviours by a type ∃ i.K i → T , for a
functor K mapping pairs of times to closed intervals of time, with si mapping
from larger intervals to smaller by truncation. We cannot express this directly
in Haskell, which lacks dependent types, but we can approximate it with a type

data Behaviour a = B Interval (Time -> a)

provided we hide the representation and provide only an accessor function:

2 In fact the Functor instance requires no assumptions about t and k, and in the
Monoidal instance Zip t could replace Monoidal t.
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observe :: Behaviour a -> Time -> a

observe (B (Between start stop) f) t =

f (max start (min stop t))

Now this type can be made monoidal with the following definitions, which pre-
serve the abstraction:

instance Functor Behaviour where

fmap f (B i g) = B i (f . g)

instance Monoidal Behaviour where

unit = B mempty (const ())

mult b1@(B i1 f1) b2@(B i2 f2) =

B (i1 <> i2) (\ t -> (observe b1 t, observe b2 t))

The final functor used by Matlage and Gill can be obtained by adding constant
behaviour using Lift:

type Active = Lift Behaviour

Thus a value of type Active a is either constant or a function of time over a
given interval. A combination of such behaviours is constant only if both the
arguments were.

5.2 The General Case

Our final example is a generalization of the type used by Baars, Löh and Swier-
stra [3] to construct parsers for permutations of phrases, which we express as

data Perms p a = Choice (Maybe a) [Branch p a]

data Branch p a = forall b. Branch (p b) (Perms p (b -> a))

This implementation is too subtle to explain in full detain here, but the Perms

type is essentially an efficient representation of a collection of all the permuta-
tions of a set of elementary parsers (or actions, in other applications). The type
in the original paper is equivalent to restricting our version of the Perms type to
values of the forms Choice (Just x) [] and Choice Nothing bs, allowing a
single elementary parser to be added to the collection at a time. In contrast, the
mult methods allows the interleaving of arbitrary collections of actions, allowing
us to build them in any order.

The functor instances for these two types are straightforward:

instance Functor p => Functor (Perms p) where

fmap f (Choice def bs) =

Choice (fmap f def) (map (fmap f) bs)

instance Functor p => Functor (Branch p) where

fmap f (Branch p perm) = Branch p (fmap (f .) perm)
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Assuming that p is lax monoidal, we will construct instances for Perms p and
Branch p. These types are mutually recursive, but we know that final fixed
points preserve applicative functors.

We define an operator *** as

(***) :: Monoidal f => f (a1 -> b1) -> f (a2 -> b2) ->

f ((a1,a2) -> (b1,b2))

p *** q = fmap (\ (f,g) (x,y) -> (f x, g y)) (mult p q)

This is an example of the construction of static arrows from applicative func-
tors [15]. Now, assuming that Perms p is lax monoidal, we can construct an
instance for Branch p as a generalized left Kan extension:

instance Monoidal p => Monoidal (Branch p) where

unit = Branch unit (pure id)

mult (Branch p1 perm1) (Branch p2 perm2) =

Branch (mult p1 p2) (perm1 *** perm2)

The instance for Perms p is constructed from the instance for Branch p as a
generalized semi-direct product, which builds all the interleavings of the two
collections of permutations:

instance Monoidal p => Monoidal (Perms p) where

unit = Choice unit []

mult (t1@(Choice d1 bs1)) (t2@(Choice d2 bs2)) =

Choice (mult d1 d2)

(map (‘mult‘ include t2) bs1 ++

map (include t1 ‘mult‘) bs2)

where

include :: Monoidal p => Perms p a -> Branch p a

include p = Branch unit (fmap const p)

To encompass examples such as this, we need a generalization of the left Kan.
Suppose the functor K factors through a monoidal category B:

B
J

���
��

��
��

=

M

H

����������

T ��














K �� C

L���
�
�
�

A

η⇒

We also assume a natural operator

	 : C(J a, J b)× C(J c, J d)→ C(J (a⊗ c), J (b ⊗ d))

(corresponding to *** above) satisfying unit and associativity laws:

J λ ◦ f 	� = f ◦ J λ

J ρ ◦ �	 f = f ◦ J ρ

J α ◦ f 	 (g 	 h) = (f 	 g)	 h ◦ J α
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The situation of ordinary left Kan extensions is the special case where J is the
identity functor and 	 is ⊗C . However in general we do not require that 	 be
a functor. The key example of a structure with such an operator is an enriched
premonoidal category, or “arrow” [2,9].

Proposition 5. If M and B are monoidal, A has finite products, H is colax
monoidal and T is lax monoidal, then F = L ◦ J is lax monoidal, with

F a = ∃m.T m× (J (H m)→ J a)

F f (ω (x, k)) = ω (x, J f ◦ k)
uF = ω (uT , J nH)

ω (x1, k1)�F ω (x2, k2) = ω (x1 �T x2, k1 	 k2 ◦ J sH)

Instead of proving this directly, we show that the functor G : Mop ×M × A
defined by

G (m′,m, a) = T m× (J (H m′)→ J a)

is itself lax monoidal, and then use a general result about coends of lax monoidal
functors. To see that G is lax monoidal, we note that T is lax monoidal, so we
only need to show that the second component is. The left identity case is

F λ ◦ id 	 k ◦ J (nH × 1 ◦ sH) = k ◦ J (λ ◦ nH × 1 ◦ sH) left identity of 	
= k ◦ J (H λ) left identity of H

The right identity case is similar. Associativity relies on the associativity of 	:

J α ◦ k1 	 (k2 	 k3 ◦ J sH) ◦ J sH
= J α ◦ k1 	 (k2 	 k3) ◦ J (id × sH ◦ sH) naturality of 	
= (k1 	 k2)	 k3 ◦ J (α ◦ id × sH ◦ sH) associativity of 	
= (k1 	 k2)	 k3 ◦ J (sH × id ◦ sH ◦H α) associativity of sH

Thus it suffices to show that coends preserve lax monoidal functors, which is our
final result.

Proposition 6. Given monoidal categories A and B and a ccc C, with a lax
monoidal functor G : Aop ×A × B → C, then the coend F b = ∃ a.G (a, a, b) is
also lax monoidal, with

F b = ∃ a.G (a, a, b)

F f (ω x) = ω (G (id , id , f)x)

uF = ω uG

ω x1 �F ω x2 = ω (x1 �G x2)

Proof. It is a standard result that a parameterized coend such as F defines a
functor. Naturality of �F follows from naturality of �G:

F (f1 ⊗ f2) (ω x1 �F ω x2)
= F (f1 ⊗ f2) (ω (x1 �G x2)) definition of �F

= ω (G (id , id , f1 ⊗ f2) (x1 �G x2)) definition of F
= ω (G (id , id , f1)x1 �G G (id , id , f2)x2) naturality of �G

= ω (G (id , id , f1)x1)�F ω (G (id , id , f2)x2) definition of �F

= F f1 (ω x1)�F F f2 (ω x2) definition of F
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Similarly the left identity law for F follows from the corresponding law for G:

F λ (uF �F ω x) = F λ (ω uG �F ω x) definition of uF

= F λ (ω (uG �G x)) definition of �F

= ω (G (id , id , λ) (uG �G x)) definition of F
= ω (G (id , λ ◦ λ−1, λ) (uG �G x)) isomorphism
= ω (G (λ−1, λ, λ) (uG �G x)) dinaturality of ω
= ω x left identity of G

The right identity case is similar.
Finally, the associativity law for �F follows from the associativity of �G:

F α (ω x�F (ω y �F ω z))
= F α (ω x�F ω (y �G z)) definition of �F

= F α (ω (x�G (y �G z))) definition of �F

= ω (G (id , id , α) (x�G (y �G z))) definition of F
= ω (G (id , α ◦ α−1, α) (x �G (y �G z))) isomorphism
= ω (G (α−1, α, α) (x �G (y �G z))) dinaturality of ω
= ω ((x�G y)�G z) associativity of G
= ω (x�G y)�F ω z definition of �F

= (ω x�F ω y)�F ω z definition of �F

+*

As a further example, we have the coend encoding of the final fixed point ν F of
a functor F : A× B → B:

ν F a ∼= ∃ b. b× (b→ F (a, b))

which is a coend of G (b′, b, a) = b× (b′ → F (a, b)), and yields the same applica-
tive functor as discussed in Section 3.

6 Conclusion

We have established a number of general constructions of lax monoidal func-
tors, and therefore of applicative functors. In examples such as the permutation
phrases of Section 5.2, we showed that by combining these constructions we could
account for quite complex (and useful) applicative functors, avoiding the need for
specific proofs of their laws. By breaking the functors down into simple building
blocks, we have clarified their relationships, as well providing the tools to build
more applications. The next stage is to examine the possible combinations, and
to consider other constructions.
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Abstract. Many program optimisations involve transforming a pro-
gram in direct style to an equivalent program in continuation-passing
style. This paper investigates the theoretical underpinnings of this trans-
formation in the categorical setting of monads. We argue that so-called
absolute Kan Extensions underlie this program optimisation. It is known
that every Kan extension gives rise to a monad, the codensity monad, and
furthermore that every monad is isomorphic to a codensity monad. The
end formula for Kan extensions then induces an implementation of the
monad, which can be seen as the categorical counterpart of continuation-
passing style. We show that several optimisations are instances of this
scheme: Church representations and implementation of backtracking us-
ing success and failure continuations, among others. Furthermore, we
develop the calculational properties of Kan extensions, powers and ends.
In particular, we propose a two-dimensional notation based on string
diagrams that aims to support effective reasoning with Kan extensions.

Keywords: Haskell, CPS, adjunction, Kan extension, codensity monad,
power, end, Church representation, backtracking, string diagram.

1 Introduction

Say you have implemented some computational effect using a monad, and you
note that your monadic program is running rather slow. There is a folklore trick
to speed it up: transform the monad M into continuation-passing style.

typeC a = ∀z . (a → M z )→ M z

instanceMonad Cwhere
return a = λc → c a
m >>= k = λc → m (λa → k a c)

The type constructor C is a monad, regardless ofM. The origins of this trick seem
to be unknown. It is implicit in Hughes’ tutorial on designing a pretty-printing
library [18], which introduces a related construction called context-passing style.
Interestingly, Hughes makes C parametric in the type variable z , rather than

J. Gibbons and P. Nogueira (Eds.): MPC 2012, LNCS 7342, pp. 324–362, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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locally quantifying over z . Presumably, this is because no Haskell system sup-
ported rank-2 types at the time of writing the paper. Only in 1996 Augustsson
added support for local universal quantification to the Haskell B. Compiler (hbc
0.9999.0) and I started using it.

My goal was to provide a fast implementation of backtracking in Haskell—the
first promising results were detailed in a long technical report [12]. Briefly, the
idea is to use two continuations, a success and a failure continuation. Failure and
choice can then be implemented as follows.

typeB a = ∀z . (a → z → z )→ z → z

fail : B a
fail = λs f → f

(�) : B a → B a → B a
m � n = λs f → m s (n s f )

We shall see later that this implementation of backtracking is an instance of the
trick. This particular application can be traced back to a paper by Mellish and
Hardy [29], who showed how to integrate Prolog into the POPLOG environment.
Their setting is an imperative one; Danvy and Filinski [9] explained how to recast
the approach in purely functional terms. Since then the trick has made several
appearances in the literature, most notably [13,8,33,20,28].

The purpose of this paper is to justify the trick and explain its far-reaching
applications. There is no shortage of proofs in the aforementioned papers, but
no work relates the original monad M to the improved monad C. Since the
transformation is labelled ‘program optimisation’, one would hope that M is
isomorphic to C, but sadly this is not the case. We shall see that M a is instead
isomorphic to ∀z . (a → R z )→ R z for some magic functor R related to M.

The proofs will be conducted in a categorical setting. We will argue that
continuations are an implementation of a categorical concept known as a right
Kan extension, Kan extension for short. For the most part, we will prove and
program against the specification of a Kan extension. This is in contrast to the
related work, including my papers, which take the rank-2 types as the point of
departure. (One could argue that this violates one of the fundamental princi-
ples of computer science, that we should program against an interface, not an
implementation.) It should come as little surprise that all of the necessary cate-
gorical concepts and results appear either explicitly or implicitly in Mac Lane’s
masterpiece [27]. In fact, the first part of this paper solves Exercise X.7.3 of the
textbook. Specifically, we show that

– a Kan extension gives rise to a monad, the so-called codensity monad,
thereby solving Exercise X.7.3(a);

– every monad is isomorphic to a codensity monad, solving Exercise X.7.3(c);
– we show that Kan extensions can be implemented using ends and powers

[27, Section X.4], which we argue is the gist of continuation-passing style.

Combined these results provide a powerful optimisation scheme. Although the
categorical results are known, none of the papers cited above seems to note
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the intimate relationship. This paper sets out to fill this gap, showing the rele-
vance of the categorical construction to programming. Furthermore, it aims to
complement Mac Lane’s diagrammatic reasoning by a calculational approach.
Specifically, the paper makes the following original contributions:

– we demonstrate that many program optimisations are instances of the opti-
misation scheme: Church representations etc;

– we develop the calculational properties of Kan extensions, powers and ends;
– to support effective reasoning, we propose a two-dimensional notation for

Kan extensions based on string diagrams.

It is the last aspect I am most excited about. The algebra of programming has
aptly demonstrated the power of equational reasoning for program calculation.
However, one-dimensional notation reaches its limits when it comes to reasoning
about natural transformations, as we will set out to do. Natural transformations
are a 2-categorical concept, which lends itself naturally to a two-dimensional
notation. Many laws, which otherwise have to be invoked explicitly, are built
into the notation.

The remainder of the paper is structured as follows. Section 2 introduces
some background, notably adjunctions and monads. The knowledgeable reader
may safely skip the material, except perhaps for Section 2.2, which introduces
string diagrams. Section 3 defines the notion of a Kan extension and suggests a
two-dimensional notation based on string diagrams. Section 4 applies the nota-
tion to show that every Kan extension induces a monad, the codensity monad.
Sections 5 and 6 move on to discuss the existence of Kan extensions. Section 5
proves that every adjunction induces a Kan extension, and that every monad is
isomorphic to a codensity monad. Section 6 derives the so-called end formula for
Kan extensions. The development requires the categorical notions of powers and
ends, which are introduced in Sections 6.1 and 6.2, respectively. The framework
has a multitude of applications, which Section 7 investigates. Finally, Section 8
reviews related work and Section 9 concludes.

A basic knowledge of category theory is assumed. Appendix A summarises
the main facts about composition of functors and natural transformations.

2 Background

2.1 Adjunction

The notion of an adjunction was introduced by Daniel Kan in 1958 [23]. Ad-
junctions have proved to be one of the most important ideas in category theory,
predominantly due to their ubiquity. Many mathematical constructions turn out
to be adjoint functors that form adjunctions, with Mac Lane [27, p.vii] famously
saying, “Adjoint functors arise everywhere.” From the perspective of program
calculation, adjunctions provide a unified framework for program transforma-
tion. As with every deep concept, there are various ways to define the notion of
an adjunction. The simplest is perhaps the following:
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Let L and R be categories. The functors L : L ← R and R : L → R are
adjoint, written L / R and depicted

L
≺ L

⊥
R
6

R ,

if and only if there is a bijection between the hom-sets

7−8 : L (LA,B) ∼= R(A,RB) : �−� , (1)

that is natural both in A and B . The functor L is said to be a left adjoint for R,
while R is L’s right adjoint. The isomorphism 7−8 is called the left adjunct with
�−� being the right adjunct. (The notation 7−8 for the left adjunct is chosen
as the opening bracket resembles an ‘L’. Likewise—but this is admittedly a bit
laboured—the opening bracket of �−� can be seen as an angular ‘r’. )

That 7−8 and �−� are mutually inverse can be captured using an equivalence.

f = �g� ⇐⇒ 7f 8 = g (2)

The left-hand side lives in L , and the right-hand side in R.
Let us spell out the naturality properties of the adjuncts: �g� · L h = �g · h�

and R k · 7f 8 = 7k · f 8. The formulæ imply �id� · L h = �h� and R k · 7id8 = 7k8.
Consequently, the adjuncts are uniquely defined by their images of the identity:
ε = �id� and η = 7id8. An alternative definition of adjunctions is based on these
two natural transformations, which are called the counit ε : L◦R →̇ Id and the
unit η : Id→̇R◦L of the adjunction. The units must satisfy the so-called triangle
identities :

ε◦L · L◦η = idL , (3a)

R◦ε · η◦R = idR . (3b)

The diagrammatic rendering explains the name triangle identities.

L◦R◦L

L ≺
idL

≺
ε◦
L

L

≺
L◦η

R◦L◦R

R ≺
idR

≺
R◦
ε

R

≺
η◦R

Remark 1. To understand concepts in category theory it is helpful to look at
a simple class of categories: preorders, reflexive and transitive relations. Every
preorder gives rise to a category whose objects are the elements of the preorder
and whose arrows are given by the ordering relation. These categories are special
as there is at most one arrow between two objects. Reflexivity provides the
identity arrow, transitivity allows us to compose two arrows. A functor between
two preorders is a monotone function, a mapping on objects that respects the
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underlying ordering: a 
 b =⇒ f a 
 f b. A natural transformation between two
monotone functions corresponds to a point-wise ordering: f 
̇ g ⇐⇒ ∀ x . f x 

g x . When appropriate we shall specialise the development to preorders.

The preorder equivalent of an adjunction is a Galois connection. Let L and R
be preorders. The maps l : L ← R and r : L → R form a Galois connection
between L and R if and only if

l a 
 b in L ⇐⇒ a 
 r b in R , (4)

for all a ∈ R and b ∈ L.
An instructive example of a right adjoint is the floor function 7−8 : R → Z

(not to be confused with the notation for left adjuncts), whose left adjoint is the
inclusion map ι : Z→ R. We have

ιn 
 x in R ⇐⇒ n 
 7x8 in Z ,

for all n ∈ Z and x ∈ R. The inclusion map also has a left adjoint, the ceiling
function �−� : R→ Z.

The definition of an adjunction in terms of the units corresponds to the fol-
lowing property: the maps l : L ← R and r : L → R form a Galois connection
between L and R if and only if l and r are monotone, l · r 
̇ id and id 
̇ r · l .
Since in a preorder there is at most one arrow between two objects, we further-
more have r · l · r ∼̇= r and l ∼̇= l · r · l .

In general, to interpret a category-theoretic result in the setting of preorders,
we only consider the types of the arrows: for example, the bijection (1) simplifies
to (4). Conversely, an order-theoretic proof can be interpreted as a typing deriva-
tion. Category theory has been characterised as coherently constructive lattice
theory [2], and to generalise an order-theoretic result we additionally have to im-
pose coherence conditions—the triangle identities in the case of adjunctions. �

2.2 String Diagram

Throughout the paper we shall recast natural transformations and their prop-
erties in two-dimensional notation, based on string diagrams [31]. Categories,
functors and natural transformations form a so-called 2-category, which lends it-
self naturally to a two-dimensional notation. From a calculational point of view,
two-dimensional notation is attractive because several laws, notably the inter-
change law (56), are built into the notation. When we use one-dimensional no-
tation, we have to invoke these laws explicitly. (For similar reasons we routinely
use one-dimensional notation for objects and arrows: the monoidal properties of
identity and composition are built into the notation.)

Here are the string diagrams for the units of an adjunction.

εL

R

Id

L R
η

R

L

Id

LR
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A string diagram is a planar graph. A region in the graph corresponds to a cat-
egory, a line corresponds to a functor, and a point (usually drawn as a small
circle) corresponds to a natural transformation. For readability lines are implic-
itly directed, and we stipulate that the flow is from right to left for horizontal
composition, β◦α, and from top to bottom for vertical composition β · α. The
counit ε has two incoming functors, L and R, and no outgoing functor—the
dotted line hints at the identity functor, which is usually omitted. A natural
transformation of type F◦G◦H →̇ T◦U, for example, would be shown as a point
with three incoming arrows (from above) and two outgoing arrows (to below).

Diagrams that differ only in the vertical position of natural transformations
are identified—this is the import of the interchange law (56).

E D C
γ

α

K F

L G

=
E D C
γ α

K F

L G

= E D C

γ

α

K F

L G

Thus, γ◦G · K◦α, γ◦α and L◦α · γ◦F correspond to the same diagram. For
turning a string diagram into standard notation it is helpful to draw horizontal
lines through the points that denote natural transformations. Each of these lines
corresponds to a horizontal composition, where a vertical line that crosses the
horizontal line is interpreted as the identity on the respective functor. This step
yields γ◦G and K◦α for the diagram on the left. The vertical composition of
these terms then corresponds to the diagram.

To reduce clutter we shall usually not label or colour the regions. Also, identity
functors (drawn as dotted lines above) and identity natural transformations are
omitted. With these conventions the string diagrams for the units simplify to
half circles.

L

ε

R

R

η

L

A cup signifies the counit ε and a cap the unit η.
It is important to keep in mind that, unlike a commutative diagram, a string

diagram is a term, not a property. Properties such as the triangle identities
(3a)-(3b) are still written as equations.

L

L

R

ε

η

=

L

L

(5a)

R

R

L

η

ε

=

R

R

(5b)
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The triangle identities have an appealing visual interpretation: they allow us to
pull a twisted string straight.

Remark 2. There is an alternative, perhaps more traditional two-dimensional
notation, where categories are shown as points, functors as lines and natural
transformations as regions (often labelled with a double arrow).

L R L
L R L R

Id

Id

⇒

ε

⇐ η
= R

L

L

Id

Id

L

R

ε

η

The traditional diagram on the left is the Poincaré dual of the string diagram on
the right: d-dimensional objects on the left are mapped to (2 − d)-dimensional
objects on the right, and vice versa. �

2.3 Monad

To incorporate computational effects such as IO, Haskell has adopted the cate-
gorical concept of a monad [30]. As with adjunctions, there are several ways to
define the notion. The following is known as the monoidal definition.

A monad consists of an endofunctor M and natural transformations

η : Id→ M ,

μ : M◦M→ M .

From the perspective of Haskell, a monad is a mechanism that supports effectful
computations. A monadic program is an arrow of type A → MB , where the
monad is wrapped around the target. The operations that come with a monad
organise effects: the unit η (also called “return”) creates a pure computation,
the multiplication μ (also called “join”) merges two layers of effects. The two
operations have to work together:

μ · η◦M = idM , (6a)

μ · M◦η = idM , (6b)

μ · μ◦M = μ · M◦μ . (6c)

The unit laws (6a) and (6b) state that merging a pure with a potentially effectful
computation gives the effectful computation. The associative law (6c) expresses
that the two ways of merging three layers of effects are equivalent.
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M◦M

M
id 6

η◦
M 6

M

μ

6

M◦M
μ

6
M◦η 6

M◦M◦M M◦μ6 M◦M

M◦M

μ◦M

�
μ
6 M

μ

�

In two-dimensional notation, the natural transformations correspond to con-
structors of binary leaf trees: η creates a leaf, μ represents a fork. The monad
laws correspond to transformations on binary trees: the unit laws allow us to
prune or to add leaves and the associative law captures a simple tree rotation.

M

M

=

M

M

=

M

M

(7a)

M M M

M

=

MMM

M

(7b)

Every adjunction L / R induces a monad [17]:

M = R◦L , (8a)

η = η , (8b)

μ = R◦ε◦L . (8c)

The monad operations have simple implementations in terms of the units: the
unit of the adjunction serves as the unit of the monad; the multiplication is
defined in terms of the counit. We will prove this result twice, a first time using
one-dimensional notation and a second time using two-dimensional notation.

The unit laws (6a)–(6b) are consequences of the triangle identities (3a)–(3b).

μ · η◦M
= { definitions (8a)–(8c) }

R◦ε◦L · η◦R◦L
= { −◦L functor (54c) }

(R◦ε · η◦R)◦L
= { triangle identity (3b) }

idR◦L
= { −◦L functor (54c) }

idR◦L
= { definition of M (8a) }

idM

μ · M◦η
= { definitions (8a)–(8c) }

R◦ε◦L · R◦L◦η
= { R◦− functor (54a) }

R◦(ε◦L · L◦η)
= { triangle identity (3a) }

R◦idL

= { R◦− functor (54a) }
idR◦L

= { definition of M (8a) }
idM
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The associative law (6c) follows from the coherence property of horizontal com-
position, the interchange law (56).

μ · μ◦M
= { definition of M (8a) and μ (8c) }

R◦ε◦L · R◦ε◦L◦R◦L
= { R◦− and −◦L functors (54b) and (54d) }

R◦(ε · ε◦L◦R)◦L
= { interchange law (56): Id◦ε · ε◦(L◦R) = ε◦ε = ε◦Id · (L◦R)◦ε }

R◦(ε · L◦R◦ε)◦L
= { R◦− and −◦L functors (54b) and (54d) }

R◦ε◦L · R◦L◦R◦ε◦L
= { definition of M (8a) and μ (8c) }

μ · M◦μ

The proofs using one-dimensional notation exhibit a lot of noise. In contrast,
the proofs in two-dimensional notation carve out the essential steps. For the
unit laws, we use the triangle identities.

R

R L

ε

R

η

L

(5a)
=

R

R

L

L
(5b)
=

L

LR

ε

L

η

R

The associative law requires no proof as the diagrams for the left- and the right-
hand side are identified.

R

R

L

ε

R L

ε

R L

L

=

R

R

L

ε

R L

ε

R L

L

In other words, the one-dimensional proof only contains administrative steps.

Remark 3. The preorder equivalent of a monad is a closure operator. Let P be
a preorder. A map m : P → P is a closure operator on P if it is extensive,
id 
̇ m, and idempotent, m · m ∼̇= m. (The latter condition can be weakened to
m · m 
̇ m since m 
̇ m · id 
̇ m · m as composition is monotone.)

A Galois connection l / r between L and R induces a closure operator m =
r · l on R. For example, the composition of inclusion ι : Z → R and the ceiling
function �−� : R→ Z is a closure operator on R. �
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3 Kan Extension—Specification

The continuation types shown in the introduction implement so-called right Kan
extensions. This section specifies the concept formally. As to be expected, the
specification will be quite different from the implementation.

Let J : C → D be a functor. You may want to think of J as an inclusion
functor. The functor part of the right Kan extension G/J : D → E extends a
functor G : C → E to the whole of D .

C

D

J

�
G/J

6 E

G

6

It is worth pointing out that the functors J and G play quite different roles
(see also Remark 4), which is why G/J is called the right Kan extension of G
along J. The notation G/J is taken from relation algebra (see also Remark 5)
and emphasises the algebraic properties of Kan extensions. (Mac Lane [27] writes
RanJ G for right Kan extensions and LanJ G for left ones, a notation we do not
use). Again, there are various ways to define the concept. The shortest is this:

The functor G/J is the (functor part of the) right Kan extension of G along J
if and only if there is a bijection between the hom-sets

E C (F◦J,G) ∼= E D(F,G/J) , (9)

that is natural in the functor F : D → E .
If we instantiate the bijection to F := G/J, we obtain as the image of the

identity id : E D(G/J,G/J) a natural transformation run : E C ((G/J)◦J,G). The
transformation eliminates a right Kan extension and is called the unit of the
extension. An alternative definition of Kan extensions builds solely on the unit,
which is an example of a universal arrow:

The right Kan extension of G along J consists of a functor written G/J : D →
E and a natural transformation run : E C ((G/J)◦J,G). These two things have to
satisfy the following universal property: for each functor F : D → E and for each
natural transformation α : E C (F◦J,G) there exists a natural transformation
[α] : E D(F,G/J) (pronounce “shift α”) such that

α = run · β◦J ⇐⇒ [α] = β , (10)

for all β : E D(F,G/J). The equivalence witnesses the bijection (9) and expresses
that there is a unique way to factor α into a composition of the form run · β◦J.

A universal property such as (10) has three immediate consequences that are
worth singling out. If we substitute the right-hand side into the left-hand side,
we obtain the computation law :

α = run · [α]◦J . (11)
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Instantiating β in (10) to the identity idG/J and substituting the left- into the
right-hand side, yields the reflection law :

[run] = id . (12)

Finally, the fusion law allows us to fuse a shift with a natural transformation to
form another shift:

[α] · γ = [α · γ◦J] , (13)

for all γ : E D(F̂, F̌). The fusion law states that shift is natural in the functor F.
For the proof we reason

[α] · γ = [α · γ◦J]
⇐⇒ { universal property (10) }

α · γ◦J = run · ([α] · γ)◦J
⇐⇒ { −◦J functor (54d) }

α · γ◦J = run · [α]◦J · γ◦J
⇐⇒ { computation (11) }

α · γ◦J = α · γ◦J .

As all universal concepts, right Kan extensions are unique up to isomorphism.
This is a consequence of naturality: let G/1J and G/2J be two Kan extensions.
Since the string of isomorphisms

E D(F,G/1J) ∼= E C (F◦J,G) ∼= E D(F,G/2J)

is natural in F, the principle of indirect proof [15] implies that G/1J ∼= G/2J.
There is also a simple calculational proof, which nicely serves to illustrate the
laws above. The isomorphism is given by

[run1]2 : G/1J ∼= G/2J : [run2]1 . (14)

We show [run1]2 · [run2]1 = id . The proof of the other half proceeds completely
analogously.

[run1]2 · [run2]1

= { fusion (13) }
[run1 · [run2]1◦J]2

= { computation (11) }
[run2]2

= { reflection (12) }
id
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Remark 4. If the Kan extension along J exists for every G, then −/J itself can
be turned into a functor, so that the bijection E C (F◦J,G) ∼= E D(F,G/J) is also
natural in G. In other words, we have an adjunction −◦J / −/J. If furthermore
the adjunction −◦J / −/J exists for every J—we have an adjunction with a
parameter—then there is a unique way to turn =/− into a higher-order bifunctor
of type (DC )op × E C → E D , so that the bijection is also natural in J [27, Th.
IV.7.3, p102]. �

Turning to the two-dimensional notation, the unit run is drawn as a solid circle
• (diagram on the left below). This convention allows us to omit the label run
to avoid clutter. More interesting is the diagrammatic rendering of [α]. My first
impulse was to draw a dotted box around α, pruning J and relabelling G to G/J
(diagram in the middle).

G/J

run

J

G

F

α J

G

G/J

F

α J

]

G[

G/J

However, as we shall see in a moment, the diagram on the right is a better choice.
The F branch is left untouched; the J and G branches are enclosed in square
brackets ( ] and [ ). Computation (11) and reflection (12) are then rendered as
follows.

F

α J

]

G[

G/J run

J

G

=

F

α

J

G

(15)

G/J

J

]

G[

G/J

run
=

G/J

G/J

(16)

Seen as a graph transformation, the computation law (15) allows us to replace
the node labelled run by the sub-graph α. The reflection law (16) means that
we can cut off a ‘dead branch’, a run node enclosed in brackets. The fusion law
is the most interesting one—it shows the advantage of the bracket notation.

F̂

γ

F̌ α J

G

G/J

=

F̂

γ

F̌ α

J

G

G/J

F̂

γ

F̌ α J

]

G[

G/J

=

F̂

γ

F̌ α

J

]

G[

G/J
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If we used the box notation, then fusion would allow us to shift γ in and out of the
box. The bracket notation on the other hand incorporates the fusion law—recall
that diagrams that differ only in the vertical position of natural transformations
are identified—and is thus our preferred choice. (As an aside, the box notation
is advantageous if we choose to label the regions: the category inside the box to
the right of J and G is C , whereas the category outside the box to the right of F
and G/J is D . A compromise is to draw only the lower right compartment of the
box as shown on the right below.)

F

α J

G

G/J

CE

D

D

E

F

α J

G

G/J

C

D

E

It is important to note that the computation law (15) contains universally quan-
tified variables: it holds for all functors F and for all natural transformations α,
the latter denoted by a hollow circle ◦ for emphasis. This is in contrast to all
of the other two-dimensional laws we have seen before: the triangle identities
and the monad laws involve only constants. When the computation law (15) is
invoked, we have to substitute a subgraph for α and a bundle of strings for F. In
particular, if F is replaced by Id, then the bundle is empty. The two-dimensional
matching process is actually not too difficult: essentially one has to watch out
for a solid circle (•) to the right below of a closing bracket ( [ ).

Finally, let us record that the diagrammatic reasoning is complete since com-
putation, reflection and fusion imply the universal property (10). ‘⇐=’: This
implication amounts to the computation law (11). ‘=⇒’: We reason

[run · β◦J]
= { fusion (13) }

[run] · β
= { reflection (12) }

β .

Remark 5. We can specialise Kan extensions to the preorder setting, if we equip
a preorder with a monoidal structure: an associative operation that is monotone
and that has a neutral element. Consider as an example the integers equipped
with multiplication ∗. The bijection (9) then corresponds to the equivalence

m ∗ k 
 n ⇐⇒ m 
 n ÷ k ,

which specifies integer division ÷ for k > 0. The equivalence uniquely defines
division since the ordering relation is antisymmetric. The notation for Kan ex-
tensions is, in fact, inspired by this instance.
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We obtain more interesting examples if we generalise monoids to categories.
For instance, Kan extensions correspond to so-called factors in relation algebra,
which are also known as residuals or weakest postspecifications [16].

F · J ⊆ G ⇐⇒ F ⊆ G / J (17)

Informally, G / J is the weakest (most general) postspecification that approx-
imates G after specification J has been met. Again, the universal property
uniquely defines G / J since the subset relation is antisymmetric. The type of
run corresponds to the computation law

(G / J ) · J ⊆ G . (18)

(Kan extensions, integer quotients and factors are, in fact, instances of a more
general 2-categorical concept. Actually, the development in this and in the fol-
lowing two sections can be readily generalised to 2-categories. Relation algebra
is a simple instance of a 2-category where the vertical categories are preorders.
A ‘monoidal preorder’ such as the integers with multiplication is an even simpler
instance where the horizontal category is a monoid and the vertical category is a
preorder.) �

4 Codensity Monad

The right Kan extension of J along J is a monad,M = J/J, the so-called codensity
monad of J. To motivate the definition of the monad operations, let us instantiate
the Kan bijection (9) to G := J:

DC (F◦J, J) ∼= DD(F,M) . (19)

Recall that the bijection is natural in the functor F. For the return of the monad
we set F to the identity functor, which suggests that return is just the transpose
of the identity. The unit run of the Kan extension has typeM◦J→̇J. To define the
multiplication of the monad, we instantiate F to M◦M, which leaves us with the
task of providing a natural transformation of type M◦M◦J→̇ J: the composition
run · M◦run will do nicely. To summarise, the codensity monad of J is given by

M = J/J , (20a)

η = [id ] , (20b)

μ = [run · M◦run] . (20c)

Of course, we have to show that the data satisfies the monad laws. As in the
previous section, we provide two proofs, one using traditional notation and one
using two-dimensional notation.



338 R. Hinze

For the unit laws (6a)–(6b) we reason

μ · η◦M
= { definition of μ (20c) }

[run · M◦run] · η◦M
= { fusion (13) }

[run · M◦run · η◦M◦J]
= { interchange law (56) }

[run · η◦J · run]
= { definition of η (20b) }

[run · [id ]◦J · run]
= { computation (11) }

[run]

= { reflection (12) }
id ,

μ · M◦η
= { definition of μ (20c) }

[run · M◦run] · M◦η
= { fusion (13) }

[run · M◦run · M◦η◦J]
= { M◦− functor (54b) }

[run · M◦(run · η◦J)]
= { definition of η (20b) }

[run · M◦(run · [id ]◦J)]
= { computation (11) }

[run · M◦id ]
= { M◦− functor (54a) }

[run]

= { reflection (12) }
id .

All of the basic identities are used: reflection (12), computation (11) and fu-
sion (13).

For the associative law (6c) we show that both sides of the equation simplify
to [run · M◦run · M◦M◦run], which merges three layers of effects:

μ · μ◦M
= { definition of μ (20c) }

[run · M◦run] · μ◦M
= { fusion (13) }

[run · M◦run · μ◦M◦J]
= { interchange law (56) }

[run · μ◦J · M◦M◦run]
= { definition of μ (20c) }

[run · [run · M◦run]◦J · M◦M◦run]
= { computation (11) }

[run · M◦run · M◦M◦run]

μ · M◦μ
= { definition of μ (20c) }

[run · M◦run] · M◦μ
= { fusion (13) }

[run · M◦run · M◦μ◦J]
= { M◦− functor (54b) }

[run · M◦(run · μ◦J)]
= { definition of μ (20c) }

[run · M◦(run · [run · M◦run]◦J)]
= { computation (11) }

[run · M◦(run · M◦run)]
= { M◦− functor (54b) }

[run · M◦run · M◦M◦run] .

Turning to the second set of proofs, here are the two-dimensional counterparts
of the natural transformations involved.
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run =

M J

J

[α] =

F

α J

]

J[

M

η =

]
[

M

μ =

M M

]

[

M

Diagrammatically, η indeed resembles a leaf, whereas μ is a nested fork with
one branch cut off. For the calculations it is useful to specialise the computation
law (15) and the reflection law (16) to G := J.

F

α J

]

J[

M

J

J

=

F

α

J

J

(21)

M

J
]

J[

M

=

M

M

(22)

Recall that (21) holds for all functors F and for all natural transformations α.
Now, to show the unit laws we simply combine computation and reflection.

]
[

M

]

[

M

(21)
=

M

]

[

M

(22)
=

M

M

(22)
=

M

]

[

M

(21)
=

M

]
[ ]

[

M

To follow the graph transformations involving (21), first identify the occurrence
of a closing bracket ( [ ) which leads to a solid circle (•) below. Then replace the
solid circle (•) by the graph enclosed in ] and [ , additionally removing the
brackets. The instances of (21) above are in a sense extreme: F is in both cases
instantiated to Id and α to id .
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For the proof of associativity, we invoke the computation law twice.

M M

]

[
M

]

[

M

(21)
=

M M M

]

[

M

(21)
=

M M M

]

[

M

[ ]

Now, F is instantiated toM◦M and α to run · M◦run. Again, the two-dimensional
proofs carve out the essential steps.

Remark 6. Continuing Remark 5, let us specialise the above to relational alge-
bra. The factor J / J is a closure operator. The proofs correspond to the typing
derivations of η = [id ] and μ = [run · M◦run]. Specifically, to prove Id ⊆ J /J we
appeal to the universal property (17) which leaves us with Id · J ⊆ J . Likewise,
to prove (J /J ) · (J /J ) ⊆ (J /J ) if suffices to show that (J /J ) · (J /J ) · J ⊆ J .
The obligation can be discharged using the computation law (18), twice. �

5 Absolute Kan Extension—Implementation

So far we have been concerned with general properties of right Kan extensions.
Let us now turn our attention to the existence of extensions, which in computer-
science terms is the implementation. A general result is this: if R is a right
adjoint, then the right Kan extension along R exists for any functor G. To prove
the result we take a short detour.

Adjunctions can be lifted to functor categories: if L / R is an adjunction then
both L◦− / R◦− and −◦R / −◦L are adjunctions. (Recall that both K◦− and
−◦E are functors, see Appendix A.) Since pre-composition is post-composition
in the opposite category, the two statements are actually dual—note that L
and R are flipped in the adjunction −◦R / −◦L. For reasons to become clear in
a moment, let us focus on pre-composition:

if L
≺ L

⊥
R
6

R then X R ≺
−◦R
⊥
−◦L
6

X L .

For the proof of this fact we establish the equivalence

α = G◦ε · β◦R ⇐⇒ α◦L · F◦η = β , (23)

for all functors F and G and for all natural transformations α : F◦R → G and
β : F → G◦L. This equivalence amounts to (2) phrased in terms of the units.
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We show the implication from left to right, the proof for the opposite direction
proceeds completely analogously.

(G◦ε · β◦R)◦L · F◦η
= { −◦L functor (54d) }

G◦ε◦L · β◦R◦L · F◦η
= { interchange law (56) }

G◦ε◦L · G◦L◦η · β
= { G◦− functor (54b) }

G◦(ε◦L · L◦η) · β
= { assumption: triangle identity (3a) }

G◦idL · β
= { identity }

β

If we write the equivalence (23) using two-dimensional notation,

α

F R

G

=

F R

L

ε

G

β ⇐⇒

G L

η
F

α
R = β

G L

F

then the proof becomes more perspicuous. For the left-to-right direction we focus
on the left-hand side of the equivalence and put a cap on the R branches (on
both sides of the equation) and then pull the L string straight down (on the
right-hand side of the equation). Conversely, for the right-to-left direction we
place a cup below the L branches and then pull the R string straight up.

Returning to the original question of existence of right Kan extensions, we
have established

X R(F◦R,G) ∼= X L (F,G◦L) , (24)

which is an instance of the Kan bijection (9). In other words, G◦L is the right Kan
extension of G along R. To bring the definition of unit and shift to light, we align
the equivalence (23) with the universal property of right Kan extensions (10).
We obtain

G/R = G◦L , (25a)

run = G◦ε , (25b)

[α] = α◦L · F◦η . (25c)

Since the bijection (24) is also natural in G, the right Kan extension along R
exists for every G.
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The unit run and [α] are rendered as follows.

run =
G

G

L

ε

R
[α] =

G L

η
F

α
R

To shift α : F◦R →̇ G we simply put a cap on the rightmost branch labelled R.
Two special cases of (25a) are worth singling out: L = Id/R and R◦L = R/R.

Thus, the left adjoint can be expressed as a right Kan extension—L = Id/R is
a so-called absolute Kan extension [27, p.249]. Very briefly, G/J is an absolute
Kan extension if and only if it is preserved by any functor: F◦(G/J) and F◦run
is the Kan extension of F◦G along J. The associativity of horizontal composition
implies that the Kan extension G◦R is indeed absolute. Moreover, the monad
induced by the adjunction L / R coincides with the codensity monad of R:

(R◦L, η,R◦ε◦L) = (R/R, [id ], [run · M◦run]) . (26)

It remains to show that the two alternative definitions of unit and multiplication
actually coincide. For the unit, the proof is straightforward.

[id ]

= { definition of [−] (25c) }
id ◦L · Id◦η

= { identity (54c) and (55d) }
η

The proof for the multiplication rests on the triangle identity (3b).

[run · M◦run]
= { definition of [−] (25c) }

(run · M◦run)◦L · M◦M◦η
= { −◦L functor (54d) }

run◦L · M◦run◦L · M◦M◦η
= { definition of run (25b) }

R◦ε◦L · M◦R◦ε◦L · M◦M◦η
= { definition of M (25a) }

R◦ε◦L · M◦R◦ε◦L · M◦R◦L◦η
= { M◦R◦− functor (54b) }

R◦ε◦L · M◦R◦(ε◦L · L◦η)
= { triangle identity (3b) }

R◦ε◦L
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As before, the two-dimensional proofs are much shorter. For the unit, F := Id,
there is nothing to do—putting a cap on idR is just the cap. For the multipli-
cation, F := R◦L◦R◦L, the proof collapses to a single application of the triangle
identity—note that run · M◦run = R◦ε◦ε.

R

R

L

ε

R L

ε

R

η

L

(5a)
=

R

R

L

ε

R L

L

As an intermediate summary, we have shown that every monad is isomorphic to a
codensity monad! This perhaps surprising result follows from the fact that every
monad is induced by an adjoint pair of functors—this was shown independently
by Kleisli [24] and Eilenberg and Moore [10].

L

R

R

�

" L



R/R
6 R

R

6

Remark 7. To connect the development above to relation algebra, we first have
to adopt the notion of an adjunction. The relations L and R are adjoint if
and only if L · R ⊆ Id and Id ⊆ R · L. In relation algebra this implies R = L◦,
where (−)◦ is the converse operator. Thus, left adjoints are exactly the functions,
simple and entire arrows (denoted by a lower-case letter below). The lifting of
adjunctions to functor categories corresponds to the so-called shunting rules for
functions [3].

l · F ⊆ G ⇐⇒ F ⊆ l◦ · G
F · l◦ ⊆ G ⇐⇒ F ⊆ G · l

Specifically, bijection (24) corresponds to the latter equivalence. Using the prin-
ciple of indirect proof, it is then straightforward to show that G · l = G / l◦. In
particular, l = Id / l◦ and l◦ · l = l◦ / l◦. �

6 Kan Extension as an End—Implementation

Let us now turn to the heart of the matter. There is an elegant formula, the end
formula, which describes right Kan extensions in terms of powers and ends [27,
p.242].

(G/J) (A : D) = ∀Z : C . ΠD(A, JZ ) . GZ (27)

The object on the right, which lives in E , can be interpreted as a generalised
continuation type. This can be seen more clearly if we write both the hom-set
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D(A, JZ ) and the power ΠD(A, JZ ) . GZ as function spaces: (A → JZ ) →
GZ . Informally, an element of (G/J)A is a polymorphic function that given a
continuation of type A→ JZ yields an element of type GZ for all Z .

The purpose of this section is to prove the end formula and to derive the as-
sociated implementations of run and shift. To keep the paper sufficiently self-
contained, we first introduce powers in Section 6.1 and ends in Section 6.2. (Some
reviewers wondered why string diagrams do not appear beyond this point. The
reason is simple: to be able to use string diagrams we have to know that the enti-
ties involved are functors and natural transformations. Here we set out to estab-
lish these properties. More pointedly, we use string diagrams if we wish to prove
something against the specification of Kan extensions. Here, we aim to to prove
an implementation correct.) The reader who is not interested in the details may
wish to skip to Section 7, which investigates applications of the framework.

Remark 8. The end formula can be derived using a calculus of ends [27]—the
calculus is introduced in [7]. The details are beyond the scope of this paper. �

6.1 Background: Power

Let C be a category. The power [27, p.70] of a set A : Set and an object
X : C consists of an object written ΠA . X : C and a function π : A →
C (ΠA . X ,X ). These two things have to satisfy the following universal property:
for each object B : C and for each function g : A → C (B ,X ), there exists an
arrow (

�
a ∈A . g(a)) : C (B ,ΠA . X ) (pronounce “split g”) such that

f = (
�

â ∈ A . g(â)) ⇐⇒ (λ ǎ ∈ A . π(ǎ) · f ) = g , (28)

for all f : C (B ,ΠA . X ).
The power ΠA . X is an iterated product of the object X indexed by elements

of the set A. The projection π(a) is an arrow in C that selects the component
whose index is a; the arrow

�
a ∈ A . g(a) creates an iterated product, whose

components are determined by the function g. A note on notation: the mediating
arrow

�
a∈A . g(a) is a binding construct as this allows us to leave the definition

of g implicit. The notation also makes explicit that a ranges over a set. (The
power ΠA . X is sometimes written XA, a notation we do not use.) Furthermore,
we use λ for function abstraction and − (=) for function application in Set.

As an example, for a two-element set, say, A := {0, 1}, the power ΠA . X
specialises to X × X with π(0) = outl , π(1) = outr and

�
a ∈ A . g(a) =

g(0) � g(1).
In Set, the power ΠA . X is the set of all functions from A to X , that is,

ΠA . X = A→ X . The projection π is just reverse function application: π(a) =
λ g : A→ X . g(a); split is given by

�
a ∈A . g(a) = λ b ∈B . λ a ∈A . g(a)(b),

that is, it simply swaps the two arguments of the curried function g.
The universal property (28) has three immediate consequences that are used

repeatedly in the forthcoming calculations. If we substitute the left-hand side
into the right-hand side, we obtain the computation law

π(ǎ) · (
�

â ∈A . g(â)) = g(ǎ) , (29)
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for all ǎ ∈ A. Instantiating f in (28) to the identity idΠA . X and substituting
the right- into the left-hand side, yields the reflection law

id = (
�

a ∈A . π(a)) . (30)

Finally, the fusion law allows us to fuse a split with an arrow to form another
split (the proof is left as an exercise to the reader):

(
�

a ∈ A . g(a)) · k = (
�

a ∈A . g(a) · k) . (31)

The fusion law states that
�

: (A → C (B ,X )) → C (B ,ΠA . X ) is natural in
B .

If the power ΠA . X exists for every set A : Set, then there is a unique way to
turn Π− . X into a functor of type Set→ C op so that π : A → C (ΠA . X ,X )
is natural in A. We calculate

C (Π h . X ,X ) · π = π · h
⇐⇒ { definition of hom-functor C (−,X ) }

(λ a ∈ A . π(a) · (Π h . X )) = π · h
⇐⇒ { universal property (28) }

Π h . X = (
�

a ∈ A . π(h(a))) ,

which suggests that the arrow part of Π− . X is defined

Π h . X = (
�

a ∈ A . π(h(a))) . (32)

In other words, we have an adjoint situation: Π− . X / C (−,X ).

C op ≺
Π− . X

⊥
C (−,X )

6
Set

Since the hom-functor C (−,X ) is contravariant, Π− . X is contravariant, as
well. Moreover, Π− . X is a left adjoint, targeting the opposite category C op.

C op(ΠA . X ,B) ∼= Set(A,C (B ,X )) (33)

The units of the adjunction are given by εB =
�

a ∈ C (B ,Y ) . a and ηA =
λ a ∈ A . π(a), that is, η = π. A contravariant adjoint functor such as Π− . X
gives rise to two monads: C (Π− . X ,X ) is a monad in Set and ΠC (−,X ) . X
is a comonad in C op and consequently a monad in C . Both monads can be seen
as continuation monads. Let us spell out the details for the second monad: its
unit is the counit (!) of the adjunction, for the multiplication we calculate
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μA

= { definition of μ (8c) }
((Π− . X )◦η◦(C (−,X )))A

= { definition of horizontal composition ◦ }
Π η (C (A,X )) . X

= { definition of Π h . X (32) }�
a ∈ C (A,X ) . π(η (C (A,X )) (a))

= { definition of η, see above }�
a ∈ C (A,X ) . π(π(a)) .

To summarise, the continuation monad K = (Π− . X )◦(C (−,X )) is defined

KA = ΠC (A,X ) . X ,

K f =
�

k . π(k · f ) ,

η =
�

k . k ,

μ =
�

k . π(π(k)) .

This is the abstract rendering of the monad C from the introduction with
MA = X a constant functor. The correspondence can be seen more clearly,
if we specialise the ambient category C to Set. We obtain

K f =
�

k . π(k · f ) = λm . λ k . π(k · f )m = λm . λ k . m (k · f )
η =

�
k . k = λ a . λ k . k a ,

μ =
�

k . π(π(k)) = λm . λ k . π(π(k))m = λm . λ k . m (λ a . a k) ,

which is exactly the Haskell code given in the introduction—recall that join and
bind are related by join m = m>>=id . For the full story—M an arbitrary functor,
not necessarily constant—we need to model the universal quantifier in the type
of C, which is what we do next in Section 6.2.

If the adjunction Π− . X / C (−,X ) exists for every X : C , then there is a
unique way to turn Π− . = : Setop×C → C into a bifunctor so that (33) is also
natural in X [27, Th. IV.7.3, p102]. The arrow part of the bifunctor is defined

Π h . p = (
�

a ∈A . p · π(h(a))) , (34)

for all h : A→ B and for all p : C (X ,Y ).

6.2 Background: End

Ends capture polymorphic functions as objects. Before we can define the notion
formally, we first need to introduce the concept of a dinatural transformation
[27, p.218].
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Let S,T : C op × C → D be two parallel functors. A dinatural transformation
δ : S →̈ T is a collection of arrows: for each object A : C there is an arrow
δA : S (A,A)→ T (A,A), such that

T (id , h) · δ Â · S (h, id) = T (h, id) · δ Ǎ · S (id , h) , (35)

for all h : C (Â, Ǎ). A component of a dinatural transformation instantiates
both arguments of the bifunctors to the same object, which explains the term
dinaturality, a contraction of the more unwieldy diagonal naturality.

A natural transformation α : S →̇ T can be turned into a dinatural trans-
formation δ : S →̈ T by setting δA = α (A,A). There is an identity dinatural
transformation, but, unfortunately, dinatural transformations do not compose
in general. However, they are closed under composition with a natural trans-
formation: (α · δ)A = α (A,A) · δA where δ : S →̈ T and α : T →̇ U, and
(δ · α)A = δA · α (A,A) where α : S →̇ T and δ : T →̈ U.

A dinatural transformation ω : ΔA →̈ T from a constant functor, ΔAX = A,
is called a wedge. For wedges, the dinaturality condition (35) simplifies to

T (id , h) · ω Â = T (h, id) · ω Ǎ , (36)

for all h : C (Â, Ǎ).
Now, the end [27, p.222] of a functor T : C op × C → D consists of an object

written EndT : D and a wedge App : Δ(EndT) →̈ T. These two things have to
satisfy the following universal property: for each object A and for each wedge
ω : ΔA →̈ T, there exists an arrow Λω : D(A,EndT) such that

ω = App · Δg ⇐⇒ Λω = g , (37)

for all g : D(A,EndT). Note that on the left a dinatural transformation, App, is
composed with a natural transformation, Δg defined Δg X = g.

The end EndT is also written ∀X : C . T (X ,X ), which supports the intuition
that an end is a polymorphic type. The wedge App models type application: the
component App A : EndT → T (A,A) instantiates a given end to the object A.
Accordingly, Λ is type abstraction—to emphasise this point we also write Λ

using a binder: ΛZ . ω Z serves as alternative notation for Λω.
The universal property (37) has the usual three consequences. If we substitute

the right-hand side into the left-hand side, we obtain the computation law :

ω = App · Δ(Λω) . (38)

Instantiating g in (37) to the identity idEndT and substituting the left- into the
right-hand side, yields the reflection law :

ΛApp = id . (39)

Finally, the fusion law allows us to fuse a ‘type abstraction’ with an arrow to
form another ‘type abstraction’ (the proof is left as an exercise to the reader):

Λω · h = Λ (ω · Δh) . (40)



348 R. Hinze

If all the necessary ends exist, we can turn End into a higher-order functor of type
DC op×C → D . The object part maps a bifunctor to its end; the arrow part maps
a natural transformation α : S→̇T to an arrow Endα : D(EndS,EndT). There is
a unique way to define this arrow so that type application App : Δ(EndT) →̈ T
is natural in T:

α · App = App · Δ(Endα) . (41)

We simply appeal to the universal property (37)

α · App = App · Δ(Endα) ⇐⇒ Endα = Λ (α · App) ,

which suggests that the arrow part of End is defined

Endα = Λ (α · App) . (42)

The proof that End indeed preserves identity and composition is again left as an
exercise to the reader.

6.3 End Formula

Equipped with the new vocabulary we can now scrutinise the end formula (27),
(G/J) (A : D) = ∀Z : C . Π D (A, JZ ) . GZ , more closely. This definition is
shorthand for G/J = End◦T where

TA (Z−, Z+) = Π D (A, JZ−) . GZ+ , (43)

is a higher-order functor of type D → DC op×C . (As an aside, Z− and Z+ are
identifiers ranging over objects. The superscripts indicate variance: Z− is an
object of C op and Z+ is an object of C .) Clearly, G/J thus defined is a functor.
It is useful to explicate its action on arrows.

∀Z : C .
∏

D(f , JZ ) . GZ

= { definition of End (42) }
ΛZ : C . (

∏
D(f , JZ ) . GZ ) · App Z

= { definition of
∏
− . Y (32) }

ΛZ : C . (
�

c ∈D(Ǎ, JZ ) . π(c · f )) · App Z
= { fusion (31) }

ΛZ : C .
�

c ∈D(Ǎ, JZ ) . π(c · f ) · App Z

Let us record the definition.

(G/J) f = ΛZ : C .
�

c ∈D(Ǎ, JZ ) . π(c · f ) · App Z (44)

The unit run : E C ((G/J)◦J,G) of the right Kan extension is defined

run A = π(id JA) · App A . (45)
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The end is instantiated to A and then the component whose index is the identity
idJA is selected. A number of proof obligations arise. We have to show that run is
a natural transformation and that it satisfies the universal property (10) of right
Kan extensions. For the calculations, the following property of run, a simple
program optimisation, proves to be useful. Let f : D(A, JB), then

run B · (G/J) f = π(f ) · App B . (46)

We reason

run B · (G/J) f
= { definition of run (45) }

π(id JB) · App B · (G/J) f
= { definition of G/J (44) }

π(id JB) · App B · (ΛZ : C .
�

c ∈D(JB , JZ ) . π(c · f ) · App Z )

= { computation (38) }
π(id JB) · (

�
c ∈D(JB , JB) . π(c · f ) · App B)

= { computation (29) }
π(f ) · App B .

The naturality of run follows from the dinaturality of App.

run Ǎ · (G/J) (J h)
= { property of run (46) }

π(J h) · App Ǎ
= { App is dinatural, see below }

G h · π(id J Â) · App Â
= { definition of run (45) }

G h · run Â

To comprehend the second step let us instantiate the dinaturality condition (36)
to App : Δ(End (TA)) →̈ TA. Let h : C (Ẑ , Ž ), then

TA (id , h) · App Ẑ = TA (h, id) · App Ž
⇐⇒ { definition of T (43) }

(
�

a ∈ A . G h · π(a)) · App Ẑ = (
�

a ∈ A . π(J h · a)) · App Ž
⇐⇒ { fusion (31) }

(
�

a ∈ A . G h · π(a) · App Ẑ ) = (
�

a ∈ A . π(J h · a) · App Ž )

=⇒ { left-compose with π(idJA) and computation (29) }
G h · π(idJA) · App Ẑ = π(J h) · App Ž .
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Next we show that run satisfies the universal property (10) of right Kan exten-
sions. Along the way we derive the definition of shift. Let α : E C (F◦J,G) and
β : E D(F,G/J), then

α = run · β◦J
⇐⇒ { equality of natural transformations }

∀A : C . αA = run A · β (JA)

⇐⇒ { Yoneda Lemma: E (F (JA),GA) ∼= D(−, JA) →̇ E (F−,GA) }
∀A : C ,B : D . ∀c : D(B , JA) . αA · F c = run A · β (JA) · F c

⇐⇒ { β is natural }
∀A : C ,B : D . ∀c : D(B , JA) . αA · F c = run A · (G/J) c · β B

⇐⇒ { property of run (46) }
∀A : C ,B : D . ∀c : D(B , JA) . αA · F c = π(c) · App A · β B

⇐⇒ { universal property of powers (28) }
∀A : C ,B : D . (

�
c ∈D(B , JA) . αA · F c) = App A · β B

⇐⇒ { universal property of ends (37) }
∀B : D . (ΛA : C .

�
c ∈D(B , JA) . αA · F c) = β B

⇐⇒ { define [α]B = ΛA : C .
�

c ∈D(B , JA) . αA · F c }
∀B : D . [α]B = β B

⇐⇒ { equality of natural transformations }
[α] = β .

Each of the steps is fairly compelling, except perhaps the second one, which
rests on the Yoneda Lemma [27, p.61]. Its purpose is to introduce the functor
application F c so that the naturality of β can be utilised. Thus, shift is defined

[α]A = ΛZ : C .
�

c ∈D(A, JZ ) . αZ · F c . (47)

Two remarks are in order. First, the body of the type abstraction, that is
�

c ∈
D(A, JZ ) . αZ · F c is a dinatural transformation because it equals App Z ·
βA = (App · Δ(βA))Z—see derivation above—which is dinatural in Z . Second,
[α] itself is a natural transformation because β is one by assumption.

Let us now turn our attention to the implementation of the codensity monad
of a functor J. Combining (20a) with the end formula (27) gives

CA = ∀Z : C . Π D (A, JZ ) . JZ .

The instance of the end formula on the right is commonly regarded as the co-
density monad. This view is partially justified since the end formula provides
a general implementation of right Kan extensions, subject to the existence of
the necessary powers and ends. It confuses, however, an implementation with an
abstract concept. (This confusion is not uncommon in computer science.) The
codensity monad is also regarded as the ‘real’ continuation monad. To see the
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relation to continuation-passing style, let us unroll the definitions of return and
join. For η = [id ] (20b), we obtain

[id ]A

= { definition of [−] (47) }
ΛZ : C .

�
k ∈D(A, JZ ) . id Z · Id k

= { identity }
ΛZ : C .

�
k ∈D(A, JZ ) . k ,

and for μ = [run · M◦run] (20c) we calculate

[run · M◦run]A
= { definition of [−] (47) }

ΛZ : C .
�

k ∈D(A, JZ ) . run Z · M (run Z ) · M (M k)

= { M functor }
ΛZ : C .

�
k ∈D(A, JZ ) . run Z · M (run Z · M k)

= { property of run (46) }
ΛZ : C .

�
k ∈D(A, JZ ) . run Z · M (π(k) · App Z )

= { property of run (46) }
ΛZ : C .

�
k ∈D(A, JZ ) . π(π(k) · App Z ) · App Z .

To summarise, the codensity monad implemented in terms of powers and ends
is given by

CA = ∀Z . Π D (A, JZ ) . JZ ,

C f = ΛZ .
�

k . π(k · f ) · App Z ,

η = ΛZ .
�

k . k ,

μ = ΛZ .
�

k . π(π(k) · App Z ) · App Z ,

which is similar to the continuation monad K of Section 6.1, except for occur-
rences of type abstraction and type application. This is the abstract rendering
of the Haskell code for C from the introduction—note that in Haskell type ab-
straction and type application are implicit.

7 Examples

Let L / R be an adjunction.

C
≺ L

⊥
R
6

D
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We have encountered two implementations of the codensity monad of R: the
standard implementation R◦L and the implementation induced by the end for-
mula (27). Since right Kan extensions are unique up to isomorphism (see Sec-
tion 3), we have

R◦L = R/1R ∼= R/2R = λA : D . ∀Z : C . Π D (A,RZ ) . RZ . (48)

The isomorphisms are [run1]2 and [run2]1 (again see Section 3).
In the following sections we look at a few instances of this isomorphism.

The list is by no means exhaustive, but it is indicative of the wide range of
applications—the reader is invited to explore further adjunctions.

7.1 Identity Monad

The simplest example of an adjunction is Id / Id, which induces the identity
monad.

C
≺ Id

⊥
Id
6

C

The units of the adjunction are identities: ε1 = id and η1 = id . Furthermore,
run and shift are defined run1 = id and [α]1 = α.

Instantiating (48) to Id / Id yields

Id ∼= λA : D . ∀Z : C . Π D (A,Z ) . Z , (49)

which generalises one of the main examples in Wadler’s famous paper “Theorems
for free!” [34]. Wadler shows A ∼= ∀Z : C . Π D (A,Z ) . Z . Equation (49) tells
us that this isomorphism is also natural in A. The isomorphisms [run1]2 and
[run2]1 specialise to

[run1]2 = [id ]2 = η2 ,

[run2]1 = run2 .

One direction is given by the unit of the ‘continuation monad’; for the other
direction we simply run the continuation monad.

7.2 State Monad

The Haskell programmer’s favourite adjunction is currying: −×X / (−)X .

C
≺− ×X

⊥
(−)X

6
C
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In Set, a function of two arguments can be treated as a function of the first
argument whose values are functions of the second argument. In general, we are
seeking the right adjoint of pairing with a fixed object X : C .

C (A×X ,B) ∼= C (A,BX ) .

The object BX is called the exponential of X and B . That this adjunction exists
is one of the requirements for cartesian closure [25]. In Set, BX is the set of
total functions from X to B .

The curry adjunction induces the state monad, where X : C serves as the
state space. This instance of (48) reads

(−×X )X ∼= λA : C . ∀Z : C . Π C (A,ZX ) . ZX (50)

On the left we have the standard implementation of the state monad using state
transformers. The end formula yields an implementation in continuation-passing
style. The continuation of type C (A,ZX ) ∼= C (A × X ,Z ) takes an element of
the return type A and an element of the state type X , the final state. The initial
state is passed to the exponential in the body of the power.

The Haskell rendering of the two implementations is fairly straightforward.
Here is the standard implementation

newtype State1 a = In {out : X → (a,X )} ,

and here is the CPS-based one

newtype State2 a = CPS {call : ∀ z . (a → (X → z ))→ (X → z )} .

7.3 Free Monad of a Functor

One of the most important adjunctions for the algebra of programming is Free /
U, which induces the so-called free monad of a functor. This adjunction makes a
particularly interesting example as it involves two different categories. Here are
the gory details:

Let F : C → C be an endofunctor. An F-algebra is a pair 〈A, a〉 consisting
of an object A : C (the carrier of the algebra) and an arrow a : C (FA,A) (the
action of the algebra). An F-algebra homomorphism between algebras 〈A, a〉
and 〈B , b〉 is an arrow h : C (A,B) such that h · a = b · F h. Identity is an
F-algebra homomorphism and homomorphisms compose. Thus, the data defines
a category, called F-Alg(C ).

The category F-Alg(C ) has more structure than C . The forgetful or un-
derlying functor U : F-Alg(C ) → C forgets about the additional structure:
U 〈A, a〉 = A and U h = h. While the definition of the forgetful functor is decep-
tively simple, it gives rise to an interesting concept via an adjunction.

F-Alg(C )
≺Free
⊥
U

6
C
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The left adjoint Free maps an object A to the free F-algebra over A, written
〈F∗ A, com〉. In Set, the elements of F∗ A are terms built from constructors
determined by F and variables drawn from A. Think of the functor F as a gram-
mar describing the syntax of a language. The action com : C (F (F∗ A),F∗ A)
constructs a composite term from an F-structure of subterms. There is also an
operation var : C (A,F∗ A) for embedding a var iable into a term. This operation
is a further example of a universal arrow: for each F-algebra B and for each arrow
g : C (A,UB) there exists an F-algebra homomorphism eval g : F-Alg(FreeA,B)
(pronounce “evaluate with g”) such that

f = eval g ⇐⇒ U f · var = g , (51)

for all f : F-Alg(FreeA,B). In words, the meaning of a term is uniquely deter-
mined by the meaning of the variables. The fact that eval g is a homomorphism
entails that the meaning function is compositional: the meaning of a composite
term is defined in terms of the meanings of its constituent parts.

The adjunction Free / U induces the free monad F∗ of the functor F. The
isomorphism (48) gives two implementations of the free monad.

F∗ ∼= λA : C . ∀Z : F-Alg(C ) . Π C (A,UZ ) . UZ (52)

The standard implementation represents terms as finite trees: the free algebra
F∗ A is isomorphic to μFA where FA X = A+FX [1]. The implementation based
on Kan extensions can be seen as the Church representation [26,5] of terms. Note
that the variable Z ranges over F-algebras. The continuation of type C (A,UZ )
specifies the meaning of variables. Given such a meaning function a term can be
evaluated to an element of type UZ . (It is debatable whether the term ‘contin-
uation’ makes sense here—U/U is certainly a generalised continuation type.)

It is instructive to consider how the definitions translate into Haskell. The
implementation using trees is straightforward: the constructors var and com
are turned into constructors of a datatype (we are building on the isomorphism
F∗ A ∼= μFA here).

dataTerm1 a = Var a | Com (F (Term1 a))

The Church representation is more interesting as we have to deal with the ques-
tion of how to model the variable Z , which ranges over F-algebras. One way to
achieve this is to constrain Z by a class context.

classAlgebra awhere
algebra : F a → a

The Church representation then reads

newtypeTerm2 a = Abstr {apply : ∀ z . (Algebra z )⇒ (a → z )→ z } .

The two implementations represent two extremes. For terms as trees, construct-
ing a term is easy, whereas evaluating a term is hard work. For the Church
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representation, it is the other way round. Evaluating a term is a breeze as, in
a sense, a term is an evaluator. Constructing a term is slightly harder, but not
that much. The reader is invited to spell out the details.

Initial and free algebras are closely related (see above). The so-called extended
initial algebra semantics [11] is a simple consequence of (52).

μF
∼= { left adjoint preserve colimits: μF = U 0 ∼= U (Free 0) = F∗ 0 }

F∗ 0
∼= { (52) }
∀Z : F-Alg(C ) . Π C (0,UZ ) . UZ

∼= { 0 is initial }
∀Z : F-Alg(C ) . Π 1 . UZ

∼= { Π 1 . X ∼= X }
∀Z : F-Alg(C ) . UZ

∼= { relation between ends and limits [27, Prop. IX.5.3] }
LimU

The calculation shows that a colimit, the initial algebra μF, is isomorphic to a
limit, the limit of the forgetful functor. (This is familiar from lattice theory: the
least element of a lattice is both the supremum of the empty set and the infimum
of the entire lattice.)

Remark 9. Arrows of type A→ LimU and natural transformations of typeΔA→̇
U are in one-to-one correspondence. (In other words, we have an adjunction
Δ / Lim.) Using the concept of a strong dinatural transformation, the naturality
property can be captured solely in terms of the underlying category C [11].
Whether a similar construction is also possible for ends is left for future work.�

7.4 List Monad

The Haskell programmer’s favourite data structure, the type of parametric lists,
arises out of an adjunction between Mon, the category of monoids and monoid
homomorphisms, and Set, the category of sets and total functions.

Mon
≺Free
⊥
U
6

Set

Now U is the underlying functor that forgets about the monoidal structure,
mapping a monoid to its carrier set. Its left adjoint Free maps a set A to the free
monoid on A, whose elements are finite sequences of elements of A.

The adjunction Free / U induces the list monad List. For this instance, the
isomorphism (48) can be simplified to

List ∼= λA : Set . ∀Z : Mon . (A→ UZ )→ UZ . (53)
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The variable Z now ranges over monoids. An element of the end can be seen as
an evaluator: given a function of type A→ UZ , which determines the meaning
of singleton lists, the list represented can be homomorphically evaluated to an
element of type UZ .

Turning to Haskell, the standard implementation corresponds to the familiar
datatype of lists.

data List1 a = Nil | Cons (a, List1 a)

For the Church representation we take a similar approach as in the previous
section: we introduce a class Monoid and constrain the universally quantified
variable by a class context.

classMonoid awhere
ε : a
(•) : a → a → a

newtype List2 a = Abstr {apply : ∀ z . (Monoid z )⇒ (a → z )→ z }

Of course, in Haskell there is no guarantee that an instance ofMonoid is actually
a monoid—this is a proof obligation for the programmer. We can turn the free
constructions into monoids as follows:

instanceMonoid (List1 a)where
ε = Nil

Nil • y = y
Cons (a, x ) • y = Cons (a, x • y)

instanceMonoid (List2 a)where
ε = Abstr (λk → ε)
x • y = Abstr (λk → apply x k • apply y k) .

The second instance is closely related to the Haskell code from the introduction:
the implementation of backtracking using a success and a failure continuation
simply specialises z to the monoid of endofunctions.

instanceMonoid (a → a)where
ε = id
x • y = x · y

We can instantiate z to this monoid without loss of generality as every monoid
is isomorphic to a monoid of endofunctions, the so-called Cayley representation,
named after Arthur Cayley:

(A, ε, •) ∼= ({(a • −) : A→ A | a ∈ A}, id , ·) .

This isomorphism is also the gist of Hughes’ efficient representation of lists [19].
To summarise, the CPS variant of the list monad combines Kan extensions

and Cayley representations—Dan explains the success and Art the failure con-
tinuation.
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8 Related Work

As mentioned in the introduction, all of the core results appear either explic-
itly or implicitly in Mac Lane’s textbook [27]. Specifically, Section X.7 of the
textbook introduces the notion of absolute Kan extensions—that L / R induces
−◦R / −◦L is implicit in the proof of Theorem X.7.2. Overall, our paper solves
Exercise X.7.3, which asks the reader to show that J/J is a monad and that R◦L
is isomorphic to R/R.

Kan Extension. Kan extensions are named after Daniel Kan, who constructed
Set-valued extensions using limits and colimits in 1960. Kan extensions have
found a few applications in computer science: right Kan extensions have been
used to give a semantics to generalised folds for nested datatypes [4]; left Kan
extensions have been used to provide an initial algebra semantics for certain
“generalised algebraic datatypes” [22].

Codensity Monad. The origins of the ‘trick’, wrapping a CPS transformation
around a monad, seem to be unknown. The trick captured as a monad trans-
former was introduced by the author in 1996 [12]. Much later, Jaskelioff noted
that the transformer corresponds to a construction in category theory, the coden-
sity monad [21]. None of the papers that utilise the trick [13,8,33,20,28], however,
employ the isomorphism R◦L ∼= R/R—all of them work with M/M instead. In
more detail:

Building on the work of Hughes [18], the author showed how to derive back-
tracking monad transformers that support computational effects such as the
Prolog cut and an operation for delimiting the effect of a cut [13]. Wand et al
[35] later identified a problem with our derivations, which built on fold-unfold
transformations [6]. Roughly speaking, the culprit is the lack of a sound induction
principle for local universal quantification. Wand et al proposed an alternative
approach based on logical relations. Their proof, however, uses a different CPS
monad with a fixed type O of observations, B a = (a → (O → O))→ (O → O),
which is somewhat unsatisfactory.

Claessen [8] applied the trick to speed up his parallel parsing combinators.
Voigtländer [33] showed that the trick gives an asymptotic improvement for free
algebras and the operation of substitution. He sketched a proof of correctness
and conjectured that a formal proof might require sophisticated techniques in-
volving free theorems. This gap was later filled by Hutton et al [20] who proved
correctness by framing it as an instance of the so-called worker/wrapper trans-
formation. Their proof, however, is an indirect one as it only establishes the
equivalence of two functions from a common source into the two monads. Fi-
nally, a more advanced application involving indexed monads was recently given
by McBride [28].

Kan extensions and the codensity monad are also popular topics for blog posts.
Piponi (blog.sigfpe.com) expands on the codensity monad as “the mother of
all monads”, a catchy phrase due to Peter Hancock. Kmett (comonad.com/reader)
has a series of posts on both topics, including a wealth of Haskell code.

blog.sigfpe.com
comonad.com/reader
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String Diagram. String diagrams were introduced by Penrose [31] as an alter-
native notation for “abstract tensor systems”. These diagrams are widely used
for monoidal categories—Selinger [32] surveys graphical languages for different
types of monoidal structures. (A monoidal category is a special case of a 2-
category, namely, one that has only a single object. Consequently, there is no
need to label or colour regions.)

9 Conclusion

Monads can be seen as abstract datatypes for computational effects. (This view
is admittedly a bit limited—consider the free monad of a functor, would you
want to regard substitution as a computational effect?) The take-home message
of this paper is that the right Kan extension of the functor R along R is a drop-in
replacement for the monad induced by the adjunction L / R. The paper stresses
the importance of adjunctions, a point already emphasised in a previous paper
by the author [14]. The bad news is that the construction, the implementation
of the codensity monad using ends and powers, does not lend itself easily to
a library implementation, at least not in today’s programming languages. A
generic implementation would require support for abstraction over categories.

For quite a while I have been experimenting with two-dimensional notation
for calculational proofs. I first tried traditional notation, the Poincaré dual of
string diagrams, but I never used it in anger as I found the diagrams difficult
to compose and to manipulate. The reason is that natural transformations, the
main focus of interest, are represented by regions, which are often difficult to lay
out in an aesthetically pleasing way. By contrast, string diagrams are fairly easy
to draw. Furthermore, the least interesting piece of information—which are the
categories involved?— can be easily suppressed. I hope to see string diagrams
more widely used for program calculation in the future.

Everything we have said nicely dualises: right Kan extensions dualise to left
Kan extensions and the codensity monad dualises to the density comonad. A
left Kan extension can be seen as a generalised existential type and the density
comonad corresponds to an abstract datatype or a simple object type—the type
of parametric streams is one of the prime examples. Quite clearly, the dual story
is interesting in its own right but this is a story to be told elsewhere.
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notation. A big thank you is furthermore due to Daniel James and Nicolas Wu
for artistically typesetting the diagrams. Nicolas also suggested various presenta-
tional improvements. Thanks are furthermore due to Roland Backhouse, Jeremy
Gibbons and the other (anonymous) referees of MPC 2012 for finding several
typographical errors, glitches of language, and for forcing me to be precise about
the contributions of the paper. In particular, I would like to thank Roland for
proposing the notation G/J instead of the more traditional RanJ G and for point-
ing me to regular algebras. I have added Remarks 1, 3, 5, 6 and 7 in response to
his review.
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A Composition of Functors and Natural Transformations

This appendix contains supplementary material. It is intended primarily as a
reference, so that the reader can re-familiarise themselves with the category
theory that is utilised in this paper. Specifically, we introduce composition of
functors and natural transformations. We shall use the following entities to frame
the discussion (F,G : C → D are parallel functors, α : F → G is a natural
transformation between them etc).

F E D C B
N

L G
E

M

K

H

F
α

β

γ

δ

Here we use traditional two-dimensional notation. The reader is invited to turn
the diagram into its Poincaré dual, a string diagram.

Functors can be composed, written K◦F. Rather intriguingly, the operation
K◦−, post-composing a functor K, is itself functorial: the higher-order functor
K◦− : DC → E C maps the functor F to the functor K◦F and the natural trans-
formation α to the natural transformation K◦α defined (K◦α)A = K (αA).
Post-composition dualises to pre-composition: the higher-order functor −◦E :
DC → DB maps the functor F to the functor F◦E and the natural transfor-
mation α to the natural transformation α◦E defined (α◦E)A = α (EA). (The
reader should convince themselves that K◦α : K◦F→̇K◦G and α◦E : F◦E→̇G◦E
are again natural transformations.) Here are the functor laws spelled out.

K◦idF = idK◦F (54a)

K◦(β · α) = (K◦β) · (K◦α) (54b)

idF◦E = idF◦E (54c)

(β · α)◦E = (β◦E) · (α◦E) (54d)

Altogether, we have three different forms of composition: K◦F, γ◦F and K◦α.
They are ‘pseudo-associative’ and have the functor Id as their neutral element.

γ◦(F◦E) = (γ◦F)◦E (55a)

K◦(β◦E) = (K◦β)◦E (55b)

N◦(M◦α) = (N◦M)◦α (55c)

Id◦α = α (55d)

α◦Id = α (55e)

This means that we can freely drop parentheses when composing compositions.
Given two natural transformations α : F →̇ G and γ : K →̇ L, there are two

ways to turn a K◦F into an L◦G structure.

K◦F K◦α6 K◦G

L◦F

γ◦F

�
L◦α
6 L◦G

γ◦G

�

γ◦α

6
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The diagram commutes since γ is natural:

((γ◦G) · (K◦α))X
= { definition of compositions }

γ (GX ) · K (αX )

= { γ is natural: L h · γ A = γ B · K h }
L (αX ) · γ (FX )

= { definition of compositions }
((L◦α) · (γ◦F))X .

The diagonal is called the horizontal composition of natural transformations,
denoted γ◦α.

(γ◦G) · (K◦α) = γ◦α = (L◦α) · (γ◦F) (56)

The definition witnesses the fact that functor composition E D ×DC → E C is a
bi-functor: (56) defines its action on arrows.

References

1. Awodey, S.: Category Theory, 2nd edn. Oxford University Press (2010)
2. Backhouse, R., Bijsterveld, M., van Geldrop, R., van der Woude, J.: Category

theory as coherently constructive lattice theory (1994),
http://www.cs.nott.ac.uk/~rcb/MPC/CatTheory.ps.gz

3. Bird, R., de Moor, O.: Algebra of Programming. Prentice Hall Europe, London
(1997)

4. Bird, R., Paterson, R.: Generalised folds for nested datatypes. Formal Aspects of
Computing 11(2), 200–222 (1999)
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Grégoire, Benjamin 1
Guttmann, Walter 198

Hayes, Ian J. 102
Hinze, Ralf 324
Hoare, Tony 7

Lux, Alexander 25

Mandel, Louis 74
Mantel, Heiko 25
Midtgaard, Jan 132
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