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Introduction

Graphene is a planar monolayer of strongly sp2-bonded carbon atoms arranged into

a two-dimensional honeycomb lattice with a carbon–carbon bond length of

0.142 nm [1]. It was initially assumed not to exist in free state and was described

as ‘academic material’ [2] until 2004 when Novoselov et al. [3] successfully

separated single-layer graphene experimentally. It can be wrapped up into 0D

fullerenes, rolled into 1D nanotubes or stacked into 3D graphite (Fig. 4.1) [4].

Five typical methods are typically used to make graphene sheets which include [5]

(i) chemical vapor deposition (CVD) on metals, (ii) micromechanical exfoliation of

graphite, (iii) reduction of graphene oxide, (iv) epitaxial growth on large band gap

semiconductor SiC, (v) and the creation of colloidal suspension.

In terms of mechanical properties, graphene is a super strong nanomaterial.

A suspended monolayer graphene sheet over circular holes on a Si substrate was

measured by AFM (atomic force microscopy) nano-indentation revealing that it

exhibits a Young’s modulus of �1TPa and a critical failure stress and strain of
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130GPa and 25 %, respectively [6]. These extraordinary mechanical properties, in

addition to the well-documented beneficial electrical properties of graphene, have

attractedagreatdealof interest inareas suchasnano-/microelectromechanical system

(NEMS/MEMS) [7, 8], nanoelectronics [9, 10], as well as nanocomposites [11].

A detailed fundamental understanding of its mechanical properties is of importance

in its application to anumberof thesefields, inparticular nanocomposites andMEMS.

Mechanical Characterization Techniques

Optical microscopy, electron microscopy, AFM, and Raman spectroscopy have

been applied to the mechanical characterization of graphene. Optical microscopy is

used to image samples ‘macro’scopically, and electron microscopy provides higher

imaging resolutions down to nanometer and sub-nanometer scales, facilitating both

structural and mechanical characterization of graphene samples. AFM is a standard

Fig. 4.1 Mother of all graphitic forms. Graphene is a 2D building material for carbon materials of

all other dimensionalities. It can be wrapped up into 0D buckyballs, rolled into 1D nanotubes or

stacked into 3D graphite (Figure/Caption reproduced (Adapted) with permission from Macmillan

Publishers Ltd: [Nature Material] [4], Copyright (2007))
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tool to obtain surface images of graphene and can also be applied in mechanical

testing modes to measure mechanical properties such as Young’s modulus, friction,

and strength. Raman spectroscopy is used to investigate the vibrational properties

of graphene and measure graphene thickness accurately, which is essential in the

interpretation and analysis of graphene’s mechanical behavior.

Optical microscopy is primarily used to detect graphene ‘macro’scopically.

Substrate design is of great importance in order to enhance the visibility of graphene

under optical microscopy [12, 13]. Based on the Fabry–Perot interference mecha-

nism, various materials have been employed to enhance imaging contrast. For

example, a SiO2 layer is usually created on the surface of a silicon substrate [14].

By adjusting the SiO2 thickness to 90 or 300 nm, the intensity of the reflected light is

at the maximum, which is also the maximum sensitivity of human eye [3].

In addition, 50 nm Si3N4 and 72 nm Ai2O3 substrates have also been used to improve

the contrast of graphene [14, 15]. Additionally, fluorescence quenching microscopy

(FQM) was used to image graphene, reduced graphene oxide (RGO), and graphene

oxide (GO) for sample evaluation and manipulation so that the synthesis process can

be improved [16].

Scanning electron microscopy (SEM) and transmission electron microscopy

(TEM) are widely used in nanomaterials research. Similar to optical microscopy, an

underlying substrate is needed for using SEM to image graphene sheets.

The magnification of SEM is order of magnitude higher than that of optical micros-

copy typically achieving a spatial resolution on the order of tens to a few nms.

TEM is used to observe morphological and structural features of graphene and

measure the number of graphene layers accurately. For samples in which the edges

of graphene films fold back, the observation of these edges by TEM provides

an accurate way to count the number of layers at multiple locations on the films,

as shown in Fig. 4.2a [17]. In addition, TEM is often assisted with electron

diffraction pattern analysis, which enables the observation of the crystal structure

of graphene sheets [18] (Fig. 4.2b). Defects in graphene can also be detected by using

this method [18]. However, it should be noted that the resolution of electron

microscopy is limited by the accelerating voltage. High accelerating voltages can

damage the monolayer of graphene. Aberration-corrected TEM has been reported to

achieve a 1 Å resolution at an acceleration voltage of only 80 kV [19, 20].

Atomic force microscopy (AFM) can provide a direct way to observe the

topography of single to few layer graphene films which are atomically thin.

In theory, the thickness of a single layer of graphene is about 0.34 nm. However,

due to the surface adsorption of graphene, the actual measured value consistently

appears to be 0.8–1.2 nm. The number of layers can be obtained by measuring the

thickness of a single-layer sheet, and it can be calculated according to [21]

N ¼ P� X

0:34
þ 1

where N is the number of layers of graphene, P is the measured thickness, and X is

the measured thickness of a single-layer graphene. Furthermore, AFM can be used
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to investigate the mechanical properties of graphene such as elastic modulus,

tensile strength, bending stiffness, and friction. In this case, several mechanical

testing modes of AFM are implemented including friction force microscopy (FFM),

for determining the frictional characteristics of graphene [22–24], and AFM deflec-

tion for measuring elastic modulus and strength [6].

Raman spectroscopy provides a fast and nondestructive way to gain insight into

the electron–phonon interactions in graphene. The frequency of scattered photons is

changed due to the interaction of incident light and the material’s molecular

structure. Thus, the structural features of graphene can be identified, such as the

number of graphene layers, the molecular structure, and defects in graphene [25].

Figure 4.3 shows the spectra of single-layer and double-layer graphene sheets [26].

Raman spectroscopy can also be used to measure the mechanical properties of

graphene [27]. Mingyuan Huang et al. [28] presented Raman spectra of optical

phonons in graphene monolayers under tunable uniaxial tensile stress. They showed

that all the prominent bands exhibit significant red shifts and the resulting shift rates

can be used to calibrate strain in graphene.

Mechanical Characterization of Graphene

Young’s Modulus

Simulation
The elastic properties of graphene can be estimated by using numerical simulations,

based on elasticity theory. It is known that graphene is a two-dimensional crystal of

carbon atoms bonded by sp2 hybridized bonds. Interatomic force field models for

graphene thus can be built. Based on the continuum elasticity theory, a simple

Fig. 4.2 TEM images: (a) Edges of graphene films (Figure/Adaption Reprinted (Adapted) by

permission from Macmillan Publishers Ltd. on behalf of Cancer Research UK: [Nature] [17],

Copyright (2009)) (b) Hexagonal pattern of the graphene structure (Figure/Caption Reprinted

(adapted) with permission from [18], Copyright (2008) American Chemical Society)
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valence force field model was formulated by Keating [29] for semiconductors and

then extended to graphene by Lobo [30]. Results predicting the Young’s modulus of

graphene were reported based on different modeling theories. Table 4.1 [31–35]

summarizes these results from different simulation studies. It can be seen that with

different modeling approaches, the Young’s modulus values are close to 1 TPa.

Experiment
Reported experimental results of the Young’s modulus are�1.0 TPa [6] which is in

good agreement with simulations. A suspended monolayer graphene sheet over

circular holes on a Si substrate was measured using AFM nano-indentation

(Fig. 4.4) [36]. The thickness of the graphene sample was accurately determined

using contact mode AFM imaging [37]. AFM was also used to accurately resolve

the small forces involved in deformation and friction of graphene [36, 38]. Young’s

modulus is calculated according to

Table 4.1 Graphene

Young’s modulus values from

simulation studies

Graphene

Study E (TPa)

Continuum mechanics [31] 1.04

Molecular dynamics [32] 1.24

Molecular dynamics [33] 0.912

Molecular dynamics [34] 1.0913

Structural mechanics (amber model) [35] 1.305

Structural mechanics (Morse model) [35] 1.668
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Fig. 4.3 Raman spectra of single and double layer grapheme (Figure/Caption Reprinted (adapted)

with permission from [26], Copyright (2007) American Chemical Society)
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s ¼ Eeþ De2

where s is the stress, e is the strain, and D is the third-order elastic modulus.

Elastic properties of graphene with different boundary conditions were also

measured. Wong et al. [29] investigated the mechanical properties of suspended

graphene drums via static deflection experiments. Deflection was detected using

AFM, which is highly sensitive to topographical changes in the out-of-plane

direction and can pick up height variations as small as 1 nm. The AFM scans

provided information on both the peak displacement amplitude and the deflection

mode shape of the drum structure. It was found that the structures have linear spring

constants ranging from 3.24 to 37.4 N m�1 and could be actuated to about 18–34 %

of their thickness before exhibiting nonlinear deflections [29]. The result indicates

a Young’s modulus value of 1TPa which agrees well with the results reported by

Lee et al. [6].

Bending Stiffness

Simulation
Theoretical studies have suggested that the bending stiffness of graphene is critical

to attain structural stability for suspended graphene sheets, which in turn affects

their mechanical properties significantly [39–41]. Molecular mechanics simulations

for graphene bending rigidity were reported through calculations of the strain

energy for graphene sheets subjected to a point loading [42]. Based on the first-

generation Brenner potential, an analytical form was derived for the bending

modulus of monolayer graphene under infinitesimal bending curvature [43, 44],

namely,

Fig. 4.4 Measurement of

graphene elastic modulus:

Schematic of indentation on

suspended grapheme (Figure/

Caption Reprinted (Adapted)

from [36], Copyright

(2009) WILEY-VCH Verlag

GmbH & Co. KGaA,

Weinheim)
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Dbending ¼
ffiffiffi

3
p

2

∂Vij

∂ cos yijk
¼ 1

2
V r0ð Þ ∂bij

∂yijk

where the interatomic potential takes the form

Vij ¼ VR rij
� �� bVA rij

� �

and b= bij þ bji
� �

=2 is a function of the bond angles.

Simulation results show that the bending rigidity increases from a small value of

0.819 eV with the size of 1.87 nm to an asymptotic value of 2.385 eV for sheets with

sizes larger than 12 nm. In addition, rigidity changes from the asymptotic value,

2.385 eV, for a square sheet to a smaller value, 0.360 eV, for a sheet with the shape

ratio of b/a ¼ 2.15, as shown in Fig. 4.5 [42].
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Fig. 4.5 Bending rigidity

variation. (a) Variation of the

bending rigidity with the size

of square graphenes; (b)

Variation of the bending

rigidity with the shape of

rectangular graphenes

(Figure/Caption Reprinted

(Adapted) from Physics

Letter A [42], Copyright

(2010), with permission from

Elsevier)
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Experiment
While in-plane mechanical properties such as elastic modulus and strength of

monolayer graphene have been deduced from experiments [6, 45], direct measure-

ments of bending stiffness of monolayer graphene have not been reported. By using

nano-indentation on suspended multilayer graphene flakes, the bending stiffness

for 8–100 layers has been measured and determined to be in the range of

2 � 10�14 N m–2 � 10�11 N m�1 [46].

Friction

Simulation
Molecular dynamics simulations can also be applied to extract frictional properties

of graphene. A probing tip using a short-capped single-walled carbon nanotube is

able to capture the frictional characteristics and resolve the graphene lattice through

measuring oscillatory lateral forces or normal forces. As shown in Fig. 4.6a [47],

the graphene sheet (atoms are colored in red and blue) has a length l and

a diameter d. The initial tip–surface distance is h, and the sliding distance is D.
The atoms in blue are prescribed with a moving velocity while the atoms in red

follow the molecular dynamics. The graphene sheet with lateral dimensions of

7.6� 7.6 nm was placed horizontally with its boundary atoms (in pink) fixed and its

interior atoms (in green) following the molecular dynamics. By averaging the

oscillatory lateral force and normal force along the tip moving path, the friction

coefficient was extracted [47].

Based on the simulation, it was found that the friction coefficient decreases with

an increase in the initial tip–surface distance and the number of graphene

layer [47]. The calculated results for the friction forceF x and the friction coefficient

Cx at different initial tip–surface distances and the number of graphene layers are

shown in Fig. 4.6b [47].

Experiment
The frictional properties of graphene can be measured using AFM under applied

loads. Initially, the AFM tip is made to contact the specimen surface at a fixed

normal load, and the friction force is measured over a distance for multiple cycles in

which friction loops are recorded. Then, the applied load is varied, and the friction

force is measured again for multiple applied loads. This process is repeated until the

tip becomes detached from the specimen surface due to excessive negative loads

and the relationship between normal force and frictional forces is determined

[23, 24, 38].

�

Fig. 4.6 (A) Schematic of the probing interactions between the capped nanotube and graphene

layer (B) Tip sliding along the x-direction, (a) the friction force (c) the friction coefficient; along

the y-direction (b) the friction force (d) the friction coefficient (Figure/Caption Reprinted

(Adapted) from Carbon [47], Copyright (2011), with permission from Elsevier)
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Measurements down to single atomic sheets revealed that friction monotonically

increased as the number of layers decreased for suspended graphene [23]; a similar

trend revealed that monolayer epitaxial graphene on SiC exhibited higher friction

than bilayer graphene, and the single and bilayer graphene reduced friction on the

SiC substrate by a factor of �10 [24]. In another study, binding the graphene

strongly to a mica surface suppressed the friction trend as a function of thickness

[23, 24]. Li-Yu Lin et al. [38] investigated the friction and wear characteristics of

multilayer graphene films deposited on a Si substrate. The graphene films consisted

of a few layers of carbon basal plane. The number of graphene layers was deter-

mined by AFM and Raman spectroscopy. It was found that graphene films

exhibited much lower friction (from 0.36 to 0.62 nN) than bare Si surface (from

1.1 to 4.3 nN) when applied loads varied from 3 to 30 nN.

Strength and Fracture

Depending on single or polycrystalline nature, the fracture mechanisms of graphene

can vary. For single crystalline graphene, the failure mechanism (take double

vacancy as an example) by molecular dynamics simulation is illustrated in

Fig. 4.7a [48]. Before the propagation of fracture, pentagons and heptagons initiate

around the defects. As load increases, fracture disperses in the direction parallel to the

loading direction. Two chains of atoms are formed at the region of the vacancy

defects and the other two chains on the edges of the sheet during fracture propagation.

The critical stress and critical strain relationship depends on the number of vacancy

defects [48, 49]. As shown in Fig. 4.7b [48], a pristine single-layer graphene sheet has

the highest ultimate strength and strain. The presence of vacancy defects can reduce

these features of the graphene sheet. A single-layer graphene sheet with a single

vacancy defect has a critical stress and strain reduction of 6.4 % and 9.7 %, respec-

tively, compared with the pristine sheet. A reduction of 7.3 % and 11.46 % for

a double vacancy defect graphene sheet was also estimated.

Simulation performed by Cao et al. [50] shows that for polycrystalline graphene,

fracture initiates from either a grain boundary triple junction [Fig. 4.8a–d] or an

array of vacancies on a preferential grain boundary [Fig. 4.8e–h] by unzipping

atomic bonds along a preferential grain boundary. Crack propagation takes only

4.0 ps from crack initiation to the final failure of the entire sample. Furthermore,

polycrystalline graphene exhibits ‘flaw tolerance’ as reported in the simulation

study reported by Zhang et al. [51]. As illustrated in Fig. 4.9, fracture behavior of

polycrystalline graphene can become insensitive to a preexisting flaw (hole or

notch) below a critical length scale, which means that there is no stress concentra-

tion near the flaw site.

Experimental fracture behavior of graphene is relatively understudied. Research

in experimentally revealing fracture mechanisms is a promising future field, which

can significantly enhance the understanding of failure modes of graphene in various

applications.
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Fig. 4.7 (A) Failure process of a SLGS with double vacancy (shortest possible separation

distance). (a) after initial relaxation, (b) formation of pentagons and heptagons at adjacent of

the vacancies, (c) early stages of fracture propagation, (d) formation of two chains at the location

of vacancy defects, and (e) formation of four chains. (B) Stress–strain curves of graphene sheets

with double vacancies, single vacancy, and a perfect structure (Figures/Captions Reprinted

(Adapted) from Solid State Communications [48], Copyright (2011), with permission from

Elsevier)
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Summary

The synthesis, characterization, and applications of graphene are rapidly

progressing. Mechanically, Young’s modulus of mechanical exfoliated monolayer

Fig. 4.8 (a–d) Snapshots of

the microstructure to show the

unzipping mechanism leading

to brittle inter-granular

fracture. No significant

out-of-plane displacement is

observable. The arrow
indicates the unzipping

direction. (e–h) show the

perforation mechanisms of

separate nano-voids that

cause the spontaneous

initiation of crack (Figures/

Captions Reprinted (Adapted)

with permission from [50],

Copyright [2013], American

Institute of Physics)

Fig. 4.9 Schematic shows

the fracture behavior of the

polycrystalline graphene can

be insensitive to preexisting

flaw (Figure/Caption

Reprinted (adapted) with

permission from [51],

Copyright (2012) American

Chemical Society)
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graphene was determined to be �1.0TPa, and a critical failure stress and strain

of 130 GPa and 25 % were measured, respectively; bending stiffness was

reported only for 8–100 layers to be in the range between 2 � 10�14 N m�1 and

2 � 10�17 N m�1; friction of graphene shows a trend that it monotonically increases

as the number of layers decreases for suspended graphene and epitaxial graphene on

SiC; fracture behavior of graphene depends on its nature of crystalline. Simulation

results show that polycrystalline graphene exhibits ‘flaw tolerance’. However,

debates over properties such as wear and shear modulus remain unsolved. In addition

to the techniques this chapter described, MEMS devices which have micrometer-

sized features can also be applied to study single-layer and multilayer graphene as

they can bridge investigation of materials at the macro- and nanoscales. Although a

number of MEMS devices have been developed for mechanical characterizing indi-

vidual 1D nanomaterials, such as carbon nanotubes [52] and silicon nanowires [53],

few devices exist for characterizing 2D nanomaterials such as graphene. In future

work, the development of advanced experimental techniques and methodologies for

interpreting data will produce more thorough mechanical characterization results and

enable additional in-depth understanding of this important nanomaterial.
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