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Introduction

Biopolymers such as nucleic acids, proteins, and polysaccharides play diverse biolog-

ical functions and are components of variousmaterials.Nucleic acids encodehereditary

information and instructions for protein synthesis. In addition, the unique hybridization

properties of nucleic acids provide building blocks of nanomaterials, nanomachines,

and nanosensors [1–13] and are considered as a viable platform for highly parallel

biological computing [14–18]. Proteins mainly perform enzymatic reactions and par-

ticipate in cellular signal transduction and communication but also play critical struc-

tural and mechanical roles (e.g., supporting cell shape and elasticity) and are natural

components of bioadhesives, biocomposites [19, 20], and bio-fibers like collagen [21]

and silk [22–24]. Natural, synthetic, and hybrid proteins have recently been exploited

for development of new biomaterials with rationally tuned elastic properties [25–29].

Polysaccharides, either alone or as components of glycoproteins or peptidoglycans that

are exploited for energy storage, participate in molecular recognition between bio-

molecules and also play important structural roles, e.g., in the cell wall of plants and
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bacteria and as components of hydrogels and biofilms [30, 31]. They are also

components of many natural and semisynthetic materials (e.g., paper, cotton, rayon).

The mechanical properties of individual biomacromolecules and their

nanostructures are critically important for their biological and other functions.

For example, the mechanics of the DNA double helix plays an important role

during cell division, DNA replication, DNA damage repair, and transcription of

DNA information onto RNA [32]. The mechanics of protein networks, such as

present in the extracellular matrix, is essential for cell shape, cell flexibility, and

binding interactions between cells (cell adhesion) [33–70]. Also, muscle elasticity

is partially determined and regulated by the elastic properties of giant modular

proteins [71–76]. The mechanics of polysaccharide chains (such as cellulose chains

and fibers) is important in providing rigidity to cellular structures (e.g., wood), and

the flexibility of sugar rings is exploited in molecular recognition between sugars

and lectins and is important for enzymatic reactions such as glycolysis [77]. The

combined mechanics of proteins and polysaccharides is exploited in biohydrogels

such as those lubricating joints [78–81]. Since these biomacromolecules are also

used as building blocks for various nanostructures and nanomachines, the charac-

terization of their mechanical properties is of considerable significance to nano-

technology. The progress in directly measuring mechanical properties of individual

biomacromolecules paralleled the development of a variety of single-molecule

visualization, manipulation, and characterization techniques. This chapter will

briefly introduce the most popular single-molecule manipulation techniques and

will review the nanomechanical properties of individual biomacromolecules

determined using these methods.

Polymer Elasticity and Techniques to Study the Mechanical
Properties of Single Polymer Molecules

The mechanical properties of individual biomacromolecules are typically examined

by means of single-molecule force spectroscopy (SMFS) techniques [73, 82–89].

In SMFS, individual macromolecules or their fragments are attached to a substrate

and to a force probe and stretched (by separating the two), and their extension and

tension are accurately measured [90]. The relationship between the applied force

(tension) and extension that describes molecule’s elasticity has been coined a force

spectrogram. Biomacromolecules covered in this chapter are polymeric in nature so

they are composed of many identical or similar units (monomers). For this reason,

the primary source of their elasticity is entropic in origin [91–94]. The entropy is at

its maximum in equilibrium and is gradually decreased when the polymer ends are

separated and the monomers are forced to align with the direction of the stretching

force. Fully stretched polymers would have just a single configuration so their

configurational entropy would be zero and attaining such a state would require an

infinite force [94, 95]. However, even before such high forces are generated

entropically, the chemical and physical bonds within the polymeric structure

gradually extend according to their own stiffness and the polymer exhibits the
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enthalpic elasticity that results in continually increasing the contour length of the

polymer (overstretching) [73, 96]. The enthalpic elasticity may also manifest itself

as an abrupt transition in the force–extension relationship typically in the form of

a force peak or a force plateau, when individual bonds or their groups undergo

a discrete conformational force-induced transition that results in an abrupt length-

ening of the polymer [73, 83, 96–99].

Atomic Force Microscopy (AFM)
Advantages: Excellent length resolution, low-high force range (5–10,000 pN), and
constant-velocity or constant-force conditions are available, no need for specialized

attachment.

Disadvantages: Cantilever spring constants are difficult to determine accurately

[100, 101], not suitable for probing events at low forces (<5 pN).

AFM was invented in 1986 by Binning, Quate, and Gerber [102, 103] on the

basis of an earlier invention of the scanning tunneling microscope (STM) [104,

105]. AFMwas initially applied primarily as an imaging tool, but soon its power for

mechanical manipulation of individual biomolecules was realized [106]. In SMFS

measurements by AFM, molecules are attached at their termini or at random

positions to a substrate and to the AFM tip, either specifically through chemical

bonds or using ligand–receptor specificity (e.g., avidin–biotin) or even

nonspecifically through physisorption [90]. The molecules that formed a bridge

between substrate and the tip may be stretched in solution, which is of significance

to measurements on biomacromolecules. The stretching process is controlled by

means of a highly precise piezoelectric actuator that moves the sample away from

the AFM tip or vice versa. The force experienced by the molecule (its tension) is

determined through monitoring the bending of the AFM cantilever, which is

followed by a split photodiode that measures the position of a laser beam reflected

off of the cantilever and projected onto the diode. Force and length resolutions of

SMFS measurements by AFM are on the order of 1 pN and < 1 nm. The main

advantages of AFM as a force spectrometer are its superb length resolution, the

ability to stretch short molecules, and the ability to apply small forces (piconewton

order) and uniquely also very large forces (tens of nanonewtons). Also, AFM force

spectrometers are fast and allow large loading rates (force/time) that are of impor-

tance when studying lifetimes of intermolecular bonds. SMFS by AFM are typi-

cally carried out under constant extension rate [73] or force clamp conditions [107].

Optical Tweezers
Advantages: Excellent force resolution and excellent length resolution at low

forces (0.1–100 pN).

Disadvantages: Requires functionalized biopolymers to tether to bead

Optical tweezers [108–111] use a focused laser light to create a potential well

that traps dielectric objects, as first observed by A. Ashkin in 1970 [112]. An

appropriately surface-functionalized micron-size dielectric bead (e.g., coated with

avidin) can be used to attach to it a terminally functionalized biopolymer (e.g.,

biotin-labeled DNA) and can be captured by an optical trap. The other end of the
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molecule can be attached to a surface or to another bead kept, e.g., in a glass pipette

by suction. The molecule is stretched by moving the surface or the second bead

away from the optical trap (e.g., by means of piezoelectric actuator). A microscope-

based video system accurately monitors the position of the first bead relative to the

center of the optical trap to determine the applied force, while the translation of the

second bead is accurately measured to determine the molecule extension. Optical

tweezers provide superb force and length resolution on the order of <0.1 pN and

<1 nm and are widely used in SMFS of DNA and proteins.

Magnetic Tweezers
Advantages: Excellent force resolution at low and medium forces (0.01–100 pN),

simple method for applying torque

Disadvantages: Requires functionalized biopolymers to tether to bead

Magnetic tweezers use micron-size superparamagnetic beads, which develop a

net magnetic moment in an external magnetic field and are pulled by a magnetic

force that is proportional to the field gradient [113–115]. Similar to optical tweezers,

a molecule of interest can be tethered between a surface (bead) and a superpara-

magnetic bead and stretched by an external magnetic field. Forces on the order of

0.01–100 pN can be easily exerted by magnetic tweezers [94]. In addition to

stretching, magnetic tweezers provide a very simple means to apply a torque to the

molecule of interest allowing it to be rotated and coiled [113, 116–118].

Biomembrane Force Probe
Advantages: High precision in spring constant measurement, excellent force range

(0.01–1,000 pN)

Disadvantages: Limited to probing molecules that appear on (or are introduced

to) the cell surface

In the biomembrane force probe assay (BFP), a small glassy bead is biochem-

ically “glued” to a pressurized membrane capsule (e.g., red blood cell membrane)

that is held by a pipette through a controlled amount of suction [41]. Different

negative pressures result in different membrane tension, so the probe stiffness can

be easily controlled (by the pressure) and forces on the order of 0.01–1,000 pN can

be generated. The bead itself is decorated at low surface density with molecules of

interest that are brought to contact to their cognate receptors, presented on another

cell. By forming contacts between the bead and the surface of the investigated cell,

specific bonds between ligands (presented on the bead) and receptor (presented on

the cell surface) are formed and then ruptured by moving the bead away from the

cell surface. In this way bonds’ strength and lifetimes can be accurately measured.

Forces and extensions are determined via optical microscopy by the amount of

deformation of the membrane transducer and the position of the glassy bead.

Typical resolution is <0.5 pN and <5 nm [41, 119].

Nanopore Techniques
Advantages: Capabilities to uniquely measure size and charge of molecules

Disadvantages: Method not fully developed
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Molecules pass through a nanometer-size pore in a membrane separating two

compartments to which a potential gradient is applied and transiently block the

ionic current flowing through the pore producing characteristic current blockage

fingerprints. These current patterns can be used to infer various molecular proper-

ties of the traversing molecules, such as size and charge. It was proposed that

natural or solid-state nanopores could be used to sequence long DNA strands,

because characteristic blockage currents are different for different nucleobases

[120–122]. Electric field-driven passage of charged biomacromolecules such as

nucleic acids or uncharged but terminally functionalized with a charged “leader”

(e.g., a short piece of DNA) molecules such as proteins can also be used to examine

mechanical properties of traversing molecules. This is because in most cases these

molecules are too bulky to pass through the pore and need to be stretched and

unfolded before they will fit into a narrow pore [123, 124]. For direct measurements

of the force applied to a molecule traversing a nanopore, its end can be attached

a bead whose position can be accurately monitored in a force measuring optical

trap [122].

Flow Techniques
Advantages: Readily simulate physiological flow conditions

Disadvantages: Requires careful calibration of flow to determine forces

Mechanical properties of biomacromolecules can also be studied by stretching

them in an elongational flow [125, 126]. This can be achieved either directly due to

the coupling of the flowing fluid with the molecule of interest or indirectly by

attaching one end of the molecule to a surface and the other to a micron-size bead

which then experiences a hydrodynamic force [127]. Also, to limit unwanted

interactions between the molecule and the surface during flow measurements,

a magnetic bead attached to the molecule of interest can be levitated magnetically

while subjected to a horizontal hydrodynamic force [128].

Particle Tether
Advantage: Simple, inexpensive system suitable to various microscopy methods.

The system does not involve external forces.

Disadvantage: Low spatial resolution

The tethered particle motion experiments (TPM) were first started by Jeff Gelles

and colleagues in the early 1990s to study transcription by single RNA polymerase

molecule [129, 130]. This method has been used to study DNA looping [131–142],

DNA transposition [143], promoter sequences bending [144], and site-specific

recombination [145, 146]. In a typical tethered particle experiment, a single poly-

mer molecule is tethered between the microscope coverslip surface and

a microsphere through specific binding [147]. Brownian motion of the bead is

restricted to a semispherical region by the tethered polymer molecule and can be

captured by an optical microscopy. Variance in travelling scope of the particle gives

information about change in the length of the tethered polymer. TPM has the

advantage of simple implementation, easy combination with optical and magnetic

tweezers, and straightforward data analysis methods. However, TPM has low time
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resolution caused by the time cost by the probe to explore the region limited by the

polymer tether [148]. Attempts to improve the accuracy of TPM include investi-

gation of the volume effects of the bead [149, 150], suppression of the Brownian

motion of the bead [151], simultaneous tracing of hundreds of single molecules by

biochip [152], and development of proper data analysis approaches to obtain

reliable kinetic parameters from TPM measurements [148, 153, 154].

A detailed comparison of these various single-molecule manipulation techniques
along with the description of their advantages and limitations can be found in
a number of review articles [155–159].

Applications

In its force measuring mode, AFM is typically used to stretch and relax DNA,

proteins, and sugars either in isolation or also on living cells [83, 86, 87, 160] to

study their elasticity, mechanical, unfolding, refolding, and binding behaviors. At

low forces (<20 pN) AFM force spectra capture the characteristic highly nonlinear

entropic elasticity of biomacromolecules. At higher forces various deviations from

the purely entropic elasticity are frequently observed [82]. These deviations are

indicative of structural and conformational transitions induced by force that on the

experimental time scale are either reversible or irreversible. For example, using

AFM-based SMFS the elasticity of individual titin molecules that govern the

passive elasticity of muscle was characterized in various force regimes [73]. It

was found that the entropic alignment of titin immunoglobulin and fibronectin-type

domains occurs at low stretching forces, and at higher forces, these domains

reversibly unfold providing an extra length to the muscle when needed [75]. In

addition AFM is frequently used to probe the strength of the interactions between

various biomolecules including receptors and ligands pairs [43, 60, 161]. Optical

tweezers are frequently used to examine the elasticity of biopolymers at low forces,

and OT measurements can be set up to exploit the nanomechanical properties of

biomacromolecules (such as DNA) [96] to study the mechanochemical behaviors of

various enzymes that process these molecules (e.g., DNA and RNA polymerases)

[162]. OT measurements can also be used to follow near equilibrium folding/

unfolding behavior of proteins, either alone [163] or while interacting with ligands

[164]. Magnetic tweezers found many applications to study torsional elastic prop-

erties of DNA and to follow the work of special DNA enzymes that affect coiling

properties of DNA (such as gyrases) [165, 166]. BFP techniques were found

particularly suited for measuring receptor–ligand interactions on live cells

[167]. Nanopore techniques are used to study folding properties of biomacro-

molecules and to examine the interactions between various biomolecules, and

they are continuously improved for DNA sequencing applications [122, 123,

168]. Flow techniques are used for biopolymer elasticity measurements and

in conjunction with fluorescence video microscopy are being applied to

follow the interactions between various biomacromolecules (e.g., DNA–protein

interactions) [128].
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Atomic Force Microscopy (AFM)

AFM Instrumentation

The schematic of an AFM instrument is shown in Fig. 33.1.

The principle of the AFM is conceptually simple: a small cantilever is first

calibrated and then deflection of the cantilever during the stretching of an attached

molecule is measured to precisely determine forces (from one to thousands of

piconewtons) using Hooke’s law. Cantilever deflection is measured and recorded

by tracking voltage signal output from multi-segment photodiode detector

(quadrant detector module in most recent design). The final signal used to convert

to force recording is

V ¼ DVBT=S

where DVBT is the voltage difference between top and bottom area of the photodi-

ode and S is the voltage sum from both areas. V is usually multiplied by an

operational amplifier to improve the signal to noise ratio. The position of the sample

is accurately controlled by a piezo actuator via a feedback–control loop with

0.2–0.5 nm resolution. These piezo actuator stages are usually equipped with

Fig. 33.1 (a) Schematic of an AFM instrument and (b) closeup of the cell containing the

cantilever and probing the substrate. A laser probes the cantilever deflection which is detected

using the difference between the top and bottom of a quadrant photodetector. The cantilever is

suspended in a quartz cell over a substrate (clean glass or freshly evaporated gold) that has a drop

of solution with the molecule of interest. A piezoelectric stack on the bottom controls the 3D

movement of the substrate to contact the cantilever and then move away at constant force or

constant velocity. Nonspecific attachment will allow the molecule (red lines) to attach to the

cantilever and stretch the molecule of interest
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capacitive or strain-gauge position sensors. The sensor signal output from the piezo

controller is converted into distance using the voltage constant of the piezo,

Dz ¼ CDV

where C is the constant measured and given by piezo actuator factory specifica-

tions, Dz is the movement of the piezo, and DV is the sensor voltage signal output of

the piezo actuator.

Cantilever calibration is based on thermal noise method (one of dynamic deflec-

tion methods proposed by Hutter and Bechhoefer [169]). In this method, the

cantilever and the tip are treated together as a simple harmonic oscillator with

one degree of freedom. Thermal fluctuations are considered as the only motion of

the oscillator with the Hamiltonian

H ¼ p2

2m
þ 1

2
kcq

2:

According to the equipartition theorem,

<
1

2
kcq

2 > ¼ 1

2
kBT

where kB is the Boltzmann’s constant, kC is the spring constant of the oscillator, T is

the absolute temperature, and q is the displacement of the oscillator. Therefore, kC
can be obtained by measuring the mean-square spring displacement < q2 > due to

thermal fluctuations at room temperature. This measurement is performed in the

frequency domain by taking the power spectral density of the fluctuations of the

photodiode signal dV (Fig. 33.2 is a representative power spectrum).

Fig. 33.2 A typical power

spectral density curve of the

photodiode signal thermal

fluctuations. Frequencies are

shown in their natural

logarithm (dB) and signals are

displayed in Vrms.

Integration interval is

between the black lines
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The integration is performed according to Parseval’s equality

< dV2 > ¼

Zb

a

dV2 tð Þdt

Zb

a

dt

¼

Zb0
a,

FT2 dVð Þdf

ENBW

where FT(dV) is the Fourier transform of dV and ENBW is the equivalent noise

bandwidth of the spectrum. Integration of the power spectrum is usually done in an

interval close to the resonance frequency of the cantilever such as depicted in

Fig. 33.2.

To finally convert the photodiode voltage signal into force, a force spectrum

is acquired by moving the sample vertically using the piezo, while the position

of the piezo and resulting cantilever deflection are recorded simultaneously

(Fig. 33.3).

Then the slope of the deflection versus piezo position is

slope ¼ Dz=DV

Thus, the voltage signal from the photodiode, V, is interpreted to force by the

following formula

F ¼ kc∗V∗slope ¼ kBT

< dV2 > ∗slope2
∗V∗slope

where T is room temperature (usually 300 K).
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Fig. 33.3 Force spectrum.

Voltage difference DV and

piezo movement Dz used for

slope calculation are shown in

the graph
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Sample Preparation

The sample is prepared simply by depositing the molecule of interest in the relevant

substrate. Substrates commonly used for AFM single-molecule force spectroscopy

experiments are gold or glass. In the most basic experiment, molecules attach to the

surface and the tip nonspecifically. Since the attachment is nonspecific, the location

that themolecule absorbs to the tip and substrate is random. To circumvent the random

attachment, there have been methods developed to control attachment to the surface

and tip, like thiol chemistry [170], HaloTag7 immobilization [171], Strep-Tag immo-

bilization [172], and Ni–NTA functionalization [173]. In any kind of immobilization,

it is important to have a positive control to differentiate between single- and multi-

molecular AFM stretching experiments. Generally, only about 1 % of the data is

usable. For protein unfolding experiments, a positive control can be designed by

flanking the unknown protein of interest by previously characterized protein with

known properties so that their presence indicates the recording is of a single molecule

of interest (e.g., flanking unknown proteins by I27 domains of titin, which have a

characteristic unfolding force of�200 pN and a contour length increment of�28 nm).

Stock solutions containing biomacromolecule (i.e., DNA, protein, polysaccharide)

are usually diluted to 10–1,000 nM and incubated on the substrate for a period of time

ranging from a few minutes to overnight. Appropriate incubation time and substrate

choice are empirical and the ideal incubation case would allow the formation of

a monolayer of the molecule on the substrate. Usually proteins are incubated on gold

or functionalized glass for half an hour, DNAs are incubated on gold for more than

4 h, and polysaccharides are incubated on glass overnight. After incubation, the

samples are usually washed several times before used for AFM pulling experiments

to remove excess molecules that are not tethered to the surface of the substrates.

Experimental Procedure

AFM pulling experiments are carried out by gently moving the substrate relative to

the cantilever tip through voltage applied to the piezo. The piezo can either control

the height of the substrate relative to an immobilized cantilever or control the height

of the cantilever relative to an immobilized substrate. Here we describe the proce-

dure using nomenclature for the former method (as depicted in Fig. 33.1). There are

two modes of motion for each pulling cycle (Fig. 33.4). In the up mode, initially the

relax stretch stretch relax

UP mode down mode

Fig. 33.4 Upmode versus downmode. Red arrow indicates the moving direction of the substrate;

blue arrow indicates the process
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tip rests above the surface; the pulling measurement starts with the substrate

moving up first to bring into contact with the tip under a voltage ramp generated

by the computer and then descending to the original position. While in the

down mode, at first the tip presses slightly onto the substrate; the substrate

begins to move down to leave the tip; and after that, the substrate reverts to

the origin. The stretching traces in both modes are obtained when the substrate

departs from the tip; accordingly the relaxing traces are acquired in the other half of

the cycle.

Sometimes after the first cycle of pulling experiment, the cantilever tip still holds

the molecule, which can be judged by discrepancy of the stretching trace tail from

the horizontal line, since loss of the molecule would generate a horizontal baseline

at the end of the stretching trace. Then refolding experiments can be realized by

decreasing the pulling size to the desired length to stretch and relax the molecule for

another several cycles.

Force–extension curves obtained from the AFM pulling experiments are selected

first with several criteria and later analyzed with freely jointed chain (FJC) [73]

or worm-like chain (WLC) [174] model for polymer elasticity. The FJC

model considers the polymer chain segments (Kuhn segments) to be statistically

independent. Assume that the elastic response of the polymer to the applied

external force is purely entropic, then the extension < x > (instant end-to-end

distance of the polymer projected on the direction of the force) as a function of the

applied force is

< x > ¼ Lc coth
Flk
kBT

� kBT

Flk

� �

where Lc is the contour length of the molecule, lk is Kuhn segment length of

the polymer, T is the temperature, and kB is the Boltzmann’s constant. In

reality, molecules are often overstretched so that enthalpic contributions to the

extension originated from bending of covalent bond angles and elongation of

covalent bonds have to be taken into account. The revised version of the FJC

model is

< x > ¼ Lc coth
Flk
kBT

� kBT

Flk

� �
1þ F

ksegmentLc=N

� �

where ksegment is the so-called segment elasticity that includes all the enthalpic

effects and N is the number of segments contained in the polymer chain.

The WLC model treats the polymer as an irregularly curved filament. In this

model, the force versus extension < x > relation is given by

F < x >ð Þ ¼ kBT

lp

1

4
1�< x >

Lc

� �2

þ< x >

Lc
� 1

4

" #
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where Lc is the contour length of the molecule and lp is the persistent length of

the polymer which equals one-half of lk. In AFM studies, proteins are usually

described using the WLC model, while DNA and sugar are depicted by revised

FJC model.

The selection criteria for the force extension curve use a combination of heuris-

tics. Often a reference fingerprint pattern of the unfolding for a protein is used. The

fingerprint is obtained from a recording that has a number of force–extension

recordings with enough unfolding events of the flanking protein handles and the

correct initial contour length before the first unfolding. The theoretical value for

initial contour length which precedes the first unfolding peak of the reference

protein can be calculated out by the estimated length of the proteins when in their

native form.

Protein Mechanics

Protein Unfolding

The sequence of amino acids in a protein encodes the unique three-dimensional

structure which is attained through folding. Properly folded proteins are important for

their function. The determination of the folding pattern of proteins from the amino

acid sequence to the 3D structure is an important problem in biology. Proteins are

characterized by their 3D structure, their function, and also by their dynamic pro-

cesses such as unfolding and folding rates and progression to the native state. The

folding and unfolding processes are stochastic although not all conformational

transitions are equally possible as the energy landscape (the space of all conforma-

tions and associated free energies) is not flat. Each protein state has an energetic

contribution from configurational entropy and enthalpy from forming hydrogen

bonding or electrostatic networks. The states of the protein are also subject to

environmental factors such as temperature and concentration of denaturants and

mechanical forces, which all contribute to the energy landscape. Since it is currently

experimentally unfeasible to monitor all possible order parameters, the

multidimensional landscape of protein folding is often studied by looking at a single-

order parameter (e.g., N–C extension, GdmCl concentration, percent of native

contacts) which then describes a small part of the entire energy landscape. When

proteins are perturbed using force, such as using AFM-SMFS, the order parameter is

along the extension of protein, between the tethered ends (usually N–C extension).

The relevant parameters that characterize protein unfolding by AFM-SMFS are

the unfolding force, the contour length increment, the unfolding rate, the refolding

rate, and the distance to the transition state. These properties for a wide variety of

proteins are tabulated in Table 33.1 and each of these properties is discussed below,

in detail.

A protein, upon mechanical unfolding (Fig. 33.5) by AFM or other SMFS tool,

adopts an unstructured chain of amino acids that behave in a worm-like chain

manner in which their bonds tend to line up with the vector of the pulling direction
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with greater probability at higher force. Polyproteins will have several unfolding

events as each protein domain contributes an unfolding event. The contour length

distance between two unfolding events – as measured by the worm-like chain

model – and the 3D crystal structure can be used to determine total extension of

an amino acid at high force. For instance, the unfolding of a single I27 protein

domain produces a contour length increment of 28.5 nm before the next unfolding

event (Fig. 33.5). Before the rupturing of the single domain, it is assumed that the

polyproteins have completely aligned with the pulling vector in their native state so

that the extended chain distance is comprised of the increase in contour length

(28.5 nm) plus the distance between the N-terminus and C-terminus of the

protein in the native state, as measured by a NMR or X-ray crystal structure

model (4 nm for IgI27). Thus, the total length 28.5 nm + 4 nm ¼ 32.5 nm divided

by the number of amino acids, 89, gives the distance of a fully extended single

amino acid unit of IgI27, which is 3.65 Å. The mean length of a fully extended

amino acid unit determined from the corresponding proteins in Table 33.1 with

their corresponding PDB structures is 3.64 � 0.04 Å (mean � SE, n ¼ 27).

The consistency between these measurements then allows for the contour length

increment, DLc, to be an important indicator of the number of amino acids

unfolding within each unfolding event, if the protein structure is known, by

inverting the previous calculation.

The unfolding force, Fu, for proteins ranges from as low as 5 pN up to 500 pN. The

nonzero unfolding force is the result of proteins resisting unfolding due to an energy

barrier between the unfolded and folded state along the particular pathway. The

likelihood of unfolding increases exponentially with applied force because of thermal

activation of bond rupturing so that the unfolding force is logarithmically dependent

on the loading rate (cantilever stiffness x pulling velocity) [175]. The model derived

from this concept, called the Bell–Evans–Ritchie model, interprets the log-linear

dependence of the loading rate with force as an image of an energy barrier at a fixed

location along the pathway. The intrinsic unfolding rate, ku
0, can then be determined

by relating natural logarithm of the loading rate, r, to the most likely unfolding force,

Fu, with the formula

Fig. 33.5 Typical force–extension plot of the unfolding of a polyprotein consisting of seven I27

domains from the titin protein (also called I91 domains). Each peak corresponds to an unfolding event

of a single domain. The unfolding force for each domain is �200 pN. The dashed red line indicates

a family of worm-like chain fits with a contour length spacing of 28.5 nm between unfolding events

33 Nanomechanics of Single Biomacromolecules 1093



Fu rð Þ ¼ kbT

xb
ln

rxb

k0ukbT

� �
:

This model incorporates the parameter xb, which corresponds to the distance to

the fixed location along the pathway from the unfolding state and the top of the

barrier (the transition state). The experiments to determine these parameters are

often referred to as “dynamic force spectroscopy” which simply involves

performing pulling experiments at many loading rates (differing speeds and varying

strengths of cantilever spring constants) to get enough data to reliably fit the

parameters in the Bell–Evans–Ritchie model.

The intrinsic folding rate of proteins, kf
0, can be determined using a polyprotein

and a “double-pulse” protocol. In this experiment, a polyprotein is unfolded during

the first pulse and the number of unfolded modules determined. Then, after waiting

a time t, a second pulse is applied and the number of modules unfolded is counted.

The modules unfolded in the second pulse were able to refold during the time delay t.
Thus, the proportion of the refolded protein modules out of the total unfolded

modules in the first pulse can be plotted against the time delay t and fit to an

exponential function to determine the intrinsic folding rate for each module, kf
0.

The 3D structure and geometry of the pulling vectors also affects the unfolding

force of proteins [176, 177]. However, most proteins unfolded from the N-terminus

to the C-terminus have an unfolding force that correlates with contact density and

their specific fold type (Fig. 33.6).

It would be useful to determine the unfolding parameters of proteins from

pulling experiments through computer simulations and purely theoretic means

since many proteins already have a 3D structure available and experimental

setups can be time intensive and costly. The atomistic detail of molecular dynamic

simulations also provides insightful explanations for unfolding and folding

phenomena. The analogous computer simulation to the experimental force

spectroscopy experiment is steered molecular dynamics [255]. Steered molecular

Fig. 33.6 There is

a correlation between the

density of contacts and the

unfolding force as determined

by the Pearson correlation

coefficient (PCC). Alpha-

helical proteins exhibit the

lowest unfolding forces and

beta-folds exhibit higher

unfolding forces but are

geometry dependent
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dynamics consists of a solvated protein model (determined from X-ray crystal-

lography or NMR) that is fixed at one end and pulled at constant velocity or

constant force on the other. These simulations do not reach the quasi-equilibrium

conditions of the actual experiments because of limitations in computing time.

Thus, the unfolding of proteins in steered molecular dynamics simulations are

performed at speeds that are orders of magnitude faster. Table 33.2 lists the

simulated peak unfolding force determined from the steered molecular dynamic

simulations. Even though computer simulations are done at much higher speeds,

there is a good correlation between the experimental results of the unfolding

force and the theoretical unfolding force determined through simulation,

as shown in Fig. 33.7.

Protein–Ligand Complex Unfolding

Proteins bind to cofactors and other proteins which can have an effect on their

mechanical stability (as perturbed from the N to C extension) as tabulated in

Table 33.3. In all cases the unfolding force is increased upon binding with the

exception of titin kinase in which a new separate unfolding event occurred in the

presence of ligand. Dr. Hongbin Li and colleagues exploited the difference between

apo- and bound force spectra of proteins and measured the dissociation constant of

proteins with their ligands by counting the proportion of bound proteins based on

their unfolding force [30, 72, 73]. Surprisingly, the dissociation constants for

Table 33.2 Tabulated peak unfolding forces from steered molecular dynamic simulations with

explicit water and comparable force fields (OPLS-AA or CHARM22 or AMBER99). Unfolding

forces were compared at a pulling speed of 100 A/ns. Unfolding forces from simulations

performed at other were extrapolated to 100 A/ns using unfolding force peaks from at least

three different speeds fitted using log-linear regression (in accordance with Bell–Evans–Ritchie

model where unfolding force depends on the logarithm of speed)

Protein References Simulated peak unfolding force [pN]

Barnase [256] 1048a

Fibronectin III domain [257, 258] 1231a

NI6C [259] 245b

Scaffoldin c1C [224] 2253a

Scaffoldin c2A [224] 1420a

Scaffoldin c7A [224] 2236a

Spectrin [260] 457a

Titin I27 [224, 251, 261] 1460

Top7 [251] 1050

Ubiquitin (48-C) [253] 1400

Ubiquitin (N–C) [253] 2000

aExtrapolated to 100 A/ns using several speeds
b5A/ns

33 Nanomechanics of Single Biomacromolecules 1095



proteins and their antibodies are lower than when measured with traditional exper-

imental methods, while the dissociation constants for metal ions or small molecules

are comparable. The differences between the SMFS measured dissociation constant

and the bulk measured constant may be due to the mechanical perturbations

required in SMFS, but more research in this area is needed.

Fig. 33.7 Correlation

between unfolding forces as

performed by steered

molecular dynamics (y-axis;

from Table 33.2) and

experimentally determined by

atomic force microscopy

(x-axis from Table 33.1). The

correlation between the

datasets is 0.84 determined by

the Pearson correlation

coefficient

Table 33.3 Protein unfolding characteristics when bound to their respective ligands. The fold

increase indicates the increase in the mean unfolding force from the unfolding force tabulated in

Table 33.1. The dissociation constant, Kd, was measured from SMFS experiments for some

protein–ligand combinations and compared to the bulk measure dissociation constant (italics)

Protein References Ligand

Fu increase

[fold increase] Kd [M] (bulk Kd [M])

Calmodulin [187] 10 mM Mas peptide 1.4�
DHFR [191] 19 mM–1.2 mM MTX 2.9�
DHFR [191] 180 mM DHF 3.1�
DHFR [191] 210 mM NADPH 3.4�
GB1 4,51- > His [200] 4 mM Ni2+ 1.7�
GB1 6,53- > His [200, 262] 4 mM Ni2+ 2.0� 9.8 � 10�5

(2.6 � 10�4)

GB1 8,55- > His [200] 4 mM Ni2+ 1.4�
GB1 [263] hFc antibody 1.5� 2.2 � 10�6

(5� 10�10–5� 10�7)

Maltose-binding

protein (53–141)

[264] Maltose 1.1�

NuG2 [263] hFc antibody 2.0� 1.3 � 10�5

(5� 10�10–5� 10�7)

Staphylococcal

nuclease

[230] Deoxythymidine

3’,5’-bisphosphate

1.9�

Titin kinase [247] ATP N/Aa 3.5 � 10�4

(2.4 � 10�4)

aInstead of increasing unfolding force, an additional peak appears
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Protein–Ligand Unbinding

The model for measuring the energy barrier between the folded state and the

unfolded state of proteins can also be applied to the energy barrier between

the bound and unbound state of proteins with their ligand. In these experiments

the protein is conjugated to the tip and the ligand is conjugated to a surface.

Pulling experiments are then performed and all the unbinding forces are recorded

and tabulated in a histogram. The control experiment where there is no ligand

conjugated to the surface serves as a distribution of nonspecific binding forces.

Performing measurements at varying loading rates can determine the unbinding rate

using the Bell–Evans–Ritchie model discussed in Section IIIA which can be used to

extrapolate a dissociation constant for a protein and its ligand. The unbinding

forces for several protein–ligand complexes and their dissociation constants

(when known) are shown in Table 33.4. The unbinding forces range from

30 pN to 250 pN. The association constants (inverse of the dissociation constant)

are positively correlated with the binding force as shown in Fig. 33.8.

Protein-Based Nanomaterials

The properties of proteins lend themselves to be useful building blocks for

nanomaterials. Individual proteins can be selected based on mechanical strength

and elastic characteristics and then fused at the DNA level into polyproteins.

These polyproteins can then be linked via thiol chemistry or protein chemistry

into biomaterials. Hongbin Li and colleagues tested this idea by building a

protein-based elastomeric hydrogel ring constructed from a network of polyprotein

GB1 domains [283]. The properties of the material can then be easily tuned

by changing the composition of the polyproteins. Such materials are useful for

developing scaffolds for tissue engineering.

DNA

The behavior of DNA under force has been studied for over 30 years using a variety

of techniques. Single-molecule methods have allowed for precise characterization

of DNA under force which revealed mechanical transitions that occur during

unwinding and melting of the DNA helix [32, 284–292]. The origin of these

transitions is still under study. One of the first DNA molecules studied is the l
phage dsDNA molecule, composed of 48,502 bp. When force is exerted on both

ends of the molecule, it stretches and the force increases following the worm-like

chain model very closely at forces below 50 pN. The force–extension profile is salt

dependent, and measurements in 10 mM Na+ typically indicate a persistence length

of �60 nm and an elastic modulus of �800 pN as shown in Table 33.5.

The l phage DNA, along with other types of double-stranded DNA and single-

stranded DNA/RNA, has been shown to undergo overstretching transitions when
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stretched beyond 15 pN up to 1800 pN. The origin of these transitions is still

a subject of study. The transition forces and gain in extension (as determined by

normalized extensions) are shown in Table 33.6.

Sugars

Entropic Elasticity and Force-Induced Conformational
Transitions of Polysaccharides

AFM proved very valuable for characterizing the mechanical properties of many

polysaccharides and enabled observations of unique force-driven transitions in the

sugar rings [73, 83, 98, 308–310]. For AFM measurements, a polysaccharide sample

Table 33.4 Tabulated unbinding forces for protein–ligand rupture events from SMFS. SMFS can

also be used to determine the experimental dissociation constant, Kd, from single molecules

perturbed by force (in contrast to the dissociation constant measured from a bulk sample in italic)

Protein–ligand References

Unbinding

force [pN]

Kd [M]

(bulk Kd [M])

Alpha-synuclein/alpha-synuclein

(with spermidine)

[265] 60

Amyloid b-40 peptide/amyloid

b-40 peptide

[266] 100

Amyloid b-42 peptide/amyloid

b-42 peptide

[267] 41, 47

(with Cu2+)

Antifluorescein Fv

fragment/fluorescein

[268] 160 2.4 � 10�9

(1.1 � 10�9)

Antilysozyme Fv fragment/lysozyme [269] 55 (3.7 � 10�9)

Anti-Sendai antibody/Sendai

bacteriorhodopsin

[270] 126

Azurin/cytochrome c551 [271] 95 (1 � 10�5)

Biotin–avidin [272] 80 (1 � 10�15)

Cadherin/cadherin X-dimer [273, 274] 35 (1 � 10�4)

Cadherin/cadherin strand-swapped dimer [274] 55

ExpG protein/DNA target sequence [275] 75

HSA (human serum albumin)/anti-HSA [276] 244

Ni2+-NTA/histidine peptide [277] 38 (1.4 � 10�8)

p53/azurin [278] 75 6 � 10�6

(3.3 � 10�8)

P-selectin/ligand [279] 115 5.5 � 10�8

(6 � 10�8)

RNase inhibitor/angiogenin [280] 78,156 (5 � 10�7,

7 � 10�16)

Streptavidin/biotin [172] 253 (1 � 10�14)

Strep-Tactin/Strep-tag II [280, 281] 40–48,74 (1 � 10�6)

Titin Z1 and Z2 dimerization [282] 700
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is dissolved in water or another appropriate solvent at a wide range of concentrations

ranging from 0.001 % to 20 % (w/w). A small drop of the solution (e.g., 50–100 ml) is
placed on a clean substrate (glass, gold) and the molecules are allowed to adsorb to

the substrate for several hours. The nonattached or weakly attached molecules are

then removed from the surface by vigorous washing of the substrate. The molecules

that strongly adsorbed to the substrate can then be lifted from it by the AFM tip and

stretched in solution so their extension and tension can be accurately measured [90].

While some polysaccharides display the entropic elasticity that is typical of

many structurally simple polymers at all forces (e.g., cellulose [308, 311]), some

polysaccharides follow this behavior only at low forces, and at higher forces they

show marked deviations from the entropic elasticity (e.g., amylose, dextran, pectin

[83, 312]). These deviations are caused by force-induced conformational transitions

within the sugar rings (e.g., chair–boat transitions in a-D-glucopyranose [98]),

within the bonds connecting neighboring rings (e.g., bond flips in pustulan [313,

314]) or by force-induced separation of polysaccharide chains in multichain molec-

ular structures (e.g., xanthan [315, 316]). Generally, when sugar monomers are

connected by equatorial glycosidic linkages that lay in the plane of the sugar ring

Fig. 33.8 The unbinding

force at similar load rates for

proteins and their ligands

correlates with the bulk

measured association constant

(inverse of dissociation

constant)

Table 33.5 Basic properties of l phage DNA as studied by a variety of nanomolecular techniques

Method References

Ionic strength

[mM Na+]

Persistence

lengtha [nm]

Elastic

modulus [pN]

SMFS-laser tweezers [293–295] 9–10 53–67 452–1008

Magnetic tweezers [296] 10 53 869

AFM compression [297] N/A N/A 700

SMFS-AFM [298] N/A N/A 558

aThese values should be treated with caution as the exact value of the persistence length of dsDNA

is a matter of controversy, and the newest study [299] suggests that this value may be significantly

lower than the values shown in the table
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(as in cellulose), the elasticity of these polysaccharides is primarily entropic in

nature and force spectra are quite simple. When monomers are connected by axial

bonds (that are perpendicular to the plane of the sugar ring), the elasticity of those

polysaccharides frequently displays interesting features (deviations) from the entro-

pic elasticity that manifest themselves as pronounced force plateaus. Those plateaus

were interpreted as indicative of force-induced transitions of the sugar ring from a

low-energy conformation to a high-energy conformation that provides an increased

separation of the consecutive glycosidic oxygen atoms and thus increases the contour

length of the chain. Force bond rotations (flips) that occur over an energy barrier

(such as in 1,6 linked polysaccharides) typically produce linear relationships between

force and extension. Unwinding of helical structures (such as in xanthan) typically

produces a long plateau in the force extension data and is typically associated with

pronounced hysteresis between the stretching and relaxing part of the force–extension

spectrum that reports strand separation in multiple helices. Table 33.7 compiles most

of the known elasticity profiles (force spectrums) of various natural polysaccharides

measured by AFM, in solution, on isolated molecules. The elasticity profiles of

a number of polysaccharides measured directly on cell surfaces, from which they

protrude, may be found through the references in a recent review [83].

Table 33.6 Properties of nucleic acid polymers when perturbed by forces up to

1.8nN. Nomenclature: poly(dA) stands for a polymer of polydeoxyadenylic acid, or a single-

stranded DNA molecule composed only of adenines whereas poly(A) stands for a polymer of

polyadenylic acid, which consists of a single-stranded RNA molecule composed of adenines.

Similarly, poly(dGdC)poly(dCdG) stands for a double-stranded DNA composed of CG repeats.

Overstretching percent refers to the percent fraction of the plateau relative to the initial length

Nucleic acid References

Canonical

forma

1st

plateau

[pN]

Overstretching

[%]

2nd

plateau

[pN]

Overstretching

[%]

Poly(dA) [300, 301] B-helix 23 80 113 16

Poly(A) [302, 303] A-helix 24 80 - -

Poly(C) [303] A-helix 25 �50 - -

Poly(dT) [300] Unstructured - - - -

Poly(U) [303] Unstructured

dsDNA (e.g.,

lambda

phage DNA)

[96, 284,

286, 288,

289,

304–306]

B-helix 65–105 70 150–450 10–20

Poly(dGdC)

poly(dCdG)

[305, 306] B-helix 65–95 70 300–450 20

Poly(dG)

poly(dC)

[306] A-helix 70 70 - -

Poly(dA)

poly(dT)

[306] B’-helix 70 70

Poly(dAdT)

poly(dTdA)

[304, 305] D-helix 35 - - -

aSee reference [307] for specific characteristics of DNA helixes
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Outlook and Conclusion

The development of single-molecule manipulation techniques over the last 20 years

enabled direct measurements of the mechanical properties of individual biomacro-

molecules. The number of biopolymers tested is steadily increasing and many

fundamental observations and measurements were already repeated on the same

systems by independent groups and verified. The data about types of elasticity and

force-induced structural transitions obtained this way is invaluable for deciphering

molecular mechanisms supporting life processes and for using these biopolymers in

nanobiotechnology. Standardization of measurement conditions, automation of

measurements [328] and analysis, and improvements of the accuracy of force

sensors calibration [329] will continue to increase the quantity and reliability of

single-molecule characterization measurements.
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