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Abstract. Inspired by the well-known Dipole and Yagi antennae we introduce
and study a new theoretical model of directional antennae that we call double
antennae. Given a set P of n sensors in the plane equipped with double antennae
of angle φ and with dipole-like and Yagi-like antenna propagation patterns, we
study the connectivity and stretch factor problems, namely finding the minimum
range such that double antennae of that range can be oriented so as to guarantee
strong connectivity or stretch factor of the resulting network. We introduce the
new concepts of (2,φ)-connectivity and φ-angular range rφ(P) and use it to char-
acterize the optimality of our algorithms. We prove that rφ(P) is a lower bound
on the range required for strong connectivity and show how to compute rφ(P)
in time polynomial in n. We give algorithms for orienting the antennae so as to
attain strong connectivity using optimal range when φ ≥ 2π/3, and algorithms
approximating the range for φ ≥ π/2. For φ < π/3, we show that the problem is
NP-complete to approximate within a factor

√
3. For φ ≥ π/2, we give an algo-

rithm to orient the antennae so that the resulting network has a stretch factor of at
most 4 compared to the underlying unit disk graph.

Keywords: Connectivity, Double Antenna, Range, Stretch Factor, Unit Disk
Graph.

1 Introduction

Directional antennae are versatile transceivers which are widely used in wireless com-
munication. With proper design they are known to improve overall energy consump-
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tion [12], enhance network capacity [9,15], improve topology control [8], and offer the
potential for mitigating various security threats [10], just to mention a few applications.
The motivation for our present study comes from the work in [2] which introduced the
network connectivity problem for directional sensors and provided several algorithms
for analyzing angle-range tradeoffs.

Dipole antennae (or dipoles, for short) are well-known basic antennae that are com-
monly used in radio communication. At their simplest, they consist of two straight
collinear conductors of equal length separated by a small gap. Moreover, the radiation
pattern for such antennae–indicating the strength of the signal in a given direction–in
the xy-plane is usually depicted by two equal size closed curves known as lobes. Fig-
ure 1 illustrates the variability of the strength of the signal depending on the direction
of the beam (see [14]). When the two lobes are not identical with the apex of one of
the two lobes being closer to the origin than the other, the resulting antenna radiation
pattern corresponds to a Yagi antenna, thus indicating that the antenna’s transmission
range is longer in one direction versus its opposite.

x

y

Fig. 1. Radiation pattern of a dipole antenna in the xy-plane

Motivated by the above, we introduce the following theoretical model of Dipole-like
and Yagi-like antennae which we refer to as double antennae. These two concepts are
captured in the following two geometric definitions.

Definition 1. A (φ,r)-double antenna is an antenna with beamwidth or angle φ and
radius r which can send and receive from either of the two sectors called beams depicted
in Figure 2.

r r

φφ

Fig. 2. Double antenna with beamwidth φ and range r

Definition 2. More generally, a (φ,r1,r2)-double antenna is a double antenna with the
range of one beam equal to r1 and the range of the opposite beam r2.
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Clearly, a (φ,r1,r1)-double antenna is also a (φ,min{r1,r2})-double antenna. Unless
otherwise specified, in this paper, a double antenna refers to a (φ,r)-double antenna.

In this paper we are interested in the following two antenna orientation problems:

Problem 1 (Connectivity Problem with Double Antennae). Given a set P of n sensors
in the plane each equipped with one double antenna with beamwidth φ ≤ π, determine
the minimum antenna range, denoted by r̂φ(P), so that there exists an orientation of the
antennae that induces a strongly connected transmission graph.

It is worth noting that for a sufficiently small angle φ, the problem is equivalent to the
well-known bottleneck traveling salesman problem (BTSP) or Hamiltonian cycle that
minimizes the longest edge. Therefore, a trivial upper-bound on the antenna range for
φ ≤ π of three times the optimal range can be computed by finding a Hamiltonian cycle
with edge length bounded by three times the longest edge of the MST [3] [Problem
C35.2-4] since the longest edge of the MST is also a lower bound for the orientation
problem for any angle φ. However, for the BTSP a better analysis given in [13] shows
that a 2-approximation can be obtained in polynomial time. Essentially, they proved
that the lower bound for the BTSP is at least the longest edge of the 2-connected graph
G that minimizes the longest edge. Thus, the 2-approximation is obtained easily since
the square of any 2-connected graph is Hamiltonian [7].

Closely related to the orientation problem for attaining connectivity is the orientation
problem to achieve constant stretch factor:

Problem 2 (Stretch Factor Problem with Double Antennae). Given a set P of n sensors
in the plane each equipped with one double antenna with beamwidth φ ≤ π, determine
the minimum antenna range so that there exists an orientation of the antennae that in-
duces a c-directional spanner, where c is a constant.

1.1 Notation

We denote the Euclidean distance between points u and v by with d(u,v). Let UDG(P;r)
denote the geometric graph (or straight line graph) such that P is the set of vertices and
an edge {u,v} exists if and only if d(u,v) ≤ r. If r is normalized to be equal to 1 we
simply denote the graph by UDG(P). Throughout this paper the acronym UDG stands
for Unit Disk Graph and the acronym MST for Euclidean Minimum Spanning Tree. Let
NG(u) denote the set of neighbors of u.

Throughout this paper we assume that points are in general position, i.e., there do not
exist three points that are collinear. It is well-known that the vertices of any MST have
degree at most six since the angle that a vertex forms with two consecutive neighbors is
at least π/3. However, when a vertex forms an angle of π/3 with every two consecutive
neighbors, implies that at least three points are collinear. Hence, we assume that the
max degree of the MST is five.

1.2 Related Work

The antenna orientation problem has been studied extensively since the problem was in-
troduced by Caragianis et al [2]. for the single-directional antenna model. They proved
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that the connectivity problem for a single antenna (per sensor) is NP-complete with
beamwidth less than 2π/3 and gave an upper-bound on the range for a beamwidth
greater than π which is tight when the angle is at least 8π/5. In [6], the authors studied
the connectivity problem when each sensor has k antennae. They proposed an algorithm
for orienting the antennae so as to obtain a strongly connected graph with out-degree
bounded by k and longest edge bounded by 2sin( π

k+1 ) times the optimal length required
to attain connectivity. A useful survey of the connectivity problem is presented in [11].

In all the previous results, the lower bound on the antenna range was based on the
longest edge of the MST. In this paper we will introduce the new concept of (2,φ)-
connectivity for a given angle φ so as to characterize the optimal lower bound required
for connectivity.

The stretch factor problem for a single-directional antenna was studied for the first
time in [4] for the particular cases of angles π/2 and 2π/3. They proved that a range of
7 and 5 is always sufficient to create a 6-directional spanner and a 5-directional spanner
(i.e., with stretch-factor 6 and 5), respectively. A more comprenhensive result is given
in [1] where the authors gave an upper bound for all angles.

1.3 Results of the Paper

We study the antenna orientation problems for connectivity and stretch-factor in the
double antenna model. In Section 2 we introduce the new concepts of (2,φ)-connectivity
and φ-angular range rφ(P) so as to characterize the optimality of our algorithms. Fur-
thermore, we prove that rφ(P) is the lower bound for the connectivity problem and show
how to compute rφ(P) in polynomial time. We prove tight bounds on the optimal an-
gle necessary to cover all neighbours of a node in a MST in Section 3. Our results for
the connectivity problem, including an NP-completeness proof when the beamwidth
φ < π/3− ε and an optimal algorithm for the case φ > 2π/3 are presented in Section 4.
In Section 5 we give a linear time algorithm for the stretch factor problem that orients
the antennae of beamwidth at least π/2 so as to obtain a 4-directional spanner. Finally,
we conclude in Section 6 and present some open problems. Our main results, complex-
ities, and resulting angle/range tradeoffs for n sensors in the plane are summarized in
Table 1.

2 Lower Bounds

In this section we characterize the lower bounds for the orientation problem for connec-
tivity with double antennae. Consider an antenna orientation for a given antenna beam
width φ and optimal range r̂φ(P) on a set of points P that induces a strongly connected
graph on P. Given u ∈ P, let v ∈ P be a point not in one of the beams of u’s antenna
such that d(u,v)≤ r̂φ(P). The main observation is that a path between u and v must ex-
ist such that each edge in the path is of length at most r̂φ(P). This implies that the unit
disk graph UDG(P; r̂φ(P))\ {{u,v}} is connected. We use this observation to obtain a
lower bound on r̂φ(P).
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Table 1. Results for the double antenna connectivity and stretch-factor problems on n sensors in
the plane and for antennae of beam width φ

Double Antenna Angle Approximation Ratio Complexity Stretch Factor
2π
3 ≤ φ < π 1 O(n2) -

π
2 ≤ φ ≤ 2π

3

√
3 O(n logn) -

π
2 ≤ φ < π 4sin( π

4 + φ
2 ) O(n) 4

0 ≤ φ < π
2 3 O(n logn) -

φ < π
3 − ε

√
3− ε NP-Complete -

First we define a double antenna orientation “relative to” a given angle γ. Let γ be a
given angle oriented with its right edge (in counterclockwise direction) on the axis as
depicted in Figure 3; u(φ;γ) denotes the orientation of the double antenna of beamwidth
φ at u starting from the right edge (in counterclockwise direction) of γ (see Figure 3).
Given the graph UDG(P;r), and an orientation γ, we define Eφ(P,r,u,γ) as the subset
of edges incident to u which lie outside the two beams of u(φ;γ) (see Figure 3).

φ

φ

γ

r

u

v1

v2

Fig. 3. u(φ;γ) denotes the double antenna with beam-width φ and orientation relative to γ. The
edges {u,v1} and {u,v2} are in Eφ(P,r,u,γ).

Definition 3 (Set of Edges Eφ(P,r,u).). Let Eφ(P,r,u) denote any set E(P,r,u,γ), for
0 ≤ γ ≤ π, such that the graph UDG(P;r) \E(P,r,u,γ) attains the minimum possible
number of connected components.

The following definition introduces the concept of (2,φ)-connectivity of a UDG.

Definition 4 ((2,φ)-connectivity.). Let P be a set of points in the plane. We say that
for a given radius r, the graph UDG(P;r) is (2,φ)-connected if for any vertex u ∈ P,
UDG(P;r)\Eφ(P,r,u) is connected.

Observe that when φ is sufficiently small so that each antenna can only cover one vertex
in its beams, the concept of (2,φ)-connectivity is equivalent to the well-known concept
of 2-connectivity.
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Definition 5 (φ-angular radius.). We define the φ-angular radius as the minimum ra-
dius, denoted by rφ(P), such that UDG(P;rφ(P)) is (2,φ)−connected.

Now we will prove that the φ-angular radius is a lower bound for the orientation problem
with double antennae. Due to space constraints the proof is omitted.

Theorem 1. For any set P of points, rφ(P)≤ r̂φ(P).

The following theorem gives a simple algorithm to compute rφ(P) in polynomial time.

Theorem 2. Given a set P of n points in the plane in general position and an angle
φ ≥ 0, there is an algorithm that computes rφ(P) in O(n2) time.

Proof. Let T be an MST on P and let r be the length of the longest edge in T . Let S ⊆ P
be such that for each vertex u∈ S the graph T \Eφ(P,r,u) is not connected. For u∈ S, let
rφ(P,u) be the minimum range such that UDG(P;rφ(P,u))\Eφ(P,rφ(P,u)) is connected.
Clearly, rφ(P) = maxu∈S(rφ(P,u)). We will determine rφ(P,u) independently for every
vertex u ∈ S.

Consider a vertex u ∈ S and let G = T . We add to G the shortest edge {v,w} that
connects two distinct components of G \Eφ(P,r,u). Update r to be the longest edge in
G, and repeat the above procedure until G \Eφ(P,r,u) is connected. Since the removal
of the longest edge of G will disconnect the graph G \Eφ(P,r,u), it follows that rφ(u)
equals the length of the longest edge in G.

It remains to analyze the complexity of the algorithm. Let u0,u1, ...,udG(u) be the
neighbors of u. To find Eφ(P,r,u) we check for each neighbor ui of u which orientation
G\Eφ(P,r,u,∠(uiuu0)) leaves the minimum number of components. We will show that
the degree of u never exceeds five. Since T is an MST the max degree of u is five.
However, new edges can increase the degree of u. Assume that {u,v} is added to G.
Since {u,v} is the smallest edge that connects two distinct components of G\Eφ(P,r,u)
the angle that {u,v} forms with the neighbors of u is at least π/3. Therefore, the max
degree of u is bounded by five since P is in general position.

Next we show that the algorithm can be implemented in O(n2) time. First consider
the Delaunay Triangulation on P and sort the edges in a list L. Such a construction
takes O(n log(n)) time [5]. Further, L can be computed in O(n log(n)) time since the
number of edges is linear on the number of vertices. It is well-known that the Grabriel
Graph on P is a subgraph of the Delaunay Triangulation on P, i.e., each edge {v,w} ∈ L,
D(v;d(v,w))∩D(w;d(w,v)) = /0 (where D(x;r) denotes the open disk centered at x with
radius r). Therefore, for a given u we can compute the shortest edge {u,v} connecting
two components in G \ Eφ(P,r,u) in O(n) time since {u,v} ∈ L ∪ Gk(NG(u)) where
Gk(NG(u)) represents the complete graph of NG(u) and |NG(u)| ≤ 5. The theorem fol-
lows, since each vertex has at most 5 connected components and |S| ≤ |P|.

3 Covering Neighbors in MST with Double Antennae

Given an MST of a set of points P and a vertex u ∈ V of degree k ≤ 5 we will charac-
terize the beamwidth required by an antenna at u to cover all the neighbors of u. Recall
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that the MST on the set of points has maximum degree 5 and the angle between any two
adjacent edges is at least π/3. Let u0,u1, ...,uk−1 be the neighbors of u in G with cor-
responding angles αi = ∠(uiuui+1) in counterclockwise order, where k ≤ 5. We study
separately the cases k = 5,4,3,2 and in each case, we give the value of α, the mini-
mum beamwidth of double antenna that is required to ensure that all neighbours of u
fall within one of the beams of the antenna. Clearly any beamwdith φ ≥ α is always
sufficient to cover all neighbours. Due to space constraints the proofs of Lemmas 2,3
and 4 are omitted.

Lemma 1. Let k = 5 and assume wlog that α0+α1 is the smallest sum of two consecu-
tive angles. Then, a double antenna of beamwidth α = α0 +α1 is always sufficient and
necessary to cover all five neighbors in the MST. Furthermore, α ∈ [ 2π

3 , 4π
5 ].

Proof. Place the antenna as depicted in Figure 4 so that u0 is on the edge of the an-
tenna and u1,u2 are within the beam of the antenna. Since α0,α1 ≥ π/3, we have
α ≥ 2π/3. Therefore, the “dead” sectors of the antenna are of angle at most π/3. Since
α2,α4 ≥ π/3, neither u3 nor u4 can lie within the dead sectors of the antenna. Since
three neighbors of u must be in the same side of the antenna beam, α is always neces-
sary. Observe that 2π

3 ≤ α ≤ 4π
5 since all the angles are at least π/3.

u0

u1
u2

u3 u4

π − φ
π − φ

φ

φ

Fig. 4. Double antenna at u of degree 5

Lemma 2. Let k = 4. Assume wlog that α0 is the smallest angle and that α1 ≤ α3.
Then a double antenna of beamwidth α is always necessary and sufficient to cover all
four neighbours in the MST, where α = π−α1 if α3 ≥ π−α0 and α = min(α2,π−α0)
otherwise. Furthermore, α ∈ [π

3 ,
2π
3 ].

Lemma 3. Let k = 3. Assume wlog that α0 ≤ α1 ≤ α2. Then a double antenna of
beamwidth α is always sufficient and necessary to cover the three neighbors in the
MST, where α = max{α0,π−α1}. Furthermore, α ≤ 2π

3 .

Lemma 4. Let k = 2. Assume wlog that α0 ≤ α1. Then a double antenna of beamwidth
α is always sufficient and necessary to cover the two neighbors in the MST, where
α = min{α0,π−α0}. Furthermore, α ≤ π

2 .
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4 Connectivity with Optimal Range

In this section we first show that the double antenna orientation problem is NP-complete
for antenna angles less than π

3 . In contrast, we will show that when the antenna
beamwidth is sufficiently large, we can solve the orientation problem with optimal
range. Due to space constraints the proofs of Theorems 3 and 4 are omitted.

Theorem 3. For n sensors in the plane and φ < π
3 , it is NP-complete to approximate

the optimal range r̂φ(P) to within a multiplicative factor of
√

3 .

Now we will show that when the antenna beamwidth is sufficiently large it is trivial to
achieve optimal range as the next theorem shows.

Theorem 4. Given an angle φ ≥ 4π
5 , there is an algorithm which for any set P of points

in the plane in general position, orients double antennae of beamwidth φ using optimal
antenna range so that the resulting graph is strongly connected.

Next we will show how to achieve non-trivial optimal range with the use of the (2,φ)-
connectivity and φ-angular radius as a lower bound for an antenna beamwidth of at least
2π
3 .

Theorem 5. Given an angle φ ≥ 2π
3 , there is an algorithm which for any set P of points

in the plane in general position, orients double antennae of beamwidth φ using opti-
mal antenna range so that the resulting graph is strongly connected. Furthermore, the
algorithm can be implemented to run in O(n2) time.

Proof. Let T be an Euclidean MST on P. Consider the set S of vertices u∈ T such that a
double antenna of beamwidth φ cannot cover all the neighbors of u. From Lemmas 1-4,
S consists only of vertices of degree five in T such that the angle that is formed with
any three consecutive neighbors is greater than φ.

We will construct a strongly connected digraph such that every vertex in S has out-
degree four and the angle that each vertex forms with two consecutive out-going edges
is at least π/3. Furthermore, we will show that no new vertices of out-degree five will
appear. Finally, all edges in the digraph will have length at most rφ(P). Thus, the theo-
rem follows from Lemmas 1-4 and Theorem 1.

Let
−→
G be the strongly connected directed graph obtained from T by replacing every

edge in T by two opposing directed edges. Let G be the undirected graph of
−→
G . We will

include each vertex u ∈ S in at least one cycle as follows:
Let u be any vertex in S and let {v,w} be the shortest edge connecting two compo-

nents of G\{u}. Clearly, d(v,w)≤ rφ(P,u) since at least one neighbor of u is not within
its antenna beam of angle φ. Add {v,w} to G to form a cycle Cu; see Figure 5. We “ori-

ent” Cu in
−→
G along any one direction (all the arcs in Cu in the opposite direction are

removed). This process does not break the strong connectivity of
−→
G . Finally, if |Cu|> 3,

we remove from S every vertex that is in Cu. However, if |Cu| = 3, we only remove u
from S. We repeat this process until S is empty.

Let C be the set of cycles that are formed with the addition to T of the new edges. We
will prove that after adding each new cycle Cu ∈ C of hop-length greater than 3 the angle
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u
v

w

Fig. 5. The shortest edge {v,w} connecting two components of G\{u} forms a cycle

that any two points form with a common neighbor in G is at least π/3. Indeed, since
Cu is formed with the smallest edge {v,w} connecting two components, D(v;d(v,w))∩
D(w;d(v,w)) is empty. Therefore, the min angle that {v,w} forms with the neighbors
of v and w is at least π/3. Furthermore, since points are in general position the degree
of the vertices in Cu is at most five. Therefore, the out-degree in

−→
G of every vertex in

Cu is at most four. (At least one in-going edge in
−→
G .)

Now we consider a cycle Cu of hop-length three. Let {v,w} be the shortest edge con-
necting two components of G\ {u}. Observe that both D(u;d(u,v))∩D(v;d(u,v)) and
D(u;d(u,w)) ∩ D(w;d(u,w)) are empty. However, D(v;d(v,w)) ∩ D(w;d(v,w)) con-
tains u. Therefore, the min angle that each edge incident to u,v and w forms with an
edge of the triangle uvw is at least π/3. Thus, we reduce the out-degree of u to at most
four since the points are in general position. Moreover, the out-degree of v and w re-
mains the same. However, since v and w are not removed from S when Cu is created,
they are included in distinct cycles provided that they are in S.

As in the proof of Theorem 2, we can show that the construction of
−→
G can be im-

plemented in O(n2) time. Indeed, the edges to be added are always edges of either the
Delaunay Triangulation on P or the closest neighbors of each vertex. Thus, the addition
of each edge takes time O(n). The theorem follows since |S|= O(n) and the orientation
of the antennae takes time O(1).

For the next theorem we use the main result of [6][Theorem 1]. For convenience we
state this theorem without proof.

Theorem 6 (k-Antennae Orientation [6].). Consider a set S of n sensors in the plane
and suppose each sensor has k, 1 ≤ k ≤ 5, directional antennae with any angle φ ≥ 0.
Then the antennae can be oriented at each sensor so that the resulting spanning graph
is strongly connected and the range of each antenna is at most 2sin

( π
k+1

)
times the

optimal. Moreover, given a MST on the set of points the spanner can be constructed
with additional O(n) overhead.

The following theorem shows that for any angle φ ≥ π/2 we can always construct a
strongly connected transmission network with longest edge bounded by

√
3 times the

longest edge of the MST.

Theorem 7. There is an algorithm which for any set of n points in the plane, orients
double antennae of beamwidth π

2 ≤ φ ≤ 2π
3 using range bounded by

√
3 times the opti-

mal range so that the resulting graph is strongly connected.
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Proof. Let
−→
G be the strongly connected digraph with out-degree 2 (i.e., using k = 2

antennae) and range bounded by
√

3 obtained from Theorem 6. Since the out-degree of−→
G is bounded by two, from Lemma 4 a double antenna with angle at most π/2 covers
the two out-going edges. This completes the proof of the theorem.

5 Stretch Factor

In this section, we consider the stretch factor problem, that is, finding an orientation of
double antennae of minimum possible range that induces a c-directional spanner, for
some constant c. That is, given a set P of points in the plane such that UDG(P,1) is
connected, we wish to replace omnidirectional antennae of range 1 with double anten-
nae of angle φ and range r such that for any edge in UDG(P,1), there is a path in the
resulting strongly connected digraph of length at most c for some constant c. The basic
idea is to partition the set of points into triples such that in each triple, there is at most
one pair of vertices that is not connected in the UDG. For each triple {A,B,C} we need
to determine the antenna range r required so that there is an orientation of three direc-
tional antennae placed at A,B,C, respectively, so that every point within distance two
of at least one of the points A,B,C is also within “directional antenna range” of radius
r from at least one of these three points.

First we prove a basic lemma concerning double antenna orientation of three points
A,B,C in the plane. The antenna orientation will depend on the largest angle, say α =
∠(BAC), that the three points form.

Lemma 5. Consider three points A,B,C in the plane forming a triangle. Three identi-
cal double antennae of beamwidth φ ≥ π/2 can be oriented so as to cover the whole
plane.

Proof. We consider two cases depending on the size of α.

A

B C

(a) α ≤ φ.

A B

C

(b) α > φ.

Fig. 6. Orientation of three double antennae

Case α ≤ φ. Without loss of generality asume that BC is horizontal and A is above BC.
Orient the antennae as depicted in Figure 6a so that the antenna covers the triangle and
the wedge of the antennae at B and C are on BC and CA respectively. Observe that the
antennae cover the “whole plane” since each angle of the triangle is always covered.
Case α > φ. Without loss of generality asume that AB is the second smallest edge in
the triangle, AB is horizontal and C is above AB. Orient the antennae as depicted in



Strong Connectivity of Sensor Networks with Double Antennae 109

Figure 6b so that the one antenna wedge of C is vertical and the wedge of the antennae
at A and B are on AB. To prove that the orientation covers “the whole plane”, observe
that the antennae at A and B only leave a black (i.e., uncovered) corridor in the lower
half-plane determined by AB. However, the antenna at C covers the black corridor. This
completes the proof of the lemma.

We now consider double antennae of finite range. The following results hold for double
antennae of range r, but can also be shown to hold for the weaker model of (φ,r,2)-
double antennae. The proof of the following lemma is omitted due to space constraints.

Lemma 6. Let A,B,C be three points such that d(A,B) ≤ 1 and d(A,C) ≤ 1. Assume
π
2 ≤ φ ≤ π. We can orient three (φ,r,2)-double antennae (Yagi-like antennae) of beam
width φ at A,B,C so that every point at distance at most two from one of these points is

covered by one of the three antennae, where r ≤ 4sin
(

π
4 +

φ
2

)
.

Theorem 8. Given π
2 ≤ φ < π, there is an algorithm which for any connected UDG(P)

on a set P of points in the plane, orients
(

φ,4sin
(

π
4 +

φ
2

)
,2
)

-double antennae so that

the resulting graph has stretch factor four. Furthermore, it can be done in linear time.

Proof. Let T be any partition of the UDG with the maximal number of triples such that
every triangle has two edges of length at most one. It is easy to see that such a partition
can be constructed in linear time. For each triangle T in T , we orient the antennae at

T as shown in Lemma 5 with range 4sin
(

π
4 +

φ
2

)
and the antenna of each remaining

sensor toward its nearest triangle. Observe that the closest triangle is at distance at most
two. Let

−→
G be the strongly connected network induced by the antennae. We will prove

that for each edge {u,v}∈UDG(P), there is a directed path P from u to v and a directed
path P′ from v to u of hop-length no more than 4 hops. Let T and T ′ be in two different
triangles in the partition T .

– u,v ∈ T . Then |P| ≤ 2 and |P′| ≤ 2.
– u ∈ T and v ∈ T ′. Since d(u,v)≤ 1, v is in the coverage area of T . Therefore, u can

reach v in at most three hops and |P| ≤ 3. A similar argument shows that |P′| ≤ 3.
– At least one of u or v is not in any triangle of T . Assume without loss of generality

that u is not in a triangle. Observe that there exists a triangle T at distance at most
two from u. Otherwise, T is not maximal. Therefore, u can reach v through T in at
most four hops, i.e., |P| ≤ 4. Similarly, we can prove that |P′| ≤ 4.

This completes the proof of the theorem.

6 Conclusion

In this paper we considered algorithms for orienting antennae with Dipole-like and
Yagi-like antenna propagation patterns so as to attain optimal connectivity and stretch
factor of the resulting directed network. It would be interesting to improve the bound
in our connectivity results for the range [π/3,π/2], and to prove better bounds for the
stretch factor problem either in terms of range or in terms of stretch factor.
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