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Abstract. This paper addresses the following 2-player problem. Alice
(resp., Bob) receives a boolean x (resp., y) as input, and must return a
boolean a (resp., b) as output. A game between Alice and Bob is defined
by a pair (δ, f) of boolean functions. The objective of Alice and Bob
playing game (δ, f) is, for every inputs x and y, to output values a and
b, respectively, satisfying δ(a, b) = f(x, y), in absence of any communi-
cation between the two players.It is known that, for xor-games, that is,
games equivalent, up to individual reversible transformations, to a game
(δ, f) with δ(a, b) = a ⊕ b, the ability for the players to use entangled
quantum bits (qbits) helps: there exist a distributed protocol for the
chsh game, using quantum correlations, for which the probability that
the two players produce a successful output is higher than the maximum
probability of success of any classical distributed protocol for that game,
even when using shared randomness.

In this paper, we show that, apart from xor-games, quantum corre-
lations does not help, in the sense that, for every such game, there exists
a classical protocol (using shared randomness) whose probability of suc-
cess is at least as large as the one of any protocol using quantum correla-
tions. This result holds for both worst case and average case analysis. It
is achieved by considering a model stronger than quantum correlations,
the non-signaling model, for which we show that, if the game is not an
xor-game, then shared randomness is a sufficient resource for the design
of optimal protocols. These results provide an invitation to revisit the
theory of distributed checking, a.k.a. distributed verification. Indeed, the
literature dealing with this theory is mostly focusing on decision func-
tions δ equivalent to the and-operator. This paper demonstrates that
such a decision function may not well be suited for taking benefit of the
computational power of quantum correlations.

1 Introduction

1.1 Context and Objective

This paper addresses the following 2-player problem. Alice (resp., Bob) receives
a boolean x (resp., y) as input, and must return a boolean a (resp., b) as output.

� Both authors are supported by the ANR projects DISPLEXITY and PROSE, and
by the Interdisciplinary project “Algorithmique distribuée quantique” of University
Paris Diderot. Additional support from the INRIA project GANG.
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A game between Alice and Bob is defined by a pair (δ, f) of boolean functions.
The objective of Alice and Bob playing game (δ, f) is, for every inputs x and y,
to output values a and b satisfying

δ(a, b) = f(x, y)

in absence of any communication between the two players. Obviously, the
game is trivial whenever there exist two boolean functions α and β such that
δ(α(x), β(y)) = f(x, y) for every pair (x, y) ∈ {0, 1}2. Indeed, for such games,
there exists a deterministic distributed protocol solving the game, with Alice re-
turning α(x) on input x, and Bob returning β(y) on input y. Non-trivial games
may still be solved, but only under some probabilistic guarantees. A game (δ, f)
is said to be solvable with probability p if there exists a randomized distributed
protocol such that Alice outputs a, and Bob outputs b, with

Pr(δ(a, b) = f(x, y)) ≥ p (1)

for every input pair (x, y) ∈ {0, 1}2.
Different sources of randomness can then be considered. Classical1 sources of

randomness include the case where each of the two players are provided with
individual independent sources of random bits. It also include shared randomness
where, in addition to individual independent sources of random bits, the two
players have access to a common source of random bits. Shared randomness
enables to produce outputs satisfying

Pr(a, b|x, y) =
∑

λ∈Ω

Pr(a|x, λ) · Pr(b|y, λ) · Pr(λ) (2)

where the random variable λ is drawn from some probability space Ω, and
Pr(a, b|x, y) denotes the probability that Alice outputs a and Bob outputs b,
given the fact that Alice receives x as input, and Bob receives y as input. It is
known [3] that correlations on quantum entangled states enable to derive pro-
tocols whose output distribution cannot be modeled as Eq. 2. One evidence of
this fact is the chsh game [6]:

a⊕ b = x ∧ y

where ⊕ denotes the exclusive-or operator. chsh can be solved with probability
cos2(π/8) > 3

4 with a quantum protocol [5], while every protocol using classical
shared randomness cannot solve chsh with probability more than 3

4 . One objec-
tive of this paper is to complete an exhaustive study of 2-player games in order
to identify for which games quantum correlations help.

In fact, the literature dealing with 2-player games (see, e.g., [1,2,8,15], and
the recent survey [4]) refers to objects called boxes. A box B is characterized by
the probabilities Pr(a, b|x, y) of outputting pair (a, b) given the input pair (x, y),
for all a, b, x, y ∈ {0, 1}. A box B is thus described by a set

{Pr(a, b|x, y), (x, y) ∈ {0, 1}2}
1 I.e., not using quantum effects.
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of four probability distributions, one for each pair (x, y) ∈ {0, 1}2. Hence, there
are infinitely many boxes, with different computational powers.

The absence of communication between the two players along with the as-
sumption of causality are captured by the class of non-signaling boxes. A box
B is non-signaling if and only if it satisfies that the marginal output distri-
butions for Alice and Bob depend only on their respective inputs. Formally, a
non-signaling box satisfies:

∀a, x, ∑b Pr(a, b|x, 0) =
∑

b Pr(a, b|x, 1),
and ∀b, y, ∑a Pr(a, b|0, y) =

∑
a Pr(a, b|1, y) (3)

Non-signaling boxes satisfying Eq. 2 are called local, where “locality” is referring
here to the physical science concept of local hidden variables [3,9]. Boxes that
do not satisfy Eq. 3 are signaling. Signaling boxes are not considered physically
realistic because they would imply instantaneous transmission of signals between
two distant entities.

The set of all boxes has a geometric interpretation [1], for it forms a 12-
dimensional convex polytope, including the (convex) polytope of non-signaling
boxes, which includes in turn the (convex) local polytope. Fig. 1 provides an ab-
stract representation of the non-signaling polytope. Each of the extremal vertices
of the non-signaling polytope is equivalent (up to individual reversible transfor-
mations on the inputs and outputs) to the pr box [5,15], that is described by
the distribution:

Pr(a, b|x, y) =
{

1
2 if a⊕ b = x ∧ y
0 otherwise.

Notice that the pr box satisfies Pr(a⊕b = x∧y) = 1 for every input pair x, y. So,
in particular, it solves the chsh game with probability 1. Each of the extremal
vertices of the local polytope can be implemented by a deterministic protocol:
they are equivalent to the identity box id described by Pr(a, b|x, y) = 1 if and
only if a = x and y = b. Every non-extremal box B is a linear combinations of
extremal boxes: B =

∑k
i=1 βiBi where Bi is an extremal box,

∑k
i=1 βi = 1, and

βi > 0 for every i = 1, . . . , k. On Fig. 1, the doted line represents the limit of the
class of boxes implementable by a quantum protocol. This latter class strictly
contains the local boxes, and is strictly included in the class of non-signaling
boxes, as witnessed by the chsh game.

Our objective can thus be reformulated as follows. Given a box implementable
by a quantum protocol, which games can be efficiently solved using this box?
Stated differently, given a game, what are the boxes implementable by a quantum
protocol that enable to solve that game with better guarantees than any local
boxes?

1.2 Our Results

We show that, for every 2-player game (δ, f) different from an xor-game, i.e.,
different from a game which is equal, up to individual reversible transformations,
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Fig. 1. Abstract representation of the non-signaling polytope

to a game (δ, f) with δ(a, b) = a⊕ b, every box solving (δ, f) with probabilistic
guarantee p greater that the probabilistic guarantee of any local box, is signaling.
As a corollary, quantum correlations do not help for solving games different from
xor-games. Moreover, this result holds even the worst-case guarantee stated in
Eq. 1 is replaced by the average-case guarantee

1

4

∑

x,y

Pr(δ(a, b) = f(x, y)) ≥ p .

The results in this paper open new perspectives in term of distributed checking,
a.k.a. distributed verification, which consists in having a set of, say, n processes
deciding whether their global state (defined as the union of the local state of every
individual process) satisfies some prescribed property, or not. The literature on
this latter topic (see, e.g., [7,10,11,13,14]) assumes a decision function δ which is
applied to the set of individual decisions produced by the processes. Typically,
each process should output a boolean bi, and the global interpretation of the
outputs is computed by

δ(b1, . . . , bn) =
n∧

i=1

bi ∈ {“yes”,“no”} .

The use of the and operator is motivated by the requirement that the global
state is valid if and only if all processes agree on some (local) validity condition.
If this condition is locally violated somewhere in the system, then at least one
process “rises an alarm” by outputting 0. However, recent advances in the theory
of distributed checking [12] demonstrate that using other decision functions δ
significantly increases the power of the “checker”, or “verifier”. Our results show
that some functions δ, in particular the classical and operator, do not enable to
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use the power of quantum computing efficiently, compared to shared randomness,
at least for 2-player games. In contrast, the exclusive-or operator is known to
offer high potential, as far as distributed quantum computing is concerned. In
particular, [2] proved that every boolean function f on n independent players can
be implemented by a circuit of pr boxes that output booleans bi, i = 1, . . . , n,
satisfying

n⊕

i=1

bi = f(x1, . . . , xn) .

The results in this paper give one more evidence of the impact of the decision
function δ on the ability of “deciding” boolean predicates f .

2 Equivalence Classes of Games

As introduced in the previous section, a game between Alice and Bob is described
by a pair (δ, f) of boolean functions on two variables. Playing the game means
for Alice (resp. Bob) to receive a boolean x (resp., y) as input, and to return a
boolean a (resp., b) as output such that δ(a, b) = f(x, y) without communication
between the two players. Examples of games are

eq : a ∧ b = x⊕ y and neq : a ∧ b = x⊕ y.

Another example of a game is :

amos : a ∧ b = x ∧ y.

In these three examples, one can view the games as Alice and Bob respectively
deciding whether the equality x = y holds, whether the non-equality x �= y
holds, and whether there is “at most one selected” player (a selected player has
input 1). Here, “deciding” means that if the answer is “yes” then both players
should output “yes”, while if the answer is “no” then at least one player should
output “no”. In fact, the three games eq, neq, and amos, are and-games.
However, all games are not of that type. In particular, we shall see that the
already mentioned chsh game

a⊕ b = x ∧ y

is not an and-game, for δ(a, b) �= a∧ b. More precisely, for any game (δ, f), both
functions δ and f can be rewritten as:

δ(a, b) = α1,1ab+α1,0a+α0,1b+α0,0 and f(x, y) = β1,1xy+β1,0x+β0,1y+β0,0

where the + symbol denotes the exclusive-or operator ⊕, the (omitted) · symbol
denotes the and-operator ∧, and all coefficients are in {0, 1}. We say that two
games (δ, f) and (δ′, f ′) are equivalent if

δ(a, b) = δ′(A,B) and f(x, y) = f ′(X,Y )
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where A (resp., B,X, Y ) is a degree-1 polynomial in a (resp., b, x, y) with coef-
ficients in {0, 1}. Whenever two games are equivalent, any protocol solving one
of the two games can be used for solving the other games, by performing indi-
vidual reversible transformations on the inputs and outputs, and the probability
of success for the two games will be identical. The same notion of equivalence
can be defined for boxes. Now we can state formally that the chsh game is not
equivalent to any of the three and-games: eq, neq, or amos. This is because,
as we will see further in the text, none of these latter games can be solved with
probability 1 by a non-signaling box (as opposed to the chsh game which can
be solved with probability 1 by the pr box). Instead, eq and neq are equivalent
games. Indeed, for neq, f(x, y) = x+ y, while, for eq, f(x, y) = x+ (y + 1).

Definition 1. A game (δ, f) is an xor-game if and only if it is equivalent to a
game (δ′, f ′) where δ′(a, b) = a⊕ b.

3 On the Power of Quantum Correlations

In this paper, we establish our main result, stating that correlations on quantum
entangled states do not help for solving 2-player games that are not equivalent
to an xor-games. In fact we establish a stronger result by showing that non-
signaling boxes do not help for those games, compared to local boxes.

Theorem 1. Let (δ, f) be a 2-player game that is not equivalent to any xor-
game. Let p be the largest success probability for (δ, f) over all local boxes. Then
every box solving (δ, f) with probabilistic guarantee > p is signaling.

Proof. The proof is straightforward for games (δ, f) where δ does not depend on
both a and b. Indeed, if δ is constant, say α, then the game is either impossible
(whenever ∃x, y : f(x, y) �= α) or trivial (whenever ∀x, y, f(x, y) = α). And if δ
is a single-variable function, say δ(a, b) = a + α for some α, then the game is
again either impossible, or trivial, or equivalent to a single-player game where
the player must compute a two-variable function f(x, y) knowing only one of
the variables. Games of that latter class are equivalent to either the game a = y
or the game b = x. Non-signaling boxes do not help for such games (the best
probability of success is 1

2 ). Therefore, we focus now on “true” 2-player games,
i.e., games (δ, f) where δ depends on both a and b.

First, we show that every true 2-player game (δ, f) which is not equivalent to
an xor-game is either deterministic, or equivalent to neq or amos. To establish
this claim, observe that if f is constant, or depends on only one of the the two
inputs, then the game (δ, f) can be solved with probability 1, by a deterministic
protocol. Indeed, assume, without loss of generality, that f depends only on
x. (The case f constant is straightforward). Then Alice and Bob can agree
beforehand on a fixed value b∗ for b. It follows that, knowing b∗, f ,and δ, Alice
can output a such that δ(a, b∗) = f(x).

We can now come to the interesting case, that is, when both δ and f depend
on their two inputs. Any 2-variable boolean function g can be rewritten as :

g(u, v) = U + V or g(u, v) = UV or g(u, v) = UV + 1
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where U (resp., V ) is a polynomial in u (resp., v) of degree at most 1, with
coefficients in {0, 1}. Given that fact, we rewrite any game (δ, f) using two
expressions from the above, one for δ, and the other for f . We thus get nine
different types of games, which can be narrowed down to five types by noticing
that games like A + B = XY + 1 are the same as games like A′ + B′ = X ′Y ′,
up to the (reversible) transformation B′ = B + 1. These five types of games are
the following:

δ(a, b) = A+B = f(x, y) = X + Y

δ(a, b) = A+B = f(x, y) = XY

δ(a, b) = AB = f(x, y) = X + Y

δ(a, b) = AB = f(x, y) = XY

δ(a, b) = AB = f(x, y) = XY + 1

Since f (resp., δ) depends on both x and y (resp., both a and b), all polynomials
in these five types of games are of degree exactly 1, hence making all transfor-
mations reversible. Therefore, if two games can be rewritten into the same type,
then they are equivalent. Table 1 describes the equivalence classes over the set
of games formed by the five types above, and provides a representative for each
class.

Table 1. Equivalence classes for true 2-player games depending on both inputs. The
first two classes of games are deterministic, i.e., can be solved by a deterministic pro-
tocol. Instead, the last three classes are not deterministic. No deterministic protocol
can solve any of the games in these three classes.

Form of the class Representative of the class

Deterministic
AB = XY

prod
a ∧ b = x ∧ y

A+B = X + Y
sum

a⊕ b = x⊕ y

Not deterministic

A+B = XY
chsh

a⊕ b = x ∧ y

AB = X + Y
neq

a ∧ b = x⊕ y

AB = XY + 1
amos

a ∧ b = ¬(x ∧ y)

The theorem holds for games prod and sum since both of them can be solved
by a deterministic protocol. Every game that is neither equivalent to an xor-
game nor deterministic is equivalent to an and-game: neq or amos. We now
show that non-local boxes fail to solve amos or neq with higher probabilistic
guarantee than what can be achieved with local boxes.
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Let us first examine amos. We start by showing that any box that solves amos
with probabilistic guarantee p > 2

3 is signaling. Suppose that there exists a non-
signaling box B, defined by the correlation Pr(a, b|x, y), that solves amos with
probability p. On the one hand, for any probability distribution π = {πxy|(x, y) ∈
{0, 1}2} of the inputs, we have

∑

xy

πxy Pr(success for input (x, y)) ≥ p

On the other hand, we have

∑

xy

πxy Pr(success for input (x, y)) =
∑

xy

πxy

∑

ab

1{a∧b=¬(x∧y)} Pr(a, b|x, y)

where 1{a∧b=¬(x∧y)} denotes the boolean indicator function of whether a ∧ b =
¬(x ∧ y) is true or not. Let us consider the following distribution π∗:

π∗
00 = 0 and π∗

xy =
1

3
for all (x, y) �= (0, 0)

Let pabxy = Pr(a, b|x, y) for box B. The probability of success with the input
distribution π∗ satisfies

∑

xy

π∗
xy Pr(success for (x, y)) =

1

3

∑

xy �=(0,0)

1{a∧b=¬(x∧y)}pabxy

=
1

3
(p1101 + p1110 +

∑

(ab) �=(11)

pab11)

=
1

3
(p1101 + p1110 + p0011 + p0111 + p1011) (4)

The non-signaling conditions (cf., Eq. 3) require that, for every a, b, x, y,

pa0x0 + pa1x0 = pa0x1 + pa1x1
and p0b0y + p1b0y = p0b1y + p1b1y

which gives a bound on the first two terms of Equation 4:

p1101 = p1111 + p0111 − p0101 ≤ p1111 + p0111
and p1110 = p1111 + p1011 − p1010 ≤ p1111 + p1011

The probability p of success is therefore bounded by :

p ≤ 1

3
(p1111 + p0111 + p1011 + p1111 + p0011 + p0111 + p1011)

≤ 1

3

(
(2

∑

ab

pab11)− p1111

)

≤ 2

3
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as
∑

ab pabxy = 1 for any fixed (x, y), and p1111 ≥ 0. Therefore, every non-
signaling box solves amos with success at most 2

3 .
Regarding neq, we observe that with distribution π∗, amos and neq become

the same games:
famos(x, y) = fneq(x, y)

for all (x, y �= (0, 0). As a consequence, the same bound 2
3 holds for neq: every

non-signaling box solves neq with success at most 2
3 .

We now show that the bound 2
3 for amos and neq can be reached by local

boxes. For this purpose, we describe a protocol using solely shared randomness,
and reaches success probability 2

3 . Let a0 and a1 (resp., b0 and b1) be the outputs
of Alice (resp. Bob) on the respective input x = 0 and x = 1 (resp., y = 0 and
y = 1). amos translates into solving the system:

⎧
⎪⎪⎨

⎪⎪⎩

a0 · b0 = 1
a0 · b1 = 1
a1 · b0 = 1
a1 · b1 = 0

(5)

and neq translates into : ⎧
⎪⎪⎨

⎪⎪⎩

a0 · b0 = 0
a0 · b1 = 1
a1 · b0 = 1
a1 · b1 = 0

(6)

The second and third equations of the system for amos as well as for neq imply
that a0 = a1 = b0 = b1 = 1, resulting in the last equation impossible to be
satisfied in both games. Hence the last three equations of each system cannot be
simultaneously satisfied. Instead, if one chooses to ignore one of them, then one
can find a solution to the game. Playing any one of the two games using shared
randomness, we allow Alice and Bob to have access, before knowing their inputs,
to a shared random variable λ uniformly distributed in {1, 2, 3}, designating the
equation to be ignored among the last three ones. Alice and Bob will fail to solve
the game with probability at most 1

3 (when the ignored equation is precisely the
one corresponding to the actual inputs), making the success probability for any
input (x, y) equal to 2

3 . This completes the proof of the theorem. �

It turns out that even relaxing the constraints placed on solving the game, by
considering average case analysis, does not allow non-signaling boxes to perform
better than local boxes on games not equivalent to xor-games.

Theorem 2. Let (δ, f) be a 2-player game that is not equivalent to any xor-
game. Let p be the largest average success probability for (δ, f) over all local
boxes. Then every box solving (δ, f) with average probabilistic guarantee > p is
signaling.

Proof. Using the same arguments as in the proof of Theorem 1, we limit the
analysis to amos and neq. For average case analysis, we consider these two
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games with input probability distribution πxy = 1
4 for every (x, y) ∈ {0, 1}2.

The success probability for Alice and Bob with this input distribution is then
given by:

Pr(success) =
1

4

∑

x,y

∑

a,b

1{δ(a,b)=f(x,y)} Pr(a, b|x, y)

First, we show that the protocol described in the proof of Theorem 1 for solving
amos and neq has average success probability 3

4 . Indeed, the success probability
of that protocol can be written as:

Pr(success) =
1

4

∑

x,y

Pr(success(x, y)) =
1

4

(
1 +

2

3
+

2

3
+

2

3

)
=

3

4

because, the protocol always satisfies the first equation of both games, and sat-
isfies each of the three other equations (of both games) with probability 2

3 .
Next, we show that a non-local box cannot solve amos or neq with average

success probability greater than 3
4 . Indeed, we have

Pr(success) =
1

4

[( ∑

(x,y) �=(0,0)

∑

a,b

1{δ(a,b)=f(x,y)}Pr(a, b|x, y)
)

+
(∑

a,b

1{δ(a,b)=f(0,0)} Pr(a, b|0, 0)
)]

The first term is the same as the one analyzed in the proof of Theorem 1, where
it was proved to be at most 2. The second term is at most

∑
ab Pr(a, b|0, 0) ≤ 1.

Therefore, the average success probability for non-local boxes is at most 3
4 . �

The practical interest of the previous two theorems comes from their consequence
to distributed quantum computing:

Corollary 1. Quantum correlations does not help for solving 2-player games
that are not equivalent to any xor-game. This limitation holds for both worst
case, and average case analysis.

4 Open Problem

One obvious generalization of the 2-player games is to consider games with more
than two players, with IDs from 1 to n ≥ 2. In the n-player game (δ, f), Player
i receives boolean xi as input, and must return a boolean ai such that

δ(a1, . . . , an) = f(x1, . . . , xn)

in absence of communication between the players. As for two players, two classes
of games deserve specific interest:

– xor-games: δ(a1, . . . , an) = a1⊕ . . .⊕an, for they generalize the chsh game,
and for they can be solved by a non-signaling box implementable by a circuit
of pr boxes (see [2]);



What Can Be Computed without Communications? 145

– and-games: δ(a1, . . . , an) = a1∧ . . .∧an for they correspond to the standard
decision mechanism in the distributed computing literature (see, e.g., [14]).

In particular, the n-player variant of amos is:

n∧

i=1

ai =
∧

i�=j

(xi ∧ xj).

There exists a randomized protocol (see [10]), that is using individual random

coins, and solves amos with success guarantee
√
5−1
2 ≥ 0.61 > 1/2. In this

protocol, every selected player (i.e., one with input 1) outputs 1 with probability
p, to be fixed later, and 0 with probability 1− p. Every non-selected player (i.e.,
one with input 0) systematically outputs 0. Hence, if no players are selected,
then the protocol always outputs the right answer. If one player is selected, then
the protocol fails with probability 1−p, while if two or more players are selected
then the protocol fails with probability at most p2. Solving p2 = 1− p results in

picking the optimal probability p∗ =
√
5−1
2 .

On the other hand, we have seen in this paper that amos can be solved
with success guarantee 2

3 > p∗ by two players applying a probabilistic protocol
using shared randomness. One can actually show that the same guarantee can
be achieved with three players, by analyzing the following system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 · b0 · c0 = 1
a1 · b0 · c0 = 1
a0 · b1 · c0 = 1
a0 · b0 · b1 = 1
a1 · b1 · c0 = 0
a1 · b0 · c1 = 0
a0 · b1 · c1 = 0
a1 · b1 · b1 = 0

which lists the eight equations for amos corresponding to the eight possible in-
puts of the games. Consider the protocol which solves that system after ignoring
the second and seventh equations with probability 1

3 , the third and sixth with
probability 1

3 , and the fourth and fifth with probability 1
3 . This protocol has

success probability at least 2
3 for every triple of inputs.

Unfortunately, the protocols for two and three players do not seem to extend
easily to a higher number of players. For four players, we have designed an ad
hoc probabilistic protocol using shared randomness, with success probability
9
14 >

√
5−1
2 , but we failed to design a local protocol with success probability 2

3 .
For more than four players, the ad hoc protocol could be generalized, but we
have not identified a general pattern for it.

Instead, the lower bound 2
3 on the probability of success for solving amos

with non-signaling boxes established in this paper trivially extends to n players.
We thus conclude by stating the following problem.
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Open problem: Prove or disprove the existence of a shared-randomness proba-
bilistic protocol that solves the n-player amos game with success probability 2

3 ,
for all n ≥ 2.
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