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Preface

The 19th International Colloquium on Structural Information and Communica-
tion Complexity (SIROCCO 2012) took place in Reykjavik, Iceland, for three
days starting June 30, 2012.

SIROCCO is devoted to the study of communication and knowledge in dis-
tributed systems from both qualitative and quantitative viewpoints. Special
emphasis is given to innovative approaches and fundamental understanding in
addition to efforts to optimize current designs. The typical areas include dis-
tributed computing, communication networks, game theory, parallel computing,
social networks, mobile computing (including autonomous robots), peer-to-peer
systems, communication complexity, fault-tolerant graph theories, and random-
ized/probabilistic issues in networks.

This year, 54 papers were submitted in response to the call for papers, and
each paper was evaluated by three to five reviewers. In total, 164 reviews were
received. The Program Committee selected 28 papers for presentation at the
colloquium and publication in this volume after in-depth discussions.

The SIROCCO Prize for Innovation in Distributed Computing was awarded
this year to Roger Wattenhofer from ETH Zurich. A commendation summariz-
ing his many and important innovative contributions to distributed computing
appears in these proceedings.

The collaboration of the Program Committee members and the external re-
viewers enabled completing the process of reviewing the papers and discussing
them in less than four weeks. We thank them all for their devoted service to
the SIROCCO community. We thank the authors of all the submitted papers;
without them we could not have prepared a program of such quality. We thank
Yvonne Anne Pignolet for her assistance as Publicity Chair.

We thank the invited speakers Roger Wattenhofer and Boaz Patt-Shamir.
The preparation of this event was guided by the SIROCCO Steering Com-

mittee, headed by Shay Kutten.
We are grateful to Reykjavik University for hosting the meeting. In particu-

lar, we thank the Events and Facilities Departments of the university for their
support.

The EasyChair system was used to handle the submission of papers, manage
the review process, and generate these proceedings.

April 2012 Guy Even
Magnús M. Halldórsson



Prize for Innovation in Distributed Computing

Awarded to Roger Wattenhofer

The Prize for Innovation in Distributed Computing for 2012 is awarded to Roger
Wattenhofer (ETH Zurich), in recognition of his extensive contributions to the
study of distributed approximation, as illustrated by papers that have appeared
in the proceedings of past SIROCCO meetings.

We requested David Peleg to write the following laudatio for the proceedings,
describing Wattenhofer’s contributions.

Wattenhofer explored aspects of distributed approximation in a variety of
distributed communication models and classes of underlying networks, seeking to
form a detailed picture of the approximable and the inapproximable in ordinary
(wired) as well as wireless networks. He also developed the strongest known
distributed approximation algorithms and inapproximability results for some of
the central problems in the area.

Broadly speaking, one can classify Wattenhofer’s achievements in the area of
distributed approximation into several main contributions, described next.

Initiating the study of distributed approximation for key problems.
Wattenhofer initiated the study of distributed approximation (as well as dis-
tributed inapproximability) for a number of central problems. A notable example
is the problem of facility location, which he studied in his PODC’05 paper with
Moscibroda [7], exploring a trade-off between the amount of communication and
the resulting approximation ratio.

LP-based distributed approximation. Wattenhofer significantly advanced
and popularized the use of LP-based approximation techniques in the distributed
domain, including techniques based on randomized rounding of fractional relax-
ations of given integer linear programs, LP duality, and more. For instance, his
paper with Fabian Kuhn in PODC’03 [1] used LP relaxation techniques to yield a
constant-time distributed algorithm for approximating the minimum dominating
set (MDS) problem. It was the first distributed MDS approximation algorithm
that achieves a nontrivial approximation ratio in a constant number of rounds.
Another example for a result derived via a technique based on a distributed
primal-dual approach for approximating a linear program is his paper [7] on
facility location, discussed above.

Local distributed approximation. Wattenhofer focused attention on local
distributed approximation, namely, distributed approximation algorithms that
operate in constant time, and established a number of strong lower bounds on
the approximation ratio achievable by such algorithms, thus contributing sig-
nificantly to our understanding of locality. Two of his papers neatly illustrate
this type of work. One is his PODC’06 paper with Kuhn on the complexity of
distributed graph coloring [2], which considers coloring algorithms that run for a
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single communication round. The second is his PODC’04 paper with Kuhn and
Moscibroda [3], which gives time lower bounds for the distributed approximation
of minimum vertex cover (MVC) and minimum dominating set (MDS). This pa-
per shows that an analog to the well-known greedy algorithm for approximating
MVC within a factor 2 does not exist in the distributed local setting.

Relationships with relevant graph parameters. Wattenhofer explored the
dependencies of approximability and inapproximability of central problems, such
as coloring, MIS, and minimum dominating set (MDS), on relevant graph pa-
rameters. This contribution is illustrated by his most recent SIROCCO paper
on distributed approximation, published in SIROCCO’11, together with Schnei-
der [10]. This paper explores the dependencies of the complexity of distributed
approximate coloring on the spectrum of maximum neighborhood sizes and the
chromatic number of the graph at hand.

The above description covers just a sample from Wattenhofer’s impressive list
of results on distributed approximation. Some of his other notable contributions
in this area are [4–6, 8, 9, 11].

Wattenhofer has published extensively in SIROCCO. In addition to [10], dis-
cussed above, he also published five strong papers in other areas of distributed
computing and networking, unrelated to distributed approximation, including in
particular rumor dissemination [13], sensor networks [14], routing [15], Peer to
Peer networks [16], and distributed counting [17].

In summary, Wattenhofer’s substantial and extensive work in the area of
distributed approximation, along with his many other contributions to the field of
distributed network algorithms at large, helped galvanizing the field and reviving
it with new problems, refreshing viewpoints and novel powerful techniques.

2012 Prize Committee
Evangelos Kranakis Carleton University, Canada
Shay Kutten Technion, Israel (Chair)
Alexander A. Shvartsman University of Connecticut, USA
Boaz Patt-Shamir Tel Aviv University, Israel
Masafumi Yamashita Kyushu University, Japan
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Distributed Complexity Theory

Roger Wattenhofer
Distributed Computing (DISCO)

ETH Zurich, 8092 Zurich, Switzerland
wattenhofer@ethz.ch

In the last decades our community has made tremendous progress towards un-
derstanding the complexity of distributed message passing algorithms. Given a
network with n nodes and diameter D, we managed to established a rich se-
lection of upper and lower bounds regarding how much time it takes to solve
or approximate a problem. Currently we know five main distributed complexity
classes:

– Strictly local problems can be solved in constant Θ(1) time, e.g. a constant
approximation of a dominating set in a planar graph.

– Just a little bit slower are problems that can be solved in log-star Θ(log∗ n)
time, e.g. many combinatorial optimization problems in special graph classes
such as growth bounded graphs.

– A large body of problems is polylogarithmic (or pseudo-local), in the sense
that they seem strictly local but are not, as they need Θ(polylog n) time,
e.g. the maximal independent set problem.

– There are problems which are global and need Θ(D) time, e.g. to count the
number of nodes in the network.

– Finally there are problems which need polynomial Θ(poly n) time, even if
the diameter D is a constant, e.g. computing the diameter of the network.

In my talk I will introduce the message passing model, present a few selected
results, mention prominent open problems, and discuss some of the most exciting
future research directions.

Acknowledgments: I would like thank my former or current students for con-
tributing significantly to the core of this theory, in chronological order: Fabian
Kuhn, Thomas Moscibroda, Yvonne Anne Pignolet, Christoph Lenzen, Johannes
Schneider, and Stephan Holzer.



No Piece Missing: Online Set Packing

Boaz Patt-Shamir
School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel

Abstract. We consider a scenario where large data frames are broken
into a few packets and transmitted over the network. Our focus is on
a bottleneck router: the model assumes that in each time step, a set
of packets (a burst) arrives, from which only one packet can be served,
and all other packets are lost. A data frame is considered useful only
if none of its constituent packets is lost, and otherwise it is worthless.
We abstract the problem as a new type of online set packing, present
a randomized distributed algorithm and a nearly-matching lower bound
on the competitive ratio for any randomized online algorithm. We show
how the basic approach extends to various models, including cases with
redundancy, buffering and others.
This talk is based on various papers co-authored with Yuval Emek, Mag-
nus Halldòrsson, Yishay Mansour, Jaikumar Radhakrishnan and Dror
Rawitz.
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Early Deciding Synchronous Renaming in O(log f) Rounds or Less . . . . . 195
Dan Alistarh, Hagit Attiya, Rachid Guerraoui, and Corentin Travers

On Snapshots and Stable Properties Detection in Anonymous Fully
Distributed Systems (Extended Abstract) . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Jérémie Chalopin, Yves Métivier, and Thomas Morsellino

Self-stabilizing (k,r)-Clustering in Clock Rate-Limited Systems . . . . . . . . . 219
Andreas Larsson and Philippas Tsigas

Increasing the Power of the Iterated Immediate Snapshot Model with
Failure Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Michel Raynal and Julien Stainer

Improved Approximation for Orienting Mixed Graphs . . . . . . . . . . . . . . . . 243
Iftah Gamzu and Moti Medina

Analysis of Random Walks Using Tabu Lists . . . . . . . . . . . . . . . . . . . . . . . . 254
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Space Lower Bounds for Low-Stretch Greedy

Embeddings�

Ioannis Caragiannis and Christos Kalaitzis

Computer Technology Institute and Press “Diophantus” &
Department of Computer Engineering and Informatics,

University of Patras, 26504 Rio, Greece

Abstract. Greedy (geometric) routing is an important paradigm for
routing in communication networks. It uses an embedding of the nodes
of the network into points of a metric space (e.g., Rd) equipped with a
distance function (e.g., the Euclidean distance �2) and uses as address
of each node the coordinates of the corresponding point. The embed-
ding has particular properties so that the routing decision for a packet is
taken greedily based only on the addresses of the current node, its neigh-
bors, and the destination node and the distances of the corresponding
points. In this way, there is no need to keep routing tables at the nodes.
Embeddings that allow for this functionality are called greedy embed-
dings. Even though greedy embeddings do exist for several metric spaces
and distance functions, they usually result in paths of high stretch, i.e.,
significantly longer than the corresponding shortest paths.

In this paper, we show that greedy embeddings in low-dimensional
Euclidean spaces necessarily have high stretch. In particular, greedy em-
beddings of n-node graphs with optimal stretch requires at least Ω(n)
dimensions for distance �2. This result disproves a conjecture by May-
mounkov (2006) stating that greedy embeddings of optimal stretch are
possible in Euclidean spaces with polylogarithmic number of dimensions.
Furthermore, we present trade-offs between the stretch and the number
of dimensions of the host Euclidean space. Our results imply that every
greedy embedding into a Euclidean space with polylogarithmic number

of dimensions (and Euclidean distance) has stretch Ω
(

logn
log log n

)
. We ex-

tend this result for a distance function used by an O(log n)-stretch greedy
embedding presented by Flury, Pemmaraju, and Wattenhofer (2009).
Our lower bound implies that their embedding has almost best possible
stretch.

1 Introduction

Greedy routing utilizes a particular assignment of node addresses so that routing
of packets can be performed using only the address of the current node of a
traveling packet, the addresses of its neighbors, and the address of the destination
node. The node addresses are usually defined using a greedy embedding. Formally,

� This work was partially supported by the EC-funded STREP project EULER.

G. Even and M.M. Halldórsson (Eds.): SIROCCO 2012, LNCS 7355, pp. 1–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 I. Caragiannis and C. Kalaitzis

a greedy embedding of a graph G = (V,E) into a host metric space (X, dist) is
a function f : V → X so that the following property holds: for any two nodes
u, t of G, there exists a node v in the neighborhood Γ (u) of u in G so that
dist(f(v), f(t)) < dist(f(u), f(t)). A typical example of a host metric space is
the d-dimensional Euclidean space Rd equipped with the Euclidean distance �2.
Given a greedy embedding f , the coordinates of point f(u) can be used as the
address of node u. Then, when node u has to take a decision about the next hop
for a packet with destination address f(t), it has to select among its neighbors
a node with address f(v) such that dist(f(v), f(t)) < dist(f(u), f(t)). It is clear
that, in this way, the packet is guaranteed to reach its destination within a finite
number of steps.

Greedy embeddings were first defined by Papadimitriou and Ratajczak [15].
They proved that any 3-connected planar graph can be greedily embedded
into the 3-dimensional Euclidean space using a non-Euclidean distance func-
tion. They also conjectured that every such graph can be greedily embedded
in the Euclidean space with Euclidean distance. The conjecture was proved by
Moitra and Leighton [14]. Kleinberg [10] showed that any tree can be greed-
ily embedded in the 2-dimensional hyperbolic space. This immediately yields
a greedy embedding for any graph (by just embedding a spanning tree). Ep-
stein and Woodrich [6] observed that the coordinates of the nodes in Kleinberg’s
embedding require too much space and modified it so that each coordinate is
represented with O(log n) bits (where n is the size of the graph). Greedy em-
beddings into O(log n)-dimensional Euclidean spaces (with �∞ distance) are also
known [10] and exploit an isometric embedding of trees into Euclidean spaces
due to Linial et al. [11].

Note that the approach of computing the greedy embedding of a spanning
tree ignores several links of the network. Hence, it may be the case that even
though a packet could potentially reach its destination with a few hops using
a shortest path, it is greedily routed through a path that has to travel across
a constant fraction of the nodes of the whole network. The measure that can
quantify this inefficiency is the stretch of a greedy routing algorithm, i.e., the
ratio between the length of the path used by the algorithm over the length of
the corresponding shortest path.

Let us proceed with a formal definition of the stretch of a greedy embedding.

Definition 1. Let f be a greedy embedding of a graph G into a metric
space (X, dist). A path 〈u0, u1, ..., ut〉 is called a greedy path if ui+1 ∈
argminv∈Γ (ui){dist(f(v), f(ut))}, where Γ (ui) denotes the neighborhood of ui in
G. We say that f has stretch ρ for graph G if, for every pair of nodes u, v of G,
the length of every greedy path from u to v is at most ρ times the length of the
shortest path from u to v in G. The stretch of f is simply the maximum stretch
over all graphs.

We use the terms no-stretch and optimal stretch to refer to embeddings with
stretch equal to 1.

Maymounkov [13] considers the question of whether no-stretch greedy embed-
dings into low-dimensional spaces exist. Among other results, he presents a lower



Space Lower Bounds for Low-Stretch Greedy Embeddings 3

bound of Ω(log n) on the dimension of the host hyperbolic space for greedy em-
beddings with optimal stretch. Furthermore, he conjectures that any graph can
be embedded into Euclidean or hyperbolic spaces with a polylogarithmic number
of dimensions with no stretch. We remark that a proof of this conjecture would
probably justify greedy routing as a compelling alternative to compact routing
[16].

Flury et al. [8] present a greedy embedding of any n-node graph into an
O(log2 n)-dimensional Euclidean space that has stretch O(log n). Each coordi-
nate in their embedding uses O(log n) bits. They used the min-maxc distance
function which views the d-dimensional Euclidean space as composed by d/c
c-dimensional spaces and, for a pair of points x, y, takes the �∞ norm of the
projections of x and y into those spaces, and finally takes the minimum of those
�∞ distances as the min-maxc distance between them. Their embedding uses an
algorithm of Awerbuch and Peleg [4] to compute a tree cover of the graph and
the algorithm of Linial et al. [11] to embed each tree in the cover isometrically
in a low-dimensional Euclidean space. In practice, greedy embeddings have been
proved useful for sensor [8] and internet-like networks [5].

In this paper, we present lower bounds on the number of dimensions required
for low-stretch greedy embeddings into Euclidean spaces. We first disprove May-
mounkov’s conjecture by showing that greedy embeddings into (Rd, �2) have
optimal stretch only if the number of dimensions d is linear in n. The proof uses
an extension of the hard crossroads construction in [13] and exploits properties
of random sign pattern matrices. Namely, we make use of a linear lower bound
due to Alon et al. [3] on the minimum rank of random N ×N sign pattern ma-
trices. We also obtain an Ω(

√
n) lower bound through an explicit construction

that uses Hadamard matrices. These results are stated in Theorem 2.
Furthermore, we present trade-offs between the stretch of greedy embeddings

into Rd and the number of dimensions d for different distance functions. Namely,
for every integer parameter k ≥ 3, we show that greedy embeddings into Rd

with �p distance have stretch smaller than k+1
3 only if d ∈ O

(
n1/k

log p

)
(Theorem

5). This implies that the best stretch we can expect with a polylogarithmic

number of dimensions is Ω
(

logn
log logn

)
. Our arguments use a result of Erdös and

Sachs [7] on the density of graphs of high girth and a result of Warren [17] that
upper-bounds the number of different sign patterns of a set of polynomials. In
particular, starting from a dense graph with high girth, we construct a family
of graphs and show that, if d is not sufficiently large, any embedding f fails to
achieve low stretch for some graph in this family.

We extend our lower bound arguments to greedy embeddings into Rd that use
the min-maxc distance function that has been used in [8]. Note that the lower
bound does not depend on any other characteristic of the embedding of [8] and
applies to every embedding in (Rd,min-maxc). We show that the best stretch

we can hope for with d ∈ polylog(n) is Ω
(

log n
log logn

)
(Theorem 7). This lower

bound indicates that the embedding of Flury et al. [8] is almost optimal among
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all greedy embeddings in (Rd,min-maxc). Furthermore, our proof applies to a
larger class of distance functions including �∞.

We remark that our proofs are not information-theoretic in the sense that we
do not prove lower bounds on the number of bits required in order to achieve low
stretch embeddings. Instead, we prove that the particular characteristics of the
host metric space (e.g., small number of dimensions) and the distance function
do not allow for low stretch greedy embeddings even if we allow for arbitrarily
many bits to store the coordinates.

We also remark that there is an extensive literature on low-distortion embed-
dings where the objective is to embed a metric space (e.g., a graph with the
shortest path distance function) into another metric space so that the distances
between pairs of points are distorted as less as possible (see [12] for an introduc-
tion to the subject and a coverage of early related results). Greedy embeddings
are inherently different than low-distortion ones. Ordinal embeddings (see [2])
where one aims to maintain the relative order of intra-point distances are con-
ceptually closer to our work. Actually, the use of Warren’s theorem has been
inspired by [2].

The rest of the paper is structured as follows. We present the extension of the
hard crossroads construction in Section 2. In Section 3, we present the trade-
off for greedy embeddings into Euclidean spaces using the distance function �p.
The optimality of the embedding of Flury et al. [8] is proved in Section 4. We
conclude in Section 5.

2 Hard Crossroads

In this section we extend the hard crossroads construction of Maymounkov [13]
by exploiting sign pattern matrices. We begin with some necessary definitions.
Throughout the text, we use [N ] to denote the set {1, 2, ..., N}. We also make
use of the signum function sgn : R \ {0} → {−1, 1}.

Definition 2. A square N×N matrix S is called a sign-pattern matrix if Si,j ∈
{−1, 1} for every i, j ∈ [N ]. The minimum rank of a sign-pattern matrix S,
denoted by mr(S), is the minimum rank among all N × N matrices M with
non-zero entries for which it holds that sgn(Mi,j) = Si,j for every i, j ∈ [N ].

In our construction, we use sign-pattern matrices of high minimum rank. Such
matrices do exist as the following result of Alon et al. [3] indicates.

Theorem 1 (Alon, Frankl, and Rödl [3]). For every integer N ≥ 1, there
exist N ×N sign-pattern matrices of minimum rank at least N/32.

The proof of this statement uses the probabilistic method. As such, the result
is existential and does not provide an explicit construction (for many different
values of N). A slightly weaker lower bound on the minimum rank is obtained
by the so-called Hadamard matrices.
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Definition 3. A Hadamard matrix HN with N nodes (where N is a power of
2) is defined as H1 = [1] and

HN =

[
HN/2 HN/2

HN/2 −HN/2

]
.

It is known (see [9]) that the sign-pattern matrix HN has mr(HN ) ≥
√
N .

We are ready to present our hard crossroads construction. We will use an
N ×N sign pattern matrix S. Given S, we construct the hard crossroads graph
G(S) as follows. G has three levels of nodes:

– There are N nodes at level 0: u1, u2, ..., uN .
– There are 2N nodes at level 1: nodes u+

i and u−
i for each node ui of level 0.

– There are also N nodes v1, ..., vN at level 2.

The set of edges of G(S) is defined as follows. Each node ui is connected to both
nodes u+

i and u−
i at level 1. For each pair of integers 1 ≤ i, j ≤ N , there is an

edge between u+
i and vj if Sij = 1 and an edge between u−

i and vj otherwise.
See Figure 1 for an example that uses the sign pattern matrix

S =

⎡⎣ 1 −1 −1
−1 1 1
1 −1 1

⎤⎦ .

31
− −

u2 u 3
+u2

+ u −u1
+

v1 2v v3

u u u1 2 3

u

Fig. 1. An example of a hard crossroad

We will show that any greedy embedding f of G(S) into Rd with distance
function �2 has stretch smaller than 2 only if d is large. Observe that, for every
pair of integers i, j, the unique shortest path (of length 2) from node ui to node
vj goes either through node u+

i (if Sij = 1) or node u−
i (if Sij = −1); any other

path connecting these two nodes has length at least 4. Since f has stretch smaller
than 2, this means that the only greedy path from node ui to node vj defined
by f is their shortest path. Hence, f should satisfy that dist(f(u+

i ), f(vj)) <
dist(f(u−

i ), f(vj)) if Si,j = 1 and dist(f(u+
i ), f(vj)) > dist(f(u−

i ), f(vj)) other-
wise. In other words, depending on whether Si,j = 1 or Si,j = −1, the embedding
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should guarantee that the point f(vj) lies at the “left” or the “right” side of the
hyperplane that bisects points f(u+

i ) and f(u−
i ).

For i ∈ [N ], denote by U+
i , U−

i ∈ Rd the vectors of coordinates of points
f(u+

i ) and f(u−
i ). Also, for j ∈ [N ], denote by Vj ∈ Rd the vector of coordinates

of point f(vj). Finally, denote by (ai, bi) = {x ∈ Rd : aTi x = bi} the hyperplane
that bisects points f(u+

i ) and f(u−
i ). Without loss of generality, assume that

aTi U
+
i − bi > 0 (and aTi U

−
i − bi < 0).

By the property of the greedy embedding f , the hyperplane (ai, bi) partitions
the set of points corresponding to nodes of level 2 into two sets depending on
whether node vj is connected to u+

i (i.e., when Si,j = 1) or u−
i (when Si,j = −1).

We have aTi Vj − bi > 0 for each i, j ∈ [N ] such that Si,j = 1 and aTi Vj − bi < 0,
otherwise.

Now, denote by V the d × N matrix with columns V1, V2, ..., VN , by A the
N×d matrix with rows aT1 , ..., a

T
N , and by b the vector with entries b1, ..., bN . Let

M = A ·V −b ·1T . Observe that sgn(Mi,j) = Si,j , for every i, j ∈ [N ] and, hence,
r(M) ≥ mr(S). Using the fact that d is not smaller than the rank of matrix V
and well-known facts about the rank of matrices, we obtain

d ≥ rank(V ) ≥ rank(A · V ) = rank(M + b · 1T ) ≥ rank(M)− 1 ≥ mr(S)− 1.

The next statement follows using either a sign pattern matrix with minimum
rank at least N/32 (from Theorem 1, such graph do exist) or the Hadamard
matrix with N nodes (and by observing that the number of nodes in G(S) is
n = 4N).

Theorem 2. Let f be a greedy embedding of n-node graphs into the metric space
Rd with distance function �2. If f has stretch smaller than 2, then d ≥ n/128−1.
Furthermore, for every value of n that is a power of 2, there exists an explicitly
constructed n-node graph which cannot be embedded into (Rd, �2) with stretch
smaller than 2 if d <

√
n/2− 1.

3 A Lower Bound Based on High-Girth Graphs

Our second lower bound argument exploits graphs with high girth. The main
observation behind the construction described below is that, in a graph of girth
g, if the greedy path between two very close nodes (say, of original distance
2) defined by an embedding is not the corresponding shortest path, then this
embedding has stretch at least Ω(g).

Given a girth-g graphG = (V,E) withN nodes andm edges, we will construct
a family H of 4m graphs so that every greedy embedding in a low-dimensional
Euclidean space with distance �p has high stretch for some member of this family.

The family H is constructed as follows. Each graph in this family has a su-
pernode u of three nodes u0, u1, and u2 for each node u of G. Denote by n = 3N
the number of nodes of the graphs in H. Node u0 is connected with nodes u1

and u2. For each edge (u, v) of G, there are four different ways to connect the
supernodes u and v: one of the nodes u1 and u2 is connected to one of the nodes
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v1 and v2. See Figure 2 for an example. Note that the 4m different graphs of the
family H are constructed by considering the different combinations on the way
we connect supernodes corresponding to the endpoints of the edges in G.

0

u u2

2v1v

u

v

u

v0

1

Fig. 2. The construction of graphs in H. The figure shows two supernodes (the dotted
circles) corresponding to two adjacent nodes u, v of G. There is an edge between
nodes u1 and v2; the three dashed edges denote the alternative ways to connect the
supernodes.

Consider the nodes u0 and v0 of the graphs in H that correspond to two
adjacent nodes u and v of G. By our construction, in every graph of H, the
distance between u0 and v0 is 3. Any other path connecting these two nodes has
length at least g + 1; to see this, observe that, since G has girth g, any path
that connects some of the nodes u1 and u2 with some of the nodes v1 and v2
(in any graph of H) has length at least g − 1. So, in any graph of H, the greedy
path from node u0 to node v0 defined by any embedding with stretch smaller
than g+1

3 should be identical to the corresponding (unique) shortest path. This
is the only requirement we will utilize in our proof; clearly, there are additional
necessary requirements which we will simply ignore.

For an ordered pair of adjacent nodes u and v in G, consider the three nodes
u1, u2, and v0 of the graphs in H. Let x, y, z be points of Rd corresponding to
these nodes. We will view the coordinates of x, y, and z as real variables. What
an embedding f has to do is simply to set the values of these variables, possibly
selecting different values for different graphs of family H. Define the quantity
dist(x, z)p − dist(y, z)p and observe that, due to the definition of the distance
�p, this is a polynomial of degree p over the coordinates of x, y, and z. Let us
call this polynomial Pu0→v0 . Clearly, the sign of Pu0→v0 indicates the result of
the comparison of dist(x, z) with dist(y, z). Let f be an embedding of stretch
smaller than g+1

3 and observe that the greedy path from u0 to v0 defined by f
is identical to the corresponding shortest path only if

– Pu0→v0 has sign −1 for all graphs in H that connect supernodes u and v
through an edge with endpoint at u1 and

– Pu0→v0 has sign 1 for all graphs in H that connect supernodes u and v
through an edge with endpoint at u2.
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Denote by P the set of all polynomials Pu0→v0 for every ordered pair of
adjacent nodes u and v in G and recall that the graphs of H are produced by
selecting all possible combinations of ways to connect supernodes corresponding
to adjacent nodes of G. By repeating the above argument, we obtain that f has
stretch smaller than g+1

3 for every graph in H only if the set of polynomials P
realizes all the 4m different sign patterns.

Here is where we will use a result of Warren [17] which upper-bounds the
number of different sign patterns of a set of polynomials.

Theorem 3 (Warren [17]). Let P be a set of K polynomials of degree δ on
� real variables. Then, the number of different sign patterns P may have is at

most
(
4eδK

�

)�
.

Observe that P consists of 2m polynomials of degree p over 3dN real variables.
Using Theorem 3, we have that the number of different sign patterns the poly-

nomials of P can realize is #sp ≤
(
8emp
3dN

)3dN
.

We will now assume that d ≤ m
N log 8ep in order to show that #sp < 4m

and obtain a contradiction. Observe that the bound we obtained using Warren’s

theorem can be expressed as a function f(d) =
(

A
dB

)dB
where A = 8emp and

B = 3N . Also, observe that f is increasing in [0, A
eB ], i.e., for d ≤ 8mp

3N . Clearly,
our assumption satisfies this inequality. Hence, we have

#sp =

(
8emp

3dN

)3dN

≤ (8ep log 8ep)
m

log 8ep < (8ep)
2m

log 8ep = 4m.

We have obtained a contradiction. Hence, d > m
N log 8ep . In order to obtain a

lower bound on d only in terms of the number of nodes and p, it suffices to use
a girth-g graph G that is as dense as possible. The following well-known result
indicates that dense girth-g graphs do exist.

Theorem 4 (Erdös and Sachs [7]). For every g ≥ 3 and for infinitely many
values of N , there are N -node graphs of girth at least g with at least 1

4N
1+1/g

edges.

We remark that the parameters of this theorem can be slightly improved. For
example, the complete N -node graph has girth 3.

Hence, by selecting G to have m ≥ 1
4N

1+1/g edges and recalling that n = 3N ,

we obtain that d > N1/g

4 log 8ep ≥ n1/g

12 log 8ep . The next statement summarizes the
discussion in this section.

Theorem 5. Let k ≥ 3 be an integer and let f be a greedy embedding of n-node
graphs to the metric space Rd with distance function �p. If f has stretch smaller

than k+1
3 , then d > n1/k

12 log 8ep .

An immediate corollary of this statement (for k ∈ O
(

logn
log logn

)
) is that, in gen-

eral, the best stretch we can achieve using Euclidean spaces with polylogarithmic
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number of dimensions and the distance �2 is Ω
(

logn
log logn

)
. Also, note that us-

ing the N -node complete graph (of girth 3) as G, we obtain a lower bound of
Ω(n/ log p) on the number of dimensions for no-stretch greedy embeddings that
use the distance �p. For p = 2, we essentially obtain the same bound we have
obtained in Section 2.

4 A Lower Bound for the Embedding of Flury et al.

We will now adapt the lower bound of the previous section for the greedy em-
beddings presented by Flury et al. [8]. The embedding of [8] uses the Euclidean
space Rd and the distance function min-maxc defined as follows. Let c be a factor
of d and let (s1, s2, ..., sd) and (t1, t2, ..., td) be points of Rd. For each j ∈ [d/c],
let

Dj = max
(c−1)j+1≤i≤cj

|si − ti|.

Then, the function min-maxc is defined as

min-maxc(s, t) = min
j∈[d/c]

Dj.

We remark that our arguments below can be extended (without any modifi-
cation) to any distance function such that dist(s, t) is computed by applying
operators min and max on the quantities |si − ti| for i ∈ [d]. For example, the
�∞ distance belongs in this category.

In the previous section, the sign of a single polynomial indicated the result of
the comparison between two distances. This was possible because of the defini-
tion of the �p distance function. With distance function min-maxc, this is clearly
impossible. However, the argument of the previous section can be adapted using
the sign pattern of a set of polynomials as an indication of the result of the
comparison between two distances.

Again, we use the same construction we used in Section 3. Starting from a
girth-g N -node graph G with m edges, we construct the family of graphs H. Our
argument will exploit the same minimal requirement we exploited in the previous
section. Namely, for every ordered pair of adjacent nodes u and v in G, in any
graph of H the greedy path from node u0 to node v0 defined by any embedding
with stretch smaller than g+1

3 should be identical to the corresponding shortest
path.

For an ordered pair of adjacent nodes u and v in G, consider the three nodes
u1, u2, and v0 of the graphs in H. Let x, y, z be points of Rd corresponding to
these nodes. Again, we view the coordinates of x, y, and z as variables; recall
that what an embedding has to do is simply to set the values of these variables.
Let us now define the following set of polynomials Qu0→v0 over the coordinates
of x, y, and z:

– The d(d− 1)/2 polynomials (xi − zi)
2 − (xj − zj)

2 for 1 ≤ i < j ≤ d.
– The d(d− 1)/2 polynomials (yi − zi)

2 − (yj − zj)
2 for 1 ≤ i < j ≤ d.

– The d2 polynomials (xi − zi)
2 − (yj − zj)

2 for i, j ∈ [d].
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Notice that there is no way to restrict all the above polynomials to have
strictly positive or strictly negative values. So, the term sign in the fol-
lowing corresponds to the outcome of the signum function sgn0 : R →
{−1, 0,+1}. Note that the sign of each polynomial above does not change
if we replace the squares by absolute values. Hence, for all assignments for
which the sign pattern of Qu0→v0 is the same, the relative order of the
absolute values of the difference at the same coordinate between the pairs
of points x, z and y, z is identical. Now assume that two embeddings f
and f ′ are such that min-maxc(f(u2), f(v0)) > min-maxc(f(u1), f(v0)) and
min-maxc(f

′(u2), f
′(v0)) < min-maxc(f

′(u1), f
′(v0)). This means that the em-

beddings f and f ′ correspond to two assignments of values to the coordinates of
x, y, and z so that the set of polynomials Qu0→v0 has two different sign patterns.

Let Q be the union of the 2m sets of polynomials Qu0→v0 and Qv0→u0 for
every adjacent pair of nodes u, v in G. The above fact implies that in order to
find greedy embeddings of stretch smaller than g+1

3 for every graph in H, the
set of polynomials Q should have at least 4m different sign patterns. Again,
we will show that this is not possible unless d is large. Since signs are defined
to take values in {−1, 0, 1} now, we cannot use Warren’s theorem in order to
upper-bound the number of sign patterns of Q. We will use a slightly different
version that applies to our case that is due to Alon [1].

Theorem 6 (Alon [1]). Let Q be a set of K polynomials of degree δ on � real
variables. Then, the number of different sign patterns Q may have (including

zeros) is at most
(
8eδK

�

)�
.

Observe that Q contains at most 2d2m degree-2 polynomials in total and the
number of variables is 3dN . By applying Theorem 6, the different sign patterns

the polynomials of Q may have are #sp ≤
(
64emd
3N

)3dN
.

We will now assume that d ≤ m
3N logN in order to obtain a contradiction.

Observe that the bound we obtained using Theorem 6 is increasing in d. Hence,
we have

#sp ≤
(
64emd

3N

)3dN

≤
(

64em2

9N2 logN

) m
3 log N

<

(
16eN2

9 logN

) m
log N

≤ n
2m

log N = 4m,

where the second inequality follows since m < N2/2 and the third one follows
since N is sufficiently large (i.e., N > 216e/9). Again, we have obtained a contra-
diction. Hence, d > m

3N logN . By setting G to have at least 1
4N

1+1/g edges (using

Theorem 3) and since n = 3N , we have d > n1/g

36 logn .
The next statement summarizes the discussion in this section.

Theorem 7. Let k ≥ 3 be an integer and let f be a greedy embedding of n-node
graphs to the metric space Rd with distance function min-maxc. If f has stretch

smaller than k+1
3 , then d > n1/k

36 log n .

Again, this statement implies that the best stretch that can be achieved using

Euclidean spaces with a polylogarithmic number of dimensions is Ω
(

logn
log logn

)
.

Hence, the O(log n)-stretch greedy embedding of [8] is almost best possible.
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5 Concluding Remarks

Note that an alternative proof of Theorem 2 could consider the 2N
2

different
hard crossroads graphs (for all different N × N sign pattern matrices) and use
Warren’s theorem and similar reasoning with that we used in Section 3 in order
to prove that greedy embeddings in Rd using distance �2 that have stretch smaller
than 2 require d ∈ Ω(n). However, we find it interesting that the same result
(and with slightly better constants) follow by adapting the original argument
of Maymounkov [13]. Finally, we remark that even though we have focused on
Euclidean spaces, our work has implications to embeddings in multi-dimensional
hyperbolic spaces as well. We plan to discuss this issue in the final version of the
paper.

Acknowledgement. We thank Tasos Sidiropoulos for helpful discussions.
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Abstract. The capacitated K-center (CKC) problem calls for locating
K service centers in the vertices of a given weighted graph, and assigning
each vertex as a client to one of the centers, where each service center has
a limited service capacity and thus may be assigned at most L clients, so
as to minimize the maximum distance from a vertex to its assigned ser-
vice center. This paper studies the fault tolerant version of this problem,
where one or more service centers might fail simultaneously. We consider
two variants of the problem. The first is the α-fault-tolerant capacitated
K-Center (α-FT-CKC) problem. In this version, after the failure of some
centers, all nodes are allowed to be reassigned to alternate centers. The
more conservative version of this problem, hereafter referred to as the
α-fault-tolerant conservative capacitated K-center (α-FT-CCKC) problem,
is similar to the α-FT-CKC problem, except that after the failure of some
centers, only the nodes that were assigned to those centers before the
failure are allowed to be reassigned to other centers. We present poly-
nomial time algorithms that yields 9-approximation for the α-FT-CKC
problem and 17-approximation for the α-FT-CCKC problem.

1 Introduction

Problems and Results. This paper considers the capacitated K-center (CKC)
problem, where it is required to locate K service centers in a weighted graph,
and to assign each of the vertices to one of the service centers, where each service
center has a limited service capacity and may be assigned at most L vertices,
so as to minimize the maximum distance from a vertex to its assigned service
center. All nodes serve as clients, namely, it is required to assign each node to a
center even though the node may contain a center place on it.

In the fault tolerant version of this problem, one or more service centers might
fail simultaneously. After the failure of the service centers, it is still required
to assign each node to some surviving center, obeying the constraint that each
center can still serve at most L nodes. The objective is to minimize the maximum
distance from a node to its assigned center, under all possible subsets of up to
α failed service centers, for some integer α.

We consider two variants of the problem. The first is the α-fault-tolerant
capacitated K-Center (α-FT-CKC) problem. In this version, after the failure of
some centers, all nodes are allowed to be reassigned to other centers. The sec-
ond variant is a more conservative version of this problem, hereafter referred to
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as the α-fault-tolerant conservative capacitated K-center (α-FT-CCKC) problem,
which is similar to the α-FT-CKC problem, except that after the failure of some
centers, only the nodes that were assigned to those centers before the failure
are allowed to be reassigned to other centers. All other nodes continue to be
served by their original centers. We present a polynomial time algorithms that
yields 9-approximation for the α-FT-CKC problem and 17-approximation for the
α-FT-CCKC problem.

Our definition assumes that a failed node can no longer host a center and
supply demands, but its own demands must still be supplied. Notice that in all
of the fault-tolerant problems mentioned above, the capacity L must be greater
than 1, since if L = 1, then all nodes in the graph must be allocated as centers,
and if one or more of the nodes fail, then there is not enough overall capacity to
handle all nodes.

Related Work. The basic K-center problem is defined as follows. For a given
weighted graph G, it is required to select a set S of up to K nodes that will host
service centers, and to assign each vertex to a service center, so as to minimize the
maximum distance from a vertex to the its assigned service center. Formally, the
objective function is min|S|≤K maxv∈V {δG(v, S)}, where δG(v, S) is the distance
in G from v to its closest node in S. The problem is known to be NP-hard [5]
and admits a 2-approximation algorithm [6,7,8,9,10].

Some generalizations of theK-center problem were considered in the literature
(e.g. [2,3,9,13]). One generalization for the K-center problem, referred to as the
capacitated K-center problem, was introduced by Bar-Ilan, Kortsarz and Peleg
[1]. In this version of the problem it is required to locate K service centers in a
graph, and to assign each of the vertices to one of the service centers, where each
service center has a limited capacity and may be assigned at most L vertices,
so as to minimize the maximum distance from a vertex to its assigned service
center. An approximation algorithm with ratio 10 was presented in [1] for this
problem. This approximation ratio was later improved by Khuller and Sussmann
[12] to 6, or to 5 in the version where a single node is allowed to host several
service centers.

The basic K-center problem was considered in a failure-prone setting in [11].
In this version it is again required to create K service centers, but some of
these centers may fail. After the failure, each node is assigned to the closest
surviving center. Here, too, the objective is to minimize the maximum distance
from a node to its assigned service center. The problem is parameterized by an
integer parameter α, bounding the maximum number of centers that may fail in
the worst case. In this version, where each center has an unlimited capacity, the
problem can be given the following alternative formulation. Each node is assigned
to α+ 1 service centers and the objective is to minimize the maximum distance
from a node to any of its α+1 service centers. Two subversions of this problem
were considered in [11]. In the first subversion, every node is required to have α+1
centers close to it, whereas in the second subversion, this requirement is applied
only to a node that does not have a center placed on it. For the first subversion,
a 3-approximation algorithm is given for any α and a 2-approximation algorithm
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for α < 3. For the second subversion, a 2-approximation ratio algorithm is given
for any α. Observe that in the capacitated version of the problem, which is
studied here, it is harder to manage α-fault tolerance, since it is not enough to
make sure that each node has α + 1 service centers close to it; the difficulty is
that it could be the case that the nearby service centers do not have enough free
capacity to handle this node.

Preliminaries. A solution for the capacitated K-center problem, in both the
failure free and failure-prone settings, is a set R of up to K nodes in which
centers are to be located. Once the set of locations R is determined, it is then
required to assign every node v (as a client) to a service center ctr(v) from R
in such a way that the number of nodes served by each center is at most the
capacity L. Formally, letting dom(r) denote the set of clients served by a center
r, dom(r) = {v | ctr(v) = r}, it is required that |dom(r)| ≤ L for every r ∈ R.
Such an assignment is termed a feasible assignment. A solution R is feasible
if it has sufficiently many centers to handle the capacity of all nodes, namely,
K ≥ 	n/L
+ α. The cost of a solution R is the maximum distance from a node
to its assigned center.

Note that in the failure free setting, given a solution R, one can efficiently
find an optimal feasible assignment, namely, an assignment for each node to
a center of R, that satisfies the constraint that each center serves at most L
nodes, and minimizes the cost. This can be done using the following bottleneck
method. Sort all edge weights in nondecreasing order, let the sorted list of edges
be e1, ..., e|E|. We assume G is a complete weighted graph (a non-complete graph
G can be made complete by defining the weight of each edge (x, y) as the length
of the shortest path between x and y in G). Note that the cost of every feasible
solution R is equal to ω(ei) for some 1 ≤ i ≤ m. For each weight W = ω(ei),
define the graph GW to be the subgraph obtained from G by taking only edges
of weight at most W . Consider each possible value of W from ω(e1) to ω(e|E|).
For each W , the goal is to check if there is a way to assign all nodes to R using
only edges from GW , under the constraint that each center in R can serve at
most L nodes. This can be done by defining a suitable flow problem and finding
the max flow on it. Construct a bipartite graph G̃ = (R, V,E′) where for every
r ∈ R and v ∈ V , there is an edge (r, v) in E′ iff the distance from r to v is at
most W . Set the capacity of these edges to 1. Add two auxiliary nodes s and
t, connect s to each node in R with an edge of capacity L and add an edge of
capacity 1 from each node of V to t. If the maximum (s, t)-flow on G̃ is |V |, then
the K center problem has an assignment of cost W (where a client v is assigned
to a center r if the edge (v, r) is used in the flow).

Given a solution R, denote by ρ(R) its cost, namely, the minimum W such
that there is a way to assign all nodes to R using only edges from GW , under
the capacity constraint. In the failure-prone setting, given a solution R of the
capacitated K-Center problem and a set of failed service centers F , denote by
ρ(R,F ) the minimum weight W such that there is a way to assign all nodes
to centers in R \ F using only edges from GW , under the constraint that each
center in R \F can serve at most L clients, namely, ρ(R,F ) = ρ(R \F ). Denote
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the worst case service radius by ρα(R) = max|F |≤α {ρ(R,F )}. The α-FT-CKC
problem requires finding a solution R that minimizes ρα(R). In contrast, in the
α-FT-CCKC problem the cost of the optimal solution might be higher than ρα(R),
due to the additional constraint that only the nodes that were served by the set
of failed centers F can be reassigned.

2 High Level Structure of the Algorithm

We consider the α-fault-tolerant capacitated K-Center (α-FT-CKC) problem,
where the solution should be resilient against a failure of up to α centers, for
constant α ≥ 1. Our algorithms for both versions are based on using the (non-
fault-tolerant) algorithms proposed by Khuller and Sussmann [12] as a starting
point, and introducing the necessary modifications to make them tolerant against
the failure of some centers. For completeness we first describe the main ideas of
[12] (which in turn follow [7,1]).

As in [4,7,8,9,12], the algorithms we present follow the general strategy of the
bottleneck method. Turn G into a complete graph as described in Section 1,
and sort all edge weights in nondecreasing order; let the sorted list of edges be
e1, ..., e|E|. For each weight W , define the graph GW to be the subgraph of G
containing only edges ei of weight ω(ei) ≤ W . Run algorithm Main(GW ,K, L)
for each value W from ω(e1) to ω(e|E|), until a feasible solution (with K or fewer
centers) is obtained. In each iteration, consider the subgraph GW and treat it as
an unweighted graph. In this graph, define the distance dist(u, v,GW ) between
two nodes as the number of edges on the shortest path between them. For the
weight W , let K∗

W denote the minimal number of centers needed for a feasible
solution of cost at most W . Alg. Main finds a solution for the problem on GW

using some number KW of centers. We prove that if KW > K, then K∗
W > K,

i.e., there is no feasible solution of cost at most W using at most K centers.
Note that instead of sequentially iterating on w(ei) values to find a feasible

solution, one can rather invoke a binary search for improving the running time.
For a node v ∈ V , let Γi(v) = {u | dist(u, v,GW ) ≤ i}, and Ni(v) = {u |

dist(u, v,GW ) = i}. The algorithms presented in [12] use three central proce-
dures. The first procedure, referred to as Select Monarchs, first constructs the
power graph G2

W , obtained from GW by adding edges between all pairs that have
a common neighbor, and then selects an independent set M in G2

W and places
centers on them. The nodes of M are referred to as monarchs.

The set M of monarchs is selected by the following iterative process. Initially,
all nodes are unmarked. After choosing a new monarch m, mark all unmarked
nodes at distance (in GW ) 1 or 2 from it. The set of new marked nodes is referred
to as the empire of m, denoted Emp(m). In each iteration we choose a new
monarch m′ by picking an unmarked node m′ that is adjacent to a marked node
v. This v is termed the deputy of m′, and v’s monarch, namely, the monarch
m such that v ∈ Emp(m), is termed the parent monarch of m′ and denoted
Parent(m′). Note that v must be at distance 2 from its monarch, and in addition,
m′ is the only monarch at distance 1 from v. For a monarchm, Emp(m) ⊆ Γ2(m)
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in GW . This procedure yields a rooted tree T of monarchs with the property that
the distance between a monarch and its parent monarch in GW is three.

A second procedure of [12], referred to as Assign Domains, tries to assign to
each monarch a domain of L nodes at distance at most 2 from it in GW . A
monarch may be assigned vertices from the empires of other monarchs, in case
no more nodes from its empire are unassigned.

The third Procedure, ReAssign, handles all unassigned nodes. This procedure
creates new centers and assigns all unassigned nodes to centers. The centers are
chosen for each connected component separately; this can be done as no nodes
will be assigned to centers in different connected components of GW assuming
the optimal cost is W .

The main algorithm is given in Procedure Main. This main procedure is used
also for all algorithms presented in this paper. However, the internal components
need to be modified for each version of the problem.

Algorithm Main(G = (V,E),K, L)

1. for every edge weight W in non-decreasing order of weights do:
– let GW = (V,EW ) where EW = (e ∈ E | ω(e) ≤ W ).
– unmark all vertices.
– if Assign Centers(GW ) then exit.

Algorithm Assign Centers(GW )

1. Suppose GW consists of connected components G1
W , ..., G�

W

2. for 1 ≤ c ≤ �, let nc
W = number of nodes in connected component Gc

W .
3. let KW ←

∑
c 	nc

W /L
.
4. if KW > K then return false.
5. for each connected component Gc

W do:
– Select Monarchs(Gc

W )
– Assign Domains(Gc

W )
– ReAssign(Gc

W )
6. if the total number of centers used is more than K then return false.
7. return true.

3 Constant Approximation for the α-FT-CKC Problem

In this section we show a constant approximation algorithm for the α-FT-CKC
problem. Recall that in this version of the problem, after the failure of a set of
centers F , all nodes can be reassigned again.

In this algorithm, we modify procedures Select Monarchs, Assign Domains and
ReAssign of [12], and in addition introduce another procedure, named
ReAssign by F, which is invoked after the failure of a set of centers F . (For-
mal codes for all procedures, and proofs for all claims, are deferred to the full
paper.)

Lemma 1. If the α-FT-CKC problem has a solution of cost at most W = w(ei)
for some 1 ≤ i ≤ m, then the minimum node degree in GW is at least α.
Moreover, every solution of cost at most W requires having α+1 service centers
in Γ1(v) for every v ∈ V .
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By Lemma 1, we restrict ourself to the case where the minimum node degree in
GW is at least α. Our Procedure Select Monarchs first finds a set M1 of monar-
chs, which is a maximal independent set in G2

W , in a way similar to Procedure
Select Monarchs of [12] (as described in Section 2). We call these monarchsmajor
monarchs. The algorithm of [12] required a single type of monarchs. In contrast,
we introduce a second type of monarchs, referred to as minor monarchs, which
are selected as follows. For every major monarch m, choose a set of α− 1 neigh-
bors of m, not including the deputy of m. (Note that the degree of m is at least
α, hence such α − 1 neighbors must exist.) Denote this set by minors(m), and
set major(m′) = m for each m′ ∈ minors(m) ∪ {m}. For every major monarch
m, denote the set {m}∪minors(m) by team(m). Let M2 be the set of all minor
monarchs. As claimed above, the optimal solution must contain at least α + 1
service centers in Γ1(m), therefore at least α of m’s neighbors must host centers.
The reason for choosing just α − 1 neighbors, instead of α, is that we would
like to keep the deputy of m available for placing a center on it in Procedure
ReAssign, and setting centers at only α− 1 neighbors is sufficient for our needs,
as will become clearer later on. In Procedure Select Monarchs, each time a new
major monarch m is selected, all unmarked nodes at distance at most 2 from m
are marked and assigned to the empire Emp(m) of m.

We would like to serve as many nodes as possible using the monarchs of
M = M1 ∪M2, where every monarch m can serve clients from Γ2(major(m)).
Procedure Assign Domains solves this problem by constructing a suitable graph G̃
and finding the minimum cost maximum flow on it. This procedure constructs a
bipartite graph G̃ = (M,V,E′), whereM is the set of all monarchs, V is the set of
nodes of the graph and E′ contains an edge (m, v) for every monarchm and node
v in Γ2(major(m)). The goal now is to assign as many nodes as possible to the
service centers, where a node v can be assigned to a center m if it has an edge to
it in G̃, i.e., (v,m) ∈ E′. Add to G̃ new nodes s and t and edges {(s,m) | m ∈ M}
and {(v, t) | v ∈ V }. For every monarchm ∈ M set a capacity of u(s,m) = L and
for every node v ∈ V set a capacity of u(m, v) = 1. Set the cost of edge (m, v)
to be c(m, v) = 0 if m = v and 1 otherwise. Compute a min-cost maximum
integral flow in this new graph. Set dom(m) to be all nodes that got a unit flow
from m. For a set of monarchs X ⊆ M , let dom(X) =

⋃
m∈X dom(m). We note

that, unlike in [12], here the monarchs can be at distance 1 from one another.
Therefore, the monarchs can serve one another, we hence do not assume that
all monarchs serve themselves (it could be that by forcing monarchs to serve
themselves we will hurt the maximum flow). However, by setting the cost of the
edge from a monarch to itself in the graph G̃ to be 0 (and the rest of the edges
1), we make sure that even if a monarch does not serve itself it is still served
by another monarch (otherwise we can get a lower cost solution with the same
maximum flow). In other words, all monarchs are served.

We now turn to describe Procedure ReAssign. For every major monarchm, let
unassigned(m) be the set of all nodes in its empire Emp(m) that are unassigned,
namely, that do not belong to the domain of any monarch. Consider the tree T
of major monarchs as described in Section 2. The algorithm assigns clients to the
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monarchs in a bottom-up process on T . More precisely, the process maintains
a copy T ′ of T consisting of all the monarchs that have not been handled yet.
In each step of the algorithm, pick a leaf m from the tree T ′ for processing and
remove it from T ′. Let k′L+ε be the number of nodes in unassigned(m) plus the
number of unassigned nodes passed to m by its children monarchs in T . Allocate
k′ new centers at free nodes in m’s empire and assign the remaining ε unassigned
nodes to the monarch m, releasing at most ε nodes from m’s domain, and pass
these nodes to m’s parent in T for reassignment (we say that a node is free if no
center is placed on it). If m is the root monarch of T , then allocate enough new
centers to serve all k′L + ε unassigned nodes. For each of these new allocated
centers, we say that m is their major monarch. Notice that if up to α failures
might occur, then any feasible solution must contain at least 	n/L
+α centers,
as otherwise, after the failure of any α centers, there is not enough capacity
left to handle all nodes. So in the last step of Procedure ReAssign, check if the
algorithm creates fewer than 	n/L
+ α centers; if so, then add new centers to
complete to 	n/L
+ α.

A light monarch is one whose domain is of size less than L. Let KL denote
the number of light monarchs and nL be the number of vertices belonging to the
domains of light monarchs, and let n be the total number of vertices.

The following lemmas summarize some basic properties. Define the set of
useful monarchs U as follows. Let U0 be the set of light monarchs. Increase U0

by an iterative process, in which Uj is created by Uj−1 by adding to it any
monarch that contains in its domain a node that could have been assigned to a
node in Uj−1. Formally, let

Uj = Uj−1 ∪ {m ∈ M |
∃v ∈ dom(m), ∃m′ ∈ Uj−1 and dist(v,major(m′)) ≤ 2 in GW }.

Let U be the largest set obtained in this way. We say that a monarch m is
overloaded if there are unassigned nodes in Γ2(major(m)).

We note that the definition of overloaded monarchs is close to the definition
of heavy monarchs introduced in [12]. The difference between the two terms is
that an overloaded monarch m has unassigned vertices in Γ2(major(m)) instead
of in its empire. In addition, note that the definition of U is similar to the one
presented in [12] with the slight modification that we use dist(v,major(m′))
instead of dist(v,m′). The reason for these modifications is that in our Procedure
Assign Domains, every monarch m′ can serve nodes from Γ2(major(m′)) rather
than from Γ2(m

′).

Lemma 2. (1) The set U does not contain any overloaded monarchs.
(2) Consider some major monarch m ∈ M1. If one of the nodes in team(m)
belongs to U , then all of them do.

Denote by dom∗(θ) the set of nodes that are served by some center θ in the
optimal solution.

Lemma 3. (1) Consider a monarch m ∈ U ∩M1 and a a center θ in an optimal
solution such that θ ∈ Γ1(m). Then dom∗(θ) ⊆ dom(U).
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(2) In every solution of radius cost W , the number of centers required satisfies
K∗

W ≥ max{KL + 	(n− nL)/L
, 	n/L
+ α} = KW .
(3) Each major monarch m ∈ M1 has sufficiently many free nodes in its empire
to allocate centers for all the clients in unassigned(m) and passed(m).

We now turn to describe the main difference between the algorithm of [12] and
ours, designed to handle also failures. When a set F of at most α centers fails,
each of the clients of dom(F ) needs to be reassigned to one of the surviving
centers. Hence after the failure of a set of centers F , we invoke the procedure
ReAssign by F, which handles the reassignment, possibly by performing a se-
quence of transfers until reaching a “free spot”, i.e., a surviving center that
currently serves fewer than L clients. First note that as we make sure that there
are at least 	n/L
+ α centers, the capacity of all surviving centers is sufficient
to serve all nodes. The idea of Procedure ReAssign by F is to assign each node
x ∈ dom(F ) to a “free spot” by a sequence of transfers that reassign x to some
other center, possibly causing another node to become unassigned, then looking
for a center for this client, and so on, until reaching the “free spot”.

More precisely, Procedure ReAssign by F is as follows. Let F = {f1, ..., fk},
for some k ≤ α, be the set of failed centers. Think of every surviving center r as
having |dom(r)| “occupied” capacity and f(r) = L − |dom(r)| “free” places for
hosting new clients. Consider all nodes of dom(F ) and assign for each unassigned
node v a unique free place in a non-faulty center. Let free(v) be that center.
Note that at most f(r) nodes can be assigned to the same center r if it contains
f(r) free places, namely it serves L− f(r) nodes. The idea now is to perform a
sequence of transfers from each unassigned node v until reaching the free place in
free(v). For each unassigned node v ∈ dom(f) for some f ∈ F , find the shortest
monarch path MP (v) in the tree of monarchs T between the major monarch of
f and the major monarch of free(v) (namely, the major monarch m such that
free(v) ∈ Emp(m)). Let MP (v) = (m1, ...,mj) be this shortest path, where m1

is the major monarch of f and mj is the major monarch of free(v). Naively, we
could apply the following process. Assign v to m1, and to enable that, cancel
the assignment of some other node v1 in m1, making it unassigned. Next, assign
v1 to m2, making some other node v2 unassigned, and so on, and by a sequence
of transfers reach mj and make some node vj that was originally served by mj

unassigned and finally assign vj to the center free(v).
However, this naive rolling process does not necessarily yield a “good” solu-

tion, namely a solution in which each node is assigned to a “relatively” close
center. To see this, note that for all unassigned nodes v, the shortest monarch
path MP (v) in T from the major monarch of v to the major monarch of free(v)
could pass through some major monarchm. As m can serve only L nodes, it can-
not serve all nodes passed to it during this process, and it will have to pass some
of these nodes further. This could result in a large approximation ratio. Luckily,
we can use the minor monarchs in order to avoid such a situation. Recall that
each major monarch has α− 1 minor monarchs at distance 1 from it. We select,
for each failed center f and for each major monarch m, such that f /∈ team(m),
a different non-faulty center from team(m), and denote this center by χ(f,m).
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Consider now an unassigned node v and let f ∈ F be the center that serves
v previous to the failure event. Let MP (v) = (m1, ...,mj) be this shortest path
in T from the major monarch of f to the major monarch of free(v). We assign
v to χ(f,m2), thereby releasing some other node v2 that was originally served
by χ(f,m2) and making it unassigned. Repeating this, we get a sequence of
transfers that reaches mj and releases some node vj that was originally served
by χ(f,mj). Finally, assign this node vj to the center free(v).

The following lemma establishes the desired stretch bound. Let W be the first
value for which Algorithm Assign Centers returns true.

Lemma 4. (1) Let c∗ be the optimal solution to the fault-tolerant capacitated
K-center problem, namely, the set of vertices such that ρα(c

∗) is minimal. Then
ρα(c

∗) ≥ W .
(2) After the failure of a set F where |F | ≤ α, the reassignment process ensures
that each client is assigned a center at distance at most 9 in GW .

Corollary 1. Algorithm Main yields an approximation ratio of 9 for the fault-
tolerant capacitated K-center problem.

4 Constant Approximation for the α-FT-CCKC Problem

We now present a constant approximation algorithm to the α-FT-CCKC problem.
For the same reasons mentioned in Section 3, we consider only the case where
the minimum node degree in GW is at least α.

Relationship with CKC. The following lemma shows that the α-FT-CCKC prob-
lem might requires creating more centers than the CKC problem. We say that
a set of nodes A ⊆ V is k-independent if every two nodes in A are at dis-
tance at least k apart. Let K∗

CKC(W ) be the minimal number of centers needed
for a feasible solution of cost at most W for the CKC problem. Similarly, let
K∗
α-FT-CCKC(W ) be the minimal number of centers needed for a feasible solution

of cost at most W for the α-FT-CCKC problem. Let R∗
CKC(W ) be a solution to

the Capacitated K-Centers of cost at most W with minimal number of centers
and let R∗

α-FT-CCKC(W ) be a solution to the α-FT-CCKC of cost at most W with
minimal number of centers.

Lemma 5. For a 7-independent A ⊆ V , K∗
α-FT-CCKC(W ) ≥ K∗

CKC(W ) + α|A|.

The algorithm. The next lemma shows that if the α-FT-CCKC problem admits a
feasible solution of cost at mostW , namely,K∗

α-FT-CCKC(W ) ≤ K, then for every
node v there are sufficiently many nodes in Γ4(v) to allocate α backup centers
(that will not serve any node as long as there are no failures) and sufficiently
many additional centers to serve all nodes in Γ4(v). If this is not the case, namely,
Γ4(v) is too small, then there is no feasible solution of cost at most W , and the
algorithm has to proceed to the next possible weight W ′. This will be needed in
our algorithm when placing centers at the nodes.
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Lemma 6. If the α-FT-CCKC problem admits a feasible solution of cost at most
W , then for every node v, the set Γ4(v) has sufficiently many nodes to allocate
centers for all nodes in Γ4(v) and for α additional backup servers, i.e., |Γ4(v)| ≥
α+ 	|Γ4(v)|/L
.

As in Section 3, we employ Procedures Select Monarchs, Assign Domains and
ReAssign, using the same Procedure Assign Domains as in [12] and modifying
Procedures Select Monarchs and ReAssign.

As explained above, Procedure Select Monarchs results a tree T of major
monarchs. The idea behind assigning the monarchs in Procedure Select Monarchs
is as follows. In Section 3 we could settle for α backup centers, due to the as-
sumption that all nodes can be reassigned after the failure of some centers. In
contrast, in the current setting we need to spread many additional backup cen-
ters on the graph, in order to ensure that each node v has sufficiently many
backup centers close to it. We select major monarchs at some distance from
each other, and for each major monarch we allocate α of its neighbors as backup
centers. In order to make sure that each major monarch can “afford” to allocate
α backup centers and still have enough nearby nodes to allocate as centers to all
nodes in its empire and to nodes passed to it, we first make sure that each major
monarch m has all the nodes Γ4(m) in its empire. By Lemma 6 this guarantees
that each monarch m has enough nodes to allocate centers to α backup centers
and to handle all nodes in Γ4(m). To ensure that, we select the major monarchs
so that they are at distance at least 10 from each other, and each monarch is
at distance exactly 10 from its parent monarch. All nodes in Γ4(m) are assigned
to m’s empire and nodes at distance 5 from some major monarchs are assigned
to the first selected monarch. For a major monarch m, define the deputy of m
as some node that is at level-5 of m’s parent monarch and its distance to m
is 5, where a node v is on level-k of some monarch m̃ if v belongs to Emp(m̃)
and v is at distance k from m̃. Note that in contrast to the setting in Section
3, here a node may be the deputy of more than one major monarch. In order to
prove that a major monarch m has enough free nodes to allocate centers for all
nodes passed to it from its children, we make sure each deputy will get at most
L−1 nodes from the monarchs it serves as their deputy. For all other unassigned
nodes, we allocate centers in the empire of some of these children.

Formally, the major monarchs are selected by an iterative process. Initially
set Q to contain an arbitrary node v. While Q has unmarked nodes v such
that dist(v,M1) ≥ 10 do the following. If M1 = ∅ then remove a node v from
Q (in this case Q contains only one node) else remove an unmarked node v
such that dist(v,M1) = 10 from Q. Make v a major monarch, add it to M1

and mark it. Add all unmarked nodes in Γ5(v) to Emp(v) and mark them. For
each node w in N10(v) (distance 10 from v) such that there exists a node u in
Emp(v) ∩ N5(v) ∩ N5(w) do the following. Is w is unmarked and w /∈ Q then
set v to be w’s parent in T , setting Parent(w) = v, set the deputy of w to be u,
and add w to Q. In addition, for every node m ∈ M1, choose α arbitrary nodes
at distance 1 from m and make them backup centers.
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Observe that for everym ∈ M1, Γ4(m) ∈ Emp(m). In addition, note that after
this process ends, there could be some nodes that are unassigned to any empire,
namely, nodes that are at distance more than 5 from all major monarchs and thus
were not selected to be in the empire of any major monarch. Observe that these
nodes are at distance at most 9 from some major monarchs (as otherwise they
would have been selected as major monarchs). The purpose of the second stage
of Procedure Select Monarchs is to handle these unassigned nodes. In this stage
we allocate minor monarchs and assign all unassigned nodes to those monarchs.
This is again done by an iterative process as follows.

In each iteration, choose an unassigned node m′ that is a neighbor of some
node u such that u ∈ N5(m) ∩ Emp(m) for some major or minor monarch m.
Make m′ a minor monarch, place it in M2 and assign m′ all unassigned nodes at
distance 5 from it. Set the parent of m′ to be Parent(m′) = m and the deputy
of m′ to be u. In the end of this process, all nodes are assigned to the empire
of some monarch and the distance from a minor monarch to its parent is 6. Let
M2 be the set of minor monarchs.

Procedure Assign Domains is again similar to the one presented in [12]. The
procedure assigns as many nodes as possible to all chosen major and minor
monarchs, where once again, each monarch can serve all nodes at distance at
most 2 from it. The domain dom(m) of a monarch m is the set of all nodes
assigned to it by this procedure.

Procedure ReAssign takes care of all nodes that are not served by any center.
The main difference with respect to Procedure ReAssign in Section 3 is that
here, a node may be the deputy of more than one monarch. We need to make
sure each deputy receives at most L − 1 nodes in total from all the monarchs
it serves as deputy. We do that by allocating centers in the empires of some of
these children. Formally, let unassigned(m) be the set of all nodes in its empire
that are unassigned, namely the nodes in its empire that do not belong to the
domain of any monarch. Let T be the tree of monarchs. The process maintains
a copy T ′ of T consisting of all the monarchs that have not been handled yet.
In each step of the algorithm, pick a leaf m from the tree T ′ for processing and
remove it from T ′. Now for each node u at level-5 of m, let kL+ ε be the number
of nodes passed to m by its children monarchs in T such that u serves as their
deputy. If k > 0 then allocate k new centers in the empires of the monarchs that
u serves as their deputy. Assign kL from passed(u) to those new centers. Pass
the ε remaining nodes to m. The next step takes care of all unassigned nodes in
m’s empire and the nodes passed to m by its children in the tree T . Let k′L+ ε
be the number of nodes in m’s empire that are unassigned plus the number of
nodes passed to m. Allocate k′ new centers in the empire of monarchm. Allocate
the ε remaining nodes at m possibly displacing ε other nodes from m’s original
clients. Add the displaced nodes to the list of Passed nodes of the deputy of m
unless m is the root and then allocate a new center at m’s empire and assign
the unassigned nodes to it.

Analysis.

Lemma 7. K∗
α-FT-CCKC(W ) ≥ KL + 	(n− nL)/L
+ α|M1| = KW .
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The following lemma shows that each time the algorithm has to allocate new
centers, there are sufficiently many free nodes to do so.

Lemma 8. (1) Each monarch m has sufficiently many available nodes in its
vicinity to allocate centers for passed(m) and unassigned(m) nodes.
(2) Let u be the deputy of a set of monarchs S and assume |passed(u)| = kL+ ε
for some integer k ≥ 0. Then there are at least k available nodes to allocate
centers in the empires of S.

Finally, the following lemma establishes the desired stretch bound.

Lemma 9. Under all possible subsets of up to α failed service centers, each
vertex v is assigned to a center w s.t. dist(v, w) ≤ 17 in GW .

Large capacities and Multi k-centers. We note that in the special case where
α < L, we can improve the approximation ratio to 13. In addition, in the simpler
variant of this problem, where a node may host several centers, using Lemma 5
we can establish a 6-approximation ratio for this problem. Details are deferred
to the full paper.
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Abstract. “How well connected is the network?” This is one of the most
fundamental questions one would ask when facing the challenge of design-
ing a communication network. Three major notions of connectivity have
been considered in the literature, but in the context of traditional (single-
layer) networks, they turn out to be equivalent. This paper introduces a
model for studying the three notions of connectivity in multi-layer net-
works. Using this model, it is easy to demonstrate that in multi-layer
networks the three notions may differ dramatically. Unfortunately, in
contrast to the single-layer case, where the values of the three connectiv-
ity notions can be computed efficiently, it has been recently shown in the
context of WDM networks (results that can be easily translated to our
model) that the values of two of these notions of connectivity are hard
to compute or even approximate in multi-layer networks. The current
paper shed some positive light into the multi-layer connectivity topic:
we show that the value of the third connectivity notion can be computed
in polynomial time and develop an approximation for the construction
of well connected overlay networks.

Keywords: Overlay networks, graph theory, connectivity,
approximation.

1 Introduction

1.1 Background and Motivation

The term “connectivity” in networks has more than one meaning, but these
meanings are equivalent in “traditional” networks. While the graph theoretic
definition of connectivity refers to the ability to reach every node from every
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other node (a.k.a. 1-connectivity), the term connectivity is often related also
to the survivability of a network, namely, the ability to preserve 1-connectivity
whenever some links fail.1 In other words, a network G is said to be k-connected
if it satisfies the following “connectivity property” (CP):

(CP1) G remains connected whenever up to k − 1 links are erased from it.

However, there are also other meanings to connectivity. A network G is also said
to be k-connected if it satisfies the following “connectivity property”:

(CP2) There exist k pairwise link-disjoint paths from s to t for every two nodes
s, t in G.

The equivalence of these two properties [13] enables numerous practical appli-
cations. For example, one of the applications of the existence of link-disjoint
paths (Property (CP2)) is to ensure survivability (Property (CP1)). Often, a
backup (link-disjoint) path is prepared in advance, and the traffic is diverted to
the backup path whenever a link on the primary path fails. An example is the
backup path protection mechanism in SONET networks (see, e.g., [15]).

A third property capturing connectivity is based on the amount of flow that
can be shipped in the network between any source and any destination, defining
the capacity of a single link to be 1. In other words, a network G is said to be
k-connected if it satisfies the following “connectivity property”:

(CP3) It is possible to ship k units of flow from s to t for every two nodes s, t
in G.

This property too is equivalent to the first two [8], and is also used together
with them. For example, routing some flow of information around congestion
(which may be possible only if the network satisfies property (CP3) and thus
can support this additional flow) uses the second property, i.e., it relies on the
existence of multiple link-disjoint paths.

Current networks, however, offer multi-layered structures which yield signif-
icant complications when dealing with the notion of connectivity. In particu-
lar, the overlay/underlying network dichotomy plays a major role in modeling
communication networks, and overlay networks such as peer-to-peer (P2P) net-
works, MPLS networks, IP/WDM networks, and SDH/SONET-WDM networks,
all share the same overall structure: an overlay networkH is implemented on top
of an underlying network G. This implementation can be abstracted as a routing
scheme that maps overlay connections to underlying routes. We comment that
there are sometimes differences between such a mapping and the common notion
of a routing scheme. Still, since the routing scheme often defines the mapping,
we shall term this mapping the routing scheme.

Often, the underlying network itself is implemented on top of yet another net-
work, thus introducing a multi-layer hierarchy. Typically, the lower level under-
lying network is “closer” to the physical wires, whereas the higher level network

1 The current paper does not deal with node connectivity.
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is a traffic network in which edges capture various kinds of connections, depend-
ing on the context. For the sake of simplicity, we focus on a pair of consecutive
layers G and H . This is sufficient to capture a large class of practical scenarios.

The current paper deals with what happens to the different connectivity prop-
erties once we turn to the context of overlay networks. As discussed later on,
connectivity has been studied previously in the “overlay network” world under
the “survivability” interpretation (CP1), and it has been observed that, in this
context, the connectivity parameter changes, i.e., the connectivity of the overlay
network may be different from that of the underlying network. Lee et al. [12]
demonstrated the significance of this difference by showing that the survivability
property is computationally hard and even hard to approximate in the multi-
layer case. Since the three aforementioned connectivity parameters may differ
in multi-layer networks (see Sect. 1.2), they also showed a similar result for the
disjoint paths connectivity property.

Interestingly, the motivation of Lee et al. for addressing the disjoint paths
connectivity property was the issue of flow. One of the contributions of the
current paper is to directly address this issue, showing that in contrast to the
previous two notions of connectivity, the maximum flow supported by an overlay
network can actually be computed in polynomial time.

In the specific context of survivability, other papers have shown that the issue
of connectivity in an overlay network is different from that of connectivity in
underlying networking. Consider, for example, a situation where several overlay
edges (representing connections) of H pass over the same physical link. Then all
these overlay edges may be disconnected as a result of a single hardware fault in
that link, possibly disconnecting the overlay network. The affected overlay links
are said to share the risk of the failure of the underlying physical link, hence they
are referred to in the literature as a shared risk link group (SRLG). An SRLG-
based model for overlay networks was extensively studied in recent years;2 see,
e.g., [14] for a useful introduction to this notion and [2] for a discussion of this
concept in the context of MPLS. The SRLG model hides the actual structure
of the underlying network, in the sense that many different underlying networks
can yield the same sets of SRLG. (For certain purposes, this is an advantage of
the model.) An even more general notion is that of Shared Risk Resource Group
However, sometimes this model abstracts away too much information, making
certain computational goals (such as, e.g., flow computations) harder to achieve.

In contrast to the SRLG model, we present the alternative model of deep
connectivity, which allows us to simultaneously consider all three components:
the overlay network, the underlying network, and the mapping (the routing
scheme). Note that all three should be considered: For example, if the underlying
network is not connected, then neither can the overlay network be. The routing
scheme also affects the connectivity properties as different routing schemes may
yield significantly different overlay link dependencies. In some cases, routing is
constrained to shortest paths, whereas in other cases it can be very different.

2 Note that a common underlying link is not the only possible shared risk; overlay
links sharing a node may form a shared risk link group too.
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In policy based routing schemes (see, e.g. [16]), for example, some underlying
edges are not allowed to be used for routing from u to v, which may cause the
underlying path implementing the overlay link (u, v) to be much longer than the
shortest (u, v)-path.

1.2 The Deep Connectivity Model

The underlying network is modeled by a (simple, undirected, connected) graph
G whose vertex set V (G) represents the network nodes, and whose edge set E (G)
represents the communication links between them. Some nodes of the underlying
network are designated as peers ; the set of peers is denoted by P ⊆ V (G). The
overlay network, modeled by a graph H , spans the peers, i.e., V (H) = P and
E (H) ⊆ P × P ; H typically represents a “virtual” network, constructed on top
of the peers in the underlying communication network G.

An edge (u, v) in the overlay graph H may not directly correspond to an edge
in the underlying graph G (that is, E (H) is not necessarily a subset of E (G)).
Therefore, communication over a (u, v) edge in H should often be routed along
some multi-hop path connecting u and v in G. This is the role of a routing scheme
ρ : P×P → 2E(G) that maps each pair (u, v) of peers to some simple path ρ(u, v)
connecting u and v in G. A message transmitted over the edge (u, v) in H is
physically disseminated along the path ρ(u, v) in G. We then say that (u, v)
is implemented by ρ(u, v). For the sake of simplicity, the routing scheme ρ is
assumed to be symmetric, i.e., ρ(u, v) = ρ(v, u). More involved cases do exist in
reality: the routing scheme may be asymmetric, or may map some overlay edge
into multiple routes; the simple model given here suffices to show interesting
differences between the various connectivity measures.

When a message is routed in H from a peer s ∈ P to a non-neighboring peer
t ∈ P along some multi-hop path π = (x0, x1, . . . , xk) with x0 = s, xk = t,
and (xi, xi+1) ∈ E(H), it is physically routed in G along the concatenated path
ρ(x0, x1)ρ(x1, x2) · · · ρ(xk−1, xk). In some cases, when the overlay graph H is
known, it will be convenient to define the routing scheme over the edges of H ,
rather than over all peer pairs.

The notion of deep connectivity grasps the connectivity in the overlay graph
H , while taking into account its implementation by the underlying paths in
G. Specifically, given two peers s, t ∈ P , we are interested in three different
parameters, each capturing a specific type of connectivity. In order to define
these parameters, we extend the domain of ρ from vertex pairs in P × P to
collections of such pairs in the natural manner, defining ρ(F ) =

⋃
(u,v)∈F ρ(u, v)

for every F ⊆ P×P . In particular, given an (s, t)-path π in H , ρ(π) =
⋃

e∈π ρ(e)
is the set of underlying edges used in the implementation of the overlay edges
along π.

– The edge-removal deep connectivity of s and t in H with respect to G and
ρ, denoted by ERDCG,ρ(s, t,H), is defined as the size of the smallest subset
F ⊆ E (G) that intersects with ρ(π) for every (s, t)-path π in H ; namely, the
minimum number of underlying edges that should be removed in order to
disconnect s from t in the overlay graph.
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– The path-disjoint deep connectivity of s and t in H with respect to G and ρ,
denoted by PDDCG,ρ(s, t,H), is defined as the size of the largest collection
C of (s, t)-paths in H such that ρ(π) ∩ ρ(π′) = ∅ for every π, π′ ∈ C with
π �= π′, i.e., the maximum number of overlay paths connecting s to t whose
underlying implementations are totally independent of each other.

– The flow deep connectivity of s and t in H with respect to G and ρ, denoted
by FDCG,ρ(s, t,H), is defined as the maximum amount of flow3 that can be
pushed from s to t in G restricted to the images under ρ of the (s, t)-paths
in H , assuming that each edge in E (G) has a unit capacity. Intuitively, if s
and t are well connected, then it should be possible to push a large amount
of flow between them.

Example: To illustrate the various definitions, consider the underlying network
G depicted in Fig. 1(a), and the overlay network H depicted in Fig. 1(b). The
routing scheme ρ assigns each of the 6 overlay edges adjacent to the extreme
S and T a simple route consisting of the edge itself. For the remaining three
overlay edges, the assigned routes are as follows:

ρ(U1, U4) = (U1,M1,M2, U2, U3, U4)

ρ(M1,M4) = (M1,M2, D2, D3,M3,M4)

ρ(D1, D4) = (D1, D2, D3, U3, U4, D4) .

The route ρ(M1,M4) is illustrated by the dashed line in Fig. 1(a). Note that
in the original (underlying) network G, the connectivity of the extreme nodes
S and T is 3 under all three definitions. In contrast, the values of the three
connectivity parameters for the extreme nodes S and T in the overlay network
H under the routing scheme ρ are as follows:

– The edge-removal deep connectivity of s and t in H w.r.t. G and ρ is
ERDCG,ρ(s, t,H) = 2.
Indeed, disconnecting the underlying edge (D2, D3) plus any edge of the
upper underlying route will disconnect S from T .

– The path-disjoint deep connectivity of s and t in H w.r.t. G and ρ is
PDDCG,ρ(s, t,H) = 1.
Indeed, any two of the three overlay routes connecting S and T share an
underlying edge.

– The flow deep connectivity of s and t inH w.r.t.G and ρ is FDCG,ρ(s, t,H) =
3/2.
This is obtained by pushing 1/2 flow unit through each of the three overlay
routes.

For each deep connectivity (s, t)-parameter XG,ρ(s, t,H), we define the corre-
sponding all-pairs variant XG,ρ(H) = mins,t∈P XG,ρ(s, t,H). When G and ρ are
clear from the context, we may remove them from the corresponding subscripts.

3 In the setting of undirected graphs, flow may be interpreted in two different ways
depending on whether two flows along the same edge in opposite directions cancel
each other or add up. Here, we assume the latter interpretation which seems to be
more natural in the context of overlay networks.
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Fig. 1. (a) The underlying graph G. (b) The overlay network H .

1.3 Contribution

Our model for overlay networks makes it convenient to explore the discrepancies
between the different deep connectivity notions. Classical results from graph
theory, e.g., the fundamental min-cut max-flow theorem [8, 7] and Menger’s
theorem [13] state that the three connectivity parameters mentioned above are
equivalent when a single layer network is considered. Polynomial time algorithms
that compute these parameters (in a single layer network) were discovered early
[8, 5, 6] and have since become a staple of algorithms textbooks [3, 11]. As
mentioned above, previous results [12, 4], when translated to our model, have
shown that in multi-layer networks, two of the three connectivity parameters
are computationally hard and even hard to approximate. Our first technical
contribution is to expand on these negative results by showing that the path-
disjoint deep connectivity property cannot be approximated to any finite ratio
when attention is restricted to simple paths in the underlying graph.

On the positive side, we show that the flow deep connectivity parameters can
be computed in polynomial time (Sect. 3), thus addressing the motivation of [12]
for studying the disjoint paths property in overlay networks. Then, we address
the issue of constructing a “good” overlay graph for a given underlying graph
and routing scheme. As opposed to the difficulty of approximating the value of
the parameters, we show that the related construction problem can sometimes
be well approximated. Specifically, in Sect. 4, we investigate the problem of
constructing 2-edge removal deeply connected overlay graphs with as few as
possible (overlay) edges. This problem is shown to be NP-hard, but we show
that a logarithmic-approximation for it can be obtained in polynomial-time.

2 Hardness of Approximation

As mentioned earlier, Lee et al. [12] established hardness of approxima-
tion results for the problems of computing the parameters ERDCG,ρ(s, t,H),
PDDCG,ρ(s, t,H), and ERDCG,ρ(H). For completeness, we observe that the all-
pairs variant PDDCG,ρ(H) of the path-disjoint deep connectivity parameter is
also hard to approximate, establishing the following theorem, which is essentially
a corollary of Theorem 4 in [12] combined with a result of H̊astad [10].
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Theorem 1. Unless NP = ZPP, the problem of computing the parameter
PDDCG,ρ(H) cannot be approximated to within a ratio of |E (H)|1/2−ε for any
ε > 0.

We now turn to show that the following natural variants of the PDDC parameters
cannot be approximated to within any finite ratio. Let SPDDCG,ρ(s, t,H) denote
the size of the largest collection C of (s, t)-paths in H such that all paths π ∈ C
are implemented by simple paths ρ(π) in G and ρ(π) ∩ ρ(π′) = ∅ for every
π, π′ ∈ C with π �= π′; let SPDDCG,ρ(H) = mins,t∈P SPDDCG,ρ(s, t,H). Note
that these parameters are merely a restriction of the PDDC parameters to simple
paths (hence the name, which stands for simple path-disjoint deep connectivity).

The inapproximability of the SPDDCG,ρ(s, t,H) parameter is proved by re-
ducing the set packing problem to the problem of distinguishing between the case
SPDDCG,ρ(s, t,H) = 0 and the case SPDDCG,ρ(s, t,H) ≥ 1. In fact, the ver-
tices s, t ∈ V (H) that minimize SPDDCG,ρ(s, t,H) in this reduction are known
in advance, thus establishing the impossibility of approximating the all-pairs
parameter SPDDCG,ρ(H) as well. The proofs of the following two theorems are
deferred to the full version.

Theorem 2. Unless P = NP, the problem of computing the parameter
SPDDCG,ρ(s, t,H) cannot be approximated to within any finite ratio.

Theorem 3. Unless P = NP, the problem of computing the parameter
SPDDCG,ρ(H) cannot be approximated to within any finite ratio.

3 Efficient Algorithm for FDC

In this section, we develop a polynomial time algorithm that computes the flow
deep connectivity parameter FDC(s, t,H) (which clearly provides an efficient
computation of the parameter FDC(H) as well). Consider some underlying graph
G, routing scheme ρ, overlay graph H , and two vertices s, t ∈ V (H). Let P
denote the collection of all simple (s, t)-paths in H . For each path p ∈ P and for
each edge e ∈ E (G), let ψ(p, e) be the number of appearances of the edge e along
the image of p under ρ. We begin by representing the parameter FDC(s, t,H)
as the outcome of the following linear program:

max
∑

p∈P xp s.t.∑
p∈P ψ(p, e) · xp ≤ 1 ∀e ∈ E (G)

xp ≥ 0 ∀p ∈ P
The variable xp represents the amount of flow pushed along the image under ρ
of the path p for every p ∈ P . The goal is to maximize the total flow pushed
along the images of all paths in P subject to the constraints specifying that the
sum of flows pushed through any edge is at most 1. This linear program may
exhibit an exponential number of variables, so let us consider its dual program
instead:

min
∑

e∈E(G) ye s.t.∑
e∈E(G) ψ(p, e) · ye ≥ 1 ∀p ∈ P

ye ≥ 0 ∀e ∈ E (G)
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The dual program can be interpreted as fractionally choosing as few as possible
edges of G so that the image under ρ of every path p in P traverses in total at
least one edge. We cannot solve the dual program directly as it may have an
exponential number of constraints. Fortunately, it admits an efficient separation
oracle, hence it can be solved in polynomial time (see, e.g., [9]).

Given some real vector y indexed by the edges in E (G), our separation oracle
either returns a constraint which is violated by y or reports that all the con-
straints are satisfied and y is a feasible solution. Recall that a violated constraint
corresponds to some path p ∈ P such that

∑
e∈E(G) ψ(p, e) · ye < 1. Therefore

our goal is to design an efficient algorithm that finds such a path p ∈ P if such
a path exists.

Let w(e) =
∑

e′∈ρ(e) ye′ for every edge e ∈ E (H) and let H ′ be the weighted

graph obtained by assigning weight w(e) to each edge e ∈ E (H). The key ob-
servation in this context is that the (weighted) length of an (s, t)-path p′ in H ′

equals exactly to
∑

e∈E(G) ψ(p, e) ·ye, where p is the path in H that corresponds

to p′ in H ′. Therefore, our separation oracle is implemented simply by finding a
shortest (s, t)-path p∗ in H ′: if the length of p∗ is smaller than 1, then p∗ corre-
sponds to a violated constraint; otherwise, the length of all (s, t)-paths in H ′ is
at least 1, hence y is a feasible solution. This establishes the following theorem.

Theorem 4. The parameters FDCG,ρ(s, t,H) and FDCG,ρ(H) can be computed
in polynomial time.

4 Sparsest 2-ERDC Overlay Graphs

In this section, we are interested in the following problem, referred to as the
sparsest 2-ERDC overlay graph problem: given an underlying graph G, a peer
set P ⊆ V (G), and a routing scheme ρ : P × P → 2E(G), construct the spars-
est overlay graph H for P (in terms of number of overlay edges) satisfying
ERDCG,ρ(H) ≥ 2. Of course, one has to make sure that such an overlay graph
H exists, so in the context of the sparsest 2-ERDC overlay graph problem we
always assume that ERDCG,ρ(KP) ≥ 2, where KP is the complete graph on P .
This means that a trivial solution with

(
n
2

)
edges, where n = |P|, always exists

and the challenge is to construct a sparser one.

4.1 Hardness

We begin our treatment of this problem with a hardness result.

Theorem 5. The sparsest 2-ERDC overlay graph problem is NP-hard.

Proof. The assertion is proved by a reduction from the Hamiltonian path prob-
lem. Consider an n-vertex graph G0 input to the Hamiltonian path problem.
Transform it into an instance of the sparsest 2-ERDC overlay graph problem as
follows: Construct the underlying graph G by setting V (G) = V (G0) ∪ {x, y}
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and E (G) = E (G0) ∪ {(x, y)} ∪ {(v, x), (v, y) | v ∈ V (G0)} and let P = V (G0).
Define the routing scheme ρ by setting

ρ(u, v) =

{
(u, v) if (u, v) ∈ E (G0)
(u, x, y, v) otherwise.

This transformation is clearly polynomial in n.
We argue that G0 admits a Hamiltonian path if and only if there exists an

overlay graph H for P so that |E (H)| = n and ERDCG,ρ(H) ≥ 2. To that
end, suppose that G0 admits a Hamiltonian path π. If π can be closed to a
Hamiltonian cycle (in G0), then take H to be this Hamiltonian cycle. Otherwise,
take H to be the cycle consisting of π and a virtual edge connecting between
π’s endpoints. In either case, H clearly has n edges and by the design of ρ, H
satisfies ERDCG,ρ(H) = 2.

Conversely, if there exists an overlay graph H for P so that |E (H)| = n and
ERDCG,ρ(H) ≥ 2, then H must form a Hamiltonian cycle C in P × P . This
cycle can contain at most one virtual edge as otherwise, the removal of (x, y)
breaks two edges of C which means that ERDCG,ρ(H) < 2. By removing this
virtual edge, we are left with a Hamiltonian path in G0. ��

4.2 Constructing Sparse 2-ERDC Overlay Graphs

On the positive side, we develop a polynomial time logarithmic approximation
algorithm for the sparsest 2-ERDC overlay graph problem. Our algorithm pro-
ceeds in two stages: First, we take T to be an arbitrary spanning tree of P ×P .
Subsequently, we aim towards (approximately) solving the following optimiza-
tion problem, subsequently referred to as the overlay augmentation problem:
augment T with a minimum number of P×P edges so that the resulting overlay
graph H satisfies ERDCG,ρ(H) ≥ 2.

We will soon explain how we cope with this optimization problem, but first
let us make the following observation. Denote the edges in ρ(T ) by ρ(T ) =
{e1, . . . , e�} and consider some overlay graph H such that E (H) ⊇ T and some
1 ≤ i ≤ �. Let Fi(H) be the collection of connected components of the graph
obtained from H by removing all edges e ∈ E (H) such that ei ∈ ρ(e). Fix

κi(H) = |Fi(H)| − 1 and κ(H) =

�∑
i=1

κi(H) .

We think of κ(H) as a measure of the distance of the overlay graphH from being
a feasible solution to the overlay augmentation problem (i.e., ERDC(H) ≥ 2).

Proposition 1. An overlay graph H ⊇ T satisfies ERDC(H) ≥ 2 if and only
if κ(H) = 0.

Proof. If ERDC(H) ≥ 2, then Fi(H) must consist of a single connected compo-
nent for every 1 ≤ i ≤ �, thus κ(H) = 0. Conversely, if κ(H) = 0, then necessarily
|Fi(H)| = 1 for every 1 ≤ i ≤ �, which means that H does not disconnect by
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the removal of any edge ei ∈ ρ(T ). It is also clear that the removal of any edge
in E (G) − ρ(T ) does not disconnect H as the tree T remains intact. Therefore,
ERDC(H) ≥ 2. ��
Consider some edge e ∈ (P×P)−E (H) and let H∪{e} denote the overlay graph
obtained from H by adding the edge e. By the definition of the parameter κ, we
know that Δi(e,H) = κi(H) − κi(H ∪ {e}) is either 0 or 1 for any 1 ≤ i ≤ �.

Fixing Δ(e,H) = κ(H)−κ(H ∪{e}), we observe that: Δ(e,H) =
∑�

i=1 Δi(e,H)
referred to as Property (�).

We are now ready to complete the description of our approximation algorithm.
Starting from H = T , the algorithm gradually adds edges to H as long as
κ(H) > 0 according to the following greedy rule. At any intermediate step, we
add to H an edge e ∈ (P ×P)−E (H) that yields the maximum Δ(e,H). When
κ(H) decreases to zero, the algorithm terminates (recall that this means that
ERDC(H) ≥ 2).

The analysis of our approximation algorithm relies on the following
proposition.

Proposition 2. The parameter κ can be computed in polynomial time. More-
over, for every two overlay graphs H1, H2 such that E (H1) ⊆ E (H2), we have

(1) κ(H1) ≥ κ(H2); and
(2) Δ(e,H1) ≥ Δ(e,H2) for every edge e ∈ P × P.

Proof. The fact that κ can be computed efficiently and the fact that κ(H1) ≥
κ(H2) are clear from the definition of κ, so our goal is to prove that Δ(e,H1) ≥
Δ(e,H2) for every e ∈ P × P . By Property (�), it suffices to show that
Δi(e,H1) ≥ Δi(e,H2) for every 1 ≤ i ≤ �. If Δi(e,H2) = 0, then this holds
vacuously, so suppose that Δi(e,H2) = 1. This means that ei /∈ ρ(e) and the
endpoints of e belong to different connected components in Fi(H2). But since
E (H1) ⊆ E (H2), it follows that the endpoints of e must also belong to different
connected components in Fi(H1), hence Δi(e,H1) = 1 as well. ��
Proposition 2 implies that the overlay augmentation problem falls into the class
of submodular cover problems (cf. [17, 1]) and our greedy approach is guaranteed
to have an approximation ratio of at most ln(κ(T )) + 1 = O(logN), where
N = |V (G)|. More formally, letting Ĥ be a sparsest overlay graph such that
Ĥ ⊇ T and ERDC(Ĥ) ≥ 2, it is guaranteed that the overlay graph H generated
by our greedy approach satisfies |E (H)− T | ≤ O(logN) · |E (Ĥ)− T |.

To conclude the analysis, let H∗ be an optimal solution to the sparsest 2-
ERDC overlay graph problem. Clearly, |E (H∗)| > n− 1 = |T |. Moreover, since
E (H∗)∪T is a candidate for Ĥ , it follows that |E (H∗)∪T | ≥ |Ĥ |, thus |E (H∗)| ≥
|E (Ĥ)− T |. Therefore,

|E (H)| ≤ O(logN) · |E (Ĥ)− T |+ |T |
≤ O(logN) · |E (H∗)|+ |E (H∗)|
= O(log(N) · |E (H∗)|)

which establishes the following theorem.
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Theorem 6. The sparsest 2-ERDC overlay graph problem admits a polynomial-
time logarithmic-approximation.
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Abstract. The notion of duty cycling is common in problems which seek
to maximize the lifetime of a wireless sensor network. In the duty cycling
model, sensors are grouped into shifts that take turns covering the region
in question, and each sensor can belong to at most one shift. We consider
the imposition of the duty cycling model upon the Strip Cover prob-
lem, where we are given n sensors on a one-dimensional region, and each
shift can contain at most k ≤ n sensors. We call the problem of finding
the optimal set of shifts so as to maximize the length of time that the en-
tire region can be covered by a wireless sensor network, k-Duty Cycle

Strip Cover (k-DutySC). In this paper, we present a polynomial-time
algorithm for 2-DutySC. Furthermore, we show that this algorithm is
a 35

24
-approximation algorithm for k-DutySC. We also give two lower

bounds: 15
11
, for k ≥ 4, and 6

5
, for k = 3, and provide experimental evi-

dence suggesting that these lower bounds are tight. Finally, we propose
a fault tolerance model and find thresholds on the sensor failure rate,
over which our algorithm has the highest expected performance.

1 Introduction

We consider the following problem: Suppose we have a one-dimensional region
(or interval) that we wish to cover with a wireless sensor network. We are given
the locations of n sensors located on that interval, and each sensor is equipped
with an identical battery of finite charge. We have the ability to set the sensing
radius of each sensor, but its battery charge drains in inverse proportion to the
radius that we set. Our goal is to organize the sensors into disjoint coverage
groups (or shifts), who will take turns covering the entire region for as long as
possible. We call this length of time the lifetime of the network.

More specifically, we consider the Strip Cover problem with identical bat-
teries under a duty cycling restriction. An instance consists of a set X ⊂ [0, 1]
of n sensor locations, and a rational number B representing the initial battery
charge of each sensor. Each battery discharges in inverse linear proportion to
its radius, so that a sensor i whose radius is set to ri survives for B/ri units of
time. In the duty cycling model, the sensors are partitioned into disjoint coverage
groups, called shifts, which take turns covering the entire interval for as long as

G. Even and M.M. Halldórsson (Eds.): SIROCCO 2012, LNCS 7355, pp. 36–47, 2012.
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their batteries allow. The sum of these lengths of time is called the lifetime of the
network and is denoted by T . For any fixed k ≤ n, the k-Duty Cycle Strip

Cover (k-DutySC) problem seeks an optimal partitioning of the sensors such
that the network lifetime T is maximized, yet no coverage group contains more
than k sensors. In the fault tolerant variant, each sensor may fail to activate with
some fixed probability p ∈ [0, 1], and we seek to maximize the expected lifetime
of the network (i.e., the expected sum of lifetimes of surviving shifts).

Solutions to the general Strip Cover problem contain both the radial as-
signments and activation and de-activation times for each sensors. As a result,
these solutions can be complicated to implement and understand. Moreover, in-
terdependence among multiple sensors can make such solutions susceptible to
catastrophic decline in network lifetime if there is a non-zero probability of sensor
failure. Conversely, since in the duty cycling model each sensor can participate
in at most one cover, the scheduling of the covers is of little importance. Fur-
thermore, by minimizing the number of sensors participating in each cover, duty
cycling solutions can be insulated from the risk imposed by sensor failure.

Related Work. This line of research began with Buchsbaum, et al.’s [5] study of
the Restricted Strip Cover (RSC) problem. In RSC, the locations and sens-
ing radii of n sensors placed on an interval are given, and the problem is to com-
pute an optimal set of activation times, so as to maximize the network lifetime.
They showed that RSC is NP-hard, and presented an O(log logn)-approximation
algorithm. Gibson and Varadarajan [11] later improved on this result by discov-
ering a constant factor approximation algorithm.

The problem of finding the optimal set of radial assignments for sensors de-
ployed on an interval, rather than the activation times, is more tractable. Pe-
leg and Lev-Tov [12] considered the problem of covering a finite set of m tar-
get points while minimizing the sum of the radii assigned, and found an opti-
mal polynomial-time solution via dynamic programming. The situation wherein
the whole interval must be covered corresponds to a “one shift” version of n-
DutySC, wherein the restriction is not upon the size of each shift, but upon
the number of shifts. Bar-Noy, et al. [4] provided an optimal polynomial-time
algorithm for this problem.

The interest in duty cycling developed in part from the introduction of the
Set k-Cover problem by Slijepcevic and Potkonjak [16]. This problem, which
they showed to be NP-hard, seeks to find at least k disjoint covers among a
set of subsets of a base set. Perillo and Heinzelman [15] considered a variation
in which each sensor has multiple modes. They translated the problem into a
generalized maximum flow graph problem, and employed linear programming to
find a optimal solution. Abrams, et al. [1] provided approximation algorithms
for a modification of the problem in which the objective was to maximize the
total area covered by the sensors. Cardei et al. [6,7,8] considered adjustable
range sensors, but also sought to maximize the number of non-disjoint set covers
over a set of target coverage points. The work of Pach and Tóth [13,14] also
has applications in this context. They showed that a k-fold cover of translates
of a centrally-symmetric open convex polygon can be decomposed into Ω(

√
k)
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covers. Aloupis, et al. [2] improved this to the optimal Ω(k) covers, and the
centrally-symmetric restriction was later lifted by Gibson and Varadarajan [11].
In each of the above cases, the concept of finding many disjoint set covers, which
can be seen as shifts, is used as a proxy for maximizing network lifetime.

Finally, the general Strip Cover problem, in which each sensor has a dif-
ferent battery charge, was defined by Bar-Noy, et al. [4]. They did not consider
duty cycling, but instead focused on the more general Set Once Strip Cover

(OnceSC) problem, in which the radius and activation time of each sensor can
be set only once. They showed thatOnceSC is NP-hard, and thatRoundRobin

(sensors take turns covering the entire interval) is a 3
2 -approximation algorithm

for both OnceSC and Strip Cover. Bar-Noy and Baumer also analyzed non-
duty cycling algorithms for Strip Cover with identical batteries [3]. The Con-

nected Range Assignment problem studied by Chambers, et al. [9], wherein
the goal is to connect a series of points in the plane using circles, is also re-
lated. They presented approximation bounds for solutions using a fixed number
of circles, which is similar to limiting shift sizes.

Our Results. In Section 2, we define the class of k-DutySC problems, and
present the trivial solution to 1-DutySC. We present a polynomial-time al-
gorithm, which we call Match, for 2-DutySC in Section 3. In Section 4, we
compare the performance of RoundRobin to an algorithm that uses only a
single shift. We prove that when the sensors are equi-spaced on the coverage
interval, RoundRobin performs most poorly in comparison to the one shift al-
gorithm. Then we study the performance of RoundRobin on these “perfect”
deployments. This study is used to analyze Match in k-DutySC, but is of
independent interest, since perfect deployments are the most natural. In Sec-
tion 5 we show that Match is a 35

24 -approximation algorithm for k-DutySC.
We also give two lower bounds: 15

11 , for k ≥ 4, and 6
5 , for k = 3, and provide

experimental evidence suggesting that these lower bounds are tight. In the full
version we consider a fault tolerance model, and show that if the failure rate of
each sensor is sufficiently high, Match becomes optimal. We contend that even
if the approximation ratio of k-DutySC for k ≥ 3 is improved, Match will be
of interest, due to its simplicity, performance, and fault tolerance.

2 Preliminaries

Duty Cycles. Let U = [0, 1] be the interval that we wish to cover, and let
X = {x1, . . . , xn} ∈ Un be a set of n sensor locations. We assume that xi ≤ xi+1,
for every i ∈ {1, . . . , n− 1}. We first assume that all sensors have unit capacity
batteries. We will justify this assumption later.

A pair (C, t), where C ⊆ X is a subset of k sensor locations and t ≥ 0, is
called a k-duty cycle (or simply a duty cycle, or a shift). The sensors in C are
activated at the same time and are deactivated together after t time units. A
duty cycle (C, t) is feasible if the sensors in C can cover the interval [0, 1] for
the duration of t time units. More specifically, a sensor i such that xi ∈ C is
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assigned a radius 1/t and covers the range [xi−1/t, xi+1/t], and the duty cycle
is feasible if [0, 1] ⊆

⋃
i∈C [xi − 1/t, xi + 1/t].

Let All(C) denote the maximum t for which (C, t) is feasible. All(C) is
called the lifetime of C. Given a duty cycle C = {xi1 , . . . , xik} define

dj
�
=

⎧⎪⎨⎪⎩
2xi1 j = 0,

2(1− xik ) j = k,

xij+1 − xij otherwise,

and Δ
�
= max

j
{dj} .

Observation 1 All(C) = 2
Δ .

Proof. The maximum lifetime of C is at least 2
Δ , since the radial assignment

ri =
Δ
2 covers [0, 1]. However, if All(C) > 2

Δ , then ri <
Δ
2 , for every i. Hence,

[0, 1] is not covered. ��

In light of Observation 1, it suffices to refer to any subset C ⊆ X as a shift, with
a corresponding lifetime that is inferred from All(C).

Problems. k-Duty Cycle Strip Cover (k-DutySC) is defined as follows.
The input is a set X = {x1, . . . , xn} ∈ Un of sensor locations. A solution
(or schedule) is a partition of X into m non-empty pairwise disjoint subsets
C1, . . . , Cm ⊆ X such that |Cj | ≤ k, for every j. The goal is to find a solution
that maximizes

∑
j All(Cj). Thus, a solution to DutySC consists of a partition

of X into shifts, where each shift employs All to achieve optimal lifetime.
Note that All(C), for any shift C, and hence the maximum lifetime are

multiplied by a factor of B, if all sensors have batteries with capacity B. Hence,
throughout the paper we assume that all sensors have unit capacity batteries.

The optimal lifetime for k-DutySC is denoted by Optk. The best possible
lifetime of a k-DutySC instance X , for any k, is 2n.

Observation 2 Optk(X) ≤ 2n, for every k.

Proof. Consider a schedule C1, . . . , Cm and let Δi correspond to Ci. The min-
imum possible value of Δi is 1/|Ci|, for every i. By Observation 1 we get that
All(Ci) ≤ 2

Δi
≤ 2|Ci|. The observation follows from the fact that each of the n

sensors is used in exactly one shift. ��

Perfect Deployment. Define X∗
n =

{
2i−1
2n : i ∈ {1, . . . , n}

}
=

{
1
2n ,

3
2n , . . . ,

2n−1
2n

}
. We refer to X∗

n as the perfect deployment since the n-
DutySC lifetime of X∗

n is 2n, namely All(X∗
n) = 2n.

Round Robin. In 1-DutySC each sensor must work alone, therefore there is
only one possible solution: Ci = {i}, for every i. Observe that this solution is
valid for k-DutySC, for every k. We refer to the algorithm that generates this
solution as RoundRobin. Observe that the RoundRobin lifetime is given by

RR(X) =
∑

i ti, where ti
�
= All(Ci) = max{1/xi, 1/(1−xi)} by Observation 1.



40 A. Bar-Noy, B. Baumer, and D. Rawitz

Bar-Noy, et al. [4] showed that RoundRobin is a 3
2 -approximation algorithm

for Strip Cover. Since RoundRobin schedules are duty cycle schedules and
any k-DutySC schedule is also a Strip Cover schedule, it follows that

Theorem 1. RoundRobin is a 3
2 -approximation algorithm for k-DutySC, for

every k ≥ 2.

The above ratio is tight due to the instance X∗
2 =

{
1
4 ,

3
4

}
as shown in [3].

3 Strip Cover with Shifts of Size 2

We present a polynomial-time algorithm for solving 2-DutySC. The algorithm is
based on a reduction to the Maximum Weight Matching problem in bipartite
graphs that can be solved in O(n2 logn+ nm) in graphs with n vertices and m
edges (see, e.g., [10]).

Theorem 2. 2-DutySC can be solved in polynomial time.

Proof. Given a 2-DutySC instance X , we construct a bipartite graph G =
(L,R,E) as follows: L = {vi : i ∈ {1, . . . , n}}, R = {v′i : i ∈ {1, . . . , n}}, and
E =

{
(vi, v

′
j) : i ≤ j

}
. The weight of an edge e = (vi, v

′
j) is defined as w(e) =

RR(xi), if i = j, and w(e) = All({xi, xj}), if i < j. Observe that a 2-DutySC

solution C1, . . . , Cm for X induces a (perfect) matching whose weight is the
lifetime of the solution. Also, a matching M ⊆ E induces a 2-DutySC solution
whose lifetime is the weight of the matching. Hence, the weight of a maximum
weight matching in G is the optimal 2-DutySC lifetime of X . ��

The algorithm that is described in the theorem is henceforth referred to as
Algorithm Match.

4 Round Robin vs. All

Assume we are given a set X of k sensors. In this section we compare RR(X)
to All(X). This comparison will be used in the next section to analyze Algo-
rithm Match for k-DutySC.

Define γ(X)
�
= RR(X)

All(X) . We look for a lower bound on minX:|X|=k γ(X). Due to

Theorem 1 it follows that γ(X) ≥ 2
3 , for any set X of k sensors. In what follows,

we prove the stronger result that the placement that minimizes the ratio is
the perfect deployment, namely X∗

k . Notice that this is true for k = 2, since
γ(X∗

2 ) =
2
3 . (Using Theorem 1 is not essential, but it simplifies our analysis.)

4.1 Stretching the Instance

Our first step is to transform X into an instance X ′ for which γ(X ′) ≤ γ(X)
by pushing sensors away from 1

2 so that all internal gaps are of size Δ. (See
Section 2 for the definition of Δ.) If a sensor needs to be moved to the left of 0,
it is placed at 0, and if it needs to move to the right of 1, it is placed at 1.
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Definition 1. For a given instance X, let j be the sensor whose location is
closest to 1

2 . Then we define the stretched instance X ′ of X as follows:

x′
i =

⎧⎪⎨⎪⎩
max{0, xj − (j − i)Δ} i < j,

xj i = j,

min{1, xj + (i− j)Δ} i > j.

Lemma 3. Let X ′ be the stretched instance of X. Then, γ(X ′) ≤ γ(X).

Proof. Sensors only get pushed away from 1
2 , and thus their RoundRobin life-

time only decreases. Thus, RR(X ′) ≤ RR(X). By definition, Δ must equal
either d0, dn or the length of the largest internal gap in X . However neither d0
nor dn can be larger in X ′ than it was in X , since no sensors move closer to
1
2 . Moreover, by construction the length of the largest internal gap in X ′ is Δ.
Hence Δ′ ≤ Δ, and All(X ′) ≥ All(X). ��

4.2 Perfect Deployment Is the Worst

By Lemma 3, it suffices to consider only stretched instances. The next step is to
show that the worst stretched instance is in fact the perfect deployment.

Given a stretched instanceX ′ with k sensors, let kout be the number of sensors

located on either 0 or 1, and let kin
�
= k−kout be the number of sensors in (0, 1).

Notice that kin ≥ 1. Also notice that if k = 1, then RR(X ′) = All(X ′), and
recall that γ(X) ≥ 2

3 = γ(X∗
2 ). Therefore we may assume that k = kin+kout ≥ 3.

Let a and b be the gaps between 0 and the leftmost sensor not at 0, and 1 and
the rightmost sensor not at 1, respectively. For reasons of symmetry we assume,
w.l.o.g., that a ≤ b. Hence, 	kin/2
 sensors are located in (0, 1

2 ] and �kin/2�
sensors are located in (12 , 1).

The stretched deployment X ′ can be described as follows:

X ′ =
{
0	kout/2
, a, a+Δ′, . . . , a+ (kin − 1)Δ′ = 1− b, 1�kout/2�

}
Note that Δ′ = 1−a−b

kin−1 , if kin ≥ 2. Otherwise, if kin = 1, then kout > 1 and
Δ′ = b. The RoundRobin lifetime of X ′ is:

RR(X ′) = kout +

�kin/2�−1∑
i=0

1

1− (a+ iΔ′)
+

	kin/2
−1∑
i=0

1

1− (b+ iΔ′)
. (1)

We distinguish three cases:

1. X ′ = {a, a + Δ′, . . . , a + (kin − 1)Δ′ = 1 − b}, where a ∈ [0, Δ′/2] and
b ∈ (0, Δ′/2].

Let Ω0 be the set of all such instances. Note that kout = 0, if a > 0, and
that kout = 1, if a = 0. However, notice that (1) holds if we use kout = 0,
even for the case where a = 0.
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2. X ′ = {a, a + Δ′, . . . , a + (kin − 2)Δ′ = 1 − b, 1}, where a ∈ [0, Δ′/2], b ∈
[Δ′/2, Δ′].

Let Ω1 be the set of all such instances. Note that kout = 1, if a > 0, and
that kout = 2, if a = 0. However, notice that (1) holds if we use kout = 1,
even for the case where a = 0.

3. X ′ =
{
0	kout/2
, a, a+Δ′, . . . , a+ (kin − 1)Δ′ = 1− b, 1�kout/2�

}
, where

a, b ∈ [0, Δ′] and kout ≥ 2.
Let Ωkout be the set of all such instances that correspond to kout. Note that
if a = 0, (1) holds if we use kout + 1 in place of kout and a = Δ′.

Lemma 4. γ(X ′) has no local minima in Ωkout , for any kout.

Proof. First assume that kin ≥ 2. Due to (1) and Observation 1 we have that

γ(X ′) =
Δ′

2

⎡⎣kout + �kin/2�−1∑
i=0

1

1− (a+ iΔ′)
+

	kin/2
−1∑
i=0

1

1− (b + iΔ′)

⎤⎦
=

kout
2

·Δ′ +

�kin/2�−1∑
i=0

f
(i)
kin

(a, b) +

	kin/2
−1∑
i=0

f
(i)
kin

(b, a) ,

where f
(i)
kin

(a, b) = Δ′
2−2(a+iΔ′) . Since

∂Δ′
∂a = − 1

kin−1 , it follows that

∂f
(i)
kin

(a, b)

∂a
=

(2− 2(a+ iΔ′))(∂Δ∂a )−Δ(−2− 2i∂Δ
′

∂a )

(2 − 2(a+ iΔ′))2

=
2
(
∂Δ′
∂a (1 − a) +Δ′

)
4(1− (a+ iΔ′))2

=
1

2(kin − 1)
· −b

(g
(i)
kin

(a, b))2
,

where g
(i)
kin

(a, b) = 1− (a+ iΔ′). Thus,

∂γ(X ′)
∂a

=
−kout

2(kin − 1)
+

1

2(kin − 1)

⎡
⎣

�kin/2�−1∑
i=0

−b

(g
(i)
kin

(a, b))2
+

�kin/2�−1∑
i=0

−a

(g
(i)
kin

(b, a))2

⎤
⎦ .

Since a = b = kout = 0 is not possible for any domain Ωkout , we have that
∂γ(X′)

∂a < 0. Hence γ(X ′) decreases as a increases. An analogous calculation

shows that the same is true for ∂γ(X′)
∂b . Thus, since neither ∂γ(X′)

∂a nor ∂γ(X′)
∂b

can be zero at any point in the interior of the domain Ωkout , γ(X
′) has no local

minima. Finally, any minima must occur when both a and b are as large as
possible within the domain Ωkout .

It remains to consider the case where kin = 1. Since kout > 1, we have
that Δ′ = b. Hence, γ(X ′) = b

2

(
kout +

1
b

)
= 1

2 (bkout + 1), which means that
∂γ(X′)

∂b > 0. Hence, γ(X ′) decreases as b decreases. It follows that the minima
occurs when a = b = 1

2 . ��
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Let γ∗
k = γ(X∗

k). We show that, for any fixed k, γ(X) reaches its minimum at
X = X∗

k .

Theorem 3. minX:|X|=k γ(X) = γ∗
k .

Proof. We prove that minX∈Ωkout
γ(X) ≥ γ∗

k by induction on kout.
For the base case, if X ′ ∈ Ω0, then by Lemma 4, γ(X ′) achieves its minimum

on the boundary of Ω0, when a and b are as large as possible, namely for a =
b = Δ/2. In this case, X ′ = X∗

k . Thus, for all X
′ ∈ Ω0, γ(X

′) > γ∗
k if X �= X∗

k .
For the inductive step, let X ∈ Ωkout , for kout ≥ 1, and assume that

minX∈Ωkout−1
γ(X) ≥ γ∗

k . By Lemma 4 it follows that γ(X ′) achieves its mini-
mum on the boundary of Ωkout . If kout = 1 (and kin ≥ 2), then the minimum is
when a = Δ/2 and b = Δ, namely for X ′ = {Δ

2 ,
3Δ
2 , . . . , 1−Δ, 1}. By symmetry,

this instance has the same ratio as the instance X ′′ = {1− x : x ∈ X ′}, which is
in Ω0 with parameters a = 0 and b = Δ

2 . If kout > 1, then the minimum is when
a = Δ and b = Δ. In this case X ′ ∈ Ωkout−1 with parameters a = 0 and b = Δ.
Hence by the induction hypothesis we have that γ(X ′) ≥ γ∗

k . ��

4.3 Properties of γ∗
k

We explore γ∗
k as a function of k. Observe that for even k we have that

γ∗
k =

1

2k
· 2

k/2∑
i=1

2k

2k + 1− 2i
= 2

k/2∑
i=1

1

2k + 1− 2i
= 2

k∑
i=k/2+1

1

2i− 1
,

and for odd k we have that

γ∗
k =

1

2k

⎡⎣2 + 2

(k−1)/2∑
i=1

2k

2k + 1− 2i

⎤⎦ =
1

k
+ 2

k−1∑
i=(k+1)/2

1

2i+ 1
.

Lemma 5. γ∗
k satisfies the following: (i) γ∗

k ≤ γ∗
k+2, for every even k. (ii) γ∗

k ≥
γ∗
k+2, for every odd k. (iii) γ∗

k ≥ γ∗
k+1, for every odd k.

Proof. Due to the convexity of the function f(z) = 1
z , we have that for even k,

γ∗
k+2 − γ∗

k = 2

k+2∑
i=k/2+2

1

2i− 1
− 2

k∑
i=k/2+1

1

2i− 1
=

2

2k + 3
+

2

2k + 1
− 2

k + 1
> 0 .

and by the same rationale, for odd k,

γ∗
k − γ∗

k+2 =

⎛⎝1

k
+ 2

k−1∑
i=(k+1)/2

1

2i+ 1

⎞⎠−

⎛⎝ 1

k + 2
+ 2

k+1∑
i=(k+1)/2+1

1

2i+ 1

⎞⎠
=

1

k
+

1

k + 2
− 2

2k + 1
− 2

2k + 3

> 0 .
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k γ∗
k Approx

1 1 1
2 2

3
0.6667

3 11
15

0.7333
4 24

35
0.6857

5 223
315

0.7079
6 478

693
0.6898

7 6313
9009

0.7007
8 4448

6435
0.6912

...
...

...
∞ ln 2 0.6931

(a) Exact and approxi-
mate values of γ∗

k .
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(b) γ∗
k is an alternating sequence that converges to ln 2

Fig. 1. Tabular and graphical representation of small values of γ∗
k

Finally, for odd k,

γ∗
k − γ∗

k+1 =
1

k
+ 2

k−1∑
i=(k+1)/2

1

2i+ 1
− 2

k+1∑
i=(k+1)/2+1

1

2i− 1
=

1

k
− 2

2k + 1
> 0 .

��

Lemma 6. limk→∞ γ∗
k = ln 2.

Proof. Observe that for both even and odd k’s we have that γ∗
k ≥

∑2k
i=k+1

1
i =

H2k − Hk and γ∗
k ≤

∑2k−1
i=k

1
i = H2k−1 − Hk−1, where Hk the kth Harmonic

number. It follows that limk→∞ γ∗
k = limk→∞(H2k −Hk) = ln 2. ��

The table in Figure 1(a) contains several values of γ∗
k , whose convergence is also

depicted graphically in Figure 1(b).

5 Strip Cover with Shifts of Size k

In this section we analyze the performance of Match in k-DutySC for k ≥
3. Recall that Algorithm Match finds the best solution among those using
shifts of size at most 2. Since Match is more powerful than RoundRobin,
its approximation ratio is at most 3

2 = 1.5 (by Theorem 1). We show that the
approximation ratio of Match is at most 35

24 ≈ 1.458. We also provide lower
bounds: 15

11 ≈ 1.364 for k ≥ 4, and 6
5 = 1.2, for k = 3. At the end of the section

we discuss ways to improve the analysis of Match.
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Upper Bound. We use our analysis of RoundRobin vs. All to obtain an
upper bound on the performance of Match for k-DutySC.

Theorem 4. Match is a 35
24 -approximation algorithm for k-DutySC, for every

k ≥ 3.

Proof. LetX be a k-DutySC instance and let C1, . . . , Cm be an optimal solution
for X . Since for every Cj with |Cj | ≤ 2, Match(Cj) = Optk(Cj), we construct
an alternative solution by splitting to singletons every subset Cj such that |Cj | >
2. For any such Cj , by Theorem 3 we know that RR(Cj) ≥ γ∗

Cj
All(Cj), and by

Lemma 5 we know that γ∗
Cj

≥ mink≥3 γ
∗
k = γ∗

4 = 24
35 . The lemma follows. ��

We can generalize this approach to find upper bounds on the performance of
Optk in n-DutySC, for k ≤ n.

Lemma 7. Optk(X) ≥ γ∗
�Optn(X), where � is the smallest even integer larger

than k.

Hence, the approximation ratio of an algorithm that solves k-DutySC is at most
1/γ∗

� . Lemma 6 implies that the least upper bound achievable via this technique
is 1/ ln 2 ≈ 1.4427.

Lower Bounds. We show that the approximation ratio of Match is at least
15
11 , for k ≥ 4, and at least 6

5 , for k = 3. The proofs are omitted for lack of space.

Lemma 8. Match(X∗
4 ) =

11
15Optk(X

∗
4 ), for every k ≥ 4, and Match(X∗

3 ) =
5
6Optk(X

∗
3 ).

We conjecture that Lemma 8 is tight.
For some positive integer d, let Dd = { i

d : i ∈ {0, 1, . . . , d}} be a discretization
of [0, 1]. Clearly, as d → ∞, D becomes a close approximation of [0, 1]. Using
brute force, we checked all 680 possible instances in D3

16 and all 2380 possible
instances in D4

16, and found no instance X for which Match(X) < 5
6Opt3(X)

in the first case, nor any for which Match(X) < 11
15Opt4(X) in the second case.

Again, due to Lemma 5, we can generalize Lemma 8 to find lower bounds on
the performance of Optk in n-DutySC.

Lemma 9. For every � ≤ n, Optk(X) ≥ Optk(X
∗
� )

2� ·Optn(X).

Note that For k = 1, 2 we recover the 2
3 and 11

15 bounds demonstrated previously.

Asymptotics. One way to improve the analysis of Algorithm Match would
be to first prove that perfect deployments are worst with respect to Match (as
they are with respect to RoundRobin), and then to analyze γ2

k = Match(X∗
k )/

All(X∗
k).

Our experiments show that γ2
k seem to converge to approximately 0.816, which

is significantly higher than limk→∞ γ∗
k = ln 2 ≈ 0.693. See Figure 2.

We would like to evaluate limk→∞ γ∗
2 . However, since Match explicitly eval-

uates each pair of sensors, it is not a simple algorithm. Nevertheless, we obtain
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Fig. 2. Performance of RoundRobin, Match, Sweep, and Nest compared to All on
perfect deployments

lower bounds on the limit by analyzing simple heuristics. For a given instance X ,
let L = X∩[0, 13 ], M = X∩(13 ,

2
3 ), and R = X∩[ 23 , 1]. Note that |L| = |R| for the

perfect deployment instance X∗
k of any size. Consider the following heuristics:

– Sweep: Sensors in L and R are paired to create shifts of size two, starting
with the leftmost sensor in L and the leftmost sensor in R. Any remaining
sensors are put in size one shifts.

– Nest: Sensors in L and R are paired to create shifts of size two, starting
with the leftmost sensor in L and the rightmost sensor in R. Any remaining
sensors are put in size one shifts.

Note that these heuristics return valid (albeit suboptimal) 2-DutySC solutions.
Using similar arguments as in Section 4.3 we can show that:

Sweep(X∗
n)

All(X∗
n)

≈ 1/2 +H4n/3 −Hn →
n→∞

0.788

Nest(X∗
n)

All(X∗
n)

≈ (Hn −Hn/2)/2 + (H2k/3 −Hk/2)/2 + (H4n/3 −Hn) →
n→∞

0.778

A comparison of the performance of both Sweep and Nest on perfect deploy-
ments to the performance of All is given in Figure 2.

6 Discussion and Open Problems

While 1-DutySC can be solved trivially by RoundRobin, and we have shown
that 2-DutySC can be solved in polynomial time using Algorithm Match, it
remains open whether k-DutySC is NP-hard, for k ≥ 3. It would also be inter-
esting to close the gap between the upper and lower bounds on the approximation
ratio of Match, for k ≥ 3. We offered one possible direction to improving the
upper bound in Section 5.

In this paper, we have assumed that: (i) the initial battery charge of each
sensor is identical; and (ii) the battery charge in each sensor drains in inverse
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linear proportion to its assigned radius. Two natural extensions of our work
would be to allow the initial battery charges to differ, and to allow the latter
proportion to vary according to some exponent α �= 1.

Finally, while we have restricted our attention to a one-dimensional coverage
region, one could consider a variety of similar problems in higher dimensions. For
example, one might keep the sensor locations restricted to the line, but consider
a two-dimensional coverage region. Conversely, the sensors could be located in
the plane, while the coverage region remains one-dimensional. Of course, an even
more general problem would allow both the sensor locations and the coverage
region to be two-dimensional.
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Abstract. We show that for any α > 1 there exists a deterministic
distributed algorithm that finds a fractional graph colouring of length at
most α(Δ + 1) in any graph in one synchronous communication round;
here Δ is the maximum degree of the graph. The result is near-tight, as
there are graphs in which the optimal solution has length Δ+ 1.

The result is, of course, too good to be true. The usual definitions of
scheduling problems (fractional graph colouring, fractional domatic par-
tition, etc.) in a distributed setting leave a loophole that can be exploited
in the design of distributed algorithms: the size of the local output is not
bounded. Our algorithm produces an output that seems to be perfectly
good by the usual standards but it is impractical, as the schedule of each
node consists of a very large number of short periods of activity.

More generally, the algorithm shows that when we study distributed
algorithms for scheduling problems, we can choose virtually any trade-
off between the following three parameters: T , the running time of the
algorithm, �, the length of the schedule, and κ, the maximum number of
periods of activity for a any single node. Here � is the objective function
of the optimisation problem, while κ captures the “subjective” quality
of the solution. If we study, for example, bounded-degree graphs, we can
trivially keep T and κ constant, at the cost of a large �, or we can keep
κ and � constant, at the cost of a large T . Our algorithm shows that yet
another trade-off is possible: we can keep T and � constant at the cost
of a large κ.

1 Introduction

In the study of deterministic distributed algorithms, it is commonly assumed
that there are unique numerical identifiers available in the network: in an n-
node network, each node is labelled with a unique O(log n)-bit number.

In the general case, numerical identifiers are, of course, very helpful—many
fast distributed algorithms crucially depend on the existence of numerical iden-
tifiers, so that they can use the Cole–Vishkin technique [2] and similar tricks.
However, when we move towards the fastest possible distributed algorithms, the
landscape looks very different.
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1.1 Local Algorithms and Numerical Identifiers

We focus on local algorithms [8,11], i.e., distributed algorithms that run in con-
stant time (a constant number of communication rounds), independently of the
size of the network. In this context, it is no longer obvious if unique identifiers
are of any use:

1. In their seminal work, Naor and Stockmeyer [8] prove that there is a class of
problems—so-called LCL problems—that do not benefit from unique numer-
ical identifiers: if an LCL problem can be solved with a local algorithm, it
can also be solved with an order-invariant local algorithm. Order-invariant
algorithms do not exploit the numerical value of the identifier; they merely
compare the identifiers with each other and use the relative order of the
identifiers.

2. More recently, Göös et al. [3] have shown that for a large class of optimisa-
tion problems—so-called PO-checkable problems—local algorithms do not
benefit from any kind of identifiers: if a PO-checkable optimisation prob-
lem can be approximated with a local algorithm, the same approximation
factor can be achieved in anonymous networks if we are provided with a
port-numbering and an orientation.

While the precise definitions of LCL problems and PO-checkable problems are
not important here, they both share the following seemingly technical require-
ment: it is assumed that the size of a local output is bounded by a constant.
That is, for each node in the network, there is only a constant number of possi-
ble local outputs, independently of the size of the network. However, previously
it has not been known whether this is a necessary condition or merely a proof
artefact—while contrived counter-examples exist, natural counter-examples have
been lacking.

1.2 Contributions

In this work we provide the missing piece of the puzzle: we show that the con-
dition is necessary, even if we focus on natural graph problems and natural en-
codings of local outputs. More precisely, we show that there is a classical graph
problem—namely, fractional graph colouring (see Sect. 2)—with the following
properties:

1. In a natural problem formulation, the local outputs can be arbitrarily large.
2. The problem can be solved with a deterministic local algorithm; the algo-

rithm exploits both numerical identifiers and unbounded local outputs.
3. The problem cannot be solved with a deterministic local algorithm without

numerical identifiers.
4. The problem cannot be solved with a deterministic local algorithm if we

require that the local outputs are of a constant size.

Moreover, this is not an isolated example. The same holds for many other schedul-
ing problems—for example, fractional domatic partitions have similar properties.
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It is up to the reader’s personal taste whether this work should be interpreted as
a novel technique for the design of local algorithms, or as a cautionary example
of a loophole that needs to be closed.

1.3 Comparison with Other Graph Problems

In the study of local algorithms, we often have to focus on bounded-degree
graphs [4,5,6,7]. If we have a constant maximum degree Δ, then a constant-
size local output is a very natural property that is shared by a wide range
of combinatorial graph problems—at least if we use a natural encoding of the
solution:

1. Independent set, vertex cover, dominating set, connected dominating sets,
etc.: The output is a subset X ⊆ V of nodes. Each node outputs 1 or 0,
indicating whether it is part of X .

2. Matching, edge cover, edge dominating set, spanning subgraphs, etc.: The
output is a subset Y ⊆ E of edges. A node of degree d outputs a binary
vector of length d, with one bit for each incident edge.

3. Vertex colouring, domatic partition, minimum cut, maximum cut, etc.: The
output is a partitioning of nodes, X1∪X2∪· · ·∪Xk = V . Each node outputs
an integer i ∈ {1, 2, . . . , k}, indicating that it belongs to subset Xi. In most
cases, there is a natural constant upper bound on k: for example, a vertex
colouring does not need more than Δ+1 colours, a domatic partition cannot
contain more than Δ + 1 disjoint dominating sets, and a cut by definition
has k = 2.

4. Graph properties: Each node outputs 1 or 0. For a yes-instance, all nodes
have to output 1, and for a no-instance, at least one node has to output 0.

Now if we consider the linear programming (LP) relaxations of problems such
as independent sets, vertex covers, or dominating sets, we arrive at a graph
problem in which local outputs could be potentially arbitrarily large: each node
outputs a rational number, and there is no a priori reason to require that the
size of the output (i.e., the length of the binary encoding of the rational number)
is bounded. However, it seems that for these problems the size of the output
cannot be exploited by a local algorithm—for example, in the case of packing
and covering LPs, an exact solution cannot be found by any local algorithm,
and the local approximation schemes [6,7] do not need to exploit unbounded
local outputs. Indeed, if we had an algorithm that produces arbitrarily large
outputs, we could apply a simple rounding scheme without losing too much in
the approximation ratio.

However, fractional graph colouring—the LP relaxation of the vertex colour-
ing problem—is a different story. There we not only have unbounded local
outputs, but we show that we can exploit this property in the design of local
algorithms.
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2 Fractional Graph Colouring

In the fractional graph colouring problem, the task is to coordinate the activities
of the nodes in a conflict-free manner. Each node has to perform at least one unit
of work, and whenever a node is active all of its neighbours have to be inactive.
The objective is to minimise the total length of the schedule, i.e., complete the
activities as quickly as possible. The applications include the coordination of
radio transmissions in a wireless network: each node must transmit one unit of
data, and the transmissions of adjacent nodes interfere with each other.

Definitions. Let G = (V,E) be a simple, undirected graph that represents a
distributed system: each node v ∈ V is a computational entity, and each edge
{u, v} ∈ E represents a communication link between a pair of nodes. Let

I = {I ⊆ V : if u, v ∈ I then {u, v} /∈ E}

consist of all independent sets of G. A fractional graph colouring associates a
value x(I) ≥ 0 to each I ∈ I such that∑

I∈I: v∈I

x(I) ≥ 1 for all v ∈ V.

The length of a colouring x is

�(x) =
∑
I∈I

x(I),

and an optimal fractional graph colouring minimises �(x). See Fig. 1a for an
illustration.

The connection between a colouring x and a conflict-free schedule is straight-
forward: we simply allocate a time slot of length x(I) to I. For example, if we
are given a colouring x, we can choose an arbitrary ordering I = {I1, I2, . . . }
on I, and schedule the activities of the nodes as follows: first all nodes in I1 are
active for x(I1) time units, then all nodes in I2 are active for x(I2) time units,
etc.; after �(x) time units each nodes have been active for at least one time
unit. Conversely, if we can coordinate the activities, we can construct a graph
colouring x, as at each point in time the set of active nodes is in I.

Schedules of Nodes. When we study fractional graph colouring in a dis-
tributed setting, we assume that each node produces its own part of the solution.
That is, each node must know when it is supposed to be active. Formally, the
schedule of a node v ∈ V is a union of disjoint intervals

s(v) = (a1, b1] ∪ (a2, b2] ∪ · · · ∪ (ak, bk].

Here 0 ≤ a1 < b1 < a2 < b2 < · · · < ak < bk are rational numbers. We require
that the total length of the time intervals is at least 1, that is,

∑
i(bi−ai) ≥ 1. The

local output of node v is a binary encoding of the sequence a1, b1, a2, b2, . . . , ak, bk.
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x({b, e}) = 1/2

b

a

e

c d
x({a, c}) = 1/2 x({b, d}) = 1/2

x({c, e}) = 1/2 x({a, d}) = 1/2

(b)

(a)

s(a):

0 1 2 3

s(b):

s(c):

s(d):

s(e):

Fig. 1. (a) A fractional graph colouring x of length �(x) = 5/2 for the 5-cycle. (b) The
schedules of the nodes; each node is active for 1 time unit in total, and no node is
active after time 5/2.

We say that node v is active at time t if t ∈ s(v); let A(t, s) = {v ∈ V : t ∈
s(v)} consist of the nodes that are active at time t. It is straightforward to see
that a schedule s defines a fractional graph colouring x of length at most L if

A(t, s) = ∅ for all t > L, and A(t, s) ∈ I for all t ≤ L.

Equivalently, we have the locally checkable conditions

max s(v) ≤ L for each v ∈ V, and s(u) ∩ s(v) = ∅ for each {u, v} ∈ E.

See Fig. 1b for an illustration.

3 Model of Distributed Computing

All of our results hold in the LOCAL model [9]. In this model, we assume that
each node v ∈ V has a unique identifier f(v) ∈ {1, 2, . . . , poly(|V |)}. Initially,
each node knows its own identifier. Computation proceeds in synchronous com-
munication rounds. In each round, each node in parallel (1) sends a message to
each of its neighbours, (2) receives a message from each of its neighbours, (3) up-
dates its own state. After each round, a node can stop and announce its local
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output. All state transitions are deterministic; there is no source of randomness
available. The running time is the number of communication rounds until all
nodes have stopped. The size of a message is unbounded, and we do not restrict
local computation.

To keep our positive result as general as possible, we will not use the as-
sumption that we have globally unique identifiers. We only assume that we have
some labelling f : V → N such that f(u) �= f(v) for each edge {u, v} ∈ E. Put
otherwise, we only assume that we are given some proper vertex colouring f
of G—this is not to be confused with the fractional graph colouring x that we
are going to output.

4 Main Results

Now we are ready to give the main result of this work.

Theorem 1. For any α > 1 there exists a deterministic local algorithm A such
that in any graph G algorithm A finds a fractional graph colouring x for G in
one communication round. Moreover, the length of x is at most α(Δ+1), where
Δ is the maximum degree of G.

We emphasise that algorithm A does not need to know the number of nodes
in G, the maximum degree of G, or any other properties of G. Moreover, the
running time is 1, independently of G. However, the theorem heavily abuses the
fact that the size of the output is unbounded—the size of a local output depends
on graph G and its labelling f .

The result is near-tight in the sense that there are graphs that do not have
a fractional graph colouring of length shorter than Δ + 1. A simple example is
the complete graph on Δ + 1 nodes: an optimal fractional graph colouring has
length Δ+ 1.

From the perspective of the approximability of minimum-length fractional
graph colouring, we cannot do much better, either; the following lower bound
leaves only a logarithmic gap. Note that the lower bound holds even in the case
of d-regular graphs, and even if the running time of the algorithm is allowed to
depend on d.

Theorem 2. Let Fd be the family of d-regular graphs, and let Ad be a deter-
ministic algorithm that finds a fractional graph colouring for any G ∈ Fd in Td

communication rounds. Then for each d there is a graph Gd ∈ Fd such that Gd

admits a fractional graph colouring of length 2, but Ad outputs a fractional graph
colouring of length Ω(d/ log d).

Incidentally, in the case of triangle-free graphs, the gap could be closed—we
could improve the upper bound by borrowing ideas from Shearer’s algorithm [10].
Closing the gap for the case of general graphs is left for future work.
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5 Proof of Theorem 1

Informally, our algorithm builds on the following idea: We take an appropriate
randomised algorithm A′ that produces independent sets. The running time of
the randomised algorithm is 1, and it does not require that the random numbers
are independent for nodes that are not adjacent. Then we build a determinis-
tic schedule that, essentially, goes through a (very large) number of “random”
numbers, and feeds these numbers to A′. Then we simply put together all “ran-
dom” independent sets that are produced by A′. The approach is general, in the
sense that we could plug in any randomised algorithm A′ that satisfies certain
technical properties. However, to keep the presentation readable, we hard-code
a specific concrete choice of A′.

5.1 Preliminaries

Choose ε > 0 and β > 0 such that

1 + β

1− ε
≤ α.

Define R(x) = 	(x + 1)/ε
. We use the notation N(v) = {u ∈ V : {u, v} ∈ E}
for the set of neighbours of v ∈ V , and we write deg(v) = |N(v)| for the degree
of v. Let N+(v) = {v} ∪N(v). The case of an isolated node is trivial; hence we
assume that deg(v) ≥ 1 for every node v.

5.2 Communication

Recall the definitions of Sect. 3; we assume that we are given a function f that
is a proper vertex colouring of graph G = (V,E). The communication part of
the algorithm is nearly trivial: each node v sends its colour f(v) and its degree
deg(v) to each of its neighbours.

This information turns out to be sufficient to find a fractional graph colouring.
The rest of this section explains the local computations that are done by each
node; they do not involve any communication at all.

5.3 Scheduling Colours

Let g : N× N → N. We say that g is a scheduling colour function if

g(i, j) ≥ j for all i and j,

g(i, j) �= g(i′, j′) for all i, i′, j, and j′ such that i �= i′.

In the algorithm, we will need a scheduling colour function g. For the sake of
concreteness, we give an example of such a function:

g(i, j) = B(i+ j − 1) + i− 1, where B(k) = 2�log2 k�.
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T(∅)

T(0)

T(0,1)T(0,0)

T(0,0,0) T(0,1,0)T(0,0,2)T(0,0,1) T(0,1,2)T(0,1,1)

p(t) = (0, 0, 2, 1, 0, … )0 t β

Fig. 2. Recursive partitioning T (p) of the interval (0, β]

Other choices of g are equally good for our purposes; the choice of g only affects
the size of the local outputs.

We define that the scheduling colour of a node v is

c(v) = g
(
f(v), R(deg(v))

)
.

We make the following observations:

1. Function c : V → N is a proper colouring of G, as f was a proper colouring
of G.

2. We have c(v) ≥ R(deg(v)) for each node v.

3. Each node v knows c(u) for all u ∈ N+(v).

5.4 Coordinates

A coordinate is a sequence p = (p1, p2, . . . , p�) where pi ∈ {0, 1, . . . , i− 1}. Here
� is the dimension of the coordinate; we write ∅ for the coordinate of dimension
� = 0.

Define βi = β/(i!) for each i ≥ 0. With each coordinate p of dimension
�, we associate a time interval T (p) of length β� as follows (see Fig. 2 for an
illustration):

1. For the 0-dimensional coordinate, set T (∅) = (0, β0].

2. Assume that p is a coordinate of dimension i − 1 with T (p) = (a, a+ βi−1].
For each j = 0, 1, . . . , i− 1, we define

T (p, j) =
(
a+ jβi, a+ (j + 1)βi

]
.
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5.5 First Fragment of the Schedule

Now we are ready to define the schedule within time interval T (∅). To this end,
consider a point in time t ∈ T (∅). Time t defines a unique infinite sequence

p(t) =
(
p(1, t), p(2, t), . . .

)
such that for any i we have

t ∈ T
(
p(1, t), p(2, t), . . . , p(i, t)

)
.

Define the weight of the colour class k ∈ N at time t as follows:

W (k, t) =
p(k, t)

k
.

We define the weight of a node v at time t as the weight of its scheduling colour:

w(v, t) = W (c(v), t).

Finally, we define that v is active at time t if it is strictly heavier than any
neighbour, that is

w(v, t) > w(u, t) for all u ∈ N(v). (1)

Note that each node v knows c(u) for each u ∈ N+(v). Hence each node knows
when it is active. Moreover, the schedule can be efficiently computed and it is of
finite length. To see this, let

c′(v) = max
u∈N+(v)

c(u).

Let p be a coordinate of length c′(v). Now the weights w(u, t) for u ∈ N+(v) are
constant during t ∈ T (p); hence v is either active or inactive during the entire
time period T (c′(v)). Hence it is sufficient to consider a finite number of time
periods.

We will now argue that the schedule for T (∅) is feasible and, moreover, each
node is active for a substantial fraction of T (∅). To this end, define

h(v) =
1− ε

deg(v) + 1
.

Lemma 1. If {u, v} ∈ E, nodes u and v are never active simultaneously during
T (∅).

Proof. This is trivial, as we had a strict inequality in (1).

Lemma 2. Each node v ∈ V is active for at least βh(v) time units within time
interval T (∅).
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Proof. Assume that we choose a point in time t ∈ T (∅) uniformly at random.
Then the random variables p(i, t) ∈ {0, 1, . . . , i− 1} for i = 1, 2, . . . are indepen-
dent and uniformly distributed; it follows that the random variables W (i, t) are
also independent and uniformly distributed. For any i and any 0 ≤ x ≤ 1 we
have

Pr
[
W (i, t) < x

]
≥ x.

Let v ∈ V , and let C = {c(u) : u ∈ N(v)} be the set of scheduling colours in the
neighbourhood of v; note that c(v) /∈ C. Let n = |C| and k = c(v). Summing
over all possible values of W (k, t), we have

Pr
[
node v is active at time t

]
= Pr

[
w(v, t) > w(u, t) for all u ∈ N(v)

]
= Pr

[
W (k, t) > W (i, t) for all i ∈ C

]
=

k−1∑
j=0

Pr
[
W (k, t) =

j

k

]
· Pr

[ j
k
> W (i, t) for all i ∈ C

]

≥
k−1∑
j=0

1

k

( j

k

)n

=
1

kn+1

( k∑
j=1

jn
)
− 1

k

≥ 1

kn+1

∫ k

0

xn dx− 1

k
=

1

n+ 1
− 1

k
.

Moreover, n ≤ deg(v) and k ≥ R(deg(v)) ≥ (deg(v) + 1)/ε. Therefore node v is
active at time t with probability at least

1

n+ 1
− 1

k
≥ 1− ε

deg(v) + 1
= h(v).

5.6 Complete Schedule

In Sect. 5.5 we defined the schedule for time interval T (∅). As such, this does
not yet constitute a valid fractional graph colouring—indeed, it cannot be the
case, as T (∅) is far too short.

However, we can now easily construct a valid solution by repeating the solution
that we defined for T (∅). Define

H(v) =

⌈
1

βh(v)

⌉
. (2)

Now the schedule s(v) of node v is defined as follows: repeat the schedule defined
for T (∅) for H(v) times.

More formally, let t > 0. If t ≤ β, we have defined in Sect. 5.5 whether v is
active at time t. Otherwise t = iβ + t′, where t′ ∈ T (∅) and i ∈ N. If i ≥ H(v),
node v is inactive. Otherwise node v is active at time t iff it is active at time t′.
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Lemma 3. Each node v ∈ V is active for at least 1 time unit within time
interval (0, βH(v)).

Proof. Follows from Lemma 2 and (2).

Lemma 4. If the maximum degree of G is Δ, then the length of the schedule is
at most α(Δ+ 1).

Proof. Let v ∈ V . We have

βH(v) ≤ 1

h(v)
+ β =

deg(v) + 1

1− ε
+ β ≤ Δ+ 1

1− ε
+ β ≤ 1 + β

1− ε
(Δ+ 1) ≤ α(Δ+ 1).

That is, after time α(Δ + 1), node v is no longer active.

This concludes the proof of Theorem 1—we have designed an algorithm that
only needs one communication round, yet it yields a fractional graph colouring
of length at most α(Δ+ 1).

6 Proof of Theorem 2

The theorem holds even if f assigns unique identifier from the set {1, 2, . . . , n},
where n is the number of nodes in Gd. The proof uses the following lemma.

Lemma 5 (Bollobás [1]). For any given integers d ≥ 3 and g ≥ 3, there exists
a d-regular graph G with n nodes and girth at least g such that any independent
set has size at most O(n log(d)/d).

Let F be the family of d-regular graphs. Let A be a deterministic algorithm, with
running time T , that finds a fractional graph colouring for any graph in F . Now
letG = (V,E) be a d-regular graph with girth g ≥ 2T+1 obtained from Lemma 5;
we have G ∈ F . Each independent set I of G has size at most c|V | log(d)/d, for
some constant c. Thus any fractional graph colouring of G has length at least
d/(c log d). Choose a bijection f : V → {1, 2, . . . , |V |}.

If we run algorithm A on G with identifiers given by f , the output is a
fractional graph colouring x of length at least d/(c log d). In particular there
must be a node v∗ ∈ V that is active at time t ≥ d/(c log d). Moreover, the
radius-T neighbourhood of v∗ is a d-regular tree, as G was a high-girth graph.

Now let G′ = (V ′, E′) be the bipartite double cover of G. That is, for each
node v of G we have two nodes v1 and v2 in G′, and for each edge {u, v} of G we
have two edges {u1, v2} and {u2, v1} in G′. There is a covering map φ : V ′ → V
that maps v1 �→ v and v2 �→ v; let {v∗1 , v∗2} = φ−1(v∗). GraphG′ has the following
properties.

1. Graph G′ is bipartite; therefore there is a fractional graph colouring x′ in G′

with �(x′) = 2.
2. Graph G′ is d-regular; that is, G′ ∈ F .
3. The radius-T neighbourhood of v∗1 ∈ V ′ is a d-regular tree.
4. The number of nodes is |V ′| = 2|V |.
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To prove the theorem, it is sufficient to show that we can choose the identifiers
for G′ ∈ F so that A outputs a fractional graph colouring of length Ω(d/ log d).
To this end, observe that we can choose a bijection f ′ : V ′ → {1, 2, . . . , |V ′|} so
that the radius-T neighbourhood of v∗1 in (G′, f ′) is isomorphic to the radius-T
neighbourhood of v∗ in (G, f). Now apply A to (G′, f ′). By construction, the
local output of v∗1 in (G′, f ′) equals the local output of v∗ in (G, f); in particular,
the length of the schedule x′ constructed by A′ is Ω(d/ log d).

7 Discussion

We have shown that the fractional graph colouring problem can be solved very
quickly in a distributed setting—if and only if we do not impose artificial restric-
tions on the size of the local outputs.

More generally, we can approach scheduling problems from the following per-
spective. We have three parameters:

1. T , the running time of the distributed algorithm,
2. �, the length of the schedule (objective function),
3. κ, the maximum number of disjoint time intervals in the schedule of a node.

Now for the sake of concreteness, let us focus on the case of bounded-degree
graphs, i.e., Δ = O(1). Our work shows that we can keep any two of T , �, and
κ constant, but not all three of them:

1. T = O(1) and κ = O(1): trivial, set s(v) = (f(v), f(v) + 1].
2. κ = O(1) and � = O(1): easy, find an O(1)-colouring c and set s(v) =

(c(v), c(v) + 1].
3. T = O(1) and � = O(1): possible, using Theorem 1.
4. T = O(1), � = O(1), and κ = O(1): impossible. Now we have an LCL-

problem. It is easy to see that the problem cannot be solved with an order-
invariant local algorithm (consider a cycle), and hence the result by Naor
and Stockmeyer [8] implies that the problem cannot be solved with any local
algorithm.
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Abstract. We consider an online facility location problem where clients arrive
over time and their demands have to be served by opening facilities and assigning
the clients to opened facilities. When opening a facility we must choose one of K
different lease types to use. A lease type k has a certain lease length lk. Opening
a facility i using lease type k causes a cost of f k

i and ensures that i is open for the
next lk time steps. In addition to costs for opening facilities, we have to take con-
nection costs ci j into account when assigning a client j to facility i. We develop
and analyze the first online algorithm for this problem that has a time-independent
competitive factor.

This variant of the online facility location problem was introduced by Na-
garajan and Williamson [7] and is strongly related to both the online facility
problem by Meyerson [5] and the parking permit problem by Meyerson [6].
Nagarajan and Williamson gave a 3-approximation algorithm for the offline
problem and an O(K logn)-competitive algorithm for the online variant. Here,
n denotes the total number of clients arriving over time. We extend their result
by removing the dependency on n (and thereby on the time). In general, our al-
gorithm is O(lmax log(lmax))-competitive. Here lmax denotes the maximum lease
length. Moreover, we prove that it is O(log2(lmax))-competitive for many “natu-
ral” cases. Such cases include, for example, situations where the number of clients
arriving in each time step does not vary too much, or is non-increasing, or is poly-
nomially bounded in lmax.

1 Introduction

Consider a company that runs a distributed service on a network. In order to provide
this service, the company has to choose a set of nodes to become service providers
in such a way that they can be easily accessed by customer nodes. The nodes in the
network do not belong to the company and thus have to be leased before they can be
used to provide a service. There are various leases of different costs and durations.
Once a lease expires, the node no longer is able to provide the service. In order to use
the node again a new lease must be bought. The customer nodes can freely use any
node’s service as long as there is an active lease for this node. The costs of using it
are proportional to the distance (latency) between customer node and service-providing
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node. This means that on the one hand the company wants to buy leases for nodes as
seldom as possible, while on the other hand it wants to make sure that customer nodes
are not too far away from currently leased nodes. The main problem the company is
faced with is the unpredictable behavior of the customer nodes: It is not known which
nodes at what point in time will request the service. Thus, the company might buy long
and expensive leases for some nodes, just to realize later on that no more requests are
issued to those nodes.

The problem described above is known as the facility leasing problem. The service
providing nodes are referred to as facilities, while the customer nodes are called clients.
Its offline variant (the information about the service request is known beforehand) was
introduced by Anthony and Gupta [1] and is a variant of the well studied metric unca-
pacitated facility location problem. The online variant was presented by Nagarajan and
Williamson in [7]. They introduced a constant factor approximation algorithm for the
offline version and an O(K logn) factor approximation for the online version, where K
is the number different leases and n is the number of clients. The facility leasing prob-
lem is strongly related to two problems introduced by Meyerson: The online facility
location problem [5] and the parking permit problem [6]. In the case of the first one we
have a facility leasing problem with only one lease type of infinite length, and in the
second case there are multiple lease types, but no underlying facility location problem.
Building upon the work of Meyerson, Fotakis presented various results for online facil-
ity location in [3]. He gave a lower bound of O( logn

log logn ) and showed that it is tight. This
lower bound can not be directly applied to the online facility leasing problem, since in
Fotakis’ and Meyersons’ problem variant facilities can only be opened at positions of
clients that have already issued request before. This means that there are strong restric-
tions at what point in time a facility can be leased. There are no such restriction in the
online facility leasing problem considered in this paper.

Our Contribution. We introduce the first online algorithm for the online facility leas-
ing problem with a competitive ratio that does neither depend on the number of time
steps nor on the number of clients requesting the service. The previous result by Na-
garajan and Williamson [7] yields a competitive factor of O(K logn), where n is the
number of clients and (assuming that at least one client arrives each time step) also
an upper bound on the number of time steps. The competitive factor of Nagarajan and
Williamson [7] can be expressed as O(log(lmax) logn) with lmax denoting the length
of the longest lease type (since log(lmax) can be seen as an upper bound for K). Our
algorithm allows us to replace the logn factor of Nagarajan and Williamson [7] with
lmax in general and with log(lmax) for many “natural” special cases of client arrival se-
quences. These cases include, e.g., all instances where the number of clients arriving
in each time step does vary only by a constant factor, or is non-increasing, or is poly-
nomially bounded in lmax. Thus we have an O(lmax log(lmax))-competitive algorithm in
general and, which is our main contribution, an O(log2(lmax))-competitive algorithm
for the arrival sequences described above. To be more precise, the approximation fac-
tor of our algorithm is O(log(lmax)Hlmax), where Hlmax := ∑lmax

i=1 (|Di|/(∑i
j=1

∣∣D j
∣∣)) with

Di denoting the set of clients arriving in time step i. This means that our approxima-
tion guarantee depends not on the absolute numbers of clients arriving in each time
step, but on the relationship (as defined by Hlmax) between those numbers. While our
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algorithm is not a direct improvement on Nagarajan and Williamson [7] (since we state
our approximation factor using lmax and not K), our algorithm has the advantage that its
competitive ratio is not dependent on the number of time steps.

2 Problem Definition and Notation

We consider the facility leasing problem FACILITYLEASING, a facility location variant
introduced by Nagarajan and Williamson [7]. As is typical for facility location prob-
lems, we are given a set F of m facilities and a set D of n clients. Our goal is to minimize
the costs of serving the clients’ demands by opening facilities (which incurs costs) and
assigning each client to a nearby open facility (which incurs costs that are proportional
to the distance between the client and the facility). However, in contrast to the classical
facility location model, there is a notion of (discrete) time. Clients do not arrive all at
once. Instead, at time t ∈ N a subset Dt ⊆ D of clients appears and these clients have a
demand for the current time t only. Note that these subsets form a partition of D, i.e.,
a client arrives exactly once. Often, we will use Hq := ∑q

i=1(|Di|/(∑i
j=1

∣∣D j
∣∣)) to de-

scribe a sequence of arriving clients. Another difference to the classical model is that
opening a facility is not simply a binary decision. Instead, in order to open a facility
one is required to determine the point in time the facility is going to be opened and
one of the K different lease types that is to be used to open it. Each lease type k has
length lk and these lengths l1, l2, . . . , lK are considered as a part of the input. We use
lmax := max1≤k≤K(lk) to denote the maximal lease length. Consider a facility i opened
at time t using lease type k. This facility is open for the lk time steps during the interval
[t, t + lk − 1] (let Ik

t denote this interval). Now, a client j arriving at time step t ′ can only
be assigned to the facility i if i is open at j’s arrival, i.e., t ′ ∈ Ik

t .
A solution has to assign each client to an eligible facility. Each time we open a

facility i ∈ F for the next lk time steps using a lease type k ∈ K a cost of f k
i is charged.

Moreover, assigning a client j ∈ D to a facility i ∈ F incurs a connection cost of ci j

(independent of the lease type used to open i). These connection costs can be assumed
to correspond to the distance between facility i and client j. Clients and facilities reside
in a metric space, such that the connection costs satisfy the following triangle inequality:
∀ i, i′ ∈ F, j, j′ ∈ D : ci′ j ≤ ci j + ci j′ + ci′ j′ .

Figure 1 shows the linear programming (LP) formulation of this problem (and its
dual). To ease the formulation of the LP and the analysis, we sometimes abuse the nota-
tion and write ( j, t) ∈ D for a client j appearing at time t. Similarly, we write (i,k, t)∈ F
and refer to this triple as a single facility instead of a (potential) facility opened at time
t using lease type k. The first sum in the objective function for FACILITYLEASING rep-
resents the costs incurred by opening facilities. Here, the indicator variable yikt tells us
whether the facility i is opened at time step t with lease type k. The remaining part of
the objective function represents the costs incurred by connecting each client to a fa-
cility, where the variable xikt′ , jt indicates whether a client j that arrived at time step t
is connected to facility i opened at time step t ′ with lease type k. While the first primal
constraint guarantees that each client is connected to at least one facility, the second
makes sure that each client is only connected to a facility that is open during the time
step of the clients arrival.
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min ∑
(i,k,t)∈F

f k
i yikt + ∑

( j,t)∈D
∑

(i,k,t ′)∈F:t∈Ik
t ′

ci jxikt ′ , jt

s.t. ∑
(i,k,t ′)∈F :t∈Ik

t ′

xikt ′, jt ≥ 1 ( j, t) ∈ D

yikt ′ − xikt ′, jt ≥ 0 (i,k, t ′) ∈ F,( j, t) ∈ D
xikt ′, jt ∈ {0,1} (i,k, t ′) ∈ F,( j, t) ∈ D

yikt ′ ∈ {0,1} (i,k, t ′) ∈ F

(a) ILP formulation of FACILITYLEASING.

max ∑
( j,t)∈D

α jt

s.t. α jt −βikt ′, jt ≤ ci j (i,k, t ′) ∈ F,( j, t) ∈ D

∑
( j,t)∈D

βikt ′, jt ≤ f k
i (i,k, t ′) ∈ F

βikt ′, jt ≥ 0 (i,k, t ′) ∈ F,( j, t) ∈ D
α jt ≥ 0 ( j, t) ∈ D

(b) Dual of the ILP for FACILITYLEASING.

Fig. 1.

Given an instance I of FACILITYLEASING and a corresponding solution S, we refer
to the total cost of the solution by cost(S). We are mainly interested in the online version
of the problem, i.e., when a client j appears at time t we have to connect it to an open
facility without any knowledge of the future. Especially, we do not know whether in the
following time steps more clients appear in j’s proximity (which would favor a longer
lease type) or not (which would encourage a shorter lease type). We measure the quality
of algorithms by their competitiveness: Let A(I) denote the solution of an algorithm A
for problem instance I and O(I) an optimal solution to I. Then, the competitiveness of

A is defined as supI
A(I)
O(I) . We seek algorithms yielding a small competitive ratio.

2.1 Reduction to a Simplified Model Variant

The goal of this section is to show that we can transform a problem instance I of our on-
line facility location problem FACILITYLEASING into an instance I′ of a slightly simpli-
fied problem variant 2-FACILITYLEASING. In 2-FACILITYLEASING, all lease lengths
are a power of two and a lease of type k may only start each lk time steps. We show that
any c-competitive algorithm for 2-FACILITYLEASING yields a 4c-competitive algo-
rithm for FACILITYLEASING (see Corollary 1). These results have already been proven
in the context of the parking permit problem in [5] and we are just restating them for
completeness’ sake.

Rounding the Lease Length. We consider the problem variant FACILITYLEASING1 of
FACILITYLEASING that only allows lease types whose lengths are a power of two.
Consider an instance I of FACILITYLEASING having K leases k ∈ {1,2, . . . ,K}. From
I we construct an instance I′ by rounding the lease lengths lk to the next larger power of
two. That is, the lease lengths l′k for k ∈ {1,2, . . . ,K} are defined as l′k := 2	log lk
. Other
than that, I and I′ are identical. Note that I′ is an instance of both FACILITYLEASING

and FACILITYLEASING1.
Let O denote an optimal solution to I and O′ an optimal solution to I′. First note that

cost(O′) ≤ cost(O), as any solution to I yields a solution to I′ having the same cost.
Indeed, whenever a facility of lease type k in the solution to I is opened, opening a
facility of the same lease type k (but of lease length l′k ≥ lk) yields a feasible solution
to I′. Now, consider any solution S′ to I′. From this, we can build a feasible solution
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S to I as follows: Whenever a facility of lease type k is opened in S′, we open two
consecutive facilities of the same lease type in S. Since 2lk ≥ l′k, this yields a feasible
solution to I. Moreover, we obviously have the relation cost(S) = 2cost(S′). We use
these observations to prove the following lemma.

Lemma 1. Given a c-approximation algorithm A′ for the FACILITYLEASING1 prob-
lem, we can construct a 2c-approximation algorithm A for the FACILITYLEASING

problem. Similarly, any c-competitive algorithm for the FACILITYLEASING1 problem
yields a 2c-competitive algorithm for the FACILITYLEASING problem.

Proof. Given a problem instance I for FACILITYLEASING we let A build a problem
instance I′ for FACILITYLEASING1 by rounding the lease lengths to powers of two as
described above and invoke A′ on I′. The resulting solution S′ is used to build solution S
by opening two consecutive facilities for each facility opened in S′ for I (see above). We
have cost(S) ≤ 2cost(S′) ≤ 2ccost(O′) ≤ 2ccost(O). Note that this can be done in an
online fashion, by mimicking the behavior of A′ but opening two consecutive facilities
whenever A′ opens one. ��

Restricting the Start of Leases. Let us consider the problem variant FACILITYLEAS-
ING2 of FACILITYLEASING that allows to open facilities only at times t that are a
multiple of their corresponding lease length. That is, a facility of type k may only open
at times t with t ≡ 0 mod lk. Note that we do allow to open facilities belated, such that
one may not be able to take advantage of the full lease length one has payed for.

First of all, consider a problem instance I of FACILITYLEASING. Obviously, any
such I may be considered as a problem instance I′ of FACILITYLEASING2 without any
changes. Moreover, given a solution S′ to I′, we can interpret it directly as a solution
S to I. Thus, we have cost(S) = cost(S′). On the other hand, given optimal solutions
O to I and O′ to I′, we have cost(O′) ≤ 2cost(O). Indeed, any solution S to I yields
a feasible solution S′ to I′ with cost(S′) ≤ 2cost(S) as follows: Consider any facility
of type k ∈ {1,2, . . . ,K} opened in S at time t. For this facility, we open up to two
consecutive facilities of the same lease type k in S′. The first facility is opened at time
t1 := t − (t mod lk), the second at time t2 := t1 + lk if necessary. This yields a feasible
solution S′ to I′ with cost cost(S′)≤ 2cost(S). We get the following lemma.

Lemma 2. Given a c-approximation algorithm A′ for the FACILITYLEASING2 prob-
lem, we can construct a 2c-approximation algorithm A for the FACILITYLEASING

problem. Similarly, any c-competitive algorithm for the FACILITYLEASING2 problem
yields a 2c-competitive algorithm for the FACILITYLEASING problem.

Proof. Algorithm A is identical to A′. Run on a problem instance I of FACILITYLEAS-
ING, which we interpret as an identical instance I′ of FACILITYLEASING2, we get a
solution S′ to I′ which can be immediately interpreted as a solution S to I (see above).
We get cost(S) = cost(S′)≤ ccost(O′)≤ 2ccost(O). ��

Combining Both Variants. The model variant 2-FACILITYLEASING of our online facil-
ity location problem FACILITYLEASING combines the simplifications of both FACIL-
ITYLEASING1 and FACILITYLEASING2. That is, we allow only lease lengths that are a
power of two and restrict the starting points of facilities of type k to multiples of lk. By
combining the results from Lemma 1 and Lemma 2, one easily gets.
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Corollary 1. Given a c-approximation algorithm A′ for the 2-FACILITYLEASING prob-
lem, we can construct a 4c-approximation algorithm A for the FACILITYLEASING

problem. Similarly, any c-competitive algorithm for the 2-FACILITYLEASING problem
yields a 4c-competitive algorithm for the FACILITYLEASING problem.

3 Algorithm Description

Let us describe our online algorithm for the 2-FACILITYLEASING problem. In the be-
ginning, all facilities are closed. At the arrival of the client set Dt at time t, our algorithm
assigns these clients to open facilities to satisfy their demands, opening new facilities if
necessary. The costs charged for this step comprise the corresponding connection cost
ci j for assigning the clients j ∈ Dt to open facilities i ∈ F and the opening cost of newly
opened facilities (of a certain lease type). Remember that in this simplified problem
variant, we open facilities using lease type k only at times t that are a multiple of the
corresponding lease length lk. That is, only at times t with t ≡ 0 mod lk. Especially,
when we say we open facility (i,k, t) ∈ F , we can only make use of it up to the the next
time t ′ > t that is a multiple of lk. This means we may open a facility belatedly, such
that we can not take advantage of the full lease length we payed for. Note that for a
fixed facility i and lease type k we get a partition of the time horizon into intervals of
length exactly lk. These intervals can be identified with the corresponding facility i of
lease type k which may serve clients in this interval. Now, for any time t we get exactly
one interval Ik

i for each facility i and lease type k that can be used by a client appearing
at time t. It remains to specify which pair (i,k) is chosen to satisfy a client’s demand.

Our algorithm is based on an approximation algorithm by Jain and Vazirani [4] for
the classical facility location algorithm. Their algorithm uses a primal-dual approach to
compute a 3-approximation, and we make use of a similar approach in each single time
step. In each time step t our algorithm operates in two phases, similar to the algorithm
from Jain and Vazirani for the static facility location problem. In the first phase, the
clients essentially bid towards the facilities (or more exactly, towards the intervals Ik

i ).
In the second phase, we use the triangle inequality to choose a cheap subset of facilities
(intervals Ik

i ) to actually open and assign clients to. In contrast to [4], we have to cope
with the problem to build a good solution for a facility location problem starting from
a partial solution (earlier arrived clients). This is similar to Nagarajan and Williamson
[7], however, our subproblem is much more complex, as we consider all newly arrived
clients simultaneously (instead of one after the other).

First Phase. For each client j ∈ D≤t :=
⋃

t′≤t Dt′ that arrived at time t or before, we
introduce a potential α jkt that starts at zero and is continuously increased (concur-
rently and at the same rate for each client). Each of these potentials is reset to zero
in each round. To simplify notation, let us define (x)+ := max(x,0). For any facility
i of lease type k we maintain the invariant f k

i ≥∑ j∈D≤t
(α jkt −ci j)+ (INV1). When-

ever equality is reached for some facility i and lease type k, we temporarily open
i using lease type k. As soon as α jkt ≥ ci j for a client j ∈ D≤t and a (temporarily
or permanently) open facility i of lease type k, we stop increasing α jkt . If j ∈ Dt

(i.e., j is a newly arrived client), we connect j to i and furthermore set α̂ j := α jtk

(these α̂ j correspond to the dual variables α jt in the ILP from Figure 1, the t given
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implicitly by the relation j ∈ Dt ). As a second invariant, we ensure that in no time
step t ′ an α jkt′ is increased beyond α̂ j (INV2).

Second Phase. In this phase we build K different conflict graphs, one for each lease
type k. The nodes of the graph for lease type k are given by temporarily and per-
manently opened facilities i of lease type k. There is an edge between two nodes i
and i′ if and only if there is some client j ∈ D≤t with α jkt > max(ci j,ci′ j). We say
that the facilities i and i′ are in conflict. Now, for each conflict graph we compute
a maximal independent set (MIS) and open the facilities in the MIS permanently
(while closing the remaining temporarily opened facilities). If for a client j ∈ Dt

(i.e., newly arrived clients) the facility i it was connected to during the first phase is
not in a member of a MIS, j is reconnected to a neighbor of i that is a member of a
MIS (i.e., permanently open).

4 Analysis

Here we prove that the algorithm described in the previous section is (3+K)Hlmax-
competitive with respect to 2-FACILITYLEASING, the simplified online facility location
problem variant described in Section 2.1. Remember that lmax denotes the maximum
lease length. Moreover, note that it is sufficient to consider the first lmax time steps: at
time lmax all facilities must be closed, since for any k ∈ {1,2, . . . ,K} we have lmax ≡ 0
mod lk. Let us partition the time horizon into rounds τi := {(i− 1)lmax, . . . , ilmax − 1}
of length lmax. By the above observation, these rounds yield independent subproblems,
each of length lmax. We continue to show that the solution of our algorithm is (3+
K)Hlmax-competitive in each such round. As the costs over all rounds are additive, this
yields that it is (3+K)Hlmax-competitive for the complete problem.

Our analysis follows the typical idea of the analysis of a primal-dual algorithm, sim-
ilar to, e.g., the analysis of Jain and Vazirani [4]. The values α̂ j computed by our al-
gorithm correspond to the dual variables of the ILP formulation in Figure 1. First of
all, we show that the sum of all α̂ j times (3+K) is an upper bound for the cost of the
solution produced by our algorithm (Lemma 3). Next, we consider the α̂ j as a (possibly
infeasible) solution to the dual program of the FACILITYLEASING ILP. We prove that
by scaling this solution down by a suitable factor, we get a feasible solution to the dual
program (Lemma 4). By the weak duality theorem, multiplying both factors yields the
final competitive factor (Theorem 1).

Upper Bounding the Solution. The following lemma upper bounds the cost of the so-
lution produced by our algorithm by (3+K)∑ j∈D α̂ j. The basic idea is to exploit the
triangle inequality to show that 3∑ j∈D α̂ j is a bound on the total connection cost and
that our algorithm ensures that each α̂ j is used at most K times to cover the complete
costs for opening facilities.

Lemma 3. The cost of the primal solution produced by our algorithm can be bounded
from above by (3+K)∑ j∈D α̂ j .

Proof. We bound the connection costs of the clients and the opening costs of facilities
separately. The α̂ j value of a client j is computed in step t of j’s arrival during the
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first phase of our algorithm. During this phase, j is either connected to a facility i that
was already (permanently) opened at time t ′ < t or one that was temporarily opened at
the current time t. In both cases its α̂ j value was set such that it can cover at least the
distance ci j between i and j. If i remains in one of the MIS computed in the second
phase of our algorithm, this guarantees that j is assigned to a facility i′ such that α̂ j is
an upper bound on the client’s connection costs ci′ j. Otherwise, if i is no longer in any
MIS at the end of phase two, Proposition 1 (see below) exploits the metric property of
our facility location problem and yields that j is assigned to a facility i′ such that 3α̂ j is
an upper bound on the client’s connection costs ci′ j.

Now, consider the facility costs and fix a facility i of lease type k that is perma-
nently opened at some time t by our algorithm. As (i,k) is opened permanently at
time t in the second phase, it must have been temporarily opened in the first phase.
Thus, by definition of the algorithm, invariant INV1 must hold with equality, that is
f k
i = ∑ j∈D≤t (α jkt − ci j)+. Consider these bids (α jkt − ci j)+ of clients j ∈ D≤t to fa-

cility i of lease type k. Note that all non-zero bids of clients j at the current time are
guaranteed to be used by facility (i,k) only, as (i,k) must have been in the correspond-
ing MIS for lease type k. Moreover, note that for a single client that arrived at time t,
all its bids given to (and used by) facilities of type k sum up to at most α̂ j, as any α jkt′

with t ′ > t stops increasing as soon as a corresponding open facility (or α̂ j) is reached.
Together, this yields that the total costs for opening facilities of type k in the solution
produced by our algorithm is upper bounded by ∑ j∈D α̂ j. As there are K different lease
types, together with the bound on the connection costs we get the lemma’s statement.

��

The following proposition exploits the triangle inequality of our metric facility location
problem and can be proven completely analogue to [4, Lemma 5].

Proposition 1. For each client j that is reconnected in the second phase to a facility i,
we have α̂ j ≥ 1

3 ci j.

Proof. Let i′ be the facility that client j was connected to in the first phase of the algo-
rithm. There must be a client j′ that is responsible for the conflict between facility i and
i′. We have that α j′ ≥ ci′ j, α j′ ≥ ci j and α j ≥ ci′ j. Let si resp. si′be the points in time
where i resp. i′ are temporarily opened. We know that α j′ ≤ min(si,si′) since j′ was
contributing to both facilities, and that α̂ j ≥ si′ since j was connected to i′. Plugging
this information into the triangle inequality ci j ≤ ci′ j +ci′ j′ +ci j′ yields the proposition.

��

Scaling the Dual Variables for Feasibility. For the second part of the proof, it remains
to scale down the dual solution represented by the α̂ j such that we obtain a feasible
solution. Before we do so, we need another proposition based on the triangle inequality.
In spirit, it is similar to [7, Lemma 5], but has a slightly more involved proof due to the
fact that we have to consider multiple α̂ j’s that increase simultaneously.

Proposition 2. Given a client l that arrived in time step t and a facility i of type k for
any client j that arrived before time t, we have α jkt − ci j ≥ α̂l − 2ci j − cil.
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Proof. Showing that α jkt + ci j + cil ≥ α̂l proves the proposition. Since for α jkt ≥ α̂l

the statement trivially holds, we assume the contrary. This means that client j reached
an open facility i′ (and thus its α jkt stopped increasing) before α̂l was fixed (i.e., αlkt

stopped increasing). Since αlkt stops increasing once it is large enough to cover the
distance between i′ and l and this distance is at most α jkt + ci j + cil , the proposition
follows. ��

Before we continue with the Lemma 4 and its proof, let us define Nt to be the number
of clients that have arrived until time t (i.e., Nt := |D1|+ |D2|+ . . .+ |Dt−1|) and note
that

Nt = Nt
|Dt |
|Dt |

= ∑
j∈Dt

Nt

|Dt |
=

Nt

|Dt | ∑
j∈Dt

1. (1)

For the prior defined series Hq, it holds that

t∗

∑
t=1

2ht

t−1

∑
t′=1

∑
j∈Dt′

ci j =
t∗

∑
t=1

2 ∑
j∈Dt

ci j(Ht∗ −Ht), (2)

which can be easily seen by observing that ∑q
i=1 ∑i−1

j=1 x jhi = ∑q
i=1 xi(Hq −Hi) holds for

any series and any coefficients xi. Given these tools, we are now ready to formulate
and prove Lemma 4, which essentially shows that we get a feasible solution to the dual
program of our problem if we scale the α̂ j by a factor of 1

Hlmax
. To ease notation in the

following, whenever we consider a facility i of lease type k at time t∗, any time steps
t we speak of are assumed to lie in the the corresponding time interval of (i,k, t∗) (all
other time steps are of no interest with respect to the constraints of the dual program).

Lemma 4. For any facility i and lease type k at time t∗ we have ∑t∗
t=1 ∑ j∈Dt (α̂ j/2Ht∗ −

ci j)≤ f k
i , where Hq := ∑q

i=1
|Di|

∑i
j=1 |Dj |

.

Proof. Remember INV1 of our algorithm (see algorithm description in Section 3). It
states that the sum of bids towards a facility at any point in time does never exceed its
opening costs. Thus, for any time step t∗ we have

f k
i ≥ ∑

j∈D≤t∗

(α jkt∗ −ci j)+ = ∑
l∈Dt∗

(α̂l −cil)++ ∑
j∈D<t∗

(α jkt∗ −ci j)+

≥ ∑
l∈Dt∗

(α̂l −cil)+ ∑
j∈D<t∗

(α jkt∗ −ci j) = ∑
l∈Dt∗

(α̂l −cil)+
t∗−1

∑
t=1

∑
j∈Dt

(α jkt∗ −ci j)

≥ ∑
l∈Dt∗

(α̂l −cil)+
t∗−1

∑
t=1

∑
j∈Dt

(α̂l∗ −cil∗ −2ci j) (Prop. 2 and l∗ := argmax(α̂l − cil))

= ∑
l∈Dt∗

(α̂l −cil)+
t∗−1

∑
t=1

∑
j∈Dt

(α̂l∗ −cil∗ )−2
t∗−1

∑
t=1

∑
j∈Dt

ci j

= ∑
l∈Dt∗

(α̂l −cil)+(α̂l∗ −cil∗ )
Nt∗

|Dt∗ | ∑
j∈Dt∗

1−2
t∗−1

∑
t=1

∑
j∈Dt

ci j

= ∑
l∈Dt∗

(α̂l −cil)+
Nt∗

|Dt∗ | ∑
j∈Dt∗

(α̂l∗ −cil∗ )−2
t∗−1

∑
t=1

∑
j∈Dt

ci j
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≥ ∑
l∈Dt∗

(α̂l −cil)+
Nt∗

|Dt∗ | ∑
j∈Dt∗

(α̂ j −ci j)−2
t∗−1

∑
t=1

∑
j∈Dt

ci j

=
(

1+
Nt∗

|Dt∗ |

)
∑

j∈Dt∗

(α̂ j −ci j)−2
t∗−1

∑
t=1

∑
j∈Dt

ci j =
(Nt∗ + |Dt∗ |

|Dt∗ |

)
∑

j∈Dt∗

(α̂ j −ci j)−2
t∗−1

∑
t=1

∑
j∈Dt

ci j.

The above inequality holds for each t ∈ {1, . . . , t∗}. Dividing each such inequality by
Nt+|Dt |
|Dt | yields the following set of inequalities:

|Dt∗ |
Nt∗ + |Dt∗ |

f k
i ≥ ∑

j∈Dt∗
(α̂ j − ci j)− 2

|Dt∗ |
Nt∗ + |Dt∗|

t∗−1

∑
t=1

∑
j∈Dt

ci j

|Dt∗−1|
Nt∗−1 + |Dt∗−1|

f k
i ≥ ∑

j∈Dt∗−1

(α̂ j − ci j)− 2
|Dt∗−1|

Nt∗−1 + |Dt∗−1|
t∗−2

∑
t=1

∑
j∈Dt

ci j

...
...

...

|D2|
N2 + |D2|

f k
i ≥ ∑

j∈D2

(α̂ j − ci j)− 2
|D2|

N2+ |D2|
1

∑
t=1

∑
j∈Dt

ci j

|D1|
N1 + |D1|

f k
i ≥ ∑

j∈D1

(α̂ j − ci j)− 0.

Adding up these t∗ inequalities yields(
|D1|

N1 + |D1|
+ . . .+

|Dt∗ |
Nt∗ + |Dt∗ |

)
f k
i ≥

t∗

∑
t=1

∑
j∈Dt

(α̂ j − ci j)−
t∗

∑
t=1

2
|Dt |

Nt + |Dt |
t−1

∑
t′=1

∑
j∈Dt′

ci j.

Due to Inequality (2) we have

Ht∗ f k
i ≥

t∗

∑
t=1

∑
j∈Dt

(α̂ j − ci j)−
t∗

∑
t=1

2 ∑
j∈Dt

ci j(Ht∗ −Ht)

=
t∗

∑
t=1

∑
j∈Dt

(α̂ j − 2Ht∗ci j)+
t∗

∑
t=1

∑
j∈Dt

2ci j

(
Ht −

1
2

)

≥
t∗

∑
t=1

∑
j∈Dt

(α̂ j − 2Ht∗ci j)

Dividing by 2Ht∗ yields ∑t∗
t=1 ∑ j∈Dt

( α̂ j
2Ht∗

− ci j
)
≤ f k

i
2 ≤ f k

i . ��

Finally, by combining our results from Corollary 1, Lemma 3 and Lemma 4, and using
that our time horizon is at most lmax (i.e., t∗ ≤ lmax), the weak duality theorem implies
a competitive factor depending on the series Hk.

Theorem 1. Our algorithm is at most 4(3+K)Hlmax-competitive for the FACILITYLEAS-

ING problem. Here, the series Hq is defined by Hq := ∑q
i=1

|Di |
∑i

j=1|Dj| and describes the

relationship between the number of clients that arrive in each step.
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The following corollaries bring the competitive factor guaranteed by Theorem 1 into a
more concrete and compact form.

Corollary 2. Our algorithm is at most 4(3+K)lmax =O(log(lmax)lmax)-competitive for
the FACILITYLEASING problem.

Corollary 3. If for each round, the number of clients at any time t does vary by at most
a constant factor, is non-increasing, or bounded from above by a polynomial in lmax, the
competitive factor of our algorithm becomes at most O(K log(lmax)) = O(log2(lmax))-
competitive for the FACILITYLEASING problem.

While Corollary 3 arguably covers the most interesting and realistic cases, it seems
probable that one can in fact construct an instance where the bound given in Corol-
lary 2 is tight. Based on the convergence behavior of the series Hk, instances where the
number of arriving clients increases at least exponentially seem the most difficult and
challenging for an online algorithm.

5 Conclusion and Future Work

We gave the first algorithm for the online facility leasing problem FACILITYLEAS-
ING that has a time-independent competitive factor of O(lmax log(lmax)) in general and
O(log(lmax)

2) in many common cases. The competitive factor can be upper bounded by
O(Hlmax log(lmax)), where Hlmax is defined by the series Ht := ∑t

i=1
Di

∑i
j D j

. The Di ∈ N

represent the number of clients arriving at time step i. For an exponential increase in
the number of arriving clients, e.g., Di = 2i, we have Ht = Θ(t). We conjecture that,
based on this observation, it is possible to build an instance that shows that our upper
bound is tight for our algorithm. Instances featuring such an exponential increase in ar-
riving clients seem to have a unique hardness for an online algorithm: At any time t the
number of arriving clients essentially matches the total number of clients that arrived
up to now. Thus, in each single time step we have to solve a problem being as hard as
the complete problem up to the current time. It remains an interesting problem, whether
such instances are inherently difficult to handle for online algorithms, or whether this
conjectured lower bound is merely limited to our online algorithm.

Our competitive bounds can also be written as O(Klmax) and O(K log(lmax)), re-
spectively. Meyerson [6] showed a lower bound of Ω(K) on the competitive ratio of
deterministic online algorithms for the parking permit problem, a special case of our on-
line facility leasing problem FACILITYLEASING. For randomized algorithms, a lower
bound of Ω(logK) is proven. As these bounds immediately carry over to our model,
one may hope to improve our bounds to O(lmax log(K)) and O(log(K) log(lmax)) using
randomization.

Another direction for possible future research includes a distributed implementation
of our algorithm, similar in spirit to [2, 8]. Such distributed and local implementations,
where a solution is computed not by a central authority but a network of distributed
sensor nodes (e.g., in our case, the facilities and clients), have attracted much inter-
est in recent years, and the primal-dual approach our algorithm uses has proven to be
compatible with such a distributed model in other scenarios.
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Abstract. We study the fundamental problem of achieving consensus in
a synchronous dynamic network, where an omniscient adversary controls
the unidirectional communication links. Its behavior is modeled as a se-
quence of directed graphs representing the active (i.e. timely) communi-
cation links per round. We prove that consensus is impossible under some
natural weak connectivity assumptions, and introduce vertex-stable root
components as a—practical and not overly strong—means for circumvent-
ing this impossibility. Essentially, we assume that there is a short period
of time during which an arbitrary part of the network remains strongly
connected, while its interconnect topology keeps changing continuously.
We present a consensus algorithm that works under this assumption, and
prove its correctness. Our algorithmmaintains a local estimate of the com-
munication graphs, and applies techniques for detecting stable network
properties and univalent system configurations. Our possibility results are
complemented by several impossibility results and lower bounds, which re-
veal that our algorithm is asymptotically optimal.

1 Introduction

Dynamic networks, instantiated, e.g., by (wired) peer-to-peer (P2P) networks,
(wireless) sensor networks, mobile ad-hoc networks and vehicular area networks,
are becoming ubiquitous nowadays. The primary properties of such networks are
(i) sets of participants (called processes in the sequel) that are a priori unknown
and maybe time-varying, and (ii) the absence of central control. Such assump-
tions make it very difficult to setup and maintain the basic system, and create
particular challenges for the design of robust distributed services for applications
running on such dynamic networks.

A natural approach to build robust services despite mobility, churn, failures,
etc. of processes is to use distributed consensus to agree system-wide on (fun-
damental) parameters like schedules, frequencies, etc. Although system-wide
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agreement indeed provides a very convenient abstraction for building robust
services, it inevitably rests on the ability to efficiently implement consensus in a
dynamic network.

Doing this in wireless dynamic networks is particularly challenging, for several
reasons: First, whereas wireline networks are usually adequately modeled by
means of bidirectional links, this is not the case for wireless networks: Fading
phenomenons and interference [1] are local effects that affect only the receiver
of a wireless link. Since the receiver of the reverse link is located in a different
place in the network, it is very likely that it faces very different levels of fading
and interference. Thus, wireless links are more adequately modeled by means of
pairs of unidirectional links, which are considered independent of each other.

Second, wireless networks are inherently broadcast. When a process transmits,
then every other process within its transmission range will observe this transmis-
sion— either by legitimately receiving themessage or as some formof interference.
This creates quite irregular communication behavior, such as capture effects and
near-far problems [2], where certain (nearby) transmitters may “lock” some re-
ceiver and thus prohibit the reception of messages from other senders. As a conse-
quence, wireless links that work correctly at a given time may have a very irregular
spatial distribution, and may also vary heavily with time.

Finally, taking also into account mobility of processes and/or peculiarities in
the system design (for example, duty-cycling is often used to conserve energy
in wireless sensor networks), it is obvious that static assumptions on the com-
munication topology, as underlying classic models like unit disc graphs, are not
adequate for wireless dynamic networks.

We hence argue that such dynamic systems can be modeled adequately only by
means of dynamically changing directed communication graphs. Since synchro-
nized clocks are required already for basic communication in wireless systems,
e.g., for transmission scheduling and sender/receiver synchronization, we also
assume that the system is synchronous.

Contributions. Similar to Kuhn et al. [3], we consider consensus in a system
modeled by means of a sequence of communication graphs, one for each round. In
sharp contrast to existing work, our communication graphs are directed, and our
rather weak connectivity assumptions do not guarantee bidirectional (multi-hop)
communication between all processes.

(1) We prove that communication graphs that are weakly connected in every
round are not sufficient for solving consensus, and introduce a fairly weak ad-
ditional assumption that allows to overcome this impossibility. It requires that,
in every round, there is exactly one arbitrary strongly connected component
(called a root component) that has only out-going links to (some of) the remain-
ing processes and can reach every process in the system via several hops. Since
this assumption is still too weak for solving consensus, we add the requirement
that, eventually, there will be a short interval of time where the processes in
the root component remain the same, although the connection topology may
change. We coined the term vertex-stable root component (for some window of
limited stability) for this requirement.
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(2) We provide a consensus algorithm that works in this model, and prove its
correctness. Our algorithm requires a window of stability that has a size of 4D,
where D is the number of rounds required to reach all processes in the network
from any process in the vertex-stable root component.

(3) We show that any consensus algorithm has to know an a priori bound on
D. Since the system size n is a trivial bound on D, this implies that there is no
uniform algorithm, i.e., no algorithm unaware of the size of the network, that
solves consensus in our model. In addition, we establish a lower bound of D for
the window of stability.

(4) We prove that neither reliable broadcast, atomic broadcast, nor causal-
order broadcast can be implemented in our model without additional assump-
tions. Moreover, there is no algorithm that solves counting, k-verification, k-
token dissemination, all-to-all token dissemination, and k-committee election.

Lacking space did not allow us to include the detailed algorithms and proofs
in this paper; consult the full paper [4] for all the details.

Related Work

We are are not aware of any previous work on consensus in directed and dynamic
networks with such weak connectivity requirements. This is also true for an
earlier paper [5], where we assumed the existence of an underlying static skeleton
graph (a non-empty common intersection of all communication graphs of all
rounds), which had to include a static root component. By contrast, in this
paper, we allow the graphs to be totally dynamic, except for a (sufficiently large)
time window where the members (but not the topology!) of the root component
are the same.

Dynamic networks have been studied intensively in distributed computing.
Early work on this topic includes [6,7]. We will in the following focus on two
lines of research that are closest to ours: work that models directly the under-
lying (evolving) communication graph, and approaches taken in the context of
consensus.

There is a rich body of literature on dynamic graph models going back to [8],
which also mentions for the first time modeling a dynamic graph as a sequence
of static graphs, as we do. A survey on dynamic networks can be found in [9].
Recently, Casteigts et al. [10] have introduced a classification of time varying
graphs, that is, a classification of the assumptions about the temporal proper-
ties of these graphs. In the full paper [4], we show that our assumption falls
between two of the weakest classes considered, as we can only guarantee one-
directional reachability.1 We are not aware of any other papers considering such
weak assumptions in the context of agreement.

Closest to our own work is that of Kuhn et al. [3], who also consider agree-
ment problems in dynamic networks based on the model of [11]. This model

1 Here, reachability does not refer to the graph-theoretic concept of reachability, but
rather to the ability to eventually communicate information to another process.
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is based on distributed computations organized in lock-step rounds, and states
assumptions on the connectivity in each round as a separate (round) communi-
cation graph. While the focus of [11] is the complexity of aggregation problems
in dynamics networks, [3] focuses on agreement problems; more specifically on
the Δ-coordinated consensus problem, which extends consensus by requiring all
processes to decide within Δ rounds of the first decision. In both papers, only
(i) undirected graphs that are (ii) connected in every round are considered. In
terms of the classes of [10], they are in one of the strongest classes (Class 10),
which means (among other things) that each process is always reachable by ev-
ery other process. Since node failures are not considered, solving consensus is
always possible in this model without additional assumptions; the focus of [3] is
on Δ-coordinated and simultaneous consensus and its time complexity.

Instead of considering a dynamic graph that defines which processes com-
municate in each round, an alternative approach is based on the (dual) idea
of assuming a fully connected network of (potential) communication, and con-
sidering that communication in a round can fail. The notion of transmission
failures was introduced by Santoro and Widmayer [12], who assumed dynamic
transmission failures and showed that n−1 dynamic transmission failures in the
benign case (or n/2 in case of arbitrary transmission failures) render any non-
trivial agreement impossible. As it assumes unrestricted transmission failures
(the (only) case considered in their proof are failures that affect all the trans-
missions of a single process), it does not apply to any model which considers
perpetual mutual reachability of processes (e.g., [3]).

The HO-model [13] is also based on transmission failures. It relies on the
collection of sets of processes a process hears of (i.e., receives a message from)
in a round. Different system assumptions are modeled by predicates over this
collection of sets. The HO-model is totally oblivious to the actual reason why
some process does not hear from another one: Whether the sender committed a
send omission or crashed, the message was lost during transmission or is simply
late, or the receiver committed a receive omission. A version of the model also
allowing communication to be corrupted is presented in [14]. Indeed, the HO-
model is very close to our graph model, as an edge from p to q in the graph of
round r corresponds to p being in the round r HO set of q.

The approach taken by Gafni [15] has some similarities to the HO-model (of
which it is a predecessor), but is more focused on process failures than the work
by Santoro and Widmayer. Here an oracle (a round-by-round failure detector)
is considered to tell processes the set of processes they will be not be able to
receive data from in the current round. Unlike the approaches discussed above, it
explicitly states how rounds are implemented; nevertheless, the oracle abstracts
away the actually reason for not receiving a message. So, like in the HO-model,
the same device is used to describe failures and (a)synchrony.

Another related model is the perception based failure model [16,17], which
uses a sequence of perception matrices (corresponding to HO sets) to express
failures of processes and links. As for communication failures, the impossibility
result of Santoro and Widmayer is circumvented by putting separate restrictions
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on the number of outgoing and incoming links that can be affected by transmis-
sion failures [16]. Since transmission failures are counted on a per process/per
round basis, agreement was shown to be possible in the presence of O(n2) total
transmission failures per round.

2 Model and Preliminaries

We consider synchronous computations of a dynamic network of a fixed set of
distributed processes Π with |Π | = n � 2. Processes can communicate with
their current neighbors in the network by sending messages taken from some
finite message alphabet M.

Similar to the LOCAL model [18], we assume that processes organize their
computation as an infinite sequence of lock-step rounds. For every p ∈ Π and
each round r > 0, let Sr

p ∈ Sp be the state of p at the beginning of round r; the
initial state is denoted by S1

p ∈ S1p ⊂ Sp. The round r computation of process p
is determined by the following two functions that make up p’s algorithm: The
message sending function Mp : Sp → M determines the message mr

p broadcast
by p in round r, based on p’s state Sr

p at the beginning of round r. We assume
that some (possibly empty) message is broadcast in every round, to all (current!)
neighbors of p. The transition function Tp : Sp×2(Π×M) → Sp takes p’s state Sr

p

at the beginning of round r and a set of pairs of process ids and messages μr
p. This

set represents the round r messages2 received by p from other processes in the
system, and computes the successor state Sr+1

p . We assume that, for each process
q, there is at most one (q,mr

q) ∈ μr
p such that mr

q is the message q sent in round
r. Note that neither Mp nor Tp need to involve n, i.e., the algorithms executed
by the processes may be uniform w.r.t. the network size n: Which processes
a process actually receives from in round r depends solely on the underlying
communication graph of round r.

To formally introduce the consensus problem, we assume some ordered set V
and consider the set of possible initial states S1p (of process p) to be partitioned
into |V | subsets S1p[v], with v ∈ V . When p starts in a state in S1p[v], we say
that v is p’s input value, denoted vp = v. Moreover, we assume that, for each
v ∈ V , there is a (sub-)set Dp[v] ⊂ Sp of decided states that is closed under p’s
transition function, i.e., where Tp maps any state in this subset to this subset. We
say that p has decided on v when it is in some state in Dp[v]. When p performs
a transition from a state outside of the set of decided states to the set of decided
states, we say that p decides. We say that an algorithm A solves consensus if
the following properties hold in every run of A:

Agreement: If process p decides on xp and q decides on xq, then xp = xq.
Validity: If a process decides on v, then v was proposed by some q, i.e., vq = v.
Termination: Every process must eventually decide.

2 We only consider messages sent in round r here, so we assume communication-
closed [19] rounds.
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At a first glance, solving consensus might appear easier in our model than in the
classic crash failure model, where processes simply stop executing the algorithm.
This is not the case, however. As in [13], we model crash failures as follows: A
process q that crashes in round r is equivalent to taking away all outgoing edges
of q from round r + 1 on. While q itself can still receive messages and perform
computations, the remaining processes are not influenced by q from round r on.

Communication Model. The evolving nature of the network topology is mod-
eled as an infinite sequence of simple directed graphs G1,G2, . . . , which is fixed
by an adversary having access to the processes’ states. For each round r, we
denote the round r communication graph by Gr = 〈V,Er〉, where each node of
the set V is associated with one process from the set of processes Π , and where
Er is the set of directed edges for round r, such that there is an edge from p
to q, denoted as (p → q), iff q receives p’s round r message (in round r). For
any (sub)graph G, we will use the notation V (G) and E(G) to refer to the set
of vertices respectively edges of G, i.e., it always holds that G = 〈V (G), E(G)〉.

To simplify the presentation, we will denote a process and the associated
node in the communication graph by the same symbols and omit the set from
which it is taken if there is no ambiguity. We will henceforth write p ∈ Gr and
(p → q) ∈ Gr instead of p ∈ V resp. (p → q) ∈ Er.

The neighborhood of p in round r is the set of processes N r
p that p receives

messages from in round r, formally, N r
p = {q | (q → p) ∈ Gr}.

Similarly to the classic notion of “happened-before” [20], we say that a process

p (causally) influences process q in round r, expressed by (p
r� q) or just (p� q)

if r is clear from the context, iff either (i) p ∈ N r
q , i.e., if q has an incoming edge

(p → q) from p in Gr, or (ii) if q = p, i.e., we assume that p always influences
itself in a round. We say that there is a (causal) chain of length k � 1 starting

from p in round r to q, graphically denoted by (p
r[k]� q), if there exists a sequence

of not necessarily distinct processes p = p0, . . . , pk = q such that pi influences
pi+1 in round r + i, for all 0 � i < k.

The causal distance cdr(p, q) at round r from process p to process q is the
length of the shortest causal chain starting in p in round r and ending in q,

formally, cdr(p, q) := min{k | (p r[k]� q)}. Note that we assume cdr(p, p) = 1.
The following Lemma 1 shows that the causal distance in successive rounds
cannot arbitrarily decrease.

Lemma 1 (Causal distance in successive rounds). For every round r � 1
and every two processes p, q ∈ Π, it holds that cdr+1(p, q) � cdr(p, q)− 1. As a
consequence, if cdr(p, q) = ∞, then also cdr+1(p, q) = ∞.

Note that, in contrast to the similar notion of dynamic distance defined in [9], the
causal distance in directed graphs is not necessarily symmetric. Moreover, if the
adversary chooses the graphs Gr such that not all nodes are strongly connected,
the causal distance can even be infinite. In fact, even if Gr is strongly connected
for round r (but not for rounds r′ > r), cdr(p, q) can be infinite. As we will not
consider the whole communication graph to be strongly connected in this paper,
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we make use of the notation of strongly connected components (SCC). We write
Cr
p to denote the (unique) SCC of Gr that contains process p in round r or simply

Cr if p is irrelevant.
It is apparent that cdr(p, q) and cdr(q, p) may be infinite even if q ∈ Cr

p .
In order to be able to argue (meaningfully) about the maximal length of causal
chains within an SCC, we also need some “continuity property” over rounds. This
leads us to the crucial concept of a I-vertex-stable strongly connected component,
denoted as CI : It requires that the set of vertices of a strongly connected com-
ponent C remains stable throughout all rounds in the nonempty interval I. Its
topology may undergo changes, but must form an SCC in every round. Formally,
CI being vertex-stable during I requires that ∀p ∈ CI , ∀r ∈ I : V (Cr

p) = V (CI).

The important property of CI is that information is guaranteed to spread to all
vertices of CI if the interval I is large enough (cf. Lemma 3).

Let the round r causal diameter Dr(CI) of a vertex-stable SCC CI be the
largest causal distance cdr(p, q) for any p, q ∈ CI . The causal diameter D(CI)
of a vertex-stable SCC CI in I is the largest causal distance cdx(p, q) starting
at any round x ∈ I that “ends” in I, i.e., x + cdx(p, q) − 1 ∈ I. If there is no
such causal distance (because I is too short), D(CI) is assumed to be infinite.
Formally, for I = [r, s] with s � r,3

D(CI) = min
{
max{Dx(CI) | x ∈ [r, s] and x+Dx(CI)− 1 � s},∞

}
.

If CI consist only of one process, then we obviously haveD(CI) = 1. The following
Lemma 2 establishes a bound for D(CI) also for the general case.

Lemma 2. Let a vertex-stable SCC CI for some I = [r, s] be given and let
|CI | � 2 be the number of processes in CI . If s � r+|CI |−2, then D(CI) � |CI |−1.

Given this result, it is tempting to assume that, for any vertex-stable SCC CI

with finite causal diameter D(CI), any information propagation that starts at
least D(CI) − 1 rounds before the final round of I will reach all processes in
CI within I. This is not generally true, however, as the following example for
I = [1, 3] and a vertex-stable SCC of four processes shows: If G1 is the complete
graph whereas G2 = G3 is a ring, D(CI) = 1, but information propagation
starting at round 2 does not finish by the end of round 3. However, the following
Lemma 3 gives a bound on the earliest starting round that guarantees this
property.

Lemma 3 (Information propagation). Suppose that CI is an I-vertex-stable
strongly connected component of size � 2 that has D(CI) < ∞, for I = [r, s],
and let x be the maximal round where x+Dx(CI)− 1 � s. Then,
(i) for every x′ ∈ [r, x], it holds that x′ +Dx′

(CI)− 1 � s and Dx′
(CI) � D(CI)

as well, and
(ii) x � max{s− |CI |+ 2, r}.

3 Since I ranges from the beginning of r to the end of s, we define |I | = s− r + 1.
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Since we will frequently require a vertex-stable SCC CI that guarantees
bounded information propagation also for late starting rounds, we introduce
the following Definition 1.

Definition 1. An I-vertex-stable SCC CI with I = [r, s] is D-bounded if D �
DI(CI) and Ds−D+1(CI) � D.

3 Required Connectivity Properties

Up to now, we did not provide any guarantees on the connectivity of the network,
the lack of which makes consensus trivially impossible. In this section, we will
add some weak constraints on the adversary that circumvent this impossibility.
Obviously, we want to avoid requesting strong properties of the network topology
(such as stating that Gr is strongly connected in every round r), as this would
reduce the applicability of our results in real networks.

As a first attempt, we could assume that, in every round r, the communication
graph Gr is weakly connected. This, however, turns out to be too weak. Even if
the adversary choses a static topology, it is easy to see that consensus remains
impossible: Consider for example the graph that is partitioned into 3 strongly
connected components C0, C1, and C2 such that there are only outgoing edges
from C0 respectively C1 pointing to C2, whereas C2 has no outgoing edges. If
all processes in C0 start with 0 and all processes in C1 start with 1, this yields
a contradiction to agreement: For i ∈ {0, 1}, processes in Ci can never learn
the value 1 − i, thus, by an easy indistinguishability argument, it follows that
processes in C0 and C1 must decide on conflicting values.

In order to define constraints that rule out the existence of C0 and C1 as above,
the concept of root components proves useful: Let Rr ⊆ Gr be an SCC that has
no incoming edges from any q ∈ Gr \Rr. We say that Rr is a root component in
round r, formally: ∀p ∈ Rr ∀q ∈ Gr : (q → p) ∈ Gr ⇒ q ∈ Rr.

Observation 1 (On root components). Any Gr contains at least one and at
most n root components (isolated processes), which are all disjoint. In case of a
single root component R, Gr is weakly connected.

Returning to the consensus impossibility example for weakly connected graphs
above, it is apparent that the two components C0 and C1 are indeed both root
components. Since consensus is not solvable in this case, we assume in the sequel
that there is at most a single root component in Gr, for any round r. We know
already [5] that this assumption makes consensus solvable if the topology (and
hence the root component) is static. Since we are interested in dynamic net-
works, however, we assume in this paper that the root component may change
throughout the run, i.e., the (single) root component Rr of Gr might consist of a
different set of processes in every round round r. It is less straightforward to rea-
son about the solvability of consensus in this case. However, as we will establish
in Sect. 5, consensus is again impossible to solve without further constraints.
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As root components are special cases of strongly connected components, we
define an I-vertex-stable root component RI as an I-vertex-stable strongly con-
nected component that is a root component in every round r ∈ I. Clearly, all the
definitions and results for vertex-stable components carry over to vertex-stable
root components.

Restricting our attention to the case where exactly one vertex-stable root
componentRI exists, it immediately follows from Observation 1 that information
of any process in RI propagates to all nodes in Π if I is large enough. More
specifically, we can extend our notions of causal diameter of a vertex-stable SCC
to the whole network: The round r network causal diameter Dr is the largest
cdr(p, q) for any p ∈ Rr and any q ∈ Π . Similarly to the causal diameter of a
vertex-stable component of an interval, we define the network causal diameter
DI for an interval I as the largest round x, x ∈ I, network causal diameter
that also (temporally) falls within I, i.e., satisfies x + Dx − 1 ∈ I and hence
x + cdx(p, q) − 1 ∈ I for any p ∈ Rr and any q ∈ Π . It is straightforward
to establish versions of Lemma 2 and 3 for root components and their causal
influence.

Note that a plain I-vertex-stable root component with I � n − 1 is always
D-bounded for D = n− 1. Our definition also allows some smaller choice of D,
however.

We will show in Sect. 5 that the following Assumption 1 is indeed very weak,
in the sense that many problems considered in distributed computing remain
unsolvable.

Assumption 1. For any round r, there is exactly one root component Rr in Gr,
and all vertex-stable root components RI with |I| � D are D-bounded. Moreover,
there exists an interval of rounds I = [rST , rST +d], with d > 4D, such that there
is a D-bounded I-vertex-stable root component.

4 Solving Consensus by Network Approximation

Initially, every process p has no knowledge of the network — it only knows its
own input value. Any algorithm that correctly solves consensus must guarantee
that, when p makes its decision, it either knows that its value has been/will
be adopted by all other processes or it has agreed to take over some other
process’ decision value. As we have seen, p’s information is only guaranteed to
propagate throughout the network if p is in a I-vertex stable root component
with finite network causal diameter DI . Thus, for p to locally acquire knowledge
about information propagation, it has to acquire knowledge about the (dynamic)
communication graph.

We allow p to achieve this by gathering as much local information on Gs as
possible, for every past round s. Every process p keeps track of its current graph
approximation in variable Ap, which initially consists of process p, without any
edges, and is broadcast and updated in every round. Ultimately, every process
p will use Ap to determine whether it has been inside a vertex-stable root com-
ponent for sufficiently many rounds. Given Ap, we will denote the information
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contained in Ap about round s by Ap|s. More specifically, Ap|s is the graph

induced by the set of edges Ep|s =
{
e = (v → w) | ∃T ⊇ {s} : (v

T→ w) ∈ Ap

}
.

It is important to note that our Assumption 1 is too weak to guarantee that
eventually the graph Ap|s will ever exactly match the actual Gs in some round
s. In fact, there might be a process q that does not have any incoming links
from other processes, throughout the entire run of the algorithm. In that case,
q cannot learn anything about the remaining network, i.e., Aq will permanently
be the singleton graph.

The underlying idea of our consensus algorithm is to use flooding to forward
the largest proposed value to everyone. However, as Assumption 1 does not
guarantee bidirectional communication between every pair of processes, flooding
is not sufficient: The largest proposal value could be known only to a single
process that never has outgoing edges. Therefore, we let “privileged” processes,
namely, the ones in a vertex-stable root component, try to impose their largest
proposal values on the other processes. In order to do, so we use the well-known
technique of locking a unique value. Processes only decide on their locked value
once they are sure that every other process has locked this value as well. Since
Assumption 1 guarantees that there will be one root component such that the
processes in the root component can communicate their locked value to all other
processes in the system they will eventually succeed.

Theorem 1. Let rST be the first round where Assumption 1 holds. There is an
algorithm that solves consensus by round rST + 4D + 1.

5 Impossibilities and Lower Bounds

In this section, we will present a number of results that show that our basic As-
sumption 1, in particular, the existence of a stable window (of a certain minimal
size) and the knowledge of an upper bound D on the causal network diameter,
are crucial for making consensus solvable. Moreover, we will show that it is not
unduly strong, as many problems considered in distributed systems in general
(and dynamic networks in particular) remain unsolvable.

Although there is a strong bond between some of these problems and consen-
sus in traditional settings, they are not implementable under our assumptions—
basically, because there is no guarantee of (eventual) bidirectional communica-
tion.

Theorem 2. Suppose that Assumption 1 is the only restriction on the adversary
in our model. Then, neither reliable broadcast, atomic broadcast, nor causal-
order broadcast can be implemented. Moreover, there is no algorithm that solves
counting, k-verification, k-token dissemination, all-to-all token dissemination,
and k-committee election.

Theorem 3 (Knowledge of a Bound on the Network Causal Diameter).
Consider a system where Assumption 1 holds and suppose that processes do not
know an upper bound D on the network causal diameter (and hence do not know
n). Then, there is no deterministic algorithm that solves consensus.
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We now state a result that shows that it is necessary to have root components
that are vertex stable long enough to flood the network. That is, w.r.t. Assump-
tion 1, we need I to be in the order of D. To this end, we first introduce the
following alternative Assumption 2, which requires a window of only D:

Assumption 2. For any round r, there is exactly one root component Rr in
Gr. Moreover, there exists a D and an interval of rounds I = [rST , rST + D],
such that there is an I-vertex stable root component RI , such that DI � D.

In order to show that Assumption 2 is necessary, we further shorten the interval:
Some process could possibly not be reached within D − 1 rounds, but would be
reached if the interval was D rounds. Processes could hence withold information
from each other, which causes consensus to be impossible [16].

Theorem 4. Assume that Assumption 2 is not guaranteed in a system. Then
consensus is impossible.

6 Conclusion

We introduced a novel framework for modeling dynamic networks with directed
communication links, and introduced a weak connectivity assumption that makes
consensus solvable. Without such assumptions, consensus is trivially impossible
in such systems as some processes can withhold their input values until a wrong
decision has been made. We presented an algorithm that achieves consensus
under this assumption, and showed several impossibility results and lower bounds
that reveal that our algorithm is asymptotically optimal.
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Abstract. Given a set of positions for wireless nodes, the interference
minimization problem is to assign a transmission radius (equivalently, a
power level) to each node such that the resulting communication graph is
connected, while minimizing the maximum interference. We consider the
model introduced by von Rickenbach et al. (2005), in which each transmis-
sion range is represented by a ball and edges in the communication graph
are symmetric. The problem is NP-complete in two dimensions (Buchin
2008) and no polynomial-time approximation algorithm is known. In this
paper we show how to solve the problem efficiently in settings typical for
wireless ad hoc networks. We show that if node positions are represented
by a set P of n points selected uniformly and independently at random
over a d-dimensional rectangular region, for any fixed d, then the topol-
ogy given by the closure of the Euclidean minimum spanning tree of P
has maximum interference O(log n) with high probability. We extend this
bound to a general class of communication graphs over a broad set of prob-
ability distributions. We present a local algorithm that constructs a graph
from this class; this is the first local algorithm to provide an upper bound
on the expected maximum interference. Finally, we analyze an empirical
evaluation of our algorithm by simulation.

1 Introduction

1.1 Motivation

Establishing connectivity in a wireless network can be a complex task for which
various (sometimes conflicting) objectives must be optimized. To permit a packet
to be routed from any origin node to any destination node in the network, the
corresponding communication graph must be connected. In addition to requiring
connectivity, various properties can be imposed on the network, including low
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power consumption [20, 27], bounded average traffic load [10, 12], small average
hop distance between sender-receiver pairs [1], low dilation (t-spanner) [1,3,6,7,
14,21,25], and minimal interference; this latter objective, minimizing interference
(and, consequently, minimizing the required bandwidth), is the focus of much
recent research [1, 2, 5, 9, 11, 17–19,22–24,27–31] and of this paper.

We adopt the interference model introduced by von Rickenbach et al. [30]
(see Section 1.2). We model transmission in a wireless network by assigning to
each wireless node p a radius of transmission r(p), such that every node within
distance r(p) of p can receive a transmission from p, whereas no node a greater
distance from p can. The interference at node p is the number of nodes that
have p within their respective radii of transmission. Given a set of wireless nodes
whose positions are represented by a set of points P , we consider the problem of
identifying a connected network on P that minimizes the maximum interference.
The problem of constructing the network is equivalent to that of assigning a
transmission radius to each node; once the transmission radius of each node
is fixed, the corresponding communication graph and its associated maximum
interference are also determined. Conversely, once a graph is fixed, each node’s
transmission radius is determined by the distance to its furthest neighbour.

Given a set of points P in the plane, finding a connected graph on P that
minimizes the maximum interference is NP-complete [5]. A polynomial-time al-
gorithm exists that returns a solution with maximum interference O(

√
n), where

n = |P | [11]. Even in one dimension, for every n there exists a set of n points
P such that any graph on P has maximum interference Ω(

√
n) [30]. All such

known examples involve specific constructions (i.e., exponential chains). We are
interested in investigating a more realistic class of wireless networks: those whose
node positions observe common random distributions that better model actual
wireless ad hoc networks.

When nodes are positioned on a line (often called the highway model), a simple
heuristic is to assign to each node a radius of transmission that corresponds to
the maximum of the distances to its respective nearest neighbours to the left and
right. In the worst case, such a strategy can result in Θ(n) maximum interference
when an optimal solution has only Θ(

√
n) maximum interference [30]. Recently,

Kranakis et al. [19] showed that if n nodes are positioned uniformly at random
on an interval, then the maximum interference provided by this heuristic is
Θ(

√
logn) with high probability.

In this paper, we examine the corresponding problem in two and higher dimen-
sions. We generalize the nearest-neighbour path used in the highway model to the
Euclidean minimum spanning tree (MST), and show that with high probability,
the maximum interference of the MST of a set of n points selected uniformly at
random over a d-dimensional region [0, 1]d is O(log n), for any fixed d ≥ 1. Our
techniques differ significantly from those used by Kranakis et al. to achieve their
results in one dimension. As we show in Section 3, our results also apply to a
broad class of random distributions, denoted D, that includes both the uniform
random distribution and realistic distributions for modelling random motion in
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mobile wireless networks, as well as to a large class of connected spanning graphs
that includes the MST.

In Section 3.4 we present a local algorithm that constructs a topology whose
maximum interference is O(log n) with high probability when node positions are
selected according to a distribution in D. Previous local algorithms for topology
control (e.g., the cone-based local algorithm (CBTC) [20]) attempt to reduce
transmission radii (i.e., power consumption), but not necessarily the maximum
interference. Although reducing transmission radii at many nodes is often neces-
sary to reduce the maximum interference, the two objectives differ; specifically,
some nodes may require large transmission radii to minimize the maximum in-
terference. Ours is the first local algorithm to provide a non-trivial upper bound
on maximum interference. Our algorithm can be applied to any existing topol-
ogy to refine it and further reduce its maximum interference. Consequently, our
solution can be used either independently, or paired with another topology con-
trol strategy. Finally, we discuss an empirical evaluation of our algorithm with
a suite of simulation results in Section 4.

1.2 Model and Definitions

We represent the position of a wireless node as a point in Euclidean space, Rd,
for some fixed d ≥ 1. For simplicity, we refer to each node by its corresponding
point. Similarly, we represent a wireless network by its communication graph,
a geometric graph whose vertices are a set of points P ⊆ Rd. Given a (simple
and undirected) graph G, we employ standard graph-theoretic notation, where
V (G) denotes the vertex set of G and E(G) denotes its edge set. We say vertices
u and v are k-hop neighbours if there is a simple path of length k from u to v in
G. When k = 1 we say u and v are neighbours.

We assume a uniform range of communication for each node and consider
bidirectional communication links, each of which is represented by an undirected
graph edge connecting two nodes. Specifically, each node p has some radius of
transmission, denoted by the function r : P → R+, such that a node q receives
a transmission from p if and only if dist(p, q) ≤ r(p), where dist(p, q) = ‖p− q‖2
denotes the Euclidean distance between points p and q in Rd. For simplicity,
suppose each node has an infinite radius of reception, regardless of its radius of
transmission.

Definition 1 (Communication Graph). A graphG is a communication graph
with respect to a point set P ⊆ Rd and a function r : P → R+ if (i) V (G) = P ,
and

(ii) ∀{p, q} ⊆ V (G), {p, q} ∈ E(G) ⇔ dist(p, q) ≤ min{r(p), r(q)}. (1)

Together, set P and function r uniquely determine the corresponding commu-
nication graph G. Alternatively, a communication graph can be defined as the
closure of a given embedded graph. Specifically, if instead of being given P and
r, we are given an arbitrary graph H embedded in Rd, then the set P is trivially
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determined by V (H) and a transmission radius for each node p ∈ V (H) can be
assigned to satisfy (1) by

r(p) = max
q∈Adj(p)

dist(p, q), (2)

where Adj(p) = {q | {q, p} ∈ E(H)} denotes the set of vertices adjacent to p
in H . The communication graph determined by H is the unique edge-minimal
supergraph of H that satisfies Definition 1. We denote this graph by H ′ and
refer to it as the closure of graph H . Therefore, a communication graph G can
be defined either as a function of a set of points P and an associated mapping
of transmission radii r : P → R+, or as the closure of a given embedded graph
H (where G = H ′).

Definition 2 (Interference). Given a communication graph G, the interfer-
ence at node p in V (G) is

interG(p) = |{q | q ∈ V (G) \ {p} and dist(q, p) ≤ r(q)}|

and the maximum interference of G is inter(G) = max
p∈V (G)

interG(p).

In other words, the interference at node p, denoted interG(p), is the number of
nodes q such that p lies within q’s radius of transmission. This does not imply
the existence of the edge {p, q} in the corresponding communication graph; such
an edges exists if and only if the relationship is reciprocal, i.e., q also lies within
p’s radius of transmission.

Given a point set P , let G(P ) denote the set of connected communication
graphs on P . Let OPT(P ) denote the optimal maximum interference attainable
over graphs in G(P ). That is,

OPT(P ) = min
G∈G(P )

inter(G) = min
G∈G(P )

max
p∈V (G)

interG(p).

Thus, given a set of points P representing the positions of wireless nodes, the
interference minimization problem is to find a connected communication graph
G on P that spans P such that the maximum interference is minimized (i.e.,
its maximum interference is OPT(P )). In this paper we examine the maximum
interference of the communication graph determined by the closure of MST(P ),
where MST(P ) denotes the Euclidean minimum spanning tree of the point set
P . Our results apply with high probability, which refers to probability at least
1−n−c, where n = |P | denotes the number of networks nodes and c ≥ 1 is fixed.

2 Related Work

Bidirectional Interference Model. In this paper we consider the bidirectional
interference model (defined in Section 1.2). This model was introduced by von
Rickenbach et al. [30], who gave a polynomial-time approximation algorithm that
finds a solution with maximum interference O(n1/4 ·OPT(P )) for any given set of
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points P on a line, and a one-dimensional construction showing that OPT(P ) ∈
Ω(

√
n) in the worst case, where n = |P |. Halldórsson and Tokuyama [11] gave a

polynomial-time algorithm that returns a solution with maximum interference
O(

√
n) for any given set of n points in the plane. Buchin [5] showed that finding

an optimal solution (one whose maximum interference is exactly OPT(P )) is NP-
complete in the plane. Tan et al. [29] gave an O(n3nO(OPT(P )))-time algorithm
for finding an optimal solution for any given set of points P on a line. Kranakis
et al. [19] showed that for any set of n points P selected uniformly at random
from the unit interval, the maximum interference of the nearest-neighbour path
(MST(P )′) has maximum interference Θ(

√
logn) with high probability. Sharma

et al. [28] consider heuristic solutions to the two-dimensional problem. Finally,
recent results by Devroye and Morin [9] extend some of the results presented
in this paper and answer a number of open questions definitively to show that
with high probability, when P is a set of n points in Rd selected uniformly at
random from [0, 1]d, inter(MST(P )′) ∈ Θ((log n)1/2), OPT(P ) ∈ O((log n)1/3),
and OPT(P ) ∈ Ω((log n)1/4).

Unidirectional Interference Model. If communication links are not bidirec-
tional (i.e., edges are directed) and the communication graph is required to be
strongly connected, then the worst-case maximum interference decreases. Under
this model, von Rickenbach et al. [31] and Korman [17] give polynomial-time
algorithms that return solutions with maximum interference O(log n) for any
given set of points in the plane, and a one-dimensional construction showing
that in the worst case OPT(P ) ∈ Ω(logn).

Minimizing Average Interference. In addition to results that examine the
problem of minimizing the maximum interference, some work has addressed
the problem of minimizing the average interference, e.g., Tan et al. [29] and
Moscibroda and Wattenhofer [24].

3 Bounds

3.1 Generalizing One-Dimensional Solutions

Before presenting our results on random sets of points, we begin with a brief dis-
cussion regarding the possibility of generalizing existing algorithms that provide
approximate solutions for one-dimensional instances of the interference mini-
mization problem (in an adversarial deterministic input setting).

Since the problem of identifying a graph that achieves the optimal (minimum)
interference is NP-hard in two or more dimensions [5], it is natural to ask whether
one can design a polynomial-time algorithm to return a good approximate so-
lution. Although Rickenbach et al. [30] give a Θ(n1/4)-approximate algorithm
in one dimension [30], the current best polynomial-time algorithm in two (or
more) dimensions by Halldórsson and Tokuyama [11] returns a solution whose
maximum interference is O(

√
n); as noted by Halldórsson and Tokuyama, this al-

gorithm is not known to guarantee any approximation factor better than the im-
mediate bound of O(

√
n). The algorithm of Rickenbach et al. uses two strategies



90 M. Khabbazian, S. Durocher, and A. Haghnegahdar

for constructing respective communication graphs, and returns the graph with
the lower maximum interference; an elegant argument that depends on Lemma 1
bounds the resulting worst-case maximum interference by Θ(n1/4 · OPT(P )).
The two strategies correspond roughly to a) MST(P )′ and b) classifying every√
nth node as a hub, joining each hub to its left and right neighbouring hubs

to form a network backbone, and connecting each remaining node to its clos-
est hub. The algorithm of Halldórsson and Tokuyama applies ε-nets, resulting
in a strategy that is loosely analogous to a generalization of the hub strategy
of Rickenbach et al. to higher dimensions. One might wonder whether the hy-
brid approach of Rickenbach et al. might be applicable in higher dimensions by
returning MST(P )′ or the communication graph constructed by the algorithm
of Halldórsson and Tokuyama, whichever has lower maximum interference. To
apply this idea directly would require generalizing the following property estab-
lished by von Rickenbach et al. to higher dimensions:

Lemma 1 (von Rickenbach et al. [30] (2005)). For any set of points P ⊆ R,

OPT(P ) ∈ Ω
(√

inter(MST(P )′)
)
.

However, von Rickenbach et al. also show that for any n, there exists a set
of n points P ⊆ R2 such that OPT(P ) ∈ O(1) and inter(MST(P )′) ∈ Θ(n),
which implies that Lemma 1 does not hold in higher dimensions. Consequently,
techniques such as those used by von Rickenbach et al. do not immediately
generalize to higher dimensions.

3.2 Randomized Point Sets

Although using the hybrid approach of von Rickenbach et al. [30] directly may
not be possible, Kranakis et al. [19] recently showed that if a set P of n points
is selected uniformly at random from an interval, then the maximum interfer-
ence of the communication graph determined by MST(P )′ is Θ(

√
logn) with

high probability. Throughout this section, we assume general position of points;
specifically, we assume that the distance between each pair of nodes is unique.

We begin by introducing some definitions. An edge {p, q} ∈ E(G) in a com-
munication graph G is primitive if min{r(p), r(q)} = dist(p, q). An edge {p, q} ∈
E(G) in a communication graph G is bridged if there is a path joining p and
q in G consisting of at most three edges, each of which is of length less than
dist(p, q). Given a set of points P in Rd, let T (P ) denote the set of all com-
munication graphs G with V (G) = P such that no primitive edge in E(G) is
bridged.

Halldórsson and Tokuyama [11] and Maheshwari et al. [23] give respective cen-
tralized algorithms for constructing graphs G, each with interference
O(log(dmax(G)/dmin(G))), where dmax(G) and dmin(G) are defined as in The-
orem 1. As we show in Theorem 1, this bound holds for any graph G in the
class T (P ). In Section 3.4 we give a local algorithm for constructing a connected
graph in T (P ) on any given point set P .
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Theorem 1. Let P be a set of points in Rd. For any graph G ∈ T (P ),

inter(G) ∈ O

(
log

(
dmax(G)

dmin(G)

))
,

where dmax(G) = max{s,t}∈E(G) dist(s, t) and dmin(G) = min{s,t}∈E(G) dist(s, t).

The proof is omitted due to space constraints. In the next lemma we show that
MST(P )′ is in T (P ). Consequently, T (P ) is always non-empty.

Lemma 2. For any set of points P ⊆ Rd, MST(P )′ ∈ T (P ).

Proof. The transmission range of each node p ∈ P is determined by the length
of the longest edge adjacent to p in MST(P ). Suppose there is a primitive edge
{p1, p2} ∈ E(MST(P )) that is bridged. Therefore, there is a path T from p1
to p2 in MST(P )′ that contains at most three edges, each of which is of length
less than dist(p1, p2). Removing the edge {p1, p2} partitions MST(P ) into two
connected components, where p1 and p2 are in different components. By defini-
tion, T contains an edge that spans the two components. The two components
can be joined using this edge (of length less than dist(p1, p2)) to obtain a new
spanning tree whose weight is less than that of MST(P ), deriving a contradic-
tion. Therefore, no primitive edge {p1, p2} ∈ MST(P ) can be bridged, implying
MST(P )′ ∈ T (P ). �

Theorem 1 implies that the interference of any graph G in T (P ) is bounded
asymptotically by the logarithm of the ratio of the longest and shortest edges
in G. While this ratio can be arbitrarily large in the worst case, we show that
the ratio is bounded for many typical distributions of points. Specifically, if the
ratio is O(nc) for some constant c, then the maximum interference is O(log n).

Definition 3 (D). Let D denote the class of distributions over [0, 1]d such that
for any D ∈ D and any set P of n ≥ 2 points selected independently at random
according to D, the minimum distance between any two points in P is greater
than n−c with high probability, for some constant c (independent of n).

Theorem 2. For any integers d ≥ 1 and n ≥ 2, any distribution D ∈ D, and
any set P of n points, each of which is selected independently at random over
[0, 1]d according to distribution D, with high probability, for all graphs G ∈ T (P ),
inter(G) ∈ O(log n).

Proof. Let dmin(G) = min{s,t}∈E(G) dist(s, t) and dmax(G) = max{s,t}∈E(G)

dist(s, t). Since points are contained in [0, 1]d, dmax(G) ≤
√
d. Points in P are

distributed according to a distribution D ∈ D. By Definition 3, with high prob-
ability, dmin(G) ≥ n−c for some constant c. Thus, with high probability, we have

log

(
dmax(G)

dmin(G)

)
≤ log

( √
d

n−c

)
. (3)

The result follows from (3), Theorem 1, and the fact that log(nc
√
d) ∈ O(log n)

when d and c are constant. �
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Lemma 3. Let D be a distribution with domain [0, 1]d, for which there is a
constant c′ such that for any point x ∈ [0, 1]d, we have D(x) ≤ c′, where D(x)
denotes the probability density function of D at x ∈ [0, 1]d. Then D ∈ D.

The proof is omitted due to space constraints.

Corollary 1. The uniform distribution with domain [0, 1]d is in D.

By Corollary 1 and Theorem 2, we can conclude that if a set P of n ≥ 2 points is
distributed uniformly in [0, 1]d, then with high probability, any communication
graph in G ∈ T (P ) will have maximum interference O(log n). This is expressed
formally in the following corollary:

Corollary 2. Choose any integers d ≥ 1 and n ≥ 2. Let P be a set of n points,
each of which is selected independently and uniformly at random over [0, 1]d.
With high probability, for all graphs G ∈ T (P ), inter(G) ∈ O(log n).

3.3 Mobility

Our results apply to the setting of mobility (e.g., mobile ad hoc wireless net-
works). Each node in a mobile network must periodically exchange information
with its neighbours to update its local data storing positions and transmission
radii of nodes within its local neighbourhood. The distribution of mobile nodes
depends on the mobility model, which is not necessarily uniform. For exam-
ple, when the network is distributed over a disc or a box-shaped region, the
probability distribution associated with the random waypoint model achieves its
maximum at the centre of the region, whereas the probability of finding a node
close to the region’s boundary approaches zero [12]. Since the maximum value
of the probability distribution associated with the random waypoint model is
constant [12], by Lemma 3 and Theorem 2, we can conclude that at any point in
time, the maximum interference of the network is O(log n) with high probabil-
ity. In general, this holds for any random mobility model whose corresponding
probability distribution has a constant maximum value.

3.4 Local Algorithm

As discussed in Section 1.1, existing local algorithms for topology control attempt
to reduce transmission radii, but not necessarily the maximum interference. By
Lemma 2 and Theorem 2, if P is a set of n points selected according to a distribu-
tion in D, then with high probability inter(MST(P )′) ∈ O(log n). Unfortunately,
a minimum spanning tree cannot be generated using only local information [16].
Thus, an interesting question is whether each node can assign itself a transmis-
sion radius using only local information such that the resulting communication
graph belongs to T (P ) while remaining connected. We answer this question af-
firmatively and present the first local algorithm (LocalRadiusReduction),
that assigns a transmission radius to each node such that if the initial commu-
nication graph Gmax is connected, then the resulting communication graph is
a connected spanning subgraph of Gmax that belongs to T (P ). Consequently,
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the resulting topology has maximum interference O(log n) with high probability
when nodes are selected according to any distribution in D. Our algorithm can
be applied to any existing topology to refine it and further reduce its maximum
interference. Thus, our solution can be used either independently, or paired with
another topology control strategy. The algorithm consists of three phases, which
we now describe.

Let P be a set of n ≥ 2 points in Rd and let rmax : P → R+ be a function that
returns the maximum transmission radius allowable at each node. Let Gmax

denote the communication graph determined by P and rmax. Suppose Gmax

is connected. Algorithm LocalRadiusReduction assumes that each node is
initially aware of its maximum transmission radius, its spatial coordinates, and
its unique identifier.

The algorithm begins with a local data acquisition phase, during which every
node broadcasts its identity, maximum transmission radius, and coordinates in
a node data message. Each message also specifies whether the data is associated
with the sender or whether it is forwarded from a neighbour. Every node records
the node data it receives and retransmits those messages that were not previously
forwarded. Upon completing this phase, each node is aware of the corresponding
data for all nodes within its 2-hop neighbourhood. The algorithm then proceeds
to an asynchronous transmission radius reduction phase.

Consider a node u and let f denote its furthest neighbour. If u and f are
bridged in Gmax, then u reduces its transmission radius to correspond to that
of its next-furthest neighbour f ′, where dist(u, f ′) < dist(u, f). This process
iterates until u is not bridged with its furthest neighbour within its reduced
transmission radius. We formalize the local transmission radius reduction algo-
rithm in the pseudocode in Table 1 that computes the new transmission radius
r′(u) at node u.

Table 1. pseudocode for Algorithm LocalRadiusReduction(u)

1 radiusReductionComplete ← false
2 r′(u) ← rmax(u)
3 f ← u
4 for each v ∈ Adj(u)
5 if dist(u, v) > dist(u, f)
6 f ← v // furthest neighbour
7 while ¬radiusReductionComplete
8 radiusModified ← false
9 if Bridged(u, f)

10 radiusModified ← true
11 f ← u // identify next neighbour within distance r′(u)
12 for each v ∈ Adj(u)
13 if dist(u, v) < r′(u) and dist(u, v) > dist(u, f)
14 f ← v
15 r′(u) ← dist(u, f)
16 radiusReductionComplete ← ¬radiusModified
17 return r′(u)
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Algorithm LocalRadiusReduction is 2-local. Since transmission radii are
decreased monotonically (and never increased), the while loop iterates O(Δ)
times, where Δ denotes the maximum vertex degree in Gmax. Since each call to
the subroutine Bridged terminates in O(Δ2) time, each node determines its
reduced transmission radius r′(u) in O(Δ3) time.

After completing the transmission radius reduction phase, the algorithm con-
cludes with one final adjustment in the transmission radius to remove asym-
metric edges. In this third and final phase, each node u broadcasts its reduced
transmission radius r′(u). Consider the set of nodes {v1, . . . , vk} ⊆ Adj(u) such
that dist(u, vi) = r′(u) for all i (when points are in general position, k = 1, and
there is a unique such node v1). If r

′(vi) < r′(u) for all i, then u can reduce
its transmission radius to that of its furthest neighbour with which bidirectional
communication is possible. Specifically,

r′(u) ← max
v∈Adj(u)

dist(u,v)≤min{r′(u),r′(v)}

dist(u, v). (4)

The value of r′(u) as defined in (4) is straightforward to compute in O(Δ) time.

Lemma 4. The communication graph constructed by Algorithm
LocalRadiusReduction is in T (P ) and is connected if the initial commu-
nication graph Gmax is connected.

The proof is omitted due to space constraints. More generally, since transmission
radii are only decreased, it can be shown that Gmin and Gmax have the same
number of connected components by applying Lemma 4 on every connected
component of Gmax.

4 Simulation

We simulated Algorithm LocalRadiusReduction to evaluate its performance
in static and mobile wireless networks. In both settings, each node collects the
list of its 2-hop neighbours in two rounds, applies the algorithm to reduce its
transmission radius, and then broadcasts its computed transmission radius so
neighbouring nodes can eliminate asymmetric edges and possibly further reduce
their transmission radii. By the end of this stage, all asymmetric edges are re-
moved and no new asymmetric edges are generated. Consequently, a node need
not broadcast its transmission radius again after it has been further reduced.

We applied two mobility models to simulate mobile networks: random walk
and random waypoint [13]. In both models each node’s initial position is a point
selected uniformly at random over the simulation region. In the random walk
model, each node selects a new speed and direction uniformly at random over
[vmin, vmax] and [0, 2π), respectively, at regular intervals. When a node encoun-
ters the simulation region’s boundary, its direction is reversed (a rotation of π)
to remain within the simulation region with the same speed. In the random way-
point model, each node moves along a straight trajectory with constant speed
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toward a destination point selected uniformly at random over [vmin, vmax] and
the simulation region, respectively. Upon reaching its destination, the node stops
for a random pause time, after which it selects a new random destination and
speed, and the process repeats.

We set the simulation region’s dimensions to 1000 metres × 1000 metres. For
both static and dynamic networks, we varied the number of nodes n from 50
to 1000 in increments of 50. We fixed the maximum transmission radius rmax

for each network to 100, 200, or 300 metres. To compute the average maximum
interference for static networks, for each n and rmax we generated 100,000 static
networks, each with n nodes and maximum transmission radius rmax, distributed
uniformly at random in the simulation region. To compute the average maximum
interference for mobile networks, for each n and rmax we generated 100,000
snapshots for each mobility model, each with n nodes and maximum transmission
radius rmax. We set the speed interval to [0.2, 10] metres per second, and the
pause time interval to [0, 10] seconds (in the waypoint model). A snapshot of the
network was recorded once every second over a simulation of 100,000 seconds.

We compared the average maximum interference of the topology constructed
by the algorithm LocalRadiusReduction against the corresponding average
maximum interference achieved respectively by two local topology control algo-
rithms: i) the local computation of the intersection of the Gabriel graph and the
unit disc graph (with unit radius rmax) [4], and ii) the cone-based local topology
control (CBTC) algorithm [20]. In addition, we evaluated the maximum inter-
ference achieved when each node uses a fixed radius of communication, i.e., the
communication graph is a unit disc graph of radius rmax (100, 200, or 300 metres,
respectively). See the full version [15] for figures displaying simulation results.

As shown, the average maximum interference of unit disc graph topologies
increases linearly with n. Many of the unit disc graphs generated were discon-
nected when the transmission radius was set to 100 metres for small n. Since
we require connectivity, we only considered values of n and rmax for which at
least half of the networks generated were connected. When rmax = 100 metres, a
higher average maximum interference was measured at n = 300 than at n = 400.
This is because many networks generated for n = 300 were discarded due to be-
ing disconnected. Consequently, the density of networks simulated for n = 300
was higher than the average density of a random network with n = 300 nodes,
resulting in higher maximum interference.

Although both the local Gabriel and CBTC algorithms performed significantly
better than the unit disc graphs, the lowest average maximum interference was
achieved by the LocalRadiusReduction algorithm. Note that the LocalRa-

diusReduction algorithm reduces the maximum interference to O(log n) with
high probability, irrespective of the initial maximum transmission radius rmax.

Simulation results obtained using the random walk model closely match those
obtained on a static network because the distribution of nodes at any time during
a random walk is nearly uniform [8]. The averagemaximum interference increases
slightly but remains logarithmic when the random waypoint model is used. The
spatial distribution of nodes moving according to a random waypoint model
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is not uniform, and is maximized at the centre of the simulation region [12].
Consequently, the density of nodes is high near the centre, resulting in greater
interference at these nodes.

Finally, we evaluated the algorithm LocalRadiusReduction using actual
mobility trace data of Piorkowski et al. [26], consisting of GPS coordinates
for trajectories of 537 taxi vehicles recorded over one month in 2008, driving
throughout the San Fransisco Bay area. We selected the 500 largest traces, each
of which has over 8000 sample points. To implement our algorithm, we selected
n taxis among the 500 uniformly at random, ranging from n = 50 to n = 500 in
increments of 50. The resulting average maximum interference is similar to that
measured in our simulation results.

5 Discussion

Using Algorithm LocalRadiusReduction, each node determines its transmis-
sion radius as a function of its 2-hop neighbourhood. Alternatively, suppose each
node could select its transmission radius at random using a suitable distribution
over [dmin(G), dmax(G)]. Can such a strategy for assigning transmission radii
ensure connectivity and low maximum interference with high probability? Sim-
ilarly, additional topologies and local algorithms for constructing them might
achieve O(log n) expected maximum interference. For example, our experimen-
tal results suggest that both the Gabriel graph and CBTC local topology control
algorithms may provide O(log n) expected maximum interference. Since neither
the Gabriel graph nor the CBTC topology of a set of points P is in T (P ) in
general, whether these bounds hold remains to be proved.

As mentioned in Section 2, multiple open questions related to interference on
random sets of points were resolved recently by Devroye and Morin [9]. Several
questions remain open related to the algorithmic problem of finding an opti-
mal solution (one whose maximum interference is exactly OPT(P )) when node
positions may be selected adversarially. The complexity of the interference min-
imization in one dimension remains open; at present, it is unknown whether
the problem is polynomial-time solvable or NP-hard [29]. While the problem is
known to be NP-complete in two dimensions [5], no polynomial-time approxi-
mation algorithm nor any inapproximability hardness results are known.

Acknowledgements. Stephane Durocher thanks Csaba Tóth for insightful dis-
cussions related to the interference minimization problem in one dimension.
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Abstract. Inspired by the well-known Dipole and Yagi antennae we introduce
and study a new theoretical model of directional antennae that we call double
antennae. Given a set P of n sensors in the plane equipped with double antennae
of angle φ and with dipole-like and Yagi-like antenna propagation patterns, we
study the connectivity and stretch factor problems, namely finding the minimum
range such that double antennae of that range can be oriented so as to guarantee
strong connectivity or stretch factor of the resulting network. We introduce the
new concepts of (2,φ)-connectivity and φ-angular range rφ(P) and use it to char-
acterize the optimality of our algorithms. We prove that rφ(P) is a lower bound
on the range required for strong connectivity and show how to compute rφ(P)
in time polynomial in n. We give algorithms for orienting the antennae so as to
attain strong connectivity using optimal range when φ ≥ 2π/3, and algorithms
approximating the range for φ ≥ π/2. For φ < π/3, we show that the problem is
NP-complete to approximate within a factor

√
3. For φ ≥ π/2, we give an algo-

rithm to orient the antennae so that the resulting network has a stretch factor of at
most 4 compared to the underlying unit disk graph.

Keywords: Connectivity, Double Antenna, Range, Stretch Factor, Unit Disk
Graph.

1 Introduction

Directional antennae are versatile transceivers which are widely used in wireless com-
munication. With proper design they are known to improve overall energy consump-
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tion [12], enhance network capacity [9,15], improve topology control [8], and offer the
potential for mitigating various security threats [10], just to mention a few applications.
The motivation for our present study comes from the work in [2] which introduced the
network connectivity problem for directional sensors and provided several algorithms
for analyzing angle-range tradeoffs.

Dipole antennae (or dipoles, for short) are well-known basic antennae that are com-
monly used in radio communication. At their simplest, they consist of two straight
collinear conductors of equal length separated by a small gap. Moreover, the radiation
pattern for such antennae–indicating the strength of the signal in a given direction–in
the xy-plane is usually depicted by two equal size closed curves known as lobes. Fig-
ure 1 illustrates the variability of the strength of the signal depending on the direction
of the beam (see [14]). When the two lobes are not identical with the apex of one of
the two lobes being closer to the origin than the other, the resulting antenna radiation
pattern corresponds to a Yagi antenna, thus indicating that the antenna’s transmission
range is longer in one direction versus its opposite.

x

y

Fig. 1. Radiation pattern of a dipole antenna in the xy-plane

Motivated by the above, we introduce the following theoretical model of Dipole-like
and Yagi-like antennae which we refer to as double antennae. These two concepts are
captured in the following two geometric definitions.

Definition 1. A (φ,r)-double antenna is an antenna with beamwidth or angle φ and
radius r which can send and receive from either of the two sectors called beams depicted
in Figure 2.

r r

φφ

Fig. 2. Double antenna with beamwidth φ and range r

Definition 2. More generally, a (φ,r1,r2)-double antenna is a double antenna with the
range of one beam equal to r1 and the range of the opposite beam r2.
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Clearly, a (φ,r1,r1)-double antenna is also a (φ,min{r1,r2})-double antenna. Unless
otherwise specified, in this paper, a double antenna refers to a (φ,r)-double antenna.

In this paper we are interested in the following two antenna orientation problems:

Problem 1 (Connectivity Problem with Double Antennae). Given a set P of n sensors
in the plane each equipped with one double antenna with beamwidth φ ≤ π, determine
the minimum antenna range, denoted by r̂φ(P), so that there exists an orientation of the
antennae that induces a strongly connected transmission graph.

It is worth noting that for a sufficiently small angle φ, the problem is equivalent to the
well-known bottleneck traveling salesman problem (BTSP) or Hamiltonian cycle that
minimizes the longest edge. Therefore, a trivial upper-bound on the antenna range for
φ ≤ π of three times the optimal range can be computed by finding a Hamiltonian cycle
with edge length bounded by three times the longest edge of the MST [3] [Problem
C35.2-4] since the longest edge of the MST is also a lower bound for the orientation
problem for any angle φ. However, for the BTSP a better analysis given in [13] shows
that a 2-approximation can be obtained in polynomial time. Essentially, they proved
that the lower bound for the BTSP is at least the longest edge of the 2-connected graph
G that minimizes the longest edge. Thus, the 2-approximation is obtained easily since
the square of any 2-connected graph is Hamiltonian [7].

Closely related to the orientation problem for attaining connectivity is the orientation
problem to achieve constant stretch factor:

Problem 2 (Stretch Factor Problem with Double Antennae). Given a set P of n sensors
in the plane each equipped with one double antenna with beamwidth φ ≤ π, determine
the minimum antenna range so that there exists an orientation of the antennae that in-
duces a c-directional spanner, where c is a constant.

1.1 Notation

We denote the Euclidean distance between points u and v by with d(u,v). Let UDG(P;r)
denote the geometric graph (or straight line graph) such that P is the set of vertices and
an edge {u,v} exists if and only if d(u,v) ≤ r. If r is normalized to be equal to 1 we
simply denote the graph by UDG(P). Throughout this paper the acronym UDG stands
for Unit Disk Graph and the acronym MST for Euclidean Minimum Spanning Tree. Let
NG(u) denote the set of neighbors of u.

Throughout this paper we assume that points are in general position, i.e., there do not
exist three points that are collinear. It is well-known that the vertices of any MST have
degree at most six since the angle that a vertex forms with two consecutive neighbors is
at least π/3. However, when a vertex forms an angle of π/3 with every two consecutive
neighbors, implies that at least three points are collinear. Hence, we assume that the
max degree of the MST is five.

1.2 Related Work

The antenna orientation problem has been studied extensively since the problem was in-
troduced by Caragianis et al [2]. for the single-directional antenna model. They proved
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that the connectivity problem for a single antenna (per sensor) is NP-complete with
beamwidth less than 2π/3 and gave an upper-bound on the range for a beamwidth
greater than π which is tight when the angle is at least 8π/5. In [6], the authors studied
the connectivity problem when each sensor has k antennae. They proposed an algorithm
for orienting the antennae so as to obtain a strongly connected graph with out-degree
bounded by k and longest edge bounded by 2sin( π

k+1 ) times the optimal length required
to attain connectivity. A useful survey of the connectivity problem is presented in [11].

In all the previous results, the lower bound on the antenna range was based on the
longest edge of the MST. In this paper we will introduce the new concept of (2,φ)-
connectivity for a given angle φ so as to characterize the optimal lower bound required
for connectivity.

The stretch factor problem for a single-directional antenna was studied for the first
time in [4] for the particular cases of angles π/2 and 2π/3. They proved that a range of
7 and 5 is always sufficient to create a 6-directional spanner and a 5-directional spanner
(i.e., with stretch-factor 6 and 5), respectively. A more comprenhensive result is given
in [1] where the authors gave an upper bound for all angles.

1.3 Results of the Paper

We study the antenna orientation problems for connectivity and stretch-factor in the
double antenna model. In Section 2 we introduce the new concepts of (2,φ)-connectivity
and φ-angular range rφ(P) so as to characterize the optimality of our algorithms. Fur-
thermore, we prove that rφ(P) is the lower bound for the connectivity problem and show
how to compute rφ(P) in polynomial time. We prove tight bounds on the optimal an-
gle necessary to cover all neighbours of a node in a MST in Section 3. Our results for
the connectivity problem, including an NP-completeness proof when the beamwidth
φ < π/3− ε and an optimal algorithm for the case φ > 2π/3 are presented in Section 4.
In Section 5 we give a linear time algorithm for the stretch factor problem that orients
the antennae of beamwidth at least π/2 so as to obtain a 4-directional spanner. Finally,
we conclude in Section 6 and present some open problems. Our main results, complex-
ities, and resulting angle/range tradeoffs for n sensors in the plane are summarized in
Table 1.

2 Lower Bounds

In this section we characterize the lower bounds for the orientation problem for connec-
tivity with double antennae. Consider an antenna orientation for a given antenna beam
width φ and optimal range r̂φ(P) on a set of points P that induces a strongly connected
graph on P. Given u ∈ P, let v ∈ P be a point not in one of the beams of u’s antenna
such that d(u,v)≤ r̂φ(P). The main observation is that a path between u and v must ex-
ist such that each edge in the path is of length at most r̂φ(P). This implies that the unit
disk graph UDG(P; r̂φ(P))\ {{u,v}} is connected. We use this observation to obtain a
lower bound on r̂φ(P).
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Table 1. Results for the double antenna connectivity and stretch-factor problems on n sensors in
the plane and for antennae of beam width φ

Double Antenna Angle Approximation Ratio Complexity Stretch Factor
2π
3 ≤ φ < π 1 O(n2) -

π
2 ≤ φ ≤ 2π

3

√
3 O(n logn) -

π
2 ≤ φ < π 4sin( π

4 + φ
2 ) O(n) 4

0 ≤ φ < π
2 3 O(n logn) -

φ < π
3 − ε

√
3− ε NP-Complete -

First we define a double antenna orientation “relative to” a given angle γ. Let γ be a
given angle oriented with its right edge (in counterclockwise direction) on the axis as
depicted in Figure 3; u(φ;γ) denotes the orientation of the double antenna of beamwidth
φ at u starting from the right edge (in counterclockwise direction) of γ (see Figure 3).
Given the graph UDG(P;r), and an orientation γ, we define Eφ(P,r,u,γ) as the subset
of edges incident to u which lie outside the two beams of u(φ;γ) (see Figure 3).

φ

φ

γ

r

u

v1

v2

Fig. 3. u(φ;γ) denotes the double antenna with beam-width φ and orientation relative to γ. The
edges {u,v1} and {u,v2} are in Eφ(P,r,u,γ).

Definition 3 (Set of Edges Eφ(P,r,u).). Let Eφ(P,r,u) denote any set E(P,r,u,γ), for
0 ≤ γ ≤ π, such that the graph UDG(P;r) \E(P,r,u,γ) attains the minimum possible
number of connected components.

The following definition introduces the concept of (2,φ)-connectivity of a UDG.

Definition 4 ((2,φ)-connectivity.). Let P be a set of points in the plane. We say that
for a given radius r, the graph UDG(P;r) is (2,φ)-connected if for any vertex u ∈ P,
UDG(P;r)\Eφ(P,r,u) is connected.

Observe that when φ is sufficiently small so that each antenna can only cover one vertex
in its beams, the concept of (2,φ)-connectivity is equivalent to the well-known concept
of 2-connectivity.
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Definition 5 (φ-angular radius.). We define the φ-angular radius as the minimum ra-
dius, denoted by rφ(P), such that UDG(P;rφ(P)) is (2,φ)−connected.

Now we will prove that the φ-angular radius is a lower bound for the orientation problem
with double antennae. Due to space constraints the proof is omitted.

Theorem 1. For any set P of points, rφ(P)≤ r̂φ(P).

The following theorem gives a simple algorithm to compute rφ(P) in polynomial time.

Theorem 2. Given a set P of n points in the plane in general position and an angle
φ ≥ 0, there is an algorithm that computes rφ(P) in O(n2) time.

Proof. Let T be an MST on P and let r be the length of the longest edge in T . Let S ⊆ P
be such that for each vertex u∈ S the graph T \Eφ(P,r,u) is not connected. For u∈ S, let
rφ(P,u) be the minimum range such that UDG(P;rφ(P,u))\Eφ(P,rφ(P,u)) is connected.
Clearly, rφ(P) = maxu∈S(rφ(P,u)). We will determine rφ(P,u) independently for every
vertex u ∈ S.

Consider a vertex u ∈ S and let G = T . We add to G the shortest edge {v,w} that
connects two distinct components of G \Eφ(P,r,u). Update r to be the longest edge in
G, and repeat the above procedure until G \Eφ(P,r,u) is connected. Since the removal
of the longest edge of G will disconnect the graph G \Eφ(P,r,u), it follows that rφ(u)
equals the length of the longest edge in G.

It remains to analyze the complexity of the algorithm. Let u0,u1, ...,udG(u) be the
neighbors of u. To find Eφ(P,r,u) we check for each neighbor ui of u which orientation
G\Eφ(P,r,u,∠(uiuu0)) leaves the minimum number of components. We will show that
the degree of u never exceeds five. Since T is an MST the max degree of u is five.
However, new edges can increase the degree of u. Assume that {u,v} is added to G.
Since {u,v} is the smallest edge that connects two distinct components of G\Eφ(P,r,u)
the angle that {u,v} forms with the neighbors of u is at least π/3. Therefore, the max
degree of u is bounded by five since P is in general position.

Next we show that the algorithm can be implemented in O(n2) time. First consider
the Delaunay Triangulation on P and sort the edges in a list L. Such a construction
takes O(n log(n)) time [5]. Further, L can be computed in O(n log(n)) time since the
number of edges is linear on the number of vertices. It is well-known that the Grabriel
Graph on P is a subgraph of the Delaunay Triangulation on P, i.e., each edge {v,w} ∈ L,
D(v;d(v,w))∩D(w;d(w,v)) = /0 (where D(x;r) denotes the open disk centered at x with
radius r). Therefore, for a given u we can compute the shortest edge {u,v} connecting
two components in G \ Eφ(P,r,u) in O(n) time since {u,v} ∈ L ∪ Gk(NG(u)) where
Gk(NG(u)) represents the complete graph of NG(u) and |NG(u)| ≤ 5. The theorem fol-
lows, since each vertex has at most 5 connected components and |S| ≤ |P|.

3 Covering Neighbors in MST with Double Antennae

Given an MST of a set of points P and a vertex u ∈ V of degree k ≤ 5 we will charac-
terize the beamwidth required by an antenna at u to cover all the neighbors of u. Recall
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that the MST on the set of points has maximum degree 5 and the angle between any two
adjacent edges is at least π/3. Let u0,u1, ...,uk−1 be the neighbors of u in G with cor-
responding angles αi = ∠(uiuui+1) in counterclockwise order, where k ≤ 5. We study
separately the cases k = 5,4,3,2 and in each case, we give the value of α, the mini-
mum beamwidth of double antenna that is required to ensure that all neighbours of u
fall within one of the beams of the antenna. Clearly any beamwdith φ ≥ α is always
sufficient to cover all neighbours. Due to space constraints the proofs of Lemmas 2,3
and 4 are omitted.

Lemma 1. Let k = 5 and assume wlog that α0+α1 is the smallest sum of two consecu-
tive angles. Then, a double antenna of beamwidth α = α0 +α1 is always sufficient and
necessary to cover all five neighbors in the MST. Furthermore, α ∈ [ 2π

3 , 4π
5 ].

Proof. Place the antenna as depicted in Figure 4 so that u0 is on the edge of the an-
tenna and u1,u2 are within the beam of the antenna. Since α0,α1 ≥ π/3, we have
α ≥ 2π/3. Therefore, the “dead” sectors of the antenna are of angle at most π/3. Since
α2,α4 ≥ π/3, neither u3 nor u4 can lie within the dead sectors of the antenna. Since
three neighbors of u must be in the same side of the antenna beam, α is always neces-
sary. Observe that 2π

3 ≤ α ≤ 4π
5 since all the angles are at least π/3.

u0

u1
u2

u3 u4

π − φ
π − φ

φ

φ

Fig. 4. Double antenna at u of degree 5

Lemma 2. Let k = 4. Assume wlog that α0 is the smallest angle and that α1 ≤ α3.
Then a double antenna of beamwidth α is always necessary and sufficient to cover all
four neighbours in the MST, where α = π−α1 if α3 ≥ π−α0 and α = min(α2,π−α0)
otherwise. Furthermore, α ∈ [π

3 ,
2π
3 ].

Lemma 3. Let k = 3. Assume wlog that α0 ≤ α1 ≤ α2. Then a double antenna of
beamwidth α is always sufficient and necessary to cover the three neighbors in the
MST, where α = max{α0,π−α1}. Furthermore, α ≤ 2π

3 .

Lemma 4. Let k = 2. Assume wlog that α0 ≤ α1. Then a double antenna of beamwidth
α is always sufficient and necessary to cover the two neighbors in the MST, where
α = min{α0,π−α0}. Furthermore, α ≤ π

2 .
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4 Connectivity with Optimal Range

In this section we first show that the double antenna orientation problem is NP-complete
for antenna angles less than π

3 . In contrast, we will show that when the antenna
beamwidth is sufficiently large, we can solve the orientation problem with optimal
range. Due to space constraints the proofs of Theorems 3 and 4 are omitted.

Theorem 3. For n sensors in the plane and φ < π
3 , it is NP-complete to approximate

the optimal range r̂φ(P) to within a multiplicative factor of
√

3 .

Now we will show that when the antenna beamwidth is sufficiently large it is trivial to
achieve optimal range as the next theorem shows.

Theorem 4. Given an angle φ ≥ 4π
5 , there is an algorithm which for any set P of points

in the plane in general position, orients double antennae of beamwidth φ using optimal
antenna range so that the resulting graph is strongly connected.

Next we will show how to achieve non-trivial optimal range with the use of the (2,φ)-
connectivity and φ-angular radius as a lower bound for an antenna beamwidth of at least
2π
3 .

Theorem 5. Given an angle φ ≥ 2π
3 , there is an algorithm which for any set P of points

in the plane in general position, orients double antennae of beamwidth φ using opti-
mal antenna range so that the resulting graph is strongly connected. Furthermore, the
algorithm can be implemented to run in O(n2) time.

Proof. Let T be an Euclidean MST on P. Consider the set S of vertices u∈ T such that a
double antenna of beamwidth φ cannot cover all the neighbors of u. From Lemmas 1-4,
S consists only of vertices of degree five in T such that the angle that is formed with
any three consecutive neighbors is greater than φ.

We will construct a strongly connected digraph such that every vertex in S has out-
degree four and the angle that each vertex forms with two consecutive out-going edges
is at least π/3. Furthermore, we will show that no new vertices of out-degree five will
appear. Finally, all edges in the digraph will have length at most rφ(P). Thus, the theo-
rem follows from Lemmas 1-4 and Theorem 1.

Let
−→
G be the strongly connected directed graph obtained from T by replacing every

edge in T by two opposing directed edges. Let G be the undirected graph of
−→
G . We will

include each vertex u ∈ S in at least one cycle as follows:
Let u be any vertex in S and let {v,w} be the shortest edge connecting two compo-

nents of G\{u}. Clearly, d(v,w)≤ rφ(P,u) since at least one neighbor of u is not within
its antenna beam of angle φ. Add {v,w} to G to form a cycle Cu; see Figure 5. We “ori-

ent” Cu in
−→
G along any one direction (all the arcs in Cu in the opposite direction are

removed). This process does not break the strong connectivity of
−→
G . Finally, if |Cu|> 3,

we remove from S every vertex that is in Cu. However, if |Cu| = 3, we only remove u
from S. We repeat this process until S is empty.

Let C be the set of cycles that are formed with the addition to T of the new edges. We
will prove that after adding each new cycle Cu ∈ C of hop-length greater than 3 the angle
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u
v

w

Fig. 5. The shortest edge {v,w} connecting two components of G\{u} forms a cycle

that any two points form with a common neighbor in G is at least π/3. Indeed, since
Cu is formed with the smallest edge {v,w} connecting two components, D(v;d(v,w))∩
D(w;d(v,w)) is empty. Therefore, the min angle that {v,w} forms with the neighbors
of v and w is at least π/3. Furthermore, since points are in general position the degree
of the vertices in Cu is at most five. Therefore, the out-degree in

−→
G of every vertex in

Cu is at most four. (At least one in-going edge in
−→
G .)

Now we consider a cycle Cu of hop-length three. Let {v,w} be the shortest edge con-
necting two components of G\ {u}. Observe that both D(u;d(u,v))∩D(v;d(u,v)) and
D(u;d(u,w)) ∩ D(w;d(u,w)) are empty. However, D(v;d(v,w)) ∩ D(w;d(v,w)) con-
tains u. Therefore, the min angle that each edge incident to u,v and w forms with an
edge of the triangle uvw is at least π/3. Thus, we reduce the out-degree of u to at most
four since the points are in general position. Moreover, the out-degree of v and w re-
mains the same. However, since v and w are not removed from S when Cu is created,
they are included in distinct cycles provided that they are in S.

As in the proof of Theorem 2, we can show that the construction of
−→
G can be im-

plemented in O(n2) time. Indeed, the edges to be added are always edges of either the
Delaunay Triangulation on P or the closest neighbors of each vertex. Thus, the addition
of each edge takes time O(n). The theorem follows since |S|= O(n) and the orientation
of the antennae takes time O(1).

For the next theorem we use the main result of [6][Theorem 1]. For convenience we
state this theorem without proof.

Theorem 6 (k-Antennae Orientation [6].). Consider a set S of n sensors in the plane
and suppose each sensor has k, 1 ≤ k ≤ 5, directional antennae with any angle φ ≥ 0.
Then the antennae can be oriented at each sensor so that the resulting spanning graph
is strongly connected and the range of each antenna is at most 2sin

( π
k+1

)
times the

optimal. Moreover, given a MST on the set of points the spanner can be constructed
with additional O(n) overhead.

The following theorem shows that for any angle φ ≥ π/2 we can always construct a
strongly connected transmission network with longest edge bounded by

√
3 times the

longest edge of the MST.

Theorem 7. There is an algorithm which for any set of n points in the plane, orients
double antennae of beamwidth π

2 ≤ φ ≤ 2π
3 using range bounded by

√
3 times the opti-

mal range so that the resulting graph is strongly connected.
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Proof. Let
−→
G be the strongly connected digraph with out-degree 2 (i.e., using k = 2

antennae) and range bounded by
√

3 obtained from Theorem 6. Since the out-degree of−→
G is bounded by two, from Lemma 4 a double antenna with angle at most π/2 covers
the two out-going edges. This completes the proof of the theorem.

5 Stretch Factor

In this section, we consider the stretch factor problem, that is, finding an orientation of
double antennae of minimum possible range that induces a c-directional spanner, for
some constant c. That is, given a set P of points in the plane such that UDG(P,1) is
connected, we wish to replace omnidirectional antennae of range 1 with double anten-
nae of angle φ and range r such that for any edge in UDG(P,1), there is a path in the
resulting strongly connected digraph of length at most c for some constant c. The basic
idea is to partition the set of points into triples such that in each triple, there is at most
one pair of vertices that is not connected in the UDG. For each triple {A,B,C} we need
to determine the antenna range r required so that there is an orientation of three direc-
tional antennae placed at A,B,C, respectively, so that every point within distance two
of at least one of the points A,B,C is also within “directional antenna range” of radius
r from at least one of these three points.

First we prove a basic lemma concerning double antenna orientation of three points
A,B,C in the plane. The antenna orientation will depend on the largest angle, say α =
∠(BAC), that the three points form.

Lemma 5. Consider three points A,B,C in the plane forming a triangle. Three identi-
cal double antennae of beamwidth φ ≥ π/2 can be oriented so as to cover the whole
plane.

Proof. We consider two cases depending on the size of α.

A

B C

(a) α ≤ φ.

A B

C

(b) α > φ.

Fig. 6. Orientation of three double antennae

Case α ≤ φ. Without loss of generality asume that BC is horizontal and A is above BC.
Orient the antennae as depicted in Figure 6a so that the antenna covers the triangle and
the wedge of the antennae at B and C are on BC and CA respectively. Observe that the
antennae cover the “whole plane” since each angle of the triangle is always covered.
Case α > φ. Without loss of generality asume that AB is the second smallest edge in
the triangle, AB is horizontal and C is above AB. Orient the antennae as depicted in
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Figure 6b so that the one antenna wedge of C is vertical and the wedge of the antennae
at A and B are on AB. To prove that the orientation covers “the whole plane”, observe
that the antennae at A and B only leave a black (i.e., uncovered) corridor in the lower
half-plane determined by AB. However, the antenna at C covers the black corridor. This
completes the proof of the lemma.

We now consider double antennae of finite range. The following results hold for double
antennae of range r, but can also be shown to hold for the weaker model of (φ,r,2)-
double antennae. The proof of the following lemma is omitted due to space constraints.

Lemma 6. Let A,B,C be three points such that d(A,B) ≤ 1 and d(A,C) ≤ 1. Assume
π
2 ≤ φ ≤ π. We can orient three (φ,r,2)-double antennae (Yagi-like antennae) of beam
width φ at A,B,C so that every point at distance at most two from one of these points is

covered by one of the three antennae, where r ≤ 4sin
(

π
4 +

φ
2

)
.

Theorem 8. Given π
2 ≤ φ < π, there is an algorithm which for any connected UDG(P)

on a set P of points in the plane, orients
(

φ,4sin
(

π
4 +

φ
2

)
,2
)

-double antennae so that

the resulting graph has stretch factor four. Furthermore, it can be done in linear time.

Proof. Let T be any partition of the UDG with the maximal number of triples such that
every triangle has two edges of length at most one. It is easy to see that such a partition
can be constructed in linear time. For each triangle T in T , we orient the antennae at

T as shown in Lemma 5 with range 4sin
(

π
4 +

φ
2

)
and the antenna of each remaining

sensor toward its nearest triangle. Observe that the closest triangle is at distance at most
two. Let

−→
G be the strongly connected network induced by the antennae. We will prove

that for each edge {u,v}∈UDG(P), there is a directed path P from u to v and a directed
path P′ from v to u of hop-length no more than 4 hops. Let T and T ′ be in two different
triangles in the partition T .

– u,v ∈ T . Then |P| ≤ 2 and |P′| ≤ 2.
– u ∈ T and v ∈ T ′. Since d(u,v)≤ 1, v is in the coverage area of T . Therefore, u can

reach v in at most three hops and |P| ≤ 3. A similar argument shows that |P′| ≤ 3.
– At least one of u or v is not in any triangle of T . Assume without loss of generality

that u is not in a triangle. Observe that there exists a triangle T at distance at most
two from u. Otherwise, T is not maximal. Therefore, u can reach v through T in at
most four hops, i.e., |P| ≤ 4. Similarly, we can prove that |P′| ≤ 4.

This completes the proof of the theorem.

6 Conclusion

In this paper we considered algorithms for orienting antennae with Dipole-like and
Yagi-like antenna propagation patterns so as to attain optimal connectivity and stretch
factor of the resulting directed network. It would be interesting to improve the bound
in our connectivity results for the range [π/3,π/2], and to prove better bounds for the
stretch factor problem either in terms of range or in terms of stretch factor.
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Abstract. In a multiple-message broadcast, an arbitrary number of
messages originate at arbitrary nodes in the network at arbitrary times.
The problem is to disseminate all these messages to the whole net-
work. This paper gives the first randomized distributed multiple-message
broadcast algorithm with worst-case performance guarantee in wireless
ad-hoc networks employing the SINR interference model which takes
interferences from all the nodes in the network into account. The net-
work model used in this paper also considers the harsh characteristics
of wireless ad-hoc networks: there is no prior structure, and nodes can-
not perform collision detection and have little knowledge of the net-
work topology. Under all these restrictions, our proposed randomized
distributed multiple-message broadcast protocol can deliver any message
m to all nodes in the network in O(D + k + log2 n) timeslots with high
probability, where D is the network diameter, k is the number of mes-
sages whose broadcasts overlap with m, and n is the number of nodes in
the network. We also study the lower bound for randomized distributed
multiple-message broadcast protocols. In particular, we prove that any

uniform randomized algorithm needs Ω(D+ k+ log2 n
log log log n

) timeslots to
deliver k messages initially stored at k nodes to all nodes in the network.

1 Introduction

In wireless networks, how to achieve efficient communications is one of the most
extensively studied problems. The main challenge is to deal with interferences.
Hence, the modeling of wireless interferences will play a fundamental role in
designing efficient network protocols. Previous work mostly adopted the graph
based or the protocol interference model. In the graph based interference model,
it is assumed that only nodes within d (a small constant) hops from a receiver
can interfere with the transmission. The protocol model assumes that a trans-
mission can be successful if and only if there is only one transmitter within a
certain range centered at the receiver. A shortcoming of these two types of mod-
els is that they treat interference as a localized phenomenon, which is not likely
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the case in practice. In real wireless networks, the interference is cumulative, be-
ing contributed to by all simultaneously transmitting nodes. Because of the lack
of the ability to capture the cumulative property of interference, the protocols
designed under the graph based or protocol model display a dramatically differ-
ent performance from the expectation in practice. In this paper, we adopt the
SINR model (also known as the physical interference model since it reflects the
physical reality more accurately), which defines a global interference function
and takes into account the cumulative property of interference. Besides interfer-
ence, some other important aspects in wireless ad-hoc networks should also be
considered when modeling the network. For instance, when the network begins
operation, no built-in infrastructure or MAC layer is available to the nodes to
facilitate communication between neighboring nodes, and the nodes are clueless
about the network topology. Furthermore, the nodes may not be able to perform
any type of collision detection because they may be just tiny sensors with limited
capabilities and energy [15].

In the multiple-message broadcast problem, an arbitrary number of messages
arrive at arbitrary nodes from the environment at arbitrary times. The problem
is to deliver all these messages to all the nodes. A multiple-message broadcast
protocol can be used as a building block for many applications, e.g., update
of routing tables, topology learning of the underlying network, and aggregating
functions in sensor networks.

Different from most previous work, in this work, we do not assume that all
messages are initially stored at their nodes. In addition, we adopt the realis-
tic global SINR interference model and assume the imposition of such rigorous
restrictions as no prior structure, no collision detection and nodes have little
knowledge about the network topology; all these add to the challenge of de-
signing an efficient distributed protocol. Under all these rigorous but practical
restrictions, we present a randomized distributed multiple-message broadcast al-
gorithm for wireless ad-hoc networks, and show that, with high probability, any
message m can be broadcast to all nodes in O(D+ k+ log2 n) timeslots after its
arrival, whereD is the diameter of the communication graph defined by the max-
imum transmission range RM (refer to Section 3), k is the number of messages
whose broadcast overlap m (refer to Section 3) and n is the number of nodes in
the network.1 To the best of our knowledge, this work is the first one that studies
time efficient distributed multiple-message broadcast algorithms in wireless ad-
hoc networks under the SINR model. Our result significantly surpasses the best
known results of max{O(k logn logΔ+(D+n/ logn) logn logΔ), O((kΔ log n+
D) logΔ)} [1,8] under the graph based interference model, and breaks the ex-
pected Ω(k+D log(n/D)) lower bound [4,10] for randomized solutions under the
graph-based radio network model. Note that the previous results are obtained

1 We define the running time of a multiple-message broadcast algorithm as the max-
imum number of timeslots to disseminate a message to the whole network. If all
messages are initially stored at their nodes, our defined performance measurement
is equivalent to that in previous work [1], which is the number of timeslots needed
to broadcast all messages to all nodes.
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with knowledge of some network parameters, e.g., Δ and D; In contrast, our
algorithm does not assume any prior information concerning such parameters.
The trivial Ω(D+k) lower bound indicates that our algorithm is asymptotically
optimal for networks with diameter D ∈ Ω(log2 n).

Besides the proposed algorithm, we also study the lower bound of the time
needed by randomized distributed algorithms to accomplish multiple-message
broadcast. Specifically, we show that if all the nodes use the same transmission
power, any uniform randomized algorithm in which all awaken nodes transmit a
message with the same probability (independent of the communication history)

in every timeslot [3] needs Ω(D+k+ log2 n
log log log n ) timeslots to accomplish multiple-

message broadcast even under the assumption that all messages are initially
stored at their nodes.

2 Related Work

Although the SINR model (or the physical interference model) poses great chal-
lenges for designing efficient distributed algorithms due to its global interference,
there have been some attempts in recent years. In [14], with the assumption that
all nodes can perform physical carrier sensing, an O(log n) time randomized dis-
tributed algorithm for computing a constant approximate dominating set was
presented. The local broadcasting problem was first considered in [5]. In this
paper, based on whether each node knows the number of nodes in its prox-
imity region or not, the authors gave two randomized distributed algorithms
with approximation ratios O(log n) and O(log3 n), respectively. The latter re-
sult was improved by some recent papers [19,16], the latter of which achieves
an approximation ratio of O(log n). By assuming that nodes can perform phys-
ical carrier sensing, the authors of [19] also gave two distributed deterministic
local broadcasting algorithms both having an approximation ratio of O(log n)
for asynchronous wake-up and synchronous wake-up scenarios. The distributed
(Δ + 1)-coloring (Δ is the maximum network degree) was studied in [18] and
an O(Δ log n+ log2 n) time randomized distributed algorithm was given. There
are also recent papers on finding efficient distributed algorithms for the mini-
mum latency aggregation scheduling problem [12,13] and the wireless scheduling
problem [11,6].

The multiple-message broadcast problem is also called the the Many-to-All
communication problem [4]. All previous work assumes the standard graph-
based radio network model. In this model, there is a link existing between any
pair of nodes that can communicate with each other. A transmission is suc-
cessful iff there is only one neighbor transmitting a message to the receiver.
Additionally, except [8,9], all work assumes that all messages are stored at
their nodes at the beginning of the algorithm. The authors of [1] first initiated
the study of this problem. They designed a randomized algorithm accomplish-
ing multiple-message broadcast in O(k logn logΔ + (D + n/ logn) logn logΔ)
rounds in expectation. Assuming nodes receive messages at arbitrary times from
the environment, the authors of [8] proved that their modular approach can
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broadcast a message to all nodes in O((kΔ log n + D) logΔ) rounds with high
probability when there are at most k concurrent messages. How to use net-
work coding techniques to accelerate the multiple-message broadcast has been
studied in [7], in which the proposed randomized algorithm achieves a time
complexity of O(k logΔ + (D + logn) logΔ logn). All the above work assume
that nodes know some or all network parameters, e.g., Δ and D. The best
known lower bound for randomized solutions under the graph-based radio net-
work model is Ω(k + D log(n/D)) in expectation [4,10]. In the paper [9], by
introducing an abstract MAC layer providing reliable local broadcast commu-
nication, the authors gave a multiple-message broadcast protocol for regional
networks and showed that the protocol can broadcast a message to all nodes in
O((D + k)Fprog + (k − 1)Fack) rounds, where Fprog and Fack are progress and
acknowledgement bounds respectively.

3 Network Model and Problem Definitions

We assume there are n processors; they are the nodes of the network. During
the protocol execution, the time is divided into slots. Processors have synchro-
nized clocks and they have access to a global clock. We also assume that all
processors wake up at the beginning of the protocol. We do not assume any
placement distribution for nodes, i.e., nodes are arbitrarily placed on the plane.
At the beginning, the network is completely unstructured. Nodes have very little
information about the network topology. They have no knowledge about their
neighbors, even the number of nodes in their proximity range. Only a polyno-
mial estimate n of the number of nodes in the network is given to the nodes.
Nodes have no collision detection mechanism. In other words, nodes can not
distinguish between the occurrence of a collision and the case that there are no
transmissions. We also assume that each node has a unique ID. The IDs need
not be in the interval [1, n], which are only used for a receiver to identify its
sender. Furthermore, we assume that there is only one channel available and
nodes operate in half-duplex mode, i.e., in a timeslot, a node can only carry out
either one of the two operations: receive and transmit.

We adopt the SINR interference model. In this model, a message sent by node
u to node v can be correctly received at v iff

Pu

d(u,v)α

N +
∑

w∈V \{u,v}
Pw

d(w,v)α

≥ β, (1)

where Pu (Pw) is the transmission power of node u (w); α is the path-loss ex-
ponent whose value is normally between 2 and 6; β is a hardware determined
threshold which is greater than 1; N is the ambient noise; d(u, v) denotes the
Euclidean distance between u, v and

∑
w∈V \{u,v}

Pw

d(w,v)α is the accumulated in-

terference experienced by the receiver v caused by all other simultaneously trans-
mitting nodes in the network.

Given transmission power P for v, the transmission range RT of a node v is de-
fined as the maximum distance at which a node u can receive a clear transmission
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from v (SINR ≥ β) when there are no other simultaneous transmissions in the
network. According to (1), RT ≤ ( P

β·N )1/α. We further define RT = (P/cNβ)1/α,
where c > 1 is a constant determined by the environment. Based on the trans-
mission ranges of nodes, we define a communication graph G = (V,E), where V
is the set of nodes in the network, and a link (u, v) ∈ E if and only if d(u, v) is
not larger than the transmission range of u. Furthermore, if all nodes have the
same transmission range RT , the obtained communication graph is denoted as
GRT . Obviously, in this case, GRT can be seen as an undirected graph. We say a
network is connected in terms of R if the communication graph GR is connected.
Let PM and RM be the maximum transmission power and the corresponding
maximum transmission range of nodes respectively. Denote D as the diameter
of the communication graph GRM .

Given a distance d, we say two nodes are independent if the distance between
them is larger than d. An independent set I in terms of d is defined as a set of nodes
such that any pair of nodes in I are independent. An independent set I is maximal
in terms of d if for any node v in the network, either v ∈ I, or there is a node in I
that is within distance d from v. A dominating set S in terms of d is defined as that
for any node v, either v ∈ S, or there is a node in S that is within distance d from
v. DenoteGS

d as the subgraph ofGd induced by S. A dominating set S is said to be
connected in terms of d ifGS

d is connected. Note that a maximal independent set is
a dominating set, but not a connected dominating set.

For a messagem, denote arrive(m) as the event that the messagem arrives at
the network, i.e.,m is received by some node v. Denote clear(m) as the event that
thenetworkhas completed thebroadcast ofmessagem, i.e., all nodes in thenetwork
have receivedm. ThenK(m) is used to denote the set ofmessageswhose processing
overlapswith the interval between arrive(m) and clear(m). In other words,K(m)
is the set ofmessagesm

′
such that an arrive(m

′
) event precedes the clear(m) event

and the clear(m
′
) event follows the arrive(m) event. Let k = |K(m)|.

4 Algorithm

4.1 Algorithm Description

The proposed multiple-message broadcast algorithm adopts a clustering strategy,
which encompasses four processes: leader election, leader coloring, local informa-
tion collection and broadcast. The whole algorithm is divided into three stages.
The first stage works as a pre-stage in which a CDS (Connected Dominating Set)

in terms of distanceR is computed, whereR = min{ 1
2 , (

48cβ(2α−1+α−1
α−2 )

c−1 )−
1
α }·RM .

Nodes in the computed connected dominating set are called leaders. Other nodes
are called non-leaders, each of which chooses the first leader that successfully
transmits a dominating message to it as its leader. A cluster is composed of a
leader and its dominated non-leaders. The parameter R is chosen to guaran-
tee that if there is only one sender in each disk with radius RM , each sender
can successfully transmit a message to all nodes within distance R. The second
stage is used to get a TDMA-like scheduling scheme for nodes to perform the
local information collection process and the broadcast process in the next stage
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by performing a coloring. In the third stage, each leader first collects messages
that are received from the environment by its dominated non-leaders. Then the
messages are disseminated to the whole network through the backbone network
composed by the leaders. During the execution of the protocol, each leader v
is assigned a queuing set Qv to store received messages. Next we describe the
algorithm in more details.

Stage 1 Leader Election: This stage is to compute a connected dominating
set in terms of R, the nodes of which form a backbone network for performing
the broadcast in the Stage 3. As shown in [2], for a graph G, if we find connectors
such that any pair of MIS (Maximal Independent Set) nodes within three hops
are connected by these connectors, the MIS nodes and the connectors constitute
a CDS. In this stage, the nodes first execute the MIS algorithm in [18] to compute
an MIS in terms of R/3. Any two nodes within three hops in the computed MIS
have distance at most R, so they are connected in terms of R. This stage takes
O(log2 n) timeslots. By the end of this stage, a CDS in terms of R is correctly
computed with high probability2. Furthermore, we will show that the computed
CDS satisfies the property that in any disk with radius RM , there are only a
constant number of leaders. Denote χ as a constant upper bound for the number
of leaders in a disk with radius RM . The value of χ will be given later.

Stage 2 Leader Coloring: In this stage, we want to find a coloring for leaders
in the computed connected dominating set, such that for any two leaders, if the
distance between them are not larger than RM , they get different colors. Since
for any leader, there are at most χ − 1 other leaders within distance RM , χ
colors are enough to color all the leaders. We use a greedy coloring algorithm
to accomplish the coloring process. The MIS algorithm in [18] is iteratively
executed to get an MIS in terms of RM from leaders that have not been colored.
In the i-th execution, an MIS in terms of RM is obtained from the remaining
uncolored leaders and its nodes are assigned the color i. Finally, each leader gets
a color from {1, 2, . . . , χ}. After the coloring is computed, there are χ timeslots
for the leaders to inform their dominated non-leaders of their colors. Since each
execution of the MIS algorithm needs O(log2 n) timeslots, this stage takes at
most O(χ log2 n) ∈ O(log2 n) timeslots.

Stage 3 Local Information Collection and Broadcast: This stage is for
leaders to collect the messages that arrive at their dominated non-leaders and then
disseminate the received messages to the whole network. The stage is divided into
iterative substages, each ofwhich consists ofχ phases. In each substage, the i-phase
is for leaders with color i to accomplish information collection and broadcast. Each
phase has three timeslots. This TDMA-like scheduling makes sure that in each
phase, any two leaders that are active have distance larger than RM , so that each
leader can successfully transmit an acknowledgement message to its dominated
non-leaders and send the received message to all nodes within distance R. During
the execution of this stage, all nodes use the same transmission power

2 We assume that the network is connected in terms of R/3, i.e., the communication
graph GR/3 is connected.



Distributed Multiple-Message Broadcast in Wireless Ad-Hoc Networks 117

PB = cNβRα, which leads to the same transmission range R (refer to Section 3).
Next we describe the detailed operations in the i-th phase of a substage.

The i-th Phase: In this phase, leaders with color i and non-leaders in their
clusters execute a three-timeslot scheme as described in Algorithm 1. The first
two timeslots are used for local information collection and the third is for the
leaders to broadcast the received messages. In particular, in the first timeslot,
each non-leader that has received a message from the environment endeavors
to transmit the message to its leader with a specified transmission probability.
Here the transmission probability is initially set as a small value λ

n , where λ is
a constant to be given later. After Stage 3 has started, every non-leader u that
is performing the local information collection process updates its transmission
probability at every 9χλ−142(λ+1) logn-th timeslot as shown in Algorithm 1. The
updating principle is set to guarantee that on one hand, nodes can increase the
transmission probability, by which they can finally get a large enough transmis-
sion probability ensuring a successful transmission; on the other hand, the sum of
transmission probabilities of nodes in any local region will not exceed a constant
which is the base of obtaining a sufficient condition for successful transmissions.
Furthermore, while a non-leader transmits the message, it also adds its ID and
its leader’s ID into the transmitted packet such that its leader can distinguish
whether the received message is for it or not. In the second timeslot, if a leader
v receives a message from one of its dominated non-leaders u, it stores the re-
ceived message into Qv and transmits an Ackv(u) message to inform u that it
has received the message. A leader v also adds the messages received from other
leaders into Qv. After receiving the Ackv(u) message, u will stop transmitting
and quit the local information collection process. In the third timeslot, for each
leader v with color i, if Qv is not empty, it transmits the first message in Qv to
all nodes within distance R and deletes it from Qv.

In order to ensure that the above described multiple-message broadcast al-
gorithm is correct with high probability, we set the parameters as follows: λ =
(1−1/c)
192β · (2α−1 + α−1

α−2 )
−1, and χ = (6RM

R + 1)2.

4.2 Analysis

In this section, we prove that with probability 1−O( 1
n ), for any message m, the

proposed multiple-message broadcast algorithm can disseminate m to the whole
network after arrive(m) occurs for at most O(D + k + log2 n) timeslots. Before
starting the analysis, we first define some notations. We use Tv and Iv to denote
the disks of radii R and RM centered at node v, respectively. The notation Ed

v

denotes the disk of radius d centered at v. Without confusion, we also use these
notations to denote the nodes in the corresponding disks.

The following lemma is proved in [18], which states the correctness and effi-
ciency of the MIS algorithm.
Lemma 1. After executing the MIS algorithm for O(log2 n) timeslots, a maxi-
mal independent set can be correctly computed with probability at least 1−O(n−1).

In the following, we assume that the MIS is correctly computed, and the error
probability will be summed up in the proof of the main theorem (Theorem 1).
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Using a standard area argument, we can give a constant bound on the number
of leaders in any disk Ii as shown in Lemma 2 which follows. For the detailed
proof of the lemma, please refer to the full version [17].

Lemma 2. In a disk Ii with radius RM , the number of leaders is at most χ.

Algorithm 1. 3-Timeslot Scheme

Initially, pu = λ
2n

; Qv = ∅;
3-timeslot scheme for a leader v
1: listen
2: if v received a message from a non-leader u in its cluster then transmit Ackv(u)

end if
3: if Qv is not empty then transmit the first message in Qv and delete the message

from Qv end if
Message Received
4: if v received a message that has not been received then add the message into Qv

end if
3-timeslot scheme for a non-leader u
5: if u has a message received from the environment then transmit the message with

probability pu
end if

6: listen
7: if u received Ackv(u) then stop transmitting and quit the local information col-

lection process end if
Update pu
8: while

t = i · 9χλ−142(λ+1) log n for some integer i > 0
9: if u has taken part in the local information collection process and received less

than 12 log n Ack messages from its leader in the past 9χλ−142(λ+1) log n timeslots
then pu = 2pu

10: else pu = pu/2
11: end if
12: end while

Lemma 3. In Stage 2, the coloring process only needs to execute the MIS algo-
rithm for at most χ times, and each leader can get a color from {1, 2, . . . , χ}.
Proof. By Lemma 2, for each leader v, there are at most χ − 1 leaders within
distance RM . From the coloring process, we know that after executing the MIS
algorithm once, for each leader v, either v joins the computed MIS and gets a
color, or a leader in Iv joins the MIS and gets a color. Thus after executing
the MIS algorithm for at most χ − 1 times, either v has chosen its color, or all
leaders in Iv have been colored. For the second case, v will join the MIS in the
next execution of the MIS algorithm and will get a color from {1, 2, . . . , χ}. ��

By Lemma 1 and Lemma 3, we have the following corollary which states the
time needed for executing Stage 1 and Stage 2.

Corollary 1. With probability 1−O(n−1), the coloring computed in Stage 2 is
correct, and the number of timeslots needed for Stage 1 and Stage 2 is O(log2 n).
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Next we analyze the correctness of Stage 3 and the number of timeslots needed
for implementing Stage 3. We first state in the following Lemma 4 that making
use of the TDMA-like scheduling as shown in Stage 3 can guarantee successful
local broadcast within distance R for a leader v. Due to the space limitation,
the proof is given only in the full version [17].

Lemma 4. In Stage 3, during executing the three-timeslot scheme, a leader v
can successfully transmit a message to all its neighbors within distance R in the
second and third timeslots.

Before analyzing the timeslots needed for Stage 3, we first present the following
property which gives a constant bound on the sum of transmission probabilities
of non-leaders in any disk Tv centered at some leader v. The idea of the proof is
to show in any disk Tv, when the sum of transmission probabilities of non-leaders
is about to break the declared bound, with high probability, every non-leader
in Tv must have received at least 12 logn Ack messages from the leader in the
past 9χλ−142(λ+1) logn timeslots. Then by the algorithm, these nodes will halve
their transmission probabilities, which gurantees that the declared bound will
not be broken during the execution of the algorithm with high probability. For
the detailed proof, please refer to [17].

Property 1. In any timeslot during the execution of Stage 3, for any leader v,
the sum of transmission probabilities of non-leaders in Tv is at most 2λ.

Based on the above property, we give an upper bound on the number of timeslots
needed for the local information collection process in the following Lemma 5.
Denote Δv

k as the number of messages in K(m) that arrive at nodes within
distance R from v. Let Δk = max{Δv

k} for all nodes v. Clearly, Δk ≤ k.

Lemma 5. Assume that Property 1 holds. For a non-leader u, it can transmit
its message to the leader after starting transmission for O(Δk+log2 n) timeslots
with probability 1−O(n−2).

Proof. We first give a sufficient condition for a successful transmission from a
non-leader u to its leader v in the following claim whose proof can be found in
the full version [17].

Claim. If a non-leader u is the only transmitting node in Tv, v can successfully
receive the message sent by u with probability at least 1

2 .

Next we bound the number of timeslots for u to successfully transmit its message
to the leader. After Stage 3 has started, once a non-leader u receives a message
from the environment, it transmits its message to the leader v in the correspond-
ing phases by executing the three-timeslot scheme. As shown in Algorithm 1,
after u starts executing the three-timeslot scheme, in every 9χλ−142(λ+1) logn
timeslots, either u receives at least 12 logn Ack messages from v and halves its
transmission probability, or u doubles its transmission probability. Thus, after
6χλ−142λ+1Δk +9χλ−142(λ+1) log2 n timeslots, if u does not receive an Ackv(u)
message, it must have a constant transmission probability λ/2, since u halves
its transmission probability for at most Δk

12 logn times, and therefore it needs
Δk

12 log n · 9χλ−142(λ+1) logn = 3χλ−142λ+1Δk timeslots to increase the transmis-
sion probability to the initial value. Then based on the sufficient condition for
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a successful transmission in the above claim, we will show that the probability
Pno that u can not send its message to v in the subsequent 6χλ−142λ+1 logn
timeslots is at most O(n−2). Let Ponly denote the probability that u is the only
transmitting node in Tv, and we have

Ponly ≥ pu
∏

w∈Tv\{u}
(1− pw) ≥ pu ·

(
1

4

)∑
w∈Tv\{u} pw

≥ λ

2

(
1

4

)∑
w∈Tv

pw

≥ λ

2

(
1

4

)2λ

.

(2)

The last inequality is derived by Property 1. So the probability that u can not
send its message to v in the subsequent 2λ−142λ+1 logn transmissions is at most

Pno ≤ (1− 1
2 · λ

2

(
1
4

)2λ
)2λ

−142λ+1 logn ≤ e−
λ
4 (

1
4 )

2λ·2λ−142λ+1 log n ≤ n−2.
Therefore, after starting transmission for 6χλ−142λ+1Δk +

9χλ−142(λ+1) log2 n + 6χλ−142λ+1 logn timeslots, with probability 1 − n−2,
u must have successfully transmitted its message to v, since each non-leader
transmits once in every 3χ timeslots. ��

The following Lemma 6 is given in [9], which analyzes the pipelining effect of the
multiple-message broadcast process. Let Fprog denote the maximum number of
timeslots needed for a successful transmission. For a graph G, define dG(u, v) as
the number of edges in the shortest path from u to v in G.

Lemma 6. Assume that in timeslot t0, a node u receives a new message m.
Let v be a node at distance d = dG(u, v) from v. For integers l ≥ 1, we define
td,l = t0 + (d + 2l − 2)Fprog. Then for all integers l ≥ 1, at least one of the
following two statements is true:

(i) v received the message m by the time td,l;
(ii) there exists a set M ⊆ K(m), |M | = min{l, k}, such that for every

m
′ ∈ M , v has received m

′
by the timeslot td,l.

Theorem 1. With probability 1 − O(n−1), any message m can be broadcast to
all nodes in the network after the event arrive(m) occurs for O(D+ k+ log2 n)
timeslots.

Proof. By Corollary 1, Stage 1 and Stage 2 need O(log2 n) timeslots. So if m
arrives at the network before Stage 3 starts, it waits for O(log2 n) timeslots
before Stages 1 and 2 complete. Next we analyze the timeslots needed for m to
be broadcast to the whole network in Stage 3.

As proved in Lemma 5, in Stage 3, if m arrives at a non-leader u, with prob-
ability 1−O(n−2), u can send m to its leader in O(Δk + log2 n) timeslots. And
after that, m will be broadcast by each leader that received m to all its neigh-
bors within distance R in the corresponding phases. If m arrives at a leader, the
broadcast process starts after its arrival. By Algorithm 1, each leader broadcasts
one message for one timeslot in every χ phases. And by Lemma 4, a leader can
successfully transmit the message to all its neighbors within distance R. So it
only takes a constant number of timeslots for m to be propagated for one hop in
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the communication graph GR. Note that R is constant fraction of RM , the diam-
eter of GR is O(D). Then by Lemma 6, after O(D+2k− 2) timeslots, either all
nodes have received m, or all nodes have received k messages. By the definition
of K(m) and k = |K(m)|, m must have been received by all nodes. Combining
all these, with probability 1−O(n−2), m can be broadcast to the whole network
after arriving at the network for O(D+ k+ log2 n) timeslots. Since k is at most
O(n), this is true for any message with probability 1−O(n−1).

Note that all the above discussions are based on Property 1 and the assump-
tion that the connected dominating set and the coloring are correctly computed.
Property 1 is shown to be correct with probability 1 − 1

n (refer to [17]). Further-
more, by Lemma 1 and Corollary 1, we have known that in Stages 1 and 2, the
connected dominating set and the coloring is correctly computed with probabil-
ity 1−O(n−1). Thus with probability 1−O(n−1), anymessagem can be broadcast
to all nodes after the event arrive(m) occurs for O(D + k + log2 n) timeslots.

5 Lower Bound

In this section we give a lower bound on the time needed for a uniform random-
ized distributed algorithm to accomplish multiple-message broadcast. Recall that
a randomized algorithm is called uniform if all awake nodes transmit a message
with the same probability (independent of the communication history) in every
timeslot. The proof of Theorem 2 can be found in [17].

Theorem 2. Assume that all nodes use the same transmission power. Then,
any uniform randomized multiple-message broadcast algorithm requires Ω(D +

k + log2 n
log log log n ) timeslots to disseminate all messages to the whole network with

probability 1− 1
n .

6 Conclusion

In this paper, assuming a practical network model for wireless ad-hoc and sensor
networks as well as the SINR interference model, we propose the first random-
ized distributed multiple-message broadcast algorithm for networks with arbi-
trary message arrivals. In particular, we show that the proposed algorithm can
disseminate any message m to the whole network in O(D+ k+ log2 n) timeslots
if there are at most k overlapping messages. We also show that any uniform

randomized algorithm needs at least Ω(D + k + log2 n
log log logn ) timeslots to accom-

plish multiple-message broadcast. Our algorithm outperforms all previous best
known results [1,8], and breaks the Ω(k + D log(n/D)) lower bound [4,10] un-
der the graph based radio network model. An important feature of the proposed
algorithm is that, in contrast with the previous work, it does not need any neigh-
boring information, e.g., an estimate on Δ. Based on the trivial Ω(D+ k) lower
bound, our algorithm is optimal for networks with diameter D ∈ Ω(log2 n).
Therefore an obvious research direction is to design a faster multiple-message
broadcast protocol for networks with diameter D = o(log2 n). Another direc-
tion is to consider deterministic distributed algorithms for the multiple-message
broadcast problem under the SINR model.
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Abstract. We study the stability of wireless networks under stochastic
arrival processes of packets, and design efficient, distributed algorithms
that achieve stability in the SINR (Signal to Interference and Noise Ra-
tio) interference model.

Specifically, we make the following contributions. We give a distributed
algorithm that achieves Ω( 1

log2 n
)-efficiency on all networks (where n is

the number of links in the network), for all length monotone, sub-linear
power assignments. For the power control version of the problem, we give
a distributed algorithm with Ω( 1

log n(log n+log logΔ)
)-efficiency (where Δ is

the length diversity of the link set).

1 Introduction

We study the problem of scheduling packets over links in a wireless network, each
link being a sender-receiver pair of wireless nodes. Since wireless signals propa-
gate in all directions, simultaneous transmissions interfere with each other. This
interference limits the number of transmissions that can succeed simultaneously.
A wireless packet scheduling algorithm thus has to schedule packets efficiently,
with respect to the limits imposed by interference.

In this setting, consider the following two related problems. The first: Given a
set of links, how quickly (i.e., using how few slots) can all of the links be sched-
uled, taking interference into account? The second: Given is a set of links, and
packets arrive at the senders of each link according to some stochastic process,
where they remain queued until successfully transmitted to the receiver. Can
one ensure that queue sizes at the senders remain bounded, in expectation? The
first question is an “off-line” algorithmic problem, whereas the second comes
from a queueing theoretic perspective where the input is probabilistic. In spite
of their obvious commonalities, they are generally studied using quite disparate
techniques. Our goal in this paper is to bridge a gap between these two related
areas; specifically, to use recently developed algorithmic techniques to achieve
results for the stochastic setting.

To do this, a crucial first step is to choose the right interference model – one
that is faithful to physical reality yet is simple enough to be rigorously analyz-
able. In this paper, we adopt the SINR (Signal to Interference and Noise ratio)

G. Even and M.M. Halldórsson (Eds.): SIROCCO 2012, LNCS 7355, pp. 123–134, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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or physical model of interference. Compared to the more traditional and widely
studied graph based models, the SINR model has been found to be realistic,
and is enjoying increased attention and adoption [17,19,20]. This model (pre-
cisely defined in Section 2) is based on a realistic geometry of signal propagation
(compared to unrealistic graph based interference models).

We are thus interested in algorithms that keep queue sizes bounded when
faced with stochastic packet arrivals over arbitrary periods of time, assuming
the SINR interference model. A network in which this goal is achieved is called
stable. Stability has been an widely-studied metric for analyzing the performance
of scheduling algorithms for wireless networks for quite some time. In a seminal
work, Tassiulas and Ephremides [22], gave a characterization of those stochas-
tic processes for which stability is possible in principle. The characterization is
general enough to work for virtually any interference model. In light of this, the
goal for the algorithm designer is to produce an (simple and efficient) algorithm
that stabilizes networks for all (or a fair chunk) of these arrival processes. There
is a long tradition of such work, e.g., [12,18], but they almost exclusively apply
to graph-based interference models.

The Tassiulas-Ephremides characterization is formulated as a computational
problem, which, if solved, would stabilize a network under all potentially stabi-
lizable arrival rates. However, for the SINR model, this problem (known as the
maximum weighted capacity problem) is NP-hard [1]. Not much is known about
the algorithmic complexity of this problem (see [10] about a recent centralized
result for linear power and more discussion about its relation to network sta-
bility), and almost nothing about possible distributed implementations. Thus,
alternative approaches need to be sought.

In this work, we develop efficient and distributed scheduling algorithms for
wireless network stability — by applying intuitions developed in recent research
on the SINR model ([9] and [8] contain many references), all of which provide
approximation algorithms to some relevant algorithmic questions.

One possible approach would be to apply algorithms for some of the core
optimization problems as black boxes. For example, there are constant factor
approximation algorithms for the capacity problem [11,9,14]. These alone are
not sufficient, as there is no guarantee of fairness. Still, they can be easily turned
into a O(log n)-approximation for the weighted capacity problem. The problem
with this approach, however, is that these algorithms are centralized, with no
effective distributed algorithms in sight. Distributed algorithms are of crucial
importance in the current setting. Our approach is therefore more of a “gray-
box” one – while we adopt an algorithm of [15] as our basis, our analysis depends
not on the overall approximation factor, but on more subtle properties of that
algorithm.

Apart from being distributed, the main property a scheduling algorithm should
have is high efficiency. “Efficiency” has a specific technical meaning which we
define in Section 2. Intuitively, it captures how well the algorithm does compared
to the Tassiulas-Ephremides characterization.
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We achieve, depending on the algorithm chosen, efficiency ratios of Ω( 1
log2 n

),

Ω( 1
log n ) and Ω( 1

log n(logn+log logΔ) ), that are comparable or better than existing

work on this topic. Our main algorithm requires only a “carrier sense” primitive
to make it completely distributed. This is in contrast to many distributed algo-
rithms in the literature (e.g., [18,16]) that are better described as “localized” –
requiring an underlying infrastructure for wireless nodes to communicate with
nearby nodes. This infrastructure, moreover, is usually not subject to the inter-
ference constraints of the original network. This is a rather strong assumption,
especially in light of the fact that in a wireless network, one is presumably trying
to establish such an infrastructure in the first place.

The paper is organized as follows. In Sections 2 and 3 we present the system
model, our results, and more specific discussion on related work. In Section 4
we describe a general algorithmic framework for wireless scheduling. We then
provide a specific instantiation of this framework that achieves good throughput
performance for a large class of power assignments in general metric spaces, with
implications for the power control case, where the power can be selected by links
separately. Finally, in Section 5, we prove a more efficient, but centralized result
for the power control case and present simulation results.

2 Model and Preliminaries

The SINR Model. The wireless network is modeled as a set L of n links,
where each link l ∈ L represents a potential transmission from a sender sl to a
receiver rl, both points in a metric space. The distance between two points x
and y is denoted d(x, y). The distance from l′’s sender to l’s receiver is denoted
dl′l = d(sl′ , rl). The length of link l is denoted simply by � = d(sl, rl).

The set may be associated with a power assignment, which is an assignment
of a transmission power Pl to be used by each link l ∈ L. The signal received at
point y from a sender at point x with power P is P/d(x, y)α where the constant
α > 0 is the path-loss exponent.

We can now describe the physical or SINR-model of interference. In this
model, a receiver rl successfully receives a message from the sender sl if and
only if the following condition holds:

Pl/�
α∑

l′∈S\{l} Pl′/dαl′l +N
≥ β , (1)

where N is the environmental noise, the constant β ≥ 1 denotes the minimum
SINR (signal-to-interference-noise-ratio) required for a message to be successfully
received, and S is the set of concurrently scheduled links in the same slot (we
assume that time is slotted.). We say that S is SINR-feasible (or simply feasible)
if (1) is satisfied for each link in S.

A power assignment P is length-monotone if Pv ≥ Pw whenever �v ≥ �w and
sub-linear if Pv

�αv
≤ Pw

�αw
whenever �v ≥ �w. This class includes the most interesting

and practical power assignments, such that uniform power (all links use the same
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power), linear power (Pl = �α, known to be energy efficient in the presence of
noise), and mean power (Pl = �α/2, the assignment that produces maximum
capacity in this class). We will also consider the “power control” case, where
the power assignments are not predetermined, but have to be found out by the
algorithm, and can be arbitrary.

Let Δ = �max

�min
, where �max and �min are, respectively, the maximum and min-

imum lengths in L.

Definition 1. The affectance aPl′ (l) of link l caused by another link l′, with
a given power assignment P , is the interference of l′ on l relative to the power
received, or

aPl′ (l) = min

{
1, cv

Pl′

Pl
·
(

�

dl′l

)α}
,

where cv = β/(1− βN�α/Pl).

The definition of affectance was introduced in [6] and achieved the form we are
using in [15]. When clear from the context we drop the superscript P . Also, let
aPl (l) = 0. Using the idea of affectance, Eqn. 1 can be rewritten as

aPS (l) ≡
∑
l′∈S

aPl′ (l) ≤ 1 ,

for all l ∈ S.
A link can schedule at most one packet during a slot, in other words, if a link

has a queue, at most one packet from the queue can be scheduled during a single
slot.

Stability of Stochastic Processes. We assume that packets arrive at the
sender of each link l according to a stochastic process with average arrival
rate ml.

We define stability as such.

Definition 2. An algorithm stabilizes a network for a particular arrival pro-
cess if, under that arrival process the average queue size at each link is bounded
(ie, does not grow asymptotically with time).

The throughput region is then the set of all possible arrival rate vectors such that
there exists some scheduling policy that can stabilize the network. As proved in
[22], the throughput region is characterized by

Λ = {λ : λ # φ, for some φ ∈ Co(Ω)} ,

here Ω is the set of vectors in Rn characterizing all maximal feasible sets (i.e.,
each vector in Ω is a binary vector with 1’s in indices corresnponding to links
belonging to the relevant maximal feasible set). Co(Ω) is the convex hull of Ω;
λ and φ are vectors in Rn, indicating arrival rates on links, and λ # φ means
that each entry of λ is less than or equal to the corresponding entry in φ.

In the best case, one would like stabilize all of Λ. If that is not possible, the
hope is to achieve a high efficiency ratio:
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Definition 3. The efficiency ratio γ of a scheduling algorithm is γ = sup{γ :
all networks are stabilized for all λ ∈ γΛ}. The algorithm is then γ-efficient.

We assume that the arrival processes are independent accross time (and links).
For a certain efficiency γ, for all permissible arrival rate vectors λ, λ #

∑
imiMi

where eachMi is a maximal feasible set, andmi are weights such that
∑

i mi = γ.
Let the expected arrival rate on a link l be ml, it can be easily seen that

ml =
∑

i:l∈Mi

mi ≤ γ . (2)

3 Results and Related Work

Our main results are:

Theorem 1. For all given networks with links on metric spaces, and all sub-
linear, length-monotone power assignments, there exists a Ω( 1

log2 n
)-efficient dis-

tributed algorithm.

Theorem 2. For all given networks with links on the Euclidean plane, there

exists a Ω
(

1
log n(logn+log logΔ)

)
-efficient distributed power control algorithm. A

centralized algorithm exists that achieves Ω
(

1
logn

)
efficiency.

We are aware of two earlier papers on stability in the SINR model. In [16], the
authors study the Longest Queue First algorithm (a classical algorithm that can
be seen as a natural extension of maximal weighted matching). They show that
LQF is not stable, but a variant works well. A “localized” implementation is pro-
vided, i.e., it is shown that the algorithm can be implemented in a distributed
manner if links can communicate with other “neighboring” links arbitrarily. The
achieved efficiency ratio in Ω( 1

Δα ) (the dependence on Δ is not explicitly men-
tioned, but can be seen to be necessary). Our recent paper [2] is a companion
of the current work, where an extremely simple and completely distributed al-
gorithm achieving Ω( 1

Δα ) efficiency is introduced. In comparison, the results in
the current work involve efficiency that is logarithmically dependent on n (and,
in one case, doubly logarithmic in Δ). Dependence on n and Δ are theoretically
not comparable, and either could be preferable in practice. The distributed algo-
rithm in this paper has to assume a carrier-sense primitive, which is not assumed
in [2]. However, it does not need to have a special communication infrastructure
with neighboring links.

The body of work on wireless network stability in other models is too vast to
survey properly. In terms of efficiency ratio, a range of results have been derived
in a variety of models. Naturally one seeks efficiency of 1 [18] whenever possible,
but results for efficiency ratios of 1 under certain conditions [4], or 1

6 [12] can
be found in the literature. Ratios in terms of certain network characteristics
are known as well [12,16]. For the SINR model, which is being studied only
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very recently, an efficiency ratio of a constant that is independent of network
parameters is not known.

Technically, we depend heavily on [15] that provides a O(log2 n) approxima-
tion algorithm for the scheduling problem. The algorithm and technical aspects
of this work used here will be introduced in the following section as needed.

We are aware of a very recent unpublished work of Kesselheim [13] achieving
results in the SINR model very similar to the present paper.

4 Main Algorithm

The basic algorithmic framework used is listed asGeneral below. For simplicity,
we treat it as a centralized procedure first and discuss distributed implementa-
tions later.

Algorithm 1. General(θ, A)

1: The algorithm maintains a FIFO queue S of sets, such that each S ∈ S is feasible.
2: At the beginning, S ← ∅.
3: for time t ← 1, 2, . . . do
4: if S is non-empty then
5: Schedule the first S ∈ S
6: S ← S − S
7: end if
8: if t mod θ = 1 then
9: Let L = new packet arrivals in the time period [t− θ, t− 1]
10: q = t/θ
11: Use algorithm A to find a schedule Rq = ∪jR

′
j for L

12: Append Rq (in any order) to S
13: end if
14: end for

The algorithm takes two parameters. One is θ, a number that defines the
“period” of the algorithm. The second parameter is an algorithm A which can
solve the scheduling problem, used as a black box by General to compute sched-
ules. The scheduling problem is the optimization problem where given a set L of
links, one seeks to partition L into minimum number of sets such that each of
these sets is feasible (i.e., can be transmitted in one slot). Since the problem is
NP-hard, we will work with approximation algorithms. Depending on the result
we seek, we will set θ and A accordingly.

General can be alternatively described in the following way. The algorithm
divides the time slots into consecutive periods of length θ each. Let us denote
these periods as C1, C2 . . . etc. At the beginning of period Cq, the algorithm
computes a schedule Rq−1 of the links produced in Cq−1. It does so using A.
General then adds these computed feasible sets to the set S. Now during each
slot of Cq, the algorithm schedules the first set from S (which is implemented
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as a FIFO queue). It does this until Cq ends, in which case it moves on to the
next period, or until S is empty, in which case it waits until the end of Cq. Note
that there is nothing to schedule during C1, we just wait during this time.

Let Qt
l be the queue length at link l at time t. First, note that Qt

l ≤ St for
all l, where St = |S| at time t (S is as in the algorithm General). This is the
number of slots we require to schedule all links outstanding at time t. Obviously,
one cannot schedule all links in time less than the size of the longest queue
(since copies of the same link cannot be scheduled together). Thus a bound on
St immediately gives us a bound on Qt

l (for all l). Consequently, from now on
we will focus on bounding St. Also note that it suffices to bound St on period
boundaries, i.e., at times t such that t mod θ = 1. This is because, in expectation,
the queue lengths cannot grow by much during the course of a period. Let ρ be
a large enough constant.

For simplicity, we will assume that the arrival distributions at every link
l is a Bernoulli random variable with mean ml. To prove Theorem 1, we set
θ = 10ρ2 log2 n.

4.1 The Scheduling Algorithm

We also select as A the scheduling algorithm described in [15]. It is known [8]
that this algorithm achieves a O(logn)-approximation factor to the scheduling
problem. We are, however, interested in a slightly different performance measure
of the algorithm in [15]. For a link set R, define the maximum average affectance
Ā(R) = maxQ⊆R

1
|Q|

∑
l∈Q

∑
l′∈Q al(l

′). It is known that:

Theorem 3. [15] The algorithm A has expected running time of at most ρ logn·
Ā(R) on a link set R.

We now turn our attention to proving the stability of the algorithm, i.e., Thm. 1.
Given the efficiency claimed in Thm. 1, it sufficient to deal with stochastic pro-
cesses satisfying ∑

Mi

mi ≤
1

5ρ2 log2 n
. (3)

Lemma 1. E(|Rq |) ≤ O(log2 n) < θ for all q.

Proof. Define at+(l) to be the outgoing affectance from a link l to longer links
appearing in slot t. Formally, if Xl(t) is the Bernoulli random variable denoting
the number of packets that arrived at the sender of link l during slot t, then

at+(l) ≡
∑

l′∈L,l′≥l

al(l
′)Xl′(t) . (4)

Let A+(l) be the sum of at+(l) over all θ slots in the period, or,

A+(l) =

θ∑
t=1

at+(l) .

Now, we claim,
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Claim. E(A+(l)) ≤ θ
5ρ logn .

Proof. In [15], it is shown that for any feasible set Mi∑
l′∈Mi,l′≥l

al(l
′) ≤ ρ logn . (5)

Thus, for any time slot t,

E(at+(l))
1
=

∑
l′∈L,l′≥l

al(l
′)E(Xl′ (t))

2
=

∑
l′≥l

al(l
′)ml′

3
≤

∑
l′≥l

al(l
′)

∑
i:l′∈Mi

mi

4
=

∑
i

mi

∑
l′∈Mi,l′≥l

al(l
′)

5
≤ ρ logn

∑
i

mi ≤
1

5ρ logn
,

with explanations of numbered (in)equalities:

1. By definition of at+(l) (Eqn. 4)
2. E(Xl′(t)) = ml′ by definition, since they both express the expected number

of packets arriving in each time slot on l′.
3. By Eqn. 2.
4. Rearrangement.
5. By Eqn. 5.
6. By Eqn. 3.

Now, by the Chernoff-Hoeffding inequality (see, for example, Eqn. 1.8, Thm. 1.1
of [5]):

P(A+(l) ≥ r) ≤ 1

2r
,

for all r ≥ 2θ
5ρ logn = 4ρ logn. Defining A+

max = maxl A
+(l), and union bounding

we get,

P(A+
max ≥ r) ≤ n

2r
. (6)

We analogously define at−(l) ≡
∑

l′∈L,l′≥l al′(l)Xl′(t) to be the incoming af-

fectance from longer links. We similarly define A−
max, and obtain that P(A−

max ≥
r) ≤ n

2r , which depends on the bound∑
l′∈Mi,l′≥l

al′(l) ≤ ρ , (7)

also proven in [15]. (Note that the bound here is tighter than Eqn. 5).
It is not hard to verify that that Ā ≤ A+

max +A−
max. Thus,

E(Ā) ≤ E(A+
max) + E(A−

max) ≤ 2E(A+
max)

≤ 2θ

5ρ logn
+

∞∑
i=1

2i
2θ

5ρ logn

n

22
i 2θ
5ρ log n

≤ 2θ

5ρ logn
+

2θ

5ρ logn
=

4θ

5ρ log n
.
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Now, by Theorem 3, EA(|Rq |) ≤ ρ logn · Ā, where EA denotes expectation over
the random bits of the algorithm (which is randomized). Noting that the random
bits of the algorithm are independent of the arrival process, we can use the bound
on E(Ā) to claim that

E(|Rq |) ≤ ρ logn · 4θ

5ρ logn
< θ .

Now we can prove Thm. 1. Note that by Lemma 1, the expected scheduling cost
required for packets produced during a single period (E(|Rq |)) is strictly smaller
than the scheduling capacity of a single period (θ). With this observation, we
can reduce our system to a very basic queueing system:

– A single server, an infinite queue, and slotted time. The time slots in this
system correspond to the periods of the original system.

– At the beginning of each slot a fixed number s of packets are served and
leave the system (s corresponds to θ).

– At the end of every slot, a random number of new packets arrive. This is
a random variable A on the non-negative integers, and E(A) = a (a corre-
sponds to E(|Rq |)).

Now, if a < m, the corresponding countable Markov chain has a stationary
distribution, and if a is square integrable, the expected queue length will be
finite (see [3], for example). The condition a < m is easily seen to be true (since
E(|Rq |) < θ by Lemma 1). Square integrability of |Rq| follows from the fact
that Rq admits a large deviation bound (this is implicit in the proof of Lemma
1). Of course the “queue length” of this system corresponds to St, the number
of slots the outstanding packets would require to be scheduled. Thus we have
proven E(St) to be bounded, and as observed before, this is enough to complete
the proof of the theorem.

4.2 Implications for the Power Control Problem

It was shown in [7,9] that mean power (where Pl is set to �α/2) achieves a good
approximation to the power control problem. Since Thm. 1 covers the mean
power assignment, this gives us a distributed algorithm for the power control
problem. To achieve the bound claimed in Thm. 2 for the distributed algorithm,
the main ingredient is the following bound (analogous to Eqn. 5).

Lemma 2 ([7,9]). If M is a feasible set with respect to any power assignment,∑
l′∈M,l′≥l

al′(l) ≤ c3(log n+ log logΔ) , (8)

where the affectance al′(l) is measured using mean power.

With this bound (and a similar analog of Eqn. 7) in hand, the proof technique of
Thm. 2 can be duplicated to achieve the bound claimed in Thm. 2 for distributed
algorithms.
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4.3 Distributed Implementation

We now demonstrate how to implement General in a distributed fashion. In-
terestingly, we require very few additional assumptions to make this work. The
basic tool is the algorithm in [15], listed as Distr-SingleLink.

Algorithm 2. Distr-SingleLink

1: k ← 0
2: while transmission not successful do
3: q = 1

4·2k
4: for 8 lnn

q
slots do

5: transmit with i.i.d. probability q
6: end for
7: k ← k + 1
8: end while

The first thing to note here is that Distr-SingleLink itself is completely
distributed. In other words, General, if applied to the links produced during a
single period, could be implemented in a distributed manner straightaway. The
challenge is that our bounds assume that the algorithm works in a FIFO manner,
thus Distr-SingleLink for a packet produced in Cq should not start executing
until all packets produced up to Cq−1 have been successfully scheduled.

To implement this, we assume that each sender in the system maintains a few
counters. The first counter cur keeps track of the current period, and a second
counter s tracks the current period being scheduled (naturally s ≤ cur). For each
outstanding packet p in the queue, the sender also maintains the period in which
it was generated (gp). The counter cur is easily maintained, by incrementing it
once every θ slots. The third counter is equally simple, when a packet p arrives,
gp is assigned the current value of cur. We will describe how s is maintained
below, but note that given s, the algorithm can now be easily implemented in a
distributed fashion. For each packet p, the sender waits until s = gp, and then
runs Distr-SingleLink for p until the link successfully transmits.

Maintaining s is slightly more, but not too, involved. It is here that we need
to make an additional assumption, which is that nodes (senders) can sense the
channel to determine transmission activity. This is a not uncommon assumption
(see, e.g., [21]), based on the Clear Channel Assessment capability in the 802.11
wireless standard.

Let us divide the time slots into consecutive pairs. The first time slot is used
for normal transmission (i.e., executing General and Distr-SingleLink). The
second slot is used for signaling. Senders that are transmitting currently (i.e.,
senders that have at least one non-transmitted packet p for which gp = s) use the
signaling slot to simply signal that they have still not completed. Thus when all
links from period s succeed, a silent signaling slot appears. All senders register
this event by sniffing the channel, and increment s.



Wireless Network Stability in the SINR Model 133

From a practical point of view, wasting every other slot for signaling, as well as
assuming some sort of “perfect” carrier sensing capability, is problematic. Simu-
lation studies presented are done with practically reasonable approximations to
these assumptions (indeed, these heuristics seem to help the algorithm).

5 Extensions and Simulations

In the power control version of the problem, selecting (an arbitrary) power for
each link is a part of the problem. Feasible sets are now those for which there ex-
ists an (unknown) power assignment that allows for simultaneous transmissions
of all the links.

Using a centralized algorithm of [14], a O( 1
logn ) throughput is achievable. We

omit details.

Fig. 1. The maximum queue lengths for the distributed algorithm Distr-SingleLink.
The problem instances are based on random topology with n = 200, �min = 1, �max =
20, α = 2.5 and β = 1.

We implemented General (using Distr-SingleLink) on a random topology.
As Fig. 1 shows, efficiency ratios upto 0.4 is achieved, which is quite good. Details
are omitted due to space restrictions.
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7. Halldórsson, M.M.: Wireless Scheduling with Power Control. In: Fiat, A., Sanders,
P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 361–372. Springer, Heidelberg (2009)
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Abstract. This paper addresses the following 2-player problem. Alice
(resp., Bob) receives a boolean x (resp., y) as input, and must return a
boolean a (resp., b) as output. A game between Alice and Bob is defined
by a pair (δ, f) of boolean functions. The objective of Alice and Bob
playing game (δ, f) is, for every inputs x and y, to output values a and
b, respectively, satisfying δ(a, b) = f(x, y), in absence of any communi-
cation between the two players.It is known that, for xor-games, that is,
games equivalent, up to individual reversible transformations, to a game
(δ, f) with δ(a, b) = a ⊕ b, the ability for the players to use entangled
quantum bits (qbits) helps: there exist a distributed protocol for the
chsh game, using quantum correlations, for which the probability that
the two players produce a successful output is higher than the maximum
probability of success of any classical distributed protocol for that game,
even when using shared randomness.

In this paper, we show that, apart from xor-games, quantum corre-
lations does not help, in the sense that, for every such game, there exists
a classical protocol (using shared randomness) whose probability of suc-
cess is at least as large as the one of any protocol using quantum correla-
tions. This result holds for both worst case and average case analysis. It
is achieved by considering a model stronger than quantum correlations,
the non-signaling model, for which we show that, if the game is not an
xor-game, then shared randomness is a sufficient resource for the design
of optimal protocols. These results provide an invitation to revisit the
theory of distributed checking, a.k.a. distributed verification. Indeed, the
literature dealing with this theory is mostly focusing on decision func-
tions δ equivalent to the and-operator. This paper demonstrates that
such a decision function may not well be suited for taking benefit of the
computational power of quantum correlations.

1 Introduction

1.1 Context and Objective

This paper addresses the following 2-player problem. Alice (resp., Bob) receives
a boolean x (resp., y) as input, and must return a boolean a (resp., b) as output.
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A game between Alice and Bob is defined by a pair (δ, f) of boolean functions.
The objective of Alice and Bob playing game (δ, f) is, for every inputs x and y,
to output values a and b satisfying

δ(a, b) = f(x, y)

in absence of any communication between the two players. Obviously, the
game is trivial whenever there exist two boolean functions α and β such that
δ(α(x), β(y)) = f(x, y) for every pair (x, y) ∈ {0, 1}2. Indeed, for such games,
there exists a deterministic distributed protocol solving the game, with Alice re-
turning α(x) on input x, and Bob returning β(y) on input y. Non-trivial games
may still be solved, but only under some probabilistic guarantees. A game (δ, f)
is said to be solvable with probability p if there exists a randomized distributed
protocol such that Alice outputs a, and Bob outputs b, with

Pr(δ(a, b) = f(x, y)) ≥ p (1)

for every input pair (x, y) ∈ {0, 1}2.
Different sources of randomness can then be considered. Classical1 sources of

randomness include the case where each of the two players are provided with
individual independent sources of random bits. It also include shared randomness
where, in addition to individual independent sources of random bits, the two
players have access to a common source of random bits. Shared randomness
enables to produce outputs satisfying

Pr(a, b|x, y) =
∑
λ∈Ω

Pr(a|x, λ) · Pr(b|y, λ) · Pr(λ) (2)

where the random variable λ is drawn from some probability space Ω, and
Pr(a, b|x, y) denotes the probability that Alice outputs a and Bob outputs b,
given the fact that Alice receives x as input, and Bob receives y as input. It is
known [3] that correlations on quantum entangled states enable to derive pro-
tocols whose output distribution cannot be modeled as Eq. 2. One evidence of
this fact is the chsh game [6]:

a⊕ b = x ∧ y

where ⊕ denotes the exclusive-or operator. chsh can be solved with probability
cos2(π/8) > 3

4 with a quantum protocol [5], while every protocol using classical
shared randomness cannot solve chsh with probability more than 3

4 . One objec-
tive of this paper is to complete an exhaustive study of 2-player games in order
to identify for which games quantum correlations help.

In fact, the literature dealing with 2-player games (see, e.g., [1,2,8,15], and
the recent survey [4]) refers to objects called boxes. A box B is characterized by
the probabilities Pr(a, b|x, y) of outputting pair (a, b) given the input pair (x, y),
for all a, b, x, y ∈ {0, 1}. A box B is thus described by a set

{Pr(a, b|x, y), (x, y) ∈ {0, 1}2}
1 I.e., not using quantum effects.
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of four probability distributions, one for each pair (x, y) ∈ {0, 1}2. Hence, there
are infinitely many boxes, with different computational powers.

The absence of communication between the two players along with the as-
sumption of causality are captured by the class of non-signaling boxes. A box
B is non-signaling if and only if it satisfies that the marginal output distri-
butions for Alice and Bob depend only on their respective inputs. Formally, a
non-signaling box satisfies:

∀a, x,
∑

b Pr(a, b|x, 0) =
∑

b Pr(a, b|x, 1),
and ∀b, y,

∑
a Pr(a, b|0, y) =

∑
a Pr(a, b|1, y) (3)

Non-signaling boxes satisfying Eq. 2 are called local, where “locality” is referring
here to the physical science concept of local hidden variables [3,9]. Boxes that
do not satisfy Eq. 3 are signaling. Signaling boxes are not considered physically
realistic because they would imply instantaneous transmission of signals between
two distant entities.

The set of all boxes has a geometric interpretation [1], for it forms a 12-
dimensional convex polytope, including the (convex) polytope of non-signaling
boxes, which includes in turn the (convex) local polytope. Fig. 1 provides an ab-
stract representation of the non-signaling polytope. Each of the extremal vertices
of the non-signaling polytope is equivalent (up to individual reversible transfor-
mations on the inputs and outputs) to the pr box [5,15], that is described by
the distribution:

Pr(a, b|x, y) =
{

1
2 if a⊕ b = x ∧ y
0 otherwise.

Notice that the pr box satisfies Pr(a⊕b = x∧y) = 1 for every input pair x, y. So,
in particular, it solves the chsh game with probability 1. Each of the extremal
vertices of the local polytope can be implemented by a deterministic protocol:
they are equivalent to the identity box id described by Pr(a, b|x, y) = 1 if and
only if a = x and y = b. Every non-extremal box B is a linear combinations of
extremal boxes: B =

∑k
i=1 βiBi where Bi is an extremal box,

∑k
i=1 βi = 1, and

βi > 0 for every i = 1, . . . , k. On Fig. 1, the doted line represents the limit of the
class of boxes implementable by a quantum protocol. This latter class strictly
contains the local boxes, and is strictly included in the class of non-signaling
boxes, as witnessed by the chsh game.

Our objective can thus be reformulated as follows. Given a box implementable
by a quantum protocol, which games can be efficiently solved using this box?
Stated differently, given a game, what are the boxes implementable by a quantum
protocol that enable to solve that game with better guarantees than any local
boxes?

1.2 Our Results

We show that, for every 2-player game (δ, f) different from an xor-game, i.e.,
different from a game which is equal, up to individual reversible transformations,



138 H. Arfaoui and P. Fraigniaud

local boxes non local
boxes

non signaling 
polytope

local polytope

signaling boxesnon signaling boxes

Fig. 1. Abstract representation of the non-signaling polytope

to a game (δ, f) with δ(a, b) = a⊕ b, every box solving (δ, f) with probabilistic
guarantee p greater that the probabilistic guarantee of any local box, is signaling.
As a corollary, quantum correlations do not help for solving games different from
xor-games. Moreover, this result holds even the worst-case guarantee stated in
Eq. 1 is replaced by the average-case guarantee

1

4

∑
x,y

Pr(δ(a, b) = f(x, y)) ≥ p .

The results in this paper open new perspectives in term of distributed checking,
a.k.a. distributed verification, which consists in having a set of, say, n processes
deciding whether their global state (defined as the union of the local state of every
individual process) satisfies some prescribed property, or not. The literature on
this latter topic (see, e.g., [7,10,11,13,14]) assumes a decision function δ which is
applied to the set of individual decisions produced by the processes. Typically,
each process should output a boolean bi, and the global interpretation of the
outputs is computed by

δ(b1, . . . , bn) =
n∧

i=1

bi ∈ {“yes”,“no”} .

The use of the and operator is motivated by the requirement that the global
state is valid if and only if all processes agree on some (local) validity condition.
If this condition is locally violated somewhere in the system, then at least one
process “rises an alarm” by outputting 0. However, recent advances in the theory
of distributed checking [12] demonstrate that using other decision functions δ
significantly increases the power of the “checker”, or “verifier”. Our results show
that some functions δ, in particular the classical and operator, do not enable to



What Can Be Computed without Communications? 139

use the power of quantum computing efficiently, compared to shared randomness,
at least for 2-player games. In contrast, the exclusive-or operator is known to
offer high potential, as far as distributed quantum computing is concerned. In
particular, [2] proved that every boolean function f on n independent players can
be implemented by a circuit of pr boxes that output booleans bi, i = 1, . . . , n,
satisfying

n⊕
i=1

bi = f(x1, . . . , xn) .

The results in this paper give one more evidence of the impact of the decision
function δ on the ability of “deciding” boolean predicates f .

2 Equivalence Classes of Games

As introduced in the previous section, a game between Alice and Bob is described
by a pair (δ, f) of boolean functions on two variables. Playing the game means
for Alice (resp. Bob) to receive a boolean x (resp., y) as input, and to return a
boolean a (resp., b) as output such that δ(a, b) = f(x, y) without communication
between the two players. Examples of games are

eq : a ∧ b = x⊕ y and neq : a ∧ b = x⊕ y.

Another example of a game is :

amos : a ∧ b = x ∧ y.

In these three examples, one can view the games as Alice and Bob respectively
deciding whether the equality x = y holds, whether the non-equality x �= y
holds, and whether there is “at most one selected” player (a selected player has
input 1). Here, “deciding” means that if the answer is “yes” then both players
should output “yes”, while if the answer is “no” then at least one player should
output “no”. In fact, the three games eq, neq, and amos, are and-games.
However, all games are not of that type. In particular, we shall see that the
already mentioned chsh game

a⊕ b = x ∧ y

is not an and-game, for δ(a, b) �= a∧ b. More precisely, for any game (δ, f), both
functions δ and f can be rewritten as:

δ(a, b) = α1,1ab+α1,0a+α0,1b+α0,0 and f(x, y) = β1,1xy+β1,0x+β0,1y+β0,0

where the + symbol denotes the exclusive-or operator ⊕, the (omitted) · symbol
denotes the and-operator ∧, and all coefficients are in {0, 1}. We say that two
games (δ, f) and (δ′, f ′) are equivalent if

δ(a, b) = δ′(A,B) and f(x, y) = f ′(X,Y )
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where A (resp., B,X, Y ) is a degree-1 polynomial in a (resp., b, x, y) with coef-
ficients in {0, 1}. Whenever two games are equivalent, any protocol solving one
of the two games can be used for solving the other games, by performing indi-
vidual reversible transformations on the inputs and outputs, and the probability
of success for the two games will be identical. The same notion of equivalence
can be defined for boxes. Now we can state formally that the chsh game is not
equivalent to any of the three and-games: eq, neq, or amos. This is because,
as we will see further in the text, none of these latter games can be solved with
probability 1 by a non-signaling box (as opposed to the chsh game which can
be solved with probability 1 by the pr box). Instead, eq and neq are equivalent
games. Indeed, for neq, f(x, y) = x+ y, while, for eq, f(x, y) = x+ (y + 1).

Definition 1. A game (δ, f) is an xor-game if and only if it is equivalent to a
game (δ′, f ′) where δ′(a, b) = a⊕ b.

3 On the Power of Quantum Correlations

In this paper, we establish our main result, stating that correlations on quantum
entangled states do not help for solving 2-player games that are not equivalent
to an xor-games. In fact we establish a stronger result by showing that non-
signaling boxes do not help for those games, compared to local boxes.

Theorem 1. Let (δ, f) be a 2-player game that is not equivalent to any xor-
game. Let p be the largest success probability for (δ, f) over all local boxes. Then
every box solving (δ, f) with probabilistic guarantee > p is signaling.

Proof. The proof is straightforward for games (δ, f) where δ does not depend on
both a and b. Indeed, if δ is constant, say α, then the game is either impossible
(whenever ∃x, y : f(x, y) �= α) or trivial (whenever ∀x, y, f(x, y) = α). And if δ
is a single-variable function, say δ(a, b) = a + α for some α, then the game is
again either impossible, or trivial, or equivalent to a single-player game where
the player must compute a two-variable function f(x, y) knowing only one of
the variables. Games of that latter class are equivalent to either the game a = y
or the game b = x. Non-signaling boxes do not help for such games (the best
probability of success is 1

2 ). Therefore, we focus now on “true” 2-player games,
i.e., games (δ, f) where δ depends on both a and b.

First, we show that every true 2-player game (δ, f) which is not equivalent to
an xor-game is either deterministic, or equivalent to neq or amos. To establish
this claim, observe that if f is constant, or depends on only one of the the two
inputs, then the game (δ, f) can be solved with probability 1, by a deterministic
protocol. Indeed, assume, without loss of generality, that f depends only on
x. (The case f constant is straightforward). Then Alice and Bob can agree
beforehand on a fixed value b∗ for b. It follows that, knowing b∗, f ,and δ, Alice
can output a such that δ(a, b∗) = f(x).

We can now come to the interesting case, that is, when both δ and f depend
on their two inputs. Any 2-variable boolean function g can be rewritten as :

g(u, v) = U + V or g(u, v) = UV or g(u, v) = UV + 1
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where U (resp., V ) is a polynomial in u (resp., v) of degree at most 1, with
coefficients in {0, 1}. Given that fact, we rewrite any game (δ, f) using two
expressions from the above, one for δ, and the other for f . We thus get nine
different types of games, which can be narrowed down to five types by noticing
that games like A + B = XY + 1 are the same as games like A′ + B′ = X ′Y ′,
up to the (reversible) transformation B′ = B + 1. These five types of games are
the following:

δ(a, b) = A+B = f(x, y) = X + Y

δ(a, b) = A+B = f(x, y) = XY

δ(a, b) = AB = f(x, y) = X + Y

δ(a, b) = AB = f(x, y) = XY

δ(a, b) = AB = f(x, y) = XY + 1

Since f (resp., δ) depends on both x and y (resp., both a and b), all polynomials
in these five types of games are of degree exactly 1, hence making all transfor-
mations reversible. Therefore, if two games can be rewritten into the same type,
then they are equivalent. Table 1 describes the equivalence classes over the set
of games formed by the five types above, and provides a representative for each
class.

Table 1. Equivalence classes for true 2-player games depending on both inputs. The
first two classes of games are deterministic, i.e., can be solved by a deterministic pro-
tocol. Instead, the last three classes are not deterministic. No deterministic protocol
can solve any of the games in these three classes.

Form of the class Representative of the class

Deterministic
AB = XY

prod

a ∧ b = x ∧ y

A+B = X + Y
sum

a⊕ b = x⊕ y

Not deterministic

A+B = XY
chsh

a⊕ b = x ∧ y

AB = X + Y
neq

a ∧ b = x⊕ y

AB = XY + 1
amos

a ∧ b = ¬(x ∧ y)

The theorem holds for games prod and sum since both of them can be solved
by a deterministic protocol. Every game that is neither equivalent to an xor-
game nor deterministic is equivalent to an and-game: neq or amos. We now
show that non-local boxes fail to solve amos or neq with higher probabilistic
guarantee than what can be achieved with local boxes.
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Let us first examine amos. We start by showing that any box that solves amos
with probabilistic guarantee p > 2

3 is signaling. Suppose that there exists a non-
signaling box B, defined by the correlation Pr(a, b|x, y), that solves amos with
probability p. On the one hand, for any probability distribution π = {πxy|(x, y) ∈
{0, 1}2} of the inputs, we have∑

xy

πxy Pr(success for input (x, y)) ≥ p

On the other hand, we have∑
xy

πxy Pr(success for input (x, y)) =
∑
xy

πxy

∑
ab

1{a∧b=¬(x∧y)} Pr(a, b|x, y)

where 1{a∧b=¬(x∧y)} denotes the boolean indicator function of whether a ∧ b =
¬(x ∧ y) is true or not. Let us consider the following distribution π∗:

π∗
00 = 0 and π∗

xy =
1

3
for all (x, y) �= (0, 0)

Let pabxy = Pr(a, b|x, y) for box B. The probability of success with the input
distribution π∗ satisfies∑

xy

π∗
xy Pr(success for (x, y)) =

1

3

∑
xy �=(0,0)

1{a∧b=¬(x∧y)}pabxy

=
1

3
(p1101 + p1110 +

∑
(ab) �=(11)

pab11)

=
1

3
(p1101 + p1110 + p0011 + p0111 + p1011) (4)

The non-signaling conditions (cf., Eq. 3) require that, for every a, b, x, y,

pa0x0 + pa1x0 = pa0x1 + pa1x1
and p0b0y + p1b0y = p0b1y + p1b1y

which gives a bound on the first two terms of Equation 4:

p1101 = p1111 + p0111 − p0101 ≤ p1111 + p0111
and p1110 = p1111 + p1011 − p1010 ≤ p1111 + p1011

The probability p of success is therefore bounded by :

p ≤ 1

3
(p1111 + p0111 + p1011 + p1111 + p0011 + p0111 + p1011)

≤ 1

3

(
(2

∑
ab

pab11)− p1111

)
≤ 2

3
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as
∑

ab pabxy = 1 for any fixed (x, y), and p1111 ≥ 0. Therefore, every non-
signaling box solves amos with success at most 2

3 .
Regarding neq, we observe that with distribution π∗, amos and neq become

the same games:
famos(x, y) = fneq(x, y)

for all (x, y �= (0, 0). As a consequence, the same bound 2
3 holds for neq: every

non-signaling box solves neq with success at most 2
3 .

We now show that the bound 2
3 for amos and neq can be reached by local

boxes. For this purpose, we describe a protocol using solely shared randomness,
and reaches success probability 2

3 . Let a0 and a1 (resp., b0 and b1) be the outputs
of Alice (resp. Bob) on the respective input x = 0 and x = 1 (resp., y = 0 and
y = 1). amos translates into solving the system:⎧⎪⎪⎨⎪⎪⎩

a0 · b0 = 1
a0 · b1 = 1
a1 · b0 = 1
a1 · b1 = 0

(5)

and neq translates into : ⎧⎪⎪⎨⎪⎪⎩
a0 · b0 = 0
a0 · b1 = 1
a1 · b0 = 1
a1 · b1 = 0

(6)

The second and third equations of the system for amos as well as for neq imply
that a0 = a1 = b0 = b1 = 1, resulting in the last equation impossible to be
satisfied in both games. Hence the last three equations of each system cannot be
simultaneously satisfied. Instead, if one chooses to ignore one of them, then one
can find a solution to the game. Playing any one of the two games using shared
randomness, we allow Alice and Bob to have access, before knowing their inputs,
to a shared random variable λ uniformly distributed in {1, 2, 3}, designating the
equation to be ignored among the last three ones. Alice and Bob will fail to solve
the game with probability at most 1

3 (when the ignored equation is precisely the
one corresponding to the actual inputs), making the success probability for any
input (x, y) equal to 2

3 . This completes the proof of the theorem. �

It turns out that even relaxing the constraints placed on solving the game, by
considering average case analysis, does not allow non-signaling boxes to perform
better than local boxes on games not equivalent to xor-games.

Theorem 2. Let (δ, f) be a 2-player game that is not equivalent to any xor-
game. Let p be the largest average success probability for (δ, f) over all local
boxes. Then every box solving (δ, f) with average probabilistic guarantee > p is
signaling.

Proof. Using the same arguments as in the proof of Theorem 1, we limit the
analysis to amos and neq. For average case analysis, we consider these two
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games with input probability distribution πxy = 1
4 for every (x, y) ∈ {0, 1}2.

The success probability for Alice and Bob with this input distribution is then
given by:

Pr(success) =
1

4

∑
x,y

∑
a,b

1{δ(a,b)=f(x,y)} Pr(a, b|x, y)

First, we show that the protocol described in the proof of Theorem 1 for solving
amos and neq has average success probability 3

4 . Indeed, the success probability
of that protocol can be written as:

Pr(success) =
1

4

∑
x,y

Pr(success(x, y)) =
1

4

(
1 +

2

3
+

2

3
+

2

3

)
=

3

4

because, the protocol always satisfies the first equation of both games, and sat-
isfies each of the three other equations (of both games) with probability 2

3 .
Next, we show that a non-local box cannot solve amos or neq with average

success probability greater than 3
4 . Indeed, we have

Pr(success) =
1

4

[( ∑
(x,y) �=(0,0)

∑
a,b

1{δ(a,b)=f(x,y)}Pr(a, b|x, y)
)

+
(∑

a,b

1{δ(a,b)=f(0,0)} Pr(a, b|0, 0)
)]

The first term is the same as the one analyzed in the proof of Theorem 1, where
it was proved to be at most 2. The second term is at most

∑
ab Pr(a, b|0, 0) ≤ 1.

Therefore, the average success probability for non-local boxes is at most 3
4 . �

The practical interest of the previous two theorems comes from their consequence
to distributed quantum computing:

Corollary 1. Quantum correlations does not help for solving 2-player games
that are not equivalent to any xor-game. This limitation holds for both worst
case, and average case analysis.

4 Open Problem

One obvious generalization of the 2-player games is to consider games with more
than two players, with IDs from 1 to n ≥ 2. In the n-player game (δ, f), Player
i receives boolean xi as input, and must return a boolean ai such that

δ(a1, . . . , an) = f(x1, . . . , xn)

in absence of communication between the players. As for two players, two classes
of games deserve specific interest:

– xor-games: δ(a1, . . . , an) = a1⊕ . . .⊕an, for they generalize the chsh game,
and for they can be solved by a non-signaling box implementable by a circuit
of pr boxes (see [2]);
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– and-games: δ(a1, . . . , an) = a1∧ . . .∧an for they correspond to the standard
decision mechanism in the distributed computing literature (see, e.g., [14]).

In particular, the n-player variant of amos is:

n∧
i=1

ai =
∧
i�=j

(xi ∧ xj).

There exists a randomized protocol (see [10]), that is using individual random

coins, and solves amos with success guarantee
√
5−1
2 ≥ 0.61 > 1/2. In this

protocol, every selected player (i.e., one with input 1) outputs 1 with probability
p, to be fixed later, and 0 with probability 1− p. Every non-selected player (i.e.,
one with input 0) systematically outputs 0. Hence, if no players are selected,
then the protocol always outputs the right answer. If one player is selected, then
the protocol fails with probability 1−p, while if two or more players are selected
then the protocol fails with probability at most p2. Solving p2 = 1− p results in

picking the optimal probability p∗ =
√
5−1
2 .

On the other hand, we have seen in this paper that amos can be solved
with success guarantee 2

3 > p∗ by two players applying a probabilistic protocol
using shared randomness. One can actually show that the same guarantee can
be achieved with three players, by analyzing the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0 · b0 · c0 = 1
a1 · b0 · c0 = 1
a0 · b1 · c0 = 1
a0 · b0 · b1 = 1
a1 · b1 · c0 = 0
a1 · b0 · c1 = 0
a0 · b1 · c1 = 0
a1 · b1 · b1 = 0

which lists the eight equations for amos corresponding to the eight possible in-
puts of the games. Consider the protocol which solves that system after ignoring
the second and seventh equations with probability 1

3 , the third and sixth with
probability 1

3 , and the fourth and fifth with probability 1
3 . This protocol has

success probability at least 2
3 for every triple of inputs.

Unfortunately, the protocols for two and three players do not seem to extend
easily to a higher number of players. For four players, we have designed an ad
hoc probabilistic protocol using shared randomness, with success probability
9
14 >

√
5−1
2 , but we failed to design a local protocol with success probability 2

3 .
For more than four players, the ad hoc protocol could be generalized, but we
have not identified a general pattern for it.

Instead, the lower bound 2
3 on the probability of success for solving amos

with non-signaling boxes established in this paper trivially extends to n players.
We thus conclude by stating the following problem.
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Open problem: Prove or disprove the existence of a shared-randomness proba-
bilistic protocol that solves the n-player amos game with success probability 2

3 ,
for all n ≥ 2.
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Abstract. We introduce multidimensional congestion games, that is,
congestion games whose set of players can be partitioned into k + 1
clusters C0, C1, . . . , Ck. Players in C0 have full information about all the
other participants in the game, while players in Ci, for any 1 ≤ i ≤ k,
have full information only about the members of C0∪Ci and are unaware
of all the other ones. This model has at least two interesting applications:
(i) it is a special case of graphical congestion games in which the game’s
social knowledge graph is undirected and has independence number equal
to k, and (ii) it models scenarios in which players may be of different
types and the level of competition that each player experiences on a
resource depends on the player’s type and on the types of the other
players sharing the resource. We focus on the case in which k = 2 and
the cost function associated with each resource is linear and show bounds
on the prices of anarchy and stability for two different social functions.

1 Introduction

Congestion games are, perhaps, the most famous class of non-cooperative games
due to their capability to model several interesting competitive scenarios, while
maintaining some nice properties. In these games there is a set of players sharing
a set of resources. Each resource has an associate cost function which depends
on the number of players using it (the so-called congestion). Players aim at
choosing subsets of resources so as to minimize the sum of their costs. Weighted
congestion games is the generalization in which each player has a weight and
the congestion of a resource becomes the sum of the weights of its users (thus,
congestion games correspond to weighted congestion games in which all players
have unitary weight).
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Congestion games have been introduced by Rosenthal in [16]. He proved that
each such a game admits a bounded potential function whose set of local min-
ima coincides with the set of pure Nash equilibria of the game, that is, strategy
profiles in which no player can decrease her cost by unilaterally changing her
strategic choice. This existence result makes congestion games particularly ap-
pealing especially in all those applications in which pure Nash equilibria are
elected as the ideal solution concept.

In these contexts, the study of the inefficiency due to selfish and non-
cooperative behavior has affirmed as a fervent research direction. To this aim,
the notions of price of anarchy (Koutsoupias and Papadimitriou [13]) and price
of stability (Anshelevich et al. [2]) are widely adopted. The price of anarchy
(resp. stability) compares the performance of the worst (resp. best) pure Nash
equilibrium with that of an optimal cooperative solution.

Congestion games with unrestricted cost functions are general enough to
model the Prisoner’s Dilemma game, whose unique pure Nash equilibrium is
known to perform arbitrarily bad with respect to the solution in which all play-
ers cooperate. Hence, in order to deal with significative bounds on the prices of
anarchy and stability, some kind of regularity needs to be imposed on the cost
functions associated with the resources. To this aim, lot of research attention
has been devoted to the case of polynomial cost functions [1,3,4,5,7,8,9,10].

Among these, the particular case of linear functions has been successfully
characterized: Christodoulou and Koutsoupias [8] showed that the price of an-
archy is 5/2, while the works of Caragiannis et al. [7] and Christodoulou and
Koutsoupias [9] set the price of stability to 1 + 1/

√
3. Moreover, it has been

shown in [12,14,15] that this is the only case, together with that (perhaps not
particularly meaningful) of exponential cost functions, for which even weighted
congestion games admit a potential function. For these games, Awerbuch et
al. [3] gave a price of anarchy of (3 +

√
5)/2.

Motivations and Previous Works. Traditional congestion games are defined
under a full information scenario: each player knows all the other participants
in the game as well as their available strategies. These requirements, anyway,
become too constraining in many practical applications, where players may be
unaware about even the mere existence of other potential competitors. This
observation, together with the widespread of competitive applications in social
networks, has drawn some attention on the model of graphical congestion games.

A graphical congestion game (G, G) is obtained by coupling a traditional con-
gestion game G with a social knowledge graph G expressing the social context
in which the players operate. In G, each node is associated with a player of G
and there exists a directed edge from node i to node j if and only if player i has
full information about player j. A basic property of congestion games is that
the congestion of a resource r in a given strategy profile S, that is the number
of players choosing r in S, is the same for all players. The existence of a social
context in graphical congestion games, instead, makes the congestion of each
resource player dependent. In these games, in fact, the congestion presumed by
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player i on resource r in the strategy profile S is obtained by excluding from
the set of players choosing r in S those of whom player i has no knowledge.
Clearly, if G is complete, then there is no difference between (G, G) and G. In all
the other cases, however, there may be a big difference between the cost that a
player presumes to pay on a certain strategy profile and the real cost that she
effectively perceives because of the presence of players she was unaware of during
her decisional process.

Graphical congestion games have been introduced by Bilò et al. in [6]. They
focus on linear cost functions and provide a complete characterization of the
cases in which existence of pure Nash equilibria can be guaranteed. They show
that equilibria always exist if and only if G is either undirected or directed
acyclic. Then, for all these cases, they give bounds on the price of anarchy and
stability expressed as a function of the number of players in the game and the
maximum degree of G when the social function measuring the overall quality
of a profile is either the sum of the perceived costs or the sum of the presumed
ones.

Fotakis et al. [11] argue that the maximum degree of G is not a proper mea-
sure of the level of social ignorance in a graphical congestion game and propose
to bound the prices of anarchy and stability as functions of the independence
number of G, denoted, as usual, by α(G). They focus on games with weighted
players and linear cost functions and show that they still admit a potential func-
tion when G is undirected. Then, they prove that, for these games, the price of
anarchy is between α(G)(α(G) + 1) and α(G)(α(G) + 2 +

√
α(G)2 + 4α(G))/2

when the social function is both the sum of the perceived costs and the sum of
the presumed ones and that the price of stability is between α(G) and 2α(G)
when the social function is the sum of the perceived costs.

Our Contribution and Significance. The works of Bilò et al. [6] and Fo-
takis et al. [11] aim at characterizing the impact of social ignorance in the most
general case, that is, without imposing any particular structure on the social
knowledge graphs defining the games. Nevertheless, real world based knowledge
relationships usually obey some regularities and present recurrent patterns: for
instance, people tend to cluster themselves into well-structured collaborative
groups (cliques) due to family memberships, mutual friendships, interest shar-
ing, business partnerships.

To this aim, we introduce and study multidimensional congestion games, that
is, congestion games whose set of players can be partitioned into k + 1 clusters
C0, C1, . . . , Ck. Players in C0 have full information about all the other partici-
pants in the game, while players in Ci, for any 1 ≤ i ≤ k, have full information
only about the members of C0 ∪ Ci and are unaware of all the other ones. It
is not difficult to see (and we provide a formal proof of this fact in the next
section) that each multidimensional congestion game is a graphical congestion
game whose social knowledge graph G is undirected and verifies α(G) = k.
In addition,G possesses the following, well-structured, topology: it is the union of
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k+1 disjoint cliques (each corresponding to one of the k+1 clusters in the multi-
dimensional congestion game) with the additional property that there exists an
edge from all the nodes belonging to one of these cliques (the one corresponding
to cluster C0) to all the nodes in all the other cliques.

By these observations, we believe that the study of multidimensional conges-
tion games, that is, graphical congestion games restricted to social knowledge
graphs like these, may be better suited to understand the impact of social igno-
rance in non-cooperative systems coming from practical and real-world applica-
tions.

Moreover, the particular social knowledge relationships embedded in the defi-
nition of multidimensional congestion games, perfectly model the situation that
generates when several independent games with full information are gathered
together by some promoting parties so as to form a sort of “global super-game”.
The promoting parties become players with full information in the super-game,
while each player in the composing sub-games maintains full information about
all the other players in the same sub-game, acquires full information about all
the promoting parties in the super game, but completely ignores the players in
the other sub-games. Such a composing scheme resembles, in a sense, the general
architecture of the Internet, viewed as a self-emerged network resulting from the
aggregation of several autonomous systems (AS). Users in an AS have full infor-
mation about anything happening within the AS, but, at the same time, they
completely ignore the networks’s global architecture and how it develops outside
their own AS, except for the existence of high-level network routers. High-level
network routers, instead, have full information about the entire network.

Furthermore, multidimensional congestion games are also useful to model
games in which players may belong to different types and the level of competition
that each player experiences on each selected resource depends on her type and
on the types of the other players sharing the resource. Consider, for instance, a
machine which is able to perform k different types of activities in parallel and
a set of tasks requiring the use of such a machine. Tasks are of two types: sim-
ple and complex. Simple tasks take the machine busy on one particular activity
only, while complex tasks require the completion of all the k activities. Hence,
complex tasks compete with all the other tasks, while simple ones compete only
with the tasks requiring the same machine (thus, also with complex tasks). A
similar example is represented by a facility location game where players want to
locate their facilities so as to minimize the effect of the competition due to the
presence of neighbor competitors. If we assume that the facilities can be either
specialized shops selling particular products (such as perfumeries, clothes shops,
shoe shops) or shopping centers selling all kinds of products, we have again that
the shopping centers compete with all the other participants in the game, while
specialized shops compete only with shops of the same type and with shopping
centers.

In this paper, we focus on bidimensional congestion games, that is, the case
in which k = 2. We also assume that the cost function associated with each
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resource is linear and the players are unweighted. In such a setting, we bound
the prices of anarchy and stability with respect to the two social functions sum
of the perceived costs and sum of the presumed costs. In fact, when multidimen-
sional congestion games are viewed as graphical congestion games with highly
clustered knowledge relationships, the social function sum of the perceived costs
is the more appropriate to define the overall quality of a profile: players decide
according to their knowledge, but then, when the solution is physically realized,
their cost becomes influenced also by the players of which they were not aware.
Hence, under this social function, the notions of prices of anarchy and stabil-
ity effectively measure the impact of social ignorance in these kind of games.
On the other hand, when multidimensional congestion games are used to model
players belonging to different types, the perceived cost of a player coincides with
the presumed one since there is no real social ignorance, even if the fact that
players can be of different types allows for a reinterpretation of the model as
a special case of graphical congestion games. Hence, in such a setting, the in-
efficiency due to selfish behavior has to be analyzed with respect to the social
function sum of the presumed costs. We show that the price of anarchy is 119/33
for the social function sum of the presumed costs and it is 35/8 for the social
function sum of the perceived ones, and that the price of stability is between
(1 +

√
5)/2 ≈ 1.618 and 1 + 2/

√
7 ≈ 1.756 for the social function sum of the

presumed costs and between (5+
√
17)/4 ≈ 2.28 and 2.92 for the social function

sum of the perceived ones. Our results are derived by exploiting the primal-dual
method recently developed in [5].

Paper Organization. Next section contains all formal definitions, notation,
and some numerical lemmas. In Sections 3 and 4, we present our bounds for the
price of anarchy and the price of stability, respectively. Due to space limitations,
some proofs have been omitted and will be given in the full version of the paper.

2 Model, Definitions and Numerical Lemmas

In a congestion game G, we have n players and a set of resources R, where
each resource r ∈ R has an associated cost function �r. The set of strategies
for each player i ∈ [n], denoted as Si, can be any subset of the powerset of R,
that is, Si ⊆ 2R. Given a strategy profile S = (s1, . . . , sn), the congestion of
resource r in the profile S, denoted as cr(S), is the number of players choosing
r in S, that is, cr(S) = |{i ∈ [n] : r ∈ si}|. The cost paid by player i in S is
ωi(S) =

∑
r∈si

�r(cr(S)). A linear congestion game is a congestion game such
that, for any r ∈ R, it holds �r(x) = αrx+ βr, with αr, βr ≥ 0.

Given a strategy profile S and a strategy s′ ∈ Si for a player i ∈ [n], we denote
with S−i&s′ the strategy profile obtained from S by replacing the strategy played
by i in S with s′. A pure Nash equilibrium is a strategy profile S such that, for
any player i ∈ [n] and for any strategy s′ ∈ Si, it holds ωi(S−i & s) ≥ ωi(S).
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A k-dimensional congestion game (G, C) consists of a congestion game G whose
set of players is partitioned into k+1 clusters C0, C1, . . . , Ck. We say that players
in C0 are omniscient and that players in Ci, for any 1 ≤ i ≤ k, are ignorant.
Given a strategy profile S = (s1, . . . , sn), we denote with cri (S) the congestion
presumed by player i on resource r in the profile S. For an ignorant player i ∈ Cj ,
we have cri (S) = |{u ∈ C0∪Cj : r ∈ su}|, while for an omniscient player i, we have
cri (S) = |{j ∈ [n] : r ∈ sj}|. The cost of player i in S is ωi(S) =

∑
r∈si

�r(c
r
i (S)).

A k-dimensional linear congestion game is a pair (G, C) such that G is a linear
congestion game.

A graphical congestion game (G, G) consists of a congestion game G and a
directed graph G = (N,A) such that each node of N is associated with a player
in G and there exists a directed edge from node i to node j if and only if player
i has full information about player j. Given a strategy profile S = (s1, . . . , sn),
let Gr(S) = (Nr, Ar) be the subgraph of G induced by the set of players who
are selecting r in S. We denote with nr(S) = |Nr(S)| the number of nodes in
Gr(S), with mr(S) = |Ar(S)| the number of edges in Gr(S) and with δri (S) the
out-degree of node i in Gr(S). The congestion presumed by player i on resource
r in the profile S is cri (S) = 1 + δri (S) and the cost paid by player i in S is
ωi(S) =

∑
r∈si

�r(c
r
i (S)). A graphical linear congestion game is a pair (G, G)

such that G is a linear congestion game.
A function Φ : S �→ R is an exact potential function for a graphical congestion

game (G, G), if for any profile S, any player i ∈ [n] and any strategy s′ ∈ Si,
it holds Φ(S) − Φ(S−i & s′) = ωi(S) − ωi(S−i & s′). In [6], it is shown that each
graphical linear congestion game (G, G) such that G is undirected admits the
exact potential function Φ(S) =

∑
r∈R(αrmr(S) + (αr + βr)nr(S)).

The following result shows that k-dimensional congestion games are instances
of graphical congestion games.

Proposition 1. Each k-dimensional congestion game is a graphical congestion
game whose social knowledge graph is undirected.

Each game admitting an exact potential function always admits pure Nash equi-
libria. Hence, by Proposition 1 and the existence of an exact potential for graph-
ical linear congestion games with undirected social knowledge graphs, we have
that k-dimensional linear congestion games always admit pure Nash equilibria.

Let S be the set of all possible strategy profiles which can be realized in
(G, C), we denote with NE(G, C) ⊆ S the set of pure Nash equilibria of G. Let
SF : S �→ R≥0 be a social function measuring the overall quality of each strategy
profile in S. We denote with S∗ the social optimum of (G, C) with respect to SF,
that is, the strategy profile minimizing the social function SF.

The price of anarchy of game (G, C), denoted by PoA(G, C), with respect to SF
is the ratio between the social value of the worst Nash equilibrium of (G, C) and
that of the social optimum, i.e., PoA(G, C) = maxS∈NE(G,C)

SF(S)
SF(S∗) . The price of

stability of game (G, C), denoted by PoS(G, C), with respect to SF is the ratio
between the social value of the best Nash equilibrium of (G, C) and that of the

social optimum, i.e., PoS(G, C) = minS∈NE(G,C)
SF(S)
SF(S∗) .
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In this paper, we focus on bidimensional linear congestion games for which
we add some further notation. Fix a strategy profile S = (s1, . . . , sn). For any
resource r ∈ R, let Sr = |{i ∈ [n] : r ∈ si}| be the number of players using
r in S, S′

r = |{i ∈ C1 : r ∈ si}| be the number of players belonging to C1

using r in S and S′′
r = |{i ∈ C2 : r ∈ si}| be the number of players belonging

to C2 using r in S. As already showed in [5] for the case of linear congestion
games, we do not lose in generality by restricting the analysis of both the prices
of anarchy and stability to games in which the latency functions are of the
form �r(x) = αrx as long as the social function SF is defined as a function
of the players’ costs in a given strategy profile. Hence, the potential given in
[6] for graphical linear congestion games becomes Φ(S) =

∑
r∈R(αr(S

2
r + Sr −

2S′
rS

′′
r )), the social function sum of presumed latencies becomes Sumpres(S) =∑

i∈[n] ωi(S) =
∑

r∈R(αr(S
2
r−2S′

rS
′′
r )) while the social function sum of perceived

latencies becomes Sumperc(S) =
∑

r∈R(αrS
2
r ). For a fixed bidimensional game

(G, C), we will denote with E = (e1, . . . , en) a pure Nash equilibrium of (G, C) and
with O = (o1, . . . , on) the social optimum for (G, C) under some social function
SF.

We conclude the section by providing all the technical lemmas needed to prove
our main theorems.

Lemma 1. Let θ : Z6
≥0 �→ Q be the function such that θ(a, b, c, d, e, f) = 18a2 −

a(b + c + 51d − e − f) + 50bf + 50ce − 34bc + 119d2 − 51d + e + f − 238ef .
For any (a, b, c, d, e, f) ∈ Z6

≥0 such that a ≥ b + c and d ≥ e + f , it holds
θ(a, b, c, d, e, f) ≥ 0.

Lemma 2. Let θ : Z6
≥0 �→ Q be the function such that θ(a, b, c, d, e, f) = 7a2 +

3a(2b+2c− 5d− 2e− 2f) + 21bf +21ce− 42bc+35d2 − 15d− 6e− 6f . For any
(a, b, c, d, e, f) ∈ Z6

≥0 such that a ≥ b+c and d ≥ e+f , it holds θ(a, b, c, d, e, f) ≥
0.

Lemma 3. Let θ : Z6
≥0 �→ Q be the function such that θ(a, b, c, d, e, f) = a2(3−√

7)−a(2d−1−
√
7)+2bc(

√
7−3)+2(bf+ce)+(d2−d)(3+

√
7)−2(3+

√
7)ef .

For any (a, b, c, d, e, f) ∈ Z6
≥0 such that a ≥ b + c and d ≥ e + f , it holds

θ(a, b, c, d, e, f) ≥ 0.

Lemma 4. Let θ : Z6
≥0 �→ Q be the function such that θ(a, b, c, d, e, f) = 49a2 +

a(62b+62c−68d−62e−62f+81)+130bf+130ce−422bc+211d2−149d+162ef−
62e − 62f . For any (a, b, c, d, e, f) ∈ Z6

≥0 such that a ≥ b + c and d ≥ e + f , it
holds θ(a, b, c, d, e, f) ≥ 0.

3 Bounds for the Price of Anarchy

We apply the primal-dual technique introduced in [5]. For any fixed pair of

profiles E and O, consider the problem of maximizing the ratio
Sumpres(E)
Sumpres(O) . This

yields the following primal linear program.
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maximize
∑
r∈R

(
αr(E

2
r − 2E′

rE
′′
r )

)
subject to∑

r∈ei

(αrEr)−
∑
r∈oi

(αr(Er + 1)) ≤ 0, ∀i ∈ C0∑
r∈ei

(αr(Er − E′′
r ))−

∑
r∈oi

(αr(Er + 1− E′′
r )) ≤ 0, ∀i ∈ C1∑

r∈ei

(αr(Er − E′
r))−

∑
r∈oi

(αr(Er + 1− E′
r)) ≤ 0, ∀i ∈ C2∑

r∈R

(
αr(O

2
r − 2O′

rO
′′
r )
)
= 1,

αr ≥ 0, ∀r ∈ R

The two strategy profiles E and O play the role of fixed constants, while the
multiplicative coefficients αr in the cost functions associated with each resource
r ∈ R are variables that must be suitably chosen so as to satisfy certain desider-
ata. In particular, the first three constraints assure that in the strategy profile E
no player can lower her cost by deviating to the strategy she plays in the optimal
profile O (i.e., E is a pure Nash equilibrium), while the fourth constraint sim-
ply normalizes to 1 the value of the social optimum Sumpres(O). The objective
function aims at maximizing the social value Sumpres(E) which, being the social

optimum normalized to 1, is equivalent to maximize the ratio
Sumpres(E)
Sumpres(O) . The

dual formulation is

minimize γ
subject to∑

i∈C0:r∈ei

(xiEr) +
∑

i∈C1:r∈ei

(yi(Er − E′′
r ))

+
∑

i∈C2:r∈ei

(zi(Er − E′
r))−

∑
i∈C0:r∈oi

(xi(Er + 1))

−
∑

i∈C1:r∈oi

(yi(Er + 1− E′′
r ))−

∑
i∈C2:r∈oi

(zi(Er + 1− E′
r))

+γ(O2
r − 2O′

rO
′′
r )− E2

r + 2E′
rE

′′
r ≥ 0, ∀r ∈ R
xi ≥ 0, ∀i ∈ C0

yi ≥ 0, ∀i ∈ C1

zi ≥ 0, ∀i ∈ C2

By the Weak Duality Theorem, each feasible dual solution provides an upper
bound on the optimal solution of the relative primal problem. Hence, by provid-

ing a feasible dual solution, we obtain an upper bound on the ratio
Sumpres(E)
Sumpres(O) .

Anyway, if the provided dual solution is independent on the particular choice

of E and O, we obtain an upper bound on the ratio
Sumpres(E)
Sumpres(O) for any possi-

ble pair of profiles E and O, which means that we obtain an upper bound on
the price of anarchy for the social function Sumpres. For the case of the social
function Sumperc, we only need to replace the objective function and the fourth
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constraint in the primal formulation with
∑

r∈R

(
αrE

2
r

)
and

∑
r∈R

(
αrO

2
r

)
= 1,

respectively. This results in the deletion of the two terms −2γO′
rO

′′
r and 2E′

rE
′′
r

occurring at the end of the dual constraints.

Theorem 1. For each bidimensional linear congestion game (G, C), it holds
PoA(G, C) ≤ 119

33 under the social function Sumpres and PoA(G, C) ≤ 35
8 un-

der the social function Sumperc.

Proof. For the social function Sumpres, set γ = 119
33 , xi = 17

11 for any i ∈ C0,
yi =

50
33 for any i ∈ C1 and zi =

50
33 for any i ∈ C2. With these values, for any

r ∈ R, the dual constraint becomes

17

11
Er(Er −E′

r −E′′
r ) +

50

33
(Er(E

′
r +E′′

r )− 2E′
rE

′′
r )−

17

11
(Er +1)(Or −O′

r −O′′
r )

−50

33
((Er +1)(O′

r+O′′
r )−E′

rO
′′
r −E′′

rO
′
r)+

119

33
(O2

r −2O′
rO

′′
r )−E2

r +2E′
rE

′′
r ≥ 0

which is equivalent to

18E2
r − Er(E

′
r + E′′

r + 51Or −O′
r −O′′

r ) + 50E′
rO

′′
r + 50E′′

rO
′
r − 34E′

rE
′′
r

+119O2
r − 51Or +O′

r +O′′
r − 238O′

rO
′′
r ≥ 0.

The claim follows by applying Lemma 1.
For the social function Sumperc, set γ = 35

8 , xi =
15
8 for any i ∈ C0, yi =

21
8

for any i ∈ C1 and zi =
21
8 for any i ∈ C2. With these values, for any r ∈ R, the

dual constraint becomes

15

8
Er(Er −E′

r −E′′
r ) +

21

8
(Er(E

′
r +E′′

r )− 2E′
rE

′′
r )−

15

8
(Er +1)(Or −O′

r −O′′
r )

−21

8
((Er + 1)(O′

r +O′′
r )− E′

rO
′′
r − E′′

rO
′
r) +

35

8
O2

r − E2
r ≥ 0

which is equivalent to

7E2
r + 3Er(2E

′
r + 2E′′

r − 5Or − 2O′
r − 2O′′

r ) + 21E′
rO

′′
r + 21E′′

rO
′
r − 42E′

rE
′′
r

+35O2
r − 15Or − 6O′

r − 6O′′
r ≥ 0.

The claim follows by applying Lemma 2. ��

We now show the existence of two matching lower bounding instances.

Theorem 2. There exist two bidimensional linear congestion games (G, C) and
(G′, C′) such that PoA(G, C) ≥ 119

33 under the social function Sumpres and
PoA(G′, C′) ≥ 35

8 under the social function Sumperc.

Proof. For the social function Sumpres, the lower bound is provided by the game
depicted in Figure 1a), while for the social function Sumperc, the lower bound is
provided by the game depicted in Figure 1b). ��
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Fig. 1. Two games in which each player has exactly two strategies. Each column in the
matrix represents a resource of cost function �(x) = αx whose coefficient α is reported
at the bottom of the column. Each row i in the matrix models the strategy set of player
i as follows: the circles represent all the resources belonging to oi, while the crosses
represent all the resources belonging to ei.

4 Bounds for the Price of Stability

In order to bound the price of stability, we can use the same primal formu-
lations exploited for the determination of the price of anarchy with the addi-
tional constraint Φ(E) ≤ Φ(O), which becomes

∑
r∈R(E

2
r + Er − 2E′

rE
′′
r ) ≤∑

r∈R(O
2
r + Or − 2O′

rO
′′
r ). Hence, the dual program for the social function

Sumpres becomes the following one.

minimize γ
subject to∑

i∈C0:r∈ei

(xiEr) +
∑

i∈C1:r∈ei

(yi(Er − E′′
r ))

+
∑

i∈C2:r∈ei

(zi(Er − E′
r))−

∑
i∈C0:r∈oi

(xi(Er + 1))

−
∑

i∈C1:r∈oi

(yi(Er + 1− E′′
r ))−

∑
i∈C2:r∈oi

(zi(Er + 1− E′
r))

+t(E2
r + Er − 2E′

rE
′′
r −O2

r −Or + 2O′
rO

′′
r )

+γ(O2
r − 2O′

rO
′′
r )− E2

r + 2E′
rE

′′
r ≥ 0, ∀r ∈ R
xi ≥ 0, ∀i ∈ C0

yi ≥ 0, ∀i ∈ C1

zi ≥ 0, ∀i ∈ C2

t ≥ 0

Again, for the social function Sumperc it suffices to delete the two terms
−2γO′

rO
′′
r and 2E′

rE
′′
r occurring at the end of the dual constraints. We give

the following upper bounds.
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Theorem 3. For each bidimensional linear congestion game (G, C), it holds
PoS(G, C) ≤ 1 + 2√

7
under the social function Sumpres and PoS(G, C) ≤ 2.92

under the social function Sumperc.

Proof. For the social function Sumpres, set γ = 1+ 2√
7
, xi =

1√
7
for any i ∈ C0,

yi =
1√
7
for any i ∈ C1, zi =

1√
7
for any i ∈ C2 and t = 1

2 + 1
2
√
7
. With these

values, for any r ∈ R, the dual constraint becomes

E2
r (3−

√
7)− Er(2Or − 1−

√
7) + 2E′

rE
′′
r (
√
7− 3) + 2(E′

rO
′′
r + E′′

rO
′
r)

+(O2
r −Or)(3 +

√
7)− 2O′

rO
′′
r (3 +

√
7) ≥ 0.

The claim follows by applying Lemma 3.
For the social function Sumperc, set γ = 2.92, xi = 0.68 for any i ∈ C0, yi = 1.3
for any i ∈ C1, zi = 1.3 for any i ∈ C2 and t = 0.81. With these values, for any
r ∈ R, the dual constraint becomes

49E2
r + Er(62E

′
r + 62E′′

r − 68Or − 62O′
r − 62O′′

r + 81) + 130E′
rO

′′
r + 130E′′

rO
′
r

−422E′
rE

′′
r + 211O2

r − 149Or + 2(81O′
rO

′′
r − 31O′

r − 31O′′
r ) ≥ 0.

The claim follows by applying Lemma 4. ��

For these cases, unfortunately, we are not able to devise matching lower bounds.
The following result is obtained by suitably extending the lower bounding in-
stance given in [10] for the price of stability of congestion games.

Theorem 4. For any ε > 0, there exist two bidimensional linear congestion

games (G, C) and (G′, C′) such that PoS(G, C) ≥ 1+
√
5

2 − ε under the social func-

tion Sumpres and PoS(G′, C′) ≥ 5+
√
17

4 − ε under the social function Sumperc.
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Abstract. We introduce a new class of network creation games, called
mobile network creation games, modelling the spontaneous creation of
communication networks by the distributed and uncoordinated interac-
tion of k selfish mobile devices. Each device is owned by a player able
to select a node in an underlying positions graph so as to minimize a
cost function taking into account two components: the distance from
her home position, and the number of players she is not connected to,
with the connectivity costs being prevailing, i.e., the Nash Equilibria are
stable solution states in which communication is possible among all the
players. We show that the game always admits a Pure Nash equilibrium,
even if the convergence after a finite number of improving movements is
guaranteed only when players perform their best possible moves. More
precisely, if initial positions are arbitrary, that is not necessarily coincid-
ing with the home ones, an order of kD best moves is necessary (and
sufficient) to reach an equilibrium, where D is the diameter of the po-
sitions graph. As for the Nash equilibria performances, we first prove
that the price of stability is 1 (i.e. an optimal solution is also a Nash
equilibrium). Moreover, we show that the lack of centralized control of
mobile devices is a major issue in terms of final performance guaran-
teed. Namely, the price of anarchy is Θ(kD). Nevertheless, we are able
to prove that if players start at their home positions, in Θ(kmin{k2, D})
best moves they reach an equilibrium approximating the optimal solution
by a factor of Θ(kmin{k,D}).

Keywords: Network Creation Games, Price of Anarchy, Price of Sta-
bility, Speed of Convergence.

1 Introduction

The emerging global communication and service infrastructures like the In-
ternet are characterized by decentralization, autonomy, and general lack of
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coordination among the heterogeneous network entities, the network in turn in-
trinsically being a common playground for a large number of users. These users
exhibit various degrees of intentional or unintentional non cooperative behavior,
while competing for shared and often scarce resources. Besides, they increas-
ingly demand stable connection and seamless access to the network resources,
by means of the enormous potential offered by the new wireless equipments and
capabilities. The combination of uncoordination and wireless access induces a
degree of dynamism never experienced before, that must be necessarily faced by
the emerging services and applications, and calls for a pressing solution of the
resulting scientific and technological challenges.

In such a highly elusive and mutable setting, the general mismatch between
the network optimization goals and the competing users private interests moti-
vated an extensive research on (algorithmic) game theoretical frameworks aiming
to characterize the system outcome by suitable stable solution concepts like the
Nash Equilibrium [17]. A strategy profile for the players is a Nash Equilibrium if
no player can gain by unilaterally deviating from her own strategy choice. One
of the main tools for evaluating the degradation of the system performance in-
duced by the lack of coordination of selfish players is the price of anarchy (PoA)
[15,18], a measure that compares the social cost of the worst case Nash equi-
librium to the social optimum one. A related optimistic measure for evaluating
the cost of the best possible equilibrium is the price of stability (PoS) [3], a
measure that compares the social cost of the best Nash equilibrium to the social
optimum one. The complexity of computing a Nash equilibrium and the speed
of convergence to such solutions have been extensively studied for many classes
of non-cooperative games, like in [1,10] in the context of congestion games.

The first game-theoretical model for the spontaneous construction of networks
by means of the distributed and uncoordinated interaction of many autonomous
players has been proposed in [14]. Moreover, in [11], the authors investigated net-
work creation games where selfish nodes (the players) pay for the links that they
establish towards the other nodes and benefit from decreasing the shortest paths
lengths to all destinations. In such a setting, they characterized the existence of
Nash equilibria and derived corresponding bounds on the PoA. Many subsequent
papers conducted similar studies in different related network creation settings
under various assumptions [2,6,7,16], even if to the best of our knowledge they
did not consider mobility aspects.

An interesting class of mobile network creation problems recently proposed in
the literature is the one of the so-called movement problems, in which the goal is
that of finding the positions of k devices which achieve a global property of the
induced subnetwork, minimizing the maximum or total movement [5]. A partic-
ularly relevant case is the one in which the aim is that of obtaining complete
connectivity, i.e. all-to-all multi-hop communication among the mobile devices,
while minimizing the total movement. Assuming P �= NP , in [5] almost tight
bounds for such a problem have been provided: an Ω(|V |1−ε)-inapproximability
result and an O(min{|V | log |V |, k})-approximation algorithm. Movement
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problems have then attracted further research due to the interesting modeled
real world scenarios [8,13], but only under a classical centralized setting.

Some fairly related game-theoretical studies concern Voronoi [9,12] and Isola-
tion games [4,19]. In fact, they focus on the positioning on graphs of interfering
players interested in being faraway according to different metrics. However, such
games do not deal with network creation.

We investigate the movement problems of [5] in a non-cooperative scenario
in which the mobile users/devices are autonomous, thus creating a bridge with
the extensive area of the network creation games. More precisely, we consider a
collection {1, . . . , k} of selfish mobile devices (or players) able to move on the
nodes of a given positions graph G = (V,E). Each device i has an associated
home location hi ∈ V ; once positions are selected she is “directly” connected
to all the devices at distance smaller than a given threshold r, while she can
communicate to the remaining ones in a multi-hop fashion. The cost of each
player has two components: (i) the distance from her home location, plus (ii)
α times the number of players she cannot reach via multi-hop communication,
where α > 0 is a given parameter quantifying the connectivity contribution
on the cost incurred by each player. Since we are interested in solutions (i.e.,
equilibria) connecting all the players, as we will show in the next section, we have
to focus on specific values of α, namely α > D − r, with D being the diameter
of G. Each device is interested in selecting a position (strategy) minimizing her
own cost. The social cost of a solution is simply the sum of all players’ costs.
Notice that the final social cost coincides with the sum of the distances of the
players from their home locations.

It is worth emphasizing that our model can be applied to a wide variety of
contexts; for instance, the devices could be equipped with radio antennas able
to receive and transmit data within a range of r edges of the network G, or with
wired (for instance optical) transmitters and receivers able to transmit data to
the other devices being far at most r edges in G.

We show that the game always admits a Pure Nash equilibrium, even if the
convergence after a finite number of improving movements is guaranteed only
when players perform their best possible moves. More precisely, if initial posi-
tions are arbitrary, that is not necessarily coinciding with the home ones, an
order of kD best moves is necessary (and sufficient) to reach an equilibrium. As
for the Nash equilibria performances, we first prove that the price of stability
is 1 (i.e. an optimal solution is also a Nash equilibrium). Moreover, we show
that uncentralized control of mobile devices is a major issue in terms of final
performance guaranteed, as the price of anarchy is Θ(kD). Nevertheless, we are
able to prove that if players start at their home positions, in Θ(kmin{k2, D})
best moves they reach an equilibrium approximating the optimal solution by a
factor of Θ(kmin{k,D}). In the sequel we refer to Pure Nash Equilibria as Nash
Equilibria.

The remainder of this paper is organized as follows. In the next section we
provide the basic notation and definitions. Section 3 concerns the existence and
convergence to Nash equilibria; Section 4 presents the results on the price of
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anarchy. Finally, Section 5 gives some conclusive remarks and outlines some
interesting open questions.

Due to space limitations, some proofs are omitted. They will appear in the
full version of this paper.

2 Model and Preliminaries

Given an undirected connected graph G = (V,E), for any pair of nodes u, v ∈ V ,
let d(u, v) be the length of a shortest path connecting u and v in G. Let D =
maxu,v∈V d(u, v) be the diameter of graph G.

A mobile network creation game is defined by an undirected graph G = (V,E)
and a set of k players [k] = {1, . . . , k} aiming at selfishly minimizing their own
cost. The strategy set of each player is given by the set V of all the nodes of
G and the set of strategy profiles is S := V k, where a state or strategy profile
S ∈ S is a k-tuple S = (s1, . . . , sk) such that, for any i ∈ [k], si ∈ V is the node
chosen by player i in S. Each player i ∈ [k] has an home position hi ∈ V . The
home state H = (h1, . . . , hk) is the state in which every player is selecting her
own home position.

For each i ∈ [k] and j ∈ [k] \ {i}, ri,j is the threshold defining the maximum
distance between the positions of i and j needed to allow communication from
i to j. Given a strategy profile S = (s1, . . . , sk), we say that player j is directly
connected to player i (i.e. player i can send data to player j), if d(si, sj) ≤ ri,j .
Multi-hop connections are allowed and therefore player j is connected to player
i either if such a connection is direct, or if there exist a player l such that l is
connected to player i, and player j is connected to player l.

Given a strategy profile S = (s1, . . . , sk), for any i ∈ [k], let Ki(S) ⊆ [k]
be the set of the players connected to player i (including herself), and ki(S) =
|Ki(S)| ≥ 1; moreover, let kmax(S) = maxi∈[k] ki(S) be the biggest cardinality
of a subset of connected players in state S. The cost function of player i is:

ci(S) = α(k − ki(S)) + d(si, hi) (1)

where α > 0 is a scaling factor determining the connectivity influence on the
cost incurred by player i, and C(S) =

∑
i∈[k] ci(S) is the social cost associated

to strategy profile S.
For any k-tuple A, let (A−i, x) denote the k-tuple obtained from A by replac-

ing its i-th element with x. Given a strategy profile S = (s1, . . . , sk), an improv-
ing move of player i in S is a strategy u ∈ V such that ci((S−i, u)) < ci(S). A
strategy profile is a Nash equilibrium if and only if no player can perform any
improving move. A game is said to be convergent if, given any initial state S,
any sequence of improving moves leads to a Nash equilibrium.

Furthermore, a best move of player i in S is the best improvement move
available to i in S, i.e. an improvement move u ∈ V for i in S such that
ci((S−i, u)) ≤ ci((S−i, v)) for any other improvement move v ∈ V for i in S.
A best move dynamics is a sequence of best moves.
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We are interested in bounding the performances of Nash equilibria with re-
spect to the social optimum Opt, i.e. the social value of a strategy profile S∗

such that C(S∗) = minS∈S C(S).
Let N denote the set of the Nash equilibria; the price of stability is the best

case ratio between the social optimum and the social value of a Nash equilibrium,

i.e., PoS = infS∈N
C(S)
Opt

; the price of anarchy is the worst case ratio between
the social value of a Nash equilibrium and the social optimum, i.e., PoA =

supS∈N
C(S)
Opt

. Moreover, if NH is the set of the Nash equilibria achievable only
by best move dynamics starting from the home state, the home price of anarchy
is the worst case ratio between the social value of such a Nash equilibrium

and the social optimum, i.e. PoAH = supS∈NH
C(S)
Opt

. Clearly, since NH ⊆ N ,
PoAH ≤ PoA.

Since we are interested in connecting all the players, we have to restrict our at-
tention to the values of α being greater thanD−rmin, with rmin = mini,j∈[k] ri,j .
In fact, the following claim holds.

Claim. All Nash Equilibria of a given Mobile Network Creation Game are such
that all the players are connected if and only if α > D − rmin.

In the following, even if not explicitly stated, we assume ri,j = 1 for all i ∈ [k]
and j ∈ [k] \ {i}; nevertheless, all the results extend to the more general case in
which, for all i ∈ [k] and j ∈ [k] \ {i}, ri,j = r ≥ 1, as mentioned in Section 5.
Notice that when ri,j = r ≥ 1 for all i ∈ [k] and j ∈ [k] \ {i}, for any state S
if j ∈ Ki(S), then also i ∈ Kj(S). That is, i is connected to j if and only if j
is connected to i. Finally, we restrict our attention to the non trivial instances
in which for the home state H it does not hold that ki(H) = k for all i ∈ [k].
Therefore, the inequality C(S) ≥ Opt ≥ 1 always holds.

3 Nash Equilibria: Existence and Convergence

In this section we first show that any optimal solution to the Mobile Network
Creation Games is also a Nash equilibrium. It clearly implies that the price of
stability is 1. Moreover we prove that convergence is guaranteed only restricting
to best move dynamics. In particular, we provide asymptotically tight bounds
on the best moves needed to reach an equilibrium.

Theorem 1. Any optimal solution to the Mobile Network Creation Games is
also a Nash equilibrium. Moreover Mobile Networks Creation Games are not
convergent.

Let us now focus on best move dynamics. The selfish behavior of the mobile
players can be modelled by a directed Nash (Best Move) Dynamics Graph B =
(S, A), where each vertex corresponds to a strategy profile and there is an arc
(S, S′) ∈ A with label i if and only if S′ = (S−i, u) and there exists a best move
for player i in state S in which i selects strategy u ∈ V .
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Lemma 1. ki(S
′) = kmax(S

′) ≥ kmax(S) for any arc (S, S′) ∈ A with label i.
Moreover, Ki(S

′) = Kj(S
′) for any other j ∈ [k] such that kj(S

′) = ki(S
′) =

kmax(S
′), i.e. after any best move leading from state S to state S′ the subset of

connected players of cardinality kmax(S
′) is unique.

Lemma 2. For any arc (S, S′) ∈ A with label i, if kmax(S
′) = kmax(S) then

player i is not increasing the number of players she is connected to, i.e. ki(S
′) =

ki(S).

As we will see in the following, speed of convergence and price of anarchy differ
if players start at the home state H or from any arbitrary state S.

Theorem 2. Mobile Network Creation Games starting from a generic state S
converge to a Nash equilibrium in O(kD) best moves.

The following theorem shows that the upper bound of the above theorem is tight.

Theorem 3. There exists a Mobile Network Creation Game starting from a
state S and converging to a Nash equilibrium in Ω(kD) best moves.

Proof. Let us consider the graph depicted in Figure 1 in which the nodes labeled
hi for i = 1, . . . , k are the home position of players 1, . . . , k, respectively. First of
all, notice that the graph nodes can be partitioned into l+1 rows, and that the
diameter D of the graph, for every value of k and l, is always between l and 2l. A
round is a sequence of best moves in which each player moves once in increasing
order, i.e. from player 1 to player k. If the dynamics starts from the initial state
S = (s1, . . . , sk) and players move in increasing order (from player 1 to player
k), it is easy to see that after a round, all the players move from the first (i.e.
the topmost) row to the second row; more generally, for j = 1, . . . , l − 2, after
the j-th round, all the players move to the j+1-th row, in order to decrease the
distance from their own home position. Thus, after l−1 rounds, the player reach
a Nash equilibrium in which all players are in the row above the home vertices.
Therefore, (l− 1) · k best moves are needed in order to reach an equilibrium and
a bound of Ω(kD) best moves holds for the convergence. �

Better bounds hold for dynamics starting from the home state. On this respect,
let us first prove the following useful lemma.

Lemma 3. Consider a best move dynamics starting from the home state H.
For any arc (S, S′) ∈ A corresponding to a best move of player i, there exists
a player j ∈ Ki(S

′) such that s′j = hj, i.e. player j is selecting in state S′ her
home position.

Proof. Let H = S0, S1, S2, . . . , ST the states corresponding to the considered
dynamics and pt ∈ [k], t = 1, . . . , T , the player moving from state St−1 to
state St; in other words, St is the state reached after the t-th best move of the
dynamics by a best move of player pt.

By Lemma 1, we know that, for any t = 1, . . . , T ,Kpt(S
t) is the unique biggest

subset of kmax(S
t) players connected in St. For any t = 1, . . . , T , let at be the



Mobile Network Creation Games 165

v

sk sk−1 s3 s2 s1

hk hk−1 h3 h2 h1

l

Fig. 1. A Mobile Network Creation Game in which Ω(kD) best moves are needed in
order to reach a Nash Equilibrium

number of players in Kpt(S
t) whose strategy in St is their own home position,

and let āt be |Kpt(S
t)| − at. Furthermore, let b̄t be the number of players not

belonging to Kpt(S
t) and whose strategy in St is not their own home position.

Notice that, for any t = 1, . . . , T , the number of players not being on their own
home position in state St is āt + b̄t.

We first show that at − at−1 ≥ b̄t − b̄t−1 for any t = 2, . . . , T . We distinguish
between two disjoint cases:

– If st−1
t �= ht, i.e. player pt is not selecting in state St−1 her own home

position, the number of players not selecting in state St their own home
position cannot increase with respect to the one of state St−1, i.e.

āt + b̄t ≤ āt−1 + b̄t−1. (2)

Moreover, by Lemma 1,

at + āt ≥ at−1 + āt−1. (3)

By combining equations 2 and 3, it follows that at − at−1 ≥ b̄t − b̄t−1.
– If st−1

t = ht, i.e. player pt is selecting in state St−1 her own home position,
the number of players not selecting in state St their own home position can
increase of at most 1 with respect to the one of state St−1, i.e.

āt + b̄t ≤ āt−1 + b̄t−1 + 1. (4)

We now show that
at + āt ≥ at−1 + āt−1 + 1. (5)

If pt is such that Kpt(S
t−1) = Kpt−1(S

t−1), i.e. player pt belongs in state
St−1 to the unique biggest subset of connected players, it must hold that
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|Kpt | > |Kpt−1 | because player pt move from her own home position only if
she increases the number of players she is connected to. Otherwise, i.e. player
pt does not belong in state St−1 to the unique biggest subset of connected
players, then also in this case we can claim that |Kpt | > |Kpt−1 | because one
of the strategies available for player pt is that of choosing a node making her
connected to the |Kpt−1 | players constituting the biggest subset of connected
players in state St−1.
By combining equations 4 and 5, it follows that at − at−1 ≥ b̄t − b̄t−1.

Notice that, since after the first best move of the dynamics only player p1 is not
on her own home position, it follows that a1 ≥ 1 and b̄1 = 0.

We now show that, for every t = 2, . . . , T , at ≥ 1: Consider a generic t =
2, . . . , T ; for any t′ = 2, . . . , t it holds that at′ − at′−1 ≥ b̄t′ − b̄t′−1. By summing
over all such t − 1 inequalities, it follows that at − a1 ≥ b̄t − b̄1. Therefore,
at ≥ a1 + b̄t − b̄1 ≥ 1 because a1 ≥ 1, b̄1 = 0 and b̄t ≥ 0. �

Theorem 4. Mobile Network Creation Games starting from the home state H
converge to a Nash equilibrium in O(k ·min{k2, D}) best moves.

Proof. By Theorem 2, we already know that every game converges in at most
O(kD) best moves. In order to prove the O(k ·min{k2, D}) bound, we now show
that every game starting from the home state H converges to a Nash equilibrium
in O(k3) best moves.

Consider the potential function Φ : S → N \ {0} defined as follows:

Φ(S) = (k − kmax(S))(2k
2 − k + 1) +

∑
i∈[k]

∑
j∈[k]

Δi,j(S),

where Δi,j(S) = min{2k− 1,max{0, d(si, hi)− d(xi,j , hi)}}, xi,j being the node
of the graph minimizing its distance from hi and such that d(xi,j , hj) ≤ k − 1.

Consider the (Best Move) Nash Dynamics Graph B = (S, A) associated to a
given Mobile Network Creation Game. If Φ(S) > Φ(S′) > 0 for any (S, S′) ∈ A,
it follows that such a game converges to a Nash equilibrium in O(k3) best moves,
because the maximum value the function can assume is (k − 1)(2k2 − k + 1) +
k2(2k − 1) = O(k3). In order to complete the upper bound analysis, we have to
prove that Φ(S) > Φ(S′) for any (S, S′) ∈ A.

By Lemma 1, for any arc (S, S′) ∈ A, kmax(S
′) ≥ kmax(S); we divide the

proof into two disjoint cases:

– if kmax(S
′) = kmax(S), by Lemma 2 it must hold that ki(S

′) = ki(S). In
such a case, it is easy to verify that

Φ(S′)− Φ(S) =
∑
j∈[k]

(Δi,j(S
′)−Δi,j(S)) .

Since player i is decreasing her own distance from the home position, i.e.
d(s′i, hi) < d(si, hi), for every j ∈ [k], Δi,j(S

′) −Δi,j(S) ≤ 0. Moreover, we
know by Lemma 3 that there exists at least a player p ∈ [k] being in S′
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on her own home position and such that Kp(S
′) = Ki(S

′); if we consider
the term of the summation for which j = p, it is possible to show that
Δi,p(S

′) − Δi,p(S) ≤ −1. First of all, we notice that Δi,p(S) > 0, because
otherwise already in state S player i was close to hi at least as node xi,p and
thus, by recalling the definition of xi,p, she cannot be connected to player
p in state S′. Moreover, the following property holds: Since i ∈ Kp(S

′), i.e.
player i is connected to player p in state S′, d(s′i, hp) ≤ k − 1, otherwise the
multi-hop connection between i and p cannot be established. It follows that
d(s′i, hi) ≤ d(s′i, hp) + d(hp, xi,p) + d(xi,p, hi) ≤ 2(k − 1) + d(xi,p, hi), where
the first inequality holds by applying twice the triangular inequality and the
second inequality by the above stated property and the definition of xi,p;
therefore, Δi,p(S

′) ≤ d(s′i, hi)−d(xi,p, hi) ≤ 2(k−1) and if Δi,p(S) = 2k−1
we obtain Δi,p(S

′) − Δi,p(S) ≤ 2(k − 1) − (2k − 1) = −1. It remains to
analyze the case in which 0 < Δi,p(S) < 2k − 1; in such a case, since
d(s′i, hi) < d(si, hi), it trivially follows that Δi,p(S

′)−Δi,p(S) ≤ −1.

As a consequence, Φ(S′)− Φ(S) =
∑

j∈[k] (Δi,j(S
′)−Δi,j(S)) ≤ −1.

– if kmax(S
′) > kmax(S), then

Φ(S′)− Φ(S) ≤ −(2k2 − k + 1) +
∑
j∈[k]

(Δi,j(S
′)−Δi,j(S)) .

Clearly,
∑

j∈[k] (Δi,j(S
′)−Δi,j(S)) is at most

∑
j∈[k] Δi,j(S

′) ≤ k(2k − 1).

Therefore, Φ(S′)− Φ(S) ≤ −(2k2 − k + 1) + k(2k − 1) = −1.

�

The following theorem shows that the upper bound of the above theorem is tight.

Theorem 5. There exists a Mobile Network Creation Game starting from the
home state H that converges to a Nash equilibrium in Ω(k · min{k2, D}) best
moves.

4 Price of Anarchy

In this section we provide matching upper and lower bounds on the price of
anarchy and on the home price of anarchy of mobile network creation games.

Theorem 6. The price of anarchy of Mobile Network Creation Games is
Θ(kD).

Fortunately, for the home price of anarchy we are able to show a better tight
bound, only depending on the number of players.

Theorem 7. The home price of anarchy of Mobile Network Creation Games is
Θ(kmin{k,D}).
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Proof. By Theorem 6, we already know that the price of anarchy is O(kD);
since it trivially holds that PoAH ≤ PoA, it also holds that PoAH = O(kD). In
order to prove the O(k ·min{k,D}) bound, we now show that the home price of
anarchy is O(k2).

Let dmax = maxi,j∈[k](hi, hj) be the maximum distance between the home
position of two players. It is possible to show that Opt ≥ max{1; dmax − k}; by
definition, Opt ≥ 1. Let i and j the players such that d(hi, hj) = dmax. By the
triangular inequality, d(hi, s

∗
i ) + d(s∗i , s

∗
j ) + d(s∗j , hj) ≥ d(hi, hj) = dmax. Hence,

since d(s∗i , s
∗
j ) ≤ k − 1 because i and j are connected in S∗, we obtain that

d(hi, s
∗
i ) + d(s∗j , hj) ≥ dmax − k + 1.

Furthermore, given a Nash Equilibrium S reached from the home position by
performing best moves, since by Lemma 3 there exists at least a player j such that
sj = hj , i.e. a player selecting her own home position at equilibrium, every player
has to be connected to player j and, for every i = 1, . . . , k, d(si, hj) ≤ k − 1.
Since, for every i = 1, . . . , k, d(hi, hj) ≤ dmax, it follows by the triangular
inequality that d(si, hi) ≤ d(si, hj)+d(hj , hi) ≤ k−1+dmax. Therefore, C(S) =∑

i∈[k]\{j} d(si, hi) ≤
∑

i∈[k]\{j}(k − 1 + dmax) = (k − 1)(k − 1 + dmax).
We now distinguish between 2 disjoint cases:

– If dmax ≤ 3k, we obtain that Opt ≥ 1 and C(S) ≤ (k−1)(4k−1). Therefore,
it follows that PoA = O(k2).

– If dmax > 3k, by simple algebraic calculation, we obtain that PoA ≤
(k−1)(k−1+dmax)

dmax−k ≤ 2k2 = O(k2).

v1 v2

v
k

2

v
k

2
+1

v
k

2
+2 v

k−1 v
k

v0

Fig. 2. A Mobile Network Creation Game having home price of anarchy Ω(k2)

In order to show the Ω(k2) lower bound, consider the instance depicted in
Figure 2, in which k is such that k mod 4 = 0.

Let f : N → {1, . . . , k} be a function defined as follows:

f(n) =

⎧⎨⎩
k
2 if n = 0
k
2 + n+ 1 if n is odd
k
2 − n if n is even, n > 0

Let hi = vi for any i ∈ [k] \
{

k
2

}
, and h k

2
= v0. Consider the evolution

starting from the state H = (h1, . . . , hk) and in which, for i = 1, . . . , k
2 − 1,

the i-th best move is performed by player f(i), moving from her home position
vf(i) to position vf(i−1). Notice that kmax(H) = k

2 + 1, and that after each best

move kmax increases by 1, till reaching a Nash equilibrium S after the k
2 − 1-th
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best move, such that kmax(S) = k. Moreover, it is easy to check that in such an
evolution each player performs at most 1 best move; hence, for i = 1, . . . , k

2 − 1,

d(si, hi) = |f(i)− f(i− 1)| = 2i. Therefore, C(S) ≥
∑k

2−1
i=1 2i = Ω(k2). �

An example for k = 8 is shown in Figure 3.

v1 v2 v3 v4 v5 v6 v7 v8

v0

(The graph)

h1 h2 h3 h5 h6 h7 h8

h4

(State H = S0)
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3
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3
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3
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Fig. 3. An example showing the lower bound construction for k = 8. The equilibrium
is reached in state S3.

5 Extensions and Conclusions

We have considered mobile network creation games according to the model of [5].
All the results are given for transmission ranges ri,j = 1 for any i ∈ [k] and
j ∈ [k] \ {i}.

However, even if we do not claim it explicitly, they extend to any ri,j = r ≥ 1
as follows. The Θ(kD) bounds on rate of convergence of best move dynamics
starting from generic states and on the price of anarchy still hold. On the other
hand, if players start from their home locations, the rate of convergence becomes
Θ(k · min{k2r,D}), and the home price of anarchy Θ(k · min{kr,D}). All the
details will be given in the full version of the paper.

Many interesting problems are left open. First of all, what about non-uniform
transmission thresholds? A worth investigating issue would be that of considering
different communication patterns, such as multicasting or many to many.
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Abstract. We consider here the Byzantine Agreement problem (BA) in
synchronous systems with homonyms in the case where some identifiers
may be forgeable. More precisely, the n processes share a set of l (1 ≤ l ≤
n) identifiers. Assuming that at most t processes may be Byzantine and
at most k (t ≤ k ≤ l) of these identifiers are forgeable in the sense that
any Byzantine process can falsely use them, we prove that Byzantine
Agreement problem is solvable if and only if l > 2t+ k.

Moreover we extend this result to systems with authentication by
signatures in which at most k signatures are forgeable and we prove that
Byzantine Agreement problem is solvable if and only if l > t+ k.

1 Introduction

Most of distributed algorithms assume that each process has an unique iden-
tity. Yet assuming that every process has unique identity given by a checkable
identifier might be too strong (and costly) an assumption in practice especially
if some processes are malicious. For example, very simple systems giving MAC
addresses as identifier are not reliable, because MAC addresses may be dupli-
cated and more sophisticated mechanisms using for example digital signatures
are costly and difficult to implement. Moreover, for privacy reason, the processes
may prefer to not have an unique identifier. For example, agents may be regis-
tered as members of groups and may want to act as member of the groups not
as individuals. Hence it could be useful and interesting to relax the unicity of
identifiers assumption. However, lack of identifiers is very restrictive and in fully
anonymous systems very few problems are solvable (e.g. [1,3,4,12]).

In [6], the authors presented a general model with homonyms in which pro-
cesses may share the same identifier and may then be homonyms. In this model
n processes share a set of l identifiers (1 ≤ l ≤ n). More precisely, each process
p has an unique identifier belonging to the set of l identifiers, but several pro-
cesses may have the same identifier. The processes cannot distinguish between
processes having the same identifier. A process may only send messages to all the
processes with some identifier and when a process receives a message it knows
only the identifier of the origin of the message without knowing which particular
process it is. When l = n each process has its own identifier and at the other
extreme the case l = 1 corresponds to the fully anonymous system.

� This work is supported by the ANR VERSO SHAMAN.

G. Even and M.M. Halldórsson (Eds.): SIROCCO 2012, LNCS 7355, pp. 171–182, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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An important point in the model described in [6] is that there is no “mas-
querading” and even a Byzantine process is not able to lie about its identifier: if
any process p receives a message, then process p knows that the sender of this
message has identifier id. Hence even a Byzantine process cannot lie about its
identifier. Yet it is rather natural that Byzantine processes may at least form a
coalition and “exchange” their identifiers.

In this paper we present an extension of homonym processes in which some
identifiers are “forgeable” and a Byzantine process may freely use any such
identifier. Moreover we restrict ourselves to the classical synchronized rounds
model. More precisely, we keep on ensuring that each process has an unique
identity, but some identifiers are forgeable in the sense that Byzantine processes
may use such an identifier id to send messages. A process receiving this message
falsely believes that the identifier of the sender is id. Of course the set of forgeable
identifiers is not known by the processes, we only assume that we have l identifiers
for the n processes, and among these identifiers at most k are forgeable. As
Byzantine are able to form coalitions and exchange their identifies, we assume
that the set of forgeable identifiers contains at least all identifiers of Byzantine
processes. Hence if t is the maximum number of Byzantine processes, we have
t ≤ k ≤ l.

To determine the power of the model of homonyms with forgeable identifiers,
as in [6], we are going to consider the problem of Byzantine Agreement [14]. As
a Byzantine process is able to send in each round messages with all forgeable
identifiers, intuitively, it means that it is the same as having at least one Byzan-
tine process per forgeable identifier. Recall from [6] that Byzantine Agreement
is solvable in the homonyms model if and only if l > 3t, then considering forge-
able identifiers as similar to groups of processes with Byzantine processes, we
get directly a solution with l forgeable identifiers if l > 3k and we could sup-
pose that we have a solution if and only if l > 3k. But surprisingly, we prove a
better bound, we prove that there is solution for the Byzantine Agreement with
k forgeable identifiers if and only if l > 2t + k. In fact, this result comes from
the fact that if a Byzantine process forges the identifier of a group of processes
containing correct processes, this group of processes has the same behavior as
a group of processes containing together Byzantine and correct processes. It is
proven in [7] that such groups of processes are weaker adversaries than groups
containing only Byzantine processes.

From a more practical point of view, it is easy to implement homonyms with
help of digital signatures as with [10] in which at each identifier is associated
a public key and processes with the same identifiers share corresponding pri-
vate keys. In this way we get a (strictly) stronger authentication mechanism as
defined in [15]. With this authentication mechanism a process cannot retrans-
mit falsely messages. More precisely, if the identifier is unforgeable, then it is
not possible for any process q to wrongly pretend that it received message m
coming from a process with this identifier. It is well known that with this kind
of authentication, the Byzantine Agreement problem can be solved if and only
if n > 2t in the classical case in which all processes have unique and different
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unforgeable identifiers, giving a n > 2k bound with k forgeable identifiers. With
homonyms and at most k forgeable identifiers, we prove that Byzantine Agree-
ment is solvable if and only if l > t+k. Again the a priori expected result would
be l > 2k.

Due to the lack of space some proofs are omitted and are in [8].
The rest of the paper is organized as follows. Section 2 describes the model

of homonyms with forgeable identifiers and gives the specification of Byzan-
tine Agreement. Then in Section 3 we prove the impossibility results concerning
Byzantine Agreement with homonyms and forgeable identifiers. In Section 4,
we propose a specification of Authenticated Broadcast and give a correspond-
ing algorithm. Section 5 contains the algorithm for Byzantine Agreement using
Authenticated Broadcast. Then, in Section 6 we study the authentication case.
Finally in Section 7, we discuss some related work and perspectives.

2 Model and Definitions

Identifiers and homonyms. We consider a distributed message-passing system
of n processes. Each process gets an unique identifier from a set of identifiers
L = {1, 2, . . . , l}. We assume that each identifier is assigned to at least one
process but some processes may share the same identifier. Hence we have l ≤ n.
If p is a process then Id(p) is the identifier of process p.1 For an identifier id,
the group of processes with identifier id, G(id), is the set of all processes with
identifier id.

For example, if l = 1 then the system is fully anonymous and if n = l each
process has an unique identifier.

Process failure. A correct process does not deviate from its algorithm specifica-
tion. Some processes may be Byzantine, such a process can deviate arbitrarily
from its algorithm specification. In particular, a Byzantine process may send
different messages than its algorithm specifies or fail to send the messages it is
supposed to. In the following t is an upper bound on the number of Byzantine
processes.

From [15,14], we know that Byzantine Agreement is impossible to solve if
n ≤ 3t, so we assume n > 3t.

Forgeable Identifiers. To each messagem is associated the origin group ofm that
is an identifier in L denoted from(m). When the sender of the message m is a
correct process p, this identifier is the identifier of this process: from(m) = Id(p).
Remark that from(m) enables only to know the origin group but does not enable
to know which process in this group is the sender.

We assume that Byzantine processes have the power to forge some identifiers.
The set of identifiers that can be forge by Byzantine processes is a subset of L
and is denoted F . In the following k designs an upper bound of the number of
identifiers that can be forged: |F| = k.

1 For convenience, we sometimes refer to individual processes using names like p but
these names cannot be used by processes in the algorithms.
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Let idf be an identifier in F , a Byzantine process with identifier id may send
a message m to group id′ with the forged identifier idf . In this case, a process p
with identifier id′ receives the message m with from(m) = idf . As a Byzantine
process acts as an adversary it may divulge any information, then we assume
here that if p is a Byzantine process then Id(p) is also in F .

Consequently, if a process p receives a message m with from(m) = id, p
knows that this message has been either sent by a correct process with identifier
id or sent by a Byzantine process which has forged the identifier id.

We name (n, l, k, t)-homonym model such a model. In the following a correct
group designs a group of processes with some identifier that contains only correct
processes and whose its identifier is not forgeable.

Synchronous rounds. We consider a synchronous model of rounds. The com-
putation proceeds in rounds. In each round, each process first sends a set of
messages, which depends on its current state, to some identifiers. Then, each
process receives all the messages sent to its identifier in the same round and
finally changes its state according to the set of received messages.

As several processes may share the same identifier, in a round a process may
receive several identical messages coming from processes with the same identifier
(or Byzantine process that has forged this identifiers). But we assume here that
when a process receives a message m with from(m) = id, it does not know how
many correct processes with identifier id (or Byzantine process that has forged
id) have sent this message.2

A Byzantine process can deviate arbitrarily from its algorithm specification
and Byzantine process may send any set of messages (possibly an empty set)
with any identifiers in F . Moreover, contrary to correct processes, we assume that
Byzantine processes are able to send different messages to different processes in
the same group.

Byzantine Agreement. In the following we are interested in the Byzantine agree-
ment problem [15,14]. Recall that solutions to this problem are the basis of most
of fault tolerant algorithms (e.g. [16]). Byzantine Agreement is an irrevocable
decision problem that has to satisfy the following properties:

1. Validity: If all correct processes propose the same value v, then no value
different from v can be decided by any correct process.

2. Agreement: No two correct processes decide different values.
3. Termination: Eventually every correct process decides some value.

3 Impossibility Result

Following the spirit of the impossibility of Byzantine Agreement in [9], we prove
our impossibility results in (n, l, k, t)-homonym model.

2 Our results can be extended to the model of numerate processes as defined in [6] for
which each process receives in a round a multiset of messages and is able to count
the number of copies of identical messages it receives in the round.
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Proposition 1. Byzantine Agreement is unsolvable in (n, l, k, t)-homonymmodel
if l ≤ 2t+ k.

Proof. It suffices to prove there is no synchronous algorithm for Byzantine Agree-
ment when l = 2t+ k. To derive a contradiction, suppose there is an algorithm
A for Byzantine agreement with l = 2t+k. Let Ai(v) be the algorithm executed
by a process with identifier i when it has input value v.

We divide the set of processes into 4 subsets:A = ∪0<i≤tG(i),B = ∪t<i≤2tG(i),
C = ∪2t<i≤3tG(i) and F = ∪3t<i≤k+2tG(i).

We consider a system of 8 sets: two sets A0 and A1 (resp B0 and B1, C0 and
C1, F0 and F1) with the same number of processes and the same repartition in
group as A (resp. B, C, F ). Each process of A0 with identifier i executes the
code Ai(0) and the analog for others sets and other input values.

Imagine setting up a system S as shown in Figure 1. Every process correctly
executes the algorithm assigned to it. Communication between groups are indi-
cated by continuous line. A dash arrow from group X to group Y indicates that
processes of X send their messages also to Y . (We do not pretend that we have
a Byzantine Agreement algorithm for this system.)

A0

B0C0

C1

A1

F1

F0

B1

Fig. 1. System S

We now define three executions of the algorithm A.
In execution α, processes of A, B and F are correct and have input 1, all

the processes in C are Byzantine and the identifiers in F may be forged. By
validity, all the correct processes must decide 1. A process c in C sends (1) the
same messages to processes in A and F as the corresponding process in C0 in
system S, (2) the same messages to processes in B and F as the corresponding
process in C1 in system S. Moreover one process in C sends the same messages
as processes in F0 to processes in A, B and F .

In execution β, processes of B, C and F are correct and have input 0, all
the processes in A are Byzantine and the identifiers in F may be forged. By
validity, all the correct processes must decide 0. A process a in A sends (1) the
same messages to processes in C and F as the corresponding process in A1 in
system S, (2) the same messages to processes in B and F as the corresponding
process in A0 in system S. Moreover one process in A sends the same messages
as processes in F1 to processes in A, B and F .

In execution γ, processes of A, C and F are correct. Processes of A and F have
input 1 and processes of C have input 0. All the processes in B are Byzantine and
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the identifiers in F may be forged. Processes in B send (1) the same messages to
processes in A and F as the corresponding processes in B1 in system S (and the
same that in α) (2) the same messages to processes in C as the corresponding
processes in B0 in system S (and the same that in γ).

Moreover one process in B sends the same messages as processes in F0 to
processes in A, C and F . Note that processes in F and this Byzantine process
sends the same message to processes in A as in run α and to processes in C as
in run γ.

So, for the correct processes in A executions α and γ are undistinguishable
and they decide 1. For the correct processes in C executions β and γ are undis-
tinguishable and they decide 0. These decisions in execution γ give the contra-
diction.

4 Authenticated Broadcast

Our algorithms for Byzantine Agreement use an adaptation of Authenticated
Broadcast as introduced by Srikanth and Toueg [17] in the classical case where
each process has a different identifier (n = l).

First, recall some principles for Authenticated Broadcast. In [17], it is defined
by two primitives: Broadcast(p,m, r) and Accept(p,m, r). Computation is bro-
ken up in superrounds. Roughly speaking a process p broadcasts a message m
in superround r by Broadcast(p,m, r). If the process p is correct all processes
receive the message and Accept(p,m, r). If the process p is a Byzantine process,
the Authenticated Broadcast guarantees that if some process Accept(p,m, r) at
some superround r′ then all correct processes Accept(p,m, r) no later than in
superround r′ + 1. Furthermore no correct process can Accept(p,m, r) from a
correct process p if p has not broadcast it.

Considering the (n, l, k, t)-homonym model, we decompose the synchronous
computation in superrounds too. All the processes of a group have to invoke
broadcast of a message m in the superround r in order to ensure that this
message will be accepted in the following superround.

More precisely, our Authenticated Broadcast is defined by two primitives:
Broadcast(i,m, r) and Accept(i,m, r) where i is the identifier of some group. We
assume that a correct process broadcasts at most one message in a superround.
The Authenticated Broadcast primitive is specified as follows:

1. Correctness: If all the processes in a correct group i performBroadcast(i,m, r)
in superround r then every correct process performsAccept(i,m, r) during su-
perround r.

2. Relay: If a correct process performs Accept(i,m, r) during superround r′ ≥ r
then every correct process performs Accept(i,m, r) by superround r′ + 1.

3. Unforgeability: If some correct process performs Accepts(i,m, r) in super-
round r′ ≥ r then all correct processes in group i must Broadcast(i,m, r) in
superround r.

The algorithm is described in Figure 2. A superround r is composed of the two
rounds 2r and 2r + 1.



Homonyms with Forgeable Identifiers 177

Code for process p with identifier i ∈ {1, ..., l}

Variable:

1 M = ∅;
Main code:
2 ROUND R
3 if R = 2r then if Broadcast(i,m, r) to perform
4 then send (M∪ (init, i,m, r), R) to all
5 else send (M∪ (noinit, i,⊥, r),R) to all
6 else send (M, R) to all;

Reception of the messages of round R
7 For all h ∈ {1, ..., l}
8 if (R = 2r) then

Let M[h] be the set of messages (init, h, ∗, r) or (noinit, h, ∗, r) received
from processes in group h

9 if M [h] = {(init, h,m, r)}
10 then M = M∪ (echo, h,m, r)
11 For all r ∈ {1, ..., R/2}
12 For all m ∈ possible messages
13 if (echo, h,m, r) received from at least l − 2t distinct groups
14 then M = M∪ (echo, h,m, r)
15 if (echo, h,m, r) received from at least l − t distinct groups
16 then Accept(h,m, r)

Fig. 2. Authenticated Broadcast algorithm in the (n, l, k, t)-homonym model

First, recall the principles of the algorithm of [17] with T Byzantine processes.
To propose a value v in superround r, process p sends message (init, p, v, r) to
all processes (including itself). A process receiving such a message becomes a
“witness” for (p, v, r) and sends a message of type echo to all processes. Any
process that has T + 1 witnesses for (p, v, r) becomes itself witness (because at
least one correct process has sent this message). When a process receives more
than (2T + 1) witnesses, it accepts (p, v, r) (T + 1 correct processes have sent
this message then all correct processes will find T +1 witnesses of this message).

The algorithm follows the same principles, to propose a value v in supperround
r process p with identifier i sends message (init, i, v, r) to all processes (including
itself) (line 4). A process receiving such a message from some processes with
identifier i becomes “witness” for (i, v, r) and sends a message of type echo to all
processes (line 10). Any process having l−2t witnesses for (i, v, r) becomes itself
witness (if l−2t > k at least one process in a correct group has sent this message)
(line 13). When a process receives more than (l− t) witnesses, it accepts (i, v, r)
(at least t + 1 processes from correct groups have sent this message) (lines 15
to 16). In this way we ensure correctness and relay properties.
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To ensure the unforgeability property, a correct process that has no message
to broadcast in a superround broadcast a noinit message in the corresponding
even round. In this way, if some correct process with identifier i has no message
to broadcast in superround r, every correct process gets M [i] (line 8) different
from one message init and will not become witness of any message (i, ∗, r).

By a standard proof, we get :

Proposition 2. If l > 2t+ k, the algorithm Figure 2 implements Authenticated
Broadcast in (n, l, k, t)-homonym model.

5 Byzantine Agreement Algorithms

Our algorithm follows the line of the algorithm in [17] defined in the classical case
where each process has a different identifier (n = l). One of the main difference
here is the fact that the behavior of groups of processes is different from the
behavior of processes. In particular, correct processes in groups with forgeable
identifiers or in groups containing Byzantine processes have to decide and have
to participate to the decision.

The algorithm proceeds in synchronous superrounds (set of successive rounds).
In this algorithm, 1 is the only value that may be broadcast and value 0 is
decided upon by default if 1 is not decided. Hence, all processes in superround
1 broadcast 1 if their input is 1. A process p sets variable value to 1 (and then
will decides 1) in superround r < 2k, if it has (1) accepted (iu, 1, 1) messages
from t+1 distinct identifiers iu, and (2) accepted (ju, 1, ru) from (r+1)/2 with
ru ≥ 2. Condition (1) ensures that at least one correct group has broadcast and
condition (2) corresponds to the one of [17]. Condition (1) ensures the validity
property of consensus and the condition (2) ensures the agreement property. The
correctness and relay properties of Authenticated Broadcast ensure that by the
next superround (superround r+1), all messages accepted by process p are also
accepted by all correct processes. Hence, they all set the variable state to true.
By superround r + 2, they broadcast and by correctness and relay properties,
all correct processes decide 1 by setting value to 1. If p decides in superround
2k + 2, then it can be proved that at least one group of correct processes set
its variable value to 1 by superround 2k, and all correct processes decide by
superround 2k + 2.

We now present the steps of the proof that the algorithm of Figure 3 satisfies
the specification of Byzantine agreement.

Lemma 1. If, at superround r, a correct process p has |Ar| ≥ t+1 then at each
superround r′ with r + 1 ≤ r′ ≤ 2k + 2 each correct process has |Ar′ | ≥ t+ 1.

Lemma 2. If every process of a correct group broadcasts some message in some
superround r > 1, then every correct process sets value to 1 by superround r.

Proposition 3. (Validity) If all correct processes propose the same initial value
v then no value different from v can be decided by any correct process.
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Code for process p with identifier i

Variable:
1 input = {v} /* v ∈ {0, 1} is the value proposed value */
2 value = 0
3 state= false

Main code:
4 SUPERROUND 1
5 if input = 1 then Broadcast(i, 1, 1)

Let A1 = {h : p has Accepted(h, 1, 1)}
6 if |A1| ≥ t+ 1 then state = true

7 SUPERROUND r from 2 to 2k + 2
8 if state = true then Broadcast(i, 1, r); state = false

Let Ar = {h : p has Accepted(h,1, 1)}
9 if |Ar| ≥ t+ 1 and

has Accepted(iu, 1, ru) from
r+1
2

distinct identifiers iu with ru ≥ 2
10 then value = 1

11 if |Ar| ≥ t+ 1 and
has Accepted(iu, 1, ru) from

r
2
distinct identifiers iu ( iu = i) with ru ≥ 2

12 then state = true;

13 AT THE END OF SUPERROUND 2k + 2
14 if value = 1
15 then DECIDE 1
16 else DECIDE 0

Fig. 3. Synchronous Byzantine Agreement algorithm in (n, l, k, t)-homonym model

Proposition 4. (Termination) Eventually every correct process decides some
value.

Assume that, in the execution, some correct process sets value to 1 at Line 10,
and decides 1. Let r1 be the first superround in which some correct process sets
value to 1. Let p1 be such a correct process that sets value to 1.

With the help of Lemma 2, we prove:

Lemma 3. If r1 ≤ 2k, then every correct process sets value to 1 by superround
r1 + 2.

When r1 is greater than 2k, p1 has accepted (ju, 1, ru) from
2k+2

2 distinct pro-
cesses ju, then from at least k + 1 distinct processes. Then there is at least one
correct group in this set. Then we get:

Lemma 4. If r1 > 2k, then every correct process sets value to 1 by superround
r1.

Proposition 5. (Agreement) No two correct processes decide different values.

From Propositions 3, 4 and 5, we have:
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Theorem 1. Assuming if l > t+k, algorithm of Figure 3 implements Byzantine
Agreement using Authenticated Broadcast in (n, l, k, t)-homonym model.

Combining this with algorithm for Authenticated Broadcast, we get:

Corollary 1. If l > 2t+k, the algorithms of Figure 2and 3 implement Byzantine
Agreement in (n, l, k, t)-homonym model.

6 Authentication

Authentication [15] ensures that Byzantine process may “lie” about its own
values but may not relay altered values without betraying itself as faulty. Cur-
rently this property may be ensured with a system of signatures using public
keys cryptography.

The implementation of homonyms with authentication is rather natural: the
members of a group share a secret key. The origin group of a message may be
verified by a signature scheme of this group. Messages m are authenticated by
the identifier of the sender. Each process can verify if a message carries the
signature of a given identifier. As before we assume that the signatures of at
most k identifiers can be forged.

With homonyms and this scheme of authentication, if id is not forgeable (any
process with this identifier is correct) then it is not possible for any process to
wrongly pretend that it has received some messages coming from identifier id,
hence we get the authentication property of [15].

For this model with authentication, we improve our bound: l > t + k is
necessary and sufficient to achieve Byzantine Agreement. (Recall that in the
classical model in which each process has its own identifier and without forgeable
identifiers the bound is n > 2t.)

The proofs of the lower bound is essentially the same as for the case without
authentication in Section 3.

The Byzantine Agreement algorithm of Figure 3 directly works with l > t+ k
if we have an Authenticated Broadcast. It remains to get an Authenticated
Broadcast with l > k + t.

In [17], in the classical case in which each process has its own identity, Au-
thenticated Broadcast can be obtained simply with authentication: it suffices to
verify the signatures. A process that receives a message (p,m, r) accepts it if it
can verify p’s signature (and then forwards this message). But if we apply this
simple mechanism in our model, we do not get the unforgeability property. In a
forgeable group with identifier i containing some correct processes, it is possible
that some correct process accepts (i,m, r). Indeed, this message has been sent
by a Byzantine process that has forged the identifier i.

To implement Authenticated Broadcast, we use the signatures and the mech-
anism of witnesses as in our previous algorithm. The implementation is based
on the one presented in Section 4 with some simple changes.

At some point, in algorithm 2 when a process receives some messages in round
R, it will send echo in the next rounds. The process will forward all messages
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that produced this echo. In this way it gives a proof that it has the right to send
echo. We get an Authenticated Broadcast algorithm from algorithm Figure2
by: (1) removing from the received message all messages with a bad signature,
(2) forwarding the proof of each new echo message, (3) replacing the line 13 of
algorithm 2 by:

if received (echo, h,m, r) and the proof of (echo, h,m, r)

and, (4) replacing the line 15 of algorithm 2 by

if received (echo, h,m, r) and the proof of (echo, h,m, r) from at least l − t
distinct groups

We have:

Theorem 2. With authentication, Byzantine Agreement is solvable in (n, l, k, t)-
homonym model if and only if l > t+ k.

7 Related Works and Perspectives

When processes share identifiers and some of theses processes may be Byzantine,
it is rather natural that some of these identifiers may be forged. Hence this work
is a natural extension of [6] to forgeable identifiers.

At least for the authentication case, groups signature as introduced first in [5]
are close to our model. Groups signature enable to sign messages on behalf of
a group and clearly can be used to implement the model of homonyms. Note
that group signatures generally ensures other properties than the one we con-
sider here. Groups signatures may be a valuable way to implement models with
homonyms.

In other works [2,11,13], a mixed adversary model is considered in the clas-
sical (l = n): the adversary can corrupt processes actively (corresponding to
Byzantine process) and can forge the signature of some processes.

In some way, we combine here the idea of group signatures and forgeable
signatures but contrary to group signatures the goal is not to develop protocol
ensuring strong properties like anonymity or unforgeability but try to develop
algorithms (like agreement) in presence of groups of processes with Byzantine
processes and forgeable identifiers.

Here we proved that with forgeable identifiers and homonyms, Byzantine
Agreement can be solved in a “reasonable” way (and without any assumption
about cryptographic system). Interestingly, the solvability of Byzantine Agree-
ment depends only on the number of identifiers and the number of forgeable
identifiers. Hence adding correct processes does not help to solve Byzantine
Agreement.

A natural extension of this work could be to consider partially synchronous
models.

As Byzantine Agreement is the basis for replication systems in the classical
models in which each process has its own identity, a natural question is to know if
it is still the case and envisage to develop algorithms for more difficult problems.



182 C. Delporte-Gallet, H. Fauconnier, and H. Tran-The

References

1. Attiya, H., Gorbach, A., Moran, S.: Computing in totally anonymous asynchronous
shared memory systems. Information and Computation 173(2), 162–183 (2002)

2. Bansal, P., Gopal, P., Gupta, A., Srinathan, K., Vasishta, P.K.: Byzantine Agree-
ment Using Partial Authentication. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950,
pp. 389–403. Springer, Heidelberg (2011)

3. Boldi, P., Vigna, S.: An Effective Characterization of Computability in Anonymous
Networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 33–47. Springer,
Heidelberg (2001)

4. Buhrman, H., Panconesi, A., Silvestri, R., Vitányi, P.M.B.: On the importance of
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Abstract. The problem of reliably transferring data from a set of NP
producers to a set of NC consumers in the BAR model, named N-party
BAR Transfer (NBART), is an important building block for volunteer
computing systems. An algorithm to solve this problem in synchronous
systems, which provides a Nash equilibrium, has been presented in
previous work. In this paper, we propose an NBART algorithm for asyn-
chronous systems. Furthermore, we also address the possibility of collu-
sion among the Rational processes. Our game theoretic analysis shows
that the proposed algorithm tolerates certain degree of arbitrary collu-
sion, while still fulfilling the NBART properties.

1 Introduction

Peer-to-peer networks can be used for executing computationally intensive
projects, as shown by the Boinc infrastructure [1]. Building systems on this kind
of networks may be quite challenging due to the existence of Byzantine processes,
whose behaviour is arbitrary, and of Rational processes, which may deviate from
the specified protocols if they can increase their utility. A system model that
captures this variety of behaviours has been coined the BAR model [2], named
after the three classes of processes (Byzantine, Altruistic, and Rational) that it
explicitly considers.

Our work focuses on the particular problem of reliably transferring data from a
set of NP producers to a set of NC consumers in the BAR model, named N-party
BAR Transfer (NBART). Although an algorithm that solves this problem has
already been devised for synchronous systems [3], in a peer-to-peer network it is
often unrealistic to assume that there is a known upper bound for the execution
time and the communication delay. With this in mind, this paper addresses
the NBART problem in an asynchronous system. Furthermore, this paper also
addresses the problem of collusion, which is a real issue in peer-to-peer networks
due to attacks, such as sybil and white washing. In addition to arbitrary collusion
of Byzantine players, we consider that Rational processes may create collusion
groups, including producers and consumers.

Related Work. Models based on traditional Game Theory assume that all
processes are Rational, and they fail to account for arbitrary behaviour that
may arise from Byzantine faults. To the best of our knowledge, the work of Eliaz
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et. al. [4] was the first to accommodate Byzantine-awareness, by introducing
the notion of k-Fault Tolerant Nash Equilibrium (k-FTNE). In this context, a
profile of strategies is k-FTNE if the strategy of each player is a best response to
the strategy of other players, independently of the identity of Byzantine players
and the arbitrary strategy they follow. This concept was later applied to virus
inoculation games [5].

Aumann [6] addressed the issue of collusion by defining an equilibrium as
a profile of strategies where no deviating collusion strategy provides a greater
utility for all players of the group. Then, Bernheim et. al. [7] introduced the
notion of coalition-proof Nash equilibrium, where no deviations by a coalition can
perform better, although they do not allow further deviations to the collusion
strategy. This work was later extended to take into consideration correlated
strategies [8].

The work of [9] considered the existence of processes with unexpected utilities
and collusion. The authors proposed the solution concept of (k, t)-robustness,
where no process can increase its utility by deviating in collusion with up to
k−1 other processes, regardless of the Byzantine behaviour of up to t processes.
This notion is stronger than the previous models for collusion, since it accounts
for arbitrary collusion where it should be true that no player performs better
by deviating from the equilibrium strategy, even if that implies decreasing the
utility of other players within the coalition. Unfortunately, in certain scenarios
such as communication games (where players incur communication costs), it was
shown that no game can be (k, t)-robust for k, t > 0 [10].

Additional literature relevant to our results include works on agreement in the
BAR model [2,10] and data dissemination [11,12,13], which studied protocols tol-
erant to the BAR model. In [14], the authors studied the impact of altruism on
a repeated game modelled by the BAR model. All these works assume repeated
interactions of processes in a cooperative service. On the other hand, our paper
considers one-shot games, and therefore addresses the need to provide equilib-
rium strategies for Rational processes to follow the specified algorithm based on
incentives provided in a single instance of NBART.

Contributions. The first contribution of this paper consists in an algorithm
that solves NBART in asynchronous systems. We show that the proposed al-
gorithm is correct, assuming that all non-Byzantine processes follow it, for
NP ≥ 2FP+1 and NC ≥ FC+1, where FP and FC are upper bounds on the num-
ber of Byzantine producers and Byzantine consumers respectively. We also show
that the presented algorithm obtains asymptotically optimal bit complexity in
certain scenarios.

The second contribution consists in the game theoretic analysis of the pro-
posed algorithm. Since processes incur communication costs, our algorithm can-
not be (k, t)-robust [10], hence we rely on a weaker notion of Byzantine aware
utility function to account for Byzantine behaviour, based on the notion pro-
posed in [10]. Given that we cannot ensure that the players within a coalition
follow the algorithm, we propose a new solution concept, which is an adapta-
tion of k-resilience to account for collusion in the following way. We define an
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equilibrium as a profile of strategies σ where members of a coalition are inter-
ested in deviating from σ only if their behaviour, as observed by other processes,
is equivalent to σ. We assume that the size of each group of Rational colluding
processes is bounded by a constant NT = NP

T +NC
T , where NP

T is the number
of members of the colluding group that are producers and NC

T is the number of
consumers on the same group. We show that, if NP ≥ max(FP , N

P
T ) + FP + 1

and NC ≥ FC +NC
T +1, then the algorithm provides such equilibrium, implying

that processes from any coalition follow a strategy that ensures that the NBART
properties are fulfilled. An important consequence of this is that, in the absence
of collusion, the algorithm provides a Nash equilibrium.

2 System Model

We assume an asynchronous system composed of N processes or players (we
will use the term player only when performing the Game Theoretic analysis;
in any other case, we will use the name process). Processes are connected by
a fully-connected network and can communicate using reliable authenticated
point-to-point communication channels [15].

We make the distinction between identity, process/player, and coalition. An
identity is a tuple (i, pki, ski), where i is an identifier and pki and ski are the
corresponding public and private keys. There is a set of identities I = P ∪ C,
where P and C are the sets of producer and consumer identities, respectively,
such that #P = NP and #C = NC . Players are the decision-making entities of
our Game Theoretic analysis and are represented by a single identity. Therefore,
when referring to the process that holds the identity (i, pki, ski), we will simply
refer to it as i. If i ∈ P , the corresponding process is referred to as a producer,
otherwise, it is called a consumer. Finally, NP +NC = N .

As defined by the BAR model, a player can be Altruistic (if it follows the
algorithm), Byzantine (if its behaviour is arbitrary), or Rational (if it follows the
strategy that maximises its utility given the expectations regarding the strategies
followed by other players). We assume that Rational processes adhere to the
promptness principle [2], in the sense that if the expected utilities of following
the algorithm and deviating by delaying messages are equivalent, then processes
do not deviate. It is said that a player i signs information with ski by invoking
si(data).

2.1 NBART Problem

The NBART Problem can be defined as follows. Each producer p produces an
arbitrarily large value vp by invoking the deterministic function produce(p, vp),
such that any two non-Byzantine producers produce the same value, named
the correct value. Consumers must consume only one value v, sent by some
producer, by invoking consume(c, v). The invocation of this primitive proves
that, indeed, c consumes the value. To deal with Rational behaviour, we rely
on the participation of an abstract entity named Trusted Observer (TO), whose
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function is to gather cryptographic information from the participants of each
transfer and reward processes according to their observable behaviour. To assess
the behaviour of each process, TO uses two predicates hasProd(evidence, p) and
hasAck(evidence, c) that take as input the evidence produced by TO to indicate,
respectively, if producer p participated in NBART and if consumer c notified the
reception of the correct value. TO is said to eventually produce evidence about
the transfer if it invokes certify(TO, evidence) after the moment when hasProd
and hasAck become true for all corresponding non-Byzantine producers and
consumers. With these definitions, the NBART problem is characterised by the
following properties:

– NBART 1 (Validity): If a non-Byzantine consumer consumes v, then v was
produced by some non-Byzantine producer.

– NBART 2 (Integrity): No non-Byzantine consumer consumes more than
once.

– NBART 3 (Agreement): No two non-Byzantine consumers consume differ-
ent values.

– NBART 4 (Eventual Consumption): Eventually, every non-Byzantine con-
sumer consumes a value.

– NBART 5 (Evidence): TO eventually produces evidence about the transfer.
– NBART 6 (Producer Certification): If producer p is non-Byzantine, then

hasProd(evidence, p) eventually becomes true.
– NBART 7 (Consumer Certification): If consumer c is non-Byzantine, then

hasAck(evidence, c) eventually becomes true.

3 Asynchronous NBART

We now describe an algorithm that solves the NBART problem in an asyn-
chronous environment. We first provide an overview and then proceed to the
detailed description of the algorithm.

3.1 Overview of the Algorithm

The algorithm can be briefly described as follows. Each producer p owns a block
(bp) that belongs to the set of NP blocks obtained from the value v by using
Reed-Solomon codes, such that v can be retrieved from any subset of B blocks
(NP ≥ B + FP). Then, p strives to transfer bp along with the signature of the
vector that contains the hashes of all blocks to a subset of consumers denoted
by consetp. Each consumer c only needs to receive B correct blocks and FP + 1
signatures of the same vector of hashes to consume the value. However, c must
continue to process any received information and send it to TO, which must
(re-)invoke certify(evidence) whenever it receives new information, in order to
fulfil the property NBART-5.
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3.2 Algorithm in Depth

The algorithm is depicted for producers in Alg. 1, for consumers in Alg. 2 and
Alg. 3, and for TO in Alg. 4. Producers use Reed-Solomon codes to reduce
the communication costs of transferring an arbitrarily large value. The value v,
whose length in bits is denoted by lv, is split into NP blocks of size lv

B , such
that any subset of B blocks is sufficient to retrieve the original value, where
1 ≤ B ≤ NP − FP and B < lv. There is a function RS-ENC(v,NP , B, ω) that,
given the correct value v, the number of producers NP , the number of blocks
B, and the word size ω, returns a vector v containing the NP blocks, where
2ω > NP . Let hv denote the vector containing the hashes of each of the blocks
from v. The inverse function RS-DEC (v′, NP , B, ω,hv) is defined as follows: if
there are at least B blocks from v′ whose hash is in hv, then it returns the
value v; otherwise, it returns ⊥. We consider that all arithmetic operations are
performed over elements of the Galois Field GF (2ω).

We consider that each process is unequivocally identified by an index, between
0 and NP −1 for producers, and between 0 and NC −1 for consumers. Each con-
sumer cj uses a deterministic function prodset cj to determine the set of producers
that are supposed to send it their blocks, defined in such a way that each con-
sumer is related to exactly B+FP producers (in this way distributing load among
producers). A possible mapping function is the following: prodsetcj = {pi ∈ P|i ∈
[k...(k+B+FP−1) mod NP ], k = j(B+FP) mod NP}. It is useful to define the
function that establishes the inverse relation consetpi = {cj ∈ C|pi ∈ prodsetcj}
for each producer pi. These definitions ensure that each consumer is able to re-
ceive at least B blocks from non-Byzantine producers, therefore being able to
retrieve the correct value. In addition, the load is distributed across the produc-
ers such that ∀p∈P : #consetp = n ⇒ ∀p′∈P\{p} : n− 1 ≤ #consetp′ ≤ n+ 1.

Each producer p starts by storing the set of blocks from v by invoking RS-
ENC. Note that each producer will only be required to transmit one of these
blocks (each producer transmits a different block). However, each producer is
still required to send hv. Therefore, each producer then sets the vector hashes
to hv (Alg. 1, lines 4-7). Then, p transfers its block along with hv to all con-
sumers of consetp in a Block message (lines 8-10), while sending Summary

messages to the remaining consumers only containing hv (lines 11-13). Both
these messages are signed with the public key of the producer. Notice that, in
the Block message, it is not necessary to sign the block, for the signature of
the hashes already authenticates the block.

In turn, each consumer c keeps all the received data blocks in a vector blocks
and the received vectors of hashes (along with the signatures) in hashvecs. In
addition, there is a set missing that keeps the identities of the producers that
have not yet sent any signed information. Finally, correcthashvec is the correct
vector of hashes, that is, the vector that is sent by at least FP + 1 producers,
and correctproducers stores, for each producer, the value ⊥ if it has not yet sent
any message, or the signature of the message sent by the producer.

Each consumer uses the functions verifysig(i,d) and verifyhash(b,h) to verify
the signature by i of d and the hash of b when compared to h, respectively.
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Algorithm 1. NBART (p ∈ P)

01 upon init() do

02 blocks := [⊥]NP ;

03 hashes :=[⊥]NP ;

04 upon produce(p, v) do
05 blocks := RS-ENC(value,NP ,B,ω);
06 forall i ∈ P do
07 hashes[i] := hash(blocks[i]);
08 signature := sp(Block||hashes);
09 forall c ∈ consetp do
10 send(p, c, [Block, blocks[p], hashes, signature]);
11 signature := sp(Summary||hashes);
12 forall c ∈ C \ consetp do
13 send(p, c, [Summary, hashes, signature]);

Consumer c is in one of three states: init, gotHashes, and consumed. c is in state
init when hashvecs does not contain a majority (FP + 1) of identical vectors of
hashes. The function minimumHashes (Alg. 2, lines 8-12) marks the transition
between init and gotHashes, by setting correcthashvec to a non-null value, when
the required majority of hashes is gathered by c. Procedure consume-and-report
(lines 16-23) makes the transition from gotHashes to consumed when the con-
sumer gathers at least B correct blocks and, therefore, the invocation of RS-DEC
returns a non-null value. In this case, the consumer consumes the value (line 19)
and prepares a report intended to TO (lines 20-23), which is sent by invoking
the procedure report (lines 13-15). This report contains the vector correcthashvec
and the signature of all the producers that already sent correct messages to c,
i.e., messages that contained correcthashvec.

Whenever a consumer c receives a Block message from a producer that
belongs to missing ∩ prodsetc (Alg. 3, line 1), c removes p from missing if the
signature is valid (lines 2-3) and, according to its state, performs one of the
following actions: i) If c is still in state init, then it stores the received information
in the appropriate vectors and invokes minimumHashes (lines 4-8), in order
to verify if it has already gathered a majority of identical vectors of hashes.
If that is the case, then c invokes consume-and-report (lines 9-10). ii) If c is
in state gotHashes, then it adds the received vector of hashes along with the
signature to hashvecs, stores the block, and invokes consume-and-report (lines
11-15). iii) If c is in state consumed, then it adds the signature of the producer
to correctproducers and reports the information received from producers to TO
(lines 16-18). An almost identical approach is followed by c whenever it receives
a Summary message, aside from the fact that in this case c does not expect to
receive any block (lines 19-33).

The trusted observer only waits for Report messages from consumers to
include all the received information in the array evidence (lines 3-5). In addition,
TO repeatedly tries to produce the evidence about the transfer whenever it
receives new information (line 6).
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Algorithm 2. NBART (c ∈ C): Part I
01 upon init do
02 value :=⊥;
03 correcthashvec := ⊥;

04 hashvecs :=[⊥]NP ;

05 blocks := [⊥]NP ;
06 missing := P;

07 correctproducers := [⊥]NP ;

08 function minimumHashes(hashvecs) is
09 if ∃h : #{p|hashvecs[p] = 〈h, ∗〉} ≥ FP + 1 then
10 return h;
11 else
12 return ⊥;

13 procedure report is
14 signature := sc(Report||correcthashvec||correctproducers);
15 send(c, TO, [Report, correcthashvec, correctproducers, signature]);

16 procedure consume-and-report is
17 value := RS-DEC(blocks, NP , B, ω, correcthashvec);
18 if value �= ⊥ then
19 consume(c, value);
20 forall p ∈ P do
21 if hashvecs[p] = 〈correcthashvec,signature〉 then
22 correctproducers[p] := signature;
23 report ();

We now define the predicates hasProd and hasAck. It is said that producer p is
certified by consumer c ∈ consetp iff evidence[c] = 〈hv, report〉 and report[p] =
sp(Block,hv). We say that producer p is certified by consumer c ∈ C \ consetp
iff evidence[c] = 〈hv, report〉 and report[p] = sp(Summary,hv). Let P̄ ⊆ P and
C̄ ⊆ C be the greatest sets that fulfil the following conditions: i) for each p ∈ P̄
and c ∈ C̄, p is certified by c; and ii) for each c ∈ C̄, c invokes consume(c,v).
With this in mind, we now define the predicates as follows. For the predicates
to be true for any process, #P̄ ≥ NP − FP and #C̄ ≥ NC − FC . Given this,
hasProd(evidence,p) is true iff p ∈ P̄ and hasAck(evidence,c) is true iff c ∈ C̄.

Due to space constraints, we do not include the proofs of correctness and
the complexity analysis in this document. We also leave out the proofs of the
lemmas and theorems included in the following section. A full version of the
paper is available in [16].

4 Game Theoretic Analysis

The purpose of this analysis is to show that it is in every Rational process interest
to follow the algorithm. We take into consideration some degree of arbitrary
collusion.

4.1 Definitions

The algorithm is modelled as a coalitional game Γ = (I, T , ΣI , ((t)t∈T , (ui)i∈I).
Here, I = P ∪ C ∪ {TO} is the set of players. T is the set of non-empty subsets
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Algorithm 3. NBART (c ∈ C): Part II
01 upon deliver(p, c, [Block, pblock, phashes, msgsig]) ∧ p ∈ missing ∩ prodsetc do
02 if verifysig(p, Block||phashes, msgsig) then
03 missing := missing \ {p};
04 if verifyhash(pblock, phashes[p]) then
05 if correcthashvec = ⊥ then
06 hashvecs[p] := 〈phashes, msgsig〉;
07 blocks[p] := pblock;
08 correcthashvec := minimumHashes(hashvecs);
09 if correcthashvec �= ⊥ then
10 consume-and-report ();
11 else if value = ⊥ then
12 if phashes = correcthashvec then
13 hashvecs[p] := 〈phashes, msgsig〉;
14 blocks[p] := pblock;
15 consume-and-report ();
16 else if phashes = correcthashvec then
17 correctproducers[p] := msgsig;
18 report ();

19 upon deliver(p, c, [Summary, phashes, msgsig]) ∧ p ∈ missing ∩ P \ prodsetc do
20 if verifysig(p, Summary||phashes, msgsig) then
21 missing := missing \ {p};
22 if correcthashvec = ⊥ then
23 hashvecs[p] := 〈phashes, msgsig〉;
24 correcthashvec := minimumHashes(hashvecs);
25 if correcthashvec �= ⊥ then
26 consume-and-report ();
27 else if value = ⊥ then
28 if phashes = correcthashvec then
29 hashvecs[p] := 〈phashes, msgsig〉;
30 consume-and-report ();
31 else if phashes = correcthashvec then
32 correctproducers[p] := msgsig;
33 report ();

of I \{TO}, which contains all the possible coalitions. Each coalition t ∈ T may
contain simultaneously producers and consumers, represented by tP = t∩P and
tC = t∩C, respectively.ΣI is a set containing all the profiles of pure strategies σI
followed by all players of I. Σt for t ∈ T denotes the set of all collusion strategies
the players of t may follow. (t is a preference relation on ΣI × ΣI . We assume
that (t is transitive and reflexive. We can define the relation of strict preference
)t as: for any two profiles of strategies σ∗

I ,σ
′
I ∈ ΣI , σ

∗
I )t σ

′
I iff ¬(σ′

I (t σ
∗
I).

If σ∗
I )t σ′

I , then all the players of t will always follow σ∗
I over σ′

I . ui is the
utility function of each player i ∈ I, defined as ui(σI) = βi(σI)−αi(σI), where
βi(σI) are the benefits and αi(σI) the costs i incurs when players obey σI .

Sometimes, we will denote the composition of two profiles σA and σB as
σA∪B = (σA,σB), where A and B are any two disjoint sets of players. Con-
versely, ui(σA,σB) is equivalent to ui(σA∪B). Each producer p obtains a bene-
fit βP iff hasProd(evidence,p) eventually becomes true, whereas each consumer
c obtains a benefit βC iff hasAck(evidence,c) eventually becomes true. It is as-
sumed that for all p ∈ P , βP > αp(σI), and for all c ∈ C, βC > αc(σI), where
σI is the profile of strategies where all players follow the algorithm.
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Algorithm 4. NBART (trusted observer TO)

01 upon init do

02 evidence := [⊥]NC ;

03 upon deliver(c, TO, [Report, hashesvec, producers, signature]) do
04 if verifySig(c, Report||hashesvec||producers, signature) then
05 evidence[c] := 〈hashesvec,producers〉;
06 certify(TO, evidence);

A coalition t is said to be Rational if the preference relation (t fulfils the
following condition:

∀i∈t∀σI∈ΣI,σ∗
t∈Σtui(σI) ≥ ui(σ

∗
t ,σI\t) ⇒ (σt,σI\t) (t (σ

∗
t ,σI\t).

We assume that the same relation holds, by only replacing ≥ for > and (t for
)t. It follows that if #t = 1 and the only player i ∈ t is Rational, then for any
two profiles of strategies σ∗

I ,σ
′
I ∈ ΣI , σ

∗
I (t σ

′
I iff ui(σ

∗
I) ≥ ui(σ

′
I). On the

contrary, if #t = 1 and the player i ∈ t is Altruistic, then t is also said to be
Altruistic and it is true that (σt,σ

∗
I\t) )t (σ

∗
I) for all σ

∗
I ∈ ΣI and considering

that σI denotes the profile of strategies where all players follow the algorithm. In
any other case, t is Byzantine, implying that (t is arbitrary due to the Byzantine
behaviour of some player from t. It is important to notice that, if t is Byzantine,
then all players of t are also considered to be Byzantine, even if some of them
have Rational intentions. A coalition t is said to be a producer (t ∈ TP ) if tP �= ∅
and it is said to be a consumer (t ∈ TC) if tC �= ∅.

For simplicity, we model Byzantine behaviour as a single coalition composed
by up to FP + FC players. We consider an arbitrary number of non-Byzantine
coalitions, as long as each coalition is never composed by more than NP

T pro-
ducers and NC

T consumers. As it will be shown later, we now require the fol-
lowing conditions to hold for the algorithm to be tolerant to collusion: NP ≥
max(FP , N

P
T ) + FP + 1 and NC ≥ FC +NC

T + 1.

4.2 Expected Utility and Solution Concept

We use the notion of Byzantine-aware utility function for risk-averse players
introduced in [10]. An improvement of this work for models where players may
be risk-seekers is left for future work. Let FP and FC denote the set of Byzantine
producers and consumers, respectively, and let πP ∈ ΠP and πC ∈ ΠC be the
corresponding profiles of strategies. Let us denote by σI\F ,πC ,πC the profile of
strategies where all non-Byzantine players follow the strategy specified by σI ,
Byzantine producers follow the strategies of πP and Byzantine consumers obey
the strategies of πC . The expected utility of each player i ∈ I \ F is defined as
follows:

ūi(σM) = min
FP :#FP≤FP ,FC:#FC≤FC

◦ min
πP∈ΠP ,πC∈ΠC

◦ui(σ
′
M\F ,πC,πC ). (1)
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Recall that, since we consider communication costs, a solution concept as strong
as (k, t)-robustness is impossible in our case. To overcome this impossibility
result, we use the concept of k-resilience combined with the Byzantine aware
utility function defined above. However, we still cannot ensure that no player
from a coalition t can increase its utility regardless of whether some other player
obtains a lower utility or not. What we intend to show is that, regardless of
the preferred collusion strategy of each coalition, the chosen strategies fulfil the
NBART properties.

In order to formalise this intuition, we define the observable behaviour of each
coalition t ∈ T for the profile of strategies σt as a multi-set of events triggered
in each player i ∈ I \ t that are influenced by σt, which we denote by φi(σt).
For any player i ∈ I \ t, the delivery of a message sent by some player j ∈ t is
an event. In addition, there are two events triggered in TO, namely produce(p,v)
for each p ∈ tP and consume(c,v) for each c ∈ tC . Henceforth, the meaning
of a producer producing a value or a consumer consuming a value is that the
corresponding event is eventually triggered in TO.

We say that collusion profile σ∗
t ∈ Σt is compliant with the profile σI =

(σt,σI\t) if ∀i∈I\tφi(σ
∗
t ) = φi(σt). The set of profiles of strategies compliant

with σI is denoted by Σt(σI), where σt ∈ Σt(σI). The solution concept we
use in this work, named n collusion tolerance (n-cotolerance), is similar to the
concept of k-resilience, aside from the fact that we do not require that players in
collusion follow the algorithm exactly; only that they follow a profile of strategies
from Σt(σI). More precisely:

Definition 1. For any n ∈ N, a profile of strategies σI is n-cotolerant iff for
all t ∈ T such that #t ≤ n, for all σ∗

t ∈ Σt(σI) such that (σ∗
t ,σI\t) (t σI, and

for all σ′
t ∈ Σt \Σt(σI), (σ

∗
t ,σI\t) )t (σ

′
t,σI\t).

The above definition is generic and may be of independent interest. In order to
apply it to the NBART problem, we additionally need to capture the distinc-
tion between producers and consumers. Therefore, we introduce two parameters
x, y ∈ N, that establish the limit on the number of producers and consumers
within the coalition respectively, such that n ≥ x, y and n ≤ x + y. With this
definition, if n = 1, then there is no collusion among non-Byzantine players.
Henceforth, we will say that a profile of strategies σI is (n, x, y)-cotolerant iff it
is n-cotolerant, n ≥ x, y and n ≤ x+ y, and for all t ∈ T #tP ≤ x and #tC ≤ y.

4.3 Tolerance to Collusion

The purpose of this section is twofold: i) show that, considering that σI denotes
the profile of strategies where all players follow the algorithm, for any combi-
nation of Byzantine and Rational collusions, and any coalition t, if all players
of t follow a profile of strategies from Σt(σI), then the NBART properties are
fulfilled; and ii) show that any profile of strategies σ∗

t ∈ Σt is preferable to σt

only if σ∗
t ∈ Σt(σI). The full proofs, included in [16], rely on the assumption

that NP ≥ max(FP , N
P
T ) + FP + 1 and NC ≥ FC +NC

T + 1.
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We show in the following theorem that if each coalition t follows a strategy
from Σt(σ

∗
t ), then the algorithm tolerates collusion. Fix any arbitrary f ∈ F

such that #fP ≤ FP and #fC ≤ FC . Let l denote an arbitrary partition of
I \ ({TO}∪f) such that, for any t ∈ l, #tP ≤ NP

T and #tC ≤ NC
T . Furthermore,

let σ∗
I = ((σ∗

t )t∈l,σ∗
t∈Σt(σI), (πp)p∈fP , (πc)c∈fC).

Theorem 1. For some arbitrary partition l and profile σ∗
I, if all players follow

σ∗
I, then the NBART properties are fulfilled.

The following two lemmas show that, for each t ∈ T the expected benefit is 0
for all i ∈ t, whenever players of t follow a profile of strategies from Σt \Σt(σI).
Recall that we assume that the players are risk averse. Therefore, the analysis
is done assuming worst case Byzantine behaviour.

Lemma 1. For any t ∈ TC, let σ′
t ∈ Σt \ Σt(σI) be any profile of strategies

where t does not ensure that for all c ∈ tC and p ∈ P, c certifies p and invokes
consume(c, v), and, for each, p ∈ tP p invokes produce(p, v). Then, for all i ∈ t
β̄i(σ

′
t,σI\t) = 0.

Lemma 2. For all t ∈ T , i ∈ t, and σ′
t ∈ Σt \Σt(σI), β̄i(σ

′
t,σI\t) = 0.

The following theorem concludes that the proposed algorithm is (NP
T +

NC
T , N

P
T , NC

T )-cotolerant.

Theorem 2. Let σI ∈ ΣI denote the profile of strategies where all players
follow the algorithm. Then, σI is (NP

T +NC
T , N

P
T , NC

T )-cotolerant.

A particular case of this result is that σI is (1, 1, 1)-cotolerant. By the definition
of (t for any t ∈ T such that #t = 1, Σt(σI) = {σI}, implying that σI is a
Nash equilibrium.
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Abstract. Renaming is a fundamental problem in distributed comput-
ing, in which a set of n processes need to pick unique names from a names-
pace of limited size. In this paper, we present the first early-deciding upper
bounds for synchronous renaming, in which the running time adapts to the
actual number of failures f in the execution. We show that, surprisingly,
renaming can be solved in constant time if the number of failures f is lim-
ited to O(

√
n), while for general f ≤ n−1 renaming can always be solved

inO(log f) communication rounds. In the wait-free case, i.e. for f = n−1,
our upper boundsmatch theΩ(logn) lower bound of Chaudhuri et al. [13].

1 Introduction

Unique names, or identifiers, are a fundamental prerequisite for solving a variety
of problems in distributed computing. While in many settings unique names are
available, they often come from a very large, practically unbounded namespace,
which reduces their usefulness. The renaming problem [4], in which a set of
processes need to be assigned names from a namespace of small size, is one of
the fundamental problems in distributed computing, and a significant amount
of work, e.g. [1,2,4,6,7,8,9,10,17,18], studied its solvability and complexity in
fault-prone distributed systems.

Much of the work on the renaming problem, whether in shared-memory [1,6] or
in message-passing systems [4], has focused on the asynchronous case, in which
the processes’ steps or messages may be delayed arbitrarily by the scheduler.
However, real world systems experience long periods where delays are bounded,
and inter-process communication is synchronous, even though processes may
still fail by crashing. The complexity of renaming in such a synchronous set-
ting, where processes communicate by message-passing, was investigated by
Chaudhuri et al. [13] and Okun [19]. In brief, they found that for n processes,

� Supported in part by the Israel Science Foundation (grant number 1227/10).
�� Additional supports from the ANR projects ALADDIN and DISPLEXITY.

G. Even and M.M. Halldórsson (Eds.): SIROCCO 2012, LNCS 7355, pp. 195–206, 2012.
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up to n− 1 of which may fail by crashing, there exist algorithms that assign a
tight namespace of names 1, . . . , n names in O(log n) rounds of communication.
Chaudhuri et al. [13] also showed a matching lower bound.

The analysis in these papers only focused on the case where themaximum num-
ber of processes, n − 1, may fail by crashing during an execution. However, the
Ω(log n) lower bound of [13] does not exclude algorithms that terminate faster
when the actual number of failures f in the execution is less than n − 1. Such
speculative algorithms, also known as early deciding, are known to exist for con-
sensus [20] and set agreement [12]. Early-deciding protocols achieve consensus in
O(f) communication rounds [15], and k-set agreement in O( fk ) rounds [16].

It is therefore natural to ask what is the time complexity of early deciding
synchronous renaming in a message-passing system. The answer to this question
does not appear trivial: for example, a successful strategy for renaming [13] was
for each process to obtain a new bit from its name by running a simple one
round symmetry-breaking protocol–after Θ(log n) rounds, each process has a
unique name from 1 to n. However, it is hard to speed up this approach to
obtain more bits for the process’s name in rounds where there are few failures,
without breaking name uniqueness. Another approach [4], where each process
proposes a name in each round based on what every other process proposed in
previous rounds, until there are no collisions, turns out to be very difficult to
analyze when the adversary has a limited budget of f failures.

In this paper, we overcome these challenges, and present the first early-
deciding upper bounds for renaming. In short, we find that the complexity of the
problem is strongly coupled with the relation between n, the number of processes
and f , the failure budget of the adversary. We show that there exists an algo-
rithm that ensures a tight namespace of n names, and terminates in a constant
number of rounds in every execution where f ∈ O(

√
n), and, in O(log f) rounds,

otherwise. The existence of a constant-time renaming algorithm for non-trivial
f is surprising, since the early-deciding bounds for consensus [15] and set agree-
ment [16] are linear in f irrespective of the relation with the total number of
processes n.

Our second result is an algorithm that improves on the constants in the asymp-
totic notation, terminating in log f +5 rounds, and assigning names from 1 to 2n.

The first algorithm is a slight modification of a result by Okun [19]. His
protocol is based on a novel connection between synchronous renaming and the
approximate agreement problem [14]. In brief, processes assign temporary ranks
to each process identifier that they receive, and perform approximate agreement
to converge on an approximate rank for each initial process identifier, within
a carefully chosen approximation factor. Each process returns this approximate
rank, rounded to the nearest integer, as its name: the protocol ensures that,
upon termination, the approximate ranks are far enough apart so that no two
processes decide on the same rank. Okun [19] showed that this protocol ensures
a tight namespace, preserves the order of the initial identifiers, and terminates
in O(log n) rounds in all executions.
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Our main contribution is analyzing this protocol for general f , and showing
that it terminates in constant time if f ∈ O(

√
n), and in O(log f) rounds oth-

erwise. Our analysis characterizes the optimal adversarial strategy for arbitrary
values of the parameters n and f—we achieve this by carefully bounding the
approximation factor of the approximate agreement protocols relative to the
number of failures that the adversary expends in each round, showing that this
factor goes down fast, and the algorithm terminates very quickly, if the adversary
does not fail a significant fraction of the processes in each round.

The second renaming algorithm we present is simpler, and achieves better
constants in the asymptotic notation, while relaxing the size of the namespace
to 2n. The protocol is split in two phases: In the first phase, each process identifies
a set of names it is interested in, whose size is proportional to the number of
failures that the adversary expends in the phase. In the second phase, processes
proceed to progressively halve the size of the set of names they are interested
in, until each set is a singleton. At this point, each process may adopt the single
name in its set. The key technical difficulty is in assigning each process the
“right” set of names at the end of the first phase, so that there are always
enough names for the set of participants. To ensure this, we need to relax the
total size of the namespace that processes are interested in to be of size 2n. The
halving procedure in the second phase is similar to the O(log n) round algorithm
by Chaudhuri et al. [13].

We therefore show that the time complexity of early-deciding renaming is
upper bounded by O(log f) synchronous rounds for general f , and can be con-
stant for non-trivial f ∈ O(

√
n). Both algorithms are adaptive, since they do not

know the number of participants n in advance; they also adapt to the number
of failures f in the execution.

Roadmap. We present the problem statement and the model in Section 2,
and give an overview of related work in Section 3. In Section 4, we present
the analysis of the tight renaming algorithm, while the second algorithm can be
found in Section 5. We conclude with a discussion of open questions in Section 6.

2 Model and Problem Statement

Model. We consider a standard synchronous message passing system with n
processes p1, . . . , pn. Initially, processes have unique identifiers from a namespace
of unbounded size. Time is divided into rounds, and the processes’ clocks are
synchronized. Each round proceeds as a sequence of send, receive, and process
steps, in which processes may send and receive messages, and perform local
computation if necessary. We assume that at most t < n processes may fail
by crashing. If crashed, a process stops taking further steps in the execution; a
process may fail to send any subset of its messages in rounds in which it crashes.

Let f denote the number of failures in the current execution. We focus on
early-deciding algorithms, that adapt their time complexity to the actual number
of failures in the execution, i.e. whose running time is a function of f only.
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Renaming. The renaming problem [4] requires that each correct process even-
tually returns a name, and that the names returned should be unique. The size of
the resulting namespace should only depend on the parameters n. The tight re-
naming problem requires that the size of the namespace be exactly n; otherwise,
we say that the solution is loose.

Approximate Agreement. Consider a small real number ε > 0. In the ε-
approximate agreement problem [14], each process pi starts with a proposal vi,
which is a real number. An approximate agreement algorithm must satisfy the
following properties: (1) Each correct process eventually decides a value di; (2)
For any correct processes pi and pj , |di − dj| ≤ ε; (3) For any correct process p�,
there are processes pi and pj with initial values vi and vj , such that vi ≤ d� ≤ vj .

Notation. Throughout this paper, log denotes the logarithm base two. More-
over, we write log f instead of �log f�. To simplify notation, we assume that
f ≥ 1, which allows us to consider running times of O(log f) rounds.

3 Related Work

The renaming problem was introduced in [4], where the authors also provide
a wait-free solution using (2n − 1) names in an asynchronous message-passing
system, and show that at least (n + 1) names are required in the wait-free
case. This lower bound on the namespace size for the case of asynchronous
solutions was improved to (2n − 2) by Herlihy and Shavit [17], and Rajsbaum
and Castañeda [11]. (This lower bound holds when n is a power of a prime
number.)

Considerable research has analyzed the upper and lower bounds for renaming
in asynchronous setting, in particular in shared memory e.g., [1,2,6,7,8,9,18]. For
a detailed description of these results, we refer the reader to e.g., [1].

On the other hand, there has been relatively little work on the complexity
of synchronous renaming. Herlihy et al. [13] considered wait-free renaming in
a synchronous message-passing system, identical to the one we consider in this
paper. They prove a lower bound of Ω(logn) rounds on the time complexity of
the problem in runs where t = n−1 processes may crash, and provide a matching
algorithm that achieves tight renaming with time complexity �logn�+3 in every
execution. In contrast, our algorithms are early deciding, in that they adapt to
the actual number of failures f in the current execution, deciding in O(log f)
rounds. On the other hand, the lower bound argument of Herlihy et al. [13]
applies to our algorithms as well1, implying a lower bound of Ω(log n) rounds in
executions where f = n− 1.

In [19], Okun presents a synchronous message-passing algorithm for tight re-
naming algorithm with O(log n) time complexity. His algorithm is based on a

1 While the original lower bound of Herlihy et al. [13] applies only to comparison-based
algorithms, an argument by Attiya et al. [5] generalizes this bound to a wider class
of algorithms, which includes the ones in this paper.
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procedure proposei(vi, ε) ;1

di ← vi;2

for each round r ≥ 0 do3

broadcast(di);4

δ ← max� �=j(|d� − dj |);5

if δ ≤ ε then return di;6

else di ← arithmetic average of all values dj received;7

Fig. 1. The Approximate Agreement algorithm

novel connection between renaming and approximate agreement. In brief, pro-
cesses perform approximate agreement on the rank of each initial identifier, until
they are certain that no two processes obtain the same rank. In this paper, we
extend this technique by providing a new analysis for minor variation of his al-
gorithm, proving that its running time is in fact O(log f) in executions with f
failures, which is asymptotically optimal.

4 A Tight Renaming Algorithm

In this section, we analyze the tight renaming algorithm of Okun [19] and prove
that it terminates in O(log f) rounds, where f < n is the number of processes
that the adversary crashes in the current execution. We begin with a short
description of the algorithm; a detailed exposition can be found in the original
paper [19].

Algorithm Overview. The algorithm is based on a novel connection between
renaming and the approximate agreement problem. First, a simple synchronous
approximate agreement (AA) algorithm is introduced. Then, the algorithm runs
in parallel at most n separate instances of this approximate agreement algorithm,
one for each process in the system. The goal is to agree on an approximate rank
for each process’s initial identifier, which will be the value decided by the corre-
sponding approximate agreement algorithm, rounded to the nearest integer. The
key ingredient is to run the approximate agreement algorithm for long enough
to ensure that the decision values of the AA protocols corresponding to each
initial identifier are sufficiently spaced, ensuring that the rank decided for each
process is unique.

The Approximate Agreement Algorithm. The algorithm, whose pseu-
docode appears in Figure 1, proceeds as follows. Each process starts with an
initial value vi and a desired approximation factor ε, which bounds the maxi-
mum desired skew between decided values. The process maintains an estimate di
of its decision value, which is updated in every round to the arithmetic average
of all values received. Once all the estimates received in a round are within at
most ε of each other, the process returns its current estimate.
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procedure renamei(vi) ;1

/* Phase one */
for each round r = 1, 2, 3 do2

broadcast(vi);3

Cr ← the number of distinct identifiers received in round r;4

n ← C1;5

V ← the set of identifiers received in round 3;6

ε ← 1
10C2

;7

/* Phase two */
for each round r ≥ 4 do8

for every identifier id ∈ V do9

Participate in id’s instance of the approximate agreement algorithm,10

with initial value C2 · rankV (id) , until the algorithm returns;11

/* rankV (id) is the rank of id in the set V , in increasing order */

/* Upon completion of all the approximate agreement algorithms */
namei ← final value in vi’s instance of the approximate agreement algorithm,12

rounded to the nearest integer;
return namei;13

Fig. 2. The Tight Renaming Algorithm

The Renaming Algorithm. Each process pi starts with an initial name vi.
The algorithm, whose pseudocode appears in Figure 2, has two phases.

The first phase contains the first three rounds, in which processes exchange
their identifiers, in order to identify the parameter n and the relative ranks of
their identifiers.

In the second phase, which starts at round four, based on the information
computed so far, each process proposes a rank for each participating process to
a separate instance of the approximate agreement algorithm in Figure 1. Notice
that all these agreement instances run in parallel; all messages by a process in
a round (one for each AA protocol in which it participates) are packaged into
a single composite message, which each process sends in each round. The ap-
proximation factor for all these agreement instances is 1/(10C2), where C2 is the
number of distinct identifiers the process received in round 2 of the first phase.
(This factor is chosen such that no two identifiers may receive the same final
rank from the approximate agreement instances when rounded to the nearest
integer.) The algorithm terminates when all the approximate agreement algo-
rithms terminate, ensuring the desired approximation factor.

Name Uniqueness. We give a brief overview of the mechanism ensuring name
uniqueness; a complete analysis can be found in [19]. Recall that, for each initial
identifier id, each process p proposes the rank of id multiplied by C2/C3 as the
initial value in id’s instance of the AA protocol. Obviously, the processes’ ranks
for the same identifier may be distinct (as a consequence of failures in the first
phase). However, a key observation is that they will be distinct in a consistent
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way: if p proposes rank 6 for id α, and rank 7 for id β > α, then another process q
proposing rank 7 for id α will have to propose rank at least 8 for id β. Analyzing
the AA protocol, this will imply that, given any process p, its decision values for
distinct ids α < β will be at distance at least 1 from each other [19, Theorem 3].

This mechanism might still allow the possibility that two distinct processes
decide on the same name when rounding their AA decision value to the nearest
integer. This is handled by multiplying the initial ranks with C2/C3. This ratio
is higher than 1 only when a processor observes crashes between the second
and third rounds, and the algorithm ensures that for any ids α and β, their
corresponding decision values at any two processes p and q are at distance > 1
from each other [19, Lemma 3]. In turn, this implies that no two processes may
decide the same name.

Analysis. Our key observation is that the variant of the synchronous approx-
imate agreement algorithm of Okun [19] presented in Figure 1 guarantees the
required approximation factor of 1/(10C2) in a constant number of rounds when
f >

√
n/2, and O(log f) rounds, otherwise. In turn, this implies that the renam-

ing algorithm terminates within three additional rounds.
To prove this, we first introduce some notation. Let σ(S) be the diameter of

a set S, i.e. maxa,b∈S(|a− b|).
For any round r > 0 in the execution of the approximate agreement algorithm,

let Ur be the multiset of distinct values that processes that are active (i.e., send
at least one message) in round r have in the beginning of the round.

Let fr be the number of processes that crash in round r; for convenience,
denote f0 = 0. Denote by δr the fraction of processes that crash in round r
from among the processes that did not crash before round r; that is, δr =
fr/(n−

∑r−1
i=0 fi).

We first state the following lemma, bounding the diameter of the set Ur+1

depending on the diameter of Ur and the fraction of processes that crash in
round r; its proof follows [19, Lemma 1].

Lemma 1. σ(Ur+1) ≤ 2δr+1

1−δr+1
· σ(Ur).

The next lemma bounds the number of rounds needed for the approximate agree-
ment algorithm of Figure 1 to achieve a maximum diameter of ε = 1/(10n) for
the set of decisions corresponding to each initial value, when starting with pro-
posal sets of diameter ≤ n. The bound depends on f , the number of failures
that the adversary expends in total, and on the number of failures fi which the
adversary expends in each round i ≥ 1.

Lemma 2. Consider an execution of the approximate agreement algorithm of
Figure 1, starting with an initial set of diameter σ(U1) ≤ n, in which at most f
processes crash. Let R be the number of rounds needed for the algorithm to reach
a diameter ε ≤ 1/(10n). The following claims hold:

– If f ≤
√
n/2, then R is a constant.

– If
√
n/2 < f ≤ n− 1, then R ≤ 5 log f + 10.
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Proof. We assume n ≥ 6; the claim can be checked for n ≤ 5 by calculation.
The first case is when f ≤

√
n/2. In this case, notice that the fraction of

processes that fail in any round of the protocol is at most
√
n/n, i.e. δr ≤

√
n/n,

for all r ≥ 1. In turn, by Lemma 1, the diameter of the set of values for the
current instance of approximate agreement is reduced by at least 2δr/(1− δr) ≤
1/(

√
n− 0.5) in each round r. Therefore, after the first 10 rounds, the diameter

of this set is at most

n

(
√
n− 0.5)10

≤ 1

10n
, for any n ≥ 6.

Therefore the maximum diameter the end of round 10 is ≤ 1/(10n), as claimed.
In the second case, we assume that f >

√
n/2. First, notice that δr, the

fraction of active processes that crash in a round r, can be greater than 1/2 in
at most �log2(f + 1)� + 1 distinct rounds. Therefore, any execution of at least
5�log2(f +1)�+10 rounds contains at least 4�log2(f +1)�+9 rounds r in which
δr < 1/2. Lemma 1 implies that the diameter of the set Ur at the end of these
rounds is at most

n

24	log2(f+1)
+9
≤ n

29 · (f + 1)4
≤ 1

10n
for all n ≥ 1,

where the last step uses the fact that f ≥
√
n/2. Therefore, in this case, the

number of rounds necessary to obtain a maximum diameter of at most 1/(10n)
is O(log f).

We conclude that the resulting renaming algorithm is early deciding, terminating
in a constant number of rounds, when f ≤

√
n/2, andO(log f) rounds, otherwise.

Theorem 1. For any f , 0 ≤ f ≤ n − 1, let �f = constant if f ≤
√
n/2, and

�f = 5 log(f + 1) + 10, otherwise. Then the renaming algorithm in Figure 2
is a tight order-preserving renaming algorithm with time complexity O(�f ) and
message complexity O(n2�f ) in executions where f processes fail by crashing.

Proof. We focus on early decision, since the other properties follow from The-
orem 4 of [19]. First, recall that the initial value v for each approximate agree-
ment algorithm is computed locally by each process as rankV (α) · C2/C3. Since
rankV (α)/C3 ≤ 1, by the definition of C2, we obtain that all initial values are
between 1 and n. This also implies that our desired approximation factor ε is at
most 1/(10n).

Lemma 2 implies that all instances of approximate agreement that the renam-
ing algorithm executes in parallel terminate in O(�f ) rounds, with an approxi-
mation factor ε ≤ 1/(10n). We obtain that the renaming algorithm terminates
in O(�f ) rounds, as claimed.
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5 A Loose Renaming Algorithm with Improved Round
Complexity

In this section, we present a loose renaming algorithm that terminates in log f1+5
rounds and uses at most 2n names, where n is the number of participating pro-
cesses and f1 the number of failures that occur in the first round. Our algorithm
extends the non-early deciding renaming algorithm by Chaudhuri, Herlihy, and
Tuttle [13]. The latter algorithm is tight; its round complexity, however, depends
solely on n and not on the number of failures among the participating processes.
Specifically, the namespace when n processes participate is [1, n] and the algo-
rithm terminates in log n + 2 rounds. In the following, the algorithm of [13] is
called the CHT-renaming algorithm.

Algorithm Overview. The pseudo-code of the algorithm appears in Figure 3.
It contains two phases.

In the first phase, which consists of the two first rounds (line 1-line 7), each
process selects an interval of names in which it wishes to pick its final name.
The size of each interval is upper-bounded by 4f1, where f1 is the number of
processes that fail during the first round. The second phase (line 8-line 16) con-
sists of a variant of the CHT-renaming algorithm. Processes use this procedure
to progressively shrink the interval of names they are interested in, until obtain-
ing an interval of size 1. The algorithm ensures that no two processes obtain
the same interval of size 1, i.e. a single name. Thus, each process can decide the
unique name in its final interval. Moreover, it guarantees that in each round, pro-
cesses holding the largest intervals reduce their interval by one half. Therefore
our algorithm terminates in O(log f1) rounds.

We begin with a brief description of the CHT-renaming algorithm and then
explain how each process selects an initial interval of names.

Definitions and Notations. Before describing the algorithm in more details,
we introduce some notations, extending those in [13]. An interval I of positive
integers is well-formed if I is of the form [d2j + 1, (d + 1)2j] for some positive
integers d, j. Note that for every pair I, J of well-formed intervals, I∩J �= ∅ =⇒
I ⊆ J ∨J ⊆ I. Given a set I of well-formed intervals, we say that interval I ∈ I
is maximal in I if for every J ∈ I, either I ∩ J = ∅ or J ⊆ I.

The CHT-Renaming Algorithm. Each process p maintains a well-formed
interval of names I, which are the names p is interested in. In each round, process
p sends its id and the interval it currently holds I. The intervals intersecting with
I that p receives are stored in the set I (line 10). p also stores the set of ids of
the processes that are conflicting with p, that is, processes that hold an interval
intersecting with I in the set P (line 11). If I is maximal in I (line 12), I is
split in half, and p picks the bottom half or the top half of I, denoted bot(I)
and top(I) respectively, as its new interval (line 13-line 14). More precisely, the

new interval of p is bot(I) if the rank of p’s identity in P is smaller than |I|
2 .

Otherwise, p selects top(I) as its new interval. Finally, if p observes that every
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procedure renamei(idi) ;1

/* Round 1 */
broadcast(idi);2

rk ← the rank of id among the id received in round 1;3

/* Round 2 */
broadcast(idi, rk);4

let rk max = largest rank received; for each j, 1 ≤ j ≤ rk max do5

hj ← |{〈id′, rk′〉 : rk′ = j}| ;
est f ← max{(

∑
j∈I hj)− |I | : I ⊆ [1, rk max]};6

let j = �log(est f)� and d such that d · 2j + 1 ≤ rk ≤ (d+ 1) · 2j ;7

I ← [d · 2j+1 + 1, (d+ 1) · 2j+1] ;8

/* Round 3, 4, . . .: CHT-renaming protocol [13] */
repeat9

broadcast(id, I) ;10

I ← {I ′ : 〈id′, I ′〉 received and I ∩ I ′ = ∅} ;11

P ← {id′ : 〈id′, I ′〉 received and I ∩ I ′ = ∅} ;12

if ∀I ′ ∈ I, I ′ ⊆ I then13

let bot(I) and top(I) the bottom half and top half of I respectively;14

if rank(id,P) ≤ |I|
2

then I ← bot(I) else I ← top(I)15

until ∀I ′ ∈ I, |I ′| = 1 ;16

return namei where I = [namei, namei] ;17

Fig. 3. The Loose Renaming Protocol

interval sent in the round has size 1, it decides the unique name in its interval.
Since in each round the size of maximal interval is at least divided by 2, the
algorithm terminates after O(log c) rounds, where c is the size of the largest
initial maximal interval.

Name uniqueness relies on the following invariant, which is satisfied by the
set of intervals I[r] held by the processes at the beginning of each round r:

Invariant 1. For every I ∈ I[r], if m processes hold an interval I ′ ⊆ I, then
m ≤ |I|. In particular, this means that I is large enough to allow processes with
an interval I ′ ⊆ I to decide distinct names in the interval I.

In the original CHT-renaming, the initial interval of each process p is of the form
[1, 2b], where 2b is the least power of 2 larger than or equal to the number of
participating processes from which p has received a message in the first round.
The invariant above is thus initially true. In our algorithm, initial intervals are
selected differently, but the invariant is still satisfied.

Selection of Initial Intervals. In the first round, process p broadcasts its id,
and ranks its id among the ids it receives (line 2). Let rkp be the rank obtained
by p. If, among the ids of the participating processes, the rank of the id of p is
i, and f1 is the number of failures that occur in the first round, then

i− f1 ≤ rkp ≤ i. (1)
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This is because p may miss at most f1 messages from processes with id smaller
than i. In the second round, p sends its rank together with its id. It then esti-
mates, based on the ranks it receives, the number of failures that occur in the
first round. To that end, p evaluates for each interval of names I the difference
between the number of processes ranked in I and the size of I (line 4-line 5). The
estimate est f of the number of failures is then the maximum over all differences.
More precisely,

est f = max
I⊆[1,rk max]

∑
i∈I

hi − |I|.

where rk max is the largest rank received by p and hi is—to the knowledge of
p—the number of processes that rank their id i in the first round. The estimation
est f is upper-bounded by f1, the number f1 of failures that occur in the first
round. To see why, consider an interval I = [a, b]. We have:∑

i∈I

hi ≤ |{q : a ≤ rkq ≤ b}| ≤ |{q : a− f1 ≤ rank(idq, P ) ≤ b}| ≤ |I|+ f1, (2)

where P is the set of participating processes and rank(idq , P ) is the rank of idq
among the ids of the processes in P . The last inequality follows from Equation 1.

Finally, p selects a well-formed interval. This is performed in two steps. First,
p chooses two integers d, j such that the well-formed interval [d2j + 1, (d +
1)2j] contains rkp, and 2j is the least power of 2 larger than or equal to est f .
However, by equation (2), at most 2j + est f ≤ 2j+1 processes may have their
rank contained in [d2j+1, (d+1)2j]. Then, in order to satisfy Invariant 1, p selects
the interval I = [d2j+1 + 1, (d+ 1)2j+1] as its initial interval. Since a process p′

that selects an interval ⊆ I has its rank rkp′ contained in [d2j + 1, (d + 1)2j ],
at most 2j+1 = |I| processes select intervals I ′ ⊆ I. Invariant 1 is thus satisfied,
which preserves the correctness of the CHT-renaming algorithm. Finally, notice
that the size of each initial interval is at most 4f1, where f1 is the number of
failures in the first round. Hence the total running time is O(log f1) rounds.

The proof of correctness can be found in a companion technical report [3].

6 Discussion

This paper presents the first early-deciding upper bounds for synchronous re-
naming. We show that, surprisingly, renaming can be solved in constant number
of rounds if the number of failures f is limited to O(

√
n), while in the general

case, renaming can always be solved in O(log f) communication rounds. In the
wait-free case, i.e. for f = n− 1, this upper bound is matched asymptotically by
the Ω(log n) lower bound of Chaudhuri et al. [13]. It remains an open question
whether this is tight for other values of f .
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Abstract. Most known snapshot algorithms assume that the vertices
of the network have unique identifiers and/or that there is exactly one
initiator. This paper concerns snapshot computation in an anonymous
network and more generally what stable properties of a distributed sys-
tem can be computed anonymously with local snapshots with multiple
initiators when knowing an upper bound on the diameter of the network.

1 Introduction

The Problem. A distributed system (P,C) consists of a collection P of pro-
cesses and a communication subsystem C. It is described by a simple connected
undirected graph G = (V,E), where the vertices represent the processes and the
edges represent the bidirectional channels.

A message passing algorithm is defined as follows: to each process is associated
a state and a transition system which can modify the state of the process and
which can interact with the communication subsystem. The events which are
associated with a process are internal events, send events and receive events. In
a send (resp. receive) event a message is produced (resp. consumed).

Let Q be the (recursive) set of possible states of p. Let M be the set of possible
messages. The state of a channel is the multiset of messages sent through this
channel and not yet received. Let p be a process, the local snapshot with respect
to p is defined by the state of p and by the states of incoming channels to p.

The state of a distributed system G, also called its global state, is defined by
the state of each process and the state of each channel (or equivalently by the
set of local snapshots): it is precisely a (global) snapshot. Thus a snapshot of a
distributed system is an instantaneous map of it, where each vertex (resp. each
edge) is labelled by its state. It will be denoted by G = (G, λ) where λ is a
labelling function which associates to each vertex (resp. each edge) its state.
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By definition, in a fully distributed asynchronous system there is no global
clock and no process has the knowledge of a snapshot; each processor knows, a
priori, only its state. It knows neither the states of the other processors nor the
state of any channel.

Given a distributed system, the aim of a snapshot algorithm is the computa-
tion of such a global state.

As explained by Tel [Tel00] (p. 335-336), the construction of snapshots can
be useful to detect stable properties of the distributed system (properties which
remain true as soon as they are verified), to restart the system from the last
known snapshot (and not from the initial configuration) when the systemmust be
restarted (due to a failure of a component), or to debug distributed algorithms.

A consistent snapshot of a distributed system is a global state of the dis-
tributed system or a global state that the system could have reached. Since the
seminal paper of Chandy and Lamport [CL85] which presents an algorithm to
compute a consistent snapshot, many papers give such algorithms according to
the model of the distributed system. They assume that processes have unique
identifiers and/or that there is exactly one initiator. Many papers give also spe-
cific algorithms to detect some specific properties like termination or deadlock.

Recently, Guerraoui and Ruppert [GR05], considering that a vast majority of
papers on distributed computing assume that processes have unique identifiers,
ask the following question: What if processes do not have unique identifiers or
do not wish to divulge them for reasons of privacy?

In this paper, we consider this question in the context of snapshots compu-
tations and by considering stable properties of a distributed system that can
be detected anonymously. Furthermore, we look for fully distributed solutions
which admit several initiators.

The Model. As we said before, our model is the usual asynchronous message
passing model ( [Tel00,YK96b]). A network is represented by a simple connected
graph G = (V (G), E(G)) = (V,E) where vertices correspond to processes and
edges to direct communication links. The state of each process (resp. each link
e) is represented by a label λ(v) (resp. λ(e)) associated to the corresponding
vertex v ∈ V (G) (resp. link e ∈ E); we denote by G = (G, λ) such a labelled
graph. We assume the network to be anonymous: the identities of processors are
not necessarily unique.

We assume that each process can distinguish the different edges that are
incident to it, i.e., for each u ∈ V (G) there exists a bijection δu between the
neighbors of u in G and [1, degG(u)]. We will denote by δ the set of functions
{δu | u ∈ V (G)}. The numbers associated by each vertex to its neighbors are
called port-numbers and δ is called a port-numbering of G. We will denote by
(G, δ) the labelled graph G with the port-numbering δ.

Each process v in the network represents an entity that is capable of per-
forming computation steps, sending messages via some port and receiving any
message via some port that was sent by the corresponding neighbor. We consider
asynchronous systems, i.e., no global time is available and each computation may
take an unpredictable (but finite) amount of time. Note that we consider only
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reliable systems: no fault can occur on processes or communication links. We
also assume that the channels are FIFO, i.e., for each channel, the messages are
delivered in the order they have been sent. In this model, a distributed algorithm
is given by a local algorithm that all processes should execute. A local algorithm
consists of a sequence of computation steps interspersed with instructions to
send and to receive messages. We follow the presentation and definitions given
in [Tel00] (p. 45-47) or [AW04] (p. 10-12).

Our Contribution.We assume that the network is anonymous and that several
processes can be initiators of computations thus no process of the network can
compute a snapshot, i.e., can know a map of the network with vertices and
edges labelled by states of processes and channels (it is a direct consequence of
Theorem 5.5 in [Ang80]). Furthermore we assume that each process knows an
upper bound of the diameter of the network.

First we give a very simple algorithm based on the composition of an algo-
rithm by Szymanski, Shy, and Prywes [SSP85] with the Chandy-Lamport algo-
rithm which enables each process: to detect an instant where all processes have
obtained their local snapshot, and to associate the same number to all local snap-
shots. By this way we obtain two applications: one to checkpoint and rollback
recovery and a second to detect termination of the execution of a distributed
algorithm.

Then we prove that some stable properties can be anonymously detected by
proving we can compute a snapshot up to covering (called a weak snapshot). In
some sense, the weak snapshot is the “global view” or the “maximal knowledge”
of the distributed system that each vertex can obtain anonymously.

Related Work. Many notions and algorithms concerning snapshots, stable
properties, checkpointing and rollback recovery can be found in [KS08].

From a theoretical point of view, it is simple to know whether the global state
of a distributed system satisfies a stable property. A distinguished process starts
the Chandy-Lamport algorithm, then it collects states of processes and states
of channels, it computes a map of the network and finally it tests whether the
labelled network satisfies the given property.

To collect or to analyze local snapshots, different assumptions may be done
(see [KRS95]): processes have unique identifiers, there is exactly one initiator or
one collector process.

Some results have been obtained for the computation of snapshots in asyn-
chronous shared-memory systems that are anonymous : [GR05] (Section 5) gives
a survey. This paper also presents results concerning consensus and timestamp-
ing.

The question “What can be computed anonymously?” has been explored in
the asynchronous message passing model for the election problem, symmetry
breaking and more generally for computing functions [Ang80, BCG+96, JS85,
YK96b,YK96a, YK99, BV99]. Angluin has introduced the classical proof tech-
niques used for showing impossibilities based on coverings.
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2 The Chandy-Lamport Snapshot Algorithm

The aim of a snapshot algorithm is to construct a system configuration defined
by the state of each process and the state of each channel.

This section presents the Chandy-Lamport snapshot algorithm [CL85]; it is
presented as Algorithm 1. Each process p is equipped with: a boolean variable
takenp which is initialized to false that indicates if the process p has already
recorded its state, a boolean variable local-snapshotp initialized to false that in-
dicates if the process p has recorded its state and the state of incoming channels,
and a multiset of messages Mp,i, initially Mp,i = ∅, for each incoming channel i
of p.

We assume that Algorithm 1 is initiated by at least one process which: saves
its state, sends a marker on each outcoming port and for each incoming port
memorizes messages which arrive until it receives a marker through this port.
When a process receives for the first time a marker, it does the same thing that
an initiator; the incoming channel by which it receives for the first time a marker
is saved as empty.

Init-CLp : {To initiate the algorithm by at least one process p such that takenp = false}
begin

record(state(p)) ;
takenp := true;
send< mkr > to each neighbor of p;
For each port i the process p records messages arriving via i

end

R-CLp : {A marker has arrived at p via port j}
begin

receive< mkr >;
mark port j;
if not takenp then

takenp := true;
record(state(p)) ;
send< mkr > via each port;
For each port i �= j the process p records messages arriving via i in Mp,i

else
The process p stops to record messages from the channel j of p;
record(Mp,j)

if p has received a marker via all incoming channels then
local-snapshotp := true

end

Algorithm 1. The Chandy-Lamport snapshot algorithm

If we consider an execution of the Chandy-Lamport algorithm we obtain a
consistent snapshot within finite time after its initialization by at least one pro-
cess (see [Tel00] Theorem 10.7 ). In particular:

Fact 1. Within finite time after the initialization of the Chandy-Lamport algo-
rithm, each process p has computed its local snapshot (local-snapshotp = true).

Once the computation of local snapshots is completed (for each process p the
boolean local-snapshotp is true), the knowledge of the snapshot is fully
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distributed over the system. The next question is “how to exploit this distributed
knowledge?”.

A first answer is obtained by the construction of the global state of the sys-
tem centralized on a process. As is explained by Raynal [Ray88]: Providing an
algorithm for the calculation of a global state is a basic problem in distributed
systems. Several assumptions can be done to obtain a global state: exactly one
initiator for the Chandy-Lamport algorithm, processes have unique identifiers
or global colors associated to each computation of a global state...

A global clock can be simulated by local logical clocks [Ray88], nevertheless
it does not enable iterated computations of snapshots.

Another way to exploit the local knowledge is based on wave algorithms: a
message is passed to each process by a single initiator following the topology of
the network or a virtual topology (ring, tree, complete graph, ...), see [MC98].

These solutions are not available in the context of anonymous networks with
no distinguished process and no particular topology.

3 Termination Detection of the Chandy-Lamport
Snapshot Algorithm

A first problem is the termination detection of the computation of all local snap-
shots. It requires that all vertices certify, in a finite computation, that they have
completed the computation of the local snapshot. The algorithm by Szymanski,
Shy, and Prywes (the SSP algorithm for short) [SSP85] does this for a region
of pre-specified diameter. The algorithm assumes that an upper bound of the
diameter of the entire network is known by each process. In the sequel this up-
per bound is denoted by β and we assume that each process knows it. Now, we
present the SSP algorithm we use in this paper.

The SSP Algorithm. We consider a distributed algorithm which terminates
when all processes reach their local termination conditions. Each process is able
to determine only its own termination condition. SSP’s algorithm detects an
instant in which the entire computation is achieved.

Let G be a graph, to each process p is associated a predicate P (p) and an
integer a(p). Initially P (p) is false and a(p) is equal to −1. Transformations of
the value of a(p) are defined by the following rules.

Each local computation acts on the integer a(p0) associated to the process p0;
the new value of a(p0) depends on values associated to neighbors of p0. More
precisely, let p0 be a process and let {p1, ..., pd} the set of processes adjacent to p0.
If P (p0) = false then a(p0) = −1; if P (p0) = true then a(p0) = 1+Min{a(pk) |
1 ≤ k ≤ d}. We assume that for each process p the value of P (p) eventually
becomes true and remains true for ever. To apply the SSP algorithm, the label
of each process has two items:

– a(p) ∈ Z is a counter and initially a(p) = −1, a(p) represents the distance
up to which all processes have the predicate true;
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– A(p) ∈ Pfin(N× Z)1 encodes the information p has about the values of a(q)
for each neighbor q. Initially, A(p) = {(i,−1) | i ∈ [1, degG(p)]}.

We consider an execution E of the SSP’s algorithm on the graphG and (ai(p))i≥0

the sequence defined by the values of a(p) for the execution E . The predicate P
is true for each process of the ball of radius ai(p) with center p, i.e.:

Proposition 1. Let p be a process of G, we suppose that h = ai(p) ≥ 0. Then
for each q ∈ V (G), d(p, q) ≤ h ⇒ ai(q) ≥ 0.

Thus a process p such that a(p) is greater or equal than the diameter of the
graph knows that for each process q of the graph P (q) is true, i.e., it detects the
termination of the algorithm.

3.1 An Algorithm to Detect Termination of the Local Snapshots
Computation

Now, we compose the application of the Chandy-Lamport algorithm and the SSP
algorithm to enable each process to detect an instant where all processes have
completed the computation of their local snapshot: it is given as Algorithm 2.

Since we want the algorithm to be able to compute snapshots at different
times in the execution, we add a variable snapshot-numberp which indicates the
number of the snapshot (initially, snapshot-numberp = 0). This variable is not
really necessary in this section, but it will be used in the sequel.

Here, a process starts executing the SSP algorithm once it has computed its
pth local snapshot, i.e., when local-snapshotp is true.

A process p knows that each process has completed the computation of its
local snapshot as soon as a(p) ≥ β (we recall that β is an upper bound of the
diameter of the network). Thus we add a boolean variable snapshot initialized
to false; it indicates if the process knows whether all processes have completed
the computation of the local snapshots.

Proposition 2. let (G, λ) be a network. Let β be an upper bound of the diameter
of G known by each process. Within finite time after the initialization of the
Chandy-Lamport algorithm, Algorithm 2 enables each process to know an instant
where all processes have completed the computation of their local snapshots.

4 Two Applications: “Checkpoint and Rollback
Recovery” and “Termination Detection”

This section presents two simple applications of the Chandy-Lamport algorithm
and of Algorithm 2 in the anonymous context, without unicity of an initiator
and assuming that each process knows an upper bound of the diameter of the
network: 1. to compute configurations to restart the system when a process

1 For any set S, Pfin(S) denotes the set of finite subsets of S.



On Snapshots and Stable Properties Detection 213

Init-SSPp : {To initiate termination detection on the process p such that local-snapshotp =
true, a(p) = −1 and snapshot = false}
begin

a(p) := 0;
m := Min{x | (i, x) ∈ A(p)};
if m ≥ a(p) then

a(p) := m + 1 ;

send< a(p) > to each neighbor of p

end

R-SSPp : {An integer < α > has arrived at p via port j}
begin

receive< α >;
A(p) := (A(p) \ {(j, x)}) ∪ {(j, α)};
m := Min{x | (i, x) ∈ A(p)};
if (m ≥ a(p) and local-snapshotp = true) then

a(p) := m + 1;

if a(p) ≥ β then
snapshot-numberp := snapshot-numberp + 1;
snapshotp := true

else
send< a(p) > via each port

end

Algorithm 2. Termination detection of the Chandy-Lamport snapshot algorithm

fails (see [KS08] Chapter 13 for a presentation of checkpointing and rollback
recovery), 2. to detect the termination of an execution of a distributed algorithm.

An Application to Checkpoint and Rollback Recovery. A snapshot en-
ables to restart a system if there is a failure. As explained in [KS08] p. 456,
the saved state is called a checkpoint, and the procedure of restarting from a
previously checkpointed state is called rollback recovery.

Our solution is obtained by repeatedly executing the following steps:

1. at least one process initiates the Chandy-Lamport algorithm (Algorithm 1);
2. each process p detects an instant where the computation of its local snapshot

is completed: local-snapshotp = true;
3. each process p detects an instant where the computation of all local snapshots

is completed: snapshotp = true (Algorithm 2);
4. a new number (obtained by adding 1 to the counter snapshot-numberp,

initially snapshot-numberp = 0) is associated to this snapshot and each
process p gives this number to its local snapshot. Each process p saves its
last local snapshot associated to the number snapshot-numberp. It enables
to restart if there is a failure.

5. Finally, variables for Algorithm 1 and Algorithm 2 are reset at the end.

From Local Snapshots Computation to Termination Detection of the
Execution of a Distributed Algorithm

Let A be a distributed algorithm. Let E be an execution of A. Our aim is to
detect the termination of E .

An execution E has terminated if and only if all the processes are passive and
all the channels are empty. Thus to detect the termination of the execution E , it
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suffices that from time to time (to be defined) at least one process initializes the
computation of a snapshot and if its state is passive and its incoming channels
are empty it must detect if the same property holds for all the processes. This
is done by using an occurence of the SSP algorithm. If variables of a process p
indicate that the execution is not completed then q emits a signal through the
network to inform each process.

In this way, we obtain an algorithm to detect global termination of the execu-
tion of a distributed algorithm. These repeated termination queries are analogue
to the solution described by Santoro in Section 8.3 of [San07].

5 Coverings, Stable Properties and Weak Snapshots

We assume that the network is anonymous and that several processes can be
initiators of computations. Each process knows only an upper bound of the
diameter, denoted β. Under these hypotheses, no process can compute a map
of the network. We prove that each process can compute a graph covered by
the network, i.e., a weak snapshot. We prove also that classical properties, as
stable properties, studied through snapshots can be still studied thanks to a
weak snapshot.

In the following, we will consider directed graphs (digraphs) with multiple arcs
and self-loops. A digraph D = (V (D), A(D), sD, tD) is defined by a set V (D) of
vertices, a set A(D) of arcs and by two maps sD and tD that assign to each arc
two elements of V (D): a source and a target (in general, the subscripts will be
omitted). A symmetric digraph D is a digraph endowed with a symmetry, that
is, an involution Sym : A(D) → A(D) such that for every a ∈ A(D), s(a) =
t(Sym(a)). In a symmetric digraph D, the degree of a vertex v is degD(v) =
|{a | s(a) = v}| = |{a | t(a) = v}|. Let (G, λ) be a labelled graph with the
port-numbering δ. We will denote by (Dir(G), δ) the symmetric labelled digraph
(Dir(G), (λ, δ)) constructed in the following way. The vertices of Dir(G) are the
vertices of G and they have the same labels in G and in Dir(G). Each edge
{u, v} of G is replaced in (Dir(G), δ) by two arcs a(u,v), a(v,u) ∈ A(Dir(G)) such
that s(a(u,v)) = t(a(v,u)) = u, t(a(u,v)) = s(a(v,u)) = v, δ(a(u,v)) = (δu(v), δv(u))
and δ(a(v,u)) = (δv(u), δu(v)). Note that this digraph does not contain multiple
arcs or loop.

The notion of coverings and of symmetric coverings are fundamental in this
work; definitions and main properties are presented in [GT87,BV02]. This notion
enables to express “similarity” between two digraphs. A labelled digraph D is
a covering of a labelled digraph D′ via ϕ if ϕ is a homomorphism from D to
D′ such that for each arc a′ ∈ A(D′) and for each vertex v ∈ ϕ−1(t(a′)) (resp.
v ∈ ϕ−1(s(a′)), there exists a unique arc a ∈ A(D) such that t(a) = v (resp.
s(a) = v) and ϕ(a) = a′. A symmetric labelled digraphD is a symmetric covering
of a symmetric labelled digraph D′ via ϕ if D is a covering of D′ via ϕ and if
for each arc a ∈ A(D), ϕ(Sym(a)) = Sym(ϕ(a)). The homomorphism ϕ is a
symmetric covering projection from D to D′. Given a simple connected labelled
graphG = (G, λ) with a port-numbering δ which defines a snapshot of a network
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G Dir(G) D

Fig. 1. A graph G, the corresponding digraph Dir(G) and a digraph D′ such that
Dir(G) is a symmetric covering of D′

G. Let D = (Dir(G), δ) be the corresponding labelled digraph (Dir(G), (λ, δ)).
Let D′ be a labelled digraph such that D = (Dir(G), δ) is a covering of D′. The
labelled digraph D′ is called a weak snapshot of G.

Let G be a graph. Let D be a message passing algorithm and let E be an exe-
cution of D over G. A property P of configurations of E is stable: if P is true for
a configuration (state,M) then P is true for any configuration obtained from
(state,M). Among stable properties of distributed systems detected with snap-
shot, we consider: termination, deadlock, loss of tokens and garbage collection
(see [Tel00,San07,KS08]).

Termination: An execution E has terminated if and only if all processes are
passive and channels are empty. The link of this property with the computation
of a snapshot has been treated in Section 4.

Deadlock: A deadlock happens in a distributed system if there is a cycle of
processes each waiting for the next in the cycle with no message in transit. It
can be detected by constructing the wait-for-graph (WFG for short): vertices
are processes and there is an arc from the vertex (process) p to the vertex q if p
is blocked and is waiting for q. There is a deadlock if and only if there exists a
cycle in the WFG (see [San07,KS08]).

Loss of Tokens: Some distributed systems need that tokens circulate among
processes. In order to check if the number of tokens existing in the system is
correct, it may be interesting to check properties like “there are exactly k tokens”
or “there are at most k tokens”; these properties are stable.

Garbage Collection: The aim is to decide if an object is useful.We follow the
presentation of Schiper and Sandoz [SS94]: Consider a system composed of a set
of objects O, and a static subset Root ⊆ O, called root objects. Root objects
are invoked by some processes. An invocation on object oi implies the execution
of actions by oi. The set of objects can be represented as a set of processes
exchanging messages upon invocation, and messages can carry references. On
the set O of objects, define the descendant relation by: descendent (oi, oj) if
object oi holds a reference on object oj or a reference on oj is under way to oi.
An object oi is reachable either if oi ∈ Root or if oi is descendant of a reachable
object. By definition an object is useful if it is reachable. Only reachable object
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can send references to other objects. An object that is no more reachable in the
system is called garbage and should be destroyed. Thus reachable objects are
detected as vertices o for which there is a walk from a root to o.

Stable Properties and Snapshots. Usually, after the computation of a snap-
shot, stable properties are verified by using a spanning tree or an embedded ring;
they also may be verified in a centralized way by computing on a vertex a map
of the network each vertex and each channel being labelled with its state.

These solutions are no longer possible in an anonymous network with no
distinguished vertex. In this context, the tool we use is covering.

Stable Properties in Distributed Systems and Weak Snapshot. Let
D1 and D2 be two labelled digraphs such that D1 is a covering of D2 via the
homorphism ϕ. A lift of a walkW2 inD2 is a walkW1 inD1 such that ϕmaps the
arcs of W1 onto the arcs of W2 in the order of traversal. Let (G, δ) be a network
with a port numbering δ. Let D′ be a labelled graph such that (Dir(G), δ) is a
covering of D′. With our notations, Theorem 2.4.1 and Theorem 2.4.3 in [GT87]
can be translated by:

1. Let W be a walk in D′ such that the initial vertex is u. Then for each ui in
ϕ−1(u) there is a unique lift of W that starts at ui.

2. Let C be a cycle in D′. Then ϕ−1(C) is an union of cycles.

From these two results, we deduce that if D1 is a covering of D2 then deadlock
and garbage detected in D1 can be detected in D2. We recall that if D1 is a
covering of D2 via the homorphism ϕ then there exists an integer α such that
for each vertex u of D2 the cardinality of ϕ−1(u) is equal to α. Thus if there are
c1 tokens in D1 (for a non negative integer c1) then there are c2 = c1/α tokens
in D2. From this, we deduce that if the size of D1 is known then the knowledge
of D2 enables to detect loss of tokens in D2. These facts are summarized by:

Proposition 3. Let G be a distributed system. From any weak snapshot D of G,
one can detect deadlock and termination and one can perform garbage collection.
Furthermore, if the processes know the size of G then loss of tokens can also be
detected from a weak snapshot.

In the following, we describe a fully distributed algorithm (it may admit several
initiators) with termination detection, which computes D2 such that D1 is a
covering of D2. Using such an algorithm, from Proposition 3, we can solve stable
properties detection. It suffices that:

1. at least one process initiates the Chandy-Lamport algorithm (Algorithm 1);
2. each process detects an instant where the computation of all local snapshots

is completed (Algorithm 2);
3. at least one process initiates the computation of a weak snapshot;
4. each process detects an instant where the computation of the weak snapshot

is completed and decides about the stable property.

Computing Anonymously a Weak Snapshot. Let (G, δ) be a labelled graph
with a port numbering δ. We assume that G is anonymous and each vertex of
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G knows an upper bound, denoted β, of the diameter of G. There exists an
algorithm, denoted MW−S , which computes a weak snapshot, i.e., a labelled
digraph (D, δ′) such that (Dir(G), δ) is a covering of (D, δ′). In some sense,
the weak snapshot (D, δ′) is the “global view” or the “maximal knowledge” of
the distributed system that each vertex can obtain ( [Ang80], Theorem 5.5).
If processes know an upper bound of the diameter of the network then they
can detect the termination of MW−S . This algorithm has been presented in
[Cha06,CM07] as an election algorithm when it is executed on minimal graphs for
the symmetric-covering relation (the graph (G, δ) is minimal if when (Dir(G), δ)
is a symmetric-covering of (D, δ′) then (Dir(G), δ) is isomorphic to (D, δ′)).
This algorithm is based on another election algorithm given by Mazurkiewicz
in [Maz97] and the SSP algorithm. During the execution of the algorithm, each
vertex v attempts to get an identity which is a number between 1 and |V (G)|.
Once a vertex v has chosen a number n(v), it sends it to each neighbor u with
the port-number δv(u). When a vertex u receives a message from one neighbor
v, it stores the number n(v) with the port-numbers δu(v) and δv(u). From all
information it has gathered from its neighbors, each vertex can construct its
local view (which is the set of numbers of its neighbors associated with the
corresponding port-numbers). Then, a vertex broadcasts its number, its label
and its mailbox (which contains a set of local views). If a vertex u discovers the
existence of another vertex v with the same number then it should decide if it
changes its identity. To this end it compares its local view with the local view
of v. If the label of u or the local view of u is “weaker”, then u picks another
number — its new temporary identity — and broadcasts it again with its local
view. At the end of the computation, each vertex has computed a graph (D, δ′)
such that (Dir(G), δ) is a symmetric covering of (D, δ′).
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Abstract. Wireless Ad-hoc networks are distributed systems that of-
ten reside in error-prone environments. Self-stabilization lets the system
recover autonomously from an arbitrary system state, making the sys-
tem recover from errors and temporarily broken assumptions. Clustering
nodes within ad-hoc networks can help forming backbones, facilitating
routing, improving scaling, aggregating information, saving power and
much more. We present a self-stabilizing distributed (k,r)-clustering al-
gorithm. A (k,r)-clustering assigns k cluster heads within r communica-
tion hops for all nodes in the network while trying to minimize the total
number of cluster heads. The algorithm assumes a bound on clock fre-
quency differences and a limited guarantee on message delivery. It uses
multiple paths to different cluster heads for improved security, availabil-
ity and fault tolerance. The algorithm assigns, when possible, at least k
cluster heads to each node within O(rπλ3) time from an arbitrary sys-
tem configuration, where π is a limit on message loss and λ is a limit
on pulse rate differences. The set of cluster heads stabilizes, with high
probability, to a local minimum within O(rπλ4g log n) time, where n is
the size of the network and g is an upper bound on the number of nodes
within 2r hops.

1 Introduction

Starting from an arbitrary system state, self stabilizing algorithms let a system
stabilize to, and stay in, a consistent system state [5]. There are many reasons
why a system could end up in an inconsistent system state of some kind. As-
sumptions that algorithms rely on could temporarily be invalid. Memory content
could be changed by radiation or other elements of harsh environments. Battery
powered nodes could run out of batteries and new ones could be added to the
network. It is often not feasible to manually configure large ad-hoc networks
to recover from events like this. Self-stabilization is therefore often a desirable
property of algorithms for ad-hoc networks. However, the trade off is that self-
stabilization often comes with increased costs. A self-stabilizing algorithm can
never stop because it is not known in advance when temporary faults occur.
Nevertheless, as long as all assumptions hold, it can converge to stable result,
or, after convergence, stay within a set of acceptable states. Moreover, there are
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often overheads in the algorithm tied to the need to recover from arbitrary sys-
tem states. They can be additional computations, larger messages, larger data
structures or longer required times to achieve certain goals.

An algorithm for clustering nodes together in an ad-hoc network serves an
important role. Back bones for efficient communication can be formed using
cluster heads. Clusters can be used for routing messages. Cluster heads can be
responsible for aggregating data into reports to decrease the number of individual
messages that needs to be routed through the network, e.g., aggregating sensor
readings in a wireless sensor network. Hierarchies of clusters on different levels
can be used for improved scaling of a large network. Nodes in a cluster could
take turns doing energy-costly tasks to reduce overall power consumption.

Clustering is a well studied problem. Due to space constraints, for references
to the area in general, we point to the survey of the area with regard to wireless
ad-hoc networks by Chen, Liestam and Liu in [4] and the survey by Abbasi
and Younis in [1] for wireless sensor networks. In this paper we focus on self-
stabilization, redundancy and security aspects. One way of clustering nodes in
a network is for nodes to associate themselves with one or more cluster heads.
In the (k,r)-clustering problem each node in the network should have at least k
cluster heads within r communication hops away. This might not be possible for
all nodes if the number of nodes within r hop from them is smaller than k. In such
cases a best effort approach can be taken for getting as close to k cluster heads as
possible for those nodes. The clustering should be achieved with as few cluster
heads as possible. To find the global minimum number of cluster heads is in
general computationally hard, and algorithms usually provide approximations.
The (1,r)-clustering problem, a subset of the (k,r)-clustering problem, can be
formulated as a classical set cover problem. This was shown to be NP complete
in [10]. Assuming that the network allows k cluster heads for each node, the
set of cluster heads forms a total (k,r)-dominating set in the network. In a total
(k,r)-dominating set the nodes in the set also need to have k nodes in the set
within r hops, in contrast to an ordinary (k,r)-dominating set in which this is
only required for nodes not in the set.

There is a multitude of existing clustering algorithms for ad-hoc networks of
which a number is self-stabilizing. Johnen and Nguyen present a self-stabilizing
(1,1)-clustering algorithm that converges fast in [9]. Dolev and Tzachar tackle
a lot of organizational problems in a self-stabilizing manner in [6]. As part of
this work they present a self-stabilizing (1,r)-clustering algorithm. Caron, Datta,
Depardon and Larmore present a self-stabilizing (1,r)-clustering in [3] that takes
weighted graphs into account. Self-stabilization in systems with unreliable com-
munications was introduced in [2]. In [14] a self-stabilizing (k,1)-clustering al-
gorithm, that can cope with message loss, is presented. There is a number of
papers that do not have self-stabilization in their settings. Fu, Wang and Li con-
sider the (k,1)-clustering problem in [7]. In [15] the full (k,r)-clustering problem
is considered and both a centralized and a distributed algorithm for solving this
problem are presented. Wu and Li also consider the full (k,r)-clustering in [17].
Other algorithms do not take the cluster head approach. In [16], sets of nodes
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that all can communicate directly with each other are grouped together without
assigning any cluster heads. In this paper malicious nodes that try to disturb
the protocol are also considered, but self-stabilization is not considered.

We have constructed a self-stabilizing (k, r)-clustering algorithm for ad-hoc
networks that can deal with message loss, as long as at least one out of π consec-
utive broadcasts are successful, and that uses unsynchronized pulses, for which
the ratios between pulse rates are limited by a factor λ. The algorithm makes
sure that, within O(rπλ3) time, all nodes have at least k cluster heads (or all
nodes within r hops if a node has less than k nodes within r hops) using a deter-
ministic scheme. A randomized scheme complements the deterministic scheme
and lets the set of cluster heads stabilize to a local minimum. It stabilizes within
O(rπλ4g logn) time with high probability, where g is a bound on the number of
nodes within 2r hops, and n is the size of the network. We presented the first
distributed self-stabilizing (k,r)-clustering in [11]. There, the system settings as-
sumed perfect message transfers and lock step synchronization of the nodes. The
current article is a further development of that work and the main idea of the
algorithm is the same. The unreliable communication media, the unsynchronized
nodes and the introduction of a veto mechanism to speed up convergence, all
have made the current algorithm quite different, yet clearly related to the one
in [11]. We present an overview of our correctness proofs for quick selection of
enough cluster heads (k cluster heads within r hops when possible) and that the
set of cluster heads converges towards a local minimum and stays. This includes
an upper bound on the time it takes, with high probability, for that convergence
to happen. Due to space constraints we refer the reader to [12] for the full set
of proofs. Furthermore, we also present experimental results on the convergence
of the algorithm and how it copes with changes to the topology. The rest of
the paper is organized as follows. In section 2 we introduce the system settings.
Section 3 describes the algorithm. Section 4 gives the overview of the proofs
of the algorithm. We discuss experimental results, security and redundancy in
Section 5.

2 System Settings

We assume a static network. Changes in the topology are seen as transient faults.
We denote the set of all nodes in the network P and the size of the network
n = |P|. We impose no restrictions on the network topology other than that an
upper bound, g, on the number of nodes within 2r hops of any node is known
(see below).

The set of neighbors, Ni, of a node pi is all the nodes that can communicate
directly with node pi. In other words, a node pj ∈ Ni is one hop from node pi.
We assume a bidirectional connection graph, i.e., that pi ∈ Nj iff pj ∈ Ni. The
neighborhood, Gr

i of a node pi is all the nodes (including itself) at most r hops

away from pi and Ĝr
i = Gr

i \ {pi}. Let g ≥ maxj |G2r
j | be a bound, known by the

nodes, on the number of nodes within 2r hops from any node.
Nodes are driven by a pulse going off every 1 time unit (with respect to its

local clock). Pulses are not synchronized between nodes. The pulse frequency,
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Constants, and variables:
i : Constant id of executing processor.
T, Tcool, Tflood, κ : Constants derived from r, k, λ and π. See Definition 4.
state ∈ {HEAD, ESCAPING, SLAVE} : The state of the node.
timer : Integer. Timer for escape attempts.
estart : Integer. The escape schedule.
estate ∈ {SLEEP, INIT, FLOOD} : State for escape attempts.
heads, slaves : Sets of Id:s tracking what nodes have which role.
smem, sendset, data : Infotuple sets for keeping and forwarding state data.

External functions and macros:
LBcast(m) : Broadcasts message m to direct neighbors.
LBrecv(m) : Receives a message from direct neighbor.
smallest(a,A) : Returns the min(|A|,a) smallest id:s in A.
pruneset(A): maxt ← {< j,ji,ttl,ttf> ∈ A : ttl = maxτ {τ : < j,ji,τ ,ttf> ∈ A}}

return {< j,ji,ttl,ttf> ∈ maxt : ttf = maxφ {φ : < j,ji,ttl,φ> ∈ maxt}}
prunemem(A): return {< j,ji,ξ> ∈ A : ξ = maxx {x : < j,ji,x> ∈ A})}

Fig. 1. Constants, variables, external functions and macros for the algorithm in Fig-
ures 2 and 3

in real time, of a node pi is denoted ρi. For any pair of nodes pi and pj the
ratio ρi/ρj ≤ λ, a value is a known to the nodes. Without loss of generality we
assume that the frequency of the slowest clock in the system is 1 and thus the
clock frequency of any node pi is in [1, λ].

Among π successive messages sent from one node there is at least one message,
such that all immediate neighbors pj ∈ Ni receive that particular message. Such
a message is called a successful broadcast. The nodes know the value of π. Apart
from that assumption, messages from a node pi can be lost, be received by a
subset of Ni, or received by all nodes in Ni.

3 Self-stabilizing Algorithm for (k, r)-Clustering

The goal of the algorithm is, using as few cluster heads as possible, for each
node pi in the network to have a set of at least k cluster heads within its r-hop
neighborhood Gr

i . This is not possible if a node pi has |Gr
i | < k. Therefore,

we require that |Cr
i | ≤ ki, where Cr

i ⊆ Gr
i is the set of cluster heads in the

neighborhood of pi and ki = min(k, |Gr
i |) is the closest number of cluster heads

to k that node pi can achieve. We do not strive for a global minimum. That is
too costly. We achieve a local minimum, i.e., a set of cluster heads in which no
cluster head can be removed without violating the (k, r) goal.

The basic idea of the algorithm is for cluster heads to constantly broadcast the
fact that they are cluster heads and for all nodes to constantly broadcast which
nodes they consider to be cluster heads. The set of considered cluster heads
consists both of nodes that are known to be cluster heads and, additionally,
nodes that are elected to become cluster heads. The content of the broadcasts
are forwarded r hops, but in an aggregated form to keep the size of messages
down. The election process might establish too many cluster heads. Therefore,
there is a mechanism for cluster heads to drop their cluster head roles, to escape.
Eventually a local minimum of cluster heads forms a total (k,r)-dominating set
(or, if not possible given the topology, it fulfills |Cr

j | ≥ kj for any node pj). The



Self-stabilizing (k,r)-Clustering in Clock Rate-Limited Systems 223

1 on pulse:
2 timer ← (timer + 1) mod T
3 if estate = SLEEP ∧∃t s.t. (i, JOIN, t) ∈ smem then state ← HEAD
4 if state = HEAD then (newheads, newslaves) ← ({i}, ∅)
5 else (newheads, newslaves) ← (∅, {i})
6 for each j ∈ {k |k �= i ∧∃ ki �= JOIN,t s.t. (k,ki,t) ∈ smem} do handlestate(j)
7 (heads, slaves) ← (newheads, newslaves)
8 if state ∈ {HEAD,ESCAPING} /* Escaping */
9 estate ← updateestate()

10 if estate = INIT ∧ state = HEAD ∧ |heads| > k
11 state ← ESCAPING
12 < heads, slaves> ← < heads \ {i}, slaves ∪ {i}>
13 if state = ESCAPING ∧ estate = SLEEP
14 if ∃t s.t. (i, JOIN, t) ∈ smem then state ← HEAD
15 else state ← SLAVE
16 if state = SLAVE then < estate,estart> ← < SLEEP,-1>
17 if |heads| < k /* Add heads */
18 heads ← heads ∪ {smallest(k -|heads|, slaves)}
19 slaves ← slaves \ heads
20 for each j ∈ heads /* Join and send state */
21 if j �= i then sendset ← pruneset(sendset ∪ {< j, JOIN, r, π> })
22 else state ← HEAD
23 smem ← stepmem(smem)
24 < sendset,data> ← stepset(pruneset(sendset ∪ {< i, state, r, π> }))
25 LBcast(< i,data> )
26

27 function updateestate:
28 if timer = 0 then estart ← uniformlyrandom({0, 1, . . ., T-Tcool-1})
29 if estart ∈ [0,T-Tcool-1 ]
30 if timer ∈ [estart, estart ] then return INIT
31 else if timer ∈ [estart+1, estart+Tflood-1 ] then return FLOOD
32 return SLEEP
33

34 function handlestate(j):
35 js ← prioritystate(j,smem)
36 if js = HEAD
37 newheads ← newheads ∪ {j}
38 sendset ← pruneset(sendset ∪ {< j, JOIN, r, π> })
39 else if js = ESCAPING ∧ j ∈ heads
40 if |heads| ≤ k
41 newheads ← newheads ∪ {j}
42 sendset ← pruneset(sendset ∪ {< j, VETO, r, π> })
43 else heads ← heads \ {j}
44 newslaves ← (newslaves ∪ {j}) \ newheads

Fig. 2. Pseudocode for the self-stabilizing clustering algorithm (1/2)

choice of which nodes that are picked when electing cluster heads is based on
node ID:s in order to limit the number of unneeded cluster heads that are elected
when new cluster heads are needed.

One could imagine an algorithm that in a first phase adds cluster heads and
thereafter in a second phase removes cluster heads that are not needed. To
achieve self-stabilization however, we cannot rely on starting in a predefined
system state. Recovery from an inconsistent system state might start at any
time. Therefore, in our algorithm there are no phases and the mechanism for
adding cluster heads runs in parallel with the mechanism for removing cluster
heads and none of them ever stops.

At each pulse a node sends out its state (the algorithmic state, i.e., which
role it takes in the algorithm) and forwards the states of others. A cluster head
node normally has the state HEAD and a non cluster head node always has state
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46 function prioritystate(j,mem):
47 if ∃ t s.t. (j, HEAD, t) ∈ mem
48 return HEAD
49 if ∃ t s.t. (j, ESCAPING, t) ∈ mem
50 return ESCAPING
51 return SLAVE
52

53 function stepmem(mem):
54 newmem ← ∅
55 for each < j,js,ttk> in mem
56 ttk ← min(ttk,κ)-1
57 if ttk > 0
58 newmem ← prunemem(
59 newmem ∪ {< j,js,ttk> })
60 return newmem
61

62 function stepset(set):
63 < newset, newdata> ← < ∅, ∅>

64 for each < j,ji,ttl,ttf> in set
65 < ttl, ttf> ← < min(ttl,r), min(ttf,π)-1>
66 if ttf > 0 ∧ ttl > 0 then
67 newset ← pruneset(newset ∪ {< j,ji,ttl,ttf> })
68 if ttf ≥ 0 ∧ ttl > 0 then
69 newdata ← newdata ∪ {< j,ji,ttl> }
70 return < newset, newdata>
71

72 on LBrecv(< k, infoset> ):
73 for each < j,ji,ttl> ∈ infoset
74 ttl ← min(ttl,r))
75 if ji = VETO
76 if j = i ∧ state = ESCAPING
77 state ← HEAD
78 else if (j �= i ∧ ji �= JOIN) ∨ (j = i ∧ ji = JOIN)
79 smem ← prunemem(smem ∪ {< j,ji,κ> })
80 if j �= i ∧ ttl > 1
81 sendset ← pruneset(sendset ∪ {< j,ji,ttl-1,π> })

Fig. 3. Pseudocode for the self-stabilizing clustering algorithm (2/2)

SLAVE. If a node pi in any pulse finds out that it has less than k cluster heads it
selects a set of other nodes that it decides to elect as cluster heads. Node pi then
elects established cluster head nodes and any newly elected nodes by sending a
join message to them. Any node that is not a cluster head becomes a cluster
head if it receives a join addressed to it.

We take a randomized approach for letting nodes try to drop their cluster
head responsibility. Time is divided into periods of T pulses. A cluster head
node pi picks uniformly at random one pulse out of the T − Tcool first pulses in
the period as a possible starting pulse, estarti, for an escape attempt. If pi has
more than k cluster heads in pulse estarti, then it will start an escape attempt.
When starting an escape attempt a node sets it state to ESCAPING and keeps
it that way for a number of pulses to make sure that all the nodes in Gr

i will
eventually know that it tries to escape. A node pj ∈ Gr

i that would get fewer
than k cluster heads if pi would stop being a cluster head can veto against the
escape attempt. This is done by continuing to regard pi to be a cluster head and
send a VETO back to pi. If pj , on the other hand, has more than k cluster heads
it would not need to veto. Thus, by accepting the state of pi as ESCAPING, pj
will not send any join to pi. After a number of pulses all nodes in Ĝr

i will have
had the opportunity to veto the escape attempt. If none of them objected, at
that point pi will get no joins and can set its state to SLAVE.

If an escape attempt by pi does not overlap in time with another escape
attempt it will succeed if and only if minpj∈Gr

i
|Cr

j | > k. If there are overlaps
by other escape attempts, the escape attempt by pi might fail even in cases
where minpj∈Gr

i
|Cr

j | > k. The random escape attempt schedule therefore aims
to minimize the risk of overlapping attempts.

The pseudocode for the algorithm is described in Figures 2 and 3 with ac-
companying constants, variables, external functions and macros in Figure 1. At
each pulse of a node the lines 1-25 are executed resulting in a message that is
broadcast at some time before the next pulse of that node. When a message is
being received, the lines 72-81 are executed.
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4 Correctness

Due to space constraints, this section contains the theorems and the most im-
portant lemmas and an overview on the resulting figures and where they come
from. The full set of lemmas and proofs of all lemmas and theorems can be found
in [12].

In Section 4.1 we show some basic results that we use further on. In Section 4.2
we will show that within O(rπλ3) time we will have |Cr

i | ≥ ki for any node pi.
First we show that this holds while temporarily disregarding the escaping mech-
anism, and then that it holds for the general case in Theorem 1. In Section 4.3
we will show that a cluster head node pi can become slave if it is not needed
and if it tries to escape undisturbed by other nodes in G2r

i . We continue to show
that the set of nodes converges, with high probability, to a local minimum in
O(rπλ4g logn) time in Theorem 2.

Definition 1. When all system assumptions hold from a point s in time and
forward, we say that “we have a legal system execution from s”. We denote a
pulse of pi with Γ i

x for some integer x. Consecutive pulses of pi have consecutive
indices, e.g., Γ i

x, Γ
i
x+1, Γ

i
x+2, etc. We denote the time between Γ i

x and Γ i
x+1 with

γi
x.

Definition 2. We define the set of states as {SLAVE,HEAD,ESCAPING}.
An infotuple is a tuple (j, js, ttx) or (j, js, ttl, ttf), where js is a either a state
or one of {VETO, JOIN} and is said to be for node pj regardless if pj is the
original sender or final receiver of the infotuple. The ttx field can either be a ttl,
the number of hops the info is to be forwarded, or a ttk, the number of pulses
for which the infotuple should be kept in smem before being discarded. A ttf
field denotes the number of resends that is left to be done for that particular
tuple. We say that a state earlier in the list [HEAD, ESCAPING, SLAVE] has
priority over a state that is later in that list. We say that an infotuple (j, σ, τ) is
memorablei if and only if either j �= i and σ is a state, or if j = i and σ = JOIN
and that it is relevanti if and only if either it is memorablei or if i = j and
σ = VETO.

Definition 3. A node pi is said to handle a state σ for a node pj in a pulse
Γ i
x when the handlestate function is called with parameter j at line 6 and the

subsequent call to the prioritystate with j as a parameter returns σ, setting
jsi = σ at line 35.

4.1 Basic Properties

This section builds up a base on how the algorithm works together with the
system settings. First up is the definition of various constants whose value is the
result of later lemmas.
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Definition 4. We define κ = 	(2rπ+1)λ
, Tflood = 	r(4π+2)λ2+r(2π+2)λ
,
ts = r(2π + 1)λ2 + r(π + 1)λ + λ − 1, te = (Tflood − 1)λ + r(π + 1)λ + κλ,
th = κ − r(π − 1)λ − 1, and Tcool = 	te + r(π + 1)λ
. Furthermore, we define
T = Tes + Tcool, where Tes = 	 2g

ln 2 (ts + te − 2th + 1)
.

This lemma shows that the algorithm forwards information from any node pj
such that it reaches all nodes in Ĝr

j within time O(rπλ). The three factors are
due to forwarding r hops, only one in π messages are guaranteed to arrive and
the clock skew can allows for pulses to be up to λ time apart.

Lemma 1. Assume that we have a legal system execution from time s−r(π−1)λ
and consider a node pi that has a pulse Γ i

x at time s. Now, assume that pi has
(k, σ, r, π) in sendseti just before executing line 24 in Γ i

x and consider a node
pj ∈ Gr

i , pj �= pi and a time interval Î = [s− r(π − 1)λ, s+ r(π + 1)λ]. First, if

(k, σ, τ ′) is relevantj, there exist a pulse Γ j
y ∈ Î so that (k, σ, τ ′) is received in

γj
y−1, for a τ ′ ≥ 1. Second, if (k, σ, τ ′) is memorablej, then (k, σ, κ) ∈ smemj

in Γ j
y just before executing line 2.

The corollary shows that the mechanisms that keeps data for a certain time,
guarantees that eventually nodes in Ĝr

j will see the correct state of node pj if it
stays in that state long enough. Compared to Lemma 1 this introduces another
factor O(λ) time. This is because if a node wants to make sure that O(rπλ) time
has passed it needs to count O(rπλ) pulses, but O(rπλ) pulses can take O(rπλ2)
time. Building Lemmas on top of each other, this is the mechanism that adds
additional factors of λ the further we go in the proof chain.

Corollary 1. Assume that we have a legal system execution from time s−λ and
consider a node pi that has a pulse Γ i

x at time s. Let χ = 	r(2π+1)λ2+r(π+1)λ+
2λ
. Now assume that a node pi, in each of the pulses Γ i

x–Γ
i
x+χ−1, adds (i, σ, π)

to sendseti and does not add (i, σ′, π) to sendseti for any σ �= σ′. Then, for any
node pj ∈ Gr

i , pj has a pulse Γ j
y at a time ŝ = s+ r(2π+1)λ2+ r(π+1)λ− 1+ t

for a t ∈ [0, 2λ], in which pj handles σ for pi. Furthermore, ŝ happens between
the execution of the pulses Γ i

x and Γ i
x+χ−1.

4.2 Getting Enough Cluster Heads

This section shows that the algorithm will elect enough cluster heads.

Definition 5. For a node pi to be a cluster head is equivalent to statei
∈ {HEAD,ESCAPING}. For a node pi to be a slave is equivalent to statei =
SLAVE. For a node pj, we define Cr

j as the set of cluster heads in Gr
j . Further-

more, we define Hx to be the set of cluster heads in the network at time x.

Definition 6. A node pi initiates an escape attempt in a pulse Γ i
x if the condi-

tion holds in line 10 and lines 11–12 are executed in Γ i
x.

Lemma 2 shows that the escape mechanism works, that a cluster head that is
not needed can escape that responsibility.
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Lemma 2. Assume that we have a legal system execution from time s − Tcool

and consider a node pi that initiates an escape attempt in a pulse Γ i
x at time s.

If all nodes pj ∈ Gr
i have |Cj | > k at time s + th and no node p� ∈ Ĝ2r

i ,
initiates an escape attempt in any pulse in [s− te + th, s+ ts − th] then node pi
will set statei to SLAVE in pulse Γ i

x+Tflood
and have statei = SLAVE throughout

any γi
x′ or Γ i

x′+1 for any x′ ≥ x+ Tflood.
If, on the other hand, there exists a node pj ∈ Gr

i that is having |headsj| ≤ k
with k ∈ headsj when pj is first handling ESCAPING for pi, then pj will not
set statei to SLAVE in this escape attempt.

Theorem 1 shows that, within time Tcool + (5rπ + 4)λ ∈ O(Tfloodλ) = O(rπλ3)
from an arbitrary configuration, all nodes pi have at least ki cluster heads within
r hops and that the set of cluster heads in the network can only stay the same or
shrink from that point on. From Corollary 1 we get the factor O(λ2) time for a
node to know that it has reached out. This theorem introduces another factor of
O(λ) because a node needs to be sure that another node has finished something
as discussed previously.

Theorem 1. Assume that we have a legal system execution from time s. Then
any node pj will have kj cluster heads from time s+Tcool+(3rπ+2)λ and onward.
Moreover, a node that is not in Ht for a time t ≥ s+Tcool+(5rπ+4)λ can not be
in Ht′ for a t′ ≥ t and consequently |Ht′ | ≤ |Ht| for any s+Tcool+(5rπ+4)λ ≤
t ≤ t′.

4.3 Convergence to a Local Minimum

Lemma 2 shows that a cluster head node that is not needed can escape the
cluster head responsibility if it does not interfere with escape attempts by other
nodes. This section shows that the set of cluster heads converges to a local
minimum. We first show that an unneeded cluster head node can escape, with
high probability (Lemma 3) in O(Tλ) = O(grπλ4) time. The extra λ is due to
the usual reason and T ∈ O(grπλ3). The factor g is a bound on the number of
nodes that could interfere with a given escape attempt. It is part of T to give
a node a constant probability of escaping in its one try in a period of T time
(given that it is not needed as a cluster head).

Lemma 3. Assume that we have a legal system execution from time s and
consider a node pi that is a cluster head. Assume that |Cr

j | > k holds for

all nodes pj ∈ Ĝr
i from time s + Tcool + (5rπ + 4)λ and as long as pi re-

mains a cluster head. Then, node pi will have statei = SLAVE after time
s+ Tcool + (5rπ + 4)λ+ (β + 1)Tλ with at least probability 1− 2−β.

Theorem 2, shows that with high probability the entire network reaches a local
minimum within O(rπλ4g logn) time.

From Theorem 1 we got that all nodes pi have at least ki cluster heads within
r hops in Tcool + (3rπ + 2)λ time after an arbitrary configuration.



228 A. Larsson and P. Tsigas

Theorem 2 shows that with at least probability 1 − 2−α the set of cluster
heads in the network stabilizes to a local minimum within s + Tcool + (5rπ +
4)λ+(α+logn+1)Tλ time. The factor O(log n) is multiplied by the result from
Lemma 3 because we go from probabilistic guarantee that one specific node gets
an uninterrupted escape attempt to that all cluster heads get such an attempt.
And the number of cluster heads is bounded by the number, n, of nodes in the
network.

Theorem 2. Assume that we have a legal system execution from time s. With
at least probability 1−2−α, by time ŝ = s+Tcool+(5rπ+4)λ+(α+log n+1)Tλ
there will be no cluster head node pi in the network for which minpj∈Gi(|Cr

j |) > k
holds, and Hŝ+t = Hŝ holds for any positive t.

5 Discussion

To experimentally test performance, we did simulations of the algorithm for
various settings of k and r. We placed 40 nodes with a communication radius of
1 uniformly at random in a 5 by 5 rectangular area. From our experiments we
concluded that using a g that gives us 95% guarantees of being an upper bound
on every |G2r

j | for any given pj, is not required to get good performance. The
calculated bounds are not tight. In the experiments we have therefore used a
tenth of that value for g instead.

In addition, we performed experiments on recovery from small changes to the
topology from a converged system state. The convergence times from a newly
started network (“Start”) is compared in Figure 4 with the convergence times
after a change to a initially converged network. We investigate 10% added nodes
(“Add”), 10% removed nodes (“Remove”) or 10% moved nodes (“Move”).

We can see that the least obtrusive change to the topology is removed nodes.
The chance is good that a removed node is not a cluster head and thus do not
upset the balance. An add is more expensive than a remove. Nodes might end
up in an area where there is not so many cluster heads and therefore have to
start elect new nodes. A move is like both a remove and an add. Therefore, it is
anticipated that this case converges slower than the ones with only adds or only
removes.

The flooding of messages makes sure that if there exist multiple paths of at
most length r between a node pi and a node pj then joins and state updates
will traverse all possible paths. This can give us higher fault tolerance if there
are communication disturbances on some links (i.e., between some immediate
neighbors) and also higher availability for nodes to reach their cluster heads.

The multiple paths can also give applications higher security if some nodes in
the network can be compromised. If there is at least one path of at most r hops
between a node pi and a node pj that is not passing through any compromised
nodes then the flooding makes sure that node pi and pj gets to know about each
other. Moreover, if pj wants pi to be cluster head then the compromised nodes
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Fig. 4. Convergence times from a fresh start, after 10% node additions, after 10%
node removes and after 10% node moves

cannot stop that. If nodes add information to the messages about the paths
they have taken during message forwarding then the nodes get to know about
the multiple paths. With this knowledge they can in an application layer use as
diverse paths as possible to communicate with their cluster heads. Thus even if
a compromised node is on the path to one cluster head and drops messages or
do other malicious behavior there can be other cluster heads for where there is
no compromised nodes on the chosen paths.

Consider a compromised node pc that can lie and not follow protocol. First
assume that pc cannot introduce node id:s that does not exist (Sybil attacks, [13])
or node id:s for nodes that are not within Gr

c (wormhole attacks, [8]) and that
pc cannot do denial of service attacks. Then pc can make any or all nodes within
Gr

c become and stay cluster heads by sending joins to them or having them
repeatedly go on and off cluster head duty over time by alternating between
sending joins and letting the node escape. Consider a node pi that is a cluster
head and has a path to a node pj of length ≤ r hops that does not pass through
pc. In this situation pc can not give the false impression that pi is not a cluster
head as HEAD takes precedence over ESCAPING that takes precedence over
SLAVE at message receipt. If pc on the other hand is in a bottleneck between
nodes without any other paths between them then it can lie about a node p�
being a cluster heads and refuse to forward any joins to p�. Now if we assume
that pc is not restricted in what id:s it can include in false messages it can
convince a node p� that nodes not in Gr

� are cluster heads. In the worst case it
can eventually make p� rely exclusively on non-existent cluster heads with paths
that all go through pc. In any case the influence by a compromised node pc is
contained within G2r

c as the maximum ttl of a message is r and is enforced at
message receipt.
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6 Conclusions

We have presented a self-stabilizing (k, r)-clustering algorithm for ad-hoc net-
works that can deal with a bounded amount of message loss, and that merely
requires a bound on the rate differences between pulses of different nodes in the
network. The algorithm makes sure that, within O(rπλ3) time, all nodes have
at least k cluster heads (when possible) and it stabilizes within O(rπλ4g logn)
time with high probability. We have also discussed how the algorithm can help
us with fault tolerance and security.
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Increasing the Power of the Iterated Immediate
Snapshot Model with Failure Detectors
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Abstract. The base distributed asynchronous read/write computation model is
made up of n asynchronous processes which communicate by reading and writ-
ing atomic registers only. The distributed asynchronous iterated model is a more
constrained model in which the processes execute an infinite number of rounds
and communicate at each round with a new object called immediate snapshot ob-
ject. Moreover, in both models up to n− 1 processes may crash in an unexpected
way. When considering computability issues, two main results are associated with
the previous models. The first states that they are computationally equivalent for
decision tasks. The second states that they are no longer equivalent when both are
enriched with the same failure detector.

This paper shows how to capture failure detectors in each model so that both
models become computationally equivalent. To that end it introduces the notion
of a “strongly correct” process which appears particularly well-suited to the it-
erated model, and presents simulations that prove the computational equivalence
when both models are enriched with the same failure detector. The paper extends
also these simulations to the case where the wait-freedom requirement is replaced
by the notion of t-resilience.

1 Introduction

Base read/write model and tasks. The base asynchronous read/write (ARW) computa-
tion model consists of n asynchronous sequential processes that communicate only by
reading and writing atomic registers. Moreover, any number of processes (but one) are
allowed to crash in an unexpected way.

A decision task is the distributed analogous of the notion of a function encountered
in sequential computing. Each process starts with its own input value (without knowing
the input values of the other processes). The association of an input value with each
process define an input vector of the task. Each process has to compute its own output
value in such a way that the vector of output values satisfies a predefined input/output
relation (this is the relation that defines the task). The most famous distributed task is
the consensus task: each process proposes a value and processes have to decide the very
same value which has to be one of the proposed values. The progress condition that is
usually considered is called wait-freedom [4]. It requires that any process that does not
crash eventually decides a value. It has been shown that the consensus task cannot be
wait-free solved in the ARW model. The tasks that can be wait-free solved in this base
model are called trivial tasks.
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The iterated immediate snapshot (IIS) model and its power. The fact that, in the ARW
model, a process can issue a read or write on any atomic register at any time makes
difficult to analyze the set of runs that can be generated by the execution of an algorithm
that solves a task in this model.

To make such analyses simpler and obtain a deeper understanding of the nature of
asynchronous runs, Borowsky and Gafni have introduced the iterated immediate snap-
shot (IIS) model [2]. In this model, each process (until it possibly crashes) executes
asynchronously an infinite number of rounds and, in each round, processes communi-
cate through a one-shot immediate snapshot object [1] associated with this round. Such
an object provides the processes with a single operation denoted write snapshot() that
a process can use only once. This operation allows the invoking process to deposit a
value in the corresponding object and obtains a snapshot of the values deposited into it.

A colorless decision task is a task such that any value decided by a process can be
decided by any number of processes. The main result associated with the IIS model is
the following one: A colorless decision task can be wait-free solved in the ARW model
if and only if it can be wait-free solved in the IIS model (Borowsky and Gafni [2]).

Enriching a model with a failure detector. One way to enrich the base read/write model
in order to obtain a stronger model consists in providing the processes with operations
whose computational power in presence of asynchrony and process crashes is stronger
than the one of the base read or write operations [4]. Another way to enrich the base
read/write model consists in adding to it a failure detector [3].

A failure detector is a device that provides each process with a read-only variable
that gives it information on failures. According to the type and the quality of this in-
formation, several classes of failure detectors can be defined. As an example, a failure
detector of the class Ω provides each process pi with a read-only local variable de-
noted leaderi that contains always a process identity. The property associated with
these read-only local variables is the following: there is an unknown but finite time af-
ter which all the variables leaderi contain forever the same identity and this identity
is the one of a non-faulty process. A failure detector is non-trivial if it cannot be built
in the base read/write model (i.e., if it enriches the system with additional power).

A natural question is then the following: Are the ARW model and the IIS model
still equivalent for wait-free task solvability when they are enriched with the same non-
trivial failure detector? It has been shown by Rajsbaum, Raynal and Travers that the
answer to this question is “no” [6]. It follows that, from a computability point of view,
the ARW model enriched with a non-trivial failure detector is more powerful than the
IIS model enriched with the same failure detector.

An approach aiming at introducing the power of failure detectors into the IIS model
has been investigated in [5]. This approach consists in requiring some property P to
be satisfied by the successive invocations of write snapshot() issued on the sequence
of immediate snapshot objects. Hence the name iterated restricted immediate snapshot
(IRIS) given to this model. For each failure detector class taken separately, this approach
requires (a) to associate a specific property P with the considered failure detector class,
(b) to design an ad hoc simulation of the write snapshot() operation suited to this failure
detector class in order to simulate IIS in ARW and (c) design a specific simulation of
the output of the failure detector to to simulate ARW in IIS.
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Content of the paper. Let C be a failure detector class defined in the context of the
base ARW model. This paper is motivated by the following question: Is it possible to
associate with C (in a systematic way) a failure detector class C∗ such that the ARW
model enriched with C and the IIS model enriched with C∗ are equivalent for wait-free
task solvability? The contributions of the paper are the following:

– The answer to the previous question is based on a simple modification of the defi-
nition of what is a correct process (i.e., a process that does not crash in a run of the
base read/write model). The notion of a correct process is replaced in the IIS model
by what we call a strongly correct process. Such a process is a process that does
not crash and all of whose invocations of write snapshot() are seen (directly or
indirectly) by all other non-crashed processes. (Although it is not explicitly defined
in [5], the notion of a strongly correct process is implicitly used in the proof of a
theorem in that paper.)
Given this definition, and a failure detector class C designed for the ARW model,
its IIS counterpart C∗ is obtained by a simple and systematic replacement of the
words “correct process(es)” by ”strongly correct process(es)” in the definition of C.

– An immediate benefit of the previous definition is the fact that, when we want to
simulate ARW in IIS, we can directly benefit from Borowsky and Gafni’s simula-
tion of the read and write operations defined in [2]. (The only addition that has to
be done concerns the local outputs of the corresponding failure detector C.)

– Given the ARW model enriched with a failure detector class C, the paper presents a
generic simulation of the IIS model enriched with C∗. This simulation is generic in
the sense that it works for a large family of failure detectors. The simulation algo-
rithm has only to be instantiated with a predicate associated with the corresponding
failure detector C.

– An interesting consequence of the fact that, given a failure detector class C, we have
“for free” a corresponding failure detector for the IIS model, makes very simple the
understanding of IIS enriched with a failure detector.

– The paper also generalizes the previous wait-free simulations to t-resilient simula-
tions (wait-freedom is (n− 1)-resilience).

Due to page limitation this paper is an extended abstract. More developments and proofs
will be found in [7].

2 Base Definitions

Process model. The n asynchronous sequential processes are denoted p1, ..., pn. Any
number of processes may crash. A process that crashes in a run is faulty in that run,
otherwise it is correct. A correct process executes an infinite number of steps. Given an
execution, let C denote the set of processes that are correct in that execution and F the
set of the faulty ones.

Decision tasks. A decision task is a one-shot decision problem specified in terms of
an input/output relation Δ. Each process starts with a private input value and must
eventually decide on a private output value. An input vector I[1..n] specifies the input
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I[i] = vi of each process pi. Similarly, an output vector O[1..n] specifies a decision
value O[j] for each process pj . A task is defined by a set of input vectors and a relation
Δ that describes which output vectors are correct for each input vector I .

Base read/write model. This model, denoted ARWn[∅] in the following, has been
presented in the introduction. Instead of atomic read/write registers, we consider here
that the processes communicate through snapshot objects.This is at no additional com-
putability cost as the operations on a snapshot object can be wait-free implemented
from single-writer/multi-reader atomic read/write registers. Given a snapshot object S,
these operations are denoted S.write() and S.snapshot(). S is initially empty. When pi
invokes S.write(v), it adds the pair 〈i, v〉 to S and suppresses the previous pair 〈i,−〉
if any. When it invokes S.snapshot(), pi obtains a set containing all the pairs 〈k, vk〉
currently present in S. Such a set is called a view that we denote arw viewi. A snapshot
object S is atomic (we also say said that it is linearizable).

One-shot immediate snapshot object. Such an object is similar to a snapshot object
where the write() and S.snapshot() operations are encapsulated into a single operation
denoted write snapshot() (where the write is executed just before the snapshot). More-
over, one-shot means that, given an object, each process invokes write snapshot() at
most once. The invocations of IS .write snapshot() are not linearizable but
set-linearizable. Let us consider a process pi that invokes IS .write snapshot(vi) where
vi is the value it wants to write into IS . When it returns from its invocation, pi obtains
a view of the object that we denote iis viewi, Moreover, let us define iis viewi = ∅ if
pi never invokes IS .write snapshot(). A one-shot immediate snapshot object is defined
by the following properties associated with the views obtained by the processes.

– Self-inclusion. ∀ i : 〈i, vi〉 ∈ iis viewi.
– Containment. ∀ i, j : (iis viewi ⊆ iis viewj) ∨ (iis viewj ⊆ iis viewi).
– Immediacy. ∀ i, j : (〈i, vi〉 ∈ iis viewj) ⇒ (iis viewi ⊆ iis viewj).

The first property states that a process sees its write. The second property states that the
views are totally ordered by containment. The third property states that, when a process
invokes IS .write snapshot(), its snapshot is scheduled just after its write. The operation
write snapshot() can be wait-free implemented in ARWn[∅].

The iterated immediate snapshot model. In the base IIS model (denoted IISn[∅]), the
shared memory is made up of an infinite number of immediate snapshot objects IS [1],
IS [2], ... These objects are accessed sequentially and asynchronously by the processes
according to the following round-based pattern executed by each process pi. The vari-
able ri is local to pi and denotes its the current round number.

ri ← 0; �si ← initial local state of pi (including its input, if any);
repeat forever (asynchronous IIS rounds)
ri ← ri + 1;
iis viewi ← IS [ri].write snapshot(�si);
computation of a new local state �si (which contains iis viewi)

end repeat.
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Full information algorithm. As the aim of the IIS model is to address computability
issues (and not efficiency), we consider full information algorithms for this computation
model. This means that, at each round r, a process pi writes its current local state �si
into IS [r]. Consequently, the view it obtains from IS [r].write snapshot(�si) contains
all its causal past (hence the name full information).

Failure detectors. A failure detector is a device that provides processes with infor-
mation on failures [3]. As already said in the introduction, several classes of failure
detectors can be defined according to the type and the quality of the information given
to the processes. We consider here that the information given to each process is a set of
process indexes. This information is given by a failure detector to a process through a
local read-only variable.

Classes of failure detectors that eventually output only correct processes. We consider
three classes of such failure detectors: the classes P of perfect failure detectors and �P
of eventually perfect failure detectors [3] and the class Σ of quorum failure detectors.

A failure detector of the class P provides each process pi with a set trustedi that,
at any time τ , contains all the processes that have not crashed by time τ and eventually
contains only correct processes. (The traditional definition of P provides each process
pi with a set faultyi that does not contain a process before it crashes and eventually
contains all faulty processes. It is easy to see that trustedi = {1 . . . , n} \ faultyi.)
The class �P is weaker than the class P . Namely, there is an arbitrary long finite pe-
riod during which the sets trustedi can contain arbitrary values and when this period
terminates a failure detector of �P behaves as a failure detector of P .

A failure detector of the class Σ provides each process pi with a set qri that eventu-
ally contains only correct processes and is such that the value of qri at any time τ and
the value of any qrj at any time τ ′ have a non-empty intersection.

Classes of failure detectors that eventually output correct and possibly faulty processes.
We consider here the class of eventual leaders failure detectors denoted Ωk. This class
class is a straightforward generalization of the failure detector class Ω. Actually, Ω1

is Ω which has been shown to be the weakest failure detector class for solving the
consensus task in shared memory systems.

A failure detector of the class Ωk provides each process pi with a read-only local
variable leadersi that always contains k process indexes. Moreover, the local vari-
ables leadersi are such that, after some unknown but finite time τ , they all contain
forever the same set of k process indexes and at at least one of these indexes is the one
of a correct process. Let us notice that, before time τ , the sets leadersi can contain
arbitrarily changing sets of k process indexes.

3 Strongly Correct Processes (wrt the IIS Model)

Motivation. When considering the base read/write model, if a process issues a write
into a snapshot object S, the value it has written can be read by any process that invokes
S.snapshot(). This is no longer the case in the IIS model. This observation motivates
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the definition of a strongly correct process. Such a process is a process whose writes into
the immediate snapshot objects are seen (directly or indirectly) infinitely often by the all
correct processes. A process that is not strongly correct is consequently a process such
that only a finite number of its writes into immediate snapshot objects are eventually
propagated to all the correct processes.

Formal definition. Let iis viewj [r] be the view obtained by pj at round r. Let SC0 be
the set defined as follows (C denotes the set of correct processes):

SC0
def
= { i such that |{r such that ∀ j ∈ C : ∃ 〈i,−〉 ∈ iis viewj[r]}| =∞ },

i.e., SC0 is the set of processes that have issued an infinite sequence of (not necessarily
consecutive) invocations of write snapshot() and these invocations have been seen by
each correct process (this is because these invocations are set-linearized in the first
position when considering the corresponding one-shot immediate snapshot objects).

Let us observe that, as soon as we assume that there is at least one correct process,
it follows from the fact that the number of processes is bounded that |SC0| �= 0. Given
k > 0 let us recursively define SCk as follows:

SCk
def
= { i such that |{r such that ∃ j ∈ SCk−1 : ∃ 〈i,−〉 ∈ iis viewj[r]}| =∞ }.

Hence, SCk contains all the correct processes that have issued an infinite sequence of
(not necessarily consecutive) invocations of write snapshot() which have been seen by
at least one process of SCk−1. It follows from the self-inclusion property of the views
and the definition of SCk that SC0 ⊆ SC1 ⊆ · · · . Moreover, as all the sets are included
in {1, . . . , n}, there is some K such that SC0 ⊆ SC1 ⊆ · · · ⊆ SCK = SCK+1 =
SCK+2 = · · · .

SCK defines the set of of strongly correct processes which is denoted SC. This is
the set of processes that have issued an infinite sequence of (not necessarily consec-
utive) invocations of write snapshot() which have been propagated to all the correct
processes.

IIS enriched with a failure detector. Let C be a failure detector class. C∗ denotes the
same failure detector class where the word “correct” is replaced by the word “strongly
correct”. Moreover,IISn[C

∗] denotes the IIS model enriched with a failure detector of
the class C∗ where, during each round r, a process pi reads its failure detector variable
at the beginning of round r and saves its value fdi in its local state �si before writing it
into IS [r].

4 From IISn[C
∗] to ARWn[C]

This section describes a simulation in IISn[C
∗] of a run of an algorithm designed

for ARWn[C]. Except for the simulation of the detector output, this simulation is
from [2]. In order not to confuse a simulated process in ARWn[C] and its simulator in
IISn[C

∗], the first one is denoted pi while the second one is denoted qi.
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4.1 Description of the Simulation

It is assumed, without loss of generality, that the simulated processes communicate
through a single snapshot object S. A simulator qi is associated with each simulated
process pi. It locally executes the code of pi and uses the algorithms described in Fig-
ure 1 when pi invokes S.write(−), S.snapshot() or queries the failure detector.

Immediate snapshot objects of IISn[C
∗]. These objects are denoted IS [1], IS [2], ...

Each object IS [r] stores a set of triples (this set is denoted ops i in Figure 1). If the triple
(j, sn, x) ∈ ops i, then the simulator qi knows that the process pj (simulated by qj) has
issued its sn-th invocation of an operation on the simulated snapshot object S; x �= ⊥
means that this invocation is S.write(x) while x = ⊥ means that it is S.snapshot().

Local variables of a simulator qi. The variable ri contains the current round number of
the simulator qi. It is increased before each invocation of ISn[ri].write snapshot(ops i)
(line 3). As this is the only place where, during a round, a simulator invokes the opera-
tion write snapshot(), the simulators obey the IIS model.

The local variable sni is a sequence number that measures the progress of the sim-
ulation by qi of the process pi. It is increased at line 1 when pi starts simulating a new
invocation of S.write() or S.snapshot() on behalf on pi.

As already indicated, the local variable ops i contains the triples associated with
all the invocations of S.write() and S.snapshot() that have been issued by the pro-
cesses and are currently known by the simulator qi. This local variable (which can only
grow) is updated at line 1 when qi starts simulating the next operation S.write() or
S.snapshot() issued by pi or at line 4 when qi learns operations on the snapshot object
S issued by other processes.

The local variable iis viewi stores the value returned by the last invocation of
IS [ri].write snapshot() issued by the simulator qi (line 3). When simulating an in-
vocation of S.snapshot() issued by pi, qi computes for each simulated process pj the
sequence number max snji (line 11) of the last value it knows (saved in vji at line 12)
that has been written by pj in the snapshot object S. This allows qi to compute the
view arw viewi (line 13) that it returns (line 16) as the result of the invocation of
S.snapshot() issued by pi.

The local variable fdi is used to store the last value obtained by the simulator qi from
its read-only local failure detector variable denoted C∗.read().

Simulation of S.write(v). To simulate the invocation of S.write(v) issued by pi, the
simulator qi invokes the internal operation publicize&progress(v). It first increments
sni and adds the triple (i, sni, v) to ops i (line 1). Then, the simulator repeatedly invokes
write snapshot(ops i) on successive immediate snapshot objects and enriches its set of
triples ops i (lines 2-4) until it obtains a view iis viewi in which all the simulators it
sees are aware of the invocation of the operation S.write(v) that it is simulating (line 6).

Simulation of S.snapshot(). To simulate an invocation of S.snapshot() issued by pi,
the simulator qi first invokes publicize&progress(⊥). When this invocation terminates,
qi knows that all the simulators it sees in the last view iis viewi it has obtained are
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aware of its invocation of S.snapshot(). Moreover, as we have seen, the execution of
publicize&progress(⊥) makes qi aware of operations simulated by other simulators.

Then the simulator qi browses all the operations it is aware of in order to extract,
for each simulated process pj , the last value effectively written by pj (lines 9-15). This
(non-⊥) value is extracted from the triple with the largest sequence number among all
those that appear in all the sets opsk that belong to the view iis viewi returned to qi by
its last invocation of write snapshot().

Init: opsi ← ∅; ri ← 0; sni ← 0; iis viewi ← ∅; fdi ← C∗.read().

internal operation publicize&progress (x) is
(1) sni ← sni + 1; opsi ← opsi ∪ {(i, sni, x)};
(2) repeat ri ← ri + 1; fdi ← C∗.read();
(3) iis viewi ← IS [ri].write snapshot(opsi);
(4) opsi ←

⋃
〈k,opsk〉∈iis viewi

opsk
(5) until

(
(i, sni, x) ∈

⋂
〈k,opsk〉∈iis viewi

opsk
)

end repeat;
(6) return().

operation S.write(v) is publicize&progress (v); return().

operation S.snapshot() is
(7) publicize&progress (⊥);
(8) arw viewi ← ∅;
(9) for each j in {1, . . . , n} do
(10) if

(
∃v | (j,−, v)

⋂
〈k,opsk〉∈iis viewi

opsk ∧ v = ⊥
)

(11) then max snji ← max{sn | (j, sn, v) ∈
⋂

〈k,opsk〉∈iis viewi
opsk ∧ v = ⊥};

(12) vji ← v such that (j,max snji, v) ∈ opsi;
(13) arw viewi ← arw viewi ∪ {〈j, vji〉}
(14) end if
(15) end for;
(16) return (arw viewi).

operation C.read() is return (fdi).

Fig. 1. Simulation of ARWn[C] in IISn[C
∗]: code for a simulator qi (extended from [2])

Simulation of C.read(). When a process pi reads its local failure detector output, the
simulator qi simply returns it the current value of fdi .

4.2 From Strongly Correct Simulators to Correct Simulated Processes

Strongly correct vs weakly correct simulators. Let WC = C \ SC (the set of weakly
correct simulators). It follows from the definition of the strongly correct simulators that,
for any simulated process pi whose simulator qi is such that i ∈ WC, there is a round
rmini such that, ∀j ∈ SC, ∀r ≥ rmini : 〈i,−〉 /∈ iis viewj [r], which means that, for
r ≥ rmini, no invocation IS [r].write snapshot() issued by the simulator qi is seen by
a strongly correct simulator.
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This means that, after rmax = max{rmini}i∈WC and after all simulator crashes
have occurred, the invocations of write snapshot() by the simulators of SC are always
set-linearized strictly before the ones of the simulators of WC. Said differently, there
is a round after which no strongly correct simulator ever receives information from a
weakly correct simulator. From the point of view of a strongly correct simulator, any
weakly correct simulator appears as a crashed simulator. Differently, any weakly correct
simulator receives forever information from all the strongly correct simulators.

Crashed and slow IIS simulators simulate crashed ARW processes. An important fea-
ture of the simulation described in Figure 1 is that, not only the crash of a simulator qi
gives rise to the crash of the associated simulated process pi, but a slow simulator qj
entails the crash of its simulated process pj .

To summarize. When simulating ARWn[C] on top of IISn[C
∗], we have the follow-

ing: (a) a faulty or weakly correct simulator qi gives rise to a faulty simulated process
pi and (b) a strongly correct process gives rise to a correct simulated process pi in
ARWn[C]. The next theorem captures the previous discussion.

Theorem 1. Let A be an algorithm solving a colorless task in the ARWn[C] model.
Let us consider an execution of A simulated in the IISn[C

∗] model by the algorithms
S.write(), S.snapshot() and C.read() described in Figure 1. A process pi is correct in
the simulated execution iff its simulator qi is strongly correct in the simulation.

5 From ARWn[C] to IISn[C
∗]

This section presents a generic simulation of IISn[C
∗] in ARWn[C]. Its generic

dimension lies in the fact that C can be any failure detector class cited in Section 2
(namely, P , Σ, �P , Ω, Ωkand others such as S, �S [3] and �Sx). As far terminology
is concerned, qi is used to denote a simulated IIS process while pi is used to denote the
corresponding ARW simulator process. The simulation is described in Figure 2. Dif-
ferently from the simulation described in Figure 1, the algorithms of Figure 2 are not
required to be full-information algorithms.

5.1 Description of the Simulation

The simulated model IS [1], IS [2], ... denote the infinite sequence of one-shot immedi-
ate snapshot objects of the simulated IIS model. Hence, a simulated process qi invokes
IS [r].write snapshot() and C∗.read().

Shared objects of the simulation The simulation uses an infinite sequence of objects
S[1], S[2], ... The object S[r] is used to implement the corresponding one-shot imme-
diate snapshot object IS [r]. Each object S[r] can be accessed by two operations, which
are denoted collect() and arw write snapshot(). The later is nothing else than the oper-
ation write snapshot() (which satisfies the self-inclusion, containment and immediacy
properties defined in Section 2). It is prefixed by “arw” in order not to be confused with
the operation of the IIS model that it helps simulate. The operation collect() is similar
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to the operation snapshot(), except that it is not required to be atomic. It consists in an
asynchronous scan of the corresponding S[r] object which returns the set of pairs it has
seen in S[r]. Both collect() and arw write snapshot() can be wait-free implemented in
ARWn[∅].

FD VAL is an array of single-writer/multi-reader atomic registers. The simulator pi
stores in the register FD VAL[i] the last value it has read from its local failure detector
variable which is denoted C.read().

operation IS [r].write snapshot(v) is
(1) if

(
(r mod n) + 1 = i

)
(2) then repeat arw viewi ← S[r].collect(); FD VAL[i] ← C.read()
(3) until

(
PROPC(arw viewi)

)
end repeat

(4) else FD VAL[i] ← C.read()
(5) end if;
(6) iis view ← S[r].arw write snapshot(v);
(7) return (iis view).

operation C∗.read() is return (FD VAL[i]).

Fig. 2. A generic simulation of IISn[C
∗] in ARWn[C]: code for a simulator pi

Where is the problem to solve. If the underlying model was ARWn[∅] (no failure
detector), the simulation of the operation IS[r].write snapshot() would boil down to
a simple call to S[r].arw write snapshot() (lines 6-7). Hence, the main difficulty to
simulate IS[r].write snapshot(v) comes from the presence of the failure detector C.

This comes from the fact that, in all executions, we need to guarantee a correct asso-
ciation between the schedule of the (simulated) invocations of IS[r].write snapshot()
and the outputs of the simulated failure detector C∗. This, which depends on the out-
put of the underlying failure detector C, requires to appropriately synchronize, at ev-
ery round r, the simulation of the invocations of IS[r].write snapshot(). Once this is
done, the set-linearization of the simulated invocations of IS[r].write snapshot() fol-
lows from the set-linearization of these invocations in the ARWn[C] model.

Associate each round with a simulator. The simulation associates each round r with a
simulator (we say that the corresponding simulator “owns” round r) in such a way that
each correct simulator owns an infinite number of rounds. This is implemented with a
simple round-robin technique (line 1).

Simulation of IS [r].write snapshot(v). When a simulated process qi issues the invoca-
tion IS[r].write snapshot(v), the simulator pi first checks if it is the owner of the corre-
sponding round r. If it is not, it refreshes the value ofFD VAL[i] (line 4) and executes the
“common part”, namely, it invokes S[r].arw write snapshot(v) (line 6) which returns it
a set iis view constituting the result of the invocation of IS[r].write snapshot(v).

If the simulator pi is the owner of the round, it repeatedly reads asynchronously the
current value of the implementation object S[r] (that it stores in arw viewi) and re-
freshes the value of FD VAL[i] (line 2). This repeat statement terminates when the
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values of arw viewi it has obtained satisfy some predicate (line 3). This predicate, de-
noted PROPC(), which depends on the failure detector class C, encapsulates the generic
dimension of the simulation. Then, after it has exited the loop, the simulator pi exe-
cutes the “common” part, i.e., lines 6-7. It invokes S[r].arw write snapshot(v) which
provides it with a view iis view which is returned as the result of the invocation of
IS[r].write snapshot(v).

The fact that, during each round, (a) some code is executed only by the simulator that
owns r, (b) some code is executed only by the other simulators and (c) some code is
executed by all simulators, realizes the synchronization discussed above that allows for
a correct set-linearization of the invocations of IS[r].write snapshot() in IISn[C

∗].

Simulation of C∗.read(). When a simulated process qi wants to read its local failure
detector output, its simulator pi returns it the last value it has read from its local failure
detector variable.

To summarize. When simulating IISn[C
∗] on top of ARWn[C], we have the follow-

ing: (a) a faulty simulator pi gives rise to a faulty simulated process qi and (b) a correct
simulator pi gives rise either to a strongly correct, a weakly correct or a faulty simulated
process qi in IISn[C

∗] (this can depend on PROPC()).
Moreover, whatever C, we have to show that there is at least one correct process in

IISn[C
∗]. This amounts to show that there is a simulator pi that executes the infinite

sequence {IS [r].write snapshot()}r≥1. To that end, we have to show that each object
IS [r] is non-blocking (i.e., whatever the round r and the concurrency pattern, at least
one invocation of IS [r].write snapshot() terminates). The corresponding proof is given
when we consider specific failure detector classes (see below). Then, due to the structure
of the IIS model, the very existence of at least one correct process in IISn[C

∗] entails
the existence of at least one strongly correct process in this model (see the definition of
the set SC in Section 3).

5.2 Instantiating the Simulation
When C = Ωk, the property PROPC(arw view ) can be instantiated at each simulator
pi as follows:

PROPΩk
(arw viewi ) =

(
∃ � ∈ FD VAL[i] : (� = i ∨ ∃〈�,−〉 ∈ arw viewi)

)
.

Let leadersi = FD VAL[i] (the last value ofΩk read by the simulator pi). The previous
predicate directs the simulator pi, at each round r it owns, to wait until i ∈ leadersi or
until it has seen the simulation of IS [r].write snasphot() issued by a simulator qj such
that j ∈ leadersi .

Theorem 2. Let A be an algorithm solving a colorless task in the IISn[Ω
∗
k ] model.

The simulation ofA on top ofARWn[Ωk] where IS [r].write snapshot() andC∗.read()
are implemented by the algorithms described in Figure 2 and the predicate PROPC is
instantiated by PROPΩk

, produces an execution of A that could have been obtained in
IISn[Ω

∗
k ]. Moreover, there is a one-to-one correspondence between the correct (simu-

lated) processes in IISn[Ω
∗
k] and the correct simulators in ARWn[Ωk].

Due to page limitation, the reader is referred to [7] for the instantiations where C =
�P , P, Σ, S, �S, Sx, �Sx.
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6 From Wait-Freedom to t-Resilience

Notation. Let IISn,t[C] be the extended IISn[C] model in which at least n − t
processes are strongly correct, i.e., |SC| ≥ n − t and |WC| + |F| ≤ t. Similarly, let
ARWn,t[C] be the extended ARWn[C] model in which at most t processes are faulty.

From IISn,t[C
∗] to ARWn,t[C]. Theorem 1 has shown that the simulation described

in Figure 1 ensures that (a) any strongly correct simulator in IIS gives rise to a correct
simulated process in ARW and (b) a weakly or faulty simulator gives rise to a faulty
simulated process. It follows that if |SC| ≥ n − t in IISn,t[C

∗] we have at most t
faulty process in the simulated system ARWn,t[C].

From ARWn,t[C] to IISn,t[C
∗]. In this direction, the simulation from ARWn[C] in

IISn[C
∗] presented in Figure 2 can be easily adapted in order to simulate ARWn,t[C]

in IISn,t[C
∗]. It is indeed sufficient to replace PROPC by PROPC∧|arw viewi | ≥ (n−

t − 1) (it is of course assumed that we do not have |arw viewi | ≥ (n − t − 1) ⇒ ¬
PROPC ). In this way, at every round r it owns, each correct simulator pi is constrained
to wait until at least n− t−1 processes have invoked S[r].arw write snapshot() before
being allowed to invoke its own. The correction of this extended simulation is captured
in the following theorem.

Theorem 3. Let A be an algorithm solving a colorless task in the IISn[C
∗] model.

For the failure detector classes studied in this paper, The simulation of A on top of
ARWn[C] where the invocations of IS [r].write snapshot() and C∗.read() are imple-
mented by the algorithms described in Figure 2 and the predicate PROPC is replaced by
PROPC ∧ |arw viewi | ≥ (n− t − 1), produces a correct execution of A in IISn[C

∗]
in which n− t processes are strongly correct.

This work has been partially supported by the French ANR project DISPLEXITY de-
voted to the computability and complexity in distributed computing.
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Abstract. An instance of the maximum mixed graph orientation problem con-
sists of a mixed graph and a collection of source-target vertex pairs. The objective
is to orient the undirected edges of the graph so as to maximize the number of
pairs that admit a directed source-target path. This problem has recently arisen in
the study of biological networks, and it also has applications in communication
networks.

In this paper, we identify an interesting local-to-global orientation property.
This property enables us to modify the best known algorithms for maximum
mixed graph orientation and some of its special structured instances, due to El-
berfeld et al. (CPM ’11), and obtain improved approximation ratios. We further
proceed by developing an algorithm that achieves an even better approximation
guarantee for the general setting of the problem. Finally, we study several well-
motivated variants of this orientation problem.

1 Introduction

An instance of the maximum mixed graph orientation problem consists of a mixed graph
G = (V,ED ∪ EU) with n vertices, such that ED and EU indicate the sets of directed
and undirected edges, respectively. An additional ingredient of the input is a collection
P ⊆ V ×V of source-target vertex pairs. A source-target vertex pair (s, t) ∈ P is called
a request. The objective is to orient G in a way that maximizes the number of satisfied
requests. An orientation of G is a directed graph G = (V,ED ∪EU), where EU is a
set of directed edges obtained by choosing a single direction for each undirected edge
in EU. A request (s, t) is said to be satisfied under an orientation G if there is a directed
path from s to t in G.

One may assume without loss of generality that the mixed graph G is acyclic, that is,
a graph that has no cycles. This assumption holds since any instance of maximum mixed
graph orientation can be reduced to another instance in which the underlying mixed
graph is acyclic without affecting the number of requests that can be satisfied [16,6].

� Due to space limitations, some proofs are omitted from this extended abstract. We refer the
reader to the full version of this paper (available online at http://arxiv.org/abs/1204.0219), in
which all missing details are provided.
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Indeed, if the input graph contains cycles, one can sequentially contract them one af-
ter the other. In each step, the undirected edges of an arbitrary cycle are all oriented
in the same direction. In particular, if this cycle contains directed edges then the undi-
rected edges are oriented in a consistent way with those edges. As a result, every pair
of vertices on this cycle admits a directed path between them, and thus, the cycle can
be contracted. One can easily validate that the resulting mixed acyclic graph consists
of undirected components, each of which must be an undirected tree, and those com-
ponents are connected by directed edges in a way that does not produce cycles. The
maximum mixed graph orientation problem draws its interest from applications in net-
work biology and communication networks:

Network Biology. Recent technological advances, such as yeast two-hybrid assays [8]
and protein co-immunoprecipitation screens [11], enable detecting physical interactions
in the cell, leading to protein-protein interaction (PPI) networks. One major caveat of
those PPI measurements is that they do not reveal information about the directionality
of the interactions, namely, the directions in which the signal flows. Since PPI networks
serve as the skeletons of signal transduction in the cell, inferring the hidden directional-
ity information may provide insights to the inner working of the cell. Such an informa-
tion may be inferred from causal relations in those networks [17]. One such source of
causal relations is perturbation experiments, in which a gene is perturbed (cause) and
as a result, other genes change their expression levels (effects). A change of expression
of a gene suggests that the corresponding proteins admit a path in the network, and in
particular, it is assumed that there must be a directed path from the causal gene to the
affected gene.

Up until this point in time, the above-mentioned scenario can be modeled as a special
instance of the maximum mixed graph orientation problem in which one is interested
to orient the edges of an undirected network in a way that maximizes the number of
cause-effect pairs that admit a directed path from the causal gene to the affected gene.
However, in the more accurate biological variant, there are several interactions whose
directionality is known in advance. For instance, protein-DNA interactions are naturally
directed from a transcription factor to its regulated genes, and some PPIs, like kinase-
substrate interactions, are known to transmit signals in a directional fashion. Therefore,
in general, the input network is a mixed graph.

Communication Networks. A unidirectional communication network consists of com-
munication links that allow data to travel only in one direction. One main benefit of such
communication links is that the data of the device on one side is kept confidential while
it may still access the data of the device on the other side. As a consequence, unidi-
rectional networks are most commonly found in high security environments, where a
connection may be made between devices with differing security classifications. For
example, unidirectional communication links can be used to facilitate access to a vul-
nerable domain such as the Internet to devices storing sensitive data. The maximum
mixed graph orientation problem captures the interesting scenario in which one is in-
terested to design a unidirectional network that maximizes the number of connection
requests that can be satisfied in a secure way. We remark that unidirectional networks
have also been studied in distributed and wireless ad hoc settings (see, e.g., [2,1,14] and
the references therein), where a common focus is on algorithmic questions that arise in
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a given unidirectional network. Here, we are rather interested in the question of how to
design such a network while optimizing some performance guarantees.

1.1 Previous Work

Arkin and Hassin [3] seem to have been the first to study the problem of orienting
mixed graphs. They focused on the decision problem corresponding to maximum mixed
graph orientation, and demonstrated that it is NP-complete. Elberfeld et al. [6] observed
that the reduction in their proof implies that the maximum mixed graph orientation
problem is NP-hard to approximate to within a factor of 7/8. Silverbush, Elberfeld,
and Sharan [16] devised a polynomial-size integer linear program formulation for this
problem, and evaluated its performance experimentally. Recently, Elberfeld et al. [6]
developed several polylogarithmic approximation algorithms for special instances of
the problem in which the underlying graph is tree-like, e.g., when the graph has bounded
treewidth. In addition, they developed a greedy algorithm for the general setting that
achieves Ω(1/(M c logn))-approximation, where M = max{n, |P |} and c = 1/

√
2 ≈

0.7071.
Medvedovsky et al. [15] initiated the study of the special setting of maximum graph

orientation in which the underlying graph is undirected, that is, when there are no
pre-directed edges. They proved that it is NP-hard to approximate this problem to
within a factor of 12/13, even when the graph is a star. They also proposed an exact
dynamic-programming algorithm for the special case of path graphs, and a Ω(1/ logn)-
approximation algorithm for the general problem. Gamzu, Segev and Sharan [10] uti-
lized the framework developed in [9] to obtain an improved Ω(log logn/
logn)-approximation ratio (see also [5]). Very recently, Dorn et al. [4] studied this
problem from a parameterized complexity point of view. They presented several fixed-
parameter tractability results. Further research focused on other variants of this undi-
rected orientation problem. For example, Hakimi, Schmeichel, and Young [12] studied
the special setting in which the set of requests contains all vertex pairs, and developed
an exact polynomial-time algorithm.

1.2 Our Results

We identify a useful structural property of requests crossing through a junction vertex.
Informally, this property guarantees that if a set of requests is locally satisfiable then
it can also be satisfied globally. Using this property, we can slightly modify the algo-
rithms developed by Elberfeld et al. [6], and obtain improved approximation ratios. For
example, we eliminate a logarithmic factor from their polylogarithmic approximation
ratio for the case that the underlying graph has bounded treewidth. These results appear
in Section 2. Although the local-to-global property can be used in conjunction with the
algorithm of Elberfeld et al. [6] to obtain an improved approximation guarantee for the
general setting, we proceed by developing an improvedΩ(1/(n|P |)1/3)-approximation
algorithm for this problem. Our algorithm is based on a greedy approach that employs
the local-to-global property in a novel way. The specifics of this algorithm are presented
in Section 3. We also study two well-motivated variants of the orientation problem, and
most notably, show hardness results for them. Further details are provided in Section 4.
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2 From Local to Global Orientations

In this section, we identify a useful structural property of requests crossing through a
junction vertex. Informally, this property guarantees that if there is an orientation of
the local neighborhood of a vertex that locally satisfies a set of requests then it can
be extended to a global orientation of the complete graph which satisfies the same
set of requests. Finding a local orientation that maximizes the local satisfiability is a
relatively easy task, namely, it admits a constant factor approximation algorithm. As a
consequence, we can slightly modify the algorithms developed by Elberfeld et al. [6] so
they utilize this property, and obtain improved approximation ratios. For example, we
eliminate a logarithmic factor from their polylogarithmic approximation ratio for the
special case that the underlying graph has bounded treewidth.

We associate each request (s, t) ∈ P with the shortest path p between s and t in the
underlying graph. Note that in case there are several shortest paths for a request, we
associate it with one of them arbitrarily. We now introduce some notation and termi-
nology. To better understand the suggested notation, we refer the reader to the concrete
example in Figure 1.

– The local neighborhood of a vertex v is the subgraphGv that consists of v, all edges
incident on v, and all vertices adjacent to v. Notice that the local neighborhood
graph is a star.

– Let Pv be the set of shortest paths of requests that cross v, and let P ′
v be the cor-

responding set of local paths, that is, the paths of Pv confined to the local neigh-
borhood of v. More precisely, each (global) path p ∈ Pv gives rise to a (local) path
p′ ∈ P ′

v defined as the intersection of p with the local neighborhood of v. Further-
more, for each p′ ∈ P ′

v, we define its local endpoints s′ and t′ to be the closest
vertices to s and t on p that also appear on p′, respectively.

– The local graph orientation problem corresponding to vertex v is defined with re-
spect to the local neighborhood graph Gv and the set of local paths P ′

v . The goal is
to orient the undirected edges of Gv in a way that maximizes the number of satis-
fied paths in P ′

v. A path is said to be satisfied if there is a directed path between its
source and target vertices under the orientation.

v1

v4

v2

s1

s2

v2

s3

t2

(a)

v3
v v

v1

v3

v4
t1

(b)

Fig. 1. (a) Suppose P = {(s1, t1), (s2, t2), (s3, v)} is the set of requests, and note that the
shortest paths of these requests are marked with the heavy lines. Notice that all these paths cross
v. (b) The local neighborhood of v, and the corresponding set of local paths. For example, notice
that the local endpoints of the request (s1, t1) are s′1 = v1 and t′1 = v2.
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Lemma 1. Given an orientation of Gv that satisfies a set of local paths S′ ⊆ P ′
v then

there is an orientation of G that satisfies the corresponding set of global paths S ⊆ Pv .

Proof. We argue that if two local paths p′1, p
′
2 ∈ S′ then the corresponding global

paths p1, p2 ∈ S cannot be in conflict. The paths p1 and p2 are said to be in conflict
if they have a mutual undirected edge that gets a different direction when the edges
of p1 are consistently oriented from its source vertex to its target vertex and when the
edges of p2 are consistently oriented from its source vertex to its target vertex. Notice
that establishing this argument completes that proof of the lemma since none of the
paths of S can be in conflict with another path in S, and therefore, all the paths in
S can be simultaneously satisfied by consistently orienting each one of them from its
source vertex to its target vertex. Note that after one orients those paths, the remaining
undirected edges of the graph can be oriented in some arbitrary way.

For the purpose of establishing the above argument, let us suppose that p1 and p2
are in conflict, and attain a contradiction. Since p1 and p2 are in conflict then there is
an undirected edge e = (v1, v2) ∈ EU that gets a different direction when consistently
orienting each one of p1 and p2 from its source vertex to its target vertex. Let us assume
without loss of generality that edge e is the closest to v from all conflicting edges. We
next present a case analysis that depends whether the edge e appears before or after the
position of vertex v on each of paths p1 and p2. Essentially, there are two main cases.
To better understand the used notation, we refer the reader to the concrete examples in
Figure 2.

Case I: edge e appears after vertex v in both p1 and p2. Let us assume without loss
of generality that v1 is closer to v than v2 on p1, and v2 is closer to v than v1 on p2. Let
d1 be the distance between v and v1 on p1, and d2 be the distance between v and v2 on
p2. Since p1 is a shortest path between s1 and t1, it must also be a shortest path between
v and v2. Thus, d1 + 1 ≤ d2. Similarly, since p2 is a shortest path between s2 and t2,
it must also be a shortest path between v and v1, and hence, d2 + 1 ≤ d1. Summing
together the above inequalities results in d1 + d2 + 2 ≤ d1 + d2, a contradiction.

We note that the case that the edge e appears before vertex v in both p1 and p2 can
be handled along the same lines with an adjustment to the relative position of v, e.g.,
the distances need to be defined from v1 and v2 towards the junction vertex v.

Case II: edge e appears after vertex v in p1 and before vertex v in p2. Let us
assume without loss of generality that v1 is closer to v than v2 on both paths p1 and p2.
Since p′1, p

′
2 ∈ S′ we know that the edge on which p1 leaves v and the edge on which

p2 enters v must be different. This implies that the subpath between v and v1 on p1
and the subpath between v1 and v on p2 are different. Consequently, merging these two
subpaths creates a cycle in the graph. This contradicts the fact that the graph is acyclic.

Note that the case that the edge e appears after vertex v in p2 and before vertex v in
p1 is essentially identical to the above case up to a renaming of the paths.

We now concentrate on the computational complexity of the local graph orientation
problem corresponding to a vertex v. One can easily validate that this problem is equiv-
alent to the maximum undirected graph orientation problem on a star. Medvedovsky
et al. [15] demonstrated that this problem is equivalent to the maximum directed cut
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Fig. 2. (a) The case that e appears after v in both p1 and p2. (b) The case that e appears after v in
p1 and before v in p2.

problem. This latter problem admits constant factor approximation algorithms (see,
e.g., [7,13]). In fact, one can easily verify that a random orientation of the undirected
edges in the local neighborhood satisfies at least 1/4 of the paths of P ′

v in expectation.
This follows since the maximal length of any path in the local neighborhood is at most 2.
Furthermore, one can use the method of conditional expectations to obtain a determin-
istic orientation that satisfies at least 1/4 of the paths, and consequently, this approach
is a 1/4-approximation for this problem. Combining this result with the local-to-global
orientation property exhibited in Lemma 1 implies the following theorem.

Theorem 1. Given a vertex v and a set of requests Pv whose shortest paths cross v,
there is a polynomial-time algorithm that computes an orientation that satisfies Ω(|Pv|)
requests.

We can now modify the algorithms developed by Elberfeld et al. [6] in accordance with
Theorem 1, and obtain the following improved approximation ratios. We emphasize that
the algorithms and their analysis follow (up to our modification step) those presented
by Elberfeld et al. [6], and thus, we defer them to the full version of the paper. The
first two theorems present algorithms whose approximation guarantees depend on the
treewidth and feedback vertex number of the underlying graph.

Theorem 2. There is a polynomial-time algorithm that finds an orientation satisfying
Ω(|P |/(k logn)) requests when the undirected version of the underlying graph has
bounded treewidth k.

Theorem 3. There is a polynomial-time algorithm that finds an orientation satisfying
Ω(|P |/(k+logn)) requests, where k is the minimum number of vertices whose deletion
turns the undirected version of the underlying graph into a tree.

We can also improve the approximation ratios of the algorithms presented by Elberfeld
et al. [6] for the general case, in which there are no structural assumptions on the graph,
by a logarithmic factor.

Theorem 4. There is a polynomial-time algorithm that approximates the maximum
mixed graph orientation problem to within a factor of Ω(1/

√
Δ|P |), where Δ is the

maximum length of a shortest source-target path in the graph.
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Theorem 5. There is a polynomial-time algorithm that approximates the maximum
mixed graph orientation problem to within a factor of Ω(1/M1/

√
2), where M =

max{n, |P |}.

Note that we do not provide a proof for the latter theorem since it can be established
along the same lines of [6], but more importantly, since we next present an algorithm
with a better approximation guarantee.

3 Improved Approximation for the General Case

In this section, we develop a relatively simple Ω(1/(n|P |)1/3)-approximation algo-
rithm for the maximum mixed graph orientation problem. Our algorithm is based on
a greedy approach that employs the local-to-global orientation property developed in
Section 2.

The algorithm, formally described below, begins by associating each request (si, ti) ∈
P with a shortest path pi between si and ti in the graph. Then, it greedily orients short-
est paths one after the other until all the remaining paths are in conflict with many other
paths. When this happens, the algorithm concentrates on the vertex that is crossed by
a maximal number of paths, and utilizes the local-to-global orientation algorithm from
Theorem 1 to complete the orientation of the graph. Recall that two paths p1 and p2 are
said to be in conflict if they have a mutual undirected edge that gets a different direction
when the edges of p1 and p2 are consistently oriented from their source vertex to their
target vertex.

Algorithm 1. Greedy Orientation

Input: A mixed graph G and a collection P ⊆ V × V of requests
Output: An orientation G of G

1: Let pi be a shortest path for request (si, ti) ∈ P in G, and let P =
⋃
{pi}

2: while there is pi ∈ P that is in conflict with less than (n|P |)1/3 paths in P do
3: Let Q ⊆ P be the set of paths in conflict with pi
4: G ← the graph that results by orienting the edges of pi from si towards ti in G
5: P ← P \ (Q ∪ {pi})
6: end while
7: Let v be a vertex that a maximal number of paths in P cross, and let Pv ⊆ P be that set of

paths
8: G ← the graph that results by executing the algorithm from Theorem 1 with respect to v and

Pv

9: return G

One can easily verify that the algorithm computes a feasible orientation, namely, it
assigns a single direction to each undirected edge. This follows since no conflicting
paths are oriented during the main loop of the algorithm, and since the algorithm from
Theorem 1 is known to compute a feasible orientation. We next prove that the algorithm
satisfies Ω(1/(n|P |)1/3)-fraction of all requests. Clearly, this implies that the algorithm
achieves (at least) the same approximation guarantee.
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Theorem 6. The greedy orientation algorithm satisfies Ω(1/(n|P |)1/3)-fraction of all
requests.

Proof. Let P =
⋃
{pi} be the initial collection of shortest paths, and note that |P| =

|P |. In addition, let P2 ⊆ P be the set of paths the remain after the termination
of the main loop of the algorithm, and P1 = P \ P2. Finally, let A1 be the set of
paths that our algorithm satisfies during the main loop of the algorithm, and let A2

be the set of paths that the algorithm satisfies during the execution of the algorithm
from Theorem 1. In what follows, we prove that |A1| = Ω(1/(n|P |)1/3) · |P1|, and
|A2| = Ω(1/(n|P |)1/3) · |P2|. Consequently, we obtain that the number of paths satis-
fied by our algorithm is

|A1|+ |A2| = Ω

(
1

(n|P |)1/3

)
· (|P1|+ |P2|) = Ω

(
1

(n|P |)1/3

)
· |P | .

The fact that |A1| = Ω(1/(n|P |)1/3) · |P1| easily follows by observing that in each
step of the main loop of the algorithm, one path is satisfied while less than (n|P |)1/3
paths are discarded. Hence, we are left to prove that |A2| = Ω(1/(n|P |)1/3) · |P2|. We
establish a somewhat stronger result by demonstrating that |A2| = Ω(1/(n|P2|)1/3) ·
|P2|. For this purpose, consider two paths p1, p2 ∈ P2 that are in conflict. We associate
the conflict between these paths to an arbitrary undirected edge that gets a different
direction when p1 and p2 are oriented, and place one token on this edge. Notice that
each path of P2 is in conflict with at least (n|P |)1/3 other paths in P2; otherwise, the
main loop would not have terminated. This implies that if we place a token for each pair
of conflicting paths in P2 as shown before then the undirected edges of G have at least
(n|P |)1/3 · |P2|/2 ≥ n1/3|P2|4/3/2 tokens placed on them. As a consequence, there
must be a vertex that has at least t = |P2|4/3/(2n2/3) tokens placed on the undirected
edges in its local neighborhood. We next argue that if some vertex has t tokens in
its local neighborhood then there must be Ω(

√
t) paths that cross that vertex. As a

result, we attain that the number of paths that cross the vertex v, i.e., the vertex that
a maximal number of paths from P2 cross, is at least Ω(

√
t) = Ω(|P2|2/3/n1/3).

By theorem 1, our algorithm satisfies a constant fraction of these requests, namely,
|A2| = Ω(1/(n|P2|)1/3) · |P2|, as required.

For the purpose of establishing the above argument, consider some vertex u that has t
tokens in its local neighborhood. Let us focus on some edge e in this local neighborhood
that has r paths that traverse in one direction and � paths that traverse in the other
direction. Notice that such an edge is assigned r · � tokens. This implies that if the local
neighborhood of u consists only of the edge e then the minimal number of paths that
cross u corresponds to the solution of min{r+ � : r · � = t}. One can easily verify that
the solution for this expression is r = � =

√
t, that is, the number of paths is Ω(

√
t).

Note that when there is more than one edge in the local neighborhood of u then any
path may cross at most two edges. As a result, if we denote the set of edges in the local
neighborhood of u by Eu, then the minimal number of paths that cross u dominates the
solution of min{

∑
e∈Eu

(re + �e)/2 :
∑

e(re · �e) = t}; here, re and �e indicate the
number of paths traversing edge e in one direction and the other direction, respectively.
One can easily demonstrate that the solution for the above expression is obtained by
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assigning non-zero values only to one pair of re, �e variables, namely, it is equivalent to
the solution for the single edge case.

4 Other Orientation Variants

In this section, we study two well-motivated variants of the orientation problem: the
first is maximum mixed graph orientation with fixed paths, and the other is maximum
mixed grid orientation.

4.1 Orientation with Fixed Paths

We consider the maximum mixed graph orientation with fixed paths problem. This vari-
ant is identical to the maximum mixed graph orientation problem with the exception that
each request (s, t) ∈ P is also associated with a fixed path p from s to t in the graph.
With this modified definition in mind, a request (s, t) is satisfied only if the edges of the
path p are oriented from the vertex s towards the vertex t. Note that this variant is seem-
ingly simpler than maximum mixed graph orientation since the only computational task
is to decide which requests to satisfy, and there is no need to decide which paths will
be used to satisfy those requests. This is also one of our motivations for studying this
variant, hoping that it will shed some light on the original problem that would lead to a
reduction in the gap between its lower and upper approximation bounds.

We prove that the maximum mixed graph orientation with fixed paths problem is NP-
hard to approximate to within a factor of max{1/|P |1−ε, 1/m1/2−ε}, for any ε > 0.
In fact, we establish this result even when the underlying graph is undirected. As a
consequence, we attain that this problem is provably harder than the maximum mixed
(or undirected) graph orientation problem, although it may seem simpler at first glance.
Our proof is based on showing that the problem under consideration captures the well-
known maximum independent set problem as a special case.

Theorem 7. The maximum mixed graph orientation with fixed paths problem is NP-
hard to approximate within a factor of max{1/|P |1−ε, 1/m1/2−ε}, for any ε > 0.

4.2 Orientation in Grid Networks

We study the maximum mixed grid orientation problem. This variant is identical to
the maximum mixed graph orientation problem with the additional restriction that the
graph is a grid. A n ×m grid network is a graph with a vertex set V = {1, . . . , n} ×
{1, . . . ,m}, and an edge set E consisting of horizontal edges, i.e., edges ((i, j), (i, j +
1)) for all j = {1, . . . ,m − 1}, and vertical edges, i.e., edges ((i, j), (i + 1, j)) for all
i = {1, . . . , n − 1}. Note that the study of this variant is motivated by applications in
networking.

We prove that the maximum mixed grid orientation problem is at least as hard as
the maximum directed cut problem. Consequently, approximating our problem within
factors of 12/13 ≈ 0.923 and αGW ≈ 0.878 is NP-hard and Unique Game-hard,
respectively. Interestingly, this finding comes in contrast with the results attainable for
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the undirected grid setting. This latter setting can be solved to optimality in polynomial-
time, and in particular, when the grid is not a path, that is, when n,m > 1, all the
requests in P can be satisfied.

Theorem 8. The maximum mixed grid orientation problem is NP-hard to approximate
within a factor of 12/13 ≈ 0.923, and Unique Games-hard to approximate within a
factor of αGW ≈ 0.878.

Orientation of Undirected Grids. The above-mentioned hardness result comes in con-
trast with the results attainable for the undirected grid setting. This latter setting can
be solved to optimality in polynomial-time. Specifically, when the grid is a path, i.e.,
when either m or n equals 1, there are optimal polynomial-time algorithms for the
problem [15,4], and when n,m > 1, there is a simple orientation that satisfies all the
requests in P . This orientation can be obtained by creating a directed cycle along the
perimeter of the grid, and then, orienting all the remaining horizontal and vertical edges
consistently.
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Analysis of Random Walks Using Tabu Lists�
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Abstract. A tabu random walk on a graph is a partially self-avoiding random
walk which uses a bounded memory to avoid cycles. This memory is called a
tabu list and contains vertices already visited by the walker. The size of the tabu
list being bounded, the way vertices are inserted and removed from the list, called
here an update rule, has an important impact on the performance of the walk,
namely the mean hitting time between two given vertices.

We define a large class of tabu random walks, characterized by their update
rules. We enunciate a necessary and sufficient condition on these update rules
that ensures the finiteness of the mean hitting time of their associated walk on
every finite and connected graph. According to the memory allocated to the tabu
list, we characterize the update rules which yield smallest mean hitting times on
a large class of graphs. Finally, we compare the performances of three collections
of classical update rules according to the size of their associated tabu list.

1 Introduction

A random walk is a mathematical formalization of a route taken by a walker through
a topology of locations: at each step, the next destination is randomly chosen. Ran-
dom walks are commonly used to model phenomena from many fields like physics
or economics. Random walks are inherently distributed algorithms which do not need
any knowledge except the list of next possible destinations. Random walks are prob-
abilistic algorithms and this is one of their main advantages. Indeed, since they are
non-deterministic (and thus non-predictable), they can be used to build resilient algo-
rithms in a fault prone environment or facing intruders [1,2]. Even if there is a change
in the environment, e.g., in the topology, or a problem due to an intruder or a failure,
then a resilient algorithm still ensures a certain quality of service.

The main drawback of random walks is the large number of steps generally needed to
reach one vertex starting from another one, namely the hitting time. This is mainly due
to the fact that the walker may come back to previously visited vertices, forming loops.
We study partially self-avoiding random walks on finite graphs. They are variants of
the simple random walk, for which at each step the walker chooses its next destination
uniformly at random among all its neighbors.

We add a bounded memory to the walker in order to reduce the number of loops.
This memory is called a tabu list and contains a part of already visited vertices. We say
that a tabu list is of length m, if the list can contain at most m elements. The walker
avoids every vertex contained in its tabu list unless it has no choice. One can expect that
the tabu list helps to reduce the mean hitting time of the walk.
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As the size of the tabu list is bounded, when the list is full, one element has to
be removed before any new insertion. We call update rule the algorithm which drives
the policy of insertion and removal in the list. For example, in the FIFOm update
rule, the tabu list is of length m, the current position of the walker is always inserted,
and when the list is full, the oldest element is firstly removed to make room for the
current position. In particular, FIFO1 yields a non-backtracking random walk: the
walker never backtracks to the last visited vertex unless it is the only neighbor of the
vertex currently visited.

Contribution. A tabu random walk is characterized by its update rule. We define a large
class of update rules and analytically study their associated tabu random walks. We
compare all these tabu random walks w.r.t. the mean hitting time between every two
given vertices. Mainly, we try to figure out how to handle the memory of the tabu list
and what is the best way to do so. The panel of answers we propose here allows to help
the choice of an update rule. More precisely, our contribution is threefold:

1. We provide a necessary and sufficient condition on our update rules that ensures
the finiteness of the mean hitting time on every graph.

2. We partially answer to the question “What is the best update rule?” by exhibiting a
large collection of graphs indexed by a positive integer m, called m-free graphs, in
which FIFOm is the optimal (w.r.t. the mean hitting time) update rule, provided
that the length of the tabu list is at most m. In particular, the 1-free class contains
all graphs. Therefore, FIFO1 is the optimal policy on every graph if the tabu list
contains at most one element.

3. We compare the performances of three collections of classical update rules, i.e.,
FIFOm, RANDm, and LRUm, according to the length m of the tabu list. Our re-
sults show that no general answer can be given. For some classes of topologies, the
mean hitting time decreases when the size of the memory increases. But, counter-
intuitively, there exist cases where having more memory is a penalty: We exhibit
topologies where the mean hitting time increases when the length of the tabu list
increases.
A important (perhaps surprising) consequence of our results is that for every update
rule FIFOm with m � 2, there exists a graph and two vertices x, y such that
the mean hitting time from x to y using FIFOm is strictly greater than that of
the simple random walk. By contrast, FIFO1 always yields smaller mean hitting
times than the simple random walk.

Related Work. For a general account on simple random walks, we refer to the survey
[3] and the forthcoming book [4].

Random walks with memories have received much less attention. Most analytical
results deal with infinite graphs, which are irrelevant for our purposes. For example,
there are results on self-avoiding random walks for infinite graphs, see the survey [5].

On finite graphs, [6] and [7] study random walks that attach memories on the vertices
of the graph. Nevertheless, no theoretical analysis of these solutions are yet available.

In [8], the authors study non-backtracking random walk on finite and infinite con-
nected graphs with minimum degree two. In particular, they show that for each finite
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graph, except cycles, FIFO1 is irreducible. Consequently, the mean hitting time of
FIFO1 on these graphs is also finite. Our first result is more general than this latter
assertion because it deals with all finite connected graphs and a class of update rules
that includes FIFO1.

Outline. The description of a random walk equipped with a tabu list is given in Sec-
tion 2. Section 3, 4 and 5 describe the three main contributions of this paper. Section 6
gives concluding remarks and perspectives.

Due to the lack of space, definitions are intuitively described and only sketches of
proof are provided. All formal definitions and proofs are given in the technical re-
port [9].

2 Tabu Random Walks and Update Rules

In our framework, the walker evolves on a simple, undirected and connected graph.
Besides, we assume that the vertex set is finite and contains at least two vertices.

2.1 Tabu Random Walks

A tabu random walk on a simple graph is a partially self-avoiding random walk, where
the walker is endowed with a finite memory and can jump from a node to another, pro-
vided that they are neighbors. The memory of the walker, called tabu list, contains a part
of the vertices already visited by the walker. At step n, the position of the walker is rep-
resented by the random variable Xn and the current tabu list by the random variable Tn.
We will denote by T i

n the i-th element of Tn. The successive ordered pairs (Xn, Tn)n�0

is a Markov chain, called tabu chain. The tabu random walk is the sequence (Xn)n�0

of the successive positions of the walker.
At each step, the walker avoids to revisit vertices which are present in the current

tabu list, unless he is forced to. More precisely, for every non-negative integer n, the
next visited vertex Xn+1 is uniform on the set formed by the neighbors of the current
vertex Xn which are not in the tabu list Tn. If this is not possible because all neighbors
of Xn are already in the tabu list Tn, then the next visited vertexXn+1 is uniform on the
neighborhood of the current vertex Xn. Afterward, the next tabu list Tn+1 is obtained
using an update rule.

2.2 Update Rules

The policy to insert or remove occurrences of vertices in the tabu list is called the update
rule and denoted by Rm, where m is a parameter that gives the maximum number of
elements m in the tabu list, that is its length. By extension, m also called the length of
the update rule. When the dependence on the update rule Rm needs to be emphasized,
we will denote (Xn(Rm), Tn(Rm))n�0 the associated tabu chain.

Every update rule works as follows:

(1) First, concatenate the current vertex Xn and the current tabu list Tn, the concate-
nation being noted Xn · Tn.

(2) Then, possibly remove an element of Xn · Tn.
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Note that according to (2), for some policies, the first element of the concatenation
Xn ·Tn might be directly discarded, which means that the current vertex Xn is actually
not inserted in the tabu list, i.e., Tn = Tn+1.

The formal definitions of a tabu random walk and of an update rule are given in [9].
Below, we describe the construction of the tabu list according to a given update rule
Rm. A tabu list is said to be full if its length is m. At step n, if the current tabu list Tn

is not full then all elements of Tn distinct from the current vertex Xn are kept, and one
of the three disjoint cases occurs:

1. Xn is not inserted and all its occurrences in Tn are kept: Tn+1 = Tn.
2. Xn is inserted and all its occurrences in Tn are kept: Tn+1 = Xn · Tn.
3. Xn is inserted and one of its occurrences in Tn is removed: there exists a random

integer Cn+1 in {i ∈ {2, . . . , |Tn| + 1} : T i−1
n = Xn} such that Tn+1 = Xn ·

T 1
n · · ·TCn+1−2

n · TCn+1
n · · ·T |Tn|

n . Besides, the law of the random variable Cn+1,
conditionally on (Xn, Tn), is fixed by the update rule.

If the tabu list Tn is full, then either case 1 occurs or one element is removed from Tn

before Xn is inserted. Formally, there exists a random integer Cn+1 in {1, . . . ,m+ 1}
such that

Tn+1 =

{
Tn if Cn+1 = 1 ,

Xn · T 1
n · · ·TCn+1−2

n · TCn+1
n · · ·Tm

n if Cn+1 ∈ {2, . . . ,m+ 1} .

Similarly, the law of the random variable Cn+1, conditionally on (Xn, Tn), is fixed by
the update rule. Note that when the tabu list is full, case 2 is forbidden in order to ensure
that the length of Tn+1 still remains less than or equal to m: Xn cannot be inserted in
Tn without removing any element of Tn.

We highlight the fact that the law of the new tabu list only depends on the occurrences
of the current vertex in the current tabu list: given these occurrences, the labels of the
vertices does not matter. In other words, we exclude from our study the update rules that
explicitly use the value of the labels, e.g., a rule which has a special case for a vertex
with label “1”.

An update rule is trivial if the current vertex is never inserted in the tabu list when
the tabu list contains no element. For example, the unique update rule with zero length
is trivial. For every trivial update rule, if the tabu list is initially empty, then it remains
empty forever and the walker performs a simple random walk: at each step, the next
visited vertex is chosen uniformly at random among the neighbors of the current vertex.

2.3 Examples of Update Rules

For every non-negative integer m, we describe three update rules FIFOm, LRUm and
RANDm of length m by giving for every non-negative integer n, the law of the next
tabu list Tn+1 conditionally on (Xn, Tn):1

FIFOm: The current vertex Xn is inserted at the beginning (left) of the current tabu
list Tn. If Tn was already full, then its rightmost element is firstly removed.

1 These rules match the requirements given in Subsection 2.2, see [9] for their formal definition.
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LRUm: All occurrences of the current vertex Xn in Tn are removed. If Tn is still
full afterward, then its rightmost element is removed. Then, Xn is inserted at the
beginning (left) of Tn.

RANDm: If the current vertex Xn has an occurrence in Tn, then Tn+1 = Tn. Other-
wise, if Tn is full, then Tn+1 is formed by removing one of the m+ 1 elements of
Xn · Tn uniformly at random. If Tn is not full, then Tn+1 = Xn · Tn.

Remark that FIFO0, LRU0 and RAND0 denote the unique trivial update rule with
length 0. Note also that when m equals 1 or 2, the update rules FIFOm and LRUm

coincide and are both distinct from RANDm. However, for every integer m � 3,
FIFOm, LRUm and RANDm are distinct.

In general, a random walk equipped with a tabu list is not a Markovian process.
However, when using FIFOm (for some positive integer m), the next visited vertex
only depends on the current one and on the m previous steps: this is called a Markov
chain with internal states; refer to [10, p. 177].

3 Finite Mean Hitting Times

For every update rule Rm of length m, the hitting time Hy(Rm) of every vertex y is
the random number of steps needed by a walker to reach y. It is defined as the first in-
stant when the tabu random walk (Xn(Rm))n�0 reaches y: Hy(Rm) = inf{n � 0 :
Xn(Rm) = y}. The mean hitting timeE(x,ε)Hy(Rm) is the mean hitting time of y when
the walker starts at x with an empty tabu list ε. Our goal is to characterize the class of
update rules that have finite mean hitting times, for all graphs and all vertices x and y.

Definition 1. We define the two following conditions:

(C1) For every tabu list t and every position of the walker x, if t is not full and does
not contain x, then applying the update rule on x and t results in inserting x in t
with a positive probability.

(C2) For every tabu list t and every position of the walker x, if t is full and does not
contain x, then applying the update rule on x and t results in removing rightmost
element from t with a positive probability.

The conjunction of (C1) and (C2) is a necessary and sufficient condition that en-
sures the finiteness of all mean hitting times for every associated tabu random walk

Fig. 1. The flower F1

on every graph. The update rules FIFOm, LRUm and
RANDm satisfy both (C1) and (C2). On the contrary, an up-
date rule of length 1 that keeps the unique element of the tabu
list until the corresponding vertex is visited again does not sat-
isfy (C2). Using such an update rule may lead to an infinite mean
hitting time. Indeed, on the flower graph F1 given in Figure 1,2

if the walker starts at vertex 1 with the empty tabu list and does
not hit vertex 0 at his first step, then its tabu list is 1 forever. Thus, the walker never
comes back to vertex 1 and, consequently, the walker will never reach vertex 0. Hence,
the mean hitting time to reach 0 from 1 is infinite.

2 F� is defined in Section 5, for all values of �.
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Theorem 2. Let Rm be an update rule of length m. The mean hitting time E(x,ε)

Hy(Rm) is finite on all graphs, for all vertices x and y, if and only if Rm is either
trivial or satisfies (C1) and (C2).

Proof. (⇒) We proceed by establishing the contrapositive. Consider a non trivial up-
date rule that either does not satisfy (C1) or does not satisfy (C2). Consider the graph
with vertex set {0, . . . ,m+2} such that the vertices 1, . . . ,m+2 form a clique and the
vertex 0 has the vertex 1 as unique neighbor. We assume that the walker starts at vertex
1 and does not hit the vertex 0 at its first step. Since the update rule is not trivial, the
vertex 1 is inserted in the tabu list with positive probability. Assume that this latter event
is realized. Then, the walker needs to return to the vertex 1 before hitting the vertex 0.
Since all neighbors of the vertex 1 distinct from 0 have degree m + 1, the removal of
the vertex 1 is needed in order to hit the vertex 0. We now show that the vertex 1 stays
forever in the tabu list.

– First, note that with m = 1, (C1) is satisfied, since the update rule is not trivial
and when the tabu list is not full, it is empty. So, we need only to consider the case
where m > 1 and that (C1) is not satisfied. In this case, we can show that with
positive probability, the walker can reach a position with a non-full tabu list from
which the tabu list will remain almost surely constant: this tabu list will never be
full. Consequently, in this scenario, we cannot remove any element in the tabu list,
because the only way to do so requires the tabu list to be full.

– Assume that (C1) is satisfied, but not (C2). Similarly, we can show that with pos-
itive probability, the walker can reach the position m + 1 with the full tabu list
m,m− 1, . . . 1 (the rightmost element is 1). From this configuration, since (C2) is
false, the rightmost element of the tabu list (vertex 1) will never be removed from
the list.

Hence, in both cases, with positive probability, the hitting time of vertex 0 is infinite.
This implies that the mean hitting time of vertex 0 is infinite.

(⇐) Suppose first that the update rule is trivial. The walker then performs a simple
random walk. Since the simple random walk on each finite and connected graph is
positive recurrent, all mean hitting times are finite.

Assume now that the update rule is not trivial and satisfies both (C1) and (C2).
Consider a graph G. An essential communicating class (see [11, p. 16]) for the corre-
sponding tabu chain3 is a set of ordered pairs formed by a vertex and a tabu list such
that the tabu chain cannot exit from and visits each of its elements infinitely often. Let x
and y be two vertices of G. Starting from x with empty tabu list, the walker reaches an
essential communicating class of the tabu chain in mean finite time. Hence, it suffices
to show that the mean hitting time to y is finite, starting from some state of an essential
communicating class. Therefore, we assume now that the tabu chain starts from a state
(z, t) of a communicating class C. (N.b., starting the walk from (z, t), t may not be
empty despite all vertices in t have never been visited.)

3 Recall that the tabu chain is the Markov chain (Xn, Tn)n�0.
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The restriction of the tabu chain to C is a positive recurrent Markov chain (see [11,
p. 11]). So it suffices to show that there exists a tabu list s such that (y, s) belongs to
C. Besides, since G is connected, we may assume that y is a neighbor of z. We proceed
by contradiction by assuming that there exists one neighbor w of z that will never be
reached by the walker. As (z, t) is in C, z is visited infinitely often, so w must have
an occurrence in t. Besides, there exists a neighbor of z, w′, that does not have any
occurrences in t (otherwise t contains all the neighbors of z and there is a positive
probability that the walker reaches w). So, when located at z with tabu list t, the walker
reaches w′ with positive probability. If this event is realized, then we obtain a state
(w′, u), where u does not contain any occurrence of w′. Moreover, as (z, t) is in C,
(w′, u) is also in C. Assume now that the walker is in w′ with tabu list u. We distinguish
between two cases:

– First, assume that u is not full. According to (C1), w′ is inserted in the tabu list
with positive probability. Hence, we reach a state (w′′, u′) in C with |u′| = |u|+1.
Since, by definition, the length of the tabu list cannot decrease and since the tabu
chain revisits (w′, u) almost surely, we reached a contradiction.

– Second, assume that u is full. According to (C2), the last element of the tabu list
is removed with positive probability. On one hand, (w′, u) is visited infinitely often
and we remove infinitely often the last element of the current tabu list. On the other
hand, the walker never reaches the vertex w. Hence the number of occurrences of
w in its tabu list decreases. Eventually, all occurrences of w in the tabu list are
removed. Since (z, t) is visited infinitely often, the tabu list t cannot contain any
occurrence of w. Once again, we reached a contradiction.

4 Optimal Update Rule for m-Free Graphs

For each positive integer m, we identify a non trivial class of graphs on which FIFOm

gives the smallest mean hitting time, among all update rules of length at most m. Then,
we describe a class of update rules that yield tabu random walks with the same law than
FIFOm on this class of graphs.

Definition 3 (m-Free Graphs). Let m be a positive integer. A graph is m-free if there
does not exist any path x0, . . . , xk with length k � 1 that satisfies the four following
conditions:

1. The vertex xk has degree at least two.
2. For all integers j in {0, . . . , k − 1}, xj �= xk.
3. All neighbors of xk of degree at least two belong to {x0, . . . , xk−1}.
4. k + 2d � m, where d is the number of neighbors of xk of degree one.

The idea behind Definition 3 is that for each m-free graph with m ≥ 2, a walker who
uses FIFOm always selects a destination that is not in his current tabu list. Hence, he
avoids cycles of size less than or equal to m.

As direct consequences of the definition, note that all graphs are 1-free and that all
(m+ 1)-free graphs are also m-free, for every positive integer m. Furthermore:
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– A graph is 2-free if and only if it does not contain any triangle with one vertex of
degree exactly two, namely, if and only if it does not possess any vertex x such
that Vx = {y, z} and {x, z} ⊆ Vy , where Vx and Vy are, respectively, the set of
neighbors of x and y.

– Every (m+ 1)-regular graph, namely with all vertices of degree m+ 1, is m-free.
Indeed, assume that x0, . . . , xk is a path that satisfies the four conditions stated
above. Since d = 0, we infer that k � m. Yet, xk has m + 1 > k neighbors of
degree at least two while the set {x0, . . . , xk−1} has k elements. Thus, the condition
3 is not satisfied and we reach a contradiction.

– Every graph with girth strictly greater than m+ 1, that is, where every cycle has at
least m+ 2 edges, is m-free.

The following theorem states that for m-free graphs, and with no more than m memo-
ries, FIFOm is the optimal update rule.

Theorem 4. Let m be a positive integer and Rk be an update rule of length k � m. On
a m-free graph, for every two vertices x and y, E(x,ε)Hy(FIFOm) � E(x,ε)Hy(Rk).

Note that being m-free is not a necessary condition to have, for every two vertices x and
y, E(x,ε)Hy(FIFOm) � E(x,ε)Hy(Rk) (Theorem 4 only gives a sufficient condition).
Indeed, consider the clique with vertex set {0, 1, 2}. The path (x0, x1, x2) = (0, 1, 2)
ensures that the graph is not 2-free. Yet, for every two distinct vertices x and y and for
every update rule R, E(x,ε)Hy(R) � 3/2, while E(x,ε)Hy(FIFO2) = 3/2.

We now sketch a proof of Theorem 4.

Proof. Let m be a positive integer and let G be a m-free graph. Since G is m-free, we
can show, by contradiction, that for every tabu random walk associated to FIFOm, the
walker does not visit a vertex if at least one occurrence of that vertex is in the current
tabu list, except if the current vertex has degree one. Now, consider an ordered pair (x, y)

of vertices of G and an update rule Rk of length k in {0, . . . ,m}. Let (Xn(Rk))
Hy(Rk)
n=0

be the associated tabu random walk on G that starts at x with empty tabu list and stops
when it reaches y. Assume that i is an integer such that Xi(Rk) has degree at least two
while Xi+1(Rk) has an occurrence in the tabu list Ti(Rk). In particular, this implies
that all neighbors of Xi(Rk) have an occurrence in Ti(Rk). We set j = min{� � 2 :

Xi(Rk) = Xmax{i−�,0}(Rk)}. We remove all steps of (Xn(Rk))
Hy(Rk)
n=0 from i− j+1

to i. By applying iteratively this operation, we obtain a random walk (X̃n)
H̃y

n=0 such
that the walker does not visit a vertex if at least one occurrence of that vertex is in the
current tabu list, except if the current vertex has degree one.

Applying the same scheme recursively, we can prove that (X̃n)
H̃y

n=0 follows the
same law than the first Hy(FIFOm) steps of the tabu random walk (Xn

(FIFOm))
Hy(FIFOm)
n=0 associated to the update rule FIFOm, starting at (x, ε). There-

fore, we infer that E(x,ε)H̃y = E(x,ε)Hy(FIFOm). By construction H̃y � Hy(Rk)
then we obtain E(x,ε)Hy(Rk) � E(x,ε)Hy(FIFOm).

From the above theorem, we can deduce that the non-backtracking random walk
(FIFO1) is the fastest among all update rules of length less or equal to 1, since ev-
ery graph is 1-free.
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Corollary 5. For every update rule R of length 0 or 1 and for every two vertices x and
y of every graph, E(x,ε)Hy(FIFO1) � E(x,ε)Hy(R).

Proposition 6 completes Corollary 5 and states that FIFO1 is the only update rule of
length 1 such that, on all graphs, all hitting times are smaller than those associated to
the simple random walk, here represented by FIFO0.

Proposition 6. If R is an update rule of length 1 distinct from FIFO1, then there exists
a positive integer � such that on the graph F�,4 E(1,ε)H0(FIFO0) < E(1,ε)H0(R) .

Theorem 4 shows that FIFOm is the best update rule of length at most m for m-free
graphs. In Theorem 7 below, we characterize a larger class of update rules which are
optimal policies in that specific case; for example, LRU is in this class as stated by
Corollary 8 (as a direct application of Theorem 7).

Theorem 7. Consider a positive integer m and a m-free graph. Every update rule of
length k in {0, . . . ,m} yields tabu random walks with the same law as those associated
to FIFOk if and only if it satisfies the two following conditions:

– If the tabu list is not full and does not contain the current vertex, then it is inserted.
– If the tabu list is full and does not contain the current vertex, then the last element

is removed and the current vertex is inserted.

Proof. The two conditions stated above imply that the walker never has any occurrence
of its current position in its tabu list when the graph is m-free. Hence, the law of the
tabu random walk is entirely determined by the update rule when the current vertex
does not have any occurrence in the tabu list.

Conversely, if an update rule of length k differs fromFIFOk when the current vertex
does not have any occurrence in the tabu list, then the associated tabu random walks on
a clique with m+ 3 vertices (which is a m-free graph) follow two distinct laws.

Corollary 8. Let m be a positive integer. On every m-free graph, for every integer k in
{0, . . . ,m}, the update rules LRUk and FIFOk yield tabu random walks with same
law.

As a conclusion, within the class of m-free graphs and no more than m memories,
we identified a class of optimal update rules which contains FIFOm. For other cases,
namely, for graphs that are not m-free or using more that m memories, the question is
still open.

5 Impact of the Length of the Update Rules

We study the effect of the size of the memory of the walker, on the mean hitting times
using 3 collections of update rules: (FIFOm)m�0, (LRUm)m�0, and (RANDm)m�0.
Our results shows that there is no general trend, i.e., having more memory does not al-
ways increase the performances. To see this, we present comparisons based on four

4 Flower graphs F� are defined in Section 5.
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particular collections of graphs: the cliques (Kr)r�2, the lollipops (Lr)r�3, the lines
(Pr)�2, and the flowers (F�)��1. For a given update rule, Rm of length m, we study
the mean hitting time h(Rm) = E(1,ε)H0(Rm) of the vertex 0 for a walker that starts
from vertex 1 with an empty tabu list. The next paragraphs present the graphs and the
comparisons. All the results are summed up in Proposition 9.

m-Free Graphs. Within the class of m-free graphs and with a FIFO update rule
of length less than m, the greater the length is, the more efficient the algorithm is.

Fig. 2. The clique K6

Precisely, for every positive integer m, and for all integers k such
that k ≤ l ≤ m, we have h(FIFOl) ≤ h(FIFOk) on every m-
free graph. This is a direct application of Theorem 4.

Cliques. For every integer r ≥ 2, the clique Kr is the complete
graph with vertex set {0, . . . , r − 1}: each vertex is neighbor
of all other vertices. As an example, the clique K6 is drawn in
Figure 2. Note also that Kr, for r > 2 is (r − 2)-free.

In our technical report [9], we compute on the clique Kr an analytic expression
of h(Rm) for a family of update rules that contains (FIFOm)m�0, (LRUm)m�0, and
(RANDm)m�0. Using this expression, we compare all these update rules and conclude
that the larger the length of the update rule is, the smaller the mean hitting times are.

Lollipops. For every integer r � 3, Lr denotes the lollipop graph with vertex set
{0, . . . , r − 1} such that the vertices 2, . . . , r − 1 form a clique with r − 1 elements
and the vertex 1 has 0 and 2 as neighbors. As an example, the lollipop L6 is drawn in
Figure 3.

Fig. 3. The lollipop L6

We use lollipop graphs to compare:

1. RAND3 against RAND2;
2. RANDk with k ≥ 4 against RANDm with 1 ≤ m < k;

and
3. LRUk with k ≥ 3 against LRUm with 1 ≤ m < k.

A walker on the lollipop Lr that starts at the vertex 1 and does
not hit the vertex 0 at its first move, must stay on the set of
vertices {3, . . . , r−1} until its tabu list is full. Thus, increasing
the length of the update rule may raise the mean hitting time and this is actually the case
for the comparisons above.

Lines. For every integer r � 2, Pr denote the graph line with vertex set {0, . . . , r− 1}

Fig. 4. The line P4

and edge set {{i, i + 1}, i ∈ {0, . . . r − 2}}. As an example, the
graph P4 is drawn in Figure 4.

Line graphs are used to compare:

1. FIFOk with k ≥ 3 against FIFOm with 0 ≤ m < k;
2. LRUk with k ≥ 3 against LRU0 (the simple random walk);
3. RANDk, with k ≥ 4 against RAND0 (the simple random

walk); and
4. RAND3 against RANDm with m = 0, 1.
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In the above comparison, the length of the update rule raises the mean hitting time
on a line. Indeed, assume that m is a positive integer and consider a walker on Pr that
starts at the vertex 1 and does not hit the vertex 0 at its first move. First, the walker must
go to the end of the line, that is to say the vertex r − 1, without backtracking. Then, its
tabu list is almost surely (r − 2) · · · (r −m − 1). Thus, the walker performs a simple
random walk, until it reaches a vertex with a neighbor not included in the tabu list. The
duration of the simple random walk behavior increases with the length of the update
rule. Next, the walker goes to the vertex 0 without backtracking.

Flowers. For all positive integers �, we define the graph F� with vertex set {0, . . . , 2�+
1} as follows. Initially, the vertices 0 and 1 are isolated and for each integer x in

Fig. 5. The flower F3

{1, . . . , �}, the vertices 2x and 2x+1 are neighbor. Then, each
vertex is linked to the vertex 1, except the vertex 1 itself. As an
example, the flower F3 is drawn in Figure 5.

We deal with the flower graphs to compare:

1. FIFO2 against FIFOk, k = 0, 1;
2. LRU2 against LRUk, k = 0, 1; and
3. RAND2 against RANDk, k = 0, 1.

For the above comparison, increasing the length of the update rule raises the mean
hitting time in a flower graph. Indeed, consider a walker in F� that starts at the vertex 1
and does not hit the vertex 0. Without loss of generality, assume that he reaches vertex 2
at its first move. Now, the mean return time to the vertex 1 increases with the length of
the update rule. After having returned to the vertex 1, the walker either hits 0 or reaches
again the previous situation and must return again to vertex 1.

Results. The next proposition summarizes the above results and presents a complete
view of the impact of the length on the update rules for (FIFOm)m�0, (LRUm)m�0

and (RANDm)m�0.

Proposition 9. On the graph written at k-th row and m-th column,

1. h(FIFOk) > h(FIFOm):

�
��k

m
0 1 2 m � 3

0 ∅ K3 K3 K3

1 ∅ ∅ K3 K3

2 F7 F4 ∅ K4

k � 3 P4 P4 P4

⎧⎪⎨⎪⎩
Pm+2 if m < k ,

∅ if m = k ,

Kk+2 if m > k .
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2. h(LRUk) > h(LRUm):

�
��k

m
0 1 2 � 3

0 ∅ K3 K3 K3

1 ∅ ∅ K3 K3

2 F7 F4 ∅ K4

� 3 P4 L4 L4

⎧⎪⎨⎪⎩
Kk+2 if m > k ,

∅ if m = k ,

Lm+2 if m < k .

3. h(RANDk) > h(RANDm):

�
��k

m
0 1 2 3 m � 4

0 ∅ K3 K3 K3 K3

1 F5 ∅ K3 K3 K3

2 F5 F6 ∅ K4 K4

3 P4 P4 L5 ∅ K5

k � 4 P4 L5 L5 L5

⎧⎪⎨⎪⎩
Kk+2 if m > k ,

∅ if m = k ,

Lm+2 if m < k .

In each table, the symbol ∅ means that no such graph exists. Actually, symbol ∅ ap-
pears in two disjoint cases : when k = m or when we compare FIFO0 to FIFO1.
(In this latter case, for all graphs and all vertices x and y, E(x,ε)Hy(FIFO0) �
E(x,ε)Hy(FIFO1), by Corollary 5.)

The above proposition shows that, for the three studied collections of update rules, there
is no general trend: increasing the length of the memory does not always lead to a gain
of performance and may even be a penalty in some cases.

6 Conclusion and Perspectives

We analyzed classes of tabu random walks characterized by their update rules. Our goal
was to study the impact of the choice of an update rule on the performance of tabu
random walks. We focus on classes of update rules, for which we give a necessary and
sufficient condition that ensures the finiteness of the mean hitting time of the associ-
ated tabu random walk on every graph. Then, we exhibit non-trivial classes of graphs,
namely the m-free graphs, on which we exhibit the optimal update rules among those of
length at most m. Finally, we study the impact of the tabu list length on the efficiency of
the walk. This latter study shows that, except in one case (namely FIFO1), modifying
the length of the tabu list does not guarantee a better hitting time in all cases.

Our results could be extended to a larger class of update rules for which more re-
movals are allowed; for example, the list could be reset regularly. A preliminary study
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shows that this extension should be carefully done: we believe that the necessary and
sufficient condition of Theorem 2 could be adapted and that the result on m-free graphs
still holds. In future works, we would also like to compare the relative performance
of different update rules of same length. As a first step, we know that given a posi-
tive integer m, FIFOm is faster than LRUm on line graphs, and LRUm is faster than
RANDm on lollipop graphs (see [9]).
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Abstract. We study the problem of exploring an unknown undirected
graph with non-negative edge weights. Starting at a distinguished ini-
tial vertex s, an agent must visit every vertex of the graph and return
to s. Upon visiting a node, the agent learns all incident edges, their
weights and endpoints. The goal is to find a tour with minimal cost of
traversed edges. This variant of the exploration problem has been intro-
duced by Kalyanasundaram and Pruhs in [18] and is known as a fixed
graph scenario. There have been recent advances by Megow, Mehlhorn,
and Schweitzer ([19]), however the main question whether there exists
a deterministic algorithm with constant competitive ratio (w.r.t. to of-
fline algorithm knowing the graph) working on all graphs and with arbi-
trary edge weights remains open. In this paper we study this problem in
the context of advice complexity, investigating the tradeoff between the
amount of advice available to the deterministic agent, and the quality
of the solution. We show that Ω(n log n) bits of advice are necessary
to achieve a competitive ratio of 1 (w.r.t. an optimal algorithm know-
ing the graph topology). Furthermore, we give a deterministic algorithm
which uses O(n) bits of advice and achieves a constant competitive ratio
on any graph with arbitrary weights. Finally, going back to the original
problem, we prove a lower bound of 5/2− ε for deterministic algorithms
working with no advice, improving the best previous lower bound of 2−ε
of Miyazaki, Morimoto, and Okabe from [20]. In this case, significantly
more elaborate technique was needed to achieve the result.

1 Introduction

The exploration of an unknown environment is a well studied problem under
many different scenarios. This problem appears in many areas, such as terrain
exploration by robots, network exploration by agents, maintaining security of
large networks or searching for data in the internet and ad-hoc networks. As
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the agent has initially limited knowledge about the network topology and this
knowledge grows only by the agent observing its immediate neighbourhood, in
order to perform exploration (and/or construct a complete map of the network)
the agent has to visit each node.

In the online graph exploration problem an agent starts at a node s of an
undirected labeled graphG = (V,E), with |V | denoted by n. Each edge e ∈ E has
a non-negative weight, also called length or cost of e. The agent has no knowledge
about the topology of G. The task of the agent is to visit every node of the graph
and return to s. The agent can move only along the edges of G, each time paying
the respective edge cost. In the particular variant we consider in this paper, when
the agent arrives at a node u ∈ G, it learns all incident edges, their weights
and their endpoints. This scenario has been introduced by Kalyanasundaram
and Pruhs in [18] and is known as a fixed graph scenario. While learning the
endpoints of the incident edges is stronger than the typical exploration scenario,
it does have justification (see [18] and [19]); it also corresponds to previously
studied neighbourhood sense of direction [8].

The quality of an exploration algorithm under the above scenario is usually
measured by a competitive analysis ([4]), which compares the solution of an algo-
rithm with an optimal offline solution, i.e., the solution of an optimal algorithm
which has access to a complete and accurate map of the network. This analysis
is complicated by the fact that the underlying offline problem corresponds to
the Traveling Salesman Problem (TSP), which is known to be NP-hard, even to
get a constant-approximation (e.g., see [14]).

Related Work. A simple and fast heuristic for the traditional TSP offline
setting which has been studied a lot is the greedy algorithm Nearest Neighbor
(NN): Once at a node u, go to the closest yet unexplored vertex v and repeat
the process until all vertices have been explored. This algorithm also applies in
the online setting, achieving competitive ratio of Θ(log n) ([21]), which is tight
even on planar unit-weight graphs ([16]).

While NN is non-competitive on general graphs, it performs quite well (with
competitive ratio of 3/2 ([1])) on simple cycles. A close lower bound of 5/4 was

also proved in [1]. These results for cycles have been later improved to 1+
√
3

2
matching lower and upper bound [20].

For graphs in which all edges have the same weight, a Depth First Search
(DFS) is 2-competitive, as the weight of a Minimum Spanning Tree (MST) is a
lower bound. This has been shown to be optimal in [20]. A sophisticated general-
ization of DFS (named ShortCut), introducing a parameterized condition which
determines when to diverge from DFS, has been proposed in [18]. ShortCut has
been shown to achieve competitive ratio of 16 in planar graphs; it has been long-
standing hypothesis that it is in fact constant competitive. ShortCut has been
reformulated in [19] and the upper bound has been generalized to 16(1+ 2g) for
graphs of genus at most g. However, it has been shown in [19] that neither of
these algorithms is constant competitive in general graphs with arbitrary weight.
In fact there are classes of graphs for which their competitive ratio is arbitrarily
large. Finally, a generalization of DFS that can be seen as a hierarchical DFS
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was shown to be constant competitive on graphs with a bounded number of dif-
ferent edge weights. A slight generalization of this algorithm achieves Θ(log n)
competitive ratio for graphs with arbitrary weights.

Advice Complexity. The impact of additional (typically structural) informa-
tion on complexity of algorithms has been a longstanding and rich field of study.
Impact of various aspects of structural information (e.g. knowledge of network
size and/or network topology, presence of sense of direction, availability of dis-
tinct node IDs) has been extensively studied for various problems. In general,
this information has been of qualitative type, i.e. the questions asked were of
the type ”what is the impact of presence/absence of specific structural informa-
tion?”.

A new line of research focusing on quantitative aspects of such information
has has recently become popular. The idea is to provide the algorithm/agent
with some additional information (advice) given explicitly as a binary string,
thus allowing to measure the information quantitatively. We use the model from
[5,10] where the advice is given to the agent at the beginning of the algorithm.
Alternatively, the advice could be stored in a distributed fashion in the nodes of
the network (see e.g. [9,11,12,13,17]), and the maximum or average size of the
advice per node be considered. The advice encodes problem-relevant information
about unknown facts (i.e. topology in case of distributed algorithms) and can be
seen as computed by an oracle (of unlimited power) that knows the missing in-
formation the algorithm wants to use. This approach allows to precisely measure
the amount of additional information provided to the agent and facilitates study
of the tradeoff between the size of the advice, and the quality of the solution.

In the context of online algorithms, analogous concept has been independently
proposed in [6], and has been developed in two ways: the model from [7] considers
that the algorithm receives, with each request, some fixed amount of b bits of
advice. In the model from [3] (see also [2,15]), on the other hand, the whole
advice is given to the algorithm at the beginning.

Our Results. Our primary interest is in the study of the tradeoff between the
advice size and the quality of the solution for the case of general graphs with
arbitrary weights. As a first step, we show (in Section2.1) that in order to have
an optimal algorithm with competitive ratio strictly 1, advice of size Ω(n log n)
bits is needed.

The primary question we are interested in is what is the smallest advice with
which there is a constant competitive algorithm. This can be seen as a relaxation
of the original question whether there is a constant competitive algorithm with
no advice at all. We provide an upper bound (in Section 3), presenting an algo-
rithm that achieves constant competitive ratio 6 + ε using O(n) bits of advice.
This result seems rather weak as we had to pay O(n) bits of advice to reduce
the competitive ratio by a factor of O(log n). However, it took a quite elabo-
rate algorithm to achieve even this result. As the algorithm has to make many
decisions over the whole network, using o(n) bits of advice and still achieving
constant competitive ratio would require significant new insight.
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Going back to the original problem with no advice, we prove (in Section 2.2)
that without advice the competitive ratio of any deterministic online algorithm
cannot be less than 5/2− ε. The best previous lower bound of 2− ε is from [20]
and concerns graphs with unit weights (for which there is also a matching upper
bound). Our lower bound is significantly more involved, necessarily employing
edges of many different weights in an elaborate hierarchical structure. Due to
space constraints the proofs of lemmas and theorems and some of the more
technical parts will appear in the full version of the paper.

2 Lower Bounds

2.1 Advice Size for Optimal Solution

Let {v0, v1, . . . , vn−1} be a set of vertices. Define w(vi) = n − i. Denote by Kw
n

the clique on vertices v0, v1, . . . , vn−1 in which the edge between vertices vi and
vj is of weight w(vi, vj) = max(w(vi), w(vj)).

Lemma 1. There is a unique (up to reversal) walk π (visiting all nodes of
Kw

n ) of a minimum cost in Kw
n with endpoints v0, vn−1. Furthermore, π =

{v0, v1, . . . , vn−1}.

Consider now Kw
n in which the adversary assigns the IDs visible to the ex-

ploring agent. Hence, when at node vi, the agent can from the weights of the
incident edges deduce i and the IDs of the nodes vj for j < i. However it cannot
distinguish between the n− i edges of weight w(i) leading to not-yet-visited ver-
tices. Therefore, in order to ensure the vertices are visited in the optimal order
v0, v1, . . . , vn−1, the agent needs advice of size log(n− i) at vertex i. Assuming
the agent starts at vertex v0 and summing up over all vertices yields Ω(n log n)
bound on the advice.

However, since the reverse of π is also an optimal path, the adversary can give
the advice (of size logn) which edge leads to vn−1. Once the agent is in vn−1, it
can from the weight of the incident edges deduce the remainder of the optimal
traversal sequence. Hence an agent could complete a cycle visiting all nodes of
Kw

n using just logn bits of advice. In order to prevent this exploit, consider the
graph G consisting of two copies of Kw

n and two additional edges of unit weight.
An example with two copies of Kw

8 is shown in Figure 1. Using Lemma 1 we
show that the optimal cycle including all nodes of G is:

{v0, v1, . . . , vn−1, v
′
n−1, v

′
n−2, . . . , v

′
0, v0}

Hence, to traverse this cycle, the agent needs Ω(n logn) bits of advice in at least
one copy of Kw

n .

Theorem 1. There is a family of graphs for which any optimal-cost algorithm
solving the graph exploration problem needs Ω(n logn) bits of advice.
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Fig. 1. The lower bound graph. The bold line is the optimal exploration path.

2.2 Lower Bound for the Case of No Advice

Theorem 2. For any deterministic algorithm A and any 1
2 > ε > 0 there exists

a graph Glb such that the competitive ratio of A is at least 5
2 − ε. Moreover, Glb

has rO(log r) vertices, where r = 2/ε.

The lower bound graph Glb consists of a backbone cycle and additional return
and skip edges. At the highest level, Glb includes x level-k (x and k will be
determined later, x is odd) blocks connected in a backbone cycle, and x − 1
additional skip edges to be described later. Each block of level-i, where i > 1
consists of x sub-blocks of level-(i− 1) forming a line connected by level-(i− 1)
backbone edges. The agent starts exploration in the middle of a level-k block.
Each block has a right and left side; which side is which is decided based on
algorithm’s actions. In particular, the side whose endpoint is first reached by the
agent is by definition the right side; an adversary decides how the left and right
sides of neighbouring blocks align.

Let v be the rightmost vertex of a level-i block B such that B is the highest
level block for which v is the rightmost vertex. Then v is connected to the next
level-i block by two level-i edges: the backbone edge leading to the leftmost
vertex of the next level-i block, and the skip edge leading to the middle of the
next level-i block. There are two exceptions (the middle block has two skip edges,
and one block has no skip edges). Additionally, there is a level-i return edge from
v to the middle of the leftmost sub-block of B. The weights of these three level-i
edges incident to v are the same and are equal to the cost of the minimum cost
(we also call it shortest) path (by the cost of a path we mean the sum of the
weights of the edges of the path) connecting the endpoints of the return edge and
not using those three level-i edges. Note that if v is also the rightmost vertex of
a lower-level block B′ then B′ does not contain a return edge of its level. When
given a choice (i.e., the algorithm wants to traverse an edge whose endpoint’s ID
has not yet been seen) the adversary’s order of preference is return edge, then
skip edge, then backbone edge.

Level-1 block is analogous: It consists of x vertices connected in a line by
backbone edges of weight 1. There is a difference, though: The return edge leads
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to the second leftmost vertex1. As a consequence, the right side of a level-1 block
is the side in which the third vertex from the end is visited first2. The structure
of a level-i block is captured in Figure 2.

exploration sequence until the center of a border block is visited

backbone edge

return edge

skip edge

transit sub-block

special sub-block

Fig. 2. The structure of a level i block (this one is transit). Fat edges are of level i.

In the following, by the cost of a path we mean the sum of the weights of the
edges of the path. Let ri denote the cost of the shortest path from the middle
of a level-i block to its rightmost/leftmost vertex (note that these distances are
the same) Let ti denote the cost of the shortest path using edges of level at most
i − 1 and connecting the endpoints of a level-i return edge. Let oi denote the
cost of the backbone path from the left-most vertex to the right-most vertex of
a level-i block.

Let us classify the blocks as transit and special. A block B of level i is transit,
if and only if all of the following conditions hold:

– B is entered for the first time via the skip edge leading into its center

– at that time, exactly one neighbouring block of B has not been visited – the
block B′

– B′ is visited for the first time via a skip edge from B

– B contains a return edge of level i

All other blocks are special. Observe that in an optimal algorithm, a transit block
has at most 4 special sub-blocks, while a special block may have up to 5 special
sub-blocks.

Let us denote by ei and ẽi the minimal cost (perhaps over several visits)
incurred by the agent in a level-i transit and special block, respectively, until all
vertices of the block have been visited. For the transit blocks, we charge to the
block also the cost of arriving to and leaving the block (if there is such activity)
in the time period between the first arrival of the agent to B and the first leaving
of the agent towards B′. From the definition of Glb we have

1 The reason is that the ID of the leftmost vertex might be already known to the
algorithm, allowing to distinguish the incident level-i edges at the rightmost vertex.

2 Once this vertex is visited, it knows the ID of the second-from-end vertex which
would allow to recognize the endpoint of the return edge.
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r1 = 1
2 (x− 1) ri+1 = 1

2 (x+ 1)ri +
1
2 (x− 1)ti

t1 = x− 2 ti+1 = (x− 1)ti + xri
o1 = x− 1 oi+1 = xoi + (x − 1)ti
e1 ≥ 5

2 (x− 1) ei+1 ≥ (x− 4)ei + 4ẽi + (x− 1)ti + ti+1 + ri+1 − ri =
(x− 4)ei + 4ẽi +

5
2 (x− 1)ti +

3x−1
2 ri

ẽ1 ≥ x− 1 ẽi+1 ≥ (x− 5)ei + 5ẽi + (x− 1)ti

Consider the highest-level ring of blocks of level k. As there are two special
blocks in an optimal algorithm (the starting one, and its left neighbour), the
exploration cost is at least (x− 2)ek + 2ẽk + xtk. The optimal traversal cost (of
an algorithm using a map of the graph) is xok + xtk. Putting this in ratio yields
the approximation factor

(x − 2)ek + 2ẽk + xtk
xok + xtk

=
5

2

Corollary 1. The competitive ratio of any deterministic algorithm on n-vertex

graphs is at least 5
2 − 2−O(

√
log n).

3 Upper Bounds

Let M be the weight of a Minimum Spanning Tree (MST) of G. We design
the exploration algorithm to incur cost O(M) and hence achieve constant ap-
proximation ratio. Intuitively the algorithm classifies edges of G into groups
depending on their weight and leads (by providing O(n)− bits of advice) the
agent to explore G by traversing components of an MST and some not very
‘heavy-weight’ edges connecting those components. All the advice described is
stored in self-delimited way; this ensures that the cost of an advice of number s
is O(log s) regardless of the potential range the value s is from. As a first step,
the advice given is n and l = 	log(M/n)
. Although l can be unbounded w.r.t.
n, it can be encoded in O(log n) bits in the following way: Advice (n′, p, l′) is
given, interpreted as follows: Keep exploring the cheapest outgoing edge from
the currently explored subgraph until n′-th vertex is encountered. Consider its
p-th incident edge e, let w(e) be its weight. Then l = 	logw(e)
+ l′. (n′, p, l′) are
chosen in such way that e is the first encountered edge of weight between M/n2

and M . Note that such an edge must exists, otherwise the MST weight would
not be M . Observe that O(log n) bits are sufficient to encode (n′, p, l′) and the
total exploration cost until e is found is O(M): a)l′ ≤ logn, and b)the cost of
reaching the cheapest outgoing edge is O(M/n) since each so-far explored edge
is of weight at most O(M/n2), and this has to be repeated for at most n times
until a heavier edge is found.

Define for each edge e its level l(e) as follows: If log(w(e)) < l, then l(e) = 0,
otherwise l(e) = 	log(w(e))
− l. Note that in the MST there at most n/2i edges
of level i. Define Gi to be the graph induced in G by the edges of level at most
i. Denote by Gi(v) the connected component of Gi containing vertex v.
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From a high level view, the algorithm tries to mimic the MST of G, with
the following modifications: a) The G0 components are explored using DFS, as
the total overhead in them w.r.t. to the MST is O(M), and b) for each level-i
MST edge connecting two G0 components, the algorithm is able to identify (and
traverse) a level i edge (let us call it a tree edge) connecting them, incurring cost
of at most 6 level-i edge traversals (leading to O(M) overall cost).

The main problem is that the tree edges cannot be encoded explicitly, as that
might cost O(n logn) advice bits. Note that all special nodes that need advice to
be stored in them can be encoded in O(n) bits, by storing in each special node the
number of newly visited nodes to skip until the next special node is encountered.
Hence, it is sufficient to focus on how to efficiently (in terms of advice size and
incurred traversal cost) identify the tree edges incident to a source vertex v. As
there are at most n/2i tree edges of level i, we can afford to spend O(i) bits per
tree edge of level i; O(log i) bits are in fact sufficient for our algorithm.

Let us call an edge unexplored if one of its endpoints has not yet been visited
by the agent. A level-i edge (u, v) is an outi edge if v /∈ Gi−1(u), otherwise it is
an ini edge. In the easiest case, all level-i unexplored edges incident to v are outi
edges. This is indicated by advice {Out, i, 0} at v. In such case, the algorithm
can safely cross the incident level-i unexplored edges and recursively explore
the corresponding components. However, it might be the case that there are ini

edges incident to v. In order to avoid taking them (and paying unnecessarily
high cost), a {Wait, i, 0} advice is given. In such case, the algorithm ignores for
now the level-i edges incident to v, with the promise that it will return later
when only outi edges remain unexplored. The right moment to return to v is
when the last ini edge (v, w) incident to v becomes explored (i.e., when the agent
arrives to w). In such case, we say that w is the trigger vertex at level-i for v.
In fact, w can be a trigger vertex for several vertices. This is indicated by an
advice tuple {Trigger, i,mult} at w, where mult is the number of vertices for
which w is trigger. It is too costly to store explicitly for which of w’s neighbours
it is the trigger. Instead, w checks how many of its neighbours are waiting for
trigger. If that number is equal to mult, then w knows that it can trigger all its
level-i neighbours that are waiting for the trigger. However, it may be the case
that w has more level-i neighbours that are waiting for level-i trigger. In such
case, the exploration proceeds without triggering, with the promise that once
w learns whom to trigger (we call it that w is released), it will do so. A vertex
v being triggered (at level i) by w means that the agent travels from w to v,
explores the level-i edges incident to v and returns to w. Before the return to w,
the agent notifies3 all level-i triggers incident to v that v is not waiting anymore
for a trigger. This might release some triggers. In such case, the agent will visit
the released triggers from v before returning to w. In fact, such triggering and
releasing can cascade several levels. Nevertheless, we will show that the overall
cost is still O(M). The pseudocode of the algorithm is given in Algorithm 1 and
Algorithm 2.

3 Note that this is just an internal calculation in the agent’s data structures, no actual
traversal is needed.
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Algorithm 1. Exploration with linear advice

1: procedure ExploreWithAdvice

2: Initialize n, M and l as described above, finishing at vertex v
3: Let next, Waiting(v, lvl) and Trigger(v, lvl) be global variables
4: next ← ReadAdvice(integer)
5: call Expand(v)
6: return to the starting vertex
7: end procedure

1: procedure Expand(v)
2: next ← next− 1
3: if next = 0 then
4: next ←ReadAdvice(integer)
5: adviceList ←ReadAdvice(list of triples of integers)
6: call ExpandNeighbours(v, 0)
7: for every tuple {type, lvl, mult} in adviceList do
8: if type = Out then
9: call ExpandNeighbours(v, lvl)
10: else if type = Trigger then
11: W ← {u : l((v, u)) = lvl ∧Waiting(u, lvl) = True}
12: if mult = |W | then
13: call TriggerNeighbours(v, lvl, W )
14: else
15: Trigger(v, lvl) ← mult
16: end if
17: else � type = Wait
18: Waiting(v, lvl) ← True
19: end if
20: end for
21: else
22: call ExpandNeighbours(v, 0)
23: end if
24: end procedure

In order to complete the description, the advice given (i.e., which vertices
are special, and for which levels) has to be specified. Unfortunately, it is not
possible to reflect in a straightforward manner the structure of the MST edges
connecting the G0 components: Consider the scenario shown in Figure 3. In this
case, both Gi−1(w) and Gi−1(w

′) will be reached from v, although (u,w) might
be the MST edge. The solution is simple: drop u as a special vertex, the cost of
reaching w from v is at most twice the cost of reaching it from u. More generally,
the special vertices can be computed as follows:

Simulate the run of the exploration algorithm and whenever you come to a
vertex v with outi edges, mark it as special for level i and add the corresponding
tuple to the advice. Note that this may create many connections to the same G0

component C, potentially substantially increasing advice size. However, these
connections will all stop to be outi edges when C is visited and fully explored
(note that the agent returns from a component only after it has been fully
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Algorithm 2. Exploration with linear advice – helper procedures

1: procedure ExpandNeighbours(v, lvl)
2: for all incident edges (v, u) of level lvl do
3: if u has not yet been expanded then
4: go to u
5: call Expand(u)
6: return to v
7: end if
8: end for
9: if lvl > 0 then
10: Waiting(v, lvl) ← False
11: T ← {u : l((u, v)) = lvl ∧ Trigger(u, lvl) > 0}
12: for all u ∈ T do
13: Trigger(u, lvl) ← Trigger(u, lvl)− 1
14: W ← {w : l((u,w)) = lvl ∧Waiting(u, lvl) = True}
15: if Trigger(u, lvl) = |W | then
16: go to u
17: call TriggerNeighbours(u, lvl, W )
18: return to v
19: end if
20: end for
21: end if
22: end procedure

1: procedure TriggerNeighbours(v, lvl, W )
2: for all u ∈ W do
3: go to u
4: call ExpandNeighbours(u, lvl)
5: return to v
6: end for
7: Trigger(v, lvl) ← 0
8: end procedure

explored). If it happens that all outi edges of a special vertex v stop being outi
before v had a chance to explore them, the tuple for v, i (and possibly the
corresponding Trigger tuple) are removed from the advice. This leaves at most
n − 1 Out/Wait tuples (plus corresponding Trigger tuples) in the advice. Let
us classify the edges traversed by the algorithm as follows: i) traverse edges: the
edges traversed on lines 4 and 6 of ExpandNeighbours, ii) trigger edges: the
edges traversed on lines 3 and 5 of TriggerNeighbours, and iii) release edges:
the edges traversed on lines 16 and 18 of ExpandNeighbours. Note that no
other edges are traversed by the algorithm.

Lemma 2. The traverse edges form a spanning tree of G of weight O(M), while
the total advice used by the algorithm is of size O(n) bits.

Note that each release edge can be charged to a corresponding trigger edge,
which itself can be charged to the corresponding traversal edge (all of them of
the same level). Combined with Lemma 2 this yields:
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u
v

outi edge

ini edge

Gi−1(u)

w w′

Gi−1(w) Gi−1(w
′)

Fig. 3. u is visited before v, but v is the first one to expand its neighbours

Theorem 3. Algorithm 1 explores an unknown n-node graph using advice of
size O(n) and incurring cost linear in the optimal exploration cost.

A more careful analysis shows that exploration cost is at most 3W times the
weight of the MST, where W is the ratio between the weights of the cheapest
and the costliest edge of a level. Combined with the fast that the weight of the
MST itself is a 2-approximation of the optimal cost, this yields approximation
ratio of 6W . In our case, we have chosen W = 2 for simplicity; W can be reduced
to 1+ ε by choosing narrower levels, at the expense of increasing the advice size
(by increasing the number of levels). However, for any constant ε, the resulting
advice size is still linear, providing a 6 + ε′ approximation bound with linear
advice.

4 Conclusion

The question of whether there exists a constant competitive deterministic al-
gorithm for the exploration problem on general graphs with arbitrary weights
remains open. Hence adding to an algorithm the capability of accessing an ad-
vice seems a natural step for getting positive results. This is the case especially
if it turns out that the answer to the above question is negative.

Our original aim was to come up with an algorithm using a small (polylog-
arithmic) advice and achieving constant competitive ratio. The hope was that
such algorithm can perhaps be adapted to not need the advice at all. However,
we did not succeed in this task and were only able to provide an algorithm using
O(n) bits of advice.

The principal problem lies in the fact that the algorithm has to make many
decisions over the whole network. Hence, even reducing the advice to o(n) re-
quires new insight and would be a significant progress. From the lower bound
side, we were able to raise the lower bound from 2− ε to 5/2− ε, although break-
ing the barrier of 2 required use of many different edge weights and elaborate
hierarchial construction. The difficulties in raising the lower bound give hope
that perhaps the answer to the original question is positive. Aside from the very
strict lower bound on advice size for optimal algorithms, the question of lower
bound tradeoff between the advice size and competitive ratio is interesting on
itself and remains widely open.
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Abstract. We consider the a team of asynchronous agents that must
explore an unknown graph in presence of a black hole, a node which
destroys all incoming agents without leaving any observable trace. Com-
munication is achieved using pebbles that an agent can pick up, carry,
and drop. It is known that, when the graph is unknown, Δ+1 agents are
necessary, and solutions exist with those many agents, using a total of
O(logΔ) pebbles, where Δ is the max node degree. On the other hand,
it is also known that if the agents have a map of the graph, the problem
can be solved with O(1) pebbles in total, without increasing the size of
the team. In this paper we address the question of whether it is possible
to locate the black hole using O(1) pebbles even if the graph is unknown,
and, if so, with how many agents. We first prove that with O(1) pebbles,
Δ + 1 agents are not sufficient. We next prove that, regardless of the
team size, 2 pebbles are not sufficient. We then show that these bounds
are tight presenting a protocol that allows to locate a black hole in an
unknown anonymous graph with only 3 pebbles and Δ+ 2 agents.

1 Introduction

The Problem. Black hole search (Bhs) refers to the graph exploration prob-
lem by a team of mobile agents when the graph is dangerous for the agents; the
nature of the danger is the presence of harmful node, called black hole, which
destroys all incoming agents without leaving any observable trace. A team of
identical agents, executing the same protocol and starting from a single node
called homebase, solves the black hole search problem if at least one agent sur-
vives, and all surviving agents within finite time discover the location of the
black hole (e.g., know the edges leading to the black hole).

This problem has been extensively investigated, and the goal has been to
understand which factors influence the solvability of the problem and its com-
plexity, when solvable. The first consideration is the amount of synchronization
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provided by the system. In a synchronous system, clearly two agents suffice, and
the focus has been on the time complexity of the solutions (e.g., see [6, 12–14]).

In this paper, we are interested in solving the problem without any assump-
tions on time, that is in asynchronous systems. For such systems, the majority
of investigations are based on whiteboard model of communication and synchro-
nization: Each node provides shared memory accessible by fair mutual exclusion
that can be used for communication among agents (e.g., see [1, 4, 8, 9, 11]). The
whiteboard model is very powerful, providing not only direct and explicit com-
munication but also act as mechanisms for leader election when agents are co-
located and FIFO capabilities even when the network is not so. An alternative
is the token model used in early investigations in graph exploration. It uses iden-
tical pebbles that an agent can hold, carry while moving, place on nodes, pick up
from a node; no other marking on nodes for communication (e.g., see [7,10,15]).

The next distinction is whether the graph is known (i.e., the agents have a
map) or unknown (and possibly anonymous); note that some information must
however be available for the problem to be solvable; in particular, some met-
ric information such as the number n of nodes and the number m of links, or
the number of safe links (i.e., not leading to the black hole) is necessary for
termination. Let us assume that such information is available to the agents. It
is known that, both with tokens and with whiteboards, 2 agents suffice if they
have a map of the graph; on the other hand, if the graph is a priori unknown to
the agents, at least Δ(G)+ 1 agents are necessary. Indeed size-optimal solutions
exist both with map and in unknown anonymous graphs, both with tokens and
with whiteboards [7, 8, 10].

The token model is generally viewed as less taxing of the system resources
than whiteboards, and has been commonly employed in the exploration of safe
graphs; it give raise to additional research questions, in particular: How many
pebbles are needed ? Can pebbles be placed only on nodes (pure token model)
or also on edges (hybrid token model) ? etc. These questions focus on how much
space is required from the system by an synchronous token-based solution.

These questions are also relevant because of the relationship between solutions
in the two models. In fact, any protocol which uses at most t pebbles in the pure
token model, can be directly implemented using whiteboards of size at most
	log t
 bits; note that h pebbles in the hybrid model correspond to t = hΔ
pebbles in the pure token model. This measure t, which we call token load,
is clearly important in that it determines the usability of token-protocols in
the whiteboard model, and provides a simple mechanism to transfer complexity
results from one setting to the other. (Note that the transfer works also in
the other direction: any solution which uses whiteboards of size s bits can be
implemented with a token load at most t = n2s.) Thus for example, the recent
token-based solution for graphs of known topology with two agents and two pure
tokens [10], implies a 2-agents solution using 1-bit whiteboards.

The fact that it is possible to locate a black hole using O(1) tokens when the
map of the graph is available [10] opens immediately the question of whether a
similar result holds also if no map is available to the agents. In other words, is it
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possible locate the black hole in a graph of unknown topology using a constant
number of pebbles ? and if so, under what conditions ?

The current results for unknown graphs are not very useful and provides
no hints. The existing whiteboard solution uses O(log n) bits whiteboards [8],
implying a token solution that uses t = O(n2) pebbles; the existing token-based
solution uses t = O(Δ2) pebbles [7]. Similar questions have been recently raised,
in the case of synchronous rings and synchronous tori [2, 3].

The main contribution of this paper is to provide a definite answer to those
questions. We first examine how many agents are needed to locate a black hole
without a map of the graph. We prove the unexpected negative result that if
t = O(1), then Δ + 1 agents are not sufficient. That is, unlike the case when
the graph is known, the minimum team size required without a map can not be
achieved if the number of tokens is bounded. We then prove that, regardless of
the team size t = 2 pebbles are not sufficient. We then show that these bounds
are tight: it is indeed possible for a team of Δ+ 2 agents to locate a black hole
in an unknown graph using only 3 pebbles. The solution protocol employs as
primitives a series of simple but novel token-based communication protocols;
the messages communicated using tokens are all of polynomial length.

2 Definitions and Basic Constraints

The network environment is a simple undirected edge-labelled graph G = (V,E)
of |V | = n nodes and |E| = m edges. The network is anonymous; that is, the
nodes have no distinct identifiers that can be used in the computation. At each
node x ∈ V there is a distinct label (called port number) associated to each of
its incident links (or ports); without loss of generality, we assume that the labels
at x ∈ V are the consecutive integers #1, #2, . . . , #d(x), where d(x) denotes
the degree of x; we denote by Δ(G) (or simply Δ) the maximum node degree in
G. If (x, y) ∈ E then x and y are said to be neighbours.

Operating in G is a team A of anonymous (i.e., identical) agents. The agents
obey the same set of behavioral rules (called algorithm or protocol). Initially,
they are all in the same state, and enter the network from the same node h,
called homebase, but not necessarily at the same time. The agents can move
from node to neighboring node in G. Links are not necessarily FIFO.

The agents operate within the so-called pure token model: the only mechanism
available to the agents for coordination, control and communication is by means
of identical pebbles that each agent is capable to pick up from a node, hold, carry
while moving, and drop in the center of a node. We denote by t the token load,
that is the total number of pebbles available in the system. Initially, the tokens
can be either held by (some of) the agents or located on the homebase; without
loss of generality, we assume the latter. Agents can see the tokens placed on
the node they are currently visiting, but not the other agents currently there;
i.e., agents are invisible to each other. When active at a node, an agent may
attempt to access the pebbles at that node (to determine the number, to drop
pebbles, or to pick up pebbles); attempts by different agents at the same node
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are resolved in fair mutual exclusion. In other words, every agent attempting an
access, will be granted one within finite time. The agents are asynchronous in
the sense that every action they perform (moving, computing, pebble drop and
pick) takes an unpredictable (but finite) amount of time; similarly, the interval
between activities is finite but unpredictable. The agents do not have a map of
G; they might however have some metric information, as discussed later.

The network contains a black hole, a node Bh ∈ V that destroys any incoming
agent without leaving any trace of that destruction. The goal of a black hole
search algorithm P is to identify the location of Bh; that is, at least one agent
survives, and all the surviving agents within finite time know the edges leading
to the black hole. Knowledge of the location of the black hole is exact if all and
only the links leading to the black hole have been determined; it is partial if all
the links leading to the black hole have been determined (i.e., some links might
be incorrectly suspected to lead to the black hole). Termination of a solution
protocol is explicit if within finite time all surviving agents enter a terminal
state and have the same information on the location of the black hole in the
graph. We are obviously interested in protocols that explicitly terminate with
exact information. Some basic limitations are well known [8, 9]:

Lemma 1. (1) If G has a cut vertex different from the homebase, the Bhs

problem is unsolvable. (2) In the absence of other topological knowledge, if n is
not known, the Bhs problem is unsolvable.

As a consequence, we assume that G remains connected once Bh is removed,
and that n is known to the agents. Knowledge of n implies that an algorithm
could terminate as soon as n − 1 safe nodes have been visited. However, due
to asynchrony, explicit termination (even with just partial knowledge) may be
impossible, as expressed by the following simple observations:

Lemma 2. In absence of any other topological knowledge, explicit termination
is not possible (1) if only n is known; (2) if only m is known; (3) if only n and
an upper bound Δ′ ≥ Δ are known.

On the other hand:

Lemma 3. If n and m are known, explicit termination with exact knowledge is
possible.

As a consequence, to ensure explicit termination, we assume that also m is
known. Our algorithm can be easily modified for the case in which m is unknown;
in that case, the termination will be implicit.

3 Impossibilities and Lower Bounds

Recall that Δ + 1 agents are sufficient to locate the BH if the token load is a
function of the size of the network, and thus a priori unbounded [7, 8]. In this
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section we show that if the total number of tokens is bounded, Δ+ 1 agents no
longer suffice.

The proof of this result is based on a game between an algorithm and the ad-
versary. The adversary has the power to choose the graph, the port labeling and
the asynchronous timing of the edges; the algorithm specifies agent movement;
w.l.o.g. we can assume the steps of the algorithm and adversary alternate. At
any moment of time, the agents can be classified as free and blocked. The free
agents are located at the nodes, or traversing an already explored edge (an edge
is unexplored if no agent has so far crossed it in either direction). The algorithm
specifies in its step the movement of the free agents located at the nodes; w.l.o.g.
we may assume the algorithm specifies movement (the port taken) of at most one
free agent in its step. The blocked agents are the agents which are in transit over
the yet unexplored edges. In its step, the adversary lets the free agents crossing
edges reach their destinations. Furthermore, if the algorithm specifies that an
agent enters an unexplored edge with a given label, the adversary chooses which
of the incident unexplored edges the agent enters and assigns that label to the
edge. Finally, the adversary can unblock a blocked agent and allow it to reach
its destination.

The adversary is limited by the requirement that it can indefinitely block only
the agents crossing the links entering the BH. However, due to asynchrony, the
unknown topology and the unknown location of the BH, this means that the
only case when the adversary cannot block the blocked agents indefinitely is if
there are at least Δ+1 blocked agents or there are two blocked agents traveling
on edges leaving the same node. In such case, the algorithm can wait until the
adversary unblocks one of the blocked agents; in all other cases, the algorithm
must specify an agent movement in its step. We can now state:

Theorem 1. When the overall number t of available tokens is less than a con-
stant C, black hole search is unsolvable by Δ+ 1 agents without a map, even if
the number of nodes and edges is known.

Proof. By contradiction, assume Δ+1 agents are sufficient. The unknown graph
G in which the agents must locate the black hole is one of Ga, Gb1 or Gb2 shown
in Figure 3, where HB is the homebase, and BH is the black hole; the choice of
which graph G really is is up to the adversary. We now show that, even if the
agents have the map of these three graphs, the uncertainty about which one G
really is allows the the adversary to send all Δ+ 1 agents to the BH.

Starting from the homebaseHB = x0, whenever the algorithm sends an agent
over the first unexplored link from node xi (0 ≤ i ≤ Δ−2), the adversary blocks
it. Since G might be graph Ga, the algorithm must send an agent also over the
second unexplored link incident on i. At this point, the adversary is forced to
unblock one of these two links; it will unblock the link leading to node xi+1.
Hence, within finite time, Δ − 1 agents are blocked and an agent reaches node
xΔ−1.

The two free agents must now try to explore the remainder of the graph,
since the adversary might have chosen G = Ga. In doing so, the adversary can
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Gb1 :

Gb2 :

Fig. 1. The graphs used in Theorem 1

force both of them to explore a link leading to the black hole by choosing either
G = Gb1 or G = Gb2 , depending on the way these two agents try to explore the
remainder of the graph. Notice that at this point, all agents are blocked on links
leading to the black hole, except for the two agents traversing the edges leading
to node c. The adversary then unblock them; to finish the exploration of the
graph. these two agents must reach node xΔ−1 and go beyond.

Regardless of the choice, G = Gb1 or G = Gb2 , made by the adversary, at each
of the nodes x3, x4, xΔ−2 on the path to node xΔ−1, there is a link leading to
the black hole, which the two agents must avoid. Since the algorithm can place
only C tokens on the Δ nodes c, x0, ..., xΔ−2, it can encode at most O(ΔC)
possibilities on how to safely move from node x3 to node xΔ−1. However, the
safe ports from all but one of the nodes x3 to node xΔ−1 must have been encoded
by the algorithm so not to fail; but such an information requires 2Δ−5 different
configuration of tokens. This means that, for large enough Δ, the adversary can
force also these two agents to enter the black hole while they are moving from
node x3 to node xΔ−1.

As a consequence, at least Δ+2 agents are required to locate the black hole. We
now focus on the needed token load t, i.e., how many tokens are really necessary.

Theorem 2. With two tokens initially stored at the HB and no additional to-
kens, no team of anonymous identical agents can locate the BH in an unknown
network, even if the number of nodes and edges is known.
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Fig. 2. Module Comm

4 Possibility and Upper Bounds

4.1 Communication and Coordination Using Tokens

A basic module of our solution protocol is a simple novel technique that uses
three tokens to communicate finite but arbitrary information (a sequence of bits)
between two agents: A and B. The algorithm uses two types of communication:
with and without reply. All communication takes place in the home base. Let
(x, y, z) denote the configuration of tokens in which A has x tokens, B has z
tokens, and the homebase contains y tokens. Let S = b1b2 · · · br be a sequence
of r bits to be transmitted from B to A. First of all, to unambiguously detect
termination, the sequence will be encoded as: S ′ = 1b11b2 · · · 1br−11br0 so that
a zero in odd position will indicate termination. Communication always starts
from configuration (1, 1, 1).

The communication protocol (Module Comm) is as follows (see Figure 2):
if the bit to be communicated is “0”, B picks up a token creating configura-
tion (1,0,2); if instead the bit is “1”, B drops the token (conf. (1,2,0)). When
agent A understands what has been communicated, A drops its token if the bit
communicated is “0” (conf. (0,1,2)), it picks one up otherwise (conf. (2,1,0)) ac-
knowledging reception of the information. At this point, three different actions
are possible depending on whether i) the sequence is not terminated, ii) the
sequence is terminated (the last bit is a zero in odd position) and no reply is
required, iii) the sequence is terminated and a reply is required. In the first
case B drops a token (conf. (0,2,1)) or picks one up (conf. (2,0,1)) depending
on the last transmitted bit; then A creates (1,1,1) by picking up (or dropping)
a token, allowing B to continue the transmission of the sequence. In case ii)
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the communicated bit is surely zero; B drops both tokens reaching configuration
(0,3,0) which indicates end of communication. Finally, in case iii) a protocol to
switch role is executed which allows configuration (1,1,1) to be created by B,
so that A can start its reply (following the same protocol with switched roles).
More precisely, in a transmission with reply, B drops one token (conf. (0,2,1));
A starts the protocol for switching roles by grabbing both tokens. Once this is
observed by B, it drops its own token (conf. (2,1,0)); once this is observed by A,
it drops one of its tokens (conf. (1,2,0)); finally B picks one up creating config-
uration (1,1,1) where A will be the transmitted and B the receiver (denoted in
the figure by A ⇔ B), allowing the beginning of the reply communication.

4.2 Black Hole Search

Informal Description. Algorithm Black hole search is composed of four
modules: Leader Election, Find Waiting Room, Synchonization and Search, and
it starts with three tokens initially placed on the homebase.

Module Elect Leader is executed first so that a leader is elected and all the
other agents (the followers) are notified. Once elected, the acknowledged leader
(from now on simply called leader) places all three tokens on the homebase.
For reasons that will become apparent later, the next goal of the agents is to
identify a second safe node, besides the homebase: the waiting room. Note that
if the home base has only one neighbour, it must be safe since we assumed that
the removal of the black hole does not disconnect the graph. Should the home
base have more than one neighbour, this node will be one connected though
either port 1 or port 2. (Module Find Waiting Room). As soon as the leader
determines the location of the waiting room, it synchronizes the other agents
(Module Synch) so they can start the black hole search (Module Search).

The actual search is coordinated by the leader, which gives instructions to
the other agents indicating which new link to explore (if any) or to wait in the
waiting room (if all known unexplored links are being explored). The agents
explore new links and, if survive, report back their discoveries. Notice that since
the graph is anonymous, the newly reported node might actually be already in
the map without anybody knowing; this has to be verified.

Agents waiting in the waiting room are brought back to the homebase by the
leader (by appropriate use of tokens in the waiting room) if there are new links
in need of exploration.

Leader Election. All k agents are initially in state Candidate. A candidate
seeing three tokens on the homebase picks one up and becomes Leader setting a
counter to 1. A candidate seeing two tokens on the homebase picks one up and
becomes a Follower. The Leader seeing a single token on the homebase picks up
the token. A follower with one token, seeing none on the homebase drops the
token and becomes an Acknowledged Follower. The leader with two tokens when
it sees a single token drops a token and increment the counter by one to keep
track of the number of acknowledged followers. When the counter is equal to
k the leader becomes the Acknowledged Leader; at this point each agent knows
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whether it is the leader or not. In the following, once this protocol has been
executed, we will refer to the Acknowledged Leader simply as “leader”, and to
an Acknowledged Follower as “follower”.

Determining the Waiting Room. The goal of Module Find Waiting Room

is to identify a safe node adjacent to the homebase, and in the process to ”reg-
ister” all followers.

Two coordination protocols are used in this phase: InstructF1andF2 and
InstructOthers. Both of them are started with three tokens (conf. (0,3,0))
and with a follower picking up two tokens (conf. (0,1,2)). The first two followers
executing this are special and the leader proceeds according to Protocol In-
structF1andF2 : the first follower (F1) will be assigned the task to explore
the first neighbour of the homebase, the other (F2) will have to explore the sec-
ond. The protocol (see Figure 3 a)) involves a sequence of tokens manipulations
between the leader and the follower until they are ready to talk (conf. (1,1,1)). At
this point the leader starts Module Comm to make the follower aware of its role:
to be F1 if it is the first, or F2 if it is the second, and to explore the first (resp.
second) neighbour of the homebase. When communication is over the follower is
registerd and three tokens are again present on the homebase. Note that three
tokens are never on the home base during the execution of InstructF1andF2
except in the initial and in the final configuration.

Each subsequent unregistered follower, upon seeing three tokens (conf. (0,3,0))
on the home base, picks up two tokens (conf. (0,1,2)); the leader in this case,
proceeds according to Protocol InstructOthers (see Figure 3 b)) which ter-
minates with the follower being registered and with either three or two tokens in
the home base (depending on whether the waiting room is known or not). This
protocol does not involve actual communication, but only some token manipu-
lation. At least one of agents F1 and F2 will return from their exploration. If
successful, they use different methods to communicate to the leader, F1 “com-
municates” to the leader that the first neighbour is safe by grabbing three to-
kens from the homebase (when it sees them available) and bringing them to the
newly explored node. An empty home base can only mean that F1 was safely
back; hence, eventually the leader learns that F1 has returned safely. If F2 re-
turns safely, it cannot use the same method to communicate because it would
lead to ambiguity. Instead, F2 picks up 2 tokens (when it sees 3 available in
the homebase) and starts protocol InstructOthers and registers again. The
leader might not understand right away that F2 is back unless k−1 agents have
already registered; it will do so however when eventually it will record k regis-
trations. Hence, eventually the leader learns that F2 has returned safely. If F1
returns before the leader has recorded k registrations, the leader selects the first
neighbour of the home base to be the waiting room; otherwise, upon recording
k registrations, the leader selects the second neighbour to be the waiting room.

Synchronization. Protocol Synch starts once the waiting room is determined
and allows registered followers to synchronize with the leader for the Search

phase. The protocol is enabled by the leader creating configuration (1, 2, 0). It
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Fig. 3. Token configurations for the main modules. The first action is always taken by
the follower.

is started by a registered follower not yet synchronized; depending on whether
or not there are other registered followers to be synchronized, it terminates in
configuration (1, 2, 0) (enabling the protocol to be executed again) or (0, 3, 0) (see
Figure 3 c)) After executing protocol Synch, a follower becomes synchronized.

Search. The search is coordinated by the leader, which will create, maintain
and update a partial map until the location of the black hole is determined. To
do so, the leader gives instructions to the followers indicating to each of them
which node to explore next. Such instructions are given in the form of paths
to be taken to explore a new link, possibly leading to an unexplored node. A
follower receiving such an instruction, follows the path and, if successful, comes
back to the leader to report its findings: the safeness of the node and its degree
(i.e. the number of nodes needing exploration). Upon receiving this information,
the leader needs to update the map. Notice that since the graph is anonymous,
the newly explored node might actually be already in the map without anybody
knowing. To verify whether this is indeed a new node, the leader goes to the
node, it places a token on it, and it traverses the current safe portion of the
graph (i.e., the current map). If the token is found during the traversal it means
it was already explored; otherwise the leader updates the map.

When giving instructions to a follower, if all links outgoing from the known
safe area of the network are under exploration, the leader instructs the follower
to move to the waiting room. Thus, it is possible that some agents are in the
waiting room when an agent returns from exploring a link. If some work becomes
available (i.e., new links to explore are reported), the leader goes to the waiting
room to call back some agents. More precisely, the leader goes to the waiting
room, places three tokens there, signalling to those waiting that there is work
to be done. The first agent in the waiting room to notice, picking up the three
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tokens, brings them to the homebase, and places two of them there. At this point
the leader moves to the homebase as well, and picks up one of the two tokens
reaching a situation where the two agents can communicate.

Any communication is achieved by Module Comm; communication is always
with reply and is started by a follower picking up one token when seeing three.
The leader seeing two tokens understands that the follower needs to talk, picks
up one token and the conversation starts with one token on the homebase, one
with the leader’, and one with the follower. In the very first such communication,
a follower receives also an ID from the leader.

Note that, because of asynchrony, the execution of Modules Search and Find

Waiting Room may be interleaved; the communication protocols is carefully
designed so to avoid interference between agents in different stages. For example,
while the leader is coordinating the search, some agents (unregistered followers)
might execute InteractOthers when they see three tokens available. The
leader recognizes the situation by the fact that they pick up two tokens instead of
one, and proceeds accordingly. Even F1 might come back safe while the leader is
already executing the Search with all the other followers. In this case F1 grabs
three tokens when it sees them available. The leader recognizes the situation as
finding an empty home base has only this particular meaning, it then simply
goes to the first neighbour of the home base to take the tokens back and puts
them on the home base. This way, also F1 can start the Search phase.

4.3 Correctness and Complexity

We define as active interaction the action of an agent picking up or dropping
one or more tokens. The following Lemmas hold:

Lemma 4. Two agents can exchange arbitrary information with each other,
starting and ending with three tokens on the homebase.

Lemma 5. Algorithm Elect Leader terminates in finite time and all agents
eventually start Algorithm Find Waiting Room.

Lemma 6. In finite time, the Leader will know that one between the first or
second neighbour of the homebase is safe.

Let Ct be the set of registered followers that at time t are still not synchronized,
Dt be the set of d unregistered followers, and W t be the set of all followers.
During search let At be the set of at links under exploration (through which no
agent has returned yet), and Bt be the set of bt unexplored links (i.e., through
which no agent has exited). When no ambiguity arises, we shall omit the time
in the notation.

Lemma 7. Let a safe waiting room be identified by the leader. In finite time all
followers start Algorithm Search.

Based on the above Lemmas we can conclude:

Theorem 3. Algorithm Black Hole Search solves Bhs.
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Département d’informatique, Université du Québec en Outaouais,
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Abstract. Two identical (anonymous) mobile agents start from arbi-
trary nodes of an unknown tree and move along its edges with the goal
of meeting at some node. Agents move in synchronous rounds: in each
round an agent can either stay at the current node or move to one of
its neighbors. We study optimal time of completing this rendezvous task.
For deterministic rendezvous we seek algorithms that achieve rendezvous
whenever possible, while for randomized rendezvous we seek almost safe
algorithms, which achieve rendezvous with probability at least 1 − 1/n
in n-node trees, for sufficiently large n.

We construct a deterministic algorithm that achieves rendezvous in
time O(n) in n-node trees, whenever rendezvous is feasible, and we show
that this time cannot be improved in general, even when agents start
at distance 1 in bounded degree trees. We also show an almost safe al-
gorithm that achieves rendezvous in time O(n) for arbitrary starting
positions in any n-node tree. We then analyze when randomization can
help to speed up rendezvous. For n-node trees of known constant max-
imum degree and for a known constant upper bound on the initial dis-
tance between the agents, we show an almost safe algorithm achieving
rendezvous in time O(log n). By contrast, we show that for some trees,
every almost safe algorithm must use time Ω(n), even for initial distance
1. This shows an exponential gap between randomized rendezvous time
in trees of bounded degree and in arbitrary trees. Such a gap does not
occur for deterministic rendezvous.

All our upper bounds hold when agents start with an arbitrary delay,
controlled by the adversary, and all our lower bounds hold even when
agents start simultaneously.

1 Introduction

Two identical mobile agents, initially located in two nodes of a network, move
along links from node to node, and eventually have to meet in the same node at
the same time. This task is known as rendezvous [1]. The network is modeled as
an undirected connected graph, and agents traverse links in synchronous rounds.
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Agents are mobile entities with unlimited memory; from the computational point
of view they are modeled as copies of the same Turing machine. Agents do not
know the topology of the network and they cannot mark the visited nodes in
any way. We seek rendezvous algorithms that do not rely on the knowledge of
node labels, and can work in anonymous graphs as well (cf. [1]). The importance
of designing such algorithms is motivated by the fact that, even when nodes are
equipped with distinct labels, agents may be unable to perceive them because of
limited sensory capabilities, or nodes may refuse to reveal their labels, e.g., due
to security or privacy reasons. On the other hand, we assume that edges incident
to a node v have distinct labels in {0, . . . , d−1}, where d is the degree of v. Thus
every undirected edge {u, v} has two labels, which are called its port numbers
at u and at v. Port numbering is local, i.e., there is no relation between port
numbers at u and at v. An agent entering a node learns the port of entry and
the degree of the node. Note that, in the absence of port numbers, rendezvous
is usually impossible, as all ports at a node look identical to an agent and the
adversary may prevent the agent from taking some edge incident to the current
node.

In this paper we focus attention on rendezvous in trees and our goal is to
minimize rendezvous time. We consider both deterministic and randomized algo-
rithms. For deterministic rendezvous we seek algorithms that achieve rendezvous
whenever possible, while for randomized rendezvous we seek almost safe algo-
rithms, which achieve rendezvous with probability at least 1 − 1/n in n-node
trees, for sufficiently large n. It is well known (cf. e.g. [13]) that deterministic
rendezvous with simultaneous start is possible if and only if the initial posi-
tions of the two agents are not symmetric, i.e., if there is no port-preserving
automorphism of the tree that carries one node on the other.

Our Results. We construct a deterministic algorithm that achieves rendezvous
in time O(n) in n-node trees, whenever rendezvous is feasible, and we show that
this time cannot be improved in general, even when agents start at distance 1
in bounded degree trees. More precisely, our algorithm guarantees rendezvous in
linear time except for the special case of symmetric initial positions and simulta-
neous start, in which case deterministic rendezvous is impossible. We also show
an almost safe algorithm that achieves rendezvous in time O(n) for arbitrary
starting positions in any n-node tree. We then analyze when randomization can
help to speed up rendezvous. For n-node trees of known constant maximum de-
gree and for a known constant upper bound on the initial distance between the
agents, we show an almost safe algorithm achieving rendezvous in time O(log n).
By contrast, we show that for some trees, every almost safe algorithm must use
time Ω(n), even for initial distance 1. This shows an exponential gap between
randomized rendezvous time in trees of bounded degree and in arbitrary trees.
Such a gap does not occur for deterministic rendezvous.

All our upper bounds hold when agents start with an arbitrary delay, con-
trolled by the adversary, and all our lower bounds hold even when agents start
simultaneously.
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Related Work. An extensive survey of randomized rendezvous in various sce-
narios can be found in [1]. Several authors considered the geometric scenario
(rendezvous in an interval of the real line [5,14], or in the plane [2]).

For the deterministic setting a lot of effort has been dedicated to the study
of the feasibility of rendezvous, and to the time required to achieve this task,
when feasible. For instance, deterministic rendezvous with agents equipped with
tokens used to mark nodes was considered, e.g., in [16]. Deterministic rendezvous
of agents equipped with unique labels was discussed in [10,17]. (In the latter
scenario, symmetry is broken by the use of the different labels of agents, and
thus rendezvous is sometimes possible even for symmetric initial positions of the
agents). Memory required by the agents to achieve deterministic rendezvous has
been studied in [12,13] for trees and in [7] for general graphs. Memory needed
for randomized rendezvous in the ring is discussed, e.g., in [15].

A natural extension of the rendezvous problem is that of gathering [9,11],
when more than 2 agents have to meet in one location. In [9,11] gathering in
the plane was considered and the authors assumed limited visibility, studying
the deterministic scenario in [11] and the randomized scenario in [9]. In [19] the
authors considered gathering of many agents with unique labels in networks.

Apart from the synchronous model used in this paper, several authors have
investigated asynchronous rendezvous in the plane [6,11] and in network envi-
ronments [4,8]. In the latter scenario the agent chooses the edge which it decides
to traverse but the adversary controls the speed of the agent. Under this as-
sumption rendezvous in a node cannot be guaranteed even in very simple graphs
and hence the rendezvous requirement is relaxed to permit the agents to meet
inside an edge. In [3] the authors study the memory size needed for time-optimal
asynchronous rendezvous in trees, under a slightly different scenario: They do
not allow rendezvous inside an edge, but for symmetric trees they allow that
agents terminate not in one node but in two adjacent nodes.

2 Framework and Preliminaries

We consider trees with unlabeled nodes and labeled ports. An isomorphism be-
tween trees T = (V,E) and T ′ = (V ′, E′), where V is the set of nodes of T and V ′

is the set of nodes of T ′, is a bijection f : V → V ′, such that for any w,w′ ∈ V ,
w is adjacent to w′ if and only if f(w) is adjacent to f(w′). It preserves port
numbering if for any w,w′ ∈ V , the port number corresponding to edge {w,w′}
at node w is equal to the port number corresponding to edge {f(w), f(w′)} at
node f(w). An automorphism is an isomorphism of a tree on itself. A pair of
distinct nodes u, v of a tree is called symmetric, if there exists an automorphism
f preserving port numbering, and such that f(u) = v. Rooted trees are called
isomorphic, if there exists an isomorphism from one to the other, preserving port
numbering and carrying the root to the root.

We consider identical mobile agents traveling in trees with locally labeled
ports. Unless stated otherwise, the tree and its size are a priori unknown to the
agents. We assume that agents are copies A and A′ of the same Turing machine
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A, starting at two distinct nodes vA and vA′ , called the initial positions. We
will refer to such identical machines as a pair of agents. Hence a pair of agents
execute an identical algorithm. It is assumed that the internal clocks of a pair
of agents tick at the same rate. The clock of each agent starts when the agent
starts executing its actions. Agents start from their initial position with delay
θ ≥ 0, controlled by an adversary. This means that the later agent appears at its
starting position and starts executing its actions θ rounds after the first agent.
Agents do not know which of them is first and what is the value of θ. The time
of a rendezvous algorithm is the number of rounds since the start of the later
agent until rendezvous.

Initial positions forming a symmetric pair of nodes are crucial for deterministic
rendezvous. Indeed, if the initial positions are symmetric, then deterministic
rendezvous is impossible for any pair of agents with simultaneous start, i.e, for
θ = 0, cf., e.g., [13]. We say that a pair of agents using a deterministic algorithm
solve the rendezvous problem in a class of trees, if, for any tree in this class, the
agents meet except for the above special case when rendezvous is impossible, i.e.,
if they achieve rendezvous from arbitrary initial positions when θ > 0 and from
arbitrary non-symmetric initial positions when θ = 0. Note that agents do not
know the value of θ and they do not know if their initial positions are symmetric,
so the same rendezvous algorithm must cover both situations. For a pair of agents
using a randomized algorithm, we say that they solve the rendezvous problem
in a class of n-node trees, if the probability that both agents are eventually in
the same node of the tree in the same round is at least 1− 1/n, regardless of the
initial positions of the agents.

A basic walk in a tree T , starting from node v is a traversal of all edges of the tree
ending at the starting node v and defined as follows. Node v is left by port 0; when
the walk enters a node by port i, it leaves it by port (i+ 1) mod d, where d is the
degree of the node. Everym-node rooted tree can be coded by a sequence of length
2(m−1) whose terms are consecutive port numbers encountered while performing
the basic walk starting at the root (port 0 at every leaf is noted twice during its
visit, at the entry and at the exit). Clearly, codes of rooted trees are identical if
and only if these rooted trees are isomorphic. This yields a linear ordering of all
non-isomorphic rooted trees, by the lexicographic ordering of their codes.

Consider any tree T and the following sequence of trees constructed recur-
sively: T0 = T , and Ti+1 is the tree obtained from Ti by removing all its leaves.
T ′ = Tj for the smallest j for which Tj has at most two nodes. If T ′ has one node,
then this node is called the central node of T . If T ′ has two nodes, then the edge
joining them is called the central edge of T . A tree T with port labels is called
symmetric, if there exists a non-trivial automorphism f of the tree (i.e., an au-
tomorphism f such that f(u) �= u, for some u ∈ V ) preserving port numbering.
In a non-symmetric tree, every pair of nodes is non-symmetric. If a tree with
port numbers has a central node, then it cannot be symmetric. If it has a central
edge e, then it is symmetric if and only if the port numbers corresponding to e at
both its extremities are the same and the subtrees resulting from the removal of
e, rooted at these extremities, are isomorphic. These subtrees are called halves of
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the tree T . (A code of each of them is obtained from a basic walk in it, starting
at its root and skipping the port corresponding to e.)

3 Time of Deterministic Rendezvous

We first show that there exists a pair of agents that can deterministically solve
the rendezvous problem in every tree, in time linear in the size of the tree.
We assume that either θ = 0 and the initial positions are non-symmetric, or
that θ > 0. (Otherwise, i.e., when initial positions are symmetric and start is
simultaneous, rendezvous is impossible, as mentioned before.) The idea of the
algorithm is the following. Each agent performs the basic walk, starting from
its initial position. Upon its completion the agent has an isomorphic map of
the tree with its starting position marked. If the tree is not symmetric, then
the agent goes to an unambiguously chosen node and stops. Otherwise (in this
case there is the central edge), each agent computes an integer label, based on
its initial position, so that labels corresponding to non-symmetric positions are
different. Then each agent goes to the closest endpoint of the central edge and
starts executing phases of the form: ix traversals of the central edge and ix idle
rounds, where x is its label, for i = 1, 2, . . . , until rendezvous occurs. Below is
the pseudo-code of the algorithm.

Algorithm Deterministic-RV
Perform the basic walk starting from initial position.
If the tree has a central node then go to the central node.
If the tree has a central edge and port numbers

at both its endpoints are different then
go to the endpoint corresponding to the larger port number.

If the tree has a central edge with equal port numbers,
but the tree is not symmetric then
go to the endpoint which is the root of the subtree
with lexicographically larger code.

If the tree is symmetric then
x := the number of steps of the basic walk starting from initial
position until the first traversal of the central edge;
go to the closest endpoint of the central edge via the shortest path;

for i = 1, 2, . . . do
traverse the central edge ix times;
stay idle ix rounds.

until rendezvous

Theorem 1. Algorithm Deterministic-RV solves the rendezvous problem in an
arbitrary tree, and takes time O(n) in trees of size n.

Proof. We first show that the algorithm is correct. After performing the basic
walk, each agent knows which of the four “if” cases holds. If the central node
exists, then it is unique and both agents meet there. If the tree has a central edge
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and port numbers at both its endpoints are different, then the meeting endpoint
is unambiguously defined and agents meet there. If the tree has a central edge
with equal port numbers but the tree is not symmetric, then the two subtrees
rooted at the endpoints of the central edge are not isomorphic and hence their
codes are different. It follows that the root of the subtree with lexicographically
larger code is unambiguously defined and both agents meet there.

Hence in the sequel we may assume that the tree is symmetric, i.e., both
port numbers at the central edge are equal and the two subtrees rooted at the
endpoints of the central edge are isomorphic. Consider two cases.

First assume that the initial positions are not symmetric. It follows that the
numbers of steps of the basic walk starting from each of these positions until
the first traversal of the central edge must be different. Hence the integers x
computed by each agent are different. Call these integers x1 and x2 and assume,
without loss of generality, that x1 > x2. Give the name aj to the agent whose
integer is xj , for j = 1, 2. Let t be the round when the agent that started later
the execution of the “do until rendezvous” loop started this loop. We show that
by round t+4x1 rendezvous must occur. Indeed, this happens as soon as one of
the agents is idle and the other agent moves. The worst case is when x1 = kx
for some integer k > 1 and the agent a1 starts the execution of the first turn
of the loop in the same round in which agent a2 starts the execution of the kth
turn of the loop. Then they are both active for x1 rounds and then both idle
for x1 rounds. Afterwards, agent a1 is active for 2x1 rounds, while agent a2 is
active only for (k + 1)x2 < 2x1 rounds and then becomes idle. It follows that
rendezvous occurs by round t+ 2x1 + (k + 1)x2 + 1 ≤ t+ 4x1.

Next assume that the initial positions of the agents are symmetric but θ > 0.
In this case the integer x computed by both agents is the same. Again, let t
be the round when the agent that started later the execution of the “do until
rendezvous” loop started this loop. Now we show that by round t + 2x + 1
rendezvous must occur. Now the worst case is when t+ x is the round when the
earlier agent ends the activity part of its kth turn of the loop. Both agents are
active for x rounds, then the earlier agent is idle for (k + 1)x rounds, while the
later agent is idle only for x rounds and then resumes activity. It follows that
rendezvous must occur by round t+ 2x+ 1.

It remains to estimate the execution time of Algorithm Deterministic-RV.
According to the definition we start counting time at the appearance of the later
agent. The basic walk takes time 2(n−1). The integer x computed by each agent
(in the case when the tree is symmetric) is at most n, as it can exceed by at
most 1 the length of the basic walk in the half of the tree where the agent starts.
The time to get to the central node or to the endpoint of the central edge is at
most n/2. The time of the execution of the “repeat until rendezvous” loop is at
most 4x1 ≤ 4n. Hence the total time between the appearance of the later agent
and rendezvous is at most 15n/2. �

Remark. Algorithm Deterministic-RV is designed to solve the rendezvous prob-
lem in a deterministic setting, i.e., under the assumption that either the initial
positions of the agents are not symmetric, or that their start is not simultaneous.
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However, for the special case of simultaneous start, it can be modified to work
for arbitrary starting positions and to perform a more demanding task: if the
initial positions are not symmetric, then rendezvous is achieved, and if the ini-
tial positions are symmetric, then both agents stop and report that rendezvous
is impossible. The modification is to stop the algorithm after 15n/2 rounds if
rendezvous is not achieved and report that rendezvous is impossible; n is the
number of nodes of the tree which each agent learns after performing the basic
walk. It follows from the proof of Theorem 1 that, if the initial positions are not
symmetric, then rendezvous is achieved at the latest after 15n/2 rounds of its
execution by the later agent (or by both agents for simultaneous start). Hence
the modification is correct for simultaneous start and the algorithm still works
in time O(n). For arbitrary delay θ such a strengthening is clearly impossible,
as the later agent can appear arbitrarily late and the earlier agent can never
know if rendezvous is unfeasible (because positions are symmetric and start is
simultaneous) or if it is feasible but delayed because θ is large.

Can the rendezvous time O(n) be improved by a deterministic algorithm?
The answer is clearly “no” if the initial positions of agents are at distance Ω(n).
However, the following result shows that the answer is also“no”, even if the initial
distance between the agents is 1, the agents start simultaneously, and even in
the class of trees of bounded degree.

Proposition 1. Every deterministic algorithm solving the rendezvous problem
takes time Ω(n) for some instances where initial positions of agents are at dis-
tance 1 and agents start simultaneously. This holds even for the class of trees of
bounded degree.

Proof. Consider a n-node line, where n is even, oriented by having ports 0 and 1
at the endpoints of each edge. Place the initial positions of the agents in the two
middle nodes. These positions are at distance 1 and are not symmetric. Consider
any deterministic rendezvous algorithm A and assume that the agents execute it
starting simultaneously. During the first n/2−1 rounds the history of both agents
is identical, as none of them reaches any endpoint of the line. Hence, during these
rounds they perform identical moves, which implies that the distance between
them in each of these rounds remains 1. Hence the algorithm must use at least
n/2 rounds. �

4 Time of Randomized Rendezvous

As previously noted, deterministic rendezvous is impossible, if the initial posi-
tions are symmetric and the start is simultaneous. Can this restriction be over-
come by the use of randomization, and if so, is it possible to do it within time
linear in the size of the tree? It turns out that the answer to both questions
is “yes”. This is done by the following randomized algorithm. If the tree has a
central node, the agent goes there and stops. If the tree has a central edge, the
agent goes to the closest endpoint of the central edge and in the next �logn�
rounds flips a coin and stays idle or traverses the edge depending on whether
the outcome is heads or tails.
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Algorithm Randomized-RV
Perform the basic walk starting from initial position.
Compute the number n of nodes in the tree.
If the tree has a central node then go to the central node
else

go to the closest endpoint of the central edge via the shortest path;
repeat �logn� times or until rendezvous, whichever comes first:

with probability 1/2 stay idle
and with probability 1/2 traverse the central edge.

Theorem 2. Algorithm Randomized-RV is almost safe, solves the rendezvous
problem in an arbitrary tree, from arbitrary starting positions, with arbitrary
delay, and takes time O(n) in trees of size n.

Proof. We first show that the algorithm is almost safe. If the tree has a central
node, then rendezvous will occur at this node. Hence we may assume that the
tree has a central edge. Consider the round t when the later agent, call it a, comes
to the endpoint of the central edge; it starts flipping the coin in round t+ 1. In
round t the other agent, call it b is already in one of the endpoints of the central
edge. (If both agents start flipping the coin at the same time, we call them
a and b arbitrarily.) We may assume that it is the other endpoint, otherwise
the rendezvous is accomplished. In each of the rounds t + 1, . . . , t + �logn�,
or until rendezvous, agent a flips the coin and agent b either flips the coin as
well or finished flipping and stays idle. Consider the event E that rendezvous
did not occur during these rounds, i.e., in each of them the agents were at
different endpoints of the central edge. Consider such a round r. Since in the
beginning and at the end of round r the agents were at different endpoints, two
cases are possible. The first case is that in round r both agents flipped the coin
and they both moved or both stayed idle. The probability of this event is 1/2.
The second case is that agent b already stopped flipping the coin and stayed
idle, while agent a flipped the coin and stayed idle at the other endpoint. The
probability of this event is also 1/2. It follows that the probability of the event
E is (1/2)�logn� ≤ 1/n, and hence the algorithm is almost safe.

We conclude by estimating the execution time of Algorithm Randomized-RV.
Again we start counting time at the appearance of the later agent. The basic
walk takes time 2(n− 1). The time to get to the central node or to the endpoint
of the central edge is at most n. The randomized part of the algorithm takes
�logn� rounds. Hence the total time is at most 3n+ �logn�. �

As in the deterministic case, randomized rendezvous cannot be achieved in sub-
linear time if the initial positions of the agents are at distance Ω(n). However,
it turns out that for agents starting near each other, randomization can dramat-
ically decrease rendezvous time. We have seen in Section 3 that deterministic
rendezvous may require linear time even when agents start at distance 1 and
even in the line. This should be contrasted with the situation when randomiza-
tion is possible. Indeed, we will show that if agents start at a constant distance
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D in a n-node tree of constant maximum degree Δ, and if parameters D,Δ, n
are known to the agents, then almost safe randomized rendezvous can be accom-
plished in time logarithmic in the size of the tree. This is done by Algorithm
Fast-Randomized-RV. Its idea is the following. Knowing parameters D and Δ
the agent can find the upper bound α = ΔD+1 on the size of any rooted subtree
of depth D of the tree in which it operates. Then each agent divides all rounds
since its start into consecutive segments of equal length 4α. In the first round of
each segment it flips a coin. If the result is heads, the segment becomes active,
otherwise it becomes passive. In an active segment the agent performs the basic
walk in the subtree of depth D rooted at its initial position and then remains
idle till the end of the segment. In a passive segment the agent remains idle for
the entire duration of the segment. After the completion of 3�logn� segments
the agent stops. Below is the pseudo-code of the algorithm.

Algorithm Fast-Randomized-RV
α := ΔD+1.
repeat 3�logn� times or until rendezvous, whichever comes first:

with probability 1/2 stay idle for 4α rounds
and with probability 1/2 do

perform the basic walk of the subtree of depth D
rooted at initial position during z rounds and stay idle
during the next 4α− z rounds.

Theorem 3. Algorithm Fast-Randomized-RV is almost safe and solves the ren-
dezvous problem in an arbitrary n-node tree of constant maximum degree Δ, from
arbitrary starting positions at constant distance D, with arbitrary delay, provided
that agents know parameters D, Δ and n. It takes time O(log n) in trees of size n.

Proof. Let t1 ≤ t2 be the starting rounds of the two agents. Let S1, S2, . . . be the
consecutive segments of rounds of length 4α for the first agent and let T1, T2, . . .
be such consecutive segments of rounds for the second agent. Suppose that t2
is in segment Si. Since all segments are of the same length 4α, at least one of
the following properties must hold. Either, for every natural number q, segment
Si+q and segment T1+q have an overlap of length at least 2α, or for every natural
number q, segment Si+1+q and segment T1+q have an overlap of length at least
2α. We show the analysis in the first case; the second case is analogous. The
pairs of segments Si+q and T1+q, for q = 0, 1, . . . will be called matched.

Suppose that the segment Si+q is passive and the segment T1+q is active. This
means that during the first z ≤ 2α rounds of segment T1+q the second agent
performs the basic walk of the subtree of depth D rooted at its initial position,
while the first agent stays idle at its initial position. Since the initial positions of
the two agents are at distance D, the second agent will visit the initial position
of the first agent during its basic walk and rendezvous will occur.

Consider a pair Si+q and T1+q of matched segments, for q = 0, 1, . . . , 3�logn�−
1 . There are two cases. In the first case the activity or passivity of both segments
is decided by coin flips and the probability of the event that the segment Si+q
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is passive and the segment T1+q is active is 1/4. In the second case the first
agent finished the execution of the algorithm (i.e., the segment Si+q is passive)
and the segment T1+q is active with probability 1/2. Hence in both cases the
probability of rendezvous during the segment T1+q is at least 1/4. It follows that
the probability that rendezvous does not occur after the 3�logn� executions of
the “repeat” loop is at most (3/4)3�logn� = (27/64)�logn� < (1/2)logn = 1/n,
and hence the algorithm is almost safe. The estimate of the running time follows
directly from the formulation of the algorithm, since the duration 4α of each
segment is constant. �

Remark. It should be noted that the assumptions of the theorem can be slightly
weakened. It is enough that agents know any constant upper bounds on the initial
distance and on the maximum degree and any polynomial upper bound on the
size of the tree.

To prove our final result we will use the following well known tool for proving
lower bounds on the performance of randomized algorithms.

Lemma 1 (Yao’s minimax principle [18]). Let 0 < ε < 1/2. For any prob-
ability distribution P over the set of inputs, let A(P) denote the set of all deter-
ministic algorithms that err with probability at most 2ε over P. For A ∈ A(P),
let C(A,P) denote the expected running time of A over P. Let R be the set of
randomized algorithms that err with probability at most ε for any input, and let
T (R, I) denote the expected running time of R ∈ R on input I. Then, for all P
and all R ∈ R,

min
A∈A(P)

C(A,P) ≤ 2max
I

T (R, I).

The standard application of the above lemma to lower bound proofs is the fol-
lowing. We construct a probability distribution over the set of inputs to a given
problem, for which any deterministic algorithm that errs with probability at
most 2ε has a large expected running time over this probability distribution. In
view of the lemma, this implies that every randomized (Monte Carlo) algorithm
that errs with probability at most ε for any input, must have large expected
running time on some input.

First we consider the following auxiliary task whichwill be calledFind-Treasure.
There are k boxes numbered 0, 1, . . . k−1, one of which contains a treasure. Boxes
can be opened one by one, in an arbitrary order, until the treasure is found. The
running time of an algorithm solving the problem Find-Treasure is the number of
boxes opened. Using Lemma 1, the following fact can be proved.

Lemma 2. Any randomized algorithm for the Find-Treasure problem with k
boxes, that errs with probability at most 1/

√
k has expected running time at least

k/16 on some input, for sufficiently large k.

Proof. An input of the Find-Treasure problem with k boxes is the number of
the box containing the treasure. We use Lemma 1 with ε = 1/

√
k and with the

uniform probability distribution P . Consider any deterministic algorithm for the
problem, that errs with probability at most 2/

√
k, for the uniform distribution
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over the inputs. For sufficiently large k, such an algorithm has to open at least
�k/2� boxes. Let a1, a2, . . . , a�k/2� be the permutation of box numbers in the or-
der the algorithm opens them. Hence the expected running time of the algorithm
for the uniform distribution of inputs is at least (1/k)(1+2+ · · ·+�k/2�) ≥ k/8.
By Lemma 1, for any randomized algorithm that errs with probability at most
1/

√
k there exists an input for which this algorithm has expected running time

at least k/16. �

We are now ready to prove our main negative result. Together with Theorem
3 it shows a significant difference between the impact of bounded maximum
degree of the tree on the time of deterministic vs. randomized rendezvous. For
deterministic rendezvous we have seen that the linear lower bound holds even on
the line and even when both agents know that they are initially at distance 1.
Hence the bounded maximum degree of the graph is not of any help in general.
By contrast, for randomized rendezvous this restriction is crucial. While Theorem
3 showed that, for bounded degree graphs, randomized agents at initial distance
1 can solve rendezvous in logarithmic time, if they know parameters D, Δ and
n, the following result shows that they need exponentially more time for some
trees of unbounded degrees.

Theorem 4. There exists a class of n-node trees of maximum degree �n/2�, for
all positive integers n ≥ 2, such that every almost safe randomized algorithm that
solves the rendezvous problem for these trees has expected running time Ω(n) on
some n-node tree of this class, for any n, even if the initial positions of the agents
are at distance 1, even when the agents know this and know the size of the tree
in which they operate, and even when they start simultaneously.

Proof. Let n = 2k; the construction for odd n is similar. The tree T (n, i), for
i = 0, 1, . . . , k − 1, is defined as follows. It has two adjacent nodes v and w with
port number i at v and at w corresponding to the edge {v, w}. Moreover, both
v and w are adjacent to k − 1 leaves. Hence the tree T (n, i) is composed of two
stars whose centers are joined by an edge. The initial positions of the agents are
at nodes v and w.

Consider a randomized rendezvous algorithm A on the tree T (n, i) that errs
with probability at most 1/n. If rendezvous is accomplished, then at least one
of the agents must have traversed the edge {v, w}. Hence the probability that
a given agent traverses this edge is at least 1 − 1/

√
n. This is equivalent to

solving the Find-treasure problem with k boxes with error probability at most
1/

√
n ≤ 1/

√
k. By Lemma 2 the expected running time of such an algorithm is

at least k/16 on some input, for sufficiently large k. It follows that, for sufficiently
large n, the expected running time of algorithm A on the tree T (n, i) is at least
k/16 ∈ Ω(n), for some i. �
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Abstract. We consider the rendezvous problem of multiple (mobile)
agents in anonymous unidirectional ring networks under the constraint
that each agent knows neither the number of nodes nor the number
of agents. First, we prove for any (small) constant p(0 < p ≤ 1) that
there exists no randomized algorithm that solves, with probability p,
the rendezvous problem with (terminal) detection. For this reason, we
consider the relaxed rendezvous problem, called the rendezvous problem
without detection that does not require termination detection. We prove
that there exists no randomized algorithm that solves, with probability
1, the rendezvous problem without detection. For the remaining cases,
we show the possibility, that is, we propose a randomized algorithm that
solves, with any given constant probability p(0 < p < 1), the rendezvous
problem without detection.

1 Introduction

Background and motivation. A distributed system consists of some comput-
ers (nodes) and communication links. In recent years, distributed systems
have become large and design of systems has become more and more compli-
cated. Because of this factor, mobile agents have received a lot of attention
[1,2,3,4,5,6,7,8,9,10,11,12]. A (mobile) agent is an autonomous software that can
move in the network with keeping some information. So, the agent is convenient
for a task spreading over computers and, thus, it is expected to simplify the
complicated design of the systems.

A distributed system with mobile agents is called a mobile agent system. In
mobile agent systems, the rendezvous problem is known as one of the fundamental
problems [1,2,3,4,5,6,8,9,10,11]. In the rendezvous (gathering) problems, multiple
mobile agents dispersed in the network are required to meet at a single node.
The rendezvous can be used to share information among all the agents or to
synchronize behaviours of all agents.

In the rendezvous problem, initially agents have no knowledge of the network
topology or other agents. This requires agents to move around the network and to
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determine the meeting node based on the collected information. The rendezvous
problem can be easily solved if each node in a network has a unique identifier
or ID: Each agent explores the network and terminates at the node with the
smallest ID. However, such a unique ID may not be available for the agents in
some cases. It may be prohibited to publish the node ID to agents for security
reasons. Hence, it is important to design algorithms which work in anonymous
networks.

Related works. In anonymous unidirectional ring networks, agents using the
same deterministic algorithm cannot solve the rendezvous problem because of
impossibility in breaking symmetry. The problem can be feasible with some ad-
ditional assumptions such that agents can leave marks on nodes [4,5,9], can use
randomness [1,8], knows an upper bound on the size of the network [6], the edge
labeling is restricted [3,9], or the network topology is restricted [2]. Dieudonné
and Pelc [6] consider deterministic algorithms for the rendezvous in arbitrary
networks. They propose an algorithm for the rendezvous problem with (termi-
nal) detection if agents know an upper bound on the size of the network. For the
case that no upper bound is known to agents, they also propose an algorithm
for the rendezvous problem without detection. They relax the problem to the
rendezvous problem without detection, where all agents eventually gather and
stop at the same node but without detecting the completion of the rendezvous,
and propose an algorithm for the relaxed problem. In contrast, in this paper,
we focus on algorithms using randomness. Randomized algorithms for the ren-
dezvous problem have been studied [1,8,11]. Kranakis and Krizanc [8] propose a
randomized algorithm based on random walk for the rendezvous of two agents
in unidirectional ring networks. This algorithm requires no knowledge of the
number of nodes and achieves rendezvous in O(n2) expected steps. Alpern et al.
[1] propose a randomized algorithm for two agents, which is based on Coin Half
Tour. This algorithm requires knowledge of the number of nodes and achieves
rendezvous in O(n) expected steps. However, for the problem with more than 2
agents in anonymous unidirectional rings, no randomized algorithm is known.

Our contribution. We consider the rendezvous problem of k (k ≥ 2) agents in
unidirectional ring networks. We also assume that each agent knows neither the
number of nodes nor the number of agents. First, we prove for any (small) con-
stant p(0 < p ≤ 1) that there exists no randomized algorithm that solves, with
probability p, the rendezvous problem with (terminal) detection. This means we
cannot design a randomized algorithm even if we require only small probability
to achieve rendezvous. For this reason, we consider the rendezvous problem with-
out detection. We prove that there exists no randomized algorithm that solves,
with probability 1, the rendezvous problem without detection. For the remain-
ing cases, we show the possibility, that is, we propose a randomized algorithm
that solves, with any given constant probability p(0 < p < 1), the rendezvous
problem without detection.
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2 Preliminaries

Network Model. A unidirectional ring network R is defined as 2-tuple R = (V,E),
where V is a set of nodes and E is a set of unidirectional links. We denote by
n(= |V |) the number of nodes. Then, ring R is defined as V = {v0, v1, . . . , vn−1}
and E = {vi, v(i+1) mod n|0 ≤ i ≤ n− 1}.

Every node vi has a whiteboard and any agent visiting node vi can read from
or write to the whiteboard. Ring R is anonymous, that is, each node has no
ID. This means that an agent cannot distinguish two nodes when they have the
same whiteboard contents.

Agent Model. We denote by k the number of agents. Let A = {a0, a1, . . . , ak−1}
be a set of agents. We model the agents as identical probabilistic finite automata
(S, δ, sinitial). The first element S is the set of states of the agent, which includes
an initial state sinitial. Because every agent is identical, every agent initially
starts with the same state sinitial. The second element δ is the state transition
function δ:S × W × RN → S × W × M , where W represents a set of states
(or contents) of whiteboard, RN represents a set of random values, and M =
{move, stay} represents whether the agent makes movement or not in the step.
The value move represents movement to the next node and stay represents stay
at the current node. We assume that agents move instantaneously, that is, agents
always exist at nodes (do not exist at links). This assumption is introduced
for simplicity and does not lose generality even in the asynchronous model we
consider because agents are asynchronously activated at nodes and are unaware
of other agents at the same node. All agents have the same state transition
function δ since they are identical.

System Configuration. In an agent system, (global) configuration c is defined as
(S,W ,L), where S ∈ Sk represents states of agents, W ∈ Wn represents states
of nodes (whiteboards), and L ∈ {0, 1, . . . , n−1}k represents locations of agents.
The locations of agents L = (l0, l1, . . . , lk−1) implies that each agent ai stays
at node vli . We define C as a set of all configurations in an agent system. In
initial configuration c0 ∈ C, each agent holds the same initial state sinitial and
the whiteboard of each node is empty. This means that the initial configuration
depends only on the locations of agents. In the initial configuration, multiple
agents may stay at the same node.

Let Ai be an arbitrary non-empty set of agents. When configuration ci changes

to ci+1 by actions of every agent in Ai, we denote the transition by ci
Ai−→ ci+1.

When aj ∈ Ai moves to the next node or changes some states (of its own or
the whiteboard), we say agent aj takes one step. If multiple agents at the same
node are included in Ai, the agents take steps in an arbitrary order. If sequence

of configurations E = c0, c1, . . . satisfies ci
Ai−→ ci+1(i ≥ 0), E is called an

execution starting from c0. Execution E is infinite, or ends in final configuration
Cfinal where no agent can take a step. When Ai = A holds for any i, all agents
perform simultaneously. This model is called the synchronous model. Otherwise,
the model is called the asynchronous model.
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Rendezvous Problem. In this section, we formally define the rendezvous problem.
First, we give the definition of the rendezvous problem with (terminal) detection.
A halt state is defined as the state in which the agent never takes a step. That is,
if an agent transits to a halt state, it can detect its termination. The traditional
rendezvous problem requires agents to stop with such terminal detection in the
final configuration. We call this traditional rendezvous problem the rendezvous
problem with detection. We assume without loss of generality that agents have
a unique halt state.

Definition 1. Execution E solves the rendezvous problem with detection if the
following conditions hold: 1) Execution E is finite, and 2) in the final configu-
ration, all agents meet at a single node and hold the halt state.

We also define the rendezvous problem without detection. A suspending state is
defined as a state in which the agent never takes a step unless the whiteboard of
the current node is updated by other agents. The rendezvous problem without
detection allows agents to stop at suspending states. An agent at a suspending
state cannot detect its termination because other agents may wake up the agent
by updating the whiteboard state of the node.

Definition 2. Execution E solves the rendezvous problem without detection if
the following conditions hold: 1) Execution E is finite, and 2) in the final con-
figuration, all agents meet at a single node and hold suspending states.

Randomized algorithms for the rendezvous problem are defined as follows.

Definition 3. A randomized algorithm solves, with probability p, the rendezvous
problem with detection (resp., without detection) if the following condition holds:
From any initial configuration c0, executions which solve the rendezvous problem
with detection (resp., without detection) occur with probability at least p.

3 Impossibility Results

3.1 Impossibility of Rendezvous with Detection

In this section, we discuss impossibility of randomized rendezvous in anonymous
unidirectional rings. We first consider the rendezvous problem with detection
and prove that there exists no randomized algorithm that solves the problem.
Note that the impossibility holds even for the synchronous model.

Theorem 1. For any p (0 < p ≤ 1), there exists no randomized algorithm
that solves, with probability p, the rendezvous problem with detection in the syn-
chronous model.

We prove Theorem 1 by contradiction. We assume that an algorithm solves, with
probability p, the rendezvous problem with detection.

We consider ring R that consists of n nodes V = {v0, v1, . . . , vn−1} and k
agents A = {a0, a1, . . . , ak−1}. From the hypothesis, there exists an execution
E that solves the rendezvous problem with detection. We define T (E) as the
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length of E and denote E = c0, c1, . . . , cT (E). Note that every agent holds the
halt state in the final configuration cT (E).

Next, we consider a larger ring R′. Let q be the minimum integer that satisfies
qn ≥ T (E). We consider a fragment of R′ consisting of n′ = 2qn+n consecutive
nodes, and we call it segment S. We denote nodes in segment S by v′0,v

′
1,. . .,v

′
n′−1.

We consider k′ = kq+k agents in the segment S. These agents are represented by
AS = {a′0, a′1, . . . , a′k′−1}. The initial location (�′0, �

′
1, . . . , �

′
k′−1) for the k′ agents

in segment S is defined from the initial location (�0, �1, . . . , �k−1) for k agents in
ring R as follows:

�′i = �i mod k + n · 
i/k�.

That is, the initial positions of R are repeated from v′0 to v′qn+n−1, and there
exist no agents from v′qn+n to v′2qn+n−1 (see Figure 1). For each node v′j in R′,
we define Cv(v

′
j) = vj mod n as the corresponding node of v′j in R.

In the following, we first show that, with probability depending on n′ and k′,
some agents in the segment S transit to the halt state without moving out of S.
Then, we show that the algorithm fails to achieve rendezvous with probability
1 − p or more when the ring R′ contains sufficiently many fragments with the
same configuration as S. This contradicts the assumption.

First, we show that some agents in segment S perform in the same way as
agents in R with non-zero probability. We define the local configuration of node
v as the 2-tuple that consists of the state of v and the states of all agents at v.

Lemma 1. Let us consider execution E′ = c′0,c
′
1,. . .,c

′
T (E) ,. . . for ring R′. We

define V ′
t = {v′t, v′t+1, . . . , v

′
qn+n−1}. Then, with non-zero probability, configura-

tion c′t meets the following condition:

– For each node v′j ∈ V ′
t , the local configuration of v′j in c′t is the same as that

of Cv(v
′
j) in ct.

Proof. We prove Lemma 1 by induction on t. In the case of t = 0, Lemma 1
holds from the definition of R′. Next, we show that, when Lemma 1 holds for t
(t < T (E)), Lemma 1 holds for t+ 1.

From the induction hypothesis, with non-zero probability, the local configura-
tion of v′j in c′t is the same as that of Cv(v

′
j) in ct. Then, we assume that agents

at the node v′j ∈ V ′
t in c′t generate the same random numbers as those agents

at the node Cv(v
′
j) generate in ct. The probability that such execution occurs is

obviously more than 0.
Remind that, for each v′j ∈ V ′

t+1, the local configurations of v′j−1 and v′j in
c′t are the same as those of Cv(v

′
j−1) and Cv(v

′
j) in ct. Consequently, agents at

v′j−1 and v′j behave in c′t in the same way as those at Cv(v
′
j−1) and Cv(v

′
j) in ct.

Since only agents at nodes v′j−1 and v′j can change the local configuration of v′j
in unidirectional rings, the local configuration of v′j in c′t+1 is the same as that
of Cv(v

′
j) in ct+1. Therefore, we have Lemma 1. �

From Lemma 1, in the segment S for R′, the configuration c′T (E) satisfies the

condition of Lemma 1 with some non-zero probability p′ > 0. Then, in c′T (E), the
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ring 

…

Segment of ring 

No agent exists Repeat the initial location in ring  

…

……

Fig. 1. The initial configuration of R and R′

local configuration of each node in V ∗ = {v′qn, v′qn+1, . . . , v
′
qn+n−1} ⊆ V ′

T (E) is
the same as that of the corresponding node in cT (E). Note that the set of nodes
corresponding to nodes in V ∗ is equal to V , and every agent stops with the halt
state in configuration cT (E). Hence agents in V ∗ also stop with the halt state in
configuration c′T (E). Another important point is that the probability p′ in the

above depends only on n′ and k′ (and does not depend on the size of R′ or the
total number of agents in R′). This obviously holds since the proof of Lemma 1
considers the execution of only segment S.

In ring R′ of length xn′ or more, we consider the initial configuration such
that there exist x disjoint segments each of which has the same configuration
as the above described one of segment S. In segment S, since there exists no
agent from v′qn+n to v′2qn+n−1 initially, no agent moves out of segment S before
configuration c′T (E). So, each of the x segments does not influence the other
one, and the above execution in segment S occurs independently. Therefore, the
probability P that agents stop with the halt state in at least two segments is
P = 1 − (1 − p′)x − x(1 − p′)x−1p′. If agents stop with the halt state on the
two segments, the agents cannot meet at a single node. Hence such execution
does not solve the rendezvous problem with detection. That is, the probability
that this algorithm solves the rendezvous problem with detection is at most
1−P . When the size of ring R′ and x is sufficiently large, 1−P < p holds. This
contradicts the claim that, for the ring R′, this algorithm solves, with probability
p, the rendezvous problem with detection. Therefore, we have Theorem 1. �

3.2 Impossibility of Rendezvous without Detection

Similarly we have the following theorem for the rendezvous problem without
detection. Note that the theorem holds even for the synchronous model.

Theorem 2. There exists no randomized algorithm that solves, with probability
1, the rendezvous problem without detection.
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Proof. Due to limitation of space, we give only a brief sketch of the proof. We
can prove the theorem similarly to Theorem 1. For contradiction, we assume
that algorithm A solves the problem with probability 1. Considering a n-node
ring R with k agents, all the agents meet at a single node and stop with the
suspending states in R.

Next consider a 2n-node ring R′ with 2k agents. The initial positions of agents
in R′ are repeated twice in R. Then, all the agents in R′ can behave in the same
way as those in R. Consequently a half of the agents meet at a single node
and the other half of the agents meet at another node. All agents stop with
the suspending states and thus A cannot solve the rendezvous problem without
detection. �

4 A Randomized Algorithm for Rendezvous without
Detection

In this section, we propose a randomized algorithm that solves, with any given
probability p(0 < p < 1), the rendezvous problem without detection. The idea of
the algorithm is to assign a random ID to each node so that agents can identify
a unique rendezvous node by the IDs.

In the following, we present the algorithm. The probability p to solve the
rendezvous problem is given as an input to the algorithm. Let p1 and p2 be any
positive real numbers that satisfy p = p1p2. Throughout the section, when an
agent writes a random bit to a variable, it chooses one or zero uniform-randomly.

First, we show the overview of the algorithm. The algorithm consists of four
phases. In phase 1, each agent moves in the ring and appends a random bit to the
whiteboard every time it visits a node. So the bit sequence assigned to a node is
extended by one bit every time the node is visited by an agent. We consider the
bit sequence as a label of the node. Based on the random bits assigned to each
node, the agent distinguishes nodes and guesses the number of nodes, say n′. In
phase 2, the agent moves on n′ nodes and gives random IDs to the nodes. In
phase 3, the agent moves on n′ nodes and write the value n′ to the whiteboards.
After that the agent identifies the rendezvous node and moves to the node. Note
that, if n′ is correctly guessed and is equal to n, every node has an ID and
knows the number of nodes after phases 2 and 3. At the end of phase 3, the
agent becomes a suspending state. However, when n′ is not correctly guessed
and is different from n, the agent may prematurely stop moving and become a
suspending state. Even in this case, if another agent guesses the correct number
n, it writes the value n to the whiteboard of every node in phase 3. Consequently
the agent at the suspending state can notice its wrong guess on the number of
nodes and resume its behavior. This is phase 4, and in this phase the agent moves
throughout the ring, memorizes the IDs, and then moves to the rendezvous node.
Note that, if at least one agent succeeds to guess the correct number of nodes,
every agent can know the correct number of nodes and IDs of all nodes. This
fact is very useful to guarantee that all the agents can meet at a single node
with probability p or more.
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In the rest of this section, we give the details of each phase. The pseudocode
is given in Algorithms 1 and 2. In the pseudocode, we denote by node vj the
node where the agent currently stays.

Phase 1. The goal of phase 1 is that each agent guesses the number of nodes.
The fundamental idea of estimating the number of nodes is to assign a random
label to each node and to consider that the agent circulates the ring twice when
it finds a repeated sequence of the labels. Agent ai uses variables memory1, t,
n′ on agent ai and wb1j on node vj . Variable wb1j stores a random label of node
vj , and memory1 is used to store the sequence of node labels the agent visited.
Variable t stores the number of moves in phase 1. Variable n′ stores the number
of nodes that ai guesses. We call n′ the temporary number of nodes.

Agent ai executes the following procedure in each step. Assume that ai stays
at node vj .

– Agent ai appends one random bit to wb1j on vj , that is, ai writes one random
bit on wb1j [x+ 1] when variables wb1j[1..x] are already written.

– Agent ai assigns wb1j (the random bits) to memory1[t], where t is the num-
ber of moves the agent made.

– Agent ai guesses the number of nodes from memory1 (see details in the
below) and assigns it to n′.

– Agent ai moves to the next node.

This step is repeated until ai guesses some temporal number of nodes n′ and
the number of moves is at least 3n′ + log 1

1−p1
. As we show later, this number

of moves guarantees that agent ai guesses the correct number of nodes with
probability p1.

Here we explain the way to guess the number of nodes from memory1 (Func-
tion Guess() in Algorithm 2). Because agent ai moves repeatedly, it eventually
circulates the ring twice. Then, each value in the first half of memory1 is a prefix
of the value of the corresponding entry in the latter half of memory1. For this
reason, the agent guesses the number of nodes when each value in the first half
of memory1 appears as a prefix of the corresponding value in the latter half
of memory1. More concretely the agent guesses that the number of nodes is d
where d(1 ≤ d ≤ 
t/2�) is the maximum value satisfying for any x (0 ≤ x ≤ t−d)
and any y (0 ≤ y ≤ |memory1[x]|− 1), memory1[x][y] = memory1[x+d][y] and
|memory1[x]| �= |memory1[x + d]| hold (see Figure 2). The second inequality
means that, if the number of nodes is d, additional random bits should be writ-
ten to the whiteboard in the second visit. If there does not exist such d, the
agent continues phase 1 to guess the number of nodes and assigns zero to n′.

Phase 2. In phase 2, agent ai gives a random ID to each node. The variable
wb2j on node vj is used to store the ID that an agent generates randomly. Agent
ai moves over the ring and stores all IDs in memory2. In more details, agent ai
executes the following procedure in each step. Assume that ai stays at node vj .

– Agent ai generates a random ID of length � 2
n′ log

n′
1−p2

� and writes the ID
to wb2j unless wb2j already stores an ID.
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Algorithm 1. Proposed Algorithm

input
float p ∈ (0, 1) //p satisfies p = p1p2
Variables in Agent ai

int t = 0 // the number of moves in each phase
boolean[ ][ ] memory1,memory2
int vmin = 0
int n′ = 0 // the number of nodes that agent ai guesses
Variables in Node vj
boolean[ ] wb1j ,wb2j
int sizej = 0
Main Routine of Agent ai

Phase1
1: while (n′ = 0 or t < 3n′ + log 1

1−p1
) do

2: ai appends one random bit to wb1j // When variables wb1j [1..x] are already
written, ai writes one random bit on wb1j [x+ 1].

3: ai assigns wb1j to memory1[t]
4: n′ = Guess()
5: t++
6: ai moves to the next node
7: end while

Phase2
8: for t = 0 to n′ − 1 do
9: ai generates a random ID of length � 2

n′ log
n′

1−p2
� and writes the ID to wb2j

unless wb2j already stores an ID.
10: ai assigns wb2j to memory2[t]
11: ai moves to the next node
12: end for

Phase3
13: for t = 0 to n′ − 1 do
14: if sizej < n′ then
15: sizej = n′

16: end if
17: ai moves to the next node
18: end for
19: vmin = Rendezvousnode()
20: for � = 0 to vmin − 1 do
21: ai moves to the next node
22: end for
23: ai stops with the suspending state

– Agent ai assigns wb2j to memory2[t2], where t2 is the number of moves that
ai made in phase 2.

– Agent ai moves to the next node.
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Algorithm 2. Proposed Algorithm

Phase4
1: while 1 do
2: if n′ < sizej then
3: n′ = sizej
4: for t = 0 to n′ − 1 do
5: ai assigns wb2j to memory2[t]
6: ai moves to the next node
7: end for
8: vmin = Rendezvousnode()
9: for t = 0 to vmin − 1 do
10: ai moves to the next node
11: end for
12: ai stops with the suspending state
13: end if
14: end while

int Guess()
15: D = the set of d (1 ≤ d ≤ �t/2�) such that ∀x (0 ≤ x ≤ t − d + 1) ∀y (0 ≤

y ≤ |memory1[x]| − 1) memory1[x][y] = memory1[x + d][y] and |memory1[x]| =
|memory1[x+ d]|.

16: If D = ∅, return min(D). If D = ∅, return 0.

int Rendezvousnode()
17: Let seqx (0 ≤ x ≤ n′ − 1) be the cyclically shifted sequence

(memory2[x], . . . ,memory2[n′−1],memory2[0], . . . ,memory2[x−1]) of memory2.

18: Let x∗ be x such that seqx is the lexicographically minimum among seq0 to seqn′−1.

19: return the distance from the current node to node vj such that wb2j =
memory2[x∗]. Note that the agent computes the distance based on its temporary
number of nodes.

An agent memory An agent guess #nodes is 4

Fig. 2. The way that an agent guesses the number of nodes

Agent ai executes the above step n′ times, and consequently every node is as-
signed an ID if n′ = n holds. Then, as we show later, if n′ = n holds, the above
length of ID guarantees that all agents can choose the identical node as the ren-
dezvous node with probability p2. Since n′ = n holds with probability p1, with
probability p1p2 = p, all agents can choose the identical rendezvous node.
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Phase 3. In phase 3, agent ai writes the temporal number of nodes n′ to sizej
of each node vj and then moves to the identical node where all agents meet.
The process is easily realized by moving n′ times and assigning n′ to sizej on
each node vj . When sizej already stores a value larger than n′, agent ai does
not overwrite sizej because n′ is not equal to n. If n′ = n holds, every agent
can get the correct number of nodes. As we explain in phase 4, this process is
used to wake up agents that are at the suspending states with keeping wrong
(or smaller) numbers of nodes.

Now we show how all the agents can choose the identical node. Agent ai
chooses the node based on memory2. To be concrete, ai chooses it in the follow-
ing way (Function Rendezvousnode() in Algorithm 2):

– Let seqx (0 ≤ x ≤ n′−1) be the cyclically shifted sequence (memory2[x], . . . ,
memory2[n′ − 1],memory2[0], . . ., memory2[x− 1]) of memory2.

– Let x∗ be x such that seqx is the lexicographically minimum among seq0 to
seqn′−1.

– Node vj corresponding to the first node in seqx∗ (or wb2(j+y) mod n′ =
memory2[(x∗ + y) mod n′] for y(0 ≤ y ≤ n′ − 1)) is the identical node
where all agents meet.

Note that, if the contents of memory2 (i.e., the sequence of node IDs) are peri-
odic, there exists more than one x such that seqx is the lexicographically min-
imum. In this case, agents fail to choose the identical node and cannot meet
at a single node. However, we can show that the probability of such failure is
sufficiently small. If the contents of memory2 are not periodic, all the agents
can choose the identical node and succeed to rendezvous at the node. After ai
reaches the node, it becomes the suspending state.

Phase 4. Phase 4 specifies the behavior after ai stops with the suspending state.
When ai is at the suspending state, it repeatedly checks sizej on its current node
vj . If another agent updates sizej to a value larger than n′, agent ai recognizes
that it failed to estimate n correctly. Then, ai wakes up and moves to the node
to meet other agents. The behavior of ai is as follows:

– Agent ai assigns sizej to n′.
– Agent ai moves n′ times, and it memorizes wb2j on each node vj from

memory2[0] to memory2[n′ − 1].
– The agent chooses the node to meet other agents by the same way as that

in phase 3, and then moves to the node.
– Agent ai stops with the suspending state.

Note that, if an agent guesses the correct number of nodes, it writes n′ to white-
boards of all nodes. Then, in phase 4, other agents can know the correct number
of nodes and compute the identical node.

We have the following theorem about the algorithm. Due to limitation of
space, the proof is omitted.

Theorem 3. The algorithm in Algorithms 1 and 2 solves, with probability p, the
rendezvous problem without detection. In the algorithm each agent moves O(kn)
times and has O(kn)memory space and each node has O(k+log n)memory space.
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5 Conclusion

In this paper, we considered the randomized rendezvous of mobile agents in
anonymous unidirectional ring network under the assumption that each mobile
agent knows neither the number of nodes nor the number of mobile agents.
We showed the impossibility result for the problem with detection, and the
possibility and impossibility results (dependent on the success probability) for
the problem without detection. In the future work, we will propose an algorithm
for arbitrary networks through the approach that each agent constructs a labeled
network from an anonymous arbitrary network.
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{pagli,prencipe,viglietta}@di.unipi.it

Abstract. In this paper we study the Near-Gathering problem for
a set of asynchronous, anonymous, oblivious and autonomous mobile
robots with limited visibility moving in Look-Compute-Move (LCM) cy-
cles: In this problem, the robots have to get close enough to each other, so
that every robot can see all the others, without touching (i.e., colliding)
with any other robot. The importance of this problem might not be clear
at a first sight: Solving the Near-Gathering problem, it is possible to
overcome the limitations of having robots with limited visibility, and it is
therefore possible to exploit all the studies (the majority, actually) done
on this topic, in the unlimited visibility setting. In fact, after the robots
get close enough, they are able to see all the robots in the system, a sce-
nario similar to the one where the robots have unlimited visibility. Here,
we present a collision-free algorithm for the Near-Gathering problem,
the first to our knowledge, that allows a set of autonomous mobile robots
to nearly gather within finite time. The collision-free feature of our solu-
tion is crucial in order to combine it with an unlimited visibility protocol.
In fact, the majority of the algorithms that can be found on the topic
assume that all robots occupy distinct positions at the beginning. Hence,
only providing a collision-free Near-Gathering algorithm, as the one
presented here, is it possible to successfully combine it with an unlim-
ited visibility protocol, hence overcoming the natural limitations of the
limited visibility scenario. In our model, distances are induced by the
infinity norm. A discussion on how to extend our algorithm to models
with different distance functions, including the usual Euclidean distance,
is also presented.

1 Introduction

Consider a distributed system whose entities are a set of robots or agents that
can freely move on a two-dimensional plane, operating in Look-Compute-Move
(LCM) cycles. During a cycle, a robot takes the snapshot of the position of
the other robots (Look); executes the protocol, the same for all robots, using
the snapshot as an input (Compute); and moves towards the computed desti-
nation, if any (Move). After each cycle, a robot may be inactive for some time.
With respect to the LCM cycles, the most common models used in these stud-
ies are the fully synchronous (FSYNC), the semi-synchronous (SSYNC), and
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the asynchronous (ASYNC). In the asynchronous (ASYNC) model, each robot
acts independently from the others and the duration of each cycle is finite but
unpredictable; thus, there is no common notion of time, and robots can compute
and move based on obsolete observations. In contrast, in the fully synchronous
(FSYNC) model, there is a common notion of time, and robots execute their cy-
cles synchronously. In particular, time is assumed to be discrete, and at each time
instant all robots are activated, obtain the same snapshot, compute and move
towards the computed destination; thus, no computation or move can be made
based on obsolete observations. The last model, the semi-synchronous (SSYNC),
is like FSYNC where, however, not all robots are necessarily activated at each
time instant.

In the last few years, the study of the computational capabilities of such a
system has gained much attention, and the main goal of the research efforts
has been to understand the relationships between the capabilities of the robots
and their power to solve common tasks. The main capabilities of the robots
that, to our knowledge, have been studied so far in this distributed setting are
visibility, memory, orientation, and direct communication. With respect to vis-
ibility, the robots can either have unlimited visibility, by sensing the positions
of all other robots, or have limited visibility, by sensing just a portion of the
plane, in particular up to a given distance V [1,8]. With respect to memory, the
robots can either be oblivious, by having access only to the information sensed
or computed during the current cycle (e.g., [14]), or non-oblivious, by having
the capability of storing the information sensed or computed since the begin-
ning of the computation (e.g., [2,15,16]). With respect to orientation, the two
extreme settings studied are the one where the robots have total agreement, and
agree on the orientation and direction of their local coordinate systems (i.e., they
agree on a compass), e.g., [9], and the one where the robots have no agreement
on their local coordinate axes, e.g., [15,16]; in the literature, there are studies
that tackle also the scenarios in between; for instance, when the robots agree
on the direction and orientation just of the y coordinate, or there is agreement
just on the chirality of the coordinate system, e.g., [6]. With respect to direct
communication, the direction so far has been towards the use of external signals
or lights to enhance the capabilities of mobile, first suggested in [12], and also
referenced in [7], which provided the earliest indication that incorporating in the
robot model some simple means of signalling might positively affect the power
of the team. Recently, a study that tackles more systematically this particular
capability has been presented in [3].

In this paper, we solve the Near-Gathering problem: The robots are re-
quired to get close enough to each other, without touching or colliding during
their movements. Here, the team of robots under study executes the cycles ac-
cording to the ASYNC model, the robots are oblivious and have limited visi-
bility. The importance of this problem might not be clear at a first sight: With
a solution to the Near-Gathering problem it would be possible to overcome
the limitations of having robots with limited visibility, and it would be possible
to exploit all the studies (the majority, actually) done in the unlimited visibility
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setting. In fact, after the robots get close enough, they are able to see all the
robots in the system, a scenario similar to the one where the robots have unlim-
ited visibility. Since most of the solutions to the unlimited visibility case assume
a starting configuration where no two robots touch (i.e., they do not share the
same position in the plane), it is of crucial importance to ensure that no collision
occurs during the near gathering.

A problem close to Near-Gathering is the gathering problem, where the
robots have to meet, within finite time, in a point of the plane not agreed in
advance. This problem has been studied in the literature in all models; in particu-
lar, a study in SSYNC with limited visibility has been presented in [1]: Actually,
this solution could be easily modified to solve also the Near-Gathering prob-
lem, just imposing a termination condition; however, it has been shown that this
solution does not work in ASYNC [13]. Another solution for the limited visi-
bility case is in [14], where the coordinate systems are assumed to be consistent
only after a period of instability (i.e., the robots agree on the coordinate system
only after an arbitrary long period); however, also this solution is designed for
the SSYNC model. In [10] a convergence protocol that works with a very lim-
ited form of asynchrony (called 1-bounded asynchrony) has been presented. In
the asynchronous model, the only solution to the gathering problem with robots
having limited visibility has been presented in [8]: This protocol, however, is not
collision-free; hence, it cannot be used to solve our problem. We note that, as in
the protocol in [8], we also assume that the robots have total agreement. Also,
we remark that, since the algorithm presented here is for the ASYNC model, it
solves the problem also in the SSYNC and FSYNC models.

As stated above, solutions to problems studied in the unlimited visibility set-
ting can be potentially used to solve the same problems in the limited visibility
setting, by exploiting the Near-Gathering protocol presented in this paper.
Among these, we can cite for instance the Arbitrary Pattern Formation Prob-
lem [9,6,15,16], or the Uniform Circle Formation (e.g., [4,5]).

The organization of the paper is as follows: In Section 2 the formal definition
of the robot model is presented; in Section 3 the collision-free algorithm that
solves the Near-Gathering problem is presented; in Section 4 the correctness
of the protocol is shown. Due to space constraints, the proofs will be omitted,
and we thoroughly discuss only the scenario in which distances are induced by
the infinity norm (the full version of the paper can be found in [11]). However,
some extensions of our algorithm to models with different distance functions,
including the usual Euclidean distance, are also briefly discussed in Section 5.

2 The Model

The system is composed of a team of mobile entities, called robots, each modeled
as a computational unit provided with its own local memory and capable of
performing local computations. The robots are (viewed as) points in the plane.
Let r(t) denote the absolute position of robot r at time t (i.e., with respect to an
absolute reference frame); also, we will denote by r(t).x and r(t).y the abscissa



318 L. Pagli, G. Prencipe, and G. Viglietta

and the ordinate value of position r(t), respectively. When no ambiguity arises,
we shall omit the temporal indication; also, the configuration of the robots at
time t is the set of robots’ positions at time t.

Each robot has its own local coordinate system, and we assume that the local
coordinate systems of the robots are consistent with each other: In other words,
they agree on where the North, South, East and West are. A robot is endowed
with sensorial capabilities and it observes the world by activating its sensors,
which return a snapshot of the positions of all other robots with respect to its
local coordinate system. The visibility radius of the robots is limited: Robots
can sense only points in the plane within distance V . This setting, referred in
the literature as limited visibility, is understandably more difficult; for example,
a robot with limited visibility might not even know the total number of robots
nor where they are located if outside its radius of visibility. Also, combined with
the asynchronous behavior of the robots, introduces a higher level of difficulty
in the design of collision-free protocols. For instance, in the example depicted in
Figure 1.a, robot s, in transit towards its destination, is seen by r; however, s is
not aware of r’s existence and, if it starts the next cycle before r starts moving,
s will continue to be unaware of r; hence, since r does not see s when s starts
its movement, it must take care of the “potential” arrival of s when computing
its destination.

All robots are identical: They are indistinguishable from their appearance
and they execute the same protocol. Robots are autonomous, without a central
control. Robots are silent, in the sense that they have no means of direct com-
munication (e.g., radio, infrared) of information to other robots. Each robot is
endowed with motorial capabilities, and can move freely in the plane. A move
may end before the robot reaches its destination, e.g., because of limits to its mo-
tion energy. The distance traveled in a move is neither infinite nor infinitesimally
small. More precisely, there exists a constant δ > 0 such that, if the destination
point is closer than δ, the robot will reach it; otherwise, it will move towards
it of at least δ. Note that, without this assumption, an adversary would make
it impossible for any robot to ever reach its destination, following a classical
Zenonian argument. The quantity δ might not be known to the robots.

The robots do not have persistent memory, that is, memory whose content
is preserved from one cycle to the next; they are said to be oblivious. The only
available memory they have is used to store local variables needed to execute
the algorithm at each cycle.

At any point in time, a robot is either active or inactive. When active, a
robot r executes a Look-Compute-Move (LCM) cycle performing the following
three operations, each in a different state: (i) Look: The robot observes the
world by activating its sensor, which returns a snapshot of the positions of all
robots within its radius of visibility with respect to its own coordinate system
(since robots are viewed as points, their positions in the plane are just the set
of their coordinates); (ii) Compute: The robot executes its algorithm, using
the snapshot as input. The result of the computation is a destination point; (iii)
Move: The robot moves towards the computed destination; if the destination
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Fig. 1. (a) When s starts moving (the left end of the arrow), r and s do not see each
other. While s is moving, r Looks and sees s; however, s is still unaware of r. After
s passes the area of visibility of r, it is still unaware of r. (b) The area above and
to the right of s defines the Move Space of s. The fat line is the Contour of r∗. (c)
Computation of the length of the movement in the algorithm.

is the current location, the robot stays still (performs a null movement). When
inactive, a robot is idle. All robots are initially inactive. The amount of time
to complete a cycle is assumed to be finite, and the Look is assumed to be
instantaneous. We will denote by W(t), L(t), C(t), M(t) the sets of robots that
are, respectively, inactive, in a Look phase, in a Compute phase and in a Move
phase at time t.

In the following, we will assume that all distances are induced by the infinity
norm: ‖p‖∞ = max{p.x, p.y}. Different distance functions, including the usual
Euclidean distance, will be briefly discussed in Section 5.

2.1 Notation

We will denote by R = {r1, . . . , rn} the set of robots in the system. First note
that, in order to achieve explicit termination, it is necessary that all robots share
the knowledge of n. In Section 4.5 we will show how to overcome this by making
use of visible bits [3].

We will denote by G(t) = (N,E(t)) the distance graph at time t ≥ 0, where N
is the set of the input robots and, for any two distinct robots r and s, (r, s) ∈ E(t)
iff 0 ≤ ‖r(t) − s(t)‖∞ ≤ V . In [8] it was proved that the initial distance graph
G(0) must be connected for the gathering problem to be solvable; the same result
clearly holds also for the Near-Gathering problem. Thus, in the following we
will always assume that G(0) is connected.

Let r be a robot, and let us divide its visible area into four quadrants, denoted
by NW(r), NE(r), SE(r), and SW(r) (see the example depicted in Figure 1.b).
For technical reasons, the vertical and the horizontal segment of length V starting
from r and going South andWest, respectively (including the location of r itself),
are part of SW(r); the vertical (resp. horizontal) segment of length V passing
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through r and going North (resp. East) is part of NW(r) (resp. SE(r)). When
not necessary, the reference to r will be dropped. Similarly, a reference to time
may be added.

Next, we define the Move Space of a robot (refer to the example depicted in
Figure 1.b):

Definition 1 (Move Space). The Move Space of a robot r at time t, denoted
by MS(r, t), is the set

{
(x′, y′) ∈ R2 | x′ ≥ r(t).x ∧ y′ ≥ r(t).y

}
.

Based on the previous definition, we introduce the Contour of a robot (refer
again to Figure 1.b):

Definition 2 (Contour). The Contour of a robot r at time t, denoted by
CT (r, t), is the boundary of the set

⋃
s MS(s, t), where s ranges through all

the robots in NW(r, t) ∪NE(r, t) ∪ SE(r, t).

We will call a peak of the contour any convex corner of CT (r); the concave corners
will be called valleys. An easy property of CT (r, t) is stated in the following

Observation 1. If there are robots in both NW(r) and in SE(r), and no robot
in NE(r), then CT (r) has exactly one valley in NE(r).

3 The Near-Gathering Problem and Its Solution

In the Near-Gathering problem, at the beginning a set of n robots is arbi-
trarily placed in the plane, on distinct positions such that G(0) is connected: We
will call this the initial configuration, denoted by I. In finite time, the robots
are required to move within distance ε from each other, for a given 0 < ε < V/4:
We will call this the final configuration, denoted by F .

Our solution is reported in Figure 2. Informally, at each cycle, robot r∗ first
computes the direction of movement according to the following rules:

– If r∗ can see robots only in SW , then it will not move; that is, in this case
the destination point is the point of coordinates (0, 0).

– If r∗ can see robots only in NW ∪ SW , then its direction of movement is
given by the half-line l starting in r∗ and going North.

– If r∗ can see robots only in SW∪SE , then its direction of movement is given
by the half-line l starting in r∗ and going East.

– Otherwise, the direction of movements of r is decided based on the shape
of the Contour of r∗. In particular, if in NE there is at least a robot, the
direction of movement is given by the half-line l starting from r∗ and passing
through robot in NE closest to r∗. Otherwise, there must be robots in both
NW and SE ; in this case, the direction of movement is given by the half-line
l starting from r∗ and passing through the only valley in CT (r∗).

In order to establish the length of the movements along l, r∗ checks two main
factors: First, it must not enter the Move Space of any robot it can see (this
contributes to guarantee collision avoidance); second, the new position must be
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within distance V/2 from any of the robots it is currently seeing (this con-
tributes to guarantee both collision avoidance and the connectedness of the
initial distance graph). In order to ensure these two factors, first, for each
r ∈ NW ∪ NE ∪ SE , it computes the intersection pr between l and MS(r)
(notice that robots move only upward and rightward). Second, for each visible
robot r, the intersection qr between the visible area of r∗ and the line parallel
to l and passing through r is computed: The distance dr between r and qr is
the maximum distance r∗ is allowed to move in order to not lose visibility with
r (assuming r does not move). Thus, if p is the point closest to r∗ among the
points in {pr} ∪ {dr}, the destination point of r∗ is the median point dp on the
segment between r∗ and p.

As we will prove in the following, a consequence of the computation of dp as
described above is that the distance graph never gets disconnected; also, colli-
sions are avoided. Termination is achieved using the knowledge of n that the
robots are assumed to have. In fact, it is easy to see that, since the robots op-
erate in a totally asynchronous environment, without knowledge of n, explicit
termination would not be possible. In particular, in our solution, a robot ter-
minates its execution as soon as it sees n robots at distance less than a given
tolerance ε.

4 Correctness

In this section, we will prove that the Algorithm reported in Figure 2 correctly
solves theNear-Gathering problem. In particular, the proof will be articulated
in three parts: First, we will prove that the initial distance graph is preserved
during the execution; second, we will prove that no collision occurs during the
movements of the robots; finally, the correctness proof concludes by showing that
the algorithm terminates.

4.1 Preliminary Definitions and Observations

Before presenting the correctness proof, we will introduce a few preliminary
definitions and observations. First, by construction, it is easy to observe the
following:

Observation 2. Each robot can only move rightward and upward. Furthermore,
the robots on the rightmost vertical axis never move right, and the robots on the
topmost horizontal axis never move up.

Observation 3. During each cycle, a robot travels a distance of at most V/2.

Definition 3 (First and Last). Given a robot r, let First(r , t) = min{t′ >
t|r ∈ L(t′)} be the first time, after time t, at which r performs a Look operation.
Also, let Last(r , t) = max{t′ ≤ t|r ∈ L(t′)} be the last time, from the beginning
up to time t, at which r has performed a Look operation; if r has not performed
a Look yet, then Last(r , t) = 0.
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State Look

Take the snapshot of the positions of the visible robots, which returns, for each
robot r ∈ R within distance V , Pos[r], the position in the plane of robot r
(according to my coordinate system); (Note: I am robot r∗)

State Compute

Zε = Robots in Pos[] within distance ≤ ε;
If |Zε| = n Then Terminate.
l, p1, . . . , pn, p

′
1, . . . , p

′
n, b = nil;

Let NW, NE , SE , and SW be the quadrants of my visible area;
CT = Contour of the robots in NW ∪NE ∪ SE ;
If I see robots only in SW Then dp = (0, 0);
Else

If I see robots only in NW ∪ SW Then
l = Half-line from me going North;

Else If I see robots only in SE ∪ SW Then
l = Half-line from me going East;

Else
If There is at least one robot in NE Then

l = Half-line from me to the closest robot in NE ;
Else

l = Half-line from me to the only valley of CT in NE ;
For Each robot r ∈ NW ∪NE ∪ SE Do

pr = Intersection between l and MS(r);
For Each visible robot r Do

lr = Line parallel to l and passing through r;
qr = Lowest or leftmost intersection between lr and my visible area;
dr = Distance between r and qr;
p′r = Point on l at distance dr from me;

b = Point on l at distance V from me;
p = Point closest to me among points in {pr} ∪ {p′r} ∪ {b};
dp = Median point on the segment between my position and p.

State Move

Move(dp).

Fig. 2. The Near-Gathering Protocol

Now, we define the Destination Point of a robot at a time t as follows:

Definition 4 (Destination Point). Given a robots r, we define the Destina-
tion Point DP(r, t) of r at time t as follows:

– If r ∈ W(t), then: if r is in its first cycle, then DP(r, t) = r(0) (i.e., the
starting position of r); otherwise, DP(r, t) is the point p as computed in the
last Compute state before t (in the previous cycle).
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– If r ∈ L(t), then DP(r, t) is the point p as computed in the next Compute
state after t (in the current cycle).

– If r ∈ C(t), then DP(r, t) is the point p as computed in the current Compute
state.

– If r ∈ M(t), then DP(r, t) is the point p as computed in the last Compute
state before t (in the current cycle).

From the previous definition, we can state the following:

Lemma 1. Let r be a robot. During the time strictly between two consecutive
Looks, the Destination Point of r does not change.

4.2 Preservation of Mutual Awareness

We will now prove that the connectedness of the initial distance graph is pre-
served during the entire execution of the algorithm. We do so by first introducing
the notion of mutual awareness.

Definition 5 (Mutual Awareness). Two distinct robots r and s are mutually
aware at time t iff both conditions hold:

1. ‖r(tr)− s(tr)‖∞ ≤ V , with tr = Last(r , t), and
2. ‖r(ts)− s(ts)‖∞ ≤ V , with ts = Last(s , t).

Since initially all robots are inactive, then by definition of mutual awareness we
have

Lemma 2. All the pairs of robots that are within distance V from each other at
time t = 0 are initially mutually aware.

In the following lemma, we will prove that two robots that are mutually aware
at the beginning of the computation keep the awareness during the execution.

Lemma 3. If robots r and s are mutually aware at time t, they are mutually
aware at any time t′ > t.

Based on the previous lemma, we can state the following

Corollary 1. The connectedness of G(0) is preserved during the execution of
the algorithm.

4.3 Collision Avoidance

In this section, we will prove that no collision occurs during the execution of the
algorithm.

Lemma 4. No collision ever occurs between any pair of robots during the exe-
cution of the algorithm.
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4.4 Termination

Let us call Right the vertical axis passing throught the righmost robot(s) in I,
and Top the horizontal axis passing throught the topmost robot(s) in I; also,
let f be the intersection point between Right and Top. By Observation 2, and
by the algorithm, we can easily observe that

Observation 4. If at any time t a robot is at position f , then it never moves
from there.

Next, we introduce a definition that will be useful to prove the convergence of
the algorithm.

Definition 6 (Convergence Point). Given a point a, let Ψ and Γ be the
vertical and the horizontal axes passing through it, respectively. We say that a is
a convergence point for robot r (or that r converges towards a) if, within finite
time, r passes any vertical axis to the left of Ψ and any horizontal axis below Γ ,
and never passes neither Ψ or Γ .

Note that, by Observation 2, all robots that converge towards a point a are below
and to the left of a. The following lemma shows that f is the only converge point.

Lemma 5. All robots converge towards point f .

From the previous lemma, and by the termination condition of the algorithm,
we can state the following

Corollary 2. After finite time, all robots terminate their execution, being at
distance ε from each other.

By Corollaries 1 and 2, and by Lemma 4, we can state the following

Theorem 1. Algorithm 2 correctly solves the Near-Gathering problem.

4.5 On the Knowledge of n

In the solution that we presented, in order for the robots to explicitly terminate,
the knowledge of n is necessary. However, this assumption can be dropped by
using external visible bits, as recently introduced in [3]. In particular, each robot
is equipped with a visible light, whose color can be changed during the Compute
state. During the Look, a robot can retrieve, beside the position, also the value
of the light of its fellow robots, which can be stored in a local Light[] array (the
color of the light of the executing robot is stored in Light[1]).

With this extra information, the explicit termination of the robots can be
achieved by substituting the termination check in the Near-Gathering proto-
col with the following check, where ε is an arbitrary small constant (any fraction
of V ):

If |Z \ Zε| == 0 Then
Light[r∗] = 1;
If ∀r ∈ Zε, Light[r] == 1 Then Terminate.

Else Light[r∗] = 0.
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5 Conclusions

In this paper we presented the first algorithm that solves the Near-Gathering

problem for a set of autonomous mobile robots with limited visibility (where the
distance function is induced by the infinity norm); the protocol presented here
is collision-free: This allows to potentially combine our protocol with solutions
designed for the unlimited visibility setting.

We remark that our algorithm also solves the Near-Gathering problem in
the robot model that uses the Manhattan distance (i.e., the distance induced
by the 1-norm): Each robot merely has to transform each snapshot that it gets
during a Look state by rotating it clockwise by 45◦ and scaling it by a factor of√
2. Then the protocol can be applied as it is, and finally the computed point

dp has to be moved again with the inverse transformation: Scaled by 1/
√
2 and

rotated counterclockwise by 45◦.
The Near-Gathering algorithm can also be applied to models that use

distances induced by any p-norm, with p > 1, including the usual Euclidean
distance: Each robot r just “ignores” any point p such that ‖r− p‖∞ > V , thus
pretending to be in the infinity norm model. Of course, this is guaranteed to
terminate correctly only if the initial conditions given in Section 2.1 are met,
i.e., if G(0), computed with the infinity norm, is connected.

In particular, when using the Euclidean distance, our protocol and proofs work
if G(t) is constructed by connecting pairs of robots that are within Euclidean
distance V/

√
2, as opposed to V . Moreover, we are confident that even this

constraint on the initial distance graph can be dropped, by a simple adaptation
of our protocol to circular visible areas. Due to space limitations, we are unable
to discuss the topic further in this paper.
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Abstract. The paper studies the gathering problem on grid networks.
A team of robots placed at different nodes of a grid, have to meet at
some node and remain there. Robots operate in Look-Compute-Move
cycles; in one cycle, a robot perceives the current configuration in terms
of occupied nodes (Look), decides whether to move towards one of its
neighbors (Compute), and in the positive case makes the computed move
instantaneously (Move). Cycles are performed asynchronously for each
robot. The problem has been deeply studied for the case of ring networks.
However, the known techniques used on rings cannot be directly extended
to grids. Moreover, on rings, another assumption concerning the so-called
multiplicity detection capability was required in order to accomplish the
gathering task. That is, a robot is able to detect during its Look operation
whether a node is empty, or occupied by one robot, or occupied by an
undefined number of robots greater than one.

In this paper, we provide a full characterization about gatherable con-
figurations for grids. In particular, we show that in this case, the multi-
plicity detection is not required. Very interestingly, sometimes the prob-
lem appears trivial, as it is for the case of grids with both odd sides, while
sometimes the involved techniques require new insights with respect to
the well-studied ring case. Moreover, our results reveal the importance
of a structure like the grid that allows to overcome the multiplicity de-
tection with respect to the ring case.

1 Introduction

In the field of robot based computing systems, one of the most popular problems
is certainly the gathering. A pool of robots, initially situated at various locations,
have to gather at the same place (not determined in advance) and remain there.
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Many variants of the problem have attracted the interest of numerous researchers
(see e.g., [1,2] and references therein). In this paper, we consider the case of
anonymous grid networks where anonymous, asynchronous and oblivious robots
can move according to the so-called Look-Compute-Move cycles [3]. In each cycle,
a robot takes a snapshot of the current global configuration (Look), then, based
on the perceived configuration, decides either to stay idle or to move to one of its
adjacent nodes (Compute), and in the latter case it makes an instantaneous move
to this neighbor (Move). Cycles are performed asynchronously for each robot.
This means that the time between Look, Compute, and Move operations is finite
but unbounded, and is decided by the adversary for each robot. Hence, robots
may move based on significantly outdated perceptions. Robots are oblivious, i.e.,
they do not have any memory of past observations. Thus, the target node (which
is either the current position of the robot or one of its neighbors) is decided by
the robot during a Compute operation solely on the basis of the location of
other robots perceived during the Look operation. Robots are anonymous and
execute the same deterministic algorithm. They cannot leave any marks at visited
nodes, nor send any messages to other robots.We remark that the Look operation
provides the robots with the entire grid configuration concerning occupied nodes.
That is, a robot perceives whether a node of the grid is occupied or not, but it
cannot distinguish how many robots reside on an occupied node.

Related Work and Our Results. The problem of making mobile entities
meet on graphs [3,4,5,6] or open spaces [1,7,8] has been extensively studied in
the last decades. When only two robots are involved, the problem is usually
referred to as the rendezvous [5,9,10,11].Under the Look-Compute-Move model,
many problems have been addressed, like the graph exploration and the perpetual
graph exploration [12,13,14,15], while the rendezvous problem has been proven
to be unfeasible on rings [3].

Concerning the gathering under the Look-Compute-Move model, much work
has been done in the last years for the ring topology. It has been proven that the
gathering is unsolvable if the robots are not empowered by the so-called multi-
plicity detection capability [3], either in its global/strong or local/weak version.
In the former type, a robot is able to perceive whether any node of the network
is occupied by a single robot or more than one (i.e., a multiplicity occurs). In
the latter type, a robot is able to perceive the multiplicity only if it is part of it.

Using the global multiplicity detection, different types of configurations have
required different approaches. In particular, periodicity and symmetry arguments
have been exploited. In a ring, a configuration is called periodic if it is invariable
under non-trivial (i.e., non-complete) rotations. A configuration is called sym-
metric if the ring has a geometrical axis of symmetry that reflects single robots
into single robots, multiplicities into multiplicities, and empty nodes into empty
nodes. In [3], it is proven that, even with the global multiplicity detection, the
gathering is unsolvable for two robots, for periodic configurations and for those
symmetric configurations where the axis of symmetry passes through two edges.
Then, several algorithms have been proposed for different kinds of initial config-
urations, in detail: for the case of odd number of robots and that of asymmetric
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configurations [3], for symmetric configurations with an even number of robots
greater than 18 [16], and for 4 and 6 robots [17,18].

Using the local multiplicity detection in a ring, in [19] it is shown that a
configuration is gatherable if k < 
n

2 �, while in [20], the case where k is odd and
smaller than n−5 is studied, where n and k are the number of nodes and robots,
respectively. The remaining cases are still open.

In this paper, we fully characterize the gathering on grids. We show that the
multiplicity detection capability is not needed. In particular, we show that even if
the global multiplicity detection is assumed, a configuration is ungatherable only
if it is periodic (i.e., the same view can be obtained by rotating the grid around
its geometric center of an angle smaller than 360 degrees) on a grid with at
least an even side, or it is symmetric with the axis of symmetry passing through
edges. For all the other cases, we provide a gathering algorithm which does not
require any multiplicity detection except for configurations on 2×2 grids with
three robots where the local multiplicity detection would be helpful.

To our knowledge, the grid topology is the least structured class of graphs that
permits to avoid the multiplicity detection assumption. Moreover, it is worth
mentioning that in our solutions many robots can move concurrently, instead of
just one or two as it was for the ring case.

2 Definitions and Notation

We consider an anonymous and undirected grid of m × n nodes, with m ≥ n.
Initially, each node is occupied by at most one robot. The total number of robots
is denoted by k. During a Look operation, a robot perceives the relative locations
on the grid of occupied nodes, regardless of the number of robots on a node.

The current configuration of the system can be described in terms of the view of a
robot r which is performing the Look operation at the currentmoment.We denote
a configuration seen by r as anm×nmatrixM on elements in the set {0, 1}.Value 0
represents an emptynode, and 1 represents an occupiednode.Note that, if one node
is occupied by more than one robot, it is not perceived by the robots, even if they
reside on such a node. Since the grid is anonymous and undirected, each robot can
perceive the current configurationwith respect to different rotations and reflections
leading to any view of the grid satisfying them×n dimension. In particular, when
m = n each of the 4 rotations and 4 reflections provides a feasible view.

Definition 1. A configuration is periodic if it is invariant with respect to ro-
tations of 90, 180, or 270 degrees, where the rotation point coincides with the
geometric center of the grid.

Definition 2. A configuration is symmetric if it is invariant after a reflection
with respect to a vertical, horizontal, or diagonal (in case of square grids) axis
passing through the geometric center of the grid.

3 Gathering Algorithms

In this section, we distinguish among different cases concerning the grid struc-
ture. In particular, if the grid has both sides odd, the gathering is easily solvable.
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If only one side is odd, there are some ungatherable cases. However, the impos-
sibility results do not depend on the assumed multiplicity detection capability.
If both sides are even, the gathering strategy relies on the multiplicity detection
only if the input grid has size 2×2 and there are three robots, otherwise there is
no need of such a capability.

3.1 Odd×odd Grids

This case is trivially solvable, in fact:

Theorem 1. Configurations on odd×odd grids are always gatherable.

Proof. In odd×odd grids, a robot can always detect, during its Look operation,
the central node of the grid M [�m

2 �, �
n
2 �], regardless of its possible view. This

means that all the robots can move toward the center, concurrently. �

3.2 Odd×even Grids

In this case, the gathering is not always feasible. In fact, similarly to the ring
case on periodic or symmetric configurations of type edge-edge [3], we can prove:

Theorem 2. If a configuration C is periodic, or symmetric with respect to an
axis passing through edges (i.e., dividing the grid into two halves from the even
side), then C is ungatherable.

In what follows, we assume that the starting configuration does not belong to the
ungatherable configurations specified by the above theorem. Then, we provide
an algorithm achieving the gathering without multiplicity detection in all the
remaining cases. The idea is to distinguish among the two nodes that are the
central nodes of the odd borders of the grid. If m (n, resp.) is odd, then the two
mentioned nodes are given by positions M [1, �m

2 �] and M [n, �m
2 �] (M [�n

2 �, 1]
and M [�n

2 �,m], resp.). The line connecting those two nodes will be denoted as
the NS line. One of the two extreme nodes on the NS line will be the place where
the gathering is finalized, eventually. In order to select the gathering node, a
robot considers the line passing through the central edges of the even sides of
the grid (denoted as the EW line) dividing the grid into two halves. The idea is
to distinguish a north and a south part among the two halves and the gathering
node will be the one in the north half. The north is the half with more nodes
occupied by robots, if any. If the number of occupied nodes in the two halves is
the same, then some more computations are required (see next paragraph). In
both cases, the robots move from the south to the north until all the robots will
be in the north part. Note that, during such a stage, if multiplicities are created
in the south, then the number of occupied nodes decreases with respect to the
north part. If multiplicities are created in the north, it means that a robot has
moved from the south to the north part, still preserving the required distinction.

In order to distinguish the north from the south in the case of configurations
with the same number of robots among the two halves obtained by the EW line, a
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robot associates to each configuration C a binary string as follows. Starting from
each corner of the grid, and proceeding in the direction parallel to the NS line,
a robot records the elements of M row by row, or column by column (according
to the direction specified by the NS line). Once it has computed the four strings,
it associates to C the lexicographically largest one. For instance, starting from
corner M [1, 1], and assuming m odd, the corresponding binary string would be
composed by the sequence M [1, 1], M [2, 1], . . ., M [n, 1], M [1, 2], . . ., M [n, 2],
M [1,m], . . ., M [n,m].

Lemma 1. Let C be a gatherable configuration, then, among the four possible
strings coming from a robot view of the input grid, at most two strings can be the
lexicographically largest ones. If there are two largest strings, then they represent
the views of C starting from two symmetric corners with respect to the NS line.

Proof. If the equal strings correspond to the view of C starting from two sym-
metric corners with respect to the EW line, then C would be symmetric with
respect to the EW line. In fact, from Definition 2, this would correspond to a
reflection of the grid with respect to the EW line. But, from Theorem 2, it would
imply that C is ungatherable. If the equal strings correspond to the view of C
starting from two corners residing on one of the two diagonals of the grid, then C
would be periodic. In fact, from Definition 1, this would correspond to a rotation
of the grid of 180 degrees, again despite C being gatherable. Then, no more than
two strings can be equal as otherwise one of the above situations would occur. It
follows that either the four strings are all different among themselves, or there
are two pairs of equal strings, one of which corresponds to the lexicographically
largest ones. Moreover, both correspond to the view of C starting from two sym-
metric corners with respect to the NS line. �

From the above lemma, we define the gathering node as the one residing on the
same odd side where the corner(s) providing the lexicographically largest string
resides. Moreover, the gathering node will determine also the directions along
the NS line: We say that the gathering node resides on the north pole.

Theorem 3. Configurations on odd×even grids that are aperiodic and do not
admit an axis of symmetry passing through edges are always gatherable.

Proof. Once the gathering node has been unambiguously identified by a robot
during its Compute operation, if the robot resides on the half grid where the
south pole is, with respect to the EW line, then it moves towards the north.
Note that, each time a robot in the southern half of the grid performs such a
movement, the gathering node cannot change. In fact, two cases can occur: 1)
the number of occupied nodes decreases in the southern part of the grid, either
because a robot moves to the northern part or because a multiplicity is cre-
ated; 2) the string associated to the corners in the south are decreasing due to
the robots’ movements, and hence the corresponding strings defining the cur-
rent configuration starting from the northern corners are increasing. This clearly
leaves unchanged the direction on the NS line. Note that the corner to which the
lexicographically largest string was associated might change during the described
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process but the only option is the other corner on the same odd side of the orig-
inal one, hence preserving the direction on the NS line. By keeping on moving in
the described way, all the robots will reach the northern part, eventually. The
case in which a subset of robots from a multiplicity move, increasing the num-
ber of occupied nodes, does not require any special treatment. In fact, since the
initial configuration does not contain multiplicities, either the minimality of the
number of robots in one half of the grid is preserved, or case 2) still ensures that
the lexicographically largest string is associated to a corner in the north.

Once all the robots belong to one half of the grid, then they are allowed to
move, during their Move operation, towards the gathering node. In fact, such
a node is now well-defined and cannot change as the robots are not allowed to
move to the other half of the grid. �

3.3 Even×even Grids

In this section, we study the case of grids whose sides are both even. Also in
this case, by Theorem 2, there are some configurations which are ungatherable,
namely the periodic configurations and those configurations having a vertical or
a horizontal axis of symmetry. We show that all the other cases are gatherable
without any multiplicity detection, but for the case of 2×2 grids.

Theorem 4. Let us consider a 2×2 grid with more than one node occupied. If
the multiplicity detection is not allowed, then any configuration is ungatherable.
If the local multiplicity detection is allowed, a configuration is gatherable if and
only if it has three nodes occupied.

Proof. Clearly, a 2×2 grid equals a ring of dimension four. Hence, any ungather-
able configuration on a ring of four nodes is ungatherable on a 2×2 grid. In
particular, configurations with two or four nodes occupied are ungatherable even
with the global multiplicity detection and configurations with three nodes occu-
pied are ungatherable if the multiplicity detection is not allowed [3].

Finally, we show that a configuration is gatherable with the local multiplicity
detection if three nodes are occupied. Consider the following algorithm:

1. move the robot in between the other two occupied nodes arbitrarily;
2. move the robot not in the multiplicity towards the other occupied node. �

Hence, the remaining gatherable configurations are the aperiodic, asymmetric,
and those with only one axis of symmetry passing through the diagonal of a
square grid of dimensions larger than 2×2. We refer to all such configurations
as the set EG (Even-Gatherable). In Theorem 5, we will show that all the con-
figurations in EG are indeed gatherable without any multiplicity detection.

In the following, we first assume that at least one node on the border of the
grid is occupied. Then, in the proof of Theorem 5, we will show how to extend
the given strategies to the general case. First, we give some definitions about the
“reading” of grid configurations needed for the subsequent proofs.

Let us consider the eight sequences of distances (number of empty nodes)
between occupied nodes obtained by traversing the grid starting from the four
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c1

c4 c3

c2

Fig. 1. Case of a 10× 6 grid. The arrows indicate the horizontal direction of the read-
ing from corner c1, it gives (6, 8, 14, 10, 5, 12). The other seven sequences read by the
robots are: (3, 6, 20, 4, 9, 13) from c1 vertically, (3, 10, 24, 2, 5, 11) and (16, 1, 6, 26, 4, 2)
from c2 horizontally and vertically, resp., (12, 5, 10, 14, 8, 6) and (13, 9, 4, 20, 6, 3)
from c3, (11, 5, 2, 24, 10, 3) and (2, 4, 26, 6, 1, 16) from c4. The minimal sequence is
(2, 4, 26, 6, 1, 16) and c = c4.

corners and proceeding towards the two possible directions (see, e.g. Fig. 1). Note
that the two sequences associated to a corner occupied by some robot starts with
0. We associate for each corner the lexicographically smallest sequence between
the two readings from such corner. Note that, in square grids such two sequences
are always different, but for the two corners through which passes the possible
axis of symmetry. In rectangular grids, these two sequences can be equal but we
can distinguish one of them by assuming that if two sequences are equal, the one
read in the direction of the smallest side is smaller than the other.

We define theminimal sequence as follows. If the configuration is symmetric, it
is the smallest sequence between the two sequences associated to the two corners
through which passes the axis of symmetry, otherwise it is the smallest among the
four sequences associated to the four corners. Note that, under the assumption
that the configuration does not fall into the hypothesis of Theorem 2, in any case
there exists a minimal sequence which identifies a single corner, unambiguously.
We denote the minimal sequence as C = (q0, q1, . . . , qj) and by c the corner
which it is associated to.

An important property of our gathering strategy that we are going to present
is: In all the movements used in the following results we do not allow a robot to
move into a corner different from c.

Lemma 2. For any EG configuration with no corners occupied and at least one
robot on the border there exists a strategy that leads to a configuration with exactly
one corner occupied.

Proof. If there are no corners occupied, the idea is to reduce q0 by moving
towards c the robot (or the two robots, when the configuration is symmetric) on
the border which is (are) closest to c. Note that, as we are assuming that there
is at least a node on the border and that C is the minimal sequence, the robot
(robots) involved in the movement towards c is (are) on the border.

In the case of symmetric configurations, we aim to move towards c the two
symmetric robots on the border which are the closest ones to c. Let us denote
these two robots by r and r′. First of all, we prove that if only one robot moves
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Fig. 2. Symmetric square grid with no corners occupied. Dashed lines represent axes of
symmetry. a) original configuration; b) configuration once only robot r has moved; c)
configuration with a possible vertical axis; d) configuration with a possible horizontal
axis; e) configuration with a possible diagonal axis different from the original one.

(let us assume r), no symmetric configuration can be created and, moreover,
there exists only one robot (r′) at one allowed move from a symmetric config-
uration. We prove this by showing that contradicting such statement would
imply that, in the initial configuration, the sequence associated to the corner on
the axis different from c starts with q0 − 1 (see Fig. 2), which is a contradiction
with respect to the minimality of C. Moving robot r may create three potential
axes of symmetry which are, with respect to the drawing of Fig. 2: a vertical,
horizontal, or diagonal axis different from the original one. Let us assume that
there exists a vertical axis of symmetry (see Fig. 2c). In this case the presence of
the vertical axis of symmetry and of robot r at distance q0−1 from c, implies the
presence of robot r1 of Fig. 2c which is specular to r with respect to the vertical
axis of symmetry. Note that, in this case, q0 − 1 < n

2 as otherwise r1 would be
closer to c than r, a contradiction. Therefore, r1 is at distance q0 − 1 from the
upper left corner of Fig. 2c. Now, since this robot did not move, the original
diagonal axis of symmetry implies the presence of a robot r2 at distance q0 − 1
from the lower right corner of Fig. 2c. Again, the two axes imply the presence
of robots r3 and r4, both at distance q0 − 1 from the corner opposite to c, a
contradiction to the minimality of C. The case of horizontal axis of symmetry
is similar and it is shown in Fig. 2d. Let us now assume that there exists a
diagonal axis of symmetry different from the original one (see Fig. 2e). Such axis
implies the presence of robot r1 at distance q0 − 1 from the corner opposite to
c. Moreover, the original axis implies the presence of robot r2 at distance q0 − 1
from the corner opposite to c. Again, this is a contradiction to the minimality of
C. Similar arguments can be used to show that there cannot exist other robots
besides r′ at one allowed move from a symmetric configuration. Hence, in the
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case of symmetric configurations, or asymmetric configurations at one allowed
move from symmetry, the strategy leads to the occupation of c, possibly with a
pending move towards c.

In the case of asymmetric configurations, first of all the robots check whether
the configuration is at one step from a symmetric configuration belonging to EG

that can be obtained by the move performed by a robot (potentially correspond-
ing to r′) on the border towards the corner c that would be obtained when the
axis of symmetry occurs. We recall that, in the case of symmetric configurations,
c is defined as the corner whose associated sequence is the smallest one among
the two corners lying on the axis of symmetry and not among all the corners.
If such a symmetry cannot be established, then c corresponds to the minimal
sequence and the algorithm proceeds by reducing q0 until it becomes 0, that is,
c is occupied. In fact, if the initial configuration is asymmetric and q0 > 1, then
after reducing q0, the obtained configuration is again asymmetric as the minimal
sequence of the new configuration starts with q0 − 1 while any other sequence
starts with at least q0. When the initial configuration is asymmetric and q0 = 1,
after the move, the configuration might become symmetric but with one corner
occupied. In conclusion, in any case the obtained configuration has the corner c
occupied, and possibly one pending move towards c. �

Before showing the case of configurations in EG with two corners occupied, we
need to exclude all the configurations with exactly three occupied nodes, two
of which are two corners that share a coordinate, and the other one is at one
node apart from another corner. See the configuration in the middle of Fig. 3.
We denote such configurations as the set 3EG2.

Lemma 3. For any configuration in EG\3EG2 with two corners occupied there
exists a strategy that leads to a configuration with either exactly one corner oc-
cupied or exactly three corners occupied.

Proof. If two corners are occupied, and the configuration is symmetric with the
axis passing through the occupied corners, then one of them corresponds to c. We
move the robot in the occupied corner which does not corresponds to c towards
the other one, and we end up with the case of only one corner occupied.

The case where two corners are occupied, and the configuration is asymmetric
or symmetric with the axis not passing through the occupied corners requires
some more effort. In this case, it is risky to move the robots from the occupied
corners, since if the adversary forces to move only one of them, we could not
be able to recognize the possible move of the other robot which is still pending.
Therefore, let d be the corner not occupied by a robot from which we read the
minimal sequence D. We move towards d the first robot not in a corner that
reduces D, and possibly, the symmetric one.1 By repeating this strategy, d will
be occupied by at least one robot, eventually. Arguments similar to those used in
the proof of Lemma 2 can be used to show that no symmetries different from the
original one can be created. It follows that for each step in which this strategy is

1 Here we do not need to preserve the symmetry as it was necessary in Lemma 2.
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applied, d remains the same. The final configuration has three corners occupied
and possibly one pending move towards d of a robot not in a corner. �

Note that the configuration obtained after the strategy given in Lemma 3 is
always in EG with possibly one pending move.

Theorem 5. Aperiodic configurations on even×even grids larger than 2×2, that
do not admit an axis of symmetry passing through edges, are gatherable.

Proof. First, we can restrict the set of possible grids as follows. Let us consider
the minimal even×even sub-grid which is centered in the geometrical middle
of the original grid and includes all the occupied nodes of it. Such minimal
wrapping grid is still of type even×even and preserves the possible symmetry
of the original one. Moreover, it always has at least an occupied node on the
border. Our algorithm only uses such sub-grids and it never changes the size
of it, i.e. it neither enlarges it by moving robots outside of it, nor it reduces it
by moving the robots on the border inside. Therefore, in what follows, we can
assume without loss of generality that a grid always has at least an occupied
node in the border. However, the case in which the resulting wrapping grid is a
2×2 grid will be considered separately.

If no corners are occupied, we can apply Lemma 2 that leads to a configuration
with one corner occupied with possibly one pending move towards c. However,
such a move would have been performed also in the strategy used for the case
of one corner occupied which is given in the following.

If only one corner is occupied, then it corresponds to c. In this case, all the
robots move towards c by reducing the Manhattan distance to c and then achiev-
ing the gathering. We remind that the allowed movements are performed always
without occupying any other corner than c.

In case two corners are occupied but the configuration is not in 3EG2, we
apply the strategy of Lemma 3 and reach a configuration with one or three
corners occupied. Also in this case there could be a pending move and, again,
such a move would have been performed also in the strategy for one corner or
three corners occupied.

If three corners are occupied, we move all the robots, but those in the corners,
towards the corner that does not share any coordinate with the empty corner.
This process finishes with a symmetric configuration with exactly three corners
occupied. In this configuration, c is the corner on the axis of symmetry, and the
other two robots move one step towards c either concurrently or alternately, until
creating a configuration with only one corner occupied as shown in Fig. 3. Note
that these final steps also solve the gathering for the configurations in 3EG2.

If four corners are occupied, we move the robot which occupies the corner
farthest from c in an arbitrary direction, generating a configuration where only
three corners are occupied.

It remains the case where the minimal wrapping even×even sub-grid which
includes all the occupied nodes of the original grid has dimension 2×2. As shown
in Theorem 4, the configuration is not gatherable on this sub-grid without mul-
tiplicity detection. However, in the case of exactly three nodes occupied, we can
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ccc

Fig. 3. Strategy from a symmetric square grid where exactly three corners are occupied
and all the other nodes are empty to a configuration with only one occupied corner,
possibly passing through configurations in 3EG2

exploit the larger dimensions of the original grid in order to avoid the multi-
plicity detection. The cases of two or four nodes occupied clearly remain not
gatherable. The strategy is then to move the robot on the corner of the 2×2 grid
which is in between the other two occupied corners towards the external row or
column, arbitrarily. In doing so, we obtain the case where the minimal wrapping
grid has dimension 4×4 and no corners are occupied. �

4 Conclusion

We fully characterized the gathering in the Look-Compute-Move model on grids.
We have shown that a configuration is ungatherable if and only if it is periodic
on a grid with at least an even side, or it is symmetric with the axis passing
through edges, or it is a 2×2 grid. For all the other cases we provided a gather-
ing algorithm which does not require any multiplicity detection. It would be of
interest to investigate whether the grid topology is the least structured class of
graphs that permits to avoid the multiplicity detection assumption.
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A., Kling, P., Kurras, S., Märtens, M., Meyer auf der Heide, F., Raupach, C.,
Swierkot, K., Warner, D., Weddemann, C., Wonisch, D.: A New Approach for
Analyzing Convergence Algorithms for Mobile Robots. In: Aceto, L., Henzinger,
M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 650–661. Springer,
Heidelberg (2011)

8. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots.
Theor. Comput. Sci. 384, 222–231 (2007)

9. Alpern, S.: The rendezvous search problem. SIAM J. Control Optim. 33, 673–683
(1995)

10. Chalopin, J., Das, S.: Rendezvous of Mobile Agents without Agreement on Local
Orientation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F.,
Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 515–526. Springer,
Heidelberg (2010)

11. Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) ev-
erywhere. In: Proc. of the 21st Annual ACM-SIAM Symp. on Discrete Algorithms
(SODA), pp. 22–30 (2010)

12. Blin, L., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Exclusive Perpetual Ring
Exploration without Chirality. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC
2010. LNCS, vol. 6343, pp. 312–327. Springer, Heidelberg (2010)

13. Devismes, S., Petit, F., Tixeuil, S.: Optimal Probabilistic Ring Exploration by
Semi-synchronous Oblivious Robots. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO
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