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Abstract. Nowadays business process models are a common approach
to describe and analyse existing business processes and to create new pro-
cesses in a structured way. However, with growing complexity of process
models there is a lack of comprehensibility. Using existing notations, it is
challenging or even impossible to define temporal and logical constraints
between process steps that are not directly connected. We demonstrate
a declarative approach for representing business processes that allows for
configuration, i.e. selection of process steps, based on a component rep-
resentation. In addition, we present ways to transform a configuration
into a procedural process model using BPMN.

Keywords: Business Process Configuration, Service Modelling, Modu-
larisation.

1 Introduction

The growing economical importance of the service sector is associated with an
increasing complexity of services. One example of this trend are offers comprising
products and services in so called product-service-systems. These developments
are accompanied by a growing demand of customer-individual offers. To achieve
fundamental economical aims – despite those challenges – an efficient provision of
those services is a necessary precondition. To support a productive and standard-
ised service provision, the modelling of services in terms of service engineering
is a widely implemented approach. Various IT-based modelling languages allow
for a precise description of the process-related aspects of services. But to widen
the focus in terms of individualisation, the consideration of configuration-related
requirements is also necessary. Hence, this paper proposes a modelling method
aiming to fulfill the specific needs of the configuration of services, as presented
in various papers before. This encloses the segregation of semantically related
process parts in so called modules [1] as well as the description of dependencies
between those modules [2]. Therefore, this paper gives a brief introduction of the
concept of modelling service modules and their configuration. According to [1],
we define that a service module offers a well-defined functionality via precisely
described interfaces. Furthermore, a service module can be used for composition
and can, therefore, itself be part of a more coarse-grained service module.
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To support a seamless integration of the proposed modelling method in the
overall process of service engineering, two additional steps besides segregation
and description of dependencies have to be considered. It is possible to extract
service components from existing business process models (extraction). These
components can then be used as a basis for configuration. Furthermore, business
process models can be generated based on customer-individual configurations of
services (generation).

The main benefit resulting from extraction is the reuse of existing business
process models as basis for the creation of configurable models. In doing so,
the step towards a configurable service portfolio can be simplified. On the other
hand, the generation of business process models based on configurations extends
the advantages of process models on the level of individualisation. These busi-
ness process models are defining the specific process according to the customer-
individual offer and therefore can be used as the basis for a workflow description.
This paper focuses generation of process models.

In summary, the whole course of action to create configurable service mod-
els as proposed in this paper consists of four steps. First, it is necessary to
specify the unique service components and establish hierarchical dependencies
between these components. This can be done either manual or by extracting
these modules from existing business process models. This results in the ex-
istence of a component model. Second, it is necessary to declare logical (i.e.
non-hierarchical) and temporal dependencies between components based on this
component model. Temporal dependencies are evaluated to specify the order of
activities and their parallelisation potential. These steps are described in the
following section 2. As a third step, the configuration of components conforming
to their structure and dependencies is conducted. This configuration is usually
established in collaboration with customers, resulting in a customer-individual
offer. The configuration is similar to variants in Product Line Engineering ac-
cording to [3], i.e. a complete configuration can be understood as a specific
variant.

Fourth and finally, this customer specific configuration is transformed into a
workflow representation. This workflow model can be imported into a workflow
management system to guide the process. Configuration and transformation are
described in section 3. Following the explanation of the component definition
and configuration we depict related work in section 4. This paper concludes
with future research directions and an evaluation of the approach in section 5.

2 Defining Component Models

In this section we formalise the component model representing hierarchical pro-
cess elements. Based on this formalisation, it is possible to derive actual con-
figurations of a process and verify this configuration. The component model is
specified using first-order logic. Though this formalisation requires additional
initial effort to specify component models, it provides two fundamental benefits.
First, it allows to define the used concepts in unambiguous way due to the formal
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defined semantics of first-order logic. Second, and even more important for prac-
tical applications, it allows for easy extension and adaption to domain specific
facts. Due to space limitation, we present only the most relevant concepts of our
component model. Further details and formalisations are specified in [4].

A component model is represented as a 6-tuple M = (C,K,G, card, L, T ):

– C is a finite, non-empty set of components,
– K is a finite, non-empty set of connectors,
– G ⊆ (C ×K) ∪ (K × C) ∪ (K ×K) is a set of arcs constituting an acyclic

configuration graph representing hierarchical dependencies,
– card : K → P(N× N) is a mapping from connectors to cardinalities,
– L is a finite set of logical dependencies,
– T is a finite set of temporal dependencies.

In the following subsections, we provide further details for the individual con-
stituents of the component model based on a simplified example inspired by
a real world application. The example describes services around assembly and
maintenance of photovoltaics installations. An organisation provides installation
services where customers can choose between delivery with self-assembly and
delivery with assembly services. However, if users chose assembly services there
are two constraints to satisfy. First, customers must obtain delivery service, too.
Second, assembly can only be executed after delivery. For existing photovoltaics
installations, customers can select maintenance services consisting of on-site
maintenance, remote maintenance, and cleaning. Finally, it is possible to obtain
monitoring services for evaluating the performance of the photovoltaics instal-
lation. Monitoring consists of recording, customer-specific performance analysis,
and comparison with other installations. Due to hardware requirements, cus-
tomers choosing performance analysis have to chose remote maintenance, too.
Finally, comparison services needs recording services.

Based on the description of the example, it is possible to identify process
components. To shorten formulae presented in the following, we use component
identifiers. The process consists of the following components: Photovoltaics (C1)
representing the complete process, Installation (C2), Maintenance (C3), and
Monitoring (C4) to represent the three main services. Delivery (C5) and Assem-
bling (C6) are installation services. On-Site Maintenance (C7), Cleaning (C8),
and Remote Maintenance (C9) are maintenance services. Comparison (C10),
Analysis (C11), and Recording (C12) are monitoring services. Thus, we have the
set of components C = {C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12}. Fig. 1
on page 127 gives a visualisation of the component model containing all details
described in the following sections.

2.1 Hierarchical Dependencies

The main objective of the component model is to describe complex processes
using single, less complex subcomponents. This is achieved by using the con-
figuration graph that contains hierarchical dependencies between components.
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Decomposing components into more fine grained subcomponents represents pro-
cess refinement. We use connectors to specify the type of hierarchic relation
between components. For configuration reasons, we prohibit direct linking of
components, i.e. components can only be linked with each other using connec-
tors. Therefore, we have the set of connectors K = {K1,K2,K3,K4} with K1

linking the overall component C1 with the main services C2, C3, and C4. K2,
K3, and K4 link the respective subcomponents with their children. This results
in the following configuration graph G.

G = {(C1,K1), (K1, C2), (K1, C3), (K1, C4), (C2,K2), (C3,K3), (C4,K4),

(K2, C5), (K2, C6), (K3, C7), (K3, C8), (K3, C9), (K4, C10), (K4, C11), (K4, C12)}.
A connector can be assigned with an arbitrary amount of cardinalities specifying
valid configuration choices using the mapping card. Each cardinality specifies
the minimal and maximum number of subnodes that needs to be selected during
configuration. If a connector is assigned with more than one cardinality, the
cardinalities are linked with each other using logical ORs. Therefore, only one of
the cardinalities must be satisfied during configuration. In our example, we have
to choose at least one subcomponent of every component (e.g. if monitoring
is chosen, at least one of comparison, analysis, and recording must be chosen
as well). Therefore, we have the cardinalities card(K1) = {(1, 3)}, card(K2) =
{(1, 2)}, card(K3) = {(1, 3)}, and card(K4) = {(1, 3)}.

2.2 Logical Dependencies

The specified graph with different types of connecting nodes and cardinalities
defines the dependencies between components that are directly interrelated by
the given graph. Additionally, dependencies have to be specified for components
that are neither children nor parents of other components. These dependen-
cies are necessary to make statements like when choosing component A during
a configuration, component X has to be chosen as well or when choosing com-
ponent B during a configuration, component Y must not be chosen. As these
dependencies represent logical restrictions for configuration, they are called log-
ical dependencies . Such logical dependencies are necessary to support error-free
service configurations [5].

For specifying these dependencies, expressive methods like first-order logic are
best suited. As the application of first-order logic is quite complex, typical rules
can be specified that are based on first-order logic, but are at the same time
applicable for users that are unfamiliar with first-order logic. The following rules
in Table 1 are examples that can be used when specifying logical dependencies
between service modules.

The dependencies given in Table 1 are hard dependencies, i.e. they must be
satisfied in valid configurations. Besides this, it is also possible to specify soft
dependencies, e.g. component A is an alternative of component B. For estab-
lishing new logical dependencies, it is possible to combine existing ones, e.g.
components A and B are exclusive alternatives of each other can be defined as
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Table 1. Logical dependencies between components

Rule Formalisation Explanation

Requirement requires : C → C
requires(A) = B

Component A requires component B: if com-
ponent A is chosen during configuration, com-
ponent B must be chosen as well.

Dependency depends : C → C
depends(A) = B

Component A depends on component B: if
component B is not chosen during configura-
tion, component A must not be chosen as well.

Prohibition prohibits : C → C
prohibits(A) = B

Component A prohibits component B: if com-
ponent A is chosen during configuration, com-
ponent B must not be chosen and vice versa.

prohibits(A) = B and alternative(A) = B. A selection of additional dependen-
cies in the domain of Product-Service-Systems is presented in [2]. To validate the
applicability, we have implemented the dependencies as Prolog rules1. Based on
this representation, it is possible to verify if a configuration (i.e. a set of selected
components) satisfies the given hard dependencies of a component model and
whether additional soft dependencies are available. The semantics of the given
logical dependencies are defined during configuration (see section 3.2).

Three hard logical dependencies exist in the photovoltaics example. If cus-
tomers choose assembly service (C6), they have to choose delivery (C5), too.
Comparison (C10) needs recording (C12). Finally, performance analysis (C11)
requires remote maintenance (C9). This results in logical dependencies L =
{requires(C6) = C5, requires(C10) = C12, requires(C11) = C9}. Especially the
requirements relation between performance analysis and remote maintenance is
notable. In traditional process models it is often only possible to declare relations
in one branch, e.g. relations between the subcomponents of maintenance.

Though we provide the opportunity to define logical dependencies this feature
should be used sparsely. It both impacts the readability and comprehensibility
of component models and adds to the complexity of configuration. As Thum
et al. have shown for feature models these dependencies are especially hard to
understand in editing models [6]. Some ideas how to eliminate non-hierarchic
constraints in the domain of feature models are given in [7,8]. These concepts
should be applicable in the domain of process components, too.

2.3 Temporal Dependencies

Since the components in our model represent process activities, it is necessary
to specify the possible execution order of these activities, e.g. sequential execu-
tion, parallelisation, and synchronisation. Concerning the specified graph, it is,
therefore, not enough to display only logical dependencies between components,
but also to display temporal dependencies. These temporal dependencies define
whether a component has to be performed before or after another component.

1 https://sourceforge.net/projects/kpstools/

https://sourceforge.net/projects/kpstools/
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Using this information, it will be easier to implement finally the whole process
out of the chosen component. The instantiation of a process (specifying which
service module has to be executed at which time) has to take into account the
specified temporal dependencies.

For keeping the graph as flexible as possible, temporal dependencies can be
specified by using a declarative approach (as opposed to a procedural approach).
Such approach has been proposed by Aalst and Pesic [9]. The application of the
linear temporal logic (LTL) [10] would offer the most flexible and expressive
way of specifying the temporal dependencies. Nevertheless, this approach is not
applicable for users that are unfamiliar with LTL. Therefore, a set of rules can
be specified that covers most of the temporal dependencies. These rules are,
on the one hand, understandable for non-professionals and, on the other hand,
based on the LTL which allows functionalities like model checking or simulation.
Table 2 shows a selection of possible temporal dependencies. It is necessary to
note that the exact semantics of temporal dependencies is formalised during
configuration (see section 3.3). Furthermore, the examples shown in Table 2
are not independent of each other, i.e. precedence can be specified in terms of
succession and vice versa.

Table 2. Temporal dependencies between components

Rule Formalisation Explanation

Precedence before(A) = B In all configurations containing components
A and B, it is necessary to execute compo-
nent B before component A.

Direct Precedence iBefore(A) = B In all configurations containing components
A and B, it is necessary to execute compo-
nent B directly before component A.

Succession after(A) = B In all configurations containing components
A and B, it is necessary to execute compo-
nent B after component A.

Direct Succession iAfter(A) = B In all configurations containing components
A and B, it is necessary to execute compo-
nent B immediately after component A.

In the photovoltaics example one temporal dependency occurs, i.e. before as-
sembling (C6) the installation has to be delivered (C5). Therefore, the set T
of temporal dependencies is defined as follows: T = {before(C6) = C5}. It is
necessary to mention that all components that are not linked with temporal de-
pendencies are independent from each other. That means, they can be executed
in parallel, e.g. while performance analysis it is possible to clean the photo-
voltaics installation. In a complex real world example there would be much more
temporal dependencies. For example, cleaning and on-site maintenance may be
performed by the same individuals. Therefore, only one of the activities can be
executed at one time. Furthermore, installation certainly needs to be completed
before maintenance.
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2.4 Graphical Representation

For comprehensibility reasons, we provide a set of notational elements for the
graphical representation of a component model. Components are depicted as
rectangles and connectors as circles. Hierarchical dependencies between these el-
ements are represented using directed arrows. To represent logical dependencies,
we use directed, dotted arrows where A → B means that selecting component
A also requires selecting component B. Temporal dependencies are represented
using dashed lines, where A → B means that component A must be performed
before component B. Fig. 1 shows the photovoltaics example using the defined
notational elements.

C2: Installation C3: Maintenance C4: Monitoring

C5: Delivery C6: Assembling

C9: Remote Maint.

C12: RecordingC10: Comparison C11: Analysis

C7: On-Site-Maint. C8: Cleaning

K1

K2

K3

K4

C1: Photovoltaics

Fig. 1. Component model for a photovoltaics installation

3 Configuration

Using the hierarchical, logical, and temporal dependencies between components,
it is possible to generate a customer specific configuration. A configuration is
a set of components selected from the given portfolio defined by the compo-
nent model. Due to the formalisation of the model, it is possible to validate
whether selected components fulfill the established dependencies. In this section
we use the photovoltaics example introduced in the last section and show how
to create configurations and how to establish process models based on a given
configuration.

Each configuration consists of three distinct steps. First, components are se-
lected based on customer-specific requirements. The selection is restricted by
hierarchical dependencies between components, cardinalities of connectors, and
hard logical dependencies between components. Second, soft logical dependen-
cies are evaluated and presented as configuration alternatives. Third, an ac-
tual configuration is transformed into a procedural process representation using
the temporal dependencies. This representation can for example be imported in
workflow management systems to guide through the process.

3.1 Component Selection and Cardinality Evaluation

During configuration, the mapping s : C → {0, 1} represents whether a com-
ponent is selected or not. A configuration is defined as the set of selected
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components, i.e. the set Configuration = {c|c ∈ C ∧ s(c) = 1} contains all
selected components. At the beginning of the configuration process, none of the
nodes is selected, i.e. ∀c ∈ C : s(c) = 0.

To define selection and connector semantics during configuration we need
to introduce the mapping p : C ∪ K → P(C ∪ K) to identify postnodes (i.e.
succeeding nodes) of a node in the configuration graph. This mapping is defined
as p(n1) = {n2 ∈ C ∪K : ∃e ∈ G : e = (n1, n2)}.

Now we define that succeeding nodes of an unselected node are not selected,
too. Thus, we prohibit to select subcomponents without selecting the respective
superior component: ∀n1 ∈ C ∪K, ∀n2 ∈ p(n1) : s(n1) = 0 → s(n2) = 0.

On the opposite, all succeeding nodes of a component are selected. Since
components can only be followed by connectors, we include these connectors in
the configuration: ∀n1 ∈ C, ∀n2 ∈ p(n1) : s(n1) = 1 → s(n2) = 1.

Finally, we have to define connector semantics during configuration. A con-
nector is satisfied if there is a number of succeeding nodes selected fulfilling the
interval defined by one of the cardinalities. Therefore, we define the set sp that
contains all selected succeeding nodes of a connector k.

∀k ∈ K : sp(k) ⊆ p(k)

∀k ∈ K, ∀n ∈ sp(k) : s(n) = 1 ∧ n ∈ p(k)

∀k ∈ K : ∃(m,n) ∈ card(k) : m ≤ |sp(k)| ≤ n.

3.2 Evaluate Logical Dependencies

As stated in section 2.3, logical dependencies restrict possible configurations.
Therefore, it is necessary to assign formal semantics to given dependencies. In
Table 1, we defined the dependencies requirement, dependency, and prohibition.

A requirement requires(c1) = c2 between component c1 and c2 states selecting
component c1 leads to the selection of component c2. This can be formalised as
follows: ∀c1, c2 ∈ C : s(c1) = 1 → s(c2) = 1.

If component c1 depends on component c2 (depends(c1) = c2), it is not pos-
sible that component c2 is not selected while component c1 is selected: ∀c1, c2 ∈
C : s(c2) = 0 → s(c1) = 0.

Finally, prohibition of components c1 and c2 (prohibits(c1) = c2) permits
both components being selected at the same time: ∀c1, c2 ∈ C : (s(c1) = 1 →
s(c2) = 0) ∧ (s(c2) = 1 → s(c1) = 0).

Based on the semantics of the logical dependencies, it is possible to establish
valid configurations. However, as can be seen from the specification, it is also
possible to establish models that are not satisfiable. For example, the logical
dependencies requires(A) = B and prohibits(A) = B must not occur in the
same model. However, satisfiability of models is not in the focus of this work.
The interested reader is referred to [2] for a detailed overview about interactions
between different logical dependencies.
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3.3 Evaluate Temporal Dependencies

After a configuration that satisfied the given cardinalities and logical dependen-
cies has been established, it is possible to represent the components as a procedu-
ral process. This representation can be used as input for workflow management
systems that guide through a configured process. Therefore, it is necessary to
arrange the components according to the given temporal dependencies.

As stated in section 2.3, we specify temporal dependencies using LTL. In the
following, we first show how the temporal dependencies of Table 2 are enriched
with formal semantics. Based on this semantics, we show an example configura-
tion in its process representation in the next section.

The precedence dependency before(c1) = c2 states that in a configuration
containing both components c1 and c2, component c2 must be executed before
component c2. In LTL terms, this can be represented as the constraint that c1
cannot be executed until c2 was executed: ∀c1, c2 ∈ C : (s(c1) = 1 ∧ s(c2) =
1) → (¬c1Uc2).

The direct precedence dependency iBefore(c1) = c2 states that in a configu-
ration containing both components c1 and c2, component c2 must be executed
immediately before c1. This is an extension of the precedence dependency. In
addition, it is necessary that the execution of c1 follows immediately after the
execution of c2: ∀c1, c2 ∈ C : (s(c1) = 1 ∧ s(c2) = 1) → (¬c1Uc2 ∧ c2 → ©c1).

The succession dependency after(c1) = c2 states that in every configuration
containing both component c1 and c2, component c2 must be executed after
component c1. In LTL terms, this can be represented as the constraint that
after the execution of c1 eventually c2 must be executed in the future: ∀c1, c2 ∈
C : (s(c1) = 1 ∧ s(c2) = 1) → (c1 → ♦c2).

Finally, direct succession iAfter(c1) = c2 implies that immediately after the
execution of component c1, component c2 must be executed. This can be for-
malised similar to direct precedence. However, in this case it is not necessary
that c1 is executed before c2 can be executed: ∀c1, c2 ∈ C : (s(c1) = 1 ∧ s(c2) =
1) → (c1 → ©c2).

3.4 Procedural Process Transformation

With the semantics of the temporal dependencies at hand, it is possible to es-
tablish a procedural process model based on a given configuration. For compre-
hensibility, we show the transformation of a configured component model into
a process model using the photovoltaics example. A configuration is established
based on customer requirements where different ways of asking for these re-
quirements are possible. For example, [11] shows a dialogue-driven approach to
establish configurations. We support configuration decisions by our proposed hi-
erarchical, logical, and temporal dependencies between components. In a typical
example, a customer asks for a photovoltaics installation that is constructed by
the service provider. In addition, the customer wants to buy the cleaning service
and does not want to maintain the installation on her own. Therefore, remote
maintenance is necessary. Due to hierarchical (e.g. cleaning is a child component
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of maintenance) and logical dependencies (e.g. remote maintenance needs the
analysis component), we have the following configuration including all necessary
components.

Configuration = {photovoltaics, installation, delivery, assembling,

maintenance, cleaning, remote−maintenance,monitoring, analysis}

Based on the hierarchic dependencies between components this configuration
can be represented as a configured graph shown in Fig. 2. This graph does not
contain any connectors because all components are mandatory. Since the graph
should only act as a helpful visualisation, we do not formalise its constituents.

C2: Installation C3: Maintenance C4: Monitoring

C5: Delivery C6: Assembling C9: Remote Maint. C11: AnalysisC8: Cleaning

C1: Photovoltaics

Fig. 2. Configured graph for selected components

In the following, the configured graph is transformed into a procedural process
representation using Business Process Model and Notation (BPMN [12]) as the
process notation. In doing so, every selected component can be represented as a
(possible expandable) activity in the process model. The transformation results
in a complete process model according to the logical and temporal dependencies
between selected components. By now, there does not exist a complete formali-
sation of the transformation process. Thus, we give a step-by-step instruction.

First, a collapsed activity for the complete photovoltaics process is created
(Fig. 3(a)). This is to show that we use components as refineable activities in the
process model. Thus, it is possible to represent hierarchic process dependencies.

Going down one level in the configured graph, we have the components in-
stallation, maintenance, and monitoring. As stated above, all of these compo-
nents are necessary. Furthermore, there are no temporal dependencies between
these components. Thus, we can create an activity for each component and con-
nect them using a parallel gateway when expanding the photovoltaics activity
(Fig. 3(b)). Every components of this level is again represented as an activity
that can be expanded.

When expanding the installation activity, we have to satisfy the temporal
constraint before(assembling) = delivery. Therefore, it is necessary that the
activity delivery is executed before the activity assembling, i.e. both activities
must be in sequential order. Since we only have these two activities in the re-
spective subprocess, we can directly connect both activities with each other
(Fig. 3(c)).

The remaining two activities (monitoring and maintenance) are expanded in
similar way. In monitoring there is only one activity analysis. Therefore, we do
not have to consider any temporal constraints (Fig. 3(d)). The two maintenance
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activities can be executed in parallel and are thus connected using a parallel
gateway (Fig. 3(e)).

The activities in Fig. 3(c) - 3(e) cannot be expanded anymore. Therefore, the
transformation is finished resulting in a complete procedural process model.

Photovoltaics

(a) Photovolt. collapsed

Photovoltaics
Installation

Maintenance

Monitoring

(b) Photovolt. expanded

Installation

AssemblingDelivery

(c) Installation expanded

Monitoring

Analysis

(d) Monitoring expanded

Maintenance

Remote Maint.

Cleaning

(e) Maint. expanded

Fig. 3. Transformation of configuration into procedural process representation

4 Related Work

In our approach we use a component model representation to allow for configu-
ration of complex business processes. Other approaches extend existing process
notations with explicit representation of variabilities. For example, Rosemann
and van der Aalst extend event-driven process chains (EPCs) to so-called config-
urable EPCs (C-EPCs) to represent configurable reference models [13]. There-
fore, they give a formal definition of C-EPCs and describe how configuration
decisions effect resulting process models. Another streamline of research focuses
BPMN extensions to display variability, e.g. [14,15,16]. However, a big differ-
ences between these approaches and our presented approach lies in the fact that
we analyse the whole portfolio of process models of an organisation. Opposing
to this, C-EPCS and BPMN extension are on the level of one specific process
model.

Feature models are well-known in the domain of software engineering and
another feasible approach to represent variability [17]. By establishing a distinct
feature model, it is possible to extract variability from the model and to define
clearly distinctable feature decision points. In doing so, existing process models
can be reused without any changes. It is just necessary to group them according
to included features and map the features in the feature model to the respective
processes. La Rosa et al. use this approach for reference model configuration by
describing variability of a domain and of a process in separate models [18].

Since we also use declarative elements in our component model, approaches
for specifying declarative process models are of interest, too. Aalst and Pesic
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have proposed a comprehensive overview about declarative modelling in [19].
Their work can be used as a source for additional temporal dependencies be-
tween components. Furthermore, Soffer and Yehezkel have proposed declarative
modelling focusing expression of variability [20]. To broaden the view on tempo-
ral dependencies, the work of Lanz et al. can be used as an additional source [21].
They present time patterns that occur in workflow systems, e.g. lags between
activities and durations of activities. It is an interesting approach to analyse how
these time patterns are related with temporal dependencies.

5 Evaluation and Conclusions

In this work we presented an approach to represent business processes in a hier-
archic way. The proposed component model focuses configuration of processes.
Therefore, it uses hierarchically structured components that are connected by
distinct nodes allowing for specifying semantics of the structure. Additionally, it
is possible to assign logical and temporal dependencies between components. By
comparing our approach with requirements for configurable reference modelling
techniques mentioned in academic literature [13], it is possible to establish a first
evaluation and future research directions.

1. Differentiate between run-time and build-time decisions. Our model uses
connector nodes to represent build-time decisions, i.e. configuration points
of the model that need to be decided before a model is executed. By assign-
ing leafs of the tree with process models, it is possible to allow for run-time
decisions, too. Thus, we support both decision possibilities with a clear dis-
tinction between them.

2. Support configurations regarding entire processes, functions, control flow, re-
sources, and data. In the current state we only support configuration based
on process level. Resources and data are out of focus. However, enriching
component descriptions with data and resource information should be pos-
sible in future developments.

3. Differentiate between mandatory and optional decisions. Connectors can be
initialised with default cardinalities. However, in the current state it is still
necessary to select specific components during configurations. In future ex-
tensions of the model, default cardinalities can be enriched with the specifi-
cation of default components that are selected when no explicit decision was
made.

4. Differentiate between global and local decisions. Global decisions are based
on specific context factors (e.g. country, domain etc.). Currently, it is not
possible to map these context factors on decisions. However, an extension of
the model includes so-called external variables [22]. Based on these variables
it may be possible to define configuration decisions.

5. Differentiate between critical and non-critical decisions. In the current state,
we support only non-critical decisions, i.e. every decisions can be re-done
and can be changed over time. Thus, it is not possible to distinguish between
these two decision types.
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6. Depict interrelationships between configuration decisions. Due to the hierar-
chic representation of the component model, there is a natural configuration
order, i.e. if a superior component is not selected, the child components
cannot be selected, too. However, there exists no such order for logical de-
pendencies. This is a current weakness of our component model and needs
to be overcome in future research.

7. Differentiate between configuration decisions on different levels. Since we
do not cover organisational details in our models, this differentiation is not
contained in the model. Nonetheless, it is possible that configuration is con-
ducted step-wise. In doing so, different levels can refine a configuration.

8. Relate variation points with additional information. Additional information
are not formally defined in the model. However, the definition of connectors
may be enriched with an additional information, e.g. an URL. At this URL,
configuration information can be placed.

9. Guide the configuration by recommendations and guidelines. It is possible
to assign key performance indicators (KPIs) to components [23]. Based on
these KPIs, the productivity impacts of configuration decisions can be as-
sessed. Organisations can further use these information to develop configu-
ration guidelines. Additionally, the configuration process can be supported
by defining recommendations for components using logical dependencies.
Other research approaches promote using questionnaire-based configuration,
e.g. [18]. This is possible using our approach, too. In future research we will
analyse ways to establish a guided configuration.

10. Make complexity manageable. Due to the modularised, hierarchic structure
of our component model, it is possible to separate process modelling from
configuration. For example, executive management of an organisation uses
component models on a very abstract level to decide about the overall or-
ganisation strategy. Functional departments can build on this configuration
with their own, refined models.

In future, the consequences of our approach for modelling practice can be eval-
uated based on two approaches. First, it is possible to establish reference pro-
cess models based on existing reference processes for existing domains, e.g. SAP
R/3 [24]. According to the representation of these reference processes, we will
analyse the complexity differences in configuring an existing reference model in
comparison to the configuration using our presented approach. Second, we will
analyse processes of our industry partners in more details and evaluate them
according to their configuration potential.

Since the first-order and linear temporal logic formalisation is not easy to use
(especially for non-professionals) we have developed a tool conforming to the
notation. The practical applicability of this tool is shown in [25]. However, in
its current state the tool cannot transform component into process models. To
further enhance practical applicability, we have to analyse how existing process
models can be reused (extraction). This is necessary, since organisations often
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own process repositories consisting of hundreds or even thousands of models [26].
A valid starting point for extraction is to identify mappings between workflow
patterns according to [27] and specific component hierarchies.
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