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Abstract. Business processes are crucial for every organisation as they represent
the core value generating processes. Managing business processes is important to
be efficient and to compete with a globalized market. Business process monitor-
ing is an essential means to understand and to improve working procedures. It
helps detecting deviations from planned procedures and brings transparency into
the state and progress of running process instances. However, without automated
execution of business processes via a workflow engine, the absence of execution
information hampers monitoring. Often, the automated execution of business pro-
cesses is neither feasible nor desirable. However, a few monitoring points can be
used, when process participants interact with IT-systems.

In this paper, we propose a novel approach to business process monitoring
using probabilistic estimations to fill information for missing monitoring points.
The applicability of the approach is evaluated with a case study in a German
university hospital.
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1 Introduction

Monitoring of business processes and process activities [1] emerged as an instrument
in business process management to gain insights into running process instances. It al-
lows for live evaluation and keeping track, whether the process executes as planned. It
can also be used to predict resource shortages and provide decision support for timely
operational changes in process instances [2].

However, current business process monitoring solutions require detailed log files
containing entries for each monitored activity in the process, often realized by workflow
enactment components that emit events for each activity.

Another method that can be used for correlating live event streams to process models
is process mining and it does not depend on complete log files and can deal with noise,
i.e., missing or multiple events. However, it is used mainly for conformance checking
between process models and logs, by computing fitness and appropriateness [3]. The
difference to our approach is that it does not deal with untracked process fragments, i.e.,
parts of processes that never occur in the logs.

We want to address this gap and provide a monitoring approach for such use cases.
More concretely, we enable monitoring of untracked parts. The approach is based on
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probabilities; it allows to compute the probable state of the unmonitored parts of the pro-
cess for a given time. We resort to an analytical model, i.e., calculating the expected be-
haviour of the process parts, where no events are available that indicate process progress.
The question we want to answer in this paper is: Which activities in the process are prob-
ably being executed at a given time?

If we know the answer to this question, we can also derive an answer to the question:
What is the probability of finishing the process in a given time duration? It also might
help to know that there is a (high) chance that a process instance will be performing a
task in near future that requires a specific resource.

The applicability of the approach is evaluated in a real world case study in a univer-
sity hospital in Germany. In hospital environments, or more generally, if people perform
manual activities in processes, the utilization of workflow enactment systems is neither
feasible nor desirable [4]. However, some important events might be available in IT-
systems nonetheless. This is the case in the liver transplant surgery procedure in the
Jena University Hospital, where several important events during the surgery, e.g., per-
forming the cut, discharge from the room, etc. are recorded in the hospital information
system.

The remaining paper is organized as follows. Sect. 2 introduces preliminary defini-
tions and notions required for describing the scenario and approach formally. Next, in
Sect. 3, we describe the related work with focus on analytical models, process mining
and monitoring systems. Sect. 4 describes the proposed probabilistic approach to mon-
itoring. In Sect. 5, the applicability of the approach is evaluated with a case study in
the Jena University Hospital. Sect. 6 concludes the paper and discusses limitations and
future work.

2 Preliminaries

In this section, we give a formal description of the setting in order to describe the moni-
toring approach explicitly. Therefore, we first explain the model level by introducing the
notions of process model, activity lifecycle, and events. Then, we relate these notions
to the corresponding instance level, i.e., the notion of process instances and events.

The elicited process models for the clinical pathways contain information about the
activities that need to be performed by the clinical personnel. The process flow can be
sequential, or split into mutually exclusive or parallel branches at gateways that can also
be used to merge alternative or parallel flows. Thus, we use the following definition of
a process model. (Let ∪̇ be the disjoint union.)

Definition 1 (Process Model). Let P be the set of process models. A process model
P ∈ P is a connected, directed, acyclic graph (N, E) where N = A ∪̇G ∪̇ {nin, nout}
is a finite set of nodes, with activities A, gateways G = GXOR ∪̇ GAND , with exactly
one start event nin and one end event nout, and E ⊆ (N \ {nout}) × (N \ {nin}) is
a set of edges connecting the nodes.

Each node n ∈ N lies on a path from nin to nout. There are no loops allowed in
the process model (acyclic property) and there is exactly one edge entering and leav-
ing an activity, i.e., ∀ai ∈ A, ∀ni, nj ∈ N : ((ni, ai) ∈ E ∧ (nj , ai) ∈ E) ⇒
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ni = nj ∧ ((ai, ni) ∈ E ∧ (ai, nj) ∈ E) ⇒ ni = nj . Gateways can be either of
branching or of merging nature.

We assume that the process models are sound, c.f., [5].

The branching and merging nature of gateways is just a syntactical restriction, because
every gateway that is both, can be split into two sequential gateways, one gateway merg-
ing the branches and a second one splitting them.

This set of modeling capabilities suffices for modeling most processes [6] and more
complicated modeling constructs are not necessary to illustrate the proposed techniques.

Each activity ai ∈ A follows an activity lifecycle described by several states and
state transitions. While detailed activity lifecycles were introduced in literature [7,8],
we resort to a basic one for our monitoring purposes.

Definition 2 (Activity Lifecycle Model). The activity lifecycle model is described by
the states S = {init, enabled, running, terminated}, where init is the start state,
and the corresponding set of transitions T = {begin, enable, terminate} change the
states of the activity lifecycle according to the transition functions t : T×S → S. Where
t(enable, init) = enabled, t(begin, enabled) = running and t(terminate, running)
= terminated.

The state diagram in Fig. 1 depicts the possible states and transitions in the activity
lifecycle model.

Fig. 1. State transition diagram of the activity lifecycle

Definition 3 (Possible Monitoring Point). The set of possible monitoring points PMP
for each process model P is defined as follows: ∀P ∈ P : PMP (P ) = A × T , s.t.
A is the set of activities in P and T is the set of transitions in the activity lifecycle.
This means that every state transition of each activity in a process model is a possible
monitoring point.

We assume that the traversal of edges and gateways (except the joining gateway of
parallel branches) does not take time. Therefore, the terminated state of activities is
linked to the init state of the immediately following activities. Immediately following
means either there is an edge between two activities a1 and a2, or there is a path from a1

to a2 on which there are no activities, but gateways. The semantics of this link is, that
once the terminated state of one activity is reached, the linked activities enter their
init state. Fig. 2 shows the combined activity lifecycle of two sequential activities a1

and a2. The link is depicted as dotted arrow between a1 and a2. Fig. 2 also shows the
possible monitoring points at the state transitions of the activities lifecycle.

In order to specify the events triggering the state transitions in the activity lifecycle
of a certain process instance, we first need to introduce the notions of event type and
process instance.
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Fig. 2. Possible monitoring points in the process

Definition 4 (Event Type). Let et1 . . . etn ∈ EType be a finite set of event types.

An example for this set is EType = {et1=“new patient entry stored”, et2=“surgery
scheduled”, et3=“anestetic given to patient”, et4=“patient enters surgery room”, et5
= “patient left surgery room”} as in Fig. 3.

Definition 5 (Process Instance). Let I be the universe of process instances. An in-
stance i ∈ I represents a concrete case.

We assume that events are characterized by various properties, e.g., an event has a
time stamp and has a certain event type; it is executed by a particular person and is
associated with a process instance. We do not restrict the set of properties, but assume,
that the properties time stamp, event type, and process instance identifier exist for all
events, c.f. [9].

Definition 6 (Event, Property). Let E be the event universe, i.e., the set of all possible
event identifiers and T the time domain. There are property functions propT : E → T
assigning time stamps to events, propEType : E → EType assigning event types to events
and propI : E → I assigning instances to events.

In the case that a workflow system [10] is executing a process model, i.e., the model
is instantiated and traversed step by step, the generation of events marking all the state
transitions of every visited activity can be done by the workflow system automatically.
Thus, the alignment of these generated events to the model is straight-forward and mon-
itoring, which activity is currently running becomes a trivial task. If, however, no work-
flow system is executing the model, the first challenge is to align corresponding process
related events to the model. This is done through the definition of monitoring points in
the model.

Definition 7 (Monitoring Point). Let P be a process model, PMP (P ) represents pos-
sible monitoring points in P . Monitoring point m : PMP � EType is a partial func-
tion mapping a possible monitoring point in the process model P to an event type.

Note that m is a partial function, i.e., only defined for a subset of the input, because
usually not every transition in the activity lifecycle of activities in a process is captured
by events in underlying systems.

The idea is that the monitoring system subscribes to all events defined corresponding
to the monitoring points. Let P be a surgery process model with activities A = {a1 =

“Schedule surgery”, . . . , an = “Perform stationary care”} as in Fig. 3. The monitoring
points function m in the example in Fig. 3 maps the terminate transition of the activity
lifecycle of activity “Schedule surgery” to event type “surgery scheduled” = et2, i.e.,
m((a1, terminate)) = et2.
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Fig. 3. Simple treatment process model with activity lifecycles for each activity. Dashed lines
indicate the monitoring points available in the model, that are fed by events in the surrounding
IT-environment.

In this case, the monitoring system subscribes to the event types et2, et4, and et5.
Whenever an event ei ∈ E with one of these types occurs in the event layer, the corre-
sponding process instance with identifier i = propI(ei) is updated by firing the state
transition of the activity specified by m. This is illustrated in Fig. 3 by the dashed lines
connecting activity state transitions of process instances with events. Note, that not
every event is mapped to an activity state transition and neither do events for every
activity state transition exist.

For probabilistic monitoring, we further need a model for the behaviour of the sys-
tem over time, i.e., we need a way to express when activities will be completed. As we
cannot know that exactly, we could specify a range over time based on our observations,
or more generally specify a distribution of activity durations. In our model, we assume
that activity durations, i.e., the duration from enable to terminate, can be character-
ized by the normal distribution, as in [11]. Even if, as indicated in [12], time durations
are rather log-normally distributed (or follow another distribution type), the proposed
concepts and computation mechanisms of the durations remain the same. However, cal-
culating the sum of log-normally distributed activities can then only be approximated
numerically [13].

Definition 8 (Activity Duration). Each activity a ∈ A in the process model P is an-
notated with an estimated normal probability distribution δ(ai) = N (μ, σ2), with the
probability density function

fa(t) =
1

σ
√

2π
· e−

(t−μ)2

2σ2 (1)
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The cumulative distribution function Fa(t) =
∫ t

0
fa(t)dt captures the probability of

the activity a being already completed at time t. For activity a with the normal proba-
bility density function fa(t), the cumulative probability function is

Fa(t) =
1

σ
√

2π

∫ t

−∞
e−

(t−μ)2

2σ2 dt (2)

Note, that the used activity lifecycle allows the distinction between preparation time (init
to enabled), idle time (enabled to running), and execution time (running to terminated)
of an activity. For simplicity reasons, and without restricting the applicability of the
approach, we further do not distinguish between these three states and use the term
activity duration for the sum of preparation time, idle time and execution time.

The distributions of the activity durations have to be assessed initially by medical ex-
perts, which tend to outperform automatically estimated durations [14], and can then
be aligned to historical data to better reflect reality. However that alignment is out of
scope of this paper and we will address that in future work. Further, we assume that the
distributions given in the model reflect reality.

We assume, that activity durations are independent and can be simulated by indepen-
dent random variables with given probability distributions δi.

Thus the probability density function Si(t) of the sum of several consecutive sequen-
tial activities’ durations δi(t) can be calculated by applying the convolution operation
(cf. equation 3) successively on their probability density functions:

Si(t) =

⎧
⎨

⎩

δi(t), if i = 0
∞∫

−∞
Si−1(u) δi(t − u) du, if i > 0 (3)

We assume that probabilities are assigned to each outgoing edge of a splitting XOR-
gateway. Estimation of these probabilities can be done by experts or also mined from
execution logs [15]. Further, we assume faithful execution of the process models, a
restriction that we aim to get rid of in future work.

3 Related Work

This paper is located in the discipline of business process intelligence [16], where tech-
niques of analysis, prediction and monitoring play a key role.

3.1 Statistical Process Analysis

Some early statistical analysis techniques for graph based models were developed for
project planning purposes, e.g., critical path method [17] or PERT [18]. Martin pre-
sented an algorithm to compute the total time in a directed acyclic network with times
based on independent random variables [19]. He described the convolution operation
algorithm for piecewise polynomial distribution functions. However, he did neither ad-
dress exclusive parts in the network, nor updating mechanisms for different places in
the net.
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A successor of PERT is called GERT and supports a quite detailed modeling spec-
trum [20] including statistical estimations of task durations with deterministic or proba-
bilistic edges. The difference to the approach presented in this paper is that we deal with
continuous updates of the model where parts are not monitored. That means, we can do
more precise estimations of what has happened by looking backwards (c.f. Section 4.4).

3.2 Simulation Based Systems

De Vin et al. show how simulation models can be used for decision support for virtual
manufacturing, when enriched with historical data and snapshot data [21]. The line of
thought is similar and the authors stress that an integration of different data sources in
a common information center is necessary. However, they do not provide a concrete
framework, of how to achieve the ideas, but only sketch possible use cases and outline
a necessary architecture with the focus on information fusion [22].

3.3 Process Mining

If no workflow system supports the execution of a process, information can still be
derived from enterprise resource planning systems, hospital information systems and
the like. The term process mining specifies the extraction of information, e.g., process
models, from event logs that typically exist in these systems [23,24].

Besides extraction, process mining can also be used as conformance checking
method [25,3] and extension of existing models with additional (mined) information
like branching probabilities [15] or duration of activities [26,9]. In their work [9], van
der Aalst et al. describe a system that learns remaining time durations from logs and
enriches the traces in the log with the remaining duration. They assume normally dis-
tributed times for activities, but they do not consider activities that are not in the log,
but only in the model. They describe an algorithm that abstracts from single activity
durations and focus on remaining cycle time. In this paper we describe a method to cal-
culate finer grained estimations of probabilities of single activities being active in one
process instance.

3.4 Other Monitoring Approaches

In the integrated European project SUPER1, an approach to monitoring based on do-
main specific languages was proposed by Gonzáles [27]. In his PhD thesis, he designed
an architecture and domain specific language for monitoring processes. However, he
does not deal with missing information, that can be probabilistically estimated. Also
from the same project is the work of Pedrinaci et al. [28], where semantic concepts are
introduced into business process monitoring. However their focus is on ontologies and
they use them to integrate different sources of monitoring [28], and align and evaluate
goals [29]. They also considered the combination with process mining in [30], where
the challenges for semantic enrichment of process mining are outlined.

1 http://www.ip-super.org

http://www.ip-super.org
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In a white paper, DeFee and Harmon presented an idea to integrate simulation and
business activity monitoring [31], however, they used discrete event simulation and did
not address the use case of missing monitoring points in the model.

In the same vein, Kang et al. [32] recently proposed a probabilistic business process
monitoring system that updates its estimates upon arrival of a new event. We also ad-
vocate the idea to use a probabilistic approach to monitoring. However, their focus is
on estimating failure probabilities of instances and they use support vector machines
to achieve that, while in this paper we propose a finer grained prediction for activity
instance durations and their lifecycle states.

4 Monitoring with Missing Monitoring Points

In this section, we address the question raised in Sect. 1: Which tasks in the clinical
process are probably being executed at a given time?

To answer this question for a particular process with process model P , we need
access to the occurring events that are correlated with the model through monitoring
points. For a particular instance i ∈ I of P , we require at least one event e ∈ E with
propI(e) = i. Further, there has to be a monitoring point defined for P that maps to the
event type of e, i.e. ∃ a ∈ A, ∃ t ∈ T : m((a, t)) = propEType(e).

The idea is to calculate the probability distribution functions for each possible
monitoring point after activity a’s state transition t, i.e., each following activity life-
cycle state transition. Since we assume independence of the monitored events, we can
use the convolution operation on the distributions of two successive events, to derive
the distribution of the combined event of both events having happened.

4.1 Monitoring Sequences with Missing Monitoring Points

We demonstrate the approach with normally distributed random variables for predicting
time durations for activities in the model. Thus the computation of the probability den-
sity function of the sum of two sequential activities a1, a2 ∈ A with δ(a1) = N (μ1, σ

2
1)

and δ(a2) = N (μ2, σ
2
2) can be done with the following formula, since normal distribu-

tions are closed under convolution:

f(a1 + a2) = N (μ1 + μ2, σ
2
1 + σ2

2) (4)

With the density function given, the cumulative distribution function can be derived
through integration of the density function. The cumulative distribution function cap-
tures the probability P (E), that an event E, e.g., the termination of an activity, has
already happened at a given time. The complementary event Ē of event E captures that
the termination of the activity has not happened yet, i.e., that the activity is still active.

P (Ē) can be calculated by P (Ē) = 1 − P (E). Let two consecutive points of inter-
est p1 and p2 (p2 > p1) have corresponding cumulative distribution functions F1, F2.
We get the probability of being in the state between these two points of interest by
subtracting the two probability distributions of P (Ē2) − P (Ē1) at given point in time.
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Fig. 4. Process model on top shows sequence of three activities a, b and c with duration param-
eters of the normal distribution (μ and σ). From top left to bottom right: 1) density functions of
the activities, 2) convolved density functions, 3) distributions of end events, 4) probabilities, that
activities are being performed at time t.

Fig. 4 visualizes the idea in a simple sequential example. The last graph shows the
subtracted cumulative probability functions indicating the probabilities p(a) of activity
a currently running (red curve), p(b) (green curve) and p(c) (blue curve) as functions
over time t. We can use these functions to predict the probabilities of executing the
corresponding activities at time t.

With the calculation of probability distributions defined for sequences, we turn to the
remaining control flow constructs in the next subsections.

4.2 Monitoring Choices with Missing Monitoring Points

We assume, that for each outgoing edge of each branching exclusive gateway g ∈
GXOR in process model P a probability is given that indicates which fraction of cases
follows that direction. We introduce a branch probability factor γ ∈ [0, 1] that scales the
probabilities in a branch after a split. For instance, in Fig. 5 the process model contains
two branches after activity a1 with branching factors α = 0.4 for the upper branch and
β = 0.6 for the lower branch. Computation of the probabilities of a2 and a3 are similar
to the computation of activities in sequence, with the difference, that the scaling factor
γ sets an upper limit to the probabilities. In the example in Fig. 5, the probability of ac-
tivity b, can be computed by the formula p(b) = γ ·(F (a)−F (a+b)) with γ = β = 0.4
To calculate the branch probabilities of the outgoing branches of an XOR-Gateway, one
has to multiply the initial γ branch probability with the probability of the outgoing edge.
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At the joining counterpart, the incoming branch probabilities are summed up again to
get the probability of the outgoing branch. The probability function of the joining XOR-
gateway is computed by the weighted sum of the preceding probability functions on the
incoming edges, where the weights are the branch probability factors.

Fig. 5. A choice construct and their respective probabilities

4.3 Monitoring Parallelism with Uncertainty

The calculation of the probabilities of parallel tasks is straight forward. The procedure is
the same as for calculating activities in sequence. We just have do that for each outgoing
branch after a parallel split g ∈ GAND. The branch probability γ of the incoming
branch of the parallel split g is assigned to each of the outgoing branches.

When synchronizing parallel branches, the assumed soundness of the monitored pro-
cess model assures, that the joined branch probabilities γ1, . . . , γn on the synchronized
n branches are equal. Otherwise the process would contain a potential deadlock. Thus,
the branch probability of the outgoing edge is equal to the incoming ones.

The outgoing cumulative distribution function at the synchronization point is the
product of the incoming cumulative distribution functions, since both branches need
to finish before continuing after the joining gateway. Thus to get the probability distri-
bution function, an implementation needs to integrate the probability distribution func-
tions, multiply the integrals and differentiate the result.

Fig. 6. A parallel construct with three activities and their respective probabilities
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4.4 Uncertainty Update

Since the application of the convolution function always adds uncertainty to the result
of two random variables, i.e., the squared standard deviations are added, the further
the model looks ahead, the more uncertain the estimations become. The upper part of

(a) Uncertainty over time upon arrival of
events e1 and e2

(b) once second estimation from e2 is
available, the two estimations are com-
bined to get a more accurate estimation for
the upper branch.

Fig. 7. Uncertainty update upon arrival of second event. The striped uncertainty area can be
eliminated by estimating in both directions from e2.

Fig. 7(a) shows this graphically. It depicts the uncertainty starting from one monitored
event e1. If, at a later point in time, a second event is detected for a monitoring point,
we can update uncertainties in both directions from e2. An update of the probability dis-
tributions in a backward direction becomes useful, if there are parallel branches starting
between the two monitoring points, as depicted in Fig. 7(b). The new parameters of
the merged estimation can be calculated by multiplying the two normal distributions
and rescaling the product to have an area of one. The scaled product of two normal
distributions is again a normal distribution with the following parameters:

σ1,2 =

√
σ2

1σ2
2

σ2
1 + σ2

2

and μ1,2 =
μ1σ

2
2 + μ2σ

2
1

σ2
1 + σ2

2

(5)

5 Applicability Evaluation

We have made two assumptions regarding the activity durations. We assumed, that they
are independent and that they can be characterized by a distribution function, i.e., they
follow a distribution function instead of being completely random. In the following, we
show, that these assumptions hold in a real world use case.
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For the motivating use case from Sect. 1, the liver transplant surgery in the Univer-
sity Hospital of Jena, detailed process models exist. Fig. 8 shows a part of the surgery
process with some monitoring points marked with ovals. The surgery process has been
modeled in a detailed way for various reasons, including education of young doctors.
However, for the monitoring, the details of the process model are not relevant and the
modeling capabilities defined for this paper suffice.

Fig. 8. Part of the liver transplant surgery model with 3 monitoring points (marked with red ovals)
modeled in BPMN as annotated Events

We have access to protocol data of surgeries performed from 2009 to 2011. A total
of 187 complete cases, each with 11 time stamps for specific events in the surgery, were
tracked. The data fits the process models, i.e., can be correlated with activities.

To test for independence, we calculated the correlation values for the durations be-
tween these time stamps. The results were low correlation values with a mean of 0.08
and and maximum of 0.24. This indicates independence of activity durations.

In order to analyse the data for characteristic distributions, we have statistically in-
vestigated the durations between successive events. Figure 9 shows the duration from
begin of the anesthesia procedure of the patient to the approval of the anesthesia team
for surgery. The normal distribution fits the durations quite nicely, as one can see in the
linear alignment of the QQ-plot on the right.

Literature characterizes the duration of surgeries in hospitals as log-normally dis-
tributed [12] with a skewed right tail for cases that take longer due to complications. To
test the data for this claim, we used a maximum likelihood estimation for our sample
durations from “cut” to “suturation”. And although we have only a small sample, the
p-value of a fitted log-normal function to the duration between cut and suturation yields
p=0.157 for the Cramer-von-Mises test, which is a strong indicator that the data is in-
deed log-normally distributed. The histogram of the data is shown in Fig. 10 with the
estimated distribution and the QQ-Plot. The data contains a a second heap at around 8-9
hours as seen in the histogram in Fig. 10.

From analysis of this data, we can argue, that the assumptions were reasonable,
though further analysis with greater sample sizes and more data would be necessary
to bolster them.
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Fig. 9. Duration from “anesthesia begin” to “anesthesia approval”, fit with normal distribution

Fig. 10. Duration from “cut” to “suturation”, fit with log-normal distribution

6 Conclusion

In this paper we have investigated the scenario of monitoring a process that is executed
without a workflow engine, but described by a detailed process model, which we en-
countered in a hospital setting. To answer the question, which activities are probably
being executed at a given time, we presented a method to calculate probabilities for a
core set of modeling capabilities and discussed a special case, when backward estima-
tion yields improved monitoring results for parallel branches.

By applying the proposed techniques in a model where scattered monitoring points
exist, relevant and interesting monitoring questions can be answered probabilistically
and the estimations get better, the more events are detected at monitoring points.

We evaluated the applicability of our approach by analyzing real durations from a
liver transplant surgery and investigated, whether this data fits into characteristic proba-
bility distributions and is stochastically independent.
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One limitation of the approach is, that we assume faithful execution of the process
models, which might not hold in health care scenarios, where exceptions are com-
mon [4]. We limited the allowed modeling constructs to a minimum and disregarded
loops in the model, but we want to address these limitations in future work. Also the
quality of the predictions in unmeasured branches heavily depends on the estimations
provided by experts. However, these can be improved by real measurements and align-
ment to the durations between the monitoring points.

The work presented here is motivated by a hospital scenario, but is is applicable
to other domains, too. It is applicable, when information on process progress can be
made available as events in an IT-infrastructure and when detailed process models exist
that describe truthfully what actually happens. The gain in process transparency should
always justify the additional costs of implementing this approach.
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