
M. Bajec and J. Eder (Eds.): CAiSE 2012 Workshops, LNBIP 112, pp. 214–227, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Multi-Tenancy Multi-Target (MT2): A SaaS Architecture
for the Cloud

Antonio Rico Ortega1, Manuel Noguera1, José Luis Garrido1,
Kawtar Benghazi1, and Lawrence Chung2

1 Departamento de Lenguajes y Sistemas Informáticos, Universidad de Granada,
E.T.S.I.I.T., c/ Periodista Daniel Saucedo Aranda s/n, 18071 Granada, Spain

{antoniorico,mnoguera,jgarrido,benghazi}@ugr.es
2 Department of Computer Science, University of Texas at Dallas,

Richardson, Texas 75083, USA
{chung}@utdallas.edu

Abstract. Multi-tenancy (MT) architectures allow multiple customers to be
consolidated into the same operational system. Multi-tenancy is key to the
success of Software as a Service (SaaS) by means of a new software
distribution formula in which customers share application and costs are
indirectly assumed by all of them. However, as traditional applications do, each
MT application deploys a single functionality, therefore component sharing
between applications only occurs in an ad hoc manner and thereby hindering
software reuse. In this paper it is introduced Multi-tenancy Multi-target (MT2),
an extension to MT Architectures for the development and deployment of one
single software application encompassing several functionalities. To this end,
some new components are added to traditional MT Architectures, thus
providing new benefits for software developers, vendors and clients, and which
are described by means of real examples.

Keywords: multi-tenancy, cloud computing, software as a service, software
architecture.

1 Introduction

Cloud Computing has brought high computational resources to everyone [1], so that
small and medium-size software vendors have now the opportunity to access high
processing capabilities so far reserved to big corporations. Vendors develop new
applications offered through Internet as a service, while customers access them
through web browsers anywhere and anytime. This new model of software
distribution is called Software as a Service (SaaS) [2]; clients subscribe to vendor’s
application services and pay for using them [2–4]. Customers afford top-software
deployments eliminating initial investment and operational expenses.

Multi-tenancy is becoming a key technology for the success of SaaS since clients
reduce the cost of software use by sharing expenditures, whereas software vendors
maximize sales profits. Multi-tenancy Architectures (MTA) allow multiple customers

 Multi-Tenancy Multi-Target (MT2): A SaaS Architecture for the Cloud 215

(aka tenants) to be aggregated into the same application. Tenants share not only
application, but also capital and operational expenses [5]. Moreover, tenants are also
able to customize their applications both in endpoint presentation and data structure
according to their particular needs.

In this context, demand has to be supported by an MTA that allows agile accounts
creation in the system. Basically, MTA models have two tiers: administrative and
instance; the administrative tier [5] provides the functionalities responsible for
creating and managing tenants accounts, while the instance tier hosts the applications
that tenants execute according to subscription contracts defined at the administrative
level.

Traditional multi-tenant applications are shared among tenants with common
functional needs. However, each MT application usually deploys one single
functionality and therefore component sharing between applications only occurs in an
ad hoc manner at lower levels in the architecture and basic shared components need to
be replicated for each application.

In this paper we introduce a proposal called Multi-tenancy Multi-target (MT2), as
an extension to multi-tenancy architecture (from now on we will also refer to it as
mono-target architecture). MT2 allows multiple functionalities to be offered in the
same operational system. This way, applications are distributed among tenants with
different functional needs and vendors can host tenants from heterogeneous market
sectors. This multifunctional situation seeks for several benefits: companies are able
to subscribe to only one SaaS application; vendors have a multi-target market,
broadening the spectrum of potential customers; and developers reach agility by
avoiding unnecessary replications.

The rest of the paper is organized as follows. Section 2 provides a background on
Cloud Computing, SaaS, and Multi-tenancy technologies. The MT2 proposal is
introduced in Section 3. The architectural design decisions supporting the proposal,
and also a real development based on it (called Globalgest), are described in detail in
Section 4 and 5, respectively. Next, a Section 6 discusses the relevance of the
contribution and related work, and finally Section 7 summarizes conclusions and
future work.

2 Cloud Computing Technologies

Cloud computing, and related technologies such as SaaS and Multi-tenancy, are
producing a big change in comparison with traditional models for software
distribution and use. There is still no common agreement about the definition of
Cloud Computing, and actually, some authors use Cloud Computing as a synonym of
Utility Computing [6]: “A computing Cloud is a set of network enabled services,
providing scalable, QoS guaranteed, normally personalized, inexpensive computing
platforms on demand, which could be accessed in a simple and pervasive way”.

In this paper, we will use Berkeley’s definition by which Cloud Computing is
defined as the sum of Utility Computing and Software as a Service [7]. Utility
Computing [8] refers to the use of computer resources on demand and it enables a

216 A.R. Ortega et al.

distribution formula for software vendors called Software as a Service (SaaS).
According to [2] “The basic long-term vision of SaaS is centred around separating
software possession and ownership from its use”. Unlike its predecessor Software on
Premises, applications are now installed in a Cloud and accessed over Internet; users
are not owners of the software, but consumers of web applications.

Figure 1 shows actors of Cloud Computing. The datacenter (Cloud Provider)
serves utility computing to Cloud Users who provide applications on-demand
(Software as a Service) to tenants (SaaS users).

Fig. 1. Actors in Cloud Computing (based on [1])

2.1 Multi-tenancy

SaaS is not the first distribution formula based on outsourcing and software access
through wide area networks. However, it is the first in succeeding unlike previous
similar attempts like Application Service Provider (ASP). Among other reasons, ASP
failed because it did not even contemplate the possibility to serve different companies
using the same software instance [9] or the ability to provide customized applications
[10].

Multi-tenancy is a software architecture that leverages economy of scale by the
aggregation of users (tenants) into the same application; software instance is shared
among tenants, and so are expenditures.

Figure 2 illustrates multi-tenant system architecture. The lower level tiers perform
changes dictated by business layer in both database and file system. Intermediate
layers such as presentation or SOA services communicate with browser and smart
devices respectively to produce end-users output. Metadata are responsible for system
customization so that tenants can get a specific user experience. This customization
includes data model extension, adaptation of presentation layer to corporative image
and business workflow personalization. Security services must be present in all multi-
user systems. In multi-tenant environments, the complexity of this component
increases; systems must maintain privacy not only among end-users, but also among
different tenants.

Customization and security relay on the model chosen to store data. Several
authors have proposed different approaches ([11–16]) of database models in multi-
tenancy; though with different terminology, they all agree that the distinction is given
by the level of isolation on tenants data [17]. Dean Jacobs, on its article “Ruminations
on multi-tenant databases” [5] suggests three approaches:

 Multi-Tenancy Multi-Target (MT2): A SaaS Architecture for the Cloud 217

- Shared Machine: High degree of isolation
- Shared Database: Medium degree of isolation
- Shared Tables: Lower degree of isolation

Regarding the isolation of the database layer, the more isolated the data is among
different tenants, the easier to customize, but the more expensive are hardware and
maintenance. According to [18], multi-tenancy is pure when using low degrees of
isolation (like in the Shared Tables approach); other variations where reutilization of
resources is not maximized are considered as semi-multitenant.

Fig. 2. MT General Architecture model

3 An Approach Extending Multi-tenancy Architecture: MT2

SaaS applications are highly scalable due to Multi-tenant efficiency [16][17].
Expenses are defrayed among all customers sharing the same software and
operational system. As well as instances, users share application functionality.
However, current multi-tenancy applications deploy just one single functionality or
are aimed to serve a specific line-of-business (LOB). With this model, companies
have to subscribe to as many applications as services they need. For instance, a
company needing Customer Relationship Management (CRM), Content Management
System (CMS) and Enterprise Resource Planning (ERP) functionalities would have to
contract a different subscription for each of them (see Tenant 2 in Figure 3-a).

In this mono-target situation, vendors will have the potential clients spectrum
limited by the functionality their applications deploy. For example, CMS vendors will

218 A.R. Ortega et al.

focus on companies needing CMS solutions, whereas CRM vendors will target
companies looking for solutions for customer relationship problems.

Traditional multi-tenancy divides the set of potential clients into highly disjoint
sets. Companies targeting one set will have to develop new applications if they want
to reach other sets of the market. Figure 3-a shows how tenants with different needs
subscribe to different applications, since no application can deploy several
functionalities (Tenant 2 has subscriptions to three different applications).

Fig. 3. a) Subscriptions depend on functional needs b) Replication of common development
components

At development level, basic features such as user authentication and database
connection are common and can be shared in CRM, CMS or ERP applications. Since
different software functionalities are hosted in different implementations, these lower
level components are to be replicated along all implementations (see Figure 3-b). This
replication increases programmers’ effort and therefore time-to-market.

3.1 MT2 Foundations

The main idea behind the MT2 approach is to allow multi-tenancy systems to deploy
not only one single functionality, but several ones. MT2 extends traditional Multi-
tenancy so that tenants with different functional needs could be able to make use of
customized end-user applications while sharing the same underlying software system.

The set of functionalities deployed in a MT2 system is called functional portfolio.
The number of functionalities in the portfolio may differ depending on vendor. Tenant
subscriptions are defined by a subset of functionalities within the same functional
portfolio.

MT2 systems seek for scalability not only at the tenant level, but also at functional
level. Young MT2 systems may deploy just a few features, but can increase portfolio
across the time. Old MT2 are supposed to have larger functional portfolios, since new
functionalities are added on customers’ demands and remain on the portfolio, unless
outdated.

 Multi-Tenancy Multi-Target (MT2): A SaaS Architecture for the Cloud 219

In this way, companies are able to have multiple functionalities through just one
software application. With MT2, tenants could use just one application to serve all
their functional needs. In the last example, the company (Tenant 2) will now be able
to unify all its functional needs in just one MT2 application (see Figure 4-a).

Fig. 4. a) MT2 systems allow tenants to subscribe to multiple functionalities and broaden the
spectrum of potential clients b) Reusability of common resources in MT2

MT2 also seeks for to increase the range of potential customers. The perfect
separation of potential clients in traditional multi-tenancy disappears and vendors
reach a wider range of targets by mixing and overlapping disjoint sets. Figure 4-a
shows how a single vendor (v1) can access different markets by offering different
functionalities. The larger the portfolio is, the bigger the number of potential
customers and opportunities is.

New features involve new sales opportunities. When vendors decide to increase
functional portfolio adding Document Management System (DMS) functionalities, for
instance, chances to raise profits increase. Besides for the demanding tenant, this new
development could be available for the rest of tenants (upgrading subscription) and
the rest of potential clients in the market.

MT2 pays special attention to achieve reusability by removing useless replication
of common features. In multi-tenancy mono-target, functionalities are deployed in
different applications; hence components are replicated. In multi-target, shared
components are reutilized among all functionalities reducing time-to-market and
development effort. Figure 4-b shows how MT2 changes replication for resource
reutilization.

4 General Model of MT2 Architecture

Extra components are added to traditional multi-tenant architectures so as to provide a
(now) multi-functional subscription. These modifications are present both at
administrative and instance level. Figure 5 shows how MT2A includes those new
components (marked in red) on the basis of the MT architecture.

220 A.R. Ortega et al.

MT2 is independent of the underlying multi-tenant architecture. Any MT system
could be upgraded to MT2 regardless of design aspects such as the isolation degree in
the database. Multi-target extension is based on the reusability of lower level
components during development process; many basic features are shared along
applications different in nature. In MT2 all these components (libraries, functions,
icons, graphics, style sheets, etc.) are no longer replicated, but reused. Modifications
to the traditional MT architecture are mainly focused on:

- Security commitments
- Multi-target metadata for contracts
- Business process reutilization

Fig. 5. MT2 Architecture Model

4.1 Security Commitments

Multi-target applications deploy different functionalities depending on tenant’s
subscription; tenants share application, but functional deployment may differ. In this
situation, security components become more complex in architecture, since end-users
are allowed to execute those functionalities present in the subscription and not others.
Multi-target involves new commitments for security layer at two levels:

- Tenant level: Tenants should not deploy functionalities that are not included

in subscription. Security must ensure that forbidden functionalities are not
deployed.

- End-user level: Multi-tenancy applications are multi-user environments at
instance level. Tenants end-users have different roles that determine their

 Multi-Tenancy Multi-Target (MT2): A SaaS Architecture for the Cloud 221

capabilities in the system. In MT2, tenants may have subscription to one
functionality, but not all tenants end-users should have access to it. Admin
users of the tenant must have the capability to decide for each user what
functionalities deploy from the tenant portfolio.

4.2 Multi-target Metadata for Contracts

Multi-target metadata links tenants accounts to functionalities controlling not only
functionalities subscribed by tenants, but also contractual features of this relation. For
instance, if a tenant wants to subscribe to SMS functionality, at least we should set the
number of text messages contracted; by setting this parameter in other functionalities
such as Client Management, does not make sense. Every subscription to
functionalities has its own conditions and these are reflected on the Multi-target
metadata of each tenant. As well as subscription terms, this component is responsible
for:

- Synchronizing with security services and inform about subscription details to

prevent access to forbidden functionalities.
- Determining which individual business processes to import on Individual

Business Processing (IBP) layer.

Fig. 6. Multi-target metadata contains subscription details to functionalities

Previous figure shows an example of an MT2 system with 4 functionalities in the
portfolio and two tenants. Subscriptions are defined by Multi-target metadata; both
tenants have contracted SMS, but the number of text messages to be sent differs.

4.3 Business Process Reutilization

Reusability of common features along all functionalities is the main cause of this MT2
extension. In a multi-target environment, business layer is divided into two:

222 A.R. Ortega et al.

- Common Business Processing (CBP): It contains those elements business-
independent and reusable across all functionalities

- Individual Business Processing (IBP): It includes those elements that are
business-dependent and which are specifically designed to support one
functionality.

During the execution timeline of their application instances, all tenants will import
CBP elements statically; however IBP elements will be imported dynamically
depending on tenant’s subscription. In Figure 7, tenant has a subscription to
functionalities F2 and F4. All CBP are imported statically, but just F2 and F4 IBP
elements will be imported, since these two functionalities will be deployed in the
execution.

CBP represents all those components reused in different functionalities. Features
such as privacy or system authentication are no longer to be developed in future
functionalities; they are already in the CBP layer. Furthermore, development effort is
reduced not only because of reutilization of CBP elements, but also for the extension
of them. For instance, if a programmer needs to develop a specific feature and
encapsulate it within a class, that class does not need to be developed from the
beginning, but it can be coded by extending one existing class from the CBP layer.

Fig. 7. Static and Dynamic import in MT2

5 Globalgest, a Software with MT2 Architecture

Globalgest [19][20] is an example of a business-oriented application based on MT2
architecture. Installed in 17 companies, Globalgest deploys more than 100
functionalities. Combinations of this portfolio allow Globalgest to serve businesses
from different industries such as a medical clinic or an IT company (see Figure 8 and
Figure 9). As we see on both figures, tenants share application instance, but do not
need to share functionalities or presentation. Globalgest allow tenants to customize
application interface by using personalized style sheets and graphics.

 Multi-Tenancy Multi-Target (MT2): A SaaS Architecture for the Cloud 223

Functional portfolio in Globalgest increases on customer demands. Whenever a
tenant needs a new functionality, this is developed and included in service portfolio.
Existing tenants could subscribe to the new feature and vendor leads (i.e. potential
customers) could be converted due to this functional improvement. For instance, last
functionality developed has been e-commerce connection; this feature (developed ad
hoc for one specific tenant) is now available for other tenants who might upgrade
their subscription to incorporate on-line selling to their websites.

Fig. 8. Globalgest: IT Company Implementation

Fig. 9. Globalgest: Medical Clinic implementation

Figure 10 illustrates a diagram with some of the functionalities present in
Globalgest portfolio. Green boxes represent the subscription of a medical center, blue
boxes are those contracted by an IT company and white boxes represent common
subscriptions of them both. In this case, medical’s center functionalities were
programmed ad hoc for the client, but once developed they remain in the functional
portfolio of Globalgest. This means that if another medical company requires them,

224 A.R. Ortega et al.

now these functionalities will be available. This new medical company may not need
invoicing, but will likely be interested in patient management, insurance companies
monitoring and/or sending programmed SMS reminders for appointments.

Globalgest is real MT2 software that proves how a single application serves two
companies from different industries without duplicating the effort. MT2 architecture
allows Globalgest to deploy and host several functionalities configuring client
functional subscription on demand.

FUNCTIONAL
PORTFOLIO

Suppliers

Invoices

Payments

Charges

HUMAN
RESOURCES PRODUCTS MEDICAL

CLINIC CMS

News

Surveys

Links

Portfolio

CRM SMS ACCOUNTING

Accounts

Leads

Opportunities

Campaigns

Estimations

Patients

Appointments

Insurance
Companies

Admisions

Medical Clinic Subscription IT Company Subscription

Fig. 10. Medical clinic and IT Company subscriptions

Fig. 11. Worker performance report in Globalgest

As well as features showed in Figure 10, other functionalities implemented in
Globalgest and already serving companies are:

 Multi-Tenancy Multi-Target (MT2): A SaaS Architecture for the Cloud 225

- E-Commerce with order management
- Presence Control.
- Workers performance management and reports (Figure 11)
- Financial management and reports
- Teaching companies management: courses, registrations, students, teachers

and tutors, classrooms availability, etc.
- Foundation companies management: subsidies, volunteers, human projects.

6 Discussion and Related Work

The market of SaaS Multi-tenancy applications is broad. Clients pay for the use of
many different types of software deploying different functionalities such as ERP,
CRM, CMS, DMS, etc. Each SaaS application offers a specific functionality to its
customers. Clients subscribe to vendor services in a pay-per-use basis. This single-
functionality deployment has some inconveniences, not only for customers, but also
for software vendors and developers.

When a company needs a particular functionality such as that of a CRM, it
compares among all vendors and chooses the one that best fits both its budget and
needs. If this same company needs another functionality, e.g, that of a CMS, it will
have to repeat the same process by subscribing to another different software
application from the same or a different provider. In this case, companies contract as
many software subscriptions as functionalities they need. So long as prices increase,
users will have to learn the use of several different software interfaces. In this ‘mono-
functional’ context, the spectrum of vendors’ potential clients is limited by the
purpose each application serves. For example, a CMS vendor will focus on companies
needing CMS solutions and not needing other functionalities.

From a developer point of view, there are many basic components that could be
shared in applications of different nature. In lower level development, features such as
user authentication and database connection are common, regardless of the kind of
application (CRM, CMS or DMS). However, these lower level components are to be
replicated along all implementations, since different software functionalities are
hosted in different application instances.

Software Product Line Approach (SPLA) is also based on the reusability of
elements called artifacts for delivering affordable customized applications. However,
while reusability takes place during development process in SPLA, MT2 reuses CBP
components during execution. Furthermore, we consider in a higher abstraction level
of meta applications than that of SPLA mass production. In MT2, customers not only
get to customize their instance, but they can also have a completely different
application instantly by changing their subscriptions. Both approaches pursue similar
goals and benefits such as reductions of expenses and time-to-market, but exploiting
different means.

Multi-tenancy is a novel paradigm. Proposals and implementations are scarce and
studies for this area are mainly schema-mapping techniques and benchmarking ([11–
17]). Based on the elimination of useless replications, this paper takes a different

226 A.R. Ortega et al.

approach and proposes modifications to the general AMT; MT2 is an extension
applied to the whole architecture rather than just the database layer. This
modifications work towards obtaining a new kind of SaaS applications with benefits
for all parties involved in the industry of software.

7 Conclusions

Multi-tenancy permits several customers to share network applications in the Cloud.
This is essential for the success of SaaS as software distribution formula; users are no
longer owners of software but tenants of it. In this model, operational and
maintenance costs are also allocated along users.

Traditionally, applications aim to serve one single purpose. For instance, CRMs are
used for managing customers’ accounts and leads conversion, but not for other
functionalities. Therefore, different purposes involve different applications. There are
many basic components that could be reused along all these different
implementations, like authentication, payrolls, message broadcasting and notification,
etc.; however, developers do replicate it along all implementations. Commercially
speaking, traditional Multi-tenancy can be called Mono-target: vendors have their
potential clients limited by software purposes. The users themselves have to subscribe
to as many services as they need; hence incrementing costs and increasing learning
effort.

This paper has presented the MT2 architecture that is supported by an extension to
the current Multi-tenant architectures. MT2 tries to go a step further in relation to the
current MT applications. MT2 turns traditional Multi-tenancy software into Multi-
target applications. MT2 is based on the elimination of unnecessary replication and the
reutilization of lower level components of the architecture. MT2 applications deploy
several functionalities and tenants choose which one to subscribe to. Users unify all
applications in one and thus, reduce expenses and effort; vendors broaden the range of
potential clients and developers speed up implementation and development.

In order to illustrate the applicability of the proposal, we have introduced
Globalgest, a commercial software based on the MT2 architecture that shows how one
individual application can host tenants from different lines of business.

Acknowledgements. This work has been partially funded by CEI-BioTIC Granada
under project 20F2/36 and the Andalusian Regional Government under projects SEJ-
6765 and TIC-6600.

References

[1] Armbrust, M., Fox, A., Griffith, R., Joseph, A.: A view of cloud computing.
Communication of the ACM (2010)

[2] Turner, M., Budgen, D., Brereton, P.: Turning software into a service. Computer 36(10),
38–44 (2003)

[3] Motahari-nezhad, H.R., Stephenson, B., Singhal, S.: Outsourcing Business to Cloud
Computing Services: Opportunities and Challenges. Development (2009)

 Multi-Tenancy Multi-Target (MT2): A SaaS Architecture for the Cloud 227

[4] Dubey, A., Wagle, D.: Delivering software as a service. McKinsey Quarterly (May 2007)
[5] Jacobs, D., Aulbach, S.: Ruminations on multi-tenant databases. In: Fachtagung für

Datenbanksysteme in Business, Technologie und Web, Aachen, Germany, pp. 5–9
(March 2007)

[6] Wang, L., Tao, J., Kunze, M., Castellanos, A.C., Kramer, D., Karl, W.: Scientific cloud
computing: Early definition and experience. In: 10th IEEE International Conference on
High Performance Computing and Communications, HPCC 2008, pp. 825–830 (2008)

[7] Armbrust, M., et al.: Above the clouds: A berkeley view of cloud computing. EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2009-28 (2009)

[8] Parkhill, D.F.: Challenge of the Computer Utility, p. 232. Addison-Wesley Educational
Publishers Inc. (1966)

[9] Liu, G., Jiang, H., Geng, R.: Software design on a SaaS platform. In: 2010 2nd
International Conference on Computer Engineering and Technology, pp. V4-355–V4-358
(2010)

[10] Papazoglou, M.P.: Service -Oriented Computing: Concepts, Characteristics and
Directions. Information Systems

[11] Aulbach, S., Jacobs, D., Kemper, A.: Multi-Tenant Databases for Software as a Service:
Schema-Mapping Techniques. Techniques, 1195–1206 (2008)

[12] Aulbach, S., Seibold, M., Jacobs, D., Kemper, A.: A Comparison of Flexible Schemas for
Software as a Service. Acme, 881–888 (2009)

[13] Chang, F., Dean, J., Ghemawat, S.: Bigtable: A distributed storage system for structured
data. ACM Transactions on (2008)

[14] Copeland, G.P., Khoshafian, S.N.: A decomposition storage model. ACM SIGMOD
Record 14(4), 268–279 (1985)

[15] HBase Storage Architecture (2009), http://www.larsgeorge.com/2009/10/hbase-
architecture-101-storage.html

[16] Chong, F., Carraro, G.: Architecture Strategies for Catching the Long Tail What is
Software as a Service? Most 479069, 1–22 (2006)

[17] Chong, F., Carraro, G., Wolter, R., Corporation, M., Architecture, A.: Multi-Tenant Data
Architecture Three Approaches to Managing Multi-Tenant Data. Architecture 479086, 1–
18 (2006)

[18] Bezemer, C.-P., Zaidman, A.: Challenges of Reengineering into Multi-Tenant SaaS
Applications. Challenges (2010)

[19] Rico, A.: Globalgest SaaS - Software as a Service, http://globalgest.info/
(accessed November 01, 2011)

[20] Rico, A.: Desarrollo TIC. SEO, Web, and Software Development,
http://www.desarrollotic.com/ (accessed February 15, 2012)

	Multi-Tenancy Multi-Target (MT2): A SaaS Architecturefor the Cloud
	Introduction
	Cloud Computing Technologies
	Multi-tenancy

	An Approach Extending Multi-tenancy Architecture: MT2
	MT2 Foundations

	General Model of MT2 Architecture
	Security Commitments
	Multi-target Metadata for Contracts
	Business Process Reutilization

	Globalgest, a Software with MT2 Architecture
	Discussion and Related Work
	Conclusions
	References

