

M. Bajec and J. Eder (Eds.): CAiSE 2012 Workshops, LNBIP 112, pp. 180–191, 2012.
© Springer-Verlag Berlin Heidelberg 2012

The 4x6 Tiered Architecture Method:
An Approach to the Design of Enterprise Solutions

Ethan Hadar1, Irit Hadar2, Gabriel M. Silberman1, and John J. Harrison Jr.1

1 CTO Office
CA Technologies

{ethan.hadar,gabriel.silberman,jay.harrison}@ca.com
2 Department of Information Systems

University of Haifa
{hadari}@is.haifa.ac.il

Abstract. Enterprise architecture software design is all about composing
applications to assemble value-added solutions rather than standalone products.
Yet, each product and technology may have been designed and developed
separately because of software engineering practices, management control over
the deliverables, or technology acquisitions. To promote efficient assembly,
solutions must be architected in a similar style, adhering to fundamental design
principles while leveraging capabilities available in modern environments and
relevant platforms. Furthermore, business agility and cost requirements dictate
the identification of common capabilities and their development as reusable
components across products and solutions. The 4x6 Tiered Architecture Method
presented in this paper imposes a structured design, in terms of steps to follow,
structure and documentation, for the logical view of an enterprise solution.
Application of the 4x6 method to the analysis of an enterprise solution yields a
six-tiered architecture structure and an abstract architecture specification. This
specification expresses the various components, dependencies and design
patterns using a graph-based data model (or “architecture catalog”) and
blueprint, the latter expressed as both a diagram and XML document. The 4x6
Method has been applied in practice; this experience indicates that this method
results in higher quality architecture and requires lower effort for both
constructing and reviewing the architecture and its documentation.

Keywords: Design Tools and Techniques; Software Architectures; Domain-
specific architectures; Patterns.

1 Introduction

The architecture design for an enterprise solution involves a number of challenging
decisions, including the expected transaction load, response times, volume of users,
number of integrated systems, options to deploy as a stand-alone, on-premise, or as a
Software-as-a-Service (SaaS) solution. To address these issues and produce a good
design, architects employ design patterns [1] and, in many instances, reuse existing
components and integrated services to solve known problems with known solutions

The 4x6 Tiered Architecture Method: An Approach to the Design of Enterprise Solutions 181

[2]. The design intent is to invest the most (new) effort while reusing existing assets
as much as possible. To further enable the combination of existing solutions, and their
replacement as future technologies emerge, requires us to characterization them in
terms of overall capabilities and non-functional characteristics from the customer
perspective [3].

In short, as long as the product or solution is not an isolated instance, most design
activities will deal with adding capabilities to existing modules, integrations with
external technologies and services, and/or refactoring and evolution of the
architecture structure. The challenge for the solution architect is to provide a quality
design for separate structures resulting in easy to understand, out-of-the-box
components, with a set of (estimated) characteristics for the combined result.

To tackle these challenges, we developed a model-driven architecture method,
called the CA Four Architecture (C4A), an extension of the C3A approach described
in [4]. As in other Model Driven Architecture (MDA) approaches, multiple views
over a single model enable the capture of design intent and multi-dimensional module
characteristics, while documenting architecture decisions. The proposed methodology
uses four diagrams, representing four views, iteratively developed and refined through
a series of analysis, design and delivery steps, as shown in Figure 1.

Fig. 1. C4A Architecture Views and Process

Although similar to the 4+1 view model by Kruchten [1], C4A employs fewer
diagrams than the eight suggested by Kruchten and addresses a larger portion of the
full software development life cycle, including a target reference architecture and
evolution plan. C4A also integrates the design process via systematic analysis and
design flow, which in the 4+1 approach is managed through integration with the
Rational Unified Process [1].

As depicted in Figure 1, the C4A views include 1) an IT Business View, focused on
the business rationale and “go-to-market” needs; 2) a Functional View to capture the

182 E. Hadar et al.

“jobs-to-be-done” (JTBD) [5] capabilities using the customer’s own business
language and taxonomy; 3) a Logical View of the architecture software components as
the entry point for a detailed design for the R&D team; and 4) a Deployment View to
support issues such as configuration and deployment of components using on-
premise hosting, virtualization and /or leveraging of external (e.g., Public Cloud)
environments.

The integrated analysis and design process, introduced briefly in the following
section, defines the architecture activities and artifacts, regardless of the software
development lifecycle method (e.g., Agile, Waterfall or Incremental) it is intended to
support. Its detailed description is beyond the scope of this paper. The remainder of
this paper focuses on the Logical View as the fundamental pillar of the design phase,
its design goals, and introduces the 4x6 Tiered Architecture Method (or 4x6 Method,
for short) approach to logically architecting an enterprise solution.

Application of the 4x6 Method to an enterprise solution imposes a structured
design, in terms of steps to follow, structure and documentation, and yields a six-
tiered architecture structure and an abstract architecture specification. This
specification expresses the various components, dependencies and design patterns
using a graph-based data model (or “architecture catalog”) and blueprint, the latter
expressed as both a diagram and XML document. This structured approach enables a
software product line assembly [6][7] of reusable patterns and components, with
increasing development efficiency over time, and applicable to a whole domain,
solution, sub-system, product, or a single component.

2 Analysis and Design Process

The C4A methodology is an attempt, based on best practices, to address the five
architectural concerns presented in [6][7], namely economy, visibility, spacing, sym-
metry, and emergence.

The Economy design goals are to define and detect usable, unique IT modules and
services and evolve toward value-added solutions built on top of common
technologies and services. The Visibility design goals are to employ a unified service
and data language across the various IT domains, and to implement systematic
architecture taxonomy, symbolic representations and patterns across the solution’s
various levels of documentation. The Spacing design goals are to provide replaceable
modules which are loosely-coupled and based on a services model as well as produce
granular pre-packed smaller offerings of dedicated (composite) services yielding
reusable commodities. Finally, The symmetric main design goal is to support a service
abstraction and orientation approach, such as the virtual IT services found in a
Software-as-a-Service (SaaS) delivery modality, regardless of the actual delivery
mode. Such a decoupling between a service and its actual implementation enables
symmetric provisioning and consumption of the service, thus supporting the
construction of a composite application in a supply-chain manner [8]. Additional
goals are to standardize over time by using common technology and IT services to
embed within the IT integration framework. The Emergence design goals are to detect

The 4x6 Tiered Architecture M

and adjust to changes in u
actions among systems and

To address the architectu
embedded in the C4A meth
correspond with the four vie

The IT Business Analysis
IT solution. During this
proposition according to h
may be used to represent th
or PERT charts, and the lik
representation. In our “hell
interaction in a multi-ling
analysis phase we separate
Multilingual Adjustment. T
the latter has replacement c
other languages. Only after
the need to limit access to th
corresponding role(s) withi
addressed, attention can shi
desktop or mobile device.
roadmap for continuously m

Fig. 2. Stack representing a m

The Functional Analysis
This analysis captures the s
These capabilities are struc
the object of the action,
integrations and ultimate
roadmap(s). Following our
offering will be: (JTBD1) r
a different language, and (J
libraries. Each JTBD is tag
to be later mapped to an im

Method: An Approach to the Design of Enterprise Solutions

underlying commodities, and explore new ways of in
users (e.g. via mobile devices, virtual appliances, etc.).

ural concerns listed above, the analysis and design proc
hodology includes two analysis and two design phases
ews shown in Figure 1. These are briefly outlined below
s Phase operates within the IT business view of the subj
phase the solution architect creates a business va

high-level business expectations. Various graphic me
he result of this phase, including an architecture stack, fl
ke. For our example, shown in Figure 2, we chose a st
o world” solution, its value proposition consists of mob
gual, user-role-sensitive scenario. During the busin
our offerings into two basic blocks, Sentence Building

The former composes a structure of English strings, wh
capabilities of these strings with corresponding sentence
r successfully building these two blocks, one can addr
he functionally by the user, depending on their identity
in the enterprise. Once this intermediate block is prope
ift to the question of where the solution is accessed from
Thus, the full solution features a gradual implementat

measured progress.

mobile interaction in a multi-lingual, user-role-sensitive scenar

s Phase of the process works inside the functional vi
solution’s capabilities organized as an IT service lifecy
tured as jobs-to-be-done (JTBDs) defining the action ve
and the contextual classifier [5], driving technolog

ely defining the customer architecture assimilat
r example, the capabilities of the multilingual adjustm
replacing English sentences with the corresponding tex
JTBD2) on demand provisioning of a number of langu
gged and capabilities are collected according to these ta

mplementation component in the logical design view. In

183

nter-

cess
s, to
w.
ject
alue
eans
flow
tack
bile
ness
and
hile

es in
ress
and
erly
m, a
tion

rio

iew.
ycle.
erb,

gical
tion

ment
xt in
uage
ags,
our

184 E. Hadar et al.

example, JTBD1 is tagged as “change,” and JTBD2 as “model”. Although any
tagging is possible, in C4A our IT service lifecycle phases/tags are model, assemble,
change, monitor, and optimize.

The Logical Design Phase corresponds to the design view and focuses on
integration (via APIs) and the functional layer (GUI, if applicable), mapping
structures to the components in the functional capability view created by the previous
phase. Further, the architect examines possible mappings of available design patterns
across the logical layers, and plans alternative roadmaps for evolving the architecture.
Understanding the logical and physical dependencies among the various components
is critical to correctly estimate the overall quality attributes and performance
characteristics of the solution being built. For example, a component depending on a
lower reliability module needs to account for that exposure when its overall score is
calculated. The detailed application of this phase to our “hello world” solution is
provided as part of the detailed discussion in the next section.

The Deployment Design Phase acts within the design view and its objective is to
gather the various components making up a particular instance of a solution. The
main activity in this phase is the definition of computing resource requirements and
constraints on their nature (physical, virtual, or Cloud) to fulfill the needs of the
logical components. In the context of our “hello world” sample solution, the design
could prescribe the multi-language components to be consumed as a service and thus
would not require deployment. Also, the design could require the mobile device
component to be highly scalable and use cache memory for improved performance,
while the sentence building component needs to be restricted to a maximum memory
footprint, yet can be run anywhere as a stateless server.

The overall design intent of a logical architecture and its blueprinting
implementation must:

• enable managers to leverage resources across their portfolio [6][7][9];
• separate non-unique technologies into interchangeable consumable

commodities [6][7];
• enable the composition of a technology from underlying patterns [4];
• provide a modular architecture and appropriate evolution roadmap [10];
• increase the overall quality attributes of the architecture structure

[11][12][13]; and
• enable the structured estimation of aggregated system quality attributes [8].

The challenge is thus to create an architecture focused on consolidation and
optimization of component and service (re-)use, while increasing the overall
solution’s quality attributes. We must do so while bundling all of the design
requirements, constraints, principles and directives into a single architecture blueprint
reflecting a good enterprise solution design.

In the following we examine the 4x6 Logical View and its capacity to address the
above challenge, by enabling an architect to systematically model and superimpose
existing and future technologies, and design the architecture evolution of an
individual product or enterprise solution.

The 4x6 Tiered Architecture Method: An Approach to the Design of Enterprise Solutions 185

3 The 4x6 Logical View

The structure of the architecture obtained by applying the 4x6 Method consists of 4
conceptual tiers, or stereotypes, that underlie 6 logical tiers, yielding the “4x6”
designation. The four conceptual tiers (the “4” in 4x6), are defined in the C3A
approach [4], namely: 1) business integration; 2) functional architecture; 3) system
architecture; and 4) cross-concerns. As for the six logical tiers (the “6” in 4x6), they
now include a mapping of the classical three-tier architecture pattern (Presentation,
Business, and Storage), plus three additional tiers. The resulting tiers are: 1) virtual IT
services (a business integration stereotype); 2) views (corresponding to the classical
Presentation tier, a functional architecture stereotype); 3) business logic
(corresponding to Business, a system architecture stereotype); 4) data (corresponding
to Storage, and also a system architecture stereotype); 5) integrated services (another
business integration stereotype); and 6) common components (a cross-concerns
stereotype). The 4x6 logical view layout is depicted in Figure 3.

Fig. 3. The 4x6 logical view layout; square brackets indicate the kind of conceptual tier, or
stereotype

It is worth noting C4A uses the four stereotypes (business integration, functional
architecture, system architecture, and cross-concerns) in its 4x6 view in order to cater
to a different stakeholder, namely external integrators, functional architects, system
architects, and common components managers, respectively.

A hypothetical layout for our “hello world” solution is depicted in Figure 4. In it
we see the four stereotypes (outer rectangles, colored yellow in the modeling tool)
and three abstraction levels. Level 0 (middle rectangles, colored blue in the tool)
represents high-level modules or sub-systems. Below it, Level 1 (inner rectangles,
colored green) contains deployable components, which may be removed and replaced
with similar components without affecting the rest of the system or requiring the
replacement of a full Level 0 module. Level 2 (colored orange, not used in this
example) contains an internally cohesive set of components that is usually deployed
or managed as a unit.

Virtual IT Services
[business integration]

Views

[functional
architecture]

Business Logic

[system architecture]

Data

[system architecture]

Common
Components

[cross-
concerns]

Integrated

Services

[business
integration]

186 E. Hadar et al.

Color is also used to provide the state of components, either existing or future, in a
single view. Those components intended for future development (or modification) are
left white by default (e.g., support for right-to-left languages in Figure 4) and can be
set by the architect to any color in order to reflect the timing (or extent) of the
implementation.

A summary description explicitly calling out the scope of new product release(s)
within the overall solution, as well as their long-term architecture roadmap, are also
produced during the building of the solution’s layered architecture. In our “hello
world” example (Figure 4), the blueprint suggests that most of the components existed
and were implemented, due to their color-coding as either blue (Level 0) or green
(Level 1). The additional capability being added (in white), to translate languages
read/written from right to left, is limited to string building. The purple color (rectangle
Language format in this example) is used to signal the timing (e.g., next release) for
the additional capability to appear in the solution. These new components are owned
by the development team, since they reside at the middle business tier.

Fig. 4. The 4x6 layout for the “hello world” solution

The blueprint also shows (in the External Services tier) the usage of external
language sources, provided via a façade design pattern. On the other hand, the
association of a geographical region with a user and the corresponding selection of a
default language are done through querying a common component of the enterprise.
By definition, common components are not part of the architecture development, but
are instead treated as if they came from a third party, but with a known
implementation. Thus the placement of components among the six tiers and their
color-coding enable the architect to provide implicit information about the
characteristics of a solution to other designers and observers. Naturally, the simple
example presented here may evolve into many components, depending on the
granularity and complexity of the solution. Yet, they all adhere to the same design
principles presented in this paper.

The 4x6 Tiered Architecture Method: An Approach to the Design of Enterprise Solutions 187

This logical blueprint, which contains components properties and attributes, may
also be used to create a top level (abstract) design specification document for a
product or solution planned release, as well as documentation for the product/solution
family as a whole. Still, the blueprint’s most valuable use is in assisting with the
definition of architecture evolution roadmaps, from an existing state to new releases
over a given period of time.

In the next sub-sections we explore ways for an architect to most effectively use
the 4x6 logical view to convey architectural intent, followed by an examination of the
six logical layers. We wrap up this section with a brief description of a tool we
developed to assist the architect with the creation of the 4x6 logical view.

The 4x6 logical view captures the software elements of a solution, including
components and their logical interactions. We found architects benefit by considering
four design value propositions as they create the 4x6 logical view. These are
components coupling for obtaining loosely-coupled structures for future assistance
with system development and deployment, components cohesion for separating the
solution’s intellectual property from needed functionally, meaningful architecture
naming for conveying the business value of the design elements, and composition of
aggregated tiers for dealing with solutions composed of a single technology.

When constructing an architecture using the 4x6 Method, the loose coupling
between its tiers hints at their potential separate deployment. The distribution onto six
tiers is also meant to reflect logical constrains or concerns for the system design,
captured as six logical layers. Logical layers do not impose coupling restriction, but
rather a division of responsibility, defining a weak cohesion relation or grouping of
components based on type, not cohesiveness based on the same functionality. These
are important for any design, but more so for existing solutions and products not
featuring six logical layers built as six separate tiers. These solutions have the
components to fulfill the intent of the logical structures, and will gradually refactor
their structure into corresponding tiers, enabling rapid integration with other products
to form a larger solution.

Our aim is to work with or towards tiers, but most current product and solution
designs feature only layers. Therefore, in the reminder of this section we shall use the
term “layer” to replace “tier,” keeping in mind the logical rather than the physical
intent, as explained above.

We start with the Views Layer, which addresses the visibility, spacing and
emergent concerns of an architecture. This layer contains the user interface(s) and
presentation rendering adjustments, which are involved in human interaction. The
rendering adjustments adapt the interface to a particular device type or presentation
technology, such as mobile, tablet or desktop, browser, Linux or Windows, flash or
AJAX, etc. Therefore, this view supports the “View” in the Model-View-Controller
design pattern [6][7], whereas “Model” and “Controller” are part of the Business
Logic Layer (see below). User interface and human factors design are part of this
layer’s best practices. As a result, the three main Level 0 components in this layer
should be “Multi-device UI façade,” “Reports Publisher,” and “Content
Synchronization controller.”

188 E. Hadar et al.

Next is the Virtual IT Services Layer, to address all five architectural concerns,
namely economy, spacing, emergent, visibility, and symmetry. The main purpose of
this layer is to encapsulate programming namespaces, and in many cases it merely
holds the system software development kit (SDK) in several interoperability formats
to support the external activation of business transactions. Consequently, its two main
Level 0 components are a regular SDK, called “Published Service,” and one
employing a domain unified language, called “Published Canonical Data.”

The Business Logic Layer, addresses spacing, economy, symmetry and visibility
concerns. This layer encapsulates the intellectual property of the offered technology.
Any interaction with other layers should be surrounded by boundary components,
model interfaces, or the data layer. The boundary components maintain a clean
design-to-test approach, consumed via the “Internal Domains Specific Model” Level
0 component, and the Level 1 “Web Interfaces” component. The third component is
the “Data Access Layer” or DAL. The DAL abstracts the persistency technology and
exposes the CRUD operations (Create, Read, Update, Delete) for translating data into
the object format understood by the Business Logic Layer. An example of such a
translation is needed for stream-based non-persistent data retrieved from agents and
monitors

The Data Layer addresses the concerns of visibility, spacing and emergent. Its
focus is on increasing data resiliency, improving I/O performance, and providing ease
of content scaling and expansion.

Focusing our attention on the bracketing layers in Figure 3, we first look at the
Integrated Services Layer, which addresses the economy, emergent and symmetry
concerns. This layer abstracts remote activation of (Web-) services, presumably
commoditized ones, and presents a single gateway to general services such as
reporting, logging, identity management, message bus, and more. In a cloud-based
era, these services may be consumed from a remote vendor, and paid on a per-use
basis. By encapsulating remote activations and delegating local calls, directly or
indirectly, this layer supports future advances in technologies instead of rigid
deployment and coupling. Therefore, this layer deals with how to design issues such
as a good API, Generic versus Specific API, Web Services Variation Façade,
Canonical Data Model, Hub-and-Spoke, Broker, Observer, and Publish/Subscribe
patterns.

The second bracket in Figure 3 is the Common Components Layer. This layer
addresses economic design goals, containing embedded and deployed components
that are considered part of the compound solution, although not constructed by the
development team. The first option for using a common component is to enforce its
installation regardless of the number of instances already deployed at the customer’s
site. The second is to conditionally install components only when they are not already
present in the deployment environment. Notice that Common Components are part of
the provider solution and must not be replaceable by the customer.
 Recall that the 4x6 components proposed within each layer should be given
archetypical names, hinting at the design patterns used to define its technological
purpose. When the design is instantiated as a real blueprint, the business (value) name
is added giving the component a (composite) meaningful name.

The 4x6 Tiered Architecture Method: An Approach to the Design of Enterprise Solutions 189

A modeling Tool: The 4x6 logical blueprint is implemented in a modeling tool called
CAM Logical Architecture (CAM stands for CA Architecture Management) displayed
in Figure 5. Each of the model’s components has the following set of properties:
interfaces, functional description, non-functional level of enterprise compliance (the
so-called “ities,” such as reliability, scalability, security, etc.), and resource
requirements. The component blueprint, component properties and dependency
information, and overall blueprint properties are stored in a component catalog. This
catalog is used to produce reports and can translate content to other formats outside of
the tool’s technology. Also provided is a centralized library of captured information at
the individual component level and blueprints, enabling information sharing and
design reuse among CA’s architects community.

The component catalog can effectively produce an Architecture Abstract
Specification [11], automatically providing about 70% of the information needed for
examination by the internal CA architecture review board. The modeling tool itself,
which operates in either centralized or local mode, is based on the Eclipse Modeling
Framework and the ECORE model as a standalone logical editor.

Fig. 5. The CAM Modeling tool for the 4x6 logical architecture

4 Applying the 4x6 Method in Practice

On January 2011 the 4x6 Method and CAM tool were presented at the CA corporate
architects’ conference in front of more than 300 architects, as part of a new method of
modeling and capturing architecture information in an agile manner. It was

190 E. Hadar et al.

enthusiastically received by many of the architects, who requested guidance to use the
method and tool. Following the conference, educational material was recorded on
video and made available as part of the delivery process.

Training on the tool and 4x6 approach takes less than an hour, assuming basic
architecture knowledge in modeling, while the practical implementation of a design
depends on its complexity and the architect’s familiarity with design patterns and
techniques. The structure of the 4x6 Method forces the architect to systematically
think about the design intent and concerns, fostering gradual design implementation.
To quickly introduce the tool and 4x6 concepts to the architects’ community,
coaching is done on a train-the-trainer manner, with mentoring and support by the
central CA architecture team.

Starting in March 2011, a large number of architecture teams have applied the 4x6
Method and associated CAM tool. During the period of March 1, 2011 to October 21,
2011, a total of 53 distributed enterprise-grade products were involved in architecture
reviews. Of them, 20 projects were Versions (implying a potentially more significant
architectural effort) and the other 33 were Releases (large development efforts
extending a current architecture).

Of the 53 projects aforementioned, 27 adopted the 4x6 Method. Of these, seven
were Versions and the remaining 20 were Releases. From the start of a project to its
review checkpoint took an average of 5.2 effort-months for a Version (11 month
maximum – 2 month minimum), and a slightly higher average of 6.0 effort-months
for a Release (12 month maximum – 2 month minimum).

 24 projects kept the old style of architecture documentation. Of these, 12 were
Versions and 12 were Releases. The corresponding efforts to reach the review
checkpoints for these projects were in average 6.5 (13 Month Maximum – 1 month
minimum, for an exceptionally small effort) and 7.7 effort-months for a Version and
Release, respectively. The remaining two projects produced each a unique document.
Both of these were Releases and took 8 and 9 months.

Of the 27 projects using the 4x6 Method as the foundation for their architecture, 12
were told no formal review was required because the reviewers understood the
approach as documented. 11 were Releases and 1 was a small Version. The 15
projects formally reviewed had an average of three significant comments as a result of
the review. Among those projects using the old style for documenting their
architecture, 12 projects formally reviewed in a meeting had an average of 7
significant comments.

 Reviewers reported less time was needed to prepare for the review session when
dealing with architecture documents based on the 4x6 Method, and a better
understanding of the designs was possible, when compared with the old approach to
architecture modeling and documentation. The reviewers also remarked on the
consistency of the models across projects, and how this aided comprehension and
identified areas that might have not been discussed otherwise.

 Project review meetings, on average, were 90 minutes long for a 4x6 Method
based project, compared to 120 minutes (or more, in a few cases) for the old method.

5 Conclusion

In this paper we presented the 4x6 Tiered Architecture Method, the core of the CA
Four Architecture views model-driven architecture methodology. Its use enables the

The 4x6 Tiered Architecture Method: An Approach to the Design of Enterprise Solutions 191

capture of business, functional, logical and deployment views to maintain control over
architecture evolution. In particular, design intent and architecture directives are
captured within the 4x6 logical view. The resulting view can be used to state design
goals and process, evolution steps, design rationale, as well as recommend best
practices for structural composition of an enterprise product.

The ability to superimpose or integrate architecture elements requires them to be
structured using identical format, templates and tools that foster collaboration and
content reuse. In our case, the six logical layers and the use of design patterns are the
methods, the CAM modeling tool is the means, and the component catalog serves to
maintain and share information.

 Both the 4x6 Method and CAM tool were tested and verified by practitioners on
the design of real products, passing the corporate architecture review board with
flying colors. By employing the systematic thinking and formal modeling of the
architecture concerns, as highlighted by the supporting methodology and tools, the
4x6 approach forced architects to consider the use of design patterns, change the
structural layout, and consider component implementation by third-party technology.

References

1. Kruchten, P.: The rational unified process: An introduction, 3rd edn. Addison-Wesley
Professional, Boston (2003)

2. Rising, L.: The benefit of patterns. IEEE Software 27(5), 15–17 (2010)
3. Maiden, N.: Service design: It’s all in the brand. IEEE Software 27(5), 18–19 (2010)
4. Hadar, E., Silberman, G.M.: Agile architecture methodology: Long term strategy

interleaved with short term tactics. In: Companion to the 23rd ACM SIGPLAN
Conference on Object-Oriented Programming Systems Languages and Applications, pp.
641–652. ACM, Nashville (2008)

5. Silverstein, D., Samuel, P., DeCarlo, N.: The innovator’s toolkit: 50+ techniques for
predictable and sustainable organic growth. Wiley, Hoboken (2008)

6. Buschmann, F., Henney, K.: Five considerations for software architecture, Part 1. IEEE
Software 27(3), 63–65 (2010a)

7. Buschmann, F., Henney, K.: Five considerations for software architecture, Part 2. IEEE
Software 27(4), 12–14 (2010b)

8. Burbeck, S.: Application programming in Smalltalk-80: How to use model-view-controller
(MVC) (1992), http://st-www.cs.illinois.edu/users/smarch/st-
docs/mvc.html (retrieved)

9. Bosch, J.: Toward compositional software product lines. IEEE Software 27(3), 29–34
(2010)

10. Ferguson, D.F., Hadar, E.: Constructing and evaluating supply-chain systems in cloud-
connected enterprise. In: Moinhos Cordeiro, J., Virvou, M., Shishkov, B. (eds.)
Proceedings of the International Conference on Software and Data Technologies, ICSOFT
2010, pp. 69–76. SciTePress, Athens (2010)

11. Sherman, S., Hadar, I., Hadar, E., Harrison, J.: Architecture documentation for agile
development. Paper Presented at SATURN 2011, San Francisco, California (May 2011)

12. Booch, G.: An architectural oxymoron. IEEE Software 27(5), 96 (2010)
13. Buschmann, F.: On architecture styles and paradigms. IEEE Software 27(5), 92–94 (2010)
14. Hadar, E., Perreira, M.: Web services variation façade – Domain specific reference

architecture for increasing integration usability. In: IEEE International Conference on Web
Services, pp. 1207–1211. IEEE Computer Society, Salt Lake City (2007)

	The 4x6 Tiered Architecture Method: An Approach to the Design of Enterprise Solutions
	Introduction
	Analysis and Design Process
	The 4x6 Logical View
	Applying the 4x6 Method in Practice
	Conclusion
	References

