

Lecture Notes in Computer Science 7343
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Oscar Dieste Andreas Jedlitschka
Natalia Juristo (Eds.)

Product-Focused
Software Process
Improvement

13th International Conference, PROFES 2012
Madrid, Spain, June 13-15, 2012
Proceedings

13

Volume Editors

Oscar Dieste
Natalia Juristo
Universidad Politécnica de Madrid
Facultad de Informática
Campus de Montegancedo s/n, 28660 Boadilla del Monte, Madrid, Spain
E-mail:{odieste, natalia}@fi.upm.es

Andreas Jedlitschka
Fraunhofer Institute for Experimental Software Engineering (Fh IESE)
Fraunhofer Platz 1, 67663 Kaiserslautern, Germany
E-mail: andreas.jedlitschka@iese.fraunhofer.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-31062-1 e-ISBN 978-3-642-31063-8
DOI 10.1007/978-3-642-31063-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012939226

CR Subject Classification (1998): D.2, K.6, J.1, H.3-4, C.2.4, J.3

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

On behalf of the PROFES Organizing Committee, we are proud to present the
proceedings of the 13th International Conference on Product-Focused Software
Process Improvement (PROFES 2012) held in Madrid, Spain.

Since 1999, PROFES has established itself as one of the recognized interna-
tional process improvement conferences. The main theme of PROFES is profes-
sional software process improvement (SPI) motivated by product, process and
service quality needs. PROFES 2012 addressed both quality engineering and
management topics including processes, methods, techniques, tools, organiza-
tions, and enabling SPI. Both solutions found in practice and relevant research
results from academia were presented.

The technical program was selected by a committee of leading experts in
software process improvement, software process modeling, and empirical software
engineering research. This year, 49 papers from 29 countries were submitted,
with each paper receiving at least three reviewers. After thorough evaluation,
the Program Committee finally selected 21 technical full papers (43% acceptance
rate). The topics addressed in these papers indicate that SPI is still a vibrant
research discipline, but is also of high interest for industry; many papers report
on case studies or SPI-related experience gained in industry.

The technical program consisted of the tracks Process-Focused Software Pro-
cess Improvement, Open-Source and Agile and Lean Practices, Product and
Process Measurements and Estimation, Distributed and Global Software Devel-
opment, Quality Assessment, and finally, Empirical Studies.

Since the beginning of the series of PROFES conferences, the purpose has
been to bring to light the most recent findings and novel results in the area of pro-
cess improvement. To fulfill that purpose, in this edition we organized a Special
Session on Self-Organizing Systems, chaired by Horst F. Wedde (TU Dortmund).
In this session, three high-quality papers about this topic were presented.

We were also proud to have one keynote speaker, Frank Houdek (Daimler
AG), who presented the talk “Improving Requirements Engineering Processes.
Impressions During One Decade of Improvement at Daimler”.

Several events were co-located with PROFES 2012:

• The Second VALOIR workshop (Managing the Client Value Creation Process
in Agile Projects), organized by Jeniffer Pérez, Luigi Buglioni and Maya
Daneva

• The First INTEAMSE workshop (Managing the Influence of People and
Team Factors in Software Engineering), organized by Silvia T. Acuña, Marta
Gómez and Kostadin Koroutchev

VI Preface

• The tutorial “Requirements Meet Interaction Design,” delivered by Hermann
Kaindl

• The tutorial “Business IT Alignment Using the GQM+Strategies�
Approach,” delivered by Jens Heidrich and Martin Kowalczyk

We are thankful for the opportunity to have served as Program Co-chairs for this
conference. The Program Committee members and reviewers provided excellent
support in reviewing the papers. We are also grateful to the authors, presenters,
and Session Chairs for their time and effort in making PROFES 2012 a success.

In addition, we sincerely thank Natalia Juristo for her work as a General
Chair of PROFES 2012. Last, but not least, many thanks to Silvia T. Acuña
and Sira Vegas for the local organization of this conference.

April 2012 Oscar Dieste
Andreas Jedlitschka

Natalia Juristo

Preface to the Short Papers Track

PROFES 2012 short papers present recent ideas or work based on research,
practice or experience. Contributions of this track serve a distinct purpose and
are subject to requirements different than those of full technical papers. Short
papers may represent research work still under progress with preliminary results,
ideas that may not be mature enough to be featured in a full technical paper,
or experience with existing approaches or technologies that can be told in a
compact form.

This year we received eight short paper submissions. The submissions un-
derwent a rigorous review process by a separate, international Program Com-
mittee of 19 members. Each submission received at least four reviews. Based
on these reviews and the Program Committee’s overall assessments, we selected
three submissions to be presented at the conference and to be included in these
proceedings.

All of the accepted short papers focus on software process, hence they are
best suited for the process-oriented reader. Two papers suggest frameworks for
process conformance and one paper studies the effectiveness of effort estimation
models. We hope that you will find their insights useful.

We thank the Program Committee for their diligence in reviewing the sub-
missions and help with the selection process.

April 2012 Hakan Erdogmus
Sandro Morasca

Organization

General Chair

Natalia Juristo Technical University of Madrid, Spain

Program Co-chairs

Oscar Dieste Technical University of Madrid, Spain
Andreas Jedlitschka Fraunhofer IESE, Germany

Short Papers and Posters Co-chairs

Hakan Erdogmus Kalemun, Research, Canada
Sandro Morasca University of Insubria, Italy

Doctoral Symposium Co-chairs

Stefan Biffl Technical University of Vienna, Austria
Maya Daneva University of Twente, The Netherlands

Tutorial and Workshop Chair

Burak Turhan University of Oulu, Finland

Organizing Co-chairs

Silvia T. Acuña Autonomous University of Madrid, Spain
Sira Vegas Technical University of Madrid, Spain

Publicity Co-chairs

Marcela Genero Castilla-La Mancha University, Spain
Guilherme Travassos Federal University of Rio de Janeiro, Brazil
Lucas Layman University of Maryland, USA

Program Committee

Zeiad A. Abdelnabi Garyounis University - IT College, Libya
Pekka Abrahamsson Free University of Bolzano, Italy

X Organization

Silvia Abrahâo Technical University of Valencia, Spain
Muhammad Ali Babar ITU of Copenhagen, Denmark
Maria Teresa Baldassarre University of Bari, Italy
Stefan Biffl Technical University of Vienna, Austria
Andreas Birk Software.Process.Management, Germany
Luigi Buglione ETS/Engineering.IT, Italy
Danilo Caivano SER&Practices, Italy
Gerardo Canfora University of Sannio, Italy
Marcus Ciolkowski QAware GmbH
Reidar Conradi Norwegian University of Science and

Technology, Norway
Beniamino Di Martino Second University of Naples, Italy
Torgeir Dingsoyr SINTEF, Norway
Marlon Dumas University of Tartu, Estonia
Tore Dybâ SINTEF, Norway
Davide Falessi University of Rome “Tor Vergata” Italy and

Simula Research Labs, Norway
Rudolf Ferenc University of Szeged, Hungary
Xavier Franch Technical University of Catalonia, Spain
Marcela Genero Castilla-La Mancha University, Spain
Paul Grunbacher Johannes Kepler University Linz, Austria
Jens Heidrich Fraunhofer IESE, Germany
Yoshiki Higo Osaka University, Japan
Martin Host Lund University, Sweden
Frank Houdek Daimler AG, Germany
Hajimu Iida NAIST, Japan
Letizia Jaccheri Norwegian University of Science and

Technology, Norway
Michel Jaring Fluxica, Finland
Janne Järvinen F-Secure, Finland
Petri Kettunen University of Helsinki, Finland
Casper Lassenius Technical University of Helsinki, Finland
Marek Leszak Alcatel-Lucent, Germany
Lech Madeysky Wroclaw University of Technology, Poland
Kenichi Matsumoto Nara Institute of Science and Technology,

Japan
Emilia Mendes Zayed University, United Arab Emirates
Maurizio Morisio Politecnico di Torino, Italy
Mark Müller Robert Bosch GmbH, Germany
Jürgen Münch University of Helsinki, Finland
Haruka Nakao Japan Manned Space Systems Corporation,

Japan
Risto Nevalainen FiSMA ry, Finland
Mahmood Niazi Keele University UK/ KFUPM Saudi Arabia
Makoto Nonaka Toyo University, Tokyo, Japan
Markku Oivo University of Oulu, Finland

Organization XI

Paolo Panaroni INTECS, Italy
Oscar Pastor Technical University of Valencia, Spain
Dietmar Pfahl Lund University, Sweden
Minna Pikkarainen VTT, Finland
Teade Punter Embedded Systems Institute (ESI),

The Netherlands
Austen Rainer University of Hertfordshire, UK
Daniel Rodriguez University of Alcalá, Spain
Barbara Russo Free University of Bolzano-Bozen, Italy
Outi Salo Nokia, Finland
Klaus Schmid University of Hildesheim, Germany
Kurt Schneider Leibniz Universität Hannover, Germany
Michael Stupperich Daimler AG, Germany
Guilherme Travassos COPPE/UFRJ, Brazil
Markku Tukiainen University of Joensuu, Finland
Mark van den Brand Eindhoven University of Technology,

The Netherlands
Rini van Solingen Delft University of Technology,

The Netherlands
Sira Vegas Technical University of Madrid, Spain
Matias Vierimaa VTT, Finland
Hironori Washizaki National Institute of Informatics, Japan
Claes Wohlin Blekinge Institute of Technology, Sweden
Bernhard Wong University of Technology, Australia

Short Papers Program Committee

Aybuke Aurum Univesity of New South Wales, Australia
Teresa Baldassarre Università degli Studi di Bari, Italy
Ayse Bener Ryerson University, Canada
Nils Brede Moe SINTEF, Norway
Madeline Diep Fraunhofer Institute Maryland, USA
Yael Dubinsky Technion, Israel
Hakan Erdogmus (co-chair) Kalemun Research, Canada
Juan Garbajosa Universidad Politecnica de Madrid, Spain
Cigdem Gencel Blekinge Institute of Technology, Sweden
Luigi Lavazza Università degli Studi dell’Insubria, Varese,

Italy
Sandro Morasca (co-chair) Università degli Studi dell’Insubria, Como,

Italy
Ipek Ozkaya Software Engineering Institute, USA
Gregorio Robles Universidad Rey Juan Carlos, Spain
Alberto Sillitti Free University of Bozen-Bolzano, Italy
Daniela Soares Cruzes NTNU, Norway
Davide Taibi Università degli Studi dell’Insubria, Como,

Italy

XII Organization

Additional Reviewers

Silvia T. Acuña Autonomous University of Madrid, Spain
Marcel van Amstel Eindhoven University of Technology,

The Netherlands
Muhammad Aufeef Chauhan IT University of Copenhagen, Denmark
Frank Elberzhager Fraunhofer IESE, Germany
Javier González-Huerta Technical University of Valencia, Spain
Marta López Xunta de Galicia, Spain
Alexander Serebrenik Eindhoven University of Technology,

The Netherlands

Table of Contents

Keynote Address

Improving Requirements Engineering Processes Impressions during
One Decade of Improvement at Daimler . 1

Frank Houdek

Process-Focused Software Process Improvement

Defect Data Analysis as Input for Software Process Improvement 3
Anu Raninen, Tanja Toroi, Hannu Vainio, and Jarmo J. Ahonen

A Test Process Improvement Model for Automated Test Generation 17
Henri Heiskanen, Mika Maunumaa, and Mika Katara

Software Process Improvement and Certification of a Small Company
Using the NTP 291 100 (MoProSoft) . 32

Verónica Ñaupac, Robert Arisaca, and Abraham Dávila

Derivation of Process-Oriented Logical Architectures: An Elicitation
Approach for Cloud Design . 44

Nuno Ferreira, Nuno Santos, Ricardo J. Machado, and
Dragan Gašević

Product and Process Measurements and Estimation

A Proposal for Simplified Model-Based Cost Estimation Models 59
Vieri del Bianco, Luigi Lavazza, and Sandro Morasca

Estimating the Software Product Value during the Development
Process . 74

Oscar Castro, Angelina Espinoza, and Alfonso Mart́ınez-Mart́ınez

Reusability Metrics for Program Source Code Written in C Language
and Their Evaluation . 89

Hironori Washizaki, Toshikazu Koike, Rieko Namiki, and
Hiroyuki Tanabe

Modeling the Effects of Project Management Strategies on Long-Term
Product Knowledge . 104

Martin Höst

XIV Table of Contents

Open-Source, Agile and Lean Practices

Growing into Agility: Process Implementation Paths for Scrum 116
Kevin Vlaanderen, Peter van Stijn, Sjaak Brinkkemper, and
Inge van de Weerd

Differences between Traditional and Open Source Development
Activities . 131

John Wilmar Castro Llanos and Silvia Teresita Acuña Castillo

Analyzing the Drivers of the Combination of Lean and Agile in
Software Development Companies . 145

Pilar Rodŕıguez, Jouni Markkula, Markku Oivo, and Juan Garbajosa

Fostering and Sustaining Innovation in a Fast Growing Agile
Company . 160

Nils Brede Moe, Sebastian Barney, Aybüke Aurum,
Mahvish Khurum, Claes Wohlin, Hamish T. Barney,
Tony Gorschek, and Martha Winata

Distributed and Global Software Development

Software Architecture as a Means of Communication in a Globally
Distributed Software Development Context . 175

Richard Berntsson Svensson, Aybüke Aurum, Barbara Paech,
Tony Gorschek, and Devesh Sharma

Socio-technical Congruence Sabotaged by a Hidden Onshore
Outsourcing Relationship: Lessons Learned from an Empirical Study . . . 190

Darja Šmite and Zane Galviņa

Providing Training in GSD by Using a Virtual Environment 203
Miguel J. Monasor, Aurora Vizcáıno, and Mario Piattini

Empirical Studies

Improving IT Service Desk and Service Management Processes in
Finnish Tax Administration: A Case Study on Service Engineering 218

Marko Jäntti

Experiences from Establishing Knowledge Management in a Joint
Research Project . 233

Sebastian Meyer, Anna Averbakh, Torsten Ronneberger, and
Kurt Schneider

The Impact of Lack in Domain or Technology Experience on the
Accuracy of Expert Effort Estimates in Software Projects 248

Susanne Halstead, Rosario Ortiz, Mario Córdova, and Miguel Segúı

Table of Contents XV

Quality Assessment

A Metrics for Meeting Quality on a Software Requirement Acquisition
Phase . 260

Noriko Hanakawa and Masaki Obana

Merging the Quality Assessment of Processes and Products in
Automotive Domain . 275

Morayo Adedjouma, Hubert Dubois, François Terrier, and
Tarek Kitouni

Improving Unfamiliar Code with Unit Tests: An Empirical Investigation
on Tool-Supported and Human-Based Testing . 290

Dietmar Winkler, Martina Schmidt, Rudolf Ramler, and Stefan Biffl

Special Session on Self-Organizing Systems

Self-Organizing Systems and the Like: An Innovative Vital Perspective
in Mutual Inspiration with Application Areas . 305

Horst F. Wedde

Modified ART Network Architectures for the Control of Autonomous
Systems . 309

Karl-Erwin Grosspietsch and Tanya A. Silayeva

Application of Self-Organizing Systems in Power Systems Control 320
Sven C. Müller, Ulf Häger, Christian Rehtanz, and Horst F. Wedde

Minimizing Vehicular Travel Times Using the Multi-Agent System
BeeJamA . 335

Sebastian Senge and Horst F. Wedde

Short Papers

A Study on Predictive Performance of Regression-Based Effort
Estimation Models Using Base Functional Components 350

Sousuke Amasaki and Tomoyuki Yokogawa

Managing Process Model Compliance in Multi-standard Scenarios
Using a Tool-Supported Approach . 355

Martin Kowalczyk and Silke Steinbach

Towards a Framework to Evaluate and Improve the Quality of
Implementation of CMMI R© Practices . 361

Isabel Lopes Margarido, João Pascoal Faria,
Raul Moreira Vidal, and Marco Vieira

XVI Table of Contents

Workshops and Tutorials

1st Workshop on Managing the Influence of People and Team Factors
in SE (INTEAMSE 2012) . 366

Silvia Teresita Acuña Castillo, Marta Gómez, and
Kostadin Koroutchev

2nd Workshop on Managing the Client Value Creation Process in Agile
Projects: Message from the Chairs (VALOIR 2012) 368

Jennifer Pérez, Luigi Buglione, and Maya Daneva

Tutorial: Business IT Alignment Using the GQM+Strategies�
Approach . 370

Jens Heidrich and Martin Kowalczyk

Requirements Meet Interaction Design . 374
Hermann Kaindl

Author Index . 377

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 1–2, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Improving Requirements Engineering Processes
Impressions during One Decade of Improvement at Daimler

Frank Houdek

Daimler AG
Research and Development

Wilhelm-Runge-Str. 11
D-89081 Ulm, Germany

frank.houdek@daimler.com

Abstract. Requirements play an important role in the automotive business, as
most components (like electronic control units) are developed by suppliers bas-
ing on specification documents. While a decade ago mainly sketches had been
handed over to the supplier, now fully elaborated specification documents are
written.

The presentation gives an impression on the several stages of improvement
of requirements engineering processes at Mercedes-Benz Passenger Car Devel-
opment along with some typical improvement patterns and lessons learned.

1 Motivation

Requirements specification documents are a core development artifacts within each
car development project. They are use during call-for-tender, act as reference during
component development and provide the reference for component testing activities. In
a modern Mercedes-Benz car we typically find more than 50 ECUs. Each of them is
nowadays specified by a component specification consisting of several hundred pag-
es; additionally, for each component a set of supplementary specification documents
(like ISO or internal standards) apply, that again often sum up to several thousand
pages of specification volume.

This specification volume was not always that high. A decade ago, we often found
sketches rather than real specification documents. Quality problems and the recogni-
tion that specifications form a significant lever for supplier’s development results
initiated first improvement projects addressing the requirements engineering (RE)
process.

2 Guided Tour through a Decade of Requirements Engineering
Improvement at Daimler

In the early beginning, some individuals and small groups who felt uncomfortable
with the situation in requirements engineering, started small projects aiming to
improve their situation locally. Here, often tools with their specific capabilities and

2 F. Houdek

features acted as catalyst. Beside toy examples, first applications in real projects (e.g.
the specification document for a single ECU) have been created. An important argu-
ment for real world projects was to have an “emergency shutdown” option, i.e. there
is fall-back scenario that could be used if the new approach fails.

After that, we saw local initiatives to improve RE practice in larger organizational
units covering several dozens to several hundred people. As a consequence, local
process improvement groups and support structures had been created. The key suc-
cess factor in this phase was to have strong support by the head of the organizational
unit. As a consequence of this phase, we saw a number of local RE solutions with
only few commonalities.

After these local revolutions, we moved towards an evolutionary phase. During
that, the number of user constantly increases; additionally, we saw standardization
endeavors. Some of them (e.g. standard specification template) were quite successful,
others (like a standardized data model for specification documents) ended without
significant impact.

In the mid 2000s, we saw so many users (the early majority, according to the inno-
vation adoption curve [1]) that a large-scale rollout of tool-based requirements engi-
neering to all organizational units within research and development had been decided.
The initial idea was “just” to disseminate the successful solutions to all users. Howev-
er, during this rollout we encountered a number of questions that had to be solved, so
we saw again methodological improvement along with process rollout.

Now, the vast majority of entire Mercedes-Benz Passenger Car Development uses
a common requirements engineering methodology (incl. tool support). Cross-sectional
tasks like tool operation, maintenance of specification templates, or tool support have
been established.

3 Lessons Learned

Among many others, three main lessons learned are the following ones:

• Rollout and improvement does not happen linear; there are (often small) windows
of opportunity that offer that chance to move a significant step ahead.

• Do not feel desperate by the fact that after two steps ahead one step back follows
(e.g. due to organizational changes)

• Tools and their capabilities play a dominant role in designing requirements engi-
neering processes.

Reference

[1] Rogers, E.M.: Diffusion of Innovations. Free Press, Glencoe (1962)

Defect Data Analysis as Input

for Software Process Improvement

Anu Raninen1,2, Tanja Toroi1, Hannu Vainio1, and Jarmo J. Ahonen1

1 University of Eastern Finland, School of Computing,
PL 1627, FI-70211 Kuopio, Finland

{anu.raninen,tanja.toroi,hannu.vainio,jarmo.ahonen}@uef.fi
http://www.uef.fi/cs/

2 Lero - The Irish Software Engineering Research Centre,
University of Limerick, Ireland

Abstract. In this paper, we present the results of defect data analysis
done with three software companies’ defect databases. 11879 software
defects were classified and analyzed in order to find out what the real
world defect distributions are like and what are the most common defect
types. The most common defects in every company were functional de-
fects (65.5%), i.e. defects in computation and/or functional logic. The de-
fect types that were most uncommon were defects due to misunderstood
or poorly written requirements (0.2%) or documentation (0.4%).The re-
sults of the analysis offer practical data to be used to support Software
Process Improvement (SPI).

Keywords: Defect database, Testing, Defect Analysis, Software Process
Improvement, SPI.

1 Introduction

Software companies usually maintain a defect database where they report the
defects detected in their software products in order to manage their testing pro-
cesses. The defect databases contain a lot of valuable history data that companies
can exploit, for example to improve their testing or inspection activities [11]. In
addition, product and process problems can be detected through monitoring the
distribution of defects by type [5]. Further, defects detected in software projects
and their classification provide a basis for product quality evaluation and process
improvement [10].

To be able to exploit defect data in improving the operations of a software
company the defect data must be unambiguous and the classification of the
defects repeatable [10]. To enable this, a number of classification schemes for
software defects have been developed. Perhaps to most widely applied classifica-
tion scheme is IBM’s Orthogonal Defect Classification (ODC) [7]. In addition,
IEEE provides a Standard Classification for Software Anomalies [1]. Further-
more, Hewlett-Packard have also developed their own ”Company-wide Software
Metrics” scheme [12].

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 3–16, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.uef.fi/cs/

4 A. Raninen et al.

Defect data analysis is shown to help companies in process improvement [4,17].
However, in recent studies this approach has not been much discussed. The
research presented in this paper aims aim at helping software companies to
better exploit their defect data in order to improve their processes. To reach
our research goals the first step was to make the three companies’ defect data
comparable and repeatable. To enable this the defect data was classified using
an unambiguous defect distribution scheme.

While researching for a suitable defect distribution scheme we applied the cri-
teria presented in [2]. We wanted to make sure that 1) it is possible to decide the
defect type for each defect as unambiguously as possible, and 2) the information
necessary for the decision can be collected easily from the materials available.

It was soon perceived that none of the existing defect distribution schemes
we found from literature was suitable for our needs without alterations. Hence,
we created a defect distribution scheme based on the schemes by Humphrey
[13] and Beizer [3]. Humphrey’s defect classification alone is very near to our
needs. However, we also wanted to find out whether we would be able to identify
defects caused by misunderstood requirements. In addition, we had a specific
interest in integration problems and component interface errors. Hence, we added
”Requirements” and ”Integration” defect types, adopted from Beizer [3], to our
scheme.

When initiating the defect classification we assumed that the defect distri-
butions would differ notably from company to company as stated in [12]. This
was assumed because the three companies differ in number of ways. They have
considerable differences in the line of business they provide software to as well
as in the processes they use. In addition, they are different in size. However, this
assumption was proven false. The defect distributions in each company are re-
markably similar. In each case the most common defects were functional defects,
i.e. defects in computation and/or functional logic. The defect types that were
most uncommon were defects due to misunderstood requirements or documenta-
tion. In addition, defects due to version control related issues (”Build, package,
environment” defect type) were rare. The results presented in the paper were
applied to support the target companies Software Process Improvement (SPI)
efforts. The companies were provided with improvement suggestions based on
the defect data.

The overall structure of this paper is: Section 2 presents the previous research
of the subject. In section 3, the research setting is presented and section 4 de-
scribes the results of the research. The results are discussed in section 5 and
section 6 provides the conclusion.

2 Previous Research

Previous research has shown that the classification of defects is important when
aiming at measurement-based process and product improvement [10]. In ad-
dition, the defect classifications can be used to identify product and process
problems [5] and to improve the testing or inspection activities [11].

Defect Data Analysis as Input for Software Process Improvement 5

There are numerous defect distribution schemes available in the literature.
To name a few, IBM has generated Orthogonal Defect Classification (ODC)
[7] and IEEE provides a Standard Classification for Software Anomalies [1]. In
addition, Hewlett-Packard also has their own ”Company-wide Software Metrics”
scheme [12]. Further, Humphrey [13] and Beizer [3] also present possible defect
distribution schemes in their work.

Despite the numerous defect distribution schemes published, there are limited
examples of their usability and suitability in real-world systems. Such rare real-
world examples can be found in e.g. [10] and [3] and [6]. The defect distributions
used in these real-world studies and the schemes most important for this research
are presented in Table 1. The most common defect types in these studies are
marked with an asterisk (*).

Table 1. The defect distribution schemes found in the literature

ElEmam Beizer RefinedODC Humphrey

1 Assignment Data Algorithm* Assignment
2 Build/ Package Features and

functionality
Assignment Build, package

3 Checking Implementation
and coding

Build/Package/
Merge

Checking

4 Data Integration Checking Data
5 Documentation* Requirements Documentation Documentation
6 Environment Structural bugs* Function Environment
7 Function System, Software

architecture
Interface Function

8 Interface Test definition
and execution

Timing/
Serialization

Interface

9 Memory Other,
unspecified

Syntax

10 Naming
Conventions

System

11 Understandability

* The most common defect type in the study.

3 Research Setting

Our experience working with software companies has shown that especially
smaller software companies do not efficiently exploit the defect data they collect.
This paper presents the first step in a research project aiming at preventing the
most common software defect types through defect data analysis. In addition,
we aim at using the defect data in order to improve the processes of the target
companies. The research is conducted using the defect data of three software
companies.

To be able to reach the goals of the research project the first step was to make
the defect data comparable and repeatable. In order to do so, an unambiguous

6 A. Raninen et al.

defect distribution scheme was needed. Before the classification, the defect distri-
butions were assumed to be dissimilar because the companies differ remarkably.

The research questions for which the answers are sought in the research pre-
sented here are:

1. What are the most common defect types?
2. Is our defect distribution scheme suitable for its purpose?
3. Can defect data analysis provide practical input for SPI?

3.1 The Target Companies

The defect databases of three software companies were classified and analyzed
in this research. In this paper, the companies are referred to with acronyms
Company A, Company B and Company C.

Company A is a multinational company whose software development unit
is located in Finland. The company is a large one (more than 250 employees)
with 1340 employees. The software engineering unit employs 24 people. The
company produces off-the-shelf software product’s for the use of metal industry.
The company concentrates on developing and maintaining 3-5 products.

Company B is an SME (Small and Medium sized Enterprise, over 25 but less
than 250 employees) with 36 employees. 30 of them are software engineering
personnel. Company B’s products’ main market is telecommunications.

Company C is a small company (less than 25 employees) with 18 employees.
Their business is mainly off-the-shelf software products for the use of financial
management. The company has six products in their product line.

Despite being product companies [9], as opposed to producing bespoke soft-
ware, the three companies are dissimilar in many ways. For example, they pro-
duce software products for very different business domains. In addition, the
companies differ in size. Further, their processes and work methods are quite
dissimilar. The characteristics of the companies are compared in Table 2.

3.2 The Data Set

The defect data analyzed in this research consists of 11879 defects in three
different databases of three different companies. All three companies use different
tools to maintain their defect databases. Company A applies Jira1, commercial
issue and project tracking tool. Company B uses HP Quality center2 which is
an extensive requirement, test and defect management system. Company C does
nicely with non-commercial, open-source Mantis3 bug tracker. The specifics of
the defect databases are presented in Table 2.

The defect distribution schemes used in the target companies were very gen-
eral ones. Despite being general, the defect schemes used were not comparable.

1 http://www.atlassian.com/software/jira/
2 https://h10078.www1.hp.com/cda/hpms/display/main/

hpms content.jsp?zn=bto&cp=1-11-127-24^1131 4000 100
3 http://www.mantisbt.org/

http://www.atlassian.com/software/jira/
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-127-24\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {\global \mathchardef \accent@spacefactor \spacefactor }\accent 94 \egroup \spacefactor \accent@spacefactor 1131_4000_100__
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-127-24\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {\global \mathchardef \accent@spacefactor \spacefactor }\accent 94 \egroup \spacefactor \accent@spacefactor 1131_4000_100__
http://www.mantisbt.org/

Defect Data Analysis as Input for Software Process Improvement 7

Table 2. Characteristics of the companies and their defect databases

Characteristic CompanyA CompanyB CompanyC

Market1 Metal industry Telecom-
munications

Financial
management

Market2 I N N
Size Large SME SC
Employees 1340 (24) 36 (30) 18 (9)
Business product product product
Location Multinational Finland Finland
Company age 42 12 23
Database Jira HP QC Mantis
No. of defects 555 8321 3003
DB age (y) 3 8 7
Critical defects 63% 41% 31%

Market2: Scope of the company (I: international or N: national)
Employees: Number of employees (employees working in software de-
velopment and maintenance)
Business: Is the business of the company based on project or product
work [9]
Critical defects:Number of defects considered to be serious ones.

None of the companies had paid serious attention to the defect classification
used. The classification schemes were established just to help the software engi-
neers know in which order the bugs should be fixed. Company A was using five
scale model classifying the defects from blocker, i.e. a defect that prevents the
whole software product from working, to a trivial defect. In company B a scale
of four, beginning from 0 – Emergency and ending in C – Cosmetic was being
used. Company C also applied four classes for their defects, the most serious
ones belonging to ”Crashes the system” type and the defects giving company
the least problems to ”Small bug” type. The defects recorded in the databases
were reported by both, the companies own testers and the customers in a case
when a defect had slipped through the testing operations.

3.3 Defect Distribution Scheme

Despite the fact that there are plenty of defect distribution schemes available, it
was not a simple task choosing one for our study. The classifications often are
either missing defect types or use restrictive definitions, as stated also in [15].

The defect distribution scheme used in this research is a combination of
schemes by Humphrey [13] and Beizer [3]. We ended up enhancing the defect
distribution presented by Humphrey with ”Requirements” and ”Integration”
types. ”Requirements” was added because we wanted to find out whether we
could identify the defects from the designing phases of software development.

8 A. Raninen et al.

In addition, we had a specific interest in integration problems and component in-
terface errors. This was because our target companies were all producing software
products, rather than bespoke software, where the interfaces are often especially
problematic areas. The applied defect scheme is presented in Table 3.

Table 3. Defect distribution scheme applied

IDDefectClass Description Questions

1 Assignment Declaration,
duplicate
names, scope,
limits

• Parameter boundaries defined
incorrectly?
• Output parameters in an incorrect
format?
• Problem with the punctuation?

2 Build, package,
environment

Change
management,
library, version
control

• Bug due to changes in the new
version?
• Bug due to features of the old
version missing from the new one?

3 Checking Error messages,
inadequate
checks

• Missing/unclear error message?
• Something wrong with the error
checking?
• Bug due to user inputs not checked?

4 Data Database
structure and
content

• Bug due to error in the structure of
the database?
• Bug due to the availability of the
data?
• Bug due to difficulties in obtaining
the data?

5 Documentation Comments and
messages

• Problem with the output
documents?
• Problem with the user instructions?
• Code comments do no correspond to
the implementation?

6 Function Logic, pointers,
loops, recursion,
computation,
function defects

• Software not functioning as
expected?

7 Integration Integration
problems,
component
interface errors

• Bug due to an interface error?
• Bug due to the misfunction between
the sofware components?
•Bug due to communication problems
with other systems?

Defect Data Analysis as Input for Software Process Improvement 9

Table 3. (Continued)

8 Requirements Misunderstood
customer
requirements

• Software functions incorrectly
compared to the requirements?
• Bug due to misunderstood
requirement?
• Requirements not taken into account
in implementation?

9 System Configuration,
timing,
memory,
hardware

• Problem with the functional capacity
of the system?
• Bug due to system configuration?
• Delays in the execution of a
function?

10 User Interface Procedure calls
and references,
I/O, user
formats

• Incorrect output data from the user
point of view?
• Problem with usability?
• Trivial defects in layout (e.g.
overlapping windows)?

Questions: Questions explaining the nature of the defects located in each type.

The defect types presented in Table 3 are designed to classify the defects in
an unambiguous manner. In addition, the aim is to make the classification re-
peatable. The scheme includes ten defect types in total. Nine of the types are
adopted from Humphrey [13] and two from Beizer [3]. Humphrey’s ”Environ-
ment” type is merged to the ”Build and package” type because, in our opinion,
these two types are very hard to distinguish from each other.

The nine types derived from Humphrey’s classification [13] are ”Assignment”,
”Build and package, (which includes the ”Environment” type), ”Checking”,
”Data”, ”Documentation”, ”Function”, ”Interface” (here: ”User Interface”), and
”System”.

”Assignment” type refers to defects in declaration and scope of the variables.
These errors indicate a few lines of code, such as the initialization of control
blocks or data structure. ”Build, package and environment” type contains defects
that affect version management and change management. These defects occur
due to mistakes in library systems, management of changes, or version control.
”Checking” type addresses program logic that has failed to properly validate
data and values before they are used, including errors in error messages and in-
adequate checks. ”Data” defects include defects in the structure and content of
the database. ”Documentation” type includes defects in comments and messages
to the user. These defects can affect both, publications and maintenance notes.
”Function” type refers to defects in computation and functional logic. ”Interface”
type in Humphrey includes procedure calls and references, input and output, and

10 A. Raninen et al.

user formats. We mean by ”User Interface” defects, such as input and output
anomalies, that are visible to the user. ”System” type defects refer to problems
in configuration, timing, memory and hardware.

The two remaining defect types, ”Requirement” and ”Integration” are adopted
from Beizer [3]. ”Requirement” type refers to defects due to misunderstood
or poorly described and/or documented customer requirements. This type was
added to our scheme because the misunderstood/poorly documented require-
ments often cause costly defects not detected early enough. The earlier a defect
is found, the cheaper it is usually to fix [14]. It would be valuable to learn more
from these defects and ultimately find out how the prevent them. ”Integration”
type includes component interface defects and all kinds of integration problems.
We wanted to include this type to our scheme because nowadays modularity has
been more and more promoted and component cooperation has become very
common. However, cooperation is very error-prone and often produces problems
in component integration. [16,8]

3.4 Applying the Defect Distribution Scheme

The defect data classification was performed by one researcher based on rules
and criteria adopted from Humphrey [13] and Beizer [3]. The questions in Table 3
help to understand how the classification was carried out. To ensure the validity
of the classification two additional researchers inspected the results at regular
intervals. Lastly, classified data was inspected together with each company’s
representatives.

The target companies delivered the defect data in Excel data sheets. Due to
the data form some fields of the database were missing from the sheets (e.g. notes,
comments fields, formatting history). Hence, the researchers also had access to
the defect database software of each company. The classification decisions were
made based on the defect descriptions. The descriptions were not written in a
specified form in any of the databases. Due to this they were often deficient.
In problematic cases the defect database software was accessed to gain further
information of the defect.

4 Results of the Classification

The defect distributions of all the companies were perhaps even surprisingly
similar. The distributions are illustrated in Figure 1 and in Table 4. The most
common defect type is ”Function”. For each company majority of the defects
are located there with a total of 7780 defects, 65.5% of the data. The second
most common is ”User interface” with 1865 defects (15.7%). The rarest defect
types are ”Requirements” (total of 24 defects, 0.2%) and ”Documentation” (47
defects, 0.4%).

The defect distributions are compared in Table 5. From the table it can be
seen that ”Function”, ”User Interface”, ”Assignment” and ”Checking” are the

Defect Data Analysis as Input for Software Process Improvement 11

Fig. 1. Defect distributions of companies A, B and C

Table 4. Defect distribution in the three companies’ databases

DefectType A % B % C % Total %

Assignment 85 15.3 % 514 6.2 % 91 3.0 % 690 5.8 %
Build,
packace,
environment

1 0.2 % 38 0.5 % 50 1.7 % 89 0.7 %

Checking 80 14.4 % 338 4.1 % 270 9.0 % 688 5.8 %
Database 4 0.7 % 46 0.6 % 55 1.8 % 105 0.9 %
Documentation 11 2.0 % 34 0.4 % 2 0.1 % 47 0.4 %
Function 228 41.1 % 5574 67.0 % 1978 65.9 % 7780 65.5 %
Integration 14 2.5 % 267 3.2 % 29 1.0 % 310 2.6 %
Requirements 0 0.0 % 18 0.2 % 6 0.2 % 24 0.2 %
System 10 1.8 % 260 3.1 % 11 0.4 % 281 2.4 %
User Interface 122 22.0 % 1232 14.8 % 511 17.0 % 1865 15.7 %

Total 555 100 % 8321 100 % 3003 100 % 11879 100 %

A,B,C: Amount of defects in databases of companies A, B and C

four most common defect types in every database. Further, it can be noted that
there is only relatively small variation in the positions after these four most
common defect types.

4.1 Improvement Suggestions

The results of the defect data analysis were translated to practical improvement
suggestions. The improvement suggestions are mainly targeted to the most com-
mon and uncommon defect types. Five improvement suggestions provided for all
of the companies can be seen below.

12 A. Raninen et al.

Table 5. Comparing the defect distributions

CompanyA % CompanyB % CompanyC %

Function 41.4 Function 67.0 Function 65.5
User Interface 22.0 User Interface 14.8 User Interface 17.0
Assignment 15.3 Assignment 6.2 Checking 9.0
Checking 14.4 Checking 4.1 Assignment 3.0
Integration 2.5 Integration 3.2 Data 1.8
Documentation 2.0 System 3.1 Build, . . . 1.7
System 1.8 Data 0.6 Integration 1.0
Data 0.7 Build, . . . 0.5 System 0.4
Build, . . . 0.2 Documentation 0.4 Requirements 0.2
Requirements 0.0 Requirements 0.2 Documentation 0.1

1. The companies were encouraged to create the link between requirements,
documentation and the defect databases.

2. The companies were recommended to take a closer look at the functional de-
fects. Closer analysis might reveal problematic areas in the software products
in which more test resources should and could be targeted.

3. The companies might benefit from further defining the usage of their bug
trackers.

4. The companies should start recording the defects revealed in other software
engineering phases than testing.

5. The companies should classify the defects in an informative way.

The defect data analysis and discussions with the target companies indicated
that the rarest defect types, ”Requirements” and ”Documentation”, are rare
because of the way the defects are reported. The first improvement suggestion
was related to the target companies not having defect databases in use during
the design phase. Hence, defects related to documentation and requirements are
rarely entered in the database.

The second and third improvement suggestions are related to the function
defect class. Taking a closer look at functional defects was suggested because
there was a majority of them in each company. Closer analysis of the functional
defects might reveal problematic areas in the software products in which more
test resources should and could be targeted. In addition, it was suggested that
the companies might benefit from further defining the usage of their bug trackers.
To be able to properly benefit from the defect data, all defects, including the
minor ones should be recorded in the defect database. If there is no process
defined on how and what to report, it is likely that a part of the defects are fixed
without reporting them to the database. In addition, monitoring to ensure the
process is followed is needed.

The fourth suggestion was made keeping the defect data analysis viewpoint in
mind. To be able to conduct reliable analysis on defect data, all defects, including
the minor ones should be recorded in the defect database. In addition, it was

Defect Data Analysis as Input for Software Process Improvement 13

recommended that the companies would start recording the defects revealed in
other software engineering phases than testing. A rough division to design, code,
function test, and system test phases, as presented in [6], could be useful.

Last but not least, the companies were recommended to start applying a
meaningful classification of defects in stead of their very general classifications
currently in use (see Section 3.2). Applying a classification like the one presented
in this paper would enable the companies to better understand the problematic
areas of their software products. This would help in test resource allocation and
also give the companies the opportunity to benchmark their defect distributions
against other companies distributions made public.

5 Discussion

The results of the defect classification are interesting. The defect distributions
of each company are quite similar. This was an unexpected result in the light of
previous research where it is stated that it is normal for defect distributions to
be dissimilar between companies [12]. The companies in our study are different
in number of ways as shown in Table 2.

The most common defect type in every company is ”Function”. The results
presented in [3] and [6] show that functional defects have also been common in
other studies. One probable reason for this type’s conventionality is it’s gener-
ality. It includes defects related to logic, pointers, loops, recursion, computation
and other functional areas. Further, the large amount of defects in this type
can be partially explained by the process used in updating the defect databases.
When a defect is detected, its cause is rarely known. In later phases, when the
defect is currently being fixed or has already been dealt with, the cause is not
always updated to the database. In addition, part of the defects manage to
pass the testing and are reported by the customer. The customers more eas-
ily report a functional defect than, for example, a user interface defect. Core
software functionality is usually more acute than inconveniences caused for the
users. However, functional defects obviously are very common and need to be
researched more carefully to learn how to prevent them, despite the ”Function”
types’ perhaps too general nature.

The least common defect types, ”Requirements” and ”Documentation”, were
both often hard to detect from the defect data. ”Requirements” defects were
problematic because the databases are not linked to the requirements documen-
tation. ”Documentation” defects were rare because these defects are usually dis-
covered during the design phase while reviewing the documentation. The target
companies do not have defect databases in use during the design phase. Hence,
documentation defects are rarely entered in the database. As an improvement
suggestion, after the classification efforts, the companies were encouraged to
create the link between requirements, documentation and the defect databases.

The defect distribution scheme used was mostly suitable for it’s purpose. The
classification was relatively easy and the defects are now in a comparable and eas-
ily understandable form. However, distinguishing some of the defect types from

14 A. Raninen et al.

each other was a little problematic. For example, situations where erroneous
input had caused software to behave irregularly. This could be a ”Function”
defect. However, if software has deficiencies in input checking and it allows the
user to enter inputs in an incorrect form this is a defect of the ”Checking” type.
Another example of the challenging decision making is related to the ”Integra-
tion” defect type. For example, when there are interface defects related to input
checking these defects belong to the ”Integration” type. Even though it might
first seem that they are part of the ”Checking” type. This is due to the fact that
if an interface accepts erratic inputs, this is not a ”Checking” defect because it
only causes problems in integration.

The companies were recommended to take a closer look at the functional
defects, the most common defect type of the study. Closer analysis might reveal
problematic areas in the software products in which more test resources should
and could be targeted. The companies might benefit from further defining the
usage of the tools they use to report the defects. To be able to properly benefit
from the defect data, all defects, including the minor ones should be recorded in
the defect database. In addition, it was recommended that the companies should
start recording the defects revealed in other software engineering phases than
testing. In addition, the target companies were suggested to start classifying
their defects in an informative way, for example, applying a structure similar
to the defect scheme applied here. Informative classification would enable the
companies to more easily conduct defect data analysis and learn from their
defects in a more profound way.

It appears that defect data analysis provides practical input for software pro-
cess improvement. The results of the analysis were easily translated to improve-
ment suggestions. Process improvement through defect analysis appears to be
a promising area as stated in [12]. Further, the companies experienced that
comparing their defect data analysis results to other companies’ data was a pro-
ductive exercise. Taking a closer look at the defects helped them understand
their products and processes more deeply.

The usage of defect distribution schemes have been criticized as a subjective
exercise [10]. In the research presented the potential subjectivity was dealt with
regular inspections of the classification by researchers and in the final phase by
the company representatives. These inspections helped to gain a mutual under-
standing of the defect scheme and to increase the validity of the classification.

The results presented can be applied in software companies producing software
products in order to benchmark the defect distributions. This exercise probably
is not as beneficial in companies producing bespoke software. Defect distributions
are useful, for example, for practitioners who want to learn from patterns of real
defect data distributions. In addition, we believe that the accumulation of defect
distribution patterns is important and should be shared among the research
community. Further, these results strengthen the ones presented in previous
studies. Functional defects are common [3,6], and we believe that a closer look
should be taken into this defect type. In addition, defect classification appears
to be beneficial in order to enable process improvement [12].

Defect Data Analysis as Input for Software Process Improvement 15

6 Conclusion

The objective of this study was to present the results of defect data classification
in three software companies. In order to analyze the defect data, the data was
made comparable by using a common defect distribution scheme. This paper
presents the distribution scheme used and the results of the classification.

The results of the classification showed that the defect distributions of each
company were quite similar. The most common defect type was ”Function”
(65.5%) and the most uncommon types were ”Requirements” (0.2%) and ”Doc-
umentation” (0.4%).

The new defect distribution scheme used is considered suitable for it’s purpose.
However, there were some data types that were sometimes hard to distinguish
from each other, i.e. ”Function” vs. ”Checking”. In addition, the defect data
was found to be often insufficient or inconsistent which caused problems with
the classification.

Further, the defect data analysis helped to identify problematic areas in the
processes of the target companies. Based on the analysis it was possible to pro-
vide improvement suggestions for the use of software process improvement in
the target companies. In addition, the target companies evaluated that they
benefited from comparing their defect data to that of the other companies.

Future research will be conducted in analyzing the defect distributions. In ad-
dition, a closer look will be paid to the ”Function” type’s defects to get a clearer
image of what the main problems inside this defect type are. Further, addi-
tional research will be conducted in order to make the improvement suggestion
generation more systematical.

Acknowledgments. This research was funded by the Finnish Funding Agency
for Technology and Innovation (Tekes) with grant 70030/10 for METRI (Metrics
Based Failure Prevention in Software Engineering) project and supported, in
part, by Science Foundation Ireland grant 03/CE2/I303 1 to Lero - the Irish
Software Engineering Research Centre (www.lero.ie).

References

1. IEEE standard classification for software anomalies. IEEE Std 1044-2009 (Revision
of IEEE Std 1044-1993) pp. C1 –C15 (2010)

2. Basili, V.R., Rombach, H.D.: Tailoring the software process to project goals and
environments. In: Proceedings of the 9th International Conference on Software
Engineering, ICSE 1987, pp. 345–357. IEEE Computer Society Press, Los Alamitos
(1987), http://portal.acm.org/citation.cfm?id=41765.41804

3. Beizer, B.: Software Testing Techniques. International Thomson Computer Press
(1990)

4. Bhandari, I., Halliday, M., Tarver, E., Brown, D., Chaar, J., Chillarege, R.: A case
study of software process improvement during development. IEEE Transactions on
Software Engineering 19(12), 1157–1170 (1993)

http://portal.acm.org/citation.cfm?id=41765.41804

16 A. Raninen et al.

5. Bhandari, I., Halliday, M.J., Chaar, J., Chillarege, R., Jones, K., Atkinson, J.S.,
Lepori-Costello, C., Jasper, P.Y., Tarver, E.D., Lewis, C.C., Yonezawa, M.: In-
process improvement through defect data interpretation. IBM Systems Jour-
nal 33(1), 182–214 (1994)

6. Bridge, N., Miller, C.: Orthogonal defect classification using defect data to improve
software development. Software Quality 3(1), 1–8 (1997)

7. Chillarege, R., Bhandari, I., Chaar, J., Halliday, M., Moebus, D., Ray, B., Wong,
M.Y.: Orthogonal defect classification – a concept for in-process measurements.
IEEE Transactions on Software Engineering 18(11), 943–956 (1992)

8. Clements, P.: From subroutines to subsystems: Component-based software devel-
opment. American Programmer 8(11), 31–38 (1995)

9. Cusumano, M.: The business of software: What every manager, programmer, and
entrepreneur must know to thrive and survive in good times and bad. Free Press
(2004)

10. El Emam, K., Wieczorek, I.: The repeatability of code defect classifications. In:
Proceedings of the Ninth International Symposium on Software Reliability Engi-
neering, pp. 322–333 (November 1998)

11. Freimut, B.: Developing and using defect classification schemes. Fraunhofer IESE
IESE-Report No 72 (2001)

12. Grady, R.: Practical software metrics for project management and process improve-
ment. Prentice-Hall, Inc., Upper Saddle River (1992)

13. Humphrey, W.: A discipline for software engineering. Addison-Wesley (1995)
14. Kit, E., Finzi, S.: Software testing in the real world: improving the process. ACM

Press/Addison-Wesley Publishing Co. (1995)
15. Mantyla, M., Lassenius, C.: What types of defects are really discovered in code

reviews? IEEE Transactions on Software Engineering 35(3), 430–448 (2009)
16. Vigder, M., Gentleman, W., Dean, J.: Cots software integration: State of

the art (1996), http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action

=rtdoc&an=8914327&lang=en

17. Vinter, O.: Using defect analysis to initiate the improvement process (1998),
http://www.iscn.at/select_newspaper/measurement/bruelkjaer.html

http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=8914327&lang=en
http://nparc.cisti-icist.nrc-cnrc.gc.ca/npsi/ctrl?action=rtdoc&an=8914327&lang=en
http://www.iscn.at/select_newspaper/measurement/bruelkjaer.html

A Test Process Improvement Model
for Automated Test Generation

Henri Heiskanen, Mika Maunumaa, and Mika Katara

Tampere University of Technology, Department of Software Systems
{firstname.lastname}@tut.fi

Abstract. Automated test generation is gaining popularity in the soft-
ware industry, largely due to its labor-saving benefits and its ability to
achieve high test coverage. The introduction of this technology into an
organization does not, however, always meet with success. One reason
for this is often the fact that the testing process and organization are not
adjusted accordingly. Thus, in order for an organization to successfully
pursue automated test generation, the test process must also be improved
to enable this development. In this paper, we introduce an automated
test generation add-on for the popular test process improvement model,
TPI. We also present a baseline TPI profile for successful introduction
of automated test generation.

Keywords: test automation, model-based testing, TPI.

1 Introduction

As the interest of today’s software testing industry is to an increasing extent
shifting to automated test generation (ATG) practices [14], such as model-based
testing, the expectations of it are often set unreasonably high. In the end, the
introduction of a new test automation tool into an organization solves few prob-
lems by itself. Instead, in order for the ATG approach to be successful, the
test process itself must also be adapted to the needs of ATG. This raises the
question on how the test process can be improved to accommodate the ATG
approach, and what it requires to sustain the use of the new technology and
working methods.

Test Process Improvement (TPI) [10] is a widely known software testing pro-
cess improvement model that is often applied to determine the present standard
of the test process of an organization and identify areas that have room for
improvement. TPI has many advantages over other test process improvement
models and is therefore used by many organizations, especially in Europe. One
of the chief strengths of TPI is the fact that it enables simultaneous progress
in many different Key Areas, as opposed to being limited to one-dimensional
progress. This is reflected in the maturity matrix representing the test process
maturity of an organization with respect to each Key Area, allowing organiza-
tions to focus their improvement efforts on select areas.

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 17–31, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

18 H. Heiskanen, M. Maunumaa, and M. Katara

Even though test automation is one of the Key Areas of TPI, the ATG ap-
proach, or the use of formal methods in general, is not addressed in it [17]. This
is a major shortcoming as the ATG approach is not only about automation,
but it also sets certain requirements for the practices and methods used by an
organization and also affects other phases in the software development life cycle
besides testing. New roles must also be created and introduced into the orga-
nization in the ATG transition. In the end, the overall effect of this change is
significant, being not limited to technological aspects.

In this paper, we will present an ATG add-on for TPI [6]. The add-on provides
support for the assessment process of organizations that are using, or contem-
plating using, ATG practices. As the original TPI, the ATG-tailored TPI version
also includes a number of Key Areas that each have a number of maturity levels
and checkpoints specifying the steps toward reaching these maturity levels. We
also provide a baseline TPI profile for successful introduction of ATG practices.
This profile outlines the minimum level of organizational maturity that, based
on our earlier work, should be reached before engaging in ATG. In addition, we
present the results of an industrial case study that was conducted to establish
the validity of our model.

The rest of the paper is organized as follows: Section 2 serves as an introduc-
tion to TPI and ATG, Section 3 introduces our ATG add-on for TPI, Section
4 outlines the baseline maturity profile for successful introduction of ATG, Sec-
tion 5 presents a case study conducted with the ATG-tailored TPI, and Section
6 concludes the paper.

2 Background

In this section we present the background of our work. First we present TPI and
its main points, after which we briefly compare TPI with a few other prominent
test process improvement models that have gained currency in industry. Finally,
the concept of automated test generation is discussed.

2.1 Test Process Improvement

No matter how well testing is performed, there is still always room for improve-
ment. In order to improve, the present situation needs to be determined. TPI
is a method for such assessment, providing a frame of reference to identify the
strengths and weaknesses of the process and suggesting actions to improve it.
TPI is based on a structured test approach called TMap [13], which was devel-
oped at a Dutch company IQUIP in 1995. Based on the experiences of using
TMap, the company and its clients arrived at the conclusion that they needed
a method that would support their improvement efforts. The development of
TPI began in 1996 and its final version was introduced in 1998. Subsequently,
the TPI model has been adapted to various domains to better suit their specific
needs, for example embedded systems [9] and the automotive industry [1].

A Test Process Improvement Model for Automated Test Generation 19

Key areas

Levels

Checkpoints Improvement suggestions

Maturity
matrix

Life cycle Techniques Infra & tools Organization

All

Fig. 1. TPI structure

TPI is based on four cornerstones (Figure 1) that describe various important
aspects of the software development process, namely Life cycle, Techniques, In-
frastructure and tools, and Organization. In addition, there is a general category
for other items. The four cornerstones group together several interrelated Key
Areas, which each represent different aspects of software testing. Each Key Area
has several maturity levels, on a scale of one to four, and each maturity level in
turn contains several checkpoints that specify the required steps to reach that
particular level of maturity. TPI also provides practical improvement suggestions
for each maturity level.

2.2 Review of Process Improvement Models for Software Testing

Currently the most prominent process improvement models for software testing
are TPI, its newly introduced successor TPI NEXT [15] and the Test Maturity
Model Integration (TMMi) [16], which is based on the Testing Maturity Model
(TMM) [4] developed at Illinois Institute of Technology.

What all these models have in common is that they have a certain number of
areas in which one can conduct process improvement. In TPI and TPI Next, these
are called Key Areas, while in TMMi they are termed process areas. Furthermore,
the notion of maturity level figures prominently in all these models. In TPI and
TPI Next one can, however, proceed rather freely within different Key Areas
and simultaneously be at different maturity levels in different Key Areas. By
contrast, in TMMi one can only be at one maturity level at a time, and the
process areas of TMMi each belong under a certain maturity level.

Another significant difference between TMMi and the TPI models is the un-
derlying methodological context these models are based on. While TMMi is
strongly connected with the Capability Maturity Model Integration (CMMi),
TPI and TPI Next in turn are based on testing approaches called TMap and
TMap Next [3], respectively. TPI also draws a distinction between high-level and

20 H. Heiskanen, M. Maunumaa, and M. Katara

low-level testing, whereas TPI Next and TMMi are not concerned with the actual
level of testing. Of all these models, TMMi is probably the one that enables the
highest degree of development, as it addresses test process optimization issues
in areas that are not accommodated in the TPI models.

As for the most salient differences between TPI and its newly introduced
successor TPI NEXT, some of the less important Key Areas of the original TPI
have not been included in TPI Next in an attempt to remove overlap between
some of the Key Areas. In addition, the original TPI had proved somewhat
rigid and its applicability to different business models and needs was found
inadequate. Hence, TPI Next is more adaptable to different business drivers
through highly customizable process improvement patterns. Furthermore, TPI
NEXT has only 16 Key Areas and 157 checkpoints, as opposed to the 20 Key
Areas and nearly 300 checkpoints of the original TPI. However, TPI NEXT is
also less detailed than its predecessor, which can be seen by the reduction in the
number of checkpoints. The checkpoints of TPI NEXT are also more abstract
than those of the original TPI.

From our point of view, the most important difference between TPI, TPI
Next and TMMi is that TPI is more technical by nature and therefore suitable
for specific test projects or approaches, whereas TMMi and TPI Next are more
managerial and emphasize issues related to stakeholder commitment and process
management, for example. Thus, the ATG add-on was build on the original TPI,
which we think is better suited for accommodating technological issues, such as
ATG, due to its higher level of detail. The original TPI model has also attained
a strong foothold in industry.

2.3 Automated Test Generation

Conventional test automation relies on scripts written in different languages and
by different people. Sometimes script authors have proper software engineering
backgrounds, but often that is not the case. Writing a test script that verifies a set
of functionality thoroughly, or at least adequately, can be a tiresome task. Often
there are dozens of scripts to test just one feature adequately. A test script must
be small and simple to be maintainable, or else it will face the same problems
as the code it is intended to test. To circumvent these problems, automated test
generation can be used to generate tests automatically, both before and after
the completion of the test object.

Generation of test cases always requires some kind of source from which the
tests are generated. The source itself can have many forms, for example, require-
ments, design models, source code of the test object, user documents and/or
conventional test scripts – we call these collectively the ATG basis, in keeping
with the terminology of TMap. The key issue is that the ATG basis is expressed
in a form that is computable, i.e., it can be processed on a computer. If the ATG
basis is not in computable form, it must be converted to such. The result of such
conversion is called the test model.

In practice, the test model can be one monolithic model or comprised of sev-
eral component models, specified with some modeling formalism. The formalism

A Test Process Improvement Model for Automated Test Generation 21

depends on the perspective by which the system is modeled and the model
can, in turn, contain information from one or many perspectives, for example,
system/design and testing perspectives. An essential requirement for models is
that there be a description for both functionality (control flow) and data (in-
put/output values). The functionality is often modeled using some form of state
machine, whereas the data can be provided as a simple data table [8], although
it can also be incorporated into a state machine, for instance in Statecharts.

Depending on the nature of the test object and available tools, tests can
be generated prior to test execution (offline) or during test execution (online).
Both these approaches have their respective advantages and disadvantages, but
in many contexts one way works better than the other [5]. The main difference is
that offline generation can produce huge numbers of traditional test cases, which
can then be executed and measured using conventional methods and metrics.
And since they are reminiscent of traditional test cases, they are easy for testers
to relate to and accept. In online testing, on the other hand, test execution
can be arbitrarily long and its content can vary between consecutive executions.
Accordingly, one execution can contain various traditional test cases. The actual
trace (execution path) depends on what opportunities the model provides and
what kind of feedback the test object provides in response to test steps. Thus,
the online approach is especially suited for robustness testing.

An inherent aspect of ATG is modeling. As already explained, the model is
a representation of the information contained in the ATG basis at a certain
level of abstraction. It can be explicitly modeled by a modeler (explicit model)
or implicitly conceived, for example during test execution (implicit model). A
case in point of an implicit model is a random monkey test for a GUI, where
test automation identifies items on screen and issues write-text and press-button
commands randomly [12].

Regardless of how the test model is created, ATG requires new expertise from
the organization especially in mapping the product requirements to test purposes
that yield both positive and negative tests. Moreover, since requirements change
and software is constantly updated, the selected ATG approach needs to be
flexible enough to allow easy maintenance.

3 TPI for Automated Test Generation

TPI has 20 Key Areas that cover several aspects of testing. However, the ATG
approach has some particularities that need special attention and are not ad-
dressed in the original TPI model. The modification process resulted in the
creation of four new Key Areas and slight changes in some pre-existing Key
Areas in the form of new maturity levels and/or checkpoints. The modifications
also prompted the revision of the dependencies between the maturity levels of
the Key Areas, as the dependencies caused by the modification process had to
be mapped out. Next, we introduce the ATG add-on with a special focus on
the new Key Areas and added maturity levels. First, the special process-related
requirements of ATG are explained to justify our additions.

22 H. Heiskanen, M. Maunumaa, and M. Katara

3.1 Why Test Process Must Change for ATG

As stated earlier, the ATG approach requires a source from which to generate
tests. However, it is not necessarily easy to create this source. For example, in
model-based testing the creation of an explicit test model is a time-consuming
and exacting process. As such, it must be properly accommodated in the entire
software development process. Moreover, the model also dictates what actions
are available for testing, so it is crucial that the test model be designed and
constructed so as to cover all relevant system functionality. This acts as an in-
ducement to start modeling early on in the overall software development process.

Manual test modeling also has a significant organizational impact, as an en-
tirely new role needs to be created for this purpose. Hence, the role of modeler
is a vital addition to the composition of the test team. This role also requires a
somewhat different skill set than is required of ordinary testers; a more formal
background is often preferred for this task. Still, there is a need for other testers
as well to design the actual tests that are based on modeled functionality.

In addition, as modeling is such a critical task in ATG-based testing, it should
preferably co-occur with design modeling of the system. Although test models
and design models are created from different perspectives, they still have much in
common [11]. This, however, is not obligatory for a model-based testing process
to be successful.

In industry, the adoption of ATG techniques has met with some difficulty due
in part to the difficulty of creating and maintaining the test models, which is
liable to deter organizations from adopting the ATG approach. This hardship
can, however, be alleviated by earlier experience with ATG practices and proper
training of testing personnel.

3.2 Changes to Existing Key Areas

As discussed earlier, the ATG approach involves the creation and use of the
test model, which is the main attribute that differentiates ATG-based testing
from traditional testing. The modeling process should be conceived as distinct
from other testing-related activities due to the fact that the completion of the
test model is a prerequisite for running the actual tests. Therefore, modeling
should be integrated into the software development life cycle and, preferably, be
started early on in a project for maximum gain. As argued earlier, the testing
organization and its composition must conform to these special requirements. In
practice, this is achieved with the creation of new roles, such as test modeler.
All these considerations have been given due attention in the TPI add-on.

On the other hand, modeling can also be conceived as a static testing method,
and a thorough one at that – it has been reported that during the modeling
phase as much as around 60% of the total number of defects discoverable by
ATG-based testing can be uncovered [7,17]. This led to the addition of a new
maturity level to the Key Area of Static Test Techniques. Another maturity level

A Test Process Improvement Model for Automated Test Generation 23

Table 1. Modified checkpoint list for KA03 Moment of Involvement (level B)

B Checkpoints
1. The activity "testing" starts simultaneously with or earlier than the phase

in which the test basis (often the functional specification) is defined.
2. Modeling of functionality has been started (abstract models may

be created to aid this process).

that was added to the TPI model is one for the Key Area of Test Specification
Techniques. This is because with some ATG techniques it is possible to derive
test specifications from a computational model, which would provide further
enhancements in this particular Key Area.

In addition to the new maturity levels, changes were introduced to various
existing Key Areas in the form of new checkpoints (see example in Table 1).
Most of these new checkpoints specify the necessary adjustments to the test
process in terms of ATG and modeling, while some of them act more as ad-
ditional tips for an established ATG-based test process. The former category
covers the aforementioned issues of introducing test modeling into the software
development life cycle and retooling the test organization for the purposes of
ATG. The latter category, on the other hand, is more concerned with improving
an existing ATG-based test process and, to this end, includes checkpoints on,
for example, evaluations and defect management. The changes to the original
TPI are presented in Figure 2. The new maturity levels are shaded with a darker
color and altered original maturity levels with a lighter color.

However, not all of the necessary changes could be made by adding new check-
points and maturity levels to the existing Key Areas. Some new Key Areas had
to be introduced to better accommodate the special needs of ATG.

3.3 New Key Areas

The modeling process and concept of test model were also major reasons that
prompted the addition of the new Key Areas (presented in Figure 3). The first
new Key Area, Modeling Approach, is concerned with the process of modeling,
measuring the reusability of models produced and the extent to which test mod-
eling is connected with the use of design models. Reusability is a highly impor-
tant characteristic of produced test models, particularly when the test models
are created explicitly. With a certain level of abstraction and granularity it is
possible to gain considerable benefits as far as reusability is concerned (level B).

As argued earlier, another important facet of the test modeling process is its
connection with the design phase of the software development life cycle. Being
able to derive the test model, at least partially, from existing design models
can save plenty of time in the modeling phase, with less need to replicate work
already done (level C, see Table 2 for details). The test modeling process would
ideally be closely synchronized with design modeling, which would have the dual

24 H. Heiskanen, M. Maunumaa, and M. Katara

Maturity level
Key area

A B C D

L
ife

 c
yc

le

1
Test strategy Strategy for single high-level test Combined strategy for high-level tests

Combined strategy for high-level tests plus
low-level tests or evaluation

Combined strategy for all test and
evaluation levels

2 Life cycle model Planning, Specification, Execution
Planning, Preparation, Specification,
Execution and Completion

3 Moment of involvement Completion of test basis Start of test basis Start of requirements definition Project initiation

In
fr

as
tr

uc
tu

re

an
d

T
oo

ls

4
Estimating and planning Substantiated estimating and planning

Statistically substantiated estimating and
planning

5 Test specification techniques Informal techniques Formal techniques Computational techniques

6 Static test techniques Inspection of test basis Check-lists Modeling of test basis

7 Metrics Project metrics (product) Project metrics (process) System metrics Organization metrics (>1 system)

T
ec

hn
iq

u
es

 8 Test automation Use of tools Managed test automation Optimal test automation

9 Test environment Managed and controlled test environment Testing in the most suitable environment "Environment-on-call"

10 Office environment Adequate and timely office environment

O
rg

an
iz

at
io

n

11 Commitment and motivation Assignment of budget and time Testing integrated in project organization Test-engineering

12
Test functions and training Test manager, modeler and testers

(Formal) Methodical, Technical and Functional
Support, Management

Formal internal Quality Assurance

13 Scope of methodology Project specific Organization generic Organization optimizing, R&D activities

14
Communication Internal communication

Project communication (defects, change
control)

Communication in organization about the
quality of the test processes

15
Reporting Defects

Progress (status of tests and products),
activities (costs and time, milestones), defects
with priorities

Risks and recommendations, substantiated
with metrics

Recommendations have a Software
Process Improvement character

16 Defect management Internal defect management
Extensive defect management with flexible
reporting facilities

Project defect management

17 Testware management Internal testware management
External management of test basis and test
object

Reusable testware
Traceability system requirements to
test cases

18 Test process management Planning and execution Planning, execution, monitoring and adjusting Monitoring and adjusting in organization

A
ll

19 Evaluation Evaluation techniques Evaluation strategy

20 Low-level testing
Low-level test life cycle model (planning,
specification and execution)

White-box techniques Low-level test strategy

Fig. 2. TPI Key Areas with changes

A
u

to
m

at
ed

 T
es

t
G

en
er

at
io

n

21
Modeling approach Monolithic test model Abstract and domain-specific test model (Re-)Use of design models

Test modeling integrated to design
modeling

22 Use of models Input generation with context knowledge Input generation with domain knowledge Test object output verification

23 Test confidence Critical (path) functionality confidence Shallow functionality confidence Thorough functional confidence
Non-functional requirements
covered

24 Technological &
methodological knowledge

Project-specific knowledge
Testing personnel has adequate knowledge
and training in preferred technologies and
practices

Organization is committed to the use of
technologies and practices that have been
found well suited to existing needs

Fig. 3. New Key Areas

Table 2. Checkpoints for KA21 Modeling Approach (level C)

C (Re-)use of design models
1. The test model can, at least partially, be derived from design models that

are of a higher level of abstraction than the test model itself.
2. Design models used in the design phase, if such exist, are reused in the

test modeling phase so as to avoid duplicate effort.

benefit of producing design models with a high level of testability and ensuring
the consistency between the models (level D).

The second new Key Area, Use of Models, is also closely related to the concept
of test model, measuring the degree to which the test model can be leveraged
in testing. Some, often implicit, test models might only be capable of simple
input generation (as in dumb monkey testing), while other, more advanced and
explicitly crafted models can hold extensive knowledge of the system (level B),

A Test Process Improvement Model for Automated Test Generation 25

and possibly even verify the output of the test object (level C). Of course, this
distinction might not be meaningful for all systems, but generally the capabilities
of the test model affect the extent to which the ATG approach can provide added
value to its users.

The third new Key Area, Test Confidence, was added to emphasize the area
that probably benefits the most from the use of ATG. The attainable level of
confidence in the quality of the test object is an important measure of the utility
of any ATG technology. The ATG system should at least be capable of covering
the most critical functionality of the test basis, but naturally, being able to cover
all functional (level B), and possibly even nonfunctional (level D), requirements
of the test basis is desirable. In addition, being able to thoroughly cover all
functional requirements by testing them in multiple ways (level C) can further
increase the attainable level of confidence.

While the other three new Key Areas directly address issues related to mod-
eling, the fourth new Key Area, Technological and Methodological Knowledge, is
in itself not connected with the ATG approach, or any technical aspect thereof.
Still, this Key Area might well be the most important one for the successful and
sustainable use of ATG over the long haul. This is because any new technology
and working method must be effectively communicated within the organization
in order for them to gain currency with the people who may become involved with
them at some later time. This applies to any new technology that is introduced
into an organization, but is particularly important for ATG since it necessitates
significant changes to prevailing testing practices and organizational composi-
tion. This Key Area also covers the organizations’ experience with the chosen
technologies, tools and methods, and the higher the maturity in this Key Area
is, the more people in the organization are familiar with the chosen methods.

In economic terms, it is usually costly to develop and maintain an ATG tech-
nology and the necessary infrastructure. So in order to recoup the initial in-
vestments in the technology, the organization must commit to using it for the
long term. In practice, this can be achieved by appropriate training of testing
personnel (level B) and, better yet, overall commitment to the new technology
at organization level (level C).

4 Baseline Maturity Profile for Introduction of ATG

It is possible that after an ATG technology is introduced into an organization,
it can be found unsuited to existing needs and, consequently, be abandoned.
This might be due to the organization being immature in terms of Key Areas
that are vitally important for the ATG transition, even if the organization were
otherwise relatively mature in terms of its testing process. This section presents
a baseline maturity profile for organizations envisioning the introduction of ATG
into its testing practices. The profile is based on an informed estimate of issues
considered key to successful introduction of ATG.

26 H. Heiskanen, M. Maunumaa, and M. Katara

 Scale
Key Area 0 1 2 3 4 5 6 7 8 9 10 11 12 13

 Initial Controlled Efficient Optimizing

1 Test Strategy A B C D
2 Life Cycle Model A B

3
Moment of
Involvement A B C D

4 Estimating and
Planning A B

5 Test Specification
Techniques A B

6 Static Test
Techniques A B

7 Metrics A B C D
8 Test Automation A B C
9 Test Environment A B C
10 Office Environment A

11 Commitment and
Motivation A B C

12
Test Functions and
Training A B C

13 Scope of
Methodology A B C

14 Communication A B C
15 Reporting A B C
16 Defect Management A B C

17 Testware
Management A B C D

18
Test Process
Management A B C

19 Evaluation A B
20 Low-level Testing A B C

Fig. 4. Baseline maturity profile

The profile is given in terms of the original, unaltered TPI, not the retooled,
ATG-tailored version. In addition, the profile outlines both the minimum and
recommended levels of maturity for the introduction of ATG. The profile is de-
scribed in Figure 4. The minimum maturity level of each Key Area is indicated
by a darker color, whereas the recommended maturity level is represented with
lighter shading. Note also that some Key Areas have no recommended maturity
level to them, and in these cases the minimum maturity level doubles as the
recommended maturity level. The gradations on the scale (1-13) are not impor-
tant, and only serve to illustrate the relative difficulty of reaching a particular
maturity level in a given Key Area.

We have identified minimum and recommended maturity levels for most Key
Areas of the original TPI, each of which will next be discussed. Note, however,
that some TPI Key Areas only require the maturity level A in our baseline
profile and have no recommended maturity level either. These Key Areas, being
not essential to ATG, have been omitted in the following analysis.

A Test Process Improvement Model for Automated Test Generation 27

Test Strategy. There should be adequate degree of consideration as to how
high-level testing is to be performed. The strategy should consider product risks
and the depth and breadth of testing (level A). It would be better if there were
a combined test strategy for multiple high-level tests that would complement
each other (level B). For example, there should be a strategy on how manual
and automated testing interleave so that gaps in test coverage are filled.

Life Cycle Model. Even though Life Cycle Model can be at the lowest maturity
level (A), there are some distinct characteristics in ATG that almost require
the higher level (B). This is mostly because the B level includes a preparation
phase in the life cycle whose one purpose is to evaluate whether the test basis
is suitable for the selected testing method. It is not unheard of that automation
tools are selected to remedy a testing problem that cannot easily be remedied
by automation.

Moment of Involvement. The preparation and planning for testing should
be started as early as possible. Even though an early start has some benefits,
it is always a tradeoff between valuable information and a waste of time. For
example, starting to model the behavior of some part of a system while the
particular functionality is still in its infancy can result in a great deal of rework.
A good starting point for testing would arguably be when some part of the test
basis is complete (level A), but an even better point would be at the beginning
of test basis definition (level B).

Estimating and Planning. The ATG domain involves a great amount of
planning and preparation before the actual tests can be executed. However,
traditional test estimation techniques are not applicable to all ATG approaches
due to the fact that some online ATG techniques do not have clear-cut concepts
for conventional testing terms such as "test case" etc. Thus, it is necessary to
devise appropriate metrics to support the estimation of testing. In addition, the
preparation for testing often requires more time with ATG since the test model
must also be created. Accordingly, we think that level A should be the minimum,
whereas it is recommended to be at level B.

Test Specification Techniques. Test specification techniques are in a very
important role in ATG since many ATG techniques require elaborate modeling of
system behavior. Thus, well-defined and formal ways to create test specifications
(B) are a vital prerequisite for long-lived use of ATG techniques. However, formal
in this context does not mean the specification techniques are mathematical
techniques, but rather well-defined documentation techniques. In our opinion
informal techniques (A) are not adequate because they are not rigorous enough
and often produce test specifications that are not as thorough as required.

Static Test Techniques. Static test techniques are important for verifying
that the test basis is stable and testable enough. There are also some other
benefits, but from the point of view of ATG, the maturity of the test basis is

28 H. Heiskanen, M. Maunumaa, and M. Katara

the most important aspect as far as avoiding unnecessary work is concerned.
For some ATG approaches, however, this is not a very critical Key Area, if, for
example, the test model can be derived by automatic means. Hence, we think it
is recommended to be at level A.

Test Automation. This is the most important Key Area for ATG, as it mea-
sures the level of test automation. Level A verifies that the organization uses
tools for managing budget, progress, defects etc. At level B, there are actual test
automation tools in use for test planning and execution. This is the minimum
level, but the recommended level is C because it checks whether the use of those
tools is actually optimized for the testing task at hand.

Commitment and Motivation. There should be enough vision and support
from management for the deployment of ATG into the testing process (level A)
in order that it not fail at the first hurdle. In addition, the test team should have
enough knowledge and training to deploy ATG into the testing process. Even
better results can be achieved if testing constitutes a fixed part of the overall
development process (level B).

Test Functions and Training. A substantially large portion of motivation
and commitment originates from the fact that one has adequate skills for the
task at hand and one’s role in the organization is clearly defined. The latter is
addressed at level A, while the former is addressed at level B. Since both are
equally important for success, we argue that the minimum and recommended
maturity level is B.

Scope of Methodology. If an organization has a fixed set of methods in use
at organization level (level B) instead of letting individual projects decide what
methods to use (level A), the organization has better chances at succesfully
applying the chosen methods over the long haul.

Communication. Having internal communication is important for the success-
ful completion of a project (level A), but many ATG practises require that there
be a constant feed of information about changes in the test basis and defects
discovered in the test object (level B).

5 Case Study

In order to establish the validity of our TPI add-on, an case study was conducted
with an organization that practices automated test generation. In this section
the main findings of this study are presented in detail.

Execution. The case study was conducted in the form of a TPI assessment,
which is usually performed to determine the present status of an organization
in terms of its testing process. The more thorough the assessment is, the more

A Test Process Improvement Model for Automated Test Generation 29

areas to improve it can identify. As our primary objective was to dry-run our
TPI add-on in a real industrial environment, we concentrated on determining
the impact of our changes to the original TPI model, not so much on the process
improvement side of the assessment. An interesting case question for us was
whether the changes we introduced to the TPI model would radically impact
the assessment results derived by the original TPI. But, most importantly, we
wanted to establish whether our additions would be workable in practice, and
whether the requirements for reaching the different maturity levels of the new
Key Areas would be reasonable.

A TPI assessment involves asking the interviewees a series of questions to
determine the maturity of each TPI Key Area. In practice, the questions are the
same as TPI checkpoints, and are all answered either "yes" or "no". All told,
there are around 300 checkpoints in the TPI model, which is also the maximum
number of assessment questions. All the questions regarding the higher matu-
rity levels do not need to be covered during the assessment if the requirements
of these higher maturity levels are not met. Once all the questions have been
answered, the matrix representing the test process maturity of the organization
being assessed can be constructed. On finishing the assessment, we determined
the organization’s maturity by both the original TPI and our ATG-tailored TPI.
This was done to establish the impact of our additions to the TPI model on the
overall maturity of the organization, and to determine whether the organization’s
maturity agreed with our baseline maturity profile given in Section 4.

The organization for which the assessment was carried out was a medium-sized
multiplatform IT company whose mobile software development organization was
evaluated. The organization had incorporated the ATG approach into its testing
stategy for mobile applications. As an established ATG practitioner, the com-
pany was ideally suited as our object of assessment because the new Key Areas
on ATG could be thoroughly covered during the assessment.

In addition, the organization has adopted agile working methods, which, as it
turned out, had a minor effect on the results of the assessment. This is because
TPI is based on a plan-driven software testing and development mindset, and
some issues, such as documentation, are not equally important in agile develop-
ment. Due to a rapid development cycle exploratory testing [2] is heavily used
among other testing activities. Two roles were represented in the assessment:
a quality manager and a quality engineer. Both had experience in the field of
testing mobile applications and test automation solutions in that context.

Assessment Findings. As for the original Key Areas, the result is in agree-
ment with the minumum maturity profile for the ATG approach given in Section
4, and in some Key Areas the minimum levels are even exceeded. In addition,
the organization could reach the recommended levels in Key Areas "Test Au-
tomation", "Scope of Methodology" and "Commitment and Motivation". These
are all exceedingly important areas for ATG, test automation infrastructure be-
ing vital to this approach and the sustenance of ATG practices at organization
level (Scope of Methodology, level B) at least equally critical. The Key Area
of Commitment and Motivation is also important, as it tells that testing has

30 H. Heiskanen, M. Maunumaa, and M. Katara

been acknowledged as an essential part of the software development life cycle.
Furthermore, the Key Area of Communication was found to exceed the recom-
mended level, which may also have contributed to the fact that the organization
has successfully applied ATG for a long time.

As for the new Key Areas added to the TPI model, all of them were found to be
sound, without attracting considerable criticism. The new maturity levels added
to the Key Areas of Test Specification Techniques and Static Test Techniques
also proved workable. Still, some details of the new Key Areas were found to be
somewhat ill-defined, needing further elaboration.

The most important observation regarding the new Key Areas was probably
the fact that a previously selected or implemented ATG technology can impose
some constraints, precluding the possibility of advancing to the next level in the
Key Area of Modeling Approach, especially when the technology has been in
use for a long time. Accordingly, substantial changes to test tool infrastructure
might be necessary when one looks to advance further in this Key Area.

Interestingly enough, in terms of the 20 original Key Areas, our TPI add-
on had no effect on the maturity results derived from the TPI assessment, as
compared with the results by the original, unmodified TPI. All the original Key
Areas reached the very same maturity levels whether it was the original TPI or
the ATG-tailored TPI that was applied. Even though many of the original Key
Areas were changed to better accommodate ATG, the new checkpoints added to
the model did not affect the overall assessment results. This is definitely a major
positive with our ATG add-on, as the maturity results derived by it seem to be
very compatible with those by the original TPI.

Although this case study only included one single organization, it still demon-
strated that the ATG add-on for TPI worked well and we are heading in the right
direction with our model. Still, more assessments need to be conducted with the
ATG add-on to confirm its utility. We also identified details in our model that
need further revision.

6 Conclusion

In this paper we have presented a test process improvement model for automated
test generation. This model reflects the particularities that characterize ATG-
based testing and provides improvement ideas for organizations operating in
this particular area of testing. We have also presented a baseline profile for the
application of our model, and more importantly, of the ATG approach itself. This
profile outlines both the minimum organizational maturity that should be met
before the introduction of ATG into an organization, as well as the recommended
organizational maturity for the sustained use of ATG practices.

The industrial case study that was conducted to establish the validity of
our model yielded encouraging results. The model was found to be sound and
applicable to organizations practicing automated test generation. Still, more
assessments with the new model are required in order to conclusively determine
its practical value. Minor additions to the model were also made after the case

A Test Process Improvement Model for Automated Test Generation 31

study to further refine it. Future work will involve a closer study of the new TPI
NEXT model and other significant test process improvement models from the
perspective of automated test generation.

References

1. TPI Automotive. Tech. rep., Sogeti Deutschland GmbH (2004),
http://www.tpiautomotive.de/produkte.html, version 1.01 (cited May 2011)

2. Bach, J.: Exploratory testing explained (April 2003),
http://www.satisfice.com/articles/et-article.pdf (cited May 2011)

3. Broekman, B., Koomen, T., van der Aalst, L., Vroon, M.: TMap Next for result-
driven testing. UTN Publishers (2006)

4. Burnstein, I.: Practical Software Testing. Springer-Verlag New York, Inc. (2003)
5. Hartman, A., Katara, M., Olvovsky, S.: Choosing a Test Modeling Language: A

Survey. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS, vol. 4383, pp. 204–218.
Springer, Heidelberg (2007)

6. Heiskanen, H., Maunumaa, M., Katara, M.: Test process improvement for auto-
mated test generation (April 2010),
http://practise.cs.tut.fi/files/publications/AMOEBA/reports/Atg-tpi
_report.pdf

7. Jääskeläinen, A., Katara, M., Kervinen, A., Maunumaa, M., Pääkkönen, T., Takala,
T., Virtanen, H.: Automatic GUI test generation for smart phone applications – an
evaluation. In: Proc. of the Software Engineering in Practice track of ICSE 2009,
companion volume, pp. 112–122. IEEE CS (2009)

8. Jääskeläinen, A., Kervinen, A., Katara, M.: Creating a test model library for GUI
testing of smartphone applications. In: Proc. QSIQ 2008 (short paper), pp. 276–
282. IEEE CS (2008)

9. Jung, E.: A test process improvement model for embedded software developments.
In: Proc. QSIC 2009, pp. 432–437. IEEE CS (2009)

10. Koomen, T., Pol, M.: Test Process Improvement: A practical step-by-step guide to
structured testing. Addison–Wesley (1999)

11. Malik, Q.A., Jääskeläinen, A., Virtanen, H., Katara, M., Abbors, F., Truscan, D.,
Lilius, J.: Model-based testing using system vs. test models – what is the difference?
In: Proc. ECBS 2010 (poster session), pp. 291–299. IEEE CS (2010)

12. Newman, N.: Using monkey test tools. Software Testing and Quality Engineer-
ing 2(1), 18–21 (2001)

13. Pol, M., Teunissen, R., van Veenendaal, E.: Software Testing: A guide to the TMap
Approach. Addison–Wesley Professional (2001)

14. Rushby, J.: Automated Test Generation and Verified Software. In: Meyer, B.,
Woodcock, J. (eds.) VSTTE 2005. LNCS, vol. 4171, pp. 161–172. Springer, Hei-
delberg (2008)

15. Sogeti: TPI Next – Business Driven Test Process Improvement. UTN Publishers
(2009)

16. TMMi Foundation homepage, www.tmmifoundation.org/ (cited May 2011)
17. Utting, M., Legeard, B.: Practical Model-Based Testing – A Tools Approach. Mor-

gan Kaufmann (2007)

http://www.tpiautomotive.de/produkte.html
http://www.satisfice.com/articles/et-article.pdf
http://practise.cs.tut.fi/files/publications/AMOEBA/reports/Atg-tpi_report.pdf
http://practise.cs.tut.fi/files/publications/AMOEBA/reports/Atg-tpi_report.pdf
www.tmmifoundation.org/

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 32–43, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Software Process Improvement and Certification
of a Small Company Using the NTP 291 100 (MoProSoft)

Verónica Ñaupac1, Robert Arisaca2, and Abraham Dávila3

1 Facultad de Ingeniería de Sistemas,
Universidad Nacional de San Agustín, Arequipa, Perú

veronica.naupac@gmail.com
2 Departamento Académico de Ingeniería de Sistemas e Informática,

Universidad Nacional de San Agustín, Arequipa, Perú
rarisaca@unsa.edu.pe

3 Departamento de Ingeniería, Pontificia Universidad Católica del Perú, Lima, Perú
abraham.davila@pucp.edu.pe

Abstract. Today we recognize the strong influence of the software in our world
and the need for it to have the right quality. However, the software industry has
remained in a crisis for many years. Faced with this situation, the quality of
process models are presented as an interesting opportunity that can help to
change it. This article presents the experiences, challenges and lessons learned
in the processes improvement and subsequent certification with the NTP 291
100 (based on MoProSoft) of a small software-development company located in
the city of Arequipa in Peru.

Keywords: Software Process Improvement, Software Quality, MoProSoft,
COMPETISOFT, NTP 291.100.

1 Introduction

The software industry is conformed mainly of small and medium enterprises (SMEs)
[1], [2], [3], [4], [5] and in most cases these companies have problems with their
software development projects, that is, the way they perform their processes. This
situation involves a series of facts such as the high level of disorder, inadequate or
lack of technical documentation of the artifacts produced or rework for not meeting
customer needs or critical defects [2], [6] [7], [8]. This implies that the product is
software of poor quality and the project was carried out with development times
above the estimated and costs over budget [9].

The problem with software quality, at least in Peru, is complicated: (i) by the pres-
sure from clients asking for shorter delivery deadlines, (ii) the increasing complexity
that computer systems have with integration needs to legacy systems, and (iii) by the
high turnover with the development in business, among others. This product complex-
ity makes projects more difficult to structure and manage, so it is necessary to estab-
lish clearly the way to work, in other words, the process to be performed to increase
the chances of success.

 Software Process Improvement and Certification of a Small Company 33

At the international level, there has been developed models for the improvement
and assessment the software processes, most notably CMMI [10], ISO/IEC 12207 in
conjunction with ISO/IEC 15504 [11], ISO 9001 [12], and so on. However, it is noted
that these models are geared mainly to large enterprises [13], [14], and its adoption by
SMEs in the software industry, is difficult and costly [14], [15]. Given this scenario,
some Latin American countries in isolation have been some initiatives such as: Mo-
ProSoft in Mexico [16], MPS-Br in Brazil [17], or SIMEP-SW in Colombia [18]. In
this same line of proposals for SMEs, the project COMPETISOFT was developed
(with CYTED funds) to increase the competitiveness of Ibero American software
industry [19], [20]. Subsequently COMPETISOFT-Peru Project 2nd and 3rd phase
[21], as a sequel to the international efforts to improve productivity through the im-
plementation of the Peruvian Technical Standard MoProSoft 291.100 (in Spanish is
NTP 291.100) for SMEs that develop software with less than 25 workers. Finally,
ISO published in 2011 the ISO/IEC 29110 Part -5-1-2 Basic Profile (VSE Project)
that include only two processes [30] and based on MoProSoft [14].

This article describe the problems, experiences and lessons learned from the im-
plementation of MoProSoft and subsequent certification with the NTP 291,100 in a
small enterprise in Arequipa, a city in southern Peru. The article is organized as fol-
lows: in section 2, gives a brief description of the NTP 291 100 (MoProSoft) and
ISO / IEC 15504; in section 3, presents the description and the improvement project,
and the results of the evaluations, the problems identified and lessons learned; in
section 4, the effort to get the certification made in the company; and, finally, in
section 5, shows the final discussion and future work.

2 Models in the SPI Project

The project COMPETISOFT-Peru 2nd and 3rd phase was developed according to
established guidelines: (i) with the MoProSoft (NTP 291 100) for the definition of
processes, (ii) process asessment model based on ISO/IEC 15504 for assessing Mo-
ProSoft, and (iii) pmCompetisoft to guide the process improvement [19]. Here is a
briefly presentation of models used in the Project:

2.1 MoProSoft

MoProSoft is a Software Process Model and it is aimed at SMEs in software devel-
opment [16]. This model compile a set of best practices from other models such as
CMMI, ISO 9001, ISO/IEC 12207, among others, adapting to the needs of SMEs
[22]. The MoProSoft was developed for the Mexican software industry government
initiative in 2003 [23] and adopted as Mexican National Standard in 2005 [24]. The
MoProSoft was introduced to Peru by COMPETISOFT Project in 2007, with the aim
of improving competitiveness in the software industry, and in May 2009 was adopted
in Peru as a National Technical Standard under number 291.100 [22].

The MoProSoft has been developed considering that it should be easy to learn,
easy to apply and that its adoption in the SME will be not expensive, among others

34 V. Ñaupac, R. Arisaca, and A. Dávila

requirements [22], resulting in a model with follow features: (i) has a pattern process
to document their processes and it can be used as a basis for defining processes in the
company, (ii) every process in the model is defined at a level of detail that can be
adopted for each business situation and (iii) provides a guide for adoption through the
color that identifies the level that corresponds to each processing element [16]. Mo-
ProSoft consists of nine processes organized by three categories of processes: (i) "Top
Management" category contains the process "Business Management", (ii) Manage-
ment category which contains the processes "Process Management", "Project Portfo-
lio Management " and "Resources Management" that also comprises 3 sub processes,
and (iii) Operation category that contains the processes "Specific Projects Manage-
ment" and "Software Development and Maintenance" [16].

2.2 EvalProSoft and ISO/IEC 15504

The 3rd phase of CompetiSoft project [21] in Peru established as one result the certi-
fication scheme definition based on the NTP 291,100, EvalProSoft [25] and the
ISO/IEC 15504-2 [29]. EvalproSoft is an assessment method that applies to develop-
ment organizations and / or maintenance of software, so particular to those who have
used MoProSoft as a reference model for the implementation of their processes [25].
However, EvalProSoft does not meet the ISO/IEC 15504-2 requirements, so it was
necessary to develop some extensions to meet them.

The assessment process was conducted according to the ISO/IEC 15504-2 [30]
works with: (a) six levels of process capability from 0 to 5; (b) a measurement
framework that includes the rating of process attribute based on four level: (i) N, Not
achieved, representing between 0 and 15% of the fulfillment of the purpose of the
process, (ii) P, Partially achieved, representing between 15 and 50%, (iii) L Largely
achieved, representing 50 to 85% and (iv) Fully achieved, which represents between
85 and 100%; (c) nine process attributes, taking one for the first level and two for the
each following capability levels and (d) indicators for every attibute used in an
assessment process.

2.3 pmCOMPETISOFT

PmCOMPETISOFT is an agile software process improvement model developed as
part of COMPETISOFT and used to make improvements in small and medium soft-
ware companies [26]. This process has an iterative and incremental approach, which
aims to meet the principles as: (i) early delivery and continued improvement, (ii) rap-
id diagnosis and continuous of the processes, (iii) basic measurement process, (iv)
effective collaboration between groups, and (v) continuous learning [26].

PmCOMPETISOFT model consists of one or more cycles of improvement, each of
which consists of 5 macro activities: (i) installation, (ii) diagnosis, (iii) development,
(iv) improvement, and (v) review cycle [27]. Activities that allow the software
process improvement in an organization based on business objectives [28].

 Software Process Improvement and Certification of a Small Company 35

3 Software Process Improvement in the Company

In order to present the results of the company participating in this project and
maintain the confidentiality agreements in place, it was agreed to use the alias "Aqp-
Alpha" for any reference to it. The following describes the Company to process im-
provement and certification process followed.

3.1 Company under Study

Aqp-Alpha is a small company that provides service and consulting in software de-
velopment and external training in IT tools. The company is mainly focused on de-
veloping new computer systems with a continuous incorporation of new technologies,
providing solutions to different organizations in Peru. The company has 15 employees
including managers, administrative and technical team.

In Aqp-alpha is considered that the software process improvement is important and
represent the opportunity to grow and mature as an organization. For this reason,
agreed to adopt and implement MoProSoft in all processes of the Company. A special
situation in Aqp-Alpha was that the General Manager had knowledge and experience
in process improvements using MoProSoft. This situation facilitated the decision to
improve processes, allocate time to human resources and material resources to make a
success of the improvement effort.

3.2 Software Process Improvement

The improvement project encompassed the macro-activities defined in pmCompeti-
soft but with some adjustments in its execution according to the coordination of the
improvement team. The important aspects of the improvement project are showed in
the next section.

Installing the Improvement Cycle. General Manager decided to implement MoPro-
Soft as a part of the 3rd Phase COMPETISOFT Peru, for which they signed an
agreement to improve processes between the company and the project
COMPETISOFT-Peru. In this agreement established some guidelines given below:

• The nine MoProSoft processes will implement at the capability level 1. The im-
provement cycle will estimated in 8 month and two iterations. The first iteration
will cover the processes of the Top Management category and three of the
processes of Management category (Process Management, Project Portfolio Man-
agement and Resource Management). The second iteration will cover the remain-
ing MoProSoft processes.

• It will form a team of improvement in the Company, including a Junior Consultant
trained in the models and a process quality manager from the company dedicated
for 20 hours per week along the Project. The manager will be trained on a continue
way on MoProSoft model.

36 V. Ñaupac, R. Arisaca, and A. Dávila

• The kick-off meeting of software process improvement will announced to all com-
pany employees through a special meeting.

All the guidelines included in the agreement were met. Particularly, in relation to the
socialization, the general manager showed great confidence in the software process
improvement and its benefits for the employees and the company.

Diagnostic Assessment. To perform the diagnosis process we used instruments de-
veloped by COMPETISOFT-Peru Project, collected and reviewed the documentation
from de processes and held a series of interviews with employees. Using the process
defined in ISO/IEC 15504, we determined process capabilities profile against
MoProSoft. The profile was obtained using a spreadsheet where they had registered
all relevant process elements (inputs, outputs and activities) at capability level 1 from
MoProSoft. The assessment was conducted for each process attribute using a mea-
surement framework defined by ISO/IEC 15504: (N) Not achieved, (P) Partially
achieved, (L) Largely achieved, and (F) Fully achieved. However, to facilitate under-
standing of the level of compliance was defined a metric of compliance coverage by
counting the elements that do meet over the total of possible elements. Figure 1 shows
profile process capabilities with baseline adherence rates of each process.

The assessment results shows that some processes reached the qualification N and
other the qualification P, which means that all processes are at the capacity level 0.

It may be noted that although the company believes it does things well, they recog-
nized that little formality in its processes has caused problems when they perform
their projects. This is shown in the partial or total absence of various practices or doc-
uments needed (defined in MoProSoft) such as: strategic plan, process pattern, as-
sessment and improvement process plan, sales plan, project portfolio management
plan, record of progress and project activities, knowledge base, project risk man-
agement, change management and updating of technical documents, etc.

Proposal and Process Improvement. To develop the Improvement Plan is needed to
carry out a series of meetings with the CEO of the company, to develop a list of the
most important problems and current business objectives. Considering both lists, we
performed the analysis of the impact of implementing each MoProSoft processes to
support the scope and achievement of business objectives and to contribute to solve
existing problems. The Table 1 presents the problems found and business objectives.

Fig. 1. Processes capabilities profile of Aqp-Alfa (Diagnostic Assessment)

24
6

29

8 10 14
0

26 33

100

0

20

40

60

80

100

GNeg GProc GProy GRec GRHAT GBSI GCo APE DMS Ref

Process capabilities profile % adherence

 Software Process Improvement and Certification of a Small Company 37

Table 1. Business goals and issues in Aqp-Alfa

These results together with the initial diagnosis allowed to define what processes
will be designed and/or redesigned in the improvement cycle. Also, define two itera-
tions for the improvement project. In Table 2 presents the general activities underta-
ken during the iterations.

Table 3 shows the processes and other information about iteration where were de-
veloped, capability levels in each iteration, times demanded to implement improve-
ments in these processes without considering the time of the pilots and coverage level.

The pilot was conducted over a period of 6 months and a half. During which time,
the activities demanded more time and control were the creation of standard templates
for documenting each process and the continue training to those process responsible.

O1. Maximize your profits through the efficient use of resources.

O2. Having highly trained and certified personnel, to ensure a proper process of developing an IT
product or service.

O3. Create strategic alliances with other key organizations.

O4. Using national and / or international standards in the process of software development and IT
services, to ensure the delivery of a quality product or service.

O5. Achieving customer loyalty as well as confidence in their services.

O6. Achieving internal staff satisfaction.

- Business Management erratic for some businesses because of lack of clarity in the direction of the
company or absence of a Strategic Plan for Business. O1, O5.

- Business processes are not formally defined. O1, O2.

- Lack of management of a portfolio, which is why there was no proper management of each project.
O1, O4, O5.

- There was no proper management of resources, since it is not planned how they were going to find
and buy each one of these. O1, O2, O3.

- There was no knowledge of training needs that required human resources. O2, 05.

- Members of the company had never gone through a process of performance evaluation. O2, O4.

- The procurement of goods and / or services are performed taking into account only the costs
thereof, and the same evaluation was not performed its suppliers. O1, O3, O4.

- You had a Maintenance Plan, of which only maintenance was done to their property whenever they
had a problem. O1, O3, O4.

- Information relevant to the company generally was discarded each time you did maintenance on
personal computers of members of the company and in some cases lost due to problems with
software like virus and presence of others. Therefore most of them chose to save your data to your
email or external memories. O1, O4.

- Absence of a Plan for each Project, which describes issues such as risk management, cost and time
estimate, etc. for each of these, which the team carried out the activities that the project leader
destined for each week. O1, O3, O4, O5.

- Lacking internal projects deliverables such as requirements specification, analysis and design. O4,
O6.

- In some projects there was no user manual nor a manual, because the customer does not demand as
project deliverable. O4, O6.

Business goals of the company

Business issues (related to goal affect)

38 V. Ñaupac, R. Arisaca, and A. Dávila

Table 2. Activities in both iterations

Table 3. Actions and results in SPI

When the improvement cycle started, some members of the company were showed

unbelievers about whether this improvement process would help them improve their
work or it will become a waste of time. As it was developing the pilot, also became
clearer about the objectives sought through the implementation of this improvement
cycle. Shortly after the end of the improvement process responsible for almost all
processes were identified with their functions and roles within the company, only
presented the case of Responsible Management Goods, Services and Infrastructure,
which did not stop to understand some MoProSoft requirements. For example, what
was the purpose of making an assessment providers working with the company? nor
the need to the maintenance plan. But, this case was settled satisfactorily using train-
ing in MoProSoft model and shows him how his works affect the software projects
and impact in the company objectives.

The improve in the Project Management process implied a change in the way of
working in the company, since the model aims to work hand in hand between the
Portfolio of Projects and Sales Plan. In the case of process management, they custo-
mized the process guidance, which defined the activities, products and responsibilities
according to the capability level 1 in MoProSoft. Also due to lack of knowledge in
risk management has defined a template for monitoring these. The Organizational
Knowledge process brought the most radical change in the cycle of process improve-
ment, since it created a Knowledge Base, which had a design that meets the needs of
each user (role), as well as usage rules this. By creating such a knowledge base all

1 2
A1 x
A2 x x
A3 x x
A4 x x
A5 x x
A6 x x
A7 x x
A8 x x
A9 x x

Activity
Training on the model
Planning of the Iteration
Formulation of the improvements
Review of the improvements
Training on each process
Pilot of the improvements
Documentation of the process
Monitoring of the pilot
Evaluation of the Iteration

%

A
dh

er

Q
ua

li
f

It
er

 1

C
ap

ab

Pr
oc %

A

dh
er

Q
ua

li
f

It
er

 2

C
ap

ab

Pr
oc

Design 5 56 L 1 96 F 1

Design 7 59 L 1 76 L 1

Redesign 5 47 P 0 80 L 1

Design 3 36 P 0 52 L 1

Redesign 4 N.A N.A N.A 69 L 1

Redesign 6 N.A N.A N.A 51 L 1

Design 4 N.A N.A N.A 98 F 1

Redesign 3 N.A N.A N.A 67 L 1

Redesign 3 N.A N.A N.A 69 L 1

--- 1 --- --- --- --- --- ---

--- 1 --- --- --- --- --- ---

2

2

2

1

2

1

1

1

1

2

2

Knowledge of the Organization

Specific Project Management

Final 1st iteration

Final 2nd iteration

Software development and maintenance

Business Management

Process Management

Project Management

Management of exceptions

Human Relations Management and Work Environment

Properties, Services and Infrastructure Management

GCO

DMS

Evaluation

Evaluation

G.Neg.

G.Proc.

G.Proy.

GRHAT

G.Rec

GBSI

APE

It
er

at
io

n

Action

D
ur

at
io

n
(w

ee
ks

) Iteration 1 Iteration 2

Process
Abbrev. (In

Spanish)

 Software Process Improvement and Certification of a Small Company 39

members of the company were forced to train in the tool that allowed use, forcing
them to migrate to a new way to store your information.

During the implementation of Improvement Plan several issues were resolved im-
mediately, because almost all were identified before in the Risk Management Plan
and there were tracked every week. The issues detected out of the Risk Management
Plan were resolved in the best way possible, trying to reduce their impact in the ex-
ecution of the plan and do not affect future activities. Table 4 contains the most strik-
ing problems encountered and the solutions given for each case.

Assessment and Improvement Cycle Review. In each iteration there was a quick
review of the documents worked and the process defined with respect to the pilot and
the provisions made based on MoProSoft. The assessment identified some minor
deficiencies in some key business documents such as: strategic plan, sales plan, risk
matrices and the evaluation plan of processes among others. The grade obtained by
each process according to the iteration can be appreciated in Table 3, where the "% of
adher" is the coverage calculated by counting process elements compliments against
to the total, the column of qualification corresponds to that given using the ISO/IEC
15504-2.

Table 4. Issues and action taken into SPI Project

Issues Solutions

Lack of experience of the quality manager. Regular training by the COMPETISOFT Peru team.

Lack of organization improvement group.
Make a plan of weekly activities, further indicating that the
products should be developed, as well as responsible for this.

Delays in the Improvement Plan activities. Modify calendar giving more time to achieve these activities.

Lack of MoProSoft as a role model by all
members of the company.

Trainings were held constant for all members of the
company, trying to give greater emphasis to the processes
which were part of each of them and always stressing the
importance of this process of improvement in their daily

kPoor understanding of how to develop a
sales plan, the responsible person
understood how to do market analysis.

Currently the company only detects potential customers and
how to reach them, but still lacks a formal Marketing Plan.

Lack of experience in managing portfolios
of projects, since there was no concise
Project Plan (with information relevant to
the charge of this).

Currently responsible for project portfolio AQP-ALFA
managed the details of each project separately, but produces
a list of projects with useful information for him.

Poor performance of some processes
responsible because they did not understand
as they should generate some of their
processes or products that the new process
to work harder.

The group members had to improve continuously support
and guide the development of the products of these
processes. As well as continually insist on the development
of these.

Non-compliance of the design of the
Knowledge Base on the part of those
responsible.

Meetings were held with each of these to know what their
non-conformity so we can modify the design of the base to
fit into their daily work.

Non-compliance with the standard
nomenclature defined for storing files in the
Knowledge Base.

A meeting was held to present the reasons why that
standard was applied naming.

Failures in the repository of the knowledge
base because the programmers to code
updates daily.

It was determined that only be stored in the Knowledge
Base stable versions, and developers would use a separate
repository for their daily actions.

40 V. Ñaupac, R. Arisaca, and A. Dávila

In the definition of project management process was introduced some mistakes be-
cause the new definition confused some activities of two processes: project manage-
ment and project portfolio management. It also recommended using a simple sales
plan including the minimum elements that suggested the model

4 Certification Process

The internal assessment at the end of each iteration was very useful to those responsi-
ble because they were more aware of how to operate their processes and make appro-
priate adjustments. These assessments detected some deficiencies that were quickly
adjusted. Upon completion of the improvement project, the Company chose to certify
their processes using the Peruvian Technical Standard NTP 291.100 (MoProSoft) that
is assessed to ISO / IEC 15504 by the Quality Institute of the Pontificia Universidad
Católica del Perú.

After finishing administration activities, the company presented the list of projects
to choose the projects to be evaluated. Once selected the projects proceeded to define
the schedule of meetings with those responsible for processes and leave all the evi-
dence on hand for meetings with the evaluators.

The evaluation lasted 3 days at the company, reviewing all the evidence presented
and conducting interviews with staff provided in the schedule. At the end of the as-
sessment results were presented detailing strengths and weaknesses that were found in
every process. In Table 5 presents the ratings for each of the processes. Getting an F
level of compliance (fully achieved in 3 of the 9 processes) and L (Largely achieved
in the remaining 6 processes), which allowed the certification of the Company at a
capability level 1 in NTP 291100 (MoProSoft.

5 Final Discussion y Future Work

The company Aqp-Alpha formally began its process improvement project in August
2010 and ended in March 2011 and then started the certification process, to be eva-
luated in April 2011 and obtained certification in June 2011. This chronology shows
how a small company where all employees and their managers are committed to the
work, it achieves the expected results in the projects. It should be noted that both CEO
and Junior consulting already had knowledge and experience in MoProSoft which
was a contribution to their success.

In the first iteration of the improvement, the processes selected were those ma-
naged by a few persons. This idea allowed the company to learn about this type of
effort. Also, they achieved satisfactory results because they spent much time analyz-
ing business information to formalize the process and to adapt it to work their way
today. In this iteration, it was created formats for the documents required in each of
formalized processes and the members of the company were trained in changes and
quality concepts and their importance for the company and for their work.

 Software Process Improvement and Certification of a Small Company 41

Table 5. Pro-cess capability profile in certification process

In the second iteration it was noted that activities in the first iteration established a

good reference to deploy the new activities. The format of documents to be generated
and also each responsible for each process was which were fully informed of the ac-
tivities to be performed and the evidence to be generated. The results of the iteration
were satisfactory, because it achieved the goals set at the beginning of the improve-
ment cycle. The ratings at the end of the process improvement were considered ac-
ceptable and the goal of certification as a real possibility. We developed a work plan
to monitor and improve the weaknesses and maintain good practice.

The achievements at the end of the improvement cycle showed that not only raised
the level of compliance of processes, but also noted other changes in the company,
such as the use of a risk matrix for each project to be developed, the generation of
project plans, the use of software to plan and monitor progress of the activities of each
project, the use of a repository as a knowledge base and what better security what
were the activities that each person must perform in the company according to the
role represented in this.

The small company achieved good results in a short time because there was a real
commitment and effective general management and professionals involved. Em-
ployees in the pilots appreciated the benefits of process improvement as more orga-
nized clarity at work, among others. The training was very convenient to facilitate the
adoption of improvements.

Acknowledgements. This work is framed within COMPETISOFT Peru Project 3rd
Phase 009-FINCyT-PITEI-2010/ACKLIS which tittle was: cMoProSoft “Definición
de una Certificación de Procesos para pymes de tecnología de Información basada
en Normas Internacionales ISO/IEC usando un Método de Evaluación Propio y una
Herramienta de Soporte“ and, the Engineering Department of Pontificia Universidad
Católica del Perú.

References

1. Fayad, M.E., Laitinen, M., Ward, R.P.: Software Engineering in the Small. Communica-
tions of the ACM 43(3), 115–118 (2000)

2. APESOFT: Programa de Apoyo a la Competitividad de la Industria del Software, Perú,
Diciembre (2008)

APE
DMS

Id Process
G.Neg.
G.Proc.
G.Proy.
G.Rec

Software development and maintenance
Specific Project Management

Process Qualification
F
F
L
L

Business Management
Process Management
Project Management
Management of exceptions
Human Relations Management and Work Environment
Properties, Services and Infrastructure Management
Knowledge of the Organization

GRHAT
GBSI
GCO

L
L
F
L
L

42 V. Ñaupac, R. Arisaca, and A. Dávila

3. Laporte, C.Y., April, A., Renault, A.: Applying ISO/IEC Software Engineering Standards
in Small Settings: Historical Perspectives and Initial Achievements. In: Proceedings of
SPICE 2006 Conference, Luxembourg, May 4-5 (2006)

4. MCT: Pesquisa de Qualidade no setor de Software Brasilero (2009),
http://www.mct.gov.br/upd_blob/0214/214567.pdf (last visit December
15, 2011)

5. CETIC: Thailand Initial Implementation of ISO/IEC 29110,
http://www.cetic.be/IMG/pdf/Thailand_Initial_Implementation_
ISO29110.pdf (last visit December 15, 2011)

6. Pino, F.J., García, F., Piattini, M., Oktaba, H.: COMPETISOFT: Revisión sistemática de
mejora de procesos software en pequeñas y medianas empresas de software (2006),
http://alarcos.inf-
cr.uclm.es/competisoft/publico/downloads/Inf_T%C3%A9cnicos/C
OMPETISOFT_IT_1.pdf (last visit November 16, 2011)

7. Bertone, R., Pasini, A., Ramón, H., Esponda, S., Pesado, P., Mon, A., Gigante, N., De Ma-
ria, E., Estayno, M.: Un Modelo para PyME’S. In: XXV Jornadas IRAM – Universidades,
San Juan, Argentina (2006), http://www.uniram.com.ar/jornadas/XXV/TC-
19.pdf

8. García Romero, C.: El Modelo de Capacidad de Madurez y su Aplicación en Empresas
Mexicanas de Software. Tesis Licenciatura. Ingeniería en Sistemas Computacionales. De-
partamento de Ingeniería en Sistemas Computacionales, Escuela de Ingeniería, Universi-
dad de las Américas – Puebla, Mayo (2001)

9. Chudnovsky, D., López, A., Melitsko, S.: El sector de software y servicios informáticos
(SSI) en la Argentina: Situación actual y perspectivas de desarrollo (2008),
http://www2.netvision.com.py/demos/ctip/v2/wp-content/uploads/
2008/04/la-industria-de-ssi-en-mercosur_caso-de-argentina.pdf

10. SEI: CMMI for Development, Version 1.3 (2010),
http://www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm

11. Pino, F., García, F., Ruiz, F., Piattini, M.: Adaptación de las normas ISO/IEC 12207:2002
y ISO/IEC 15504:2003 para la evaluación de la madurez de procesos software en países en
desarrollo. IEEE América Latina 4(2), 17–24 (2006)

12. ISO: ISO 9001, Quality management systems – Requirements, Geneva (2008)
13. Gresse, C., Anacleto, A., Salviano, C.: Helping Small Companies Assess Software

Processes. IEEE Software, 91–98 (January-February 2006)
14. Laporte, C., Simon, A., Renault, A.: The application of International Software engineering

Standards in Very Small enterprise. SQP 10(3), 4–11 (2008)
15. Richardson, I., Gresse, C.: Why are small software organizations different? IEEE Soft-

ware 24(1), 18–22 (2007)
16. Oktaba, H., Esquivel, C., et al.: Modelo de Procesos para la Industria del Software. Mo-

ProSoft. Versión 1.3. Mayo (2005)
17. Softex: MPS.BR - Mejora de Proceso del Software Brasileño Guía de Implementación –

Parte 7: Fundamentos para Implementación del Nivel A del MR-MPS (2011)
18. Ariel, J., Bastarrica, C.: Proyecto SIMEP-SW Trabajo de Investigación: Hacia una Línea

de Procesos Ágiles Agile SPsL (2005)
19. CYTED: COMPETISOFT. Mejora de Procesos para Fomentar la Competitividad de la Pe-

queña y Mediana Industria del Software de Iberoamérica (2006),
http://www.cyted.org/cyted_investigacion/detalle_accion.php?
un=9c838d2e45b2ad1094d42f4ef36764f6&lang=es

 Software Process Improvement and Certification of a Small Company 43

20. Oktaba, H., Felix, G., Mario, P., Francisco, R., Francisco, P., Claudia, A.: Software
Process Improvement: The Competisoft Project. IEEE Computer 40(10) (October 2007)

21. COMPETISOFT – PERU 2. Mejora de Procesos para Incrementar la Competitividad de la
Pequeña y Mediana Industria del Software de Iberoamérica. Componente – Perú. Proyecto
DAI – 2009 – 008 – PUCP, de sitio web (2010),
https://sites.google.com/site/competisoft2peru/

22. Basurto, C.: MOPROSOFT (2011), http://www.acklis.com/moprosoft
23. Reyes, P., Margain, L., Alvarez, F., Munoz, J.: Aplicación de instrumento diagnóstico en

proceso “gestión de procesos” con base en MoProSoft. Investigación y Ciencia, enero-abril
(43), 30–37 (2009)

24. Oktaba, H.: MoProSoft: A Software Process Model for Small Enterprises. In: Proceedings
of the First International Research Workshop for Process Improvement in Small Settings,
pp. 93–100 (2006), Special Report CMU/SEI-2006-SR-001

25. Oktaba, H., Alquicira, C., Su, A., Palacios, J., Pérez, C., López, F.: Método de Evaluación
de procesos para la industria del software EvalProSoft, Versión 1.1., Marzo, México
(2004)

26. Pino, F.J., Hurtado Alegría, J.A., Vidal, J.C., García, F., Piattini, M.: A Process for Driving
Process Improvement in VSEs. In: Wang, Q., Garousi, V., Madachy, R., Pfahl, D. (eds.)
ICSP 2009. LNCS, vol. 5543, pp. 342–353. Springer, Heidelberg (2009)

27. Pino, F., Vidal, J., Hurtado, J.: Guía del Consultor para la Mejora de Procesos Software
(2007),
http://alarcos.inf-cr.uclm.es/competisoft/publico/downloads/
Inf_T%C3%A9cnicos/COMPETISOFT_IT_18%20Marzo%2015%202007%20Gu
ia%20del%20consultor.pdf

28. Pino, F., Vidal, J., García, F., Piattini, M.: Modelo para la Implementación de Mejora de
Procesos en Pequeñas Organizaciones Software. In: XII Jornadas de Ingeniería del Soft-
ware y Bases de Datos (JISBD 2007), Zaragoza, Spain, September 11-14 (2007)

29. ISO: ISO/IEC 15504-2 Information Technology – Process Assessment – Part 2: Perform-
ing an assessment, Geneva (2003)

30. ISO: ISO/IEC 29110 Software engineering — Lifecycle profiles for Very Small Entities
(VSEs) — Part 5-1-2: Management and engineering guide: Generic profile group: Basic
profile (2011)

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 44–58, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Derivation of Process-Oriented Logical Architectures:
An Elicitation Approach for Cloud Design*

Nuno Ferreira1, Nuno Santos2, Ricardo J. Machado3, and Dragan Gašević4

1 I2S Informática, Sistemas e Serviços S.A., Porto, Portugal
2 CCG - Centro de Computação Gráfica, Campus de Azurém, Guimarães, Portugal

3 Centro ALGORITMI, Escola de Engenharia, Universidade do Minho, Guimarães, Portugal
4 School of Computing and Information Systems, Athabasca University, Canada

Abstract. The benefits of cloud computing approaches are well known but
designing logical architectures for that context can be complicated. Prior to de-
signing a logical architecture, a proper requirements elicitation must be ex-
ecuted. When requirements are not properly elicited, and there are insufficient
inputs for a product approach to requirements elicitation, a process-level pers-
pective is an alternative way for achieving the intended base requirements for
the logical design. Our proposed solution regards the adaptation and extension
of the 4SRS (Four-Step-Rule-Set) method to derive logical architectural mod-
els, in a process-level perspective. This perspective creates context for the
product-level requirements elicitation conducing to cloud design. We present a
real industrial case where the method was applied and assessed. The method
application results in the creation of a validated architectural model and in the
uncovering of hidden requirements for the intended cloud design.

Keywords: Requirements Elicitation, Logical Architectures, Application Ar-
chitectures, Development Methods for Cloud Applications.

1 Introduction

The design of software architectures for systems to be executed in a cloud computing
environment brings many difficulties to system architects. Instead of designing a
cloud computing architecture based on user requirements traditionally defined in a
product-level perspective, we propose the use of a process-level perspective for the
requirements definition and design of the logical model of the system architecture.
This is built upon the premise that such an approach contributes to a more accurate
definition of product requirements and understanding of the project scope.

The term process, in a generic context, is hard to define. In the definition given in
[1], a process is a specific ordering of work activities across time and place, with a be-
ginning, an end, and clearly identified inputs and outputs. Software architecture deals
with the design and implementation of the high-level structure of the software [2].

* This work has been supported by project ISOFIN (QREN 2010/013837).

 Derivation of Process-Oriented Logical Architectures 45

This paper describes the extensions introduced into the 4SRS method to be adopted
at the process-level perspective in large-scale projects. The 4SRS method was first
defined and detailed in [3, 4]. The described extensions are focused on a process-level
perspective to deliver a logical architectural model. This logical architectural model
contributes to the context definition of a proper requirements elicitation. This paper
additionally illustrates the applicability of the proposed approach in a real industrial
case: the ISOFIN project (Interoperability in Financial Software). This project aims to
deliver a set of cloud-based functionalities enacting the coordination of independent
services relying on private clouds. The resulting ISOFIN platform will allow the se-
mantic and application interoperability between enrolled financial institutions (Banks,
Insurance Companies and others). In the presented real industrial case, the process-
level 4SRS is used to create the necessary context to elicit the requirements for de-
signing an architecture capable to be implemented in the three typical cloud-layers:
Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-
Service (SaaS), as defined in [5]. The transformation of such context into product-
level requirements does not belong to the scope of the present work.

This paper is structured as follows: section 2 describes the problem associated to
the real industrial case study which is presented in this paper, as well as some related
work concerning the core topics and the reason for the new approach; section 3
presents the main differences between the traditional approach of the 4SRS method
and the proposed process-level approach; section 4 presents the designed logical ar-
chitecture as context for elicitation; and in section 5, we present our conclusions and
some future work.

2 Problem Overview

This work is based on a premise that the process-level 4SRS method can be used when
there is no agreed on or defined context for requirements elicitation. Requirements
Elicitation is concerned with where software requirements come from and how they
are collected [6] within the Requirements Engineering area. The objective of a re-
quirements elicitation task is to communicate the needs of users and project sponsors to
system developers [7]. A proper requirements elicitation task must encompass an un-
derstanding of the organizational environment, through their business processes [8].

An accurate requirements elicitation can be assured through the use of require-
ments elicitation methodologies, methods or techniques. The Work System Method
[9] presents a combined static view of the current (or proposed) system and a dynamic
view of the system evolution over time. The Soft Systems Methodology (SSM) [10] is
a domain-independent analysis methodology designed for tackling problematic situa-
tions where there is neither clear problem definition nor solution.

Our approach suggests the derivation of a process-level logical architecture for
creating context for cloud design. There are several approaches to support the design
of software architectures, in a product-level perspective, like RSEB [11], FAST [12],
FORM [13], KobrA [14] and QADA [15]. The product-level perspective of the 4SRS
[4] method also promotes functional decomposition of software systems.

46 N. Ferreira et al.

Tropos [16] and 4SRS (in [17]) are process-level requirement modeling methods.
Tropos uses notions of actor, goal and (actor) dependency as a foundation to model
early and late requirements, architectural and detailed design. The 4SRS method is
usually applied in a product-level perspective. Our presented approach formalizes the
process-level perspective that was firstly used in [17]. Use cases act as input for the
4SRS method and, in the 4SRS process-level perspective, portray the activities
(processes) executed by persons or machines in the scope of the system, instead of the
characteristics (requirements) of the intended products to be developed. According to
[18], and in a business context, a process is executed to achieve a given business goal
and where business processes, human resources, raw material, and internal procedures
are combined and synchronized towards a common objective. Our processes represent
the real-world activities of a software production process, like in [19]. A software
process is composed of a set of activities related to the software development life-
cycle. Designing a process comprises the development of a process architecture that
continually aggregates process elements to support tailoring and enhancements of
processes. Implementing a process encompasses the specification of the requirements
for process execution.

The requirements for process execution can be represented in a logical architecture.
A logical architecture can be considered a view of a system composed of a set of
problem-specific abstractions supporting functional requirements [20]. The process
architecture represents the fundamental organization of service development, service
creation, and service distribution in the relevant enterprise context [21]. A process
architecture can also be defined as an arrangement of the activities and their interfaces
in a process [22], takes into account some non-functional requirements, such as per-
formance and availability [2], and can be represented with components, connectors,
systems/configurations of components and connectors, ports, roles, representations
and rep-maps [23], as well as by architectural elements’ static and temporal features
[24]. The result of the application of the 4SRS method is a logical architecture.

Existing approaches for designing software architecture do not support any specific
technique for requirements elicitation; rather, they use the information delivered by an
adopted elicitation technique. One problem arises when typical (product-oriented)
elicitation techniques cannot properly identify the necessary requirements. With the
real industrial case described in this paper we demonstrate that firstly adopting
process-level techniques allows for better understanding of the project scope since it
allows for the elicitation of the activities that will be supported by the product to be
developed.

2.1 The ISOFIN Project

The logical process-level architecture of the ISOFIN solution [25] has embedded
design decisions that are initially injected in the processes descriptions. The design
decisions concern the deployment of the system in a public cloud environment and its
interoperability with several other private clouds as defined in the project objectives.

The resulting logical model of the system architecture, based on the processes that
are intended to be executed, shows a software solution able to be deployed in an IaaS

 Derivation of Process-Oriented Logical Architectures 47

layer. That layer will support the execution of a set of services that will allow suppli-
ers to specify the behaviour of the services they intend on supplying, in a PaaS layer.
This will allow customers, or third-parties, to use the platform’s services, in a SaaS
layer and be billed accordingly. This paper only presents a subset of the proposed
process-level architecture related to the customer perspective, as seen in Fig. 1. Proc-
esses regarding the provider perspective (e.g., infrastructure management) are not
considered. We present subsets of two use case models concerning two distinctive
functionalities provided by the platform.

Fig. 1. Use Case Model Regarding the ISOFIN Process-level Perspective Functionalities

The process-level architecture focuses on two sets of functionalities: Intercon-
nected Business Service (IBS) and Supplier Business Service (SBS). IBSs concern a
set of functionalities that are exposed from the ISOFIN SaaS Platform to ISOFIN
Customers. An IBS interconnects one or more SBSs and/or IBSs exposing functional-
ities that relate directly to business needs. SBSs are a set of functionalities that are
exposed from the ISOFIN Supplier private cloud.

Fig. 2. Refinement of Use Case 1 and Use Case 2 (subset)

SBS DeveloperSBS Business
Analyst

IBS DeveloperIBS Business
Analyst

{U1.} Perform
Busines Activities

{U3.} Develop
SBS{U2.} Develop IBS

<<uses>> <<uses>>

Native Business Services

ISOFIN
Customer

Process-level ISOFIN Functionalities

48 N. Ferreira et al.

In Fig. 2 there is a description of the execution of a set of economically-related
business processes within the context of the project. They are executed through the
SaaS layer, since the software components and applications are hosted by third-party
service providers in the cloud. By accessing the services functionalities (represented
by implemented IBSs), ISOFIN Customers fulfills their business needs.

Most of these processes, namely the ones regarding the design and implementation
efforts, are executed through the PaaS layer. The defined processes will correspond to
some of the services and applications that the ISOFIN Platform will support, when
executed in the SaaS layer. The model encompasses the analysis, design and imple-
mentation of IBSs, accessed externally, through the SaaS layer, and providing
ISOFIN Customers with added business value.

3 Process-Level 4SRS as an Elicitation Method for Cloud Design

The 4SRS method allows for the transformation of user requirements into an architec-
tural model representation. This paper presents an extension of the traditional (prod-
uct-level perspective) usage of the 4SRS method (presented in [4]) to allow its
application in a process-level perspective supporting the creation of context for the
product-level requirements elicitation. This application differs from the traditional by
defining a set of rules that must be observed when reasoning about the execution of
the method steps. Our extension of the method also defines additional micro-steps to
the existing ones. Alongside the method presentation there will be included some
examples created during the method application to derive a logical architecture that
acts as a basis for the requirements elicitation of a cloud SaaS solution, in this case, a
subset of the ISOFIN project.

The 4SRS method takes as input a set of use cases describing the requirements for
the cloud-specific processes that tackle the initial problem. These use cases are re-
fined trough successive 4SRS iterations, representing the intended cloud concerns of
the involved business and technological stakeholders. Neither KobrA, RSEB, nor
Tropos make use of techniques for refining use cases like the 4SRS method does.
Application of the 4SRS method requires the creation of “architectural elements”
(AEs). The nature of AEs varies according to the type of system under study and also
with the context where it is applied. In the specific context of logical architectures, the
term architectural element refers to the pieces from which the final logical architec-
ture can be built. We deliberately use this term to distinguish those artifacts from the
components, objects or modules used in other well established contexts, like in the
UML structure diagrams.

The execution of the 4SRS transformation steps can be supported in tabular repre-
sentations as it can be seen in [4]. Moreover, the usage of tables permits a set of tools
to be devised and built, so that the transformations can be partially automated. These
tabular representations constitute the main mechanism to automate a set of decision-
assisted model transformation steps. Tabular transformations are supported in a table
where the cells are filled with the set of decisions that were taken and made possible
the derivation of a logical architecture for the cloud design. Each column of the table

 Derivation of Process-Oriented Logical Architectures 49

concerns a step/micro-step of the method execution. For readability purpose, the en-
tire table was divided into five smaller tables (Tables 1 to 5). In the real context, we
manipulate the entire table and not the smaller ones. The next sub-sections detail the
extensions made to the process-level perspective of the 4SRS method and the added
micro-steps (product-level 4SRS original steps are in [4]).

3.1 Step 1: Architectural Element Creation

This step regards the creation of AEs. The product-level 4SRS [4] rule of transform-
ing each use case into three AEs is still valid in the process-level 4SRS. According to
the MVC-like pattern applied in the product-level 4SRS, an interface, data and control
AEs are created for each use case. i-type, d-type, or c-type stereotypes respectively are
added to each AE and their names are prefixed with "AE" (the stereotypes definition
will be detailed in micro-step 2i). No particular rationale or decision is required at this
step since it concerns mainly the transformation of one use case into three specific
AEs. This step is represented in the 1st and 2nd columns of Table 1.

An addition to this step is the identification of glue elements resulting from the tex-
tual descriptions associated with the use case under analysis. If the use case depicts
pre- or post-conditions in the form of validations, those can be expressed in this step
as a Glue AE. These AEs have the c-type stereotypes since they require decisions to
be made with computational support, that is, they must be supported by the system
architecture to be represented. A sequential number is added to each Glue AE. Those
elements will be used as generic process interfaces between generated AEs and act as
pre- or post-condition process validations. Other AEs are expressed as Generated AE.

For example, {AE1.9.c2} Validate Business User was created as a result of the
analysis of the use case {U1.9.} Send info to IBS with the description “[…] Before
sending commands to an IBS, ISOFIN Customers must subscribe […]”.

Table 1. Step 1 of the 4SRS method

{U1.9.} Send info to IBS
{AE1.9.c2} Glue AE

{AE1.9.i} Generated AE

Step 1 -architectural element creation
Use Case Description

3.2 Step 2: Architectural Element Elimination

In this step, AEs are submitted to elimination tasks according to pre-defined rules. At
this moment, the system architect decides which of the original three AEs (i, c, d) plus
any glue element are maintained or eliminated taking into account the entire system.

The original step 2 of 4SRS is divided into seven micro-steps. We added a new mi-
cro-step, 2viii: Architectural Element Specification. With this addition, step 2 be-
comes more robust and detailed. It provides information to the next steps that was
hard to obtain in the original version.

50 N. Ferreira et al.

Micro-step 2i: Use Case Classification. In this step, each use case is classified ac-
cording to the nature of its AEs, previously created in step 1. The nature of an AE is
defined according to the suffix the AE was tagged with. This classification is
represented in the 2nd column of Table 2 (the 1st column regards the AE identifica-
tion). In the process-level perspective more than one of each AE type can be generat-
ed according to the textual description and in the model of the use case. Each AE type
must be interpreted as follows:

• i-type – refer to interface. These represent process’ interfaces with users, software
or other processes. An AE belonging to or being classified in this category is due to
its ability interact with other AEs external to itself;

• c-type – refer to control. These represent a process focusing on decision making
and such decision must have a computational support given from the overall in-
tended system;

• d-type – refer to generic decision repositories (data), not computationally supported
from the overall intended system. This repository stores information for a given pe-
riod of time, regardless of duration, comprising decisions based on physical reposi-
tories (like documents or databases) or verbal decisions taken and transmitted be-
tween humans.

In the process-level perspective, c-type and d-type AEs are related to decision-making
processes. The difference resides on the computational support of the AE by then
under design overall intended system (in hypotheses).

Micro-step 2ii: Local Elimination. This micro-step refers to determining which AEs
must be eliminated in the context of a use case, guaranteeing its full representation.
This is required since micro-step 2i disregards any representativeness concerns.

There are cases when there is an explicit place for a d-type AE and it is admittedly
eliminated. Reasons for this are due to the process-level perspective: there is no need
for certain types of decision repositories that only regard information for the final
product and not the process. This is the case, for example, in use case {U1.9.} Send
info to IBS, where any possible repository (data object in the traditional 4SRS) that
could exist would only reflect the product-level perspective and not the process. Other
situation similar to the previous one is when a given d-type AE exists in the product-
level perspective but also, and above it, exists in the process-level perspective. This is
the case of {U1.6} Instantiate IBS to Remote Business Program, where {AE1.6.d}
IBS Configuration Decisions represents the process for supporting the configuration
process (process-level), not the configuration repository (product-level).

The 3rd column in Table 2 corresponds to the execution of micro-step 2ii. The
cells are filled with “T” or “F”. “T” means the AE is going to be eliminated and “F”
that the AE is kept alive.

Micro-step 2iii: Architectural Element Naming. In this micro-step (4th column of
Table 2), AEs that survived the previous micro-step are given a name. The name must
reflect the role of the AE within the entire use case, in order to semantically give hints

 Derivation of Process-Oriented Logical Architectures 51

on what it represents and not just copy the original use case name. Usually, the AE
name reflects also the use case from which the AE was originated.

For better understanding of the role of the AE, it is advisable that the name given
reflects the type (c, d or i) of the AE. For instance, since d-type refers to decision-
making, in our model, we decided to name “IBS Configuration Decisions” to
{AE1.6.d}. In glue AE cases, the naming of the AE should reflect the pre- or post-
conditions that are executed. For instance, {AE2.4.3.d} ISOFIN Platform Supplier
Policy, reflects the pre-condition “The ISOFIN Supplier must accept […] to comply
with the defined policy”.

Table 2. Micro-steps 2i trough 2iv of the 4SRS method

{U1.9.} i

{AE1.9.c2} F
Validate Remote Business
Program

Execute the necessary verification procedures to
ensure that the Remote Business Program is …

{AE1.9.i} F Send Commands to IBS
Send commands and associated information to the
IBS in order to process a business request…

2i - use case
classification

2ii - local
elimination

2iii - architectural
element naming

2iv - architectural element description

Step 2 - architectural element elimination

Micro-step 2iv: Architectural Element Description. This micro-step is represented
in the 5th column of Table 2. The resulting AEs that were named in the previous mi-
cro-step must be described and the requirements that they represent must be addressed
in the process-level perspective. This micro-step is where the transition is made from
the problem domain to the solution domain, so the descriptions must detail, in process
terms, how, why, when by whom that AE is going to be executed. This micro-step
must explicitly describe the expected behavior of the AE execution, including which
decisions will be made and how will they be supported.

Micro-step 2v: Architectural Element Representation. The purpose of this micro-
step is to eliminate AE redundancy in the global process. In this micro-step, all AEs
are considered and compared in order to identify if one AE is represented by any oth-
er one. The identification of AE representation is the most critical task in the 4SRS
method application, because the elimination of redundancy assures a semantic cohe-
rence of the logical architecture and discovers anomalies in the use case model. Since
the architecture being described concerns the process-level, the identification of AE
redundancy takes in consideration facts like the execution context, actors involved,
used artifacts, activities and tasks, among others. If all of these factors are similar,
though the AEs are originated by different use cases, the given AE can be considered
to represent another. Other cases when an AE is considered to represent another:

• In similar activities, if the same actor has the same role in the both AEs, despite
different execution contexts (e.g., {AE2.4.1.i} Perform ISOFIN Supplier Request
Evaluation is considered to be represented by {AE2.4.2.i} Perform ISOFIN Cus-
tomer Request Evaluation, the IBS Business Analyst triggers both AEs – the first
AE represents the second AE, because the actor interacts with the same type of in-
formation);

52 N. Ferreira et al.

• In similar activities, different actors participate in the AE, but the execution context
is the same (e.g., {AE2.1.c} Access Remote Catalogs and {AE1.11.i} Browse
ISOFIN Catalogs, the involved actors are different, but the execution platform is
the same – both of them execute in the ISOFIN Platform, in the SaaS layer).

These cases are only applicable for i-type and c-type AEs. This set of rules cannot be
applied to d-type AEs since they represent the decisions that need to be taken and
whose computational support is not assured by the scope of the project under analysis.
Also, d-type AEs are usually input for other decision processes (c-type AEs) requiring
computational support.

Despite the decision making process may be similar, d-type AEs differ in the deci-
sion making purpose. This difference is required to assure the process variability,
when the execution contexts are similar but the involved actors and activities are dif-
ferent. For example, {AE1.5.d} Consumer Subscription Requirements and {AE3.3.d}
SBS Catalog Subscription Requirements cannot be represented by one AE, although
the i-type related AEs – {AE1.5.i} and {AE3.3.i} – are represented by the same AE.
The decision making regarding a specific purpose viewed from different perspectives
concerns different purposes, even if, at first sight, the interface seems to be the same.

A potential concern when executing this micro-step regards the number of AEs in-
volved. Since all living AEs must be accounted in the analysis, it is hard to keep track
of all the processes they refer to in order to know if one can be represented by other.

In the product-level perspective, this step concerns the analysis if a given AE is
complex enough to exist by itself or if there is any other AE whose functionalities can
be incorporated in the one under analysis. This rule also applies to the process-level
perspective, if three questions are considered:

• Is the analyzed AE suitable to be represented by other in his entire functionality?
• Is the target AE suitable to incorporate the AE under analysis functionalities with-

out losing any of its own characteristics?
• If the target AE is complex and the extra-functionalities to be added increase the

complexity will it be in a degree where its maintenance, description or scope are
compromised?

If the activities or processes executed within the context of a given AE are to be ex-
ecuted by another AE and the target AE is subject to change, no extra complexity
should be added to that target AE nor its core specification change in order to full
represent the source AE.

The execution of micro-step 2v is presented in Table 3 in the 2nd and 3rd columns.
The 2nd column, “represented by”, stores the reference of the AE that will represent
the AE being analyzed. If the analyzed AE is going to be represented by itself, the
corresponding “represented by” column must refer to itself. The 3rd column,
“represent”, stores the references of the objects that the analyzed AE will represent.

Micro-step 2vi: Global Elimination. This micro-step (4th column in Table 3) refers
to determining which AEs must be eliminated in the context of the global model,
similar to micro-step 2ii, since its execution is automatic.

 Derivation of Process-Oriented Logical Architectures 53

The AE that is represented by itself or represents other AEs is maintained. The rest
(i.e., AEs that are represented by other AEs) are eliminated. This is a fully “automat-
ic” micro-step, since it is based on the results of the previous one. If the AE is
represented by itself, cell is filled with “T”, meaning that the AE is represented by
other AE and thus, eliminated, and “F” if the AE is going to be kept alive.

Micro-step 2vii: Architectural Element Renaming. In this micro-step (5th column
in Table 3), AEs that have not been eliminated in micro-step 2vi are renamed. In cases
where the AE under analysis results of the representation of more than one AE, the
new name must reflect the global execution of the AE in the project context.

Micro-step 2viii: Architectural Element Specification. This micro-step (6th column
in Table 3) has never been considered in previous versions of the traditional 4SRS
method. Though it is similar to micro-step 2iv, this micro-step intends to describe
AEs that, in micro-step 2v, are considered to represent other AEs. The decision of
creating this micro-step arises from the need to clearly define the proper behavior of
the “new” AE in a way that is clear to system architects. Besides including the infor-
mation regarding AEs eliminated in micro-step 2vi as a result of micro-step 2v, the
AEs specifications must include the pre-conditions of the basic AEs, so it can proper-
ly support the associations to be established in step 4. For instance, if the extended
description of {AE1.9.c1} does not include the conditions described in {AE1.1.c1},
that information would be lost since {AE1.1.c1} has been eliminated in micro-step
2vi and, as such, is not considered in step 4. If those references are not preserved in
any surviving AEs, they will be permanently lost and thus, disregarded in the con-
struction of the logical diagram model.

The specification must also include execution sequence references of the AEs. For
instance, {AE2.9.i} must reference the ISOFIN Application catalog described by
{AE1.3.d}, which is also eliminated in micro-step 2v, to create the association in step
4. The specification information is required in the transformation from the process-
level approach to the product-level approach, to infer the necessary requirements of a
given product based on the processes of which the product is composed.

This micro-step contributes to a better description of AEs that result from joining
other AEs. By adding this information, the designer can clearly express their thoughts
and decisions concerning the creation of the AE under analysis as a result of the po-
tentially added extra-complexity resulting from micro-step 2v.

Table 3. Micro-steps 2v trough 2viii of the 4SRS method

represented by represent
{U1.9.}

{AE1.9.c2} {AE1.9.c2} {AE1.1.c2} F
Validate Platform
Access

Execute the necessary verification procedures
to ensure that subscribed ISOFIN Customers…

{AE1.9.i} {AE1.9.i} F
Send Commands to
IBS

Step 2 - architectural element elimination
2v - architectural element representation 2vi - global

elimination
2vii - architectural
element renaming

2viii - architectural element specification

54 N. Ferreira et al.

It is necessary to pay a special attention to the AEs that represent other AEs in micro-
step 2v. The specification must clarify system architects in what way the AE is ex-
ecuted and how its execution represents an eliminated AE.

3.3 Step 3: Packaging and Aggregation

Like in the traditional 4SRS method, in this step (2nd column in Table 4), the remain-
ing AEs (those that were maintained after executing step 2), for which there is an
advantage in being treated in a unified process, should give the origin to aggregations
or packages of semantically consistent AEs. This step supports the construction of a
truly coherent process-level model.

In order to correctly package AEs, it is necessary to consider the model as a whole,
so that all relevant processes (in a high-level order of abstraction) are identified. Then,
when justifiable, the AEs are associated to a package. The packaging technique con-
tributes for a temporary obtainment of a more comprehensive and understandable
process model. Typically, aggregation is used when there is a part of the process that
constitutes a legacy sub-system, or when the design has a pre-defined reference archi-
tecture that constricts the model.

Table 4. Step 3 of the 4SRS method

{U1.9.}
{AE1.9.c2} {P6} ISOFIN Platform Management

{AE1.9.i} {P2.4} IBS

Step 3 - packaging & aggregation

3.4 Step 4: Architectural Element Association

Decisions on the identification of associations between AEs can be based in informa-
tion contained in the use case model and in micro-step 2i. Thus, step 4 was divided in
two micro-steps: micro-step 4i: Direct Associations and 4ii: Use Case Associations.

It is also important to point out that any textual references to eliminated AEs in mi-
cro-step 2vi, must be included in micro-step 2viii, making it another source of infor-
mation for step 4.

In the traditional 4SRS application, this step is executed in a single step. We pro-
pose to do it in two micro-steps to easily identify unnecessary direct associations, as
well as associations originated by textual description of eliminated AEs. This divi-
sion, by separating the associations by its source, also helps to adjust the model when
there are changes due to refinements or corrections in the previous steps execution.

Micro-step 4i: Direct Associations. Direct associations (2nd column of Table 5) are
the ones that derive from AEs originated by the same use case. These associations are
depicted from the classification given in the method micro-step 2i. For example,
{AE1.6.d} IBS Configuration Decisions and {AE1.6.i} Configure pre-runtime IBS
are directly associated since they are originated by the same use case, {U1.6} Instan-
tiate IBS to Remote Business Program.

 Derivation of Process-Oriented Logical Architectures 55

Micro-step 4ii: Use Case Model Associations. Use Case Model Associations are the
ones that can be inferred from the textual descriptions of use cases, that is, when a use
case description refers, implicitly or explicitly to another use case, the associations
inferred imply that the use cases are connected. This micro-step is represented in the
3rd column of Table 5.

Table 5. Step 4 of the 4SRS method

{U1.9.}
{AE1.9.c2} {AE1.1.i}, {AE1.9.c1}, {AE1.9.i}. {AE3.3.i}.

{AE1.9.i} {AE1.9.c1}, {AE1.9.c2}. {AE1.7.i}, {AE2.9.i}, {AE3.3.i}.

4ii - UC Model Associations
Step 4 - architectural element association

4i - Direct Associations

As an example for these situations, the use case textual description of {U3.7.1.}
Publish in Platform Catalog in the use case model refers that “The SBS […] is availa-
ble for access to IBS Business Analyst (see use case {U2.2.} Choose SBS Specs, use
case {U2.3.1.} Define IBS Internal Structure and use case {U2.5.} Choose SBS Im-
plementation) and to the SBS Developer (see use case {U2.6.} Implement IBS)”. Thus,
the generated surviving AE – {AE3.7.1.i} Remote SBS Publishing Interface – is asso-
ciated with {AE2.1.c}, {AE2.3.1.c}, and {AE2.6.1.i}.

4 The ISOFIN Process-Level Logical Architecture

The ISOFIN project [25] is executed in a consortium comprising eight entities (pri-
vate companies, public research centers and universities). The initial request for the
project requirements resulted in mixed and confusing sets of misaligned information.
Even when a requirement found a consensus in the consortium, the intended behavior
or definition was not easily understood by all the stakeholders. Our proposal of adopt-
ing a process-level perspective was agreed on and, after being executed, resulted in a
set of information that the consortium is sustainably using to evolve to the traditional
(product-level) development scenario. Elicited requirements in a process-level
perspective describe the processes in a higher level of abstraction, making them un-
derstandable by business stakeholders. At the same time, definitions and intended
behavior of the system, expressed in the architecture that results from the process-
level 4SRS method, describe the system to technological stakeholders.

The turning point for eliciting requirements was the usage of the 4SRS method in
the process-level perspective, which allowed the transformation of process-level re-
quirements into the logical diagram. Due to size limitation for this paper and also to
the diagram’s complexity, we only present a subset in Fig. 3. This diagram represents
the logical architecture of the process-level ISOFIN functionalities. The architecture
is composed by the AEs that survived after the execution of step 2. The packaging
executed in step 3 allows the identification of major processes. The associations iden-
tified in step 4 are represented in the diagram by the connections between the AEs
(for readability purposes, the “direct associations” were represented in dashed lines,
and the “use case model associations” in straight lines).

56 N. Ferreira et al.

Fig. 3. Subset of the process-level logical architecture

As seen previously, the process-level architecture focuses on IBS and SBSs, acting
as services in the cloud environment and allowing interoperability between the insur-
ance domain business entities. In this context, there are two external business domain
entities with access to the ISOFIN Platform: ISOFIN Customers and ISOFIN Suppli-
ers. An ISOFIN Customer is an entity whose domain of interactions resides in the
scope of consuming, for economic reasons, the functionalities exposed by IBSs. An
ISOFIN Supplier is a company that interacts with the ISOFIN SaaS Platform by sup-
plying the platform with functionalities (SBSs) that reside in their private clouds.

SBSs are made available in the ISOFIN Supplier private cloud by the use of gene-
rators ({AE3.6.i} Generate SBS Code) and are composed, in the public cloud where
the ISOFIN SaaS Platform resides ({AE2.6.1.i} Generate IBS Code) to implement an
IBS. Composition of basic SBSs into IBSs give origin to more powerful functionali-
ties that are exposed by the platform.

Fig. 4. Interoperability in ISOFIN

 Derivation of Process-Oriented Logical Architectures 57

Due to the lack of consensus in the requirements elicitation in this “newfound” pa-
radigm of IT solutions (Cloud Computing), our approach changed the traditional
product-level perspective to the described process-level perspective. This new pers-
pective allows the proper elicitation of requirements in Cloud Computing projects.

The ISOFIN project aims to deliver a set of functionalities that help forward inte-
roperability in the Insurance application domain. The obtained process-level logical
architecture is mainly devoted to be used by IT-professionals and not by business
stakeholders. Based on the main constructors presented in the architecture (Fig. 3),
Fig. 4 emerged with the aim to be presented to any technical role engaged in the
ISOFIN project and be used to explain in a simple way that in the bottom layer there
are SBSs that connect to IBSs in the ISOFIN Platform layer and that the later are
connected to a ISOFIN Customer role.

5 Conclusion and Outlook

This paper presents the extensions to the traditional application of the 4SRS method,
for creating context for requirements elicitation and later derivation of logical archi-
tectural diagrams from use cases in a process-level perspective. By using the proposed
approach, we succeeded to define the requirements in such a way that they were un-
derstood by all the project stakeholders, uncovering more information: as an example,
we started with 39 use cases and ended with 74 documented AEs (not counting asso-
ciations). This means that we added more details to the problem description and that
the information is understood by all involved. The process-level perspective allowed
us to overcome difficulties when adopting a product-level perspective.

On the other hand, the manual execution of the method is prone to errors and very
time consuming. Also, by adopting first the process-level perspective instead of the
product-level perspective, time for delivering documentation to implementation teams
increased. These are opportunities for improvement. We will address these drawbacks
as future work. Additionally, we plan to study the required transformations to support
the evolution of the process-level logical architecture into a product-level logical ar-
chitecture that is needed to formally start the design phase of the cloud solution. We
will also incorporate traceability features between process requirements, process-level
logical architectures, product requirements and product-level logical architectures.

References

1. Davenport, T.H.: Process innovation: reengineering work through information technology.
Harvard Business Press (1993)

2. Kruchten, P.: The 4+1 View Model of Architecture. IEEE Softw. 12, 42–50 (1995)
3. Machado, R.J., Fernandes, J.M., Monteiro, P., Rodrigues, H.: Transformation of UML

Models for Service-Oriented Software Architectures. In: Proceedings of the 12th IEEE
ECBS, pp. 173–182. IEEE Computer Society (2005)

4. Machado, R.J., Fernandes, J.M., Monteiro, P., Rodrigues, H.: Refinement of Software Ar-
chitectures by Recursive Model Transformations. In: Münch, J., Vierimaa, M. (eds.)
PROFES 2006. LNCS, vol. 4034, pp. 422–428. Springer, Heidelberg (2006)

5. National Institute of Standards and Technology,
http://www.nist.gov/itl/cloud/upload/cloud-def-v15.pdf

58 N. Ferreira et al.

6. Abran, A., Moore, J.W., Dupuis, R., Dupuis, R., Tripp, L.L.: In: Bourque, P., Dupuis, R.,
Abran, A., Moore, J.W. (eds.) Guide to the Software Engineering Body of Knowledge
(SWEBOK). IEEE Press (2001, 2004)

7. Zowghi, D., Coulin, C.: Requirements elicitation: A survey of techniques, approaches, and
tools. In: Engineering and Managing Software Requirements, pp. 19–46. Springer, Heidel-
berg (2005)

8. Cardoso, E.C.S., Almeida, J.P.A., Guizzardi, G.: Requirements engineering based on busi-
ness process models: A case study. In: 13th Enterprise Distributed Object Computing Con-
ference Workshops, EDOCW 2009, pp. 320–327 (2009)

9. Alter, S.: The work system method for understanding information systems and information
systems research. Communications of the Association for Information Systems 9, 6 (2002)

10. Checkland, P.: Soft systems methodology: a thirty year retrospective. Systems Re-
search 17, S11–S58 (2000)

11. Jacobson, I., Griss, M., Jonsson, P.: Software Reuse: Architecture, Process and Organiza-
tion for Business Success. Addison Wesley Longman (1997)

12. Weiss, D.M., Lai, C.T.R.: Software Product-Line Engineering: A Family-Based Software
Development Process. Addison-Wesley Professional (1999)

13. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A feature-oriented reuse
method with domain-specific reference architectures. Annals of Sw Engineering (1998)

14. Bayer, J., Muthig, D., Göpfert, B.: The library system product line. A KobrA case study.
Fraunhofer IESE (2001)

15. Matinlassi, M., Niemelä, E., Dobrica, L.: Quality-driven architecture design and quality
analysis method. In: A Revolutionary Initiation Approach to a Product Line Architecture.
VTT Tech, Research Centre of Finland (2002)

16. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems
engineering: the Tropos project. Information Systems (2002)

17. Machado, R.J., Fernandes, J.: Heterogeneous Information Systems Integration: Organiza-
tions and Methodologies. In: Oivo, M., Komi-Sirviö, S. (eds.) PROFES 2002. LNCS,
vol. 2559, pp. 629–643. Springer, Heidelberg (2002)

18. Hammer, M.: Beyond reengineering: How the process-centered organization is changing
our work and our lives. Harper Paperbacks (1997)

19. Conradi, R., Jaccheri, M.L.: Process Modelling Languages. In: Derniame, J.-C., Kaba, B.A.,
Wastell, D. (eds.) Promoter-2 1998. LNCS, vol. 1500, pp. 27–52. Springer, Heidelberg (1999)

20. Azevedo, S., Machado, R.J., Muthig, D., Ribeiro, H.: Refinement of Software Product
Line Architectures through Recursive Modeling Techniques. In: Meersman, R., Herrero,
P., Dillon, T. (eds.) OTM 2009 Workshops. LNCS, vol. 5872, pp. 411–422. Springer, Hei-
delberg (2009)

21. Winter, R., Fischer, R.: Essential Layers, Artifacts, and Dependencies of Enterprise Archi-
tecture. In: 10th IEEE International Enterprise Distributed Object Computing Conference
Workshops (EDOCW), p. 30 (2006)

22. Browning, T.R., Eppinger, S.D.: Modeling impacts of process architecture on cost and
schedule risk in product development. IEEE Trans. on Eng. Management 49, 428–442
(2002)

23. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for software ar-
chitecture description languages. IEEE Trans. on Software Engineering 26, 70–93 (2000)

24. Kazman, R.: Tool support for architecture analysis and design. In: Sw Arch. Workshop
(ISAW-2) and Intern. Workshop on Multiple Perspectives in Sw. Dev (Viewpoints 1996)
on SIGSOFT 1996 Workshops, pp. 94–97. ACM, San Francisco (1996)

25. ISOFIN Research Project, http://isofincloud.i2s.pt

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 59–73, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Proposal for Simplified Model-Based
Cost Estimation Models

Vieri del Bianco, Luigi Lavazza, and Sandro Morasca

Università degli Studi dell’Insubria
Dipartimento di Informatica e Comunicazione

Via Mazzini, 5 – 21100 Varese, Italy
{vieri.delbianco,luigi.lavazza,sandro.morasca}@uninsubria.it

Abstract. Most cost estimation models require a measure of the functional size
of the application to be developed. To this end, FPA (Function Point Analysis)
is one of the most used functional size measurement methods. FPA was origi-
nally proposed for traditional data processing systems, but it has been success-
fully adapted also to measure real-time and embedded systems. Since functional
size measurement according to FPA can be quite expensive and time consum-
ing, researchers have proposed “simplified” processes, which are expected to
provide reasonably accurate measures, but require less effort and time. In this
paper, we illustrate the application of these simplified techniques to UML mod-
els of software, via a precise mapping between UML elements and the so-called
Basic Functional Components, upon which FPA measurement is based. As a re-
sult, it is possible to decrease the cost of modeling, and consequently the cost of
measurement and estimation. The relatively low cost of the estimation models
also allows developers to build different alternative models, to perform what-if
analyses and choose the most economically sensible option.

Keywords: Functional Size Measurement, Function Point Analysis, Simplified
functional size measurement, Model-based measurement, Measurement-
oriented modeling.

1 Introduction

Cost estimation is one of the fundamental prerequisites for successful software devel-
opment. Very important activities like feasibility analysis, pricing, and project plan-
ning depend on accurate and timely cost estimation.

Cost estimation techniques generally require a set of input data, the most important
of which is the size of the software application to be developed [11][12].

Functional size measurement (FSM) is essential for cost estimation, since it meas-
ures requirements specifications, which are the only artifacts available when estimates
are required. Older estimation methods were based on the expected size of the appli-
cation to be developed expressed in Lines of Code (LOC) [11]. The problem with the
size in LOC is that it can be measured only after the software has been developed,

60 V. del Bianco, L. Lavazza, and S. Morasca

when there is no need for estimates. Also, estimating the size in LOC is not a good
idea, since the size estimation error adds up to the inevitable effort estimation error.
FSM solves these problems, as it applies to requirements specifications, which are
available before the actual development starts.

To this end, Function Point Analysis (FPA) [3] was introduced to measure the size
of data-processing systems, and thus estimate the development effort. FPA is today by
far the most popular FSM method. Even though originally conceived for traditional
data elaboration applications, it has been shown that FPA can be applied to real-time
embedded software applications as well [1][2].

A first issue with FPA is that it can be subjective, hence it requires a precise repre-
sentation of what needs to be measured, namely, a good representation of the software
requirements, to lessen the measurement subjectivity. Though it has been proposed to
base FPA measurement on UML models, it turned out that UML models not specifi-
cally conceived to support measurement may not provide the required information. A
solution to this problem has been provided via measurement-oriented modeling [6].
Measurement consists in a quite deterministic counting of model elements. The sub-
jectivity is thus moved from the measuring phase to the modeling phase. Modeling is
generally done by people with a deep knowledge of the problem at hand, as opposed
to traditional FPA, where measurement is performed by certified measurers that gen-
erally do not have good domain knowledge. This minimizes the possibility that re-
quirements are omitted or not well represented. The cost of modeling can be very
small if the organization that requires the measurement already uses UML for model-
ing requirements. If so, little effort is required for adapting existing models for mea-
surement purposes.

Another problem with FPA is that the measurement of Function Points can be ex-
pensive and time consuming. To solve this problem, researchers have proposed “sim-
plified” processes, which are expected to provide reasonably accurate measures, but
require less effort and time. However, up to now, no guidelines have been provided
for the application of such simplified measurement processes when requirements are
described via UML models.

In this paper, we illustrate the application of these simplified techniques to UML
models of software. This requires the establishment of a precise mapping between
UML elements and the “Basic Functional Components” used to compute Function
Points.

The presented approach combines the advantages of model-based measurement –in
terms of little subjectivity of the measures– and of simplified measurement processes
– in terms of shorter time and less effort required for measuring.

The paper is organized as follows. Section 2 briefly recalls the principles of FPA.
Section 3 introduces measurement-oriented modeling and model-based measurement.
Section 4 reports about the existing approaches to simplified FP measurement. Sec-
tion 5 illustrates our proposals for basing simplified FP measurement processes on
UML models. Section 6 accounts for related work. Section 7 draws some conclusions
and outlines future work.

 A Proposal for Simplified Model-Based Cost Estimation Models 61

2 Function Point Analysis

Function Point Analysis was originally introduced by Albrecht [3] to measure the size
of a data-processing system from the end-user’s point of view, in order to estimate the
development effort. FPA is maintained by the International Function Point User
Group (IFPUG), which also publishes the official counting manual [4] and certifies
counters. FPA is now an ISO standard [5]. Function Points aim at quantifying the
‘amount of functionality’ released to the user by taking into account the data that the
application has to use in order to provide the required functions, and the transactions
(i.e., operations that involve data crossing the boundaries of the application) through
which the functionality is delivered to the user. Both data and transactions are consi-
dered only in that they are relevant to the user. Accordingly, FPs are counted on the
basis of the specifications of the user requirements.

The core of the counting procedure consists in identifying and weighting data func-
tion types and transactional function types.

Data functions represent data that are relevant to the user and are required to per-
form some function. Data functions are classified into internal logical files (ILF), and
external interface files (EIF). An ILF is a user identifiable group of logically related
information maintained within the boundary of the application. The primary intent of
an ILF is to hold data that are maintained by the application being counted and that
are relevant with respect to the addressed problem. An EIF is similar to an ILF, but is
maintained within the boundary of another application, i.e., it is outside the applica-
tion being measured.

Transactional functions represent operations that are relevant to the user and cause
input and/or output data to cross the boundary of the application. Transactional func-
tions represent elementary processes. An elementary process is the smallest unit of
activity that is meaningful to the user(s). The elementary process must be self-
contained and leave the application being counted in a consistent state. An elementary
process is counted only if it is different from the others.

Transaction functions are classified into external inputs (EI), external outputs (EO),
external inquiries (EQ). An EI is an elementary process whose primary intent of is to
maintain an ILF. EOs and EQs are elementary processes whose primary intent is to
present information to a user. EOs perform relevant elaboration, while EQs simply
retrieves data from ILFs or EIFs.

Every function (either data or transaction) contributes a number of FPs that de-
pends on its “complexity”.

The complexity of ILFs and EIFs is evaluated on the base of Data Element Types
(DETs) and Record Element Types (RETs). A DET is a unique, non-repeated field
recognized by the user. A RET is a subgroup of the information units contained in
a file.

For transactions, the complexity is based on the number of DETs and File Type
Referenced (FTRs). An FTR can be an ILF referenced or maintained by the transac-
tion or an EIF read by the transaction. The DETs considered are those that cross the
application boundary when the transaction is performed.

62 V. del Bianco, L. Lavazza, and S. Morasca

The weighting of function types on the basis of their complexity is done according
to tables (not reported here). Finally, the FP number is obtained by summing the
weighted function types, according to Table 1. For instance, the size of a system fea-
turing 2 low complexity ILF, a high complexity EIF, 3 low complexity EI and a me-
dium complexity EO is 2×7+1×10+3×3+1×5=38 FP.

Table 1. Function type weight according to complexity

Function
type

Low Medium

High

EI 3 4 6
EO 4 5 7
EQ 3 4 6
ILF 7 10 15
EIF 5 7 10

3 Measurement-Oriented Modeling

When measuring an artifact like software, which is complex, subject to many variabil-
ity factors, and immaterial, a good idea is to start by building a model of the software
to be measured. This practice is quite easy to adopt today, since many organizations
routinely build software models as a part of their development process.

However, model-based measurement works well only if the given models incorpo-
rate all the required information at the proper detail level. To meet this requirement,
measurement-oriented modeling has been proposed [6]. The idea is that, to build mod-
els that effectively support FPA, a set of modeling guidelines have to be followed,
which take into account the relationships of UML elements with FPA concepts.

Moreover, basing the counting practices on a well defined model provides the ne-
cessary conditions to define precise and consistent rules, which are expected to make
FP counting easier and affected by smaller variability.

The main points of measurement-oriented modeling and model-based measurement
are reported below.

The technique described in [6] requires the analysis of a small number of UML
diagrams:

─ Use case diagrams (see Fig. 1) are used to: list the elementary processes as use
cases; identify the boundary of the application precisely; identify the external ele-
ments with which the application interacts. Use case diagrams are not strictly ne-
cessary, as component diagrams provide the same type of information. However,
they are generally useful to document the responsibilities of the system to
be measured in a simple manner, before proceeding with building more detailed
diagrams.

─ Component diagrams (see Fig. 2) are used to classify external elements as <<Lo-
gicData>> (thus, EIFs) or as <<I/O>> elements that interact with the system.
Logic data maintained within the boundary of the application (thus, ILFs) are also

 A Proposal for Simplified Model-Based Cost Estimation Models 63

identified. The internals of each <<LogicData>> component are specified in terms
of classes (which represent the RET of the LogicData) and their attributes (the
DET of the LogicData) as shown in Fig. 3.

─ Finally, a sequence diagram (see Fig. 4) is built for each elementary process, to
indicate: how it can be classified (EI, EO, or EQ); which DETs are exchanged
through the boundary (they are the parameters of the messages that cross the boun-
dary); which FTRs are involved (these are the internal component instances that
appear in the diagram).

Fig. 1. Use case model of elementary processes

Fig. 2. Component diagram

System
Create_order

User

Add_item_from_catalogue

Issue_order

Catalogue

Close_order

Provider_server

Add_item_to_order

The functionalities mentioned in
user requirements specifications

are modeled as use cases

This can be a human
user or a device

An external (i.e., managed
by another application) data

repository

Application
border

An external system or
device that interacts with

the system being measured

EIF are
external data Catalogue

<<Logic_data>>

User
<<component>>

System
<<component>>

Catalogue_interface
<<interface>>

+Read_catalogue(): Catalogue
+Read_Item(): Item

<<uses>>

System_interface
<<interface>>

+Create_order(): Int
+Add_item_to_order(…): Bool
+Add_item_from_catalogue(): Bool
+Issue_order(Order): Bool
+Close_order(Order): Bool

Order
<<Logic_data>>

<<uses>>

Supplier_server
<<component>>

Supplier_interface
<<interface>>

+Issue(Order)

<<uses>>

User_interface
<<interface>>

+Show_item()

<<uses>>

ILF: data managed
by the system

Application
border

An external system or
device that interacts with

the system being measured

64 V. del Bianco, L. Lavazza, and S. Morasca

Fig. 3. Internals of a <<logic data>> component

Fig. 4. Sequence diagram

When a measurement-oriented model is available, counting the FP is quite simple:

─ the ILF are the <<LogicData>> components that are located within the system
component, while EIF are the <<LogicData>> components located outside the sys-
tem component;

─ the complexity of ILF and EIF can be determined very easily by looking at the
classes that belong to the <<LogicData>> component (the RET) and their attributes
(the DET); for instance, the System data component reported in Fig. 3 involves 2
RET (Order and Item) and 5 DET (the attributes of Order and Item), so, it is a low
complexity data function;

─ elementary processes are the use cases that appear in the use case diagram;
─ the classification and complexity of elementary processes is supported by the in-

formation provided in each sequence diagram. For instance, the process in Fig. 4 is
an EI (since its main intent is writing to an ILF), and it involves 2 FTR (Order and
Catalogue). The number of DET is the number of the elementary data types ex-
changed with the outside of the system (i.e., in Fig. 4 it is the number of parameter
unique types carried by messages 1, 2, 3, 4, 5 and 8).

The principles of measurement-oriented modeling can also be applied to other Func-
tional Size Measurement methods, like the COSMIC method [9], as described in [10].

Order
<<Logic_data>>

Order

+NumOrd: Int
+OrdDate: Date

Item

+ArtNum: Int
+Qty: Int
+Cost: Float

+New(artnum: Int, Qty: Int)
+Set(artnum: Int, Qty: Int, ord: OrdNum)

+ Add_item(artnum: Int, qty: Int)

loop

[not finished]

: User : System : Catalogue : Order

1 : Add_article_form_catalogue(ordnum)

2 : Read_article()

3 : artnum
4 : Show_article(artnum)

5 : Add_article(ordnum, artnum, qty)
6 : Add_item(artnum, qty)

7 : ack

Main purpose

8 : ack

aggiunta_articoloopt aggiunta_articoloopt Article_additionopt

 A Proposal for Simplified Model-Based Cost Estimation Models 65

4 Simplified FP Measurement Techniques

The most well-known approach for simplifying the process of FP counting is the
Early & Quick Function Points (EQFP) method [7]. EQFP descends from the consid-
eration that estimates are sometimes needed before the analysis of requirements is
completed, when the information on the software to be measured is incomplete or not
sufficiently detailed.

Since several details for performing a correct measurement following the rules of
the FP manual [4] are not considered in EQFP, the result is a less precise measure.
The trade-off between reduced measurement time and costs is also a reason for adopt-
ing the EQFP method even when full specifications are available, but there is the need
for completing the measurement in a short time, or at a lower cost. An advantage of
the method is that different parts of the system can be measured at different detail
levels: for instance, a part of the system can be measured following the IFPUG ma-
nual rules, while other parts can be measured on the basis of coarser-grained informa-
tion. In fact, the EQFP method is based on the classification of the processes and data
of an application according to a hierarchy (see Fig. 5).

Fig. 5. Functional hierarchy in the Early & Quick FP technique

Base Functional Processes and Data Groups correspond to IFPUG’s elementary
processes and LogicData and the other elements are aggregations of processes or data
groups. The idea is that if you have enough information at the most detailed level you
count FP according to IFPUG rules; otherwise, you can estimate the size of larger
elements (e.g., General or Macro processes) either on the basis of analogy (e.g., a
given General process is “similar” to a known one) or according to the structured
aggregation (e.g., a General process is composed of 3 Base Functional Processes and
2 Typical Processes). Therefore, by considering elements that are coarser-grained
than the FPA BFC, the EQFP measurement process leads to an approximate measure
of size in IFPUG FP.

Tables taking into account the previous experiences with the usage of EQFP are
provided to facilitate the task of assigning a (minimum, maximum and most likely)
quantitative size to each component. For instance, Table 2 provides minimum, maxi-
mum and most likely values for transaction functions.

Application

Macro
Process

Multiple
Data Group

…

Data Group

…

Typical process

…General
Process

Base functional process

…

66 V. del Bianco, L. Lavazza, and S. Morasca

Table 2. EQFP: function type weight according to complexity

Function type Low Likely High
EI 3 4.3 6
EO 4 5.4 7
EQ 3 3.8 6

Methods for simplifying the counting of FP have also been proposed by NESMA
[8]. The Indicative NESMA method simplifies the process by only requiring the iden-
tification of LogicData, from a data model. The Function Point size is then computed
by applying predefined weights, whose value depends on whether the data model is
normalized in 3rd normal form:

─ Non normalized model: Function Points = Number of ILF × 35 + Number of EIF × 15
─ Normalized model: Function Points = Number of ILF × 25 + Number of EIF × 10

It is quite clear that the Indicative NESMA method is quite rough in its computation.
The official NESMA counting manual specifies that errors in functional size with this
approach can be up to 50%.

The Estimated NESMA method requires the identification of each BFC, but does
not require the assessment of the complexity of each component: Data Functions (ILF
and EIF) are assumed to be of low complexity, while Transactions Functions (EI, EQ
and EO) are assumed to be of average complexity. Accordingly, the Estimated
NESMA method is more approximated than the EQFP method, which –as shown in
Table 2– provides likely values for transactions of unknown complexity, derived from
statistics.

5 UML-Based Simplified FP Measurement

This section shows that the simplified FPA techniques briefly presented in Section 4
can be easily applied on the basis of measurement-oriented UML-based modeling for
simplified FPA techniques. Note that we do not change the simplified FPA tech-
niques: we just use ad-hoc UML models to identify the elements upon which the sim-
plified FP counting is performed.

The Indicative NESMA method just requires ILF and EIF to be identified, and the
normalization level of the data model to be known.

The former requirement is satisfied by our method by the system-level component
diagram (see Fig. 2): ILF are <<logic data>> in the system, while EIF are <<logic
data>> located outside the system. Therefore, in our example we have one ILF (the
Order) and one EIF (the Catalogue).

As for the evaluation of the normalization of the data model, it is clear that
NESMA assumes that the data model is given by Entity/Relationship diagrams or as a
set of relational tables and relationships. As a matter of fact, this is clearly not

 A Proposal for Simplified Model-Based Cost Estimation Models 67

our case. However, we consider that the characteristics of a reasonably well written
object-oriented model are close enough to those of a 3rd normal form E/R diagram.
Accordingly, we may say that our UML-based modeling supports the Indicative
NESMA method in the “normalized model” case. We can thus proceed to compute
the size in FP according to the indicative NESMA method:

Size = Number of ILF × 25 + Number of EIF × 10 = 1 × 25 + 1 × 10 = 35 FP

The estimated NESMA method requires the identification of each BFC, but does not
require the assessment of the complexity of each component. Therefore, the system-
level component diagram alone is sufficient, as it allows the measurer to identify
processes from the operations contained in the interfaces and the ILF and EIF from
<<LogicData>> components. In our example, the component diagram illustrated in
Fig. 2 lets the measures identify Catalogue as an EIF; Order as an ILF; Create_order,
Add_item, Add_item_from_catalogue, Issue_order, and Close_order as transactions.

To apply estimated NESMA method, transactions have to be classified into EI, EO
and EQ. This operation is not directly supported by the component diagram (as it is
delegated to sequence diagrams in our method). However, it is quite clear that in gen-
eral, building sequence diagrams is excessively time and effort consuming for a sim-
plified measurement method. There are a few possible ways to solve this issue:

− Annotating the component diagram with comments that make explicit the
main purpose of each operation;

− Relying on the judgment of the modeler. This is somewhat not coherent with
the goal of decreasing the subjectivity of FP counting, but may very well work
in simple cases. For instance, in the example shown in most measurers would
immediately conclude that Create_order, Add_item, Add_item_from_ca-
talogue and Close_order are EI, while Issue_order is an EQ.

− Formalize the nature of operations by means of stereotypes which specify the
nature of the operation and help the measurer classifying transactions correct-
ly. For instance, stereotyping Add_article as <<update>> would leave little
doubt about the transaction being an EI.

Therefore, the size of our example computed with the estimated NESMA method is
27 FP, as illustrated in Table 3.

Table 3. Computation of the example size using the estimated NESMA method

Function type Number of functions in the model Weight Total
ILF 1 7 7
EIF 1 5 5
EI 4 3 12
EO 0 4 0
EQ 1 3 3
Total 27

68 V. del Bianco, L. Lavazza, and S. Morasca

To apply our model-based technique to EQFP, we need to represent the process
and data composition hierarchies illustrated in Fig. 5. The example given in Section 4
is too simple to support EQFP, therefore here we propose an extended version of the
example, to illustrate EQFP based measurement of the extensions.

Representing data composition hierarchies is not a problem: multiple data groups
can be represented as components including <<Logic data>> components. For in-
stance, Fig. 6 represents a “multiple data group” including three logical data groups,
correspond exactly to IFPUG data functions. For clarity, multiple data groups are
stereotyped as <<MultipleData>>.

Fig. 6. Use case diagram representing Early & Quick data

The data structure illustrated in Fig. 6 suggests that following possibilities:

─ We can estimate the size of the <<MultipleData>> component on the base of anal-
ogy, e.g., looking for previously measured data that contained similar data.

─ We can measure precisely the size of Regular_order, Priority_order and Collec-
tive_order and then compute the size of <<MultipleData>> component as the sum
of these. The sizes of Regular_order, Priority_order and Collective_order can be ei-
ther properly measured or they can be estimated using analogy or any other method.

For instance, a possibility for the measurer is to consider that <<Multiple_data>>
Order is composed of three ILF, whose complexity the measurer is not going to ex-
plore (either because details are not available, or because there is no time to do it).
According to the EQFP indications, the three ILF are considered “generic”, and their
“most likely” complexity weight is 7.7. In conclusion, the size of <<Multiple_data>>
Order is assumed to be 3 × 7.7 = 23.1 FP.

As to processes, we use the <<include>> relation among use cases in order to
represent their composition. For clarity, we introduce stereotypes of the use cases,
thus allowing the modeler to specify whether a given process is a <<MacroProcess>>,
a <<GeneralProcess>>, or a <<TypicalProcess>>.

Fig. 7 illustrates the use case diagram of a software system at an early stage of re-
quirements analysis, when it has not yet been understood in detail what processes are
involved in Manage_order, but it has been discovered that Add_item_to_order and
Add_item_from_catalogue belong to Add_item.

Order
<<Multiple_data>>

Regular_order
<<Logic_data>>

Priority_order
<<Logic_data>>

Collective_order
<<Logic_data>>

 A Proposal for Simplified Model-Based Cost Estimation Models 69

Fig. 7. Use case diagram representing Early & Quick processes

Some of the use cases appearing in Fig. 7 will be described by means of a sequence
diagrams and sized as described in Section 3, while others will be evaluated according
to the considerations advocated by the EQFP technique (analogy, structure, etc.).
For instance, a possible scenario is:
− Add_item_from_catalog is measured on the basis of its sequence diagram

(Fig. 4). Its size is that of an EI having 2 FTR and 4 DET, i.e., 3 FP.
− Compute_revenues is an EO. Its sequence diagram is not available, thus the mea-

surer decides to base the sizing on the “most likely” complexity (as given in
Table 2). Accordingly, the size of Compute_revenues is assumed to be 5.4 FP.

− Manage_order is assumed to be a large typical process (i.e., a collection of trans-
actions), whose size is thus 26,3 FP, according to [24].

6 Applicability of the Proposed Approach: A Discussion

The adoption of the proposed approach has pros and cons. Among the pros are:

− measurement is based on explicit models that are easy to validate, therefore the
result is more reliable;

− measures are better documented, as they are expressed with reference to
models;

− the counting process is less subjective, as model construction by experienced
analysts is inherently less subjective than the interpretation of informal docu-
ments by a measurer;

− the models used for counting can be used as a starting point for design;
− if software requirement specifications are described using UML, the models

required for counting can be derived from specifications models.

The cons are essentially connected with the cost of the approach. One may also ob-
serve that poor knowledge of UML could also lead to wrong measures and conse-
quently to huge costs (e.g., if effort estimation is based on size measures that on their
turn are based on inaccurate UML models). However, this issue can be solved via

System

Manage_order

User

Add_item_from_catalogue

Compute_revenues

Catalogue

Provider_server

Add_item_to_order<<include>>

<<include>>

<<General_process>>
Add_item

<<General_process>>
Manage_order

70 V. del Bianco, L. Lavazza, and S. Morasca

UML training which is an una-tantum additional cost. The main cost to be accounted
for concerns the usage of the method on a regular basis. To this end, there are two
cases to be considered:

a) Organizations that already use UML in requirements specification. We have to
remember that although UML is mostly used as a design language, it can be
used as a requirements specification language. Actually, since FSM methods
are based on the measurement of functional user requirements, we need that
UML models concern exclusively this type of requirements. The presence of
design elements in the models would affect the count, causing possibly large
errors in the resulting measures.

b) Organizations that do not use UML for requirements specification.

In case a), the cost of applying the proposed approach is little, since the information
needed to apply the simplified FSM is a subset of the information already present in
typical UML models. So, these organizations just need to extract the required infor-
mation from the available models. This is expected to be a quite straightforward oper-
ation. However, it is possible that an organization uses a subset of the UML diagrams
that is different from the one required by our method: for instance, an organization
could use state diagrams instead of sequence diagrams. In such cases, the writing of
the missing diagrams has to be considered. We should also consider that different
simplified methods require different models or –more precisely– models having a
different degree of detail and number of diagrams. So, an organization that does not
use sequence diagrams would not need to write them anyway, if the estimated
NESMA method is used.

Organizations that do not use UML on a regular basis would have to build models
specifically for measurement.

Previous experiments with full-fledged measurement-oriented modeling performed
by undergraduate students (e.g., the one reported in [ease 2008]) showed that the
productivity of measurement ranged in the 35-120 FP/PersonDay. It is reasonable to
expect that much higher productivity can be achieved by people that are more expe-
rienced with UML modeling than the students involved in the experiment, also consi-
dering that simplified measurement may require writing less diagrams per FP.

Further experimentation is needed to get accurate measurement productivity val-
ues. Once these values are known, each organization will be able to evaluate the con-
venience of the approach.

With respect to the accuracy level that can be achieved with the proposed ap-
proach, we have to consider that an accurate measure relies on two fact:

a) We measure the right elements of the system;
b) We measure the elements of the system right.

Our approach helps with point a), since the models make explicit and evident what are
the elements of the system and what is their nature and role. Hence, it is less likely
that some elements are missed, or that spurious elements are included in the model, or
that elements are misinterpreted. On the contrary, the responsibility for point b) rests
entirely on the simplified FSM technique used.

 A Proposal for Simplified Model-Based Cost Estimation Models 71

7 Related Work

Proposals for basing FSM on object-oriented models date back to the end of the 90’s
[18][19].

Fetcke [19] proposed rules and mapping steps to conform FPA to Object Oriented
Software Engineering.

The demands that FSM methods (including FPA) pose to user requirements ex-
pressed in UML are studied by van den Berg et al. [16][17].

None of the mentioned approaches addresses the issue of defining guidelines for
building UML models that convey the information required by the adopted FSM me-
thod, and that make it straightforward to identify and count BFC in the measurement
phase.

Zivkovic et al. proposed a formal mapping of UML models into Function Points
[22]. It was found that accuracy increases with the abstraction level of the description
[23].

Concerning the simplification of the FP measurement process, other proposals
have been made, in addition to those mentioned above. Forselius proposed a “Quick
level” of the Kiss method [20] that requires the measurement of only a small subset
of the functional components required by the FiSMA method (FiSMA is another FSM
method [21]).

8 Conclusions

Function Point Analysis is by far the most used technique for functional size mea-
surement. Nevertheless, it suffers from different problems: measures are to some ex-
tent subjective, while the measurement process can be lengthy and expensive.

In this paper we propose a manner to solve these problems by integrating two pre-
viously proposed techniques: model-based measurement and simplified FP measure-
ment processes. Our proposal involves two phases. The first one involves modeling
the software to be measured using UML and according to well defined guidelines that
help the modeler including all the types of information that are required for FPA. In
the second phase, thanks to a mapping between UML elements and the concepts of
some well known simplified measurement techniques (namely those proposed by
NESMA and the Early&Quick Function Points) a quick measurement can be obtained
from UML models.

The proposed technique has the potential to provide reasonably approximated FP
measures in very short time and at very little cost, especially if the measuring organiza-
tion is already using UML for modeling, so that the measurement-oriented models do
not need to be built from scratch, but can be derived from development oriented models.

The relatively low cost of the required models also allows developers to build dif-
ferent alternative models to perform what-if analysis and choose the most convenient
option. Take for instance the estimated NESMA method: a manager could evaluate
what set of use cases (i.e., functionalities) can be developed at a given maximum cost,
or what is the best trade-off between produced value and development cost.

72 V. del Bianco, L. Lavazza, and S. Morasca

Future work involves the practical experimentation of the proposed technique on a
set of real-life projects. Since cost estimation is more precise when complexity meas-
ures are used in conjunction with size measures [13][15], another interesting devel-
opment is the exploration of applying complexity measures to UML models [14] in
the context of simplified measurement processes. Finally, it will be possible to ex-
plore the application of model-based measurement to other FSM methods, like
COSMIC.

Acknowledgments. The work reported here has been partially supported by project
“Metodi e tecniche per l’analisi, l’implementazione e la valutazione di sistemi soft-
ware” funded by Università degli Studi dell’Insubria.

References

[1] Lavazza, L., Garavaglia, C.: Using Function Points to Measure and Estimate Real-Time
and Embedded Software: Experiences and Guidelines. In: ESEM 2009, 3rd Int. Symp. on
Empirical SW Engineering and Measurement, Lake Buena Vista, Florida, October 15-16
(2009)

[2] Lavazza, L., Garavaglia, C.: Using Function Point in the Estimation of Real-Time Soft-
ware: an Experience. In: Software Measurement European Forum – SMEF 2008, Milano,
May 28-30 (2008)

[3] Albrecht, A.J.: Measuring Application Development Productivity. In: Joint SHARE/
GUIDE/IBM Application Development Symposium (1979)

[4] International Function Point Users Group. Function Point Counting Practices Manual -
Release 4.3.1 (2010)

[5] ISO/IEC 20926: 2003, Software engineering – IFPUG 4.1 Unadjusted functional size
measurement method – Counting Practices Manual, ISO, Geneva (2003)

[6] Lavazza, L., del Bianco, V., Garavaglia, C.: Model-based Functional Size Measurement.
In: ESEM 2008, 2nd International Symposium on Empirical Software Engineering and
Measurement, Kaiserslautern, October 9-10 (2008)

[7] Santillo, L., Conte, M., Meli, R.: Early & Quick function point: sizing more with less. In:
11th IEEE International Symposium on Software Metrics, Como, September 19-22 (2005)

[8] ISO, Iec 24570: 2004, Software Engineering-NESMA Functional Size Measurement Me-
thod version 2.1 - Definitions and Counting Guidelines for the Application of Function
Point Analysis. International Organization for Standardization, Geneva (2004)

[9] COSMIC – Common Software Measurement International Consortium. The COSMIC
Functional Size Measurement Method - version 3.0.1 Measurement Manual (The
COSMIC Implementation Guide for ISO/IEC 19761: 2003) (May 2009)

[10] Lavazza, L., del Bianco, V.: A Case Study in COSMIC Functional Size Measurement:
the Rice Cooker Revisited. In: IWSM/Mensura 2009, Amsterdam, November 4-6 (2009)

[11] Boehm, B.W.: Software Engineering Economics. Prentice-Hall (1981)
[12] Boehm, B.W., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E., Madachy,

R., Reifer, D.J., Steece, B.: Software Cost Estimation with COCOMO II. Prentice Hall
Press (2009)

[13] Lavazza, L., Robiolo, G.: The Role of the Measure of Functional Complexity in Effort
Estimation. In: PROMISE 2010, the 6th International Conference on Predictive Models
in Software Engineering, Timisoara, Romania, September 12-13 (2010)

 A Proposal for Simplified Model-Based Cost Estimation Models 73

[14] Lavazza, L., Robiolo, G.: Introducing the Evaluation of Complexity in Functional Size
Measurement: a UML-based Approach. In: 4th International Symposium on Empirical
Software Engineering and Measurement – ESEM 2010, Bolzano, September 16-17
(2010)

[15] Lavazza, L., Robiolo, G.: Functional Complexity Measurement: Proposals and Evalua-
tions. In: ICSEA 2011 – the 6th Int. Conf. on Software Engineering Advances, Barcelo-
na, October 23-29 (2011)

[16] Oudshoorn, R.: Application of Functional Size Measurement on Requirements in UML,
Ir.-degree Thesis, University of Twente (June 2005) (partly in Dutch)

[17] van den Berg, K., Dekkers, T., Oudshoorn, R.: Functional size measurement applied to
UML-based user requirements. In: Software Measurement European Forum - SMEF
2005, Rome, March 16-18 (2005)

[18] Bévo, V., Lévesque, G., Abran, A.: Application de la méthode FFP à partir d’une spécifi-
cation selon la notation UML: compte rendu des premiers essais d’application et ques-
tions. In: 9th Int. Workshop Software Measurement, Lac Supérieur, Canada (1999)

[19] Fetcke, T., Abran, A., Nguyen, T.: Mapping the OO-Jacobsen Approach into Function
Points. In: TOOLS 23 – Technology of Object Oriented Languages and Systems, Santa
Barbara, July 28-August 1 (1997)

[20] Forselius, L.: Faster and more accurate functional size measurement by KISS – keeping it
simple. In: IFPUG FSS, Cambridge, MA, USA, March 28-29 (2006)

[21] FISMA (Finnish Software Measurement Association). FiSMA FSM Method 1.1 (2004)
[22] Zivkovic, A., Rozman, I., Hericko, M.: Automated software size estimation based on

function points using UML models. Information and Software Technology 47(13) (2005)
[23] Zivkovic, A., Hericko, M., Brumen, B., Beloglavec, S., Rozman, I.: The impact of details

in the class diagram on software size estimation. Informatica 16(2) (2005)
[24] Early & Quick Function Points for IFPUG method Release 3.0 Reference Manual 1.2,

DPO (September 2009)
[25] del Bianco, V., Gentile, C., Lavazza, L.: An Evaluation of Function Point Counting

Based on Measurement-Oriented Models. In: Evaluation and Assessment in Software
Engineering – EASE 2008, Bari, June 26-27 (2008)

Estimating the Software Product Value

during the Development Process

Oscar Castro1, Angelina Espinoza2, and Alfonso Mart́ınez-Mart́ınez1

1 Universidad Autónoma Metropolitana, Electrical Engineering Department
Mexico City, 09340, México
{cloj,almm}@xanum.uam.mx

2 Technical University of Madrid, E.U. Informática
Madrid, E-28051, España

a.espinoza@upm.es

Abstract. Nowadays software companies are facing a fierce competition
to deliver better products but offering a higher value to the customer.
In this context, software product value has becoming a major concern
in software industry, leading for improving the knowledge and better
understanding about how to estimate the software value in early devel-
opment phases. Other way, software companies encounter problems such
as releasing products that were developed with high expectations, but
they gradually fall into the category of a mediocre product when they
are released to the market. These high expectations are tightly related
to the expected and offered software value to the customer. This paper
presents an approach for estimating the software product value, focusing
on the development phases. We propose a value indicators approach to
quantify the real value of the development products. The aim is early
identifying potential deviations in the real software value, by compar-
ing the estimated versus the expected. We present an internal validation
to show the feasibility of this approach to produce benefits in industry
projects.

Keywords: Software Product Value, Software Value Estimation
Method, Software Value Indicators, Software and Quality Metrics.

1 Introduction

For software products, as with every product, value is of great importance for
development companies, as they invest large amounts of money in creating their
products and positioning them in the market. Customers will always make a
trade-off when buying a product, and they will prefer the one that meets all
their requirements while offering a high value for their money. However, a main
problem with the released software products is that companies do not have a
solid understanding of their products value situation, at the end these products
do not fulfill the company economical expectations. The problem is that these
products are disproportionately expensive compared to the business level value
that they produce. Even worse, companies draw funds and resources away from

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 74–88, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Estimating the Software Product Value during the Development Process 75

other higher value-producing opportunities [12], mainly because a deficient or
lack of the product value estimation. Thus, the software companies that provide
products to satisfy the customer needs, while offering a high value are more
competitive in a value-consideration market as nowadays occurs. For reaching
these goals, it is important that companies have the methods and knowledge
to estimate and validate the software product value. To recollect and analyze
quantifiable data, and to identify the factors that affect the software product
value will allow managing it to meet the business goals. Thus, value must be
taken in consideration when using software engineering techniques to develop
software products, as cost, schedule, and other important aspects are often con-
sidered for development [3]. It is precisely in the software development tasks
where technical issues are affecting the released products’ value. Thus, compa-
nies need methods for estimating the software value during the development
process, for getting a quantitative and real visibility about the product value
that is going to be released to the market. However, value estimation is not an
easy issue. It is easier to manage the development process of a new product with
activity, effort or productivity metrics than product value metrics. There are
some efforts for value estimation in Software Engineering, but they are mainly
focused in the requirements phase such as Barney et al. who in [2] address a
value-based approach in Requirements Engineering, which focuses on a process
for creating product value through requirements selection for a software release.
Ojala addresses in [15] an approach for product value assessment mainly through
requirements prioritization and quality attributes, assigning percentages accord-
ing to stakeholders’ opinion. The main found limitation of these approaches is
that they are not specifically focused on software product value estimation. They
do not offer visibility in the value management, nor quantitative figures about
the value estimation during the software development process. The Value-Based
Software Engineering [3] is a promising approach but it is more process than
product value focused. Thus, there are important gaps in value estimation for
software products especially during the whole development life cycle. This is the
focus of our approach; we address the software product value estimation focus-
ing on the development process. We provide a method to quantitatively obtain
a value estimation of the development work products, which directly affect the
final product value. The main benefit pursued with our approach is to provide
the involved stakeholder in the value management, with a tool to estimate the
real value of such final product before is released to the market. The aim is to
provide a deep insight into value figures, to be used for identifying deviations
and correct decisions which affect the expected final product value. Our method
is based on the value-indicators approach, and we use international standards
for establishing an agreed development processes and their generated develop-
ment work products. Similarly, the value indicators are determined according
to international standards in quality for software products. The process model
to determine the value estimation is also provided. An internal validation is in-
cluded to show the feasibility and usage of our approach for producing benefits
in industry projects. This paper is composed as follows: Section 2 covers the

76 O. Castro, A. Espinoza, and A. Mart́ınez-Mart́ınez

background; Section 3 introduces related literature on Software Value Estima-
tion. Section 4 describes our approach for software product value estimation.
Section 5 presents the internal validation case, and Section 6 the conclusion and
future work.

2 Background

2.1 Value Definition in Software Engineering

Ojala defines value in [15] as: “Value is a measure - usually in currency, effort
or exchange or on a comparative scale - which reflects the desire to obtain or
retain an item, service or ideal”. Barney et al in [2] includes the value concept
for software products, and this is as follows: “Value constructions in economic
theory are based on customer satisfaction, loyalty and re-purchasing behavior.
By borrowing the economic theory, three aspects of value are addressed, namely
product value, a customer’s perceived value and relationship value. Product value
is related to the product price and influenced by the quality attributes of the
software product”.

Finally, we propose our own software product value definition, which is based
on [15] and [2]. The objective is to provide a complete definition according to our
research goals, as follows: “Value is a measure - usually in currency, effort or
exchange, or on a comparative scale - of software (set of programs, procedures,
algorithms and its documentation) goods or services that will meet the user’s
needs, desires, and expectations. All goods or services are being influenced by the
quality attributes of the software product.”

3 Related Literature on Product Value Estimation

Even authors offer different approaches to estimate value, as it is shown in Ta-
ble 1, they are using similar concepts. For instance, the quality factor has a
strong relationship with value, as it is stated by Barney et al. in [2], and in the
Ojala’s formula in Table 1. One influential approach on value is provided in the
Value Standard of SAVE International in [17]. This standard proposes a value
methodology, which is applied to every kind of products, not only for software.
The value methodology proposed by SAVE, is a systematic process that follows
the Job Plan, consisting of the following phases [17]: 1) Information, 2) Function
Analysis, 3) Creative, 4) Evaluation, 5) Development and 6) Presentation. The
Evaluation Phase is particularly interesting to our research, since this phase is
concerned on the value estimation for the products generated in the develop-
ment process, and not only for final products. Specifically, the SAVE standard
explains that through the Evaluation phase the value improvement is managed
while delivering the projects function(s) and considering performance require-
ments and resource limits. Although the standard describes what must be done
in the Evaluation phase, there is no a specific method to estimate the value
neither how to next improve such value.

Estimating the Software Product Value during the Development Process 77

Table 1. Different approaches of value

Value
Estimation

Description Ref.

Function

Resources
Function: Is measured by the performance requirements of the cus-
tomer.
Resources: They are measured in materials, labor, price, time, etc.
required to accomplish that function

[17]

Bo − Re Bo: Benefits obtained.
Re: Resources expended.

[5]

Worth

Cost
Worth: The least cost to perform the required function (product,
service or process), or the cost of the least cost functional equiv-
alent. If possible can also be the worth in money, what customer
sees in a product, service or process.
Cost: The life cycle cost of the object, product, service or process
(price paid or to be paid).

[15]

Function + Quality

Cost
Function: The specific work that a design/item (product, service
or process) must perform.
Quality: The owner’s or user’s needs, desires, and expectations.
Cost: The life cycle cost of the product, service or process.

[15]

Benefits

Price
Benefits: Total benefits derived from the product.
Price: The amount a customer is willing to pay.

[2]

The Ojala’s approach in [15] implements the SAVE International standard
[17] in the Software Engineering field for software products assessment. Ojala
in [14] also implements the Evaluation phase, giving the guidelines about how
to perform a value assessment study on software products, as follows: 1) To
discuss the criteria for the evaluation of improvement ideas, and the criteria
on quality attributes, 2) to give a relative percentage (maximum 100%) for the
criterion importance to the project, 3) to calculate averages for all the criteria
(e.g. system stability 25%, safety 20% or ease of use 20%), 4) to give points
to each improvement proposal on a scale of 1-6 (6 the better, 1 the worst).
The points allocated are multiplied by the calculated weighting percentages.
The Ojala’s product value assessment has a good representation of business
point of view and it offers worth and cost for components and requirements.
However, those figures are mainly based on votes by stakeholders, and rely on
the involved stakeholders’ perception, and finally they do not offer a more direct
evaluation of development products to estimate the value. Cerdegren et al in
[4] propose a method called Products in Development (PiD) for integrating the
perceived customer value as a performance measure during the new products
development. The aim is to evaluate the value creation during the new product
development. The main limitation according to our goals is that the PiD is
strongly focused on estimating the value when requirements change and over
those requirements. This is contrary to our goals about obtaining quantitative
data on the software products value, but for the complete development process.
Similarly, Barney et al [2] proposes a method mainly focused and based on
requirements selection through a series of activities involving stakeholders and
workshops to prioritize and validate requirements. Barney et al approach is not

78 O. Castro, A. Espinoza, and A. Mart́ınez-Mart́ınez

aligned with our main goal, as they focus on what they value based requirements
selection; this approach does not estimate software product value during the
development process.

4 Estimating the Software Product Value:
An Indicators-Driven Approach

According to the value definitions provided in the Background section, value is
closely related to the customer perception. Thus, the identification and quan-
tification of elements which add or destroy value will provide a systematic and
formal method for getting a more real perception of the value measure. Partic-
ularly for software products, the elements identification must be focused during
the development process. The reason is that technical issues are strongly affect-
ing the final product value, since the several development work products are
used to build final software product that is released to the market. Thereafter,
such work products must be subject to value estimation according to specific
value indicators. As we identified in Section 3 the quality factor is closely af-
fecting the value estimation, and this is happening even in software products.
Thus the value indicators can be defined in terms of quality factors which are
directly determining the value estimation. The aim is to get quantitative met-
rics on the work products in development phases in which the business criteria
are barely involved. In this sense, the business perspective (such as customer
preferences, competitors’ features, and market position) can be lost if at least
several important quality factors, besides obviously functionality, are missing.
This section introduces our software value estimation approach, basing on the
value indicators concept. Several metrics are also proposed in order to quantita-
tively measure the development work products value. We also proposed a general
set of these work products and a general development process, together with a set
of the possible development activities. For that we use international standards
for software development life cycle’ processes, activities and work products, as
well as quality standards on Software Engineering, for determining the value
indicators of such work products.

4.1 Value Indicator Definition

Firstly, we introduce our Value Indicator definition proposal (based on [16]) as
follows: “A device providing specific and quantitative information about the state
or condition of the software product value”. Therefore, indicators are developed
based on quantitative measurements or statistics of the development work prod-
ucts value, which finally allow us to get visibility to the real offered value to the
customer.

4.2 An Approach for Indicators-Based Value Estimation

A main issue is how to estimate the software work products value, thus as we
reviewed in Table 1 (Section 3) there are several effort for measuring this concept.

Estimating the Software Product Value during the Development Process 79

The Ojala’s formula [15] is based on the SAVE standard [17] and includes the
quality factor in its metric, as well as this was defined for specifically measuring
the software product value. Therefore, in our proposal we use the same estimation
formula, but modifying the definition of its components, as follows:

V alue =
Function+Quality

Cost
(1)

Where: Function is the specific work that a design/item (product, service or pro-
cess) must perform (example: function points needed to accomplish a software
component). Quality is the owner’s or user’s needs, desires, and expectations (ex-
ample: software quality attributes such as: usability, portability, security, trace-
ability, etc.). Cost is the life cycle cost of the product, service or process (example:
cost is normally expressed in man-hours). It is necessary to define how we will ad-
dress each of these components. Thereafter, our proposal to estimate each compo-
nent is described in Table 2.

Table 2.Measurement of the elements of the Ojala’s formula according to our approach

Function Cost Quality

The function part is
given by the development
company through the
project plan, since they
state the functionality
that the product must
deliver. Therefore, for the
purpose of calculating the
Formula 1, we propose to
use the project approach
and its estimation figures,
since this are designed
together with all the
involved stakeholders.

It is established by the
development company,
through the project plan
estimation. This is a mea-
sure that commonly every
software project estimate
at least, therefore for the
purpose of calculating the
Formula 1, we propose to
use the project estimation
which is the closest to the
reality.

This is the most difficult part to mea-
sure, as the quality attributes vary
depending on the involved stakeholders’
perception about the product quality.
Quality attributes generally are very
hard to measure, for example: usability,
portability, integration, component reuse,
performance, etc. Therefore, in our ap-
proach presented in this paper, we focus
on defining the quantifiable indicators to
get measures of quality (and therefore
value). These indicators are then used
to identify if the product is on the right
way to accomplish the expected value
according to the product designed plan by
the business side.

4.3 Defining the Value Estimation Process Model

Figure 1 illustrates our process model workflow: 1) the Software Process Def-
inition (SPD) is firstly performed, including the phases, activities that will be
the focus during the value estimation process and the work products definition
(WPD); 2) the Value Indicators Definition is the next phase, they are established
according to the selected work products to be evaluated in the value estimation
process; 3) the Quality Estimation (QE) is calculated using the information of
phases 1) and 2), to be used it in the value equation(phase 6); 4) the function
(FE) of the selected work products are estimated to be used in the equation of
phase 6; 5) the cost (CE) is estimated to be used it in the equation of phase
6; 6) the value estimation (VE) is then performed using the data of phases 3,
4 and 5. Table 3 gives a deeper explanation about our process model for value

80 O. Castro, A. Espinoza, and A. Mart́ınez-Mart́ınez

Table 3. Explanation of the process model steps for our value-indicators approach

Phase Description

1. Software Pro-
cess Definition
(SPD)

The establishment of a series of phases and their respective activities, those are
always present in every development project. For that we use the standards and
SEI documents: Based on [9], [11] and [7]. A series of development work products
(WPD) are defined and they are actually referred in this paper as outcomes of
the development activities: based on [9], [11] and [13]. The establishment of the
respective stakeholders (SE) involved in the creation and management of the
outcomes (work products): based on [9], [11] and [7].

2. Value Indi-
cators Definition
(VID)

The assignment of a series of value indicators (VID) according to each outcome
(work product) and its type. These indicators are based on [9], [1] and [10]. The
assignment of a metric (or equation) for each value indicator (VIMD): based on
[8].

3. Quality Esti-
mation (QE)

The quality estimation based on the set of value indicators and their respective
metric assigned.

4. Function Esti-
mation (FE)

The establishment of the measurement functional size of the work product (ex-
pected and implemented).

5. Cost Estima-
tion (CE)

The cost to accomplish the function of the work product (required and real).

6. Value Estima-
tion (VE)

The definition of a value equation or formula based on the elements previously
stated (function, quality and cost). The result of this value equation will deter-
mine the value of the development work products.

Fig. 1. Process model to estimate the software value, based on value indicators for
development work products

estimation based on value indicators (centered on quality) and provides infor-
mation on which standards and documents we used to define our approach. In
this process, for each outcome (work product), all defined indicators to measure
its quality are averaged for estimating the Quality figure in Equation 1. It is ex-
pected that the Function and Cost estimations are provided by the project plan,
since our focus for value estimation is centered on quality. The final process step
provides the value estimation for the development work products. We can see
an example in Figure 2: WP1 has three value indicators, which are averaged to

Estimating the Software Product Value during the Development Process 81

Fig. 2. The WP1 value indicators (centered on quality), are averaged for getting its
quality estimation

get its quality estimation. This datum is next used in Equation 1, together with
its Function and Cost estimations, for finally getting the value estimation for
WP1. Table 4 shows an example excerpt of the process model execution: Phase:
1) Design Process; 2) Activity: Software Architecture Detailed Design; 3) Stake-
holders: Developer, User-end; 4) Outcome: Software units defined by the design,
5) Value indicators: Performance Efficiency (PE) includes (a) Time behavior
and b) Resource utilization), also the metrics to measure them are indicated in
the table. It must be stated that these indicators have been previously defined,
including their metrics, following our process model stated in Figure 1.In this
example the value of the “Software units defined by the design” work product
is only defined in terms of the Performance Efficiency quality category (Time
behavior and Resource utilization). Thus, the Quality number that is required
in Equation 1 is totally provided by PE. Therefore, for getting the final value
estimation for this work product, the Formula 1 must be applied, where Quality
= PE (as in Table 2).

5 Internal Validation

5.1 Scope

Several universities face the challenge to measure the academic level of incoming
students for their undergraduate programs in engineering and science. Specifi-
cally, at the Universidad Autónoma Metropolitana this is important for making
decisions about the inclusion of low profile students in preliminary courses. In
this aim, a measurement instrument has been designed based on the institu-
tional profile. Therefore, the proposed solution is to support those activities
with a software system, whose development has been started last year with com-
puter science students. A first system version, named Instrument System for
Preparatory Courses (ISPC), is currently under development and some software
components had been already tested.

5.2 Value Estimation for the Work Products

The aim of this internal validation is to analyze the benefits obtained with
our Indicators-Based Value Estimation approach in real projects for the soft-
ware products development. In this purpose, we focused the internal validation

82 O. Castro, A. Espinoza, and A. Mart́ınez-Mart́ınez

Table 4. Excerpt of the process model execution example: Phase “Software Construc-
tion Process” and Activity “Develop and document each Software unit and database”

Outcome Value Indicator & Metric Quality
Estimation

1. Software units
defined by the
design [9]

1. PE = Performance Efficiency
(a) X1 = Time behavior

X1 = t1 − t2/t3
t1 = Time of gaining the result.
t2 = Time of a command input.
t3 = Time of response expected.

0 < T
The sooner is the better. (Metric based on [8])

(b) X2 = Resource utilization
X2 = A/B

A = Estimated memory requirement for the component.
B = Expected memory requirement for the component.

0 <= X <= 1
The closer to 1, the better. (Metric based on [8])

PE =
X1 + X2

2

Table 5. Project data for this internal validation (provided in the project
documentation)

Functional
Requirements

Release
1.0

Non-Functional
Requirements

Assigned
Measure

User Management 66% 1. Functional Suitability
2. Usability
3. Performance Efficiency
4. Portability
5. Maintainability
6. Security

100%
37%
62%
31%
33%
84%

Software Components Sub-Components

User Management 1. Add Group, 2. Add User,
3. User Query, 4. User Edit

case in the ISPC system in Release 1.0 as follows: 1) from the Requirements
Specification Document (RSD) and stakeholders interviews, we selected only
one functional requirement, named “User Management”; 2) from the architec-
ture documentation and the RSD, we selected a quality attributes set to be
evaluated, these attributes determine the value indicators to be used; 3) the
outcome (development work product) to be evaluated with the value indicators
is the main ISPC’s component named “User Management”, which completely
realizes the selected “User Management” functional requirement; 4) the “User
Management” component is derived into several sub-components which we used
for estimating this main component value, applying the selected indicators set.
Table 5 summarizes the general project data that is used in this internal vali-
dation. Our approach comprises almost the whole software development process
and defines value indicators for each outcome of the process’s activities, however

Estimating the Software Product Value during the Development Process 83

for this internal validation we focused in the context stated in Table 6 as follows:
1) Phase “Software Construction Process” [9], 2) Activity “Develop and Doc-
ument each software unit and database” [9], 3) Stakeholders involved: product
manager, end-user, developer, 4) Cost: 40 man-hour per “User Management”
component (10 man-hour per sub-component), 5) for the Function estimation of
Equation 1, we applied the Function Point metric for the “User Management”
component, according to the function point manual [6]. The planning for per-
forming the value estimation is also stated in Table 6. For performing the value
estimation of the selected components, we firstly determined the Quality (QE),
Function (FE) and Cost Estimation (CE), as it is specified in our process model
(Figure 1).

Table 6. Planning and context of the internal validation

Execution Time Planned Value Real Value

Planning
Internal validation perfor-
mance

24 hours 30 hours

Stakeholder Interviews 5 hours 5 hours

Item Decision

Context

Phase Software Construction Process

Activity Develop and document each software unit and database

Stakeholders Product Manager, Developer, End-User

Outcome Component: “User Management” (completed at 66%)

Cost 40 Man/Hours for the component “User Management”

Quality Estimation (QE). For each quality attribute of Table 5, we associate
a value indicator which are stated in Table 7. The definition of these indicators
was following our process model stated in Section 4.3 (see Figure 1). Then, for
estimating the quality based on these indicators, we did the same as in the ex-
ample (for Performance Efficiency estimation) showed in Table 4. That is for
getting the Quality factor in Equation 1, for each indicator we got the real ac-
complished percentage (estimated number divided by the expected number), to
next calculate the average of all involved indicators. Equation 2 shows the aver-
age among all value indicators of the “User Management” outcome for getting
the Quality (Q) factor that is required in Equation 1, which is used for the final
value estimation (VE).

Q =
1 + 0.5 + 0.25 + 0.75 + 1.02 + 0.80 + 0.75 + 2.12 + 1.16

9
= 0.93 (2)

The value indicators X1, X2, X3 and X4 were associated to the Functional Suit-
ability quality attribute (Table 5). The rest of the quality attributes (Security,
Performance Efficiency, Maintainability, Portability and Usability) were associ-
ated to S, PE, M, P, and U respectively. Table 7 summarizes the results of the

84 O. Castro, A. Espinoza, and A. Mart́ınez-Mart́ınez

Table 7. Value Indicators under study for the “User Management” component in
Release 1.0: Expected Measure (by Project Team) vs. Estimated Measure (by our
approach)

Value Indicator Expected
Measure (EX)

Estimated
Measure (ES)

Ratio

X1: Traceability to the requirements
and design of the software item

100 % 100 %
ESX1
EXX1

= 100%
100%

= 1

X2: External consistency with the re-
quirements and design of the software
item.

100 % 50 %
ESX2
EXX2

= 50%
100%

= 0.5

X3: Internal consistency between unit
requirements

100 % 25 %
ESX3
EXX3

= 25%
100%

= 0.25

X4: Appropriateness of coding methods
and standards used

100 % 75 %
ESX4
EXX4

= 75%
100%

= 0.75

S: Security 84 % 86 %
ESS
EXS

= 86%
84%

= 1.02

PE: Performance Efficiency 62 % 50 %
ESPE
EXPE

= 50%
62%

= 0.80

M: Maintainability 33 % 25 %
ESM
EXM

= 25%
33%

= 0.75

P: Portability 31 % 66 %
ESP
EXP

= 66%
31%

= 2.12

U: Usability 37 % 43 %
ESU
EXU

= 43%
37%

= 1.16

Total of value indicators (Average of VI [ΣV I/9]) 8.35
9 = 0.927 = 0.93

indicators-based approach application to estimate the value of the “User Man-
agement” component in Release 1.0. Summarizing: The Quality factor is 0.93,
meaning that the estimated Quality for User Management component in ISPC
Release 1.0 reaches 93% of the expected quality.

Function Estimation (FE). The project did not have a measure of the soft-
ware functional size. Thus, even it is not the focus of our research and in order to
complete the internal validation, we carried ourselves out the task of estimating
the functional size. For that, we used the Function Points counting method based
on [6]. The function point metric is not mandatory to obtain the final value, but
it is an alternative to measure the functional size of the development products.
We use the RSD documentation to get the expected function points, and then
we did a checklist to verify if our estimation was implemented on the Release 1.0.
Table 8 exemplifies how we obtained the Unadjusted Function Points (UFP).

After obtaining the UFP we applied the Value Adjustment Factor Calculation
Table to obtain the Total Degree of Influence (TDI) explained in [6] resulting in
35. The next step is to apply the Formula 3 (stated in this section) to get the
Adjusted Function Points (AFP).

FP = UFP ∗[(TDI∗0.01)+0.65] = 111∗[(35∗0.01)+0.65] = 111∗[1] = 111 (3)

This is the FPs for developing the “User Management” component with all
the planned functionality. However in Release 1.0 is only required a 66% of

Estimating the Software Product Value during the Development Process 85

Table 8. Unadjusted Function Point Count Calculation Table for the entire “User
Management”. This calculation is based on the RSD documentaion.

Function Type Functional
Complexity
(Count)x(Complexity)

Complexity
Totals

Function Type
Totals

EI (External Input)
(0)x(Low=3) =
(6)x(Average=4) =
(0)x(High=6) =

0
24
0 24

EO (External Output)
(9)x(Low=4) =
(0)x(Average=5) =
(0)x(High=7) =

36
0
0 36

EQ (External inQuiry)
(7)x(Low=3) =
(0)x(Average=4) =
(0)x(High=6) =

21
0
0 21

ILF (Internal Logical File)
(0)x(Low=7) =
(2)x(Average=10) =
(0)x(High=15) =

0
20
0 20

EIF (External Interface File)
(0)x(Low=5) =
(0)x(Average=7) =
(1)x(High=10) =

0
0
10 10

Total Unadjusted Function Point Count (Expected by the project) 111

this component functionality, this means that the required functionality for this
component is of 73.26 FPs. We also applied this same method but for the real
implemented functionality in Release 1.0, and we got 70 function points that were
implemented. Summarizing: 70 FPs were implemented while the expectation was
in 73.26 FPs, thus for the getting the Function Estimation, the implemented FPs
are divided by the expected FPs (70/73.26) resulting in 0.955. Therefore, we got
95.5% of the expected functionality for the “User Management” component in
release 1.0.

Cost Estimation (CE). The estimated cost for the development of the “user
management” is 40, but the real development men-hours were 52 (which means
it was required more men-hours than the expected ones). To get the Cost Esti-
mation in Equation 1, these numbers are divided (real over expected) to finally
get Cost = 1.3.

Value Estimation (VE). Summarizing: 1) Function = 0.955, 2) Quality =
0.93 and 3) Cost = 1.3, these numbers are substituted in Equation 1, with the
aim of getting the value estimation for the “User Management” component of
the ISPC Release 1.0, that has been developed in the activity “Develop and
document each software unit and database” of the development phase “Software
Construction Process”. Equation 4 shows this calculation.

V alue =
0.955 + 0.93

1.3
=

1.885

1.3
= 1.45 (4)

86 O. Castro, A. Espinoza, and A. Mart́ınez-Mart́ınez

5.3 Discussion and Limitations

The value indicators approach for product value estimation has shown their
importance in this internal validation, since the stakeholders had a quantitative
perspective based on the results. For this specific internal validation case the
value was 1.45, his value result is not easy to interpret. However, if we go deeper
verifying each element on the value equation we can get interesting information
to get a better interpretation of the result. Specifically, Function and Quality
were below the ideal but not by far, and costs were higher than the expected
number. Thus, an immediate conclusion is that the larger cost estimation, the
lower value of the work product, so costs must be corrected to assure the product
value under the expected limits. Obviously, we rely on the product manager
expertise for establishing the goals that the product must reach, in order to
obtain the value needed for success against its competitors in the market. Also,
for a better understanding of the Quality element in Equation 4 we can check the
value indicators results to get a better understanding of the state of the product.
For example, the Value Indicator : External consistency with the requirements
and design of the software item (X2) in the internal validation case ratio is 0.5
(50% of accomplishment), therefore there are problems because the developed
component does not follows the original design. In an ideal case (which is very
rare) each element of the Value formula (Equation 1) should be 1 (which will
end on a Value result of 2).

Analyzing the details of the value indicators approach application, we identify
that one important aspect is that stakeholders claim that there is a bad tran-
sition from design to developed outcomes, due to changes in the development
team and a poor members’ expertise. This problem is obvious when we see that
the consistency indicators had poor results (X3 and X4 in Table 7). Some value
indicators had good results in spite of the transition problems addressed be-
fore (Usability, Security and Portability). Based on this information the project
manager could change plans, for example re-writing some component parts for
improving the compliance consistency to the described software architecture.
Concluding, this approach was useful for providing a deep and quantitative vis-
ibility of specific value indicators, which revealed some hiding product quality
issues. These issues must be corrected in order to meet the desired quality stan-
dards to finally meet the expected product value. Additionally, thanks to this
internal validation, it was possible to understand how the software is going to be
valuated before releasing that product to the market. This has been addressed
thanks to the identification of the project planning deviations in terms of the
costs, quality and functionality that were actually measured.

The main limitation in the application of our approach, is that for getting
more accuracy in the results of this approach, full and clear documentation of
the items to be evaluated is needed; as well as the stakeholders’ feedback is a key
element to get successful value estimation. It is also worthy to clarify that the
stakeholders (specially the development team and product manager) must be
experts on the matter to facilitate the application of the model, and for giving
a more accurate perspective of the outcomes state. Thus, in a real case with

Estimating the Software Product Value during the Development Process 87

a bad and disorganized documentation or with a team with a poor expertise
on the project issues, it would not be feasible to apply this approach since the
accuracy could not be assured. This is also true even if the code and working
components are available, since both are required and fundamental for getting
an accurate estimation of the software product value: 1) documentation and 2)
the stakeholder’s feedback.

6 Conclusion and Future Work

For a product manager a tool to model the product value, based on certain value
indicators would be very useful for evaluating and managing the expected prod-
uct value during the life-cycle development. This allows making better decisions
when a new product is ready to be released, if it needs to be improved in certain
aspects, or to evaluate if the product will reach the expectations compared to
its competitors in the market. Also, decisions as to abandon a product release
or to identify if the expected quality is feasible in a release can be analyzed with
quantitative information.

There is specially an interesting aspect of our value indicator approach: it is
very quantitative. However, if a company implements this approach, this will
need to have certain prerequisites, such as owning the documental resources,
experienced members, and analysts capable of answering the needs of the model
metrics. Addressing this issue, then the benefits are obvious since the quantita-
tive information will support a real management of the quality and at the end
the value. Additionally, the application of our model in the internal validation
gave us feedback for improving the model, in this stage of the research we are
not still proven the complete set of value indicators that we already have for
the whole software development process. Thus, it is part of the future work to
perform full case studies, if possible in software product companies with real
market targets. This will help in a better understanding on value results and
will facilitate their interpretation. Also, to develop a prototype tool based in our
approach to support the estimation in companies. Another important aspect of
implementing this model is to determine the cost-benefit, since we must assure
that it will be both feasible and useful for the companies.

Acknowledgements. This research is supported by The National Council on
Science and Technology (CONACYT) of México and the Universidad Autónoma
Metropolitana campus Iztapalapa.

References

1. Barbacci, M.R.: Software quality attributes and architecture tradeoffs. Tech. rep.,
Software Engineering Institute (2003)

2. Barney, S., Aurum, A., Wohlin, C.: A product management challenge: Creating
software product value through requirements selection. J. Syst. Archit. 54, 576–
593 (2008), http://portal.acm.org/citation.cfm?id=1374864.1375268

http://portal.acm.org/citation.cfm?id=1374864.1375268

88 O. Castro, A. Espinoza, and A. Mart́ınez-Mart́ınez

3. Boehm, B., Biffl, S., Aurum, A., Erdogmus, H., Grünbacher, P.: Value-Based Soft-
ware Engineering. Springer (2006)

4. Cedergren, S., Larsson, S.: Improving traceability by focusing on value during
development. In: de Madrid, U.P. (ed.) Proceedings of the 1st International Work-
shop on Value-Based Software Traceability (VALSOT 2011) in XP 2011 Conference
(2011)

5. Day, E., Crask, M.R.: Value assessment the antecedent of customer satisfaction.
Journal of Consumer Satisfaction, Dissatisfaction and Complaining Behavior 13
(2000)

6. International function point users group, T: Function Point Counting Practices
Manual. The International Function Point Users Group, 191 Clarksville Road
Princeton Junction, NJ 08550 U.S.A., release 1.4.1 edn. (April 2000)

7. IEEE: IEEE recommended practice for software requirements specifications (1998),
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=720574

8. International Organization for Standardization: ISO/IEC 9126 Information Tech-
nology - Software Product Quality (November 1999)

9. International Organization for Standardization: ISO/IEC 12207:2008 Systems and
Software Engineering - Software life cycle processes (2008)

10. International Organization for Standardization: ISO/IEC FCD 25010: Systems
and software engineering - Software product Quality Requirements and Evalua-
tion (SQuaRE) - Quality models for software product quality and system quality
in use (July 2009)

11. Jacobson, I., Booch, G., Rumbaugh, J.: The unified software development process.
Addison-Wesley Longman Publishing Co., Inc., Boston (1999)

12. Keane: Application rationalization. Tech. rep., Keane (2011)
13. Kruchten, P.: Architectural blueprints: The ”4+1” view model of software archi-

tecture. IEEE Software 12(6), 42–50 (1995)
14. Ojala, P.: Experiences of a value assessment for products. Softw. Process. 14, 31–37

(2009), http://portal.acm.org/citation.cfm?id=1507322.1507324
15. Ojala, P.: Value of project management: a case study. WSEAS Trans. Info. Sci.

and App. 6, 510–519 (2009),
http://portal.acm.org/citation.cfm?id=1553642.1553659

16. Oxford Dictionaries (2011),
http://oxforddictionaries.com/definition/indicator

17. SAVE International: Value methodology standard and body of knowledge (June
2007)

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=720574
http://portal.acm.org/citation.cfm?id=1507322.1507324
http://portal.acm.org/citation.cfm?id=1553642.1553659
http://oxforddictionaries.com/definition/indicator

Reusability Metrics for Program Source Code

Written in C Language and Their Evaluation

Hironori Washizaki1, Toshikazu Koike2, Rieko Namiki3, and Hiroyuki Tanabe3

1 Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555 Japan
GRACE Center of National Institute of Informatics,

2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430 Japan
washizaki@waseda.jp

2 Yamaha Corporation, 10-1 Nakazawacho, Naka-ku,
Hamamatsu-shi, Shizuoka, 430-0904 Japan

toshikazu koike@gmx.yamaha.com
3 Ogis-RI Co., Ltd., MS-Shibaura Bldg., 13-23, Shibaura 4, Minato-ku, Tokyo, Japan

{Namiki Rieko,Tanabe Hiroyuki}@ogis-ri.co.jp

Abstract. There are various approaches to quantitatively and statically
measuring the reusability of program source code; however, empirical
demonstrations of the effectiveness of such approaches by considering
actual reuse in actual development projects or of the magnitude of their
effect on actual reusability have not been reported in depth. In this pa-
per, we identified a set of metrics that are thought to be effective for
measuring the reusability of C language program source code. Subse-
quently, for ten projects involved in development with existing software
modification and adoption, during which conventional source code in an
old project are extensively reused and adopted to a new project, we com-
pared values of the static metrics identified and the reuse results before
and after the development. Statistical analysis demonstrated that some
of our metrics are effective for actual software development, and we ac-
curately determined the magnitude of their effect on actual reusability.
More concretely, it was found that when the percentage of files used out-
side the belonging directory is small and the number of function calls is
small, the complexity of source code as the material of reuse and fac-
tors that are affected by the source code are limited, indicating high
reusability.

1 Introduction

Reuse of common parts in some form (such as functions and directories) can re-
duce the development cost of new software[1]. Reusability is the extent to which a
system or module-unit parts can be reused in a different environment. This qual-
ity characteristic is not regulated directly in the standard quality model specified
in ISO9126-1[2]; however we have to consider its importance, particularly with
respect to development efficiency within the same problem domain.

It has been said that you cannot control what you cannot measure[3]. A soft-
ware metric is a measurement scale and the method used for measurement of

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 89–103, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

90 H. Washizaki et al.

some property of software. Metrics for objectively evaluating the ease of reuse of
target objects are essential for systematically controlling and conducting “devel-
opment for reuse” and “development by reuse.” Moreover, it is difficult to apply
such reusability metrics in the actual development of software with satisfactorily
high practicality, understandability, and persuasiveness unless the effectiveness
of these metrics has been proven by accurate and empirical evaluation tests.

In this paper, we proposed a set of metrics for statically measuring (i.e.,
analyzing without executing programs) the reusability of C language program
source code, and statistically evaluated the effectiveness of our metrics using a
certain scale of actual metric values. The objective of our study is to provide a
validated way for evaluating the ease of reuse of program source code accurately,
without any other software materials such as documents and specifications.

The remainder of this paper is organized as follows. Next section introduces
related works and problems in reusability measurement. Section 3 describes our
reusability metrics and reuse rates for further evaluation. In section 4, we report
on the results of empirical evaluations of our metrics by using ten projects data.
In the last section, we draw a conclusion and state future works.

2 Problems of Reusability Measurement

Though many metrics have been proposed, it is generally difficult to select an
appropriate one among them or to interpret the measurement results without
appropriate models and goals[4, 5]. Various metrics for measuring the reusability
of software have conventionally been proposed, mainly for program source code,
including our previous researches[6–14].

In most cases, the effectiveness of metrics is evaluated by dividing a certain size
of samples into a superior group and an inferior group from particular viewpoints
(e.g., reuse results[8] and qualitative evaluation[14, 15]) and by comparing the
distribution tendencies of the values of metrics between these groups.

However, data used in the evaluation by conventional metrics are based on
the rough frequency of reuse of the partial or entire programs being examined
and on qualitative evaluation, which inevitably depends on individuals. There-
fore, whether the advantages of highly reusable program elements (or an entire
program) are exploited in the programs being examined has not been accurately
demonstrated through the consideration of concrete and detailed reuse results
[Problem A].

In addition, for a similar reason, it has been difficult to analyze differences in
the magnitude of the effect on reusability among individual metrics [Problem B].
Although there has been an approach to qualitative analysis and weighting, i.e.,
summarizing opinions from multiple specialists, when using multiple metrics[19],
the effectiveness of this approach in actual software development has not yet been
verified. Hence, the magnitude of the effects of individual metrics on reusability
have not been quantitatively clarified.

Reusability Metrics for Program Source Code Written in C Language 91

3 Reusability Metrics and Reuse Results

We qualitatively identified multiple metrics considered to be effective for measur-
ing reusability and compared their actual values with concrete and detailed reuse
results. Thus, the effectiveness of individual metrics was accurately evaluated,
resolving Problem A.

For the above comparison, regression analysis was carried out using reuse
results as the objective variable and the actual values of individual metrics as
explanatory variables, and the effect of individual metrics on actual reusabil-
ity was accurately determined. As a result, Problem B was also resolved. In
the following subsections, the proposed reusability metrics and reuse results are
explained.

3.1 Definition of Reusability Metrics

Satisfactory understandability and persuasiveness cannot be obtained in the use
of metrics unless the metrics themselves have been systematically derived follow-
ing a particular policy and theory. In this paper, we adopted the Goal-Question-
Metric (GQM) method[16]. The GQM method is a goal-oriented method for
mapping a goal to a metric by using a question which must be evaluated in
order to determine whether the goal has been achieved or not.

In working towards the goal of the accurate determination of reusability for
supporting development for reuse and development by reuse, the questions to
be examined were combined stepwise with the metrics used for projecting the
properties of software to measures, thus obtaining multiple metrics. Although
the process depended on human work, several specialists repeatedly reviewed and
modified the hierarchy of the goal, questions, and metrics for as long as about
one year, ensuring a reasonable certain level of plausibility and persuasiveness.

Table 1 summarizes the obtained metrics and the questions used to derive
them. Seven metrics are derived from the four questions in the table. Each metric
represents the complexity of the dependence or the complexity of the application
programming interface (API) of the target itself.

For the six metrics other than MFl04, the smaller the value, the more positive
the response to the corresponding question, which consequently indicates high
reusability. For MFl04, it is considered that there is an appropriate range of
values that give high reusability.

Because MFn05, MFn07, and MFn06 are metrics that evaluate functions, it
is necessary to summarize measurement results by summation or other means
in the case of evaluating upper unit levels, such as modules and the entire sys-
tem. MFl and MMd are intended for source code files and modules (directories
for C language), respectively, and similarly to MFn, these metrics require the
summarization of results when upper unit levels are targeted.

MMd03 and MFn07 could be interpreted as variations of conventional infor-
mation flow-based complexity metric called “fan-out”[17]; however MMd03 and
MFn07 provide concrete ways to measure external dependencies at the module
level and the function level, respectively. Similarly, MMd01, MFl02, MFn05 and

92 H. Washizaki et al.

Table 1. List of reusability metrics obtained by qualitative identification

Question Metric
ID Name Definition and interpretation

Is not API too
complex?

MMd01
Percentage
of externally
used files

Definition: The percentage of files used outside the
belonging directory among all files within the directory
(module).

Number of files used outside the belonging directory
Number of all files in the directory

Interpretation: The smaller the value, the more
limited the use of API by external modules, indicating
high reusability of the directory (module).

MFl02

Number of
externally
used func-
tions

Definition: The number of functions defined within the
file and used outside the directory (module) to which the
file belongs. Even when the same function is used multiple
times, it is counted as 1.
Interpretation: The smaller the value, the more lim-
ited the use of API by external modules, indicating high
reusability of the file.

Is not the module
dependent on too
many other mod-
ules?

MMd03
Number of
dependent
modules

Definition: The number of modules on which the target
module depends. When the target module uses functions
of other modules, the former is considered to depend on
the latter.
Interpretation: The smaller the value, the smaller the
number of dependent modules, indicating high reusability
of the module.

Is the division and
allocation of re-
sponsibilities ap-
propriately?

MFl04

Percentage
of functions
without
parameters

Definition: The percentage of functions without param-
eters among all functions in the file.
Interpretation: The greater the value, the smaller the
amount of (dependent) data required for use, indicating
high reusability of the file. Note that a too high value
(e.g., 1.0) indicates difficulty in providing data from out-
side and thereby difficulty in setting, which may decrease
reusability.

Are external
components that
affect functions
appropriately
limited?

MFn05
Number of
parameters

Definition: The number of parameters declared within
the argument list of the function.
Interpretation: The smaller the value, the smaller the
amount of (dependent) data required for use, indicating
high reusability of the function. Note that a too small
value (e.g., 0) indicates difficulty in providing data from
outside and thereby difficulty in setting, which may de-
crease reusability.

MFn06

Number of
readings
of external
variables

Definition: The number of readings of external variables
(for C language, external global variables) by the function.
When the same single variable is read twice, it is counted
as 2.
Interpretation: The smaller the value, the more limited
the dependent external variables, indicating high reusabil-
ity of the function.

MFn07
Number of
function calls

Definition: The number of function calls
Interpretation: The smaller the value, the more limited
the dependent functions, indicating high reusability of the
function.

Reusability Metrics for Program Source Code Written in C Language 93

MFn06 are somewhat related to conventional complexity metrics “fan-in”[17]
and IF4[18]; however these metrics derived in our study are fine-grained and
specific to answer corresponding questions in the obtained GQM model.

3.2 Definition of Reuse Rate

A specific and detailed analysis of the extent of reuse can be accurately performed
by evaluating the reuse rate, i.e., the percentage of components reused without
modification (or completely reused) out of the entire adopted components, rather
than simply by evaluating the frequency and amount of reuse. Here we define
“reuse” and “adopt” in the followings.

– “Reuse” means the use of original components without any modification in
the development of other programs.

– “Adopt” means the use without modification, the use with modification, or
the use of extracted components; therefore conceptually, “adopt” includes
“reuse”.

On the basis of the above concept, we defined the reuse rate that can be measured
in the context of development with software modification and adoption, and used
it to represent the reuse results.

In our study, the reuse rate is defined as the ratio of the number of compo-
nents reused without modification to that of components adopted in some way
during the development of a new project by adopting the entire product of an
existing project. A higher reuse rate indicates that the reuse of the product of
the original existing project as the reuse source was much easier in such reuse
and modification-based new development (i.e. derivative development).

In Figure 1, for example, an existing project as the reuse source is composed
of several components, such as A, B, C, D, and E, among which, A, B, and
C are assumed to be reused in a new project. Whereas A and B are adopted
with some modification, for example, because of a difference in functional or
nonfunctional requirements, C is reused without modification; therefore, C is
counted in calculating the reuse rate in accordance with the definition of reuse.
D and E in the existing project are not adopted at all and are excluded from
the calculation of the reuse rate because it is difficult to specify the reason for
not adopting D or E, i.e., whether it is because functional or nonfunctional
requirements differ in the new project and the existing project (namely, reuse
itself is not needed) or because D and E are difficult to adopt in the new project.

On the basis of the above concept, we defined the following three reuse rates:
line, function, and file.

Line reuse rate =

Total number of lines in the files reused in the
new project from the existing project
Total number of lines in the files adopted in
the new project from the existing project

94 H. Washizaki et al.

A B C D E

・・・

Existing
project
as reuse
source

A’ B’ C

New

X

New

Y

・・・

New
project

Reused without modification Modified

Fig. 1. Concept of reuse rate

Function reuse rate =

Total number of functions in the files reused in the new
project from the existing project
Total number of functions in the files adopted in the new
project from the existing project

File reuse rate =

Total number of files reused in the new project
from the existing project
Total number of files adopted in the new
project from the existing project

Given that component in Figure 1 denote files, three files are adopted in the
new project, one of which is reused without modification. Therefore, the file
reuse rate is 1/3.

4 Evaluating Effectiveness of Reusability Metrics

We statistically evaluated whether the above-mentioned seven reusability metrics
were effective for the actual measurement of reusability using a certain size of
obtained values and reuse results.

In the following subsections, we explain the projects used to obtain the values
of the metrics and reuse results, the process of evaluation based on the compar-
ison of the obtained values and reuse results, and the obtained results.

4.1 Target Projects

Data on metrics and reuse results were selected. Specifically, ten existing projects
on embedded software development for some instruments (P1–P10) in the same
domain were first selected from various projects in a company, in which corre-
sponding succeeding developments (P1’–P10’) based on P1–P10 were conducted
and from which the above-mentioned three reuse rates (as reuse results) could

Reusability Metrics for Program Source Code Written in C Language 95

be obtained. In the company, Px’ could be recognized as an extension and new
release of corresponding Px. There was no significant and architectural change
between Px’ and Px; however it can be said that the software environment of
Px’ is changed from that of Px because these are different projects with different
functional and non-functional requirements. These projects contain relatively re-
cent and reliable data and were selected so that the greatest reuse rate differences
could be obtained with the aim of acquiring statistically significant results.

The reuse rates from the above existing projects, P1–P10, to the new deriva-
tive projects P1’–P10’, respectively, were calculated and used as reuse results.
Program source code of P1–P10 were used as the target of application of the
reusability metrics. Our expectation is that the higher the reusability of P1–P10,
the more components of P1–P10 have been reused in P1’–P10’.

Here, the files of the existing projects include files that were not reused at
all in the new projects subsequently developed. Table 2 summarizes the project
data. The directories, files and lines that were not reused in the subsequent devel-
opments were excluded from evaluation targets because it was unclear whether
the reason for the lack of reuse was the difference in the dynamic/static charac-
teristics of the target projects or because reuse was not needed in the functional
requirements.

Table 2. Data on scale of ten projects (P1–P10)

N. directories N. files N. effective LOC

Total amount 213 10,298 5,291,096

Reused 173 7,940 3,734,614

4.2 Evaluation Process

The process and result of evaluation are chronologically described below. Because
there were many parameters that affected the results of our statistical analysis,
we carefully examined each step as follows: 1) selection of measurement level,
2) selection of reuse rate and data format of metric value, and 3) selection of
explanatory variables (metrics).

Selection of Measurement Level. First, multiple linear regression analysis
using the reuse rate as the objective variable and all our metrics as the ex-
planatory variables was carried out for all the reuse rates and the different three
measurement levels: file, directory, and system. In this analysis, the objective
variable was subjected to the logit transformation[20] because it was propor-
tional data originally so that it is preferable to average the roughness of variation
in raw data. For the explanatory variables, three types of data, i.e., raw data,
proportional data, and log data, were used, as described later.

For the measurement levels of file and directory, no statistically significant
differences were observed regarding all the reuse rates. This implies that the

96 H. Washizaki et al.

features that affect the reusability of the developed projects exist at the level
of the project itself (namely, the entire system) and that no features that can
be observed as statistically significant differences exist in the levels of file and
directory.

New projects may require the addition of functions and other items. Therefore,
it is appropriate to measure the reusability of the entire system rather than that
of some component levels, which depend on individual requirements.

Selection of Reuse Rate and Data Format of Metric Value. From the
above results, the measurement level was fixed at the system, and multiple re-
gression analysis was carried out for all combinations of the reuse rate and the
actual metric value in each data format. The following three types of metric data
format were examined:

– Raw data
– Proportional data obtained by normalizing the raw data using an appropriate

parameter
– Log data obtained by a log transformation to average the roughness of vari-

ation in raw data.

The analytical results revealed that the combination of the function reuse rate
and the proportional data of metric values has the highest contribution rate that
is adjusted for degrees of freedom and therefore this combination is valid. This
is considered to be because raw data are strongly affected by the scale of the
project, whereas proportional data have been normalized in accordance with the
scale.

Table 3 shows correlation coefficients for all of combinations among the pro-
portional data of seven metric values and the three reuse rates. In the table, it
can be seen that the correlation coefficients between the function reuse rate and
several metrics proportional data are high compared with other combinations.

Figure 2 shows scattergrams for the function reuse rate and each of seven
reusability metrics. From the figure, it is thought that MMd01 and MFn07 are
strongly correlated to the function reuse rate compared with other five metrics.

Selection of Explanatory Variables (Metrics). In the above analyses, all
seven metrics were used as the explanatory variables; however, the number of tar-
get projects is ten, which is small relative to the number of explanatory variables
(the number of target projects should preferably be at least double the number
of explanatory variables). Therefore, the reliability of the regression equation
obtained by multiple regression analysis may be low.

When all seven metrics were used as the explanatory variables, the contribu-
tion rate after adjustment for degrees of freedom was 0.812, and the obtained
regression equation had positive partial regression coefficients for five of the seven
explanatory variables.

Reusability Metrics for Program Source Code Written in C Language 97

Table 3. Correlation coefficient for each combination among the proportional data of
seven metric values (MMd01, MFl02, MMd03, MFl04, MFn05, MFn06 and MFn07)
and the three reuse rates (LR, FnR and FlR)

MMd01 MFl02 MMd03 MFl04 MFn05 MFn06 MFn07 LR FnR FlR
MMd01 1
MFl02 0.693 1
MMd03 0.332 -0.012 1
MFl04 0.744 0.429 0.491 1
MFn05 -0.719 -0.354 -0.586 -0.956 1
MFn06 0.538 0.968 -0.15 0.299 -0.19 1
MFn07 0.518 0.733 -0.177 -0.11 0.163 0.721 1
LR -0.792 -0.561 0.009 -0.328 0.299 -0.446 -0.699 1
FnR -0.792 -0.768 0.125 -0.357 0.275 -0.693 -0.792 0.944 1
FlR -0.761 -0.715 0.14 -0.38 0.328 -0.639 -0.701 0.915 0.964 1

LR: Line reuse rate after the logit transformation
FnR: Function reuse rate after the logit transformation
FlR: File reuse rate after the logit transformation

Fig. 2. Scattergrams of the function reuse rate and the seven metrics

As explained above, the six metrics other thanMFl04 shown in Table 1 were de-
rived by assuming that the smaller the value, the higher the reusability. The above
analytical result was in disagreement with this assumption. This may be because
there was originally some correlation among the seven metrics we adopted. As a
result, multicollinearity occurred in the multiple regression analysis.

To solve this problem, appropriate explanatory variables were interactively se-
lected using a statistical analysis tool so that no multicollinearity was observed,

98 H. Washizaki et al.

and we obtained the combination that gave the highest contribution rate after
adjustment for degrees of freedom. It was clarified that the best regression equa-
tion with a contribution rate of 0.827 after adjustment for degrees of freedom
was obtained when MMd01, MMd03, and MFn07 were selected.

Tables 4 and 5 summarize the basic statistics of the analysis and the statistics
for each explanatory variable selected, respectively. In Table 4, the variance ratio
is high and the level of significance is 1%, indicating that the obtained regression
equation is valid. From Table 5, the partial regression coefficients are negative
for MMd01 (proportional data) and MFn07 (proportional data), which is in
agreement with the initial assumption that the smaller the metric value, the
higher the reusability.

Here, the partial regression coefficient for MMd03 (proportional data) is pos-
itive. This may be because the three explanatory variables used in multiple
regression analysis were not completely independent. However, MMd03 has the
smallest standardized partial regression coefficient among the three explanatory
variables and thereby has the smallest effect on the objective variable; hence, its
effect is considered to be negligible.

Figure 3 shows a scattergram of the function reuse rate estimated from the ob-
tained regression equation with three reusability metric values (MMd03, MMd01
and MFn07), and the actual function reuse rate for ten projects. In Figure 3,
the multiple correlation coefficient is as high as 0.941. The estimated function
reuse rate at the level of the system obtained using the regression equation is in
good agreement with the actual function reuse rate.

Table 4. ANOVA table of basic statistics after selecting explanatory variables

Factor Sum of Degree of Dispersion Dispersion Test
squares freedom ratio

Regression 10.713 3 3.571 15.34 Level of significance = 1%
Residual error 1.397 6 0.233

Total 12.11 9

4.3 Summary of Evaluation Results

The results of the evaluation of effectiveness are summarized below.

1. Program source code are reused at the level of function.
For reuse results based on the reuse rate, the function reuse rate was most

strongly related to the values of reusability metrics. This is considered to be
because C language program source code are mostly reused at the level of
function.

2. Ease of reuse can be estimated from the data at the level of the entire system.
As the level of reusability measurement, the entire system is more suitable
for the evaluation of reuse rate than individual components. This is probably
because the features and tendencies that affect the reusability of projects are
at the level of the entire project.

Reusability Metrics for Program Source Code Written in C Language 99

Table 5. Statistics for each explanatory variable selected

Variable
Partial regression
coefficient

Standard
error

t-value
Standard partial re-
gression coefficient

Tolerance

Constant term 3.446 1.769 1.948
MMd03 (proportional data) 0.362 0.207 1.744 0.284 0.723
MMd01 (proportional data) -8.453 2.31 -3.66 -0.687 0.546
MFn07 (proportional data) -1.029 0.48 -2.14 -0.386 0.594

In other words, such features and tendencies do not necessarily exist in
individual files or directories of the entire system; in the experiments such
features and tendencies are not concentrated in particular files and directo-
ries of the system.

3. The more limited the externally used files, the higher the reusability (MMd01).
Multiple regression analysis and the correlation analysis shown in Figure 2
revealed that when the percentage of externally used files in the directories of
the system is smaller, namely, the API and interfaces that are used externally
at the level of directory are more limited, the function reuse rate at the level
of the system tends to be higher.
For example, let us consider directories Ma and Mb, as shown in Figure 4.

The values of MMd01 are 3/5 = 0.6 and 1/5 = 0.2 for Ma and Mb, respec-
tively. In this case, the number of externally used files inMb is smaller, or more
limited, than that in Ma; a system composed of such directories with limited
entrance will be more reusable. A directory in which only one file is used by
external modules, similarly to Mb, is considered to be a result of applying the
Facade pattern[21], which defines an unified and higher-level interface to a set
of interfaces in a subsystem.

4. The smaller the number of function calls, the higher the reusability (MFn07).
Multiple regression analysis and the correlation analysis shown in Figure
2 also revealed that when the number of function calls in each function is
smaller, namely, the function under evaluation is called more often than it
makes calls, and is closer to the end of call, the function reuse rate at the
level of the system tends to be higher.

In Figure 5, for example, the values of MFn07 are 3, 1, and 0 for fa(),
fb(), and fc(), respectively. In this case, fa() mainly has the role of calling
other functions, whereas fc() is just called by other functions. Therefore,
a system having more such fc() end functions in the call chain has greater
reusability.

5. Ease of reuse is more significantly affected by the percentage of files used by
external modules (MMd01) than by the number of function calls (MFn07).
Furthermore, multiple regression analysis revealed that the percentage of
files used by external modules significantly affects reusability.

On the other hand, the effect on reusability of the number of depen-
dent modules (MMd03) remains unclear and will be examined in the future;
currently we cannot find any significant correlation between MMd03 and the
function reuse rate.

100 H. Washizaki et al.

Fig. 3. Scattergram of function reuse rate at the level of the system for 10 projects after
the logit transformation (X-axis, estimated values obtained using regression equation;
Y-axis, metric values); multiple correlation coefficient = 0.941

Directory (module) Ma

Source file

Used in function calling, etc.

Mb

Fig. 4. Example of measuring MMd01 (percentage of externally used files)

As mentioned above, these evaluations were carefully carried out through sev-
eral regression analyses, in which three types of detailed data were used for reuse
results as the objective variable. Therefore, the validity of the proposed reusabil-
ity metrics was accurately evaluated, thus resolving Problem A. In addition, the
magnitude of effect on reuse results was individually analyzed and determined
for three reusability metrics, thus resolving Problem B.

Reusability Metrics for Program Source Code Written in C Language 101

Function
fa() fb() fc()

Call

Fig. 5. Example of measuring MFn07 (number of function calls)

According to the above-mentioned goal, these validated metrics could be used
for supporting development for reuse and development by reuse, such as estimat-
ing the effort necessary for reusing existing source code.

4.4 Threats to Validity

We used the reuse rate between corresponding two projects as a proxy for
reusability of original program source code. We believe that the reuse rate de-
fined in the subsection 3.2 reflects the reusability; however there might be several
other factors affecting the reuse rate, such as requirement changes. It could be
a threat to internal validity; in the future, we will inspect the similarity of re-
quirements among target 20 projects.

Regarding threats to external validity, the evaluation was done on projects on
embedded software development for some instruments in the same domain. We
expect that the characteristics of all projects used in our experiments, such as the
data on scale shown in Table 2, could help readers utilize the evaluation results.
Moreover the evaluation was limited to derivative developments involving the
reuse of entire architecture; in the future we will consider the generalizability of
the obtained results by applying the metrics to completely new developments
involving reuse of existing components.

5 Conclusion and Future Work

For C language program source code, a set of metrics considered to be effective for
measuring reusability were qualitatively identified. Through accurate analyses
using several types of data on reuse results, it was statistically clarified that
three of the identified metrics tend to have different effects on actual reusability.
In these analyses, we defined the reuse rate, which can more accurately reflect
the actual state of reuse than the frequency of reuse.

The main contribution of this paper is the development of procedures for
accurately evaluating the validity and effectiveness of reusability metrics and
for analyzing the magnitude of their individual effects on actual reusability.
As a result, a set of reusability metrics, the effectiveness of which has been

102 H. Washizaki et al.

evaluated and which can be used for C language program source code, were
proposed together with an evaluation of the magnitude of their individual effects
on reusability.

The followings are future works.

– Further review and expand the metrics (particularly MMd03) by increasing
the number of project data and repeating the analysis, and analyze the
generality of the metrics. Moreover it is necessary to consider the effect of
various files (such as XML files[22]) on implicit module dependencies.

– Expand the definition of the reuse rate, which is used for comparison with
metric values during the evaluation of their validity, so that the reuse rate can
be applied even when original existing projects do not necessarily correspond
to new derivative projects on a one-on-one level (e.g., the reuse rate when a
project product is reused by various new projects).

– Analyze the relationship between metric values and other reuse result data
such as the frequency of reuse in a certain time frame.

– Examine the applicability of the metrics, the validity of which has been
verified, to source code written in other program languages considering that
the questions used to derive the reusability metrics are independent of the
program language.

– The reusability metrics proposed in this paper could constitute part of a
practical framework (such as [6, 7]) for measuring the internal quality in-
cluding reusability.

References

1. Poulin, J.S.: Measuring Software Reuse: Principles, Practices, and Economic Mod-
els. Addison-Wesley (1996)

2. ISO/IEC 9126-1: 2001, Information technology – Software product evaluation:
Quality Characteristics and Guidelines for their use (2001)

3. DeMarco, T.: Controlling Software Projects: Management, Measurement & Esti-
mation. Yourdon Press (1982)

4. Fenton, N., Whitty, R., Iizuka, Y.: Software Quality Assurance and Measurement:
A Worldwide Perspective. Thomson Computer Press (1995)

5. Laird, L.M., Carol Brennan, M.: Software Measurement and Estimation: A Prac-
tical Approach. John Wiley & Sons (2006)

6. Washizaki, H., Namiki, R., Fukuoka, T., Harada, Y., Watanabe, H.: Practical
Framework for Evaluating Quality of Program Source code. IPSJ Journal 48(8),
2637–2650 (2007)

7. Washizaki, H., Namiki, R., Fukuoka, T., Harada, Y., Watanabe, H.: A Frame-
work for Measuring and Evaluating Program Source Code Quality. In: Münch, J.,
Abrahamsson, P. (eds.) PROFES 2007. LNCS, vol. 4589, pp. 284–299. Springer,
Heidelberg (2007)

8. Kanno, A., Yoshizawa, T.: Techniques for Assuring Software Quality towards 21st
Century. JUSE Press, Ltd. (1994)

9. Sindre, G., Conradi, R., Karlsson, E.-A.: The REBOOT Approach to Software
Reuse. Journal of Systems and Software 30(3) (1995)

Reusability Metrics for Program Source Code Written in C Language 103

10. Frakes, W., Carol, T.: Software Reuse: Metrics and Models. ACM Computing
Surveys 28(2), 415–435 (1996)

11. Etzkorn, L.H., Hughes, W.E., Davis, C.G.: Automated Reusability Quality Anal-
ysis of OO Legacy Software. Information and Software Technology 43(5), 295–308
(2001)

12. Nakajima, S., Suguta, S., Hotta, Y.: Evaluation of Metrics for Reuse of C++. In:
Object-Oriented Symposium (1998)

13. Washizaki, H., Yamamoto, H., Fukazawa, Y.: A Metrics Suite for Measuring
Reusability for Software Components. In: Proc. of the 9th IEEE International
Symposium on Software Metrics (Metrics 2003), pp. 211–223. IEEE CS (2003)

14. Hirayama, M., Sato, M.: Evaluation of Usability of Software Components. IPSJ
Journal 45(6), 1569–1583 (2004)

15. Inoue, K., Yokomori, R., Yamamoto, T., Matsushita, M., Kusumoto, S.: Ranking
Significance of Software Components Based on Use Relations. IEEE Transactions
on Software Engineering 31(3), 213–225 (2005)

16. Basili, V.R., Weiss, D.M.: A Methodology for Collecting Valid Software Engineer-
ing Data. IEEE Transactions on Software Engineering 10(6) (1984)

17. Henry, S.M., Kafura, D.G.: Software Structure Metrics Based on Information Flow.
IEEE Transactions on Software Engineering 7(5) (1981)

18. Shepperd, M., Ince, D.: Metrics, outlier analysis and the software design process.
Information and Software Technology 31(2) (1989)

19. Lee, K., Lee, S.J.: A Quantitative Software Quality Evaluation Model for the Arti-
facts of Component Based Development. In: Proc. 6th International Conference on
Software Engineering, Artificial Intelligence, Networking and Paralle/Distributed
Computing, and 1st ACIS International Workshop on Self-Assembling Wireless
Networks (2005)

20. Ashton, W.D.: The logit transformation with special reference to its uses in bioas-
say. Hafner Pub. Co. (1972)

21. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley (1994)

22. Karus, S., Gall, H.: A study of language usage evolution in open source software.
In: 8th Working Conference on Mining Software Repositories, MSR (2011)

Modeling the Effects of Project Management

Strategies on Long-Term Product Knowledge

Martin Höst

Department of Computer Science
Lund University

Sweden
martin.host@cs.lth.se

Abstract. In a team, people sometimes leave the team and become re-
placed by new persons with less experience, and sometimes people par-
ticipate in new activities and thereby obtain new knowledge. Different
processes, in terms of different management strategies, can be followed,
e.g., to introduce people to new tasks so they get new knowledge. There
is a need to investigate the long term effects of different strategies on a
team’s software product knowledge. This paper presents an initial ap-
proach for how this type of knowledge can be modeled as a stochastic
process. Metrics representing the long term effects on knowledge are de-
rived, and two different example strategies are investigated numerically.
Based on this it is discussed how the model can be further elaborated
and evaluated.

Keywords: software process modeling, product knowledge, learning,
truck factor.

1 Introduction

The relation between the software process and the product is of interest in order
to be able to define a suitable process under a certain condition. In this paper
the effects of the process in terms of how people are assigned to different tasks
are investigated with respect to a team’s long term knowledge of the product.

In software maintenance and evolution, teams are responsible for working with
a rather large amount of software. The team is composed of a number of differ-
ent engineers with different competencies, and the software consists of different
modules, which means that different engineers can have knowledge about differ-
ent modules. It is, of course, positive if many engineers have experience of many
modules and if there for every module is several engineers that have experience
of it.

In many cases there may be only few persons with experience of some modules
even if there in an initial phase were several persons with knowledge about every
module. Reasons for this might be that people leave the team. That is, the
number of people with experience of a certain module is changing according to
a dynamic process. A situation that is not attractable is when there are very
few people with experience of a module, or when there are no people at all

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 104–115, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Modeling Long-Term Product Knowledge 105

with experience of it. Staffing and assigning tasks to engineers is a typical task
for management which can affect the knowledge of people in the team. People
working with a module gain experience from working with it, but it is in many
cases less expensive to have a person who already have experience of the module
working on it.

One reason for working in groups with a shared responsibility of the product
is that the knowledge about the code can be spread among several engineers,
and the risk that certain parts of the code is only known by a single engineer
is lowered. The term “collective code ownership” was coined as part of agile
software development, meaning that anyone can change any code anywhere in
the system at any time [1]. It is argued that this means that knowledge about
the code is spread among the engineers and that code that is not well structured
or too complex will be improved since many people are working with it.

The overall objective of this paper is to present a model for how the dynamic
changes of knowledge about a module in a team can be modeled, taking into
account that people sometimes leave the team and experience is lost and that
people sometimes gain new knowledge. The objective is also to illustrate how the
model can be used by showing the results for a number of example situations.

The outline of this paper is as follows. In Section 2 related work is presented
and in Section 3 the analysis model is presented. The model is presented for two
example strategies. In Section 4 the numerical results of the model for the two
example strategies are presented. The results of using the model is discussed in
Section 5, and conclusions and further research are presented in Section 6.

2 Related Work

Ricca and Marchetto [2] investigated if there are “heroes” in empirical studies
of open source projects, where they with the term heroes mean people who are
the only ones who have contributed to different files. In a set of studied open
source projects it was found that heroes are common in open source projects,
and that they are faster in development than non-heroes.

In their work on formulating approaches for analysis of process compliance,
Zazworka et al. [3] defined and studied a metric of “truck factor”. They evaluate
the approach for analysis of non conformance in a case study on XP, where non
conformance can be detected through a metric for truck factor. They define the
truck factor as the maximum number of developers that could leave the team,
and still at least a certain percentage of the modules would be known by at least
a certain number of people. That is, they define the metric as one single number
for a whole project. The formula for calculating the truck factor they define is

tfx,c = max{n | covx(n) ≥ c} (1)

where c is a percentage, and covx(n) is the coverage, defined as the percentage
of components that would still be known by the developers if n developers were
absent according to different types of situations, x, as worst case, average case,
or best case.

106 M. Höst

Model

Team (N persons)

...

...

k persons with
experience of
the analyzed
software module

N-k persons with
no experience of
the analyzed
software module

Strategies

Strategy 1:
choose a person
by random

Strategy 2:
choose a person
with experience

...

Events

Increase k:
gain experience

Decrease k:
loose experience

sw
module

sw
module

sw
module

... sw
module

Analyzed
module

Other modules managed
by the team (not analyzed)

Fig. 1. Overview of the model

Torchiano et al. [4] build on the work by Zazworka et al. [3] and investigate
threshold values for the truck factor, and they look at data from a set of 20
open source projects. Ricca et al. [5] continue this work and present a tool for
calculating the truck factor and investigate the sensibility of the truck factor
metric. They conclude that the metric is sensible, but that more research is
needed on how it is calculated and that there may be scaling problems for large
projects.

Compared to related work on knowledge about software in teams, the model
presented in this paper focuses more on the dynamic changes of knowledge than
existing models. This is done at the cost of focusing on only a single module at
a time of the software, instead of at the whole software system.

3 Model

3.1 General Overview

The model is outlined in Figure 1. It is based on the following assumptions:

– The model describes the experience of one code module in the product. The
size or type of the code module is not described by the model, but the basic
idea is that a person in the team either has experience and knowledge about
the module or not.

Modeling Long-Term Product Knowledge 107

– The team consists of N engineers. That is, the team size is constant. When
one person leaves the team, that person is replaced by a new person.

– When a new person is introduced in the team, that person does not have
experience of the code module.

– When a person in the team gets an assignment to work with the code mod-
ule it is assumed that the person during this work obtains experience and
knowledge about the module. When this happens it can be assumed that the
person obtains experience. If there are other people in the team who have
experience of the code it is probably easier for a novice to work with the code
since there are other people to ask for example when the documentation is
hard to understand.

– In the team there are k persons that have experience and knowledge about
the code module under study. k can take any value from 0 to N and is used
to model how the knowledge changes over time.

– How people are assigned to maintenance tasks are decided by the strategy of
the management and the team. One strategy could be to always let a person
with experience of the module work with the task, and another strategy
could be to always let a person with no experience of the module work with
the task. The strategy affects how how often people in the team get new
experience of the module under study.

It is assumed that new maintenance jobs arrive to the organization with inten-
sity λ. The intensity of people leaving the team and thereby being replaced by
someone else without any knowledge about the module is μ. The time between
new assignments is exponentially distributed with mean value 1/λ, and the time
between people leaving the team is exponentially distributed with mean value
1/μ. Define ρ as ρ = λ/μ.

Altogether this means that the model describes how k varies between 0 and N
over time. This is modeled as a stochastic Markov process with discrete levels in
continuous time (e.g. [6]). This type of model is used to model a wide spectrum
of processes and systems in the literature, e.g. in different areas like performance
behavior in telecommunication systems and user behavior in software testing.
They provide a well known and easy way to derive mathematical expressions,
and on the same time the possibility to model a level of detail that is sufficient
in many situations. The Markov model that is used in this paper is outlined in
Figure 2. This model shows that there are transition intensities between adja-
cent states, and the states represent how many people in the team that have
experience of the module. In this model, λk denotes the transition rate from
state k to state k + 1, and μk the transition rate from state k to state k − 1.

It is, of course, possible to define more complex models with transition rates
between more than adjacent states, e.g. if two novice programmers work together
with a module. However, for the strategies presented in this paper the model
presented in Figure 2 is enough, and there is no difference between this model
and a more complex model when it comes to how the metrics presented below
are calculated.

108 M. Höst

0 k-1 k k+1 N...

λ k-1 λ k

μk μk+1

...

Fig. 2. Markov model

The number of people in the team with experience can be affected by man-
agement through applying different strategies. Strategies may concern both how
people who not yet have experience can get experience through involvement in
projects and in other ways affecting how people leave the team and how they
get new experience. The transition rates between different states (i.e. λk and
μk) can then be estimated based on the strategies. In this paper two different
example models based on two different strategies are presented. In the example
strategies presented below it is shown how the transition rates can be decided
from the strategies.

The fact that knowledge is gained by working with the code module deserves a
discussion. There are, of course, other ways to obtain knowledge, such as through
training, participating in inspections, or other ways. However, contributing to
the code has been used as an indication of knowledge in other studies ([2,3,4]),
and it is at least an intuitive indication of knowledge. Fritz et al. [7] investigated
the relationship between activity for a piece of code and knowledge about it and
found that activity could be used as an indicator, although additional factors
could also be considered such as role and professional work experience. Of course,
all tasks are not large enough to give experience enough for a person to obtain
knowledge. As part of using the model the type of task that is assumed to
give experience must be defined. A factor that is not considered in the model
presented in this paper is the fact that people forget their knowledge after some
time and that knowledge about a module may be outdated after some a longer
time when a module has been extensively modified. This is a result of a trade-off
between having a simple and a complete and detailed model.

The model that is presented is analytical, but it would of course also be
possible to define a simulation model for this purpose. The advantage of an
analytical model is that it is possible to investigate more values for different
parameters in a certain amount of time, and when formulas can be derived they
ca give a knowledge as such of the relations between different factors. Simulation-
based analyses require longer execution times, although they make it possible to
analyze more complex processes. In this research we have seen that it is possible
to define an analytical model which answers the basic questions that are of
interest.

Modeling Long-Term Product Knowledge 109

3.2 Metrics Based on the Model

The goal of the analysis is to investigate which strategy helps maintaining knowl-
edge about each code module as long as possible. Then, we want to know the
answer to questions about the risk of loosing all people with that knowledge, and
how long it would take to come into that situation. Based on this, two metrics
are investigated in this paper:

p0: The probability that the team at a random point in time will be in the state
that no one has knowledge about the module.

ti : If there are i persons in the team with experience of the module, ti is the
mean time it takes until the first time that no one has experience of the
module.

These metrics can be derived and calculated from the model as follows. Let
(qij) = Q denote the (N + 1) × (N + 1) transition rate matrix for the process
with N + 1 states (0, 1, . . .N). Let the rates in the first row denote the rates
from state 0, the rates in the next row denote the rates from state 1, etc, i.e. a
traditional transition rate matrix as described e.g. by Cox and Miller [6].

The calculation of p0 is based on calculating the steady state probabilities
p = (p0, p1, . . . pN), that is the probabilities that the process will conform to after
an infinite amount of time. We use this as an indication of the state probability
at a random point in time. The probabilities p can be found by solving

0 = pQ (2)

with the normalization condition
∑

i pi = 1 (see e.g. [6]).
In order to determine ti, state 0 is defined as absorbing, by adapting the

Q-matrix by setting the first row to zeros:

Q =

(
0 0

q̂0 Q̂

)

, (3)

i.e. there are no transition rates from state 0, otherwise Q is not changed. This
means that q̂0 is a vector with the transition rates to state 0 and Q̂ is an N ×N
transition rate matrix for the transitions between states 1 to N . Then the mean
times tij that the process stays in state j before absorption if it starts in state i
can be derived as

(tij) = T = −Q̂−1 1 ≤ i ≤ N
1 ≤ j ≤ N

(4)

A proof of this is presented by Tavere [8]. Actually that proof is presented for
two absorbing barriers, but it easily follows that it is valid also for one absorbing
barrier as in this case. From this it follows that the mean time until the process
reaches state 0 if it is in state i is

ti =
N∑

j=1

tij 1 ≤ i ≤ N (5)

110 M. Höst

That is, in order to calculate the metrics (p0 and ti) the following factors must
be known, measured or estimated: λ (i.e. how often new maintenance tasks for
the module arrives), μ (i.e. how often people leave the team), and what strategy
is applied.

It should be noted that it is easy to define other metrics in the same way as
p0 and ti. For example, a measure of few (≤ 1) persons with experience could
be defined as p0 + p1.

3.3 Strategies

Two strategies for how people are assigned to tasks are defined and analyzed in
this paper.

– Strategy 1: A person is chosen for the task by random. That is, all persons
in the team are equally likely to work with the task.

– Strategy 2: If there are persons in the team with knowledge about the task,
one of them will be chosen. Only if no one has experience of the task, someone
without experience will be chosen.

The two strategies are further presented below.

Strategy 1. According to this strategy, every time a new job arrives a person
in the team is chosen by random. This means that the probability that a person
without experience of the module is chosen in state k is (N−k)/N , which means
that the intensity of an increasing the number of people with experience is

λk =
N − k

N
λ (6)

When people leaves the team and are replaced by someone with no experience
then the probability that the person had experience of the module is k/N . That
is,

μk =
k

N
μ (7)

The state probabilities can be found through equation (2), but it is also possible
to decide an expression for p0 as (see Appendix A.1):

p0 = 1/(1 + ρ)N (8)

For this strategy, formula (8) can be used instead of formula (2), which is valid
for any strategy.

Strategy 2. This strategy is to always choose a person who has experience of
the code if such person is working in the team. This means that the intensity of
people with experience leaving the team is the same as in model 1, i.e. formula
(7), but the intensity of acquiring experience is

λk =

{
λ, k = 0;
0, 1 ≤ k ≤ N ;

(9)

Modeling Long-Term Product Knowledge 111

10
−3

10
−2

10
−1

10
0

10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

rho

p(
0)

Fig. 3. p0 as function of ρ with N = 10. The solid curve is for strategy 1 and the
dashed curve is for strategy 2.

Note that when calculating the stationary probabilities, p, only p0 and p1 will
have values larger than zero for this strategy. It can easily be shown that the
p0-probability is (see Appendix A.2)

p0 = 1/(1 +Nρ) (10)

In the same way as in strategy 1, formula (10) can be used instead of formula (2),
which is valid for any strategy.

4 Model Results

In this section it is shown what the results of the model are for a set of different
values. In Figure 3 it is shown how p0 varies for different values of ρ with the
two strategies. The solid line shows strategy 1 and the dashed line strategy 2.
Note that p0 depend only on the relation between λ and μ, i.e. ρ. For example,
if λ = 1 month−1 and μ = 0.1 month−1 this means that ρ = 10.

Figure 4 shows how ti varies for different values of i. The three solid curves
show the results for three different values of ρ for strategy 1. The dashed curve
shows the results for strategy 2. Note that for strategy 2 the time to absorption
is independent of λ, which is why only one curve for strategy 2 is shown.

As expected, strategy 1 is better than strategy 2 when it comes to the inves-
tigated metrics. For example, comparing the two curves in Figure 3 for ρ = 1,
p0 is very small for strategy 1 (1/210), while it is quite significant for strategy 2
(1/11).

112 M. Höst

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

450

i

tim
e

to
 a

bs
or

pt
io

n

Fig. 4. ti for μ = 1 and N = 10. The three solid curves show the results for strategy
1, where ρ = 0.1 in the lower curve, ρ = 0.5 in the middle curve, and ρ = 0.75 in the
upper curve. The dashed curve shows the results for strategy 2.

5 Discussion

A model like this can not be expected to present values that perfectly correspond
to actual values. One reason is that the input parameters can not be known in
detail. Instead, estimates of values must be used. It is the same for the definition
of strategy. In most cases it is not possible to formulate exactly what strategy
is used, only to describe what overall strategy that is most similar to the actual
strategy that is likely to be followed in a team. It is also worth noting that it is
not probable that the results will be valid when very long times are predicted,
e.g. as in the upper curve in Figure 4 where times longer than 400 months are
predicted if, for example, 1/μ = 1 month. This type of result should more be seen
as the model does not predict any problem with respect to knowledge over time.
It should also be noted that, since the result of the model is the result of many
events in a stochastic process, the variation of the results may be large. Especially
the actual variation around the mean value ti may be large. To illustrate how
large the variations can be, a team with with strategy 1, N = 10, λ = 0.75,
and μ = 1 has been simulated 200 times with a discrete event simulator. The
resulting measures of t5 are illustrated in the histogram in Figure 5. It can be
seen that the variations are large. When the results of this kind of model are
used it should be known that the actual results in reality will not be exactly as
the mean value is predicted.

An assumption in the model concerns the distribution of times between as-
signments and the times between people leaving the team. The model assumes

Modeling Long-Term Product Knowledge 113

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

90

100

t5

#

Fig. 5. Simulation results, where a team with N = 10, λ = 0.75 and μ = 1 is simulated
and the time t5 is measured 200 times

that these times are exponentially distributed with different mean values. In
reality it is of course not certain or even likely that this is true. However, in
order to derive a model certain assumptions and simplifications of the reality
must be made and the exponential distribution do not have to bee too far from
reality. There are other aspects that the specific distribution that can be dis-
cussed, such as if events are independent o not. A realistic situation that is not
modeled is that an external event, such as the start of another large project,
could mean that several people left the team simultaneously. When models are
formulated, simplifications must be made, and it is important to be aware of
this when the results are used. We believe that the model represent a reasonable
trade-off between simplification and inclusion of details.

The realism of the two formulated strategies can also be discussed, although
they should be seen more as examples of strategies than actual strategies. How-
ever, the two strategies can be seen as two basic ways of assigning people to
tasks, where strategy 1 is more focused on assigning people to new tasks than
strategy 2, which is intended to model a very “short sighted” management strat-
egy. Concerning strategy 1, people are not assigned to tasks by random in reality.
However, people in the team are in a real situation working with several different
tasks, which means that it is not possible to assign any person to any task at
any time. This means that someone else than would initially be seen as most
suited for a task may have to be chosen. Even if this is not the same as strategy
1, it may be nearer to the reality than for example strategy 2.

The proposed usage of the model is not to use it to derive definite and exact
figures of future results. It is more to follow a procedure where a process is mod-
eled as good as possible with respect to parameters and strategy. This probably

114 M. Höst

involves formulating a strategy in the same way as was presented in Section 3,
but it may also be possible to choose one of the two models that are presented
in this paper. Based on this it is then possible to investigate different “what-if”-
scenarios by changing parameters and/or strategy and to compare the results in
order to get an understanding of the effects of different types of changes. That is,
when processes and management strategies are improved, different alternatives
can be evaluated with this type of model. For example, a manager responsible
for a team can investigate the implications of different strategies on the prod-
uct knowledge. Then the results of his model could, in combination with other
factors, such as estimated cost of different strategies and the impact of delivery
date, be used when processes and strategies are defined.

6 Conclusions and Further Research

The presented model can be used to get an indication of the long-term effect on
knowledge in teams for different types of strategies. That is, it is one example of
a model that can be used to analyze the effects of different processes on product.
In this model the process aspect concerns the strategies for staffing in projects,
and the product aspect is the team’s knowledge of the product.

The model can likely be used when different strategies are compared and
the likely effects of changing parameters are studied. It can be used as one
source of information when different strategies are considered. Other sources of
information can for example be estimates of the costs of different strategies.
However, this should be seen as a first attempt to formulate a model, and a
number of areas for further research remain.

There is a need to formulate and investigate more strategies than the two
investigated in this paper. Strategies based on “pair-programming” [1] may for
example be investigated. The model needs to be further evaluated by comparing
the results of it to empirical measurements. This could, for example, be carried
out in the form of surveys with real industrial projects. There is also a potential
possibility to investigate knowledge about other factors than code modules, e.g.
treating “system knowledge” as one unit of analysis.

A Appendix

A.1 Derivation of (8)

Equilibrium gives that

pk−1λk−1 = pkμk 0 < k ≤ N (11)

which is the same as

pk−1λ
N − (k − 1)

N
= pkμ

k

N
(12)

that is

pk = ρ
N − (k − 1)

k
pk−1 = ρk

(
N

k

)

p0 (13)

Modeling Long-Term Product Knowledge 115

The normalization condition means that

1 =

N∑

k=0

pk =

N∑

k=0

ρk
(
N

k

)

p0 = (1 + ρ)Np0 (14)

which means that p0 = 1/(1 + ρ)N .

A.2 Derivation of (10)

Since λk = 0 for k > 0, equilibrium means

p0λ = p1μ
1

N
(15)

which means that
p1 = Nρp0 (16)

Since the sum of p0 and p1 is 1, p0 = 1/(1 +Nρ).

Acknowledgment. This work was funded by the Industrial Excellence Center
EASE–EmbeddedApplicationsSoftwareEngineering, (http://ease.cs.lth.se).

References

1. Beck, K.: Extreme Programming Explained. Addison Wesley (2000)
2. Ricca, F., Marchetto, A.: Heroes in FLOSS projects: An explorative study. In: 17th

Working Conference on Reverse Engineering, pp. 155–159 (2010)
3. Zazworka, N., Stapel, K., Knauss, E., Shull, F., Basili, V.R., Schneider, K.: Are

developers complying with the process: An XP study. In: Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software Engineering and Mea-
surement, ESEM (2010)

4. Torchiano, M., Ricca, F., Marchetto, A.: Is my project’s truck factor low? theoretical
and empirical considerations about the truck factor threshold. In: WETSoM (2011)

5. Ricca, F., Marchetto, A., Torchiano, M.: On the Difficulty of Computing the Truck
Factor. In: Caivano, D., Oivo, M., Baldassarre, M.T., Visaggio, G. (eds.) PROFES
2011. LNCS, vol. 6759, pp. 337–351. Springer, Heidelberg (2011)

6. Cox, D., Miller, D.: The Theory of Stochastic Processes. Chapman & Hall (1965)
7. Fritz, T., Murphy, G.C., Hill, E.: Does a programmer’s activity indicate knowledge

of code? In: Proceedings of the the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations
of Software Engineering, ESEC-FSE, pp. 341–350 (2007)

8. Tavere, S.: A note on finite homogeneous continouos-time Markov chains. Biomet-
rics 35(4), 831–834 (1979)

http://ease.cs.lth.se

Growing into Agility: Process Implementation

Paths for Scrum

Kevin Vlaanderen1, Peter van Stijn1,
Sjaak Brinkkemper1, and Inge van de Weerd2

1 Utrecht University, Department of Information and Computing Sciences,
P.O. Box 80.007, 3508 TA, Utrecht, The Netherlands

{k.vlaanderen,s.brinkkemper}@uu.nl, pcestijn@cs.uu.nl
2 Vrije Universiteit Amsterdam, Faculty of Economics and Business Administration,

De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
i.vande.weerd@vu.nl

Abstract. Background: Many organizations struggle with the imple-
mentation of agile methods. Such methods pose considerable challenges
related to organizational demand and process configuration. Goal: In
this paper, we analyze the introduction of Scrum in the development
organization in order to determine distinct approaches to its implemen-
tation. Approach: We compare the Scrum introduction paths of four
case companies. Results: This results in a discussion of implementation
paths ranging from gradual to disruptive introduction of Scrum. Con-
tribution: The description of these paths provides insight into process
improvements. We demonstrate how a structured description of process
improvements can improve understanding of process improvement paths.

Keywords: software process improvement, Scrum, product software, in-
cremental, process implementation.

1 Introduction

Since the publication of the Agile Manifesto in 2001 [3], agile software develop-
ment methods have become an ever-increasing part of the software development
industry. The Agile Manifesto, but also the period before its publication, gave
rise to several agile software development methods [1]. Examples of such meth-
ods are DSDM [24], Extreme Programming [2] and Scrum [20]. The principles
of such methods are that by employing them, the development process becomes
more responsive to a changing environment, working software is chosen over
extensive documentation, individuals and interactions are considered more im-
portant than tools and processes, and customer collaboration is valued more
than contract negotiation [3]. In the last few years, these agile methods have
proven to be successful in a large number of cases [17].

Scrum is one of the agile methods that is gaining popularity [9]. The Scrum
development method was proposed by Ken Schwaber [20], at a time when it
became clear to most professionals that the development of software was not
something that could be planned, estimated and completed successfully using

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 116–130, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Growing into Agility: Process Implementation Paths for Scrum 117

the common ‘heavy’ methods. Therefore, the Scrum method adheres to the prin-
ciples of agile software development. Companies that have put Scrum to practice
range from small companies as described by Dingsøyr et al. [8] to large multi-
nationals [10]. Research has shown that the use of Scrum within a company can
lead to significant benefits [10].

In its purest form, Scrum provides a rather simple approach to agile, iterative
software development. Although various additions have been made during the
years, the process boils down to a planning phase, a closure phase, and several
iterations, or sprints, during which the software is developed by one or more de-
velopment teams. No new requirements can be introduced during these sprints.
This ensures that the final product is being developed with a high probability
of success, even within a constantly changing environment. This environment,
which includes factors such as competition, time and financial pressure, main-
tains its influence on development until the closure phase. Sprints are structured
according to a set of recurring activities. These basic, relatively fixed activities
are the sprint planning meeting, the daily Scrum meeting, the sprint review
meeting, and the retrospective meeting. The essential deliverables within Scrum
are the sprint backlog, the product backlog, and the increment of potentially
shippable product functionality [20].

Although Scrum can provide significant benefits, implementing it in an or-
ganization is not a trivial task. Many authors have described the risks and
critical success factors of Scrum implementations in various (types of) organi-
zations [23,21]. Not only for bespoke software development but also for product
software development organizations, as recognized by several authors, including
one of the founders of the Agile Alliance [7,15]. While agile methods can provide
significant advantages to a software producing company, there are many chal-
lenges that can inhibit a successful move from traditional software development
approaches to an agile environment, such as developer resistance, challenges in
decision making, and the need for increased customer involvement [5,14]. From
a questionnaire on the subject conducted by Livermore [13], it becomes clear
that knowledge sharing is one of the most important factors in the success of
implementation projects, followed by management support.

Process improvements can intrinsically be performed according to two main
types. On the one hand, process improvements can be implemented in a revo-
lutionary manner. In such a case, large changes are introduced to a process at
once. On the other hand, process improvements can be cut into smaller chunks,
causing a more step-wise evolution of the process. This distinction has been
discussed quite frequently in literature [19,16,12,28] for various domains. The
approaches are visualized in Figure 1.

Scrum comprises a fairly simple, iterative process model, which is to a large
extent adaptable by the organization. The fact that it does not entail many con-
straints [4] makes Scrum suitable to many types of organizations. However, this
also implies that their specific approaches, and consequently the path to reach
agility, can vary considerably. During recent year, a decent body of knowledge
has been built regarding agile software development in the context of software

118 K. Vlaanderen et al.

Fig. 1. Generic Process Improvement Paths

process improvement [6,18,22]. In this paper, we relate different styles of process
improvement to the introduction of Scrum. We present a multiple case study,
using the data from the case studies to discuss the introduction of process im-
provements in general, and the introduction of Scrum specifically. As such, our
analysis discusses the question ’Acccording to which paths can Scrum be imple-
mented?’ In the context of this question, we define a path as a series of changes
to a process.

A description of the research approach is provided in Section 2. In Section 3,
we provide a description of the four case studies in which we outline the approach
that was taken to implement Scrum in the organizations. Based on the case
studies, we analyze the implications for the implementation paths in Section 4.
We briefly reflect on the research project in Section 5. Conclusions and further
research are described in Section 6.

2 Case Study Research Approach

The research presented in this paper is part of a series of case studies that is per-
formed with the aim of improving our knowledge of incremental method evolu-
tion. Out of the seven case study companies that are part of the overall research,
four have implemented Scrum during the past few years. The implementation
of Scrum is interesting from the perspective of software process improvement,
as it is clearly defined in literature and it is a rather confined process. The
case study companies selected for this research displayed different approaches
to the implementation of Scrum, which makes the Scrum implementation ap-
proach an interesting unit of analysis. Each case company is briefly introduced
throughout Section 3. For the sake of confidentiality, company names have been
pseudonymised.

Data gathering was partly performed on-site, and partly through internet re-
search, telephone calls, and e-mails. For each case, between three and five stake-
holders were selected and interviewed. Roles that were suitable for interviews
included (depending on the specific situation) the product manager, manager

Growing into Agility: Process Implementation Paths for Scrum 119

product management, general manager (in small companies), development man-
ager, lead developer, senior consultant, and support managers. In addition, data
was gathered through analysis of relevant documents. These documents included,
if available and not limited to, requirements databases, internal communication
regarding process changes, process descriptions, templates, change-plans, presen-
tations regarding the Scrum process and other documents that describe changes
in the process. All data collected either through interviews or through documents
were included in a case study database.

3 Case Studies

Each section below gives an account of the evolution of Scrum per organization.
Each case study is described according to three stages; preparation describes
the process up to the start of the Scrum implementation, implementation de-
scribes the actual process changes related to the generic Scrum activities, and
customization describes additional changes to the process.

3.1 ChatComp

ChatComp is a privately-held company, which develops two product lines;
instant messaging, and real-time messaging for smartphones, serving approx-
imately 100 million users (within a growing market). ChatComp develops its
products for multiple platforms, including the Android, Windows Mobile and
BlackBerry platforms. As a consequence, it has to deal with constantly changing
development platforms. Its products are released in cycles of 4 weeks. The orga-
nization deals with a large number of incoming wishes that vary significantly in
nature, resulting in approximately 500 distinct product requirements per year.
Within three years, the company has grown from 20 employees to over 100 em-
ployees. This was accompanied by several extensive changes to the development
and product management processes.

Preparation - The introduction of Scrum in ChatComp started around August
2008, based on the initiative of the development manager. The aim of introducing
Scrum was to improve the company’s ability to deal with an increasing amount
of requirements and a quickly growing development team. In order to determine
how Scrum was supposed to be implemented, an external consultant was hired.
Once the idea was concrete enough, the company received an in-house training
regarding the workings of Scrum.

Implementation - After the training, the entire development department
started working according to the process of Scrum. During the first six months,
the management team was strongly involved in the Scrum process. Once the
teams became more adept at Scrum and the company started to grow, this in-
volvement steadily decreased. The initial implementation was rather standard.
This means that the sprint planning, daily standup, demo meeting and retro-
spective meeting all were in place, and the product managers have taken the role

120 K. Vlaanderen et al.

of product owners. The organization did make changes to the parameters of the
process (such as sprint duration and team size) several times, causing a series of
minor process changes.

Customization - Initially, the sprints lasted two or three weeks, depending on
the team, causing a discrepancy between the sprint durations of some of the
teams. At the same time, interdependencies started to become more of an issue
as the amount of teams grew. This caused problems when, for instance, front-
end teams needed functionality in the back-end that was not yet developed.
These problems, which consisted mainly of delays, were solved by fixating sprint
duration at two weeks for all teams.

The sprint planning meeting initially took approximately one day, because
all the user stories had to be discussed, estimated and planned at once. This
was considered too long to be effective. Therefore, story estimation is now done
regularly throughout the sprints. This requires shorter bursts of attention, which
eases the process. On the day of the sprint planning, the product owners present
the user stories to their own team(s), followed by the selection and planning of
user stories by the development teams. The process of selection and planning
now takes approximately one hour, instead of one day.

Interesting in this light has been the introduction of the kick-off week. The
kick-off week was an attempt to streamline the Scrum development process by
dividing the year into four quarters of 13 weeks, each starting with a kick-off
week during which all the user stories for the remainder of the quarter were
identified, estimated and planned. Although the idea of a detailed roadmap per
quarter seemed useful, the approach turned out to be problematic in practice.
Developers were kept an entire week from developing their products, spending
one entire week one estimating and planning is an exhausting activity, and the
workload turned out to be too high for the product owners. Quickly after the
first quarter, ChatComp decided to cancel the kick-off week.

Due to the quick growth of the organization, internal communication of the
product plan became increasingly important. For this reason, the product owners
have changed the original schedule of the sprint planning meeting. The meeting
now starts out with a presentation on the roadmap, the development focus, and
the target market segment, in order to make sure that all internal stakeholders
have the same objective and are aware of the context in which they are working.
After this presentation, selection and planning continues as usual.

When Scrum was just implemented in ChatComp, IM was the only prod-
uct line. Initially, there were three teams with a specific functional focus. After
approximately eight months, one platform specific team was extended with a de-
veloper for another platform, making it a cross-platform team. The team quickly
realized that this was not an ideal situation, as it inhibited collaboration. Once
enough developers were available, the team was split into two teams, each fo-
cusing on their own platform. This process has recurred several times during
the past few years. Each time, the organization moved back to platform specific
teams to increase effectiveness of the teams. Currently, seven teams are active,
each with a specific focus.

Growing into Agility: Process Implementation Paths for Scrum 121

Other changes, less related to the interface between Scrum and product man-
agement, include the introduction of a Scrum of Scrums in order to facili-
tate inter-team communication, and a similar ScrumMaster counsil in which
all ScrumMasters briefly meet to discuss any problems they encountered, things
they learned or questions they have. The focus of this meeting is process-oriented
instead of development-oriented.

3.2 FacilityComp

FacilityComp is an international software vendor that produces a total of five
facility management and real estate management software products for medium
to large organizations (Integrated Workplace Management Systems). Founded
in 1984, it currently has a customer base of over 1300, supported by more than
325 employees. The company’s products are marketed through multiple, interna-
tional subsidiaries, and a worldwide network of partners. FacilityComp releases
its products bi-yearly.

Preparation - Until 2004, product development at FacilityComp was based
on the Prince2 method. New functionality for each product was fully described
and planned upfront, after which it was developped in a waterfall approach.
As the organization became larger and the products more complex, it became
increasingly difficult to manage the development activities. Release cycles could
take up to one or one and a half year and release dates were difficult to predict.
Additionaly, many changes were requested during a project. The Prince2 method
did not offer sufficient support for this, resulting in a lot of calculations that
caused a large share of the product managements time to be put into these tasks
instead of in product value. Based on these issues, the chief technology officer
decided to change the development process to Scrum. He was also the person
responsible for the actual introduction of Scrum. After he studied Scrum, he
performed several internal sessions to explain the process. In addition, several
persons took an external course to familiarize them with the method.

Implementation - Once a sufficient knowledge level was reached, the develop-
ment team switched to Scrum completely. In principle, all basic Scrum activities
were introduced at once. Initially, Scrum was only utilized for the new products,
and the organization kept managing its cash-cow product using the old waterfall
development method. One after the other, all products where then switched to
the new Scrum process. Along the way, minor adjustments were often made. The
teams were constantly searching for the right balance between sprint duration,
size estimation, requirement size, and time spent on backlog administration.
Changes to the process were initially often managed by the the CTO. However,
they were increasingly delegated to the appropriate ScrumMasters.

Customization - Until 2007, agile product development was accompanied by
non-agile product management. Although several stages of elaboration were em-
ployed, no fixed cycles were used. This caused that product managers did not
manage to provide development with sufficiently detailed requirements before

122 K. Vlaanderen et al.

the start of each sprint. To improve this, the product management team ad-
justed their process to the Scrum principles as well. This implied a continuous
adaptation of the product backlog to a changing environment. Since Scrum it-
self does not provide guidelines for effectively managing large amounts of re-
quirements of different granularity, a set of stages has been introduced, called
the Agile Requirements Refinery [26]. Within the agile requirements refinery, an
idea will generally move through the stages vision, theme, concept, and require-
ment definition. During these stages, requirements are refined with details and
specifications. This has resulted in a new categorization on the product backlog.

3.3 SocialComp

SocialComp is a large social networking site in the Netherlands, focusing
mainly on Dutch visitors and members. It was founded in 2004, and since then
it has built a user base of over eleven million accounts and serves over 5,8 billion
page views per month. Even though its active user base is declining in the past
few years, it potential market, consisting of individual users, is growing. Social-
Comp releases updates to its platform once per week. The organization has a
very low level of organizational policy and does not need to deal with a high
number of standards or a high level of legislation. However, it does receive many
product requests directly from its users.

Preparation - SocialComp is a very young company, despite the fact that it was
founded in 2004. Many of the employees are below the age of 35, and this is re-
flected in a very creative and informal setting. This setting has always resulted in
a development environment without strict processes and, consequently, without
a strong structure. This attitude is seen throughout the organization. However,
the considerable growth during the past few years has forced the organization
to apply some structure to its internal processes. The move to Scrum should
therefore be seen in the context of a larger movement within the organization.

During the period between 2009 and late 2010, the organization moved away
from its ’startup structure’ and added a clearer division of responsibility. Dur-
ing this time, Scrum is mentioned several times, and requirements are from
that time on written in the form of user stores. However, new functionality was
still developed in the form of waterfall projects, where all functionality was de-
signed upfront. Requirements prioritization and selection was still done based on
’fingerspitzen-gefühl’. Real improvements were made in the end of 2010, when
a clear product vision and strategy were defined. The previous 15 focus areas
were reduced to 6, with one responsible product manager per area. The choice to
implement Scrum was made by the CTO at that time, based on earlier, positive
experiences with it. He felt that it offered advantages to SocialComp as well
in the form of improved backlog management and scope change management.
Scrum’s team-based approach seemed like it would respect the independence of
the programmers while providing a scalable structure.

Implementation - The introduction of Scrum was performed gradually. The
first step towards agile development was the creation of fixed teams that were

Growing into Agility: Process Implementation Paths for Scrum 123

located in one room. Each team was assigned a team lead and a ScrumMaster.
Through several internal presentations, all stakeholders were taught the workings
of Scrum. During the first period, the teams got used to the process by working
with a product backlog in fixed teams.

After some time, daily standups were introduced. These standups were per-
formed in the original sense as described by Schwaber et al. [20]. Each day, teams
would come together to discuss work performed the day before, work planned
for the current day, and any problems that were experienced. The introduction
of daily standups was gradually followed by other essential elements of Scrum.
Rather quickly, a definition of done was introduced. This definition has changed
somewhat throughout the last two years, and basically states that functionality
is done when it is developed, verified and prepared for automated testing. Soon
after the introduction of the definition of done, the first demo meetings were
organized. Such meetings were initially only held when important features were
finished. Later, demo’s became a regular part of the Scrum process. Retrospec-
tive meetings were introduced gradually. Initially, only a few developers would
discuss a sprint after it had finished. After some time, other teams started to
hold retrospective meetings as well.

Customization - The gradual introduction of Scrum seems to correlate with
the acceptance of Scrum within the organization. Initially, many developers were
rather skeptical due to the changed responsibilities, more formal processes and re-
duction in freedom. During the past two years, approximately 20% has come to
actively support Scrum, and 60%does not have a strong opinion about it. The final
20%, mainly developers that have been at the company for a long time, actively
resists a full Scrum implementation. Due to the informal setting within Social-
Comp, this resistance is not seen as a huge problem. If a developer fails to comply
to the process but maintains a good rate of productivity, this is accepted as well.

3.4 TimeComp

TimeComp is a small independent Dutch software company, founded in 1992.
The organization provides qualitative software applications and accompanying
services to fulfil the need of achieving a higher efficiency from the utilization of
human resources. TimeComp currently has two software products in its portfolio:
one for time resource management, and one for printing and copying facilities for
organizations. Its market consists of small to medium enterprises, and its size is
fairly stable. It serves approximately 400 organizations within Europe. It releases
its products twice per year, based on a steady inflow of customer requests. As
TimeComp is a fairly small organization, with approximately 25 persons, it has
a fairly loose internal structure with low internal policy.

Preparation - Until 2010, TimeComp worked in a non-agile and non-iterative
manner. The product planning and development processes were not officially
structured. Development was performed ad hoc and little overview existed on the
features that were currently requested, worked on, or implemented in the latest
release. The development process was not formally structured. Functionality

124 K. Vlaanderen et al.

was built as it was made up, and new releases were delivered when enough
improvements had been implemented.

Due to a sudden demand increase and rise in customer wishes, the old devel-
opment approach of the company was not suitable any more. The management
team and employees started to realize that a more reliable requirements man-
agement process and a more predictable release heartbeat were needed in order
to stay competitive. This awareness was strengthened by the recognition of in-
creased communication problems in the development department. There was
little teamwork among the developers, and a great deal of expertise resided with
specific employees.

The first suggestion to use Scrum in the company was opted by the former
head of product development (now product manager). He explicitly pointed out
these issues to the internal stakeholders, and introduced Scrum as a possible so-
lution. The introduction of Scrum was accompanied by a change of management,
change of organizational structure and an improved requirements management
approach. It took more than a year before Scrum was actually picked up by some
of the developers.

Implementation - Scrum was formally introduced in 2010. This introduction
was performed within one single meeting with the management team and de-
velopment employees together. The meeting was held in a Scrum-like fashion,
i.e., everybody was standing and the presentation progress was captured with a
burn-down chart. During this meeting, the Scrum method was explained briefly
to the audience again. Before this meeting, the new product manager together
with the managing director, created a first product backlog from a large list of
customer wishes. During the meeting, user stories that would be implemented
in the next sprint were chosen, story points were assigned and the tasks were
divided. These actions initially took a lot of time and discussion. This espe-
cially applied to the estimation of story points; the developers were not used to
predicting what time they would need to spend on a feature implementation.

All meetings prescribed by the Scrum methodology were included and planned
for this new agile development method, and the first three-week sprint was
started. The scrum team consisted only of the five developers, the role of Scrum
Master was occupied by the development manager and the role of the Product
Owner was occupied by the product manager. The Scrum process elements were
followed as strictly as prescribed. To facilitate the Scrum process and to store
user stories, a Scrum specific tool was employed.

Customization - During the initial period, the developers showed a lot of resis-
tance towards Scrum. One effort to undermine the Scrum process was to cancel
the daily Scrum meeting. However, once the product manager discovered this,
it was quickly reinstated. Another example is the introduction of a refactoring
sprint, which was mainly used as ’slack time’ to perform miscellaneous tasks
and bug fixes, instead of actual refactoring. This sprint type was also quickly
cancelled. Instead, developers now have a ’delay-day’ before the start of a new
sprint, during which outstanding issues can be resolved that would otherwise
disrupt the next sprint.

Growing into Agility: Process Implementation Paths for Scrum 125

An important addition to the process has been the introduction of grooming
sessions. At first, these grooming sessions strongly resembled the usual sprint
meetings. The meetings were still very long, and many developers still did not
understand the user stories after the explanations. After a while, these sessions
were timeboxed to one hour and much more visualizations (e.g. adapted screen-
shots) were used to clarify user stories. Very complex user stories (which could
not be cleared with one short meeting) were first attended in a work group.

4 Scrum Implementations Paths

The case companies show a high degree of variation in their specific implementa-
tion of Scrum, as well as the path that they have followed in order to reach that
situation. The cases have shown that a Scrum implementation path is highly de-
pendent on the context of the organization, including its internal culture and the
implementation strategy, i.e. top-down or bottom-up. Although the case study
research presented in this paper is not suitable for quantitative analysis regard-
ing the relation between situational factors and implementation paths, we can
make several important observations.

Table 1. Characteristics of the Scrum Implementation

Overarching process improvement framework

ChatComp None
FacilityComp None
SocialComp None, but part of a larger professionalization effort
TimeComp None

Main drivers for the implementation of Scrum

ChatComp Increasing amount of requirements; Quickly growing development team
FacilityComp Increasingly complex development setting
SocialComp Unprofessional and unstructured product development process
TimeComp Low development productivity; Unclear product definition process

Initiator for implementing Scrum

ChatComp Chief Technology Officer
FacilityComp Chief Technology Officer
SocialComp Development Manager
TimeComp Development Manager / Product Manager

External advice

ChatComp Initial Scrum training
FacilityComp Initial Scrum training
SocialComp External advice after implementation
TimeComp None

First of all, we observe that only one case company implemented Scrum as an
explicit part of a larger process improvement strategy. In most cases, the drivers
were similar to the advocated and well-known advantages of agile software de-
velopment methods, such as quicker time-to-market, less process overhead, and
scalability. However, opposite to what is often stated in literature, the implemen-
tation of Scrum was in all cases initiated by the management team instead of
the developers. In one of these cases, at TimeComp, Scrum was actually forced
onto the developers.

All managers responsible for the introduction of Scrum have indicated that
the initiation period took a significant amount of time. A large share of this time

126 K. Vlaanderen et al.

was spent on familiarization with the method, either through available literature
or with the help of an external advisor. This process was never steered using
existing process improvement frameworks or knowledge databases, leaving room
for improvement in the areas of process selection and knowledge acquisition.

Table 2 provides an overview of the paths that the case companies followed
during the implementation of Scrum. The first column shows all basic elements
of Scrum as described by Schwaber [20], in addition to the additional activities
found throughout the cases. For each activity, the table indicates the implemen-
tation order. The arrows indicate where multiple elements were introduced at
the same moment. Such collections of changes are named increments, which are
defined as the collection of changes to a method between two points in time [29].
The bottom row summarizes the style of the process improvement effort.

Table 2. Increment Sequence of Scrum Elements

Scrum elements ChatComp FacilityComp SocialComp TimeComp

Generic
Scrum
Elements

Product Backlog

Increment1

�
Increment1

�

Increment1

Increment1

�

Fixed Teams

Sprint Backlog

Increment2

�Product Increments

Sprints

Sprint Planning Meeting Increment3

Daily Scrum Meeting

Sprint Review Meeting Increment4

Definition of Done

Retrospective Meeting Increment5

Additional
Scrum
Elements

Agile SPM - Increment2 - -

Requirements Refinery - Increment3 - -

Scrum of Scrums Increment2 Increment4 - -

ScrumMaster Counsel Increment3 - - -

Kick-Off Week Increment4 - - -

Improvement style Disruptive &
Incremental

Disruptive &
Incremental

Incremental Disruptive

We can see a clear distinction in the approaches that were taken to implement
Scrum. In three of the case, the implementation path mostly resembles that
of disruptive or revolutionary process improvement. In these cases, an initial
training period was followed by a sudden switch to Scrum. At this time, a large,
high-impact change to the development process is made, changing the way of
working radically. Such a process improvement path has a high impact on the
organization, and can cause considerable resistance among the employees, such
as in the case of TimeComp.

In the case of SocialComp, we see a different approach. During the introduc-
tion of Scrum at this organization, a range of small process changes is made with
some time in between, applying the Scrum constructs in an iterative manner.
SocialComp has applied a more step-wise approach to move towards the desired
process state. New activities and deliverables were introduced in small bundles,
and refinements were constantly performed.

Growing into Agility: Process Implementation Paths for Scrum 127

In all cases, the process is constantly being adjusted based on internal feed-
back. This constant change is an inherent aspect of Scrum, which advocates
continuous improvement. Interesting in this regard is that such changes are not
always an improvement. In the case of TimeComp, the removal of the daily
Scrum meetings from the process was quickly reversed, once it became clear
that this would jeopardize the quality and stability of the process.

Once a certain part of Scrum has been implemented, all organizations demon-
strate a trial-and-error approach to reach the desired process state. These trials
can consist of additional Scrum activities (shown in the bottom section of Ta-
ble 2), or configurations of the already implemented process (e.g., changes in the
team size or sprint duration). With disruptive improvement paths, the intro-
duction of Scrum and the fine-tuning are two separate processes. With gradual
implementation paths, a continuous improvement can be observed.

The four case indicate that the style of the process improvement path is
highly dependent on the context of the organization, including amongst others its
drivers, size, culture, and products. One approach to create a better insight into
the drivers behind a specific process improvement effort and the possible issues
related to certain process improvements, and to provide a direct link between
specific goals, detailed process attributes, pre-conditions and post-conditions,
is by describing process improvements in a structured manner. Ultimately, it
facilitates knowledge sharing by standardizing the gathering of relevant process
improvement information.

Table 3. Structured process improvement description for SocialComp

Name Implement Scrum

Goal in context # Improve the effectiveness of the development team
Scope Development process

Primary and Secondary
Stakeholders

Head of product
Developers
Product manager

Trigger The development organization resembles that of a ’startup’ organiza-
tion. Due to growth, there is a need to apply some structure to the
internal processes.

Pre-Conditions # Unstructured software development process
Post-Conditions # Full initial implementation of Scrum

Increment Path

1. Assign Scrum roles
- Driver: Get people involved
- Stakeholders: Head Of Product, product managers

2. Implement product backlog
- Driver: Clarify the work to be done, improve uniformity of require-
ments, provide a way of work planning, improve communication
- Stakeholders: Head of Product, product managers

Further details omitted due to space limitations
Unordered Increments # Increments not part of the sequence or executed during multiple steps.

None
Failed Paths # Steps that were undone afterwards.

None

In order to provide the insight described above, we have partially described
the implementation of Scrum at SocialComp using a structure called the method
increment case description in Table 3. This structure has been proposed in an
earlier paper, with the aim of providing a concise description of improvement

128 K. Vlaanderen et al.

paths that allow organizations to reflect on their implementation and to guide
similar improvement efforts [25].

Sharing detailed experience related to process improvement in a structured
manner such as demonstrated above can aid in the prevention of repeating mis-
takes in similar contexts. Method increment case descriptions can be used to
either describe improvement paths at organizations that have already imple-
mented a certain process, or to prescribe a process improvement path for an
organization, taking into account its specific context and goals.

5 Discussion

In order to ensure the quality of our work, we have followed the guidelines that
have been defined for performing multi-case study research [30,11]. Interviews
were held with several people in order to cross-check documentation found and to
confirm facts stated in other interviews. Concerning the ability to generalize the
results, we cannot make quantitative statements about the general population
based on the findings in this paper. Generalizability is partially ensured by the
analysis of four separate cases. However, we expect that the qualitative results
are applicable in other, similar situations.

A threat to the validity of the research is that not all case studies were per-
formed by the same persons. However, the first author of this paper was present
at each interview. In addition, a case study protocol has been written prior to
the start of the case studies. This protocol has been used during each case. The
findings of the case studies have been stored in a case study database [11].

6 Conclusions and Future Research

The multiple case study research presented in this paper shows distinct ap-
proaches for the implementation of Scrum. Three of the organization initially
followed a disruptive path which, in one case, led to significant resistance from
developers. In two of these cases, the basic Scrum process was extended with
additional activities in an incremental manner, such as a Scrum of Scrums and a
Kick-Off Week. The fourth organization followed a gradual implementation path
for the entire introduction of Scrum.

On the scale of revolutionary versus evolutionary process improvement, the
position of the cases varies considerably. In neither of the cases, we can speak
of a completely ’big-bang’ approach to the implementation of Scrum. In all
cases, the process is implemented or altered in an iterative manner to some
extent. In the case of TimeComp, the implementation can be classified as fairly
disruptive. However, given the state of the development team at the time of
implementation, this could not be avoided. Once the team had accepted Scrum
as a new development process, it started improving it iteratively.

Situational factors have highly influenced the parameters of Scrum in all or-
ganizations. Based on organizational properties such as company policy and
business unit size, the organizations have implemented different sprint lengths

Growing into Agility: Process Implementation Paths for Scrum 129

and Scrum activities, and have employed different implementation styles. How-
ever, the manner in which these choices were made was in most cases rather
unstructured. The link between context and decision is rather unclear, and trial-
and-error approaches often resulted in unwanted results and lost resources. Based
on this observation, we think that further research into the relationship between
situational factors and the ‘parametrization’ of methods would be very valuable.

In order to provide more insight into the change process, we have demon-
strated how a structured approach can be used. Such structured process improve-
ment descriptions aid in sharing knowledge related to the individual steps within
a process improvement effort, using attributes such as stakeholders, drivers, and
improvement steps. However, further research into evolutionary process improve-
ment and more insight into the structure of improvement steps is required. This
is in line with the statement that “incremental policies are anxiously required by
the industry” [12]. Essential in this light is a better linking between situational
factors, available knowledge, and process needs. A knowledge infrastructure for
incremental process improvement is currently being developed [27].

References

1. Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J.: New directions on agile
methods: a comparative analysis. In: Proceedings of the International Conference
on Software Engineering, pp. 244–254. IEEE (2003)

2. Beck, K.: Extreme programming explained: embrace change. Addison-Wesley
Longman Publishing Co., Inc., Boston (1999)

3. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R.C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.: Agile Manifesto (2001),
http://www.agilemanifesto.org

4. Boehm, B., Turner, R.: Balancing agility and discipline: a guide for the perplexed.
Pearson Education, Boston (2004)

5. Boehm, B., Turner, R.: Management Challenges to Implementing Agile Processes
in Traditional Development Organizations. IEEE Software 22(5), 30–39 (2005)

6. Borjesson, A., Mathiassen, L.: Successful process implementation. IEEE Soft-
ware 21(4), 36–44 (2004)

7. Cohn, M., Ford, D.: Introducing an Agile Process to an Organization. Com-
puter 36(6), 74–78 (2003)

8. Dingsøyr, T., Hanssen, G.K., Dyb̊a, T., Anker, G., Nygaard, J.O.: Developing
Software with Scrum in a Small Cross-Organizational Project. In: Richardson,
I., Runeson, P., Messnarz, R. (eds.) EuroSPI 2006. LNCS, vol. 4257, pp. 5–15.
Springer, Heidelberg (2006)

9. Dyba, T., Dingsøyr, T.: Empirical studies of agile software development: A sys-
tematic review. Information and Software Technology 50(9-10), 833–859 (2008)

10. Fitzgerald, B., Hartnett, G., Conboy, K.: Customising agile methods to software
practices at Intel Shannon. European Journal of Information Systems 15(2), 200–
213 (2006)

11. Jansen, S., Brinkkemper, S.: Applied Multi-Case Research in a Mixed-Method
Research Project: Customer Configuration Updating Improvement. In: Cater-Steel,
A., Al-Hakimi, L. (eds.) Information Systems Research Methods, Epistemology,
and Applications, pp. 120–139. IGI Global, Utrecht (2007)

http://www.agilemanifesto.org

130 K. Vlaanderen et al.

12. Krzanik, L., Jouni, S.: Is my software process improvement suitable for incremental
deployment? In: Proceedings of the International Workshop on Software Technol-
ogy and Engineering Practice, London, UK, pp. 76–87 (2002)

13. Livermore, J.A.: Factors that Significantly Impact the Implementation of an Agile
Software Development Methodology. Journal of Software 3(4), 31–36 (2008)

14. Moe, N.B., Aurum, A.: Understanding Decision-Making in Agile Software Devel-
opment: A Case-study. In: Proceedings of the Conference on Software Engineering
and Advanced Applications, pp. 216–223. IEEE (September 2008)

15. Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of Migrating to Agile
Methodologies. Communications of the ACM 48(2), 72–79 (2005)

16. Pettersson, F., Ivarsson, M., Gorschek, T., Ohman, P.: Packaging software process
improvement issues: a method and a case study. Software Practice and Experi-
ence 34(14), 1311–1344 (2004)

17. Salo, O., Abrahamsson, P.: Agile methods in European embedded software de-
velopment organisations: a survey on the actual use and usefulness of Extreme
Programming and Scrum. IET Software 2(1), 58 (2008)

18. Salo, O.: Enabling Software Process Improvement in Agile Software Development
Teams and Organisations. VTT Publications 618(618), p. 153 (2006)

19. Sawyer, P., Sommerville, I., Viller, S.: Requirements process improvement through
the phased introduction of good practice. Software Process: Improvement and Prac-
tice 3(1), 19–34 (1997)

20. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press, Redmond
(2004)

21. Scotland, K., Boutin, A.: Integrating scrum with the process framework at yahoo!
europe. In: Proceedings of the AGILE Conference. pp. 191–195. IEEE (2008)

22. Sidky, A.S.: A Structured Approach to Adopting Agile Practices: The Agile Adop-
tion Framework (June 2007)

23. Smits, H., Pshigoda, G.: Implementing Scrum in a Distributed Software Develop-
ment Organization. Management, 371–375 (2007)

24. Stapleton, J.: DSDM: Dynamic Systems Development Method. In: Proceedings of
the Technology of Object-Oriented Languages and Systems, p. 406. IEEE Com-
puter Society, Washington, DC (1999)

25. van Stijn, P., Vlaanderen, K., Brinkkemper, S., van de Weerd, I.: Documenting
Evolutionary Process Improvements with Method Increment Case Descriptions
(submitted for publication, 2012)

26. Vlaanderen, K., Jansen, S., Brinkkemper, S., Jaspers, E.: The Agile Requirements
Refinery: Applying SCRUM Principles to Software Product Management. Infor-
mation and Software Technology 53(1), 58–70 (2011)

27. Vlaanderen, K., van de Weerd, I., Brinkkemper, S.: Improving Software Product
Management: a Knowledge Management Approach. International Journal of Busi-
ness Information Systems (in print, 2012)

28. van de Weerd, I.: Advancing in software product management: An incremental
method engineering approach. Ph.D. thesis, Utrecht University (2009)

29. van de Weerd, I., Brinkkemper, S., Versendaal, J.: Concepts for Incremental
Method Evolution: Empirical Exploration and Validation in Requirements Man-
agement. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007 and WES
2007. LNCS, vol. 4495, pp. 469–484. Springer, Heidelberg (2007)

30. Yin, R.K.: Case Study Research - Design and Methods. SAGE Publications (2003)

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 131–144, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Differences between Traditional
and Open Source Development Activities

John Wilmar Castro Llanos and Silvia Teresita Acuña Castillo

Departamento de Ingeniería Informática, Universidad Autónoma de Madrid

Calle Francisco Tomás y Valiente 11, 28049 Madrid, Spain
john.castro@estudiante.uam.es, silvia.acunna@uam.es

Abstract. The growing importance of open source software (OSS) has led
researchers to study how OSS processes differ from traditional software
engineering processes. The aim of this study is to determine the differences and
similarities between development process activities (requirements, design, and
implementation) enacted by the OSS community and established by IEEE
Standard 1074:2006. We conducted a systematic mapping study to find out
which activities are part of the OSS development process. We identified a total
of 22 primary studies. Of these, 46% described activities related to the
requirements process, just over 60% reported activities related to design and
almost all accounted for activities related to implementation. The OSS
community does not enact prescriptive software engineering models. OSS
requirements are evolved using several different web artefacts, as well as
through continual interactions in forums and via messaging. Requirements are
asserted rather than elicited. A common feature of all OSS projects is that
software system design and implementation is modular. The priority in the OSS
community is implementation. Anyone, developers or users, can make
contributions, including designs and code.

Keywords: Systematic Mapping Study, Software Development Process, Open
Source, Requirements Engineering.

1 Introduction

The growing importance of OSS in recent years has led researchers to study how OSS
processes differ from traditional software engineering processes. The context,
structure and activities of software development processes applied in practice have
not been and are not easy to understand [1].

Some studies have shown that many aspects of OSS project development processes
differ [1], [2], [3]. Studies conducted by Scacchi on requirements engineering software
processes enacted in OSS development projects across different domains (such as
astrophysics, networked computer games and software design systems), for example,
have found that there are generally no specified software requirements documents [4],
[5], [6]. Yet, as reported by Mockus et al. [7], [8], examples of successful OSS systems
abound. Therefore, although different from the standard model, the requirements

132 J.W. Castro Llanos and S.T. Acuña Castillo

engineering process would appear to work, as it results in internationally recognized
quality products. Authors, like Fuggetta [9] and Godfrey and Tu [10], however, claim
that this is not so. They suggest that the OSS development model is not really a new
process description; it is just an alternative view of software engineering activities
applied in traditional commercial development models.

Can the software development process enacted by the OSS community really be
said to be different from the orthodox model established by IEEE Std. 1074 [11]? The
aim of this paper is to determine the differences and similarities between the software
development processes enacted by the OSS community and established by IEEE Std.
1074 [11]. We have compared the OSS development process with IEEE Std. 1074
[11]. IEEE Std. 1074 is our baseline process model, as it has a bearing on many
development processes and is what we refer to here as traditional development. To do
this, we first need to determine which activities are part of the development process
enacted by the OSS community. We conducted a systematic mapping study (SMS) for
this purpose. We then focused on activities that are part of the requirements, design
and implementation processes, which, taken as a whole, make up the development
activity group in the IEEE Std. 1074 [11].

This paper is organized as follows. Section 2 describes the research method.
Section 3 discusses the match between the software development (requirements,
design and implementation) process activities in the IEEE Std. 1074 and similar
activities of the process enacted by the OSS community. These activities are
compared in Section 4. Section 5 discusses the OSS requirements process. Finally,
Section 6 outlines the conclusions.

2 Research Method

The research method applied in this paper is a SMS conducted to select the applicable
primary studies [12]. The aim of the SMS is to answer the following research
question.

RQ: What activities do OSS process models contain?

We started our mapping study by identifying keywords and search terms that we put
together from the research question. We then ran a traditional search. This search
returned some papers that were examined to determine the best search strings for the
SMS. These search strings were Okayed and rounded out by two expert software
engineering researchers. The search strings used were:

• OS-SPM: Open Source AND Software Process Model
• OS-SDP: Open Source AND Software Development Process
• OS-DP: Open Source AND Development Process
• FS-SPM: Free Source AND Software Process Model
• FS-SDP: Free Source AND Software Development Process
• FS-DP: Free Source AND Development Process

The electronic databases (DB) used in the mapping study were: IEEE Xplore, ACM
Digital Library, SpringerLink, Science Direct and Scopus. We applied the six defined

 Differences between Traditional and Open Source Development Activities 133

search strings to each of the selected DBs. We set 31 March 2010 as the publication
deadline for the search. The inclusion and exclusion criteria that we used to determine
which primary studies had a bearing on our research question were as follows.
Inclusion Criteria

• Paper title must contain the words open source or free source,
• Keywords refer to the open source software development process,
• Abstract alludes to open source software development process issues,
• Paper describes the open source software development process,
• Paper lists open source software development process activities,
• Paper lists free source software development process activities,
• Paper discusses the development process enacted in a particular open source

software project,
• Paper presents an open source software development process proposal.

Exclusion Criteria
• Paper does not discuss the open source software development process,
• Paper does not present open source software development process activities,
• Paper does not present free source software development process activities.

Table 1 shows the number of articles located by applying the six search strings, as
well as the number of selected candidate papers. The candidate papers are all studies
that comply with the inclusion/exclusion criteria applied to the title and keywords
only. Applying this strategy, we were able to quickly screen the search results by
reducing the number of papers for thorough examination from 12,269 to 621 (just 5%
of the total). This set of candidate papers does not contain duplicates.

Finally, we applied the inclusion and exclusion criteria scrupulously and selected
19 primary studies. We then inspected the references of these primary studies and
located another eight studies that were not stored in any of the five DBs used. The
total number of primary studies amounted to 27. Of these 27 primary studies, five
were removed because the authors failed to define activities, which ruled out their
analysis. Finally, we selected the 22 primary studies that are listed in Appendix A.
Each primary study has an ID for reference purposes.

Table 1. Total number of articles located in each DB

Search Term Retrieved Candidates Primary Studies
IEEE Xplore 387 89 7
ACM Digital Library 6.118 282 8
SpringerLink 2.459 147 3
Science Direct 199 21 0
Scopus 3104 80 1

Total 12.267 619 19

The SMS reported here includes only English papers, as all the search terms are

defined in that language. This poses a potential threat to its validity. In this case,
however, there is no risk of primary studies being biased or rejected as the results of
the selection process were checked by an expert in the area.

134 J.W. Castro Llanos and S.T. Acuña Castillo

3 Mapping OSS Process Activities to IEEE Std. 1074 and
SWEBOK Activities

Of the activities identified within the OSS development process, we have mainly
analysed activities related to requirements, design and implementation processes, as,
taken as a whole, they make up the IEEE Std. 1074 development activities [11]. Of all
the identified primary studies (22), about half (10) describe development processes
with activities related to the requirements process, 64% include activities related to
design and almost all the primary studies account for activities related to
implementation.

As described above, the activities that are part of the development process enacted
by the OSS community were elicited using a SMS. To do this, we analysed each
primary study retrieved paying special attention to the sections describing the
development process enacted by the OSS community. This analysis output the name
(if any) and description of the activity given by each author. According to its
description, each activity was matched to its equivalent IEEE Std. 1074 [11] activity
according to what developers did in the activity. In the particular case of OSS
requirements process activities, we split the IEEE Std. 1074 “Define and Develop
Software Requirements” activity into SWEBOK [13] activities to facilitate mapping
and make up for an IEEE Std. 1074 [11] deficiency.

At the end of this process, we built a table in which each OSS process activity
related to the development activity group was matched with an IEEE Std. 1074
activity [11] or with a SWEBOK activity [13]. This is called the instantiation table
and contains the name and author’s description of the activity, as well as a comment.
For reasons of space, Table 2 illustrates just a fragment of this instantiation table.

As Table 2 shows, there is a line through some of the activity names given by
authors, as the name does not serve the purpose of the activity or mapping. There is
also a line through fragments of the definition of some activities, because they either
add nothing to the definition of the activity or simply define another activity, that is,
the author has grouped more than one activity under the same name. The comments
column is designed to help to identify such circumstances. This column specifies
whether the activity in question has been mapped to another activity. We have drawn
a line through the text inapplicable definitions because colour coding is not an option
in black and white print.

Mapping was labour intensive, as the primary study authors did not always divide
the description of the development process enacted by the OSS community into
activities. Most gave a narrative description, which we had to divide for analysis and
later mapping purposes. When authors did divide the process into activities, the
activity names sometimes did not match the specified definitions. On this ground, we
decided to match activities based on the activity description rather than the activity
name. Moreover, some definitions listed under a single activity name had to be
processed separately because the author was really defining more than one activity.

The problems encountered were typed as follows:

• EN-EC: Equivalent Name, Equivalent Content;
• IN-EC: Inequivalent Name, Equivalent Content;
• UN-EC: Unnamed Name, Equivalent Content;
• NA: New Activity (not equivalent to any traditional software engineering activity).

 Differences between Traditional and Open Source Development Activities 135

Table 2. Fragment of Instantiation Table

We analysed the above instantiation table to determine whether each author named

and described the activities suitably. As a result of this process, we built another table
called analysis table. We built this table using the above four typologies. Table 3
illustrates a fragment of this analysis table. We used the same activities as in Table 2
to illustrate how the information evolves from table to table and depict the enacted
process.

Table 3. Fragment of Analysis Table

Table 4 shows how OSS development process activities match with IEEE Std.

1074 [11] development process activity groups. Each activity is assigned its
respective type as explained above and the ID of the primary study referencing the
activity. For reasons of space, Table 4 does not include the definitions given by each
author.

136 J.W. Castro Llanos and S.T. Acuña Castillo

Table 4. Mapping of IEEE Std. 1074/SWEBOK and OSS Process Activities

 Differences between Traditional and Open Source Development Activities 137

Table 4. (Continued)

Finally, we compared the IEEE Std. 1074 [11] (or SWEBOK [13]) definition with

the author’s definition according to the above mapping. This comparison shows up
the differences and similarities of each activity described in the analysed primary
studies. These differences and similarities are described in Section 4.

4 IEEE Std. 1074 and SWEBOK Process Activities vs. OSS
Development Process Activities

In this section, we describe each of the activities involved in the development process
enacted by the OSS community, which we compare with comparable activities in the
traditional development process by means of the analysis procedure described in
Section 3.

4.1 Requirements Process Activities

Table 5 illustrates just a fragment of the comparison of the requirements process
activities. We also built tables comparing the design and implementation processes.
The full comparisons of all the above processes are omitted for reasons of space.

138 J.W. Castro Llanos and S.T. Acuña Castillo

Table 5. Fragment of the Comparison of IEEE Std. 1074/SWEBOK and OSS Process
Requirements Activities

In the OSS community, it is the users that request the functionalities or features

that the software system should have; OSS users know exactly what they want. An
OSS project is motivated by a specific requirement. In traditional software
development, the software engineer has to follow a procedure to elicit requirements,
for example, by interviewing project stakeholders. There is a controlled procedure for
adding new requirements.

There is a procedure for determining the requirements that the software system
must satisfy in both traditional software and OSS development, but requirements are
asserted rather than elicited in the OSS community.

Requirements negotiation in the OSS community involves a large number of
developers who are often system users, too. The participants in traditional software
development analysis are clearly separate: software engineer/project stakeholders.
Conflicting requirements are negotiated in both traditional software and OSS
development.

In traditional software development process, the requirements specification is a
deliverable required by contract. Once specified, changes are an exception. In most
OSS projects, there are no contractual obligations and no formal requirements
specification documents, save in the case of [Ezea08]. OSS community requirements
are specified as narrative descriptions posted on message boards, emails and websites.

None of the primary studies analysed in this research included activities related to
requirements validation. These findings suggest that the OSS community does not
conduct validation in the manner of traditional software development.

Some OSS projects have to-do lists, and each task on the list has a priority and
difficulty level. In traditional software development, these tasks are known as
requirements. They are also assigned priorities.

4.2 Design Process Activities

Only two of the IEEE Std. 1074 [11] activity groups within the design process are
present in the OSS community: perform architectural design and perform detailed
design. As a general rule, software system architecture design in the OSS community

 Differences between Traditional and Open Source Development Activities 139

is implicit and evolves over time [Vixi99]. In some OSS projects, design is based on a
similar OSS software system [Raym99]. IEEE Std.1074 [11] establishes that the
architecture design should be explicit and designed based on software requirements.

Clean or elegant design is not always a practice in OSS projects. Design is
secondary, and implementation takes priority [John01]. For IEEE Std. 1074 [11],
design is just as important as implementation.

Any developer or user in the OSS community can contribute to and participate in
the discussion of designs via mailing lists [Seny04], [Mock02]. Developer preferences
are decide what they choose to design. In traditional development, users do not
participate in design, and developers have defined work allocations.

In the OSS community, detailed design does not come before coding; it is a by-
product of the implementation which is reported in API documentation [Vixi99].
Developers discuss and test different alternative designs simultaneously. System users
may also contribute designs [Seny04]. These detailed designs compete with each
other. In IEEE Std. 1074 [11], detailed design is a specific activity performed before
implementation [Vixi99].

Both in the OSS community and in traditional software development, the software
system is designed modularly, defining components with a specific scope.

4.3 Implementation Process Activities

OSS community developer teams are distributed and developers do not have personal
(face-to-face) contact with each others [Reis02]. Developers select the functionalities
that they want to implement, according to their tastes, preferences and knowledge
[Seny04]. In traditional development, development teams are centralized, and
developers are allocated the functionalities that they are to implement previously by
team managers.

In the OSS community, everyone has access to freely available code, and anyone,
including users, can contribute code [Schw03], [Dinh05]. Code is debugged by people
with more technical knowledge, that is, not all code contributors (including some
users) are allowed to do this job [Seny04]. In traditional development, only
developers are allowed write code, and this code is only available to development
team members. Any developer is qualified to do this job.

In the OSS community, operational documentation is generally based not on
detailed design but on source code [Reis02]. Documentation on how to operate the
software is distributed via user lists, as user questions and answers [Mart07]. There
are no structured documents. IEEE Std. 1074 [11] establishes structured documents
specifying how to install and operate the system.

In OSS projects, minor version updates are released on a regular basis [Raym99],
[Simm03]. Frequency is lower in traditional development, where versions are released
according to a set schedule, which does not exist in the OSS community.

As established in IEEE Std. 1074 [11], developers of some OSS projects comply
with a coding standard [Jorg01], create modular code and debug the created code
[Seny04]. Different versions of the software are administered and correct versions of
software items are compiled in both the OSS and conventional developer communities.

140 J.W. Castro Llanos and S.T. Acuña Castillo

5 Discussion of the OSS Development Process

The traditional software development process starts by defining and specifying
requirements. These requirements are vague; developers are unfamiliar with real
needs and have to interview project stakeholders to elicit requirements. On the other
hand, OSS development is launched for the purpose of satisfying clear requirements,
as developers are well acquainted with their needs (well-defined need).

OSS software systems requirements are asserted, analysed, specified, negotiated
and prioritized using a range of web-based artefacts. In OSS software systems
development, requirements emerge from interactions between developer-users and the
artefacts (discussion forums, emails, newsgroups) and software systems that they use-
develop instead of requirements being elicited before the software system is in use.

There is no formalized requirements analysis in OSS projects, and they do not have
conventional requirements documents. In their place, requirements are posted in e-
mails, on message boards or emerge from discussions among users and developers
about what the software should and should not do. These discussions take place in a
web scenario.

OSS community developers are generally also the end users of the software
systems that they develop (well-understood need). Thanks to this, there are fewer
misunderstandings or communication gaps in this community. OSS developers are not
under any contractual obligation to document software functionalities before they are
implemented. In the traditional requirements process, either the need is not well
defined or the need is not well understood, or both.

Modularity is an important concept in the OSS community, as it means that many
people can work in parallel. As a general rule, no structured design documents are
drafted. The only project in which design was documented was Mozilla, studied by
[Reis02]. Users can help developers with designs, which they discuss to gather
feedback.

The opportunity to write code is the main motivation for almost all the OSS
development projects [vixi99]. The development effort focuses on package
production. A package is the smallest unit that can be installed or removed from a
software system [Mong04]. As many different types of people can contribute code,
the OSS community has guidelines that describe the programming style and standards
[seny04]. Version control tools are used in most OSS projects, except [Ezea08]
because not many (only two) developers participated in the project.

6 Conclusions

This research reports a study of the requirements process enacted by the OSS
community, compared with the process prescribed by traditional software
requirements engineering. To find out which activities are part of the OSS
requirements process, we have conducted a SMS. The aim of this SMS was to answer
the research question, What activities do OSS process models contain? We located a
total of 22 primary studies, of which about half included development processes with

 Differences between Traditional and Open Source Development Activities 141

activities related to traditional requirements engineering. These primary studies were
useful as a starting point for later analysing the OSS development process and
proposing a process model enacted by this community.

Traditional software engineering assumes that the requirements can be elicited,
analysed, specified and managed as centrally controlled resources by an
administrative agency that has to meet contractual requirements. The OSS community
does not adhere to software engineering prescriptive models and standards. OSS
requirements evolve through a series of different web artefacts, online conversations,
as well as interactions emerging continually in discussion forums and emails. There
can be conflicting requirements, where negotiation is required to reach agreement. If
no agreement is reached, the project is divided into separate forks. OSS projects are
representative of an alternative paradigm to the one long defended by traditional
software engineering and by the software requirements engineering community.

In general terms, the OSS community enacts a semi-formalized requirements
process, composed of activities equivalent to traditional requirements engineering
prescriptions, but developed differently. For example, requirements are recorded in
discussion forums or emails rather than in a software requirements specification
document or requirements are asserted instead of elicited.

A common factor in all OSS projects is the modularity with which software
systems are designed and implemented, as this means that multiple programmers can
work together to build new functionalities. Designs are discussed through mailing
lists, and it is the developers that choose what they want to design or implement. The
priority in the OSS community is implementation. Design is a secondary concern and
is often a by-product of source code. In other cases, designs take a similar obsolete
software system as the baseline.

Requirements Analysis, Requirements Specification, Perform Architectural Design
and Manage Software Releases are the OSS development process activities reported
in primary studies where the names and definitions referred by authors were least
consistent. This suggests that there are contradictions with respect to each author’s
understanding of OSS process activity naming conventions. These contradictions
have been removed by the systematic mapping procedure enacted in this paper.

Acknowledgments. This work has been funded by the Spanish Ministry of Science
and Innovation Tecnologías para la Replicación y Síntesis de Experimentos en IS
(TIN2011-23216) and Go Lite (TIN2011-24139), and by Community of Madrid R&D
program e-Madrid project (S2009/TIC-1650).

References

1. Scacchi, W., Jensen, C., Noll, J., Elliott, M.: Multi-Modal Modeling of Open Source
Software Requirements Processes. In: First International Conference on Open Source
Systems, Genova, Italy, pp. 1–8 (2005)

2. Tian, Y.: Developing an Open Source Software Development Process Model Using
Grounded Theory, Universidad of Nebraska – Lincoln, NB, USA, 143 p. (2006)

142 J.W. Castro Llanos and S.T. Acuña Castillo

3. Potdar, V., Chang, E.: Open Source and Closed Source Software Development
Methodologies. In: 26th International Conference on Software Engineering, pp. 105–109
(2004)

4. Scacchi, W.: Understanding the Requirements for Developing Open Source Software
Systems. IEE Proceedings-Software 149(1), 24–39 (2002)

5. Scacchi, W.: Free and Open Source Software Development Practices in the Computer
Game Community. IEEE Software 21(1), 59–67 (2004)

6. Scacchi, W.: Socio-Technical Interaction Networks in Free/Open Source Software
Development Processes. In: Acuña, S.T., Juristo, N. (eds.) Software Process Modeling, pp.
1–27. Springer, New York (2005)

7. Mockus, A., Fielding, R.T., Herbsleb, J.: A Case Study of Open Source Software
Development: The Apache Server. In: 22nd International Conference on Software
Engineering, Limerck, Ireland, pp. 263–272 (2000)

8. Mockus, A., Fielding, R.T., Herbsleb, J.: Two Case Studies of Open Source Software
Development: Apache and Mozilla. ACM Transactions on Software Engineering and
Methodology 11(3), 309–346 (2002)

9. Fuggetta, A.: Open Source Software: An Evaluation. Journal of System and Software 66,
77–90 (2003)

10. Godfrey, M.V., Tu, Q.: Evolution in Open Source Software: A Case Study. In:
International Conference Software Maintenance (ICSM 2000), San José, CA, pp. 131–142
(2000)

11. IEEE Std 1074:2006: IEEE Standard for Developing Software Life Cycle Processes. IEEE
Computer Society (2006)

12. Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M.: Systematic Mapping Studies in
Software Engineering. In: 12th International Conference on Evaluation and Assessment in
Software Engineering, pp. 71–80 (2008)

13. IEEE Computer Society Professional Practices Committee: Guide to the Software
Engineering Body of Knowledge (SWEBOK, version 2004). IEEE Computer Society. Los
Alamitos (2004)

Appendix A: Primary Studies

This appendix contains the references to primary studies identified by the SMS. Each
primary study has been assigned an ID for reference purposes.

[Dinh05]: Dinh-Trong, T., Bieman, J.M.: The FreeBSD Project: A Replication
Case Study of Open Source Development. IEEE Transactions on Software
Engineering 31, 481--494 (2005)

[Egan04]: Egan, S.: The Open Source Development Process. In Open Source
Messaging Application Development: Building and Extending Gaim, ch. 2, pp. 23--
36. Apress (2004)

[Erdo09]: Erdogmus, H.: A Process That Is Not. IEEE Software 26(6), 4--7 (2009)
[Ezea08]: Ezeala, A., Kim, H., Moore, L.A.: Open Source Software Development:

Expectations and Experience from a Small Development Project. In Proceedings of
the 46th Annual Southeast Regional Conference on ACM-SE 2008, Auburn, AL,
USA, pp. 243--246 (2008)

 Differences between Traditional and Open Source Development Activities 143

[Fitz06]: Fitzgerald, B.: The Transformation of Open Source Software.
Forthcoming in MIS Quarterly 30(3), 1--26 (2006); Including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics - 3840 LNCS

[Gurb06]: Gurbani, V.K., Garvert, A., Herbsleb, J.D.: A Case Study of a
Corporate Open Source Development Model. In: Proceedings of the 28th ACM
International Conference on Software Engineering (ICSE 2006), pp. 472--481 (2006)

[John01]: Johnson, K.: A Descriptive Process Model for Open-Source Software
Development. Master. Thesis in Computer Science. Department of Computer Science.
University of Calgary, 156 p. (2001), http://sern.ucalgary.ca/
students/theses/KimJohnson/thesis.htm

[Jorg01]: Jorgensen, N.: Putting It All in the Trunk: Incremental Software
Development in the FreeBSD Open Source Project. Information Systems Journal.
11(4), 321--336 (2001)

[Lell09]: Lelli, F., Jazayeri, M.: Community Support for Software Development in
Small Groups: The Initial Steps. In: Proceedings of the 2nd International Workshop
on Social Software Engineering and Applications (SoSEA 2009), pp. 15--22 (2009)

[Mart07]: Martin, K., Hoffman, B.: An Open Source Approach to Developing
Software in a Small Organization. IEEE Software 24, 46--53 (2007)

[Mock00]: Mockus, A., Fielding, R.T., Herbsleb, J.: A Case Study of Open Source
Software Development: The Apache Server. In: Proceedings of the 22st International
Conference on Software Engineering (ICSE 2000), Limerck, Ireland, pp. 263--272
(2000)

[Mock02]: Mockus, A., Fielding, R.T., Herbsleb, J.: Two Case Studies of Open
Source Software Development: Apache and Mozilla. ACM Transactions on Software
Engineering and Methodology 11(3), 309--346 (2002)

[Mong04]: Monga, M.: From Bazaar to Kibbutz: How Freedom Deals with
Coherence in the Debian Project. In: Proceedings of the 4th Workshop on Open
Source Software Engineering Engineering – 26th International Conference on
Softtware Engineering (ICSE 2004), pp. 71--75 (2004)

[Raym99]: Raymond, E.S.: The Cathedral and the Bazaar. In: Cathedral and the
Bazaar: Musing on Linux and Open Source by an Accidental Revolutionary, pp. 19--
64. O'Really, Sebastapol (1999)

[Reis02]: Reis, C.R., Mattos Fortes, R.P.: An Overview of the Software
Engineering Process and Tools in Mozilla Project. In: Proceedings of the Workshop
on OSS Development, Newcastle Upon Tyne, UK, pp. 162--182 (2002),
http://opensource.mit.edu/papers/reismozilla.pdf

[Scac04]: Scacchi, W.: Free and Open Source Development Practices in the Game
Community. IEEE Software 21(1), 59--66 (2004)

[Schw03]: Schweik, C.M., Semenov, A.: The Institutional Design of Open Source
Programming: Implications for Addressing Complex Public Policy and Management
Problems. Revista First Monday 8(1) (2003), http://firstmonday.org/
issues/issue8_1/schweik/index.html

[Seny04]: Senyard, A., Michlmayr, M.: How to Have a Successful Free Software
Project. In: Proceedings of the 11th Asia-Pacific Software Engineering Conference
(APSEC 2004), pp. 84--91. IEEE Computer Society, Busan (2004)

144 J.W. Castro Llanos and S.T. Acuña Castillo

[Simm03]: Simmons, G.L., Dillon, T.: Open Source Development and Agile
Methods. In: Proceedings of the 7th IASTED International Conference Software
Engineering and Applications, Marina del Rey, CA, USA, pp. 523--527 (2003)

[Vixi99]: Vixie, P.: Software Engineering. In: de DiBona, C., Ockman, S., Stone,
M. (eds.) Open Sources: Voices from the Open Source Revolution, ch. 6, 1st edn., pp.
91--100. O'Reilly Press: Sebastopol, CA (1999)

[Wynn04]: Wynn Jr., D.E.: Organizational Structure of Open Source Projects: A
Life Cycle Approach. In: Proceedings of the 7th Annual Conference of the Southern
Association for Information Systems, Georgia, pp. 285--290 (2004)

[Yama00]: Yamauchi, Y., Yokozawa, M., Shinohara, T., Ishida, T.: Collaboration
with Lean Media: How Open-Source Software Succeeds. In: Proceedings of the ACM
Conference on Computer Supported Cooperative Work (CSCW 2000), pp. 329--338
(2000)

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 145–159, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Analyzing the Drivers of the Combination of Lean
and Agile in Software Development Companies

Pilar Rodríguez1, Jouni Markkula1, Markku Oivo1, and Juan Garbajosa2

1 University of Oulu, Department of Information Processing Sciences,
P.O. Box 3000, 90014 University of Oulu, Finland

{Pilar.Rodriguez,Jouni.Markkula,Markku.Oivo}@oulu.fi
2 Technical University of Madrid (UPM) SYST Research Group E.U. Informática

Ctra. Valencia Km. 7. E-28031 Madrid
jgs@eui.upm.es

Abstract. Agile software development has been widely accepted by the soft-
ware industry as a means for improving flexibility and innovation capabilities.
More recently, lean thinking has emerged as a new paradigm to make software
development more efficient. In practice, quite often lean is seen as an evolution
of agile when agile is not considered to be enough. However, how they can re-
late to each other is not clearly understood. This paper presents the results of a
survey study conducted among 408 software practitioners of 200 software in-
tensive companies in Finland, which is one of the early adopters of lean for
software development. The results highlight the interest of software profession-
als in adopting a combination of agile and lean paradigms, to achieve both flex-
ibility and economical efficiency. Unlike manufacturing, the transformation is
being actually conducted as a single trip where the borders between agile and
lean are not clearly defined.

Keywords: Agile software development, agile manufacturing, lean software
development, lean thinking, agility, leanness.

1 Introduction

Methodologies labelled as agile appeared as a way to provide flexibility to software
development processes over a decade ago [1]. Nowadays, the trend towards agile is a
fact in software development [2]. More recently, and mainly motivated by the advent
of the agile community, the lean paradigm has been highlighted as an alternative to
make the software development processes more efficient. Based on fundamental in-
dustrial engineering principles, lean is steeped in a philosophy of maximizing value
and minimizing waste [3]. In practice, in the field of software development, lean is
often seen as a continuation of agile when agile is not considered sufficient [4]. How-
ever, differently from other software engineering topics conceived in the academia
and then transferred to the industry, agile and lean are mainly growing up directly in
the industry. As a consequence, existing theories on this research topic are scarce [5]
and the meaning of agile and lean in a software context and the differences between
both paradigms are not clearly understood yet [6].

146 P. Rodríguez et al.

To improve our understanding and provide first-hand industrial insight on how
agile and lean are being understood in the real-world industry, a web-based survey
study was conducted among 408 software development practitioners belonging to 200
companies of the software intensive industry in Finland. The goal of the survey was to
identify the adoption level of agile and lean in the Finnish software industry as well as
the companies’ goals driving towards processes based on these paradigms. Since the
Finnish software industry can be considered as one of the early adopters of agile and
lean methods for software development, Finnish companies represent a suitable popu-
lation for the study [7]. Moreover, the results are especially relevant if it is considered
that Finland takes up the second position in the IT Industry Competitiveness Index
2011 of the BSA/Economist’s report [8].

The results of the survey show the interest of software professionals towards com-
bining agile and lean. It is remarkable that agile is not thought of as just “another
disposable method tried before”, but it is deliberately maintained when moving to-
wards lean. Regarding the goals on adopting agile and lean in software development,
the paper presents a comparison between companies following a combination of agile
and lean methods and companies following only agile or only lean. The results indi-
cate that software development companies usually use a combination of agile and lean
to achieve the best from both paradigms, i.e. flexibility and economical efficiency.

One of our concerns was the characterization of agile and lean and their relation-
ship. Both agile and lean principles are essential part of the corresponding body of
theory. However, agile and lean have followed different paths for software develop-
ment. Agile was characterized in the Agile Manifesto [1]; lean emerged in a manufac-
turing context [3] and its initiation has suffered multiple adaptations, being often over
simplified as a search for value removing waste. We felt the need to go back to the
sources of lean to analyze the goals in adopting lean for software development since
the original lean thinking. Supported by the results of the survey and considering the
differences between software and manufacturing disciplines, the possibility of using a
combination of agile and lean paradigms at the same time in the same space in soft-
ware domain, considered as not viable in manufacturing [9], is pointed out in this
paper. A clear understanding of the requests/constrains of the organization business
environment is seen fundamental to be able to develop the agile/lean combination that
best meets the organizational needs in terms of flexibility and economical efficiency.

The rest of the paper is organized as follows: Section 2 reviews the relevant litera-
ture on agile and lean. Section 3 defines the research design. Section 4 presents the
results of the study and in section 5 these results are discussed. Finally, section 6 con-
cludes the paper and espouses the limitations of the study as well as future research.

2 Overview of Agile and Lean Paradigms

This section provides an overview of agile and lean paradigms, analyzing how they
have been consolidated in manufacturing with regard to software development. Al-
though previous adaptations of lean principles to software domain are valuable

 Analyzing the Drivers of the Combination of Lean and Agile 147

contributions, we consider the original works from lean manufacturing, taking into
account also space and time dimensions, may provide new insights in Lean Software
Development.

2.1 Agile and Agile Software Development

Although the problem of how to successfully deal with changing environments has
been studied for a few decades, agile appeared in manufacturing at the beginning of
the 1990s as a solution to satisfy fluctuating demand, in terms of both volume and
variety [9]. However, just a few years ago, there was not seen to be a commonly ac-
cepted definition of agility in manufacturing [10].

In software development, the term agile was coined in 2001 when the Agile Mani-
festo was formulated [1]. Abrahamsson et al. defined agile method as the method used
“when software development is incremental (small software releases, with rapid
cycles), cooperative (customer and developers working constantly together with close
communication), straightforward (the method itself is easy to learn, to modify, and
well documented), and adaptive (able to make last moment changes)” [11]. Under the
umbrella of Agile Software Development (ASD), there is a group of methods such as
eXtreme Programming [12], Scrum [13] and Feature-Driven Development [14]. Even
when agility is also a confusing and multi-faceted concept in software development
[15], the Agile Manifesto has been generally accepted as a body of theory [1].

Despite the different ways of defining agile [15, 16, 17], there seems to be an
agreement that speed and flexibility to adapt and take advantage of business changes
are the primary attributes of agile [10, 15]. It is remarkable that, while agile in manu-
facturing emphasize flexibility and speed in both capabilities to adapt changes in vo-
lume (close related to agile workforce) and variety, agile in software development
mainly refers to flexibility and speed to adapt to changing requirements (variety). This
is quite understandable since the entire product creation process fabricates a single
copy of the software product that can be easily replicated.

2.2 Lean and Lean Software Development

Lean is the English name that western researchers (from the Massachusetts Institute
of Technology, MIT) used to describe the system of organization created by Toyota in
Japan. Lean is a management philosophy focused on providing maximum customer
value through an end-to-end focus on delivering to customer needs, efficient work
streams, empowered teams and continuous improvement initiatives [3]. Five prin-
ciples constitute its backbone: value, value stream, flow, pull and perfection [18].
Value is everything for which a customer is willing to pay. Understanding value from
the customer perspective is the central focus of lean. Waste, defined as everything that
absorbs resources but outputs no value, is also an important concept of lean. Lean
seeks the complete elimination of waste in all aspects of production.

 Lean paradigm has revolutionized manufacturing worldwide in companies from
diverse industries, such as 3M, Boeing Corporation, Zara, and General Electric [19].
In software development, the discussion about lean started as early as the 1990s [20]

148 P. Rodríguez et al.

well before the Agile Manifesto was formulated. While the progress toward Lean
Software Development (LSD) has been mainly driven by industry pioneers, there is a
growing body of literature not only documenting case studies such as [21], but also
investigating specific elements of lean, e.g., flow [22, 23]. Currently, universal appli-
cation of lean principles to knowledge work such as software development is under
debate [24]. A widely acknowledged adaptation of lean principles with respect to
software was proposed by Poppendieck and Poppendieck [25] including: eliminate
waste, amplify learning, decide as late as possible, deliver as fast as possible, empow-
er the team, build in integrity and see the whole.

2.3 “Agile or Lean” or “Agile and Lean”?

Business needs, especially in the software development industry, demand to operate at
high levels of customer responsiveness. Moreover, keeping cost efficiency is also
important. Consequently, ways in which hybrid agile/lean approaches can be taken
into practice have received attention for a long time, even when, as philosophies, lean
and agile have different origins and some intertwined ideas [9]. As stated above,
while agile focuses more on flexibility and the capacity to rapidly embrace change,
lean focuses on overall economic contribution. Marso-Jones et al.’ matrix [26], shows
graphically how whilst in agile it is highly desirable to have low cost, it is not essen-
tial if it puts the capability to respond quickly to changes at risk (see Fig. 1).

Fig. 1. Market Winners-Market Qualifiers Matrix for Agile vs. Lean1. Source: [26]

Although Marson-Jones et al.’s matrix designates cost as the market winner of
lean, it is important to remember that lean is not just about reducing costs, as it is
occasionally misinterpreted, but it is more about providing value to the customer in a
way that every company activity does contribute valuably to the ultimate customer.

It is commonly argued that a combination of agile and lean might work well in op-
erational terms as lean capabilities can contribute to agile performance [27]. In manu-
facturing, there is a tendency to suggest that although agile and lean can be combined,

1 Market winners refer to those attributes that dominate the paradigm as the prime requirement.

Market qualifiers point to those attributes that although are highly desirable are not strictly
requested. The matrix emphasizes those attributes that must be excelled as market winners
and be highly competitive as market qualifiers.

 Analyzing the Drivers of the Combination of Lean and Agile 149

they cannot be employed at the same time in the same space. The main reason is that
it is not possible to deal with the unstable demand, that characterizes environments
where agile is used, in a levelled schedule as requested by lean [9]. Thus, although the
combination, labelled as “le-agility”, is recognized in a manufacturing context, lean
and agile can coexist in manufacturing only in separate processes, different products
or using de-coupling strategies [16].

The combination of agile and lean has been interpreted in the field of software de-
velopment without considering space or time restrictions. This is demonstrated by the
fact that, in software development, lean thinking was one of the inspiring sources of
the Agile Manifesto [28]. Furthermore, in the context of Information Systems and
Software Engineering, Conboy [15] has defined agility as “the continual readiness of
an Information System Development to rapidly or inherently create change, proac-
tively or reactively embrace change, and learn from change while contributing to
perceived customer value (economy, quality, and simplicity), through its collective
components and relationships with its environment”. This definition roots in the con-
cepts of flexibility and leanness, considering therefore leanness as an underlying no-
tion of agility. Poppendieck [29] considers lean thinking as a “platform upon which to
build agile software development practices”, so lean could work as a platform for
scaling agile. Coplien and Bjornwig [30] argue that although agile and lean have
fundamental differences, yet they complement each other by addressing different
“components” of systems development. Consequently, software development is inter-
preting the combination of agile and lean in a different way than in manufacturing.

3 Study Design

In this study, based on a descriptive web survey research [31] and considering the
discussion in section 2, we focus our attention on two research questions: 1) What is
the level of using lean, agile or a combination of both methods in the software devel-
opment industry? 2) What are the reasons why agile, lean or a combination of both
methods are being adopted in some software development organizations?

Many organizations in Finland are showing interest in adopting lean, emerging ma-
jor initiatives such as the Lean Software Enterprise initiative inside Cloud Software
Program [7]. Therefore, Finnish software intensive industry can be considered as one
of the early adopters of lean in software development, constituting a suitable study
population. The membership registry of The Finnish Information Processing Associa-
tion (FIPA), which is a major Finnish organization that has 16 000 professionals and
more than 500 companies as members, was used as a sampling frame [32]. For the
survey sample, FIPA provided the e-mail addresses of a subset of 4950 professionals
whose background was relevant to software development [31]. This can be considered
as a very large and representative sample of the population of software professionals
and companies in Finland. After piloting the questionnaire for checking its consisten-
cy and legibility, it was e-mailed to individual software practitioners. The name of the
company was collected allowing the analysis of the results also at company level. A
total of 408 responses from 200 companies were collected (response rate was 8,2%).

150 P. Rodríguez et al.

The background information of the sample is shown in the following tables. Table
1 presents the positions of the respondents in their organization, Table 2 the size of
the organizations and Table 3 the respondents’ experiences in software development.

Table 1. Positions in organization

Position n Position n
Developer 113 Scrum master 33
Project manager 99 Process manager 31
IT staff 79 Product owner 25
Architect 63 Product manager 23
Consultant/Trainer 52 President/VP/CEO/COO/CIO/CTO 22
Quality assurance/Tester 38 Sales/Marketing personnel 10
Operations/Support staff 35 Other 48

Table 2. Size of the organizations

Employees n %
1-10 34 8,3
11-50 38 9,3
51-250 50 12,3
251-1000 95 23,3
1001-10 000 97 23,8
More than 10 000 89 21,8
Missing information 5 1,2
Total 408 100,0

Table 3. Experience in software development

Years of experience n %
More than 20 55 13,5
10-20 144 35,3
5-10 80 19,6
2-5 56 13,7
Less than 2 31 7,6
None 42 10,3
Total 408 100,0

The roles of the respondents were mainly developers (n=113) and project managers

(n=99). Most of the organizations were big (45%, more than 1000 employees) and
middle size (45%, number of employees between 10-1000). Respondents were mainly
very experienced in software development (48%, more than 10 years of experience).

4 Results

The survey previously introduced was a wide explorative survey, including almost fifty
questions. In this paper, in order to answer the research questions presented earlier, we

 Analyzing the Drivers of the Combination of Lean and Agile 151

focused only on two sets of questions of the survey. The first set is related to the level
of agile and/or lean methods adoption and the second set to goals in adopting agile
and/or lean methods. The results are presented in the following subsections.

4.1 Level of Agile and Lean Adoption in the Finnish Software Industry

The level of adoption of agile and/or lean methods was studied using three variables.
The first variable is Agile and/or Lean usage, which has four categories (Only Agile,
Agile and Lean, Only Lean, No Agile or Lean). The two other variables are Agile
methods usage time and Lean methods usage time, which have five categories (Less
than 1 year, 1-2 years, 2-5 years, 5-10 years, More than 10 years).

Of the 408 responses, agile and/or lean methods usage was reported by 58%
(n=236) of the respondents and the rest (42%, n=172) are applying neither agile nor
lean methods. Further analyses were carried out within the first group, i.e. agile and/or
lean methods users group. From this group, 58% (n=137) were using only agile me-
thods, 37% (n=88) both agile and lean methods and 5% (n=11) only lean. Among the
agile and/or lean methods users, in general, agile methods have been used mostly 2-5
years (Median=Mode=”2-5 years”) and lean methods 1-2 years (Median=Mode=”1-2
years”). According to the data, 51% (n=115) have been using agile more than two
years, in comparison to 25% (n=27) of lean usage more than two years. The distribu-
tion of both methods usage time, separated by single and joint methods usage groups,
is presented in Fig. 2.

Fig. 2. Time of using agile and lean methods in the organizations

Based on the analysis, the average usage time is longer in agile methods than in
lean methods, i.e. agile has been adopted usually earlier than lean. When considering
the order of adoption, in Agile and Lean adopters (n=88) exactly half has been using
agile and lean the same time (50%, n=44), and the reported usage time is different in
the other half of the cases. From the later group, only 2 respondents (2% of all Agile
and Lean adopters) report having been using lean longer time than agile. The rest

152 P. Rodríguez et al.

(47% of all Agile and Lean adopters) have been using agile longer time than lean.
This shows clearly that lean methods have been in almost always adopted later than
agile methods, if they have not been adopted around the same time.

4.2 Companies’ Goals Driving towards the Adoption of Agile and/or Lean
Methods

Goals in adopting agile and/or lean methods were studied based on goal importance
variables. The importance of different goals was measured in the survey by asking the
respondents which of the specified goals were their organizational unit’s goals when
adopting agile and/or lean methods. Respondents were requested to indicate all of the
valid goals from a given list of eighteen goals, and there was also an option to indicate
other goals.

In the first phase of the analysis, we wanted to identify those goals of which impor-
tance is varying depending on the adopted methods (variable Agile and/or Lean
usage). For this purpose, we analyzed the association of the goal importance and me-
thod adoption with Chi Square test of independence. For the following analysis, we
chose those goals that had a statistically significant association (p<.05) with the me-
thod adoption group. This leads us to seven goals, which are presented in Table 4
below. In the table, the order of importance of the goals is presented for the agile
and/or lean methods usage groups. The goals are ordered according the importance
priority in agile and lean group. The numbers indicate the priority of the goals, com-
bined within the percentage of the respondents identifying it as a goal when adopting
agile and/or lean methods. The Chi Square test of independence results in the table
present Cramer’s V value as a measure of association between the goal and methods
adoption group, and p the statistical significance of the association.

Table 4. Importance of goals in adopting agile and/or lean

Importance priority

χ2 Test of
Independence

Goal Only Agile
(n=137)

Agile and Lean
(n=88)

Only Lean
(n=11)

Cramer's
V

p

To reduce development cycle
times and time-to-market

1 54 % 1 69 % 5 18 % ,232 ,002

To improve process quality 2 39 % 2 59 % 1 73 % ,224 ,003
To remove waste and excess
activities

3 20 % 3 48 % 3 45 % ,287 ,000

To improve organizational
learning

5 12 % 4 27 % 4 45 % ,240 ,001

To improve our understanding
of the whole value stream

6 8 % 5 22 % 7 9 % ,193 ,012

To improve the management of
business/product value

4 12 % 6 22 % 2 55 % ,241 ,001

To achieve success others have
achieved using lean methods

7 6 % 7 19 % 6 18 % ,207 ,006

 Analyzing the Drivers of the Combination of Lean and Agile 153

The variation of importance of the goals by the three different methods adoption
groups are presented below in two figures. The figures show the percentage of res-
pondents in each group who indicated the goal as their unit’s goal in adopting agile
and/or lean methods. Fig. 3 shows those goals that appear to be more important in
adopting lean and less important in adopting agile. Agile and Lean’s users goal impor-
tance in this goal group appears to be between Only Agile and Only Lean adopters’
group. The rest of the goals are presented in Fig. 4. Those goals appear to be most
valued in the Agile and Lean group, and less important in Only Agile and Only Lean
groups.

Fig. 3. Importance of goals by methods adoption groups − most important for lean

Fig. 4. Importance of goals by methods adoption groups − most important for agile and lean

5 Discussion of the Results

This section discusses the results of the study in the light of how agile and lean para-
digms have been applied in manufacturing, where these concepts are more mature.

154 P. Rodríguez et al.

5.1 Agile and Lean Origins

The results of the survey confirm the interest of software development organizations
using agile and lean methodologies. Majority, 58% of respondents reported that they
were following either agile or lean in isolation, or a combination of agile and lean.
Although the use of agile in isolation was the most popular approach (58% of agile
and/or lean methods users), a tendency towards developing software in a combination
of agile and lean is also emerging (37% of agile and/or lean methods users).

One interesting difference appears in the chronological order in which agile and lean
have been adopted in manufacturing and software. We think the chronological order
may be impacting the perceptions of the market winners and market qualifiers when
adopting lean in manufacturing and software. The survey results show that lean adop-
tion is following agile in software development (see Fig. 2). In manufacturing, lean
production emerged years before agile methods appeared. First manufacturing industry
adopted lean paradigm as a more efficient way to produce large quantities of products.
After that, when lean was already in place, manufacturers realized that they needed
more flexibility in their production process to satisfy the fluctuating demand that cha-
racterized their business environment, and promoted Agile manufacturing [33]. The
different adoption order may impact how agile and lean methods have been viewed in
both domains. In fact, while software development emphasizes on operating with the
leanest agile system, manufacturing focus on the most responsive lean system. This
can also explain to some extent the stronger focus on reducing costs when combining
agile and lean paradigms in manufacturing as opposed to a stronger focus on flexibility
in the case of the software development industry (see Sections 5.2 and 5.3).

5.2 Combining Agile and Lean Methods in Software Development

There is emerging a trend towards adopting a combination of agile and lean. Based on
the data, using lean in isolation is quite uncommon (only 5% of users of agile and/or
lean reported to be using only lean, compared to 37% that are using both agile and
lean). It can be also seen that agile is not abandoned when lean is adopted.

Literature on how to apply lean paradigm in software development suggests that,
although with some fundamental differences, agile and lean can be combined com-
plementing each other and achieving therefore an improved paradigm [15, 29, 30].
Thus, authors in the field commonly propose integrated processes for an agile/lean
combination. A clear example representing this approach is the use of kanban systems
by agile teams [34].

This alternative of combining agile and lean paradigms in the same products at the
same time has been considered invalid in manufacturing according with the theory of
le-agility [16]. The reasoning behind that assertion is justified by the levelled schedule
that lean requests. It is argued that lean manufacturing avoids the requirement of flex-
ibility by calling for a stable demand and forward planning [9]. In consequence, it is
unfeasible to use both paradigms in integrated processes. According to Towill and
Christopher [16], the alternatives for adopting a combination of agile and lean para-
digms in manufacturing are limited to:

 Analyzing the Drivers of the Combination of Lean and Agile 155

1. Same times, different space: To use both paradigms in separate processes by using
agile and lean for delivery in different value streams. This strategy is used when it
does not make business sense to pull all the products through an agile channel.

2. Same space, different times: To use both paradigms in the same product but at dif-
ferent points of the time, where agile and lean are seasonally separated.

3. Different space, different times: To use both paradigms at different points of the
value stream using de-coupling strategies [9].

Due to the singular characteristics of software development, a fourth alternative could
be discerned in a software context:

4. Same space, same time: To use a mixing of agile and lean techniques in the same
product at the same time.

Although this alternative has been claimed to be invalid in manufacturing, it is seen as
the approach that software companies are currently choosing for carrying out the
combination in a real world. It is a long known fact that software production is very
different compared to manufacturing physical goods. Software production is basically
a design process that ends up in a product that can be very easily replicated. Flexibili-
ty requirement is not coming from the production volume but from changing custom-
er needs. Consequently, a smooth demand or levelled schedule is not impacted by a
variable demand in terms of volume, which according to Naylor [9] could lead to
waste either in not producing near capacity or keeping larger buffer stocks.

These particularities of software product and development processes compared
with manufacturing open new possibilities to combine agile and lean methods in ways
that has not been considered previously. Although, as discussed in the next subsec-
tion, agility and flexibility can be associated with higher costs, they are needed in
some business environments to provide what customers really want. If software de-
velopment looks for operating with the leanest agile system, this fourth alternative
could be suitable.

5.3 Goals of Software Development Companies Driving towards Combined
Agile and Lean

Goals for adopting agile and lean methodologies in isolation or combination are pre-
sented in Table 4. Overall, the goals of the organizations of those respondents adopt-
ing either agile or a combination of agile and lean paradigms are quite similar. Only
the position of “To improve organizational learning”, “To improve the understanding
of the whole value stream” and “To improve the management of business/product
value” are slightly alternated. However, they differ considerably from the goals of
those applying only lean. Again, this result could be interpreted as a trend of trans-
forming the processes from basic agile software development principles towards
complementing them with lean principles following similar purposes.

“To reduce development cycle time and time to market” is the main goal of both
respondents using only agile and respondents using an agile and lean combination.
The unpredictability that characterize the software industry have forced organizations

156 P. Rodríguez et al.

developing software to look for mechanisms that provide more flexibility, reduce
development cycles times and enable to adapt to the real customer demand. While
leanness may be an element of agility in certain circumstances, it will not enable the
organization to be agile [27]. Therefore, software organizations deliberately maintain
agile when transforming towards lean. As depicted in Fig. 4, to reduce development
cycle times and time-to market is not a main goal for those organizations adopting
only lean methods. On the other hand, “To improve process quality” is shared as an
important goal for all of them, users of only agile, agile and lean, and only lean.

It is significant that the goal “To remove waste and excess activities” had similar
importance in organizations using a combination of agile and lean methods and in
those applying only lean (see Fig. 4). As argued by some authors on manufacturing,
agile could endanger the target of complete elimination of waste in all aspect of pro-
duction. In this line, van Hoek [27] affirms that if lean refocuses around responsive-
ness, it might sacrifice its foundations in efficiency. He goes so far as to say “If lean
thinking is the relevant approach in the operational environment of a company, it can
better focus around that solely and not mess up its underlying principles by adding
different dimensions [such as flexibility], given that the concept centre around effec-
tive waste elimination”. Our position is that while waste is an important concept of
lean, the first principle of lean stresses the concept of value. Lean is not just about
reducing cost but it is about providing customer value in an economically efficient
way. In a dynamic business environment, as is the case of software development, to
have adaptation capabilities is needed for providing real customer value. The time
spent in developing a product that finally will not meet the real customer demand is a
clear source of waste from a lean perspective.

Therefore, the issue is not lean or agile; rather it is the judicious selection and inte-
gration of appropriate aspects of both paradigms appertaining to the particular com-
pany strategy [16]. For example, if the business environment of the software company
is turbulent, higher levels of flexibility will be needed to provide what the customers
really want. As a result, higher costs will be needed such as costs on creating flexible
architectures or costs coming from refactoring [35, 36]. As lean realizes, waste exists
in even the best processes. Further, lean separates waste with a two-type classifica-
tion: waste originates from activities that do not provide value, but are necessary to be
performed, and waste arises from activities that create no value and are avoidable.
The second type of waste has to be immediately eliminated. The cost associated with
providing flexibility can be considered as a type of the first waste. While they don’t
provide direct customer value, due to the business environment, they are needed to
provide what the customer really wants more quickly.

Therefore, the organization needs to understand the requirements and constraints of
its business environment and balance the cost associated with the use of techniques
that provide flexibility with the value that the flexibility is going to provide to its cus-
tomers. However, according to the results of the survey, it is not fully clear whether
software companies are paying attention to these issues when deciding their agile
and/or lean transformation, since “To achieve success others have achieved using lean
methods” appears also as a goal guiding the transformation (see Fig. 4).

 Analyzing the Drivers of the Combination of Lean and Agile 157

Finally, “To improve organizational learning” and “To improve the understanding
of the whole value stream” seem also to be important goals for transforming software
companies according to agile and lean paradigms.

6 Conclusions, Limitations of the Study and Future Work

This paper presents the results of a web based survey study conducted among 408
software development practitioners belonging to 200 companies of the software inten-
sive industry in Finland. Given the reported performance of Finnish IT industry (e.g.
second highest productivity in the world according to The Economist Intelligence Unit
[8]), the conclusions can have interest and applicability to most of the existing soft-
ware development communities. Two main goals drive the research: i) adoption level
of agile and/or lean in software developing companies, and ii) companies’ goals driv-
ing towards agile and lean processes. Three main results are highlighted in the study:

1. The interest of professional in developing software in a combination of agile and
lean approaches, where agile is not abandoned when lean is adopted.

2. The possibility of combining agile and lean in an integrated way in software devel-
opment. This approach has been considered unviable in manufacturing so far.
However in software development, agile and lean methods seem to be combined
and integrated in the same processes (same products at the same time). The particu-
larities of software development compared to manufacturing may open new possi-
bilities for using lean in different ways than those known in manufacturing.

3. The importance of a careful selection and integration of appropriate aspects of both
paradigms appertaining to the particular organization strategy, in terms of flexibili-
ty and economical efficiency.

The results of the survey provide a good preliminary and evidence based analysis of
agile and lean methods adoption in Finland. However, some limitations should be
taken into account when considering the results: i) The survey was conducted mainly
as an exploratory descriptive study of the current state of agile and lean adoption in
software intensive companies. It has certain limitations in its usage for company level
analysis such as the varying role of the respondents from one company to another.
This can affect the perspectives that the respondents may have of the companies, ii) in
the survey, the importance of the goals was not differentiated when adopting agile and
lean methods in combination (which goals are driving lean and which are driving
agile), iii) in addition, it should be noted that even if the number of observations is
relatively high, more than four hundred respondents, there is still some groups of
analysis that have rather limited number of observations, e.g. the only lean adopters
including eleven respondents.

As future work, a study focussed on specific roles in the company (transformation
responsible, software development departments heads, software developers/engineers
with specific roles such as testers or architects, and so on) would help to get a deeper
understanding of the picture. Second, it would be interesting to clarify the influence of
the interaction of the customer with the team; in manufacturing this interaction has

158 P. Rodríguez et al.

clearly different objectives. A third issue could be to get a better understanding of
how innovation is perceived and could be introduced systematically in the software
development lean context, similarly as it happens in manufacturing quality circles.

Acknowledgements. This article is based on the work carried out in the ICT SHOK
Cloud Software program financed by the Finnish Funding Agency for Technology
and Innovation (Tekes) and Tivit OY. The graduate school on Software Systems and
Engineering (SoSE) funded by the Ministry of Education in Finland and by the Acad-
emy of Finland, and the Spanish Ministry of Science and Innovation under the project
INNOSEP TIN2009-13849 have also partially supported the work. We are especially
grateful to FIPA (Tietotekniinan Liitto) for kindly helping us to distribute the survey
to their members.

References

1. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mel-
lor, S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for Agile Software Develop-
ment (2001), http://www.agilemanifesto.org/

2. West, D., Grant, T.: Agile Development: Mainstream Adoption Has Changed Agility.
Trends in Real-World Adoption of Agile Methods. Forrester Research (2010)

3. Womack, J.P., Jones, D.T., Roos, D.: The Machine that Changed the World: The Story of
Lean Production. HarperPerennial, New York (1990)

4. Vilkki, K.: When Agile Is Not Enough. In: Abrahamsson, P., Oza, N. (eds.) LESS 2010.
LNBIP, vol. 65, pp. 44–47. Springer, Heidelberg (2010)

5. Dyba, T., Dingsøyr, T.: Empirical Studies of Agile Software Development: A Systematic
Review. Inf. Softw. Technol. 50, 9–10 (2008)

6. Wang, X., Conboy, K.: Comparing Apples with Oranges? Perspectives of a Lean Online
Community on the Differences between Agile and Lean. In: Thirty Second International
Conference on Information Systems, Shanghai (2011)

7. Cloud SW Research Project (2010-2013),
http://www.cloudsoftwareprogram.org/

8. Business Software Alliance: Investment for the Future Benchmarking IT Industry Compe-
titiveness Report (2011)

9. Naylor, B.J., Naim, M.M., Berry, D.: Leagility: Integrating the Lean and Agile Manufac-
turing Paradigms in the Total Supply Chain. Int. J. Production Economics 62, 107–118
(1999)

10. Sherehiy, B., Karwowski, W., Layer, J.K.: A Review of Enterprise Agility: Concepts,
Frameworks, and Attributes. International Journal of Industrial Ergonomics 37(5), 445–
460 (2007)

11. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile software development me-
thods: review and analysis, VTT Technical report (2002)

12. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn. Addi-
son-Wesley, Boston (2004)

13. Cohn, M.: Succeeding with Agile: Software Development Using Scrum, 1st edn. Addison-
Wesley Professional (2009)

 Analyzing the Drivers of the Combination of Lean and Agile 159

14. Palmer, S.R., Felsing, J.M.: A Practical Guide to Feature-Driven Development. Prentice
Hall PTR (February 2002)

15. Conboy, K.: Agility from First Principles: Reconstructing the Concept of Agility in Infor-
mation Systems Development. Infor. Systems Research 20(3), 329–354 (2009)

16. Towill, D., Christopher, M.: The Supply Chain Strategy Conundrum: To Be Lean or Agile
or To Be Lean and Agile? International Journal of Logistics Research and Applications: A
Leading Journal of Supply Chain Management 5(3), 299–309 (2002)

17. Sharafi, H., Zhang, Z.: A method for achieving agility in manufacturing organisations: An
introduction. Internat. J. Production Econom. 62, 7–22 (1999)

18. Womack, J.P., Jones, D.: Lean thinking. Simon and Schuster, New York (1996)
19. Ransom, C.: Don’t Give Up On Good Industrial (Lean) Companies; Take Advantage of

The Long-Term Up-Cycle. Manufacturing News 14(13), July 17 (2007)
20. Freeman, P.: Lean Concepts in Software Engineering. In: IPSS-Europe International Con-

ference on Lean Software Development, Stuttgart, Germany, pp.1–8 (1992)
21. Mehta, M., Anderson, D., Raffo, D.: Providing Value to Customers in Software Develop-

ment Through Lean Principles. Software Process Improvement and Practice 13(1), 101–
109 (2008)

22. Mandić, V., Oivo, M., Rodríguez, P., Kuvaja, P., Kaikkonen, H., Turhan, B.: What Is
Flowing in Lean Software Development? In: Abrahamsson, P., Oza, N. (eds.) LESS 2010.
LNBIP, vol. 65, pp. 72–84. Springer, Heidelberg (2010)

23. Petersen, K., Wohlin, C.: Measuring the Flow in Lean Software Development. Software:
Practice and Experience 41(9), 975–996 (2011)

24. Staats, B., Brunner, D., Upton, D.: Lean Principles, Learning, and Knowledge Work: Evi-
dence from a Software Services Provider. Journal of Operations Management 29(5), 376–
390 (2011)

25. Poppendieck, M., Poppendieck, T.: Implementing Lean Software Development: From
Concept to Cash. Addison-Wesley, cop., Upper Saddle River (2007)

26. Mason-Jones, R., Naylor, J.B., Towill, D.: Engineering the Leagile Supply Chain. Interna-
tional Journal of Agile Management Systems 2(1), 54–61 (2000)

27. van Hoek, R.I.: The Thesis of Leagility Revisited. International Journal of Agile Manage-
ment Systems 2(3), 196–201 (2000)

28. Highsmith, J.: Agile Software Development Ecosystems. Addison-Wesley, Boston (2002)
29. Poppendieck, M.: Principles of Lean Thinking (2002),

http://www.leanessays.com/2002/11/principles-of-lean-
thinking.html (last accessed January, 30, 2012)

30. Coplien, J., Bjornwig, G.: Lean Architecture for Agile Software Development. John Wiley
& Sons Ltd., West Sussex (2010)

31. Turula, K.: Ketterien menetelmien ja Lean-menetelmän käyttö Suomessa. Master thesis,
University of Oulu (November 2011) (in English: Agile and Lean Adoption in Finland)

32. The Finnish Information Processing Association (FIPA), Tietotekniinan Liitto,
http://www.ttlry.fi/english

33. Booth, R.: Agile Manufacturing. Engineering Management Journal 6(2), 105–112 (1996)
34. Kniberg, K.: Kanban and Scrum – Making the Most of Both (2010), http://Lulu.com
35. Erdogmus, H.: Architecture Meets Agility. IEEE Softw. 26(5), 2–4 (2009)
36. Pérez, J., Díaz, J., Garbajosa, J., Alarcón, P.P.: Flexible Working Architectures: Agile

Architecting using PPCs. In: Babar, M.A., Gorton, I. (eds.) ECSA 2010. LNCS, vol. 6285,
pp. 102–117. Springer, Heidelberg (2010)

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 160–174, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Fostering and Sustaining Innovation
in a Fast Growing Agile Company

Nils Brede Moe1, Sebastian Barney2,3, Aybüke Aurum2, Mahvish Khurum3,
Claes Wohlin3, Hamish T. Barney2, Tony Gorschek3, and Martha Winata2

1 SINTEF ICT, NO-7465 Trondheim, Norway
nilsm@sintef.no

2 Information Systems, Technology and Management,
UNSW, Sydney NSW 2052, Australia

{s.barney,aybuke}@unsw.edu.au, hamish@hbarney.com,
m.winata@unswalumni.com

3 Blekinge Institute of Technology, 37179 Karlskrona, Sweden
{mahvish.khurum,claes.wohlin,tony.gorschek}@bth.se

Abstract. Sustaining innovation in a fast growing software development com-
pany is difficult. As organisations grow, peoples’ focus often changes from the
big picture of the product being developed to the specific role they fill. This pa-
per presents two complementary approaches that were successfully used to sup-
port continued developer-driven innovation in a rapidly growing Australian
agile software development company. The method “FedEx™ Day” gives de-
velopers one day to showcase a proof of concept they believe should be part of
the product, while the method “20% Time” allows more ambitious projects to
be undertaken. Given the right setting and management support, the two ap-
proaches can support and improve bottom-up innovation in organizations.

Keywords: agile software development, innovation, scrum, XP, FedEx Day,
20% Time, empirical, case study.

1 Introduction

For a company to be successful it needs to promote innovation [19]. An innovation is
the implementation of a new or significantly improved product (goods or service), or
process, a new marketing method, or a new organisational method in business prac-
tices, workplace organisation or external relations [31]. Innovation is something that
comes naturally for a start-up, but becomes harder as a company grows. Managers
have identified insufficient innovation as a crucial problem, however, successfully
implementing good innovation management practices is difficult [17]. Start-up soft-
ware companies are creative by nature and their success heavily depends on executive
managers, who are responsible for developing and implementing the company’s tech-
nical strategy [9]. In a start-up, it is crucial to create and stimulate a culture where
developers are encouraged to participate in all aspects of development and are al-
lowed to have significant influence over the their work [9]. Innovation may also occur
when knowledge from different areas is combined, and shouldering multiple roles

 Fostering and Sustaining Innovation in a Fast Growing Agile Company 161

forces developers to become accustomed to formerly unfamiliar areas. Everyone
working on the product must internalize the company’s strategy and work to realize
the goals for the product and the goals for the company as a whole. In addition, the
effect an individual developer can have on the bottom line is much more substantial in
a start-up, and developers often have a personal stake in the company.

Growth makes enabling and managing innovation harder [17]. This creates a prob-
lem for companies as they make the transition from start-up to a larger company with
entrenched products and processes. Implementing innovative products and processes
often becomes more challenging. One of the challenges that hinders innovation as a
company grows is greater specialization, as employees move from cross-functional
positions where innovation can be spurred by the diverse responsibilities and informa-
tion, into more traditional job roles where responsibilities and information are typically
narrower. While specialization confers many advantages, it often comes at the cost of
innovation capacity originally afforded by the multifunctional work performed by the
handful of ‘all-doers’. Specialization in-the-best-of-cases allows people to focus on
what they do best, but it can also result in a loss of the broader vision of what made the
start-up successful to begin with. The concept of developing visually impressive fea-
tures and providing support by fixing problems on the fly is transformed into turning
requirements obtained from someone else into code. The understanding of the overall
purpose of the product, as well as customer proximity is greatly diminished.

Motivated by the challenge of maintaining a capability to undertake innovation
while growing, our research question has been: How can a former software start-up
maintain innovation capability while growing its workforce?

To investigate this research question we conducted a case study at Atlassian. Atlas-
sian, facing this challenge of growth, has taken steps to ensure that developer initiated
innovation remains one of the foundations of the organization.

The main contribution of this paper is an empirical investigation of two comple-
mentary approaches Atlassian has used to empower its developers to innovate, called
FedEx™ Day and 20% Time respectively. This paper also contributes to the literature
of innovation and agile development. While many of the agile methods explicitly state
that facilitating innovation is a key motivation underpinning the emergence and use of
agile approaches, rigorous research evaluating innovation in an agile context is lack-
ing [1, 40].

The remainder of this paper is organized as follows. Section 2 gives an overview of
the research on innovation. Section 3 defines and describes the case study. Section 4
describes our findings. Finally, our discussion and conclusions are presented in Sec-
tions 5 and 6 respectively.

2 Innovation in Software Development

2.1 The Concept of Innovation

Innovation is a synonym for change [7]. To create an environment that supports inno-
vation, we must understand what innovation is and how it arises. Innovation is com-
monly categorized into four types [31]:

162 N.B. Moe et al.

• Product innovation: the development of new products and new features that sig-
nificantly improve an existing product.

• Process innovation: new or significantly improved changes to working processes.
• Market innovation: significant changes to product design or packaging, product

placement, product promotion or pricing through new marketing methods.
• Organization innovation: (or business model innovation) encompasses changes to

the company’s business practices, workplace organization or external relations.

Each of the above four types of innovation can be further categorized into one of four
levels of innovation impact [16, 20]:

• Incremental innovations: relatively minor changes in technology normally based
on an existing platform. The innovation delivers relatively low value to customer
benefits.

• Really new (Market breakthroughs): based on core technology that is similar to
existing products, but that provide substantially higher customer benefits per dol-
lar.

• Really new (Technological breakthroughs): substantially different technology
than existing products, but do not provide superior customer benefits per dollar.

• Radical innovations: or disruptive innovations, which introduce first time features
or exceptional performance using substantially different technology at a cost that
transforms existing markets or creates new markets and delivers novel utility.

The process for innovation involves searching for and selecting ideas, implementing
them and learning from the innovation process. Literature identifies several drivers or
determinants of innovation within an organisation (see Section 2.2).

Software product innovation is differentiated from other product innovation, with
relatively low start-up costs and short lead-time. It is possible to write, compile and
test code all in one day, and the only resource consumed is time. Physical products,
however, may require machining, molding, prototypes and by their nature will con-
sume physical resources to test and produce.

Creating an environment that fosters innovation and creativity requires employees
to feel motivated, capitalizing on their interests, and enabling satisfaction through the
challenge of the work [6].

In addition to motivational factors, management needs to provide time and space
for innovation to occur [6]. Google™ does this most visibly through their 20% Time
program. This has lead to many product innovations, including Gmail®, Google
News®, Orkut®, and AdSense®. However, Google™ provides little information on
how 20% Time has been operationalized. A similar strategy was adopted much earlier
at 3M™, where the “15-percent rule” gives technical staff six hours per week on
projects of their own choosing. This strategy led to ScotchTape® and Post-it Notes®.

Innovation management and practices are implicit and a part of every-day-work in
start-ups, which are, almost by definition, doing something new. As organizations
grow, enabling and managing innovation becomes harder [17], and risk increases as
dedicated resources have to be spent on new ideas in parallel with maintaining the
incremental development of the present offering.

 Fostering and Sustaining Innovation in a Fast Growing Agile Company 163

2.2 Internal Determinants of Innovation

The authors undertook a review of the literature to identify internal determinants of
innovation. A snowball sampling strategy was used to identify the relevant literature.
A summary of the findings is presented in Table 1 and reflected upon in Section 4.
The list of determinants given below is not exhaustive as the purpose of the review
was to find determinants in literature that illustrate and support the relevance of inno-
vation related activities at Atlassian.

Table 1. Internal innovation determinants

Determinants of Innovation Reference
1. Organization
Culture

1.1 Risk taking culture Aiman-Smith et al. [2]
1.2 Entrepreneurial culture Sjoerd et al. [34]
1.3 Creative stimulants Fagan [13]
1.4 Open Communication Aiman-Smith et al. [2]
1.5 Incentive provision Fitzgerald et al. [14]
1.6 Encouragement of initiatives Kivimaki et al. [25]
1.7 Supportive climate Jong et al. [24]

2. Empowerment 2.1 Job challenge Jong et al. [24]
2.2 Agile decision making Aiman-Smith et al. [2]
2.3 Autonomy Jong et al. [24]
2.4 Meaningful tasks Aiman-Smith et al. [2]

3. Customer-related 3.1 Customer acceptance Dunphy et al. [10]
3.2 Customer orientation Aiman-Smith et al. [2]
3.3 Recognizing user need Voss [17, 37]

4. Inter Collabora-
tion

4.1 Multifunctional teams Gebauer et al. [18]
4.2 Technology transfer Love et al. [27]
4.3 Team work quality Hoegl et al. [22]
4.4 Interaction of human and social
capital

Subramaniam et al. [35]

4.5 Inter-functional coordination Akman et al. [3]
5. Trust 5.1 Trust to be heard Clegg et al. [8]

5.2 Belief to have an impact Clegg et al. [8]
5.3 Openness Prather [32]

6. Knowledge man-
agement

6.1 Knowledge sharing Zhu et al. [39]
6.2 Organizational learning abilities Aiman-Smith et al. [2]
6.3 Organizational capital Antonio et al. [5]
6.4 Variety of knowledge sources Amara et al. [4]
6.5 Knowledge diffusion Tseng [36]
6.6 Training and education of staff Gebauer et al. [18]
6.7 Idea generation Koc [26]

7. Champions 7.1 Innovation catalyst Freeman et al. [15]

164 N.B. Moe et al.

3 Research Method

We choose a case study to investigate our research question: How can a former soft-
ware start-up maintain innovation capability while growing its workforce?.

3.1 Study Context

Atlassian Software Systems is an agile company selling software to support software
development. It began its operations in 2002 in Sydney, Australia and has since opened
offices in San Francisco, Gdansk, Kuala Lumpur, Porto Alegre and Amsterdam.

Atlassian sells products aimed at facilitating collaboration and supporting software
development. Products include: issue tracking software, enterprise wiki and collabora-
tion software, online source code review and source code repository management.
The software developed by Atlassian is also used internally, which means that the
developers are also users of the software.

Atlassian has recently started making a push to transform itself from a more tradi-
tional software company to a software-as-a-service company. To this end, Atlassian
has been focusing resources on making sure that its existing and new products are
delivered as services. Its product sales figure was AU$35.5 million for 2008 with
more than 12,000 customers in 104 countries.

Since its inception the company has used a combination of XP and Scrum (for an
overview of agile methods see e.g. [12] and [11]), and has undergone rapid growth;
approximately doubling the number of staff in each year of its ten year existence. By
2010 Atlassian had more than 275 employees.

Atlassian is an open company with important company details being available to
all employees. Internal and external wikis and blogs are used heavily and these often
host lively discussions about the company. As one of the managers commented, “eve-
rything gets documented on the [intranet], everyone has buy in and everyone has a
say in everything so that’s why it’s such a cool place to work”.

The founders of the company were responsible for the initial development of some
of Atlassian’s products. They still play a role in software development and are well
known within the company for quickly developing prototypes of new features. When
interviewed, the head of engineering commented on this practice: “Yes, especially
[one of the founders]. But he's prototyping, he'll be: I can't tell you what I want, so let
me code it real quick, then I’ll show you, that's [one of the founders]. Yeah it's scary.”

The attitude displayed by the founders towards prototyping has translated itself
throughout the company to a preference for action rather than just words or ideas. One
of the core company values is for individuals within the company to be proactive, not
just to have ideas but to do something about them. A tech lead discussed this aspect of
Atlassian’s culture: “it's just ideas and I have ideas and I want other people to see my
ideas, our company isn't as big on it. It's basically do it. Don't just tell me about some
great dashboard, show me a prototype, do something, make it happen in the product
or something.”

 Fostering and Sustaining Innovation in a Fast Growing Agile Company 165

3.2 Data Sources and Analysis

We relied mainly on semi-structured interviews as these provide a rich picture of the
internal workings of the company in general and the specifics of the FedEx™ Day
and 20% Time, the development practice under investigation. In total 17 employees
were interviewed: 2 executives and 15 team members, tech leads, and team leads from
three product teams. Each of the semi-structured interviews took approximately one
hour. All interviews were recorded and transcribed. The interview schedule and ques-
tionnaire are available online (http://sebseb.info/publications/profes2012/). The re-
sults have been presented to the management at Atlassian. Author number six, who
worked at Atlassian for over five years, helped ensure that our findings were consis-
tent with his experience as a software developer at the company.

To be able to address a broader range of historical and behavioral issues [38], we
used multiple sources of evidence. In addition to interviews, we conducted a small
survey on the use of FedEx™ Day and 20% Time and we collected data from Atlas-
sian’s internal and external websites, which host information and discussions about
Atlassian’s development practices and the company’s structure and culture. These
sites are updated frequently and all employees are encouraged to participate in these
forums. Data were then categorized and coded. Observations were also made in-situ
by attending meetings and observing the operation of FedEx Day and 20% Time.

By combining the data from interviews with the information from the websites, we
were able to develop a converging line of inquiry [38] and form a rich and accurate
picture of the company in general and the practice of FedEx Day and 20% Time in
particular. Our main analysis technique was to combine pattern-matching logic with
explanation building [38]. That is, we compared empirically based patterns with the
patterns predicted by the theory, while at the same time building an explanation of the
case. This strategy also helped us to strengthen the internal validity of the case study.

4 FedEx Day and 20% Time at Atlassian

4.1 Task Allocation at Atlassian

The way tasks are allocated normally at Atlassian is crucial to understanding FedEx
Day, 20% Time and their effects. Each team has a product backlog that is updated
regularly based on releases. A release includes major feature improvements that can
be marketed and distributed to all customers. Features in the release backlog are di-
vided into sprints and each sprint produces a point release – a smaller product release.
At the beginning of each sprint, the list of features is presented to the developers.

Identifying and allocating tasks/features affects how specialised developers be-
come since this defines what the developer will do. This is done differently in the
various teams at Atlassian. We found that in some teams there were limited possibili-
ties for individuals to choose the tasks they wanted, because there was little redun-
dancy in the teams. One developer said: “A lot of the time it is based on whoever can
do the tasks because we've got all very different skill sets”. One team leader said:
“People do volunteer, but there's never a surprise on what they volunteered for.”
Another said: “we don’t share what everyone’s working on and how it works. That’s
why if someone gets sick, it can take longer time to pick up the stuff after them”

166 N.B. Moe et al.

Another team leader, responsible for 15 developers in 4 sub-teams, said: “We found
with XP, the whole approach of not doing a lot of planning up front gives us a lot of
trouble … a lot of people get frustrated because the release takes longer than the
original plan”. This team leader pre-planned the sprint with management and with
some input from developers. Then, during the Scrum planning meeting, the team
leader assigns tasks to developers.

The introduction of story cards into one of the development teams was seen as a rea-
son for developers not being able to focus on innovation. Story cards are a standard XP
practice. Requirements are broken up into short user stories, which are written on small
cards. A developer is assigned (or chooses) one or more story cards to work on. Esti-
mated and actual time spent is also tracked on the story card. In this team, story cards
were assigned to developers in the fortnightly planning meetings or by the team leader.
While story cards were selected and prioritised by the whole team during their planning
meetings, many developers commented on the feeling that, with their time being
tracked, they no longer had the freedom to experiment and play with new features.

The developers are encouraged to suggest features that should be in the product
backlog. However, resource limitations led upper management to reduce the number
of features the teams could develop for a release, since resources are allocated accord-
ing to the revenue generated. In terms of prioritising the features, a developer ex-
plained how he influenced the direction of the product: “[The CEOs] do kind of get a
higher priority when we're making our decisions. But in the end it's really the devel-
opers and our product manager that decide what goes in and what goes out and have
full control over what we do”. Only a few developers reported having this kind of
influence on the product, mostly those in the smaller teams.

4.2 FedEx™ Day

Like express couriers, each FedEx™ Day gives developers at Atlassian one day to
deliver a software product improvement of their choice (Table 1: 1.6, 2.4). The rotat-
ing coordinator starts organizing the next FedEx™ Day several weeks in advance. It
is held “during a calm time,” three-to-four times per year, to help ensure that most
developers will be able to participate.

Most developers at Atlassian know in advance what they want to do on FedEx™
Day, but there is support for those who are unsure. A couple of weeks prior to the
FedEx™ Day, the coordinator organises a series of voluntary lunchtime meetings to
discuss possible options. Developers attend not only to seek inspiration, but also to
share and discuss ideas.

As FedEx™ Day approaches the developers write delivery orders, detailing what
they hope to achieve on the day. Other employees write comments on these orders,
offering hints, tips and ideas. This collaboration occurs between different teams,
products and roles (Table 1: 4.5, 6.1, 6.2).

FedEx™ Day itself has been described as a “rush of adrenaline,” providing a sense
of exhilaration. Developers said that the pace within the organization changes consi-
derably: “You don't write unit test. You just blast out the feature, hack it out however
you want because it doesn't matter.” One team leader estimated that “people get about
three days of work done in just that one day, it’s amazing.”

 Fostering and Sustaining Innovation in a Fast Growing Agile Company 167

All the projects are presented at the end of the day (Table 1: 6.1, 6.7). The partici-
pants vote to select a winner. Experienced FedEx™ Day developers know that the
presentation makes or breaks the project. As a result, they always set time aside to
make their presentation, even if it means presenting incomplete functionality. The
winner receives a trophy and, more importantly bragging rights.

4.3 Experiences with FedEx™ Day

Experience has shown that FedEx™ Day projects generally deliver product innova-
tions, and provide incremental innovations and technological breakthroughs. The
projects generally fit into one of four categories:

• Features/improvements that a developer wanted, but that never made it onto the
roadmap;

• Architectural improvements and bug fixes that were bothering the developer;
• Integration of some new technology with the existing product; and
• Novel and unexpected features that had not previously been discussed with any of

the development teams.

The survey results indicate that 80% of the developers use FedEx™ Day to work on
unscheduled features for the product on which they normally work. The others
work on other products at the company, or improving features already scheduled for
development.

People within Atlassian clearly see FedEx™ Day as satisfying its aim of support
innovation. All survey respondents who had participated in FedEx™ Day believed it
encouraged innovation. During interviews, a number of developers and managers
stated that developers are encouraged to “think differently,” “do stuff that is a little
unusual” and “try new technologies” and “collaborating with colleagues from other
parts of the company that they wouldn’t normally work with” (Table 1: 4.5, 6.2). Also
we found that many of the innovations trialed during FedEx Days have been incorpo-
rated into the Atlassian products.

FedEx™ Day is clearly enjoyed by the participants. A number of developers stated
in the interviews that FedEx™ Day was one of the factors that encouraged them to
seek employment at Atlassian.

4.4 The 20% Time Program

As the company grew the Atlassian founders realized that developers’ time was in-
creasingly being filled with daily tasks, to the detriment of free time previously used
to tackle things judged important by the individual developers. The introduction of
20% Time program reflected the fact that free-time problem solving had been behind
many of the company’s most successful products (Table 1: 1.6, 7.1).

The goal of 20% Time is “to encourage innovation in products, development tech-
niques and the Atlassian development ecosystem” (Table 1: 1.3). The “rules” of the
program, designed to ensure that the program provides value for the company, em-
phasize the broad range of work that can fit into 20% Time, and acknowledge that
innovation requires experimentation and tolerance of failure.

168 N.B. Moe et al.

1. Any 20% project that has consumed more than five days effort requires sign-off –
that it is both viable and a good idea – from three developer colleagues not in-
volved in the project, and

2. Any 20% project that has consumed more than 10 days requires sign-off from one
of the company founders.

The decision to require only developer sign-off to pass the five-day mark was a con-
scious one to allow developers to take risks with new ideas (Table 1: 1.1). Presenting
ideas and work to senior management is intimidating. Given that developers have an
interest in the product as a developer, maintainer and user; it is believed they will
have the best interests of the product at heart.

20% projects can either graduate from 20% Time onto a product roadmap, or be re-
tired. Upon graduation the project is put into a virtual “Hall of Fame” and the re-
mainder of the project is funded from the appropriate product budget – freeing up the
developers’ 20% Time for new projects.

4.5 Experiences with the 20% Time Program

After one year with the program, Atlassian found the projects making it onto a prod-
uct roadmap typically lasted only one to five days. In total 48 projects were tracked
during the first year: 16 made the Hall of Fame, seven were retired, and the remaining
25 were in-progress. The longest project was 18 days.

Development managers noted that developers used 20% Time “to work on things
that they really, really want to do” (Table 1: 2.4). One added that the developers who
made contributions to a product could “identify with the product a lot more”.

The survey and interviews show that developers use this time to work on problems
similar to what they focus on for FedEx™ Day. Part of the complementary nature of
FedEx™ Day and 20% Time is that developers often start a project for FedEx™ Day
and continue working on it with 20% Time.

Around 85% of the developers use 20% Time to work on unscheduled features for
the product with which they primarily work. However, some people seek to improve
scheduled features, or to work on other products. One developer was even working on
an open source project that had benefits to Atlassian.

One of the managers discussed the key differences between the types of innovation
seen from FedEx™ Day and 20% Time. “FedEx™ Day is a competition that develop-
ers try to win with flashy presentations and features. 20% Time is different because
developers have more time to work and do not need to win over their teammates in a
short presentation. Thus they can also focus on backend changes, and software prod-
uct quality.” These differences mean that a wider variety of ideas are tried, some bet-
ter fitting FedEx™ Day, while some are more likely to be done in 20% Time.

The greatest challenge developers faced with 20% Time was allocating time. Man-
agers were initially concerned that the program would consume more than the allo-
cated number of hours. This fear was unfounded. In the first year only 6% of the
hours allocated to the program were used. It is likely more time was taken, as these
projects are not formally tracked; however, the actual time is below the program’s
maximum. Detailed tracking of innovation projects was avoided; managers feared this
could stifle creativity, as developers felt compelled to deliver results (Table 1: 1.1).

 Fostering and Sustaining Innovation in a Fast Growing Agile Company 169

For this reason developers are entrusted with the responsibility of tracking their own
time, and seeking approvals.

All developers interviewed said they had nothing but support and encouragement
from their managers, although many admitted feeling guilty when using 20% Time.
Developers worried about the impact this had on the rest of their team, especially
those from smaller teams.

Development teams tested different ways of allocating time to 20% Time to minim-
ize disruptions. This included having a 20% week between development cycles, and
giving people blocks of time. These tests received mixed reactions; the general senti-
ment was that it is not always possible to schedule innovation. Some prefer an ex-
tended break from their daily work, while others prefer taking a day here and there.

After a yearlong trial, 20% Time was deemed a success. All 20% Time participants
surveyed felt that it encouraged innovation. 20% Time is also a successful recruiting
tool; a number of employees cited this as one of their reasons for joining the compa-
ny. One newly hired developer said FedEx and 20% Time “are pretty much the rea-
son why I applied for a job in Atlassian. For me, it's about innovation. I personally
need a creative outlet. Now I have every Friday to look forward to, to do my 20%
project which I love doing because it is something that I thought of myself and it's
something that hasn't really been done before.”

4.6 Innovation Practices Supported by the Development Process

The way Atlassian works, utilizing the complementary nature of their innovation tools
FedEx™ Day and 20% Time, makes the company attractive as an employer as dem-
onstrated by the reactions of many of the developers that were interviewed. Many
cited these initiatives as reasons why they chose to work for Atlassian.

Experimental Culture

The company’s founders see innovation as an important part of Atlassian’s every-day
business. It permeates everything from strategies to ways of working. The company
has focused on entrepreneurial innovation (Table 1: 1.2), and continues to try new
practices to remain innovative. The founders and directors are also still actively in-
volved in product development. The attitude towards trying new things through proto-
typing has permeated the company’s culture, which is an important internal innova-
tion determinant (Table 1: 1.3)

Direct Customer Contact

All developers at Atlassian regularly complete stints in technical support, putting
them in direct contact with customers. One aim of this strategy is for developers to
understand the products from their customers’ perspective – to understand users’
problems and get developers to prioritize fixes for the most troublesome bugs (Table
1: 3.2, 3.3). One of the technical managers at Atlassian said that their developers are
“the best people to evaluate which internal improvements need immediate attention”.

170 N.B. Moe et al.

The high level of customer interaction also helps ensure that feature development is
aligned with actual and potential customers’ needs (identified as important for success
in many case studies [17]).

“Dogfooding” (Developers Use the Products)

Atlassian is in a different position to most development companies as it makes tools
that support software development. These tools are used extensively within the com-
pany. The developers are users of the products, and can understand and evaluate their
products from a customers’ perspective. This practice is widely known both inside the
company and in the wider developer community as “dogfooding”. This gives them a
strong understanding of a product’s strengths, weaknesses and opportunities.

The program manager stated, “the fact that we use our own products … is a really
cool reinforcing kind of loop and it means that everyone owns their own products and
we all use internally, so it means you can be really proud of a product … In some of
the companies I previously worked at I’ve had no idea how to use our products or
what the typical users’ problems might be.”

“Dogfooding” mean the Atlassian developers have a deep understanding of their
products from the perspective of a user, a developer and technical support (Table 1:
6.4). This knowledge empowers the developers to make development decisions that
benefit all of these groups. This set of incentives has clear commercial benefits. De-
velopers can build features that users want (users perspective), that make sense for the
system (developers perspective) and that are intuitive reducing the need for technical
support (technical support perspective) (Table 1: 3.3).

One of the managers noted that people use FedEx™ Day and 20% Time to address
issues that people identified from their time as users of the products in combination
with knowledge acquired during customer interactions.

Agile Development Practices

In areas where rates of technological change are high and development cycles are
short, being a “fast innovator” is increasingly seen as an important determinant of
competitiveness [33]. The use of agile development methods, like those used at Atlas-
sian, help support fast product innovation. For example, agile development methods
support collaboration and improve information exchange between management, de-
velopers, and existing and potential customers [21].

At Atlassian innovation is supported through the use of agile practices such as
daily stand-up meetings and job rotations (for example working in support). These
practices empower the stakeholders to make better trade-offs as they have a richer
understanding of the product (Table 1: 2.2, 2.3). Scrum style retrospectives are also
used to support innovative process improvements, because they result in new or sig-
nificantly improved changes to the working processes.

Information Sharing

Atlassian is an open company. Company information is made available to all em-
ployees through blogs and wikis hosted on the company’s intranet (Table 1: 6.1). This
information includes strategic plans, sales figures and targets and discussions about

 Fostering and Sustaining Innovation in a Fast Growing Agile Company 171

the future of the products and the company. This value is also reflected in one of the
core company values, which they aspire to and advertise throughout the company
offices: “Open company, no bullshit”. Further, much information is made available to
the general public through the company website. For example, they provide open
access to the bugs that customers have logged about their products.

5 Discussion

In this article we present how Atlassian has addressed the challenge of maintaining
innovation capacity while growing. We now discuss the case in light of our research
question: How can a former software start-up maintain innovation capability while
growing its workforce? From conducting a single case study, we found the following:

The agile team is often given authority and responsibility for many aspects of their
work, and it was important for the innovation capacity of that the team to have direct
customer contact. This is consonant with Gassmann et al., who found that a signifi-
cant proportion of innovative product development ideas come directly or indirectly
from the specific needs and requests of customers [17]. Also, Atlassian develops its
software using short iterations, which is recognized to support innovation by allowing
an organization to be responsive to changing consumer demands [21].

While Atlassian uses Scrum in combination with XP, and the founders encourage
people to try out new things, we found that adopting agile practices alone is not
enough to foster innovation. Agile development practices alone were found to only
support two of the seven categories of innovation determinants, empowerment and
knowledge management. Simply adopting agile development practices on their own is
insufficient to ensure that a company remains innovative. This is consistent with
Hosbond and Nielsen [23]. Developers need to feel that the environment supports and
is open to innovation before they will make a contribution [8, 32]. Further, people
working on the product need to share information and collaborate so they are suffi-
ciently informed [2, 28, 39]. Due to specialization in teams and iteration pressure (the
constant pressure of delivering what has been promised for the next iteration), the
individual developer had little freedom. The fact that tasks were often assigned
based on skills rather than preferences was the main reason for this. Morgan [30]
refers to this as lack of redundancy, and it often leads to little flexibility within agile
teams [29].

To conquer the above-mentioned challenges, to give developers time and space to
explore and make mistakes and to help them maintain their innovation capacity, At-
lassian implements FedEx™ Days and 20% Time. Activities and incentives used to
foster innovation require thought, planning and evolution, as these shape the types of
innovations that are created. FedEx™ Day leads to flashier, user orientated innova-
tion, while 20% Time provides an opportunity to work on a broader range of
improvements. Ultimately these two processes are complementary and bring about
different types of innovations that are important to the company.

We also found that Atlassian adopted a suite of development practices that support
all seven categories of innovation determinants found in literature (see Table 1). 20%

172 N.B. Moe et al.

Time and an experimental culture support an organisational culture that supports in-
novation. FedEx™ Day and 20% Time lead to further worker empowerment than
agile development practices alone. Direct customer contact and “dogfooding” lead to
customer-related orientation that also encourages innovation. Fedex™ Day also en-
courages inter-collaboration between people across diverse areas of the company.

Further we found that 20% Time addresses two of the three innovation drivers
(Section 2.1) – individual champions can drive innovation and organisational support
for innovation, and FedEx™ Day exploits all three innovation-drivers (Section 2.1). It
supports individual champions within the company to drive innovation; it provides a
process to support innovation; and through the FedEx™ Day planning sessions, de-
velopers discuss and share ideas. We found many benefits of fostering developer-
driven innovation within a company including:

• Improving developer’s morale; developers want to say: “that was my feature, that
was my idea”. Employees that feel valued are more likely to stay.

• Increasing developers’ ownership of the product and getting them “thinking about
what's relevant to customers.” The benefits of this type of thinking extend beyond
innovation, to all work done by the developers.

• The successful implementation of an innovation strategy will attract great people.

Based on these results from this single case study, it seems worthwhile for companies
to examine the development practices that they have adopted and the categories of
innovation determinants that these development practices support. Adopting practices
like FedEx™ Day or 20% Time may allow companies to overcome shortcomings in
their current innovation strategy and pave the way for long-term growth.

6 Conclusion

By observing, interviewing, conducting a survey, and reading company documents,
we found that for a software development company to compete it needs strategies to
sustain the development of new products, processes and features. The successful im-
plementation of an innovation program requires the work environment to support and
encourage creativity and innovation.

Simply adopting agile development practices was found to be insufficient to main-
tain innovative edge. In Atlassian, agile development practices alone only supported
two of the seven categories of innovation determinants. In order to support all seven
categories, alternative development practices needed to be adopted. Of these some of
the most interesting included FedEx™ Day and 20% Time, which can also be seen as
organisational innovation methods.

Further, a successful approach to innovation will ensure that innovators understand
the product from a range of perspectives, and have the freedom to experiment and
make mistakes. It is also crucial to motivate developers by celebrating the use of ideas
included in the product. Encouraging and supporting innovation will help attract and
retain great people – and with great people follow great ideas. Innovation implies not
only generating great ideas, but also taking advantage and capitalizing on those ideas
– turning them into innovation.

 Fostering and Sustaining Innovation in a Fast Growing Agile Company 173

References

1. Abrahamsson, P., Conboy, K., Wang, X.F.: Lots done, more to do’: the current state
of agile systems development research. European Journal of Information Systems 18,
281–284 (2009)

2. Aiman-Smith, L., Goodrich, N., Roberts, D., Scinta, J.: Assessing your organization’s po-
tential for value innovation. Research Technology Management 48, 37–42 (2005)

3. Akman, G., Yilmaz, C.: Innovative Capability, Innovation Strategy And Market Orienta-
tion: An Empirical Analysis In Turkish Software Industry. International Journal of Innova-
tion Management (IJIM) 12, 69–111 (2008)

4. Amara, N., Landry, R.J., Doloreux, D.: Patterns of innovation in knowledge-intensive
business services. The Service Industries Journal 29, 407–430 (2009)

5. Antonio, C.L., Gloria, C.R., Carmen, C.M.: Social and organizational capital: Building the
context for innovation. Industrial Marketing Management 39, 681–690 (2010)

6. Bonn, I.: Developing strategic thinking as a core competency. Management Decision 39,
63–71 (2001)

7. Christensen, C.M., Anthony, S.D., Roth, E.A.: Seeing What’s Next: Using Theories of In-
novation to Predict Industry Change. Harvard Business School Publishing Corporation,
Boston (2004)

8. Clegg, C., Unsworth, K., Epitropaki, O., Parker, G.: Implicating trust in the innovation
process. Journal of Occupational and Organizational Psychology 75, 409–422 (2002)

9. Coleman, G., O’Connor, R.: An investigation into software development process forma-
tion in software start-ups. Journal of Enterprise Information Management 21, 633–648
(2008)

10. Dunphy, S., Herbig, P.A.: Acceptance of innovations: The customer is the key! Journal of
High Technology Management Research 6, 193–209 (1995)

11. Dybå, T., Dingsøyr, T.: Empirical Studies of Agile Software Development: A Systematic
Review. Information and Software Technology 50, 833–859 (2008)

12. Erickson, J., Lyytinen, K., Siau, K.: Agile Modeling, Agile Software Development, and
Extreme Programming: The State of Research. Journal of Database Management 16,
88–100 (2005)

13. Fagan, M.H.: The influence of creative style and climate on software development team
creativity: an exploratory study. Journal of Computer Information Systems 44, 73–80
(2004)

14. Fitzgerald, C.A., Flood, P.C., O’Regan, P., Ramamoorthy, N.: Governance structures and
innovation in the Irish Software Industry. Journal of High Technology Management Re-
search 19, 36–44 (2008)

15. Freeman, J., Engel, J.S.: Models of innovation: Startups and mature corporations. Califor-
nia Management Review 50, 94-+ (2007)

16. Garcia, R., Calantone, R.: A critical look at technological innovation typology and innova-
tiveness terminology: a literature review. Journal of Product Innovation Management 19,
110–132 (2002)

17. Gassmann, O., Sandmeier, P., Wecht, C.H.: Extreme customer innovation in the front-end:
learning from a new software paradigm. International Journal of Technology Manage-
ment 33, 46–66 (2006)

18. Gebauer, H., Krempl, R., Fleisch, E., Friedli, T.: Innovation of product-related services.
Managing Service Quality 18, 387–404 (2008)

19. Gorschek, T., Fricker, S., Palm, K., Kunsman, S.A.: A Lightweight Innovation Process for
Software-Intensive Product Development. IEEE Software 27, 37–45 (2010)

174 N.B. Moe et al.

20. Herrmann, A., Tomczak, T., Befurt, R.: Determinants of radical product innovations. Eu-
ropean Journal of Innovation Management 9, 20–43 (2006)

21. Highsmith, J., Cockburn, A.: Agile software development: The business of innovation.
Computer 34, 120–122 (2001)

22. Hoegl, M., Gemuenden, H.G.: Teamwork Quality and the Success of Innovative Projects:
A Theoretical Concept and Empirical Evidence. Organization Science 12, 435–449 (2001)

23. Hosbond, J.H., Nielsen, P.A.: Misfit or misuse? Lessons from implementation of scrum in
radical product innovation. Agile Processes in Software Engineering and Extreme Pro-
gramming 9, 21–31 (2008)

24. de Jong, J.P.J., Kemp, R.G.M.: Determinants of Co-workers’ Innovative Behaviour: An
Investigation into Knowledge-intensive Services (2003)

25. Kivimaki, M., Lansisalmi, H., Elovainio, M., Heikkila, A., Lindstrom, K., Harisalo, R., Si-
pila, K., Puolimatka, L.: Communication as a determinant of organizational innovation. R
& D Management 30, 33–42 (2000)

26. Koc, T.: Organizational determinants of innovation capacity in software companies. Com-
puters & Industrial Engineering 53, 373–385 (2007)

27. Love, J.H., Roper, S.: The Determinants of Innovation: R&D, Technology Transfer and
Networking Effects. Review of Industrial Organization 15, 43–64 (1999)

28. Moe, N.B., Aurum, A., Dybå, T.: Challenges of Shared Decision-Making: A Multiple Case
Study of Agile Software Development. Information and Software Technology (2012)

29. Moe, N.B., Dingsøyr, T., Dybå, T.: Overcoming Barriers to Self-Management in Software
Teams. IEEE Software 26, 20–26 (2009)

30. Morgan, G.: Images of Organizations. SAGE publications, Thousand Oaks (2006)
31. OECD, Oslo Manual - Guidelines for Collecting and Interpreting Innovation Data (2005)
32. Prather, C.W.: Use mistakes to foster innovation. Research Technology Management 51,

14–16 (2008)
33. Rothwell, R.: Towards the Fifth-generation Innovation Process. International Marketing

Review 11, 7–31 (1994)
34. Sjoerd, B.: Entrepreneurial Culture, Regional Innovativeness and Economic Growth. Eu-

ropean Regional Science Association (August 2004)
35. Subramaniam, M., Youndt, M.A.: The influence of intellectual capital on the types of in-

novative capabilities. Academy of Management Journal 48, 450–463 (2005)
36. Tseng, C.-Y.: Technological innovation and knowledge network in Asia: Evidence from

comparison of information and communication technologies among six countries. Tech-
nological Forecasting and Social Change 76, 654–663 (2009)

37. Voss, C.A.: Determinants of success in the development of applications software. Journal
of Product Innovation Management 2, 122–129 (1985)

38. Yin, R.K.: Case study research: design and methods. Sage, Thousand Oaks (2009)
39. Zhu, Y., Wang, Y., Lan, H.: Innovative capabilities in the process of knowledge sharing to

firm performance, Piscataway, NJ, USA, pp. 5394–5397 (2007)
40. Ågerfalk, P.J., Fitzgerald, B., Slaughter, S.A.: Flexible and Distributed Information Sys-

tems Development: State of the Art and Research Challenges Introduction. Information
Systems Research 20, 317–328 (2009)

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 175–189, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Software Architecture as a Means of Communication
in a Globally Distributed Software Development Context

Richard Berntsson Svensson1, Aybüke Aurum2, Barbara Paech3,
Tony Gorschek4, and Devesh Sharma2

1 Department of Computer Science School of Lund University Lund, Sweden
richard.berntsson_svensson@cs.lth.se

2 School of Information Systems, Technology and Management,
University of New South Wales Sydney, Australia

aybuke@unsw.edu.au, d.sharma@unswalumni.com
3 Institut fur Informatik University of Heidelberg, Heidelberg, Germany

paech@informatik.uni-heidelberg.de
4 School of Computing Blekinge Institute of Technology Karlskrona, Sweden

tony.gorschek@bth.se

Abstract. The management and coordination of globally distributed develop-
ment poses many new challenges, including compensating for informal implicit
communication, which is aggravated by heterogeneous social and engineering
traditions between development sites. Although much research has gone into
identifying challenges and working with practical solutions, such as tools for
communication, little research has focused on comparing communication me-
chanisms in terms of their ability to provide large volumes of rich information
in a timely manner. Data was collected through in-depth interviews with eleven
practitioners and twenty-eight responses through a web-based questionnaire
from three product lines at an international software development organization.
This paper assesses the relative importance of ten commonly used communica-
tion mechanisms and practices across local and global development sites. The
results clearly indicate that some communication mechanisms are more impor-
tant than others in providing large volumes of rich information in a timely
manner. The prevalence of architecture in providing rich information in large
volumes for both local and global communication can be clearly observed.

Keywords: Global Software Engineering, Communication, Case Study, Soft-
ware Product Lines, Software Architecture, Product Management.

1 Introduction

Software product development and software product management have emerged as
ways of developing software as a product for the mass-market [27], rather than for a
specific customer [26]. Software product managers steer software product develop-
ment towards a beneficial direction for the company by selecting requirements for
the coming releases of a product and creating business objectives [19], while the

176 R. Berntsson Svensson et al.

development teams formalize the product’s functionality and assure its quality [17] to
increase the likelihood of market success. Although a software product’s functionality
and quality are important for the success of the product, the collaboration between
software product management and the development team is crucial for product suc-
cess [8]; however, the collaboration requires a handle of communication and coordi-
nation challenges [9].

However, large-scale software development can be complicated, expensive and
unpredictable [3]. For software companies to succeed in the global markets of soft-
ware-intensive products, shortened cycle time of product development and improved
product quality are essential. To achieve shortened cycle time and improved quality,
two internal strategies can be used, namely software product lines (SPL) and global
software engineering (GSE). Potential advantages of GSE include “round-the-clock”
development, access to global markets, and reduced development time and cost [11].
However, SPL and GSE are further accelerating the complexity of software product
development [3]. Furthermore, when a product line is adapted to GSE, processes,
tools, and organizational structure changes [2], and has significantly more difficulties
to implement the necessary coordination [3].

One key factor of the software product development process is the process of
communication, coordination, and collaboration [4, 6, 12, 25]. However, it is not only
the formal communication process that impacts the development. Several studies [7,
13, 16] observe that developers rely on informal and ad-hoc communication. Lack of,
or problems in the informal communication channels may lead to increased develop-
ment time [16]. Communication issues in GSE have been addressed by other studies;
see e.g. [6, 11, 16], while communication in new product development has been ad-
dressed by, e.g., [8]. However, none of these have focused on comparing local peer-
to-peer (e.g. face to face meetings), long-distance peer-to-peer (e.g. electronic chat,
including instant messaging) and technical (e.g. architecture) communication tools in
GSE, for their ability to provide information in a timely manner, with richness and
with large volumes of information.

This paper presents the result of an empirical study that includes data collected
through in-depth interviews with eleven practitioners and twenty-eight responses
through a web-based questionnaire from three product lines in one international soft-
ware development organization operating in over one hundred countries around the
world. The case organization uses SPL in a GSE context. The main objective of this
study is to assess the relative importance of ten commonly used communication
mechanisms and practices from three different aspects, for their ability to transmit
information quickly, transmit rich information, and to transmit large volumes of in-
formation across local and global development sites. The study incorporates two main
perspectives with regards to communication mechanisms through the study of local
and global development sites.

The reminder of this paper is organized as follows. In Section 2, background and
related work are presented. The case organization is described in Section 3, and Sec-
tion 4 describes the research methodology. Section 5 presents the results, while the
results are discussed in Section 6. Validity threats are discussed in Section 7, and
Section 6 gives a summary of the main conclusions.

Software Architecture as a Means of Communication in a Globally Distributed Software 177

2 Background

In SPL, software development is coordinated between teams in several different ways,
during the front-end of the development, during the development, and during the end
of the development [3]. During the front-end of the development, roadmaps need to
be shared, discussed, and agreed upon. During the development phase, new compo-
nents and interfaces need to be coordinated, while in the end of the development
phase integration needs to be coordinated.

Over the last few decades, the software industry has been exposed to a steady and
irreversible trend towards the globalization of business [25]. The global expansion of
software organizations has made companies aware of the potential advantages that
GSE has to offer, such as capitalization of global resources pools, “round-the-clock”
development and access to global markets, reduced development time and cost [11].
On the other hand, these benefits are not clear-cut and should not be taken-for-granted
[5]. Ó Conchuir et al., concluded that overall development costs might not be reduced
due to the introduction of higher managerial complexities [5]. Furthermore, “round-
the-clock” development seemed unrealistic, and companies may prefer to modularize
work [5]. In addition, there are a number of challenges introduced by GSE, such as
communication, coordination, and control of the development process [5].

There exists no shortage of studies relating to communication in a GSE context.
Herbsleb and Grinter showed the importance of informal communication and the
difficulties in communicating across global sites [10]. In fact, a major challenge in
GSE is the lack of informal communication [7]. Herbsleb and Mockus further found
that cross-site work takes longer than same-site work [11]. In addition, cross-site
teams seem to have relatively little understanding of the overall context compared to
same-site teams [11].

As for same-site development, the communication process, particularly informal
communication [11], is an important factor for success in GSE [4, 6, 12]. According
to Curtis et al., communication barriers in cross-site teams can be mitigated by an
architect who acts as a boundary spanner between the teams [7]. Most, if not all,
stakeholders in the software development can use software architecture as a basis for
mutual understanding, negotiation, consensus, and communication. Bass et al. point
out that the architecture provides a common language in which different concerns can
be expressed, negotiated, and resolved at a level that is intellectually manageable,
even for complex systems [1]. Ovaska et al., found that in a multi-site development
environment, developers coordinate their work through the use of well-defined inter-
faces and an appropriate architecture description [16]. Using such an approach also
means that components can be developed separately and the impact of distance, lan-
guage and culture are minimized.

Furthermore, it is important how communication tools are utilized. Niinimäki and
Lassenius conducted a multiple case study to investigate how instant messaging was
used [15]. The results show that instant messaging was used to communicate simple
questions and clarifications, as well as technical decisions and solutions. Šmite found
that the communication channels used by a GSE organization were mainly email
and telephone [24]. Very seldom was communication conducted through meeting in

178 R. Berntsson Svensson et al.

person, while videoconferences were never used. In McDonough et al., eight different
communication tools were assessed based on speed, richness, and volume [14]. The
results show that e-mail and company databases in the organization were the fastest
communication tools; face-to-face meetings provided the richest information, while
email and databases were viewed as providing a large volume of information.

3 Case Description

Data was collected from an international software development organization operat-
ing in over 100 countries around the world. The organization primarily specializes in
database management systems, enterprise resource planning, customer relationship
management and other industry-tailored products targeting government, finance and
healthcare sectors. Based in the USA, it employs over fifty thousand workers around
the world, with more than 25% of its workforce involved in software development.
For the purposes of confidentiality, this organization will be simply referred to as “the
company” throughout this paper. All of the company’s products stem from its four
major software product lines (SPL). The company has a few teams actively involved
in the development of its software in Australia, and a larger research and development
base in India. The company had four individual SPL at the time this research was
conducted. However, development in Australia was only conducted for three of the
SPL. Hence, only three SPL could be examined in this study.

Product line A (PLA) comprises enterprise resource planning, supply chain man-
agement, customer relationship management, human resources and industry-specific
applications targeting banking and healthcare. This is the company’s original product
line and has been undergoing iterative development for over ten years. It now boasts a
large product mix, but has an aging core asset base with slow evolution of compo-
nents and architecture. The products in PLA are currently in their 12th major release.

Product line B (PLB) consists of a collection of products offering solutions for
human resource management, customer relationship management, manufacturing, and
student administration software for large corporations and government sectors. The
company acquired this product line in 2005 through a takeover of its parent organiza-
tion. PLB has a relatively well maintained core asset base, and has a proprietary inte-
grated development environment which forces developers to reuse core assets. The
products in PLB are currently in their ninth major release, and its architecture is built
around the company’s own proprietary development platform.

Product line C (PLC) is the company’s latest collection of products aimed at unify-
ing the best-of-business capabilities offered by its applications and other product
lines. Through the use of an open, service oriented architecture, PLC is used as a
standards-based technology blueprint that enables effective, predictable business
process changes through standards-based integration of applications developed as web
services. Developers and managers in PLC follow strict standards that do not allow
for the duplication of core assets, and encourage evolution of existing assets. To date,
most PLC products are still undergoing development and have yet to be released.

Software Architecture as a Means of Communication in a Globally Distributed Software 179

4 Methodology

The main objective of this research is to examine commonly used communication
mechanisms and practices across local and global development sites. The research
questions, in Table 1, provide the focus for the empirical investigation. RQ1 is a ma-
cro question that is broken down into three discrete sub-questions, each addressing the
separate aspects of timeliness, speed, information richness and scalability of informa-
tion load. To address the research questions an exploratory case study was underta-
ken. This study was built on semi-structured interviews [20] with a high degree of
discussion between the interviewer and the interviewee, complemented with a ques-
tionnaire. This study was conducted purely from the perspective of the software or-
ganization, i.e. customers were not involved in this research. The study consisted of
two steps, described in the following section.

Table 1. Research questions

Research Questions
RQ1: What communication mechanisms are central to a distributed
SPL environment in order to provide large volumes of rich information
in a timely manner?
RQ1.1: What communication mechanisms are central to a distributed
SPL environment in terms of speed?
RQ1.2: What communication mechanisms are central to a distributed
SPL environment in terms of providing rich information?
RQ1.3: What communication mechanisms are central to a distributed
SPL environment in terms of providing large volumes of information?

4.1 Step 1: Interview Study

Planning: The first part of the study involved brainstorming and planning to design
the study and to identify different areas of interest. The contact person at the company
assisted in the identification of appropriate participants to be interviewed. The inter-
view instrument was designed with respect to the different areas of interest i.e. com-
pany and personal background details, product and SPL background, requirements
engineering process, architecture design, and impact of GSE. In addition, the inter-
view instrument examined coordination issues in a global setting, and the communi-
cation mechanisms used by the company to communicate, both locally and globally.
The interview instrument is available in [21]. To test the interview instrument, pilot
interviews were carried out. Some questions were clarified and the structure of the
interview instrument was improved before interviewing proceeded.

Data Collection: The study involved eleven interview participants in the roles of
product managers (PM) and development managers (DM). The distribution of partici-
pants among the three SPL are displayed in Table 2. All interviews were attended by
one interviewee and one interviewer. Each interview took approximately an hour. The
interviews from Australia were recorded, while notes were taken at interviews involv-
ing Indian participants. Transcripts of all interviews were made in order to facilitate
and improve the analysis process.

180 R. Berntsson Svensson et al.

Analysis: An interpretive analysis of the interview data was conducted to address the
research objective [23]. Content analysis of the transcribed interview data was also
conducted using the Leximancer content analysis software. The interviewer examined
the transcripts from different perspectives. In addition, another researcher, who did
not attend the interviews, also analyzed the transcripts to enhance validity. Prelimi-
nary results from Step 1 are presented in [22].

Table 2. Distribution of Participants in
Interviews

 Interviews
Country Australia India
PLA 4 (2 PM, 2 DM) 0
PLB 4 (3 PM, 1 DM) 0
PLC 1 (1 PM) 2 (1 PM, 1

DM)
Total 9 2

Table 3. Distribution of Participants in
Questionnaire

 Questionnaire
Country Australia India
PLA 6 7
PLB 2 6
PLC 2 5
Total 10 18

4.2 Step 2: Questionnaire

Planning: The aim of the questionnaire was to understand the importance of different
communication practices used in local and global communication by development
teams, and to confirm the findings from the interviews. The questionnaire1 was
adopted from McDonough et al. who systematically studied eight different communi-
cation mechanisms, including phone calls, fax, e-mail, teleconference, face-to-face
meetings, mail, company databases, and videoconferencing, in terms of their unique
information transmission capabilities [14]. The communication mechanisms were
rated with respect to their ability to transmit information quickly (speed), to transmit
rich information (richness) and to transmit large volumes of information (volume).
The questionnaire was modified by replacing the original communication mechanisms
with ten communication practices that were commonly used in the company. The
communication practices were identified through the study of process and project
management documentation at the company and the initial interviews as follows (for
explanations of the ten communication mechanisms see footnote 1): software archi-
tecture, code walkthroughs, visiting engineer, regular meetings, change management
processes, discussion forums, electronic chat, face-to-face communication and
process walkthroughs. The participants rated the communication mechanisms for their
ability to transmit information quickly (speed), to transmit rich information (richness)
and to transmit large volumes of information (volume). The rating mechanism used in
the original questionnaire was also modified from independently ranking communica-
tion mechanisms, to the ranking of relative importance of different mechanisms when
compared to each other. Participants were required to compare the different commu-
nication mechanisms against each other and attach a weighting to the importance of
different communication mechanisms. This was enabled through the distribution of a

1 http://serg.cs.lth.se/research/experiment_packages/GSE

Software Architecture as a Means of Communication in a Globally Distributed Software 181

thousand ‘points’ across the ten different communication mechanisms. To test the
questionnaire, two pilot studies were carried out. Some questions were clarified and
improved.

Data Collection: The questionnaire targeted employees involved in the development
of products within each of the studied SPL. The company contact assisted with the
identification of appropriate software developers within Australia to participate in the
questionnaire. In order to obtain a balanced perspective on the use of communication
practices in the global environment, the questionnaire was also distributed to the In-
dian branch of the company. Participants in India were selected through the identifica-
tion of Indian counterparts of participants in Australia.

In total, 28 of 53 participants completed the questionnaire, yielding a response rate
of 53%. Participants were mainly project and product managers, application architects
and application engineers. The distribution of participants among the three SPL, and
between Australia and India, are displayed in Table 3.

Final Analysis of All Data: The questionnaire results were analyzed for each PL indi-
vidually. The importance of each criterion, at both local and global level, was ana-
lyzed by summing all the points for the respective criterion, followed by normalizing
the result for each criterion to a percentage. Since a comprehensive view of the com-
plete data set was sought, the data from the first part of the study was re-analyzed
together with the data from the questionnaire.

5 Results and Analysis

The following sub-sections present and discuss one research question each, corres-
ponding to the research questions in Table 1.

5.1 Most Suitable Communication Mechanism (RQ1)

This section examines the relative importance of the most suitable communication
mechanisms to deliver large volumes of rich information in an effective timeframe.

The different communication mechanisms are divided into three main categories:
(1) local peer-to-peer, which includes face-to-face, regular meetings, and visiting
engineer, (2) long distance peer-to-peer, which includes electronic chat and forums,
and (3) technical, which includes architecture, code walkthrough, process walk
through, progress report, and change management. We calculated the average relative
importance of speed, richness, and volume for each of the ten communication me-
chanisms. In addition, to understand what communication mechanism provides large
volumes of rich information in a timely manner, we summed all points from all three
aspects at local and global levels, and calculated the average relative importance of
the combined total sum for each SPL individually. The result is shown in Table 4.

The results clearly indicate that some communication mechanisms are more impor-
tant than others in local and global site communication. It is worth noting the differ-
ence in the top communication mechanisms when compared for their ability to provide
information in a timely manner, with richness and with large volumes of information.

182 R. Berntsson Svensson et al.

Table 4. Local vs. global distributed communication mechanisms

 PLA PLB PLC

 Local Global Local Global Local Global
Technical communication mechanisms
Architecture 12.13%17.53%15.90%16.73%11.93% 15.97%
Change Manage-
ment

6.87% 7.43% 7.20% 5.47% 7.20% 6.97%

Code Walkthrough 11.03% 9.57% 9.00% 7.27% 9.13% 7.70%
Process Walk-
through

7.23% 6.80% 13.13% 8.30% 7.57% 11.53%

Progress Report 7.00% 8.53% 4.93% 6.10% 6.63% 8.10%
Local peer-to-peer communication mechanisms
Face-To-Face 14.80% 8.70% 15.40% 8.50% 14.77% 7.20%
Regular Meeting 10.80% 8.50% 7.07% 9.53% 11.20% 10.83%
Visiting Engineer 10.50% 14.00% 7.20% 16.17% 9.73% 12.63%
Long distance peer-to-peer communication mechanisms
Forums 8.53% 5.80% 7.60% 5.00% 11.50% 13.47%
Electronic Chat 11.10% 13.17% 12.57%16.90%10.43% 5.60%

For local communications, face-to-face was seen by participants from PLA as a
communication method that delivered large volumes of rich information in an
effective timeframe in PLA. Other important communication mechanisms were archi-
tecture, followed by electronic chat. The result (the order of communication mechan-
isms) for PLC was exactly the same as for PLA, with the difference that forums
replaced electronic chat as the third preferred communication method. For PLB, the
result was similar; architecture was seen as the most suitable criterion, followed by
face-to-face and process walkthrough. One major difference was that participants
from PLC perceived all technical communication mechanisms, with the exception of
architecture, as providing small volumes of less rich information in a relatively slow
manner. This result was not consistent with the result from PLA and PLB, where, for
example, participants viewed code walkthrough as a better alternative to regular meet-
ings and visiting engineers.

Looking at global communication sites, architecture and the presence of a visiting
engineer were perceived as delivering large volumes of rich information in an effec-
tive timeframe. In PLA and PLB, electronic chat was viewed as almost equally impor-
tant, and again, participants from PLC preferred forums over electronic chat. It is
interesting to note, for global communication, the participants from all three SPL
prefer either electronic chat or forums, never both. The less preferred one was seen as
the least effective communication method that delivered the smallest volume of less
rich information. One interesting finding was the view of technical communication
mechanisms in PLB. All of the technical communication mechanisms, except for
architecture, were perceived as the least suitable communication methods, together
with forums. This result is not consistent with PLA and PLC. It is surprising to note
that participants from PLC viewed electronic chat as delivering relatively large vo-
lumes of rich information in an effective timeframe for local site communication, but
not in communication with offshore teams.

Software Architecture as a Means of Communication in a Globally Distributed Software 183

Despite participants from PLA considering architecture to be the most suitable
communication mechanism to deliver large volumes of rich information in an
effective timeframe, the interviews revealed that the used mechanism when commu-
nicating with offshore teams were conference calls, group meetings, review tools and
documentation. In addition, the main constraints imposed in communication with
offshore teams in PLA participants were the inability to have in-depth discussions and
the lack of body language.

Similar to PLA participants, PLC participants considered architecture as the most
suitable communication mechanism for offshore communication. Despite electronic
chat being considered by PLC participants as the least suitable mechanism for com-
munication, several interviewees’ explained that this was one of the tools used in
PLC. Other communication mechanisms used in PLC were telephone and web confe-
rences, documents, and electronic mails. Furthermore, according to PLC participants,
the main constraint of offshore communication was the lack of face-to-face meetings.
The lack of face-to-face meetings may have an impact on the decision-making
process because “when people do not meet face-to-face, they face a lack of under-
standing of capability and abilities”.

PLB participants had a different view than PLA and PLC participants on which
communication mechanism was the most suitable for offshore communication. For
PLB participants, electronic chat was the mechanism that provided large volumes of
rich information in a timely manner. However, electronic chat was not used in PLB,
instead, offshore communication involved web and telephone conferences and docu-
ments. According to one interviewee in PLB, “nothing beats face-to-face meetings.
Meetings are conducted a lot easier, and in a more understanding manner when done
face-to-face”. However, PLB participants only considered a visiting engineer as the
third most suitable communication mechanism.

For all three SPLs, the perceived most suitable communication mechanism was not
used in practice. Instead, less effective mechanisms were used when communicating
with offshore teams. No further elaboration was given on the topic by participants.

5.2 Communication in a Timely Manner (RQ1.1)

In analyzing Research Question 1.1, this section examines which communication
mechanism provides information in a timely manner. Among PLA participants, for
local site communication, all local peer-to-peer communication mechanisms and
electronic chat were perceived as the fastest methods to distribute information (see
Table 5), meaning that peer-to-peer communication mechanisms were the perceived
as faster than technical communication mechanisms. For PLB participants, there was
a mix of mechanisms that were perceived as the fastest. The two quickest communi-
cation mechanisms were face-to-face and electronic chat, however code walkthroughs
and process walkthroughs were also perceived as relatively quick. The result for PLC
is similar to PLA and PLB where face-to-face communication was the fastest com-
munication mechanisms. In addition, regular meetings, electronic chat, and code
walkthroughs were perceived as quicker than other communication mechanisms in
distributing information.

184 R. Berntsson Svensson et al.

For local site communications, all three SPL viewed face-to-face and electronic
chat communication as the fastest methods to distribute information. In PLA, all local
peer-to-peer communication mechanisms and electronic chat were perceived to be
faster than any of the technical communication mechanisms. Unlike PLA, both PLB
and PLC participants perceived the technical criterion code walkthrough to be faster
than a visiting engineer. In addition, PLB participants perceived process walkthrough
to be quicker than regular meetings and visiting engineer.

The results for communication between global sites evidently show that distributed
teams, in terms of fast methods to distribute information, rely heavily upon a mix of
local and long distance peer-to-peer communication, such as visiting engineers, elec-
tronic chat, and forums. The only other communication criterion, across all three SPL,
that was perceived as being quick was architecture. In addition, PLC viewed process
walkthrough as a fast method. One main difference between the three SPL was that
PLA and PLB participants viewed electronic chat as one of the fastest criterion, while
PLC participants preferred forums.

Table 5. Relative importance of speed

 Speed

 Local Global

 PLA PLB PLC PLA PLB PLC
Technical communication mechanisms
Architecture 7.8% 9.5% 8.4% 14.2% 12.1% 12.3%
Change Management 7.4% 4.4% 7.5% 8.1% 5.2% 7.5%
Code Walkthrough 9.4% 10.2% 11.6% 7.9% 6.5% 6.1%
Process Walkthrough 8.3% 13.3% 9.0% 7.1% 8.9% 11.7%
Progress Report 7.2% 4.6% 6.4% 8.2% 5.1% 8.2%
Local peer-to-peer communication mechanisms
Face-To-Face 17.1% 20.6% 16.7% 10.8% 9.0% 8.6%
Regular Meeting 11.0% 8.5% 10.3% 9.5% 11.8% 11.2%
Visiting Engineer 11.3% 6.9% 9.0% 12.9% 19.6% 14.4%
Long distance peer-to-peer communication mechanisms
Forums 8.4% 4.9% 8.3% 5.8% 4.2% 14.0%
Electronic Chat 12.2% 17.1% 12.9% 15.5% 17.5% 6.0%

5.3 Communication Rich Information (RQ1.2)

In terms of providing rich information for local site communication, a mix of technic-
al (architecture) and local peer-to-peer (face-to-face) communication mechanisms
were perceived to provide the richest information (see Table 6). For PLA and PLC,
face-to-face provided the richest information, while PLB participants viewed architec-
ture as the richest source. It is interesting to note that PLB participants viewed process
walkthrough as a criterion that provided rich information, while PLA and PLC partic-
ipants perceived process walkthrough among the least effective communication
mechanism for providing rich information. For global sites communication, all three
SPL agreed that architecture provided the richest information. Moreover, a visiting

Software Architecture as a Means of Communication in a Globally Distributed Software 185

engineer was viewed, by all three SPL, to be a good communication method for rich
information. The main difference between the three SPL related to how long distance
peer-to-peer provided rich information. PLA and PLB participants perceived electron-
ic chat as a good source of rich information, while PLC participants viewed forums as
a good source.

Table 6. Relative importance of richness

 Richness

 Local Global

 PLA PLB PLC PLA PLB PLC
Technical communication mechanisms
Architecture 12.6% 18.2% 14.4% 17.7% 18.1% 17.4%
Change Management 6.7% 7.9% 7.0% 7.6% 5.3% 6.2%
Code Walkthrough 11.6% 9.7% 8.2% 10.0% 8.5% 8.8%
Process Walkthrough 6.7% 14.1% 7.3% 6.5% 8.6% 11.3%
Progress Report 6.4% 4.4% 5.6% 8.7% 6.1% 7.5%
Local peer-to-peer communication mechanisms
Face-To-Face 17.7% 17.5% 16.3% 9.7% 7.9% 6.2%
Regular Meeting 9.7% 5.7% 10.3% 6.9% 8.2% 9.7%
Visiting Engineer 10.0% 6.5% 9.0% 15.5% 14.6% 13.6%
Long distance peer-to-peer communication mechanisms
Forums 8.0% 6.1% 12.1% 5.7% 5.6% 13.3%
Electronic Chat 10.5% 9.9% 9.9% 11.8% 17.1% 6.0%

5.4 Communicate Large Volume of Information (RQ1.3)

Looking at which communication mechanism provides the largest volume of informa-
tion, both PLA and PLB participants viewed technical communication mechanisms as
providing the largest volume of information. Architecture was perceived as the pre-
ferred criterion when sharing large volumes of information. PLA participants viewed
code walkthrough and PLB participants viewed process walkthrough as the second
most suitable criterion respectively. Unlike PLA and PLB participants, PLC partici-
pants viewed forums (long distance peer-to-peer) as the criterion that provided the
largest volume of information, which is a surprising finding. Moreover, regular meet-
ings were perceived as equally good as architecture for distributing large volumes of
information. For global sites communication, the results with regards to providing
large volume of information were similar to the results of providing rich information.
Architecture was viewed by all three SPL as the preferred criterion for sharing large
volumes of information. Moreover, PLA and PLB participants perceived electronic
chat as a way of sharing large volumes, while PLC preferred forums. In addition, PLA
and PLB participants identified visiting engineers, while PLC participants viewed
regular meetings, as other good communication methods for sharing large volumes of
information.

186 R. Berntsson Svensson et al.

6 Discussion

The result of the survey shows that a number of communication mechanisms are more
important than others in local and global environments. While no single mechanism
meets all three needs of speed, richness and volume perfectly, when examining the
results across the three product lines, the prevalence of architecture in providing rich
information in large volumes, for both local and global communication, can be clearly
observed. This has important implications for SPL engineering, which uses product
line architecture as a driving force in developing software products. It indicates that
traditional SPL engineering practices and artifacts have the ability to act as reusable
items, reused as a communication mechanism enabler. This finding is expected as
architecture establishes a method of effective communication through a common
vocabulary [1]. Not only does architecture make large-scale reuse possible, by estab-
lishing component definitions and proper interfaces, it also provides for orientation of
different development teams systematically producing different parts of the system
[15], while the impact of distance, language, and culture are minimized [16]. This
provides a potential solution for a fundamental challenge for GSE: the communication
and coordination between distributed teams working on different areas of product
development. This also implies that SPL engineering can be used efficiently and ef-
fectively in organizations that have globally distributed teams.

Further examination of the results by product lines show that, communication be-
tween development teams, locally or globally, is also dependent on their development
practices. Taking the communication practices for local sites into consideration, it was
mostly peer-to-peer communication methods, such as face-to-face conversations and
electronic chat that provided information in a relatively fast manner across all product
lines. Communication mechanisms that allow for mass distribution of information,
such as forums and architecture, generally rated lower in terms of speed of distribution.
This may be attributed to the fact that such mechanisms were generally qualitative and
textual in nature, requiring time to comprehend. In the case of global communication,
face-to-face conversations were replaced by an equivalently fast communication me-
chanism, a visiting engineer. This indicates that personal contact is largely associated
with faster dissemination of information. However, the importance of a visiting engi-
neer is not consistent with the findings of Smite, which found that communication
conducted through meeting in person was very seldom used [24]. In addition, McDo-
nough et al. found that email and databases were the fastest communication tool, while
face-to-face was considered as providing the richest information [15].

The importance of local peer-to-peer communication mechanisms is not surprising;
however, having regular meetings (part of local peer-to-peer communication mechan-
isms) was not viewed as being among the top three fastest communication mechanisms.
This indicates that the participants referred to informal and ad-hoc communication when
talking about face-to-face communication. This result is consistent with several studies
[4, 6, 10, 12] that point out the importance of informal communication for the success of
GSE. One reason why regular meeting was not viewed in the top three fast communica-
tion mechanisms may be the difficulties of using formal communication channels to
handle unexpected events [10].

The influence of development practices on the communication mechanisms used
was more evident in the criteria of richness and volume. In particular, electronic

Software Architecture as a Means of Communication in a Globally Distributed Software 187

forums were rated considerably lower in PLA due to developers working more close-
ly on their own products, rather than relying on shared artifacts. Greater use of shared
artifacts correlates with an increase in the use of mechanisms that provide large vo-
lumes of rich information. This was evident in PLC, which heavily utilizes shared
artifacts, where electronic forums and architecture were ranked higher when com-
pared to other mechanisms.

In summation, the prevalence of architecture in providing rich information in large
volumes, both for local and global communication can be observed. This may indicate
that software architecture can enable communication in SPL in a globally distributed
software development context.

7 Threats to Validity

In this section, threats to validity are discussed. We consider the four perspectives of
validity and threats [28], i.e. construct, conclusion, internal and external validity.

Construct validity is concerned with the relation between theories behind the re-
search and the observations. The variables in our research are measured through in-
terviews, including open-ended aspects where the participants are asked to express
their own opinions, and a questionnaire. To avoid evaluation apprehension [28], com-
plete anonymity from other participants, and researchers was guaranteed. Another
validity threat lies in the questionnaire that asked the participants to rank communica-
tion practices and include additional practices if the list provided to them was inade-
quate. Participants may have thought that it was easier to rank the provided factors
than propose new factors. Hence, important communication practices may be missing.

Threats to conclusion validity arise from the ability to draw accurate conclusions.
The interviews were conducted at different branches and each interview was done in
one work session. Thus, answers were not influenced by internal discussions. To ob-
tain highly reliable measures and to avoid poor question wording and poor layout,
several pilot studies were conducted.

Internal validity is related to issues that affect the causal relationship between
treatment and outcome. Threats to internal validity include instrumentation, matura-
tion and selection threats. In our study, the research instruments were developed with
close reference to literature relating to GSE, and influenced by a previously admini-
strated and validated research instrument [14], which mitigates instrumentation threat.
Maturation threats are handled by keeping the interview session to 60 minutes.

External validity is concerned with the ability to generalize findings beyond the ac-
tual study. Qualitative studies rarely attempt to generalize beyond the actual setting
since it is more concerned with explaining and understanding the phenomena. The
nature of qualitative designs also makes it impossible to replicate since identical cir-
cumstances cannot be recreated. However, understanding the phenomena may help in
understanding other cases and situations. The participants selected may not adequate-
ly reflect the diversity of opinion on current practice communication mechanisms.
The small sample size used in this study may also indicate that conclusions made may
not be generalized across the software industry. Hence, the results of the study must
be interpreted with caution when moving away from the characteristics of the studied
case organization.

188 R. Berntsson Svensson et al.

8 Conclusion

This paper presents the results of an empirical study that examines the importance of
commonly used communication mechanisms across local and global development
sites. To the best of our knowledge, there is no empirical study that specifically ex-
amines the aspects of communication mechanism, in product lines, for their ability to
transmit information quickly, to transmit rich information and to transmit large vo-
lumes of information.

This study has shown that some communication mechanisms are more important
than others in a local and global environment. While there are some differences be-
tween the three product lines, peer-to-peer communication mechanisms are perceived
to be particularly important at a local level, and to provide a faster speed of communi-
cation at a global level. Software architecture was generally perceived to communi-
cate large volumes of rich information at both a local and global level. Participants
across all three product lines understood the relative importance of architecture in the
global environment when compared to other communication mechanisms. This indi-
cates that SPL engineering has the ability to utilize a globally distributed development
environment and that a heavy reliance on software architecture can enable communi-
cation in SPL in a globally distributed software development context.

This study is only a first step in understanding commonly used communication
mechanisms in SPL in a global development context. Given the limitations with the
sample size, there is opportunity for future research to replicate this study across vari-
ous cases and across different industries. Future work should focus on the detailed
utilization of software architecture or other SPL engineering assets for GSE. This
could provide improvements for these artifacts to be more useful in a global context.
It also could provide ideas for improving the global SPL engineering process in terms
of work distribution and management.

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley
Professional (2003)

2. Berenbach, B.: An Introduction to Global Product Line Requirements Engineering. In: Proc.
of the Second Int. Conference on Global Software Engineering, pp. 300–301 (August 2007)

3. Bosch, J., Bosch-Sijtsema, P.: From integration to composition: On the impact of software
product lines, global development and ecosystems. Journal of Systems and Software 831,
67–76 (2010)

4. Carmel, E., Agarwal, R.: Tactical approaches for alleviating distance in global software
development. IEEE Software 18, 22–29 (2001)

5. Conchuir, E.O., Ågerfalk, P.J., Olsson, H.H., Fitzgerld, B.: Global Software Development:
Where are the benefits? Communications of the ACM 52, 127–131 (2009)

6. Deridder D.: A concept-oriented approach to support software maintenance and reuse ac-
tivities. In: Workshop on Knowledge-Based Object-Oriented Software Engineering (2002)

7. Falbo, R.A., Menezes, C.S., Rocha, A.R.: Using ontologies to improve knowledge integra-
tion in software engineering environments. In: Proc. of the 4th Conference on Information
Systems Analysis and Synthesis (1998)

8. Fricker, S., Gorschek, T., Glinz, M.: Goal-Oriented Requirements Communication in New
Product Development. In: Proc., Second Int. Workshop on Software Product Management
(2008)

Software Architecture as a Means of Communication in a Globally Distributed Software 189

9. Griffin, A., Hauser, J.: Integrating R&D and Marketing: A Review and Analysis of the Li-
terature. Journal of Product Innovation Management 13, 191–215 (1996)

10. Herbsleb, J.D., Grinter, R.E.: Architectures, Coordination, and Distance: Conway’s Law
and Beyond. IEEE Software 16, 63–70 (1999)

11. Herbsleb, J.D., Mockus, A.: An Empirical Study of Speed and Communication in Globally
Distributed Software Development. IEEE Transactions on Software Engineering 29, 481–
494 (2003)

12. Herbsleb, J.D., Mockus, A., Finholt, T.A., Grinter, R.E.: An Empirical Study of Global
Software Development: Distance and Speed. In: Proc. 3rd International Conference on
Software Engineering. Inst. of Elec. and Elec. Eng, pp. 81–90 (May 2001)

13. Kraut, R.E., Streeter, L.A.: Coordination in software development. Communications of the
ACM 38, 69–81 (1995)

14. McDonough, E.F., Kahn, K.B., Griffin, A.: Managing Communication in Global Product
Development Teams. IEEE Transaction on Engineering Management 46, 375–386 (1999)

15. Niinimäki, T., Lassenius, C.: Experiences of Instant Messaging in Global Software Devel-
opment Projects: A Multiple Case Study. In: Proc. IEEE International Conference on
Global Software Engineering, pp. 55–64. IEEE (August 2008)

16. Ovaska, P., Rossi, M., Marttiin, P.: Architecture as a coordination tool in multi-site soft-
ware development. Software Process: Improvement and Practice 8, 233–247 (2004)

17. Paech, B., Dörr, J., Koehler, M.: Improving Requirements Engineering Communication in
Multiproject Environments. IEEE Software 22, 40–47 (2005)

18. Perry, D.E., Staudenmayer, N.A., Votta, L.G.: People, organizations and process im-
provement. IEEE Software 11, 36–45 (1994)

19. Regnell, B., Brinkkemper, S.: Market-Driven Requirements Engineering for Software
Products. In: Aurum, A., Wohlin, C. (eds.) Engineering and Managing Software Require-
ments, pp. 287–308. Springer (2005)

20. Robson, C.: Real World Research. Blackwell, Oxford (2002)
21. Sharma D.: Blueprint of Success: Creating Software Product Value through Product Line

Engineering, Honours Thesis, School of Information Systems, Technology and Manage-
ment, University of New South Wales, Australia (2007)

22. Sharma, D., Aurum, A., Paech, B.: Business Value through Product Line Engineering – An
Empirical Study. In: Proc., 34th Euromicro Conference on Software Engineering and
Advanced Applications, pp. 167–174 (September 2008)

23. Silverman, D.: Interpreting Qualitative Data. Sage Publication, London (2001)
24. Šmite, D.: Global Software Development Projects in One of the Biggest Companies in

Latvia: Is Geographical Distribution a Problem? Software Process Improvement and Prac-
tice 11, 61–76 (2006)

25. Šmite, D., Wohlin, C., Gorschek, T., Feldt, R.: Empirical Evidence in Global Software
Engineering: A Systematic Review. Empirical Software Engineering 15, 91–118 (2010)

26. Ullah, M.I., Ruhe, G.: Towards Comprehensive Release Planning for Software Product
Lines. In: Proc. of the 1st International Workshop on Software Product Management
(ISPM 2006). Inst. of Elec. and Eng. Computer Society, pp. 51–55 (September 2006)

27. Van De Weerd, I., Brinkkemper, S., Nieuwenhuis, R., Versendaal J., Bijlsma, L.: A Refer-
ence Framework for Software Product Management, Technical Report UU-CS-2006-014,
Department of Information and Computing Sciences Utrecht University (2006)

28. Wohlin, C., Runeson, P., Höst, M., Ohlson, C., Regnell, B., Wesslén, A.: Experimentation
in Software Engineering: An Introduction. Kluwer Academic, Boston (2000)

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 190–202, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Socio-technical Congruence Sabotaged by a Hidden
Onshore Outsourcing Relationship:

Lessons Learned from an Empirical Study

Darja Šmite1,2 and Zane Galviņa2

1 Blekinge Institute of Technology, Karlskrona, Sweden
2 University of Latvia, Riga, Latvia

Darja.Smite@bth.se, Zane.Galvina@lu.lv

Abstract. Despite the popularity of outsourcing arrangements, distributed
software development is still regarded as a complex endeavor. Complexity
primarily comes from the challenges in communication and coordination among
participating organizations. In this paper we discuss lessons learned from
participatory research carried out in a highly distributed onshore outsourcing
project. Previous research established that socio-technical congruence
principles alleviate distributed work. In practice we have found that alignment
between the systems structure and organizational structure can be studied from
different abstraction levels and also during different phases of project lifecycle.
We have found that official organizational structure differed from the applied
one, which meant that the planned alignment in task allocation strategies was
broken. Our findings indicate that the lack of socio-technical congruence caused
several implications, including unclear responsibilities, delays in problem
turnaround, conflicting changes, and non-delivered parts.

Keywords: Distributed software development, onshore, outsourcing, socio-
technical congruence, Conway’s law.

1 Introduction

The topic of distributed software development emerged with the popularity of
globalization. Distributed projects involve geographically dispersed team members
and despite the widespread utilization empirical studies show that distributed teams
are far less productive than co-located teams [1]. The majority of the studies focusing
on distributed software development investigate offshore outsourcing projects [2],
which means that the work is performed in a sub-contracting relationship among
companies from different countries. This is also the main focus in global software
projects [3]. However, not all distributed software projects are necessarily global.
While multinational organizations perform on a global arena, it is not uncommon that
small and medium software development companies team up locally to be able to
compete for larger contracts. Furthermore, Balajiand and Brown claim that current
trends in outsourcing are moving toward a multi-vendor arrangement, in which

Socio-technical Congruence Sabotaged by a Hidden Onshore Outsourcing Relationship 191

multiple vendors are pooled together to achieve and exceed the overall expertise
required for a project [4]. If distributed projects are challenging due to
communication, coordination and control among the partners [1], it is fair to assume
that the more participating companies, the more challenging is their collaboration. In
fact, an empirical investigation demonstrated that increase in the number of sites
decreased quality and profits for the company leading distributed software
development projects [5].

In this paper we investigate a highly distributed project that involves four different
companies involved in software development. The collaboration studied is onshore
outsourcing — physically local companies, which are distinct entities [2]. The rest of
the paper is organized as follows: in Section 2 we present related work. Section 3
describes research methodology. Findings are presented in Section 4 and discussed in
Section 5. Section 6 concludes the paper with the answers to research questions and
outline of future work.

2 Related Work

While distributed work requires new process models for managing team relationships
to deliver software on time and within budget, such dedicated models are yet to be
developed [2]. Nonetheless, different aspects of distributed work are widely discussed
in the research literature. Among the most popular are the topics related to
coordination of work and task allocation in particular [1, 6, 7, 8], and difficulties
regarding team efficiency [9]. It was found that coupling between tasks decreases
productivity [1]. Empirical evidence also suggests that communication and
coordination across different locations usually requires more people and thus results
in overhead [10]. One way of reducing this overhead is to modularize development
and minimize technical and thus social dependencies [6]. If the work is partitioned
into autonomous units without any complex dependencies, it might enable concurrent
development and might not necessarily result in lower performance [5]. This line of
research applies the principles of the Conway’s law, which suggests that software
design mirrors communication structure of the organization that builds it [9].

In the light of distributed software development the importance of Conway’s law
and its implications grows. The harmony between the organizational and architectural
structures, which is often referred to as the socio-technical congruence, is not always
easy to establish. One of the reasons for this is the rapidly changing nature of the
organizations already discussed by Conway [9]. In distributed projects task allocation
can be driven by on demand availability of resources, and change in the course of the
project. Therefore, predicted inefficiency caused by coordination and communication
breakdowns becomes evident. However, there is another important challenge. To
reduce the costs even further some outsourcing service suppliers start delegating tasks
to their subsidiaries or third parties. Thus, organizations who initially establish the
project structure might not be aware of the true social structure, and thus fail to
comply to the rules of socio-technical congruence.

192 D. Šmite and Z. Galviņa

In this paper we study the implications of an unintentionally non-congruent socio-
technical structure of a highly distributed software development project. Social
structures in distributed teams are represented by organizational units and distributed
developers as suggested by [6, 11]. While the most studied technical structures are
usually related to source code or development tasks [6, 11], these are not the only
artifacts by which articulation of work can be carried out. Similarly to de Souza et al.
who suggest that software artifacts can reveal the relationship between technical and
social structure of large-scale development projects [11], in this paper we aim at
exploring the socio-technical relationship using a number of different work products
during the life cycle of a highly distributed software development project. Our case
sheds the light on potential challenges for task allocation introduced by the
differences between the planned and the actual social-technical structures.

3 Research Methodology

Research reported in this paper was participatory in nature — the second researcher
(Zane Galviņa) was directly involved in an industrial software development project, in
which she participated as a system analyst. Participatory research method addresses the
gaps between the researchers and the researched people, and provides a great potential
for rich empirical observations. In particular, participant observation are said to be
useful for gaining a deeper understanding of the physical, social, and cultural contexts,
relationships, ideas, norms, and events; and people’s behaviors and activities, which
were not necessarily included in the study design from the very beginning [12].

The research focused on investigating a highly distributed onshore outsourcing
project and collaboration among four software companies which we for
confidentiality reasons refer to as D1, D2, D3 and D4 (see also Figure 1). Due to a
complex organizational structure and social relationships the project coordination was
challenging. These challenges triggered an exploratory study and motivated us to seek
the answers to the following research questions:

RQ1: Does the studied highly distributed project follow socio-technical congruence

principles?
RQ2: What are the consequences of non-congruence?

The data was collected from a variety of sources (see Table 1). Official project plans
were used to outline the planned social structures, while observations from
participatory research activities formed the basis for identifying the actual social
relationships. These were further supplemented by an analysis of different project
artifacts that formed the basis for studying the technical structures and relationships.
The socio-technical links were established through the task allocation strategies
outlined in the project plans, and compared with those suggested by the Conway’s
principles. The socio-technical relationships are visualized with the help of diagrams
that follow original Conway’s notations [9]. In particular, we have created diagrams
for planned and actual social structures, technical structures, which are further linked
through the socio-technical structures.

Socio-technical Congruence Sabotaged by a Hidden Onshore Outsourcing Relationship 193

Table 1. Data collection

Project phase Artifacts collected Observations
Requirements
analysis and
design

• Project Management Plan
• Software Requirement

Specification
• Software Design

Specification
• Problem reports

• Interviews with users
• Weekly meetings with D4 and D3
• Participation in two meetings among

D1, D3, D4 to finalize the
requirements and design
documentation

Development • Problem reports • Participation in the virtual weekly
meetings at D4

• Participation in demo sessions at D1
Testing • Problem reports • Participation in the weekly virtual

meetings with D4
• Participation in demo sessions

regarding fixes

Our research has several limitations. First of all, the focus of this exploratory study

is to illustrate only one plausible challenge in coordinating work in a highly
distributed project and by no means implies that similar socio-technically non-
congruent projects would suffer from the same consequences discussed in this paper.
Secondly, our findings may be affected by a single researcher’s bias, since the case
description is based on observations from the participatory research. This was
mitigated through triangulation of the observations with the actual project
documentation.

4 Results

In this section we present the results and lessons learned from the study. We start by
describing the project background and socio-technical structures that we have found
in different phases of the project life cycle. Our results illustrate how even having best
intentions to comply with the rules of socio-technical congruence the project may
suffer from inefficient structure due to unforeseen circumstances.

4.1 Project Overview: Social and Technical Structures

The project discussed in this paper was a bespoke software development project for
two customer organizations, which started in the beginning of 2011. The aim of the
project was to move an existing software system to a new platform and significantly
enhance its functionality. The project was motivated by the necessity to comply to the
new legal requirements as well as technical obsolescence, while the platform change
was necessary to enable complex integration with the other systems existing in the
organizations. Customer organizations organized a tender and contracted development
to the winning organization. Unfortunately, the winning software company neither

194 D. Šmite and Z. Galviņa

possessed required experience and expertise in all knowledge domains nor had
sufficient number of on demand available developers to fulfill the requirements on
their own. Therefore the development in practice was performed by a network of
small software companies collaborating on a joint project (see Fig. 1).

The project team consisted of 21 employees from all participating organizations.
Organization D1 was the prime contractor who has won the tender and contributed
with the largest share in the project. At the time of the study D1 was an SME
employing approx. 140 employees; ten of them were involved in this project. D2 was
a small company with only 16 employees and involved five developers in the project.
Even smaller organizations were D3 and D4, each employing approx. ten people.
Three employees from each of the latter organizations were involved in the project. It
is worth noting that the customer organizations engaged 13 employees in the project,
who were available during different phases of the lifecycle.

Fig.1 is created on the basis of official project management plan and supplemented
with our observations. It demonstrates the organizational structure and contractual
relationships made by the prime contractor (D1). The entity D4 is added to reflect the
actual structure that was discovered through observations and participatory
involvement in D3 activities. In particular, we have found that D3, one of the direct
sub-contractors of D1, further outsourced parts of the work to another company (D4).
However, the existence of this outsourcing relationship was hidden from the prime
contractor (indicated by the dashed line in the figure) and the employees from D4
were presented as the employees from their contractor’s company (D3). Conway in
his proposition did not address hidden structures and their implication and we found
politically flavored relationships and its implications interesting to explore.

The technical structure of the system that was developed comprised of two separate
sub-systems, which utilize the same data for different purposes. Sub-system 1 allowed
users to enter the data, while Sub-system 2 was developed for dissemination purposes.

Prime contractor
Customers acquired the system
development from D1

Direct sub-contractors
D1 sub-contracted parts of the
system development to D2 and D3

Hidden sub-contractor
D3 sub-contracted parts of their work
to D4; the relationship is hidden from
the other organizations

D1

D3 D2

D4

Fig. 1. Organizational structure

Socio-technical Congruence Sabotaged by a Hidden Onshore Outsourcing Relationship 195

In this paper we focus our attention on exploring the socio-technical dependencies
within Sub-system 1. An overview of the technical system’s structure is given in
Figure 2. The figure also outlines the integration requirements to support internal and
external interfaces. In the figures we use original notations proposed by Conway [9].

S

S1-C1

S1-C3

S1-C4

S2 S1

System level
The system has external
interface

Sub-system level
The system consists of two
interrelated sub-systems
(1 and 2). Both sub-systems
have external interfaces

Component level
Sub-system 1 consists of
four components. Some of
these components are inter-
related. External and
internal interfaces with sub-
system 2 exist through
component 1

S1-C2

Fig. 2. Product structure

The project was broken into sub-projects and further managed applying Rational
Unified Process (RUP). The delivery was expected by December 2011, however due
to a three month delayed iteration in one of the sub-projects, the whole project was
significantly delayed. To understand the reasons for the failure of this distributed
project to meet the deadline we investigate the socio-technical congruence through
studying the task allocation strategies in this onshore outsourcing network for
different project artifacts.

4.2 Task Allocation: Socio-technical Links

As mentioned earlier, modularization on the sub-system level motivated division of
the project into two sub-projects. Due to unavailability of resources in one place, the
work on Sub-system 1 was further split into four components, which were assigned to
different organizations. According to Conway’s law, the task allocation shall follow a
homomorphic approach [9]. In other words, each organizational unit can work on

196 D. Šmite and Z. Galviņa

several components, while each component must be assigned to only one unit. From
the task allocation strategy we can easily see that system development in the project
studied did not fully apply the congruence principles proposed by Conway. In
practice, Sub-system 2 was developed by two organizations (D1 and D2), three
different organizations were involved in developing Component 1 for Sub-system 1,
and while Component 2, 3 and 4 were allocated solely to a single organization, some
of the social links necessary to support the technical dependencies did not exist. In
particular, the interface between Components 1 and 4 was not supported by the links
between D1 and D4.

S1-C1

S1-C3

S1-C4

S2

S1-C2

D2

D1

D3

D4

Fig. 3. Task allocation illustrates socio-technical non-congruence in Sub-system 1

Lessons Learned: Work on Component 1 aimed at developing the database solution
for the Sub-system, and the tasks were shared between D1, D3 and D4. It was decided
that each organization would develop the part that represents and communicates with
the other components that are developed by respective organizations. This however
breaks the homomorphic principle of task allocation. In practice, the three
organizations shared the work on the same component level and notably two of them
did not have any direct contact (see Figure 4). The missing link in this case impacted
the way changes were handled. When D1 implemented the changes necessary for
supporting the interface between sub-systems, they impacted the parts that were
responsible for supporting the interface between Component 1 and Component 4.
Since no direct communication was established between D1 and D4, and in the light

Socio-technical Congruence Sabotaged by a Hidden Onshore Outsourcing Relationship 197

of poorly documented interface specifications, the changes remained unnoticed until it
caused a failure when D4 tested their parts of the sub-system. In result, it took
approximately two weeks for D4 to find the cause of this failure. Thankfully their
solution to the problem did not cause another loop of errors.

S1-C1

D1

D3

D4

Fig. 4. Missing relationship between organizational units working on Component 1

Significant challenges were introduced by the work on Component 4, which was
assigned to organization D4. The component has one external and two internal
interfaces. Since the prime organization (D1) was formally responsible for the
integration tasks, communication was required between D1 and D4 to effectively
handle these tasks. This link was, however, not established (see Figure 5).

S1-C4

D1

D4

Fig. 5. Missing relationship between organizational units working on Component 4

In practice, interface specifications were poorly documented and since D4 was not
involved in specifying these requirements they assumed that all integration would be
solved by D1. Due to missing direct contact between the two organizations, and
misunderstood responsibilities, the integration part was missing. This was discovered
one week before the delivery deadline and caused a loop of blaming between D1 and
D3, which was formally responsible for the work.

198 D. Šmite and Z. Galviņa

4.3 The Impact of Socio-technical Non-congruence during Requirements
Analysis and Design

In order to get a better understanding of the task allocation problems and project
coordination breakdown, we further illustrate the responsibilities shared by the four
organizations in the requirements analysis and design phases. During systems analysis
each organization (except for the hidden organization D4) interacted with the
customers in order to elicit requirements for the system parts within their
responsibility. Each organization contributed in development of the software
requirement specification (SRS) and software design specification (SDS), which were
finally reviewed and integrated into one package by D3.

Lessons Learned: Fragmentation during the requirements elicitation led to
dissatisfaction of the customers, since different organizations contacted the same
prospective users and often asked the same questions.

Most importantly, the reasons of failure in delivering the integration parts could be
traced back to requirements analysis and design phases. Since formally each
organization focused on specifying the functionality of their respective components
and sub-systems, integration parts were poorly documented. Organizational
dispersion resulted in limited social interaction, and confusion regarding the interfaces
remained unsolved. While formal responsibility for integration, as well as the overall
project coordination, was assigned to the prime organization (D1), hidden parts of the
organizational structure were invisible. Therefore threats to coordination of work on
Component 4 and related interfaces were not foreseen.

4.4 The Impact of Socio-technical Non-congruence during Testing

Testing activities were performed stepwise. First of all, responsibility for testing the
developed parts was assigned to each respective organization (D1, D2, D3, and D4).
Then an additional systems testing was performed by the prime organization (D1).
This included testing systems integration, during which a missing interface was
detected.

Later acceptance testing was coordinated by D1. Trouble reports from the
customers were gathered centrally by D1, and then assigned to responsible
organizations (D2 or D3 by the D1, and further to D4 by D3, if necessary).

Lessons Learned: From this study we learned that strict modularization of work and
isolated functional testing that excluded testing the interfaces prevented early
identification of the missing integration links.

Additionally, coordination of trouble report resulted in significant time overhead.
Mediation of problems prolonged communication paths and therefore resolution
intervals. The delay was especially noticeable in coordination of changes in
Component 4, for which reports were reassigned twice. Direct interaction between D1
and D4 would have shortened the turnaround paths of the tasks and potentially
communication overhead in case of misunderstandings and clarifications.

Socio-technical Congruence Sabotaged by a Hidden Onshore Outsourcing Relationship 199

5 Discussion

Related studies suggest that distributed projects shall have a clear distribution
rationale and only consider well structured, well understood and stable projects,
decomposable into discrete tasks [7]. This is in line with the socio-technical
congruence principles proposed by Conway [9] who promoted the alignment, or a
homomorphic relationship, between the tasks and organizational units. To understand
the existence and impact of these relationships we have performed a study of a highly
distributed onshore outsourcing project. We have found that identification of the
socio-technical congruence requires careful attention, as parts of the organizational
structure can be hidden. The project described in this paper involved a hidden
outsourcing relationship between two organizations (D3 and D4), which the prime
contractor, who is responsible for responsibility allocation, was not aware of. The
implication of this is that the socio-technical congruence was significantly affected.

When studying the degree of alignment to understand the reasons for poor task
allocation, we also noticed that different levels of abstraction provide us with a
different view (see Fig. 6).

• From the customers’ perspective the system and its developing organization
are perfectly aligned, since the development of the system is assigned by the
contract to the prime contractor (D1).

• When studying the prime contractor’s perspective, we see a strict
decomposition of the system with only one shared component. The technical
structure of the system contains the database in Sub-system 1, which is usually
difficult to isolate, as it is used by other components. Also the social structure
is simple — D1 communicates directly with D2 and D3. We therefore
conclude that the socio-technical structure was designed to ensure
homomorphic relationship between the organization (social structure) and the
system (technical structure) with one exception.

• However, our findings indicate that the actual socio-technical structure was
different from that planned by D1. When adding D4 into the social structure,
the homomorphic socio-technical relationship breaks significantly. We observe
that one component is now assigned to three organizations, two of which are
not socially linked. Isolation of problems and coordination of responsibilities
for this vulnerable component (the database in Sub-system 1) was thus
problematic, as could be predicted by the Conway’s proposition.

The misalignment identified had an impact on the way the work was coordinated, and
also resulted in several misunderstandings. The missing link between D1 and D4
meant that there was no direct communication and thus all the necessary clarifications
or problem escalations were organized through D3. This caused delays in problem
turnaround and inability to react on the changes during the course of the project,
which confirms existing findings from studying speed and communication in
distributed teams [10]. At the same time, we have found that some of the interfaces
were not developed on time due to confusion regarding responsibilities, and that
shared components caused misunderstandings when implementing the changes to

200 D. Šmite and Z. Galviņa

S! D1!

S1-C1!

S1-C3!

S1-C4!

S2!

S1-C2!

D2!

D1!

D3!

!
!
!
!
!
!
!
!

S1-C1!

S1-C3!

S1-C4!

S2!

S1-C2!

D2!

D1!

D3!

D4!

!
!
!
!
!
!
!
!

Customers’ perspective

Prime contractor’s perspective In practice

Fig. 6. Task allocation illustrates socio-technical non-congruence in Sub-system 1

existing working parts of the system. The problem of unclear roles and
responsibilities is also discussed in existing research on global teams. For example,
Kotlarsky et al. [13] found that participants of a global software development project
often had different views on their own or their colleagues’ responsibilities.

We believe that many of these problems could be avoided, if the interfaces
between the system’s components and sub-systems would be well documented, and if
the organizational structure would have been clear.

Lings et al. suggest that a distributed project can be partitioned functionally
according to organizational and systems structure or by process during other life-cycle
phases prescribing natural divisions of work in relatively small bundles [7]. We have
found that the work allocation strategies during requirements analysis, development
and testing did not follow the same pattern. Notably, the major challenges in this
respect can be related to documenting requirements for, developing and testing of
interfaces among the systems components.

Although it has been noted that increase in the number of sites usually results in
the increase productivity (since the development capacity grows) [5], the same study
demonstrates that the quality of the developed software decreases. Our observations
indirectly support this view, as the growing complexity of coordination development
of interfaces between the components that were allocated to different sites, resulted in
a missing interface.

Socio-technical Congruence Sabotaged by a Hidden Onshore Outsourcing Relationship 201

6 Conclusions and Further Research

In this paper we have discussed lessons learned from a highly distributed project. Our
observations indicate that distribution makes projects more complicated, and we have
traced the major sources of complexity to be triggered by the missing communication
links between the participating organizations. One of the most interesting findings is
related to the fact that the official organizational structure differed from that in
practice. In particular, a hidden outsourcing relationship existed, which the prime
contractor, who was responsible for task allocation, was not aware of. The lack of
awareness of the true organizational structure and missing direct communication
between the prime contractor and the hidden organization propagated into all phases
of the project lifecycle.

In response to RQ1 we have studied the task allocation strategies from a socio-
technical congruence perspective, and realized that the answer to the research
question is not trivial. We learned that the project was designed to comply with the
homomorphic principles proposed by Conway [9] and discussed by other researchers
[6, 7], but in practice failed to follow the plan. The congruence was sabotaged by the
hidden onshore outsourcing relationship.

In response to RQ2 our findings suggest that although the project task allocation
followed modularization, several important practices were missing. Incompliance
resulted in unclear responsibilities assigned for documenting, developing and testing
the interfaces among the modules that were further complicated by the missing
communication links between the prime contractor and the hidden supplier. This
caused delays in problem turnaround, conflicts with change implementation and non-
delivered parts.

In conclusion we expect that a task allocation strategy that is compliant with the
Conway’s proposition is more likely to minimize similar problems.

Our findings are based on qualitative analysis of the gathered material. Further
work will focus on qualitative measurements of the lead times for change requests
during the development phase. We also hope to have insights into the destiny of the
project during its maintenance.

Acknowledgement. We thank our industrial partners for the opportunity of following
the project.

This work has been supported by European Social Fund project No.
2009/0216/1DP/1.1.1.2.0/09/APIA/VIAA/044, as well as BESQ+ (20100311) grant
from the Knowledge Foundation in Sweden, and Center Of Nordic Excellence
in Software Engineering (CONES) grant from NordForsk.

References

1. Lamersdorf, A., Münch, J., Rombach, D.: A Decision Model for Supporting Task
Allocation Processes in Global Software Development. In: Bomarius, F., Oivo, M., Jaring,
P., Abrahamsson, P. (eds.) PROFES 2009. LNBIP, vol. 32, pp. 332–346. Springer,
Heidelberg (2009)

202 D. Šmite and Z. Galviņa

2. Prikladnicki, R., Audy, J.L.N., Shull, F.: Patterns in Effective Distributed Software
Development. IEEE Software 27, 12–15 (2010)

3. Šmite, D., Wohlin, C., Feldt, R., Gorschek, T.: Empirical Evidence in Global Software
Engineering: A Systematic Review. Journal of Empirical Software Engineering 15(1),
91–118 (2010)

4. Balajiand, S., Brown, S.A.: Strategic IS Sourcing and Dynamic Capabilities: Bridging the
Gap. In: Proc. of the 38th Hawaii Int. Conf. on Systems Sciences (HICSS) — Track 8,
p. 260. IEEE CS Press (2005)

5. Ramasubbu, N., Cataldo, M., Balan, R.K., Herbsleb, J.D.: Configuring global software
teams: a multi-company analysis of project productivity, quality, and profits. In:
Proceedings of the 33rd International Conference on Software Engineering (ICSE 2011),
pp. 261–270 (2011)

6. Cataldo, M., Herbsleb, J.: Socio-Technical Congruence: A Framework for Assessing the
Impact of Technical and Work Dependencies on Software Development Productivity. In:
Proceedings of the Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM 2008), pp. 2–11 (2008)

7. Lings, B., Lundell, B., Ågerfalk, P.J., Fitzgerald, B.: A reference model for successful
Distributed Development of Software Systems. In: Proceedings of the 2nd International
Conference on Global Software Engineering (ICGSE), Munich, Germany, pp. 27–30
(2007)

8. Avritzer, A., Paulish, D., Cai, Y.: Coordination Implications of Software Architecture in a
Global Software Development Project. In: Proceedings of the Seventh Working IEEE/IFIP
Conference on Software Architecture (WICSA), pp. 107–116 (2008)

9. Conway, M.: How do Committees Invent? Datamation 14, 28–31 (1968)
10. Herbsleb, J.D., Mockus, A.: An empirical study of speed and communication in globally

distributed software development. IEEE Transactions on Software Engineering 29(6),
481–494 (2003)

11. de Souza, C., Froehlich, J., Dourish, P.: Seeking the Source: Software Source Code as a
Social and Technical Artifact. In: Proceedings of the International ACM SIGGROUP
Conference on Supporting Group Work, pp. 197–206 (2005)

12. Mack, N., MacQueen, C.W.K.M., Guest, G., Namey, E.: Qualitative Research Methods: a
data collector’s field guide. Family Health International (2005)

13. Kotlarsky, J., van Fenema, P.C., Willcocks, L.P.: Developing a knowledge-based
perspective on coordination: The case of global software projects. Inf. Management 45(2),
96–108 (2008)

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 203–217, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Providing Training in GSD
by Using a Virtual Environment

Miguel J. Monasor, Aurora Vizcaíno, and Mario Piattini

Alarcos Research Group, Institute of Information Technologies & Systems,
Escuela Superior de Informática, University of Castilla-La Mancha,

Paseo de la Universidad 4,
13071, Ciudad Real, Spain

MiguelJ.Monasor@gmail.com,
{Aurora.Vizcaino,Mario.Piattini}@uclm.es

Abstract. In Global Software Development (GSD) the human factor is one of
the main assets for the companies. Their efficiency in communication and
collaboration, as well as their knowledge of the processes applied in GSD, can
lead the companies to be more competitive.

Participants require knowing the customs and culture of other participants.
Moreover they need to improve their social and interpersonal competencies
such as: negotiation, teamwork, conflict resolution, time management,
leadership, and communication skills using a common language.

In this paper we present a simulation-based approach for training GSD with
which users can train by interacting with Virtual Agents which play a role in the
development process. These Virtual Agents textually interact with users by
means of a chat by simulating being people with different personalities,
experiences, skills and culture.

The lessons learned in a feasibility study carried out with a group of
practitioners and PhD students are also analyzed in this paper.

Keywords: Global Software Development, Engineering Education, Educational
Environment, Teaching Model, Virtual Agents.

1 Introduction

In Global Software Development (GSD) the human factor is one of the main assets
for the organizations [1]. Their productivity, the effective use of communication and
collaboration tools and their knowledge of the processes can lead the companies to be
more efficient than their competitors [2]. Because face-to-face contact is restricted in
GSD, human relations and attitudes towards distant participants become a key factor.

Therefore, participants must not only focus on technical aspects, but also in social
and interpersonal and intercultural competencies such as: negotiation skills, teamwork
skills, conflict resolution, time management skills, leadership, decisions making,
reasoning skills, knowledge of communication protocols and customs, communication
skills using a common terminology in a second language, ability to motivate others and

204 M.J. Monasor, A. Vizcaíno, and M. Piattini

create trust, information management, ambiguity and uncertainty management and
knowledge of tools and processes used in GSD [3, 4].

Personality dimensions such as extroversion, anxiety, self-control, sensitivity,
independence, emotional stability, reasoning or dominance also influence in software
activities success [2, 5].

In terms of cultural boundaries, there is also a need for cultural understanding and
sensitivity. Participants require knowing the customs and culture of other project
members, as this factor significantly influence the performance and quality of their
work [6]. For instance, in some cultures participants tend to not to speak during team
meetings until invited to do so, because it would be considered impolite in their
culture. Therefore, a software engineer should be trained to detect what problems can
arise in this type of development and for instance to know how to confront situations
to kindly encourage such participants to discuss a certain issue.

On the other hand, English is used more and more in international collaboration,
gaining importance in applied linguistics research given the challenges for non-native
speakers. Lack of fluency is a common problem which produces hesitancy or delay
[7]. Native speakers have a natural tendency to assume facts that can negatively affect
the project and eventually damage the team relationships. However, non-native
speakers must improve their language proficiency and learn common expressions that
could allow them to participate in a more dynamic way.

Our goal is to help software engineers (practitioners or students) to develop all
these skills necessary for GSD. Thus, first of all we carried out a systematic literature
review [4] were we found that the main difficulty for providing an adequate training
on these skills consists of setting up realistic settings that could allow the students to
tackle representative problems. Therefore, the current educational programs rarely
organize collaborative activities with other institutions, because of scheduling
differences and coordination problems [8].

To tackle that problem we propose a simulation-based approach for training some
of the problems that often take place in GSD. Therefore, users can train at any
moment by interacting with Virtual Agents which play a role in the software
development process. These Virtual Agents interact textually with user by means of a
chat by simulating being people with different personalities, experiences, skills and
culture. In this way, it is possible to design rigorous training scenarios for dealing
with specific problems and skills required in GSD.

The architecture of the simulator is integrated into an e-learning platform and it has
also been designed to ease the design of the simulation scenarios. The definition of
the simulation scenarios is based on a metadata language defined for this purpose.
The scenarios designer permits to drag and drop the different phases in which the
simulation is composed by defining a sequential workflow that will guide the
conversation. Each phase contains the conversational knowledge required for such
specific context as well as cultural and linguistic rules that will allow correcting the
users’ interactions by means of a special virtual agent called virtual colleague that will
help the users during the simulation.

The execution engine is responsible for interpreting the defined information and
executing the different phases of the conversation within the time limit. For that

 Providing Training in GSD by Using a Virtual Environment 205

purpose it uses a chatbot system that responds to the users. The students’ goal is to
confront situations in which they could appreciate typical problems, detecting cultural
differences and trying to obtain as much information as possible during the
conversation, as well as minimizing the cultural and language errors made during the
interaction.

Other advantages of the proposal are that it provides an independent and controlled
training, the rapid reception of feedback by means of the virtual colleague, the rigor
of the training in cultural issues and the reduction of the instructors’ effort.

A feasibility study was carried out in a presentation of the tool that served to
analyze the first impressions of experts of multinational companies as well as of a set
of PhD students that provided feedback to improve several aspects of the architecture
and the training scenarios.

This paper is organized as follows: Section 2 explains the context of this research.
The influence of personal aspects in GSD is explained in Section 3. The proposal in
which is focused this work is detailed in Section 4. Section 5 provides an example of
its use. Finally, Section 6 provides some concluding remarks and future work.

2 Context of Current Research

In the context of our research, the main focus is around the influence of social factors
and cultural and linguistic differences in GSD. According to a systematic literature
review on the field of teaching and training GSD [4], the strategies that have been
applied in academic courses, mainly consists of replicating the conditions of real
environments by collaborating in software developments with other universities [9].
GloSE-Lab [8] is an example including theory and practice in collaboration with
distant universities.

The main problems of these approaches are given by the difficulty of creating
settings that suits the teaching goals of each university, which moreover, can have
different schedules. The lack of knowledge and experience in the development of big
projects, the unequal workload of the participants, communication problems and
conflicts among partners are common problems.

Blended learning environments [10] and e-Learning platforms [11] are commonly
used in these approaches in order to facilitate the collaboration among students from
distant universities, while other approaches are focused on games and simulation,
placing the users in scenarios in which they have to cope with specific problems of
GSD. As the context of our research is in this last field, the following subsection
details the related state-of-the-art.

A. Games and Simulation

Learning happens most easily when the students actually need the knowledge of how
to do something for a reason. Feedback reception is an important factor to enhance
knowledge and skills of the student [12]. Games and simulation have been applied in
many fields of software engineering because these approaches are among the most
motivating for the students.

206 M.J. Monasor, A. Vizcaíno, and M. Piattini

An example of on game-based approaches is IT Billionaire [13]; a turn based board
game designed to teach dynamics of GSD in order to discover the many variables
involved in these environments. The players must attempt to become billionaire by
running a company that applies GSD. However these kinds of approaches are limited
to develop a reduced set of skills mainly related to management tasks.

In terms of simulation, the SESAM project [14] is a representative example
intended for investigating and comparing different strategies for software
development. Students use a textual interface in which they read and type text for
training in project management activities.

M. Samejima et. al [15] address situation-dependent scenarios, in this case for
simulating project management activities, specifically covering generation of
scenarios for the progress management phase.

The use of augmented spaces like iBistro [10], based on the ‘learning by doing’
approach are also used as a way to enable distributed members to collaborate during
the development so that can be used to learn project management, software
development and social skills.

Social aspects are a key factor for improving the development process [2], and in
this field, M. Yilmaz and R. V. O'Connor [16] propose a framework for modeling
development activities, serving for the research of several social issues in software
development, such as team formations, interpersonal conflicts or social loafing.

In a related vein, C. Pelachaud [17] has worked on behavior expressivity,
presenting an affective embodied conversational agent which is able to display
communicative and emotional signals. Expressive qualifiers are used to modulate the
expressivity of lip movement [18].

An embodied conversational agent is presented by M. Kavakli et. al [19] with the
aim of counseling neglected aborigines in Australia, who have problems of poverty
and disease as a consequence of past neglect and torture. The agent plays the role of
sociologist in advising on strategies to overcome their addiction to alcohol problems.
It can also represent protocols to express social relations between humans.

In the field of GSD, [20] explores the interaction with avatar-based humans in
virtual collaborative projects, in order to train collaboration skills and intercultural
competences. Configurable avatars are also used in Teamlink [21]; a collaborative 3D
virtual environment conceived to support icebreaking activities with the aim of
establishing trust between virtual team members.

B. Teaching Cultural Aspects

GSD is recognized as a sociotechnical activity in which cultural play an important
role. Practitioners cannot ignore the impact of cultural diversity and the barriers and
problems it can create [22]. Educators must prepare the students, at undergraduate and
postgraduate level to tackle the problems in these environments, paying special
attention to the impact in computer mediated communication, which is particularly
affected by this aspect [23].

Many organizations try to minimize this impact by implementing strategies in
order to foster an organizational culture trying to set up a set of norms, values,
objectives and beliefs that are touch to their members [23]. However, many aspects of
the national culture are difficult to change, and participants must learn to understand

 Providing Training in GSD by Using a Virtual Environment 207

each other character, philosophy and mindset [24]. The following authors propose
different ways in which to classify cultural aspects:

- Hofstede [25]: defines a classification focused on the values and culture of
computer professionals, considering five value dimensions in which countries
differ: power distance, uncertainty avoidance individualism/collectivism,
masculinity/femininity and long-term/short-term orientation.

- House et al. [26]: is a more recent classification focusing on culture and
leadership in 61 nations, defining the following dimension: uncertainty avoidance,
power distance, societal collectivism, in-group collectivism, gender
egalitarianism, assertiveness, future orientation, performance orientation and
humane orientation. The first six dimensions have their origins in the Hofstede
dimensions.

- Trompenaars and Hampden-Turner [27]: compare culture to an onion made up
of layers that can be peeled to be understood. They outline seven dimensions of
culture: universalism versus particularism, individualism versus
communitarianism, “specific” versus diffuse, affective versus neutral, achievement
versus ascription, sequential versus synchronic, internal versus external control.

- Hall [28]: for whom culture is equated to communication, which is made up of
three elements: words, material things and behavior. He defined seven relevant
concepts to study national and corporate culture: speed of messages, context,
space, time, information flow, action chains and interfacing.

By considering these dimensions it is possible to quantify the probability that certain
cultural patterns could occur during the interaction, and this may serve to focus the
training for confronting specific patterns. As an example, E. MacGregor et. al [29]
present a set of cultural patterns in GSD: yes (but no) pattern, proxy pattern, we’ll-
take-you-literally (anti) pattern, we’re-one-single-team (anti) pattern, the-customer-is-
king (anti) pattern.

For example the “Yes (but no) pattern” consists in the fact that individuals in some
cultures tend to respond requests by saying “yes”. As a consequence, problems may
appear if the person who made the request trusts in that false answer. In order to
minimize the problems that these kinds of patterns can cause, software engineers must
receive a rigorous training by considering their culture.

3 Influence of Personal Aspects and Skills in GSD

Personal aspects play an important role in GSD, due to the fact that people make
decisions by mixing feelings and logic in a different degree depending on their values,
knowledge and personality [30]. As an example, extrovert people tend to pay
attention on the external environment, while introverts are more focused on the
internal environment when taking decisions [31].

Some studies have found that virtual team performance was directly related to
leadership and interpersonal dimensions, which are influenced by personality and
psychology factors [32]. Moreover, factors such as personality or charisma of an
individual can also affect the overall team performance [33].

208 M.J. Monasor, A. Vizcaíno, and M. Piattini

These factors are closely influenced by the participants culture, as well as their age,
gender, experience and region, and the team size [33]. Moreover these attitudes
directly affect colleagues’ satisfaction, effectiveness and performance, all the more
when the practitioner is in a position that requires leadership abilities. Extroverted
behaviors, for example, tend to result in higher frequency of communication through
electronic messages and an increase in the team performance [34]. In [35] it was
found that high levels of positive personal traits, such as helpfulness and
agreeableness increased team performance satisfaction.

GSD involves high requirements for communication and collaboration between its
practitioners in a common language. Fluency is also a problem which produces
misinterpretations, hesitancy or delay [22]. Native speakers have a natural tendency to
assume facts that can affect negatively in project. These attitudes can lead to the loss
of pertinent information and eventually damaging the team relationships being
necessary to train the skills that allow to minimize these problems and also to deal
with them when they occur.

Instant messaging, mail, phone, and video conferencing systems are the main
media for both formal and informal communication in GSD [36], so it is necessary to
have additional skills in their use in order to build trust and social relationships with
co-workers by considering the characteristics of each communication mean. The aim
of this proposal consists on providing training in instant messaging and mail
communication considering some of the aforementioned personal factors.

4 VENTURE

The aim of this research work is to define a tool for providing training in same of the
skills required in GSD, considering cultural and personal factors that can influence the
development process. VENTURE (Virtual ENvironment for Training cUlture and
language problems in global softwaRe dEvelopment) is intended to cover some of the
following aspects in the training of the skills required in GSD:

The chat simulator would make it possible to create simulations with which to
achieve the following:

1. Creating awareness of the different kinds of cultures and the problems that may
appear during textual interactions.

- Showing the typical language mistakes of the people from a particular
culture.

- Showing the different gestures, customs and behaviors of people from
other cultures that could be misunderstood.

- Showing ways in which to ask questions in an appropriate manner.
- Using direct/indirect communicative style.
- Using formal and informal communication skills.

2. Promoting skills for the development of relationships based on cultural diversity
- Identifying issues that may cause conflict.
- Showing tips to assist in reacting towards certain actions or to answer

specific questions.

 Providing Training in GSD by Using a Virtual Environment 209

- Teaching strategies by which to eliminate bias and discrimination. For
instance avoiding the usage of sexist words.

- Showing ways in which to establish a dynamic conversation.
3. Training the proper use of a second language

- Ability to effectively communicate with multidisciplinary members using
the same terminology.

- Minimizing language mistakes and teaching structures to allow people to
communicate in an effective manner.

4. Developing teamwork skills
- Leadership and decisions making skills.
- Time management skills.
- Showing how to develop mutual trust and confidence.
- Knowledge of negotiation skills.
- Management of ambiguity and uncertainty.
- Conflict resolution skills and critical reasoning skills.

VENTURE provides a platform in which users will acquire practice in these aspects
by means of simulation. Users will confront common situations in which they could
appreciate the problems of interacting in the distance with people with different
personalities, experiences, skills and culture. For achieving this it uses Virtual Agents
(VAs) playing a specific role in the Software Engineering process, as a mean to
simulate any kind GSD scenario. These VAs are characterized by a specific culture
and personality, and will textually interact with the student. Moreover, during the
interactions, a Virtual Colleague (VC) will guide the user to address the simulation,
giving advice and correcting the inappropriate interactions.

This section shows the main components of VENTURE (see Fig. 1), which follows
a client-server architecture. An e-learning application is the core of the server side and
is made up of the following components:

Resource repository (1): in which both the theoretical lessons and the simulators and
artifacts are made available to the students.
Task area (2): which serves to control and schedule the practical activities. The
students can also upload deliverables in this area.
Forum and wiki module (3, 4): through which students and instructors can keep in
touch.
Evaluation area (5): in which students can do exams, fill in questionnaires, and
review the evaluation and the instructor’s comments for these activities.

Pedagogical Module

The Pedagogical Module (6) stores all the theoretical contents in the field of teaching
GSD training and is structured with reference to the following knowledge areas:
software requirements, software design, software construction, software testing,
software quality, software maintenance, configuration management, software
engineering management and software engineering process.

The difference between this module and the Resource Repository is that the latter
contains the general contents that are available to all the students. The Pedagogical
module also contains the different strategies needed to train specific skills according
to the needs of each student.

210 M.J. Monasor, A. Vizcaíno, and M. Piattini

Fig. 1. VENTURE Architecture

Cultural Problems

The cultural problems database (7) contains the cultural rules that can be used in the
simulations and which train cultural problems that might affect communication in
GSD scenarios. They consist of VTRML (VenTuRe Markup Language) structures; a
language specifically defined for VENTURE, containing the rules for each phase of
the simulation as well as the necessary metadata required for the execution engine for
the simulation.

Language Problems

The language problems database (8) contains the linguistic problems that may appear
when participants interact textually using a non-native language. As in the previous
case, the structures that serve to train these problems are defined in VTRML, and can be
used in any simulator through their inclusion its definition by means of a wizard. The
linguistic rules are classified by the kind of problem that they deal with and include any
relevant information that may be useful for correcting the students’ actions.

The information contained in both the cultural database and the linguistic
database is managed by the Rules Editor interface (9), which is made available to the
instructors through its cultural management module (10) and language management
module (11).

Skills Required in GSD

The skills required in GSD are stored in the database (12) which contains best
practices in the form of VTRML structures, as in the case of the cultural and language
problems. This knowledge is classified into the following skills that they are intended
to train.

 Providing Training in GSD by Using a Virtual Environment 211

VAs Profile Database

The VA profile (13) contains the information regarding the virtual characters involved
in the training scenarios, and defines their appearance and gestures. This is used to
teach users how they should understand and react to different customs during a
conversation. The VA profile management module (14) permits these profiles to be
maintained so that new characters can be included or existing ones can be modified.

Workflow Engine

The Workflow Engine (15) is responsible for executing the scenarios by interpreting
the definition of the workflows, and orchestrating the corresponding phases. This
engine interprets the VTRML definition of the workflows by extracting the
conversational knowledge, together with the linguistic and cultural rules defined. This
process is carried out by the transformation unit (17).

The conversational knowledge embedded in the workflow is defined in AIML
language [37], which is interpreted by the chatbot system (18), in the case of
synchronous interactions, and by the Email analyzer (19), in the case of dealing with
asynchronous interactions.

The login unit (16) makes it possible to save the log of the conversation so that the
instructor can evaluate it later.

Evaluation Unit

The Evaluation unit (20) gathers information about the course of the simulations in
order to provide an evaluation that would serve to determine what skills a student
must improve.

Workflow Designer

The Workflow Designer (21) allows the virtual meetings to be defined and customized
in a graphical manner. The virtual meetings are thus designed as sequential
workflows made up of a set of phases containing the specifics details of the
conversation for each phase. Based on these graphical definitions, the definition of the
meetings is automatically translated into VTRML format.
5 Simulating an Interaction

In this section a training scenario based on a real experience by members of a
company is presented. In this training scenario, a Spanish user called Alberto, plays
the role of developer and has to interact with another developer from Germany called
Georg. Georg has developed a webservice, and Alberto has (supposedly) developed
and application that have to consume that webservice. However, Alberto has
problems to consume the service because it does not follow the WSDL standard. The
task for the Alberto in this scenario consists on explaining Georg what the problem is
and what changes would be necessary in the webservice for solving the problem.

The training is intended to train the following specific skills: questions
formularization, negotiation skills, trust creation and linguistic problems in the

212 M.J. Monasor, A. Vizcaíno, and M. Piattini

context of the conversation. Before starting the simulation, the situation is explained
to Alberto, so he has an idea of how he is going to interact in order to convince
Georg, although the VC will guide him at any moment.

By attending to the cultural dimensions of House [26], for Germany and Spain, the
differences in the cultural dimensions are depicted in Table 1 (on the 1-to-7 scale,
where 1 is the lowest value of fulfillment for a dimension).

Table 1. Cultural dimensions for Germany and Spain. Summarized from [26]

House Dimensions/County Germany Spain Difference
Assertiveness 4.66 4.39 0.27

Institutional Collectivism 3.97 3.87 0.1
In-Group Collectivism 4.16 5.53 -1.37

Future Orientation 4.41 3.52 0.89
Gender Egalitarianism 3.25 3.06 0.19

Human Orientation 3.30 3.29 0.01
Performance Orientation 4.42 4.00 0.42

Power Distance 5.48 5.53 -0.05
Uncertainty Avoidance 5.35 3.95 1.4

Considering that the cultural dimensions that differ more between these two

cultures are in-group collectivism and uncertainty avoidance, Alberto must interact in
a proper manner to cover the problems that these differences can entail:

- In-group Collectivism is the degree to which a community encourages and

rewards the collective distribution of resources and collective action, including
factors such as loyalty and cohesiveness of the individuals [26]. Members of
individualistic cultures tend to be direct in their communication, expressing their
inner opinions, whereas collectivist cultures tend to be more indirect. In this
simulation Alberto will try to interact in an indirect manner, and the scenario will
be focused this. Fig. 2 show an example of a fragment of a conversation in which
Alberto interacts in a too direct way and the VC corrects him.

In this case, the VC detects a direct intervention based on the detection of the
patterns: “I need”, “you must”, “you have to”, etc. In case of detecting one of these
patterns in the context of this part of the conversation, the VC will intervene to
provide feedback. This rule is modeled in VENTURE as it follows, where the severity
value is used for evaluation purposes, indicating the penalty that will receive the user
if this rule is triggered:

<Skills type="direct-indirect style" severity="1">

<pattern>"I need *"</pattern> <!—Formulate a request in a
direct style”-->
<pattern>"You must *"</pattern>
<pattern>"You have to *"</pattern>
<template>You should try to be more indirect</template>

</Skills>

 Providing Training in GSD by Using a Virtual Environment 213

Fig. 2. Fragment of a conversation in the chat interface

- Uncertainty Avoidance is the degree to which the individuals feel ‘comfortable’ in
new situations. Individuals tend to avoid uncertainty by relying on social norms,
customs, and bureaucratic practices [26]. Individuals with high levels of uncertainty
avoidance, tend to seek more feedback than those that are more tolerant to
uncertainty, either by asking questions or observing. As Germans are less tolerant to
ambiguity, Georg could feel anxiety and stress if Alberto is not clear with his
proposal for a solution. Short-term feedback is a proactive method that Alberto
should apply to avoid these feelings. Alberto should also try to minimize the
uncertainty trying to give as much information as possible, avoiding, for example,
misunderstandings or improper use of language. In the following fragment of a
conversation, Alberto commits a mistake that could cause a misunderstanding:

Alberto: Could you realize some changes in the webservice?
Virtual Colleague: “Realize” is a false-friend in Spanish. Do you mean to “carry
out”?
Alberto: Could you carry out some changes in the webservice?
Virtual Colleague: You should try to be more polite using “please”
Alberto: Please, could you carry out some changes in the webservice?

In this case, a language rule has been triggered in order to correct a false-friend
mistake. Moreover, in the same conversation, the VC has also detected that the
formulation of a question has been too direct without using the word “please”. These
rules are modeled as it follows in VENTURE:

214 M.J. Monasor, A. Vizcaíno, and M. Piattini

<LanguageProblem type="false friend" severity="2">
<pattern>realize</pattern> <!--Incorrect use of the word
"realize"-->
<template>“Realize” is a false-friend in Spanish. Do you mean to
“carry out”?</template>

 </LanguageProblem>

<Skills type="politeness" severity="3">
<pattern>"!please + ?"</pattern> <!—Formulate a question without
“please”-->
<template>You should try to be more polite using
“please”</template>

 </Skills>

The VA (Georg) can also commit mistakes during his interaction, so that Alberto
must receive a certain training of what he can confront in this sense. In the following
example, the VC warns him about that mistake:

Georg: I have not become any request on my webservice.
Virtual Colleague: Note that he has incorrectly used the word “become”, when he
wanted to say “received”.

In this case “become” is a false-friend, related to the german word “bekommen”,
which means “to get or receive”. So Alberto must know how to manage the
uncertainty that generates this kind of answer. The training scenario can be designed
to detect the word “become” in this specific context of the conversation and teach the
problem to the user. Moreover, the text introduced by the user is automatically
checked by a spelling dictionary which will provide him feedback in case of
committing grammatical errors.

6 Conclusions and Future Work

In this work we present a training environment for providing rigorous training in the
skills required in GSD activities. A feasibility evaluation of VENTURE, was carried
out by four experienced members of multinational companies, that provided insights
for improving some aspects of the environment. After presenting them the
environment, they were interviewed about their perception with regard to the use of
the environment in their companies, its usefulness, and its usability from the students’
and instructors’ perspectives.

They all agreed that it could be useful in their companies and that are interested in
using it, although they remarked that the time available for training in their companies
is quite limited. Two responders stated that one of the main difficulties that
companies usually encounter when organizing training courses is related to the
difficulty in finding experts and the time needed to develop these courses. For these
reasons they believed that the use of a simulator was a good idea, because these
problems might be avoided. The flexibility that would make it possible to improve the
training scenarios was also well valued.

 Providing Training in GSD by Using a Virtual Environment 215

The future work will be mainly focused on the evaluation of the environment. Our
preliminary planning includes testing our approach on various experimental settings
in which students, engineers and conference participants will be invited to participate
in order to provide feedback about the perceived usability, motivation and adequacy
of the scenarios. We are therefore preparing surveys and structured interviews with
the following goals:

Validation goal 1: effectiveness and efficiency of VENTURE. The effectiveness
and efficiency can be determined by analyzing the data gathered during the
simulations, and the correction of deliverables after the simulation.
Validation goal 2: evaluation of the degree of adaptability of VENTURE to
different cultures, languages and training goals.

Finally, we are also planning to carry out experiments with students at universities in
Spain, Ireland, Mexico and Germany so that we could compare their performance
with other students of the same characteristics that have not used this simulation tool.
Therefore, several scenarios must be designed to train students of these different
cultures considering specific goals in their training. For this purpose, we will also
count with the experience of professionals that will guide us to provide realistic
training scenarios based on real cases.

Acknowledgments. This work has been funded by the PEGASO/MAGO project
(Ministerio de Ciencia e Innovación MICINN and Fondos FEDER, TIN2009-13718-
C02-01). It is also supported by ENGLOBAS (PII2I09-0147-8235), funded by the
Consejería de Educación y Ciencia (Junta de Comunidades de Castilla-La Mancha),
and co-funded by Fondos FEDER and ORIGIN (IDI-2010043 (1-5)) funded by CDTI
and FEDER, as well as GlOBALIA (PEII11-0291-5274), Consejería de Educación y
Ciencia, Junta de Comunidades de Castilla-La Mancha.

References

1. Monasor, M.J., Piattini, M., Vizcaíno, A.: Challenges and Improvements in Distributed
Software Development: A Systematic Review. Advances in Software Engineering 2009,
1–16 (2009)

2. Acuna, S.T., Juristo, N., Moreno, A.M., Mon, A.: A Software Process Model Handbook
for Incorporating People’s Capabilities. Springer-Verlag New York, Inc. (2005)

3. Guzmán, J.G., Ramos, J.S., Seco, A.A., Esteban, A.S.: How to get mature global virtual
teams: a framework to improve team process management in distributed software teams.
Software Quality Control 18(4), 409–435 (2010)

4. Monasor, M.J., Vizcaíno, A., Piattini, M., Caballero, I.: Preparing students and engineers
for Global Software Development: A Systematic Review. In: International Conference on
Global Software Development (ICGSE 2010), August 23-26, pp. 177–186. IEEE
Computer Society, Princeton (2010)

5. Acuna, S.T., Juristo, N., Moreno, A.M.: Emphasizing Human Capabilities in Software
Development. IEEE Softw. 23(2), 94–101 (2006)

216 M.J. Monasor, A. Vizcaíno, and M. Piattini

6. Abufardeh, S., Magel, K.: The impact of global software cultural and linguistic aspects on
Global Software Development process (GSD): Issues and challenges. In: 4th International
conference On New Trends in Information Science and Service Science (NISS), Gyeongju,
South Korea, pp. 133–138 (2010)

7. Bordyuk, L.: Linguistic and culture-specific factors for professional success. In:
Proceedings of the 7th International Conference The Experience of Designing and
Application of CAD Systems in Microelectronics, CADSM 2003, February 18-22, pp.
530–532 (2003)

8. Deitersy, C., Herrmannz, C., Hildebrandtz, R., Knauss, E., Kuhrmannx, M., Rauschy, A.,
et al.: GloSE-Lab: Teaching Global Software Engineering. In: International Conference on
Global Software Engineering (ICGSE), Helsinki, Findland, pp. 156–160 (2011)

9. Clear, T.: Replicating an ‘Onshore’ Capstone Computing Project in a ‘Farshore’ Setting –
an Experience Report. In: International Conference on Global Software Engineering
(ICGSE), Helsinki, Findland, pp. 161–165 (2011)

10. Braun, A., Dutoit, A.H., Harrer, A.G., Brüge, B.: iBistro: A Learning Environment for
Knowledge Construction in Distributed Software Engineering Courses. In: Proceedings of
the Ninth Asia-Pacific Software Engineering Conference, p. 197. IEEE Computer Society,
Gold Coast (2002)

11. Swigger, K., Aplaslan, F.N., Lopez, V., Brazile, R., Dafoulas, G., Serce, F.C.: Structural
factors that affect global software development learning team performance. In:
Proceedings of the Special Interest Group on Management Information System’s 47th
Annual Conference on Computer Personnel Research, pp. 187–196. ACM, Limerick
(2009)

12. Mandl-Striegnitz, P.: How to successfully use software project simulation for educating
software project managers. In: Proceedings of the Frontiers in Education Conference, 2001
on 31st Annual, vol. 11, pp. T2D-19–T2D-24. IEEE Computer Society (2001)

13. van Solingen, R., Dullemond, K., van Gameren, B.: Evaluating the Effectiveness of Board
Game Usage to Teach GSE Dynamics. In: International Conference on Global Software
Engineering (ICGSE), Helsinki, Findland, pp. 166–175 (2011)

14. Drappa, A., Ludewig, J.: Simulation in software engineering training. In: Proceedings of
the 22nd International Conference on Software Engineering, pp. 199–208. ACM, Limerick
(2000)

15. Iwai, K., Akiyoshi, M., Samejima, M., Morihisa, H.: A Situation-Dependent Scenario
Generation Framework for Project Management Skill-up Simulator. In: 6th International
Conference on Software and Data Technologies, Seville, Spain, pp. 408–412 (2011)

16. Yilmaz, M., O’Connor, R.V.: An Approach for Improving the Social Aspects of the
Software Development Process by Using a Game Theoretic Perspective. In: 6th
International Conference on Software and Data Technologies, Seville, Spain, pp. 35–40
(2011)

17. Pelachaud, C.: Studies on gesture expressivity for a virtual agent. Speech Commun. 51(7),
630–639 (2009)

18. Bevacqua, E., Pelachaud, C.: Expressive audio-visual speech: Research Articles. Comput
Animat Virtual Worlds 15(3-4), 297–304 (2004)

19. Kavakli, M., Rudra, T., Li, M.: An Embodied Conversational Agent for Counselling
Aborigines. In: 6th International Conference on Software and Data Technologies, Seville,
Spain, pp. 371–376 (2011)

20. Corder, D., U-Mackay, A.: Integrating Second Life to enhance global intercultural
collaboration projects. ACM Inroads 1(3), 43–50 (2010)

 Providing Training in GSD by Using a Virtual Environment 217

21. Clear, T., Daniels, M.: 2D & 3D Introductory Processes in Virtual Groups. In: 33rd
ASEE/IEEE Frontiers in Education Conference, November 5-8, pp. S1F1–S1F6. IEEE,
Boulder (2003)

22. Parvathanathan, K., Chakrabarti, A., Patil, P.P., Sen, S., Sharma, N., Johng, Y.: Global
Development and Delivery in Practice: Experiences of the IBM Rational India Lab. IBM
Press (2007)

23. Casey, V.: Imparting the importance of culture to global software development. ACM
Inroads 1(3), 51–57 (2011)

24. Hall, W.: Managing Cultures: Making Strategic Relationships Work, 1st edn. John Wiley
& Sons (1996)

25. Hofstede, G., Hofstede, G.J.: Cultures and organizations: software of the mind, 2nd edn.,
New York, USA (2005)

26. House, R.J., Hanges, P.J., Javidan, M., Dorfman, P., Gupta, V.: Culture, Leadership, and
Organizations: The GLOBE Study of 62 Societies. Sage Publications, Thousand Oaks
(2004)

27. Trompenaars, A., Hampden-Turner, C.: Riding the waves of culture: understanding
cultural diversity in global business. McGraw Hill (1998)

28. Hall, E.T.: Beyond Culture. Anchor Press (1976)
29. MacGregor, E., Hsieh, Y., Kruchten, P.: Cultural patterns in software process mishaps:

incidents in global projects. In: Proceedings of the 2005 Workshop on Human and Social
Factors of Software Engineering, pp. 1–5. ACM, St. Louis (2005)

30. Cunha, A.D.D., Greathead, D.: Does personality matter?: an analysis of code-review
ability. Commun. ACM 50(5), 109–112 (2007)

31. Capretz, L.F.: Personality types in software engineering. Int. J. Hum.-Comput. Stud. 58(2),
207–214 (2003)

32. Tsai, M.-T., Huang, Y.-C.: Exploratory learning and new product performance: The
moderating role of cognitive skills and environmental uncertainty. The Journal of High
Technology Management Research 19(2), 83–93 (2008)

33. Strang, K.D.: Leadership substitutes and personality impact on time and quality in virtual
new product development projects. Project Management Journal 42(1), 73–90 (2010)

34. Yoo, Y., Alavi, M.: Emergent leadership in virtual teams: what do emergent leaders do?
Information and Organization 14(1), 27–58 (2004)

35. Kayworth, T.R., Leidner, D.E.: Leadership Effectiveness in Global Virtual Teams. J.
Manage. Inf. Syst. 18(3), 7–40 (2002)

36. Dittrich, Y., Giuffrida, R.: Exploring the Role of Instant Messaging in a Global Software
Development Project. International Conference on Global Software Engineering (ICGSE),
Helsinki, Findland, pp. 103–112 (2011)

37. Wallace, R.S.: The Anatomy of A.L.I.C.E. In: Netherlands, S. (ed.) Parsing the Turing
Test, pp. 181–210 (2008)

Improving IT Service Desk and Service
Management Processes in Finnish Tax

Administration: A Case Study
on Service Engineering

Marko Jäntti

University of Eastern Finland, School of Computing
P.O. Box 1627, 70211, Kuopio, Finland

marko.jantti@uef.fi

Abstract. Due to success of IT service management frameworks, the
service desk function and the incident management process are improve-
ment targets of high priority for many IT companies at the moment. The
main goal of the incident management process is to restore normal ser-
vice operation as quickly as possible. The research problem of this study
is: How service engineering processes and service desk can be improved
by using ITIL-based best practices? The main contribution of this paper
is to 1) describe the phases of a study that focused on improving ser-
vice desk and incident management process from IT service management
perspective and 2) provide lessons learnt from the study. The case study
was carried out with a single case: Finnish Tax Administration.

Keywords: IT service management, incident management, ITIL,
process.

1 Introduction

A service desk is a very important function for IT service companies. It handles
incidents (hardware and software failures), service requests, complaints, feedback
and requests for change reported by customers and users. Therefore, the service
desk is a crucial part of the IT service provider’s customer interface. Many
IT service provider organizations are using IT Infrastructure Library (ITIL) to
increase the quality of IT service support and to improve the service engineering
processes. ITIL is the most widely used IT service management framework. ITIL
best practices are used by thousands of IT organizations worldwide [1].

IT service management can be defined as “implementation and management
of quality IT services that meet the needs of the business” [2]. IT companies may
provide various types of IT services, such as application services, server services,
data center services, desk top services, help desk services, data network services,
and hardware lifecycle services. IT service management is performed by IT ser-
vice providers through an appropriate mix of people, process and information
technology.

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 218–232, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Case Study on Service Engineering 219

The ITIL framework consists of best practices and guidelines that can be
used to improve IT service desk function and related processes. First, the goal
is to establish a service desk that acts as a single point of contact by recording
and classifying every support request from customers and users. These support
requests are stored into a IT service management system. Second, the goal is
to keep the customers and users informed. This means that they should receive
incident confirmation receipts, enough information on the progress of incident
resolutions and on services that are available for customers. Third, the goal is to
establish clear escalation procedures that enable service desk workers to escalate
and assign cases to other teams, such as second level support, field support teams
or third-party service providers.

1.1 Related Work

Currently, there are many frameworks and standards that can be used to improve
IT service management processes:

– IT Infrastructure Library version 2 [3], version 3 [1], edition 2011 [4]
– Control Objectives for IT and related Technology (COBIT) framework [5]
– Capability Maturity Model Integration (CMMI) for Services [6]
– IT Service Capability Maturity Model [7]
– ISO/IEC 20000-1:2005 Part 1: Specification for service management [8]
– ISO/IEC 20000-1:2005 Part 2: Code of practice for service management [9].
– ISO/IEC FDIS 20000-1:2010 Part 1: Service management system require-

ments [10]
– ISO/IEC TR 20000-3:2009 Part 3: Guidance for the scoping and applicability

of ISO/IEC 20000-1 [11].

In this paper, we focus on the improvement of service desk function and the in-
cident management process. Academic studies that deal with customer support
can be classified into traditional customer support studies that use a term ’help
desk’ and service management studies that use a term ’service desk’. According
to ITIL service support, the service desk extends the services that a traditional
help desk provides [12]. Help desk studies have focused, for example, on examin-
ing the role of help desk in the strategic management of information systems [13],
knowledge management-centric help desk [14], evolution of a knowledge manage-
ment system in the help desk [15] and building IT help desk in the university
environment [16].

The number of academic IT service management studies is rapidly increasing.
Previous studies on IT service management have dealt with benefits of imple-
mentation of service-oriented IT management [17], creating taxonomy for ITIL
processes [18], creating a maturity model for implementing ITIL v3 [19], and suc-
cess factors in implementing IT service management [20,21]. Meziani and Saleh
[22] have presented results of process maturity self-assessment in a government
agency. Zhang et al. [23] have explored ITIL process integration architecture
in the context of organization environment. Moreover, Iden and Eikebrokk [24]

220 M. Jäntti

have conducted a study on conceptualization and measurements of ITIL imple-
mentation project. There are also studies that are directly related to service
management processes, such as improvement of incident management processes
based on ITIL practices [25], creating a mature problem management process
[26], service testing [27], service level management [28] and change and configu-
ration management [29]. Surprizingly few of ITSM studies have provided details
how ITIL-based process implementation has been done in government agencies
or presented feedback on ITSM trainings.

1.2 Our Contribution

This paper is related to IT service management research of the research project
Keys to IT Service Management and Effective Transition of Services (KISMET).
The main contribution of this paper is to

– describe the phases of a study that focused on improving service desk and
incident management process from IT service management perspective and

– provide lessons learnt from the study regarding processes, tools and ITSM
trainings.

Our research results might be useful for employees who are working for IT ser-
vice desk improvement (service desk managers, incident managers and customer
service managers) or overall service quality improvement (CSI managers).

The rest of the paper is organized as follows. In Section 2, the research problem
and methods are described. In Section 3, we describe the process improvement
phases. In Section 4, we provide the analysis of findings in the form of lessons
learnt. The conclusions are given in Section 5.

2 Research Methods

In this study, the research problem is: How service engineering processes and
service desk can be improved by using ITIL-based best practices? We used a
case study research method to answer the research problem. The study was
carried out with a single case organization, Finnish Tax Administration that is
a member of the university’s research project.

The case study approach was selected for the research method because it
suits well for studying service engineering processes that are linked to a complex
organizational context; a jungle of IT teams, software products, services and
suppliers. A case study is “a research strategy which focuses on understanding
the dynamics present with single settings” [30]. It can also be defined as "an
empirical inquiry that investigates a contemporary phenomenon within its real-
life context" [31]. Research settings consists of three main elements: research
problem, research methods and research data. Figure 1 describes the research
settings of this case study.

The research problem was further divided into following research questions
that provided a roadmap for the case study:

A Case Study on Service Engineering 221

Fig. 1. The research settings of the case study

– What is the current status of the service desk tool and the incident manage-
ment process?

– What types of challenges are related to service desk operations (Service desk
and incident management)?

– How support requests should be classified and ITSM concepts integrated to
the service desk?

– Which interfaces do service desk and incident management have?
– How IT service management trainings for service desk people should be

conducted?
– What does Continual Service Improvement mean for service desk?

2.1 The Case Organization and Data Collection Methods

Our case organization is the Information System Management unit of Finnish
Tax Administration that provides IT services (e.g. desktop services, service desk)
to the tax administration staff. Regarding the case selection, Tax Administra-
tion was a representative case of a government agency with service desk tool
development and ITIL-based process improvement. The organization had 5336
fulltime employees in 2010. The service desk improvement project had started
in the organization in the end of 2010.

The user support services unit is responsible for the support services (use
of the information technology and support services related to the management
of production environment). User support services staff manages the support
requests and service requests. User support services unit cooperates with other
groups of the Information System Management, such as application support,
infrastructure support and e-service support. Customers and users can use two
main service channels (phone, service desk system) while submitting support
requests to the service desk. User instruction documents are maintained in the
intranet. Service desk is open for customers and users during the office hours
(8.00-16.15). The following sources of evidence were used in data collection:

– Documentation (process descriptions, user support metrics, service desk
system user manual, service descriptions, service area catalogue, event

222 M. Jäntti

management process description, error handling process description, change
plan template)

– Archives and records (service categories, incident records, service request
records, problem records, change records)

– Participative observation (weekly meetings, informal coffee table discussions,
email discussions)

– ITSM trainings for user support staff (70 persons, September 2011)
– Physical artifacts (access to the organization’s intranet and service desk sys-

tem).

2.2 Data Analysis

Eisenhardt [30] reports that there are two main approaches that can be used
to analyze the case study data: a case comparison analysis and a within-case
analysis. The within case analysis focuses on examining cases carefully as stand-
alone entities before making any generalizations. The purpose of the within-case
analysis is to carry out a detailed level investigation in a case, for exa-ple, by
creating a case study write-up that describes the behavior of the case. The cross-
case analysis aims to search cross-case patterns and is suitable for multiple case
studies.

In this study, a within-case analysis technique was used. Process improve-
ment events were organized into chronological order according to the phases of
KISMET model. Researcher triangulation (three researchers) was used both in
data collection and in data analysis. Case study findings were validated in weekly
meeting with the case organization’s representatives. A summary report on the
process improvement work was created and submitted to the case organization.

3 Improving Service Desk and Service Management
Processes

The service desk process improvement with Finnish Tax Administration was
based on KISMET (Keys to IT Service Management Excellence Technique)
model. The model consists of the following seven phases: 1) Create a process
improvement infrastructure, 2) Perform a process assessment, 3) Plan process
improvement actions 4) Improve/Implement the process based on ITSM prac-
tices, 5) Deploy and introduce the process, 6) Evaluate process improvement and
7) Continuous process/service improvement.

3.1 Create a Process Improvement Infrastructure

Create a process improvement infrastructure phase includes the following steps:
motivate the business decision makers to ITSM, define business goals for ITSM
process improvement, select an improvement target and identify stakeholders
that participate in the process improvement.

A Case Study on Service Engineering 223

The goals for the improvement were discussed in the meeting of March 2011
between the research team and a service manager of the case organization. The
goals were discussed again in August 2011. The first goal was to improve the
service desk tool to match the IT service management requirements. To achieve
this goal, the plan of KISMET research team was to carry out reviews for service
categories, data fields, incident and problem records. The aim was to find out
whether employees use the properties of IT service management tool effectively.
The second goal was to improve and optimize the service support processes
(incident and problem management). Especially, the interface between incident
management, problem management and change management needed clarifica-
tion. The third goal was to explore continual service improvement activities and
organize a CSI workshop.

NDAs were signed, as usually, in industrial cases by research team members
and access to the case organization’s facilities was granted to two researchers.
Researchers received a PC that enabled access to the organization’s intranet,
email and office applications. Additionally, researchers had access to the IT ser-
vice management tool.

Stakeholders that would participate in the process improvement from the
case organization’s side were partly familiar to the research team, mainly service
managers representing various IT services of the organization. We were also told
that we could participate an informal Friday morning coffee table meetings with
user support service staff.

3.2 Identify the Current State of the Processes

The Perform a process assessment phase includes steps, such as perform a pro-
cess assessment for a selected ITSM process, document the challenges and diffi-
culties in the current state of the process, identify the key concepts regarding the
process, study how tools support the process and benchmark the process with
ITIL best practices and ISO 20 000 requirements. This phase was carried out
by multiple researchers and using various types of data sources, such as partici-
pative observation, organization’s internal documentation, intranet, service desk
records, and discussions with service managers and user support team members
both in process improvement meetings and in coffee table.

The following strengths were observed during the phase. First, the selected
service desk tool seemed to support well the IT service management and ITIL-
based process improvement. Second, the case organization had put a lot of efforts
on automatization of service requests. There were many electronic service request
forms in daily use. The forms were connected to the service management sys-
tem. Third, we observed that service desk roles and responsibilities had been
well described and implemented in practise. Fourth, incident management ac-
tivities had been described in the incident management process description and
they seemed to match IT service management concepts. Fifth, service desk as a
single point of contact seemed to be a common and a clear goal in the organiza-
tion. Finally, the tool improvement team seemed to have a good knowhow how to

224 M. Jäntti

configure the service desk system. This observation was based on the discussions
with a member of the tool team.

The following improvement targets were observed during the phase. The list
is not exhaustive.

– Classification of support requests in the service desk requires clarification
(both from customer’s and service desk worker’s viewpoint).

– Identification of repeating incidents from the service desk system.
– Employees have problems to understand differences between ITIL concepts.
– The interface between incident management and problem management.
– Improvement ideas regarding IT services and processes should be recorded

systematically into the service desk system.

3.3 Plan Process Improvement Actions

The Plan process improvement actions phase includes the following steps:
Analyze the identified challenges, plan improvement actions, and validate the
challenges and improvement actions. This phase focused on defining the process
improvement actions based on the identified challenges and bottlenecks. For each
improvement target, we documented the solution and the business benefit why
it is important to resolve challenge.

– Challenge: Classification of support requests requires clarification. Solu-
tion: Clarify the options in ’Reason for Contact Request’ field of the incident
record. Make the difference between service requests and incidents visible.
Service area and the type of of support requests should be different fields.
Remove the classification option from customers and simplify the submis-
sion of support requests. Business benefit: Handling of the support request
shall be faster. Service area can be used also in the problem records and inci-
dent records. Submitting support requests becomes easier for customers and
users. The number of phone calls from customers and users shall decrease as
they use the service desk system to report support requests.

– Challenge: It is difficult to identify repeating incidents from the service
desk system. Solution: Mark the repeating incidents (for example, create
an additional ’check box’ type data field to an incident record: Repeating
incident = x). Use the ’Relate Cases’ function to establish relationships be-
tween similar cases. Create a problem record based on a repeating incident.
Business benefit: Identification and reporting of repeating incidents shall
be easier. Finding the root cause and solution for repeating incidents shall
decrease the support request volume.

– Challenge: Employees do not understand differences between some ITIL
terms. Solution: Collect 10 examples of each term. The service desk should
separate service requests from incidents. Business benefit: Service requests
are routine requests and handling of them is easier and faster than handling
of incidents. In the future, there might be different SLAs for incidents and
service requests.

A Case Study on Service Engineering 225

– Challenge: Interface between incident and problem management should
be defined. Solution: Create and use a problem record. Establish a simple
problem management procedure. Business benefit: Recording systematic
incidents as problem records provides a way to identify the root cause of
incidents. Proactive problem management enables monitoring trends (which
services or products have caused the most incidents)

– Challenge: Improvement ideas regarding IT services and processes should
be recorded systematically into the service desk system. Solution: Create a
CSI model. Assign improvement suggestions to change management. Busi-
ness benefit: Management of improvement suggestions shall become more
systematic. This ensures that each suggestion receives attention and review.

3.4 Improve/Implement the Process Based on ITSM Practices

The Improve/Implement the process based on ITSM practices phase includes
for example, the following steps: Define and document a) the process goals, b)
benefits that a process provides customers and IT organization’s business, c) key
concepts, d) roles and responsibilities, e) actions, f) metrics and g) relationships
to other ITSM processes; improve tools that are used in the process and establish
a process manager role if it does not exist yet.

The case organization already had a good description of the incident man-
agement process. Thus, improvement of the support processes was started from
classification. There was a dropdown menu field Reason for the service desk con-
tact in the incident record. We divided the contact categories according to ITIL
concepts: incident (error and failure reports), service request (request for user
rights, request for advice, request for reporting, request for examining, request
for update, order, other service request), feedback, improvement suggestion and
formal complaint. A member of the service desk tool improvement team told
us that they removed ´’problem’ from the list of contact reasons because some
service desk workers started to log incidents as problems.

We continued the improvement of classification by proposing a new service
area classification that could be used in the classification of incidents, service
requests, problems and requests for change. The new, proposed service area was
presented to the case organization’s representatives that reviewed service areas
and created a new version of service areas. In order to show differences between
ITIL concepts (incidents, service requests, problems, requests for change), we
collected ten examples of each concept. That was a really good exercise because
researchers learned a lot of provided services and found good material for IT
service management trainings.

While examining the interface between incident and problem management,
the research team started to develop a simple model for problem management.
For example, the following guidelines were created for opening and creating a
problem record: A problem record can be opened by using two different ways: a)
Select from the menu Create problem b) Create a problem based on an existing
incident record by clicking the link Create problem in the incident record. Thus,
incident basic information shall be transferred to the problem record. One should

226 M. Jäntti

not define a customer field as a mandatory field because a service desk specialist
must be able to record the problem without a customer’s incident report.

Regarding problem management, the representatative of the tool improvement
team reported that they had to remove terms ’problem’ and ’request for change’
from the categories of the service desk case because service desk workers had
logged incidents as problems. Additionally, the following questions were posed
for the researchers that acted as ITIL consults: what is the difference between a
support request and a problem in practice, how a problem should recorded in the
system, how configuration items should be categorized and how a service desk
worker can convert the incident to the RFC? The final improvement target was
continual service improvement. The research team organized a CSI workshop
where a CSI process model was presented to the case organization. We shall
discuss the model more detailed in our further paper.

3.5 Deploy and Introduce Processes

This phase includes the following steps: Deploy an ITSM process with a pilot
group, create work instructions how to perform the process in practice, motivate
the workers to ITSM, increase the ITSM awareness in the organization through
training, organize ITSM workshops to clarify ITSM process interfaces. In this
phase, the representatives of case organization asked whether the research team
could organize ITSM trainings for Tax Administration employees. Instead of one
large training event, the research team organized seven small ITSM awareness
events (1 hour, 6-10 user support service workers in each event) and Basics of
IT service Support (3 hour each event).

3.6 Evaluate Process Improvement

This phase involces collecting feedback regarding an improved process, tools and
training, conducting fine-tuning if necessary, and deployment the processes to
other organizational units or services. Regarding ITSM trainings, the research
team collected the following comments:

– English ITIL terms seemed to be weird many years, now they look clearer
– Service desk workers should see the big picture behind the things; whether

a single ticket is related to a large group of incidents.
– Until these days, we have thought that these improvement frameworks are

only for managers.
– How other organizations use ITIL?
– We should start thinking about the ITSM certification courses.
– ITIL framework looks very complicated, like a blueprint of a nuclear plant.
– All support groups do not use automatic alert function that submits an email

message when a new ticket has arrived.
– It would be nice if user support staff could send information on repeating

incidents to process managers.
– The large number of support groups is a problem.

A Case Study on Service Engineering 227

– Is it possible to conduct parallel handling for the tasks of an incident?
– Who is responsible for change management in the IS management unit?

In the feedback form, we asked how useful employees considered the ITSM aware-
ness training by using 1 to 5 scale (1 =completely useless, 5= very valuable for
daily work). We received 28/70 responses. The average score was 3.46. We also
received free form feedback from participants that indicated that training had
included concrete examples, participants had liked the face-to-face training, em-
ployees were interested in getting more training, and the timing for training had
been good. In the end of the evaluation phase, we organized an end meeting
of the study where the case organization gave feedback for the whole process
improvement. They mentioned that the study helped the organization especially
identifying connections between processes and increase the employee’s awareness
of ITSM processes and concepts.

3.7 Continuous Process/Service Improvement

Continuous process improvement phase includes, for example, the following steps:
Conduct process reviews frequently, identify and report process improvement
ideas or process-related problems to a process manager or the Continuous Ser-
vice Improvement process and plan and implement improvement actions.

The interface between CSI and service desk means in practice monitoring, mea-
surement and reporting capabilities for service desk function and incident man-
agement process. Additionally, CSI organizes reviews for the service desk service,
systems and processes and analyzes improvement suggestions. According to our
findings, the service desk and incident management metrics included incident
throughput time, speed of ticket creation, ticket volume, average ticket resolution
time, tickets by service channel(phone, email), and customer satisfaction.

4 Analysis

In the analysis phase of this study, we summarized case study findings in the
form of lesson learned. A source for each lesson is presented in parentheses (AR=
Archives and records, D= Documentation, ID= Interviews and discussions, O=
Observation, PA= physical artefacts, ST= Seminars and trainings organized by
the research group).

Lesson 1: Reserve time for informal discussions between ITIL consults
and employees (Phase 1: ID, O). Informal discussions with user support
team members turned out to be very valuable data collection method during the
study. The reseach team participated, for example, in weekly coffee table meet-
ings. These discussions worked as ice-breaking sessions and resulted in important
information about the current state of the tools and processes. Discussions re-
vealed that some of the workers were afraid of learning ITIL best practices. This
observation put us to make big changes in ITSM training material.

228 M. Jäntti

Lesson 2: The classification of service desk cases is one of the key chal-
lenges in service desk (Phase 2: AR, PA, ID). The classification activity
of the incident management has been a bottleneck or a challenge for many IT
service provider companies. We started the improvement of classification by ex-
ploring service areas and ensuring that a service desk can create service requests,
incidents, problems and RFCs and relate these to service areas. We observed that
a service request term had been used in a different meaning than in ITIL and
there were many request types that were clearly subcategories of service requests.
Therefore, we proposed that incidents and service requests would be visible in
the Reason for contact field’s categories, for example, Order - Service request.

Lesson 3: Define clear escalation rules for the service desk (Phase 2:
O, ID, DO). We observed that one should clarify the rules of escalating cases
to other support levels. The application support team is responsible for handling
application-related support cases and providing advice on applications. They had
reported that they receive incidents and service requests that would be possible
to solve on the first level support (service desk). The hardware technology group
had reported the same issue that the service desk assigns the cases too easily for
them. One had suggested that a case should be assigned to the hardware tech-
nology group not until one has identified that the case is a problem (according
to ITIL).

Lesson 4: Identification of repeating incidents creates a natural bridge
between incident management and problem management (Phase 3 and
4: O, ID). The interface between incident management and problem manage-
ment has been among the most discussed challenges in ITIL implementation
projects. Incident management and problem management have completely dif-
ferent goals. The main objective of incident management is to resolve incidents
(unplanned interruptions to IT services) reported by customers and users as soon
as possible while problem management aims to find a root cause for incidents.
Thus, the speed of problem solving is not the issue in problem management. Af-
ter employees have understood the basic meaning of incidents and problems, it
is easy to train them that repeating incidents (also called systematic incidents)
are potential problems.

Lesson 5: Create a problem management culture to the service desk
(Phase 4: ID, ST). Based on the discussions between user support service
workers and the member of the tool improvement team, we observed that the
employees are not familiar with the problem management process that aims to
create proactive customer support. We decided to create a draft problem record
for trainings in order to show that there is a place for problem records and a
simple instructions how to create them.

Lesson 6: Do not forget event management while improving service
desk (Phase 4: O, ID, D, AR). Events are automatic alerts caused by the IT
infrastructure. Event Management provides mechanisms for early detection of
incidents [32]. The event management process includes the filtering step where
a support engineer decides whether to assign the event to an ITSM tool or to

A Case Study on Service Engineering 229

ignore it. We almost forgot to define the interface between incident management
and event management. We received very good and tough questions from event
management people.

Lesson 7: IT service management trainings should be tailored by us-
ing practical examples (Phase 5: ST, O). Before this study, we had always
started trainings with the same old picture of ITIL framework. After some infor-
mal discussions with user support staff, we decided to hide the ITIL framework
from our slides and started training by explaining what are the services and
motivating why IT service management is a good thing both from an organiza-
tion’s and employee’s career perspective. We felt that this was a good solution.
Additionally, we added a lot of organization-related examples to the training
material instead of classic ITIL training examples. Finally, we removed all the
ITIL abbreviations and translated the English terms in Finnish.

Lesson 8: Conduct ITSM trainings in small groups (Phase 5 and 6:
ST). The research team considered important that trainings are organized in
small groups and a trainer has a face-to-face contact to audience in awareness
level trainings. Thus, employees feel more comfortable to ask questions. However,
this required a lot of travelling in our case but we received good feedback. The
trainer also decided not to sit in the front of the class but in the same row withi
audience to create a feeling that a trainer is a part of the group.

Lesson 9: Use CSFs, KPIs and metrics as a basis of a process measure-
ment program (Phase 4 and 7: D, ID, ST). Regarding Continual Service
Improvement, we observed that critical success factors, key performance indica-
tors and metrics provide a good basis to establish process measurement program.
The case organization had defined several service desk metrics and created re-
ports based on metrics. However, these metrics needed to be linked to critical
success factors and key performance indicators. Defining these three elements
creates the bridge between business goals and operational measurements.

Lesson 10: Define the interface between Continual Service Improve-
ment and service desk and incident management (Phase 4 and 7: ST,
D, ID). The interface between Continual Service Improvement and service desk
and incident management means in practice that a service desk collects improve-
ment suggestions from customers, creates improvement suggestions regarding the
service desk and the incident management process, tools and people. CSI is also
responsible for reviewing service desk as a service.

Both the case organization and the research team were satisfied with the
case study results. This paper enables the research team to share ITSM process
improvement experiences with other companies.

5 Conclusions

The research problem in this study was: How service engineering processes and
service desk can be improved by using ITIL-based best practices? The main

230 M. Jäntti

contribution of this study was to describe the phases of a study that focused
on improving service desk and incident management process from IT service
management perspective and provide lessons learnt from the study regarding
processes, tools and people. The unit of analysis in the case study was a govern-
ment agency, an IS management unit of the Finnish Tax Administration.

We used a phased approach (KISMET technique) with seven phases for IT ser-
vice process improvement. The improvement focused on 1) classification of cus-
tomer support requests 2) clarifying the interfaces of the incident management
process, especially with problem, change, and event management, 3)increasing
the employee’s awareness of ITSM concepts and processes and 4) exploring CSI
actitivies and organizing a CSI workshop.

This study included the following limitations. First, we used a single case
structure in our study. Thus, the generalization of the results might be weaker
compared to multiple case studies and quantitative studies. In order to increase
the quality of the case study, we used the principles of data collection presented
by Yin [31]: 1) using multiple sources of evidence, 2) creating a case study
database and 3) maintaining a chain of evidence. This study provided us impor-
tant feedback on ITSM trainings, valuable observations on process interfaces.
Second, we could have had discussions with the employees from other service ar-
eas, such as hardware technology groups of Tax Administration. Unfortunately,
the lack of time was a limiting factor. Third, due to research project, we had easy
access to the case organization. Every project member receives certain amount
of time for process improvement. Thus, the case was not randomly selected.

To conclude, more case studies are needed to examine interfaces between IT
service management processes. Further work could focus on creating and vali-
dating a Continuous Service Improvement model in IT service provider organi-
zations.

Acknowledgment. This paper is based on research in Keys to IT Service
Management and Effective Transition of Services (KISMET) project funded by
the National Technology Agency TEKES (no. 70035/10), European Regional
Development Fund (ERDF), and industrial partners.

References

1. Office of Government Commerce: ITIL Service Strategy. The Stationary Office, UK
(2007)

2. Office of Government Commerce: ITIL Continual Service Improvement. The Sta-
tionary Office, UK (2007)

3. OGC: ITIL Service Support. The Stationary Office, UK (2002)
4. Cabinet Office: ITIL Service Strategy. The Stationary Office, UK (2011)
5. COBIT 4.1: Control Objectives for Information and related Technology: COBIT

4.1. IT Governance Institute (2007)
6. Software Engineering Institute: CMMI for Services: Initial Draft. Carnegie Mellon

University (2006)

A Case Study on Service Engineering 231

7. Niessinka, F., Clerca, V., Tijdinka, T., van Vliet, H.: The it service capability
maturity model version 1.0. CIBIT Consultants&Vrije Universiteit (2005)

8. ISO/IEC 20000: IT Service Management, Part 1: Specification for service manage-
ment. ISO/IEC JTC1/SC7 Secretariat (2005)

9. ISO/IEC 20000: IT Service Management, Part 2: Code of practice for service man-
agement. ISO/IEC JTC1/SC7 Secretariat (2005)

10. ISO/IEC: ISO/IEC FDIS 20000:1. ISO/IEC JTC 1 Secretariat: ANSI (2010)
11. ISO/IEC: ISO/IEC TR 20000-3 Information Technology - Service Management

- Guidance on scope definition and applicability of ISO/IEC 20000-1. ISO/IEC
JTC1/SC7 Secretariat (2010)

12. Office of Government Commerce: ITIL Service Delivery. The Stationary Office, UK
(2002)

13. Marcella, R., Middleton, I.: The role of the help desk in the strategic management
of information systems. OCLC Systems & Services 12(4), 4–19 (1996)

14. Gonzalez, L.M., Giachetti, R.E., Ramirez, G.: Knowledge management-centric help
desk: specification and performance evaluation. Decis. Support Syst. 40(2), 389–405
(2005)

15. Halverson, C.A., Erickson, T., Ackerman, M.S.: Behind the help desk: evolution
of a knowledge management system in a large organization. In: Proceedings of the
2004 ACM Conference on Computer Supported Cooperative Work, CSCW 2004,
pp. 304–313. ACM, New York (2004)

16. Evans, K., Jones, W.T.: Building an it help desk: from zero to hero. In: SIGUCCS
2005: Proceedings of the 33rd Annual ACM SIGUCCS Conference on User Services,
pp. 68–74. ACM, New York (2005)

17. Hochstein, A., Zarnekow, R., Brenner, W.: Itil as common practice reference
model for it service management: Formal assessment and implications for prac-
tice. In: EEE 2005: Proceedings of the 2005 IEEE International Conference on
e-Technology, e-Commerce and e-Service, pp. 704–710. IEEE Computer Society,
Washington, DC (2005)

18. Brenner, M.: Classifying itil processes; a taxonomy under tool support aspects. In:
The First IEEE/IFIP International Workshop on Business-Driven IT Management,
BDIM 2006, pp. 19–28 (2006)

19. de Sousa Pereira, R., da Silva, M.: A maturity model for implementing itil v3. In:
2010 6th World Congress on Services (SERVICES-1), pp. 399–406 (2010)

20. Tan, W.G., Cater-Steel, A., Toleman, M.: Implementing it service management: A
case study focussing on critical success factors. Journal of Computer Information
Systems 50(2) (2009)

21. Pollard, C., Cater-Steel, A.: Justifications, strategies, and critical success factors
in successful itil implementations in u.s. and australian companies: An exploratory
study. Information Systems Management 26(2), 164–175 (2009)

22. Meziani, R., Saleh, I.: e-government: Itil-based service management case study. In:
Proceedings of the 12th International Conference on Information Integration and
Web-based Applications & Services, IIWAS 2010, pp. 509–516. ACM, New
York (2010)

23. Zhang, S., Ding, Z., Zong, Y.: Itil process integration in the context of organization
environment. In: 2009 WRI World Congress on Computer Science and Information
Engineering, vol. 7, pp. 682–686 (2009)

24. Iden, J., Eikebrokk, T.R.: Understanding the itil implementation project: Concep-
tualization and measurements. In: Proceedings of 2011 22nd International Work-
shop on Database and Expert Systems Applications. IEEE, Washington, DC (2011)

232 M. Jäntti

25. Jäntti, M.: Lessons Learnt from the Improvement of Customer Support Processes:
A Case Study on Incident Management. In: Bomarius, F., Oivo, M., Jaring, P.,
Abrahamsson, P. (eds.) PROFES 2009. LNBIP, vol. 32, pp. 317–331. Springer,
Heidelberg (2009)

26. Kajko-Mattsson, M.: Problem management maturity within corrective mainte-
nance. Journal of Software Maintenance 14(3), 197–227 (2002)

27. Jantti, M., Kujala, T.: Exploring a testing during maintenance process from it
service provider’s perspective. In: 2011 5th International Conference on New Trends
in Information Science and Service Science (NISS), vol. 2, pp. 318–323 (2011)

28. Kajko-Mattsson, M., Ahnlund, C., Lundberg, E.: Cm3: Service level agreement. In:
ICSM 2004: Proceedings of the 20th IEEE International Conference on Software
Maintenance, pp. 432–436. IEEE Computer Society, Washington, DC (2004)

29. Ward, C., Aggarwal, V., Buco, M., Olsson, E., Weinberger, S.: Integrated change
and configuration management. IBM Syst. J. 46, 459–478 (2006)

30. Eisenhardt, K.: Building theories from case study research. Academy of Manage-
ment Review 14, 532–550 (1989)

31. Yin, R.: Case Study Research: Design and Methods. Sage Publishing, Beverly Hills
(1994)

32. Office of Government Commerce: ITIL Service Operation. The Stationary Office,
UK (2007)

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 233–247, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Experiences from Establishing Knowledge Management
in a Joint Research Project

Sebastian Meyer1, Anna Averbakh1, Torsten Ronneberger2, and Kurt Schneider1

1 Software Engineering Group, Leibniz Universität Hannover
Welfengarten 1, 30167 Hannover, Germany
{sebastian.meyer,anna.averbakh,

kurt.schneider}@inf.uni-hannover.de
2 Audi AG

85045 Ingolstadt
torsten.ronneberger@audi.de

Abstract. Joint research projects are create new knowledge and lessons learned
from experience. A research project with several partners is a challenging envi-
ronment for systematic reuse of knowledge and experience. Knowledge man-
agement is often considered overhead, with several tasks added to the workload
of the project. This overhead can become overwhelming, since partners from
academia and industry have different backgrounds, and may associate different
goals and priorities with the project. Industry partners tend to follow strict secu-
rity guidelines that hamper experience exchange. An extension of project dura-
tion is not possible in many publicly funded joint projects. In this paper, we
describe our experiences from the initial phase of a major German joint re-
search project with partners from academia and industry. We describe the
applied techniques and the lessons learned during the first year the project. We
derive conclusions and provide suggestions how to introduce knowledge and
experience management in similar projects.

Keywords: experience report, case study, joint research project, knowledge
management, experience lifecycle.

1 Introduction

Over the last years, research and development (R&D) has become more and more
important in Germany. Funding for R&D rose from 20.2 billion EUR in 1982 to 62.2
billon EUR in 2007. Building up researching experience is an important factor in
global competition.

Research initiatives usually consist of several smaller research projects. Because of
innovative content and the different participants with different knowledge back-
grounds, these are very complex projects [1]. This complexity poses a great challenge
to project management. As knowledge is one of the most valuable results and assets
of a research project, knowledge and experience management is needed to support
knowledge generation, transfer and application throughout all organizational and
procedural solutions.

234 S. Meyer et al.

An ideal process for col
them accessible again is d
Figure 1. In this model ex
they are made accessible a
leads to new experience, sta

Fig. 1

In this paper, we show
search project. We evaluate
and derive lessons learned t

The paper is structured a
racteristics of a joint resear
Chapter 3 relates our findi
performance project as a ca
tiation of the experience lif
and the appropriateness of
experience made during the
learned during the project a
management in similar join
and give an outlook to furth

2 Joint Research P

2.1 Project Managemen

A joint research project is
demia and industry. In the
specializations and from di
fined research goal. They a
have different R&D metho
well as disciplines. To effec
be minimized to assure effe
minimize knowledge differ
agree on a project schedu
during the whole project, o
infrastructure. It is typically

llecting and storing knowledge or experiences and mak
denominated by the experience lifecycle [2] as shown
xperiences are collected, structured and stored. After
and can be activated to help in the future. This, of cou
arting a new iteration of the lifecycle.

. Experience Lifecycle as described in [2]

an instantiation of the experience lifecycle in a joint
e the experiences made during the first year of the proj
to take into account for a better instantiation.
as follows: Chapter 2 gives an overview of the general c
rch project and the challenges for knowledge managem
ings to existing literature. In chapter 4, we present th
ase study for a joint research project and show our inst
fecycle. After this, we give an evaluation of the usefuln
the chosen result in chapter 5. The evaluation is based

e first year of the project. Chapter 6 summarizes the less
and presents recommendations for establishing knowle
nt research projects. We discuss our findings in chapte
her work in this area.

Projects

nt Characteristics

one frequently used option to close the gap between a
majority of cases, scientists and developers with vari

ifferent organizations are working together towards a
are distributed across different sites. Project members of
odologies. They may even stem from different domains
ctively work as a project team, knowledge differences m
ective work during the project. Additional time is needed
rences. That is often neglected or forgotten when partn
le. Project management must, therefore, adapt schedu

opening opportunities for team building and installation
y also distributed among different organizations.

king
n in
this

urse,

re-
oject

cha-
ment.
he e
tan-
ness
d on
sons
edge
er 7

aca-
ious
de-

ften
s as

must
d to
ners
ules
n of

 Experiences from Establishing Knowledge Management in a Joint Research Project 235

Another essential characteristic of a joint research project are the different goals of
each project partner. While the overall goal of the project is commonly agreed upon in
the project description, each partner can strive after one or more sub-goals, aligned to
their overall business. Although project management is in charge of overseeing the
agreed goals, partners can distribute their manpower in order to achieve their own
high priority sub-goals. Sometimes, reaching a sub-goal conflicts with working to-
wards overall project goals.

2.2 Challenges in Knowledge and Experience Management

Having knowledge in a specific domain is an important competitive advantage. On
the one hand, working together successfully in a joint research project depends on
knowledge exchange between all contributors. On the other hand, sharing of know-
ledge with possible competitors or contractors is a fine-grained, often difficult process
with many constraints and restrictions. Thus, a fundamental task of knowledge man-
agement in joint research projects is to motivate all knowledge carriers to share their
knowledge in the context of the project and create the awareness for knowledge as a
common resource in the project. Of course, this needs to be supported by the project
partner organizations. They need to create a friendly knowledge-sharing environment,
even among competitors and contractors working in the same project. There is an
obvious tension.

Sharing organizational knowledge among all team members is a popular starting
point for creating such an environment. Organizational knowledge can be project
plans, competencies and roles of the project members, and contact information. This
knowledge should already be in place when the project starts. It is not a competitive
advantage, and it can send a signal that sharing knowledge freely is a basic concept of
the project.

A much more difficult process is to level the different knowledge backgrounds. To
establish a common ground of understanding, it is often necessary for different project
members to share their competitive knowledge. As stated above, this is a critical case,
since knowledge equals business value for most of the organizations.

At last, it is the function of knowledge management to encourage externalization of
tacit knowledge so that the created knowledge will not be lost after the end of the
project. Since knowledge management is not the main task for the project members, it
is often seen as overhead work for which little time is dedicated.

3 Related Work

Knowledge Management in General. Original research on knowledge management
is numerous. Polanyi [3] and Nonaka [4] coined the terms tacit and explicit know-
ledge. Tacit knowledge, like insights or intuitions, dwells in human mind and is hard
to convey to others. Explicit knowledge can be expressed and shared in documents.
The key to successful knowledge management is finding a way to transform tacit into
explicit knowledge. Academia and industry have tried to implement tacit and explicit
knowledge transfer. A well-known concept is the Experience Broker introduced by
Ericsson [5]. An Experience Broker acts as communicator over projects providing

236 S. Meyer et al.

support to other project members. Wenger [6] introduced communities of practice as a
social approach to knowledge management and organizational learning. A fundamen-
tal work on knowledge and experience management is the Experience Factory by
Basili [7]. An experience factory is a separate “logical and/or physical organization
that supports project developments by analyzing all kinds of experience, acting as a
repository for such experience, and supplying that experience to various projects on
demand” [7]. These experiences are stored. The knowledge management initiative in
the presented case study has been set up according to the Experience Factory concept.

Knowledge Management in Cooperative Projects. Nonaka et al. define a funda-
mental model (SECI) of a knowledge life cycle in an inter-organizational context,
including a combination step, i.e. engineering explicit knowledge into more structured
knowledge [8]. This model is a basis to our contribution. Jolly [9] and Soekijad [10]
discuss decision and knowledge sharing problems in joint ventures but without giving
a pragmatic solution. Trust between (R&D) cooperation partners as an important fac-
tor for knowledge sharing has been reported by Inkpen and Curall [11] as well as by
Caloghirou et.al. [12]. Concerns of being dependent on the knowledge of joint venture
partners are also discussed [13], though giving no implications for project manage-
ment. Examining research joint ventures, Revilla proposed a taxonomy for knowledge
management processes in such a setting [14]. It differentiates types of shared know-
ledge generated by the research joint venture. It is a conceptual framework and does
not consider project management challenges in relation to knowledge management.
Bhandar [15] describes how opportunity, motivation and ability can address conflicts
like different business interests in collaborative projects and improve knowledge con-
tribution and assimilation. He does not mention technical knowledge management
challenges in joint ventures. Kastelli [16] mentions negative influence of rivalry and
opportunism on organizational knowledge creation in cooperative R&D projects not
giving solutions.

Experience Reports. In the past decade, a lot of experience reports on experience and
knowledge management initiatives were published [17], [18], [19], [20], [21], [22],
[23] in the field of software engineering. They describe company-wide and success-
ful implementations, providing recommendations on how to success in this initiative.
Akhavan [24] reports of an unsuccessful knowledge management initiative, mention-
ing problems like lack of cooperation and knowledge culture, absence of time and an
unsuitable infrastructure. This was a company-wide initiative having different reasons
for failing and conclusions. It does not give recommendations how to solve these
shortcomings. Bass et al. [25] present experiences from a cooperative project on
creating a knowledge base. This contribution concentrates on people- and communi-
cation-related aspects of distributed software development and does not consider hin-
drances to the knowledge life cycle.

To distinguish from related work, our experience report presents challenges in
conducting a knowledge management initiative in a cooperative research project with
industrial and academic partners. We present lessons learned on technical, social and
content-related knowledge management problems. From these lessons learned we
derive concrete and practical recommendations for similar project settings.

 Experiences from Establish

4 Case Study

The following chapter desc
Lifecycle on a concrete pr
section of this chapter. Bas
tiate the Experience Lifecyc

4.1 Project Description

The e performance project
academic partners with du
search innovative concepts
to a complete vehicle. Acco
GmbH (AEV), Rheinisch-W
Bosch Engineering GmbH
know-how in the field of e
competencies and specific
and in the area of electro m
together and have been ap
concept for an electric car.

The e performance proje
electric car can be analyzed
selves are organizational un
work packages is encourag
agility denotes the operatio
independency gives the WP
the various concepts of veh
In spite of the agile approa
basic phases: conception, d
tion/testing. Afterwards, th
vehicle demonstrator to pre

Fig. 2

ing Knowledge Management in a Joint Research Project

cribes our instantiation of the abovementioned Experie
roject. We describe the e performance project in the f
ed on the project, we will show how we planned to inst
cle in the first instance.

n

t is a joint research project that consists of industrial
uration of three years. The goals of the project are to

to electrify the power train and to get the implication it
ording to this, AUDI AG (Audi), Audi Electronics Vent
Westfälische Technische Hochschule Aachen (RWTH)

(BEG) cooperate to achieve these goals and to estab
electro mobility. These distributed partners have differ
experience in the development of conventional vehic

mobility. These various characteristics have been brou
pplied to the goals of the project and to get an integra

ect is structured so that the characteristic components of
d in the work packages (WPs) separately. The WPs the
nits. They operate in parallel to each other. Agility ins

ged to create the innovative concept ideas. In this cont
on of the teams without general process guidelines. T
Ps room for creativity. Different WPs can work togethe
hicle components more easily in a distributed environm
ach, the developed concepts must pass through predefi
development/calculation, construction, production, integ
he tested electric car concepts is assembled to a comp
esent an integrated solution based on individual solutions

2. Structure of the e performance project

237

ence
first
tan-

and
re-

has
ture
and
lish
rent
cles
ught
ated

f an
em-
side
text,
This
er at
ent.
ined
gra-
lete
s.

238 S. Meyer et al.

The project structure is
management and WP 9 doc
stantial work about the dev
management is assigned to
age coordinates the overall
integration concepts of the c

4.2 Instantiation of Lif

Figure 3 shows our knowl
rience Lifecycle. A Wiki s
used an integrated System b
storage to implement our in
and already in productive
throughout this paper.

For the first iteration, we
project members is doing r
time to knowledge manage
looked at those documents
less of knowledge manage
suitable for knowledge man

• The project member lis

The project member list
his respective contact inf
the project. We used thi
for automatic notification

Fig. 3.

divided into 9 WPs as shown in Figure 2. WP 1 proj
cumentation and reporting are cross cutting units. The s

velopment phases will be made by WP 2-7. The knowle
WP 9. WP 2 complete vehicle has special role. This pa
l parallel activities of the other WPs and consolidates
complete vehicle.

fecycle Phases

edge management architecture for instantiating the Ex
system was established as a central knowledge base.
based on Jira, Confluence and a WebDAV based docum
nstantiation. This system is hosted at a project partners
 use. We will reference to it as the productive sys

e started at the collect step. Since the main objective of
research, they cannot afford to devote a lot of additio
ment. To create just minimal additional workload, we f
that are supposed to be created during the project, rega

ement. These documents were evaluated whether they
nagement. We found the following two document types:

st

t contains all project participants. It lists each person w
formation and his assignment to the organizational part
s document as a starting point for our FlowMaps [26]
ns that are described in detail later on.

. Instantiation of the Experience Lifecycle

oject
sub-
edge
ack-
the

xpe-
We

ment
site
tem

f the
onal
first
ard-
are

with
s of
and

 Experiences from Establishing Knowledge Management in a Joint Research Project 239

• Meeting protocols

To create a protocol for each project meeting is mandatory. A meeting protocol
lists all participants, discussed topics and assigned tasks during the meeting.

We used these two document types in the collect step of the experience lifecycle.
Since documents of these types have to be created independently from knowledge
management, it supports our goal to create just a minimal additional workload for the
project members. We created protocol templates to facilitate their automatic
processing.

The collected data about project organization, spatial distribution of project mem-
bers, their contact information and assigned tasks were used for the second step of the
experience lifecycle, the experience engineering. Here, the collected data has to be
prepared and structured, generating new or newly arranged data.

Our infrastructure was designed to create a ticket in an issue tracking system for
each assigned task. To add additional information (e.g. contact information) to a ticket
that is not part of the protocol, the project member list is used. Additionally to the
ticket creation, we create Wiki pages for the information that are contained in the
protocol. These pages are grouped by topic and information types (tasks, information,
etc.). People that are recognized based on the project member list, are linked to their
respective Wiki sites. This is also true for already existing topic-specific sites.

Creating a linked structure from the extracted information is one of the main
benefits gaining from using a Wiki. Since the link creation happens automatically, it
generates additional value to already existing documents, while creating minimal
additional overhead for the people.

During the active dissemination step the prepared data is actively distributed to all
interested project members. In our instantiation, this phase starts when the Wiki pages
and tickets have been created. Both systems – Wiki and issue tracking – inform ap-
propriate members about the creation of new or updated content, to help the dissemi-
nation of the generated data. Additional material like presentation slides or CAD data
is uploaded by the users to a shared project repository that is subject to access control.
While access control may be hindering knowledge distribution, it is necessary in a
joint research project to give each project partner sufficient control over their own
data. They must be able to decide what they consider sensitive information. Access to
relevant documents for the whole project is usually granted to all project members.

The last step in a complete lifecycle is the activate step. Since all collected and
reorganized data is made available in the used systems (Wiki, issue tracking system,
repository), each project member can access the needed data directly. The structuring
of the data (linking, categorization) allows filtering and sorting the amount of data
adequate for user needs, allowing a quick access to the needed information as well as
directed search.

5 Evaluation

After the described instantiation of the Experience Lifecycle, we evaluated user ac-
ceptance of the knowledge management initiative. We turned the attention to the Wiki

240 S. Meyer et al.

as central information stora
as expected. We conducted
most of them leaders of a w

Regarding the Wiki, we

• Question 1: Do you use
• Question 2: If yes, how

Fig. 4. Do you use

The survey revealed tha
Wiki once, as shown in Fig
approx. 24 % of all asked
people using the Wiki regul

To better understand wh
reasons. We then used Ope
rived three main categories
social issues and issues dir
each category and its sub-ca

5.1 Technical Issues

This category contains all i
goals, when planning the in
out adding large overhead
members. To achieve this g
their knowledge and use a
two sub-categories:

• System too slow

Project participants rated
case for the shared docu
files (e.g. CAD data).

The logon to the syste
gon performance mechan
curity mechanisms like o

yes, 17

age, since we noticed that the Wiki’s content did not gr
d a survey of 21 persons from all main project partn

working package.
asked the following questions:

the Wiki?
often do you use the Wiki?

the Wiki? Fig. 5. How often do you use the Wiki

t 17 out of 21 (approx. 81 %) users have at least used
gure 4. From these 17 people, only five (approx. 29 %,
people) used it at least weekly (Figure 5). Of course, f
larly is a ratio far too low in a research project.

hy people were not using the Wiki, we asked them for th
en Coding [27] to classify the answers. In the end, we
s of reasons from analyzing 65 answers: Technical issu
rectly related to knowledge management. We will disc
ategories in the following sections.

issues caused by technical infrastructure. One of our m
nstantiation, was to establish knowledge management w
, i.e. minimizing the additional workload for the proj

goal, the tools were supposed to support users to docum
already documented knowledge. This category consists

d the system as generally too slow. This was especially
ument repository, when working with numerous and la

em was also rated too cumbersome. This is true for the
nism and for the time needed to initialize the additional
one-time password tokens.

no, 5

row
ners,

i?

the
i.e.

five

heir
de-

ues,
cuss

main
with-
oject
ment
s of

the
arge

e lo-
l se-

 Experiences from Establishing Knowledge Management in a Joint Research Project 241

Conclusion: Users that have to work with a system they consider too slow, will
lose their interest in the system. They will start to avoid the system for smaller
tasks and only use it, when it is absolutely necessary.

• No access to system

Another technical problem is access restriction to the system. Lacking an (acti-
vated) account, users complained about not being able to access the system. Since
we implemented the infrastructure on a project partners’ productive system, clear-
ance for accounts have to be done through their clearance process.

Using a productive system makes the process of account clearance for other or-
ganizations a security relevant process. It has to be guaranteed that other internal
projects cannot be accessed. Even if there are organizational reasons for a slow re-
sponse to account applications, users only notice the missing access. To bypass the
time without a working account, they use other applications.

Conclusion: If organizational overhead for creating and clearing new accounts is
too big, users have to wait too long. They start using another system during this time
and lose interest in the original system. By the time their account is cleared, they
will be accustomed to the alternative. This may leads to an inconsistent knowledge
base, a tedious process to transfer the data, or the avoidance of the original system.

5.2 Social Issues

Social issues are triggered directly or indirectly by project members. These issues
often hinder people from completing their tasks of knowledge sharing. In our case, we
experienced the following four sub-categories of social issues:

• System is external

Establishing the knowledge management environment, we decided to use a project
partners’ productive environment to host the infrastructure. From other partner or-
ganizations’ perspectives the system is external. External systems are considered
less trustworthy compared to own systems.

An additional problem is the uncertainty of what happens to the data after the
project is finished and who will have access to which data in what format. Since
we used a proprietary system, it was not possible for external users to create a full
system backup on their own.

Conclusion: If one project partner hosts the system, at the beginning it is necessary
to clearly commit to others what happens to the data at the end of the project.
There should also be a possibility for external users to get a full backup of all data
at any time.

• System is too complex

Some users found that a system containing many sub-systems (like a Wiki, issue
tracking, etc.) is too complex, especially as these several sub-systems were not in-
tegrated. This leads to ambiguity and confusion where to put which type of data
and where to search for them.

242 S. Meyer et al.

Conclusion: If several non-integrated systems are used, there has to be a clear
guideline about the use of each system for a certain type of data.

• Not enough time

Users having not enough time are a common issue. Since knowledge management
is not their main task, they are often not able to spent additional time for it.

Conclusion: Tools and methods for knowledge management have to be designed
to avoid any additional overhead, especially those operated by users whose main
task is not knowledge management.

• Does not fit into workflow

Even if the technical infrastructure is in place and all other issues (see above) are
fixed, one limitation for productive usage stays: the inadequate workflow. In our
case, all project members used e-mails to communicate with each other and to get
informed about new content. Contrary to this, the Wiki implements a polling pat-
tern, requiring from the users to ask proactively for new content. This interrupts the
users’ workflow, restraining instead of supporting them.

An automatic e-mail notification about new content was not helpful. Many users
were notified about content that was not relevant to them. The outcome was infor-
mation overflow letting the users to ignore e-mails from this source.

Conclusion: When installing new systems to support knowledge management, e-
mails as a main component of a personal workflow should not be underestimated.
E-mail should not be misused to send irrelevant or trivial information to the users.

5.3 Issues Directly Related to Knowledge Management

This category of issues is directly related to knowledge management. Contrary to
social and technical issues, reasons for KM-related issues can usually be influenced.
We found two KM related issues in our project:

• No useful content and no need to use

These two issues depend on each other. As long as there is no enforcement to use a
certain system, just a few people will use it voluntarily. As only a few people use a
system and just a few of them add new information to the system, there will be no
useful content for most users. As a consequence, they will still not use it. Another
consequence from the lack of participation is old news remaining on the homepage
and not being updated.

Conclusion: A new system needs significant contribution from knowledge man-
agement to make it interesting for other users. Otherwise they won’t use it.

5.4 Lessons Learned

In this section, we present lessons learned from our instantiation of the Experience
Lifecycle and feedback we received from participants. For the next iteration of our
instantiation architecture, these lessons have to be taken into account:

 Experiences from Establishing Knowledge Management in a Joint Research Project 243

• Fixed productive system

Using a productive system, hosted at the site of a project partner was not an ideal
decision. Needed adaptions of the system like a special view for agendas could not
be implemented, since changing the base system could only be done after passing
internal security tests. These tests usually last longer than a month. This is far too
long for users to wait.

High security barriers around a productive system are another obstacle. They ef-
fectively prevent automation of tasks, which renders the implementation of addi-
tional tools impossible. Those tools could support low-effort knowledge work.

Conclusion: The use of productive systems for systems with unfinished or fast
changing requirements is not adequate.

• Volatile content

Since the described project is a joint research project, the documented knowledge
can be very short-lived. It may be outdated at a fast pace or should be enriched
with new findings. This leads to problems, when trying to synchronize two differ-
ent sources like documents and the Wiki.

This problem may be diminished by an automatic synchronization mechanism.
However, depending on the complexity of the synchronization and the temporal
distance between synchronizations, there may be a difference between actual data
in the reference documents and the data in the knowledge base. Having a know-
ledge base that is filled with outdated or wrong data will lead the user to lose trust
in it.

Conclusion: If reference documents for the data in the knowledge base change
regularly, all changes must be adopted to the knowledge base immediately.

• Unfamiliar Workflows

Even though we carefully inspected the workflows and habits of the project mem-
bers and optimized our tools to work with MS Office, we underestimated the im-
portance of e-mail for the users. The change from the e-mail application into
another, usually uncommon application, led to disruption of the workflow and has
been therefore done reluctantly.

Additionally to this, many users experienced knowledge management as an addi-
tional task, since it has nothing to do with their regular workflow items. This is true
for their main project task (i.e. researching) as well as for using additional tools for
knowledge management. Even if the tools look and feel similar to the commonly
used tools, they are still subtly different and may yield unexpected results.

Conclusion: Inspecting workflows, it must be considered that commonly used
tools cannot easily be replaced by similar tools that may be subtly different. E-mail
must be considered as the most important utility.

244 S. Meyer et al.

6 Recommendations for a Better Start

Based on the abovementioned lessons learned, we adjusted our instantiation of the
Experience Lifecycle to antagonize the discovered issues. This chapter describes the
adjustments and gives recommendations for similar projects.

• A tool to collect data

The choice to use meeting protocols as a data source for the knowledge base was
good, but not sufficient. We wanted project members to describe additional expe-
riences and problems made during their daily work.

We found that problems will only be documented at the time they occur. They
will not be documented afterwards. To support documentation, we created an iPad
application which is connected to our issue tracking system. As an advantage of
this solution, project members can carry the tablet with them and document prob-
lems and experiences as they go, optionally adding additional media like photo.
Since the application runs locally on the Apple iPad, this can also be done in cases
of no Wi-Fi. Lack of Wi-Fi is common in secure manufacturing areas.

Recommendation: If the documentation of problems is desired, project members
need a tool to enter the problems directly as they happen. This tool must be able to
completely capture the documentation, making it possible (but not necessary) to
rework the documentation.

• Using a version control system as project repository

After getting feedback about the shared project repository in use, we decided to
introduce the Apache Subversion version control system instead. Apart from the
automatic versioning of Subversion (which was not implemented in the old reposi-
tory), another benefit is the possibility to get a complete copy of the contained
documents at any time. The first feedback we received points to a much higher ac-
ceptance of the Apache Subversion than of the old system.

Compared to a Wiki, the ability to create linking structures between the docu-
ments is lost. As compensation, we plan to implement a novel web platform, which
will show categorized links to the documents. This should also eliminate the prob-
lem of outdated content, since the content is always contained in the reference doc-
uments and must not be transformed.

Recommendation: If the content of a knowledge base is transformed from volatile
reference documents, it is better practice to directly link to the documents and
structure the links instead.

• Better workflow integration

After getting feedback about the integration of our methods into the everyday
workflow of project members, we stopped working with similar tools and concen-
trated on supporting the tool already in place.

 Experiences from Establishing Knowledge Management in a Joint Research Project 245

Recommendation: When introducing new tools into existing workflows, it has to
be precisely checked if already existing tools can substitute the new tools. In this
case not using the ideal tool is often better. The familiarization process is then
much shorter leading to higher productivity and more satisfied project members.

7 Discussion and Outlook

In this paper we described our experience made in the first year of establishing know-
ledge management in a joint research project. In the beginning we instantiated the
Experience Lifecycle. The issues related to this instantiation were then inspected
through interviews with the project members.

We described experiences and lessons learned during this year in detail. We hope
to give similar project settings a better starting point to plan an instantiation of the
Experience Lifecycle. These are our recommendations in short:

• Do not use a productive system as a knowledge base.
• Synchronize changes in referenced documents immediately to the knowledge base.

─ If this is not possible, just link to the original documents.
• Take already established workflows into account and try to support existing tools

instead of introducing similar ones.
• Provide the possibility to document problems immediately when they occur.

From this analysis, we received a better awareness about the necessary adaption of
our Lifecycle instantiation.

To prove the usefulness of our adaptation to the needs of the users, we will have a
look at the usage pattern for this new approach. We expect the users to work more
often with the new infrastructure, since it better supports their native workflow.
Preliminary results from surveys concerning the changes indicate a much better ac-
ceptance rate.

Another area of research is structuring the data in the version control systems. For
this, we plan to use the linking categorization to the documents and extract an ontolo-
gy from them. This will help us to automatically categorize new documents as they
are uploaded to the system. It also allows us to integrate a semantic driven search
functionality for documents. Another use of the categorization is to generate compre-
hensive documentation from already existing documents.

References

1. Arranz, N., Fdez de Arroyabe, J.C.: Complex joint R&D projects: From empirical evi-
dence to managerial implications. Complexity 15, 61–70 (2009)

2. Schneider, K.: Experience and Knowledge Management in Software Engineering. Springer
(2009)

3. Polanyi, M., Sen, A.: The tacit dimension. Peter Smith Gloucester, MA (1983)

246 S. Meyer et al.

4. Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company: How Japanese Companies
Create the Dynamics of Innovation. Oxford University Press (1995)

5. Johannson, C., Hall, P., Coquard, M.: Talk to Paula and Peter - They are Experienced. In:
International Conference on Software Engineering and Knowledge Engineering (SEKE
1999), Workshop on Learning Software Organizations (1999)

6. Wenger, E.: Communities of Practice - Learning, Meaning, and Identity. Cambridge
University Press (1998)

7. Basili, V.R., Caldiera, G., Rombach, H.D.: Experience factory. Encyclopedia of software
engineering, 469–476 (1994)

8. Nonaka, I., Toyama, R., Konno, N.: SECI, Ba and Leadership: a Unified Model of Dynam-
ic Knowledge Creation. Long Range Planning 33, 5–34 (2000)

9. Jolly, D.: Sharing knowledge and decision power in Sino-foreign joint ventures. Asia Pa-
cific Business Review 9, 81–100 (2002)

10. Soekijad, M.: The competitive factor in knowledge sharing networks. Presented at the
(2002)

11. Inkpen, A.C., Currall, S.C.: The coevolution of trust, control, and learning in joint ven-
tures. Organization Science, 586–599 (2004)

12. Caloghirou, Y., Vonortas, N.S., Ioannides, S.: European collaboration in research and de-
velopment: business strategy and public policy. Edward Elgar Publishing (2004)

13. Walker, D.H.T., Johannes, D.S.: Preparing for organisational learning by HK infrastruc-
ture project joint ventures organisations. The Learning Organization 10, 106–117 (2003)

14. Revilla, E., Sarkis, J., Acosta, J.: Towards a knowledge management and learning taxono-
my for research joint ventures. Technovation 25, 1307–1316 (2005)

15. Bhandar, M.: A Framework for Knowledge Integration and Social Capital in Collaborative
Projects. Electronic Journal of Knowledge Management 8, 267–280

16. Kastelli, I.: Organisational Knowledge Creation in the Context of R & D cooperation. The
role of absorptive capacity. Knowledge Creation Diffusion Utilization (2006)

17. Thomas, H., Davenport David, W., De Long, M.C.B.: Successful Knowledge Management
Projects. Sloan Management Review (1998)

18. Jørgensen, M., Sjøberg, D.I.K., Conradi, R.: Reuse of software development experience at
Telenor Telecom Software. In: European Software Process Improvement Conference (Eu-
roSPI 1998), Gothenburg, Sweden, pp. 10.19–10.31 (1998)

19. Dingsoyr, T., Conradi, R.: A survey of case studies of the use of knowledge management
in software engineering. International Journal of Software Engineering and Knowledge
Engineering 12, 391–414 (2002)

20. Brössler, P.: Knowledge Management at a Software House: An Experience Report. In:
Ruhe, G., Bomarius, F. (eds.) SEKE 1999. LNCS, vol. 1756, pp. 163–170. Springer, Hei-
delberg (2000)

21. Feldmann, R.L., Pizka, M.: An On-Line Software Engineering Repository for Germany’s
SME – An Experience Report. In: Henninger, S., Maurer, F. (eds.) LSO 2003. LNCS,
vol. 2640, pp. 34–43. Springer, Heidelberg (2003)

22. Houdek, F., Bunse, C.: Transferring and Evolving Experience: A Practical Approach and
its Application on Software Inspections. In: Ruhe, G., Bomarius, F. (eds.) SEKE 1999.
LNCS, vol. 1756, pp. 210–226. Springer, Heidelberg (2000)

23. Schneider, K., Schwinn, T.: Maturing experience base concepts at DaimlerChrysler. Soft-
ware Process: Improvement and Practice 6, 85–96 (2001)

24. Akhavan, P., Jafari, M., Fathian, M.: Exploring failure-factors of implementing knowledge
management systems in organizations. Journal of Knowledge Management Practice 6, 1–9
(2005)

 Experiences from Establishing Knowledge Management in a Joint Research Project 247

25. Bass, M., Herbsleb, J.D., Lescher, C.: Collaboration in global software projects at siemens:
An experience report. In: Second IEEE International Conference on Global Software En-
gineering, ICGSE 2007, pp. 33–39. IEEE (2007)

26. Stapel, K., Knauss, E., Schneider, K., Zazworka, N.: FLOW Mapping: Planning and Man-
aging Communication in Distributed Teams. In: 2011 6th IEEE International Conference
on Global Software Engineering (ICGSE), pp. 190–199. IEEE (2011)

27. Corbin, J., Strauss, A.: Open Coding. In: Corbin, J., Strauss, A. (eds.) Basics of Qualitative
Research: Techniques and Procedures for Developing Grounded Theory, pp. 101–121.
Sage Publications, Thousand Oaks (1998)

The Impact of Lack in Domain or Technology

Experience on the Accuracy of Expert Effort
Estimates in Software Projects

Susanne Halstead, Rosario Ortiz, Mario Córdova, and Miguel Segúı

School of Business Administration, University of Puerto Rico, Mayagüez

Abstract. The study examines the impact of lack of experience in the
domain problem or lack of experience with the technologies used in a
software development project on the accuracy of single expert estima-
tion of task effort, as measured by estimated versus actual effort. Expert
judgment in the estimation of task effort is the most frequently used es-
timation technique for software projects. Estimators rely on their experi-
ence, business domain knowledge, and technical expertise. Occasionally,
organizations lack experts on staff that have relevant prior experience on
some business or technology related aspects of the project. This research
investigates the impact of such incomplete expertise on the reliability of
estimates.

Keywords: Software Projects, Software Development, Expert Estima-
tion, Project Risk, Effort Estimation.

1 Introduction

Software development projects are known to have considerable risks associated
to them [5]. Scheduling unreliability is among the most serious risks in soft-
ware projects [15], [25]. The notion that software projects fail frequently and
severely is ubiquitous in the practitioners’ community. The findings of the Stan-
dish Group’s CHAOS report [11] are widely cited in academic work and in
practitioners’ conferences. Several authors have since criticized the methodol-
ogy and findings of the 1991 report and its subsequent issues [10], [19], [8].
Jørgensen and Molokken conclude that the actual failure rate of software projects
and the severity of such failures are far lower than depicted in the Standish fig-
ures, yet still a significant problem. In all this research, the definition of failure or
troubled projects is mainly marked by severe schedule and/or budget overruns.
Several authors have criticized this narrow definition of project success. The as-
sessment of project success cannot be solely based on whether the project met
its schedule, cost budget and conforms to specifications, but should consider all
stakeholders’ expectations and long term product success [2], [4], [7], [29]. De
Wit [7] points out that there should be a clear distinction between the success
of the project management effort and project success. Nonetheless, organiza-
tions have a strong interest in making the software development process more
predictable and in being able to plan development times and costs. The project

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 248–259, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Impact of Lack in Domain or Technology Experience 249

management framework relies greatly on the accuracy of task effort estimates.
Project management tools such as the identification of critical activities, the
baseline schedules, milestones, resource schedules, and cost baselines depend on
the accuracy of task effort and the derived task duration estimates [13]. Expert
judgment is the most frequently used technique for time estimations of software
projects [24]. In order for expert judgment to be an efficient tool, however, the
experts have to combine a specific set of skills and experience. They need to
have (1) domain knowledge, (2) software engineering knowledge and knowledge
of the particular software engineering process of the organization, (3) knowledge
of the technology mix to be used, as well as (4) expertise in estimation. Many
organizations are lacking in the latter aspect, as they do not formally strive to
develop estimation skills in their personnel [18]. In practice, it is not unusual
that the personnel entrusted with an estimate might also lack in domain knowl-
edge or experience with the proposed technology mix for particular projects.
This research is meant to assess the impact of such incomplete experience on
the part of the estimator.

Project managers are aware of the importance of estimates. They might not be
aware of the magnitude of the estimation risk created by relying on expert judg-
ment of personnel that is unfamiliar with the domain problem or the technology
mix to be used in the project. Such knowledge would aid project managers in
their interpretation of estimates, risk assessment for projects, and contingency
planning.

2 Related Work

Literature relevant to this subject was identified via online library database
search and by using the BEST (Better Estimation of Software development
Tasks) database, which is a catalog of relevant literature on estimation for soft-
ware projects maintained by researchers at Simula Laboratory (Simula Labo-
ratories, n.d.). Among the publications about estimation methods, most work
focuses on regression models or seeks to create or propose a mathematical model
for estimation. Relatively few publications focus on expert estimation [20]. This
is in stark contrast to the fact that expert estimation is the most frequently
used estimation technique [16], [20]. A systematic literature review gather-
ing evidence for comparison between the performance of expert estimation and
parametric models [17] found that the average accuracy of expert estimation
was at least equal or better than the average accuracy of models, especially if
models were not calibrated to the particular organization. There is no strong
evidence that would suggest using expert estimation is not a valid practice [14],
[17]. It is necessary, though, to better understand expert estimates and create
processes that support estimators and avoid the introduction of biases and other
distorting factors. Situational and human biases are the subject of several inves-
tigations. Some significant findings are that anchoring [3], goal setting [1] or
known customer expectations [21] skew estimates. Even though lack of domain
knowledge and technology risks have been identified as significant risk factors in

250 S. Halstead et al.

projects [5], [27], no literature specifically investigating the impact of these par-
ticular risk factors on expert estimation for software projects was found during
the literature search. There are studies on reliability of estimation methods [12],
[22], [23] and expert estimation in particular [13], [24]. Furthermore, there are
efforts to quantify estimation reliability and estimation risk from historic data
and project portfolio data, which includes estimates created by expert judgment
[22]. Eveleens and Verhoef, [9], explain the importance of quantifying forecast
quality and present a model that would allow organizations to quantitatively
assess accuracy of estimates, the conversion of actuals with estimates over the
life of the project and systematic biases of estimates. In summary, to better un-
derstand and practically apply expert estimation, we need knowledge on factors
affecting estimation reliability and models to quantify their impact.

3 Methodology

The research was carried out by means of a survey among experienced software
development professionals in Puerto Rico. All survey participants have relevant
university studies in Computer Science, Software Engineering or Information
Systems. These backgrounds reflect a basic job requirement for their current
positions. The questionnaire does not distinguish between these fields of study
as the sample size attainable is too small to make such further fragmentation
meaningful. In addition, the work performed and relevant experience between
survey participants is similar, regardless of their respective degrees. The survey
was deliberately directed at technology professionals fulfilling the job functions
of senior developer or analyst, not project managers. The underlying assumption
is that senior developers or analysts are the ones that give expert estimates, not
project managers. Asking the person that will finally carry out the work to do
the estimates is considered best practice in project management practitioner’s
literature [15].

For the purposes of the study, it is assumed that the personnel asked to per-
form the estimates have experience in software engineering practices and in the
organization’s software development process. Therefore, only experienced per-
sonnel were included as survey participants. The survey considers two scenarios.
Scenario 1 is a situation in which the person asked to give the effort estimate
for tasks has experience with the particular domain problem; however, a new
technology will be used in the implementation of the solution. Scenario 2 is the
inverse situation, in which the person asked to provide the estimate is experi-
enced with the technologies to be used in the implementation of the solution,
but lacks experience with similar domain problems. This does not imply that
there was no analysis of requirements prior to the estimation process or that the
domain problem was not properly defined. It only implies that the estimator has
not worked on a similar project before. Therefore, the business requirements are
not as well understood as in the case of familiar problems. The estimator would,
for example, be less likely to consider overlooked requirements or tasks. It is also
assumed that the personnel asked to provide the estimates will be lacking in

The Impact of Lack in Domain or Technology Experience 251

Table 1. Questionnaire Distributed to Software Development Professionals

SURVEY ON ACCURACY OF ESTIMATES AND EXPERIENCE EFFECTS

General Information
Education © Some College © Bachelor’s Degree

© Some Master’s © Master’s Degree
©PhD ©Other, Specify:

Work Experience © < 1 yrs © 1-5 yrs
© 6-10 yrs © > 10 yrs

I . When faced with a task where you understand the business requirements well and have experience
solving similar problems, however, the technology mix (e.g.databases, programming languages,
frameworks, interfaces) is NEW to you:

1. How frequently do you need more time to complete your tasks than was allocated in the estimates?
Please provide percentage estimate. Valid values are 0% through 100 %

2. If you use more time than was allocated to the task, by what proportion do you typically overrun the time budget?
Please provide percentage estimate. Percentage values greater than 100 are possible.
For example a value of 120% means that you needed all the time allocated for the task and an additional 120%.
So if 10 hours were estimated for a task, you actually required 22 hours [10+12]

3. How many similar projects would you have to work in order to significantly reduce this overrun and give more accurate estimates?
Please state number:

II . When faced with a task where you DO NOT understand the business requirements well and DO NOT
have experience solving similar problems, however, the technology mix
(e.g. databases, programming languages, frameworks, interfaces) is FAMILIAR to you:

1. How frequently do you need more time to complete your tasks than was allocated in the estimates?
Please provide percentage estimate. Valid values are 0% through 100 %

2. If you use more time than was allocated to the task, by what proportion do you typically overrun the time budget?
Please provide percentage estimate. Percentage values greater than 100 are possible. For example a value of 120%
means that you needed all the time allocated for the task and an additional 120%.
So if 10 hours were estimated for a task, you actually required 22 hours [10+12]

3. How many similar projects would you have to work in order to significantly reduce this overrun and give more accurate estimates?
Please state number:

only one of the dimensions of domain knowledge or technology mix to be used.
A lack of domain knowledge and inexperience with the technology would clearly
disqualify the person form giving any estimates.

The survey participants were recruited from the researchers extended profes-
sional network and at professional development events. Participants were ap-
proached in person and asked to fill out the questionnaire. The questionnaire
was accompanied by a consent form to participate in the survey and an instruc-
tion sheet. The background and instructions for the survey were explained to
each individual, following the information on the instruction sheet. The format
of the questionnaire is shown in table 1. The questionnaire asks survey par-
ticipants to assess the probability and severity of time (task duration) overruns
when compared with the original estimates under the two scenarios. In software
development, person-hours are the greatest cost driver and the most frequently
used measure for effort required. Since effort estimates are considered on a task
level, an overrun in effort will typically directly translate to an overrun in time
required, which in turn might lead to a schedule overrun, depending on the float
of the tasks considered. It is seldom possible to prevent duration overrun by
adding more resources [6]. Furthermore, survey participants were asked to in-
dicate how many similar projects they would have to work on in order to feel
more confident in their estimates.

252 S. Halstead et al.

4 Results

The survey produced 47 data sets. The response rate was 100 percent, as one
of the researchers approached participants personally. Participants filled out the
questionnaires in private and deposited them in a collection box, thus maintain-
ing the anonymity of the questionnaire. The survey results were tabulated, and
the descriptive statistics were calculated using Excel statistics functions.

Of the 47 participants, 13 have 1-5 years of relevant work experience, 12 have
6-10 years of relevant work experience, and 21 have more than 10 years of relevant
work experience.

When partitioning the population according to the highest level of formal
education in computer science, software engineering or information systems, 25
participants hold a Bachelor’s degree, 11 participants have partially completed
a Master’s degree, and 9 participants have completed a Master’s degree.

4.1 Descriptive Statistics

Scenario 1 describes a situation where the person asked to give an estimate
has experience with similar domain problems, but lacks experience with the
technologies that will be used. Table 2 summarizes the descriptive statistics for
effort overrun and the overrun factor for this scenario.

The overrun factor expresses the amount of time required additionally to
the time estimated relative to that estimate. Thus, the time actually required to
complete the task would be Actual Duration = Estimated Duration + Estimated
Duration x Overrun Factor.

For the whole population, the average probability of underestimating required
task effort is 52 percent, with a variance of 10 percent. When a time overrun
is incurred, the average overrun factor is 58 percent. These results indicate
that estimations under Scenario 1 create considerable risk exposure, as the

Table 2. Descriptive Statistics for Overrun Probability and Overrun Factor under
Scenario 1

Scenario 1: Probability of Effort Overrun

Whole 5 years 10 years more 10 Bachelor Some Master’s
Sample years Master’s

SampleSize 47 13 12 21 25 11 9
Range 0.95 0.95 0.75 0.95 0.95 0.9 0.8
Mean 0.52447 0.56923 0.62083 0.44286 0.502 0.53182 0.59444
Variance 0.09814 0.11356 0.06657 0.10707 0.09635 0.11314 0.09465
Std.Dev. 0.31327 0.33698 0.25802 0.32722 0.3104 0.33636 0.30766

Scenario 1: Overrun Factor

Range 1.35 1.2 1.2 1.3 0.95 1.1 1
Mean 0.58404 0.61538 0.62083 0.52381 0.4624 0.55909 0.57778
Variance 0.19012 0.21724 0.16112 0.2044 0.09584 0.14691 0.18194
Std.Dev. 0.43603 0.46609 0.40139 0.45211 0.30959 0.38329 0.42655

The Impact of Lack in Domain or Technology Experience 253

Table 3. Descriptive Statistics for Overrun Probability and Overrun Factor under
Scenario 2

Scenario 2: Probability of Effort Overrun

Whole 5 years 10 years more 10 Bachelor Some Master’s
Sample years Master’s

SampleSize 47 13 12 21 25 11 9
Range 0.95 0.95 0.95 0.95 0.95 0.95 0.9
Mean 0.51723 0.53923 0.5625 0.47857 0.4624 0.54091 0.56667
Variance 0.10248 0.12567 0.09869 0.10289 0.09584 0.14091 0.08438
Std.Deviation 0.32013 0.35451 0.31415 0.32077 0.30959 0.37538 0.29047

Scenario 2: Overrun Factor

Range 2.95 1.5 1.45 2.9 1.95 2.9 0.7
Mean 0.7383 0.70385 0.69167 0.77381 0.728 0.83182 0.67222
Variance 0.34904 0.28978 0.21038 0.5064 0.34418 0.68964 0.06257
Std.Deviation 0.5908 0.53831 0.45867 0.71162 0.58667 0.83044 0.25014

probability of occurrence and the impact of occurrence are large. On average,
survey participants indicate they need to work on 3 (2.6) similar projects in order
to give more reliable estimates. The values ranged from 1 project to 8 projects.

Scenario 2 describes the situation where the estimator is familiar with the tech-
nologies to be used in the implementation of the solution, but has not worked on
a similar domain problem before. Table 3 summarizes the descriptive statistics
for the probability of incurring in time overrun and the overrun factor under
this scenario. Under Scenario 2, the average overrun probability is 52 percent,
with an average overrun factor of 73 percent. Estimates made under the situa-
tion described in Scenario 2 have a high risk exposure, as the probability and
severity of effort overruns are also high. Under scenario 2, survey participants
indicated that on average, they have to work in 3 (calculated average is 2.65)
similar projects, in order to be able to give more reliable estimates. The answers
ranged from 1 to 10 projects.

We ran goodness of fit tests for the Normal Distribution of the samples using
the Easy Fit statistics tool. The samples could be fitted to the Normal Distri-
bution at significance level alpha of 0.05 using the Kolmogorow-Smirnow, the
Anderson-Darling and Chi Square Test, allowing us to use t-test and ANOVA
tests for further analysis of the data.

4.2 Comparisons between Scenario 1 and Scenario 2

In order to determine whether the means of overrun probability and the means
of the overrun factors are different between scenario 1 and scenario 2, we per-
formed t-tests. Prior to performing the t-tests, f-tests were performed to deter-
mine whether the variances are equal between the samples. Table 4 summarizes
the results.

254 S. Halstead et al.

Table 4. Comparison of Variances and Means between Scenarios for Overrun Proba-
bility and Overrun Factor

Comparing Variances of Schedule Overrun between Scenario 1 and Scenario 2

F-Test Two-Sample for Variances Variable 1 Variable 2

Mean 0.524468085 0.517234043
Variance 0.098138298 0.102481314
Observations 47 47
df 46 46
F 0.957621389
P(F <=f) one-tail 0.441942783
F Critical one-tail 0.612570986

Does not reject hypothesis that the samples have equal variance for alpha 0.05.

Comparing Means of Schedule Overrun between Scenario 1 and Scenario 2

t-Test: Two-Sample Assuming Equal Variances Variable 1 Variable 2

Mean 0.524468085 0.517234043
Variance 0.098138298 0.102481314
Observations 47 47
Pooled Variance 0.100309806
Hypothesized Mean Difference 0
df 92
t Stat 0.11072439
P(T<=t) one-tail 0.456038048
t Critical one-tail 1.661585397
P(T<=t) two-tail 0.912076096
t Critical two-tail 1.986086272

Does not reject hypothesis that the samples have the equal mean for alpha 0.05.

Comparing Variance of Overrun Factor between Scenario 1 and Scenario 2

F-Test Two-Sample for Variances Variable 1 Variable 2

Mean 0.584042553 0.738297872
Variance 0.190120259 0.349044866
Observations 47 47
df 46 46
F 0.544687167
P(F <=f) one-tail 0.020987837
F Critical one-tail 0.612570986

Rejects hypothesis that samples have equal variance for alpha 0.05.

Comparing Means of Overrun Factor between Scenario 1 and Scenario 2

t-Test: Two-Sample Assuming Unequal Variances Variable 1 Variable 2

Mean 0.584042553 0.738297872
Variance 0.190120259 0.349044866
Observations 47 47
Hypothesized Mean Difference 0
df 85
t Stat -1.440217823
P(T<=t) one-tail 0.076739498
t Critical one-tail 1.6629785
P(T<=t) two-tail 0.153478996
t Critical two-tail 1.988267868

Does not reject hypothesis that the samples have the equal mean for alpha 0.05.

The Impact of Lack in Domain or Technology Experience 255

For the comparison of the probability of schedule overrun, the p-value of the f-
test is 0.44, leading us to reject the hypothesis that the probability distributions
of the occurrences of schedule overrun in the two samples have different variance
for the significance level of 0.05. We therefore used a t-test, assuming equal
variances. We use a two sample t-Test. This is appropriate, since even though, the
samples are provided by the same person, the survey participants were asked to
assess two mutually exclusive scenarios. The two-tailed p-value of 0.91 indicates
that the two samples have equal means. For the overrun factors, the p-value of
the f-test is 0.02. Thus, it cannot be assumed that the two samples have equal
variances. The t-test was performed assuming unequal variances. The two-tailed
p-value is 0.15, the one tailed p-value is 0.08. In personal conversations with
the study participants, many indicate that the overrun factor in the case of
lack of domain experience is larger than in the case of lack of experience with
the technology to be used. Thus, considering the one-tailed p-value, it could be
assumed with 0.08 confidence, that the sample mean of scenario 2 is larger than
the sample mean of scenario 1. This confidence is larger than the confidence of
0.05 we chose for our data analysis, thus we do not consider this as a statistically
relevant result. Nonetheless, we recommend further studies to probe whether this
can be observed at a statistically relevant level using a larger sample, since from
the professionals’ accounts, it seems that lack of experience with the domain
problem causes larger and more volatile overruns than lack of experience with the
specific technology. Table 5 summarizes the means and variances for scenarios
1 and 2.

Table 5. Comparison of Overrun Factors between Scenarios

Scenario 1 Scenario 2

Mean 0.5840 0.7383
Variance 0.1901 0.3490

4.3 Influence of Years of Experience and Level of Education

In order to assess the influence of years of experience, within each scenario,
we partitioned the data in three groups according to the years of experience
reported. ANOVA tests were then performed in order to compare means between
experience groups in each scenario. In all cases, the sample means were found to
be equal.

We used the same approach to compare sample means between the responses
partitioned by level of education for each scenario. The ANOVA tests comparing
the sample means between the three groups of education level also found that
the means are equal between the groups in both scenarios.

From these tests, it seems, that neither having more years of experience nor
a higher level of formal education greatly reduces the probability and severity
of incurring in time overruns under either scenario. Table 6 summarizes our
findings.

256 S. Halstead et al.

Table 6. Summary of ANOVA Results

Level of Education Years of Work Experience

Probability of Do not reject hypothesis. Do not reject hypothesis.
Schedule Overrun
Scenario 1

Probability of Do not reject hypothesis. Do not reject hypothesis.
Schedule Overrun
Scenario 2

Severity of Do not reject hypothesis. Do not reject hypothesis.
Schedule Overrun
Scenario 1

Severity of Do not reject hypothesis. Do not reject hypothesis.
Schedule Overrun
Scenario 2

Hypothesis: The groups have equal means.

5 Recommendations

Based on these findings, the most obvious recommendation is to carefully eval-
uate the level of experience with the domain problem and technology of the
estimators when using the technique of expert judgment. In cases where the es-
timators lack domain knowledge or experience with a specific technology, more
than one person should provide estimates and the differences between the esti-
mates should be investigated. In any case, it seems that it is more advantageous
to have experience with the domain than with the technology.

Many project managers might underestimate the magnitude of uncertainty in
the estimates introduced by lack of experience with the domain problem or the
technology mix. Contingency buffers of 10 to 20 percent might not be sufficient,
considering the large average overrun probabilities and overrun factors. As it
may not be acceptable or desired to introduce larger buffers, using alternate
estimation methods and combining results becomes more important. Considering
the significant uncertainty under these scenarios, it might not be a fair practice
to hold estimators responsible for faulty estimates, for instance in performance
evaluations.

Neither more formal education nor more years of experience seem to have
a significant impact on average overrun probability and overrun factors under
either scenario. Previous studies also found that increase in work experience
does not necessarily lead to better estimates, as experience relevant to partic-
ular estimation tasks tends to be rather narrow. Instead, estimators need to
receive feedback and need to receive training on how to estimate [16]. During
our research, we found in interviews with study participants that none of the
companies where the survey participants work have a formal training program

The Impact of Lack in Domain or Technology Experience 257

on software project effort estimates, nor do they provide any formal structures
for estimation feedback or process improvements. The experts depend solely on
their own learning experience. To improve estimates, we therefore stress the
importance of formally training personnel in estimation techniques and provid-
ing them structured opportunities to compare their estimates to historic data
during the estimation process and actual results in retrospect. Overall, organiza-
tions should take better advantage of historical project estimate data available
to them to assess their quality of estimates over time, support estimators, cali-
brate their estimation models, and determine contingencies. The data collection
for projects should consider these goals explicitly.

6 Future Research and Weaknesses of Methodology

Since the research was carried out by means of a questionnaire, the results ob-
tained reflect the professionals’ perception of estimation uncertainty and learning
effects in the estimation process. Therefore, results depend on the participants’
ability to recall past experience. This recall might be incomplete, inaccurate, or
tainted by psychological effects, such as self-perception or reluctance to admit
failures in their full magnitude. In a research by M. Roy et al., it was found that
people underestimate the duration of future events, not only because they take
a too optimistic outlook, but also because their memories are systematic under-
estimations of how long past events lasted [26]. This effect might be reflected
in the survey participants’ answers. The fact that none of the employers of the
survey participants offer ex post feedback on estimation accuracy means the sur-
vey participants depend fully on their perception of magnitude of time overruns.
They have had no opportunities to compare their perception with actual results.
The numbers obtained from this research are hence more of an indicator of ob-
served scale of the impact of lack of domain or technology, than usable data for
model calibration or other contingency determination. To obtain results based
on data collection rather than recall, this same research question could be in-
vestigated by means of carefully designed experiments or project portfolio data
analysis similar to the methodology explained in [22] and [28], rather than by
means of questionnaire.

The sample size obtained was small. It would be interesting to repeat this
research with a larger sample, in order to see if the results change. The study
was geographically limited to Puerto Rico. Future research could use a more
geographically dispersed sample, in order to cancel out any possible cultural
bias in the results.

References

1. Abdel-Hamid, T.K., Sengupta, K., Swett, C.: The impact of goals on software
project management: An experimental investigation. MIS Quarterly, 531–555
(1999)

258 S. Halstead et al.

2. Agarwal, N., Rathod, U.: Defining ’success’ for software projects: An exploratory
revelation. International Journal of Project Management 24(4), 358–370 (2006)

3. Aranda, J., Easterbrook, S.: Anchoring and adjustment in software estimation.
ACM SIGSOFT Software Engineering Notes 30(5), 346–355 (2005)

4. Atkinson, R.: Project management: cost, time and quality, two best guesses and
a phenomenon, its time to accept other success criteria. International Journal of
Project Management 17(6), 337–342 (1999)

5. Barki, H., Rivard, S., Talbot, J.: Toward an assessment of software development
risk. Journal of Management Information Systems 10(2), 203–225 (1993)

6. Brooks, F.P.: The mythical man-month: essays on software engineering, vol. 7.
Addison-Wesley, Reading (1995)

7. De Wit, A.: Measurement of project success. International Journal of Project Man-
agement 6(3), 164–170 (1988)

8. Eveleens, J., Verhoef, C.: The rise and fall of the chaos report figures. IEEE Soft-
ware 27(1), 30–36 (2010)

9. Eveleens, J.L., Verhoef, C.: Quantifying it forecast quality. Science of Computer
Programming 74(11-12), 934–988 (2009)

10. Glass, R.L.: The standish report: does it really describe a software crisis? Commu-
nications of the ACM 49(8), 15–16 (2006)

11. The Standish Group. Chaos report (1991)

12. Heemstra, F.J.: Software cost estimation. Information and Software Technol-
ogy 34(10), 627–639 (1992)

13. Hill, J., Thomas, L.C., Allen, D.E.: Experts’ estimates of task durations in software
development projects. International Journal of Project Management 18(1), 13–21
(2000)

14. Hughes, R.T.: Expert judgement as an estimating method. Information and Soft-
ware Technology 38(2), 67–75 (1996)

15. Jones, C.: Assessment and control of software risks (1994)

16. Jørgensen, M.: A review of studies on expert estimation of software development
effort. Journal of Systems and Software 70(1-2), 37–60 (2004)

17. Jørgensen, M.: Forecasting of software development work effort: Evidence on expert
judgement and formal models. International Journal of Forecasting 23(3), 449–462
(2007)

18. Jørgensen, M., Carelius, G.J.: An empirical study of software project bidding. IEEE
Transactions on Software Engineering 30(12), 953–969 (2004)

19. Jørgensen, M., Molokken-Ostvold, K.: How large are software cost overruns? A
review of the 1994 chaos report. Information and Software Technology 48(4), 297–
301 (2006)

20. Jørgensen, M., Shepperd, M.: A systematic review of software development cost
estimation studies. IEEE Transactions on Software Engineering 33(1), 33–53 (2007)

21. Jørgensen, M., Sjøberg, D.I.K.: The impact of customer expectation on software
development effort estimates. International Journal of Project Management 22(4),
317–325 (2004)

22. Kulk, G.P., Peters, R.J., Verhoef, C.: Quantifying IT estimation risks. Science of
Computer Programming 74(11-12), 900–933 (2009)

23. Lederer, A.L., Prasad, J.: Information systems software cost estimating: a current
assessment. Journal of Information Technology 8(1), 22–33 (1993)

24. Molokken, K., Jørgensen, M.: A review of surveys on software effort estimation, p.
223. IEEE Computer Society (2003)

The Impact of Lack in Domain or Technology Experience 259

25. Ropponen, J., Lyytinen, K.: Components of software development risk: How to
address them? A project manager survey. IEEE Transactions on Software Engi-
neering 26(2), 98–112 (2000)

26. Roy, M.M., Christenfeld, N.J.S., McKenzie, C.R.M.: Underestimating the dura-
tion of future events: Memory incorrectly used or memory bias? Psychological
Bulletin 131(5), 738 (2005)

27. Schmidt, R., Lyytinen, K., Keil, M., Cule, P.: Identifying software project risks:
An international delphi study. Journal of Management Information Systems 17(4),
5–36 (2001)

28. Verhoef, C.: Quantitative IT portfolio management. Science of Computer Program-
ming 45(1), 1–96 (2002)

29. Wateridge, J.: How can IS/IT projects be measured for success? International
Journal of Project Management 16(1), 59–63 (1998)

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 260–274, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Metrics for Meeting Quality on a Software
Requirement Acquisition Phase

Noriko Hanakawa1 and Masaki Obana2

1 Hannan University,
5-4-33, Amami Higashi, Matsubara-si, Osaka 580-8502, Japan

hanakawa@hannan-u.ac.jp
2 Nara Institute Science and Technology

8916-5 Takayama-cho, Ikoma, Nara Japan
masaki-o@is.naist.jp

Abstract. Requirement analysis of software is an important phase on software
development. In practice, stakeholders discuss software requirements with sys-
tem engineers on meetings. Quality of meetings influences quality of software
requirements. Low quality of meetings will lead low quality software. However,
measurement of meeting quality is difficult, because meetings for software re-
quirements mainly perform oral discussions among stakeholders and system
engineers.

Therefore, we propose a new metrics of meeting quality for software re-
quirements are discussed. A feature of the metrics is to measure only when and
who speaks. Because the metrics does not depend on analysis of conversations’
contents by natural language techniques, the metrics can be easily adapted to
various software domains. As a result of adapting practical software develop-
ment projects, we extracted doubtful discussions in meetings. After that, we
confirmed that the metrics can predict doubtful specifications that may lead
specification faults in future.

Keywords: Meeting, software requirement, System engineer, discussion logs,
meeting quality.

1 Introduction

Requirement analysis of software is important on large-scale software development.
In industrial practice, software requirements are often defined at meetings with sys-
tem engineers and stakeholders. We call such meeting “Specification meeting”,
“requirement analysis meeting”, or “discussion of software specification”. In the
meetings, system engineers extract demands and concepts of target software from
stakeholders. And system engineers also discuss a new business work flows, the de-
tails of system specifications, and GUI with the stakeholders. System engineers need
high communication abilities, proposal abilities of software specifications, analysis
abilities of problems, and proceeding abilities of meetings. On the other hand,
stakeholders are required high decision-making skills, competence to judge correct-
ness of software specifications, and regulating abilities of various opinions in their
organizations. Although the requirement analysis is one of most difficult activities in

 A Metrics for Meeting Quality on a Software Requirement Acquisition Phase 261

software development, results of requirement analysis on meetings greatly influence
software quality [1][5].

Many methods have been proposed for improving activities of a requirement anal-
ysis phase. Sawye et al. claimed that deep understanding of software requirement is
performed on an early phase using descriptions written in a natural language from
stakeholders’ interviews [2]. Domain models are constructed in order to eliminate
inconsistency of descriptions in documents of system specifications [3], a method of
refining stakeholders’ requirement at meetings is proposed [4]. These studies focus on
important problems of requirements analysis such as vagueness of requirements
written in a natural language, inconsistency of requirements, and not-refining re-
quirements. However, these studies are depended a target system’s domains and ac-
cumulated experiential knowledge. If a system belongs to a new domain and new
development technologies, the above methods are not useful because experiential data
and knowledge are not yet accumulated.

Therefore, we propose a new metrics for meeting quality on a software require-
ment analysis phase. Our original basic idea is “high quality of meetings lead high
quality software requirement”. In industrial practice, system engineers discuss soft-
ware requirements with stakeholders at meetings on an analysis phase. The meeting
quality greatly influences quality of software requirements. A feature of the metrics is
to measure only when and who speaks at meetings. Contexts of speaking at meetings
are not a target of the metrics. Hence, the metrics can adapt a new project using a new
system domain and new development technologies without accumulated experiential
data and knowledge.

In this paper, we show measurement of meeting quality in two projects. In
addition, we call all activities such as “specification analysis”, and “requirement defi-
nition” as “requirement analysis”. And a meeting of requirement analysis means a
meeting where system engineers and stakeholders define software requirements and
specifications with deep discussions. Section 2 shows related works. In section 3, the
meeting metrics is proposed. Section 4 shows examples of measuring meeting quali-
ties, at section 5, we discuss efficiency of the metrics. Section 6 shows summary and
future works.

2 Related Works

There are many empirical researches for communication at meetings on software
development projects. Seaman et al. clarified relationships between efficiency of in-
spection meetings and organizational arrangements [6]. Organizational relationships
among developers influence meeting time and meeting processes. Damian et al. stu-
died synchronous or asynchronous negotiations of software requirements in distri-
buted development [7]. They claimed that efficient negotiations are to discuss details
of requirements at regular meetings after asynchronous discussion of vague require-
ments by e-mails. The approach of these researches is based on records of practical
meeting logs. The approach is similar to our research. Although these researches
focus on only meeting times and efficiency of meetings, meeting qualities and

262 N. Hanakawa and M. Obana

predictions of specification faults are not mentioned. Our research also mentions pre-
dictions of specification faults caused by low quality of meetings.

On the other hand, software requirements and specifications are discussed in natu-
ral languages such as Japanese. Therefore, Sawye et al. proposed a new analysis
method for acquiring deep understandings from shallow knowledge using corpus
linguistics [2]. After frequent words are extracted from stakeholders’ interviews at a
software requirement analysis phase, main concepts of the software domain are con-
structed in order to help analysts’ understandings. Doi et al. proposed USP (User-
oriented System Planning method) for capturing software requirements. USP presents
problem solution graphs based on corpus. The corpus is constructed by recording
stakeholders’ utterance at requirement analysis meetings in a natural language. The
solution graphs are useful for function analysis, quality analysis, and concern analysis
on both online and offline methods. Purposes of these researches are improvement of
software requirement analysis activities using natural language techniques based on
records of utterance at meetings. These approaches need high cost. Each utterance at
meetings should be correctly recorded. The activities of recording such utterances
require expertise knowledge in order to understand correctly speakers’ intentions.
Moreover, because oral words at meetings include more vagueness than words written
on paper documents, correct capturing of speakers’ intentions at meetings is more
difficult than capturing writers’ intentions on paper documents.

In addition, many analysis techniques for meeting states are proposed using video
pictures and audio recording. Miyata et al. proposed a technique of auto editing long
meeting videos into a digest [8]. They find speakers’ thinking statements and thinking
stop scenes using an electroencephalograph. And a new metrics for meeting concen-
trate named “MS-Level” is proposed [9]. Values of the MS-Level present important
thinking statements such as “concentration” and “concern” at a meeting. By indexing
video pictures using the MS values, researchers are useful for analyzing meeting
statements and thinking statements of participants. On the other hand, an auto zooming
TV meeting system is proposed. In the system, a speaker’s picture of videos is auto-
matically zoomed up when the speaker start talking [10]. These systems and researches
are a kind of analysis methods using video pictures in order to clarifying meeting
quality and discussions. However, these researches need large-scale equipment such as
electroencephalographs, many video cameras, and TV meeting systems. The preparing
and setting the equipment at meeting rooms will be costly. Our proposed metrics for
meeting quality needs only records: "who spoke, and when it was spoken". Because
our approach does not need large-scale equipment, various meetings on various organ-
izations can easily adapt our metrics for measuring meeting quality.

3 The Proposed Meeting Metrics

3.1 Background

In our university, two large-scale educational systems have been developed from
October of 2007. After competitive bidding of the two systems, we ordered the
systems to a system development company. One of the systems is version 2 of HInT

 A Metrics for Meeting Quality on a Software Requirement Acquisition Phase 263

system (Hannan Internet communication Tool) [11]. The HInT is an integrated educa-
tional system with a campus portal site system and an e-learning management system
in order to communicate between teachers and students. Two new functions: a calen-
dar function, an attendance management function are added to the first version of the
HInT. On the other hand, another of the systems is p-HInT (portable HInT) system
[12][13]. The p-HInT is a lecture support system for large-scale lecture rooms where
200 or more audiences attend a lecture using NINTENDO DS® (DS) [14].

To analyze requirements of these systems, we held many meetings with system en-
gineers and stakeholders. The number of meetings is 16, total time of the meetings is
about 32 hours. However, major problems caused by two specification faults of the
HInT system occurred after the second version of the HInT system was released. The
first problem is to send an e-mail of daily schedule in a remainder function even if
there is no schedule on the day. That is, a “today has no schedule” e-mail sends to all
teachers and all students. One of important concepts of the HInT is to avoid unneces-
sary e-mails as much as possible. The “today has no schedule” e-mail is obviously
against the concept. The other problem is to lack an important function of sum calcu-
lation of attendance data every semester. Because stakeholders and system engineers
pay attentions to only visual operationality of the attendance function, the sum calcu-
lation of the attendance data was inadvertently missed. In reality, causes of the speci-
fication faults already had occurred at meetings of a requirement analysis phase. The
discussions of the meetings already included vagueness and a gap of the specifica-
tions between the system engineers and the stakeholders.

We became aware of meeting quality through many practical meetings with system
engineers and stakeholders. For example, there is a good case in which a specification
is smoothly determined through well‐regulated discussions. In contrast, there is a
bad case in which discussions become complicated. In the bad case, stakeholders have
only vague feelings “what was determined at the meeting?”. In such way, each meet-
ing has an each quality. Therefore, we clarify differences between a good meeting and
a no-good meeting. After that, we propose a meeting metrics that measures quality of
discussions and possibility of specification faults.

3.2 A Concept of Meeting Metrics

Fig.1 shows a typical discussion pattern when system engineers and stakeholders
determine software specifications at a meeting. The discussion pattern is extracted
from experiences of practical meetings. The pattern is a basis of our proposed meeting
metrics. At first, a system engineer proposes a specification of a new function. The
system engineer explains the specification to stakeholders using explanation docu-
ments or demonstrations (P1 of Fig.1). After the system engineer’s explanation, a
stakeholder asks a question about the specification to the system engineer (P2 of
Fig.1). On another occasion, the system engineer asks a question to stakeholders.
Next, the system engineer answers the stakeholder’s question, or the stakeholder an-
swers the system engineer’s question (P3 of Fig.1). After a pair of a question and an
answer is repeated, the stakeholders make a decision about the specification (P4 of
Fig.1). Finally, the system engineer summarizes the final specification that was dis-
cussed in the iterations of the questions and answers.

264 N. Hanakawa and M. Obana

Fig. 1. A typical pattern of discussion with system engineers and stakeholders

However, if discussions between system engineers and stakeholders become com-
plicated, the iterations of questions and answers will be thrown into disorder. The
questions and answers are confused, or, stakeholders’ decision making may be vague,
or, system engineers may unilaterally talk without stakeholders' replies. Moreover,
speaking time becomes long, the number of times of speaking increases. In such case,
discussion often deviates from the typical discussion pattern of Fig.1.

Therefore, we make the new meeting metrics using the number of times of speak-
ing and speaking time. The speaking of discussions is classified into system engi-
neers' speaking and stakeholders' speaking. The number of times of speaking and
speaking time can be easily collected without domain knowledge, and expertise
knowledge. Our metrics is easily adapted to various projects because domain know-
ledge and expertise knowledge are not required.

3.3 Measuring the Value of the Metrics

Basic metrics of the proposed metrics are follows;

(1) Start time and end time of a speaking.
(2) Who speaks?
(3) Start time and end time of a theme.

Advanced metrics based on the basic metrics are follows;

─ Metircs1: average of a system engineer’s speaking time.
─ Metrics2: average of a stakeholder’s speaking time.
─ Metrics3: the number of times of system engineers’ speakings.
─ Metrics4: the number of times of stakeholders’ speakings.
─ Metrics5: Ratio of system engineers’ speaking time to all discussion time.
─ Metircs6: Ratio of stakeholders’ speaking time to all discussion time.
─ Metrics7: Ratio of the number of times of system engineers’ speakings to total

number of time of speakings.
─ Metrics8: Ratio of the number of times of stakeholders’ speakings to total number

of time of speakings.

P1: Explanation system engineer’s proposal of specifications

P5: Summarizing final specification by system engineer

P2: A question from stakeholder (system engineer)

P3: An answer from system engineer (stakeholder)

P4: Decision making by stakeholder

 A Metrics for Meeting Quality on a Software Requirement Acquisition Phase 265

Fig. 2. A graph of system engineers and customers’ speaking

─ Metrics9: The maximum number of times of stakeholders’ speakings between a
system engineer speaking and a system engineer speaking (in Fig.1, a cycle be-
tween P2 and P3 is disordered. For example, stakeholders frequently speak without
waiting of system engineers’ answers).

The advanced metrics are measured on each theme. The theme means a discussion
topic at a meeting. For example, in the third meeting of HInT system, there are 8
themes; (1) confirmation of pending issues, (2) confirmation of a list of new func-
tions, (3) an operation flow of attendance management in a lecture, (4) an operation
flow of making a time table of examination, (5) an operation flow of making a time
table for extra classes, (6) an operation flow of changing lecture schedule, (7) an op-
eration flow of making reports, (8) an operation flow of making messages to students.
Usually, 5 to 8 themes are discussed at a meeting. The themes are easily collected
from a resume of the meetings. By recording start time and end time of one theme’s
discussion, we can make relationships the system engineer’s speaking and stakehold-
er’s speaking with the same themes.

Fig.2 shows a visual graph of system engineers’ speakings and stakeholders’
speakings in the eighth theme of the third meeting of HInT system. The horizontal
axis means time, the vertical axis means speakers. Red names of Fig.2 means system
engineers, black names means stakeholders. By recording each speaking start time
and end time, the graph of Fig.2 can be created. In the measurement of speakings, we
recorded details of speaking such as “yes” and “I know”. The length of the vertical
bars of Fig.2 means speaking time of each speaker. In addition, the rectangle area
with broken line in the lower part of Fig.2 shows the Metrics9 (the maximum number
of times of stakeholders’ speakings between a system engineer speaking and a system
engineer speaking). In the rectangle area, a red bar means system engineer speaking, a

266 N. Hanakawa and M. Obana

Fig. 3. An example video pictures of meetings

black bar means a stakeholder speaking. The number of black bars between two red
bars is a value of the Metrics9. In the case of the rectangle area of Fig.2, the value of
the Metrics9 is 7.

We measured values of the basic metrics while we referred video pictures (See
Fig.3). The length of the meeting video is 32 hours. At the beginning, we tried auto-
matic identification of speakers and speaking time using an automatic identification
technique for speakers. However, correctness of the automatic identification was very
low. Then we made a support tool for measuring values of the basic metrics (See
Fig.4). The tool consists of a video running area and an identifying speaker area. In
the tool, while the video running, a researcher clicks a “speaker” button at the identi-
fying speaker area. For example, a researcher watched the movie at the video area. If
a speaker changes to another speaker on the movie, the researcher clicks the new
speaker’s name button on the identification area. Although the change of the speaker
is manual on the tool, the researcher is not required expertise knowledge and domain
knowledge. In addition, the movies of the video area and the time stamp of the identi-
fication area are synchronized. Then, the work of identifying speakers can repeat like
replaying videos.

3.4 Extracting Significant Metrics

From the basic metrics and the advanced metrics in the section 3.3, significant metrics
are extracted. The steps of the extraction are follows;

• (Step1)All values of the basic metrics are measured. The all values of the advanced
metrics are automatically calculated based on the values of the basic metrics.

• (Step2)By analyzing minutes of the meetings, we classify the themes to two cate-
gories; discussions including the specification faults, and discussions not includ-
ing the specification faults. The specification faults are “sending a daily e-mail
even if there is no schedule”, and “lack of a function for calculating total sum of at-
tendance data”.

• (Step3)The significant differences of average values of each advanced metrics
between the two categories are clarified by t-test. If the significant difference is
large, the advanced metrics means a significant metrics for measuring meeting
quality.

 A Metrics for Meeting Quality on a Software Requirement Acquisition Phase 267

Fig. 4. A tool for measuring values of the basic metrics

In step 1, values of the basic metrics are measured by the tool of Fig.4. The values
of the advanced metrics are automatically calculated. Fig.5 shows the values of the 9
advanced metrics in 8 themes of the third meeting of the HInT system. A value of
Metris3 (the number of times of system engineers’ speakings) and a value of Metrics4
(the number of times of stakeholders’ speakings.) of the theme 3 are bigger than the
values of the other advanced metrics. In step 2, we identified 8 discussions related
with the specification fault; “e-mail sending”, and 4 discussions related with the spe-
cification fault; “sum of attendance data”. The way of the identification was to watch
all video movies of the meetings, and manually identify the discussions of all minutes
of the meetings. Then, the 8 discussions and the 4 discussions are categorized to a
group related with the specification faults. The other discussions are categorized to a
group with normal specifications. As a result, there are 12 themes related with the
specification faults, there are 44 themes related with normal specifications.

In step 3, averages and distributions of the 9 advanced metrics are calculated. The
averages of the advanced metrics between the two categories are shown in Fig.6. We
confirmed that the average of Metrics1 of the group related with normal specifications
was more than the average of Metrics1 of the group related with the specification
faults. Moreover, the average of Metrics9 of the group related with the specification
faults is more than the average of Metrics9 of the group related with normal specifica-
tions. The significant difference between the two categories is clear by t-test. With
significant level 5%, there are significant differences between the two categories in
Metrics1 and Metrics9. That is, if time of the system engineer speaking is short, and if
stakeholders frequently speak between a system engineer speaking and a system engi-
neer speaking, the possibility of the not-smooth discussion will be high. Quality of
such discussions and meetings will be low. Then we can predict that the themes in-
cluding such not-smooth discussions leads specification faults in requirement
analysis.

Stakeholder name
System
engineer
name

Topics of discussions

Running video area

Identifying speaker area

268 N. Hanakawa and M. Obana

Fig. 5. Values of the 9 advanced metrics of 8 themes of the third meeting of HInT system

Fig. 6. Values of the advanced metrics categorized the two groups

In short, a high quality meeting is that system engineer spends much time to ex-
plain specifications (P1 of Fig.1), after that, a system engineer answers a stakehold-
er’s question, or a stakeholder answers a system engineer’s question (P2 and P3 of
Fig.1). The “answers and questions” is near to “one answer and one question”. In
addition, the system engineer spends long time to summarize the discussions and the
specifications (P5 of Fig.1). We predict that the specifications are correct because the
specifications were discussed in high quality meeting. In contrast, a low quality meet-
ing is that system engineer spends little time to explain specifications, moreover,
stakeholders do not sufficiently understand a concept of specifications, and a system
engineer’s thought. Stakeholders ask many questions and claim their opinions without
waiting system engineers’ answers and explanations. Moreover, because stakeholders
and system engineers repeat questions and opinions that are off the point of the dis-
cussion theme, it takes long time to discuss. Quality of meeting in such situations will
be low. The situations of complicated discussions can be derived from values of the
two advanced metrics; Metrics1 and Metrics9.

3.5 A Metrics for Meeting Quality

Based on the result of the section 3.4, the metrics for meeting quality has been pro-
posed as follows;

repeattalk CUS/SEMeeting 1×= (1)

0

20

40

60

80

100 Theme1

Theme2

Theme3

Theme4

Theme5

them e6

Theme7

Theme8

1 2 3 4 5 6 7 8 9

0

20

40

60

80 discussion including correct specification

discussion including specification faults

Significant difference

Significant
difference

1 2 3 4 5 6 7 8 9

 A Metrics for Meeting Quality on a Software Requirement Acquisition Phase 269

Meeting: Value of the metrics for meeting quality.
SEtalk : Metrics1(average of a system engineer’s speaking time.).
CUSrepeat: Metrics9 (the maximum number of times of stakeholders’ speak-

ings between a system engineer speaking and a system engineer
speaking).

If a value of “Meeting” is low, quality of a meeting will be low, and possibility of
including specification faults will be high.

4 Adapting the Meeting Metrics

4.1 Calculation of Values of Meeting

The proposed metrics is adapted to another project “p-HInT”. In the p-HInT project,
three system engineers were assigned. Stakeholders of the p-HInT were different from
the stakeholders of the HInT. Although the project of the HInT is version up, the
project of the p-HInT is completely a new system. The number of the meetings was 8,
total number of the themes was 45. The all values of the themes are shown at Fig.9.
Especially, Fig.7 shows values of Meeting of each theme of the first meeting and the
third meeting. The values of theme 3 and theme 5 of the first meeting are low. Fig.8
shows values of two advanced metrics; Metrics1 and Metrics9. Bar charts mean val-
ues of Metrics1, a line chart means values of Metrics9. The values of Metrics1 of the
theme 3 and theme 5 are about 5.5; it is smaller than the values in the other themes.
Moreover, the value of Metrics9 of the theme 5 is 7; it is also bigger than the values in
the other themes.

Then, we checked the video movies of the theme 3 and the theme 5 of the first
meeting. In the theme 5, the discussions were off the point of the theme 5. The theme
5 was “How are late students marked on a student list?”. However, stakeholders dis-
cussed “How do we visit other universities in order to investigate similar educational
systems?”. Of course, the stakeholders’ discussions were not suitable of the theme 5.
The discussions became obviously complicated. As a result, the specification of mark-
ing late students was vague. Quality of the meeting became low.

4.2 Evaluation of the Values of Meeting as Compared with Specification Faults

After the first release, the stakeholders claimed 48 specification problems from April
to September of 2008. Range of the specification faults was wide from simple prob-
lems to significant problems. The categorized specification faults are shown at Table
1. The row named “Functions” means main 7 functions of p-HInT. The “Normal”
row means that the specification faults occurred while users doing normal operations.
The “no-normal, limit” row means that the specification faults occurred while users
doing irregular operations. The “message” row means unclear messages for navigat-
ing users’ operations. If the stakeholders and the system engineers more carefully had
discussed the specifications in the meetings, we would be able to avoid almost all the
specification faults.

270 N. Hanakawa and M. Obana

Fig. 7. Values of Meeting on each theme in the first meeting and the third meeting on p-HInT
project

Fig. 8. Values of the two significant metrics on p-HInT project

Therefore we tried classifying the 48 specification faults into the 45 themes of the
8 meetings. The results of the classification are shown at Fig.9. The 36 specifications
faults were able to be classified. The numerical values with white bold characters with
a red filled rectangle of Fig.9 mean the number of the specification faults that should
be discussed at the theme. For example, at the forth theme of the second meeting,
three specification are classified. That is, the value “3” of the white bold character
means a count number of specification faults that were discussed in the theme at the
meeting. The 3 specification faults are derived from Table 1. In addition, the classifi-
cation of the specification faults is in manual while we compared the faults with the
discussions’ contents using video records.

Table 1. Counts of the specification faults

Functions Test Log-in Data
format

Student
list

Making
test

Call the
roll

Environ-
ment

Total

Normal 8 2 2 2 3 3 13 33
no-normal, limit 9 0 0 0 0 0 3 12
messages 3 0 0 0 0 0 0 3
Total 20 2 2 2 3 3 16 48

As shown in Fig 9, the values of Meeting of discussion including specification

faults are lower than the values of Meeting of other discussions. If the stakeholders
and system engineers more sufficiently discussed the specification, the specification

Value of Meeting

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 1 2 3 4 5 6
The first meeting The third meeting

1.41 0.78

Theme Theme

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 1 2 3 4 5 6

0

2

4

6

8

10
Average time of once SE speaking

The number of maximum times of customer speaking

between SE speakings

The first meeting The third meeting

 A Metrics for Meeting Quality on a Software Requirement Acquisition Phase 271

Fig. 9. Comparison the values of Meeting of p-HInT with the specification faults

fault might not occur. The value of Meeting of the third theme of the first meeting is
1.42. The value of Meeting is low. In addition, the value of Meeting of the third theme
of the fifth meeting is 0.71. The third theme of the fifth meeting is “details flow of
Test function”. As shown in Table 1, many specification faults according to Test
function occurred at not only no-normal operations but also normal operations. There-
fore, we can predict that the discussion of the third theme of the fifth meeting was not
sufficient.

One of purpose of Meeting metrics is prediction of specification fault occurrences
at an early stage of development phase. Therefore, we evaluate whether the values of
Meeting metrics of p-HInT indicate occurrence of the 36 specification faults. If a
value of threshold of Meeting is 3.0, the number of doubtful themes is 22. For exam-
ple, the sixth theme “detail flow of input key word” of the fifth meeting is lowest;
0.42. Therefore, we predict that the specification of the “detail flow of input key
word” may be unclear. The recall of detecting the 36 specification faults is 91.7%,
precision of detecting the specification faults is 50.0%. If the value of threshold of
Meeting is 2.0, the number of doubtful themes is 17 (See striped pattern bars of
Fig.9). The recall is 83.2%, precision is 59.0%. In short, the Meeting metrics can be
predictable in short odds. At an early development stage such as requirement analysis
phases, problematic specifications can be detected using the Meeting metrics. How-
ever, the value of precision of detecting the specification faults is low as compared
with the value of the recall. The reasons of the low value of the precision are investi-
gated at the following section “Discussion”.

5 Discussion

5.1 Why the Value of Precision Is Low?

As mentioned above, when a value of threshold of Meeting is 2.0, although the value
of recall of finding the specification faults is 83.2%, the value of precision is 59.0%.
A reason of low value of the precision is discussed in this section.

At Fig.9, there are 9 themes that the specification faults were not occurred although
the values of Meeting are low. These low values of the 9 themes do not indicate the
specification faults. The 9 themes lead the value of the precision low. The 9 themes

0

2

4

6

8

10

12

14

16

18

20

1

1

3

5 6

2
6

1 2 5

2

2

Meeting

First

Meeting

Second

Meeting

Third

Meeting

Forth

Meeting

Fifth

Meeting

Sixth

Meeting

Seventh

Meeting

Eighth

Meeting

 1 2 3 4 5 6 7 1 2 3 4 1 2 3 4 5 6 1 2 3 4 1 2 3 4 5 6 7 8 1 2 3 4 1 2 1 2 3 4
theme

272 N. Hanakawa and M. Obana

are categorized as Table2. At first, discussions of No.1 and No.7 of Table 2 are about
“Meeting management”. Because the discussions are not about software specification,
of course, the discussions did not lead any specification faults. Similarly, No.9 discus-
sion of Table 2 did not lead any specification faults because the discussion is about
promotion activities of p-HInT. Therefore, we exclude these three themes from analy-
sis of the above evaluation (section 4.2) by the recall and the precision.

Next, discussions of No.2, No.3, and No.8 of Table 2 are “Review”. “Review”
means re-checking development documents such as function lists, design documents
among stakeholders and system engineers. Basically, a value of Meeting of a good
review process is high. For example, the ninth theme of the fifth meeting, and the
forth theme of the sixth meeting are review processes of reviewing design documents
for user interface. Values of these themes are not so low; 4.5, and 4.9. The discussions
of No.2 and No.3 are in similar review process about function lists. The function lists
should be discussed previous meetings (the first meeting and the second meeting).
However, because the discussions of the previous meeting were not sufficient, as a
result, the discussions about the function list at review processes were not smooth. In
addition, the discussion of No.8 at Table 2 is review of design documents for user
interface of test function. That is, the previous discussions about the test function
were not sufficient. In this way, because the values of Meeting of review processes
are reflected by qualities of the previous discussions, naturally, the values of Meeting
of review processes do not indicate the specification faults.

Here, we re-calculate a value of the precision of the section 4.2. The specification
faults of No.1, No.2, No.3, No.7, No.8, and No.9 of Table2 are extracted the calcula-
tion of the precision. The value of the precision is improved to 73%.

Next, although No.4, No.5, and No.6 of Table 2 are just specification discussions,
the discussions did not lead the specification faults. We check details of the discus-
sions. The discussion of No.4 is a detail flow of the question function. The question
function is similar to the test function. Moreover, the question function was not use-
ful. No teachers used the question function in their lectures. Because of no user, the

Table 2. Details of themes that the specification faults were not classified

No. Num. of meeting Num. of theme Contents of the discussion Category

1 2 1 Confirmation of schedule, a way of sharing devel-
opment data

Meeting manage-

ment

2 2 2 Reviewing the previous discussion of the function
list of this version

Review

3 2 3 Reviewing the missing description of the function
list of this version

Review

4 5 4 A detail flow of question function Specification

5 5 6 A detail flow of input keyword for DS Specification

6 5 8 A detail flow of referring test results for DS Specification

7 7 2 Schedule of making new functions for the next
version

Meeting manage-

ment

8 8 1 Reviewing the design documents for the user inter-
face

Review

9 8 3 Demonstration of p-HInT system Promotion

 A Metrics for Meeting Quality on a Software Requirement Acquisition Phase 273

specification faults about the question function did not occur. To begin with, the ques-
tion function may not be necessary. Of course, the necessary of the question function
should be discussed more at the meetings of the requirement analysis phase. There-
fore, the low value of Meeting of the No.4 of Table 2 may be appropriate.

Next, discussions of No.5 and No.6 are about specifications of students’ operations
on DS. To tell the truth, all of the specification faults were requests from only several
teachers. Investigation from April to September of 2008, we collected requests and
opinions of the first release p-HInT from only several teachers. Because teachers’
requests and specification faults were too many, we were not able to collect students’
requests and opinions. Therefore, there was no specification fault about operations on
DS. After second release of October of 2008 students’ requests and opinions were
collected as same as teachers’ requests. 4 specification faults about students’ opera-
tions on DS occurred. One was a complicated operation of log-in process on DS.
Another was about operations of a test function on DS. Of course, because the second
version of the p-HInT was improved various functions’ operations and performance,
we can’t simply compare the values of Meeting of the first version’s meetings with
the second version’s specification faults. However, we think that several causes of the
second version’s specification faults had already been embedded at the first version’s
meetings. Using the values of Meeting, we can investigate essential causes of specifi-
cation faults with tracing back to the past. Even if the tracing goes back previous ver-
sions, essential causes of specification faults will be detected by values of Meeting.

5.2 A Tool for Detecting Doubtful Specifications in Real Time

A most important point of Meeting metrics is measurement in real time. Doubtful
specifications should be detected as early as possible. Therefore, we have developed a
tool for detecting doubtful specifications. The tool consists of a tool for measuring
basic metrics (See Fig.4) and calculations of Meeting metrics. A person operates the
tool for measuring basic metrics of Fig.4 while he/she hears discussions in meetings.
He/ she does only action of push buttons of the tool when a speaker changes. Just
discussions of a theme finishes, the tool calculates a value of Meeting metrics. If the
value of Meeting is lower than a threshold value, a warning of doubtful specifications
informs in real time to stakeholders and system engineers. The tool is useful to im-
prove specifications for avoiding specification faults after release.

6 Conclusion

We propose a new metrics for meeting quality at a software requirement analysis
phase. The metrics needs only time of speaking, the number of times of speaking of
system engineers and stakeholders. The metrics can distinguish smooth discussions
with complicated discussions. As a result of application of p-HInT project, the values
of the metrics were able to indicate occurrence of specification faults after release.
Recall of detecting specification faults by values of the metrics is 83.2%, precision is
59.0%. The low value of the precision was caused by topics of meeting management,

274 N. Hanakawa and M. Obana

and reviewing documents. In addition, after second version release, we confirm that
specification faults caused by the insufficient discussions of the first version.
In future, a tool for auto measuring when and who speaks at meetings will be devel-
oped. In addition, we will be clear relationships among various software development
processes and methodologies, then, more details of relationships between values of
the metrics and occurrence of specification faults will be clear.

Acknowledgement. This research was partially supported by KAKENHI, Grant-in-
Aid for Scientific Research(C), 21500045, 2011.

References

1. Stellman, A., Jennifer, G.: Applied Software Management. O’Reilly Media, Cambridge
(2005)

2. Sawye, P., Rayson, P., Cosh, K.: Shallow knowledge as an aid to deep understanding in
early phase requirements engineering. IEEE Transactions on Software Engineering 31(11),
969–981 (2005)

3. Osada, A., Ozawa, D., Kaiya, H., Kaijiri, K.: The Role of Domain Knowledge Representa-
tion in Requirements Elicitation. In: Proc. IASTED International Conference on Software
Engineering, pp. 84–92 (2007)

4. Doi, K., Horai, H., Watanabe, I., Katayama, Y., Sonobe, S.: User-oriented requirements
capturing method in analyzing requirements capturing meeting requirements engineering.
Transactions of Information Processing Society of Japan 44(1), 48–58 (2003)

5. Dyba, T., Dingsoyr, T.: Empirical Studies of agile software development: A systematic re-
view. Information and Software Technology 50(9-10), 833–859 (2008)

6. Seaman, C., Basili, V.: Communication and Organization: An Empirical Study of Discus-
sion in Inspection Meetings. IEEE Transaction on Software Engineering 24(6), 559–572
(1998)

7. Damian, D., Lanubile, F., Mallardo, T.: On the Need for Mixed Media in Distributed Require-
ments Negotiations. IEEE Transactions on Software Engineering 34(1), 116–132 (2008)

8. Miyata, A., Hayashi, T., Yamamoto, S., Hayashi, M., Shigeno, H., Okada, K.: Conference
Movie Summarization Assistance Using Mental States and Speech Breakpoints. Transac-
tions of Information Processing Society of Japan 47(3), 906–914 (2006)

9. Miyata, A., Hayashi, T., Yamamoto, S., Hayashi, M., Shigeno, H., Okada, K.: A Proposal
of Indexing Conference Movies with Thinking States. In: Proce. Fifth International Confe-
rence on Creating, Connecting and Collaborating through Computing, pp. 54–61 (2007)

10. Tomino, T., Inoue, A., Ichimura, S., Matsushita, Y.: A Speaker Zooming Method for
Room-to-room TV Conference. Transactions of Information Processing Society of Ja-
pan 47(7), 2091–2098 (2006)

11. Hanakawa, N., Akazawa, Y., Mori, A., Maeda, T., Inoue, S., Tsutsui, S.: A Web-based in-
tegrated education system for a seamless environment among teachers, students, and ad-
ministrators. International Journal of System & Computer in Japan 37(5), 14–24 (2006)

12. http://www2.hannan-u.ac.jp/p-hint/index.html
13. Hanakawa, N., Obana, M.: Mobile game terminal based interactive education environment

for large-scale lectures. In: Proc. the Eighth IASTED International Conference on Web-
based Education, WBE 2010 (2010)

14. http://www.nintendo.co.jp/ds/index.html

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 275–289, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Merging the Quality Assessment of Processes
and Products in Automotive Domain

Morayo Adedjouma1, 2, Hubert Dubois2, François Terrier2, and Tarek Kitouni1

1 DELPHI France, 64 avenue de la plaine de France, 95572 ROISSY CEDEX, France
2 CEA LIST, Nano-INNOV, Boîte 174, 91191 Gif-sur-Yvette Cedex, France

{Morayo.Adedjouma,Tarek.Kitouni}@delphi.com,
{Hubert.Dubois,Francois.Terrier}@cea.fr

Abstract. It is commonly accepted that the quality of a product depends on
quality of a process. So, many industrial companies have put effort to improve
their software processes, which are mainly based on CMMI or SPICE in
automotive industry. However, these processes do not pay attention to safety-
related dedicated issues. We propose in this paper an instrument that allows
performing a SPICE assessment as well as a safety assessment regarding the
ISO 26262 recommendations. The major benefit of our proposal is that it allows
focusing on assessing software by both development process quality and
product quality approaches.

Keywords: Quality assessment, certification, Automotive, HIS, ISO 26262.

1 Introduction

With the recent safety-related standard ISO 26262 [3], automotive industry is
interested in strategies for mastering its processes. Indeed, in current situation,
suppliers have to prove process capabilities to OEM (Original Equipment
Manufacturers) through maturity models, and standards such CMMI (Capability
Maturity Model Integration) [14], ISO/IEC 15504 also called SPICE (Software
Process Improvement and Capability dEtermination) [15], HIS Automotive SPICE [5]
in automotive domain, etc… These processes are described as being “process-based”,
in that they define a set of practices to be adhered during the development of
software. They provide good strategies to assess organization’s software development
capability and, based on the resulted assessment, they allow identifying the process
strengths, weaknesses and risks for preventing them. Unfortunately, because these last
ones do not comprise safety aspects, they do not satisfy requirements for a consistent
safety management. On the other side, ISO 26262 is the new software safety
standard, derived from the IEC 61508 [16], specifically developed for automotive
industry to handle this purpose. It is a certification system that focuses on end-product
quality approach based on the construction of well-structured and reasoned safety
arguments. Our work is an attempt to develop an assessment instrument for a specific
automotive engineering organization that develops safety systems and that aims at
supporting software certification by both end-product quality approach and

276 M. Adedjouma et al.

development process approach. The instrument is built across a metamodel that is
implemented in an Excel framework.

The paper is organized as follows: it starts with an overview of the two standards
discussed in this article: HIS Automotive SPICE and ISO 26262. Section 3 presents
the analysis that we realized about the overlapping between the two standards and
about the identified gaps. Then, the considered methodology to unify them in a single
process which corresponds to a full compliance of both standards is presented in
section 4. In section 5, an assessment framework to measure process capability of a
specific engineering organization that develops safety systems is proposed. Lastly, the
paper presents some future works before concluding.

2 Motivation and Introduction to HIS and ISO 26262

For a long time now there have been demands for process-oriented developments
according to Automotive SPICE [1], [2] in the automotive sector. Many companies
have already set themselves up here, or accordingly aligned their improvement
projects. In 2011, the new ISO 26262 safety standard has been released, with more
stringent requirements on the development of a product. The current problematic for
suppliers is to check if they have to completely adapt their current projects now; or to
check what has already been achieved according to Automotive SPICE, what has
effectively been used and integrated to meet the new ISO 26262 requirements as well.

2.1 Overview of HIS Automotive SPICE

The Automotive SPICE derived from the ISO/IEC 15504 standard [15], is an
international standard used in major worldwide automotive firms, as a "framework for
the assessment of processes". The automotive SPICE can be considered as
representative software process assessment models since assessors assign ratings to
indicators and metrics that measure the capability of software processes. It is a
reference model for the maturity models which specifies requirements for Process
Reference Models (PRM) [2] and Process Assessment Models (PAM) [1]. This
reference model consists in some major components, namely: some lifecycle
processes from different process categories for the process dimension, and six
capability levels for the capability dimension.

Processes are the basic by which the software organization generates products. We
rely in this paper on the HIS Automotive SPICE [5], a basic subset of processes
(named HIS Scope), which has been defined above Automotive SPICE as a selection
of a standardized assessment method mostly appropriated for determining suppliers
software process capability and related to the sub models of the V-Model (Fig. 1).

Capabilities associated with their process attributes refer to the ability of the
organization to produce these products predictably and consistently. It comprises a set
of assessment indicators of process performance and process capability which are
used as a basis for collecting the objective evidence that enables an assessor to assign
ratings. The process attributes are based on the assessment model in ISO/IEC 15504-5
and provide the measurable characteristics of process capability (Fig. 2).

 Merging the Quality Assessment of Processes and Products in Automotive Domain 277

Fig. 1. HIS Automotive SPICE Scope [5]

Fig. 2. Relationship between Process Reference Model and the assessment indicators [1]

2.2 Overview of ISO 26262

Safety is one of the key issues of future automobile development, as for other
domains [19]. The new automotive standard ISO 26262 is the adaptation of IEC
61508 [16] to comply with needs specific to the application sector of safety-related
electrical and/or electronic (E/E) systems within road vehicles. The standard, through
an application model and framework, focuses on the assessment of functional safety
by proposing an automotive safety lifecycle based upon a V-model, and tailoring the
necessary activities during these lifecycle phases (Fig. 3).

278 M. Adedjouma et al.

Fig. 3. ISO 2626 overview on V-model [1]

It includes guidance to avoid unreasonable residual risk by providing an
automotive-specific risk-based approach to determine Automotive Safety Integrity
Levels (ASIL) [3] of system’s elements; together with appropriate requirements,
processes, techniques, methods and expected work products for validation and
confirmation measures to ensure a sufficient and acceptable level of safety being
achieved. The final goals is to provide evidence that all reasonable system safety
objectives are satisfied, to justify the acceptability of safety based upon product-
specific and finally to target evidences to illustrate the competence for managing
systems.

2.3 Relationships between HIS and ISO 26262

Much researches are looking for a mapping between HIS and ISO 26262 [8], [9],
[11]. General evidence is that there is a high coverage of the HIS scope by the ISO
26262 standard, but a low coverage of the safety standard by the HIS scope instead.
This is in particular because, in addition of the requirements defined at process level
as is the case in the HIS scope, the ISO 26262 standard also includes specific
requirements to be considered at product level. According to our study, we reached
the same result as in [18], [7]. Indeed, we note that for the HIS scope, all processes

 Merging the Quality Assessment of Processes and Products in Automotive Domain 279

are fully supported by ISO 26262, failing processes SUP 8 and SUP 9 (respectively
configuration and problem resolution management) that are only partially considered.
Conversely, the process of ISO 26262 is only partially covered by the HIS SPICE or
not at all for others activities. This is particularly true for the safety management,
hazard analysis and risk assessment, safety concept definition, safety validation,
production and operation, safety qualification, safety analyses processes. We present a
quick overview of our results in Fig. 4.

Fig. 4. HIS support in ISO 26262

In the following sections, we present our approach to allow through a unique
framework, the assessment of both standards, despite this finding.

3 Certification Representation Model

In [3], an interesting note holds that “an organization’s process definitions must
address multiple standards at the same time. If a SPICE assessment is performed,
then this SPICE assessment and a functional safety audit can be simultaneously
performed. There is sufficient commonality in content that can help to avoid
duplication of work or process between both standards and to allow synchronization
of the planning”. For having these coordinated processes, we want to provide specific
process cross references to ISO 26262 requirements and HIS. The enhanced obtained
model is an integrated model which focuses on certification and assessment of
software based on both product quality and process development approaches in a
wider scope of requirements.

3.1 Algorithm of Metamodel Extension

Among the researches that are oriented towards the comparison between HIS and ISO
26262, some of them have opted to extend the HIS standard to ensure compliance [7],
[8]. Specifically, these approaches update HIS (and more widely) processes according

280 M. Adedjouma et al.

to some ISO 26262 processes that are already partially covered. In addition, they add,
at the appropriate level, processes purely dedicated to safety as the identification of
hazards, the safety case creation, the classification of safety requirements and so on.

We decide to follow another position that we believe more appropriate in a
certification context. Our motivation relies on the following question: how to ensure
good compliance to a standard that has been modified if the modification or the
extension has not been approved by the certification body having published the
original standard? Thus, in our compliance study, we rather have chosen to not
modify any of the two standards, but to allow nevertheless a combined assessment
method which corresponds to a full compliance for the two automotive standards.

The methodology used for that purpose is inspired by the model and metamodel
composition paradigms (also called model combination or weaving) from model-
driven engineering community [13], [23]. It is a structured approach that relies on the
ontologies. Thus, the respective semantics of each standard are considered as the
isomorph graph which needs to be matched to provide a single one that embodies all
the different concepts [4]. In [6], the authors propose a generic framework based on
an algorithm that follows two steps: (1) the matching step that identifies the models
elements (nodes or edges) that describe the same concepts in different models and that
have to be composed; (2) the merging step where the matched model elements are
merged to create new models elements that represent an integrated view of the
concepts.

This algorithm is improved by the application of some others main principles
proposed in [12]: (1) the generalization of similarity of nodes; (2) the transitivity of
similarity for edges and nodes and (3) the pattern matching.

3.2 Extended Metamodel for HIS Scope and IS026262 Processes

We apply the full resulting algorithm in order to identify the extended metamodel
corresponding to the ontology of both HIS (for which we listed 16 concepts) (Fig. 5)
and ISO 26262 standards (for which we listed 21 concepts) (Fig. 6). Let us define the
“similarity” as the different degree of equivalence greater than a certain threshold
between two concepts according to their semantics. When a concept of a standard
does not have a similar one in the second standard, the concept is reported in the
common metamodel following the transitivity and inheritance rules.

Fig. 5. Extract of the SPICE domain model

 Merging the Quality Assessment of Processes and Products in Automotive Domain 281

Fig. 6. Extract of ISO 2626 domain model

We start by determining the similarity of Category, Group, Process and Purpose
concepts in SPICE that can be considered similar respectively with Safety Lifecycle,
Part, Clause and Objective concepts in ISO 26262, based on our understanding of
their semantic definitions. We apply the pattern matching principle: as they form a
connected graph in ISO 26262, the edges connecting them are similar with the edges
connecting the concepts in SPICE.

With regard to their semantics, we establish that Outcome and Requirement
concepts are similar. Because RequirementGroup concept has an inheritance
hierarchy with Requirement concept, we apply the generalization of similarity of
nodes and stated then Outcome concept is also similar of RequirementGroup. In the
same meaning, a similarity degree is founded between Outcome and Requirements&
Recommendations. Outcome is then similar to several nodes.

Outcome concept is connected with Workproduct and Process concepts through
edges. By transitivity of similarity of edges, we analyze that Clause concept is similar
to Process concept whereas Workproduct is similar concept in both standard.
Output, Input, BasePractice and General concepts have not matching concepts: they
are copied in the common metamodel as such (see Table 1).

Table 1. Example of some matching concepts

HIS concept ISO 26262 concept Final Concept
Category Safety Lifecycle Category
Workproduct Workproduct Workproduct
Outcome Requirement Requirement
BasePractice N/A BasePractice
N/A ASIL ASIL

The resulting metamodel that we obtained allows us to describe the two standards

in a single way with one language (Fig. 7). It also allows having an assessment
framework able to measure both process capability and product quality about the
safety systems development that will discussed in the following sections.

282 M. Adedjouma et al.

Fig. 7. Overview of the common metamodel for HIS and ISO 26262. The concepts only
present in ISO 26262 are in red. Respectively, the concepts only present in HIS are in White.
Blue ones are those common.

4 Integrated Assessment Model

To implement our metamodel, we decide to use an Excel framework. As in [11], we
choose this tool because, first of all, it is widely used in automotive industry as it is quite
simple to manipulate; furthermore, it served as an experimental tool for interpreting the
suitability of our metamodel before we translate it in a more formal way.

4.1 Boundaries of the Context Evaluation

Before starting an audit [3], it is necessary to precise its boundaries. Indeed, the users
have an opportunity to select their interesting quality factors to be applied in the
certification exercise depending on the organizations requirements:

- What is the system (subsystem) under evaluation?
- Given that each HIS process may be audited individually, and that in this case, they
can achieve different maturity level, it is necessary to identify the specific processes
that will be subject to evaluation. The term "maturity" relates to the degree of
formality and optimization of processes, from ad hoc practices, to formally defined
steps, to managed result metrics and to active optimization of the processes [21].

 Merging the Quality Assessment of Processes and Products in Automotive Domain 283

- Concerning ISO 26262, given that the number of requirements to cover increases
following the higher severity to achieve (around 1300 requirements for ASIL A and
more than 1450 requirements for ASIL D for instance), it is necessary to define the
ASIL as referred to its system (or subsystem). Moreover, if we do not want to cover
the entire standard, the processes (i.e. parts) integrated as part of the assessment have
to be precised. For instance, if it is the ASIL A that is referred to the system, all
requirements that are specifically valid for the others severities (B, C, or D) are
hidden by an algorithm defined in the framework. It is the same for methods and tools
tables recommended by the standard that can also be filtered. For generalization, all
the HIS requirements have their ASIL put to “All”, i.e. they are to be considered for
all ASIL levels.
- The certification includes three pillars: product, process and people [20]. Software
engineering is a creative, intelligent kind of work, which highly depends on well
skilled people. Assigning well-equipped and educated people to a software project is a
critical success factor reported from industry. Therefore, we also need to take into
consideration the human resources dimension. We have identified a role responsible
for each workproduct. If desired, the framework can also be filtered by competency.

These different settings can be parameterized in our framework. After having fixed the
quality factors, we can exactly know how many requirements must be met in total for the
two standards coverage, and also the needed number to be covered for each standard.

4.2 Description and Usage Rules of the Framework

We may consider two different cases for the audit. The first one is to identify which
requirements of the safety standard ISO 26262 already have a good support if we
suppose an HIS compliance process ready. The second one is to identify which
requirements of the safety standard ISO 26262 will not be fulfilled assuming the same
prerequisite.

We start with an analysis of the overlapping and the gaps existing between the
standards HIS and ISO 26262 [22]; this analysis allows us to identify how HIS
requirements are covered in the safety standard. Regarding that, for each requirement,
some parameters have been added. This results in the addition of new columns in the
framework used for implementation, that’s mean an extension of the metamodel’s
core. Let’s consider the example of a requirement ReqA of the standard A (Fig. 8):

- The column ISO 26262 compliance (respectively HIS compliance) indicates the
level of coverage of ReqA in the standard B. Three values are possible: “OK” (ReqA
is completely covered); “Partially” (ReqA is partially covered), “NOK” (ReqA is not
covered at all).
- The column Clauses references indicates the clause(s) reference(s) of the
requirement(s) corresponding in the standard B.
- The column Workproducts References indicates the associated workproducts
reference(s) of the requirement(s) corresponding in the standard B.
- The column Rating to assign a rating value to the requirement.
- Recommendation level is an attribute attached to Table and Property concepts (see
Fig. 7) following the ASIL value. It takes the value “highly recommended”,
“recommended” and “no recommendation”.

284 M. Adedjouma et al.

Fig. 8. Extract of a requirement specification with HIS references columns

Note that we rely on the availability of deliverables to assess the maturity level
since, in principle, a process is validated only when all its output workproducts are
available. Our resulting metamodel allows us to get the information about the
(required or optional) output and input workproducts of each process (see Fig. 7).

Identically, a deliverable is available only if all requirements to which it refers are
satisfied. We believe that focusing the assessment on requirement level ensure a more
detailed assessment, in contrast to SPICE which focuses on base practice, an concept
that regroups a set of outcomes of a process.

We have defined an Excel spreadsheet for each workproduct with all requirements
relating to it. Then, we have as many Excel spreadsheets as available workproducts.
We use the SPICE rating scale [1], [10] generically to assess the satisfaction status of
a requirement in the framework, that means the values “N”, “P”, “L” and “F (Table
2) ” and we add the value “N/A” (Not Applicable) for follow-up questions.

Table 2. SPICE rating scale

 Merging the Quality Assessment of Processes and Products in Automotive Domain 285

In HIS, as well as in the ISO 26262, a requirement may participate in multiple
workproducts. Our method avoids redundant work because once a requirement is
validated, it will also be validated wherever else it is specified: we propagate the
information. In addition, each validated requirement automatically validates all
relevant requirements whose references are in column "Reference". Several cases are
possible to assign the rating in this case (Table 3). Let us consider an example: the
requirement ReqA which has already its rating value and its reference requirement
ReqB:

- if the requirement ReqB is completely covered by the requirement ReqA (equivalent
to “OK” value), then the rating assigned to the requirement ReqA is automatically
carried to the requirement ReqB.
- if the requirement ReqB is partially covered by the requirement ReqA (equivalent to
“Partially” value), then the rating assigned to the requirement ReqB is directly below
that of the requirement ReqA, when it is possible.

The table below summarized the different rating values applied to ReqB according to
the ReqA rating in case of partial coverage.

Table 3. ReqB rating values applied following the ReqA rating value in case of partial coverage
of a requirement ReqB by a requirement ReqA

ReqA rating ReqB rating
F L
L P
P N
N N
N/A N/A

If the requirement ReqA has no corresponding reference in the standard B (“NOK”

value), then, obviously, nothing is postponed. The staining tab quickly lets us check
that a workproduct is available. The coloration follows the same ones associated to
SPICE rating scale, i.e. green when all clauses are fully achieved (F), yellow when
they are largely achieved (L), orange when they are partially achieved (P), and red
when they are not at all achieved (N); which by transitivity allows to know the
maturity level for each process.

5 Case Study and Future Works

5.1 Case Study Discussion

We applied it on a trivial industrial case study. The process can be indifferently
started with the HIS requirements or the ISO 26262 requirements, as the work done
on one affects the other. Nevertheless, as presented in section 2, it is better to start
with the ISO 26262 requirements because it has a broader spectrum. Some studies

286 M. Adedjouma et al.

have concluded that covering the ISO 26262 standard (regardless of ASIL level)
corresponds to cover the capability level 2 of the HIS Automotive SPICE standard at
least [18]. The opposite is not true.

We considered a subset of the ISO26262 (only activities associated with the
specification of functional and technical requirements) and the results are more or less
consistent with those expected. After performing the audit of all the requirements of a
given standard, it is possible to verify, through a summary sheet, the maturity level for
each process being evaluated, derived from rating of workproducts (Fig. 9).

Fig. 9. Method for deriving maturity level of ISO 26262 processes

Furthermore, having a partial evaluation of the other standard greatly helps since to
perform a complete assessment, it is only necessary to review, for each deliverable of
this standard, the requirements that have not been automatically validated. This would
be those whose the reference column contains the NOK on the staining tab in red. For
SPICE audit, we obviously have to switch to the terminology given in the standard
(that means Base Practice, Process Attribute, Generic Practice, etc.) (Fig. 10) that we
can find again regarding the matching concepts (see Table 1).

Fig. 10. Maturity level Calculus of SPICE processes. The number in blue (from 0 to 3)
represents the final maturity level achieved by the process derived from rating on their process
attributes.

 Merging the Quality Assessment of Processes and Products in Automotive Domain 287

The saving of time and effort is undeniable as we avoid some redundancy in the
requirements verification. Nevertheless, it would be used carefully in general, only in
the scope of an audit-line evaluation to one project. Indeed, assessing processes in an
organizational unit to a certain capability level means much more than requirements
conformity: for instance, level 3 in SPICE means having the processes
institutionalized in the organization and just a requirements’ conformity is not enough
sufficient for judging this fact.

It was also a first solution to evaluate the feasibility, costs and additional efforts
that would require the full deployment of the ISO26262 standard on a large scale
projects within the organization.

5.2 Future Works

The tool selected for the implementation of our framework is Excel. Nevertheless,
given the amount of data and the numerous algorithms implemented, we meet
difficulties to maintain or to add other features. It would be wise to find a more
appropriated format to ensure an efficient and effective assessment like in [11]. A
comparison of our common metamodel with SPEM metamodel [17] suggests us that
it would be possible to translate it in this process language; even if some extensions
will have to be developed to cover all our concepts.

We also remain that this work is based on a partial view of the HIS and therefore
needs to be completed to allow a future application in an engineering organization. In
addition, the matching between the ISO 26262 requirements and HIS which is the
foundation of some features for the assessment requires a great review of certification
experts, although this does not undermine the proposed methodology.

6 Conclusion

Certification is commonly a hard expectation in safety-critical industries like rail,
aerospace, automotive, etc. The probably most well-known process certificate in
automotive domain is the certification based on SPICE, which defines the necessary
activities of a general quality management process. However, its application that
warrants a better process is not an assurance of getting a higher product quality. At
best, it offers an increased confidence of this quality. Hence, the recent definition of
the ISO 26262 standard that focuses on the certification of a product and its (safety-)
related artifacts which were created during its development. Although disjoined, all
these types of certifications affect software quality.

This work was then conducted with the objective to propose a solution in an
acceptable certification perspective that focuses both on end-product quality approach
and process development approach in automotive domain, where a HIS assessment
and a functional safety audit simultaneously performed is becoming a great need. In
particular, we propose an extended metamodel that describe the two standards in a
common way without altering their respective contents and it had implemented in an
Excel framework for experimentation objectives. Considering the assessment

288 M. Adedjouma et al.

purpose, we apply the SPICE assessment method [1] also to the ISO 26262
requirements as today no method has yet been formally established in this regard for
the safety standard. Moreover, the framework avoids redundant work because it is
used to validate all at once the requirements that an expert would have found similar
in the two standards: thus, it greatly reduces the effort required to be compliant with
the new standard.

The proposed solution can be seen as an initial response for the actual automotive
needs and future works are still under development to integrate these results in a more
generic process-based language (like SPEM) that will ensure a wide usage of our
results.

References

1. Automotive SIG: Automotive SPICE, Process Assessment Model (PAM). Version 2.5
(2010), http://www.automotivespice.com (status: released May 10, 2010)

2. Automotive SIG: Automotive SPICE, Process Reference Model (PRM). Version 4.5
(2010), http://www.automotivespice.com (status: released May 10, 2010)

3. International Organization for Standardization: ISO International standard IS0 26262 (all
parts) Road vehicles – Functional safety (2011) (Status: First Edition November 15, 2011)

4. Kolovos, D.S., Di Ruscio, D., Pierantonio, A., Paige, R.F.: Different models for model
matching: An analysis of approaches to support model differencing. In: International 2009
ICSE Workshop on Comparison and Versioning of Software Models, pp. 1–6. IEEE
Computer Society (2009)

5. HIS automotive SPICE, http://www.automotive-his.de/
6. France, R., Fleurey, F., Reddy, R., Baudry, B., Ghosh, S.: Providing Support for Model

Composition in Metamodels. In: 11th IEEE International Enterprise Distributed Object
Computing Conference, p. 253. IEEE Computer Society, Annapolis (2007)

7. Petry, E.: How to Upgrade SPICE-Compliant Processes for Functional Safety. Tutorial,
SPICE Conference 2010, Pisa (2010)

8. Lami, G., Fabbrini, F., Fusani, M.: ISO/IEC 15504-10: Motivations for Another Safety
Standard. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS,
vol. 6894, pp. 284–295. Springer, Heidelberg (2011)

9. Lami, G.: ISO/IEC 15504-10 Safety Extension, Yet Another Safety Standard? Report,
Eight Automotive SPIN Italia Workshop (2011)

10. Hoermann, K., Mueller, M., Dittmann, L., Zimmer, J.: Automotive SPICE in Practice:
Surviving Interpretation and Assessment, Rocky Nook (2008)

11. Messnarz, R., Ross, H.-L., Habel, S., König, F., Koundoussi, A., Unterrreitmayer, J.,
Ekert, D.: Integrated Automotive SPICE and safety assessments. Software Process:
Improvement and Practice 14(5), 279–288 (2009)

12. Chiprianov, V., Kermarrec, Y., Rouvrais, S.: Practical meta-model extension for modeling
language profiles: an enterprise architecture modeling language extension for
telecommunications service creation. In: 7th Days of Model Driven Engineering, Lille, pp.
85–91 (2011)

13. Barbero, M., Jouault, F., Gray, J., Bézivin, J.: A Practical Approach to Model Extension.
In: Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) ECMDA-FA 2007. LNCS, vol. 4530,
pp. 32–42. Springer, Heidelberg (2007)

14. CMMI, http://www.sei.cmu.edu/cmmi

 Merging the Quality Assessment of Processes and Products in Automotive Domain 289

15. International Organization for Standardization: ISO/IEC International standard 15504 (all
parts), Information technology – Process assessment (status: release 2004)

16. International Electrotechnical Commission: IEC 61508 (all parts), Functional safety of
electrical/electronic/programmable electronic safety-related systems (status: release 2010)

17. Object Management Group: OMG Software & Systems Process Engineering MetaModel
(SPEM). Version 2.0 (2008), OMG document number: formal/ 2008-04-01

18. Petry, E.: Automotive SPICE® & ISO/CD 26262, Their Mutual Relationship. Report,
Fifth Automotive SPIN Italia Workshop (2009)

19. Machrouh, J., Blanquart, J. P., Baufreton, P., Boulanger, J. L., Delseny, H. Gassino, J.,
Ladier, G., Ledinot, E., Leeman, M., Astruc, J. M., Quéré, P., Ricque, B. : Cross domain
comparison of System Assurance. In: ERTS2 2012 Congress, Toulouse (2012)

20. Voas, J.: The Software Quality Certification Triangle. CrossTalk, The Journal of Defense
Software Engineering (1998)

21. Humphrey, W.S.: The IBM Large-Systems Software Development Process: Objectives and
Direction. IBM Systems Journal 24(2), 76–78 (1985)

22. Adedjouma, M., Dubois, H., Maaziz, K., Terrier, F.: A Model-Driven Requirement
Engineering Process Compliant with Automotive Domain Standards. In: 3rd Workshop on
Model-Driven Tool & Process Integration, Paris (2010)

23. Noyrit, F., Gérard, S., Terrier, F., Selic, B.: Consistent Modeling Using Multiple UML
Profiles. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS,
vol. 6394, pp. 392–406. Springer, Heidelberg (2010)

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 290–304, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Improving Unfamiliar Code with Unit Tests:
An Empirical Investigation on Tool-Supported

and Human-Based Testing

Dietmar Winkler1, Martina Schmidt1, Rudolf Ramler2, and Stefan Biffl1

1 Vienna University of Technology, Institute of Software Technology, Christian Doppler
Laboratory “Software Engineering Integration for Flexible Automation Systems” (CDL-Flex)

Favoritenstrasse 9-11/188, A-1040 Vienna, Austria
{Dietmar.Winkler,Martina.Schmidt,Stefan.Biffl}@qse.tuwien.ac.at

2 Software Competence Center Hagenberg
Softwarepark 21, A-4232 Hagenberg, Austria

rudolf.ramler@scch.at

Abstract. Software testing is a well-established approach in modern software
engineering practice to improve software products by systematically
introducing unit tests on different levels during software development projects.
Nevertheless existing software solutions often suffer from a lack of unit tests
which have not been implemented during development because of time
restrictions and/or resource limitations. A lack of unit tests can hinder effective
and efficient maintenance processes. Introducing unit tests after deployment is a
promising approach for (a) enabling systematic and automation-supported tests
after deployment and (b) increasing product quality significantly. An important
question is whether unit tests should be introduced manually by humans or
automatically generated by tools. This paper focuses on an empirical
investigation of tool-supported and human-based unit testing in a controlled
experiment with focus on defect detection effectiveness, false positives, and test
coverage of two different testing approaches applied to unfamiliar source code.
Main results were that (a) individual testing approaches (human-based and tool-
supported testing) showed advantages for different defect classes, (b) tools
delivered a higher number of false positives, and (c) higher test coverage.

Keywords: Software Product Improvement, Software Testing, Random Test
Case Generation, Manual and Tool-Supported Tests, Controlled Experiment.

1 Introduction

Software testing is a well-established quality assurance approach to identify defects in
source code documents during software and systems development. Software
processes, e.g., traditional and agile process models, aim at introducing (unit) tests as
mandatory activities in software engineering projects. Traditional – rather sequential –
development processes (e.g., Waterfall and V-Model process approaches) typically
consider software testing with a focus on integration, system, and acceptance tests late

 Improving Unfamiliar Code with Unit Tests 291

in the project [15]. Nevertheless, V-Model process models can support the early
definition of test cases in the analysis and design phases and the execution of test
cases depending on the availability of the code. More recent approaches apply
concepts from agile software development, e.g., Test-Driven Development (TDD)
[13], where tests are designed, implemented, and executed prior (or at least in
parallel) to the implementation of the source code on unit test level. Agile software
development processes like eXtreme programming [4] and Scrum [21] apply unit tests
as an integral part of the software construction phase.

Observations in industry projects show that not all projects achieve full code
coverage [12][16] and, in some cases, investments in systematic testing have to be
traded off against functionality and time to market [14]. Yet existing software
solutions with a lack of software tests might hinder software maintenance,
enhancements, and evolution. Similar arguments apply to legacy systems including a
lack of documentation and unit tests [9]. In addition, sufficient unit tests on various
levels and documentation support engineers in better understanding existing code.
Thus, it might be reasonable to introduce unit tests after deployment to enable (a)
better understanding of the software product and code, (b) increased product quality
by executing unit tests more frequent, and (c) automated testing for continuous
integration and test strategies [13]. An important question is whether unit tests should
be introduced manually by experts (requiring additional effort) or whether these unit
tests could be generated with tools, e.g., using Randoop1 for JUnit2 tests in Java.

In this paper we report on a controlled experiment investigating effects of different
testing strategies, i.e., tool-supported and human-based testing, for introducing unit
tests based on unfamiliar source code with respect to effectiveness (i.e., share of
identified real defects), false positives (i.e., wrongly reported defects), and test
coverage (i.e., method coverage). The remainder of this paper is structured as follows:
Section 2 describes related work. Section 3 summarizes research issues and
hypotheses. We present the study design and arrangements in Section 4, results in
Section 5, and the discussion of the finding in Section 6. Finally, Section 7 concludes
and identifies future work.

2 Related Work

This section summarizes related work on software testing in the software product life-
cycle (2.1), software testing strategies (2.2), and test case generation (2.3).

2.1 Testing in the Software-Life-Cycle

Software Testing is an integral part of software development processes as a part of
traditional engineering processes (e.g., Waterfall-Model, Spiral Model, and Rational
Unified Process) and agile software development approaches, e.g., eXtreme
Programming (XP) [4] and Scrum [21]. Traditional software processes (e.g., based on

1 Randoop: http://code.google.com/p/randoop/
2 JUnit: http://www.junit.org/

292 D. Winkler et al.

well-defined sequences of engineering steps) typically consider testing on various
levels: (a) Unit tests on code implementation level; (b) Integration tests with emphasis
on interfaces and the software architecture; and (c) System tests with focus on the
overall system’s behavior from user perspective. Agile software engineering
processes apply testing techniques embedded within code construction activities, e.g.,
Test-Driven Development [11][13] on unit level and/or on higher levels. Independent
of the applied software process, the scope of testing can focus on individual units
(classes), subsystems (interfaces and components), or the entire system [13]:

• Unit Testing refers to the smallest executable part of a system, e.g., components,
classes, or methods in Java. In agile software engineering practice, unit tests are
typically embedded within a test-driven (test-first) development approach.

• Integration Testing focuses on the interaction between software components [10]
to test communication and data exchange between individual software
components on architecture level (e.g., focus on subsystems).

• System Testing focuses on testing the overall systems behavior from user
perspective, including verification and validation of functional and non-
functional requirements (e.g., performance) of the system [13]. In the software
life-cycle system testing is applicable late in the development project where most
of the subsystems and components are available.

During software maintenance, enhancement, and evolution, these tests can help
engineers (a) in better understanding the software product and (b) testing new and/or
modified software artifacts (i.e., units, components and subsystems, and systems)
more efficient. Additional challenges arise if tests are missing, i.e., how can engineers
introduce test for unfamiliar source code effectively and efficiently.

2.2 Software Testing Strategies

Following software engineering best-practices two basic testing strategies are
applicable: (a) test-first development and (b) test-last development.

Test-First (Test-Driven) development (TDD) [11][13] refers to agile software
development best practices, i.e., defining test cases prior (or in parallel) to software
construction, following a set of defined steps: (a) selection of the most valuable
requirement (prioritization of backlog items [21]) and definition of a set of test cases
to test the selected requirement; (b) test case execution with failed test results because
no implementation is available; (c) fast source code implementation to pass the test
case successfully; (d) refactoring of the source code to meet source code requirements
(e.g., coding guidelines and source code optimization) and test case execution; (e)
after passing all defined tests, selection of the next pile of requirements (step a).
Figure 1 (left hand-side) presents a basic workflow of the test-first approach.
Frequent test runs can be executed within a continuous integration and test strategy
(including regression tests after source code changes) [7] and will lead to observable
software projects. In addition some studies [8][13] reported that TDD also promotes
productivity of programmers. However, the application of TDD might also be limited
to testing vulnerable source code if development time is scarce. Thus, there might be
a lack of test cases even if TDD is applied.

 Improving Unfamiliar Code with Unit Tests 293

Fig. 1. Test-First and Test-Last Approach

Traditional software processes (e.g., the Waterfall Process Approach) typically
follow the test-last approach, i.e., writing/executing test cases after the software
construction phase has been completed. Figure 1 (right hand side) presents this
traditional testing approach. Based on the specification and the source code test cases
are constructed/generated and executed. Modifications and refactoring activities are
necessary in case of defects and/or deviations. If development (and testing) time is
scarce, the test activities are in danger to be skipped at the end of the projects.

A lack of tests might raise quality issues (e.g., undetected defects and deviations or
limitations of test case coverage) and might lead to source code, which is hard to
understand and to maintain by engineers during software maintenance, enhancement,
and evolution. A key question is how test cases can be included after deployment to
overcome these issues: (a) human-based test case definition or (b) tool-supported test
case generation based on already delivered source code.

2.3 Human-Based and Tool-Supported Test Case Generation

Nowadays, changing product requirements, enhancements, and evolution of software
products will require testing after deployment and during maintenance processes.
New and missing test cases need to be written so that existing systems can be
maintained properly. The question is how test cases should be introduced.

Human-Based Test Case Construction. Obviously, introducing test cases manually by
experts and/or testers might be a promising but challenging option. Writing test cases
manually will require (a) a deep understanding of the requirements and the source code
and (b) additional effort. Typically test cases are based on the specification, pre-
conditions, input parameters and expected output values [15]. Test execution, e.g.,
supported by a test framework, includes comparing the expected outcome with the current
result and leads to decisions whether test cases have been passed successfully or fails.

Tool-Supported Random Test Case Generation. A second promising approach is the
automated generation of test cases based on specifications, models or the source code
[5]. Furthermore, random testing refers to choosing input values at random from the

294 D. Winkler et al.

input domain, selecting test points independently, executing the system under test
with these inputs and comparing the results to the program specification (test oracle)
[1]. No test points are considered “similar” and input sampling is usually done over
the entire input domain. The application of random testing depends only on
knowledge of the input domain and the ability to map pseudorandom values into that
domain [1]. Tools for generating unit tests for Java code include academic tools such
as JCrasher [6], Eclat [20], Jartege [17], and Randoop [18], and commercial tools, for
instance, JTest3 and Agitator4. Instead of automatically inferring properties like its
predecessor Eclat, Randoop [18] uses a set of universally applicable object contracts
[18][19]. Automatic tools are really fast: they produce test cases for a big number of
classes in a very short time and they scale much better than manual implementations
[2]. Nevertheless, it remains open whether there are benefits of applying an
automation-supported test case generation tool and a human-based testing approach in
a test-last strategy with respect to test performance.

3 Research Questions and Hypotheses

The major goal is to investigate the effects of human-based testing and tool-supported
test case generation in terms of effectiveness (share of defects found), false positives
(share of wrongly reported defects), and method coverage. To investigate the effects
of test case generation and the effects on product quality we conducted a controlled
experiment including two groups: (a) tool-supported test case generation and (b)
human-based test case construction, where participants were asked to write test cases
in a short time interval of about 60 minutes. Section 4 and [24] present the study
description and arrangements in more detail.

3.1 Variables

According to Wohlin et al. [23] we defined a set of variables: Independent variables
include the testing strategy applied and number of seeded defects within a given
experiment setup. Dependent variables are study duration, number of test cases,
defect detection effectiveness (Eff), false positives (FP), and method coverage (MC).

3.2 Hypothesis

To investigate the effects of human-based test case definition and tool-supported test
case generation we derived the following null hypotheses:

H0.1: Defect Detection Effectiveness. Human participants developed test cases and
tool-generated test cases enable similar defect detection effectiveness (i.e., share
of found seeded defects).

H0.2. False Positives. The share of false positives is similar for human-based test case
development and tool-supported test case generation.

3 JTest: http://www.parasoft.com
4 Agitator: http://www.agitar.com

 Improving Unfamiliar Code with Unit Tests 295

H0.3. Method Coverage. Human participants and Randoop covers a similar number of
methods, i.e., achieve a similar method coverage level.

The alternative hypotheses for this research are:

H1.1. Defect Detection Effectiveness. We assume that Randoop will find more defects
than the participants, since the tool generates tests for the entire software package
while the participants are only able to test a portion of the package within the
given time interval of about 60 minutes. The alternative hypothesis is that tool-
supported testing with Randoop is more effective than human-based testing
regarding defect detection. Eff(Randoop) > Eff(Participants).

H1.2. False Positives. We assume that tool-supported testing with Randoop will
report more false positives than human-based testing, because the tool can only
rely on its predefined contracts. Randoop is not able to comprehend and test
against the contract described in the documentation for a particular class. Human
developers are able to understand documentation of the requirements hence they
are able to avoid false positives. FP(Randoop) > FP(Participants).

H1.3. Method Coverage. We assume that tool-supported testing will achieve higher
overall method coverage, because more test cases can be generated in contrast to
human-based test case construction. MC(Randoop) > MC(Participants).

4 Study Description

This section summarizes the study process (4.1), material (4.2), Randoop
configuration (4.3), subjects (4.4), and identifies a set of threats to validity (4.5).

4.1 Study Process

The study includes three main phases in a sequential order, (a) study preparation, (b)
study execution, and (c) analysis and evaluation: The study preparation phase
includes the preparation of the study material, i.e., selecting the source code
components, preparation of questionnaires, and the configuration of Randoop.
Furthermore, the human participants received a short tutorial including a brief
overview on the study setting and the study process. The study execution phase for
human participants includes (a) individual test case construction activities and (b)
completing an experience and feedback questionnaire at the end of the study. The
challenge for the participants was to write as many JUnit test cases (based on the
black-box approach [15]) as possible within the given time interval of about 60
minutes in order to identify defects in the software package. Source code, test cases,
and questionnaires had to be delivered electronically via a course administration
system. The execution phase of the tool-supported test case generation approach
focuses on executing Randoop (based on the tool configuration) including capturing
test cases and defects.

Figure 2 presents the study execution process for human-based test case
construction (Session 1) and tool-supported test case generation (Session 2).

296 D. Winkler et al.

Fig. 2. Study Process for Human-Based (Session 1) and Tool-Supported Testing (Session 2)

During the study analysis and evaluation phase the experiment team (guided by the
authors) scanned the reported/generated test cases, executed them and recorded the
outcome of the test runs for every participant (results were lists of candidate defects and
executable test cases). Reported defects were matched to the seeded defects (i.e., matched
defects) by the experiment team. Note that identified matched defects were counted once,
skipping multiple reported defects. Additionally wrong configured test cases (i.e., test
cases which could not be executed) were excluded from the evaluation. We applied a set
of tests regarding consistency and correctness of submitted data. After study completion
the participants got a de-briefing session and a presentation on the results of the study.
For statistical evaluation we used descriptive statistics and conducted the Mann-Whitney
Test at a significance level of 95% (1-sided) for hypotheses testing.

4.2 Study Material

The material used during the study includes a software package (i.e., compiled class
files) with their API documentation, as well as two questionnaires to be completed by
the participants after submitting their tests and defect reports.

The software package is based on a previously published study [24] and includes
Java Collection Classes provided for courses on algorithms and data structures in
software engineering education [22]. The software package includes approximate
2800 lines of code in a total number of 34 interfaces and classes, and 164 methods.

Table 1. Allocation of Seeded Defects

Defect Classes

Algorithm Assignment Checking Data Total

Number of defects 6 15 10 4 35
Share of defects [%] 17% 43% 29% 11% 100%

The experiment package was provided as an Eclipse project comprising the compiled
collection classes with 35 seeded defects as jar archive and the corresponding Javadoc
API documentation. Table 1 presents the share of seeded defects in the software package.
See Wolfmaier et al. [24] for a more detailed description on the experimental material
and the seeded defects. Expert seeded defects focus on:

 Improving Unfamiliar Code with Unit Tests 297

• Algorithm. Problem in a method that describes a service offered by an object,
e.g., a method is not implemented or memory is not allocated for a given task.

• Assignment. Values are assigned incorrectly or not assigned at all. Multiple
assignment faults in a method may be of type algorithm, e.g., wrong arithmetic
operator used.

• Checking. Failure to validate values before they are used, leading to the wrong
control flow path in a program to be taken, e.g., missing or incorrect predicate(s)
in conditional statements.

• Data. Incorrect use or implementation of a data structure, e.g., incorrectly
determining the index for the last element in a data structure.

Note that we only provided class files and the Javadoc API documentation to force
black-box testing and prevent participants from deducing the seeded defects by
directly inspecting the source code. Additional material includes questionnaires to
capture software engineering and testing background (experience questionnaire) and
feedback on the study and the individual study results (feedback questionnaire).

4.3 Randoop Configuration

We used the Randoop Eclipse plugin to automatically generate tests for the compiled
classes of the experiment package. Output was a test suite with 500 regression tests
per JUnit test-fixture and defect revealing tests, each segregated into their own test
fixture. We applied a default configuration with an upper execution time limit of 2
minutes (i.e., 120 seconds).

4.4 Study Subjects

Subjects were 48 master students at TU Vienna with software engineering and
software testing background. To capture individual experience we applied an
experience questions including six questions on a nominal scale from 1 (no
experience) to 5 (professional experience). The mean experience levels of individual
participants were calculated and assigned to three experience levels: (a) less
experience (11 participants, 23%), medium experience (17 participants (35%) and
high experience (20 participants, 42%). In addition, 35 (74%) participants out of 48
participants worked at least part-time in software engineering projects in industry
context. The study was integrated as an optional exercise in the practical part of a
software testing course on master level. Study participants got additional extra points
for the course. In addition the study was executed as a competition, i.e., the
participants with the highest number of identified defects received a small gift.

4.5 Threats to Validity

Every empirical study has to deal with several threats to validity. This subsection
includes a set of major threats to this study and the countermeasures we applied:

298 D. Winkler et al.

Conclusion validity. The study included 48 participants and one tool with one test run.
We applied the Mann-Whitney-Test at a significance level of 95% (1-sided) for
hypothesis testing. To address internal validity, experts (i.e., the authors and
externals) reviewed the material and the experiment package for correctness. Note
that the source-code and class-files were already used in previous studies [24]. We
avoided communication between the participants of the experiment. To capture the
skills of the participants we applied an experience questionnaire. The study duration
was limited to about 60 minutes for the participants and 2 minutes for the tool
application. Construct validity focuses on the relation between theory and
observations. The study is based on related work and previous experiments [24] and
addresses effectiveness, false positives, and method coverage, common variables in
empirical studies. External threats to validity focus on the participants, i.e., master
students in software engineering. We used a classroom setting to monitor and control
study variables. Although most of the participants (74%) work at least part-time in
industrial environment, we see the participants as semi-professionals in the field of
software testing. Finally, study objects have already been used as standard libraries in
industry and are widely distributed and well known in practice.

5 Experiment Results

This section summarizes the results of the empirical study with respect to effort and
performance measures, i.e., effectiveness, false positives, and method coverage.

5.1 Study Effort

The study effort summarizes the overall effort by participants and tool execution.
Note that the effort of both testing strategies, presented in Table 2, does not include
the individual preparation duration for participants training (i.e., approximately a 15
min briefing session) and the tool configuration effort (i.e., 2 hours effort). Randoop
generates tests within a pre-defined time interval of 2min (defined during Randoop
configuration). The upper test case construction time limit for participants was set to
about 60min. The mean value of 48 participants was 59min (SD: 2min). Nevertheless,
the maximum duration was 68min. A more detailed investigation showed that this
maximum duration was caused by one participant who needed more time for
completing and submitting the results and the questionnaire.

Table 2. Study Effort

Test Strategy
Study Effort [min]

No. Min. Max. Mean SD

Randoop 1 2 min 2 min 2 min 0 min
Participants 48 52 min 68 min 59 min 2 min

 Improving Unfamiliar Code with Unit Tests 299

5.2 Reported/Generated Test Cases

The main tasks include test case generation (Randoop) and test case construction
(participants) based on given artifacts in order to find defects. Table 3 presents the
number of delivered test cases by Randoop and by the participants.

Table 3. Reported/Generated Test Cases

Test Strategy
Delivered Test Cases

No. Min. Max. Mean SD

Randoop 1 5 368 5 368 5 368 0
Participants 48 1 92 27.1 21.23

While the number of generated test cases for one test run carried out by Randoop

(5 368 test cases) seems to be no surprise, the participants delivered 27.1 test cases on
average (SD: 21.23) and up to 92 test cases in a 60 minutes working period.

5.3 Effectiveness

The quality of a software product is not limited to the number of test cases of a defect
detection strategy but on the number of identified defects and the effectiveness of the
strategy. Defect detection effectiveness is defined as the number of defects found in
relation to the overall number of seeded defects (35 defects have been introduced by
the experiment team). Randoop had the ability to test the entire experiment package
automatically (2 minutes were defined for this test run). Because of the upper time
limit of about 60 minutes for participants, testers had to prioritize components of the
software under test to focus on the most important components of the package (from
tester perspective). No guidelines were given for prioritization.

Table 4 shows the defect detection effectiveness of the testing strategies. Randoop
reached a defect detection effectiveness of 25.7%, similar to the maximum
effectiveness of most efficient testers. We observed an average effectiveness of 10.6%
(SD: 10.66%) for participants and no significant differences (p = 0.082(-)).

Table 4. Reported Defects and Effectiveness

 Identified Defects (Matched Defects) Effectiveness [%]
 Randoop Participants Randoop Participants

Minimum 9 0 25.7% 0%
Maximum 9 9 25.7% 25.7%

Mean 9 3.7 25.7% 10.6%
SD 0 2.68 0.0% 7.66

A more detailed investigation of the findings identified whether there are
advantages of the tool/participants with respect to different defect classes (see Table 1
for details on the seeded defect classes). Figure 3 shows the box plots and Table 5
presents the descriptive statistics of this evaluation step. The results showed

300 D. Winkler et al.

significant advantages of Randoop for algorithm (p = 0.041(s)) and checking defects
(p=0.041(s)) and no significant advantages for assignment (p=0.735(-)) and data
(p=0.898(-)) defects. We applied the Mann-Whitney test at a significance level of
95%, 1-sided, for hypothesis testing.

Fig. 3. Defect Detection Effectiveness per Defect Class

Table 5. Defect Detected per Defect Class

Defect Class

No of Defects Effectiveness

P-Value Tool Human Participants Tool Human Participants

No. Min Max Mean SD Eff Min Max Mean SD

Algorithm 3 0 2 0.7 0.78 50.0 0.0 33.3 11.1 13.02 0.041(s)
Assignment 2 0 5 1.6 1.63 13.3 0.0 33.3 11.0 10.87 0.735(-)

Checking 3 0 2 0.4 0.61 30.0 0.0 20.0 4.2 6.13 0.041(s)
Data 1 0 3 1.0 0.98 25.0 0.0 75.0 24.5 24.46 0.898(-)

Total 9 0 9 3.7 2.68 25.7 0.0 25.7 10.6 7.66 0.082(-)

A more detailed investigation of defects found by Randoop and by the participants

showed advantages for the tool and the participants with focus on individual defects:

• Advantages for Tool-Supported Test Case Generation with Randoop. Four
defects were detected by Randoop and not by any of the participants: 1 checking
defect and 3 algorithm defects (cyclic data). Common to these defects is that a
higher number of test cases or a sequence of cyclic operations is required to
identify the defect correctly – a clear advantage of a tool-supported test.

• Advantages for Human-Based Testing. Even when the 2 minutes time limit for
generating tests was extended to three hours, Randoop did not find any further
defects. In total, 19 various defects were detected by the participants, which

 Improving Unfamiliar Code with Unit Tests 301

Randoop was not able to find. For finding these defects, it was an advantage to
understand the context of tests/requirements and to have the ability of abstraction
and reflection of humans. For instance, the participants were able to identify
documentation aspects associated with classes and to derive test cases appropriately.

5.4 False Positives

False positives (FP) refer to wrongly reported defects, i.e., candidate defect which
does not match to seeded defects. Note that we checked all reported candidate defects
for correctness and added newly found defects in the list of seeded defects.
Nevertheless, no new defect was found. It is notable that false positives require
similar effort as real defects to be found and even more effort to be identified as
wrongly reported. Since this is extremely time consuming and wastes resources, the
amount of false positives should be minimized.

Analyzing the test results provided by Randoop, we noticed 17 reported defects,
including 9 real defects and 8 false positives. Thus, the share of FP was 47.1%. Table
6 presents the descriptive statistics of human participants.

Table 6. Reported Defects and False Positives for Human Participants

 No. Reported
Defects

No. Matched
Defects

No. False
Positives

False Positives
[%]

Minimum 0 0 0 0 %
Maximum 17 9 11 100 %

Mean 5.6 3.7 1.9 30.4 %
SD 4.11 2.68 2.50 31.36 %

In contrast to Randoop, human participants reported 30.4% (SD: 31.36%) false

positives, a better rate than the tool-supported test case generation result.
Nevertheless, by applying the Mann-Whitney Test at a significance level of 95%, we
did not observe any significant differences between human-based and tool-supported
testing (p-value: 0.653(-)). Participants who did not identify false positives (0%)
either did not report many tests or they had enough experience to avoid false positives
entirely. On the other hand side, participants who did not find real defects, i.e., FP rate
of 100%, did not write many proper tests (2-18 tests). Additional investigations are
required to identify the reasons for these findings; experience could be one reason.

Summarizing these results the human-based test generation approach delivers a
fewer number of false positives on average; a main reason might be additional
knowledge (i.e., context, requirements and design specification) which could be
applied during test case generation and might reduce false positives.

5.5 Method Coverage

Identifying defects in source code artifacts and software products is the common goal of
software testing. If some methods are not covered by tests, defects could not be found in
the related methods. Thus, method coverage is a first measure to see whether all

302 D. Winkler et al.

possible defective methods have been covered, either by the tool-supported approach or
by human-based testing. Note that the overall study (software) package includes an
overall number of 164 methods to be tested. Table 7 summarizes the results of the study
with respect to method coverage for Randoop and the human participants.

Table 7. Method Coverage Overview

Test Strategy
 Number of Covered Methods Method Coverage [%]

P-Value
No. Min. Max. Mean SD Min Max Mean SD

Randoop 1 115 115 115 0.0 70 70 70 0.0
0.041(s)

Participants 48 8 101 48.1 22.89 5 62 29.3 13.96

The human participants gained a method coverage value of 29.3% on average (SD:

13.96), while Randoop achieves quite higher method coverage, i.e., 70%. Applying
the Mann-Whitney-Test we observed significant advantages for Randoop
(p=0.041(s)). It is notable that the maximum method coverage achieved of the
participants is 60% that is only 10% less than Randoop. We assumed that Randoop
would achieve extremely high method coverage. Since only public methods of
implementations could be tested, Randoop was not able to achieve method coverage
higher than 70%. Thus, a mix of tool-supported and human-based testing approaches
seems to be reasonable to merge benefits from both testing strategies.

6 Discussion

The main goal of this paper was to investigate the effects of human-based testing and
tool-supported unit test case generation in a test-last testing strategy with respect to
defect detection effectiveness, false positives, and method coverage. Based on the
material and previously published studies [24], we compared Randoop, a tool for
generating unit tests randomly, and human participants who have to write unit test in
Java within a short time interval of about 60 minutes.

Defect Detection Effectiveness (Eff). Randoop gained a defect detection effectiveness
of 25.7% while human participants achieved 10.6% (SD: 7.66%) on average. The
results did not show significant differences, i.e., p=0.082(-). Thus, H0.1 that
participant-developed test cases and tool-generated test cases enable similar defect
detection effectiveness cannot be rejected. In addition H1.1, i.e., Eff(Randoop) >
Eff(Participants), must be rejected.

An interesting finding was that most effective testers and the tool-supported test
case generation approach achieved similar effectiveness. A more detailed view on
defect classes highlighted significant benefits for Randoop for algorithm (p =
0.041(s)) and checking defects (p=0.041(s)) and no significant differences for
assignment (p=0.735(-)) and data (p=0.898(-)) defects. In addition we noticed 4
defects that could only be found by Randoop and 19 other defects that could only be
found by humans. The reasons are most likely that (a) Randoop enables defect
detection for defects which require more iterations and a higher number of data and
(b) human participants apply context, specification, and abstraction to derive more
focused test cases. More detailed investigations are necessary to verify these results.

 Improving Unfamiliar Code with Unit Tests 303

False Positives (FP). We assumed a higher share of false positives for generated test
cases, i.e., Randoop, because human developers are able to understand documentation
of the requirements hence they are able to avoid false positives. The results showed that
human participants reported on average 30.4% false positives (SD: 31.36%) while
Randoop reported 47.1% false positives. Applying the Mann-Whitney Test we did not
identify any significant differences (p=0.653(-)). Thus H0.2 that the share of false
positives is similar for human-based test case development and tool-supported test case
generation cannot be rejected. In addition H1.2 must be rejected.

Method Coverage (MC) is a simple but common testing measure in software
engineering practice. If methods are not covered by tests, defects could not be found.
Thus, the third research question focused on investigating the method coverage of
Randoop and human participants. Because of the automation supported approach, we
could have expected higher method coverage of Randoop. The results showed that
Randoop gained a MC of 70% while human participants achieved a MC of 29.3% on
average (SD: 13.96). Applying the Mann-Whitney test, we observed significant
advantages for Randoop, i.e., p=0.041(s). Thus we have to reject H0.3 that human
participants cover a similar number of methods. In addition the results supported H1.3
that MC(Randoop) > MC (Participants).

7 Conclusion and Future Work

In many cases, software projects show a lack of documentation and unit tests, which
hinders effective and efficient maintenance, enhancement, and evolution after
deployment. Thus, it might be reasonable to implement test cases after deployment,
i.e., in a test last strategy. The main question is whether these test cases should be
implemented manually by human experts orsupported by tools for test case
generation. This paper reported on an empirical study in the area of software testing to
investigate the effects of human-based testing and tool-supported test case generation
(i.e., Randoop) in a test last scenario. The findings of the study did not reveal one
testing strategy (i.e., human-based and tool-supported) superior over the other.
However, it showed that a mixture of the two testing strategies might be reasonable
because both strategies focus on different defect classes, i.e., algorithm, checking,
assignments, and data in this study.

Future work will include a more detailed investigation of the individual test cases
with respect to test case quality and an initial investigation of the impact of tester
qualification with respect to written test cases and defect detection capability.
Additionally, alternative configurations of Randoop might be promising to strengthen
the benefits of the tool-supported test case generation approach. Finally, a replication
of the study (a) in a larger environment as well as (b) in an industry setting is required
to verify the results and get a deeper understanding of the study objects with respect
to testing strategies.

Acknowledgements. This work has been supported by the Christian Doppler
Forschungsgesellschaft and the BMWFJ, Austria. We want to thank Erik Gostischa-
Franta and the participants of the study in the course “Software Testing” at the TU
Vienna.

304 D. Winkler et al.

References

1. Andrews, J.H., Haldar, S., Lei, Y., Hang Li, F.C.: Tool support for randomized unit
testing. In: Proceedings of the 1st Int. Wsh on Random testing, RT 2006, pp. 36–45 (2006)

2. Bacchelli, A., Ciancarini, P., Rossi, D.: On the Effectiveness of Manual and Automatic
Unit Test Generation. In: Proc. of the 3rd Int. Conf. on SE Advances, pp. 252–257 (2008)

3. Baker, P., Dai, Z.R., Grabowski, J., Haugen, Ø., Schieferdecker, I., Williams, C.: Model-
Driven Testing: Using the UML Testing Profile. Springer (2007)

4. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn.
Addison-Wesley (2004)

5. Ciupa, I., Meyer, B., Oriol, M., Pretschner, A.: Finding Faults: Manual Testing vs.
Random+ Testing vs. User Reports. In: Proc. of the 19th Int. Symposium on Software
Reliability Engineering, pp. 157–166 (2008)

6. Csallner, D., Smaragdakis, Y.: JCrasher: An Automatic Robustness Tester for Java.
Software Pract. Exper. 34, 1025–1050 (2004)

7. Duvall, M.P., Matyas, S., Glover, A.: Continuous Integration: Improving Software Quality
and Reducing Risk. Addison-Wesley (2007)

8. Erdogmus, H., Morisio, M., Torchiano, M.: On the Effectiveness of the Test-First
Approach to Programming. IEEE Trans. Softw. Eng. 31, 226–237 (2005)

9. Feathers, M.: Working Effectively with Legacy Code. Prentice-Hall, Upper Saddle River (2004)
10. IEEE Computer Society: Software Engineering Body of Knowledge (SWEBOK) (2004)
11. Koskela, L.: Test Driven: Practical TDD and Acceptance TDD for Java Developers.

Manning Publications (2007)
12. Larndorfer, S., Ramler, R., Federspiel, C., Lehner, K.: Testing High-Reliability Software

for Continuous Casting Steel Plants - Experiences and Lessons Learned from Siemens
VAI. In: Proc. of the 33rd EUROMICRO SEAA Conference (2007)

13. Madeyski, L.: Test-Driven Development: An Empirical Evaluation of Agile Practices.
Springer (2010)

14. Martin, D., Rooksby, J., Rouncefield, M., Sommerville, I.: ’Good’ Organizational Reasons
for ’Bad’ Software Testing: An Ethnographic Study of Testing in a Small Software
Company. In: Proc. of the 29th ICSE (2007)

15. Myers, G.J., Sandler, C., Badgett, T., Thomas, T.: The Art of Software Testing, 2nd edn.
John Wiley & Sons (2004)

16. Nagappan, N., Maximilien, E.M., Bhat, T., Williams, L.: Realizing quality improvement
through test driven development: results and experiences of four industrial teams.
Empirical Software Engineering 13(3), 289–302 (2008)

17. Oriat, C.: Jartege: A Tool for Random Generation of Unit Tests for Java Classes. In:
Reussner, R., Mayer, J., Stafford, J.A., Overhage, S., Becker, S., Schroeder, P.J. (eds.)
QoSA-SOQUA 2005. LNCS, vol. 3712, pp. 242–256. Springer, Heidelberg (2005)

18. Pacheco, C., Ernst, M.D.: Randoop: Feedback-Directed Random Testing for Java. In: Proc.
of the 22nd ACM SIGPLAN Conf. on OOPSLA, pp. 815–816 (2007)

19. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-Directed Random Test Generation.
In: Proc. of the 29th Int. Conf. on Software Engineering, ICSE, pp. 75–84 (2007)

20. Pacheco, C., Awasthi, P.: Eclat: Automatic Generation and Classification of Test Inputs. In:
Gao, X.-X. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 504–527. Springer, Heidelberg (2005)

21. Schwaber, K.: Agile Project Management with Scrum. Prentice Hall (2004)
22. Weiss M.A.: Data Structures and Problem Solving Using Java. Addison-Wesley (1997)
23. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation

in software engineering: an introduction. Kluwer Academic Publishers (2000)
24. Wolfmaier, K., Ramler, R., Dobler, H.: Issues in Testing Collection Class Libraries. In: Proc. of

the 1st Workshop on Testing Object-Oriented Systems, ETOOS, pp. 4:1–4:8 (2010)

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 305–308, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Self-Organizing Systems and the Like

An Innovative Vital Perspective in Mutual Inspiration
with Application Areas

Horst F. Wedde

School of Computer Science, TU Dortmund, Germany

Problem Statement

This contribution is a short introduction into the Special Session “Software Engineer-
ing Problems and Solutions in Self-Organizing Systems”.

Computer Technology, as it has developed over the past 60 years, has undergone a
tremendous development ending up in invading, or being indispensable for, most
areas of scientific, technical, social, economic, political, and even cultural life. There
is no other example in History comparable to the speed and the paradigmatic change
that have come about under the influence of this technological novelty which is both a
scientific and engineering effort. (No divergence like between Physics and Mechani-
cal or Electrical Engineering has yet occurred.)

As part of its consolidation process within the new scientific/ engineering discip-
line, the efforts have led into different methodological directions creating areas like

• Theoretical Computer Science (including like Complexity and Automata
Theory)

• Software Engineering (comprising such classical sub-areas as Operating
systems, Data Bases etc.)

• Computer Architecture and other hardware-related themes.

Researchers and developers in each of these fields were, over a long of time, seriously
involved in creating and studying their specific problem approaches. While it was
necessary for an appropriate understanding of the problems to reach a high technical
clarity and depth their efforts resulted at the same time in a separation between theo-
retical and practical areas, between software and hardware research, as easy exam-
ples. Gradually the major amount of scientific and engineering discussion took mostly
place between the specialists in each sub-area. Not only were there strong tendencies
towards pure insider discussions or l’art-pour-l’art work on the conceptual level: The
solutions presented turned out to be of ever less practical value.

As an example, let us consider the extensive research and development efforts
which, for more than 25 years, had been devoted to problems in real-time, safety-
critical, and embedded systems. Security issues were considered crucial in mission-
critical systems. While all such constraints had been derived as design problems for
software control systems in real-world applications they had been treated as separate

306 H.F. Wedde

aspects since these partial problems proved difficult enough in themselves. This re-
sulted gradually in nearly different scientific disciplines in their own right (with the
real-time community, the safety community … behind), yet turned out to be increa-
singly inadequate for the design of large control systems, in particular for applications
with (partially) autonomous entities and decision-making: As a well-known example,
optimal real-time performance in such applications may then be adverse to optimal
overall throughput, and vice versa, while both requirements may well be equally im-
portant.

Novel R&D Perspectives in Software

This eventually came to the awareness of commercial sponsors and public funding
agencies (at first in the US, subsequently in Europe, in particular through EU-
programs), creating new R&D initiatives and programs over the years. So, in 2008 a
special initiative of the US NSF agency succeeded in collecting the relevant experts
from academia and industry for a 2-day workshop in Troy, Michigan, with the task to
overcome the crisis. The concept of Cyber-Physical Systems was put forward for gen-
eral discussion, and we coined a definition which gradually became generally agreed
upon: For the design and analysis of such systems, it is requested that the structures
and relationships of the software and physical/real-world layers be as similar as
possible, ideally even isomorphic or congruent. (In an easy example, if the physical
system exhibits a certain amount of autonomy for the actors, say in a large traffic
system, then the control system should exhibit an explicit concept of distributed con-
trol.) In the meantime this concept has provided a steadily growing momentum for
quite a number of successful key research projects.

Particular attention in our special session is given to a quickly emerging new class
of cyber-physical systems, so-called Self-Organizing Systems, coming from a joint
initiative of researchers from the Artificial Intelligence and Distributed System com-
munities. In self-organizing systems, highly autonomous software processes or agents
adapt through their own decisions to changing environmental conditions and/ or to
modifications from other software processes, and in coordination with such processes.
(In the singular case of a central control scheme supervising the agents, such systems
are termed self-adaptive. Self-organizing Maps (SOM) are a particular example.)

Traditional approaches for modeling and analyzing systems (e.g. optimization or
other classical theoretical methods) normally fall short concerning efficient solutions
in practice. They often do not really scale: With the system size growing the computa-
tion time may well explode (e.g. for problems that can be reduced to TSM), and once
requirements such as real-time conditions are concerned the solutions exhibit a practi-
cally very cumbersome, if not inadequate, timing behavior.

In several novel application areas like Smart Power Grids, Renewable Energy and
power management, routing in today’s and future Internet applications, Transporta-
tion Planning or Traffic Control systems in Logistics, novel technological develop-
ments have posed a class of novel challenges that have been interpreted, with growing
success, as self-organizing phenomena. As a characteristic novelty for their modeling,
implementation, and analysis the R&D tasks have to be treated as transdisciplinary

 Self-Organizing Systems and the Like 307

problems which require a (so far unusually) close collaboration between researchers
and developers in the different disciplines involved. In this way self-organizing sys-
tems have become a leading edge of current research and development in modern
Technology.

Solutions have been pursued, and even implemented, which borrow principles
from Natural Computing or from Swarm Intelligence. Also, they replace conventional
approaches issuing exact solutions which are practically irrelevant, through iterative
methods which are faster to obtain and at he same time of top quality (like Self-
Organizing Maps (SOM)). Open problems such as on-line organization, consistency,
and availability of mobile and dynamic geographic data (in Outer Space, in wide-
spread maritime operations etc.) have been identified as particular candidates for self-
organizing research.

For me, the most exciting experience in Cyber-Physical and Self-Organizing Sys-
tems research has been the mutual inspiration coming from getting involved in the
challenges in the different application areas while a the same time experiencing,
through the necessary cooperation with researchers and developers in the different
application areas, how the discussions across the borders lead to substantial and novel
ideas in one’s own area of expertise: Reality and its R&D treatment get visibly closer!

The Papers Comprising the Special Section

The special session on Self-Organizing Systems consists of 3 papers. Each of them
gives an example of ongoing and promising work in a specific field of interest.

The first paper (authored by S. Senge and H.F. Wedde) deals with a novel Swarm
Intelligence concept as it applies the principles of honey bee behavior to handling
road traffic in metropolitan areas, with the twofold objective of minimizing both the
average driving times and traffic congestions (BeeJamA project). The convincing
results are demonstrated through extensive simulation experiments in a realistic large
environment where the best existing routing algorithms that are commercially availa-
ble are compared to the new algorithm. For the latter one no global information would
be collected however, similar to path finding of forager bees, the available informa-
tion, although nearly accurate only, is made available on a very short notice. As in
this way corrections come in extremely timely the effect is better than with global
information that may well be late.

In the second paper the authors (K.-E. Großpietsch and T. Silayeva) lay the ground
for an innovative approach for allowing robots in dangerous environments to perform
coordinated operations based on autonomous decisions in situations where unpredict-
able events (e.g. the unexpected phasing out of a robot) and incomplete information
still require timely and appropriate reactions. An example might be the potential dis-
aster handling in a nuclear reactor (Fukushima). Robots could even exploit short-term
learning about the next (suboptimal) actions following rules in an appropriately
adapted Adaptive Resonance Theory (ART) model (from the area of Neural Net-
works). The model, while not yet experimentally evaluated, is quite ingenious and
elegant, and certainly opens new avenues in Artificial Intelligence.

308 H.F. Wedde

The third paper (by Sv.-Ch. Müller, U. Häger et al.) presents a thorough discussion
of the potential which self-organizing systems have for the treatment of stability prob-
lems in large electric power grids. Due to the liberalization of the European power
market on the one hand, also as a result of the quickly growing amount of power from
renewable sources (wind, solar,…) with its high production fluctuation, unpredictable
grid instability may have a disastrous effect (black-outs) for a power grid state. The
authors make a well-supported strong plea for a distributed self-organized approach
(based on autonomous agents) which they term functional, pointing to huge advantag-
es in reactive flexibility as well as in timing accuracy, over a control concept based on
global or centralized information which is called comprehensive. They make their
point very clear by addressing and discussing it in the context of an ongoing large
power grid project.

The papers have been solicited through a separate Call for Papers, and they have
undergone a rigid peer-to-peer evaluation. As a result it is hoped that this selection
may provide stimulating insight into novel research which has been triggered by, and
borrowed from, challenging problems in various application areas. I would like to
give the reviewers my sincere thanks for their very professional job which has led to
substantial improvements of the originally submitted versions of the contributions.

Special Section Reviewers

Karl-Erwin Großpietsch, St. Augustin
Ulf Häger, TU Dortmund
Robert Keller, TU Dortmund
Oliver Kramer, U of Oldenburg
Sven-Christian Müller, TU Dortmund
Sebstian Senge, TU Dortmund
Tanya Silayeva, Moscow

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 309–319, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Modified ART Network Architectures
for the Control of Autonomous Systems

Karl-Erwin Grosspietsch1 and Tanya A. Silayeva2

1 EUROMICRO, P.O. Box 2043, Sankt Augustin, Germany
karl-erwin.grosspietsch@online.de

2 Moscow Aviation Institute, Volokolamsk Highway 4, Moscow, Russia
ta.silaeva@mail.ru

Abstract. In this paper, the potential of adaptive resonance theory (ART)
networks for the dependable control of autonomous systems is considered.
First a short survey about existing ART network approaches is given. A
combination of such networks with counterpropagation networks is described
which provides fast access to control procedures corresponding to the different
classes of situations to be treated. Moreover, it is discussed how the observed
success or failing of such a procedure can be utilized to influence the learning
of the ART network.

Keywords: autonomous systems, neural networks, self-organizing maps,
adaptive resonance theory (ART) networks, combination of long term memory
and short term memory, combined dependability / performance issues, health
functions.

1 Introduction

Autonomous systems as e.g. robots are starting to have a growing impact within the
spectrum of technical systems. The control of their operation is non-trivial because
usually a complex interaction is necessary to produce their coordinated actions;
moreover, threre might be unknown situations (e.g. unknown territory, unknown
combinations of sensor unput signals etc) where the autonomous systems on their
own have to find a solution what to do. Usually the design and implementation of
control software for such systems is complex as it has to face numerous possible
problem constellations so that it is practically impossible to consider all of them in a
comprehensive a priori model. Instead, solutions are needed which enable some kind
of learning from examples, i.e. to derive some generalizable behaviour pattern from
them. Here, as well-known means neural networks have gained growing importance.

Additionally, as it is holding for most IT systems, such a derivation of the control
software is realized under observing constraints as costs and resulting perfomance.
Dependability issues usually have to be brought into compliance with these two major
requirements. In real-time computing, this need is explicitly shining up in the
requirement that the system is not only correctly working, but guarantees to fulfil
tasks within given upper time bounds: I.e. functioning alone is not enough,
sufficiently quick functioning is necessary.

310 K.-E. Grosspietsch and T.A. Silayeva

In many applications the relation between performance orientation and
dependability orientation should not be fixed, as dependability-critical and -uncritical
situations may quickly follow each other. Consider e.g. a robot moving in unknown
territory. The cautious control approach always to move very slowly, always to
perfectly check for all possible dangers might imply too much loss of velocity to
reach the goal location in the required time. So, what we would need is a flexible
strategy which also considers performance issues while not neglecting some
background cautiousness.

Here, a special class of neural networks, the adaptive resonance theory (ART)
networks [1] could be an intesting choice as they are intrinsically based on the idea of
the cooperation of some short term memory catching sight of actual, local input
patterns, with a long term memory storing some larger history of background
experience. We also propose a modification of the architecture with regard to its
application for the control of autonomous systems. Here the main idea is to
additionally influence the updating of the network´s experience during system
operation according to the observed success or failing of activated control procedures.
To measure such success we consider the health functions of autonomous systems,
monitored concurrently to system operation [2].

The paper is organized as follows: Section 2 introduces the basic properties of
ART networks, and in section 3 some variants of this architecture are described.
Then section 4 shows how by a combination of the ART network approach with the
so-called counterpropagation networks [3], the step from classifying a problem
situation to accessing control patterns for the management of this situation can easily
be implemented within the neural network frame. Section 5 finally describes a
heuristic approach for updating the long term memory, controlled by the changes of
the health function of autonomous systems.

2 Basic Structure of ART Networks

With regard to learning, neural networks can be divided into two main classes:

 supervised learning where the neural network in a training phase gets input
patterns together with the desired output patterns, and is to learn from these
associations how to sufficiently exactly produce from similar, but not
identical inputs adequate output patterns;

 unsupervised learning where the neural network without help from outside
tries to cluster similar patterns to certain classes (“self-organizing maps“
[4]).

Standard neural networks for supervised learning as e.g. backpropagation networks
try to systematically minimize the error in the output by changes of the weight factors
of the neurons until the error reaches 0 or a sufficiently small value. After the end of
the training period these values are frozen so that no change of the learned experience
is possible any more. Then, in the recognition phase the network is to classify
unknown input patterns as similar to certain learned inputs and, thus, to sufficiently
exactly derive from them the required output patterns.

 Modified ART Network Architectures for the Control of Autonomous Systems 311

A classical example of self-organizing maps is the Kohonen Network, where each
implemented pattern class is represented by just one neuron. Here again learning is
confined to an initial phase during which the pattern classes are formed; at the end of
this phase the number of pattern classes is fixed.

In many applications, however, as e.g. for the movement of autonomous robots in
unknown territory, it would be desirable to adapt again the experience of the network
to the changing environment. But simply extending the training to the operational
phase of the system causes the tradeoff that this treatment would destroy part of the
experience learned during the initial learning phase.

Here, ART networks have been proposed as a remedy [1]. In the basic ART
architecture, the entire recognition process mainly proceeds as follows (see also Fig.
1): The input pattern inp is implemented as a vector of Boolean numbers. It activates
the neurons i (i=1,...,m) of the so-called comparison layer F1. The output of the layer
neuron i is a function si= f(inpi); often simply the identical reproduction of the input
vector inp is assumed: si=inpi (i=1,...m).

Fig. 1. Basic architecture of ART networks (according to [1], [4])
F1 comparison layer, F2 recognition layer, k winning neuron of layer F2
B bottom-up matrix, D top-down matrix
inp input vector; s, t, u,v generated vectors (see text)

The vector s is multiplied by the so-called bottom-up matrix B the elements of

which are real numbers. This produces a real number vector t comprising as
components the weighted sums

F2 [1..n]

F1 [1..m]

B D

inp

s

t u

v

k

312 K.-E. Grosspietsch and T.A. Silayeva

 m
tj= ∑ Bij*si =Bj *s (j=1,..,n; Bj being the row vector j of matrix B)

 i=1

The maximum of these sums is determined:

tk= max({t1,..,tn})

Neuron k of the recognition layer F2 is then set to 1; all other neurons of this layer are
set to 0 (neuron k is the „winner neuron“). I.e. the neuron k of F2 represents the class of
patterns to which the input pattern inp is, in this first selection, estimated to belong.

Subsequently, this decision is checked by a control computation. To do so, the
vector u of the Boolean values of the recognition layer neurons is multiplied by a
second matrix, the so-called top-down matrix D, producing a Boolean vector v:

 n
vi= ∑Dij*uj=Dik*uk=Dik for i=1,..,m

 j=1

By AND ing the components of vector v and of the input vector inp of layer F1, a
check vector c is formed:

c= AND(vi1,inpi1),..,AND(vm,inpm)

Finally, the similarity of c and input vector inp is compared. This similarity is
measured by counting the numbers nc and ninp, respectively, of 1s in both vectors,
and forming their quotient q= nc/ninp. If q is larger than a previously selected value of
a so-called tolerance parameter p, the input inp is assumed to be sufficiently close,
„in resonance“, to the column vector Dk of matrix D corresponding to the winner
class k. If this is not the case, the classification is decided to be not fitting. Then the
entire recognition process is repeated, with the previous winner neuron k being
excluded from the selection process. This causes a new maximum tl=max({t1,..,tk-

1,tk+1,.,tn}) so that now another neuron l is the winner neuron and is then checked for
its resonance with the input vector inp.

The search loop is repeated until a resonant solution is found. If all the actual n class
representations of the neural network do not fit to the input vector, an additional neuron
n+1 is created in layer F2, and is set to 1. Correspondingly, the number of pattern
classes distinguishable by the ART network increases by one. So, the network is able to
respond to the appearance of unidentified patterns by the creation of new classes.

After the search process has been completed, the elements of the matrices B and D
are updated. Updating of bottom-up matrix B is done by changing the row vector Bk
which had produced the maximum sum; this row vector is torn towards the input
vector inp. All other rows of matrix elements remain unchanged. Updating of the top-
down matrix D is done by tearing the column vector Dk towards vector s. For the
mathematics of the update formulas, and also the influence of some additional so-called
gain factors see [1], [5] which provide a comprehensive discussion of these details.

 Modified ART Network Architectures for the Control of Autonomous Systems 313

As the main advantage of ART networks their „plasticity“ is claimed, i.e. the
ability to integrate new knowledge into the network without destroying old one.
Moreover, this is done in a balanced way where still the attempted changes are
checked aginst the memorized knowledge stored in the top-down matrix. So, the
network to a certain degree emulates the cooperation between short term storage and
long term storage known from biological systems: Actual on-the-fly experience or
situation estimation might flow into the current system input, and then can be
integrated into memory under the surveillance of the long-term knowledge stored in
the top-down matrix D.

3 Modifications of the Basic ART Architecture

In the years 1988-93 the group of Grossberg and Carpenter developed a number of
extensions of the basic architecture ART-1 described in the previous section. A
second class of ART networks, ART-2 [6], enables the use of real number input
patterns. In addition to the layers F1 and F2, ART-2 networks additionally contain a
preprocessing layer F0. This layer first carries out a Euclidean normalization,
representing the influnce of shunting effects. The output of F1 is non-linear by means
of using a threshold function :

if (inp>Th) THEN s=inp ELSE s=0 ,

Th is the value of the threshold. The change of weights on the long term memory here
also depends on feedback control signals and is described by differential equations;
this makes the convergenceof the network quite complex.

A further extension was reached by the ART-3 class [7] which enables to model in
more detail also biological mechanisms. Especially details of the transmitter dynamics
at chemical synapses are described: Consider two biological neurons i and j, connected
by a chemical synapse. Bridging the synaptic gap for an electric signal is realized by a
chemical process. An activation potential in neuron i at its side of the gap, at the so-
called presynaptic membrane, generates presynaptic neurotransmitters the concentration
of which shall be denoted by uij, and the maximum concentration by zij. These
presynaptic neurontransmitters cause the release of movable neurotransmitters having a
concentration vij (part of which, however, is lost again on the way through the gap, by
means of recombination processes). This process system can be described by two
differential equations for the time derivatives uij´(t) and vij´(t):

uij´(t) = (zij – uij (t))–uij(t)*[release rate]

and
vij´(t) = vij(t)+ uij(t)*[release rate]–vij(t)*[recombination rate]

Neglecting the influence of inhibiting and amplifying feedback loops, the resulting
electric signal strength xj arriving at cell j can be approximated by xij=vij.

However, Zell states [5] that outside the group of Grossberg and Carpenter not
many applications of this extended model were realized, as the model from the
viewpoint of neurobiology was still too simplified, but with regard to technical
realization too complex.

314 K.-E. Grosspietsch and T.A. Silayeva

In a later development, the ART-1 approach has also been combined with fuzzy
logic. In [8] it is shown that mainly by replacing the AND operator by the fuzzy
AND operator FAND(x,y)=min(x,y), ART-1 can be transformed so that it is able to
process real number inputs. It has been proven that the learning algorithm is stable, as
during learning the adjustable weights can only shrink. It is stated that in comparison
to back propagation algorithms, the Fuzzy ART algorithm yields an improvement of
the learning speed by a factor of more than 1000.

As one example of the algorithmic changes let us consider the preparation of
ART-1´s check operation c= AND(v,inp) which in Fuzzy ART is replaced by

c*=FAND(v,inp)=min(v1,inp1),..,min(vm,inpm)

The column vector Dk of matrix D is updated according to

Dk(t+1)=a*FAND(inp,Dk(t))+(1-a)*Dk(t)

where a is the so-called learn parameter. Fast learning is represented by a=1; in this
case the second term vanishes.

Some additional variants of the described basic theory were created at the begin of
the nineties [8]. But larger ART applications were rare, probably due to the complex
mathematic details, and the potentially resulting computing time problems on
sequential computers.

In connection with the flourishing of research in the nineties for hardware
architectures to support neural networks, Serrano-Gotarredona, Linares-Barranco and
Andreou 1998 published a book on the design of microcircuits for the emulation of ART
networks [9]. But it seems that this effort, as it happened also to nearly all the other
hardware designs for the support of neural networks, did not find resonance in industry.

In the recent decade, apparently only very few publications on ART networks
appeared. In 2007, Teles Vieira and Lee described an approach to combine ART
networks with recurrent neural networks. Outside the neural network research
community, so far the impact of ART networks seems to be quite low. E.g. in the
field of computing for safe and dependable systems, to our knowledge so far no
attempt to apply adaptive resonance theory has been made.

But nowadays, more than twenty years after the introduction of adaptive resonance
theory, the implementation conditions have considerably changed: Today´s standard
technology offers the use of multicore/manycore architectures. So, e.g. the
computations of matrix vector multiplications can be parallelized. Additionally it
even would be possible to utilize parallel „lookahead“ techniques so that the search
loop to find the adequate winner neuron can at least partially be parallelized, either in
a pipeling or a fully parallel computation aproach.

Thus, we think the time is ripe to re-consider ART networks and their principle of
balanced learning based on a cooperation between short term and long term memory.
In the following sections, we shall sketch an approach to utilize this framework to
organize the control of autonomous systems. This will be discussed in two steps.
First, in the subsequent section we shall describe how within the framework of neural
networks the access to more detailed control procedures can be incorporated. Then in

 Modified ART Network Architectures for the Control of Autonomous Systems 315

section 5 a heuristic approach for controlling balanced learning in autonomous
systems is sketched.

4 Access to Control Pattterns for Classes of Situations

In the literature presented in section 2 and 3, applications are confined to pure pattern
recognition. This restriction does not seem really necessary: In many applications
inputs (e.g. from certain sensors) encode an actual external situation which has to be
classified, and then also to be managed. Here, the tradeoff of pure ART networks is
that it is left open how as response to a input also a certain output is generated, for
controlling the system or its environment in that specific situation. This output might
either be a complex pattern of control bits, or, in most cases more practical, the
address of a control procedure. In the following we shall address the second approach.

Fig. 2. Extension of the ART network by an associative memory
F1 comparison layer, F2 recognition layer, k winning neuron of layer F2
B bottom-up matrix, D top-down matrix
inp input vector; s, t, u,v generated vectors (see text)
Prock procedure triggered by column vector OPk to manage situations of class k

F2 [1..n]

F1 [1..m]

B D

inp

s

t u

v

u

k

OP Proc
OP

k

316 K.-E. Grosspietsch and T.A. Silayeva

For the case that this mechanism is to be provided within the frame of neural
networks, we propose to adopt a solution used e.g. in counter-propagation networks
[3]. In that approach, after having completed the search for the winner neuron, the
vector u is additionally fed into a matrix vector multiplication with an additional
matrix, called here the output pattern matrix OP (see Fig. 2):

 n
oi = ∑OPij*uj =Opik (i=1, ..., n*) ,

 j=1

here k is the index of the winning neuron in F2, and n* the number of rows in matrix
OP. That means the result vector o is just the column vector OPk of matrix OP. So,
depending on the contents of the input vector inp (not via a memory address !) the
output pattern is accessed from the „memory“ OP, i.e. OP functions like an
associative memory.

Computionally this can be achieved even simpler: if we want to access the control
pattern for a problem class j, we have just to read out the column vector OPj of matrix
OP. So, the organization of this control scheme is easily scalable: For a larger size of the
stored control patterns, we have just to add additional rows to the matrix OP.

5 Updating the Experience of the ART Network

When applying advanced resonance theory for the selection of control procedures, the
update of the long term memory should not only be influenced by the choice of of a
situation class, but also by the success of the corresponding control procedure. So, in
contrast to the ART-1 description of section 2, the updating of the matrices B and D is
carried out only after finishing of the triggered the control procedure. Here we
propose a pragmatic modification of ART network architecture, according to the
principles of Organic Computing [9], [10] to achieve self-organization, self-
optimization, and self-healing in ways similar to those of biological entities. Let us
depict that again by the example of an autonomous robot.

To do so, as base we have to utilize a metric measuring the aspect of success or
failing of the robot when solving required movement tasks. We build up this metric
from a small number of essential, critical parameters of the autonomous robot, as e.g.

 the inclination angle of the main robot body,
 battery power consumption,
 temperature of servo motors,
 number (or weighted sum) of components diagnosed to be partially or

completely faulty.

It should be noted that these entities not only describe cases or parts of the system
which are already defective, but mainly critical issues which relatively easily might
turn into component or system failure. The parameter values are mapped into a scalar
function, the so-called general health function GHF.

 Modified ART Network Architectures for the Control of Autonomous Systems 317

Fig. 3. Additional feedback of the general health function
F1 comparison layer, F2 recognition layer, k winning neuron of layer F2
B bottom-up matrix,D top-down matrix
inp input vector; s, t, u,v generated vectors (see text)
Prock procedure triggered by column vector OPk to manage situations of class k
GHF general health function
FB additional feedback control of GHF on the update of the matrices B and D

For each execution of a control procedure, the effect of the resulting movement is
checked whether it has increased or decreased the GHF, or has left it unchanged.

The use of the actual GHF value measured after the completion of a control
procedure is as follows: Here, the similarity measure for the check of the input inp
against column vector Dk of matrix D introduced in section 2 appears to be too
simple: When comparing e.g. two pixel patterns for similarity, the number of pixels
identical in both pictures might be a reasonable measure. But in case of an
autonomous system, for the input pattern inp that is to select the control procedure, it
can be assumed that its bits usually do not have identical influence with regard to the
survival of the system. So let us, without loss of generality, discuss that by the
example case that the bits of the pattern inp belong to two main classes:

F2 [1..n]

F1 [1..m]

B D

inp

s

t u

v

k
u

k

OP

GHF
FB

Proc
OP

FB

318 K.-E. Grosspietsch and T.A. Silayeva

 class A: bits influencing life-critical properties of the autonomous system,
i.e. with regard to its safety and security

 class B: bits influencing other, less critical system properties.

Without loss of generality, just for simpler discussion let us further assume that the
class A bits of vector inp constitute its mA leftmost bits, and the remaining mB=m –
mB bits belong to class B; these two parts of inp shall be called inpA and inpB.
Correspondingly, also each of the row vectors Bj (j= 1,...n) of matrix B are
partitioned into two parts of mA and mB bits, respectively; called BjA and BjB. In the
same way the column vectors Dj of D (j=1,...,n) are partitioned into two parts (called
DjA and DjB) which comprise mA and mB bits, respectively.

Let us now consider the excution of a control procedure Prock for a previously
selected situation class k.Our approach for defining update is based on three
principles:

a) An update is allowed if the procedure Prock has a sufficiently large success. This is
expressed by the condition that the difference between the new and the old GHF
value is larger than a given threshold value Th. The condition avoids that just
fluctuation influences or noise lead to changes in the matrices.

b) If the condition is fulfilled, the parts BkB and DkB (which are related to non-
essential system properties) are changed according to

IF ((GHFnew–GHFold) >Th) THEN BkB,new=Bk B,old+ C*(BkB,old –s)

ELSE BkB,new=BkB ,old

IF ((GHFnew – GHFold) >Th) THEN DkB,new=DkB ,old+ C *(DkB,old–inp)

ELSE DkB,new=Dk B,old

Here C is a learning parameter.

c) A change of part BkA of Bk and part DkA of Dk, however, is not allowed, i.e. they
constitute an „iron kernel“. This assures that even in case of permanent successes of a
control procedure, its guardian function stored in the matrices B and D is not by and
by weakened by updates.

Thus, with relatively moderate changes the use of the ghf function for the control of
long term memory can be realized. We have demonstrated the use of adaptive
resonance theory for autonomous systems by the example of robot systems. We
would like to stress that the described strategy can be applied in the same way to the
input and decision spaces of other autonomous systems, e.g. software agents.

6 Conclusion

In this paper, the potential of adaptive resonance theory (ART) networks for
dependability issues in autonomous systems has been discussed. As introduction, the

 Modified ART Network Architectures for the Control of Autonomous Systems 319

basic properties of ART architectures were outlined. A combination of such networks
with counterpropagation networks was described which provides a fast access to
control procedures corresponding to the different classes of situations to be treated.
Moreover, it was discussed how the observed success or failing can be utilized to
influence the learning of the ART network.

References

1. Carpenter, G.A., Grossberg, S.: The Art of Adaptive Pattern Recognition by a Self-
Organizing Neural Network. Computer, 77–88 (March 1988)

2. Maas, R., Maehle, E.: Fault Tolerant and Adaptive Path Planning of Mobile Robots Based
on Health Signals. In: Karl, W., Soudris, D. (eds.) ARCS 2011 Workshop Proceedings,
pp. 58–63. VDE Verlag GmbH, Berlin (2011)

3. Hecht-Nielsen, R.: Applications of Counterpropagation Networks. Neural Networks 1,
131–139 (1988)

4. Kohonen, T.: Self-Organization and Associative Memory. Springer, Berlin (1984)
5. Zell, A.: Simulation neuronaler Netzwerke. R. Oldenbourg Verlag, München (1997)
6. Carpenter, G.A., Grossberg, S., Rosen, D.B.: ART-2A: An Adaptive Resonance Algorithm

for Rapid Learning and Recognition. Neural Networks 4, 493–504 (1991)
7. Carpenter, G.A., Grossberg, S.: Hierarchical Search Using Chemical Transmitters in Self-

Organizing Pattern Recognition. Neural Networks 3, 385–396 (1990)
8. Carpenter, G.A., Grossberg, S., Rosen, D.B.: Fuzzy ART: Fast Stable Learning and

Categorization of Analog Patterns by an Adaptive Resonance System. Neural Networks 4,
759–771 (1991)

9. Serrano-Gotarredona, T., Linares-Barranco, B., Andreou, A.: Adaptive Resonance
Microchips. Springer, Berlin (1998)

10. Teles Vieira, F.H., Lee, L.L.: A Neural Architecture Based on the Adaptive Resonant
Theory and Recurrent Neural Networks. International Journal of Computer Science and
Applications 4(3), 45–56

11. Grosspietsch, K.-E., Silayeva, T.A.: Organic Computing – A New Paradigm for Achieving
Self-Organized Dependable Behaviour of Complex IT Systems. In: Hoyer, C., Chroust, G.
(eds.) Proc. IDMIT 2006, Ceske Budejovice 2006, pp. 127–131. Trauner-Verlag, Linz
(2006)

12. Brockmann, W., Maehle, E., Grosspietsch, K.-E., Rosemann, N., Jakimovski, B.: ORCA –
an Organic Robot Control Architecture. In: Müller-Schloer, C., et al. (eds.) Organic
Computing – A Paradigm Shift for Complex Systems, pp. 385–396. Springer, Basel (2011)

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 320–334, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Application of Self-Organizing Systems
in Power Systems Control

Sven C. Müller1, Ulf Häger1, Christian Rehtanz1, and Horst F. Wedde2

1 Institute of Energy Systems, Energy Efficiency and Energy Economics,
TU Dortmund University of Technology, Dortmund, Germany

{svenchristian.mueller,ulf.haeger,
christian.rehtanz}@tu-dortmund.de

2 Chair of Operating Systems and Computer Architecture,
TU Dortmund University of Technology, Dortmund, Germany

horst.wedde@udo.edu

Abstract. The European electrical transmission network is operated increasing-
ly close to its operational limits due to market integration and increased feed-in
by renewable energies. For this reason, innovative solutions for a reliable, se-
cure and efficient network operation are requested. The application of self-
organizing systems promises significant potential in real-time control. This pa-
per outlines the challenges of power system operation, gives a brief overview of
relevant system characteristics and discusses the applicability of self-organizing
systems for different fields of power system control. As a result of current
research, the application of an agent-based decentralized power flow control
system is presented and discussed in comparison to current practice based on
central decision making.

Keywords: Self-organizing systems, power system control, smart grids, multi-
agent systems, power flow control, FACTS.

1 Introduction and Scope

Large-scale power systems like the European electrical transmission system constitute
safety-critical physical systems of a high degree of complexity. The electrical trans-
mission network allows for the synchronous operation on alternating current (AC) of
almost all parts of continental Europe and forms an interconnected system supplying
millions of loads by several hundred conventional power plants as well as more than a
million distributed generation units based on renewable energy sources. Due to the
liberalization of the European electricity market and feed-in from renewable energies
the transmission network has to adapt to a higher base loading and increasing volatili-
ty of power flows. It is becoming more and more important to develop innovative
solutions to operate the system reliably and securely close to its operational limits in
real-time.

The network operation is managed by Transmission System Operators (TSOs)
which have to ensure reliability, security and efficiency [1]. Typically there is one

 Application of Self-Organizing Systems in Power Systems Control 321

national TSO being state-owned or regulated by a national regulatory authority. Much
of operation related decision making is undertaken centrally by the TSOs or is out of
its controllability in the current regulatory framework. Intelligent distributed control
plays a minor role in practice so far, although autonomous control systems have been
developed in the last decade [2]. Recently the research on decentralized approaches
based on multi-agent systems has been intensified and new flexible solutions have
been proposed [3-5]. This paper gives an overview about decision making in power
systems operation as of today, investigates the applicability of self-organizing sys-
tems, and outlines an exemplary application from current research in decentralized
power flow control.

2 Self-Organizing Systems in Power Systems Operation

In this section, an overview of challenges as well as important physical characteristics
of power systems is given followed by a discussion of decision making in system
operation and the applicability of self-organizing systems in real-time control.

2.1 Challenges of Power Systems Operation

Reliability and security of power supply are closely linked to maintaining three kinds
of system stability [6]:

• Frequency stability: supply and demand of active power need to be balanced, oth-
erwise frequency exceeds acceptable limits and loads or generators need to be
shedded.

• Rotor angle stability: all synchronous generators in power plants need to maintain
synchronism of their rotors, otherwise the generators are disconnected from the
system which leads to a sudden loss of feed-in and thus frequency instability.

• Voltage stability: local demand of reactive power needs to be met, otherwise vol-
tage can drop irreversibly. Supply of reactive power is typically provided by
neighboring synchronous generators or special reactive power compensation
equipment.

If one of these conditions is violated system-wide black-outs can occur. A major chal-
lenge is to fulfill these conditions at any time even though the system changes dynam-
ically. In particular, contingencies have to be taken into account, e.g., the outage of a
major transmission line. For this reason, TSOs operate the system in accordance with
the N-1 criterion that requires an operational state in which any single piece of
equipment can fail without yielding in an inacceptable post-contingency state
(N representing the total number of pieces of equipment in operation). In this context,
it has to be taken notice of protection devices that protect equipment from overload by
disconnecting it from the system. Therefore, a failure that leads to an overload of
equipment can cause cascading disconnection of further equipment and thus loss of
stability. The prevention of such a cascade is one aim of the N-1 criterion and over-
loads can only be accepted for a certain time period ranging from milliseconds to
some minutes depending on the type of equipment and severity of overload.

322 S.C. Müller et al.

Since rotor angle stability is so far of minor importance in the meshed European
transmission network, the focus will be set on contributions to frequency stability,
voltage stability and prevention of overloads by power flow control in the following
parts.

2.2 Modeling of Power Systems

In the following an approach to power system analysis typical in electrical engineer-
ing is presented to give a basic overview of important physical linkages and elements
relevant for application of self-organizing systems.

Power systems can be modeled as a network of branches and nodes. Nodes represent
sinks or sources of active power P and reactive power Q (for sustaining electromagnetic
fields) as a net value of generator feed-in and load consumption at each node. Branches
represent the network topology consisting of transmission lines and additional equip-
ment such as transformers or controllable devices designed to influence the parameters
of the topology. Each branch element connected between node i and j can be
represented by three complex admittances , , , and , derived from its equivalent

circuit diagram (shown in Figure 1 with voltages and currents).

Fig. 1. Equivalent circuit diagram for branch elements (single-phase)

The branch elements need to be protected from overload which is typically re-
garded as a maximum of the current flowing through the element. Given P and Q
at each node n as well as the network topology, the resulting complex voltage at
the nodes as well as the complex currents can be derived from equations (1-2) [7].

 ∑ (1)

 , , , (2)

Here, is the element from the n-th row and the m-th column of the node admit-
tance matrix which comprises the admittances of all branch elements and their topo-
logical interconnection. For details on the formation rules of this matrix see [6-7].

, ,,

, ,

 Application of Self-Organizing Systems in Power Systems Control 323

In addition, the following physical linkages should be taken into account:

• The voltage magnitude V is closely linked to the local availability of reactive pow-
er Q. Reactive power can also be transported between nodes but its flow causes a
higher loading of the corresponding transmission lines as well as active power
losses. Also the flow of power through any kind of conducting equipment requires
reactive power.

• The voltage angle between two nodes is closely linked to the active power flow
P between the nodes.

• Deviations from the nominal frequency fn (in Europe 50 Hz) evolve when supply of
active power differs from the active power consumption by loads.

2.3 Decision Making and Control Actions in Real-Time Operation

Considerations of applying self-organization to power systems operation require
knowledge about the decision making and potential actions in the system. In the fol-
lowing typical means of influence in power systems operation are summarized.

For generators the values of its active power feed-in Pgen as well as the reactive
power supply Qgen can be controlled. The base active power feed-in Pgen,base is set by
the power plant operator and follows a schedule derived from supply obligations
mainly generated at the electricity market. It is constant for a certain supply period
(e.g., 15 min). If the market clearing results in transmission system overloads the TSO
can enforce a (mostly costly) change of generation schedules referred to as redispatch.
In addition, the active power can temporarily differ from Pgen,base by a value Pgen,r for
ancillary system services to ensure frequency stability by balancing system-wide
supply and demand at any point of time (known as primary, secondary and tertiary
reserve, see [8]). The value of Pgen,r depends on control parameters defining how a
generating unit contributes to mediating frequency deviations - e.g., due to noise and
forecasting errors of load and renewable energy feed-in - and can be controlled on
demand of the corresponding TSO (the contribution of a generator can, e.g., result
from special control reserve markets). Additionally, the set point of the node voltage
Vgen or – due to the strong coupling of voltage magnitude and reactive power – almost
equivalently reactive power Qgen can be set on demand of the TSO in order to achieve
a desired voltage profile throughout the system and to optimize reactive power flows.

Loads are typically considered as demands of active power Pload and reactive power
Qload which cannot be controlled during normal operation and which can only be
shedded in an emergency case. However, recent developments (e.g., in the fields of
demand side management and smart grids) could change these conventional assump-
tions and could offer a superposing value of Pload,r and Qload,r controllable in a certain
range to a base load of Pload,base and Qload,base [9]. Active and reactive power consump-
tion are tightly linked and control of either value results in an approximately propor-
tional change of the corresponding value. As the electricity service demanded by
consumers usually regards active power, the typical control parameter is Pload,r.

Transmission lines themselves are uncontrollable and the only action available is to
disconnect them from the system (e.g., in case of overload or failure). Nevertheless,
the admittances being part of equations (1-2) can be influenced by the use of special

324 S.C. Müller et al.

equipment such as controllable transformers, compensations, HVDC (High-Voltage
Direct Current) and FACTS (Flexible AC Transmission Systems) devices being under
control of the TSO. These can be classified as series controlled, shunt controlled and
combined shunt and series controlled devices. Series controlled devices are installed
in series with a transmission line and their admittance influences voltage magnitude
and angle resulting in control over voltage drop over the line and power flows. Its
control value ctrlseries changes the admittance , . Shunt controlled devices are in-
stalled line to ground, thus giving control over , and , . Their control values
ctrlshunt mainly influences reactive power and reactive power flows. Combined con-
trolled devices influence all aforesaid element admittances by their control value
ctrlcombined and thereby combine the effects of shunt and series devices. For details on
types and modeling of controllable devices see [10], Figure 2 gives an overview over
relevant devices in practice and under development.

Additionally, every element of the topology as well as every generator and load can
be disconnected from the system by triggering a breaker. This can be described as
changing a binary control value breakel from on to off. As mentioned, a typical case is
the protection against overloads or load shedding in order to ensure frequency or voltage
stability. Disconnection is either undertaken automatically or it can be initiated by the
TSO. For loads and generators, a disconnection means a sudden change in P and Q at a
node. Disconnection of topological network elements results in a sudden change of the
admittances in equations (1-2). A similar effect has the change of interconnection of
lines with couplers at certain nodes in the system (with a control value couplebus).

Fig. 2. Overview of controllable network devices (Source: [10])

 Application of Self-Organizing Systems in Power Systems Control 325

Furthermore, from equations (1-2) it can be obtained that - at least to some extent -
all state variables are interdependent and thus have impact on all examined fields of
interest. However, the influence of different control values varies significantly and
can be neglected depending on the application. Table 1 summarizes dynamically
changing values in the system and shows qualitatively their influence on frequency
stability, voltage stability and overload prevention. The table can serve to determine
the decisive control values for new applications of power system control, neverthe-
less, a detailed system analysis including all control values should be undertaken to
determine their influence in the specific scenario and whether or not they can be neg-
lected.

Table 1. Dynamic values in power systems, entity in charge, and influence on stability and
overloads (qualitative range: +++/++/+/0)

Dynamic

value

Control

sphere

Influence on

frequency

stability

Influence on

voltage

stability

Influence on

overload

prevention Comment

Pgen,base
Market

(TSO)
+++ 0 +++

Possibly

redispatch by TSO

Pgen,r TSO +++ 0 +
Ancillary service

purchased by TSO

Qgen TSO 0 +++ +

Pload,base Market +++

Indirectly

(by

Qload,base)

+++

Consumer

behavior, possibly

price-dependent

Qload,base - 0 +++ +
Follows mainly

Pload,base

Pload,r

-

(Future:

TSO)

+++
Indirectly

(by Qload,r)
+

(Future: Ancillary

service purchased

by TSO)

Qload,r - 0 +++ +
Follows mainly

Pload,r

ctrlseries TSO 0 + ++

ctrlshunt TSO 0 +++ +

ctrlcombined TSO 0 +++ ++

breakel TSO 0 +++ +++

couplebus TSO 0 + +

As another aspect for designing innovative and applicable control systems, the crit-

ical time for reactions, the control ranges and times for response of controllable de-
vices, and the extent of coordination needed have to be taken into account. Table 2
gives a brief overview regarding these concerns.

326 S.C. Müller et al.

Table 2. Coordination extent, critical times for reaction, and response times of devices for
frequency stability, voltage stability and overload prevention

 Coordination Critical time for reaction Response time of devices

Frequency

stability

System-wide some 100 ms (major distur-

bance, keep frequency in

boundaries) to some min

(adjust frequency)

some 100 ms (local controller with

limited range for ancillary services,

load shedding) to some min (base

feed-in)

Voltage

stability

Local

some s (major disturbance)

to several min

some ms (fast FACTS, HVDC) to

some s or min (conventional control-

lable network devices, reactive power

supply by generators)

Overload

prevention

Region 100 ms (short circuit)

to some min (moderate

overload)

some ms (fast FACTS, HVDC,

breaker) to some s or min (conven-

tional controllable network devices)

2.4 Applicability of Self-Organizing Systems

Based on the characteristics of power systems control presented above, the applicabil-
ity of self-organizing systems in this matter is discussed. In the following, self-
organizing systems are understood as software processes being adaptive to changes in
environment, capable of coordination and own decisions making without the need of a
central hierarchic instance. A significant potential is seen in the capability of such
decentralized systems to adapt in real-time compared to centralized decision making
as of today that can take up to several minutes. This long time makes it necessary to
operate the system in a possibly inefficient state because any contingencies need to be
addressed upfront without accounting for the adaptiveness of the system. A first me-
thodology for the economic assessment of such real-time control capabilities has been
developed in [11] and indicates significant economic benefit. In addition, real-time
adaptiveness can contribute decisively maintaining reliability and security of opera-
tion in an N-1 case.

Some insights for the targeted design of decentralized control systems that can be
gained from Tables 1 and 2 are:

1. Not all relevant control values are in the sphere of influence of the same entity in
the current regulatory framework, thus either the values not under control of the
TSO are taken as external inputs in control systems or the framework needs to be
changed.

2. Control values for frequency stability, voltage stability and power flow control are
often interdependent, thus either all fields of interest are considered at the same
time in a self-organizing system, or it must be assumed or verified that other fields
are not critically influenced.

3. Time ranges of critical time for reaction as well as for the control capabilities of
the devices vary widely. A detailed analysis must be undertaken specifying the

 Application of Self-Organizing Systems in Power Systems Control 327

objective and constraints of application of the control system under consideration
of the speed of the controllable devices as well as potentially occurring actions by
other decision making processes in the meantime (e.g., a fast controlling FACTS
device could react to a short circuit in time, whereas a conventional device could
not serve for this purpose but is still sufficient to react in case of moderate over-
loading).

Taking these insights in mind, it can be distinguished between two general concepts
for self-organizing systems:

• Comprehensive Self-Organizational Approach: all control values are controllable
and emerge from self-organization.

• Functional Self-Organizational Approach: a specific problem is addressed by a
self-organizing system complementing partially centralized or locally controlled
systems.

The comprehensive self-organizational approach involves all system elements and
needs to address both kinds of stability as well as overload prevention. This approach
is of highest complexity but enables to gain the full benefit of self-organizing sys-
tems. However, this approach requires a change of the framework of European power
systems as the existing market structure would have to be renewed. Such a bottom-up
approach based on multi-agent-systems has been published in [12] and is still under
development. As of today, this approach only makes use of control actions regarding
active and reactive power supply and demand, but the system architecture generally
offers the flexibility required to extend it in order to include topological actions
as well.

The functional self-organizing approach has the advantage to be more easily appli-
cable to an existing framework. Depending on the challenges to meet and the actions
available, it can be identified how available controllable equipment could contribute.
It must be assured that control actions do not cause violation of other operational
requirements, thus (ii.) and (iii.) discussed above need to be specifically addressed. In
the following, the applicability of functional approaches to the fields of interest in this
paper is discussed.

Self-Organizing Systems for Frequency Stability
In order to ensure frequency stability in case of major disruptions (e.g., outage of a
power plant), a fast and extensive response in the time range of some 100 ms by Pgen,r
and Pload,r needs to be achieved in a coordinated process of power generation units and
loads throughout the system. To apply self-organizing systems to this problem is chal-
lenging as a huge amount of communication over a wide-spanned area is needed.
However, in a functional approach, this first reaction could be undertaken by local
control systems (as of today by proportional and integral controllers) responding im-
mediately to frequency deviations in order to avoid exceeding acceptable boundaries

328 S.C. Müller et al.

(e.g., 49 Hz) and the latter process of adjusting frequency to fn as well as the transition
to an improved configuration of Pgen,r and Pload,r could be organized decentralized
(e.g., by application of self-organization in tertiary control).

Self-Organizing Systems for Voltage Stability
Voltage stability is of a rather local character and of a less critical time range, thus
communication and coordination processes could be more easily executed in time
than in the application for frequency stability. In addition, the most decisive control
values with the exception of Qload can be controlled by the TSO. Therefore, voltage
stability constitutes a promising field for the application of self-organizing systems.

Self-Organizing Systems for Overload Prevention
Power flows are only partially in control of the TSO as they primarily derive from
active power supply and demand configuration (Pgen,base, Pload,base). Nonetheless, con-
trollable devices (particularly ctrlcombined, ctrlseries) offer influence in a limited range.
As in the case of frequency stability, some applications (e.g., reaction to a short-
circuit on the line) require a short response time of 100 ms. In the case power flow
control, this time could be met more easily, as coordination is only needed regionally,
nevertheless, achieving the response in time including communication and decision
making is still challenging. Therefore, a functional approach for improved reconfigu-
ration of control values as a complement to short-term local control or protection
could be of high potential. An example for this application is presented in the next
section.

3 Self-Organization in Coordinated Power Flow Control

In the following, a decentralized power flow control system as an example for appli-
cations of functional self-organizing approaches from recent research is presented
[13-15]. First, the need of coordination of controllable devices in power flow control
and the current practice of centralized coordination are outlined. Then, the agent-
based decentralized approach is explained and investigated in detail.

3.1 Need for Coordination in Power Flow Control

In meshed transmission networks in a current framework with externally defined gen-
eration and load configuration, power flows can mainly be influenced by series or
combined controlled devices such as Phase Shifting Transformers (PSTs) as well as
certain FACTS and HVDC devices (see section 2.3). These devices are referred to as
Power Flow Controllers (PFCs) in the following. Each PFC has a significant influence
only in a certain neighborhood. Dimension and shape of this neighborhood depend on
the type of device and the surrounding network. This influence can be determined by
a sensitivity analysis using power flow analysis methods [6]. Figure 3 shows an ex-
ample of a grid with several PFCs.

 Application of Self-Organizing Systems in Power Systems Control 329

Fig. 3. Transmission network with generators (G), loads (), and controllable network devices
(marked with →)

The simplest way to implement a control system for PFCs is the use of a local con-
trol for each device. Local control means that one or several PFCs only address the
control of the transmission lines within a certain region (which could be the control
area of a TSO) while the neighborhood of influence of these PFCs could cover addi-
tional uncontrolled transmission lines from a control area of another TSO. Input
values of local control are measurements of transmission line power flows. Further
interaction with other controlling devices is not foreseen for local control. If several
PFCs with mutual influence are integrated into the transmission system, the combina-
tion of several local controls might not always provide the optimal operation of the
overall transmission system. A coordinated control system can provide several opera-
tional benefits which cannot be achieved by local control:

• Uncoordinated operation of PFCs may cause overcompensation of transmission
lines within their neighborhood of mutual influence.

• When PFCs located in several control areas have mutual influence, counterproduc-
tive control actions may happen.

• In case of changing network topology (e.g., caused by a major line outage) local
control of PFCs will not be able to adapt to the new network topology.

In general, the installation of multiple PFCs with mutual influence requires sophisti-
cated coordination mechanisms in order to increase the overall transmission capacity
and to avoid conflicts that may lead to unexpected behavior.

3.2 Current Practice: Central Coordination

Each day after finalization of the market bidding procedures each TSO analyses the
day-ahead system security for its own transmission network. This analysis includes an

330 S.C. Müller et al.

N-1 security analysis with an estimation of the PST settings in order to determine if
there are congestions to be solved, e.g., by topology or redispatch measures. The es-
timation of PST settings only considers local control of the devices. During real-time
operation the TSOs have to deal with forecast errors of the day-ahead security plan-
ning. Hence, the settings for the PSTs have to be determined based on real measure-
ments coming from the transmission system. However, since currently there is no
general wide-area monitoring system (WAMS) implemented in Europe, each TSO
monitors its own grid, including a few transmission devices of the neighbouring
TSOs. This information is the basis for the determination of PST settings. If PSTs
have influence on the power flow of neighbouring TSOs (e.g., in the Benelux region),
then changes of the tap positions have to be agreed with all involved TSOs. This co-
ordination is carried out by telephone conversations between the control centres. Usu-
ally the time for agreeing about a tap change operation can last up to 15 min. A first
step towards more efficient real-time coordination between the TSOs is made by the
establishment of joint security centres. The participating TSOs submit their current
system measurements as snapshots to the security centre, which then merges the indi-
vidual data to a complete dataset which is basis for security analysis. As an example,
the Coordination of Electricity System Operators (CORESO) provides such a quasi
real-time analysis of the overall transmission system of the participating TSOs since
July 2009. By performing a permanent monitoring of the transmission grid, updated
through periodical snapshot, a security analysis is provided every 15 min.

However, all real-time control features which are planned for installation are until
today based on a centralized data collection, which cannot provide coordination of
PFC with a higher frequency than every 15 min. For responding to contingencies
during unforeseen emergency situations this frequency is too small to protect the sys-
tem against cascading events. Optimization tools are not applied for the coordination
of PFC set-points, among others because they are yet too time consuming. Instead the
coordination is performed by telephone conversations and based on expert knowledge
supported by security calculations.

3.3 New Approach: Agent-Based Decentralized Coordination

This sub-section presents a new approach (still under development) for a coordinated
control system. In contrast to existing coordination methods, this multi-agent based
coordinated control system does not have any hierarchical structures. All communica-
tion and decisions are taken directly on the device level. This structure allows fulfil-
ling the following requirements:

• To reduce the amount of data to be exchanged between neighboring control areas.
• System topology changes are detected automatically to be able to adapt the control

immediately after the occurrence of contingencies
• The control system is robust in case of system disturbances. In particular during

cascaded events (N-2 situations or higher) the coordinated control stabilizes the
system with corrective control actions.

 Application of Self-Organizing Systems in Power Systems Control 331

Description
The control variables are the set-points of PFC devices. The controlled variables are
the power flows on transmission lines. Disturbances to be compensated by the coordi-
nated control are caused by changes in load and generation or by tripping of transmis-
sion system devices (e.g., caused by a fault).

For the implementation of a multi-agent based coordinated control system with re-
spect to the conditions described above an adequate communication network is
needed. For this purpose each serial device of the power system (transmission line,
transformer and PFC) is represented by a software agent. There are two kinds of
agents, controlling (active) agents and non-controlling (passive) agents. Each PFC is
equipped with a controlling agent. Each non-controllable electrical device within the
area of influence of PFCs is equipped with a non-controlling agent (e.g., equipped
with a Phasor Measurement Unit (PMU)).

The non-controlling agents permanently submit messages about local state infor-
mation to their neighboring agents. These agents update the messages with local data
and forward them to the next neighboring agents. In this way the messages are sub-
mitted along the power system topology until a stop criterion is reached. Controlling
agents installed at each PFC receive these messages to gather information about the
current system topology, the sensitivity for control actions on network devices and the demand for such actions. An example for this procedure is explained below,
based on the network situation presented in Figure 4.

Fig. 4. Exemplary network situation

The agent of transmission line l3 submits one message to every agent of its neigh-
boring devices. These messages contain information about the impedance of transmis-
sion line l3 and the identifier of the sending end-node from which the message was
submitted. All agents of the devices physically connected to the sending end-node
receive the message and add the impedance of their own transmission line. The accu-
mulated impedance of one message expresses the transmission path impedance. Sub-
sequently the messages are updated and forwarded along the topology. Finally

332 S.C. Müller et al.

the controlling agent of PFC c1 receives one message from line l3 at each end-node of
the PFC. The first message was submitted along the transmission lines l3, l2 and l1,
while the second message was transmitted along the transmission lines l3, l4 and l5. By
analyzing these two messages the controlling agent concludes that the transmission
line l3 is located on a transmission path connecting the two end-nodes of the PFC and
determines the total impedance of this transmission path by summing up the accumu-
lated impedances stored in the two messages.

Each controlling agent evaluates this information by use of certain functions in or-
der to determine the appropriate control actions. In this evaluation control requests of
all transmission lines in the sphere of influence of a PFC are compared concerning
severity of the request and the expected influence of the PFC for controlling the pow-
er flow on this device. Simulation results have shown that the multi-agent control
reacts correctly and efficiently on detected overloading of transmission system devic-
es in due time before cascading faults occur. The fact that the agents can exert effi-
cient coordinated control without knowledge about the global system topology shows
the immense potential for scalability and fault-tolerance of this distributed coordina-
tion of PFCs. Figure 5 visualizes the procedures of the control system.

Fig. 5. Schema of a multi-agent-system for decentralized power flow control

Discussion
This coordination method allows for the coordination of series connected FACTS
devices and PSTs. Up to now the implementation includes devices with discrete con-
trol steps which have a linear characteristic. The implementation of further types of
PFCs including HVDC links is possible.

 Application of Self-Organizing Systems in Power Systems Control 333

This coordination method adapts the control of PFCs when contingencies
occur. This means that the set point of PFC devices can be modified timely in
post-disturbance situations. Such corrective actions allow the TSO to operate the sys-
tem without satisfying the strict N-1 security criterion. Since system topology changes
are detected fully automatically without any necessity of communication with the
control center, this approach is also robust in contingency situations of any grade.

This coordination method does not require any global data of the transmission sys-
tem. The agents only submit information which is necessary for the coordination. The
multi-agent system is supposed to be installed across the borders of system operators.
However, the agents of neighboring system operators will only receive data from the
neighboring networks which is required for the coordination (only from the area
where the PFC has influence).

Field of Application and Requirements for the Implementation
The field of application of the multi-agent approach is real-time coordination. The
method can be applied to perform an adequately fast automatic response to system
events. This also includes severe system disturbances.

To achieve the benefits of this coordination method concerning fast reaction in
contingency situations, fast PFC devices (of the FACTS family) have to be applied.

Since this approach is fully distributed significant modifications to the control cen-
ters are not required. However, the N-1 security constraints have to be adapted in the
day ahead planning process and for the operation in the control centers. This softening
of the N-1 criterion is required in order to achieve an increase of transmission capaci-
ty as response to the increased flexibility gained by using FACTS devices.

The majority of the modifications have to be made on the substations level. Agents
have to be installed for each transmission line and for each PFC within the area to be
coordinated. Each non-controlling agent must be connected to measurement devices
which observe the loading and the status of the corresponding transmission line. Each
controlling agent must be connected to a PFC controller to transmit the control sig-
nals. Between neighboring agents there must be appropriate communication channels.

4 Outlook

The application of self-organizing systems in power systems control promises signifi-
cant potential to contribute to a reliable, secure and efficient network operation by
enabling real-time adaptivity in contrast to current practices of centralized decision
making. The capabilities of self-organizing systems particularly meet the challenges
of ensuring voltage stability and preventing overloads. Therefore, research and devel-
opment in these functional approaches should be continued with a close consideration
of time constraints and interdependencies with other critical measures of system oper-
ation. Furthermore, the extension of recent comprehensive bottom-up approaches by
inclusion of topological actions would be eligible. For power flow controllers, a de-
centralized coordination system based on agents has been developed. Benefits include
increase of operational security by increased real-time adaptiveness in N-2 cases as
well as improvement of operational efficiency by enabling corrective real-time meas-
ures, thereby possibly allowing for relaxation of strict N-1 security planning.

334 S.C. Müller et al.

Acknowledgment. This work has been funded by the German Research Foundation
(DFG) as part of research unit FOR1511 “Protection and Control Systems for Relia-
ble and Secure Operation of Electrical Transmission Systems”.

References

1. European Parliament, Council: Directive 96/92/EC (1997)
2. Rehtanz, C.: Autonomous Systems and Intelligent Agents in Power System Control and

Operation. Springer, Heidelberg (2003)
3. Wedde, H.F., Lehnhoff, S., Rehtanz, C., Krause, O.: Intelligent Agents under Collabora-

tive Control in Emerging Power Systems. International Journal of Engineering, Science
and Technology 2(3), 45–59 (2010)

4. Häger, U., Lehnhoff, S., Rehtanz, C., Wedde, H.F.: Multi-Agent System for Coordinated
Control of FACTS Devices. In: Proceedings of the 15th IEEE International Conference on
Intelligent System Applications to Power Systems. IEEE Press, Curitiba (2009)

5. Voropai, N.I., Kolosok, I.N., Massel, L.V., Fartyshev, D.A., Paltsev, A.S., Panasetsky,
D.A.: A Multi-Agent Approach to Electric Power Systems. In: Alkhateeb, F., Al Maghay-
reh, E., Abu Doush, I. (eds.) Multi-Agent Systems - Modeling, Interactions, Simulations
and Case Studies. InTech (2011)

6. Kundur, P.: Power System Stability and Control. McGraw-Hill, Inc., New York (1993)
7. Handschin, E.: Elektrische Energieübertragungssysteme. Dr. Alfred Hüthig-Verlag, Hei-

delberg (1987)
8. Rebours, Y.G., Kirschen, D.S., Trotignon, M., Rossignol, S.: A Survey of Frequency and

Voltage Control Ancillary Services—Part I: Technical Features. IEEE Transactions on
Power Systems 22(1), 350–357 (2007)

9. Heffner, G., Goldmann, C., Kirby, B., Klintner-Meyer, M.: Loads Providing Ancillary
Services: Review of International Experience. Lawrence Berkeley National Laboratory
(2008)

10. Zhang, X.-P., Rehtanz, C., Pal, B.: Flexible AC Transmission Systems: Modelling and
Control. Springer, Heidelberg (2006)

11. Rehtanz, C.: Dynamic Power Flow Controllers for transmission corridors. In: 2007 iREP
Symposium on Bulk Power System Dynamics and Control - VII. Revitalizing Operational
Reliability (2007)

12. Wedde, H.F., Lehnhoff, S., Handschin, E., Krause, O.: Real-Time Multi-Agent Support for
Decentralized Management of Electric Power. In: Proceedings of the 18th Euromicro Con-
ference on Real-Time Systems. IEEE Press, Dresden (2006)

13. Lehnhoff, S., Häger, U., Krause, O., Wedde, H.F., Rehtanz, C.: Towards Autonomous Dis-
tributed Coordination of Fast Power Flow Controllers in Transmission Networks. In: Pro-
ceedings of the 4th International Conference on Liberalization and Modernization of Pow-
er Systems: Coordinated Monitoring and Control towards Smart Grids. IEEE Press, Irkutsk
(2009)

14. Häger, U., Lehnhoff, S., Rehtanz, C., Wedde, H.F.: Applicability of Coordinated Power
Flow Control based on Multi-Agent Systems. In: Proceedings of the 8th IEEE Internation-
al Conference on Bulk Power System Dynamics and Control. IEEE Press, Rio de Janeiro
(2010)

15. Häger, U., Rehtanz, C., Lehnhoff, S.: Analysis of the Robustness of a Distributed Coordi-
nation System for Power Flow Controllers. In: Proceedings of the 17th International Power
Systems Computation Conference. IEEE Press, Stockholm (2011)

Minimizing Vehicular Travel Times

Using the Multi-Agent System BeeJamA

Sebastian Senge and Horst F. Wedde

TU Dortmund, Department for Computer Science

Abstract. We present and evaluate our self-adaptive and distributed ve-
hicle route guidance approach, termed BeeJamA, which provides drivers
safely with routing directions well before each intersection. Our approach
is based on a multi-agent system which is inspired by the honey bee be-
havior and relies on a decentralized vehicle-to-infrastructure architecture.
On the basis of microscopic traffic simulations under varying penetration
rates it shows that BeeJamA has the tendency to outperform dynamic
shortest path algorithms with respect to (global) travel times.

Keywords: vehicle route guidance, distributed system, swarm intelli-
gence.

1 Introduction

Through the past few years the economical and ecological damage from increas-
ing vehicular traffic resulting in more and more traffic congestions has been
widely recognized and discussed [1]. Especially in metropolitan areas building
new high capacity roads to reduce travel times may be to costly or even not pos-
sible for reasons of space. Cooperative vehicle route guidance can lead to a more
efficient usage of the road network. However, commercially available state-of-
the-art navigation approaches route vehicles solely based on static information
or in the best case (like TMC) based on dynamic traffic utilizations but with
rather high update intervals of several minutes. Nevertheless, such approaches
rely on centralized processing of the involved data, a major shortcoming natu-
rally limiting the covered area or the minimal update interval. In contrast, we
argue that a distributed, self-adaptive vehicle route guidance does not suffer
from these drawbacks.

In this paper our distributed routing protocol BeeJamA [2,3] is described
and evaluated on the example of a Shanghai road network. BeeJamA (for Bee
Jam Avoidance) is a multi-agent system (MAS) based on the BeeHive routing
algorithm [4] for computer networks and makes use of principles derived from
honey bee swarm intelligence behavior.

The most recent work that is close in spirit to our approach is based on ant
swarm intelligence [5,6]. So far it appears that the aspect of scalability has not
been dealt with so far.

The remainder of this paper is structured as follows. In the next section, we
propose a vehicle-to-infrastructure architecture necessary for our MAS (Sec. 4).
Our simulation studies are presented in Sec. 5 and discussed in Sec. 6.

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 335–349, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

336 S. Senge and H.F. Wedde

2 Proposed Vehicle-to-Infrastructure Architecture

In this section, we propose a vehicle-to-infrastructure (V2I) [7] based architec-
ture for the necessary bi-directional V2I communication in our BeeJamA system.
The cornerstone of the architecture is a decentralized network of so-called navi-
gators. A navigator has a spatially limited area of responsibility, its navigation
area, where it handles the communication with each vehicle and returns routing
instructions on request. An example of this concept is depicted in Fig. 1a. There,
the map is splitted in four areas A1, . . . , An and each area Ai is associated in
a one-to-one relation to navigator Ni. After the driver specified a destination,
a (GPS-enabled) personal navigation assistant (PNA), e.g. a smart cell phone,
continuously submits the vehicle’s position to its responsible navigator. Other-
wise, state-of-the-art approaches like Floating Car Data (FCD) or anonymous
cell phone position tracing may serve as a source of road utilization. We assume
that at least approximations of these local utilizations are known to the associ-
ated navigator. The callout shows a junction and four vehicles (rectangles) as a
part of area A2 in greater detail. N2 is the responsible navigator for all vehicle
communication in A2. Then, the interaction protocol between a vehicle and its
navigator is simple: a routing instruction request for the next intersection (hop)
is sent from the PNA to the navigator each time a vehicle enters a new road.
The navigator calculates an instruction (see Sec. 4.4) based on up-to-date traffic
information and returns it to the vehicle’s PNA.

The navigators themselves communicate by flooding bee agents as described
in Sec. 4.3. Navigators may be deployed as distributed road-side hardware (like
GSM base stations) or (with lower total cost) as processes in a cloud environment
(as indicated in Fig. 1a).

Ultimately, a hop-to-hop routing emerges, where each vehicle receives an in-
dividual next-hop instruction, in the best case, before each intersection in due
time. This is a serious real-time problem as the individual deadlines depend on
the speed of the vehicles moving within the area of their responsible navigator.

3 Generic Routing Framework

In order to conduct simulations easily, we developed a middleware, termed
Generic Routing Framework (GRF), to hide the complexity of traffic simulation
from the routing algorithms and to offer a common interface to routing algo-
rithms for the simulation tools. In such a way we could easily switch to another
simulator, or use a different set of routing algorithms. Figure 2 highlights the
most important parts the GRF consists of. The GRF supports initializing from
different data and configuration sources and formats, manages relevant graph
and token (vehicles in this case) structures, simple automated analysis features
and provides visualization for graph and token states. The routing algorithms
access these features through a well defined set of interfaces and the simula-
tors, called mobility world (mob world), are connected through exchangeable
adapters. To add another simulator, only a new adapter has to be implemented,

Minimizing Vehicular Travel Times Using the MAS BeeJamA 337

N1 N2

N3
N4

A1 A2

A3 A4

A2

1. Request next hop

2. Respond

dynam
ic deadline

current position

(a)

A
b
st
ra
ct
io
n

Physical Layer

Routing Layer

1 2 3

4 5 6

7 8 9

Area Layer

1 2 3

4 5 6

7 8 9

Net Layer

1 2 3

4 5 6

7 8 9

Communication Layer

(b)

Fig. 1. Vehicle-2-Infrastructure architecture and Layered Routing Model

everything else, especially including the routing algorithms, remains unchanged.
Basically, the only requirement for a simulator to be added as an GRF mob
world, is that it uses a microscopic traffic, i.e. vehicle oriented, simulation model.
At the moment, adapters exist for MATSim and SUMO. The GRF maintains
two graphs, each on a separate layer, to satisfy the specific needs of both sides
of the middleware, the mob world and the routing algorithms:

1. The physical layer corresponds to the actual road network (e.g. exported from
OpenStreetMap); nodes correspond to intersections or are simply used to
model the shape of a road. Traffic simulators operate on this graph to calculate
the travel times of the individual vehicles and to visualize the road network,
which is why a fine grained model of the underlying road network is best.

2. However, networks with more nodes and edges increase the runtime (or num-
ber of exchanged messages for distributed algorithms) and memory consump-
tion of routing algorithms. Therefore, on the routing layer, irrelevant nodes,
which do not represent an intersection, are pruned since no turning is possi-
ble and thus no routing at these nodes is necessary. Routing algorithms may
only access this graph, not the original physical layer graph. Formally, the
routing layer graph is given by G = (V,E,w), where V is the set of vertices,
E the set of edges and w : E×N → R

n, n ∈ N a time variant weight function
mapping an edge e ∈ E and a discrete time step t ∈ N to an n-dimensional
weight vector. In this paper, however, we use a simple scalar weight value
that expresses averaged vehicle travel times on this edge as returned by the
road traffic simulation tools. The graph is assumed to be strongly connected.

338 S. Senge and H.F. Wedde

Init Graph

Token Analysis

Vis

...

MobWorld

A
da

pt
er Routing Algorithms

GRF

Fig. 2. Structure of the Generic Routing Framework

4 The BeeJamA Routing Protocol

The BeeJamA algorithm protocol is designed for routing vehicles with the inten-
tion of avoiding traffic congestions. It is based on the BeeHive[4] packet switching
algorithm which, in turn, has been partially derived from the honey bee foraging
behavior. The basic idea in BeeJamA, as well as in BeeHive, is that infrastruc-
tural components inform their vicinity how to reach them best by means of
agents, the bees. In BeeHive these infrastructural components are the network
routers, in the road traffic context the navigators take over this task. From a
logical point of view each node in the road network can send and receive bees,
physically are these bees handled by the associated navigator. To inform nodes
in the vicinity, each node emits bees regularly and resends received bees, thus
a flooding emerges. This is an adaption of the flexible scout and forager swarm
intelligence behavior. A comprehensive presentation of the underlying natural
behavior and the mapping to the routing context can be in [4].

BeeJamA regards the total delay d vehicle experiences as a combination of
two components: the free flow delay f and the traffic congestion delay c, hence
d = f + c. The first represents the minimal (and constant) travel time when
driving with the maximum speed allowed. The latter is an indicator of the load
on the path and thus is used by the algorithm to proactively decrease the number
of vehicles forwarded over an already overcrowded path. In this paper, however,
we use a simple path quality function weighting f and c equally, namely the
inverted total delay q = d−1.

Basically, the BeeJamA protocol works as follows. Emitted bees traverse the
routing graph in the opposite direction of travel and report on delays a vehicle
experiences on the path from the current node i to their launching node d. Let S
be set the (direct) successors of node i and s ∈ S the last node an incoming bee
visited before reaching i. The current node i then stores the reported delays as a
tuple (f, c)d,s in a local routing table. Tab. 1 shows a generic table T of node i. As
bees arrive at i the initially empty table grows. The column index is associated
to the bee’s launching node, the row index to the bee’s path predecessor. Let
Sr be the set of successors over which node i received a bee from launching
node d, Sr = {sj |(f, c)d,sj ∈ T (i)} ⊆ S, 1 ≤ j ≤ |S|. Then, vehicles at node i
with destination d are forwarded to a successor s ∈ Sr biased by the quality qs
calculated from the tuple (f, c)d,s. In other words, vehicles will be forwarded to a
specific next hop if a bee before discovered a path from the vehicle’s destination
over this node.

Minimizing Vehicular Travel Times Using the MAS BeeJamA 339

Table 1. Structure of a routing table

T (i) d1 · · · dn

s1 (f, c)1,1 · · · (f, c)n,1

...
...

...
...

sm (f, c)1,m · · · (f, c)n,m

4.1 Area Layer

The BeeJamA protocol divides the road network into smaller independent parts
called navigation areas (done on the area layer) and connects them to allow
inter-area trips (done on the net layer). So each navigator will be released from
maintaining global information and thus maintains only small routing tables
with local (and therefore simple to keep up-to-date) information.

Areas on the area layer are completely self-contained in the sense that for
intra-area routing no remote information is necessary. Each area belongs to a
navigator which is responsible for sending and receiving bee agents, updating
routing table updates and for satisfying routing requests within the area. Bees on
the area layer never leave their source area, so that the information dissemination
is limited to a local area only.

Technically, the area layer’s set of vertices and edges are equal to their coun-
terparts in the routing graph, GA = (VA, EA) = (V,E). Areas are defined using
an node partition of the routing graph, currently we use a simple grid algo-
rithm. Informally, an area consists of the nodes in a grid box and the edges
having their source in the same box. Thus, given an grid-induced node par-
tition VA,1, . . . , VA,n, an area is a subgraph Ai = (VA,i, EA,i) with EA,i =⋃

vk∈VA,i,vl∈V (vk, vl).

The set of border nodes B(A) of an area A is given by the area’s nodes with
edge destination in a different area, i.e. B(A) = {b ∈ VA|∃i ∈ V \ VA : (b, i) ∈ E}
and the set of inner nodes by I(A) = VA \B(A).

For each node v ∈ VA,i its navigator maintains a IFZarea (intra foraging zone)
table, where incoming bees can store their intra-area delays. The table is then
utilized for intra-area next hop routing (see Sec. 4.4).

4.2 Net Layer

Typically vehicles may drive across several areas to reach their individual desti-
nations. To satisfy those routing requests, for each area on the area layer a net
area on the net layer, is created. These net areas are mapped onto fixed foraging
regions, modeling the vicinity of a destination node. For far distance routing
in the rough direction of a destination (see Sec. 4.4 for details), each foraging
region is represented by a representative node. In this paper, we use one forag-
ing region per area. Informally, a net area consists of all fully connected border

340 S. Senge and H.F. Wedde

nodes of the corresponding area on the area layer plus all inter-area edges with
their source in the net area. Let A1, . . . , An be the areas on the area layer, then
the net area Ni is given by the fully connected graph Ni = (B(Ai), Ei) with
EN =

⋃n
i=1 {(v1, v2) ∈ E|v1 ∈ B(Ai) ∧ v2 ∈ B(Ai)} .

In addition, each net area maintains a specific foraging zone FZr
net that con-

sists of all neighboring areas within a certain hop range r. It models the direct
vicinity of a source node for which accurate routing information is available.

The net area’s navigator (the same as for the associated area on the area
layer) maintains two tables: for each node v ∈ B(Ai) the next hop tables IFZnet

(inter foraging zone) and IFRnet (intra foraging region). The IFZnet table (in
analogy to the IFZarea table) stores costs from each neighbor to each node in the
same foraging zone on the net layer. In addition, the IFRnet table stores costs
from each neighbor to each representative node and is used to forward vehicles
if the destination is far away (see Sec. 4.4 for more details).

Finally, the communication layer represents a communication network neces-
sary for the MAS. Each node corresponds to a navigator and an edge corresponds
to a communication link (e.g., via public internet or private networks) used to
exchange agents between navigators. Such an edge is present if and only if two
areas are connected by at least one edge (on the net layer). Vice versa, navigators
not sharing edges do not communicate directly.

4.3 Bee Agents

Our multi agent system makes use of three different types of bee agents, all re-
sponsible for collecting and disseminating travel delays in the opposite direction
of travel. They only differ in the distance that they are allowed to travel starting
from their launching node. On the area layer, area bee agents are used to keep
IFZarea tables up-to-date. On the net layer, we use two types of agents, inspired
by the honey bee behavior: the majority of the foragers exploit food sources in
the direct vicinity of the hive, while a minority visit food sources which are fur-
ther away. We adapted this concept into Short Distance Bee Agents (updating
IFZnet tables) and Long Distance Bee Agents (updating IFRnet tables). For a
comprehensive overview of the natural background of our approach see [4].

All three agent types have in common that they traverse directed edges in
opposite direction of travel, thus agents are sent to predecessors of the current
node. An agent launched from node d to predecessor p, thus traversing an edge
(p, d) ∈ E in the routing graph in opposite direction, requests the free flow delay
f and the current traffic congestion delay c across the edge (p, d) from the local
navigator, proceeds and updates the routing tables in subsequent nodes. Before
proceeding, the agent updates its carried delay information to its launching node
d by means of the traversed path’s (d, . . . , s, i) normalized quality with respect
to the already known paths via s′ ∈ Sr

q̂s =
qs∑

s′∈Sr

qs′
, (1)

Minimizing Vehicular Travel Times Using the MAS BeeJamA 341

Algorithm 1. Launch and Transmit Bees

1: procedure launch(type, srcNodes, waitLength)
2: gen← 1
3: while true do � Start new generation of bees
4: for each node n ∈ srcNodes do
5: bee ← create new bee
6: bee.gen ← gen
7: bee.type ← type
8: if type = AREA or (type = NET and n is representative node) then
9: bee.limit ← 1
10: else
11: bee.limit ← SL
12: transmit(bee, n)

13: gen ← gen+1
14: sleep waitLength

15: procedure trasnmit(bee, d)
16: if bee.type = AREA or (bee.type = NET and A(d) = A(i) then
17: enqueue bee in local receive queue for node d
18: else
19: transmit bee to remote node d via communication network

where the necessary total delays d′s can be looked up in the table. Then, the
scalar product (f, c) · q̂s can be interpreted as the weighted delays for the path.

In this way, the delays reported by an incoming agent are composed of the
(weighted) delays carried from the last node plus the delay of the last edge.
A node i that receives an agent via successor s learns about the delays to the
launching node d of the agent and can probabilistically forward vehicles with des-
tination d based on this information. Unfortunately, probabilistic routing with-
out any further measurements may lead to loops, i.e. a vehicle passes an already
visited node. It is important to distinguish between two kind of loops. The first
kind occurs if the situation in the network changes in such a way that a detour
including an already node seems appropriate and is expressly desired. However,
probabilistic routing may even lead to loops in situations without changes in the
network utilization. As a counter measurement to this second kind of loops the
BeeJamA version presented in this paper only forwards vehicles to successors
with lesser distances in the sense of total delays. Then loops of the second kind
cannot occur because the distance in a loop would increase.

Navigators call the launch procedure (Alg. 1, see Tab. 2 for used symbols)
once for the area (type = AREA, srcNodes ≡ nodes in the area) and once for
the net layer (type = NET, srcNodes ≡ border nodes of the area), the receive
procedure (Alg. 2), however, is called once for each received bee agent. In the
launch procedure, every second each node sends a bee agent to each predecessor
in the routing graph. Predecessors in the same area are managed by the same
navigator, so agents for these nodes are added to an internal queue, other nodes
are sent across the communication layer (see transmit procedure in Alg. 1). Non-
representative nodes on the net layer launch short distance bee agents (with a

342 S. Senge and H.F. Wedde

Table 2. Used symbols, procedures and functions

Symbol Meaning

bee A bee agent

bee.src, bee.last The agent’s source and last visited node

bee.gen The generation the bee was launched

bee.f The agent’s accumulated free flow delay

bee.c The agent’s accumulated traffic congestion delay

bee.dist The agent’s accumulated distance value

bee.limit The agent’s hop limit

bee.areas The agent’s number of visited areas

bee.type The agent’s type (AREA or NET)

i,d Current and destination node

SL Short bee distance limit

dist Best known distance (total delay) to the destination

table[d][l] Table entry with the delays (ffd, tcd) from i to d via l

table[d][l].dist The agent’s distance value that updated this table entry last

A(i) Nodes of i’s area

B(i) Border nodes of A(i), B(i) ⊆ A(i)

FZ(d) Foraging zone of node d

bestSucc, bestDist Maps for storing the best successor and distance

Sr Successors of node i lying on a known path to d

q̂s Normalized quality at node i for a path via s to d

f(s, d), c(s, d) Free flow / traffic congestion delay from i to d via s

IFZarea/net(i) The IFZ area or net table for node i

IFZarea/net(i, s) The minimal IFZ area or net table entry with destination d for
node i w.r.t. the total delays

IFZarea/net(i, s, d) The IFZ area or net table entry with destination d via s for node
i

waitLength Time between two generations, in this paper: 1 second

hop range of two in this paper) to inform their foraging zone about delay changes
and representative nodes launch long distance bees (unlimited hop range in this
paper, since only one net layer is present).

Alg. 2 shows the receive procedure. In line 3 of the listing, bees that arrive
too late are killed. Then, if the first bee of a new generation arrives, the best
distance value and the successor of the last generation are saved (line 6-7). If
the distance value the bee is less than currently known value, a bee is allowed
to update the table entry to its source node via the last node on the agent’s

Minimizing Vehicular Travel Times Using the MAS BeeJamA 343

Algorithm 2. Receive and Resend Bees

1: procedure receive(bee)
2: if bee.gen < latestGen[bee.src] then
3: return � Kill bee, too old

4: if bee.gen > latestGen[bee.src] then
5: ŝ ← argmaxs∈Sr{table[bee.src][s].dist}
6: bestSucc[bee.src]← ŝ
7: bestDist[bee.src]← table[bee.src][ŝ].dist
8: clear all successors marked with node bee.src
9: dist = ∞
10: latestGen[bee.src] ← bee.gen

11: if bee.dist < dist then
12: bee.f = bee.f + f(i, bee.last) � Update delays
13: bee.c = bee.c + c(i, bee.last)
14: if bee.type = AREA then
15: table ← IFZarea(i)
16: else if bee.type = NET then
17: if bee.areas ≤ SL then
18: table ← IFZnet(i)
19: else
20: table ← IFRnet(i)

21: table[bee.src][bee.last] ← (bee.f,bee.c) � Update table
22: table[bee.src][bee.last].dist ← bee.dist

23: bee.dist ← bee.dist + f(i, bee.last) + c(i, bee.last) � Update distance
24: if bee.dist < dist then
25: dist ← bee.dist
26: remove all table entries table[bee.src][·].dist ≥ dist

27: if bee.last = bestSucc[bee.src] or bee.dist < bestDist[bee.src] then
28: resend ← true
29: if bee.areas ≤ SL and A(bee.last) ∩ A(i)=∅ then
30: bee.areas ← bee.areas + 1 � Update traversed areas

31: if bee.areas ≤ bee.limit and resend = true then
32: succs ← S(i) \ {bee.last,bee.src} ∪ {successors marked with node bee.src}
33: for s ∈ succs do � Resend bee
34: bee’ ← clone bee
35: bee’.last ← i
36: bee’.f ← ∑

s∈Sr
(fs · q̂s)

37: bee’.c ← ∑
s∈Sr

(cs · q̂s)
38: bee’.dist ← dist
39: transmit(bee’, s)
40: mark successor s with node bee’.src

path (line 11-22). If called on the area layer, the functions f() and c() (in line
12,13) return the corresponding edges weights in the routing graph, on the net
layer, however, the delays are looked up in the routing tables. In line 23, the
bee.dist variable is updated and it is checked once again if the bee’s distance
is better. If so, the best known distance value at node i is updated and worse

344 S. Senge and H.F. Wedde

Algorithm 3. Next Hop Selection

1: procedure nextHop(i,d)
2: T ← ∅
3: if d ∈ Area(i) then � Routing case 1
4: ∀s ∈ Sr : calculate q̂s from IFZarea(i), T ← T ∪ {(s, q̂s)}
5: else if B(i) ⊆ FZ(d) then � Routing case 2
6: ∀s ∈ Sr : calculate q̂s from IFZarea(i) and IFZnet(i), T ← T ∪ {(s, q̂s})
7: else � Routing case 3
8: ∀s ∈ Sr : calculate q̂s from IFZarea(i), IFRnet(i), T ← T ∪ {(s, q̂s})
9: select a tuple (s∗, q̂s∗) from T = {(s1, q̂1), . . . , (sm, q̂m)} as per goodness
10: return s∗

table entries are deleted accordingly. This ensures that vehicles are forwarded
only to successors with lesser distances. Basically, a bee is allowed to travel
further if the agent arrived over the successor with the best distance value of
the last generation (first condition in line 27). This is an approximation of the
idea that only the best path information should be disseminated in the network.
The only way, however, to decide precisely which bee carries the best distance
value, one must wait until all agents of a generation have arrived. Unfortunately,
this waiting time accumulates along a agent’s path through the network, since
any node cannot resend a bee with source d until all bee flooded by d in the
current generation have arrived. To avoid such an stop-and-wait protocol, we
assume that the quality of a path does not drastically change between subsequent
generations and identify the bee on the best path as the bee on the best path
of the last generation. The notable exception is if the agent’s distance value is
already better than the best distance value of the last generation (see second
condition in line 27). Afterwards, if necessary, the number of an agent’s traversed
areas is updated. Finally, the bee is flooded to eligible predecessors.

As a result of this flooding based approach, each node receives up-to-date delay
information about the nodes in its own foraging zone and to representative nodes
of destinations farther away at short time intervals. The size of routing tables
stay small because short distance bee agents on the net layer never leave the
local vicinity of their launching nodes. Just in case the IFRnet tables get too big
nevertheless due to long distance bee agents (which are allowed to travel through
the whole network in this paper) additional net layers may be added to cover
larger networks. On each additional net layer the size of the foraging regions is
increased and the hop limit of lower layers’ bee agents is decreased. Finally, only
on the highest net layer long distance bee agents must have unlimited hop limits
to disseminate delays to the (then much lesser number of) representative nodes.
Of course, each reduction leads to an intrinsically loss of precise and up-to-date
traffic information, however, this has not to adversely affect routing precision
in general, since traffic information from destinations far away may not have
great relevance until the vehicle approaches its actual destination in which case
BeeJamA provides accurate information.

Minimizing Vehicular Travel Times Using the MAS BeeJamA 345

4.4 Vehicle Forwarding

The MAS disseminates delays in the opposite direction of travel starting from
node d. This information is then used to forward vehicles in the direction of d as
explained in the this section. There are three possible cases for routing a vehicle
from current node i within area A(i) to a destination node d within a destination
area A(d) (see Alg. 3):

1. The destination node lies within the current area, d ∈ A(i)

2. The destination node’s area lies within the foraging zone of the current area,
B(i) ⊆ FZ(d)

3. Else (i.e., case 1 and 2 are not true).

The cases above reflect a sequence of scenarios in which the destination node d
lies further and further away from the current area.

With BeeJamA, no complete paths are calculated in advance at all, only next
hops. To do so, perspective successors, i.e. s ∈ Sr, get weighted, i.e. a normalized
quality q̂s is calculated. Finally, s is chosen as next hop with probability q̂s (see
Alg. 3). In the following, we describe how BeeJamA calculates successor’s overall
quality in the three aforementioned routing cases.

In routing case 1, the idea is that the destination is near enough, so that
leaving the current area is not necessary. Thus, all possible paths from the current
node to the destination considered lie entirely in the current area. Therefore, the
vehicle’s next hop is chosen according to the entries in the IFZarea table of the
current node i, i.e. for each successor s ∈ Sr, the quality q̂s (as in Eq. 4.3) is
calculated and the next the hop chosen probabilistically biased by the qualities.
In case 2, the navigator tries to forward the vehicle so that it will leave the
current area using border nodes promising good travel times to the destination.
Possible paths via successor s ∈ Sr comprise two components:

– a path from i via s to a border node b1 of the current area (consult IFZarea(i)).

– a path with minimal total delay f+ c from b1 over an arbitrary border node
b2 of the destination area on the net layer (consult IFZnet(b1)) to d (consult
IFZarea(b2)).

Please note that only the border node b1 in the current area is a degree of
freedom, because the choice of the local border node determines a remote border
node b2 over that d is reachable with minimal delay. Thus, for each successor s
considered, |B(i)| path combinations are possible (assuming areas are strongly
connected). First, for each possible path from i via s ∈ Sr to d the accumulated
delays (fjs, c

j
s), 1 ≤ j ≤ |B(i)| are calculated:

(fjs, c
j
s) = IFZarea(i, s, b

j
1) + IFZnet(b

j
1, b

j
2) + IFZarea(b

j
2, d), (2)

where b2j ∈ B(d) is the remote border node that lies on the minimal path to d.

346 S. Senge and H.F. Wedde

Table 3. Number of nodes and edges

Nodes Edges

Physical Graph 3813 7570

Routing Graph 2112 5539

Net Graph 1519 1503

Com Graph 164 409

In total, there are |Sr · B(i)| delay tuples, namely one for each possible path
of each successor s ∈ Sr. To normalize the total delay djs = fjs + cjs, a quality q̂js
with respect to all paths is calculated:

q̂js =
qjs

|Sr|∑

m=1

|B(i)|∑

k=1

qkm

(3)

The overall quality qs for s is then defined as q̂s =
∑|B(i)|

j=1 q̂js.
In case 3 a similar procedure as in case 2 is applied. Possible paths also consists

of two components, however, the representative node of the destination foraging
region FR(d) is used as a destination substitute:

– a path from i via s to a border node b of the current area (consult IFZarea(i)).
– a path with minimal total delay f+ c from b to the representative node r of

FR(d) (consult IFRnet(i)).

Vehicles starting far away from their destinations are first routed according to
routing case 3 and as they approach according to case 2 and finally case 1.

5 Simulation Studies

We compared BeeJamA’s (BJA) performance against a dynamic shortest path
algorithm, i.e. an online A* implementation with access to up-to-date traffic
information from time to time (Dynamic Shortest Path, DynSP), similar to
commercially available systems like TMC. Please note that such algorithms rely
on global information and therefore suffer from scalability issues that limits
in reality the covered area and/or update interval. Unrealistically, our DynSP
implementation, however, gets weight updates on every edge in the network.

For the simulations which were performed on MATSim [9] we extracted a part
of Shanghai (see Fig. 3a) from Open Street Map covering 23km×28km, featuring
2112 intersections and 5539 connecting road sections (see table 3). Fig. 3b depicts
the resulting routing graph, Fig. 3c shows the grid used by BeeJamA as area
structure. In this example, the length of a square grid box is 1500m, resulting in
161 areas. In reality areas can get as large as a single navigator can manage it

Minimizing Vehicular Travel Times Using the MAS BeeJamA 347

(a) (b) (c)

Fig. 3. Physical layer, routing layer and area layer graph

(a) (b) (c)

Fig. 4. Foraging zone of area 4, net layer and communication layer graph

computationally, here the rather small size highlights the protocol’s scalability.
Fig. 4a highlights the foraging zone of area 1. Finally, Fig. 4b shows the net layer
(omitting intra-area edges) and Fig. 4c the communication layer.

We prepared two simulation setups. In the first we compare BeeJamA with
DynSP with an update interval of 5min, i.e. the A* algorithm has every 5min
access to updated edge weights. In the first five hours of simulation 60000 vehi-
cles/hour are launched and the simulation then continues until all vehicles have
arrived. The launching times, start and destinations are randomly chosen (evenly
distributed), saved and reused in later simulations. We ran the simulations with
penetration rates of 30% and 100%, where the remaining 70% in the first case
equipped with a DynSP router with an 30min update interval. The travel times
of all vehicles is accounted. The second setup consists of an scenario with 125.000
vehicles running an static shortest path algorithm as background traffic for cre-
ating partially jammed roads and an amount of 100.000 vehicles routed by an
varying mix of BeeJamA and DynSP with an 30min update interval. In this
scenario only the travel times of the dynamically routed vehicles are evaluated.

Tab. 4 and Fig. 5a presents the results for the first setup. The free flow time
(FFT) distribution is a lower bound virtually impossible to achieve in reality
since it assumes no interfering traffic at all. In queue-based simulations (like
MATSim performs), however, the BeeJamA protocol is quite close to this lower
bound. Under realistic circumstances this seems not likely to happen but at least

348 S. Senge and H.F. Wedde

Table 4. Travel times (in minutes)

1st Quartile Median Mean 3rd Quartile Max

Free Flow Time 7.70 11.73 12.25 16.23 42.15

BeeJamA (100% pen. rate) 8.95 13.85 14.67 19.48 71.60

DynSP (5min update / 100% pen. rate) 11.65 21.00 26.43 35.93 196.80

BeeJamA (30% pen. rate) 20.98 58.58 94.96 148.80 564.10

DynSP (5min update / 30% pen. rate) 28.15 98.68 150.60 259.20 687.00

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●
●
●●●
●●
●
●●●
●●●●●●●●●●●
●
●●
●
●●
●
●●
●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●●●
●
●●●●●●●●●●●●●●●●
●●●●
●●

●●●●●
●●●●●●●●●●●●●●
●
●
●●
●●●●
●●●●●●●●●●●●●●●
●
●

●
●

●●●●●●●●●●●●●●●
●●●●●●●●
●
●●●●●

●
●●●●●
●
●●

●
●●●●●●
●
●●●
●
●●●●●●●●●●●
●
●●●●●
●●●●●●●●●●
●
●●●●●●●
●
●●●●●
●
●●

●●

●●●●
●●
●●●●●●●●●●●●●●
●
●●●
●
●●●●
●
●●●●●●●
●
●●●●●●●●●●●●●
●●
●●●●●

●
●
●
●●●●●●●
●
●
●
●●●●
●

●●●

●

●●●●●●●●
●
●●●●●●●●●●
●
●●●●●●●●●●●●●●
●●●●●
●●●
●●●●
●●●
●
●●●
●
●●
●
●●●●●●
●●●●
●
●
●
●●●●●●●●●●●●●
●●
●
●●●●
●
●●●●
●
●●●
●
●●●
●
●●●●
●●
●
●●●●
●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●
●
●●●
●●●●●●●●●●●●
●●
●●●●

●
●●●●●●●
●●●●●●●●
●
●●●●
●●
●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●●
●
●●●●●●●
●
●●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●
●●
●●●●●●●
●
●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●
●
●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●
●●●●●●●●●●●●●●●●●
●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●
●●
●●●
●
●●
●
●●●●
●
●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●
●
●●●
●●●●●●●
●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●
●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●
●
●●●●
●
●●●●●●●
●●●●●●●●●●
●●●●
●
●
●
●●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●●●●●●●●●
●
●●●●●
●
●●●●●●●●●●●●●●●
●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●
●●●●●●
●
●●●
●
●●●●●●●●●
●●
●
●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●●●●
●
●●●●●●●●●●
●●●●●●●●
●
●●●●●●●●●●●●
●●
●●●●●●
●●
●●●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●
●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●
●●
●
●●●●●●
●
●●●●●●●●
●
●●●●●●
●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●
●
●●●●●●●●●●●●
●
●●●
●●●●●●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●
●●●●●●
●
●●●●●●●●●●●●●
●
●●●●●●●●●●●
●●
●●
●
●●●●●●●●●●●●●●●●●
●

●

●
●●●●●
●
●●●
●

●●

●
●
●●

●

●
●

●

●

●●
●
●●●●●
●

●
●●●●●
●

●●
●
●●●●

●

●●
●●●
●●
●

●●●●●
●
●●

●

●●●●
●●●●●●

●
●
●
●
●●●●●●

●
●●●

●

●●●●
●●●

●
●
●

●

●●●●●●●●
●
●●●
●●●●
●
●●●●●
●●

●

●●
●●●●

●
●
●●
●●

●

●

●

●
●

●●

●

●●

●

●

●

●●
●●
●

●

●
●
●
●
●

●●●●

●●

●

●

●●●
●●

●

●●
●

●

●●●●

●

●
●●
●
●

●

●●

●●
●
●
●●●
●

●

●●
●●
●

●●

●

●

●●●
●●
●

●
●●
●

●
●

●●●

●

●

●

●

●

●

●

●●●

●

●●
●
●
●●●
●●
●●
●●
●●

●
●●●
●●
●●

●
●

●●
●

●

●

●

●●●●

●

●
●●
●

●

●
●●●
●

●
●

●
●●
●
●●●●

●

●●●
●●
●●●
●

●

●

●

●

●●●
●

●

●●

●

●
●
●
●

●
●
●
●
●●●
●●

●

●●

●

●
●●

●
●●

●

●●●●
●
●
●
●●●●●

●

●●●

●

●●●
●
●●

●●

●

●

●

●

●●

●

●

●

●
●
●

●
●

●

●●●

●

●●●●
●
●●
●
●
●
●

●●

●
●
●

●●

●
●

●

●
●
●●●

●●●
●●●●
●●

●
●●●●●

●

●
●●●●
●

●●

●●●
●
●●●
●●●●●●●●

●

●

●●
●
●
●
●
●●
●
●●
●●●
●
●●
●●●●

●

●●●

●

●
●
●

●

●●●
●
●
●

●●
●●●

●●

●●

●

●

●

●
●
●●●●
●
●

●

●●
●
●●●
●
●●

●

●●●●●
●●

●

●

●●●

●

●●●●
●

●

●●●●

●
●

●

●

●

●

●●

●

●●●●●●●

●
●

●
●●
●●●●
●
●

●

●

●
●

●

●
●

●●●

●●

●

●●●

●●

●

●
●
●

●

●
●
●
●●●

●

●
●

●

●●
●
●●●
●●
●

●●●●
●●●●
●
●

●

●

●

●

●

●●
●
●●●

●

●
●
●●●●●

●

●●●
●
●●
●
●
●
●
●●
●
●●

●

●
●
●●
●●●
●

●
●●●

●●●●●●●●

●●

●●

●

●
●

●●
●

●
●●
●
●

●
●
●●●●●
●
●
●●
●

●

●
●
●●

●

●
●●●
●
●

●

●
●

●

●●

●

●●
●
●

●●
●

●
●

●
●●●●●
●

●

●

●

●

●
●
●
●●●

●

●

●●●
●
●
●

●

●

●

●●●
●
●
●
●●
●
●●

●
●●

●

●

●

●
●

●●●
●

●

●
●●●
●
●
●●●

●●
●●●●●●●●●●●
●●●

●

●●
●
●●●
●●●
●●
●

●
●
●●●
●
●
●

●

●●●
●●
●
●●

●●
●

●
●
●
●●●
●
●
●●
●

●

●
●

●

●●
●
●

●

●
●●●
●
●

●

●●
●

●

●

●

●●●
●
●

●
●

●

●
●●

●

●●

●

●

●
●
●
●●
●●
●
●

●●
●●

●●

●
●
●
●●

●
●●

●

●●

●●
●●

●
●●●
●
●
●●●●●
●
●●
●●●●●
●
●
●●
●
●●

●

●●●

●

●
●

●
●
●●
●

●
●
●

●

●●●

●●

●

●

●●
●●

●
●
●●
●●●
●●
●

●●●

●
●

●

●
●●
●

●
●●●●
●●
●

●●●●
●
●
●
●●●●●
●●
●●●●
●●
●
●●●

●

●

●

●

●

●

●
●●
●

●

●●
●●

●

●
●●●

●

●●●●●●
●
●
●
●●●

●

●
●●
●

●

●
●●
●●

●

●

●
●●●
●

●

●●

●

●

●
●●
●

●

●

●

●
●
●
●
●
●
●
●●●●●●●

●

●●

●

●●●
●
●●●

●●●●●
●●●●
●

●●●●

●

●●●

●

●
●
●●

●

●●●
●
●

●●●

●

●

●●●
●
●●●
●●
●
●●

●
●
●
●
●●
●

●
●
●●●●

●●●
●
●

●

●●●
●
●●

●

●●●●

●

●●●

●

●

●●

●●●

●●
●
●●●●●●●●●●●
●

●

●

●

●
●
●
●●
●
●
●

●

●
●

●●

●

●●●●●
●
●
●
●●
●
●

●

●

●●●
●

●

●

●
●

●●

●

●

●

●

●

●●
●●
●
●●
●

●

●

●

●●●
●

●●●
●

●

●●
●●
●
●
●

●

●

●

●●
●
●
●
●
●●
●●
●

●

●

●

●

●●
●●●●●●●●

●

●●●

●
●
●
●
●

●
●
●
●●

●

●

●●

●●

●

●
●●

●●
●●●●●
●
●
●

●

●
●●
●●●

●
●●
●●
●
●●
●
●

●

●●●
●
●

●●

●●

●
●

●●●
●
●
●●

●

●●
●
●
●

●

●

●
●●●●

●

●●

●

●●
●

●

●●
●●

●

●

●

●
●
●

●●●●●●
●

●

●●●●

●

●
●
●●

●

●●●
●

●
●
●

●

●
●

●●
●
●

●
●

●

●

●●●●●
●●

●

●

●

●
●●●
●●
●

●
●

●
●
●

●
●

●●●●●●●●
●
●
●●●●
●●
●

●
●●
●
●

●

●●
●●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●●
●

●

●

●
●●●●
●●
●

●

●

●●

●

●
●●●

●
●
●

●
●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●
●
●

●
●

●●

●●

●●●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●●
●
●
●
●
●●●●●●●

●

●●

●
●
●●
●

●

●

●
●●●
●
●●●

●

●
●
●●●

●
●
●

●●●

●

●

●●●●●
●
●

●

●
●

●●
●●
●●

●●●

●●

●

●

●

●

●

●

●

●

●●●
●●

●

●

●
●

●

●

●
●

●

●

●●

●●
●
●●

●
●
●
●●
●
●
●●

●

●

●
●●
●
●

●

●
●

●●

●●
●
●

●
●●●
●
●
●

●

●

●

●●●●
●

●

●

●

●●

●●

●

●●●

●
●●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●

●
●

●●
●
●●

●

●
●
●

●
●
●

●

●

●
●
●

●●●●

●
●●●
●
●
●

●
●●

●

●●

●

●

●
●
●
●
●
●
●

●

●

●

●

●
●

●
●
●

●

●
●
●
●

●
●
●●●
●

●

●

●

●●●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●●●
●●
●●

●
●●
●

●●●
●●

●

●
●
●
●●
●

●
●
●

●

●
●●●●●
●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●●●

●

●●●●

●

●

●●

●

●●●●
●
●

●

●
●

●

●
●
●●
●●

●
●●●
●●

●

●

●
●
●
●●

●

●●●

●

●

●●

●

●

●●
●
●●
●
●

●●

●●
●

●●●

●

●●
●
●

●

●●
●●
●
●●
●
●
●
●●
●
●
●●●

●●●●●

●
●●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●
●
●
●
●●

●

●●

●

●●●
●
●

●

●

●

●

●
●

●●●

●●●

●

●●

●●

●

●
●

●
●●
●●

●
●
●●

●

●●

●

●

●
●

●
●
●

●
●

●
●

●

●

●●
●●●
●
●●

●
●●

●

●
●●
●●
●

●

●

●●

●

●●

●

●●

●

●

●●
●
●●

●●
●●●●

●

●
●●●

●

●
●

●
●●

●

●
●●

●

●

●●

●
●●●●
●

●

●

●●

●

●●
●●

●

●●

●

●●
●
●

●

●
●●●

●
●

●●

●●
●

●
●
●
●

●

●

●

●●
●●●
●
●
●

●

●

●●

●

●●●
●●

●

●
●●●
●
●

●

●
●

●
●

●

●
●
●
●

●●
●

●

●●

●
●
●●●●
●
●

●

●●
●

●

●
●

●●●

●

●●●●

●

●●

●

●

●

●
●●●

●

●

●

●●
●●

●●

●●
●●●

●

●

●

●

●

●
●●●
●

●

●
●

●
●
●
●

●

●

●

●●●
●
●

●

●●

●
●●●
●●

●●

●●●●

●●
●●
●
●

●●

●

●

●

●

●●
●●

●

●●

●

●
●
●
●

●●

●
●
●

●

●
●●

●
●

●●
●
●

●●

●

●

●

●●●

●
●

●

●
●●

●
●
●●●

●

●

●

●
●
●

●

●

●●

●
●

●
●

●
●
●

●

●

●●

●
●
●●●

●

●●
●
●●
●

●●

●

●●●
●
●

●
●●

●

●
●

●

●

●
●●

●●

●●

●

●

●

●

●

●
●
●
●●

●

●●●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●
●
●
●

●

●
●

●

●

●

●●
●●

●

●

●
●
●

●

●●
●

●●
●
●

●

●
●
●

●

●
●●

●

●
●●●
●

●

●

●

●●●

●

●

●
●

●
●●
●
●

●

●
●●
●
●
●
●

●

●

●

●

●●
●
●

●
●
●

●

●●
●●
●

●
●

●
●●●

●

●
●

●●

●

●●●

●

●●

●
●
●●●●●

●

●●
●
●

●

●
●
●

●
●
●

●

●
●●

●
●

●

●●

●

●●
●
●

●

●

●

●

●●

●

●

●●●

●
●●

●

●

●●●●
●
●●
●●●

●

●
●●

●
●●
●●●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●●●

●
●●●
●

●
●
●
●

●●

●

●
●●●
●●●

●

●
●
●●

●

●●●
●
●
●
●

●

●
●
●

●●

●
●
●●
●●
●●
●●●
●

●

●

●●

●

●

●

●●
●

●●
●
●

●

●

●

●

●●

●●

●●

●

●

●

●●●

●
●
●●
●

●

●

●

●●
●●
●
●
●
●

●
●
●

●

●

●

●

●
●
●
●
●●
●

●

●

●

●●●●
●

●

●

●

●●
●

●
●

●
●

●

●

●
●

●

●
●

●

●
●●
●
●
●
●
●●●●
●

●

●

●

●

●
●

●●●●

●

●
●●●

●●

●●
●

●

●
●

●

●●●●●●

●
●

●
●●

●

●
●

●

●
●
●●

●

●●

●

●
●●

●

●

●
●
●
●
●●●

●●●●

●●
●

●

●●
●
●
●●
●

●

●

●
●
●

●

●
●

●

●

●
●●

●

●●
●
●
●●

●
●

●

●●●●●
●●
●
●
●
●●●●
●

●
●●●
●
●
●

●●
●●●●
●
●

●

●

●

●●●●

●

●

●
●●●●

●

●

●●●
●
●●
●●

●

●●●

●
●

●●

●
●
●

●

●●

●●

●
●

●

●

●

●

●●

●

●

●●
●●●

●

●●
●
●

●

●●

●

●●
●●

●

●
●

●●

●

●●
●●
●
●
●●

●●

●
●
●
●●●

●

●●●●

●

●

●

●

●

●
●
●●

●

●
●

●

●

●

●●

●

●●●

●
●
●●

●●●

●●
●

●

●

●●
●

●
●

●●

●●
●

●

●
●

●

●

●●

●●●●●

●

●
●●
●●●
●

●

●

●

●

●

●

●
●
●

●

●

●●●

●

●
●
●
●●
●●

●●●●●
●●
●●
●●

●

●
●
●

●

●

●
●
●
●

●●●

●

●

●

●

●

●
●●●●
●●

●●
●●

●

●

●
●

●

●

●

●●
●
●●●●●●
●
●
●
●

●●
●

●
●●
●

●

●

●

●
●●
●●
●●●●●

●
●

●●●
●

●
●

●

●

●

●●●

●●●
●
●●
●●●●●
●
●
●
●

●

●
●
●●

●

●

●
●
●
●
●
●●

●

●
●
●●●
●

●

●

●●

●
●●
●
●

●

●
●
●

●

●

●

●
●●

●

●
●

●

●●●

●
●
●●●●

●

●

●

●●
●

●●
●

●●●

●

●
●●●●●●
●●●

●

●
●●●
●
●

●
●

●●●●

●

●
●●●
●●
●
●
●

●

●

●

●●

●●●

●●

●●●●
●

●
●
●
●

●
●

●

●

●
●

●
●

●

●
●●●
●
●
●
●

●
●●●
●●
●
●●
●

●

●●
●

●

●●●

●

●

●

●

●
●
●
●

●

●●
●●
●●

●
●

●

●

●

●

●
●
●

●
●
●

●

●

●●
●
●●
●
●

●
●
●
●

●●●

●

●●
●
●

●

●

●

●

●

●
●

●

●●●●●●●

●

●

●

●●

●

●

●
●●
●
●

●

●●●
●

●

●
●
●
●
●

●
●
●
●●●
●
●●

●

●

●●
●

●

●●

●

●
●

●

●
●●
●

●
●
●
●
●

●
●

●●

●

●
●
●

●

●●●

●

●●

●

●●●●

●

●●

●

●
●
●
●

●

●

●
●●
●●

●
●
●

●
●

●

●

●

●

●
●●●
●
●
●●

●

●
●●

●

●
●

●●

●
●

●

●
●

●

●●
●●●

●

●

●

●
●●

●
●

●
●●

●

●

●

●●

●

●

●●●
●

●

●

●●
●
●
●

●

●
●

●

●●
●●●

●

●

●
●
●

●

●
●

●
●

●

●
●●●●

●

●

●

●●
●
●●

●

●

●

●●
●
●

●

●
●●●●
●●●●
●●●

●●
●
●

●

●
●

●
●●

●●
●
●
●●

●

●●
●
●●
●●

●
●

●

●

●

●

●

●

●
●●●

●

●

●
●
●

●
●

●

●
●●●●
●●
●●●

●

●

●

●●

●

●
●
●

●

●
●
●

●●

●●

●

●●
●
●
●●

●
●

●

●

●

●●

●

●●●

●

●●●
●
●
●

●
●
●
●

●

●

●
●
●

●

●

●

●
●
●

●

●●●●

●

●●

●
●

●

●

●

●

●

●

●

●
●
●●●
●●
●

●

●

●●
●

●
●

●

●●●●

●
●

●
●
●●
●
●●
●●●

●

●

●

●
●

●●
●●

●
●

●●

●●

●●
●
●

●
●●●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●●

●
●●
●
●

●

●
●

●

●●●
●
●
●●●
●●

●

●

●

●

●
●
●

●

●

●●

●

●
●
●

●●

●

●●

●●
●

●
●

●●

●

●

●
●
●
●●
●

●

●
●

●

●
●

●

●
●
●
●
●
●●

●●

●

●
●●
●
●●
●
●
●

●

●
●

●●●

●●

●●

●●●

●
●●
●
●

●

●●

●

●

●●

●

●
●
●●
●

●

●

●

●●●●●●
●●
●●
●
●●

●

●
●
●
●
●

●●●
●
●
●●

●

●

●
●

●

●

●●

●

●●

●
●●

●
●
●

●

●

●
●
●
●●

●
●
●

●●●●
●
●
●
●

●
●●

●

●
●●●●●

●

●

●

●

●

●

●

●

●
●

●●

●

●●●●●●●

●
●●●
●
●●
●
●●
●

●●

●

●●●
●●

●

●●
●

●

●
●●
●
●

●

●
●

●

●●

●●

●
●

●●

●
●
●
●●

●●

●●

●●●

●●
●
●
●

●●

●

●
●●

●
●

●
●

●

●

●●●

●

●
●
●
●

●

●

●●

●●

●

●

●

●
●●

●

●●
●
●

●

●
●●

●
●

●
●●●

●

●
●

●

●
●●

●

●
●

●●●

●●●
●

●
●
●●
●
●●

●
●

●●●

●

●
●

●

●●
●
●

●●
●

●

●

●●●●

●

●

●
●
●●
●
●

●
●●

●

●●

●●

●

●
●

●
●

●

●●●

●●●

●

●
●
●
●
●
●

●

●●
●

●●●●
●●●●●●

●

●●
●

●
●
●
●

●

●

●●

●●
●

●●

●

●

●

●

●

●●

●

●●
●
●
●
●●

●

●
●●

●●

●

●

●●●
●
●●●

●

●
●●

●●

●
●

●●

●

●●●

●●●●

●

●

●●●

●

●●●

●

●●

●
●●
●●
●●●●●

●●

●●

●

●
●
●

●

●

●

●
●
●

●

●
●

●●
●●●
●●

●

●●●●●

●

●●

●
●
●

●

●

●

●

●●

●
●●
●

●

●●

●

●

●

●●

●●

●
●●

●

●

●●
●●
●
●

●
●

●
●

●

●
●●●●●●●
●
●●●●
●●
●●●
●
●●●

●●●
●

●
●●
●

●
●

●

●
●

●

●●●

●

●

●●

●

●●

●
●

●

●
●
●●●
●
●●

●
●

●

●●●
●
●
●
●
●
●
●

●

●●●●

●

●
●●
●
●
●
●

●
●

●●

●●

●●
●
●●●●●●

●
●●

●●

●
●
●

●

●●●

●●●
●
●
●●

●

●
●●●

●●

●

●●●●
●●
●
●●
●●

●

●●

●
●●

●

●
●●

●
●●

●

●●

●

●
●

●

●

●●●●
●
●

●

●
●

●

●●●

●
●
●

●

●
●●●●

●●●
●●

●

●●●●●

●
●
●
●●
●●●●●
●

●

●●●
●
●
●

●

●●

●●

●
●
●

●

●●

●

●

●

●

●
●

●●

●
●
●

●●

●

●
●●
●●●
●●●

●

●

●

●
●
●
●●
●

●

●●●●●
●

●

●

●●●
●
●●
●
●●
●

●
●●●

●

●

●
●

●●●●
●●
●
●

●

●●●

●

●
●●●
●

●

●●●●●●●●●
●●●
●
●
●●●●

●

●

●

●

●
●
●●●
●
●●
●●
●

●
●
●

●

●
●●

●●

●●

●

●●
●
●

●

●
●●●●

●
●
●●
●
●●
●

●
●
●

●

●

●
●●●●
●

●
●
●
●

●

●●

●
●

●

●

●
●
●●●
●
●

●

●

●●

●

●
●●●
●

●
●●

●

●●
●

●●
●

●

●●
●●
●

●
●
●

●●

●

●

●●

●●●
●
●●
●●

●
●●
●
●
●●
●

●

●
●
●
●●

●

●
●●

●
●

●

●
●
●●
●
●●●

●
●

●
●

●

●

●
●
●●
●●●●●●●●

●

●●●
●

●
●●

●

●●●
●●●●

●●●

●

●●
●
●

●

●

●●
●

●

●

●
●
●

●

●●

●●

●

●

●
●●●
●●

●

●

●

●●
●

●
●
●

●●
●
●

●

●

●●
●●

●

●
●●
●●●
●●●●
●●
●

●

●●
●

●
●●●

●
●

●

●●

●

●●
●
●

●
●

●
●●●
●●●
●
●

●

●

●

●●

●

●
●
●●●●●

●

●●

●
●●
●●

●●

●●
●●●
●●
●
●●●

●
●

●●
●●
●●●

●

●

●
●●

●

●

●

●

●
●●●

●

●●

●

●●

●●●

●

●●
●
●

●●
●

●

●
●●●●●●●●
●●
●●●
●●
●
●
●
●
●●

●

●
●
●
●

●
●●
●

●
●
●●●●
●
●
●

●

●

●●

●●
●
●●
●●
●

●
●
●

●●

●
●

●

●
●●

●
●

●●
●
●

●

●
●●●●
●
●
●

●
●
●

●

●●
●●
●●
●
●●●

●
●●
●●
●●

●●●
●
●●●

●●
●●●
●
●
●●●●●
●●●●
●

●

●●
●●●
●

●

●●
●
●

●

●●●●
●●
●●
●
●●●●●
●●●
●
●●

●

●●●
●
●●●

●●

●●

●●
●
●
●●●●
●
●
●

●
●

●

●
●
●
●●●
●

●

●
●●●●
●

●●
●
●●●●
●●●

●

●

●

●●●

●

●●

●●

●

●

●
●

●
●●
●
●
●
●
●

●

●

●●
●
●
●●●
●●
●
●●
●●
●●

●●●●●
●
●
●
●

●

●
●

●

●

●

●●●
●
●
●

●

●●●

●

●

●

●

●

●●

●

●●●
●
●

●●●

●

●●

●●

●
●●

●

●
●
●

●

●
●●

●

●

●
●
●

●●
●
●●●
●●
●
●●●
●●
●

●

●●

●
●

●

●
●

●●●●●

●●

●
●●●
●
●
●●●
●●●
●●
●
●
●●●

●

●

●●●
●●
●

●
●
●
●●
●
●●
●
●
●
●
●●●●

●●

●
●●
●
●

●

●
●●●
●
●●
●
●●

●

●
●●
●

●●
●

●

●●

●

●

●

●
●●●●
●

●
●●
●

●

●

●●

●
●●●
●

●●
●●

●
●●
●
●
●
●
●●●●●
●
●●

●

●●●●

●

●
●
●●
●●●
●
●●●●●●

●

●
●●
●●
●

●
●

●●●
●●●
●
●●
●

●●●
●●●●

●

●●●●

●

●●

●●

●

●
●
●

●
●●

●●
●

●

●
●●●
●
●●

●

●●●●
●●
●

●

●
●
●●●●●
●●●
●

●
●●

●

●
●
●
●

●

●

●●●●●

●

●
●

●
●●
●
●●
●
●

●

●

●

●

●
●●●

●

●●
●●●●
●

●●●
●

●

●●●●

●

●

●

●

●●
●
●
●
●

●

●

●●
●

●

●

●

●
●
●●●
●●
●

●
●

●●

●●
●

●

●
●

●
●
●

●

●
●
●●●●
●●
●●
●
●●
●●
●

●

●●

●

●●●

●

●
●

●●

●

●

●
●
●●
●●
●
●●●

●●
●
●●
●

●

●

●
●

●
●
●

●

●
●
●
●

●

●
●
●

●

●
●
●●
●●●●●●

●●●
●●
●●●●
●
●●

●

●●●
●

●

●●
●●●
●
●
●
●

●
●
●
●●
●
●●
●

●●

●

●●●●
●

●

●
●
●

●●

●●

●●●
●●
●
●

●

●
●
●
●●●●
●
●
●

●

●●
●●
●●
●
●
●
●
●

●

●
●
●
●
●●●●
●
●●●●

●

●●

●

●●
●●

●●

●
●●
●

●●

●

●

●

●
●●
●●
●

●●

●

●

●●●
●●

●

●●
●●●

●

●

●●
●●
●
●●●

●●

●

●

●
●●
●●●
●
●

●

●
●

●●●
●
●
●
●●
●●●

●
●●●●
●
●

●

●
●

●●●
●
●

●

●
●
●

●●
●

●

●
●

●
●●●
●●●●●
●●●●
●
●
●●●●

●

●●●

●●

●
●●
●●●

●
●●●

●

●●

●

●

●

●●

●
●
●

●

●

●●
●
●●
●●

●●

●
●
●●●●
●

●

●●

●

●●

●

●
●

●
●●
●●

●
●

●
●●●
●●
●
●●●

●

●
●
●●

●

●●
●

●
●
●
●
●
●
●
●
●
●●●

●
●
●●●

●
●●
●●●●

●
●

●

●

●
●●●●

●

●●

●
●●
●
●●

●
●●
●

●
●●●●●

●
●
●
●●

●

●
●
●●●
●●●●
●●
●
●●

●
●●
●●
●●●
●
●

●●●
●
●●●
●
●
●●●

●

●●
●●●
●
●

●

●
●●
●
●

●

●

●●
●
●●●
●●

●
●
●●●

●
●
●●●
●

●●
●

●
●

●

●●
●
●
●
●

●
●●●●
●●●

●●●
●
●●
●●●
●●

●
●
●
●●

●●
●

●

●

●
●
●

●

●●●

●
●
●●
●

●●●●
●●
●
●
●
●●
●
●●

●
●
●●●●

●

●

●

●
●

●●

●
●
●
●●●●●
●●●
●

●

●
●
●●
●●●●

●
●

●●
●●●●

●
●
●
●●●●

●

●
●●●●

●

●

●
●
●

●

●●

●
●

●
●
●

●

●
●●●

●

●●●
●●●
●●●●
●
●
●
●
●●●
●

●

●
●

●●
●
●●●●●●

●

●
●

●
●
●

●
●
●●
●●
●●●●
●●

●●

●
●●●

●
●●●

●●●
●

●●
●●

●

●

●
●●

●

●●
●
●●●●●
●●
●

●

●

●
●

●

●
●
●

●
●

●●●●
●
●●

●

●
●●●
●
●●
●

●

●
●
●
●
●

●

●

●
●
●●

●
●●
●
●●●
●

●

●
●

●●●●

●

●●
●●
●●

●

●●

●
●

●

●
●
●

●

●

●●●
●
●●
●

●

●

●

●

●

●

●●●
●

●

●
●
●●

●●
●●●●
●

●
●
●
●
●●●●

●
●

●●●

●

●
●

●

●

●

●●●

●
●
●●
●●
●●

●●

●

●●

●

●
●
●
●●●●●●
●
●●
●
●●

●●
●
●
●●●●
●●
●●
●●
●●
●●
●

●
●

●

●

●●

●
●
●

●

●
●●

●●●
●●
●
●●
●
●
●

●

●

●

●●

●●
●
●●
●●
●
●●●
●

●

●

●

●●●
●
●●●
●
●●
●●●
●

●

●●●●
●●
●●
●
●●

●
●●●
●

●

●

●
●●●
●

●

●
●
●●

●
●
●

●
●

●●●●
●●●
●
●

●

●

●

●
●
●
●
●

●

●
●●●●

●

●
●●●
●
●

●

●●●●
●
●●●

●
●
●

●●

●●

●
●●

●
●●
●●
●●
●
●
●

●●
●●●
●

●

●

●●

●

●
●

●

●
●
●●●●●
●●●

●
●
●
●●●
●
●●

●

●●●

●

●●
●

●●

●

●●
●
●

●
●
●

●●●●●

●

●●●●

●

●●●
●
●●

●

●

●
●
●
●●●●●

●

●●
●
●●●
●●●

●

●
●
●●

●
●

●●

●

●

●

●
●●
●

●

●
●
●●
●

●●
●●●●

●

●
●
●

●

●

●●●
●

●●

●

●
●
●

●

●
●●●

●

●
●

●

●

●

●
●●

●

●
●●●

●
●

●

●

●

●
●

●●
●
●
●
●
●

●

●

●●

●

●●
●
●
●●
●
●

●

●
●
●●●
●●
●●●

●

●

●
●

●
●
●

●
●

●

●
●●●●
●●
●
●
●

●

●

●
●
●
●
●●●

●

●●
●●

●

●
●
●●

●
●
●●●
●
●
●
●●●

●

●

●
●
●●
●
●

●
●●●●
●

●
●●●●●
●●

●
●
●●
●●
●●●
●
●
●
●
●

●

●
●●●●

●

●●
●●●
●

●

●
●●●●

●

●●●

●

●
●●●●●●●●●●
●●

●●
●
●
●
●
●
●

●

●

●
●
●

●

●

●

●●●●●

●●

●●

●

●
●●●●●

●

●●

●●●

●

●

●
●
●

●●●

●●
●
●●
●

●

●
●

●

●
●
●●
●
●●
●●

●
●

●

●●●●●

●

●

●●
●●●
●

●

●

●●●●●
●
●
●●●

●
●●●●
●

●
●●

●●

●
●
●
●
●
●
●
●●
●

●

●

●●
●
●

●
●

●●
●●
●

●●
●
●

●
●●
●
●
●●
●●

●

●●

●

●

●
●●●
●●
●

●

●●

●●●
●●
●●●
●

●

●●

●●
●●
●

●●
●
●
●
●

●●
●
●
●●●●●●
●●
●

●●●●●●
●

●

●
●
●
●●●
●

●

●
●

●●●
●●

●●
●●
●
●
●
●

●●

●
●

●

●●●
●●
●●
●

●
●

●
●
●

●●●●●
●
●●●
●
●
●
●
●
●

●
●●●●●

●●

●
●
●●●●
●●●●
●●●
●●
●

●
●
●
●
●

●

●●●●●

●
●

●

●
●●●
●

●

●
●●
●

●

●

●

●

●

●
●●
●●
●●
●
●●●
●●●

●●
●

●

●
●

●
●
●●
●
●

●●●

●

●●
●
●●●●
●

●●

●
●
●●●

●●

●
●●

●
●

●

●●
●

●

●
●
●
●
●●

●

●
●●

●

●●

●

●

●
●
●●
●
●
●●

●

●

●●
●●
●
●
●
●●

●

●●
●
●
●
●
●

●

●

●

●
●●●●

●●

●
●
●●
●
●●
●
●●●●
●●
●

●●

●

●●●

●

●
●●●

●●

●
●
●●●

●

●●●●

●

●

●●

●

●●

●●
●
●
●
●
●

●
●

●●●
●

●●

●

●●

●

●
●
●
●
●●
●●●

●●●●
●●

●
●

●

●●
●
●

●

●●
●
●●

●
●
●●
●
●

●
●
●

●
●●
●
●●●
●
●
●●

●●

●●
●
●●

●
●●●●

●

●

●
●
●●
●
●

●

●●
●●

●●

●

●
●●
●
●●
●●
●

●●
●●
●●●●
●●
●
●●
●

●

●

●●
●
●

●●
●●●
●
●●

●

●

●●●

●

●
●
●●

●

●

●

●
●

●

●●●●●
●●●
●
●
●●

●

●

●●
●●●●●●
●●●
●
●●●

●

●●●●
●●
●●
●
●

●

●
●●
●●
●●●

●

●●
●

●

●●

●

●
●
●●
●

●
●
●
●

●●●

●

●
●●●
●

●

●●
●●
●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●

●

●●●

●

●●

●

●

●●

●●●●●●●
●

●
●

●
●●
●●
●
●●●●
●
●

●

●

●●

●●●●
●
●
●
●
●

●●

●
●●●

●

●●●
●
●

●●

●
●
●
●
●
●
●●
●●
●
●●
●
●●●
●●

●●

●
●
●

●●●

●

●●
●

●
●

●●●
●●
●
●
●

●

●
●
●

●●

●
●
●●

●

●●●●
●

●●
●●●
●●●
●

●●

●●

●
●
●●
●

●●●●
●●
●

●
●

●
●●●●●
●●

●

●

●

●

●

●●
●●
●●●●●

●

●

●

●

●

●●●
●

●

●

●

●
●●

●●
●●●●
●●

●

●
●
●
●
●●
●●

●

●●●●●●

●

●

●●

●
●●

●

●●●
●●●

●
●●●

●

●●●●
●
●
●●
●
●

●
●●
●●●●
●●●●
●
●●●●

●

●●
●
●●

●
●
●●●
●●●

●
●●●
●
●

●

●
●●
●●
●●
●

●

●
●●●●●●●●

●

●●
●

●
●
●
●

●●
●
●●●●●●
●
●●
●
●●
●●●●●

●
●
●●
●●
●●●●
●●●●●
●●●●
●

●

●●●

●

●●

●

●●●

●

●
●●●
●●
●
●

●

●

●●●
●●●
●
●●●
●●●●
●

●
●
●
●
●●
●●
●
●●
●●
●●

●●
●

●
●●
●
●●
●
●
●
●●

●●●

●

●●
●
●●

●

●●
●
●
●●

●
●●●●●●
●●●
●

●
●
●

●

●
●●
●
●●●●

●

●●
●

●●

●
●

●●●●

●

●●
●●

●
●●●

●

●●●●●
●●
●

●

●
●

●
●
●

●

●
●●●
●

●

●

●
●●●●●●●

●

●●

●

●
●●
●●
●
●
●
●

●

●
●

●

●

●

●

●
●
●●●●●●
●●

●

●

●●●
●●
●
●
●
●●●
●
●●●
●
●●●●
●

●

●

●●
●●

●●

●

●

●
●

●

●
●●
●

●

●●
●
●

●●
●●
●

●

●

●●
●

●
●
●

●

●●●●●

●
●
●●●

●●
●●

●
●

●
●●
●●

●

●

●●
●●●●●

●

●
●●●●
●
●
●●
●

●
●●●●●
●●
●
●
●

●

●
●

●

●

●
●●●●●
●
●
●

●

●●●●
●
●
●
●●
●●●

●
●●
●

●

●

●●
●●
●
●
●●
●

●

●
●
●
●●●

●

●
●

●

●

●

●●
●

●
●●●●

●
●

●
●
●●
●

●●
●

●●

●

●

●

●
●●●●●

●
●

●
●
●
●●●
●●●

●
●

●

●

●
●●

●
●

●●●

●●
●●●●●
●
●
●

●

●

●
●

●

●●
●

●●

●●

●
●●
●
●

●
●●●

●

●
●●
●

●

●●
●●●
●●
●●

●●●●

●
●●
●
●
●
●
●
●

●

●
●

●●

●

●●
●●
●●
●
●●
●●

●
●●●

●

●●●●●
●
●

●

●●

●●
●
●●●

●

●
●●

●
●●●●
●●

●

●
●
●
●

●
●●
●●

●

●●
●●●
●
●
●●
●
●●

●

●

●

●●

●

●
●
●●
●
●
●

●

●●●●

●

●

●

●
●
●●●
●

●

●

●

●

●

●

●
●

●
●

●
●
●
●
●
●
●
●

●

●

●
●

●

●●
●●

●

●
●●
●●●●●●●●●
●●
●
●●

●
●
●●
●●

●●●
●●
●

●●●●●●

●

●●

●

●●

●●

●

●●
●
●●

●●●
●
●

●
●●
●

●●●

●
●

●
●●
●
●
●

●●

●

●
●
●
●●●●

●●
●

●
●●

●
●
●●
●
●●
●
●●●
●●●
●●
●●●
●●
●●●●●

●

●
●

●

●
●

●●
●●●●●
●
●
●●
●

●●
●●
●

●

●
●●●●●

●

●●
●●

●
●●

●
●●●●
●
●●●
●
●●

●

●●
●
●
●
●
●

●
●

●●

●

●
●●
●
●
●●
●●●
●
●
●

●●●
●●
●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●●
●

●

●

●●●

●

●
●●
●●

●●
●●
●
●●
●●

●

●

●
●
●

●

●●
●
●●
●
●
●●●
●

●●●●●●●

●

●●
●●●●●●●●
●●

●

●

●
●●●

●

●
●●
●●●

●

●
●●●
●
●●●
●
●●●●●●●●
●●

●
●

●

●●●●
●
●●

●
●
●●●
●●
●●
●●
●●
●●
●●
●●●●

●●
●●
●●●

●●

●
●
●
●
●●●
●●●
●
●●●
●●●●●●●●
●●●
●

●

●
●
●●●
●●●

●

●●●●
●
●●●●●
●
●●
●
●●●

●

●●●
●
●
●●●●
●
●●●●

●

●
●●

●
●
●●●●●
●
●●
●●

●
●
●
●
●
●
●●
●●●

●

●●
●●
●
●●●
●

●

●●●●●

●

●

●●
●
●
●●●●●●●●

●

●●●●●●●●●●●
●
●●●●
●●

●

●
●●
●
●
●
●●●●
●
●●●●
●
●●
●●
●●●
●●
●●
●
●
●●●●
●
●●
●
●●
●●●●●
●●
●●
●●●
●

●

●
●●●

●
●
●

●●

●●
●
●●
●

●
●●
●
●●●●●
●

●
●
●
●●
●●
●●
●●●
●●●

●

●●
●
●●
●●●●●
●
●●●
●
●●●
●●
●

●

●●●●●●
●
●
●●●●●●
●
●●●
●●●●●●

●
●
●
●●●
●●
●●●
●
●
●●
●●●●
●
●
●●

●●●●●
●●
●
●●●
●●
●
●
●
●

●●
●

●●●●
●
●
●

●●

●
●
●●

●

●●●
●

●

●●●●●
●●
●
●●●●●●●●●●●
●
●●●

●

●●●●
●
●
●
●●●●●
●●●●●
●
●
●●●●●●

●

●
●
●●●●

●

●●●●●●●●
●●●

●

●●●
●●●●●
●●
●
●●●●

●

●●●
●●
●●●
●●●
●●●●●●●
●●●

●

●●
●●●●
●
●●
●●
●
●
●●●
●
●●●●
●●●●
●
●
●●●
●●●●●

●
●
●
●●●●●
●
●
●
●
●
●
●●
●●
●●●●●●●●
●●
●
●
●●
●

●

●●●●

●

●
●●

●

●

●●

●●●●●●
●
●
●●●●●●
●●●
●●
●
●●
●●
●●
●●●●
●
●●●
●●●●●●●●
●●●
●

●

●●●●●●
●●

●

●

●●●
●●●
●
●

●
●●●●

●

●●
●
●

●
●
●●●●
●

●

●
●●
●●●
●●●●●●
●
●●●●
●
●

●●●
●

●●
●
●

●
●●●●●●●●●●●●
●
●
●●
●●
●●

●

●
●
●
●
●
●
●
●
●●
●
●●
●●
●
●
●●●●●●●

●
●●●●
●
●

●

●●
●●●●●

●●
●●●
●
●●
●
●●
●
●●●
●
●
●●
●

●
●●●
●
●
●
●
●
●
●
●●●
●●
●●
●
●

●●

●●

●

●●
●●
●
●
●
●●

●●
●
●
●
●
●
●●●●
●
●
●●
●
●●●●
●●

●

●
●
●●
●
●●
●
●
●

●
●●●●●●●●
●●
●
●
●●
●

●●

●

●
●
●●

●
●●
●

●

●

●
●
●
●●●
●●
●

●

●
●●●

●

●●●
●●
●

●
●
●
●
●●●
●
●
●

●
●

●●
●●●●●●●●●●●●
●●●

●

●
●●●
●●●●●●●●●
●●
●
●●●
●●●●●
●

●

●

●

●●●●●●

●

●
●
●●
●
●
●●●●●
●
●●●●●●
●
●

●●●●●
●●●
●
●
●●
●
●●
●

●

●●

●

●

●

●
●
●●●●
●
●●
●

●●

●●

●

●

●

●

●●
●
●●
●
●●●
●●

●
●●●●
●●
●●●●
●●
●
●
●●●●●●●
●
●●●●
●
●●●●
●
●●●●●●●●●●
●
●●
●
●●●●
●●
●●
●●●

●
●●●
●
●●●

●
●●
●
●●
●●
●
●●●●
●
●●
●
●●
●

●
●●●●
●

●●

●

●

●●●
●●
●
●
●
●
●
●●●●●
●
●●
●●
●
●

●
●●●●●
●
●●
●●●●
●
●●●
●●●●●●●●
●
●
●●●●●●
●●
●
●●●●
●

●
●
●

●●●
●
●●●
●●●

●

●
●
●●●
●
●●

●
●

●
●●●●
●●●●●●●
●
●●●●
●●●
●●
●●
●

●●●

●

●
●●●●●
●
●●●
●
●

●●
●●●●
●
●

●

●
●
●●●
●●●●●●●
●
●
●
●

●●●
●
●
●●
●●
●●●●●
●
●●●●
●
●●●●●●●●
●
●
●
●
●●●●●●
●
●●●●

●
●

●●
●●●●
●
●
●●
●
●

●●

●
●●
●

●●
●●

●

●●
●
●

●

●
●●●●

●

●
●
●●●●

●
●
●

●
●
●●●
●
●

●●●●●●●●●●●
●
●

●●●

●

●
●●
●

●

●●●

●
●●●●●
●
●
●
●●●●●

●●
●

●●
●●●
●
●
●●●●●●
●
●
●●
●
●
●●●●

●

●
●
●●

●

●●●●
●
●●●●●●●

●

●●
●
●●●
●
●●

●

●

●●
●●
●●●
●
●●●●●●●●●

●

●●●●●

●

●●●
●●●●●●●●●●●
●

●

●●

●
●
●●●

●

●●●●

●

●●●●●●●

●

●
●
●
●●
●●●●

●

●●●

●●
●
●●●
●
●
●
●

●●●
●●●●

●
●●
●
●

●
●●●●●●●
●
●●●
●●●
●
●●
●
●●●

●
●
●
●

●
●

●●●
●●●
●
●●●●●
●●●●
●●

●
●
●●
●
●
●●●●●

●

●●

●

●●
●
●●●●●●●
●●●●
●
●●
●●
●
●
●●

●

●●
●
●

●●●
●●
●●
●
●●●●●
●
●●

●

●●
●
●●

●

●

●
●

●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●
●

●
●

●
●

●

●●

●

●

●●

●

●●

●

●

●

●
●
●
●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●
●

●

●
●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●
●
●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●●

●
●

●
●
●

●

●●

●

●

●

●

●

●

●
●

●●

●

●●

●●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●
●

●

●

●

●●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●●

●

●

●●

●
●●

●●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●●
●

●
●
●

●

●
●

●
●

●
●
●

●

●●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●
●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

●●●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●●●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●●●

●

●

●

●

●

●●●
●

●
●

●
●

●●

●

●

●

●

●●
●●●
●●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●●

●

●

●●

●
●

●
●

●

●●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●
●

●●

●

●

●●

●

●
●
●

●

●●

●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●
●

●

●
●

●
●●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●●
●

●

●

●

●
●

●

●

●

●
●

●●●

●

●●

●●●

●

●

●

●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●●
●

●●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●
●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●●

●
●

●

●
●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●●

●●
●

●

●●

●

●

●

●●

●

●

●●●●
●
●
●
●●●●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●
●
●
●●

●

●

●●

●

●

●●

●
●
●

●

●

●●

●

●

●

●
●●●

●●●
●

●

●●

●

●

●●

●●

●

●

●

●

●●

●

●●

●●

●

●
●

●

●

●

●
●●
●
●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●
●
●

●
●
●

●
●●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●
●

●

●
●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●●●

●

●

●●
●
●
●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●
●●
●

●

●

●●

●●

●●

●

●

●●

●

●●

●

●

●
●

●
●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●●
●●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●
●

●●

●

●●

●

●●

●
●
●
●

●●

●

●●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●●

●

●

●●

●

●
●

●
●●

●

●

●
●

●

●

●●

●
●

●
●

●

●

●
●
●
●

●
●

●

●

●
●

●●

●

●

●●
●

●
●
●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●●
●
●

●

●

●●●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●●

●

●
●

●●

●●
●

●

●

●

●
●
●
●
●●

●

●

●
●

●

●
●

●

●

●●
●

●

●●

●

●
●
●

●

●

●
●

●

●●

●
●

●

●
●
●
●

●

●●
●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●●

●●

●●●
●

●
●

●●

●

●

●
●
●

●
●

●

●

●

●

●

●
●
●●
●●

●

●
●

●
●

●
●
●●

●

●

●●
●
●●
●

●

●●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●●●
●●
●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●●

●●

●●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●
●

●
●
●

●
●●

●

●

●

●

●●

●
●

●●
●

●

●

●●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●
●

●

●

●●

●

●●
●●

●
●
●

●●

●
●

●
●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●
●
●

●

●

●

●
●●●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●
●

●

●
●
●
●
●

●

●
●
●
●

●
●
●

●

●
●●
●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●
●

●

●●●

●
●

●

●

●
●

●

●
●

●

●

●
●
●

●●

●

●

●

●
●
●●

●
●●
●
●
●

●

●

●

●
●●

●

●●
●

●
●●

●●

●
●

●

●

●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●
●

●

●

●

●●

●

●
●

●●

●

●

●●

●
●●●

●

●

●

●●
●

●
●

●
●

●

●

●

●
●

●
●
●

●●

●

●
●
●●●
●●●●●●

●

●

●

●●
●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●●

●
●
●●
●
●

●

●

●

●

●

●
●
●●
●

●

●
●

●
●●
●

●
●
●●
●
●

●●

●
●

●

●●

●

●

●
●

●●

●

●
●●
●●

●●

●

●

●

●●

●

●

●●

●

●
●●

●●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●
●●
●

●
●

●
●●●●●●
●

●

●
●

●

●
●

●

●

●

●●

●●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●
●
●
●

●

●

●

●
●

●
●●
●

●

●

●●

●

●●
●

●

●
●

●

●

●

●●
●

●●

●

●●●

●

●●

●

●●●

●

●●●
●
●●
●
●

●

●●

●●

●

●
●

●

●
●
●
●

●
●
●
●
●●
●
●
●

●
●

●
●
●●●
●

●

●●●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●●●

●●

●

●●

●
●●

●

●

●●

●●
●
●
●

●

●

●

●●

●

●

●

●
●

●

●●

●
●
●

●
●

●
●

●

●

●

●

●

●●
●
●

●
●
●

●

●

●

●

●●
●

●●
●●
●

●
●

●
●

●

●

●
●

●

●

●

●
●●

●
●●●
●
●
●●
●

●

●●
●
●

●

●

●●
●
●●

●

●

●

●●
●●

●

●
●

●
●
●

●

●

●

●●

●●
●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●●
●

●

●●

●

●●

●

●

●

●
●

●

●
●●
●

●●
●

●

●●●

●
●

●●

●●●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●
●

●

●●●

●

●
●

●●

●●

●

●

●
●

●●

●

●
●
●

●

●

●●
●

●
●
●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●
●
●●
●
●

●

●
●

●
●

●
●
●

●●●

●●●
●

●

●
●

●●

●

●

●

●

●

●●
●●

●

●

●

●●

●

●

●●●
●

●

●

●

●●

●
●

●●

●
●
●●

●
●
●

●

●

●

●
●

●

●

●
●●
●●
●
●
●●

●

●●

●

●●

●
●

●●

●
●●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●●
●●

●
●

●
●
●

●

●
●

●

●●
●●

●

●

●

●

●
●

●●
●

●

●●

●

●

●

●

●
●
●
●
●●
●

●

●
●●

●

●
●

●

●

●
●

●

●●

●●

●

●
●
●

●

●

●●

●●
●●
●
●

●
●

●

●●

●

●
●

●

●

●

●●●

●

●

●

●
●●●

●

●●

●
●●●

●

●
●

●

●

●

●
●

●
●

●●●
●
●

●

●

●

●

●

●

●
●●
●

●

●
●●●

●

●

●
●●

●●
●

●●
●
●
●●●●
●
●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●
●
●
●

●
●
●

●
●

●

●
●●

●

●

●

●

●
●

●
●

●
●

●

●
●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●●●●●●
●●

●

●●
●

●

●

●●
●●

●

●

●

●●
●●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●●
●
●●
●
●
●●

●
●

●

●●

●●
●
●

●

●●

●

●

●
●●
●●

●

●
●●

●●
●

●

●
●●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●
●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●●●●

●

●
●●

●
●

●●●
●

●●

●

●
●

●

●
●

●●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●●

●

●●●

●●

●

●

●
●●●
●

●

●
●

●
●

●

●

●

●
●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●●

●●

●

●

●
●
●
●
●
●●
●
●
●
●●

●
●●
●
●●

●

●
●

●

●
●

●
●

●
●
●
●

●

●

●●

●

●

●

●●
●

●
●

●
●

●

●
●●

●●
●●●●

●
●
●

●

●
●

●

●

●

●

●

●
●
●
●●

●

●

●

●
●●

●
●●

●

●

●
●
●
●
●

●

●

●●●
●

●
●

●●
●
●●

●●●
●●
●

●

●

●

●

●
●

●

●

●

●
●
●
●

●

●●

●

●

●●●
●

●

●

●

●●

●

●

●
●

●

●

●
●
●

●

●
●

●

●●●

●

●

●

●

●

●

●●●
●●

●
●

●

●
●
●
●

●

●
●

●

●●

●
●

●

●●●

●

●

●

●

●
●

●
●●

●
●●
●

●

●

●
●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●●

●●
●●

●●

●

●●

●

●

●●

●

●

●
●●

●
●●

●

●
●

●
●●

●

●

●
●
●
●
●

●●

●●
●

●
●●●●
●
●

●●
●

●

●

●
●●
●
●●●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●
●

●

●
●
●
●

●
●

●

●

●

●

●

●

●

●
●
●●

●●

●

●
●

●

●

●

●
●

●
●●
●

●

●●

●

●
●
●

●●

●

●

●

●

●

●

●

●●

●

●
●
●
●

●●
●●

●

●
●

●

●●

●

●

●

●
●

●

●
●●
●●●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●
●●
●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●●
●
●

●

●

●

●
●

●●
●

●

●
●
●

●

●
●
●

●
●

●●●

●
●

●

●●
●●
●●
●●

●

●

●

●●
●
●
●

●●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●●●
●

●

●

●

●
●

●
●
●
●
●

●
●

●

●
●●
●

●

●●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●
●
●

●●

●●●●
●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●
●

●

●

●

●

●●
●

●
●

●

●
●●

●

●
●●●●

●

●

●

●

●

●●
●

●
●
●
●●●●
●●
●●

●

●

●

●

●●

●
●●
●●●●●
●
●

●
●

●●

●●

●

●●
●●

●

●
●
●

●

●

●

●

●

●●
●●
●
●

●
●●

●
●●
●

●

●

●

●

●

●

●

●
●
●
●●
●

●

●●
●●

●

●
●

●●

●
●
●●

●
●

●

●

●

●

●●●●
●
●
●
●●●
●●●
●●●
●
●

●
●
●●●

●

●
●
●
●
●
●

●●
●●

●
●

●●

●

●●

●●

●
●

●
●●

●●
●

●
●
●●●
●

●

●
●
●●

●

●
●

●

●●●●
●●●
●●
●
●

●●
●

●
●

●
●●
●●
●●
●

●●

●

●●

●

●
●●
●

●●

●
●
●

●
●

●●●

●

●
●
●

●
●
●
●

●●

●●
●●●●
●●●
●●●
●
●
●●
●●

●

●

●

●

●●

●

●

●
●
●
●●
●
●

●

●

●

●
●

●

●

●●
●
●●

●●●
●
●
●●●

●

●
●
●●●●
●●
●●
●
●●

●

●

●●

●
●
●

●●

●

●
●
●
●
●

●

●

●

●

●

●
●
●

●●●
●●●
●

●

●●

●
●●

●

●

●●
●●●●

●

●

●

●●●
●
●●●
●●

●●

●

●

●

●●
●
●●●
●

●
●
●●●
●

●
●

●

●●
●
●
●

●

●
●
●
●

●
●
●

●

●
●
●
●

●

●

●

●
●

●

●
●●
●

●

●
●
●

●

●

●●●

●●
●

●●●
●
●

●

●
●

●

●

●

●●●●
●●●●●●

●

●

●
●

●

●

●
●

●

●
●●
●

●

●●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●●

●
●
●

●

●

●

●
●

●●
●

●

●
●●
●●

●●●
●
●●●
●
●

●

●

●

●
●

●

●
●

●●●
●●

●●

●●
●

●

●
●●
●

●
●

●

●●●●

●●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●

●

●
●

●

●●

●
●
●

●

●●

●

●
●
●●

●

●

●●●
●
●

●

●

●

●●●

●

●
●●
●

●

●
●

●

●

●●

●
●
●
●●
●
●●●

●

●●
●●
●●

●

●
●
●

●●●
●●
●

●

●●●●

●
●

●

●

●●

●●

●
●●
●
●
●
●●

●

●

●●
●

●●●
●●

●●

●
●●
●
●
●
●
●●
●
●●
●●

●

●
●
●●
●●●●
●●

●
●
●●
●

●●

●●

●●
●●
●●●
●

●

●●
●●
●
●●●

●
●
●
●●

●

●●

●
●
●

●

●

●

●
●
●●●●

●

●●●●
●●●●●●
●●

●

●
●

●
●
●●●●
●

●

●●●

●

●
●
●
●

●

●

●
●

●

●
●●●●

●●

●

●

●●

●

●

●

●

●
●
●●●●
●●●●●
●●●●●●●

●
●●●●

●

●

●●●

●

●●

●

●●●
●
●●

●●
●

●
●
●

●
●
●
●●
●

●

●

●

●
●

●

●
●
●

●●
●

●●
●

●
●

●

●
●

●●
●
●

●

●●●●●●

●
●●●●●●●

●

●●●

●

●

●
●●
●

●

●

●

●
●●

●

●

●
●

●●

●

●

●
●●
●

●
●
●
●●●●●
●●
●
●
●
●

●
●
●
●
●●●
●●●●

FFT BJA 100% DynSP 100% BJA 30% DynSP 30%

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

T
ra

ve
l
T

im
e
 (

in
 m

in
u
te

s
)

(a)

BeeJamA penetration rate (in %)

A
ve

ra
g
e
 T

ra
ve

l
T

im
e
 (

in
 m

in
u
te

s
)

●

●

●

●

●

●

●

●
●

●

●

5
0

1
0
0

1
5
0

2
0
0

0 10 20 30 40 50 60 70 80 90 100

●

DynSP (30min update)

BeeJamA

All

(b)

Fig. 5. Simulation results

there is a recognizable tendency in comparison to the DynSP results, e.g. the
mean difference of the 100% simulations is about 12min. The results differ even
more for the 30% simulations but it is obvious that maximum travel time of
687min in contrast to a maximum free flow travel time of about 42min is a sim-
ulation artifact due to necessary abstraction of the underlying traffic simulation
model. Fig. 5b depicts the results of the second simulation setup. Once again
there is clear tendency that 1) BeeJamA routed vehicles reach their destination
faster (in average) and that 2) the travel times of accounted vehicles decrease as
the penetration rate of BeeJamA increase.

6 Conclusion and Future Work

The distributed, self-adaptive BeeJamA routing protocol for minimizing travel
times by avoiding traffic congestions has been presented. Simulation results indi-
cate that the protocol is able to outperform dynamic shortest path approaches.

Minimizing Vehicular Travel Times Using the MAS BeeJamA 349

The main advantage of a distributed protocol is the (more or less) arbitrary
high frequency of delay updates in large regions that centralized algorithms re-
lying on global information cannot achieve easily. So, without any restriction to
high-capacity roads - which is needed for any practical realization of a dynamic
shortest path algorithm - BeeJamA is very flexible and sensitive to unexpectedly
changing traffic patterns.

In order to get realistic insights beyond the necessary abstractions that traf-
fic simulators depend on for the purpose of high efficiency, we have meanwhile
started to run experiments such as reported here by operating the routing proto-
cols through the generic routing framework on other simulators like SUMO [10].
Furthermore, due to the underlying BeeHive algorithm it is possible to extend
BeeJamA to much larger traffic areas, and this can be done in a completely
incremental fashion. This will all be subject to forthcoming publications.

Acknowledgements. This work was supported by the Deutsche Forschungs-
gemeinschaft (DFG) under grants WE2816/10-1 and WE2816/8-1.

References

1. Rothengatter, W.: External costs of transport (2004),
http://www.uic.org/html/environnement/cd external/pages/

introduction.html (last access at: February 03, 2012)
2. Wedde, H.F., Senge, S., et al.: Bee Inspired Online Vehicle Routing in Large Traffic

Systems. In: Proc. of the Second Int. Conf. on Adaptive and Self-Adaptive Systems
and Applications, IARIA, Lisbon, Portugal (2010)

3. Wedde, H.F., Senge, S., et al.: Towards Hybrid Simulation of Self-Organizing, On-
line Distributed Vehicle Routing in Large Traffic Systems. In: Proc. of the 7th
ICNC Conf., Shanghai, China (2011)

4. Farooq, M.: Bee-Inspired Protocol Engineering - From Nature to Networks.
Springer, Berlin (2009)

5. Claes, R., Holvoet, T., Weyns, D.: A Decentralized Approach for Anticipatory
Vehicle Routing Using Delegate Multiagent Systems. Trans. on ITS 12(2) (2011)

6. Tatomir, B., Rothkrantz, L.J.M.: H-ABC: A scalable dynamic routing algorithm.
In: Recent Advances in Artificial Life. World Scientific Publishing, Singapore (2005)

7. Faezipour, M., Nourani, M., Saeed, A., Addepalli, S.: Progress and Challenges in
Intelligent Vehicle Area Networks. Communications of the ACM 55(2) (2012)

8. Kerner, B.S., et al.: Traffic State Detection with Floating Car Data in Road Net-
works. IEEE Intelligent Transportation Systems (2005)

9. MATSim - Multi-Agent Transport Simulation Toolkit, official homepage,
http://www.matsim.org, (last access at: February 03, 2012)

10. SUMO - Simulation of Urban Mobility, official homepage, http://sumo.sf.net
(last access February 03, 2012)

http://www.uic.org/html/environnement/cd_external/pages/introduction.html
http://www.uic.org/html/environnement/cd_external/pages/introduction.html
http://www.matsim.org
http://sumo.sf.net

A Study on Predictive Performance

of Regression-Based Effort Estimation Models
Using Base Functional Components

Sousuke Amasaki and Tomoyuki Yokogawa

Department of Systems Engineering, Okayama Prefectural University
Soja, Okayama Japan 719–1197

{amasaki,t-yokoga}@cse.oka-pu.ac.jp

Abstract. Some study claim that Base Functional Components (BFCs)
contributes to effort at different levels and thus using BFCs instead of
Function Points (FP) is better for effort estimation. This study examined
the claim with sound filtration and extra-sample error, which were lacked
in the past study. As a result, we confirmed that BFCs-based modelings
used in the past study was statistically inferior to a FP-based model. We
also demonstrated that a BFCs-based model could become comparable to
the FP-based model with suitable transformations for BFCs. The result
contributes to understand the importance of transformations for BFCs.

Keywords: effort estimation, function points, regression models.

1 Introduction

Model-based effort estimation models have been studied well[7]. Size measure
is considered as the most influential predictor for estimation. One criticism is
that measuring size with a single measure such as Function Points (FP) and
SLOC involves uncertainty[9]. In [2,3], the authors demonstrated that using Base
Functional Components (BFCs) instead of FP, which are smaller components
constituting FP, improved fitting of a regression-based effort estimation model.
However, they did not validate the improvements with statistical test and in
terms of predictive performance.

In this paper, we thus examined whether BFCs-based models can improve
predictive performance. This paper provides the following insights: 1) All BFCs
had significant contributions to effort, and 2) BFCs-based models could become
comparable to the FP-based model with suitable transformations for BFCs.

2 Experiment Settings

2.1 Dataset

This study used the ISBSG R11 database[5] as same as [2] but we adopted
different filtration process. Normalized Work Effort was used as effort in [2].

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 350–354, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Study on Predictive Performance 351

Table 1. Filtration on the ISBSG R11 Database (based on [2,10])

Step Attribute Filter Excluded Remaining

0 — — — 5052

1 Counting Approach = IFPUG 1253 3799

2 Data Quality Rating = {A|B} 185 3614

3 Quality Rating for Unadj. FP = {A|B} 735 2879

4 BFC Types �= Empty 1397* 1482*

5 FP Standard All ≥ IFPUG 4 974 508

6 Summary Work Effort = Normalized Work Effort 132 376

7 Resource Level = 1 104 272

8 Language Type �= Empty 8 264

9 Development Platform �= Empty 5 259

10 BFC Types
∑

BFCs > 0 23 236
*they were inverted in [2].

However, it is criticized in [10] because Normalized Work Effort may include
estimated effort by ISBSG. We thus mixed filtrations in [2] and [10].

Table 1 shows our filtration criteria. We focused on projects adopting IFPUG
Function Point Analysis (FPA)[6] as same as [2]. IFPUG FPA defines 5 BFC
types: External Input (EI), External Output (EO), External Inquiry (EQ), In-
ternal Logical File (ILF), and External Interface File (EIF). With step 6 and
7, we selected projects recording actual development team effort. We adopted 3
categorical attributes identified in [10] as candidate predictors: Language Type,
Development Type, and Development Platform. We did not select subsets based
on the same organization types as [2] because the subsets become too small.

The filtration reduced the number of projects from 5052 to 236. We then
removed one apparent outlier. Eventually 235 projects were remained.

2.2 Effort Estimation Models Based on Linear Regression

While log-transformation is recommended for skewed effort and predictors[10],
they were used as-is in [2]. We thus compared the four linear regression models:

Effort = β0 + β1FP, (1)

Effort = β0 + β1BFC1 · · ·+ βpBFCp, (2)

log (Effort) = β0 + β1 log (FP) , (3)

log (Effort) = β0 + β1 log (1 + BFC1) · · ·+ βp log (1 + BFCp) . (4)

Here, categorical predictors are omitted for simplicity. We added 1 to BFCs so
that log functions require a value more than 0.

As preparation, we examined significance of the three candidate categorical
predictors with these models. As a result, we treated them as follows: 1) Merge
Language types into 2 levels: 4GL and Other, 2) Merge Development platform
types into 2 levels: Multi platform and Other, and 3) Drop Development types.

352 S. Amasaki and T. Yokogawa

Table 2. The results of experiments

Model adj.R2 AIC Dropped MMRE MMAE PRED(25) MABRE

(1) 0.37 3688 – 0.81 1806 0.29 13.96
(2) 0.38 3685 EI 0.82 1850 0.27 10.05

(3) 0.48 383 – 0.57 1658 0.34 3.19
(4) 0.47 390 – 0.61 1776 0.28 3.46

We also removed influential data points (outliers) based on Cook’s distance[8]
before our experiment. Eventually, 200 projects were remained in total.

2.3 Performance Measures

Performance measures for effort estimation models are based on the difference
between estimate and actual effort [12,11]. We adopted the following definitions:

MRE =
‖Act− Est‖

Act
, MAE = ‖Act− Est‖, and ABRE =

‖Act− Est‖
min(Est,Act)

.

The performance measures we used are: MMRE, PRED(25), MMAE, and
MABRE. MMRE and MMAE are arithmetic means of MREs and MAEs, re-
spectively. PRED(25) is a percentage of estimates with MREs being smaller
than 0.25. MABRE is an arithmetic mean of absolute value of ABREs. Some
effort estimation models we evaluated may estimate an negative effort. We thus
used absolute value so as to avoid spuriously good results.

2.4 Experiment Procedure

In this study, we first evaluated in-sample error[4] with adjusted R2 and AIC as
same as [2,3]. Predictors were selected by stepwise regression. Next, we evalu-
ated extra-sample error[4] with cross-validation (CV) and the performance mea-
sures. Extra-sample error is based on predictive performance for future or unseen
projects. We adopted 10×10-fold CV followed with t-test as evaluation procedure
in order to avoid inflated Type I error[1].

3 Results

Table 2 shows results of the experiments. In contrast to [2,3], all BFCs were
remained in almost all models and FP-based and BFCs-based modelings showed
comparable performance regarding R2, AIC. It was also found that using log-
transformation was effective for improving performance measures. According to
p values of statistical comparisons for performance measures, the improvement
with log-transformation was significantly effective in most performance measures
with significance level at α = 0.01.

A Study on Predictive Performance 353

0 100 300 500

−
1
.0

0
.5

2
.0

EI

s
(E

I,
4
.1

2
)

0 50 150 250

−
1
.0

0
.5

2
.0

EO

s
(E

O
,3

.1
3
)

0 100 200 300 400

−
1
.0

0
.5

2
.0

EQ

s
(E

Q
,1

.1
2
)

0 50 150 250

−
1
.0

0
.5

2
.0

ILF

s
(I

L
F
,2

.1
7
)

0 20 60 100 140

−
1
.0

0
.5

2
.0

EIF

s
(E

IF
,1

)

Fig. 1. Relationships between effort and BFCs by GAM

The performance measures indicates comparable performance of BFCs-based
models to FP-based models. In fact, statistical tests revealed that BFCs-based
modelswere significantly lesser or insignificantly different than theFP-basedmodel
with log-transformation. These results are contrasting to [2,3].

4 Discussion

Our experiment revealed that all BFCs had contributions to effort in the BFCs-
based models. The experiment also revealed that the BFCs-based models were
significantly inferior to the FP-based model with log-transformation.

While we confirmed log-transformation improves performance, it is still un-
clear what trasformations on each BFCs are effective. We thus examined effective
transformations by using Generalized Additive Models (GAM). GAM is used to
identify and characterize nonlinear regression effects[4].

Figure 1 shows relationships between effort and BFCs. X-axis represents BFC
values and Y-axis represents standardized values of an estimated function for
corresponding BFC values. From this figure, we developed the following model:

log (Effort) = β0 + β1 log (1 + EI) + β2EO+ β3 log (1 + EQ)

+β4 log (1 + ILF) + β5EIF. (5)

Table 3 shows results of the same experiment on Model (5). All BFCs were also
statistically significant in contrast to [2,3]. All figures became closer to those
of the best FP-based model in Table 2. In fact, the results of statistical test
show no significant difference between Model (5) and Model (4) while Model (5)
became statistically better than Model (3). Thus, we concluded that selected
transformations were more effective than log-transformation for all BFCs.

We also examined the numbers that Model (5) was better than Model (3) in
100 folds of 10×10 CV regarding performance measures. The numbers suggests
that Model (5) was slightly better than Model (4) in all performance measures.
This suggests that BFCs-based model might become superior when dataset is
collected from a more specific domain or an organization as well as [2,3].

354 S. Amasaki and T. Yokogawa

Table 3. The performance results for improved BFCs-based modeling

Model adj.R2 AIC Dropped MMRE MMAE PRED(25) MABRE

(5) 0.50 377 – 0.56 1664 0.34 3.14

5 Conclusion

This study revealed that all BFCs had significant contribution on effort and
a BFCs-based model could become comparable to the conventional FP-based
model with suitable transformations for BFCs. We also demonstrated that the
improved BFCs-based model may have superior performance though there was
no statistical significance. Further study on a specific domain is needed.

References

1. Bouckaert, R.R.: Choosing between two learning algorithms based on calibrated
tests. In: Proc. of ICML 2003, pp. 51–58 (2003)

2. Buglione, L., Gencel, C.: The significance of ifpug base functionality types in effort
estimation: An empirical study. In: Proc. of ISMA5 2010 (2010)

3. Ferrucci, F., Gravino, C., Buglione, L.: Estimating web application development
effort using cosmic: Impact of the base functional component types. In: Proc. of
Smef 2010 (2010)

4. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical learning: Data
Mining, Inference, and Prediction. Springer (2009)

5. International Software Benchmarking Standards Group (ISBSG): ISBSG estimat-
ing, benchmarking and research suite release 11 (2004)

6. ISO: ISO/IEC 20926: Software Engineering – IFPUG 4.1 Unadjusted functional
size measurement method – Counting practices manual. ISO (2003)

7. Jørgensen, M., Shepperd, M.: A systematic review of software development cost
estimation studies. IEEE Trans. Softw. Eng. 33(1), 33–53 (2007)

8. Maxwell, K.D.: Applied Statistics for Software Managers. Prentice Hall, Inc. (2002)
9. McConell, S.: Software Estimation: Demystifying the Black Art. Microsoft Press

(2006)
10. Mendes, E., Lokan, C.: Replicating studies on cross- vs single-company effort mod-

els using the isbsg database. Empirical Software Engineering 13(1), 3–37 (2008)
11. Miyazaki, Y., Takanou, A., Nozaki, H., Nakagawa, N., Okada, K.: Method to es-

timate parameter values in software prediction models. Information and Software
Technology 33(3), 239–243 (1991)

12. Port, D., Korte, M.: Comparative studies of the model evaluation criterions MMRE
and PRED in software cost estimation research. In: Proc. of ESEM 2008 (2008)

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 355–360, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Managing Process Model Compliance in Multi-standard
Scenarios Using a Tool-Supported Approach

Martin Kowalczyk and Silke Steinbach

Fraunhofer IESE Kaiserslautern, Germany
{martin.kowalczyk,silke.steinbach}@iese.fraunhofer.de

Abstract. The increasing number of standards and requirements makes
compliance management in software organizations complex, time-consuming, and
costly. This paper describes a tool-based approach for systematic compliance
management and initial evaluation results for the suggested approach.

Keywords: Software Process Management, Process Model Maintenance,
Compliance Management.

1 Introduction

Nowadays organizations must increasingly deal with multi-standard scenarios in
which their software processes have to comply with a multitude of requirements from
different international and national standards. These include general software devel-
opment standards (e.g., ISO/IEC 12207 or ISO/IEC 15504) and standards dealing
with more specific topics (e.g., IEC 61508 or ISO 26262 for functional safety). In
mature safety- and security-critical domains, organizations typically have to comply
with several such standards. Process guides, which document an organization’s
process models, must fulfill requirements that are demanded by external standards.

We focus on the creation and maintenance of compliance between process guides
and standards in multi-standard scenarios. This is a major challenge and is becoming
increasingly cost-intensive due to the growing number of standards [1]. This situation
is aggravated by the fact that usually only experienced process engineers in an organi-
zation are assigned the task of compliance management, as they know the most about
processes. This creates a bottle-neck with respect to resource availability and finally
leads to situations in which compliance management is neglected. If compliance man-
agement is not performed systematically, compliance erosion is likely to happen. This
means that over the course of time, the compliance of an organization’s process mod-
el will decrease, which is often observed in industrial practice [2]. There are two main
reasons that lead to compliance erosion:

• External standard(s) change, e.g., due to an update of the respective standard(s),
but these changes are not reflected within the organization’s process guide(s).

• The organization makes changes to its process model(s) or guide(s), but these
changes are not in line with several requirements from all the standards the organi-
zation has to comply with.

356 M. Kowalczyk and S. Steinbach

This paper suggests a systematic, tool-based approach for compliance management in
multi-standard scenarios that aims at improving the efficiency and effectiveness of
compliance management. An additional goal is to reduce the involvement of expe-
rienced process experts by making it possible to assign routine compliance manage-
ment tasks to less experienced process engineers.

In the following, Section 2 presents related work. Section 3 gives an overview of
the approach. Section 4 presents the evaluation approach and initial results. Finally,
Section 5 provides a summary and an outlook on future work.

2 Related Work

The challenge of working with multiple standards or process models has been re-
ported by several authors (e.g., [1, 2]). The current approach for managing multi-
standard scenarios is to reduce complexity by harmonizing related standards into
consistent lists of requirements by comparing the respective standards and consolidat-
ing their requirements by removing redundancies. This approach is particularly bene-
ficial when the targeted standards are quite similar. In such cases, large overlapping
leads to a reduction of redundancies. In situations that are characterized by heteroge-
neous standards, a pure harmonization strategy will only have limited benefits.
Typically, organizations need to consider standards from different domains, which
consequently only have a limited number of redundancies. In these cases, the reduc-
tion of complexity that can be achieved through harmonization is limited.

The approach described in this paper is based on the work presented in [3] for trac-
ing process model evolution and focuses on working with multiple standards. It can
complement harmonization by using harmonized sets of requirements as one type of
input for compliance management.

3 Compliance Management Approach

The overall compliance management approach consists of two phases, a specification
phase and a maintenance phase. In the specification phase, compliance relations are
defined and compliance is initially evaluated using the provided tool support (PET).
This tool support focuses on scenarios that use word-based process descriptions,
which are still very common in industrial practice. In the maintenance phase, com-
pliance can be managed systematically for three maintenance scenarios by using this
tool support (PET). The addressed scenarios encompass (S1) standard change, (S2)
ad-hoc process guide change, and (S3) planned process guide change.

3.1 Specification Phase

In order to obtain trustable results, the specification phase must be performed or su-
pervised by a process expert. During this phase, three activities can be distinguished:

 Managing Process Model Compliance in Multi-standard Scenarios 357

1. Define requirements set: The process engineer defines the relevant set of stan-
dards that he would like to address. From these standards he needs to elicit the re-
spective requirements and document them in requirements lists.

2. Specify compliance relations: The process engineer performs a section-wise
analysis of the organization’s process guide with respect to his defined sets of re-
quirements and specifies compliance relations. Each relation specifies the related
standard, requirement id, influence (positive, negative, neutral), and whether the
relation is sufficient or supporting with respect to compliance. These requirements
relations are documented in a table using the XML format, which can also be read
by a standard word processing program. Our tool support provides a template for
these tables that can be easily added to a word-based process guide.

3. Perform initial analysis: The requirements lists and the process guide document
with the specified compliance relations are imported into the tool and an initial
compliance analysis is performed. The tool evaluates all relationships and provides
tabular and graphical compliance analysis results. In particular, the results of the
initial analysis contain a list of candidates that need further manual compliance re-
evaluation. The tool supports the process engineer during these re-evaluations.

The finalization of the initial analysis updates the overall set of compliance relations
and closes the specification phase. Subsequently, the tool can be used for compliance
management and tasks can be handed over to less experienced engineers.

3.2 Maintenance Phase

The maintenance phase addresses the three maintenance scenarios (S1) standard
change, (S2) ad-hoc process guide change, and (S3) planned process guide change.
For each of these scenarios, the following activities need to be performed:

1. Identify changes: In all three scenarios, changes occur that need to be identified.
In (S1), the updated standard needs to be analyzed with respect to changes in re-
quirements. In (S2) and (S3), the relevant sections of the process guide in which
changes have been performed (S2) or will be performed (S3) need to be identified.

2. Analyze change impact: Tool support is used to identify the impact of the
changes. Using the tool in (S1) provides those process guide sections that are im-
pacted by requirements changes. Subsequently, the previously defined list of re-
quirements can be updated to reflect changed, added, or removed requirements.
Using the tool in (S2) and (S3) helps to identify the requirements that are in the
scope of a process guide change. In (S2), the change has already been performed
and the tool provides the possibility to identify the impact of such changes. In (S3),
this impact analysis is performed upfront and can therefore be part of the rationale
for process changes.

3. Update compliance relations: Compliance relations that are impacted by a change
of a standard (S1) or a process guide (S2) need to be updated. Additionally, cases
in which new relations need to be specified can be identified easily by using the
analysis capabilities of the tool, as it provides a checklist of missing relations.

358 M. Kowalczyk and S. Steinbach

These three maintenance phase activities allow managing standard compliance syste-
matically. If a new standard or process guide is to be included in the existing set, the
overall process starts again with the specification phase.

4 Evaluation

4.1 Evaluation Approach

The purpose of the evaluation was to find out if the suggested tool-based approach
provides the expected benefits with respect to efficiency, effectiveness, and suitability
for novices. The object of the evaluation was the tool support (PET) for compliance
management in scenarios that deal with changes (compare S1-S3).

The experimental design focused on three hypotheses:

H1 (efficiency): The identification of changes is more efficient when using PET than
paper-based identification of changes. Efficiency is measured by how much time is
needed to identify changes.

H2 (effectiveness): The identification of changes is more effective when using PET
than paper-based identification. This means that if PET is used, more corresponding
sections will be found. Effectiveness is measured by checking the completeness and
correctness of the task results compared to a sample solution.

H3 (suitability for novices): PET is also suitable for novices, not only for experts
who are very familiar with specific standards and norms, because it is easy to use and
provides correct results. Suitability for novices is evaluated by means of the effects
concerning efficiency and effectiveness. Additionally, the ease of use of PET was
evaluated based on the Technology Acceptance Model (TAM) [4].

The design consisted of a comparing paper-based and tool-based task performance,
followed by a questionnaire and a semi-structured interview. The current sample con-
sisted of two experts (senior process engineers) and two novices (computer science
students). We plan to replicate this evaluation.

4.2 Evaluation Procedure

The evaluation was conducted at our institute and the subjects worked on their as-
signments during the same time. At the beginning, all subjects were informed about
the evaluation procedure and received the materials (one standard for functional safe-
ty and one document referring to that standard). After a reading period (approx. two
hours), the subjects were given twelve tasks (six paper-based and six tool-based). The
assigned tasks varied in the level of difficulty in order to differentiate the complexity
of the changes (Task level A: Only one change in one section; Task level B: Several
changes in one section; Task level C: Several changes in several sections) The sub-
jects had to identify all relevant sections of the referring document possibly requiring
correction in order to maintain conformance between both documents. First they had
to perform the paper-based tasks, then the tool-based tasks.

 Managing Process Model Compliance in Multi-standard Scenarios 359

4.3 Evaluation Results

H1 (efficiency): Comparison of the task durations for each task level shows a clear
difference between the paper-based and the tool-based tasks (see Fig. 1). Particularly
evident is the difference on task level C. On average, experts and novices needed 12.9
minutes to find all matching sections. Using PET helped to reduce task performance
time for all tasks to less than 1.5 minutes.

Fig. 1. Comparison of task durations: Total averages (left) vs. expert-level averages (right)

H2 (effectiveness): Neither the experts nor the novices found all matches in the pa-
per-based task fulfillment (see Fig. 2, left). The higher the task level, the lower the
matching rate. The experts found only 50% of all correct matches on the A and B
levels, while the novices found no correct matches on the C level. Using the PET tool
helped to nearly achieve 100% completeness and correctness on the A and B levels
(except for the novices achieving only 83.3% on the A level). Both, experts and no-
vices achieved 75% correctness and completeness on the C level (see Fig. 2, right).

Fig. 2. Identified changes: Paper-based (left) vs. tool-based (right)

H3 (suitability for novices): As already shown, the results of the experts and the
novices achieved higher correctness and completeness when using PET. Both experts
and novices benefitted from time savings (see Fig. 1). The novices saved even more
time as it took them longer to identify changes without tool support (see Fig. 1, right).

The analysis of the TAM questionnaire shows very good results in all four dimen-
sions (ease of use: 4.25, perceived usefulness: 5, attitude towards using: 4.75, and
intention to use: 3.75).

A-PB; 6,2

B-PB; 7,8

C-PB; 12,9

A-TB; 1,4 B-TB; 1,0 C-TB; 1,1

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

Avg. Time

M
in

ut
es

Average Task Duration (PB vs. TB) A-PB A-TB

Expert 4,7 1,0

Novice 7,7 1,8

B-PB B-TB

Expert 5,5 1,0

Novice 10,0 1,0

C-PB C-TB

Expert 6,8 1,0

Novice 19,0 1,3

0% 20% 40% 60% 80% 100%

A-PB-Expert

A-PB-Novice

B-PB-Expert

B-PB-Novice

C-PB-Expert

C-PB-Novice

%-Fully

%-Partially

%-None

0% 20% 40% 60% 80% 100%

A-TB-Expert

A-TB-Novice

B-TB-Expert

B-TB-Novice

C-TB-Expert

C-TB-Novice

%-Fully

%-Partially

%-None

360 M. Kowalczyk and S. Steinbach

As part of the qualitative feedback, the experts and novices rated the overall per-
formance of PET as “very good” (3x) and “good” (1x). In their opinion, PET supports
the identification of changes very well. The actual change to maintain compliance still
has to be done by an expert. Nevertheless, the experts expect a total efficiency gain of
20-30% on the complete maintenance activity. All subjects trusted the results because
the upfront modeling of relations had been done by a domain expert.

5 Summary and Outlook

This paper presented a tool-supported approach for systematic management of
process model compliance in multi-standard scenarios. This approach is part of ongo-
ing research work and the results of an initial empirical evaluation have been pre-
sented. These preliminary results show that the tool supports experts and even novices
in identifying changes in reference documents very efficiently and very effectively.
Based on our results from the current development and evaluation, further research
work and developments are planned.

Acknowledgment. This work was supported by the German Federal Ministry of Edu-
cation and Research (BMBF) (grant number 01IS09049B).

References

1. Baldassarre, M.T., Caivano, D., Pino, F.J., Piattini, M., Visaggio, G.: Harmonization of
ISO/IEC 9001:2000 and CMMI-DEV: from a theoretical comparison to a real case applica-
tion. Software Quality Journal (July 2011)

2. Siviy, J., Kirwan, P., Marino, L., Morley, J.: The value of harmonization multiple improve-
ment technologies: A process improvement professional’s view. Software Engineering In-
stitute Carnegie Mellon (2008)

3. Armbrust, O., Ocampo, A., Soto, M.: Tracing Process Model Evolution: A Semi-Formal
Process Modeling Approach. In: Proc. ECMDA Traceability Workshop (November 2005)

4. Venkatesh, V., Davis, F.D.: A theoretical extension of the technology acceptance model:
Four longitudinal field studies. Management Science 46(2) (2000)

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 361–365, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Towards a Framework to Evaluate and Improve
the Quality of Implementation of CMMI® Practices*

Isabel Lopes Margarido1,**, João Pascoal Faria1,
Raul Moreira Vidal1, and Marco Vieira2

1 Faculty of Engineering, University of Porto, Portugal
{isabel.margarido,jpf,rmvidal}@fe.up.pt

2 Faculty of Sciences and Technology, University of Coimbra, Portugal
mvieira@dei.uc.pt

Abstract. CMMI practices can be poorly implemented leading to weak per-
formance gain. SCAMPI verifies model compliance but not performance.
Hence, a framework to evaluate the quality of implementation of each practice,
based on compliance and performance results, will prevent poor implementa-
tion, locate and fix problems, and ultimately achieve better results. In this paper
we propose such a framework, based on a combination of leading and lagging
indicators measuring compliance, efficiency and efficacy.

Keywords: Capability Maturity Model Integration, Measurement, Performance
Indicators, Quality of Implementation, Software Process Improvement.

1 Introdution

Capability Maturity Model Integration® (CMMI®) is a process improvement model of
products and services, composed of 5 maturity levels (ML) achieved via implementa-
tion of the specific and generic goals of that ML and all the preceding ones. To satisfy
a goal the generic and specific practices or acceptable alternatives to them need to be
fulfilled [1]. Organisations that implement CMMI typically improve their perform-
ance in terms of predictability, productivity and product quality. Consequently, proc-
esses become more predictable and customer satisfaction increases [2]. However, not
all organisations have the same performance results; this depends not only on the
business context, projects and team but also on the methodologies used in implemen-
tation of the model. In a study presented in [3], organisations using the Team Soft-
ware ProcessSM (TSPSM) achieved better product quality performance than the average
of organisations appraised as CMM® (Capability Maturity Model®) level 5. There is
more variance in performance results when using CMMI, as it is a generic model
telling what to do but not how to do it. When using a prescriptive process like TSP,
results are more predictable.

 * Work partially funded by Fundação para a Ciência e a Tecnologia (FCT): Programa

Operacional Potencial Humano (POPH) of QREN, and Fundo Social Europeu (FSE).
 ** Corresponding author.

362 I. Lopes Margarido et al.

CMMI Version 1.3 emphasises improvements in organisations performance [1],
i.e., it clarifies that organisations need to focus processes on business goals and im-
plement performance improvements to achieve goals that are continuously evolving.
The Standard CMMI Appraisal Method for Process ImprovementSM (SCAMPISM)
appraises compliance of organisation processes, activities and outcomes with CMMI,
however evaluating performance lies outwith its scope.

CMMI compliance is not a guarantee of good performance per se, i.e., there is high
variance in performance results within a maturity level [4, 5]. There are several causes
for this problem, in particular: 1) Practices are not used organisation wide [7]; 2)
Poor, or highly varied, implementation of practices leading to multiple solutions
results in a lack of clear impact on performance or project improvement [5]; 3)
Baselines quickly erode after achieving a certain maturity level [7]; 4) Measurement
problems, such as metrics uncorrelated and meaningless to upper management, being
useless [9]; measures that are unrelated to customer and business objectives [6];
process performance baselines that are not applicable to all projects [7]. In conclu-
sion, as Peterson stated, the big issue is CMMI implementation [5]. To help prevent
these problems we propose a framework that provides a catalogue of performance
metrics, mapped with CMMI practices and potential organisation goals, used to
monitor CMMI implementation across the organisation and through time, to evaluate
quality of implementation of CMMI practices and measure effects of process im-
provements. The framework is inspired by TSP, which is focused on performance
results and defines quantitative criteria for process and product quality [8].

2 Framework Proposal

We present the proposed framework in the upper left corner of Fig.1, including its
components and how organisations can apply it in practice. The framework is com-
posed of a metamodel, shaping a repository of performance indicators, to evaluate
the quality of implementation of CMMI practices, possibly dependent on the methods
used to implement those practices. The performance indicators will be tailorable,
defined as mandatory or optional, and will be mapped with profiles according to ma-
turity level and methods of the organisation. Additionally, the framework includes
procedures for setup (tailoring), use in practice and supporting choice of indicators.
The framework is developed in two stages: the first is presented in this paper, defining
structure, concepts and metamodel; the second is building a repository, calibrated
with historical data, which will be object of our future research work.

In general, we propose to characterise the quality of implementation of a CMMI
practice by a combination of efficiency and efficacy of implementation, on one hand,
and compliance of implementation on the other (i.e., alignment with CMMI recom-
mendations or with what is prescribed by the concrete implementation method used),
all measured by appropriate performance indicators (PI), possibly dependent on the
practice and implementation method used. By considering these three quality charac-
teristics, we are looking both at how the work is done and what its performance results
are. For instance, assume we want to evaluate the quality of implementation of specific
practice “SP2.2 Conduct Peer Reviews” of the Verification process area. Assume that

 Towards a Framework to Ev

Fig. 1. Framework structure an

reviewing follows two TSP
review at a moderate pace. H
of defects detected), efficien
compliance by checklist usa
list, and checklist derived f
hour), compared with some

A rich set of PI usually c
lagging indicators. In the
indicator, as the remaining
cators are often leading in
control the values of laggi
considered a leading indic
defects found in a review is
is clearly a process perfor
tion of methods and CMM
tors evaluation. For that, P
their numerical value is c
els, used to determine the P
cording with the organisatio
define its normal behaviour

There are three dimensi
source. Aggregation in tim
riod, given the methods an
can be a PI, a method or a
monitor one or more PI. A
given by the analysis of th
tional and semaphore is m
the aggregation of the eva

valuate and Improve Qual. of Impl. of CMMI® Practices

nd metamodel: org-organisation, dep-department, proj-project

P guidelines: use checklists derived from historical data,
Here, one can measure efficacy by review yield (percent
ncy by defect detection rate (defects detected per hour),
age (a qualitative PI with values, not used, had-hoc che
from historical data) and review rate (size reviewed
recommended values.

combines process and product indicators, and leading
given example, review yield is a lagging performa

g defects can only be known a posteriori. Compliance in
ndicators; they influence and can be used to predict
ing indicators. In the example, review rate is commo
ator of the review yield in TSP literature. The density

s a product performance indicator, whilst the review r
rmance indicator. To evaluate the quality of implemen

MI practices, organisation data is analysed through indi
PI are collected (normally in projects), at a given time,
ompared with a threshold. Thresholds have different l
PI semaphore colour (red, yellow, green), established
on quantitative business goals and processes baselines,
r regarding a PI.
ions of aggregation of evaluation results: time, target

me is done by analysing organisation data in a selected
nd thresholds at that moment. The target of the evaluat
a CMMI practice. For each method it may be necessary
method is evaluated through a semaphore, whose colou

he PI semaphores. For that reason numerical value is
mandatory. Since we map methods with CMMI practic
aluation of each method used (mandatory, alternative

363

t [7]

and
tage
and
eck-
per

and
nce
ndi-
and

only
y of
rate
nta-
ica-
and
lev-
ac-
and

and
pe-

tion
y to
ur is
op-
ces,
e or

364 I. Lopes Margarido et al.

optional) gives the semaphore colour of the practices. The source of the evaluation
can be: a project, evaluated by aggregating PI evaluation; a department, evaluated
by aggregating its projects’ evaluation; or the entire organisation, evaluated by
aggregating its departments’ evaluation. Aggregation at organisation level indicates
the degree of institutionalisation of the practices necessary to achieve generic goals
and high maturity, and consequently allow their evaluation. A project, department or
organisation can also use target aggregation to evaluate a method or a CMMI
goal/practice. The evaluation by aggregation of colours is done as follows: green – all
green; yellow – at least one yellow and no reds; red – at least one red. We are aware
that results aggregation can be more complex.

To find the adequate PI to populate the framework repository, we will undertake bib-
liographical research and analyse industry data. The value of a PI (e.g. effort estimation
error) is influenced by two parcels: one is related to process (e.g. estimate effort) defini-
tion and execution, comprised of controllable factors (e.g. size, historical data); the
other is comprised of non-controllable factors, related to project execution and other
environment, complexity and context variables (e.g. change requests, complexity). Con-
trollable factors (leading indicators) can be used to improve PI in advance. By experi-
ment we will analyse organisations data to determine the percentage of each one of
these parcels, to know the percentage of the PI value which may be influenced in ad-
vance. We will also analyse effects of individual controllable factors, determine recom-
mended values for each one of them and consequently guarantee that implementation of
CMMI practices leads to better performance. This step of the research is under devel-
opment. For calibration we will use different organisations projects data and, when
completed, the framework will be tested in an organisation.

3 Related Work

There are several frameworks to evaluate success factors in metrics programs [9] and
in Software Process Improvements (SPI) [10]. The analysed success factors are re-
lated to the way SPI is done, and not to improving processes outputs. There are ob-
ject-oriented models [11] and metamodels that can be used to develop measurement
repositories [12, 13], which can also be aligned with CMMI [11, 14-16] and shape
processes [15, 16]. Similar metamodels can be useful to unambiguously define PI.
[13] describes a framework to measure processes based on their structure and rela-
tions. In our research, when measuring a practice we are focused not only on compli-
ance but also on its efficacy and efficiency. In addition, there are tools to collect and
align SCAMPI evidences. [17] proposed a method introducing quality metrics to
evaluate SCAMPI, but does not evaluate how CMMI practices are implemented or
organisation performance. [18] designed an evidence repository to assess projects
activities by number of executions. Nonetheless, it is possible that an evidence is gen-
erated but empty, showing that the activity was not performed.

In the case of our framework, the primary evaluation criterion is not the way proc-
ess improvement implementation is done, but the value, i.e. the outcome for the
organisation, of the goal/practice itself. For that we need to understand what the ad-
vantage of using it is and whether the organisation benefits from it or not.

 Towards a Framework to Evaluate and Improve Qual. of Impl. of CMMI® Practices 365

4 Conclusion

The proposed framework shall support organisations to: 1) implement CMMI by pro-
viding a pool of methods, aligned with practices, and performance indicators to
monitor them; 2) choose methods for their adequacy and performance in context; 3)
evaluate quality of implementation of CMMI practices early; 4) monitor process per-
formance to act before problems occur; 5) anticipate impact of process changes on
performance indicators; 6) understand, more accurately, causes of problems; 7) priori-
tise performance improvements. SEI will be able to assess performance improvements
from one appraisal to the next. Aggregation is particularly relevant to evaluate Gener-
ic Goals and High Maturity Levels and performance indicators are useful to evaluate
quality of implementation.

References

1. Chrissis, M.B., Konrad, M., Shrum, S.: CMMI for Development: Guidelines for Process
Integration and Product Improvement. Addison-Wesley, Massachusetts (2011)

2. Goldenson, D.R., Gibson, D.L., Ferguson, R.W.: Why Make the Switch? Evidence about
the Benefits of CMMI. In: SEPG 2004. CMU/SEI (2004)

3. Davis, N., Mullaney, J.: The Team Software ProcessSM (TSPSM) in Practice: A Summary
of Recent Results. Technical Report, CMU/SEI, 105 (2003)

4. Radice, R.: Statistical Process Control in Level 4 and Level 5 Software Organizations
Worldwide. In: Software Technology Conference. CMU/SEI (2000)

5. CMU/SEI: Accelerated Improvement Method (AIM). Technical Report, CMU/SEI (2010)
6. Leeson, P.: Why the CMMI® does not work. In: SEPG Europe. CMU/SEI, Prague (2009)
7. Lopes Margarido, I., Faria, J.P., Vieira, M., Moreira Vidal, R.: CMMI Practices: Evaluat-

ing the Quality of the Implementation. In: SEPG Europe. CMU/SEI, Dublin (2011)
8. Humphrey, W.S.: Introduction to the Team Software ProcessSM. Addison Wesley (2010)
9. Jeffery, R., Berry, M.: A framework for evaluation and prediction of metrics program suc-

cess. In: Software Metrics Symposium (1993)
10. Niazi, M., Wilson, D., Zowghi, D.: A maturity model for the implementation of software

process improvement: an empirical study. J. Syst. Softw. 74(2), 155–172 (2005)
11. Palza, E., Fuhrman, C., Abran, A.: Establishing a generic and multidimensional measure-

ment repository in CMMI context. In: SW Engineering Workshop (2003)
12. Goulão, M.: Component-Based Software Engineering: a Quantitative Approach. Ph.D.

Thesis. Departamento de Informática, FCT/UNL (2008)
13. García, F., Ruiz, F., Cruz, J.A., Piattini, M.: Integrated Measurement for the Evaluation

and Improvement of Software Processes. In: Oquendo, F., et al. (eds.) EWSPT 2003.
LNCS, vol. 2786, pp. 94–111. Springer, Heidelberg (2003)

14. Colombo, A., et al.: The Use of a Meta-Model to Support Multi-Project Process Measure-
ment. In: 15th Asia-Pacific Software Engineering Conference, APSEC (2008)

15. Hsueh, N.-L., et al.: Applying UML and software simulation for process definition, verifi-
cation, and validation. Inf. Softw. Technol. 50(9-10), 897–911 (2008)

16. Mishra, S., Schlingloff, B.H.: Compliance of CMMI Process Area with Specification
Based Development. In: SERA. SERA (2008)

17. Pricope, S., Lichter, H.: Towards a Systematic Metric Based Approach to Evaluate
SCAMPI Appraisals. In: Bomarius, F., Oivo, M., Jaring, P., Abrahamsson, P. (eds.)
PROFES 2009. LNBIP, vol. 32, pp. 261–274. Springer, Heidelberg (2009)

18. Sunetnanta, T., Nobprapai, N.-O., Gotel, O.: Quantitative CMMI Assessment for Offshoring
through the Analysis of Project Management Repositories. In: Gotel, O., Joseph, M., Meyer,
B. (eds.) SEAFOOD 2009. LNBIP, vol. 35, pp. 32–44. Springer, Heidelberg (2009)

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 366–367, 2012.
© Springer-Verlag Berlin Heidelberg 2012

INTEAMSE 2012
1st Workshop on Managing the Influence of People

and Team Factors in SE

Silvia Teresita Acuña Castillo, Marta Gómez, and Kostadin Koroutchev

1 Description and Goals

Software engineering (SE) studies software development principles, processes,
methods and tools. SE is based not on well-grounded scientific principles but on a
compendium of disciplines that are refined and evolved through application into a
body of knowledge. Nowadays, key software development issues are primarily
concerned not with techniques but with sociological aspects and human nature. More
importantly, people play a major role as sources of information, activity performers
and product users.

Human aspects have been studied in different fields of SE. Analysed topics tend to
overlap (e.g., quite a lot of research has addressed the expert/novice or
introverted/extroverted dichotomy or teams in agile/heavy processes). However,
results have not been disseminated outside their respective area.

Understanding what influence human and social issues have on the performance of
a set of activities related to software development can improve the quality of the
software process and product. It can also be beneficial for the team of professionals
building the software, increasing their satisfaction with teamwork. Learning more
about these issues can be helpful for selecting people to form work teams. This will
improve the formation and maintenance of more effective teams.

This workshop specifically calls for the discussion of human and social aspects that
have an impact on software development. Our position is that human factors are a
single research field applicable across the board. The overall goal of the workshop is
for people from one field to learn about methods and results from others, leading to
productive feedback.

2 List of Topics

Submissions should examine the influence of the following factors on the
development process (regarding development, management or support processes):

1. Personality factors (extroversion, conscientiousness, neuroticism...)
2. Soft skills (teamwork, cooperation, negotiation, team leadership competencies...)
3. Group processes (conflict, communication, cohesion, work climate...)
4. Cultural factors (beliefs, values, preferences...)
5. Social issues (rules, organisational stress level, reward structure…)
6. Technical issues (experience, training, organizational competencies...)

 INTEAMSE 2012 367

3 Targeted Outcome and Targeted Audience

The primary goal of this workshop is to set up a forum to debate the influence of
human and social factors on software development. To date, human factors research
has been compartmentalized into separate communities concerned with different
development issues. We believe that this slows down progress in this field, as there is
no cross-pollination. We believe that effects could be consistent irrespective of
development issues. We propose to bring everyone together to exchange opinions and
improve research. Our aims are modest: set up a standing forum, an information
community.

Human and social issues can be studied from many viewpoints. Some communities
focus on issues of cooperation, communication or stakeholder participation levels
(e.g., traditional vs. agile processes). Although these issues are within the scope of
INTEAMSE, we are primarily concerned with the inherent characteristics of the
people, groups and cultures participating in software development, such as personality
types, conflicts or values, to name but three examples. We target aspects that are
unchanging across projects, team types, development processes or even organizations.
In other words, we are interested in the inherent characteristics of the people that
develop software in order to discover factors that influence and are able to improve
their activity.

4 Workshop Format

We plan for a half-day or day-long workshop. The workshop will be discussion-
oriented. It will start with a keynote, followed by paper presentations, and end with a
roundtable. All accepted papers will be published in paper and electronic proceedings
with an ISBN code.

5 Workshop Organizers

• Silvia T. Acuña Castillo. Escuela Politécnica Superior. Universidad Autónoma
de Madrid. E-mail: silvia.acunna@uam.es

• Marta Gomez Pérez. Escuela Politécnica Superior. Universidad San Pablo CEU
de Madrid. E-mail: mgomez.eps@ceu.es

• Kostadin Koroutchev. Escuela Politécnica Superior. Universidad Autónoma de
Madrid. E-mail: k.koroutchev@uam.es

6 Program Committee

• Emilia Mendes. College of Information Technology, Zayed University, UAE.
• Richard Torkar. Blekinge Institute of Technology, Sweden.
• Dietmar Pfahl. Faculty of Engineering, Lund University, Sweden.
• Marcela Fabiana Genero, Universidad de Castilla-La Mancha, Spain.
• Norsaremah Salleh. Department of Computer Science, International Islamic

University Malaysia.

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 368–369, 2012.
© Springer-Verlag Berlin Heidelberg 2012

VALOIR 2012
2nd Workshop on Managing the Client Value Creation

Process in Agile Projects: Message from the Chairs

Jennifer Pérez1, Luigi Buglione2, and Maya Daneva3

1 Technical University of Madrid-UPM, Spain
jenifer.perez@eui.upm.es

2 ETS / Engineering.IT SpA, Italy
luigi.buglione@eng.it

3 University of Twente, Netherlands
m.daneva@utwente.nl

Welcome to the 2nd Workshop on Managing the Client Value Creation Process in Agile
Projects (VALOIR) at the PROFES 2012 conference!

The overall goal of VALOIR is to make the knowledge on value creation and
management explicit, encouraging the discussion on the use of measurement and
estimation approaches in managing value in agile project.

Agile methodologists tacitly assume that for SE professionals it is self-evident to
figure out how exactly the application of the agile practices would create product and
business value on an ongoing basis throughout a project, but little has been done to
systematically aggregate the empirical evidence that can possibly confirm or
disconfirm the claims of how the different (commercially viable) agile approaches
create client’s value (both product and business value) and how some agile-unique
practices (as on-site site clients, story point counting, reprioritization) solve particular
value-creation challenges.

In particular, we’d like to stimulate an explicit discussion on uncovering the
mechanisms through which combinations of agile practices create client’s value in
agile projects in specific contexts. We consider both product and business value. We
promote the position that for the agile organizations to make a lasting impact on the
product and business value creation, the interplay between organizational context and
use of agile practices needs to be understood in sufficient depth so that the
organizations know the challenges specific to value creation through agile practices in
certain contexts and the remedies that are likely to confront these challenges.

This second VALOIR edition includes 6 papers that are accepted for presentations.
Papers cover a broad range of issues, including portfolio management using a
combination of QFD and functional size measurement (FSM) methods, agile quality
management, a tailored SCRUM for agile architectures, using systematic literature
review techniques for finding sources for value creation, analyzing the advantage in
using standards in agile projects, the value brought out from proper people and
knowledge management to agile (and non-agile) projects, each one describing a helpful
piece of an interesting puzzle, useful for stimulating a wide discussion during the
workshop.

 VALOIR 2012 369

In addition, our second edition of VALOIR features the keynote of Alan W. Brown
as an opening session of the workshop. Alan W. Brown is an IBM Distinguished
Engineer at IBM Rational Software, where his main responsibilities are to define
product direction and consult with product teams to help clients improve software
development efficiency and value.

Also, the workshop has organized a round table as a closing event. Our round table
was moderated by Prof. Dr. Juan Garbajosa from the Technical University of Madrid.
Juan Garbajosa is actively involved in agile research projects and in the agile
community. A major line of research among his main research topics are agile
methodologies and software product value.

We would like to thank all researchers and practitioners who helped us make this
workshop possible. In particular, we are indebted to all members of the Program
Committee for their valuable comments and suggestions to authors. We also thank the
workshop Program Chair at PROFES 2012 Burak Turhan, and the PROFES
conference organizers. Last but not least, we acknowledge the continual support of
Oscar Dieste whose prompt responses made a difference to the workshop planning and
publicity.

VALOIR 2012 Program Committee

Pekka Abrahamsson, Free University of Bolzano, Italy
Silvia Abrahao, Universitat Politècnica de València, Spain
Jutta Eckstein, IT Communications, Germany
Thomas Fehlmann, Euro Project Office, Switzerland
Juan Garbajosa, Technical University of Madrid, Spain
Cigdem Gencel, Free University of Bolzano, Italy
Smita Ghaisas, Tata Consulting Services, India
Andrea Herrmann, Infoman AG, Germany
Eric Knauss, University of Victoria, Canada
Michele Marchesi, FlossLab/University of Cagliari, Italy
Sandro Morasca, University of Insubria, Italy
Outi Salo, Nokia, Finnland
Darja Smite, Blekinge Institute of Technology, Sweden
Miroslaw Staron, University of Gotteborg, Sweden

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 370–373, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Tutorial: Business IT Alignment
Using the GQM+Strategies® Approach

Jens Heidrich and Martin Kowalczyk

Fraunhofer IESE, Fraunhofer Platz 1, 67663 Kaiserslautern, Germany
{jens.heidrich,martin.kowalczyk}@iese.fraunhofer.de

Keywords: Alignment of business strategies and goals, goal-oriented mea-
surement, quantitative management of business goals, decision-making.

1 Introduction

Most of today’s products and services are software-based. Organizations that develop
software want to maintain and improve their competitiveness by controlling software-
related risks. To do this, they need to align their business goals with software devel-
opment strategies and translate them into quantitative project management. There is
also an increasing need to justify cost and resources for software and system devel-
opment and other IT services by demonstrating their impact on an organization’s
higher-level goals. For both, linking business goals and software-related efforts in an
organization is necessary. However, this is a challenging task, and there is a lack of
methods addressing this gap.

The popular Goal Question Metric (GQM) approach has served the software indus-
try well for several decades in defining measurement programs. However, it does not
provide explicit support for motivating and integrating measurement at various levels
of the organization. On the other hand, approaches such as Balanced Scorecard ad-
dress mainly business-level goal-setting activities, and do not support the alignment
of objectives at different levels of the organization with an integrated methodology.
To fill this gap, we propose GQM+Strategies®: an integrated approach that is based on
GQM and adds the capability to create measurement programs that ensure alignment
between goals and strategies at different levels, from the highest strategic levels of the
business to the level of individual development projects. The approach is based on
rationales for deciding about options when operationalizing goals and for evaluating
the success of strategies with respect to goals.

2 GQM+Strategies® Modeling Concepts

Modelling strategic measurement systems that link and control organizational goals
and strategies across multiple organizational levels requires concepts for adequately
representing organizational goals and strategies as well as concepts that support the
definition of corresponding measurement models. The GQM+Strategies® conceptual
model (see Fig. 1) addresses both aspects.

 Tutorial: Business IT Alignment Using the GQM+Strategies® Approach 371

Goal+Strategies elements (see left side of Fig. 1) provide the capability to define
linked sequences of goals and associated strategies. Strategies describe a planned and
goal-oriented course of actions for achieving the defined goals at the respective orga-
nizational level. The conceptual model allows multiple goal levels and permits deriv-
ing multiple strategies for each of these goal levels. A goal may be realized by a set of
strategies, which may in turn lead to a set of goals. Additionally, Goal+Strategies ele-
ments provide the capability to capture the underlying rationales for the defined goals,
strategies, and their linkages using context factors and assumptions.

Fig. 1. GQM+Strategies® conceptual model

GQM+Strategies® provides support for defining measurement consistent with high-
level organizational goals and for interpreting and rolling up the resulting measure-
ment data at each level. For this purpose, the GQM approach is used, which consti-
tutes the main element within the GQM graphs representing the measurement part of
the conceptual GQM+Strategies® model (see right side of Fig. 1). A GQM graph con-
sists of a GQM goal (that measures a Goal+Strategies element), corresponding ques-
tions, metrics, and additional interpretation models. At each goal level, such a GQM
graph is modelled in order to measure the achievement of the defined goal in combi-
nation with the chosen strategy. Accordingly, the definition of a complete measure-
ment plan includes the definition of GQM measurement goals, the derivation of ques-
tions and metrics, as well as the definition of an interpretation model that determines
whether the measurement goal has been achieved.

3 Tutorial Contents and Organization

The tutorial will illustrate the GQM+Strategies® approach using practical examples
from industry, present related approaches, and provide practical exercises on how to
actually apply the method. The tutorial will focus on the following topics in detail:

 GQM Graph

GQM
Goal

Question

Question

Metric

Metric

Metric

made measurable through

Interpretation Model

GQM Graph

is part of

Goal+Strategies Element

Goal

Context/
Assumption

Strategy

realized
by a

set of

influences

influences

> made
measurable

through

< measures
achievement

of

Goal+Strategies Element

leads to
a set of

372 J. Heidrich and M. Kowalczyk

• Introduction

─ What is measurement?
─ Related Standards (ISO/IEC 15939, 15504)
─ Process KPIs (IEEE 1045)
─ Product KPIs (ISO/IEC 9126, 14598, 25000)

• Basics of goal-oriented measurement

─ Typical problems in setting up KPI systems
─ The GQM approach
─ Determining measurement goals
─ Deriving KPIs
─ Creating measurement plans

• KPI-based monitoring of goals and strategies

─ State of the practice
─ The GQM+Strategies® approach
─ Comprehensive example GQM+Strategies® model
─ Related Work: BSC, SixSigma, and COBIT

• Conclusion

─ Costs and benefits of KPI systems
─ Success factors

Participants will learn how to apply the basic approach as part of practical exercises.
This includes the following activities:

• Modeling and structuring of goals and corresponding strategies across different
levels of an organization.

• Mapping goals and strategies to concrete metrics and indicators.
• Integrating measurement programs into the organization.
• Assessing the efficiency of strategies with respect to achieving goals.

The tutorial is planned for one day. The ideal number of participants is between 10
and 20; to ensure good discussions, we see 30 as a maximum practical figure.

The tutorial will have three theoretical sessions and one practical exercise session,
where the participants will apply the presented approach on their specific business
strategies and goals and exchange experiences with all participants.

4 Target Group

This tutorial addresses managers in the area of software development and IT, project
managers, quality assurance managers, and controllers.

5 Presenters’ CV

Jens Heidrich is Division Manager for Processes Management at the Fraunhofer
Institute for Experimental Software Engineering (IESE) in Kaiserslautern, Germany.

 Tutorial: Business IT Alignment Using the GQM+Strategies® Approach 373

He received his PhD in computer science (Dr. rer. nat.) from the University of Kaiser-
slautern in 2008. He is one of the co-developers of the strategic software measure-
ment method GQM+Strategies®. He has been member of the program committee of
numerous software engineering conferences and workshops (such as PROFES and
Mensura/IWSM).

Martin Kowalczyk is researcher at the Department of Measurement, Prediction,
and Empiricism at the Fraunhofer Institute for Experimental Software Engineering
(IESE) in Kaiserslautern, Germany. He is member of the core development team of
the GQM+Strategies® method.

References

1. Trendowicz, A., Heidrich, J., Shintani, K.: Aligning Software Projects with Business Objec-
tives. In: Proceedings of IWSM/Mensura 2011, Nara, Japan, November 3-4 (2011)

2. Kaneko, T., Katahira, M., Miyamoto, Y., Kowalczyk, M.: Application of GQM+Strategies
in Japanese Space Industry. In: Proceedings of IWSM/Mensura 2011, Nara, Japan, Novem-
ber 3-4 (2011)

3. Kowalczyk, M., Münch, J., Katahira, M., Kaneko, T., Miyamoto, Y., Koishi, Y.: Aligning Soft-
ware-related Strategies in Multi-Organizational Settings. In: Proceedings of the International
Conference on Software Process and Product Measurement (IWSM/MetriKon/Mensura 2010),
Stuttgart, Germany, November 10-12 (2010)

4. Basili, V., Heidrich, J., Lindvall, M., Münch, J., Regardie, M., Rombach, D., Seaman, C.,
Trendowicz, A.: Linking Software Development and Business Strategy Through Measure-
ment. IEEE Computer, 57–65 (April 2010)

5. Basili, V., Heidrich, J., Lindvall, M., Münch, J., Seaman, C., Regardie, M., Trendowicz, A.:
Determining the impact of business strategies using principles from goal-oriented measure-
ment. In: Business Services: Konzepte, Technologien, Anwendungen. 9. Internationale Ta-
gung Wirtschaftsinformatik, Österreichische Computer Gesellschaft, Vienna, Austria (2009)

6. Basili, V., Heidrich, J., Lindvall, M., Münch, J., Regardie, M., Trendowicz, A.:
GQM + Strategies® – Aligning Business Strategies with Software Measurement. In: Proceed-
ings of the 1st International Symposium on Empirical Software Engineering and Measure-
ment (ESEM 2007), Madrid, Spain, September 20-21 (2007)

O. Dieste, A. Jedlitschka, and N. Juristo (Eds.): PROFES 2012, LNCS 7343, pp. 374–376, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Requirements Meet Interaction Design

Hermann Kaindl

Vienna University of Technology
Gußhausstr. 27-29, A-1040 Vienna, Austria

kaindl@ict.tuwien.ac.at

Abstract. Even if all the real needs are covered in the requirements and also
implemented, errors may be induced by human-computer interaction through a
bad interaction design and its resulting user interface. Such a system may even
not be used at all. Alternatively, a great user interface of a system with features
that are not required will not be very useful as well. So, the main topics of this
tutorial are requirements and interaction design, as well as their joint modeling
through discourse models and ontologies. Our discourse models are derived
from results of human communication theories, cognitive science and sociology
(even without employing speech or natural language). While these models were
originally devised for capturing interaction design, it turned out that they can be
also viewed as specifying classes of scenarios, i.e., use cases. In this sense, they
can also be utilized for specifying requirements. Ontologies are used to define
domain models and the domains of discourse for the interactions with software
systems. User interfaces for these software systems can be generated semi-
automatically from our discourse models, domain-of-discourse models and
specifications of the requirements. This is especially useful when user interfaces
for different devices are needed. So, requirements meet interaction design to
make applications both more useful and usable.

Keywords: Requirements, interaction design, (semi-)automatic generation of
user interfaces, automatic optimization for small devices, smartphones.

1 Tutorial Objectives

This tutorial has the primary objective to address a potential separation of require-
ments engineering and interaction design. In order to improve the development of
useful and usable software systems, an approach to precisely specify use cases in
terms of interaction design is presented. As a positive ‘side-effect’, supporting user
interfaces can be generated semi-automatically, even optimized ones for smartphones.

2 Key Learning Outcomes

In this tutorial, participants learn about modeling discourses using a new approach
inspired by human-human communication. They will know how such models can be
utilized for specifying classes of scenarios, i.e., use cases. They will also see that such
models can be the basis for semi-automatic generation of user interfaces.

 Requirements Meet Interaction Design 375

3 Outline of Topics

• Background
- Requirements
- Scenarios / Use Cases
- Interaction design
- Widgets for user interfaces
- Ontologies
- Speech acts

• Interaction design based on discourse modeling
- Communicative Acts
- Adjacency Pair
- Rhetorical Structure Theory (RST) relations
- Procedural constructs
- Conceptual Discourse Metamodel

• Use case specification
- Use case report (RUP)
- Use case diagram
- Sketch of flow of events through scenarios
- Specification based on discourse modeling

• Exercise
- Try to understand the model sketch of a discourse
- Try to model a discourse yourself

• Sketch of automated user-interface generation
- Process of user-interface generation
- Examples of generated user interfaces
- Unified Communication Platform

4 CV of the Presenter

Hermann Kaindl is the director of the Institute of Computer Technology and a
member of the senate at the Vienna University of Technology. He joined this institute
in early 2003 as a full professor. Prior to moving to academia, he was a senior
consultant with the division of program and systems engineering at Siemens AG
Austria. There he has gained more than 24 years of industrial experience in software
development and human-computer interaction. He has published 5 books and more
than 130 refereed papers in journals, books and conference proceedings. He is a
Senior Member of the IEEE and a Distinguished Scientist Member of the ACM, a
member of the INCOSE and the AAAI, and he is on the executive board of the
Austrian Society for Artificial Intelligence.

376 H. Kaindl

References

1. Bogdan, C., Falb, J., Kaindl, H., Kavaldjian, S., Popp, R., Horacek, H., Arnautovic, E.,
Szep, A.: Generating an Abstract User Interface from a Discourse Model Inspired by
Human Communication. In: Proceedings of the 41st Annual Hawaii International
Conference on System Sciences (HICSS-41). IEEE Computer Society Press, Big Island
(2007)

2. Bogdan, C., Kaindl, H., Falb, J., Popp, R.: Modeling of interaction design by end users
through discourse modeling. In: Proceedings of the 2008 ACM International Conference
on Intelligent User Interfaces (IUI 2008). ACM Press, Maspalomas (2008)

3. Falb, J., Kaindl, H., Horacek, H., Bogdan, C., Popp, R., Arnautovic, E.: A discourse model
for interaction design based on theories of human communication. In: CHI 2006 Extended
Abstracts on Human Factors in Computing Systems, pp. 754–759. ACM Press, New York
(2006)

4. Falb, J., Kavaldjian, S., Popp, R., Raneburger, D., Arnautovic, E., Kaindl, H.: Fully
Automatic User Interface Generation from Discourse Models. In: Proceedings of the 2009
ACM International Conference on Intelligent User Interfaces (IUI 2009). ACM Press,
Sanibel Island (2009) (Tool demo paper)

5. Falb, J., Popp, R., Röck, T., Jelinek, H., Arnautovic, E., Kaindl, H.: UI Prototyping for
Multiple Devices Through Specifying Interaction Design. In: Baranauskas, C., Abascal, J.,
Barbosa, S.D.J. (eds.) INTERACT 2007. LNCS, vol. 4662, pp. 136–149. Springer,
Heidelberg (2007)

6. Kaindl, H.: A Design Process Based on a Model Combining Scenarios with Goals and
Functions. IEEE Transactions on Systems, Man, and Cybernetics (SMC) Part A 30, 537–
551 (2000)

7. Kaindl, H.: Adoption of Requirements Engineering: Conditions for Success. In:
Proceedings of the Fifth IEEE International Symposium on Requirements Engineering (RE
2001), pp. 156–163. IEEE, Toronto (2001); Invited State-of the-Practice Talk

8. Kaindl, H.: A Scenario-Based Approach for Requirements Engineering: Experience in a
Telecommunication Software Development Project. Systems Engineering 8, 197–210
(2005)

9. Kaindl, H., Constantine, L., Pastor, O., Sutcliffe, A., Zowghi, D.: How to Combine
Requirements Engineering and Interaction Design? In: Proceedings of the 16th IEEE
International Requirements Engineering Conference (RE 2008), pp. 299–301 (2008)

10. Kaindl, H., Svetinovic, D.: On confusion between requirements and their representations.
In: Requirements Engineering, vol. 15. Springer (2010)

11. Kavaldjian, S., Bogdan, C., Falb, J., Kaindl, H.: Transforming Discourse Models to
Structural User Interface Models. In: Giese, H. (ed.) MODELS 2008. LNCS, vol. 5002, pp.
77–88. Springer, Heidelberg (2008)

12. Raneburger, D., Popp, R., Kaindl, H., Falb, J., Ertl, D.: Automated Generation of Device-
Specific WIMP-UIs: Weaving of Structural and Behavioral Models. In: Proceedings of the
2011 SIGCHI Symposium on Engineering Interactive Computing Systems (EICS 2011),
pp. 41–46 (2011)

13. Raneburger, D., Popp, R., Kavaldjian, S., Kaindl, H., Falb, J.: Optimized GUI Generation
for Small Screens. In: Hussmann, H., Meixner, G., Zuehlke, D. (eds.) Model-Driven
Development of Advanced User Interfaces. SCI, vol. 340, pp. 107–122. Springer,
Heidelberg (2011) (selected from MDDAUI 2010 Workshop papers)

Author Index

Acuña Castillo, Silvia Teresita 131, 366
Adedjouma, Morayo 275
Ahonen, Jarmo J. 3
Amasaki, Sousuke 350
Arisaca, Robert 32
Aurum, Aybüke 160, 175
Averbakh, Anna 233

Barney, Hamish T. 160
Barney, Sebastian 160
Berntsson Svensson, Richard 175
Biffl, Stefan 290
Brinkkemper, Sjaak 116
Buglione, Luigi 368

Castro, Oscar 74
Castro Llanos, John Wilmar 131
Córdova, Mario 248

Daneva, Maya 368
Dávila, Abraham 32
del Bianco, Vieri 59
Dubois, Hubert 275

Espinoza, Angelina 74

Ferreira, Nuno 44

Galviņa, Zane 190
Garbajosa, Juan 145
Gašević, Dragan 44
Gómez, Marta 366
Gorschek, Tony 160, 175
Grosspietsch, Karl-Erwin 309

Häger, Ulf 320
Halstead, Susanne 248
Hanakawa, Noriko 260
Heidrich, Jens 370
Heiskanen, Henri 17
Houdek, Frank 1

Jäntti, Marko 218

Kaindl, Hermann 374
Katara, Mika 17
Khurum, Mahvish 160
Kitouni, Tarek 275
Koike, Toshikazu 89
Koroutchev, Kostadin 366
Kowalczyk, Martin 355, 370

Lavazza, Luigi 59
Lopes Margarido, Isabel 361

Machado, Ricardo J. 44
Markkula, Jouni 145
Martin, Höst 104
Mart́ınez-Mart́ınez, Alfonso 74
Maunumaa, Mika 17
Meyer, Sebastian 233
Moe, Nils Brede 160
Monasor, Miguel J. 203
Morasca, Sandro 59
Moreira Vidal, Raul 361
Müller, Sven C. 320

Namiki, Rieko 89
Ñaupac, Verónica 32

Obana, Masaki 260
Oivo, Markku 145
Ortiz, Rosario 248

Paech, Barbara 175
Pascoal Faria, João 361
Pérez, Jennifer 368
Piattini, Mario 203

Ramler, Rudolf 290
Raninen, Anu 3
Rehtanz, Christian 320
Rodŕıguez, Pilar 145
Ronneberger, Torsten 233

Santos, Nuno 44
Schmidt, Martina 290
Schneider, Kurt 233
Segúı, Miguel 248
Senge, Sebastian 335
Sharma, Devesh 175

378 Author Index

Silayeva, Tanya A. 309
Šmite, Darja 190
Steinbach, Silke 355

Tanabe, Hiroyuki 89
Terrier, François 275
Toroi, Tanja 3

Vainio, Hannu 3
van de Weerd, Inge 116
van Stijn, Peter 116

Vieira, Marco 361
Vizcáıno, Aurora 203
Vlaanderen, Kevin 116

Washizaki, Hironori 89
Wedde, Horst F. 305, 320, 335
Winata, Martha 160
Winkler, Dietmar 290
Wohlin, Claes 160

Yokogawa, Tomoyuki 350

	Title
	Preface
	Preface to the Short Papers Track
	Organization
	Table of Contents
	Keynote Address
	Improving Requirements Engineering Processes Impressions during One Decade of Improvement at Daimler
	Motivation
	Guided Tour through a Decade of Requirements Engineering Improvement at Daimler
	Lessons Learned
	Reference

	Process-Focused Software Process Improvement
	Defect Data Analysis as Input for Software Process Improvement
	Introduction
	Previous Research
	Research Setting
	The Target Companies
	The Data Set
	Defect Distribution Scheme
	Applying the Defect Distribution Scheme

	Results of the Classification
	Improvement Suggestions

	Discussion
	Conclusion
	References

	A Test Process Improvement Model for Automated Test Generation
	Introduction
	Background
	Test Process Improvement
	Review of Process Improvement Models for Software Testing
	Automated Test Generation

	TPI for Automated Test Generation
	Why Test Process Must Change for ATG
	Changes to Existing Key Areas
	New Key Areas

	Baseline Maturity Profile for Introduction of ATG
	Case Study
	Conclusion
	References

	Software Process Improvement and Certification of a Small Company Using the NTP 291 100 (MoProSoft)
	Introduction
	Models in the SPI Project
	MoProSoft
	EvalProSoft and ISO/IEC 15504
	pmCOMPETISOFT

	Software Process Improvement in the Company
	Company under Study
	Software Process Improvement

	Certification Process
	Final Discussion y Future Work
	References

	Derivation of Process-Oriented Logical Architectures: An Elicitation Approach for Cloud Design
	Introduction
	Problem Overview
	The ISOFIN Project

	Process-Level 4SRS as an Elicitation Method for Cloud Design
	Step 1: Architectural Element Creation
	Step 2: Architectural Element Elimination
	Step 3: Packaging and Aggregation
	Step 4: Architectural Element Association

	The ISOFIN Process-Level Logical Architecture
	Conclusion and Outlook
	References

	Product and Process Measurements and Estimation
	A Proposal for Simplified Model-Based Cost Estimation Models
	Introduction
	Function Point Analysis
	Measurement-Oriented Modeling
	Simplified FP Measurement Techniques
	UML-Based Simplified FP Measurement
	Applicability of the Proposed Approach: A Discussion
	Related Work
	Conclusions
	References

	Estimating the Software Product Value during the Development Process
	Introduction
	Background
	Value Definition in Software Engineering

	Related Literature on Product Value Estimation
	Estimating the Software Product Value: An Indicators-Driven Approach
	Value Indicator Definition
	An Approach for Indicators-Based Value Estimation
	Defining the Value Estimation Process Model

	Internal Validation
	Scope
	Value Estimation for the Work Products
	Discussion and Limitations

	Conclusion and Future Work
	References

	Reusability Metrics for Program Source Code Written in C Language and Their Evaluation
	Introduction
	Problems of Reusability Measurement
	Reusability Metrics and Reuse Results
	Definition of Reusability Metrics
	Definition of Reuse Rate

	Evaluating Effectiveness of Reusability Metrics
	Target Projects
	Evaluation Process
	Summary of Evaluation Results
	Threats to Validity

	Conclusion and Future Work
	References

	Modeling the Effects of Project Management Strategies on Long-Term Product Knowledge
	Introduction
	Related Work
	Model
	General Overview
	Metrics Based on the Model
	Strategies

	ModelResults
	Discussion
	Conclusions and Further Research
	References

	Open-Source, Agile and Lean Practices
	Growing into Agility: Process Implementation Paths for Scrum
	Introduction
	Case Study Research Approach
	Case Studies
	ChatComp
	FacilityComp
	SocialComp
	TimeComp

	Scrum Implementations Paths
	Discussion
	Conclusions and Future Research
	References

	Differences between Traditional and Open Source Development Activities
	Introduction
	Research Method
	Mapping OSS Process Activities to IEEE Std. 1074 and SWEBOK Activities
	IEEE Std. 1074 and SWEBOK Process Activities vs. OSS Development Process Activities
	Requirements Process Activities
	Design Process Activities
	Implementation Process Activities

	Discussion of the OSS Development Process
	Conclusions
	References

	Analyzing the Drivers of the Combination of Lean and Agile in Software Development Companies
	Introduction
	Overview of Agile and Lean Paradigms
	Agile and Agile Software Development
	Lean and Lean Software Development
	“Agile or Lean” or “Agile and Lean”?

	Study Design
	Results
	Level of Agile and Lean Adoption in the Finnish Software Industry
	Companies’ Goals Driving towards the Adoption of Agile and/or Lean Methods

	Discussion of the Results
	Agile and Lean Origins
	Combining Agile and Lean Methods in Software Development
	Goals of Software Development Companies Driving towards Combined Agile and Lean

	Conclusions, Limitations of the Study and Future Work
	References

	Fostering and Sustaining Innovation in a Fast Growing Agile Company
	Introduction
	Innovation in Software Development
	The Concept of Innovation
	Internal Determinants of Innovation

	Research Method
	Study Context
	Data Sources and Analysis

	FedEx Day and 20% Time at Atlassian
	Task Allocation at Atlassian
	FedEx™ Day
	Experiences with FedEx™ Day
	The 20% Time Program
	Experiences with the 20% Time Program
	Innovation Practices Supported by the Development Process

	Discussion
	Conclusion
	References

	Distributed and Global Software Development
	Software Architecture as a Means of Communication in a Globally Distributed Software Development Context
	Introduction
	Background
	Case Description
	Methodology
	Step 1: Interview Study
	Step 2: Questionnaire

	Results and Analysis
	Most Suitable Communication Mechanism (RQ1)
	Communication in a Timely Manner (RQ1.1)
	Communication Rich Information (RQ1.2)
	Communicate Large Volume of Information (RQ1.3)

	Discussion
	Threats to Validity
	Conclusion
	References

	Socio-technical Congruence Sabotaged by a HiddenOnshore Outsourcing Relationship: Lessons Learned from an Empirical Study
	Introduction
	Related Work
	Research Methodology
	Results
	Project Overview: Social and Technical Structures
	Task Allocation: Socio-technical Links
	The Impact of Socio-technical Non-congruence during Requirements Analysis and Design
	The Impact of Socio-technical Non-congruence during Testing

	Discussion
	Conclusions and Further Research
	References

	Providing Training in GSD by Using a Virtual Environment
	Introduction
	Context of Current Research
	Influence of Personal Aspects and Skills in GSD
	VENTURE
	Simulating an Interaction
	Conclusions and Future Work
	References

	Empirical Studies
	Improving IT Service Desk and Service Management Processes in Finnish Tax Administration: A Case Study on Service Engineering
	Introduction
	Related Work
	Our Contribution

	Research Methods
	The Case Organization and Data Collection Methods
	Data Analysis

	Improving Service Desk and Service Management Processes
	Create a Process Improvement Infrastructure
	Identify the Current State of the Processes
	Plan Process Improvement Actions
	Improve/Implement the Process Based on ITSM Practices
	Deploy and Introduce Processes
	Evaluate Process Improvement
	Continuous Process/Service Improvement

	Analysis
	Conclusions
	References

	Experiences from Establishing Knowledge Management in a Joint Research Project
	Introduction
	Joint Research Projects
	Project Management Characteristics
	Challenges in Knowledge and Experience Management

	Related Work
	Case Study
	Project Description
	Instantiation of Lifecycle Phases

	Evaluation
	Technical Issues
	Social Issues
	Issues Directly Related to Knowledge Management
	Lessons Learned

	Recommendations for a Better Start
	Discussion and Outlook
	References

	The Impact of Lack in Domain or Technology Experience on the Accuracy of Expert Effort Estimates in Software Projects
	Introduction
	Related Work
	Methodology
	Results
	Descriptive Statistics
	Comparisons between Scenario 1 and Scenario 2
	Influence of Years of Experience and Level of Education

	Recommendations
	Future Research and Weaknesses of Methodology
	References

	Quality Assessment
	A Metrics for Meeting Quality on a Software Requirement Acquisition Phase
	Introduction
	Related Works
	The Proposed Meeting Metrics
	Background
	A Concept of Meeting Metrics
	Measuring the Value of the Metrics
	Extracting Significant Metrics
	A Metrics for Meeting Quality

	Adapting the Meeting Metrics
	Calculation of Values of Meeting
	Evaluation of the Values of Meeting as Compared with Specification Faults

	Discussion
	Why the Value of Precision Is Low?
	A Tool for Detecting Doubtful Specifications in Real Time

	Conclusion
	References

	Merging the Quality Assessment of Processes and Products in Automotive Domain
	Introduction
	Motivation and Introduction to HIS and ISO 26262
	Overview of HIS Automotive SPICE
	Overview of ISO 26262
	Relationships between HIS and ISO 26262

	Certification Representation Model
	Algorithm of Metamodel Extension
	Extended Metamodel for HIS Scope and IS026262 Processes

	Integrated Assessment Model
	Boundaries of the Context Evaluation
	Description and Usage Rules of the Framework

	Case Study and Future Works
	Case Study Discussion
	Future Works

	Conclusion
	References

	Improving Unfamiliar Code with Unit Tests: An Empirical Investigation on Tool-Supported and Human-Based Testing
	Introduction
	Related Work
	Testing in the Software-Life-Cycle
	Software Testing Strategies
	Human-Based and Tool-Supported Test Case Generation

	Research Questions and Hypotheses
	Variables
	Hypothesis

	Study Description
	Study Process
	Study Material
	Randoop Configuration
	Study Subjects
	Threats to Validity

	Experiment Results
	Study Effort
	Reported/Generated Test Cases
	Effectiveness
	False Positives
	Method Coverage

	Discussion
	Conclusion and Future Work
	References

	Special Session on Self-Organizing Systems
	Self-Organizing Systems and the Like
	Modified ART Network Architectures for the Control of Autonomous Systems
	Introduction
	Basic Structure of ART Networks
	Modifications of the Basic ART Architecture
	Access to Control Pattterns for Classes of Situations
	Updating the Experience of the ART Network
	Conclusion
	References

	Application of Self-Organizing Systems in Power Systems Control
	Introduction and Scope
	Self-Organizing Systems in Power Systems Operation
	Challenges of Power Systems Operation
	Modeling of Power Systems
	Decision Making and Control Actions in Real-Time Operation
	Applicability of Self-Organizing Systems

	Self-Organization in Coordinated Power Flow Control
	Need for Coordination in Power Flow Control
	Current Practice: Central Coordination
	New Approach: Agent-Based Decentralized Coordination

	Outlook
	References

	Minimizing Vehicular Travel Times Using the Multi-Agent System BeeJamA
	Introduction
	Proposed Vehicle-to-Infrastructure Architecture
	Generic Routing Framework
	The BeeJamA Routing Protocol
	Area Layer
	Net Layer
	Bee Agents
	Vehicle Forwarding

	Simulation Studies
	Conclusion and Future Work
	References

	Short Papers
	A Study on Predictive Performance of Regression-Based Effort Estimation Models Using Base Functional Components
	Introduction
	Experiment Settings
	Dataset
	Effort Estimation Models Based on Linear Regression
	Performance Measures
	Experiment Procedure

	Results
	Discussion
	Conclusion
	References

	Managing Process Model Compliance in Multi-standard Scenarios Using a Tool-Supported Approach
	Introduction
	Related Work
	Compliance Management Approach
	Specification Phase
	Maintenance Phase

	Evaluation
	Evaluation Approach
	Evaluation Procedure
	Evaluation Results

	Summary and Outlook
	References

	Towards a Framework to Evaluate and Improve the Quality of Implementation of CMMI® Practices
	Introdution
	Framework Proposal
	Related Work
	Conclusion
	References

	Workshops and Tutorials
	INTEAMSE 2012 1st Workshop on Managing the Influence of People and Team Factors in SE
	Description and Goals
	List of Topics
	Targeted Outcome and Targeted Audience
	Workshop Format
	Workshop Organizers
	Program Committee

	VALOIR 2012 2nd Workshop on Managing the Client Value Creation Process in Agile Projects: Message from the Chairs
	Tutorial: Business IT Alignment Using the GQM+Strategies® Approach
	Introduction
	GQM+Strategies® Modeling Concepts
	Tutorial Contents and Organization
	Target Group
	Presenters’ CV
	References

	Requirements Meet Interaction Design
	Tutorial Objectives
	Key Learning Outcomes
	Outline of Topics
	CV of the Presenter
	References

	Author Index

