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Abstract. Deep ownership types gives a strong notion of aggregate by
enforcing the so-called owners-as-dominators property: every path from
a system root to an object must pass through its owner. Consequently,
encapsulated aggregates must have a single bridge object that mediates
all external interaction with its internal objects.

In this paper, we present an extension of deep ownership that re-
laxes the single bridge object constraint and allows several bridge objects
to collectively define an aggregate with a shared representation. We call
such bridge objects ombudsmen to emphasise their benevolent nature;
ombudsmen-sharing is explicit and all ombudsmen are created internal
to the aggregate, purposely.

The resulting system brings the aggregate notion close to the com-
ponent notion found in e.g., UML by clearly separating aggregation from
the stronger composition, and further allows expressing common pro-
gramming patterns such as iterators without resorting to systems that
give unclear or unprincipled guarantees, or require additional complex
machinery such as read-only references.

1 Introduction

Ownership types allow programmers to express encapsulation properties of pro-
grams in a compile-time checkable way. Ownership-based encapsulation has been
used in many areas, including verification [22,27,31], reasoning about computa-
tional effects [13,34,15], information flow [3], memory management [9], object
upgrades [8] and concurrent programming [6,17,15,39].

In classical “Clarkean” ownership types [12] every object belongs to another
object and may be the owner of other objects. An owned object is said to belong
to the representation of its owning object and cannot escape outside its owner.
Consequently, an external object can only interact with a representation object
via the public interface of its owner, which allows maintaining invariants and
facilitates automated and manual reasoning. If we think of a heap as a graph of
objects, all paths from the root of the graph to an object will include its owner—
this is the owners-as-dominators property first formulated by Clarke et al. [16].

By imposing a hierarchical structure on the heap, owners-as-dominators gives
strong and useful encapsulation guarantees, but at the cost of excluding some
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common programming patterns. A common example of such a pattern is the
iterator pattern for linked lists, which is the canonical example when introducing
ownership types. A linked list should encapsulate its links, but for an iterator
object to be able to access the next element in O(1), it requires a direct reference
to the “current” link in the list, which is only allowed in ownership systems if
the iterator is internal to the list itself.

An alternative implementation that does not break the strong encapsulation
of owners-as-dominators is to unencapsulate the list’s links so that they become
external to the list and therefore can be referenced by the iterator. This of course
destroys the encapsulation.

In a nutshell: either the iterator can only be used inside the list (which renders
it useless) or the list’s encapsulation must be broken.

We can interpret a list as a software component with multiple service ports—
one which implements the list interface and one which allows iterating over it.
In this mindset, it makes sense to think of the links as encapsulated inside the
(composite) component instead of inside some particular object that constructs
it. However, implementing such a component in a Clarkean ownership system
leads to exactly the above-mentioned problem of losing the encapsulation of the
links: there is no way to specify a set of objects shared between two or more objects
that collaborate in defining a larger unit. The problem is the unification of units of
encapsulation and objects—the only way to introduce a unit K of encapsulation
is by introducing a new object, which by virtue of owners-as-dominators blocks
all direct access to the objects in K from external objects.

Contributions. This paper contributes to the field of Clarkean ownership sys-
tems by distinguishing between composition and aggregation. Just like traditional
ownership systems, an object can be composed from representation objects which
it dominates; additionally, an object may also aggregate other objects to which it
may share ownership with other objects in a novel unit of encapsulation called an
aggregate. Consequently, we can allow multiple entry points into an aggregate.

Our design allows programming idioms which rely on “principled sharing of
representation” to be encoded in Clarkean ownership systems without compro-
mising encapsulation by using aggregation instead of composition. The result en-
capsulation property is as easy to understand and almost as powerful as owners-
as-dominators. Concretely, we:

– extend ownership types to support multiple entry points to a shared
aggregate in a disciplined way with a strong encapsulation invariant called
ombudsmen-as-dominators, which is clearly visible in the types;

– provide a simple and intuitive extension, adding only two new keywords;
– design the extension to be “pluggable”—it concerns only objects inside a

shared aggregate, the semantics of old keywords is unmodified, and other
objects enjoy strong encapsulation with owners-as-dominators;

– formalize the extension in a core language, and prove type soundness and
our novel encapsulation invariant;

– have implemented our system on top of a Joline-like type checker; and
– provide an extensive coverage of related work.
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class List<owner, data> {
Link<this, data> first;
void insert(Object<data> e) {

Link<this, data> l =
new Link<this, data>();

l.data = e;
l.next = first;
first = l;

}
}
class Link<owner, data> {

Object<data> data;
Link<owner, data> next;

}

world

a

b

list

link

data first

next

object name

subheap
references

name
b inside aba

joe

a
joe owns a

joe

a
joe aggre- 
gates a invalid reference

Fig. 1. Left: A list with ownership annotations. Right: Ownership structure of the
linked list. The context a contains the linked list object which defines the context b
for its representation objects (its links). Each link has a data field which points to its
element objects. In this particular instance, the element objects reside in the outermost
context world. The type of the list object is therefore List<a,world> binding the class’
owner parameters owner and data to a and world, respectively.

2 Ombudsmen-as-Dominators

In this section we give an informal presentation of our system. First, however,
we recap Clarkean ownership types as our encapsulation property ombudsmen-
as-dominators builds directly on the classic notion of deep ownership types.

We use two main examples: iterators, with the dual purpose of introducing
key concepts, and a shared bank account.

2.1 Clarkean Ownership Types

In Clarkean systems, the heap is hierarchically divided into a number of contexts,
which can simply be thought of as sets of objects. Every object introduces a new
context to hold its representation, nested inside the context where the object re-
sides. In the source code, labels that denote run-time contexts are called owners.
Owners are embedded in types to capture ownership and access permissions.

Linked Lists. Consider the linked list implementation shown in the left of Fig-
ure 1. Classes are parametrized over permissions to reference contexts; we call
these owner parameters. The first owner parameter is always called owner and
is special in that it also denotes the owner of the list instance, i.e., the context
where the list resides. The second parameter, called data in this example, is a
necessary permission to reference the elements stored in the list.
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Fig. 2. Linked list with an iterator (showed with thicker lines). The iterator needs
to reference the list’s links, which breaks encapsulation. On the right, the iterator is
moved inside the list shifting the problem to accessing the iterator.

The ubiquitous, implicitly declared owner this denotes the context intro-
duced by the current object to hold its representation. In the list, all links are
owned by this and are therefore encapsulated inside the list and cannot be
exported outside. The data owner is forwarded to the links, as they too need
permission to reference the element objects. In the Link class the next field has
type Link<owner,data>, where owner is the list’s representation.

The right hand side of Figure 1 depicts an instance of a heap with a list and
a few contexts denoted by rounded boxes. The box b is the list’s representation
context, containing all its links, as they are owned by this in the List class.
The list elements belong to the context world, which is the outermost context.

Owners-as-dominators allows references going outwards in the hierarchy, e.g.,
the links may reference the elements, but not the converse. If an object x refer-
ences an object y in a context k dominated by object z, then either x = z or x
must be inside k. In terms of Figure 1, if a reference crosses into a context, then
the origin of the reference must be the object that owns the context.

The list implementation in Figure 1 makes sense from an object-oriented de-
sign point of view. The links are an implementation detail of the list and should
not be observable from the outside. The problem with single entry point ag-
gregates surfaces when we try to add an iterator to the List class, depicted in
Figure 2 (left). Owners-as-dominators allows outward-going references, but the
iterator needs to point inwards, into the list. The only way we can allow the
iterator to reference the links is if we move the iterator into the list (context b),
but then the iterator cannot be exported to a client of the list, Figure 2 (right).

The general problem is that ownership types cannot express two objects en-
capsulating a common context, for reasons made clear in the upcoming example.
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class Person<owner, q> {
Account<q> account; // private
Person<owner, q> spouse;
void share() {

account = spouse.getAccount();
}
Account<q> getAccount() {

return account;
}
... // omitted

}

world
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b

Fig. 3. Sophia and Dave sharing a bank account ($$$) in a system with owners-as-
dominators. Bob also has access to the account. The legend can be found in Figure 2.

class Person<owner> {
Account<aggregate> account;
Person<bridge> spouse;
void share() {

account = spouse.getAccount();
}
Account<aggregate> getAccount() {

return account;
}
... // omitted

}

world
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Fig. 4. Sophia and Dave sharing a private bank account in a system with owners-as-
ombudsmen. The area ds denotes a shared context.

Shared Bank Account. Consider a bank account shared between two persons,
sophia and dave. Let p be the owner of both sophia and dave, and q be the owner
of the bank account. As should be clear by now, in Clarkean systems, the only
way in which both sophia and dave can reference the account is if p is nested
inside q, meaning that the account has at most the same level of encapsulation
as sophia or dave. Figure 3 accomplishes this with the resulting ownership graph
depicted to the right, which also includes a third person, bob.

For sophia and dave to be able to share an account, there must be a way for
sophia to install (e.g., a setter) a reference to the account in dave alternatively a
way for dave to read the reference from sophia (e.g., a getter). In either case, any
object (e.g., bob) with access to sophia or dave can access the shared account
or install another one. Ombudsmen allow us to express the three objects as an
aggregate where dave and sophia are in the aggregate’s interface whereas the
account is private. Figure 4 shows the code and resulting ownership graph.

Schäfer and Poetzsch-Heffter’s work on CoBoxes [36,37] include more examples,
e.g., a DOM, file system, that need multiple aggregate entry points.
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2.2 Ombudsmen

As Figure 4 hints, our proposal allows several objects—ombudsmen—to act as
bridge objects, or entry points, between their common aggregate and the outside
world. In terms of ownership types they share a common context. Objects in this
context are “ombudsman-dominated”1, meaning that

every path from a root in the system to an object in an ombudsman-
dominated context contains one of the context’s ombudsmen.

As the rightmost picture of Figure 3 shows, in owners-as-dominators systems,
every context is nested inside some other context, and references cannot cross a
context from the outside to the inside. With ombudsmen-as-dominators, objects
on the same level of nesting can share a common context, and references may
cross from the “private contexts” of these objects into their shared context.

In the example in Figure 4 (right), sophia and dave are ombudsmen for a col-
laboratively defined aggregate containing a shared bank account. Their common
aggregate context is depicted as the area ds. In addition, sophia and dave each
have a representation context (s and d, respectively). The objects sophia and
dave, as well as objects in their representation contexts, can reference objects in
the aggregate context (e.g., nick may reference $$$). Objects outside sophia or
dave may not refer to objects in their aggregate context (e.g., bob may not refer-
ence $$$). Objects in the aggregate context cannot reference the representation
contexts of their ombudsmen (e.g., $$$ may not refer to alex).

2.3 Typing Ombudsmen

We design the type system that lets us express aggregate encapsulation with mul-
tiple entry points as a relatively straightforward extension of Clarkean ownership
types systems as found in e.g., Joe1 [13], Joline [14,38] or OGJ [35]. Classes are
parametrized over permissions to access external contexts and types instanti-
ate those parameters with actual permissions, so-called owner parameters. From
now on, we will use the word owner to denote a symbol in the program text that
represents a run-time context.

The first owner parameter of a type is the owner of the instance, available
internally inside each class through the owner keyword. Additionally, each class
knows the owners world, rep, aggregate, and bridge. The world keyword
denotes the global outermost context. The rep keyword denotes the represen-
tation of the object and is equivalent to this in traditional ownership systems;
aggregate denotes the aggregate context, which may be shared with other ob-
jects; and finally bridge denotes a bridge object of the same aggregate as the
current instance. Notably, if we think of an owner α as denoting the set of objects
owned by α, then bridge ⊆ owner.

In terms of the rightmost picture in Figure 4, a field in sophia referencing dave
(or the inverse) may have the owner owner or bridge. A reference from nick to
1 We slightly abuse the term dominator to stay close to owners-as-dominators.
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$$$ must have the owner aggregate (from the view of sophia, inside nick it is
some other owner parameter which will be bound to sophia’s aggregate); and
sophia’s reference to nick must have the owner rep.

Whether a field has owner bridge or owner makes an important difference.
In the first case, we know that the field contains a reference to an object sharing
the same aggregate. In the second case, we don’t know if the reference points to
an ombudsman for the same aggregate, or some other aggregate. In terms of our
example, sophia could only ask for dave’s reference to $$$ if sophia knows dave
is a bridge object for the same aggregate. Otherwise, the reference might point
to the representation of a different aggregate, which would break encapsulation.

Same Object, Different Types. Figure 5 shows an example of a Library compo-
nent with two provided services with different privileges to access documents,
normalDocAccess and privilegedDocAccess, and a required service remote-
Library. To a client, the objects referred to by normalDocAccess and privil-
egedDocAccess are siblings to the component—they have the same owner. From
the view of the client, the field normalDocAccess has type AccessService<rep>
rather than AccessService<bridge> which would denote a bridge object of the
aggregate in the client and not the component. For similar reasons, writing to a
field containing an ombudsman is not possible externally, since external objects
cannot tell what objects are ombudsmen for the same aggregate.

Discussion. The bridge owner identifies other ombudsmen of the same aggregate
as the aggregate of the current object, which is therefore also an ombudsman.

Well-formed construction of aggregate objects is one of the key considerations
of our system design. Any ombudsman has the capability to construct other
ombudsmen and access the parts of their interface that mention aggregate. All
ombudsmen are owned by owner (or its more specific subset context bridge),
and consequently—all dominating objects of the shared aggregate are siblings.
Coalescing an existing ombudsman object created externally with an aggregate
is possible using ownership transfer [14,38,32]. In this case, one object must act
as the “initial object” and move the unique objects into bridge (cf. Section 2.6).

Although we have defined ombudsmen for the Joe/Joline family of ownership
systems [13,14,34,15], we believe they could easily be added to universe types
[30,19,32] as well as OGJ [35], and similar.

We now continue our introduction to ombudsmen by way of a few examples
including two common programming idioms: components and external iterators.

2.4 Components

Standard UML components are implemented as aggregates of collaborating ob-
jects [5]. A component may provide several different interfaces (aka required
and provided services); different applications may use different interfaces or a
combination of different interfaces.

With ownership types, a component that wishes to export several different
interfaces must do so through a single object if encapsulation is to be retained.
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class Library<owner> {
DocumentDB<aggregate> db = new DocumentDB<aggregate>;
AccessService<bridge> normalDocAccess = new RestrictedPolicy<bridge>(db);
AccessService<bridge> privilegedDocAccess =

new UnrestrictedPolicy<bridge>(db);
AccessService<owner> remoteLibrary;

}

class Client<owner> {
Library<rep> lib, otherLib;
...
AccessService<rep> s1 = lib.normalDocAccess;
c.remoteLibrary = s1; // = otherLib.normalDocAccess is also type sound
AccessService<bridge> s2 = lib.normalDocAccess; // Fails!!
lib.privilegedDocAccess = lib.privilegedDocAccess; // Fails!!

}

Fig. 5. Defining a component with two provided services and one required service

If each interface was implemented as a separate object, the objects would not
be able to share any data unless that data could also be exposed outside the
component, with the problems detailed on Page 160. To implement components
with proper encapsulation, several objects must be able to share a common
representation which cannot leak, as we did in Figure 4 and Figure 5.

2.5 Iterators with Ombudsmen

Figure 6 shows the ownership diagram for a linked list aggregate and Figure 7
the source code. Modulo the use of the novel bridge and aggregate owners, the
code should be straightforward.

world

k

a

iteratorlist

kevinpaul

next next

data

current

first

Fig. 6. Iterators with ombudsmen

In the example, the list’s links are
part of the aggregate, and the list
has no representation data. Initially,
the list object is the only ombudsman
through which the links can be manip-
ulated. The iterator method in the
list class creates and returns an om-
budsman in the form of an iterator. As
an ombudsman for the list aggregate,
the iterator may reference the list’s
links in the cursor field. Any num-
ber of iterators may exist; the pattern
would even allow several list objects
that shared a common set of links—
for whatever purpose.

Notably, in this solution, links are not considered part of the list object’s rep-
resentation, but part of the “list component’s” aggregate context, which clearly
reflects its degree of encapsulation.
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class List<owner,data> {
Link<aggregate,data> first;

Iterator<bridge,data> iterator() {
Iterator<bridge,data> iter =

new Iterator<bridge,data>();
iter.cursor = first;
return iter;

}
}

class Link<owner,data> {
Link<owner,data> next;
Object<data> data;

}

class Iterator<owner,data> {
Link<aggregate,data> cursor;

Object<data> next() {
Object<data> value = cursor.data;
cursor = cursor.next;
return value;

}
}

Fig. 7. A list component with a (standard) list service and an iterator service

2.6 Staged Aggregate Construction

Allowing staged construction of aggregates is desirable as it allows e.g., adding
user-defined bridges to library aggregates. Attaching an additional bridge object
O to an existing aggregate A will merge O’s aggregate context, B say, with A.2
This has consequences for all other bridges to B and unless we provide additional
mechanisms for restricting merging of aggregate contexts, we have introduced a
back door in the system. Going back to our bank accounts example, if bob can
attach himself to dave and sophia’s aggregate, then bob can suddenly call the
getters and setters for the shared account, thereby gaining access to it.

Allowing the assignment from unique types to bridge types elegantly allows
staged construction of an aggregate. Regular non-unique bridge objects cannot
be attached to some other aggregate to gain access to its innards. Since an ag-
gregate’s bridge owner cannot be named externally, the aggregate implementer
must explicitly provide a method to perform the attachment. Unless such a
method is specified in any of the aggregate’s bridges, staged construction is not
possible. (This allows preventing bob from using the trick above.)

Aggregates can be constructed incrementally or in stages by attaching om-
budsmen to each other, thereby merging their aggregate contexts. This practice
is sound as the uniquely referenced ombudsman is always a dominating node to
any object inside its aggregate context, akin to the relation between an owner
and its this context in classical ownership types.

Figure 8 (on Page 165) shows an excerpt of a List class that allows an ob-
ject external to the aggregate to be made part of an existing aggregate. In the
example, a unique iterator object is passed to the list’s iterator method, which
subsequently attaches it to its current aggregate by storing it in variable owned
by bridge.

2 And unless O is a sibling of A’s bridge objects, the attachment is unsound since it
would merge differently dominated aggregates.
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Iterator<bridge,data> iterator(Iterator<unique,data> i) {
Iterator<bridge,data> iter = i--; // move into bridge
iter.cursor = first;
return iter;

}

Fig. 8. Attaching an external iterator to a list aggregate; -- is a destructive read

3 Formalizing Ombudsmen

In this section we formalize ombudsmen as an extension to deep ownership. The
most relevant changes are in the type rules (expr-select), (expr-update) and
(expr-method-call). Our formalism is inspired by [13,38].

When reading or updating a field f of a non-bridge receiver x, f may not
point to objects in x’s aggregate. This is a straightforward adaptation of the
static visibility constraint of Clarkean systems that reads rep ∈ Owners(τ) ⇒
e = this, which our system also uses. Further, if f under the same circumstances
points to an ombudsman of x’s aggregate, its type is reported to us as a sibling
of x. These can be seen in (expr-select) and to some extent in (expr-update).

We consider only unary methods for simplicity and without loss of general-
ity. Ombudsman adaptation is employed to translate internal types to external
types and there is an additional visibility constraint that prevents calling meth-
ods which expect ombudsman arguments, unless the receiver object is itself an
ombudsman. The same constraint must hold for field update. This is visible in
(expr-update) and (expr-method-call).

Any type owned by bridge can be subsumed by the equivalent type owned
by owner, since for all contexts, bridge denotes a subset of owner. This is accom-
plished by adding an additional subtyping rule, see (bridge-owner-subsumption).

Conventions and Conveniences. We follow the practice of FJ [25] and use an
overbar notation for sequences of terms in the standard fashion. For example,
p denotes a sequence p1, . . . , pn and f : τ denotes a sequence f1 : τ1, . . . fn : τn

for n ≥ 0. To turn such a sequence into a set, we write it within { }, e.g.,
{p} = {p | p ∈ p}.

Like many ownership types papers before us [16,12,14,38,34], we sometimes
write C〈σ〉 for a type C〈p〉 where σ is a map from the names of the formal
parameters of C to the actual owner arguments p. For example, if C is declared
class C〈owner, a, b〉 · · · in the program, then if C〈p1, p2, p3〉 is a well-formed
type, we sometimes write C〈σ〉 for the implicitly defined σ = {owner �→ p1, a �→
p2, b �→ p3}. As a further convenience—following previous work—we sometimes
write σp to mean σ ∪ {owner �→ p} and σp to mean σ ∪ {aggregate �→ p} (used
in the dynamic semantics, possibly combined with σp).

3.1 Static Semantics

Syntax. The syntax of our system is defined in Figure 9. The meta variables x
and y are used for names of variables (including this) and p and q for names
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P ::= C class Object〈owner〉 { } e (Program)
C ::= class C〈owner, p〉 extends D〈p〉 { F M } (Class decl.)
F ::= τ f (Field decl.)
M ::= τ m(τ x) { e } (Method decl.)
e ::= let x = e in e | x | x.f | x.f = y | (Expressions)

x.m(y) | null | new τ
τ ::= C〈p〉 (Types)

Fig. 9. Syntax

of contexts (including rep, owner, bridge and aggregate). For simplicity, local
variables and sequences are encoded using standard let-expressions.

For the static semantics, we use a standard environment E, containing map-
pings from local variables to types and relations between contexts in the current
scope: E ::= ε | E, x : τ | E, p ≺∗ q | E, p �∗ q. Declarations and let-
expressions extend E in a straightforward fashion. Table 1 shows an overview of
the judgments used in our static system.

Helper Predicates. A key helper predicate is OmbudsmanAdaptation, defined
thus:

OmbudsmanAdaptation(bridge, τ) = τ
OmbudsmanAdaptation(p, τ) = τ{owner/bridge}

where p = bridge is assumed in the last case. This predicate is used to change
the internal view of an object as a bridge object of the current object’s aggregate
to the external view of an object—a bridge object for some aggregate at the
same nesting depth.

For every class C, we can derive a “field table” FT (C) and a “method ta-
ble” MT (C). We define FT (C) for class C〈p〉 extends D〈σ〉 { F M } as
F •σ(FT (D)) and similar for MT (C). F (f) = τ if τf ∈ F , else ⊥. Isomorphically,
M(m) = (τ1 → τ2, x, e) if τ2 m(τ1 x) { e } ∈ M , else ⊥. Lookup in these tables
is performed left–right, so FT (C)(f) when FT (C) = F • σ(FT (D)) is defined as
F (f) when f ∈ dom(F ), else σ(FT (D)(f)). The root class has empty field and
method tables; FT (Object) = MT (Object) = ∅ and ∅(f) = ∅(m) = ⊥.

Using the tables, we define lookup helper predicates in a straightforward fash-
ion where first, second, etc. extract the 1st, 2nd, etc. tuple compartments.

FieldType(C, f) = FT (C)(f)
Signature(C, m) = MT (C)(m)

Param(C, m) = second(MT (C)(m))
Body(C, m) = third(MT (C)(m))

Fields(C) = {f | FT (C)(f) = ⊥}

We also define functions for looking up owners from types: Owners(C〈p〉) = {p}
and σ(C〈p〉) = C〈σ(p)〉.
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Table 1. Judgments in the static system
� P : τ P is a well-formed program with type τ

� C C is a well-formed class
� E, x : τ E is extended by a variable x with type τ

� E, p R q E is extended by a good nesting relation (R ∈ {≺∗, �∗}) between con-
texts p and q

E; τ � F F is a well-typed field declaration and does not override a field in a
supertype

E; τ � M M is a well-typed method declaration, overriding preserves typing
E � e : τ e is a well-formed expression with type τ

E � p p is a good owner in the scope E

E � p R q p is inside/outside q in the scope E; R ∈ {≺∗, �∗}
E � p →ok q p may reference q in the scope E

E � τ τ is a well-formed type in the scope E

E � τ <: τ ′ τ is a subtype of τ ′ in the scope E

Last, we assume the existence of a predicate Arity(C) that returns the number
of owner parameters, including owner, declared for the class C, e.g., Arity(List) =
2 from the example in Figure 7.

Declarations. A program is well-formed if all its classes are well-formed and the
starting expression of the program is well-typed. For simplicity, the root class
Object is treated special.

(wf-program)

� C ε � e : τ

� C class Object〈owner〉 { } e : τ

A class is well-formed if its fields and methods are well-formed, the owner pa-
rameters passed to the super class are good (respect the nesting), and owner is
only used in the first position of the owner formals.

(wf-class)
E = owner ≺∗ world, rep ≺∗ owner, bridge ≺∗ owner, \

aggregate ≺∗ owner, p �∗ owner, this : C〈bridge, p〉 {q} ⊆ {p}
owner ∈ {p} τs = D〈owner, q〉 E � τs E; τs � F E; τs � M

� class C〈owner, p〉 extends D〈q〉 { F M }

A field is well-typed if its type is valid in the current scope, and there is no field
with the same name in a superclass.

(wf-field)
E � C〈σ〉 E � τ FieldType(C, f) = ⊥

E; C〈σ〉 � τ f
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A method is well-formed if its types are well-formed in the current scope, its
body corresponds to the declared return type, and overriding preserves types.

(wf-method)
E � C〈σ〉 E � τ E, x : τ ′ � e : τ

Signature(C, m) = ⊥ ∨ Signature(C, m) = σ(τ ′) → σ(τ)
E; C〈σ〉 � τ m(τ ′ x) { e }

Expressions. Expressions are typed given the type information E derived ini-
tially for each method in (wf-class), and extended with variables by (wf-
method) and (expr-let). For simplicity, we assume that all variables have unique
names.

(expr-let)
E � e′ : τ ′ E, x : τ ′ � e : τ

E � let x = e′ in e : τ

(expr-var)
� E E(x) = τ

E � x : τ

Reading a field of an object makes use of two key constraints: first, the two vis-
ibility constraints that say representation objects may only be accessed through
the special this receiver, which is due to Clarke et al. [16], and that aggregate
objects may only be accessed through ombudsmen. Last, we apply the Ombuds-
manAdaptation helper function that make ombudsmen appear as regular objects
when viewed externally.

(expr-select)
E � x : C〈σp〉 FieldType(C, f) = τ

rep ∈ Owners(τ) ⇒ x = this
aggregate ∈ Owners(τ) ⇒ p = bridge

OmbudsmanAdaptation(p, τ) = τ ′

E � x.f : σp(τ ′)

(expr-update) is very similar to (expr-select), although it does not use Om-
budsmanAdaptation (that would not be sound as we are writing, not reading a
field—similar to wild-cards in Java generics) and adds an additional restriction: a
field holding an ombudsman can only be accessed through another ombudsman.

(expr-update)
E � x : C〈σp〉 FieldType(C, f) = τ E � y : σp(τ)

rep ∈ Owners(τ) ⇒ x = this
bridge, aggregate ∈ Owners(τ) ⇒ p = bridge

E � x.f = y : σp(τ)

The semantics for calling a method is straightforward and contains the amalga-
mation of the restrictions of (expr-select) and (expr-update) as well as uses
OmbudsmanAdaptation so that returning a bridge object from an invocation on
a non-bridge object type loses its “bridge status” (in the type system’s view).
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(expr-method-call)
E � x : C〈σp〉 Signature(C, m) = τ1 → τ2 E � y : σp(τ1)

rep ∈ Owners(τ1) ∪ Owners(τ2) ⇒ x = this
bridge, aggregate ∈ Owners(τ1) ⇒ p = bridge

aggregate ∈ Owners(τ2) ⇒ p = bridge
OmbudsmanAdaptation(p, τ2) = τ

E � x.m(y) : σp(τ)

The static semantics for null and instantiation are straightforward. Last, (expr-
subsumption) allows the type of an expression to be subsumed into a supertype.

(expr-null)
E � τ

E � null : τ

(expr-new)
E � τ

E � new τ : τ

(expr-subsumption)
E � e : τ ′ E � τ ′ <: τ

E � e : τ

Type Environment Construction. We use a standard static type environment E.

(e-ε)

� ε

(e-var)
E � τ x ∈ dom(E)

� E, x : τ

(e-context)
E � q p ∈ dom(E) R ∈ {≺∗, �∗}

� E, p R q

Contexts. Statically, contexts are added to the environment in (wf-class). The
only manifest owner is world.

(good-context)
� E p ∈ dom(E)

E � p

(good-world)
� E

E � world

Rules for nesting relations are straightforward and follow a wealth of ownership
papers in the Clarkean family.

(inside)
� E

p ≺∗ q ∈ E

E � p ≺∗ q

(outside)
� E

q �∗ p ∈ E

E � p ≺∗ q

(inside-reflexive)
E � p

E � p ≺∗ p

(inside-transitive)
E � p ≺∗ p′

E � p′ ≺∗ q

E � p ≺∗ q

Permissions. Permissions in our system govern how references may cross context
boundaries. Inside nesting implies permission to reference, just like in classical
ownership types in (p-inside).

(p-inside)
E � p ≺∗ q

E � p →ok q

(p-rep)
� E p ∈ {bridge, aggregate}

E � rep →ok p

An ombudsman’s representation may reference its aggregate in (p-rep).
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Types and Subtyping. In our system, a type is well-formed if its owner has
the right to reference all its owner parameters, and additionally, the number of
parameters must correspond to the class declaration.

(good-type)

E � p E � p →ok p Arity(C) = |p, p|
E � C〈p, p〉

Subtyping follows the same rules as for classic ownership types. Reference per-
missions are propagated upward in the class hierarchy by the forwarding in the
class declaration, and the subtyping relation is reflexive and transitive.

(subtype-direct)
E � C〈σ〉

class C〈· · ·〉 extends D〈q〉 · · · ∈ P

E � C〈σp〉 <: D〈p, σ(q)〉

(subtype-reflexive)
E � τ

E � τ <: τ

(subtype-trans)
E � τ1 <: τ3
E � τ3 <: τ2

E � τ1 <: τ2

The single novel subtyping rule in our system allows an ombudsman to be sub-
sumed by its owner. This is required to safely export an ombudsman outside of
its (aggregate) representation without compromising safety.

(bridge-owner-subsumption)
E � C〈bridge, p〉 E � C〈owner, p〉

E � C〈bridge, p〉 <: C〈owner, p〉

As an example of the use of this practice, see the list iterator example. Internally,
the list’s view of its iterator is Iterator〈bridge, data〉, but when obtained from
some external object, the iterator’s type is Iterator〈owner, data〉. This is sound
since bridge always denotes a subset of owner.

3.2 Dynamic Semantics

The dynamic semantics is a big-step operational semantics. To distinguish di-
verging computation from stuck states, we use a standard trick to limit stack
space [21,38]. Each reduction carries the remaining stack space and each method
call reduces this number. A method call when there is no remaining stack space
triggers an error.

Objects are represented by triples of type, aggregate context id α, and field
mappings. Run-time types are the same as static types, but static owner names
are substituted for run-time contexts. Run-time contexts are κ (an object id ι,
aggregate context id α, or the special context world). Values are ι or ε (null).

H ::= [ ] | H [ι �→ (C〈κ〉, α, F )] (Heap)
B ::= ε | B, x �→ v | B, p �→ κ (Bindings)
F ::= [ ] | F [f �→ v] (Fields)

v ::= ε | ι (Values)
κ ::= ι | α | world (Contexts)

A configuration is a triple 〈H ; B; e〉 of a heap H , bindings of variables to values
and context names to contexts B, and an expression e. The initial configuration
is 〈[ ]; ∅; e〉 that is, an empty heap and bindings, plus the initial expression.
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Rules (d-let) and (d-var) are unsurprising. (d-let) evaluates the expression
e and binds the value v′ to the variable x in the environment under which e′ is
evaluated. (d-var) just looks up the value bound to x in the frame.

(d-let)
〈H ; B; e〉 →n 〈H ′; v′〉

〈H ′; B, x �→ v′; e′〉 →n 〈H ′′; v′′〉
〈H ; B; let x = e in e′〉 →n 〈H ′′; v′′〉

(d-var)
B(x) = v

〈H ; B; x〉 →n 〈H ; v〉

Looking up a field on an object receiver is straightforward. We write H(ι.f) as
a shorthand for F(f) when H(ι) = (C〈κ〉, α, F). Field updates are similar, and
we write H(ι.f) := v for H [ι �→ (C〈κ〉, α, F [f �→ v])] when H(ι) = (C〈κ〉, α, F).

(d-select)
B(x) = ι H(ι.f) = v

〈H ; B; x.f〉 →n 〈H ; v〉

(d-update)
B(x) = ι B(y) = v

〈H ; B; x.f = y〉 →n 〈H(ι.f) := v; ε〉

In our simple semantics, method calls cause the evaluation of a method body
under a new B with all owner names substituted for their run-time equivalents,
derived from the current this. Furthermore, this is substituted for the current
object, and the parameter is substituted for the actual argument value.

(d-method-call)
B(x) = ι B(y) = v H(ι) = (C〈σκ〉, α, _)

Body(C, m) = e Param(C, m) = x
B′ = rep �→ ι, bridge �→ κ, this �→ ι, x �→ v, aggregate �→ α

n > 0 〈H ; B′, σκ; e〉 →(n−1) 〈H ′; v′〉
〈H ; B; x.m(y)〉 →n 〈H ′; v′〉

The run-time representation of null is denoted by ε. Object creation is simple
due to the absence of constructors and custom field initialization. A fresh object
has all its fields initialized to null and a fresh context α is picked to represent
its aggregate, unless it is a ombudsman, in which case the aggregate context is
that of the current object.

(d-null)

〈H;B; null〉 →n 〈H ; ε〉

(d-new)
F =[f �→ ε | f ∈ Fields(C)] ι is fresh

p = bridge⇒α fresh p = bridge⇒α = B(aggregate)
〈H ; B; new C〈p, p〉〉 →n 〈H [ι �→ (C〈B(p), B(p)〉, α, F)]; ι〉

For brevity, we omit the trivial error trapping rules for dereferencing null pointers
and propagating errors and stack overflow.

3.3 Meta Theory

In our reasoning about well-formedness, we rely on a combined type environment
and store type Γ ::= ε | Γ, x : τ | Γ, ι : τ | Γ, α : κ | Γ, o ι : α. The entry α : κ
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Table 2. Judgments in the meta-theoretic part of the formalism

� Γ Γ is a well-formed store type
Γ � 〈H ; B; e〉 : τ
Γ � 〈H ; B; v〉 : τ

〈H ; B; e/v〉 is a well-formed configuration
with type τ under Γ

Γ � C〈κ〉 C〈κ〉 is a well-formed type under Γ

Γ � κ →ok κ′ Objects in context κ have permission to reference ob-
jects immediately in κ′ under Γ

Γ � H H is a well-formed heap under Γ

Γ � v : τ Value v has type τ under Γ

maps an aggregate context α to the owner κ of all its ombudsmen. In a similar
fashion, the entry o ι : α maps an object ι into an aggregate context α for which
it acts as an ombudsman. Table 2 overviews the judgments in the meta theory.

(Γ -ε)

� ε

(Γ -var)
x ∈ dom(Γ ) Γ � τ

� Γ, x : τ

(Γ -object)
ι ∈ dom(Γ ) Γ � τ

� Γ, ι : τ

The rules (Γ -bridge) and (Γ -aggregate) are key elements here; in a well-formed
store type, all ombudsmen of the same aggregate have the same owner.

(Γ -bridge)
Γ � κ α ∈ dom(Γ )

� Γ, α : κ

(Γ -aggregate)
� Γ o ι ∈ dom(Γ ) α : κ ∈ Γ Γ (ι) = C〈σκ〉

� Γ, o ι : α

A well-formed heap can be extended by an object whose field contents correspond
to that of the class declaration. All ombudsmen for the same aggregate must have
the same owner.

(heap-[])
� Γ

Γ � [ ]

(heap-object)
Γ (ι) = C〈σκ〉 Γ (o ι) = α Γ (α) = κ Γ � H

Γ � v : (σκ
α ∪ {rep �→ ι, bridge �→ κ})(τ )

Fields(C) = {f} FieldType(C, f) = τ

Γ � H, ι �→ (C〈σκ〉, α, [f �→ v])

A configuration is well-formed given an environment Γ if its heap is well-formed
and its expression/value is well-typed.

(good-configuration)
Γ � H Γ � e {B} : τ {B}

Γ � 〈H ; B; e〉 : τ

(good-final-configuration)
Γ � H Γ � v : τ {B}

Γ � 〈H ; B; v〉 : τ

We assume a function e/τ {B} that replaces static names of owners in the domain
of B with their dynamic counterparts, e.g., C〈p〉 {B} = C〈B(p)〉. The judgments
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Γ � e : τ are “copy-and-patch” from the corresponding type rules E � e : τ and
therefore omitted.

(null-type)
Γ � τ

Γ � ε : τ

(object-type)
Γ (ι) = τ ′ Γ � τ ′ <: τ

Γ � ι : τ

Rules for good dynamic contexts are similar to their static counterparts. A type
is well-formed if its owner has the right to reference all other owner parameters.

(context-world)
� Γ

Γ � world

(context-object/aggregate)
� Γ κ ∈ dom(Γ )

Γ � κ

(d-type)
Γ � κ →ok κ Arity(C) = |κ, κ|

Γ � C〈κ, κ〉

Except for aggregates and bridges, relations between contexts are not explicitly
stored in Γ . Instead we infer them from the types present in a well-formed Γ .
Reflexivity and transitivity of this relation are trivial and therefore omitted.

(d-inside)
� Γ Γ (κ) = C〈κ〉 κ′ ∈ κ

Γ � κ ≺∗ κ′

(d-ombudsman)
� Γ Γ (α) = κ

Γ � α ≺∗ κ

Last, a context κ may reference another context κ′ if an inside relation can be
inferred from the first to the second, or if the second is an aggregate context and
the first is inside an object defining it.

(d-mayref)
Γ � κ ≺∗ κ′ ∨ Γ � κ ≺∗ ι ∧ Γ (o ι) = κ′

Γ � κ →ok κ′

We define → (“points to”) and � (“aggregates”) as binary relations between ob-
jects for some heap H such that ι → ι′ ⇐⇒ ∃ f s.t. H(ι.f) = ι′ and ι � ι′ ⇐⇒
H(ι) = (C〈κ〉, α, _) ∧ H(ι′) = (C〈α, _〉, _, _). We can now define “ombudsmen-
as-dominators” as a straightforward extension to owners-as-dominators.

Theorem 1: Ombudsmen-as-dominators. For any two objects ι1, ι2 in a well-
formed heap, ι1 → ι2 ⇒ ι1 ≺∗ Owner(ι2) ∨ ∃ ι s.t. ι � ι2 ∧ ι1 ≺∗ ι.

In plain English this states that if an object ι1 references another object
ι2, then either the owner of ι2 is a dominator of ι1 (this is the standard
owners-as-dominators property, the non-savvy ownership reader can con-
sult e.g., Clarke’s dissertation [12] for additional details), or ι2 is part of
some aggregate and ι1 is inside the representation of this aggregate.

Proof. Assume Γ � H in which ι1 → ι2. Let the run-time type of ι1 be some type
C〈k〉. By (heap-object), ι2 is owned by some owner, k say, in k, or the run-time
values for world, rep (ι1), bridge (ι1’s owner) and aggregate (α, say).
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First, let k′ be the owner of ι1. By (d-inside) follows ι1 ≺∗ k′ and by (d-type)
follows k′ →ok k for any k in k. Now, by (d-mayref), either k′ ≺∗ k (implying
ι1 ≺∗ k by transitivity), or exists ι s.t. ι1 ≺∗ ι (by transitivity) and Γ (o ι) = k′,
which implies ι � ι2. (*) If k = world then ι1 ≺∗ k by definition. If k = ι1,
then ι1 ≺∗ k by reflexivity of ≺∗. The case when k = i1’s owner is subsumed by
the above since ι1’s owner is in k. If k = α, then second part of the theorem’s
implication holds for ι = ι1 (**)

For clarity, in (*), ι1 belongs to the representation of an object that aggregates
ι2. In (**), ι1 aggregates ι2.

Theorem 2: Subject Reduction We prove subject reduction in the standard fash-
ion of progress plus preservation.
Progress: If Γ � 〈H ; B; e〉 : τ , then 〈H ; B; e〉 →n 〈H ′; v〉 or 〈H ; B; e〉 →n ERR
for some finite value of n.

Proof. The proof is straightforward by induction on the big-step rules where
most cases are immediate. The slightly more intricate cases, (d-select), (d-
update) and (d-method-call) are all guarded by versions of the same rule (elided
in this presentation) that capture null-dereferencing or stack overflow. By (heap-
object), a well-formed object (τ, α, F) has all its expected fields in F , with the
expected types, therefore, evaluation cannot get stuck accessing a non-existent
field, and a similar argument applies to method calls. ��

Preservation: If Γ � 〈H ; B; e〉 : τ and 〈H ; B; e〉 → 〈H ′; v〉, then there exists
Γ ′ ⊇ Γ s.t. Γ ′ � 〈H ′; B; v〉 : τ (omitting stack space for simplicity).

Proof. The proof is straightforward by structural induction on the shape of e.
There are no surprising cases. (Although B might be updated by evaluating e,
such updates will only be of local variables—not owners, which are the interesting
elements of B w.r.t. final configurations.) ��

4 Related Work

Several researchers have proposed relaxations of Clarkean ownership types that
can be used to overcome the single bridge object-problem. The main difference
with these systems is that ombudsmen explicate the notions of aggregates and
bridges in the types, e.g., allowing an object to clearly identify other bridges to
its aggregate, and work within the confines of owners-as-dominators, rather than
providing a “back door” which allow external access to an object’s internals.

Boyapati et al. [7] allow relaxing owners-as-dominators for instances of inner
classes. A list may define an inner iterator class that can be exported arbitrar-
ily, but still access the enclosing object’s representation. This allows expressing
mutating and non-mutating iterators, but at the same time destroys the strong
encapsulation, as there is no way for a type system to detect whether a back
door to an object’s representation exists or not.
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Boyapati’s proposal is somewhat close in spirit to ours: a single object starts
as the initial bridge object for an aggregate, and may create additional bridge
objects internally. However, a closer look reveals several shortcomings, which our
system avoids:

Non-modular. All bridge objects must be defined within a single lexical scope.
This destroys separate compilation, and also prevents reusing external classes
for bridge objects (e.g., it is not possible to have a common iterator class for
different list classes).

Inflexible. The initial bridge object must always be the outermost enclosing
class of the classes defining an aggregate. This is inflexible as it does not allow
defining an aggregate which can be created in multiple ways, using different
classes (e.g., a component with different ports for different configurations).
Also, staged construction of aggregates is not possible.

State confusion. There is no support for distinguishing between the repre-
sentation of the initial bridge object (private implementation details) and
the aggregate’s representation (which might be exported to another bridge).
Consequently, an iterator can leak details about the list which were not
intended to be exported. Strangely enough, the iterator can have represen-
tation which is private from the list.

Ad hoc encapsulation. Boyapati’s bridge objects can be exported arbitrarily
high up in the nesting hierarchy, making it hard to reason about the origins
of changes and completely destroying strong encapsulation.

The strength of Boyapati’s proposal is the ability to allow bridge objects to es-
cape arbitrarily outside their defining aggregate. The downside of this flexibility
is lack of flexibility in all other domains and the unclear guarantees that this
built-in back door gives the system.

OIGJ [40] take Boyapati’s approach and suffers from all but the last problem
above. In OIGJ, inner classes have access to the representation of the enclosing
object. The difference to Boyapati’s system is that in OIGJ the inner class must
have the same owner as the outer object (e.g., iterator has same owner as its list),
and thus cannot be arbitrarily exported, similar to our system. There is however
no way to distinguish bridges of a common aggregate from other peers. As in
Boyapati’s system the outer object grants subsequent bridge objects access to all
its state, there is no distinguishing of aggregate and bridge object representation.

The encapsulation property of Universe Types [30], owners-as-modifiers, re-
laxes owners-as-dominators for read-only references. Thus, traditional universe
types can express the iterator pattern, but only allow obtaining read-only refer-
ences to the list elements via an iterator (modulo expensive and unsafe down-
casts). Generic Universe Types [19] overcome this limitation, but do not allow
iterators that change its originating collection. In summary, Universe types allow
multiple entry points to aggregates, but only one of these entry points may have
mutating capabilities. Furthermore, the multiple entry points can be exported
arbitrarily in the system. In a concurrent setting this may not be desirable as
read-only references do not preclude the existence of mutable aliases, making
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them subject to possible data races. Clarke et al. [15] similarly relax owner-as-
dominators but for safe references (that may only be used to read immutable
parts of objects), and for references to immutable data, guaranteeing that no
mutation may occur concurrently.

Lu et al. [29] overcome some of the limitations of Boyapati’s escaping in-
ner classes by allowing dynamically exposing internal representation through a
“downgrading” operation. This voids the need of a specific inner class for ex-
posure, which allows separate compilation and reuse, but just like with inner
classes, their downgrading operation destroys the strong notion of encapsulation
resulting in unclear properties of the resulting system. Shallow ownership (e.g.,
[2]) is reminiscent of downgrading in that an object internal to an aggregate
can arbitrarily pass on permission to reference aggregate objects to an exter-
nal object that it creates. Shallow ownership however has no strong (or clear)
encapsulation guarantee.

Ownership Domains [1] allows a programmer to manually specify contexts
and how objects in these contexts may refer to each other by linking them
together. For instance, a list class may define a public domain for its iterators,
which is linked to both the domain containing the list links and the element
domain. While this is straightforward and flexible, it is difficult to identify the
encapsulation invariants of a system: it is necessary to look at large parts of a
system and how its components introduce new links between contexts that would
invalidate assumptions about encapsulation drawn locally by just studying the
list class. Ownership domains further suffer from problems similar to Boyapati’s
inner classes in that public domains are publicly accessible, and therefore an
iterator may be arbitrarily exported.

CoBoxes [36] (and JCoBoxes [37]) are active-objects-like systems with asyn-
chronous message sends and futures. CoBoxes are similar to our aggregates in
that they are defined in terms of the objects they contain and may have multi-
ple entry points into an aggregate. However, both CoBoxes and JCoBoxes rely
entirely on run-time checks to protect a box’s innards, whereas our system can
express and check fortified aggregates with multiple entry points at compile-time.

MOJO [11] and Mojojojo [28]3 support multiple ownership, which is more
general than our proposal, but this flexibility comes with very high complexity.
The descriptive nature of MOJO and Mojojojo allows a programmer to express
an aggregate in the types, but encapsulation is not enforced. Further, because
the aggregate is visible (in the types) from the outside it can be constructed,
populated and extended from the outside. In our system such operations are
under complete control of the aggregate itself.

In the context of verification of object invariants, Barnett and Naumann [4]
define a friendship protocol in which a granting class can give privileges to an-
other friend class that allows invariants in the friend to depend on fields in the
granting class. Objects are connected using an explicit attach construct, but
there is no notion of collaboratively defined state, and once a value of a field

3 Although MOJO and Mojojojo differ in expressiveness and technical details they are
very similar in spirit, so we treat them as one here.
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in a granting class has been obtained by a friend, the value may be exported
arbitrarily.

Boyland et al. [10] use effects and a novel “from” annotation to allow a data
structure to temporarily yield its state to an external object (e.g., a list to an
iterator). Such access permissions are treated linearly, and therefore cannot be
used to express multiple (read/write) entry points to an aggregate, including
fail-fast iterators with mutating capabilities and our shared bank account.

Lastly, Joe1 by Clarke and Drossopoulou [13] allow final variables to be used as
owners to externally name an object’s representation. This relaxation is however
only made for variables on the stack and therefore cannot be used to express
multiple entry points to aggregates in a straightforward fashion.

5 Discussion

Ombudsmen-as-dominators is a straightforward extension to owners-as-domina-
tors: the owners-as-dominators property holds for all objects in the rep context;
objects inside aggregate contexts are instead dominated by an unknown subset
of objects of the directly enclosing context. Thus, objects inside an aggregate con-
text enjoy a weaker encapsulation than representation objects which is precisely
the intention of our proposal since many aggregates cannot be expressed in the
hierarchical fashion that deep ownership types dictate. This has consequences
for reuse and computational effects, which is discussed below.

5.1 Ombudsmen and Reuse

Internally, an object will not know whether it lives inside another object’s rep-
resentation, or constructs an aggregate, which allows programmers to design
objects without concern for how they will be used in future systems. Conse-
quently, an object cannot know whether it is dominated by a single object or a
collection of several objects (which would presumably violate abstraction), but
we have not yet seen a programming pattern where this is an important factor.

A drawback of our system is that a class cannot be retrofitted to be an om-
budsman unless it makes use of the aggregate context. Removing this restric-
tion is simple, just give bridge objects implicit permission to reference aggregate
objects, and involves the addition of a single type rule:

(p-ombudsman)
� E

E � bridge →ok aggregate

This causes a problem with presenting a type of an ombudsman external to the
aggregate, since there is no external name for the aggregate context. This can be
solved using “lost owners” [18]. The type C〈bridge, aggregate〉 will externally
be C〈owner, ?〉 where ? is an owner that cannot be named in the current context.
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5.2 Ombudsmen and Ownership-Based Computational Effects

The idea of ombudsmen was conceived during our work on extending Joëlle [15],
a language for safe, reliable and efficient parallel programming based on the
active object pattern [23]. To achieve the necessary isolation for active objects,
Joëlle relies on an “flat” ownership types system where ownership forms a forest
and every active object is a root of a tree in the forest.

Our extension to Joëlle sports a type and effect system which is an amalga-
mation of Greenhouse and Boyland’s OOFX [24] and Clarke and Drossopoulou’s
Joe1 together with support for externally unique (from Wrigstad’s Joline [14,38]),
immutable and safe [33] references.

In Section 2.6, we showed how external uniqueness can be used to allow the
external creation of a bridge object for an aggregate without introducing back
doors. Owner-polymorphic methods, such as found in Clarke’s dissertation [12]
or Joline [38], can be used to temporarily export objects inside an aggregate
context past their ombudsmen, but only for the duration of a method call.

When combining ombudsmen with an ownership-based effect system, such
as the one in Joe1 or our extension of Joëlle, the obvious question arises, how
to report an effect to an object in the shared aggregate? The answer to the
question is to externally report effects under the shared aggregate as effects to
owner. This is imprecise, as not all objects in the owner context may access
the aggregate. Without additional machinery, like path dependent-types (see
e.g., [13]), regions (see e.g., [24]), linearity (see e.g., [10]) or data groups [26],
distinguishing ombudsmen for different aggregates is in any case impossible, so
the subsuming aggregate into owner for effects is required for soundness.

6 Concluding Remarks

We have presented an extension to Clarkean ownership types that slightly relaxes
owners-as-dominators to enable multiple entry points into a single aggregate. Our
extension works well with existing deep ownership systems, and only requires two
additional ownership contexts, aggregate and bridge, and minor extensions to
existing type rules. In terms of increasing complexity for the programmer, we
believe that multiple contexts of an object does not overly complicate program-
ming, especially since the contexts are limited to two, and the notion of owner
specialization, bridge is a subset of owner, should be as straightforward as any
simple notion of regions.

We have implemented the ombudsman system as part of our extended Joëlle
compiler on top of JastAddJ [20]. It currently supports deep ownership types,
external uniqueness, and a complete implementation of ombudsmen, including
staged aggregate construction with ownership transfer.

Acknowledgments. We thank the anonymous reviewers at IWACO 2011 and
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