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Abstract. Matlab is an extremely popular programming language used
by scientists, engineers, researchers and students world-wide. Despite its
popularity, it has received very little attention from compiler researchers.
This paper introduces McSaf, an open-source static analysis framework
which is intended to enable more compiler research for Matlab and
extensions of Matlab. The framework is based on an intermediate rep-
resentation (IR) called McLast, which has been designed to capture all
the key features of Matlab, while at the same time being simple for
program analysis. The paper describes both the IR and the procedure
for creating the IR from the higher-level AST. The analysis framework
itself provides visitor-based traversals including fixed-point-based traver-
sals to support both forwards and backwards analyses. McSaf has been
implemented as part of the McLab project, and the framework has al-
ready been used for a variety of analyses, both for Matlab and the
AspectMatlab extension.

1 Introduction

Matlab is a popular dynamic (“scripting”) programming language that has
been in use since the late 1970s, and a commercial product of MathWorks since
1984, with millions of users in the scientific, engineering and research communi-
ties.1 There are currently over 1200 books based on Matlab and its companion
software, Simulink (http://www.mathworks.com/support/books).

Despite the popularity of the language, there exists relatively little compiler
research for Matlab, and without an existing framework it is difficult for re-
searchers to tackle such research. McSaf, the topic of this paper, is a compiler
analysis framework that is intended to enable compiler research by providing
both a convenient intermediate representation and an intraprocedural analysis
framework which can be used both for Matlab and language extensions of
Matlab. It has been developed as a key component of the McLab project [3].

� This work was supported, in part, by NSERC. A special thanks to Soroush Radpour
for his help with the experiments.

1 The most recent data from MathWorks shows that the number of users
of Matlab was 1 million in 2004, with the number of users doubling ev-
ery 1.5 to 2 years.(From www.mathworks.com/company/newsletters/news notes/-

clevescorner/jan06.pdf.)
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This paper does not just report on a standard compiler engineering effort.
Designing an intermediate representation (IR) for Matlab that is suitable for
program analysis was quite challenging for three reasons. First, the Matlab lan-
guage has grown somewhat organically and does not have a precise documented
semantics. Thus, the IR needs to expose those semantics both correctly and in a
manner that simplifies subsequent analyses. One example is the correct handling
of the “&” and “|” operators, which are short-circuiting in some situations and
not in others. Secondly, Matlab supports several high-level features that are
convenient for programmers, but difficult for compilers. For example, an assign-
ment statement may assign to numerous variables at the same time, and the
number of such variables may not be known statically. The IR must expose and
simplify such features. Thirdly, the IR must correctly encode which identifiers
refer to variables, and which refer to named functions. This is not trivial since
the syntax of Matlab is ambiguous, and there are no explicit declarations of
variables. For example, the expression “a(i)” could mean four different things,
depending on whether “a” is a variable or function, and whether “i” is a variable
or a function. Consider two of the cases. If both “a” and “i” are variables, the
expression “a(i)” means the ith element of array “a”. If both “a” and “i” are
named functions, then “a(i)” is a call to function “a”, where the argument is
a call to the built-in function “i” (which returns the complex value i). Clearly
a program analysis will apply very different analysis rules for an array access or
a function call. Thus, these syntactic ambiguities should be resolved in the IR.

Given a suitable IR, another important challenge is to design an analysis
framework that supports a wide variety of intraprocedural analyses. Our goal
was to design a framework that is easy to use, thus enabling others to design new
analyses. We also felt that it was important that our approach should support
language extensions so that an analysis originally designed for Matlab could
be easily adapted to an extension of Matlab.

In this paper we provide our solution to these challenges. Our contributions
are as follows:

Design of McLast IR: The design and implementation of McLast, a lower-
level AST-based intermediate representation that both exposes important
Matlab semantics and simplifies program analysis.

Generating McLast: The design and implementation of a collection of sim-
plifying transformations that together provide a mechanism for generating
the McLast IR from the higher-level AST. This simplification framework
encodes the dependency structure between simplifications to enable the ap-
plication of a subset of simplifications and also to allow for a structured
way of introducing future simplifications. The simplifying transformations
themselves support both standard and Matlab-specific transformations.

Analysis Framework: The design and implementation of an extensible pro-
gram analysis framework for Matlab. The framework supports a variety
of visitor-based traversal mechanisms including a depth-first style traver-
sal suitable for flow-insensitive analyses and a structured-program-analysis



134 J. Doherty and L. Hendren

traversal which supports both forward and backwards flow-sensitive analyses.
The flow-sensitive traversal mechanism automatically supports conditional
control flow, and iterative constructs, including support for “break” and
“continue” statements.

Extensibility: Both the simplification and analysis frameworks have been de-
signed to support extensions of Matlab.

The remainder of this paper is structured as follows. In Section 2 we provide an
overview of the whole McLab project and show how the McSaf framework fits
into the big picture. Section 3 introduces the McLast IR and the simplifying
transformations, while Section 4 describes the analysis framework. Related work
is discussed in Section 5 and Section 6 concludes.

2 Overview

The McSaf system forms a key component of the McLab project as illus-
trated in Figure 1. As a whole, McLab is intended as a complete toolkit for
Matlab systems including an extensible front-end built using MetaLexer [5]
and JastAdd [2,12], and several back-ends including source-to-source tools like
the refactoring toolkit [18], static compilers such as the Matlab-to-Fortran
translator (McFor) [16] and the Matlab Tamer [10], and dynamic virtual ma-
chine/JIT systems (McVM) [6]. All parts of McLab, with the exception of
McVM, are implemented using Java and Java-based tools.

McSaf is the heart of the system, providing both the lower-level McLast
IR and the analysis toolkit/engine (as indicated by the grey boxes). The dot-
ted boxes in Figure 1 denote existing implementations of flow analyses that
use the McSaf toolkit. Note that McSaf can be used to build analyses both
on the higher-level AST (for example, kind analysis), as well as on the lower-
level McLast. McSaf includes three different implementations of kind anal-
ysis [9], and a variety of standard dataflow analyses. Other components of the
larger McLab system also build analyses using McSaf. The refactoring toolkit
implements a variety of specialized analyses to enable refactoring transforma-
tions [18], and the Matlab Taming toolkit implements specialized simplifica-
tions and analyses to generate a call graph and type/class information [10].
McVM uses both the IR and some standard flow analysis information generated
by McSaf.2

It is our intention that future users of McSaf would add to both the standard
flow analyses and develop new specialized analyses for both our existing back-
ends and for their own projects/tools.

3 Intermediate Representations and Simplifications

One of the key steps in designing McSaf was to design and implement an ap-
propriate intermediate representation which exposed key semantics of Matlab

2 Specialized analyses in McVM are implemented in C++ and LLVM [15], and thus
do not use McSaf.
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Fig. 1. Overview of McLab and McSaf. The grey boxes indicate the components
presented in this paper: Simplifications are discussed in Section 3 and the Flow Analysis
Framework is presented in Section 4. The dotted boxes correspond to existing analyses
implemented using McSaf.

and provided a good basis for analyses. Although we hope the end result is quite
clean and accomplishes these goal, the process of determining the correct IR
was not at all straightforward. In this section we introduce the existing high-
level AST and then discuss the simplifications we developed that result in the
lower-level IR, McLast.

3.1 High-Level AST

The McLab front-end already has a well-defined AST specification and a Java
implementation of the AST that is generated based on a JastAdd specification.
Figure 2 gives an extract of the AST specification.

For those not familiar with JastAdd, we give a quick introduction. Each dec-
laration defines a node type, which may be abstract or concrete. An abstract
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1 // Top−level structure
2 abstract Program;
3 CompilationUnits ::= Program∗;
4 Script : Program ::= HelpComment∗ Stmt∗;
5 FunctionList : Program ::= Function∗;
6 Function ::= OutputParam:Name∗ <Name:String> InputParam:Name∗
7 HelpComment∗ Stmt∗ NestedFunction:Function∗;
8

9 // Statements
10 abstract Stmt;
11 WhileStmt : Stmt ::= Expr Stmt∗;
12 ForStmt : Stmt ::= AssignStmt Stmt∗;
13 BreakStmt : Stmt;
14 ContinueStmt : Stmt;
15 ReturnStmt : Stmt;
16 IfStmt : Stmt ::= IfBlock∗ [ElseBlock];
17 IfBlock ::= Condition:Expr Stmt∗;
18 ElseBlock ::= Stmt∗;
19 SwitchStmt : Stmt ::= Expr SwitchCaseBlock∗ [DefaultCaseBlock];
20 SwitchCaseBlock ::= Expr Stmt∗;
21 DefaultCaseBlock ::= Stmt∗;
22 AssignStmt : Stmt ::= LHS:Expr RHS:Expr;
23 ExprStmt : Stmt ::= Expr;
24

25 // Expressions
26 abstract Expr;
27 abstract LiteralExpr : Expr;
28 abstract LValueExpr : Expr;
29 abstract UnaryExpr : Expr ::= Operand:Expr;
30 abstract BinaryExpr : Expr ::= LHS:Expr RHS:Expr;
31 NameExpr : LValueExpr ::= Name;
32 ParameterizedExpr : LValueExpr ::= Target:Expr Arg:Expr∗;
33 CellIndexExpr : LValueExpr ::= Target:Expr Arg:Expr∗;
34 DotExpr : LValueExpr ::= Target:Expr Field:Name;
35 MatrixExpr : LValueExpr ::= Row∗;
36 Name ::= <ID : String>;
37 Row ::= Element:Expr∗;
38 ...
39 RangeExpr : Expr ::= Lower:Expr [Incr:Expr] Upper:Expr;
40 ColonExpr : Expr;
41 EndExpr : Expr;
42 CellArrayExpr : Expr ::= Row∗;
43 FunctionHandleExpr : Expr ::= Name;
44 LambdaExpr : Expr ::= InputParam:Name∗ Body:Expr;

Fig. 2. AST Definition
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declaration, such as in line 2, will result in an abstract Java class being generated.
Declarations can declare subtypes, for example on lines 4 and 5, Script and
FunctionList are declared to be subtypes of Program. Each declaration may list
children, for example, lines 6-7 declare that a Function has six children. Children
may be explicitly named or not. For example, the first child of Function has the
name OutputParam, whereas the fourth and fifth children are not named. A
child may be a list of a specific type (indicated by ∗), a singleton, or optional
(indicated by [ ... ]).

The AST definition follows the natural abstract syntax of Matlab. A Mat-
lab program consists of a collection of compilation units. Each compilation unit
can contain either a script or a list of functions. Scripts contain only comments
and statements. Functions have output parameters, input parameters, and pos-
sibly nested functions. The function body consists of comments and statements.
Statements can be simple expression or assignment statements, or control-flow
statements. Since Matlab supports many high-level array operations, there are
quite a few types of expressions.

3.2 Simplification Process

Although it is possible to define program analyses over the high-level AST, such
an analysis must be able to handle arbitrarily complicated expressions and must
correctly handle the semantics of Matlab constructs. Thus, we have defined a
lower-level, simpler AST called McLast. Figure 3 shows the overall simplifica-
tion process. The front-end delivers the high-level AST (also called McAst) and
we wish to create a semantically equivalent lower-level representation.

One of the first surprises for us was that we could not create a lower-level
AST before we resolved the meaning of all identifiers. For example, it is not
possible to correctly simplify an expression of the form a(f(end)) before one
knows whether f is a function or a variable. Thus, before simplification, kind
analysis [9] must be applied to determine the meaning of identifiers (AST nodes
of type Name). The kind analysis has itself been implemented using the McSaf
framework presented in this paper, and it computes, for each Name node, one of
the following kinds: Var, the Name refers to a variable; Fn, the Name refers to
a named function; or Id, the Name could be either a Var or Fn at run-time.

Another challenge is that the simplifying transformations depend on each
other, and we wanted to be able to: (1) support applying only some transfor-
mations; and (2) allow for new transformations to be added in a consistent and
simple fashion. Thus, each simplification forms part of a dependency structure
which is enforced by the framework.

In the following sections, Sec. 3.3 to Sec. 3.6 outline the highlights of the indi-
vidual simplfications, and then in Sec. 3.7 we describe our approach to handling
dependencies between simplifications. We also provide some empirical measure-
ments on the frequency of simplifications in Sec. 3.8. More detailed descriptions
can be found in the first author’s thesis [8] and in the implementation [3].
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Fig. 3. Simplifications

3.3 Exposing Implicit Control Flow

One important group of simplifications is to expose implicit control flow. Explicit
and simple control flow makes the subsequent implementation of flow-sensitive
analyses much more straightforward.

The case of Matlab short-circuit operators illustrates the difficulty in cap-
turing the semantics of Matlab, which often includes special and somewhat
irregular rules that seem to have emerged over time. Matlab supports im-
plicit control flow via the scalar logical operators && and ||, which are always
short-circuit operators in the usual sense. The logical operator simplification
transforms all occurrences of these operators to equivalent explicit control flow
with conditional statements, ensuring that code copying is minimized. For exam-
ple, the original expression in Figure 4(a) would be converted to the conditional
statement in Figure 4(b).

1 t = E1 && E2;

1 t = E1;

2 if (E1)

3 t = E2;

4 else

5 t = false;

6 end

1 t = E1;

2 CheckScalarStmt(t);

3 if (E1)

4 t = E2;

5 CheckScalarStmt(t);

6 else

7 t = false;

8 end

(a) original (b) first try (c) correct

Fig. 4. Example of simplifying short-circuit &&

In implementing the short-circuit transformations we were careful not to du-
plicate code and we were also quite careful to capture the correct Matlab
semantics of short-circuits. In particular, the Matlab semantics for the scalar
logical operators dictate that the result of any operand that is evaluated must
be a scalar logical, and if it is not a scalar, a run-time error is raised. However,
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the same run-time check is not made for conditional expressions for if and while

statements. These conditional statements are considered true when the result is
non-empty and contains all nonzero elements (logical or real numeric), and false
otherwise. Thus, to maintain the correct semantics the simplification introduces
new CheckScalarStmt nodes, as shown in Figure 4(c).

Another non-obvious twist is that Matlab also has implicit short-circuits for
the element-wise operators & and |, but only when they appear as the top-level
operators in the condition of an if or while construct. Thus, the simplification for
element-wise logical operators must ensure that the short-circuit simplification is
applied in the correct contexts. In particular, such simplifications must be done
before another transformation moves the expression out of the condition.

3.4 Simplifying Control Constructs

In addition to exposing implicit control flow, simplifications are also applied to
if and for statements. The if simplification simply restructures elseif con-
structs to equivalent nested if-else constructs. This ensures that subsequent
flow analyses only have to deal with two control-flow branches.

The for simplification is somewhat more Matlab-specific. Many Matlab
for loops are written in the style of Figure 5(a), where i takes on values from
1 to n in steps of k. This style of loop, which we call a range for loop, is ideal
for subsequent analysis and loop transformations. However, the general form of
a Matlab for loop is shown in Figure 5(b). The general semantics is that the
expression E is evaluated to an array a, and a is treated as a two-dimensional
array. The loop iterates over a, assigning to i the i’th column of a. If a is empty,
then the loop body does not execute, and the final value of i is the empty
array. Figure 5(c) shows the simplification that converts a general array to an
equivalent range for loop.

1 for i = 1:k:n

2 <BODY>

3 end

1 for i = E

2 <BODY>

3 end

1 t1=E;

2 [t2,t3] = size(t1);

3 i = [];

4 for t4 = 1:t3

5 i = t1(:,t4);

6 <BODY>

7 end

(a) range for loop (b) original general loop (c) simplified loop

Fig. 5. Example of simplifying for loops

3.5 Simplifying Single Statements and Expressions

A key part of the simplification process is simplifying single assignment state-
ments and expressions. The key idea is that each statement and expression is sim-
plified as much as possible, thus reducing the complexity for subsequent analyses.
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The first simplification merely divides an assignment so that it has a complex
expression only on the right-hand-side (rhs) or only on the left-hand-side (lhs).
Thus, statements of the form E1=E2; are transformed to t1=E2; E1=t1;. Subse-
quent simplifications then simplify either the rhs (RValue) or the lhs (LValue).

Each RValue is simplified so that it contains at most one complex opera-
tion (function call, operand, index, field access or range expression). For ex-
ample, assuming that x, a and i have kind Var, the RValue expression in
lhs=a(f(g(i),sin(x))).bwouldbe simplified to t1=g(i); t2=sin(x); t3=f(t1,t2);
t4=a(t3); lhs=t4.b.

Simplifying complex expressions that are LValue’s (i.e. expressions on the lhs
of assignment statements) is more difficult because the expression now denotes an
address and not a value andMatlab has no natural way of expressing addresses.
Thus, the simplification of LValues simplifies internal expressions as much as pos-
sible, but does allow for a chain of indexing and field expressions. The grammar in
Figure 6 gives the rules for LValue, with a further restriction that NameExpr must
refer to names with kind Var. If we take the same expression as before but use
it as an LValue, as in the assignment statement a(f(g(i),sin(x))).b = rhs, the
simplification would be: t1=g(i); t2=sin(x); t3=(t1,t2); a(t3).b = rhs. Note
that the final statement in the simplification uses the chain of references a(t3).b,
which cannot be further simplified.

LV alue := NameExpr

| Indexing

| Access

Indexing := NameExpr(NameOrV al∗)

| Access(NameOrV al∗)

Access := LV alue.Name

NameOrV al := NameExpr

| LiteralExpr

Fig. 6. LValue grammar

There is one additional Matlab-specific expression that must be simplified
correctly, which is the end expression. The end expression binds to the tightest
enclosing array or cell array, and it returns the last index of the dimension in
which it appeared. For example, the expression a(foo()).b(i,end,k) where a

has kind Var and foo has kind Fn, end refers to the last index of the second
dimension of the 3-dimensional view of the array resulting from the evalua-
tion of a(foo()).b. The end simplification replaces the end expression with an
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explicit call to the endfn function which has three arguments: the array, the
dimension in which the end expression was found, and the total number of di-
mensions. For the example above, the simplification is quite straightforward and
would be t1=foo(); t2=a(t1); t3=t2.b; t4=endfn(t3,2,3); t3(i,t4,k). How-
ever, more complex situations can arise, especially when end is used inside
an LValue. Consider the example, a(foo()).b(i,bar(end),k)=rhs, assuming bar

has kind Fn. This will be simplified to t1=foo(); t2=endfn(?,2,3); t3=bar(t2);

a(t1).b(i,t3,k)=rhs where the ? must be filled in with correct simplified LValue,
which in this case is a(t1).b.

3.6 Dealing with Multiple Assignments

In the previous simplifications we have assumed that assignments have a sim-
ple lhs. However, Matlab supports assignments to multiple variables on the
lhs. Dealing with multiple values on the lhs is not usually difficult, but with
Matlab there is an important complication. That is, that Matlab allows an
unknown number of lhs variables. The simplifications handle the simple and
more complicated cases as follows.

In the case where the number of lhs variables is known, the simplification
ensures that only simple variables, without repetition occur on the lhs. For ex-
ample, [a,b.c,a]=lhs would be simplified to [a,t1,t2]=lhs; b.c=t1; a=t2. This
simplification simplifies subsequent interprocedural analyses since the number
and names of the return parameters are explicit.

The case where the number of variables on the lhs is not known is harder,
and it was quite difficult to decide how to handle this case. In the end we
decided to introduce a new CSL IR node. A typical example is the statement
[a,b{:},c]=rhs. In Matlab this specifies that the first return value is bound
to a, the last return value is bound to c, and the middle values are bound to
the cell array b. The simplification for these cases introduces an explicit CSL

node for each item in the return list than can possibly correspond to a list
of values (known in Matlab as a Comma Separated List (CSL)). For each
such CSL, the simplification introduces an explicit CSL node associated with
a new temporary name. For example, [a,b{:},c]=rhs would be simplified to
[a,CSL[t1],c] = rhs; [b{:}] = CSL[t1].

3.7 Simplification Dependencies

The complete simplification procedure is implemented as a collection of simpli-
fying transformations. Some simplifications depend upon others having already
been applied. The dependencies between the existing simplifications is given in
Figure 7. The simplification called FULL represents the case where all simplifi-
cations should be applied. However, framework users might want to only apply
some simplifications, for example loop transformations may just want to apply
the FOR simplifications.
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Fig. 7. Dependencies for Simplifications

To enforce the dependencies, the framework provides the Simplifier class.
In addition, each simplification is implemented as a class extending Abstract -

Simplification . The AbstractSimplification class requires that each simplification
have a method called getDependencies that returns a set of dependencies. In or-
der to use the simplifier, an instance must be constructed with a given set of
simplifications to perform. The simplifier then performs a depth first traversal
of the dependency DAG producing a list of simplifications, avoiding duplica-
tion. Executing the simplifications in the order of the list will ensure that all
dependencies will be met. To make it simpler to perform any given simplifica-
tion and its dependencies, each simplification has a getStartSet static method.
This method returns a singleton set containing the simplification itself. Clearly
framework users can add new simplifications and state their dependencies quite
easily. In fact, the Matlab Taming project has recently built upon the McSaf
framework by introducing new simplifications which were inserted quite easily
using this approach.

3.8 Simplification Frequencies

In order to examine the relative frequency applications for each simplification
type, we instrumented our simplification framework to count the number of
times each simplification caused a statement to be rewritten and the number
of times the simplification extracted an expression to a temporary variable. We
applied the instrumented simplifier to a large collection of Matlab functions
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and scripts.3 The benchmarks come from a wide variety of application areas
including Computational Physics, Statistics, Computational Biology, Geome-
try, Linear Algebra, Signal Processing and Image Processing. We analyzed 3057
projects composed of 11698 functions and 2349 scripts. The projects vary in size
between 283 files in one project to a single file. A summary of the data collected
is given in Figure 8, ordered by increasing frequency.

Simplification # rewrites (%total) # temps extracted

FOR 329 (0.1%) 329
Multi-Assign 354 (0.1%) 651
Element-wise short-circuit 1791 (0.5%) 4068
Simple IF 4518 (1.3%) 0
Left 6649 (1.9%) 7969
Simple-Assign 24478 (7.1%) 24478
Right 306397 (88.9%) 325780

Fig. 8. Frequencies for Simplifications

These results show that the FOR and Simple IF transformations are applied
relatively infrequently. The benchmarks contained 12189 for statements and
only 329 required the FOR simplifications. Similarly only 4518 elseif statements
needed to be simplified, out of a total of 31758 if statements in the benchmarks.
We were somewhat surprised that there were almost 1800 occurrences of the
element-wise short-circuit simplification. The use of element-wise short-circuiting
is discouraged by MathWorks, but it appears that existing code does use this
feature. This may be a potential refactoring opportunity. It was also interesting
to note that there were relatively few applications of the Multi-Assign simplifica-
tion, especially as compared to the Simple-Assign. As expected, by far the most
frequent simplification was the Right simplification which simplifies expressions
by extracting sub-expressions to a temporary.

4 Analysis Framework

A key part of the McSaf toolkit is an analysis framework that supports a va-
riety of pre-defined and extensible traversal mechanisms; built-in and extensible
support for representing a variety of flow data types; and support for depth-first
and structure-based analyses. The toolkit has been designed to work both for
the higher-level AST, as well as for the lower-level McLast IR.

3 Benchmarks were obtained from individual contributors plus projects from
http://www.mathworks.com/matlabcentral/fileexchange,
http://people.sc.fsu.edu/~jburkardt/m src/m src.html,
http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/ and
http://www.mathtools.net/MATLAB/. This is the same set of benchmarks that are
used in [9].



144 J. Doherty and L. Hendren

4.1 Traversal Mechanism

The traversal mechanism is central to the framework - in fact it is used both
to drive the simplifications presented in the previous section and the analyses
presented later in this section. The framework accommodates different traversals
by implementing a variant of the visitor pattern. The IR consists of instances
of different types of AST nodes. The types form a class hierarchy, which is
induced by the JastAdd specification, an excerpt of the hierarchy is depicted in
Figure 9.

Fig. 9. Excerpt of AST class hierarchy. The grey class, CheckScalarStmt is an AST
node that is part of McLast and not McAst. All white classes in this diagram are
part of both McLast and McAst.

To facilitate traversal, there is a Java interface, NodeCaseHandler, that consists
of methods of the form void caseStmt( Stmt node ). There is one such method for
every AST class. The framework also provides a simple abstract implementation
called AbstractNodeCaseHandler. This implementation provides default behaviour
for each node case. This default behaviour is that for each AST class, the node
case for that class simply forwards to the node case of its parent class. The
forwarding is done by calling the case for the parent class with the input from
the case for the given class. We demonstrate this with the following excerpt
from AbstractNodeCaseHandler for the AssignStmt and Stmt classes. Notice that
case AssignStmt(...) is forwarding up to the case belonging to its parent class,
Stmt.

public void caseAssignStmt( AssignStmt node ) { caseStmt( node ); }
public void caseStmt( Stmt node ) { caseASTNode( node ); }
Figure 9 shows that the AssignStmt node type extends the Stmt node type. This
means that the default behaviour for case AssignStmt(...) is to forward to case -

Stmt( ... ), which is done by passing the argument from case AssignStmt(...) to
case Stmt( ... ). The definition for the case AssignStmt(...) method demonstrates
the forwarding behaviour. This method takes in an instance of AssignStmt and
calls case Stmt( ... ) with that instance. Note that ASTNode is the root type of
the AST class hierarchy. The Stmt class is a top level node type, which directly
extends ASTNode, so the case Stmt( ... ) will forward to case ASTNode(...). The
AbstractNodeCaseHandler leaves the case ASTNode(...) method unimplemented.
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Each AST class implements a method called analyze that takes a
NodeCaseHandler as an argument. These methods will call the appropriate node
case of the given handler, passing itself to the handler. For example, here is the
code implementing the analyze method in the AssignStmt class.

public void analyze( NodeCaseHandler handler ) { handler.caseAssignStmt( this ); }
In order to create a particular traversal, a programmer needs to create a special-
ized NodeCaseHandler. The different types of analyses are implemented in this
manner, but a programmer can also directly create a specialized traversal. To
demonstrate this process we present a simple traversal, called StmtCounter, that
counts the number of statements in a given AST. Code for this traversal is given
is Figure 10.

1 public class StmtCounter extends AbstractNodeCaseHandler {
2 private int count = 0;
3 private StmtCounter() { super(); }
4

5 public static int countStmts( ASTNode tree ) { tree.analyze( new StmtCounter() ); }
6

7 public void caseASTNode( ASTNode node )
8 { for( int i = 0; i<node.getNumChild(); i++ )
9 node.getChild(i ).analyze( this );

10 }
11

12 public void caseStmt( Stmt node ) { count++; caseASTNode( node ); }
13 }

Fig. 10. Example traversal counting statements

To use this class, a programmer simply needs to call the static method
countStmts. This method creates a new instance of the traversal and starts the
analysis off.

This traversal will visit all nodes in the tree in depth-first order, and count each
statement node. There are two important details to note from this example. The
first thing is the case ASTNode(...) implementation. In this example, this method
does the actual traversal over the tree, looping through and visiting each of a
node’s children. Since StmtCounter extends AbstractNodeCaseHandler all cases
that are not overridden will forward up until they reach this case. This means
that the default behaviour for AST nodes will be to simply traverse through
their children. This is a common pattern when implementing traversals. The
flow-insensitive traversal is implemented similar to this, and the flow-sensitive
traversals have a similar case ASTNode(...) with other behaviour implemented
for control structures like loops and conditionals.

The second thing to notice is the case Stmt( ... ) method. Besides case ASTNode

(...), this is the only case implemented by StmtCounter. Again, since StmtCounter

extends AbstractNodeCaseHandler, all node types that are descendants of Stmt
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will forward up to this case. So this case will capture all statements, which gives
a good place to perform the count. Note that this implementation of case Stmt-

( ... ) forwards to case ASTNode(...). This is because there are some statements,
such as if statements, that can contain other statements. We wish to visit all of
the statements contained in other statements, so we need to visit the children of
a given statement. To do this, we simply forward to case ASTNode(...).

The StmtCounter example does have some inefficiencies. It will visit all chil-
dren of a given node, even children that cannot be, or contain, statements. For
example, the children of an expression cannot be a statement, nor can it contain
statements. This shortcoming can be overcome by providing specialized imple-
mentations of appropriate cases. To avoid visiting unnecessary expression chil-
dren one could add the following method to the class. This method will prevent
all children of any expression from being visited.

...
public void caseExpr( Expr node ) { return; }
...

The example can be refined further, but the original version is concise and cor-
rect, and demonstrates how simple it can be to create new traversals. The traver-
sal mechanism is also used by the simplifications presented in Sec. 3. There is
a specialized traversal created for all simplifications. This traversal implements
the rewrite mechanisms as well as the AST traversal. Each simplification extends
this simplification traversal, implementing it’s own behaviour for the appropriate
node cases.

4.2 Representations for Flow-Data

An analysis is written to produce information about the program being analyzed.
McSaf’s analysis classes are generic in the type of information produced. An
analysis of type StructuralAnalysis<D> is an analysis that produces information
of type D. To make the framework as general as possible, the information can be
of any type. However, the type of information often falls into certain categories.
One example is an analysis that produces, for every program point, a set of
variables that must be defined at that program point. Alternatively, for every
program point, the analysis could have produced a map from variable names
to their types. To make implementing analyses that produce such information
easier, the McSaf framework defines interfaces and implementations for basic
flow-data. A class hierarchy for flow-data structures provided by the framework
is given in Figure 11.

The FlowData<D> interface is the base type for all predefined flow-data rep-
resentations. This type represents a collection of data of type D. The interface
is primarily intended to tag a class as representing flow-data. As such, it defines
no methods. In addition to this basic interface, the framework also provides two
more specific interfaces, one for sets and the other for maps. For each of these,
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Fig. 11. flow-data class hierarchy

an abstract implementation is provided to make creating new implementations
simpler. In addition, each of these interfaces also have concrete implementations.

4.3 Depth-First Analysis

The simplest form of analysis supported by the framework is the depth-first
analysis. This type of analysis is intended to traverse the tree structure of the
AST, visiting each node in a depth-first order. The depth-first analysis type can
be used to implement flow-insensitive analyses.

This type of analysis is implemented by extending the AbstractDepthFirst-

Analysis<A> class. The AbstractDepthFirstAnalysis implements the Analysis in-
terface and extends AbstractNodeCaseHandler. This relationship is depicted in
Figure 12.

Fig. 12. Class hierarchy snipet for depth-first analysis

Since AbstractDepthFirstAnalysis extends AbstractNodeCaseHandler it inherits
all the default traversal behaviour. It extends this behaviour with default im-
plementations of the new case methods defined by the Analysis interface. The
behaviour for these new cases is to forward to the case associated with the type
of the argument that the case accepts. For instance case LoopVar(AssignStmt

loopVar) accepts an AssignStmt. So the default behaviour will be to forward
to case AssignStmt(...). The case WhileCondition(...) and case IfCondition( ... ) are



148 J. Doherty and L. Hendren

exceptions to this. These cases are specialized versions of case Condition( ... ) so
they will both forward to case Condition( ... ) by default.

The most important feature of AbstractDepthFirstAnalysis is that it imple-
ments a case ASTNode(...) method. The implementation of this method provides
the basic traversal for this type of analysis. Figure 13 presents the source code
for this method. The case ASTNode(...) method takes in the ASTNode being vis-
ited. For each child of that node, that child is analyzed. So to reiterate, since
AbstractDepthFirstAnalysis extends AbstractNodeCaseHandler, and due to its im-
plementation of case ASTNode(...), the default behaviour for every node is to
simply analyze all children of that node.

1 public void caseASTNode(ASTNode node)
2 { // visit each child node in forward order
3 for( int i = 0; i<node.getNumChild(); i++ ){
4 if ( node.getChild(i) != null )
5 node.getChild(i ).analyze( callback );
6 }
7 }

Fig. 13. Depth-first caseASTNode(...) source code

AbstractDepthFirstAnalysis also defines some new methods and fields for stor-
ing and accessing the data being produced by the analysis. It provides a map
from AST nodes to the data being computed. This allows data to be associated
with any desired node. In order to implement a new depth-first analysis, a pro-
grammer must create a concrete class that extends AbstractDepthFirstAnalysis.
To create this class, a programmer must: (1) select an analysis data type; (2)
implement an appropriate newInitialFlow method; and (3) implement an appro-
priate constructor. This will result in an analysis that will traverse the entire
tree visiting each node in depth-first order. To get the analysis to perform a use-
ful task, the programmer must override appropriate case methods. The analysis
will usually build up flow-data, and can also associate flow-data with particular
nodes in the tree.

To demonstrate the process of implementing a depth-first analysis, we present
a simple example analysis, given in Figure 14. This analysis collects all names
that are assigned to. It performs two tasks. First, for each assignment statement
in the tree, it associates all names that are assigned to by that assignment
statement to the assignment statement. Second, it collects in one set, all names
that are assigned to in the entire AST. Names are stored as strings, so the flow-
data has type HashSetFlowSet<String>. The analysis defines a field to store the
full set of names, and a flag for indicating when the traversal is in the lhs of a
statement. There are two accessor methods, one to get all the names, and the
other to get the full set. The core of the analysis is defined by the three “case”
methods which guide the traversal and collect the information.
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1 public class NameCollector extends
2 AbstractDepthFirstAnalysis<HashSetFlowSet<String>>
3 { private HashSetFlowSet<String> fullSet;
4 private boolean inLHS = false;
5

6 public NameCollector(ASTNode tree)
7 { super(tree);
8 fullSet = new HashSetFlowSet<String>();
9 }

10

11 public HashSetFlowSet<String> newInitialFlow()
12 { return new HashSetFlowSet<String>(); }
13

14 public Set<String> getAllNames() { return fullSet.getSet(); }
15

16 public Set<String> getNames( AssignStmt node )
17 { HashSetFlowSet<String> set = flowSets.get(node);
18 if ( set == null ) return null; else return set.getSet();
19 }
20

21 public void caseName( Name node )
22 { if ( inLHS ) currentSet.add( node.getID() ); }
23

24 public void caseAssignStmt( AssignStmt node )
25 { inLHS = true;
26 currentSet = newInitialFlow(); // init set for this stmt
27 analyze( node.getLHS() ); // analyze only the lhs
28 flowSets .put(node,currentSet); // store names in node
29 fullSet .addAll( currentSet ); // add to full set
30 inLHS = false;
31 }
32

33 public void caseParameterizedExpr( ParameterizedExpr node )
34 { analyze(node.getTarget()); } // only the target can be a defn
35 }

Fig. 14. NameCollector definition

4.4 Structure-Based Analysis

Structure-based flow analysis is the core part of the analysis framework. Structure-
based flow analyses perform a complete forwards or backwards analysis over the
AST or McLast representation, merging control flow for conditional and switch
statements and computing fixed-points for loops, including the proper handling
of break and continue statements. The computational part is driven via spe-
cialized traversal mechanisms, either forwards or backwards. The user of the
framework only needs to focus on the analysis rules for basic statements and the
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implementation of the flow-data type (which is either a direct use of a flow-data
type provided by the framework or a specialized user-provided type).

The organization of the structure-based analyses are illustrated in Figure 15.
The abstract implementation, called AbstractStructuralAnalysis, provides con-
structors and implementations for most of the API methods and has extensions
to support forwards and backwards analyses.

Fig. 15. Class hierarchy snipet for structural analysis

The AbstractStructuralAnalysis implementation is similar to the AbstractDepth

FirstAnalysis implementation in that it also provides a protected method void

analyze( ASTNode node ) and is also intended to abstract away from the basic
traversal mechanism. Unlike AbstractDepthFirstAnalysis, AbstractStructuralAnal

ysis does not provide an implementation for case ASTNode(...). This is because
structural analyses are split into two flavours, forwards and backwards, and
each of these flavours requires its own implementation of case ASTNode(...). The
forwards and backwards analyses are implemented in a similar way. For each,
the framework provides a general abstract implementation and a simple abstract
implementation.

The general implementation provides an implementation for the basic API
methods. It also provides an implementation for some traversal methods,
including loops and conditionals. These implementations for the traversal meth-
ods are what makes analyses derived from these classes capable of comput-
ing flow-sensitive analyses. In the case of the loop cases, case ForStmt(...) and
case WhileStmt(...), they provide the fixed-point computation procedure, and
the traversal also correctly handles the control-flow due to break and continue

statements.
The simple implementations go beyond this core functionality. They

implement certain behaviour that would not be applicable to all analyses. Such
behaviour includes how to deal with continue and break statements. These im-
plementations represent the functionality needed to write analyses that do not
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need more complex behaviour. They were provided to make analyses simpler to
write, requiring less duplication of code.

Handling Control Flow: Unlike analysis frameworks that operate on control
flow graphs, our framework computes the flow information based on the struc-
ture of the AST. Figure 16 gives a high-level diagrammatic view of how the
traverser handles the control flow. Figure 16(a) demonstrates that the condi-
tion is evaluated first, and then the flow information is sent to the if and else

branches. The user of the toolkit is given the ability to specialize the flow sets for
each branch, so an analysis can use the results of analyzing the condition to spe-
cialize the analysis for different branches. The �� operator demonstrates where
the data flow merge operation is applied. Figure 16(b) gives the traversal for
switches which demonstrates that for Matlab the conditions can be arbitrary
expressions that must be evaluated before the body of the case. Figure 16(c) and
(d) illustrate the behaviour for while and for loops. In this case the framework
takes care of merging the flow information from breaks and continues at the
appropriate places, as well as computing a fixed point.

These general implementations represent the core functionality that is needed
for these types of analyses. This functionality should be applicable to most anal-
yses of this type, and most flow analysis developers should not have to override
them. However, should a flow analyses developer have a special kind of fixed
point that he/she would like to implement, this can be done by specifying a new
specialized traversal.

Creating an Analysis Instance: To create a forwards analysis, a programmer
must extend one of the forward classes from Figure 15. The flow-analysis compu-
tations are implemented in the case methods for various node types. The case -

ASTNode(...) implements the basic traversal. It does this by looping through the
children of a given node and using the provided analyze (ASTNode node) method.
Recall that this method deals with basic traversal and also guarantees that the
current InSet is set to the previous current OutSet. The case IfStmt( ... ) and case -

SwitchStmt(...) implement the behaviour for non-looping branching code. The if

statement behaviour provides what we call branching analysis. This means that, if
the analysis writer wishes, they can provide a different out flow for when the if con-
dition is true or false. This would be done in an implementation of case IfCondition

( ... ). When a programmer provides true and false flow-data, case IfStmt( ... ) will
ensure that each branch of the if will have the appropriate in flow-data.

Creating a backwards analysis is very similar, except that the backwards
analysis does not support the option of different flow information for the different
branches of an if.

4.5 Analyses for Language Extensions

One of the goals of the McLab project is to support modularly defined language
extensions (as illustrated by the extension for AspectMatlab [20]). Extensi-
bility is also one of the goals for the design of McSaf. The framework has been



152 J. Doherty and L. Hendren

fa
ls

e 
flo

w

<COND>

In

Out

<THEN PART>

end

<ELSE PART>
else

true flow

if

Out

<SWITCH EXP>

case <CASE EXP 1>

case <CASE EXP 2>

otherwise

<BODY 3>

<BODY 1>

<BODY 2>

end

In

switch

(a) if (b) switch

no

continue
...

break
...

continue
...

break
...

FP

C

B

while <COND>

end

yes

In

Out

...

no

B

...

continue
...

break
...

continue
...

break
...

INIT COND UPDATE<LV>for

end

FP

C

Out

In

yes

(c) while (d) for

Fig. 16. Diagrammatic illustration of structural traversal rules

designed to support three kinds of extensions: (1) adding new syntactic nodes
that are desugared before analysis; (2) adding nodes that need to be included
in existing and new analyses; and (3) adding nodes that require new kinds of
complex flow analysis - for example a new kind of loop. The framework comes
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with three example language extensions, one for each type. Although the second
and third kind require slightly more glue code, all three kinds of extensions can
be accomplished by defining new pieces and reusing the previous code.

5 Related Work

The McLab Static Analysis Framework is an extensible framework for creat-
ing static analyses for the Matlab language. This is the first open framework
created for analyzing Matlab.

Soot [21] is one example of an optimization framework for Java which was
developed by our research group for over a decade. McSaf emulates many of
the positive features of Soot, including having a well-defined IR and a flexible
and easy-to-use flow analysis framework. However,McLab solves veryMatlab-
specific problems in the IR design and uses a structured traversal-based approach
(rather than a graph-based approach) to the flow analysis framework. So, in the
end we found our experience with Soot helped us know the goals for the McSaf
project, but developing a framework for Matlab required solving very different
problems. Soot has enabled a lot of research for Java and we hope that McSaf
will do the same for Matlab.

The JastAdd toolkit is designed for creating extensible compilers [2,12] and
was also used in the development of McLab and McSaf. One feature of Jas-
tAdd that was not discussed in great detail in this paper is its attribute gram-
mar system. JastAdd allows a developer to define attributes as part of the AST
grammar specification. These attributes are effectively functions operating on
the AST nodes. They can be used to propagate information through the tree
and they can even be defined in a circular fashion. The JastAdd system provides
a fixed-point computation for calculating the results of such circular attributes.
JastAdd’s attribute system provides a low-level means of performing flow anal-
ysis on an AST. It is up to the compiler writer to use these tools and to take the
semantics of the language they are implementing into account, in order to create
any meaningful analyses. It isn’t a full dataflow analysis framework. However,
some work [17] has been done to implement flow analysis for Java using the
JastAdd extensible Java compiler [11].

In the past, there has also been some work towards open Matlab systems
such as Octave [1]. These systems concentrate on front-ends and interpreters and
so do not include analysis and optimization frameworks.

There has also been work on optimizingMatlab. The FALCON project [19,7]
aimed to compile Matlab code into Fortran. Falcon focuses on type inference
and code inlining to produce Fortran code. The Magica tool [14,13] focuses on
type inference for matrix operations and functions. It not only infers the intrin-
sic type of matrices, such as int32, double, or char; but also matrix sizes
and shapes. Magica is part of a larger Matlab compiler project, and is used for
performing code optimizations. MaJIC incorporates a Just-In-Time(JIT) com-
piler component [4]. This allows it to achieve speedups similar to those produced
by Falcon, without sacrificing the interactive nature of Matlab. These projects
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differ from McSaf in that their main goal was to improve the performance of
Matlab programs.McSaf, on the other hand, was created with the goal of cre-
ating an open tool for researching compiler techniques in scientific programming.
In fact the techniques used in these other projects could have been implemented
using McSaf.

6 Conclusions and Future Work

In this paper we have presented the McSaf framework, an open source toolkit
for developing analyses for Matlab. The goal of the toolkit is to enable compiler
researchers to develop a wide variety of analyses which can target optimizations,
source-to-source translators, and software engineering tools such as refactoring
tools.

The toolkit includes a suite of simplifications which convert the high-level AST
to a lower-level AST which is designed to expose important Matlab-specific
semantics and to provide a simple IR which eases the burden of developing new
analyses rules. Our simplifying transformations have been implemented along
with a dependency structure so that it is easy for a user to enable only some
simplifications or add new simpflications, while at the same time ensuring that
all prerequisite simplifications have already been performed.

The heart of the toolkit is the support for different kinds of flow analysis
driven by a collection of traversals, including a depth-first traversal which works
well for flow-insensitive analyses and a family of structure-based traversals for
forward and backward flow-sensitive analyses.

Developing this toolkit was not just an engineering exercise. At each step we
had to understand the very Matlab-specific requirements and ensure that our
approach captured the correct semantics in a way that made the IR and flow
analysis framework easy to use. Indeed, we found the entire exercise much harder
than we had anticipated, with the Matlab semantics often going against our
expectations or enforcing some constraint that was not obvious.

Our goal was to make a toolkit that is easy to understand, and which is easy
to extend. We don’t want the compiler/analysis/tool developer to have to worry
about all of the details of Matlab, but rather concentrate on using a well-
structured object-oriented toolkit that provides an IR and analysis framework
which has dealt with the messy details.

The McSaf toolkit has been implemented in Java as part of the McLab
system and numerous analyses have already been implemented using it, including
those mentioned in Figure 1. To date we have found that toolkit users find it
quite easy to use and we look forward to feedback from users to help us improve
it further.

Our intention is to continue using the toolkit in our own back-ends and tools,
and we hope that other compiler researchers will also be able to use the toolkit
as a simple and low overhead way to apply their research to the very popular
Matlab language.
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