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Abstract. As software evolves, data types have to be extended, possi-
bly with new data variants or new operations. Object-oriented design is
well-known to support data extensions well. In fact, most popular books
showcase data extensions to illustrate how objects adequately support
software evolution. Conversely, operation extensions are typically better
supported by a functional design. A large body of programming language
research has been devoted to the challenge of properly supporting both
kinds of extensions.

While this challenge is well-known from a language design standpoint,
it has not been studied empirically. We perform such a study on a large
sample of Smalltalk projects (over half a billion lines of code) and their
evolution over more than 100,000 committed changes.

Our study of extensions during software evolution finds that exten-
sions are indeed prevalent evolution tasks, and that both kinds of exten-
sions are equally common in object-oriented software. We also discuss
findings about the evolution of the kinds of extensions over time, and
about the viability of the Visitor pattern as an object-oriented solu-
tion to operation extensions. This study suggests that object-oriented
design alone is not sufficient, and that practical support for both kinds
of program decomposition approaches are in fact needed, either by the
programming language or by the development environment.

1 Introduction

Lehman’s laws of software evolution [13] tell us that software systems must
continuously adapt, or become progressively less useful to their users. Over time,
new functionality is added to software systems. Inevitably, some functionality
needs to extend existing system components. Depending on the programming
paradigm used, different extensions have different consequences.

Extensions can happen along two dimensions: new data variants, or new op-
erations. Object-oriented programming is well-known for seamlessly supporting
extensibility of data variants, by introducing new kinds of objects. In contrast,
the functional design approach [I2]—where the variants of a data type are pro-
cessed by case-analyzing procedures—is better suited to support additions of
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new operations, by introducing new procedures. Conversely, supporting new op-
erations for objects requires modifying all object definitions to add new methods,
and adding new data variants in the functional approach implies modifying all
existing procedures to handle the new cases.

This complementarity between data types and “procedural data values” (ob-
jects) dates back to the work of Reynolds in the 1970s [18] and has been described
by other researchers since then (e.g. [5I12I26]). Supporting both forms of exten-
sions appropriately is a challenge that has a strong practical relevance, because
the choice of a programming paradigm (or design approach) greatly influences
the kind of extension that is supported in a localized manner, without modifying
existing code. For instance, choosing an object-oriented decomposition to imple-
ment a system whose evolution predominantly involves operation extensions is
like using a hammer to paint a wall: possible, but painful. The object-oriented
programming community has in fact designed a solution to handle operation
extensions, called the Visitor design pattern [7]. A visitor makes it possible to
turn an operation extension scenario into a data extension scenario. But once
adopted, the Visitor pattern complicates data extensions. Many programming
language constructs have been proposed in order to support both dimensions of
extension in a modular (and type safe) manner (e.g. [I2[T512427]).

As a matter of fact, the literature on object-oriented programming very of-
ten illustrates the superiority of objects in dealing with software evolution by
showcasing data extension scenarios (see Booch [4] and Shalloway Trott [22] for
two popular books). However, there is no empirical data on how frequently such
extensions do occur, nor is there evidence that data extensions are significantly
more common than operation extensions, even in object-oriented software.

The extensibility challenge can be looked at both from the point of view of
the implementers of a system—the kinds of extensions that have to be dealt
with in the evolution of the system—and from the point of view of black-box
third-party extensions (the latter is usually seen as the extensibility /expression
problem stricto sensu [26l24]). This work is concerned with the first part of the
question. We study the evolution of open-source object-oriented projects through
their commit history, looking at how the implementers of a project add new data
variants and operations to their class hierarchies as the system evolves. Even if
there is no strong impediment to change existing code in this setting, being able
to express these extensions modularly does matter; it is well-known that most
of the costs of software development are in maintenance and evolution, not in
initial development [6].

Concretely, we seek to answer the following research questions:

Q1: Are extensions prevalent in practice? Looking at the evolution of soft-
ware, is it really the case that new data variants and operations are frequently
added? Or are other kinds of changes (e.g. changing the implementation of
a method) much more common as to render the point moot?

Q2: Are data extensions more common than operation extensions? If
object-oriented programming is really superior in dealing with extensible
software, object-oriented projects should showcase a far greater number of
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data extension cases. Is it really the case? Or conversely, are there much
more operation extensions, suggesting that another programming abstrac-
tion would be more adequate? Or, are both kinds of extensions similarly
important in practice?

Q3: How do extensions occur over time? Over the lifetime of an object-
oriented system, do both kinds of extensions manifest regularly? Or are
unanticipated design decisions leading to more problematic extension cases
as the system ages?

Q4: Is the Visitor pattern a suitable solution? How much is the Visitor
pattern used in practice? In cases where it is adopted, are its benefits clearly
observable? Are visitor and visited hierarchies more stable than others?

By observing the evolution of a large number of open source Smalltalk projects,
this paper presents elements of answers to these questions. Note that because
Smalltalk is a dynamically-typed language, this study does not answer these
questions in a typed context. Whether or not static typing has an influence
on extensions during software evolution is an open question that future studies
should address. Also, because Smalltalk is an object-oriented language, we get
to observe how object programmers actually benefit (or not) from working in
that paradigm. Studies based on other languages, including those that natively
support both decomposition approaches, would be needed to answer the research
questions above in general. This study is therefore a first step towards provid-
ing substance to the long-running debate that takes place in the programming
language research community about different forms of data abstractions.

Structure of the Paper. Section [ briefly reviews background and related
work. Section [B] describes the experimental setup, explaining how the data was
collected and processed. The next four sections report our findings related to the
four research questions stated above. Section [§] discusses threats to the validity
of this study, and Section [@ concludes.

2 Background and Related Work

We first explain the different kinds of extensions and how to deal with then
in object-oriented programming, including the Visitor design pattern. We then
review related studies of object-oriented programming practice.

2.1 Extensibility in OOP

Consider the object-oriented design of a simple programming language of arith-
metic expressions (Figure IIIa. Expression subclasses Num and Add implement
their own evaluation method. A first kind of extension is data extension, which
consists in adding new data variants; in that case, a new kind of expression

! Anticipating the fact that we study Smalltalk code, we present the example in a
dynamically-typed class-based setting, using inheritance to define data variants.
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Fig.1. A class hierarchy (a) and two extensions: data extension (b), and operation
extension (c). Changes are highlighted in gray.

(Figure [Mb). Note how the object paradigm makes this extension localized: it
is enough to add a new subclass. A second kind of extension is operation ex-
tension, e.g. extending the protocol of expressions, such that they can also be
pretty-printed. The object-oriented decomposition is much less suited for this
kind of extension, which requires invasive and non-localized modifications of
existing classes (Figure [Ik).

The Visitor design pattern [7] is the standard way to handle operation ex-
tensions in a modular manner in object-oriented programming. It consists of
preparing the hierarchy to extend so that it accepts visitor objects (e.g. add a
method accept on each class of the Expr hierarchy). A separate hierarchy of
visitors is then defined, each for its own operation (e.g. PrintVisitor extends
from ExprVisitor). Adding a new operation on the hierarchy is now expressed
as adding a new visitor subclass (e.g. TypeVisitor). Note that applying the Vis-
itor pattern increases the complexity of the system, and that adding a new data
variant in the visited hierarchy (e.g. Mult) implies extending all the visitors.

2.2 Related Work

As far as we are aware, there are no empirical studies of the prevalence of ex-
tensions during software evolution, nor on comparing the kinds of extensions
(data vs. operation) that happen in real world projects. There are however sev-
eral related studies of characteristics of source code, class hierarchies, and their
evolution.

Girba et al. define a visualization of class hierarchies that incorporates evo-
lutionary metrics, such as age of class, age of inheritance links etc. [§]. Based
on a study of two open-source systems, they identify several visual patterns to
characterize the evolution of the hierarchies. The patterns are however coarse as
the unit of granularity is the class, and are aimed to answer general evolution
questions, such as the distribution of changes across hierarchies.

A study by van Rysselberghe and Demeyer analyzed hierarchy changes on two
Java systems [20]. The exploratory study led to the formulation of 7 hypotheses
to be investigated, such as “Hierarchy changes are likely to insert an additional
abstraction between the old parent and the center class” and “Inheritance is only
rarely replaced by composition”. Due to its limited extent this study however only
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hinted at the answer to the hypotheses; its findings need to be confirmed by a
larger-scale study.

Baxter et al. performed an empirical study on 16 releases of several Java
systems, in order to investigate the distribution of several metrics and whether
those followed power laws [3]. Later, Tempero et al. focused on the use of in-
heritance in Java software, using the same corpus (expanded to 93 programs),
and a suite of 23 metrics [23]; they found a larger amount of inheritance than
they expected: around three-quarters of classes used inheritance (for half of the
applications in the corpus). A large-scale survey of programmers by Gorscheck
et al. [9] found a lack of consensus on what the size of classes and depth of
hierarchies should be. A recent large-scale study (2,080 Java programs, found
on Sourceforge) by Grechanik et al. formulated 32 research questions [10]. Of
those, several were related to class hierarchies. They found that almost 50%
of the classes are written without using inheritance, and that 71% of the hi-
erarchies had a depth of one. These findings differ somewhat from the ones of
Tempero, who found a higher usage of inheritance. However, the metrics used in
both studies differ, so comparison is difficult. All of these studies investigate a
large number of research questions—trading depth for breadth—while we focus
on the handful of questions that allow us to characterize extensions during the
evolution of object-oriented software.

Finally, Aversano et al. studied the evolution of several design patterns, in-
cluding the Visitor pattern, on 3 software systems [2]. They found that classes
involved in the Visitor pattern were among the most changed in one of the sys-
tems (Eclipse JDT), but that the changes were mostly in the visitor hierarchy,
not in the visited hierarchy. The study considers design patterns in general, and
is focused on three systems only.

3 Experimental Setup

3.1 Data Collection

We analyze a large extract of the Squeaksourceﬂ repository for Smalltalk projects
written in either Squeak or Pharo (a fork of Squeak). Squeaksource is the foun-
dation for the software ecosystem that the Squeak and Pharo community have
built over the years. The majority of Squeak and Pharo developers use Squeak-
source as their primary source code repository, making it a nearly complete view
of the Squeak and Pharo software ecosystem. The Squeaksource extract we ana-
lyze spans 8 years and involves approximately 2,500 projects consisting of more
than 95,000 unique classes. Summing all versions of all projects yields nearly 600
million lines of code. Over the course of these 8 years, more than 2,300 developers
committed around 110,000 changes to Squeaksource.

To version their source code in Squeaksource, developers use the versioning
system Monticello. When committing a new version of a project, Monticello
stores a snapshot of the entire committed package, without computing the delta

2 http://www.squeaksource . com
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Fig. 2. The Citezen visitor hierarchy: (a) initial version, (b) after a data extension, (c)
after renaming the root class, and (d) after an operation extension

to the previous version. Squeaksource is hence a large filesystem directory. With
each commit, meta-information is recorded. Monticello versions code at the level
of packages, classes, and methods, not at the level of files and lines of code.

To actually analyze the Squeaksource repository we use the Ecco model [19].
Ecco is a lightweight representation of software systems and their versions in
an ecosystem. The main unit of abstraction is the system (or software project).
For each pair of successive versions of a system, Ecco only keeps the changes
between the versions. These changes consist of sets of additions, modifications,
and removals of classes and methods in the system. Meta-information such as
author, timestamp, and links to one or more ancestors and successors versions
are maintained as well. Ecco allows us to effectively and efficiently process and
analyze the large set of changes (approx. 13GB of compressed source code) we
extracted from Squeaksource.

3.2 Data Processing

Before analyzing extension scenarios in the code base, we process the changes
from Squeaksource in various steps, described below.

Extension Detection. We limit our analysis to the granularity of methods. We
do not look into the source code of methods, but stop at the method boundary.
Moreover, we only study the additions of classes and methods, but not their
modifications. The kinds of extensions can be well quantified by keeping track
of additions of classes and methods, since a data extension corresponds to the
addition of one or more classes to a hierarchy and an operation extension to the
addition of a new method to several classes of a hierarchy.

To detect operation and data extensions, we track the evolution of each class
hierarchy in a software project. A real example of such a hierarchy evolution is
depicted in Figure 2, which shows the visitor hierarchy of Citezen, an applica-
tion for managing bibtex files on the web. If in a particular change a new class
is added to a hierarchy, we consider the addition to be a data extension] (shown
in Figure Zb where class CZHtmlOutputer has been added). The addition of a
method with the same name to a least two classes of a hierarchy in a particular
change is considered to be an operation extension (e.g. Figure[2d, where method
visitField: is introduced). If a change adds only one method to a class hier-
archy, but previous or subsequent changes add methods with that name to the

3 Adding a new subclass of Object is not considered a data extension.
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same hierarchy, this single method addition is also considered to be part of an
operation extension.

In the case where several classes containing methods with the same name are
added to the same hierarchy in the same change, these added methods could
actually be detected as operation extensions. For a data extension, we however
consider all methods added in the new classes to belong to this data extension,
thus no operation extensions are identified in such a scenario.

The root class of any hierarchy can be renamed during the lifetime of a project
(e.g. root class CZVisitor is renamed to CZOutputer in Figure[Zk). In Monticello,
renaming an entity means removing the entity with the old name and adding
a new entity with the new name. As we can hence not directly determine a
rename of a root class in the changes, we employ an algorithm that tests for
every removed root class whether any class newly added in the same change
might actually be the renamed version of this root class. For this we compare
the set of methods of the removed class with the one of the newly-added class
(subclasses of the new and old class are not compared to make the algorithm
independent of possible renames to subclasses occurring in the same change). If
these sets overlap for at least 80% of the methods, we consider this change as a
rename and exchange the old root of the hierarchy with the newly-added class.

Extension Weighting. To estimate the effort to realize an extension, it is not
enough to compare the number of operation extensions with the number of data
extensions. The former is adding just methods, while the latter is adding an
entire class to a system. For this reason, we weight a data extension with the
number of methods with which the class has been added to the system to obtain a
measure for the effort needed to perform an extension. This allows us to compare
operation and data extensions in terms of effort, while in the unweighted case
we compare the frequency of the two kinds of extensions.

Visitor Detection. To detect occurrences of the Visitor pattern and extensions to
them, we search for methods whose name is starting with accept or visit. What
follows this prefix is usually the name of the class being visited, e.g. visitField:
typically accepts an instance of class Field (or subclasses). The visitor hierarchy
is the class hierarchy in which one or more methods following this name pattern
are located, while the visited hierarchy is the hierarchy containing the visited
class (e.g. Field). We also support the case when a visitor is visiting various
hierarchies, or when a visited hierarchy is visited by several independent visitors.

Aggregation. Beyond class hierarchies, we are also interested in how our analysis
translates to the level of projects. Recent work by Posnett et al. shows that find-
ings at one level of abstraction do not necessarily translate to finer or coarser
levels—a phenomenon known as the ecological fallacy [17]. For our study we ex-
pect that the proportion of projects featuring extensions is higher than the same
proportion for class hierarchies. Since the extensions could also be concentrated
on a few, possibly large projects, the project level analysis is important to reveal
how extensions are distributed over the projects.
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Classification. To ease the analysis of the data, we classify the changes, that is,
the commits to the projects in three categories: (i) initial, (ii) large, and (iii)
selected commits. (i) The first commit to a project reflects the initial develop-
ment of a project. (ii) Large commits consist of more than 50 added classes and
methods. Note that initial commits are often also large commits. (iii) Selected
commits are all commits neither classified as initial nor large. This classifica-
tion is necessary because initial commits carry no change information, and large
commits can hardly be meaningfully analyzed because they contain too many
changes and are therefore considered as noise [2§].

We also classify class hierarchies and projects in two categories: (i) all and
(ii) large hierarchies or projects. A large hierarchy has a size of more than five
classes. A large project is one with more than 50 classes. This classification is
interesting because the impact of an operation extension is arguably more critical
in large cases.

Filtering. A large and publicly accessible repository like Squeaksource typically
also contains many toy or abandoned projects that would add undesired noise
to our analysis. Hence we only take into account class hierarchies that have been
changed at least five times and that contain at least two classes (one root and
one subclass). Except for the first measurement of Section [ we only analyze
selected commits.

3.3 Basic Statistics in Squeaksource

Processing the dataset as discussed gives us the following information to be
analyzed in detail in subsequent sections: We start with 111,071 commits; of
those, 10,718 commits are classified as large or initial commits, leaving us with
100,353 selected commits. The 95,662 classes are organized in 48,595 hierarchies.
Of those, 20,046 have more than one class. This means that 28,550 of the 95,662
classes (29.84%) do not use inheritance, a figure that concords with that reported
by Tempero et al. [23]. Out of these hierarchies, we select 10,390 satisfying our
thresholds of size (at least 2 classes) and activity (at least 5 changes); these are
the focus of our analysis. Of these 10,390 class hierarchies, 2,879 have at least
an operation or a data extension in selected commits. Also, 2,360 of these 10,390
class hierarchies are classified as large (more than 5 classes). We analyze 2505
projects, of which 569 are classified as large (more than 50 classes); 1036 of the
projects feature either operation or data extensions in selected commits.

In a single commit, the largest operation extension we found added 40 methods
to the hierarchy, whereas 36 classes were added to the same hierarchy in a single
commit. This excludes large and initial commits, including several legitimate
operation extensions. These large values lead us to investigate the distribution
of the metrics.

Distribution of Metrics. Figure[shows the distribution of our metrics of interest
across projects and class hierarchies. None of the distribution follows the charac-
teristic “bell shape” of a normal distribution. Instead, the overwhelming majority
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Fig. 3. Histograms showing the distribution of size and extension metrics across hier-
archies and projects. Note that the first bar is cut as it would be too tall otherwise.

of observations has very low metric values, and a minority has high values. This
observation and the presence of outliers on the tail end of the distributions,
leads us to use robust descriptors when characterizing the distributions, ¢.e. the
median instead of the mean, and boxplots (showing percentiles) as a visual sum-
mary of the distributions. In Section we discuss which statistical tests can
be used to analyze the data even though its distribution strongly departs from
normality and thus breaks the assumptions of most parametric tests.

4 Are Extensions Prevalent?

We first estimate the prevalence of extensions by looking at the frequency of
extension changes in commits. In a second step, we study the frequency of ex-
tensions in hierarchies and projects.

4.1 Frequency of Extensions in Commits

Intuitively, the frequency of extension events across commits tells us how often
developers need to perform extensions over time: if extensions are extremely rare,
then the challenge of dealing with both kinds of extensions is interesting from a
theoretical standpoint, but has little practical impact. Figure [4] shows the pro-
portion of commits featuring operation and data extensions versus commits that
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Fig.4. Percentages of commits featuring extensions. (a) all commits; (b) selected
commits.

feature neither of thesd]. Of the 111,071 commits we analyzed, 13,063 (11.76%)
feature either an operation or a data extension. If we only consider selected
commits (that is, we filter out both large and initial commits), the proportion
rises to 12.99%. This means that in more than 1/8 of the commits, developers
perform either a data or an operation extension in the system they work on.

An extension is problematic in an object-oriented program as soon as an
operation extension is needed. We can see that operation extensions occur in
6.77% of all commits (7.48% of selected commits).

4.2 Frequency of Extensions in Class Hierarchies and Projects

To view the problem from another angle, we also measure the proportion of
hierarchies that feature extensions at any given point in their life. This gives
the proportion of hierarchies for which a developer will be expected to perform
extensions. Figure [f] shows the proportions of hierarchies featuring at least one
extension during their lifetime, versus hierarchies that do not. Out of the 10,390
hierarchies we observed, 27.70% (2,879) become subject of extensions sooner or
later. Clearly, a large portion of hierarchies need refinements over time. Impor-
tantly, 19.35% of all class hierarchies are subject to operation extensions, which
are not modularly supported by objects.

Intuitively, extensions are more problematic for larger hierarchies, where the
complexity is higher. We measured the proportion of large hierarchies that are
subject to extensions. We find that an overwhelming majority (1,883 out of
2,360, i.e. 79.81%) of these large hierarchies feature extensions. Also, more than
62.48% of these hierarchies are subject to operation extensions. Across large,
more complex hierarchies, the modularity issue to express extensions is no longer
a minority case; it is the norm.

4 We discuss the relative prevalence of both kinds of extensions in Section
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Fig. 5. Percentages of hierarchies featuring extensions. (a) all hierarchies; (b) large
hierarchies only (5 or more classes).

For space reasons, we do not provide graphs for projects featuring exten-
sions. In brief, 41% of all projects feature extensions (data extensions: 37.16%;
operation extensions: 33.35%; both: 29.06%). Almost all (95%) large projects
(i.e. projects with more than 50 classes) have to deal with extensions (data
extensions: 87.07 %; operation extensions: 89.11%; both: 81.63%).

4.3 Executive Summary

Extensions regularly occur in practice: one out of eight commits (13%) features
an extension. Further, a fifth of all class hierarchies have to be extended with new
operations; this rate increases to over 60% for large hierarchies. We can conclude
that developers are often confronted with extensions that are not modularly
supported by object-oriented design. Moreover, for large hierarchies—where one
can suppose the impact is more severe—the problem is all the more prevalent.

Far from being a theoretical curiosity, properly supporting both kinds of ex-
tensions is of practical concern for software developers, and hence effectively
deserves the attention of the community.

5 Comparing Data and Operation Extensions

Having established that extensions are prevalent, we now focus on the distribu-
tion of the extension cases across the two categories of extensions. Underlying
the research question is the intuition that if the object-oriented paradigm is well-
suited for most kinds of evolutions, we expect data extensions to be much more
common than operation extensions.

5.1 Frequency of Both Kinds of Events

We have already seen in the previous section that both kinds of extensions
happen in practice. Looking back at Figure Ml and Figure Bl we notice that both
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Fig. 6. Boxplots of distribution of extensions for hierarchies featuring them. (a) un-
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types of extensions happen with a somewhat similar frequency (i.e. 7-8% of all
commits, 60-65% of large hierarchies, etc.) and routinely overlaéﬁ. This gives us
a first impression that operation extensions are actually not uncommon; rather,
they seem to occur with relatively the same frequency as data extensions.

To investigate the problem more closely, we look at the distributions of both
kinds of events, for the subset of hierarchies which experience these events. In
order to evaluate the problem beyond frequency, we also look at the distribu-
tions of the weighted coefficients we introduced earlier—where the weight of an
extension is defined by the number of methods it contains—, which gives us a
more accurate metric of the effort involved in each kind of extension.

Figure [0 shows the distributions of both kinds of events as box-and-whiskers
plots, for both unweighted—to evaluate frequency—and weighted—to evaluate
effort—distributions, for the 27% of hierarchies that feature at least one of
the two events during their life time. The thick line across each box represents
the median value of the distribution, the boxes delimit the interquartile range
(the 50% of the values that are between the 25th and the 75th percentile), while
the whiskers depict the 5th and the 95th percentile; outliers are not displayed.

If only frequency is considered (Figure [6h), we see that in both cases, the
median value (2) is identical. This tells us that the distributions are very similar
in terms of frequency. The impression is reinforced by the significant overlap of
the boxes. All in all, both kinds of extensions seem to happen with the same
regularity, with data extensions being only slightly more common.

® Cases where both kinds of extensions overlap in the same hierarchy are especially
interesting because they correspond to scenarios that no single data abstraction
mechanism would be able to handle properly.
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If we consider effort (Figure[6b), a different picture emerges. The median effort
in introducing data extensions is higher (7 methods) than the effort involved in
introducing operation extensions (3 methods). However, the boxes still overlap
significantly: the 75th percentile of operation extensions is higher than the me-
dian of data extensions. If operation extensions need more effort, the difference
is not so high that one can ignore operation extensions altogether.

Due to space limitations, we do not provide the graphs for commits and
projects. These however feature the same pattern of an extremely large overlap
in the unweighted case, and a still large overlap in the weighted case—with the
upper quartile of weighted operation extensions above the median of weighted
data extensions. For commits, the weighted data extension median is 2, while
the weighted operation extension’s 3rd quartile is 3; for projects, we have 20 and
25, respectively.

5.2 Quantifying the Difference between Kinds of Extension

A visual inspection of the distributions of extensions shows that the distribution
of the two kinds of extensions largely overlap in terms of frequency, and still
overlap significantly when effort is taken into account. In this section, we seek
to quantify the difference.

Given the large size of our sample, a statistical test such as the non-parametric
Mann-Whitney U-test would almost certainly find a difference in the values of
the distributions, and being in favor of data extensions. However, such a test
would not tell us anything about the magnitude of the difference. As such, we
measure the effect size of the differences in the distributions.

The most well-known effect-size metric is Cohen’s d; however, it is not robust
to departures from normality. As such, we opted for a non-parametric effect size,
Vargha and Delaney’s Ajs [25]. This effect size measure was recommended by
Arcuri and Briand in the case of algorithms whose performance follow geometric
distributions which strongly depart from normality [I]. Aqg ranges from 0 to 1,
and measures the probability that a value taken at random from the first sample
is higher than a value taken at random from the second sample.

In the case of unweighted frequencies of both kinds of extensions, we obtain
an A1, value of 0.5554 in favor of data extensions, i.e. there is a 55% probability
that a randomly chosen frequency of data extension is higher than a randomly
chosen frequency of operation extension. This is very close to 50%, where the
effect would be null. Since Cohen’s d has well-accepted thresholds for effect
sizes, we computed an estimate of the equivalent Cohen’s d for this value. Our
estimation of Cohen’s d gives us 0.03, an effect that is considered as trivial,
barely worth mentioningﬁ.

If we weight the measurements by effort, the picture is somewhat differ-
ent. The advantage towards data extensions increases, with Aqg being 0.6197:

5 Cohen’s d varies from -1 to 1; the commonly accepted thresholds for effect size are
0.2 (small), 0.5 (medium), and 0.8 (strong). Negative values of d indicate an effect
in the opposite direction, and have identical thresholds.
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Fig. 7. Effect of size of hierarchies on kinds of extensions

A randomly-chosen weighted data extension count has a 62% probability of be-
ing larger than a randomly picked weighted operation extension count. If this
higher probability seems reassuring, we do not know how to interpret that value.
We again computed an estimate of the equivalent Cohen’s d for this probabil-
ity; we obtained a value of 0.25, which gives us a small effect. In other words,
if data extensions are more common (barely), and involve more effort (some-
what), a large part of the extensions still are done by adding operations. For the
object-oriented paradigm to be most suited for most extensions, we would have
expected a much larger advantage in favor of data extensions, with at least a
medium, if not a large effect size.

We quantified the effect size at the level of projects, where we obtained nearly
identical results (A;2: 0.5514 (unweighted) and 0.6307 (weighted); estimate of d:
0.05 and 0.25). These findings show that in practice, both kinds of extensions
are needed in object-oriented programs; as such, adequate means to express both
kinds of extensions are required in order to assist developers.

5.3 Relationship with Size of Hierarchies

We now look at how the size of hierarchies affects the number of extensions and
their kinds. The scatterplots in Figure [ show the relationship between size of
hierarchies and: all extensions (a); data extensions (b); operation extensions (c);
and ratio of operation extensions over all extensions (d).
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To quantify the relationships, we measure the Spearman correlation between
the number of extensions and the size of the hierarchies. Correlation ranges from
1 (perfectly correlated), to -1 (perfect inverse correlation), with 0 being uncorre-
lated. Spearman’s p is a rank-based, non-parametric correlation, and as such it is
less sensitive to outliers than alternatives (e.g. Pearson’s product-moment corre-
lation). Commonly-used thresholds for correlation are: 0.1 (small), 0.3 (medium),
and (0.5) strong. We also report the statistical significance of the correlations
we encounter, using the common threshold of p < 0.05 for significance. All the
correlations below are highly statistically significant: in all cases, p <« 0.01.

We start with both kinds of extensions taken together (Figure [Th). We see
an upward trend (large hierarchies have more extensions) and find a strong
correlation (p = 0.67). This corroborates our findings in Section 2] where we
found that 80% of the hierarchies with five or more classes had extensions.

Figure [@b shows the relation between the size of hierarchies and the number
of data extensions. We see an upward trend as well, giving us the impression
that overall larger-sized hierarchies have more data extensions. The Spearman
correlation yields a value of p = 0.48, which qualifies for a medium correlation.

The same situation holds with respect to the relationship between operation
extensions and size, as shown in Figure [fk. Surprisingly, we observe a higher
correlation between size and number of operation extensions, passing the strong
threshold, with p = 0.55. If we weight the observations, we see an increase
in the correlation for operation extensions (p = 0.59), and a decrease in the
correlation for data extensions (p = 0.42). We have seen previously that both
kinds of extensions are prevalent, with a small advantage for data extensions;
here, operation extensions tend to increase more with the size of the hierarchies.

Having observed that operation extensions seem to “take the edge” in large hi-
erarchies, we investigated if this behavior extends to the proportion of extensions.
We computed the ratio of operation extensions over all extensions, and investi-
gated its relationship to size. However, as Figure [{d shows, we found no visible
relationship: hierarchies are nearly evenly spread across the ratio spectrum. Since
the overall difference in correlation was not very large, the relationship practi-
cally disappears when the ratio is taken into account. Clearly, there are other
factors at play also influencing the relationship between the two variables, as we
see next.

In the interest of completeness, we mention that relationships taken at the
project level exhibit a similar behavior, having significant, medium-to-strong
correlations in the first three cases (a, b, and c).

5.4 Executive Summary

Analyzing the frequency and the effort invested in each kind of extension, we see
overall that data extensions are slightly more frequent than operation extensions.
However, this difference is very small: operation extensions are mostly as frequent
as data extensions, and only somewhat smaller. If the extension mechanisms of
object-oriented programming was adequate in most cases, the proportion of data
extensions would be much larger.
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To make matters worse, while both kinds of extensions are unsurprisingly
correlated with the size of hierarchies, we find that operation extensions are
actually slightly more correlated with size. Large hierarchies seem to necessitate
more operation extensions.

6 Extensions and Evolution

In the previous section, we have seen that even if both kinds of extensions are
correlated with the size of hierarchies, the ratio of operation extensions over
both extensions was not obviously correlated with size. However, there may be
other factors influencing this ratio. In particular, Lehman’s laws of software
evolution [I3] say that software systems tend to decay over time, if no effort is
undertaken to prevent that. Thus it seems reasonable to think that over time,
unanticipated design decisions lead to more extensions that do not fit the class
hierarchy, and as such need to be done via operation extensions. Hence, we
analyze the proportion of operation extensions out of all extensions over time.

6.1 Introducing Periods

To answer this question we split the evolution of class hierarchies in periods.
We gather all the commits affecting a candidate hierarchy, sort them according
to time, and split the resulting list in 50 slices, each representing one period of
the evolution. If a hierarchy was changed less than 50 times, we distribute the
changes across the periods as close to being equidistant as possible. Since there is
considerable variation in the number of changes between hierarchies, this ensures
a uniform distribution of the changes over the 50 periodsm.

We then aggregate all the changes of all the hierarchies that belong to the same
period. For each of these sets of changes, we sum the number of operation and
data extensions, and compute the ratio of data extensions over all extensions,
resulting in a proportion between 0 and 1 for all periods.

We also investigate the phenomenon at the level of projects; there, the only
difference is that we gather all the changes related to a project before splitting
the history in 50 periods. If a hierarchy is added later in a project, its changes
will be distributed across the later periods of the project evolution only.

6.2 Evolution of the Ratio of Operation Extensions

Figure [§ plots the evolution of the proportion of operation extensions among
all extensions over time, considering both hierarchies (a) and projects (b). To
highlight the overall trend, a smoothed fitted curve is added to the scatterplots.

" We contemplated splitting the sets of changes in equal time periods, instead of
equal number of commits per period. However, determining the time periods involves
computing the time interval based on the first and the last change of the hierarchies.
This introduces a bias in the earlier and later periods (more changes are found in
the very first and very last periods), hence we discarded that idea.
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Fig. 8. Proportion of operation extensions among all extensions over time. (a) hierar-
chies; (b) projects.

In both cases, there is clearly an increase of the ratio of operation extensions
over all extensions over time. The effect is more pronounced when hierarchies
are considered on their own, which is not surprising: a possible reason being that
new hierarchies may be added to projects later on. These hierarchies will then
be “younger” and for a while offset the upward trend. It is interesting that the
smoothed curve on the project scatterplot rises more sharply in the last periods:
a possible explanation is that by then, the “young” hierarchies have begun to
also become older, and seen their ratio increase, in turn impacting the project.

After a visual check, we quantify the relationship. The Spearman correlation
indicates for both cases a significant relationship, which also confirms the visual
impression that the effect is more pronounced for hierarchies in isolation than
it is for projects. We find a Spearman correlation of p = 0.60 (p <« 0.01) for
hierarchies, and of p = 0.51 (p <« 0.01) for projects.

If we take weighting into account (not shown in the figure), the relationship—
unsurprisingly—drops. It however stays significant. The correlation of the
weighted ratio with time for hierarchies is p = 0.38 (p = 0.007), and for projects,
p=0.33 (p = 0.018, less than the usual 0.05 threshold).

Of course, these correlations are not very strong; nor should we expect them to
be. There are many more factors, beyond mere time passing, that could explain
why a given hierarchy may need more of a certain kind of extension than others.

6.3 Executive Summary

If we consider the higher ratio of operation extensions as a sign of decay of
object-oriented software, these results certainly confirm Lehman’s observations
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that software systems decay over time. We have found a moderate, yet significant,
relationship between the ratio of operation extensions over all extensions and the
age (as changes per periods), for both hierarchies and projects.

In our overall analysis, this adds evidence towards the emerging trend that
more complex hierarchies (i.e. larger, older, etc.) are more confronted with ex-
tensions that do not fit the paradigm than other ones. Further, they seem to
require proportionally more operation extensions than data extensions. These
results cement the relevance of supporting both kinds of extensions adequately,
as the most problematic hierarchies are the ones that need solutions the most.

7 Is the Visitor Pattern a Suitable Solution?

The well-known solution to operation extensions in object-oriented software is
the Visitor pattern [7], as briefly described in Section 2] Is the Visitor pattern
enough? We first analyze the prevalence of visitors in our data set, and then
look at how both visitor hierarchies and the hierarchies they visit are themselves
subject to operation extensions.

7.1 Prevalence of the Visitor Pattern

Figure @ shows the results of our categorization of the hierarchies according to
our visitor detection algorithm (Section[3:2]). One can clearly see that a minority
of classes are involved as either visitors or visitees. Out of the 2,879 hierarchies
that experienced at least an extension (shown in the figure), 34 are visitors, and
49 are visitees, corresponding to a total of 2.88% of these hierarchies. In all the
10,271 hierarchies, we find 57 visitor hierarchies, and 62 visited hierarchies, for
an even smaller proportion of 1.16%8.

8 The discrepancy in number is because there may not be a 1-to-1 mapping between
visitors and visited hierarchies.
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Fig. 10. Distribution of data and operation extensions by role in the Visitor pattern

All in all, usages of the Visitor pattern are few and far between. If it allevi-
ates the issue of dealing with operation extensions, it cannot do so on a large
scale, either because it cannot cover all cases, because few programmers have
knowledge of the pattern (which, considering the popularity of design patterns,
seems somewhat unlikely), or because the adoption cost of the pattern is judged
too high. We also notice that the proportion of visitor and visited classes that
experience extensions (83 out of 119, or 69.7%) is much higher than the propor-
tion of hierarchies overall (2,879 out of 10,271, or 28%). This seems to indicate
that classes involved in the visitor pattern are extended more than other classes.
This warrants further investigation.

7.2 How Are Visitors and Visitees Extended?

Considering the documented drawbacks of the Visitor pattern (adding a new
class in the visited hierarchy impacts all the visitors), we would expect the uses
of the Visitor pattern to follow the Gang of Four’s recommendations, and be
applied to stable visited hierarchies only [7]. This means that visited hierarchies
should feature less data extensions, and the corresponding visitor hierarchies
should undergo less operation extensions.

Figure [[0 shows the distribution of extension metrics, contrasting normal hi-
erarchies, visitor hierarchies, visited hierarchies, and the last two kinds of hierar-
chies taken together. What we see contradicts our intuition. First, in Figure [k,
visitors seem to exhibit the same number or less data extensions than normal
hierarchies, and visited hierarchies seem to feature considerably more! In Fig-
ure [I0b, we see that visitors seem to feature slightly more operation extensions,
and visitees considerably more.
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There is, however, an important confounding factor: size. If a hierarchy has
many data extensions, it is by definition large. Examining the data, we found
that, indeed, an overwhelmingly large proportion of visited hierarchies are large.
Thus we account for size in our statistical tests to assess whether the observed
effect is significant.

Since there is no statistical test to determine the impact of a confounding
factor [I6], we employ an alternative strategy. We test for the statistical signif-
icance of differences in the number of data and operation extensions, for both
visitor and visited hierarchies compared to normal hierarchies, using the Mann-
Whitney U-test (the non-parametric equivalent to Student’s ¢-test), under the
null hypothesis H0 that there is no difference between the quantities of data and
operation extensions. In case we find a significant difference and hence reject HO,
we control for the size factor by doing a subsequent Mann-Whitney test, but this
time comparing only the hierarchies with more than five classes.

After doing this procedure, the only significant differences below the p = 0.05
threshold were the number of data and operation extensions of visited hierarchies
compared to normal hierarchies. However, most visited hierarchies actually have
more than ten classes (44 out of 49). Repeating the same procedure but with a
threshold of ten classes, both relationships lose their signiﬁcanceﬁ.

All in all; we can safely assume that any relationship between role (i.e. visitor,
visitee) in the Visitor pattern and number of extensions is primarily due to the
confounding factor of size. This makes classes involved in the Visitor pattern no
worse, but also no better, than regular classes, for both roles and both metrics.
Overall this suggests that the GoF advice of using the Visitor pattern on stable
hierarchies may not be followed in practice. We have observed several examples
of operation extensions in visitors that were performed to retrofit the visitors to
data extensions in the visited hierarchies.

7.3 Executive Summary

We find that the Visitor pattern is not used very often in our dataset. Further,
visitor and visited hierarchies seem to feature the same rate of extensions as
other hierarchies (when accounting for size). We can conclude that the Visitor
pattern is a viable solution only for a subset of all the extension cases. In addition,
we noticed that visited hierarchies still suffer from operation extensions, which
should normally be handled in the visitors. Finally, the results show that the
GoF advice—the Visitor pattern should be applied only to stable hierarchies—
is hardly followed in practice. This differs from Aversano’s study, which found
that visited hierarchies were stable, albeit on three systems only [2].

8 Threats to Validity

In this section we report on the threats to validity of our study. We distinguish
between (i) construct validity, that is, threats due to how we operationalized

9 The p-value of 0.06 for operation extensions is close to significance; however, raising
the number of classes further eliminates this tenuous relationship.
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the measures, (ii) internal validity, that is, threats affecting the measured cause-
effect relationship, and (iii) external validity, which refers to threats concerning
the generalization of the experiment results.

8.1 Construct Validity

By weighting each data extension with the number of methods added along with
the new class, we might not correctly represent the severity of a data extension.
For instance, after the initial addition of the class in a particular commit, the
class might be extended with more methods in subsequent commits, methods
that should also be considered when weighting this data extension.

The various thresholds we impose during data analysis (e.g. only class hier-
archies with more than two classes and that have been changed more than five
times are studied), have an influence on how many data and operation extensions
we measure. However, we carefully selected these thresholds empirically, that is,
by experimenting with different threshold values. The currently selected thresh-
olds are most reasonable given the analyzed data. In the case of the threshold
for large commits (addition of more than 50 entities in a commit), we observed
that some genuine operation extensions were actually above that threshold; for
instance, a polymorphic method was added on 61 classes of the same hierarchy
in a single commit.

Since we do not analyze the source code inside methods, we do not account
for methods that perform an explicit dispatch based on the type of an object in
a functional design manner (e.g. anObject isFoo ifTrue: [...] ...). These
methods are in fact operation extensions in disguise, for which the developer did
not adopt the object-oriented paradigm in order to avoid having to add methods
in scattered places. As such, we may under-estimate the amount of operation
extensions that are performed.

Another source of underestimation of operation extensions is that we do not
consider the class extension mechanism of Smalltalk. Class extensions are meth-
ods added to existing classes in one project by another project. For instance, the
class Object in the kernel of Pharo Smalltalk has several dozens methods defined
by other projects. These are excluded from our analysis, and may reflect poten-
tial operation extensions. We counted the number of methods defined as class
extensions, and found that they represented 3.79% of all methods (2,732,618 out
of 72,028,070 method definitions across all versions). As such, they are unlikely
to influence our results.

We only study additions of methods and classes, not their modifications. If
we considered modifications as well, we may find a higher proportion of changes
related to data and operation extensions, for instance because such extensions
tend to trigger more modifications than other additions.

8.2 Internal Validity

Squeaksource contains a considerable amount of code duplication, since projects
are stored several times in the repository, for instance once as an individual
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project and once embedded in another project. In a recent study, we found that
10-15% of the code in Squeaksource is duplicated [2I]. This aligns with the code
duplication rate found in the literature [ITJI4]. The effect of the presence of
code duplication on the results of our study is hard to predict. We assume that
duplicated projects do not stand out regarding data or operation extensions and
hence expect the effect of code duplication to be minimal.

If the same method is added to two unrelated siblings, we count this as an
operation extension, even if all other classes in the hierarchy do not either define
or inherit the method. Such a case may either be an incomplete operation ex-
tension, two unrelated single-method extensions, a bug, or an incremental step
towards a consistent extension. In a dynamically-typed language, it is hard to
tell whether this scenario corresponds to an operation extension or not, unless
we rely on human judgment. This is because object interfaces are totally implicit
in such languages. In a statically-typed language, object interfaces are explicit
and the type system ensures that an extension of the interface is consistently
implemented.

The detection of renames of root classes in a hierarchy is not perfect and might
not detect some renames. In such a case we end up with having an old, obso-
lete hierarchy in our dataset to which we cannot relate any subsequent changes
and thus not detect operation or data extensions affecting such a hierarchy. We
however expect such cases to be rare and could not find a single false-negative
case while overviewing most of the very large hierarchies in Squeaksource.

The visitor detection heuristic we implemented is also not perfect. However,
we validated each identified visitor manually and did not find any false-positives,
thus the detection algorithm yields a precision of 100%. The recall is not as-
sessable though, our algorithm might not detect all visitors, thus we possibly
underestimate the presence of visitors and visited hierarchies. Since we search
for variations in terminology (e.g. accept and visit for visitor methods), we
expect the recall to be fairly high.

We took dispositions against the ecological fallacy [I7]—incorrectly assuming
that observations holding at a level of abstraction holds at another level—by
systematically verifying that findings we found at the level of class hierarchies
also applied at the level of projects, when it was pertinent to do so.

8.3 External Validity

The generalization of our study is dependent on how representative the analyzed
projects are for object-oriented software projects in general. As Squeaksource is
a very large repository containing more than 2,500 projects to which more than
2,300 developers contributed, we expect that very different programming styles
and flavors have been applied in these projects, making the analyzed projects
well representative of object-oriented software.

A possible bias is that our sample of project contains only open-source soft-
ware systems. Practices in the industry may differ and limit the generalization of
our results. However, access to a large sample of closed-source software systems
is notoriously difficult.
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Smalltalk is a dynamically-typed programming language. In a statically-typed
language, data and operation extensions might be employed differently, following
different rules and patterns. It is very hard to assess whether one or both type
of extensions are more or less frequent in a statically-typed languages than in its
dynamic pendant. Also, we cannot claim that the results we found for Smalltalk
also hold for other dynamically-typed object-oriented languages, although we
expect to find similar patterns. It would be very interesting to replicate our
study for e.g. Java and Ruby, to assess the use of data and operation extensions
in other object-oriented languages.

Smalltalk is an object-oriented language. The extensibility challenge we stud-
ied is a general problem that occurs with other abstraction mechanisms as well.
We cannot claim that the results related to the kinds of extensions that occur in
Smalltalk projects also apply to other mechanisms. Studying programs written
in languages with different mechanisms (e.g. ML, Haskell), including combina-
tions of objects and others (e.g. Scala, Racket), would be extremely interesting
to shed more light on this topic.

9 Conclusions

Reconciling the two kinds of extensions to data types has been a subject of
interest for years, if not decades; we assessed the prevalence of this challenge with
a large-scale empirical study. Our empirical study of the Squeaksource ecosystem
analyzed more than half a billion lines of code, distributed over 2,505 projects
and 111,071 commits. Thousands of contributors performed these commits over
the course of 8 years.

We found the following:

1. Extensions do occur: one out of eight commits introduces an operation or
a data extension; large projects and large hierarchies are more prone to
extensions. More than half of the large class hierarchies have to be extended
with new operations.

2. Both kinds of extensions happen with roughly the same frequency. When
effort is measured, data extensions take a small advantage. However, the
margin is very small, so the data-extension friendly mechanism of objects
needs supplementation for operation extensions.

3. Over time, projects and hierarchies tend to need more operation extensions,
as the new extensions were not envisioned by the initial design. These larger,
older hierarchies need better extensibility support all the more.

4. The Visitor pattern, the de-facto solution to modularly support operation ex-
tensions in object-oriented software, is not applied frequently. Furthermore,
classes involved in the pattern still need operation extensions: in visited
classes when the extensions do not fit well the Visitor pattern, and in visitor
classes to react to data extensions in the visitees.

We see these findings as a call to the community to continue investigation on
this topic, and, perhaps more crucially, to propose solutions to practitioners.
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If the first can be done with novel languages, perhaps tool support is best to
assist practitioners working on existing systems. For instance, IDEs could pro-
vide programmers with a way to switch between a data-centric view and an
operation-centric view of the program. The seed of such tool support already
exists in the venerable Smalltalk class browser, which is able to display all the
implementors of a polymorphic method in a single, editable view. As for the ex-
tensibility problem stricto sensu, further studies are needed to see if our results
also reflect black-box third-party extension scenarios.
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