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Abstract. In dealing with the container bloat problem, we identify
five memory compaction techniques, which can be used to reduce the
footprint of the large number of small objects that make these con-
tainers. Using these techniques, we describe two alternative methods
for more efficient encoding of the JRE’s ubiquitous HashMap data struc-
ture, and present a mathematical model in which the footprint of this
can be analyzed. The fused hashing encoding method reduces mem-
ory overhead by 20%–45% on a 32-bit environment and 45%–65% on
a 64-bit environment. This encoding guarantees these figures as lower
bound regardless of the distribution of keys in hash buckets. The more
opportunistic squashed hashing, achieves expected savings of 25%–70%
on a 32-bit environment and 30%–75% on a 64-bit environments, but
these savings can degrade and are not guaranteed against bad (and un-
likely) distribution of keys to buckets. Both techniques are applicable
and give merit to an implementation of HashSet which is independent of
that of HashMap. Benchmarking using the SPECjvm2008, SPECjbb2005
and DaCapo suites does not demonstrate significant major slowdown or
speedup. For TreeMap we show two encodings which reduce the overhead
of tree nodes by 43% & 46% on a 32-bit environment and 55% & 73%
on a 64-bit environment. These also give to separating the implemen-
tation of TreeSet from that of TreeMap, which gives rise to footprint
reduction of 59% & 54% on a 32-bit environment and 61% & 77% on
a 64-bit environment.

1 Introduction

Java and the underlying virtual machine provide software engineers with a pro-
gramming environment that abstracts over many hardware specific technicalities.
The runtime cost of this abstraction is offset by modern compiler technologies,
including just in time compilations [1, 5, 7, 13, 15, 19, 22]. Indeed, there are indi-
cations [5,13,19] that Java’s time performance is approaching that of languages
such as C++ and Fortran which execute directly on the hardware and are free
of potential performance penalties incurred by automatic memory management.

In contrast, memory consumption is not an easy target for automatic opti-
mization. The reason is that there is a direct mapping of programmer-defined
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data structures to runtime layout. An optimizing compiler cannot easily alter
programmer defined data structures without disturbing the program semantics.
On the other hand, with the ever increasing use of Java for implementing servers
and other large scale applications, evidence accumulates that the openhanded
manner of using memory, which is so easy to resort to in Java, leads to memory
bloat, with negative impacts on time performance, scalability and usability [17].

The research community response includes methods for diagnosing the overall
“memory health” of a program and acting accordingly [18], leak detection algo-
rithms [20], and methods for analyzing [16] profiling [27, 29] and visualizing [23]
the heap. (See also a recent survey on the issue of both time and space bloat [28].)

This work is concerned primarily with what might be called “container bloat”
(to be distinguished e.g., from temporaries bloat [9]), which is believed to be
one of the primary contributors to memory bloat. (Consider, e.g., Mitchell &
Sevitsky’s example of a large on-line store application consuming 2.87 · 109 bytes,
42% of which are dedicated to class HashMap (OOPSLA’07 presentation).)

Previous work on the container bloat problem included methods for detecting
suboptimal use of containers [30] or recommendations on better choice of con-
tainers based on dynamic profiling [24]. Our line of work is different in that we
propose a more compact implementation of containers. Much in the line of work
of Kawachiya, Kazunori and Onodera [14] which directly attacks bloat due to
the String class, our work focuses on space optimization of collection classes,
concentrating on HashMap and HashSet, and to a lesser extent on the TreeMap

and TreeSet classes.
Our work does not propose a different and supposedly better algorithmic

method for organizing these collections, e.g., by using open-addressing for hash-
ing, prime-sized table, or AVL trees in place of the current implementations.
Research taking this direction is rich, but our focus here is on the question of
whether given data and data structures can be encoded more efficiently. After
all, whatever method an efficient data structure is organized in, its compaction
should lead to an even more frugal use of memory, just as subjecting a super
fast algorithm to automatic optimization could improve it further.

To this end, we insist on full compatibility with the existing implementations,
including e.g., preserving the order of keys in hash table, and the tree topology of
TreeMap. Unlike Kawachiya et. al’s work, we do not rely on changes to the JVM—
the optimization techniques we describe here can be employed by application
programmers not only to collections, but to any user defined data structure.

Table 1.1. Minimal
no. of bytes per en-
try in a set and a map
data structures

32-bit 64-bit
Map 8 16
Set 4 8

Still, the employment of our compaction techniques for
aggressive space optimization cannot in general be done
without some familiarity with the underlying object
model.

We are also motivated by the hope that the techniques
we offer could serve optimizing compilers or be employed
by other automatic tools for memory optimization (al-
though it is clear that more research is required before
all techniques discussed here can thus be exploited).
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To appreciate the scale of container overhead, note first that a simple infor-
mation theoretical consideration sets a minimum of n references for any repre-
sentation of a set of n keys, and 2n references for any representation of n pairs
of key and values.

Table 1.1 summarizes these minimal values for 32-bits and 64-bits memory
models, e.g., on a 64-bits memory model no map can be represented in fewer
than 16 bytes per entry. Achieving these minimal values is easy if we neglect
the time required for retrieval and the necessary provisions for updates to the
underlying data structure: A set can be implemented e.g., as a compact sorted
array, in which search is logarithmic, while updates consume linear time. The
challenge is in an implementation which does not compromise search and update
times. Despite recent theoretical results [3] by which one can use, e.g., n+ o(n)
words for the representation of a dynamic set, while still paying constant time for
retrievals and updates, this ideal seems far from being practical: Contemporary
implementations of data structures are known to be tolerant of some memory
overhead, but, the magnitude of this overhead may be surprising. Consider e.g.,
java.util.TreeMap, an implementation of a red-black balanced binary search
tree, which serves as the JRE principal mechanism for the realization of a sorted
map datastructure. Memory overheads incurred by this data structure are in-
ferred by examining fields defined for each tree node, realized by the internal
class TreeMap.Entry.

public class TreeMap<K, V> {
// . . .
static final class Entry<K, V>
implements Map.Entry<K, V> {
final K key;
V value;
Entry<K, V> left = null;
Entry<K, V> right = null;
Entry<K, V> parent;
boolean color = BLACK;

// . . .
}
// . . .

}

public class HashMap<K, V> {
// . . .
static class Entry<K, V>
implements Map.Entry<K, V> {
final K key;
V value;
Entry<K, V> next;
final int hash;

// . . .
}
// . . .

}

Fig. 1.1. Fields defined in TreeMap.Entry (a) and in HashMap.Entry (b)

Fig. 1.1(a) shows that on top of the object header, each tree nodes stores 5
pointers and a boolean whose minimal footprint is only 1 bit, but typically
requires at least a full byte (and even an eight bytes word on e.g., the jikes virtual
machines). On 32-bits implementation of the JVM which uses 8 bytes per object
header and 4 bytes per pointer total memory for a tree node is 8 + 5 · 4 + 1 = 29
bytes. With the common 4-alignment or 8-alignment requirements (as found in
e.g., the HotSpot32 implementation of the JVM), 3 bytes of padding must be
added, bringing memory per entry to four times the minimum.

The situation is twice as bad in the implementation of the class TreeSet

(of package java.util), the standard JRE method for realizing a sorted set.
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Internally, this class is implemented as proxy to TreeMap with a dummy mapped
value, bringing memory per entry to eight times the minimum.

A hash-table implementation of the Map and Set interfaces is provided by
the JRE’s class java.util.HashMap and its proxy class java.util.HashSet.
Memory per entry of these is determined by two factors. First, as we will ex-
plain in greater detail below, each hash table entry consumes 4/p bytes (on a
32-bits architecture), where p is the table density parameter ranging typically

Table 1.2. Memory overhead per
entry of common data structure in
central JRE collections

HotSpot32 HotSpot64
L-TreeMap 24 48
L-TreeSet 28 56
L-HashMap 16 + 4/p 32 + 8/p
L-HashSet 20 + 4/p 40 + 8/p

between 3/8 and 3/4. Secondly, an object of
the internal class HashMap.Entry (depicted
in Fig. 1.1(b)) is associated with each such
entry.

On HotSpot32, instances of HashMap.

Entry occupy 24 bytes, bringing the memory
requirements of each HashMap entry to the
range of 29.33–34.67 bytes in typical ranges
of p, i.e., within 10% of memory use with class
TreeMap.

Table 1.2 summarizes the overhead, in bytes, for representing the four funda-
mental JRE collections we discussed. Note that the numbers in the table are of
the excess, i.e., bytes beyond what is required to address the key (and value, if
it exists) of the data structure.

We describe a tool chest consisting of five memory compaction techniques,
which can be used to reduce the footprint of the small Entry objects that
make the HashMap and TreeMap containers. These are: null pointer elimina-
tion, boolean elimination, object fusion, field pull-up and field consolidation.
Techniques can be applied independently, but they become more effective if
used wisely together, with attention to the memory model and to issues such as
alignments.

Using these techniques, we describe fused hashing (F -hash henceforth) and
squashed hashing (S-hash henceforth): two alternative methods for more efficient
encoding of the JRE’s implementation of HashMap data structure. Fusion and
squashing are extended to TreeMap as well. Our compaction gives also reason
to separating the implementation of HashSet from HashMap and TreeSet from
that of TreeMap.

We present a mathematical model in which the footprint of these implementa-
tions can be analyzed. In this model, we deduce that F -HashMap reduces memory
overhead by 20%–34% on a 32-bit environment and 48%–54% on a 64-bit envi-
ronment.

Timing results indicate that no significant improvement or degradation in
runtime is noticeable for in three common JVM benchmarks: SPECjvm2008,
SPECjbb2005 and DaCapo. Naturally, some specific map operations are slowed
down in compare to the simple base implementation due to a more complex and
less straightforward implementation.

Table 1.3 summarizes the savings ofF -hash, S-hash, F -tree and S-tree. A fully
compatible Map implementation of the 32-bit and 64-bit versions of F -HashMap,
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Table 1.3. Memory overhead reduction for a common Map instance; implementation
of the marked entries is publicly available

Hash Tree
Fused Squashed Fused Squashed

Map
32-bit 20%–34%† 26%–53%† 43%† 46%†
64-bit 48%–54%† 32%–56%† 55%† 73%†

Set
32-bit 22%–38% 58%–67%† 59% 54%
64-bit 50%–62% 64%–73%† 61% 77%

S-HashMap, S-HashSet, F -TreeMap and S-TreeMap can be found on the first
author’s website.These implementations were thoroughly checked correct by the
JRE test suite and our own additional testing.

The programming labor in producing the implementations inspired us to
present an instrument virtual entries that enables transparent inspection of com-
pacted data structures.

A mathematical model was developed for computing the expected savings as
a function of the hash table density. This model provides a lower bound on the
savings of fused hashing; should the distribution of keys into hash buckets be not
as even as the distribution of balls thrown at random into urns, then the actual
savings may be greater. For squashed hashing, the model yields an expected
value. A non-fully random distribution of keys into buckets may improve, but
sometimes worsen the reported savings.

For trees, the balancing algorithms make the reported savings valid for tree
with a handful of keys created in any order of key insertions and removals.

A similar analytical approach would not be informative for evaluating time
performance. The reason is that the alternative implementations were designed
to have the same underlying structure as L-hash: the number of comparisons
required to find a key κ is the same in all implementations. Therefore, to evaluate
time performance we conducted benchmarking; these were carried out using
HotSpot32 (exact settings are described below).

We conjecture that searches in fused and squashed hash tables should be
faster than the baseline (due to fewer memory dereferencing operations), but
that insertions and removals are slower (as they involve repacking of small ob-
jects). Initial experiments, not reported here, confirm this conjecture. However,
a detailed benchmark timing operations as a function of table density and table
size is left for further work, given the intriguing results we, in cooperation with
Lenz found [12]. In particular, it was demonstrated that the so called “steady
state” which is supposedly reached after sufficient warm-up is not as steady as
one might think, with results fluctuating between multiple steady states.

Worse, it was found that the timing of an operation depends on code exe-
cuted prior to the benchmark. For this reason, the reported benchmarking here
focuses on the performance of the compacted data structures as part of a client
benchmark application.

Applications using sorted maps and sets are not abundant. Our initial tim-
ing of squashed tree data structures indicate that it is as fast, and sometimes



Smaller Footprint for Java Collections 361

faster than the baseline. However, fused trees are about two times slower; their
use should probably be limited to applications operating under strict memory
constraints in which either time performance is not a factor, or tree operations
are rare.

Outline. The remainder of this article is organized as follows. The five mem-
ory compaction techniques we identified are described in Section 2. Sec. 3 then
reviews the JRE’s implementation class HashMap, highlighting the locations in
which the optimization can take place based on the statistical properties of dis-
tribution of keys into hash table cells. F -hash and S-hash are then described
(respectively) in sects. 4 and 5. In Sect. 6 we explain how virtual entries are
implemented. Time performance of the compacted hash tables is the subject
of Sect. 7. Sect. 8 describes our fused and squashed versions of TreeMap and
TreeSet. Sect. 9 concludes.

2 Compaction Techniques

The space compaction techniques that we identify include the following three:

– Null pointer elimination. Say a class C defines an immutable pointer field p

which happens to be null in many of C’s instances. Then, this pointer can be
eliminated from C by replacing the data member p with a non-finalmethod
p() which returns null. This method is overridden in a class Cp inheriting
from C, to return the value of data member p defined in Cp. Objects with
null values of p are instantiated from C; all other objects instantiate Cp.

– Boolean elimination. A similar rewriting process can be used to eliminate
immutable boolean fields from classes. A boolean field in a class C can be
emulated by classes Ct (corresponding to true value of the field) and Cf

(corresponding to false), both inheriting from C.
In a sense, both null-pointer elimination and boolean elimination move

data from an object into its header, which encodes its runtime type. Both
however are applicable mostly if class C does not have other subclasses,
and even though they might be used more than once in the same class to
eliminate several immutable pointers and booleans, repeated application will
lead to an exponential blowup in the number of subclasses.

Mutable fields may also benefit from these techniques if it makes sense
to recreate the instances of C should the eliminated field change its value.

– Object fusion. Say that a class C defines an ownership [6] pointer in field of
type C′, then all fields of type C′ can be inlined into class C, eliminating
the C → C′ pointer. Fusion also eliminates header of the C′ object, and the
back pointer C′ → C if it exists. It is often useful to combine fusion with
null-pointer elimination, moving the fields of C′ into C, only if the pointer
to the owned object is not null.
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Before describing the two additional techniques, a brief reminder of Java’s ob-
ject model is in place. Unlike C++, all objects in Java contain an object header,
which encodes a pointer to a dynamic dispatch table together with synchroniza-
tion, garbage collection, and other bits of information. In the HotSpot imple-
mentation of the JVM, this header spans 8 bytes on HotSpot32, and 16 bytes
on HotSpot64 (but other sizes are possible [4], including an implementation of
the JVM in 64-bit environment in which there is no header at all [25]).

The mandatory object header makes fusion very effective. In C++, small
objects would have no header (vptr in the C++ lingo [10]), and fusion in C++
would merely save the inter-object pointer.

Following the header, we find data fields: long and double types span 8
bytes each, 4 bytes are used for int, 2 bytes for char and short and 1 byte
for types byte and boolean. References, i.e., non-primitive types take 4 bytes
on HotSpot32, and 8 bytes on HotSpot64. Arrays of length m occupy ms bytes,
up-aligned to the nearest 8-byte boundary, where s is the size of an array entry.
Array headers consume 12 bytes in a 32-bit JVM , 8 for header and 4 for the
array length field (20 bytes in a 64-bit JVM). Finally, all objects and sub-objects
are aligned on an 8-bytes boundary.1

Both the header and alignment issues may lead to significant bloat, attributed
to what the literature calls small objects. Class Boolean for example, occupies
16 bytes on Hotspot32 (8 for header, one for the value field, and 7 for align-
ment), even though only one bit is required for representing its content. Applying
boolean elimination to Boolean, i.e., by making class Boolean abstract, while
introducing singleton classes True and False which extend it, would halve the
footprint of all Boolean objects.

Alignment issues give good reasons for applying the space compaction tech-
niques together. Applying null pointer elimination to class HashMap.Entrywould
not decrease its size (on HotSpot32); one must remove yet another field to reach
the minimal saving quantum of 8 bytes per entry.

We propose two additional techniques for dealing with waste due to alignment:

– Field Pull-up. Say that a class C′ inherits from a class C, and that class C
is not fully occupied due to alignment. Then, fields of class C′ could be pre-
defined in class C, avoiding alignment waste in C‘, in which the C′ subobject
is aligned, just as the entire object C. We employ field pull up mostly for
smaller fields, typically byte sized.

In a scan of some 20, 000 classes of the JRE, we found that the footprint
of 13.6% of these could be reduced by 8 bytes by applying greedy field pullup,
while 1.1% of the classes would lose 16 bytes. (Take note that field pullup
could be done by the JVM as well, in which case, fields of different subclasses
could share the same alignment hole of a superclass, and that the problem
of optimizing pullup scheme is NP-complete.)

1 See more detailed description in
http://kohlerm.blogspot.com/2008/12/

how-much-memory-is-used-by-my-java.html or
http://www.javamex.com/tutorials/memory/object_memory_usage.shtml

http://kohlerm.blogspot.com/2008/12/how-much-memory-is-used-by-my-java.html
http://kohlerm.blogspot.com/2008/12/how-much-memory-is-used-by-my-java.html
http://www.javamex.com/tutorials/memory/object_memory_usage.shtml
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– Field Consolidation. Yet another technique for avoiding waste due to align-
ment is by consolidation: instead of defining the same field in a large number
of objects, one could define an array containing the field. If this is done, the
minimal alignment cost of the array is divided among all small objects, and
can be neglected.

Of course, consolidation is only effective if there is a method for finding
the array index back from the object whose field was consolidated.

Object fusion was also called object inlining in the literature and used for au-
tomatic optimization of Java programs (see Wimmer’s Ph.D. thesis [26] for a
survey). We suspect that the other techniques enumerated above were employed
by programmers without identifying their universality.

3 Hash Tables of the JRE

Other than the implementations designed for concurrent access, we find three prin-
cipal implementations of hash tables in the JRE: class IdentityHashMap uses
open-addressing combined with linear probing, i.e., all keys and values are stored
in an array of size m, and a new key κ is stored in position (H(κ) + j mod m)
where H(κ) is the hash value of κ and j is the smallest integer for which this ar-
ray position is empty. Class HashMap (henceforth called L-HashMap) uses chained
hashing method, by which the ith table position contains a bucket of all keys κ for
which H(κ) mod m = i. This bucket is modeled as a singly-linked list of nodes of
type HashMap.Entry (depicted in Fig. 1.1(b)). The hash table itself is then simply
an array table of type HashMap.Entry[]. Finally, class HashSet is a wrapper of
HashMap, delegating all set operations to map, an internal private field of type
HashMap that maps all keys in the set to some fixed dummy object value.

It is estimated2 that class IdentityHashMap is 15% to 60% faster than HashMap,
and occupies around 40% smaller footprint. Yet class IdentityHashMap is rarely
used3 since it breaks the Map contract in comparing keys by identity rather than
the semantic equals method. One may conjecture that open addressing would
benefit HashMap as well. However, Lea’s judgment of an experiment he carried in
employing the same open addressing for the general purpose HashMap was that it
is not sufficiently better to commit.

static int hash(int h) {
h ˆ= h >>> 20 ˆ h >>> 12;
return h ˆ h >>> 7 ˆ h >>> 4;
}

Fig. 3.1. Bit spreading function
implementation from HashMap class

Function H is realized in HashMap as
hash(key.hashCode())where function hash

is as in Fig. 3.1. This function’s purpose is
to improve those overridden versions of the
hashCode()method in which some of the bits
returned are less random than others. This
correction is necessary since m, the hash ta-
ble’s size, is selected as a power of two, and the computation of H(κ) mod m

2 http://www.mail-archive.com/core-libs-dev@openjdk.java.net/msg02147.html

msg02147.html
3 http://khangaonkar.blogspot.com/2010/06/

what-java-map-class-should-i-use.html

http://www.mail-archive.com/core-libs-dev@openjdk.java.net/
http://www.mail-archive.com/core-libs-dev@openjdk.java.net/msg02147.html
http://khangaonkar.blogspot.com/2010/06/what-java-map-class-should-i-use.html
http://khangaonkar.blogspot.com/2010/06/what-java-map-class-should-i-use.html
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is carried out as a bit-mask operation. With the absence of this “bit-spreading”
function, implementation of hashCode in which the lower-bits are not as random
as they should be would lead to a greater number of collisions.

public V get(Object κ) {
if (κ == null)
return getForNullKey();

int h = hash(κ.hashCode());
for (
Entry<K, V> e = table[h & table.length-1];
e != null; e = e.next) {
Object k;
if (e.h == h
&& ((k = e.K) == κ || κ.equals(k)))
return e.V;

}
return null;

}

Fig. 3.2. Java code for searching in L-HashMap

Class HashMap caches,
for each table entry, the
value of H on the key
stored in that entry.
This Cached Hash Value
(CHV) makes it possible
to detect (in most cases)
that a searched for key
is not equal to the key
stored in an entry, with-
out calling the poten-
tially expensive equals

method in function hash.
Function get (Fig. 3.2) demonstrates how this CHV field accelerates search-

ing: Before examining the key stored in an entry, the function compares the CHV
of the entry with the hash value computed for the searched key. (The listing in-
troduces the abbreviated notation K, V, and h for fields key, value and hash,
to be used henceforth.)

A float typed parameter known by the name loadFactor governs the be-
havior of the hash table as it becomes more and more occupied. Let n denote
the number of entries in the table, and let p = n/m. That is what we shall
henceforth call table density. Then, if p exceeds the loadFactor, the table size
is doubled, and all elements are rehashed using the CHV. It follows that (after
first resize, with the absence of removals), loadFactor/2 < p ≤ loadFactor.
The default value of loadFactor is 0.75, and it is safe to believe [8] that users
rarely change this value, in which case, 3/8 < p ≤ 3/4, is an equality we shall
call the typical range of p, or just the “typical range”. The center of the typ-
ical range, p = (3/8 + 3/4)/2 = 9/16 is often used in benchmarking as a point
characterizing the entire range.

The memory consumed by the HashMap data structure (sans content), can be
classified into four kinds:

1. class-memory. This includes memory consumed when the class is loaded, but
before any instances are created, including static data fields, memory used
for representing methods’ bytecodes, and the reflective Class data structure.

2. instance-memory. This includes memory consumed regardless of the hash
table’s size and the number of keys in it, e.g., scalars defined in the class,
references to arrays, etc.

3. arrays-memory. This includes memory whose size depends solely on the table
size.

4. buckets-memory. This includes memory whose size depends on the number
of keys in the table, and the way these are organized.
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Our analysis ignores the first two categories, taking note, for the first category
that some of its overheads are subject of other lines of research [21], and for the
second, that applications using many tiny maps probably require a conscious
optimization effort, which is beyond the scope of this work.

We now compute the memory use per entry, i.e., the total memory divided
by the number of entries in the table. On HotSpot32 array table consumes 4m
bytes for the array content along with 12 bytes for the array header, which falls in
the “instance-memory” category and thus ignored. These 4m bytes are divided
among the n entries, contributing 4/p bytes per entry.

Examining Fig. 1.1(b), we see that each instance of class Entry has 8 bytes per
header, 3 words for the K , V , and next pointers and another word for the CHV,
totaling in 8 + 4 · 4 = 24 bytes per object. The number of bytes per table entry
is therefore 24 + 4/p. For HotSpot64, the header is 8 bytes, the 3 pointers are
8 bytes each and the integer CHV is 4 bytes, which total, thanks to alignment,
is 48 + 8/p bytes per object. (Comparing these values with Table 1.1 gave the
memory overheads of L-HashMap and L-HashSet, as tabulated in Table 1.2.)
Observe that the decision to implement HashSet as HashMap does not incur any
memory toll: eliminating the value field gives the same number of bytes per
Entry object (at least on HotSpot32).
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Fig. 3.3. Expected fraction of buckets of
size k, k = 0, . . . , 4 vs. table density (and ex-
pected fraction of keys falling in buckets of
size k + 1)

Hashing can be modeled
by the famous “balls into
urns” statistical model [11],
which gives rise to the Pois-
son distribution: The frac-
tion of hash table buckets
with precisely k keys is pk

k! e
−p

where p = n/m, n being the
total number of keys and m
the total number of buck-
ets. Fig. 3.3 plots these frac-
tions for k = 0, . . . , 4. The
endpoints of the typical range
as well as its center are shown
as vertical blue lines in the fig-
ure. We see that in the typical
range a significant portion of the buckets are empty, ranging from 69% (maximal
value), to 47% (minimal value). Even when p = 1, 37% of the buckets are empty.

As it turns out, the expected fraction of keys which fall into buckets of
size k > 1, is nothing but the expected fraction of buckets of size k − 1. We
can therefore read the fraction of keys falling into buckets of size k by inspect-
ing the (k − 1)th curve in Fig. 3.3. In the range of p = 3/8 through p = 3/4,
we have that the fraction of keys in buckets of size 1 is the greatest, ranging
between 69% and 47%. The fraction of keys in buckets of size 2 is between 26%
and 35%. At p = 3/4, fewer than 15% of the keys fall in buckets of size 3, and,
fewer than 4% of the keys are in buckets of size 4.
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We identify several specific space optimization opportunities in the L-HashMap
implementation: First, cells of array table which correspond to empty buckets
are always null. Second, in the list representation of buckets, there is a null

pointer at the end. A bucket of size k divides this cost among the k keys in it.
The greatest cost for key is for singleton buckets, which constitute 47%–69% of
all keys in the typical range.

These two opportunities were called “pointer overhead” by Mitchell and Se-
vitsky [18]. Our fusion and squashing hashing deal with the second overhead
(pointer overhead/entry in the Mitchell and Sevitsky terminology) but not the
first (pointer overhead/array): The number of empty buckets is determined solely
by p and we see no way of changing this.

Non-null pointers (collection glue) are those next pointers which are not null.
These occur in buckets with two or more keys and are dealt with using fusion
and squashing. The small objects overhead in HashMap refers to the fact that
each Map.Entry object has a header, whose size (on HotSpot32) is the same as
the essential 〈K,V〉 pair stored in an entry.

The CHV, the fourth (and last) field of class HashMap.Entry (Fig. 1.1(b)), is
classified as primitive-overhead in the GM taxonomy [18, footnote 4], and can
be optimized as well: If m = 2�, then the � least significant bits of all keys that
are hashed into a bucket i, are precisely the number i. The remaining 32− �
most significant bits of the CHV are the only meaningful bits in the comparison
of keys that fall into the same bucket.

static int hash1(int h) {
return h ˆ h >>> 20;

}
static int hash2(int h) {

h ˆ= h >>> 12;
return h ˆ h >>> 7 ˆ h >>> 4;

}

Fig. 3.4. Two steps hash code modifi-
cation function implementation

We found that storing a byte instead of
an int for the CHV has minimal effect on
runtime performance, eliminating 255/256
of failing comparisons. Best results were
found for a CHV defined by the co-
ercion (byte) hash1(key.hashCode()).
where hash1 is the first stage in computing
hash (see Fig. 3.4).

4 Fused Buckets Hashing

Employing list fusion and pointer-elimination for the representation of a bucket
calls for a specialized version of Entry for buckets of size k, k = 1, . . . , �, for some
small integer constant �. The näıve way of doing so is not too effective since in
singleton buckets (which form the majority of buckets in the typical range), the
specialized entry should include two references (to the key and value) as well as
the CHV. With 8-byte alignment, the size of a specialized Entry for a singleton
bucket is the same as that of the unmodified Entry.

Instead, our fused-hashing implementation consolidates the CHV of the first
key of all non-empty buckets into a common array byte[] chv of length m,
which parallels the main table array. If the ith bucket is empty, then table[i]

is null and chv[i] is undefined. Otherwise, chv[i] is the CHV of the first key in
the ith bucket, and table[i] points to a Bucket object that stores the bucket’s
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contents: for F -HashMap this includes all triples 〈Kj ,Vj , hj〉 that belong in this
bucket, with the exception of h1; for F -HashSet, the bucket contents includes
all pairs 〈Kj , hj〉, with the exception of h1.

We define four successive specializations of the abstract class Bucket:Bucket1
represents singleton buckets and extends class Bucket; Bucket2 that extends
Bucket1 represents buckets of size 2; Bucket3 that extends Bucket2, is dedicated
for buckets of size 3; finally, buckets of size 4 or more are represented by class
Bucket4which extends class Bucket3. We thus fuse buckets of up to four entries
into a single object, and employ pointer elimination in buckets of size k = 1, 2, 3. In
larger buckets, every four consecutive entries are packed into a single object: buck-
ets of size k > 4 consist of a list of �k/4� objects of type Bucket4. If k is divisible
by 4, then the next pointer of the last Bucket4 object of this list is null. Other-
wise, this next field points to a Bucketk′ object which represents the remaining k′

entries in the bucket, where 1 ≤ k′ ≤ 3 is determined by k′ = k mod 4.
As shown in Table 4.1 in the inheritance chain of Bucket, Bucket1, . . . ,

Bucket4 each class adds the fields required for representing buckets of the corre-
sponding length; field pull-up (which depends on the memory model) is employed
to avoid wastes incurred by alignment.

Table 4.1. Layout of fused bucket variants in F-HashMap and F-HashSet on HotSpot32
and HotSpot64

HotSpot32 HotSpot64
F-HashMap F-HashSet F-HashMap F-HashSet

introduced
fields

total
size

(bytes)

introduced
fields

total
size

(bytes)

introduced
fields

total
size

(bytes)

introduced
fields

total
size

(bytes)

Bucket
object
header

8
object
header

8
object
header

16
object
header

16

Bucket1 K1,V1 16
K1,

↑h2, ↑h3, ↑h4, ↑h516 K1,V1 32 K1, 24

Bucket2
K2,V2, ↑K3,
h2, ↑h3, ↑h4, ↑h532 K2, ↑K3 24

K2,V2,
h2, ↑h3, ↑h4, ↑h5

56
K2

h2, ↑h3, ↑h4, ↑h5
40

Bucket3 V3, ↑K4 40 24 K3,V3 72 K3 48

Bucket4 V4, next 48 K4, next 32
K4,V4,
next

96 K4, next 64

For each class, the table shows the introduced fields along with fields pulled-
up into it (such fields are prefixed by an up-arrow). The set of fields present in a
given class is thus obtained by accumulating the fields introduced in it and all of
its ancestors, shown as former table rows. Concentrating on HotSpot32 we see
that class Bucket2 in F -HashMap introduces three fields: K2, V2 and h2, but also
includes fields K3 and h3 which were pulled-up from Bucket3, and field h4 which
was pulled-up from Bucket4. Class Bucket2 includes also a h5 field, which is the
CHV of the first key in the subsequent Bucket object (or undefined if no such
object exists.) The layout of buckets in F -HashSet, is similar, except that the
absence of value fields increases field pull-up opportunities, leading to greater
memory savings.

The “total size” columns in the table suggest that F -HashMap and F -HashSet
are likely to be more memory efficient than L-hash, e.g., a bucket of size 4 that
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requires 96 bytes in L-hash is represented by 48 bytes in F -HashMap and only 32
bytes in F -HashSet. More importantly, the bulk of the buckets, that is singleton
buckets, require only 16 bytes (32 bytes on HotSpot64), as opposed to the 24
bytes (respectively 48 bytes) footprint in the L-hash implementation.

Naturally, objects consume more memory in moving from a 32-bits memory
model to a 64-bits model. However, examining the righthand side of Table 4.1
shows that this increase is not always as high as two fold, e.g., a Bucket1 object
doubles up from 16 bytes to 32 bytes in F -HashMap but only to 24 bytes in
F -HashSet (50% increase), and a Bucket2 object increases from 32 bytes to 56
bytes in F -HashSet and from 24 bytes to 40 bytes in F -HashSet (both increases
are by 67%).

An important property of fusion is that of non-decreasing compression, i.e.,
the number of bytes used per table entry decreases as the bucket size increases.
On HotSpot32, overhead per entry in buckets of size 1,2,3,4 is 16, 16, 13.33, 12
bytes in FHashMap and 16, 12, 8, 8 in FHashSet. In the HotSpot64 model, the
respective numbers are 32, 28, 24, 24 bytes in FHashMap and 24, 20, 16 ,16 bytes
in FHashSet. It is easy to check that this property is preserved even in longer
buckets.

A search for a given key κ in a fused bucket is carried out by comparing κ
with fields K1,K2, . . . in order, and if κ = Ki returning Vi, except that Ki is
to be accessed if the current Bucket object is of type Bucketi or a subtype
thereof. It is natural to implement this restriction by overriding function get in
each of the Bucket classes. We found however that, in this trivial inheritance
structure, dynamic dispatch is slightly inferior to the direct application of Java’s
instanceof operator to determine the bucket’s dynamic type. Fig. 4.1 shows
some of the details.

public V get(Object κ) {
int h = hash1(κ.hashCode());
int i = hash2(h) &
table.length-1;
Bucket1<K, V> b1 = table[i];
if (b1==null)
return null; // Empty bucket
h = (byte) h;
Object k;
if (chv[i]==h && ((k = b1.K1)==κ
|| κ.equals(k)))
return b1.V1;

if (!(b1 instanceof Bucket2))
return null;

Bucket2<K, V> b2 = (Bucket2)b1;
// ...
if (b4.h4==h && ((k = b3.K4)==κ
|| κ.equals(k)))
return b3.V4;

return b4.next==null
? null
: b4.next.get(h, κ, b4.h5);

}

Fig. 4.1. Java code for searching a key in a fused bucket

In comparing with of L-hash in Fig. 3.2, we see that the first iterations of
the loop are unrolled: the search begins with an object b1 of type Bucket1;
if κ, the searched key, is different from the K1 field of b1, we check whether the
current bucket is of type Bucket2, in which case, b1 is down casted into type
Bucket2, saving the result in b2, proceeding to examining field K2, etc. As before
the CHV fields (h1, h2, . . .) are used to accelerate the search, and as before an
identity comparison precedes the call to the potentially slower equals method.
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It is generally believed that search operations, and in particular, successful
search, are the most frequent operations on collections.4 This is the reason we
did not try to similarly optimize insertions (method put) and removals (method
remove); these were implemented by dynamic dispatch into appropriate methods
in the Bucket hierarchy.

We turn to space analysis. For that we employ an analytical model to compute
the expected number of bytes per table entry. This kind of analysis is justified
by the fact that empirical results generally agree with the theoretical model
of buckets’ distribution: This is true for the initial implementation of function
hashCode in class Object, which on HotSpot is by a pseudo-random number gen-
erator. Class designers, particularly of common library classes such as String,
usually make serious effort to make hashCode as randomizing as possible. It is
also known [2] that the design of a particularly bad set of distinct hash values is
difficult. Finally, the bit-spreading preconditioning of function hash (Fig. 3.1),
compensates for suboptimal overriding implementations of hashCode.

Note that a distribution of keys among buckets which is not random means
that buckets tend to be fewer and larger than that predicted by the Poisson
distribution. The “non-decreasing compression” property of F -hash guarantees
that the analytical model is a lower-bound on the memory savings which can
only be larger in practice. For example, in the extreme case in which function
hashCode() always returns 0, all entries will fall in the first bucket, each map
entry will consume only 12 bytes. (The same lower bound could not be stated for
S-HashMap in which the non-decreasing compression property does not hold.)

A detailed analysis of the space overhead reduction is given in the appendix,
for F -HashMap on HotSpot32, the expected number of bytes per table entry is

12 +
(
9− 4 cosp · e−p

)
/p.

We see that throughout the entire “typical” range, list fusion improves memory
use for the hash data structure, reducing it by about a third at p = 3/4, and
that the improvement increases with p. As it turns out, fusion improves upon the
baseline representation throughout the entire typical range as reported above in
Table 1.3. Further, this improvement increases monotonically with p; for slightly
larger values of p (e.g., in load factor p ≈ 1.5 in which buckets are still very small)
both F -HashMap and F -HashSet are close to their asymptotic utility, requiring
just a little over 12 bytes of overhead (F -HashMap) and just little over 8 bytes of
overhead (F -HashSet), thus reaching a two (three) fold improvement over the
24 bytes of overhead in L-hash.

The same behavior is exhibited by the 64 bit memory model: significant im-
provement in the typical range (which surpasses that seen in the 32 bit model),
and reaching the same two- or three- fold improvement for larger values of p.

4 See for example discussion in http://mail.openjdk.java.net/pipermail/

core-libs-dev/2009-June/001807.html

http://mail.openjdk.java.net/pipermail/core-libs-dev/2009-June/001807.html
http://mail.openjdk.java.net/pipermail/core-libs-dev/2009-June/001807.html
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5 Squashed Buckets Hashing

Squashed buckets hashing further reduces the footprint of fused. The enabling
observation is that a singleton bucket does not need to be represented by an
object. Consider a cell in array table data structure, whose associated bucket is
a singleton. Instead of storing in the cell a reference to a singleton bucket object,
squashing means that the cell references the key residing at this bucket, while
the value is consolidated into a table-global array. Thus, a hash map consists of
three arrays of length m: keys and values of type Object, and, as before, array
chv of bytes storing the CHV of the first key in buckets.

If the ith bucket is empty, then keys[i] and values[i] are null. If it is a
singleton, keys[i] is the key stored in this bucket, values[i] is the associated
value, while chv[i] is the CHV of this key. Otherwise, bucket i has k entries for
some k ≥ 2. In this case, cell keys[i] references a Bucket object, which must
store all triples 〈Kj ,Vj , hj〉, for j = 1, . . . , k, that fall in this bucket, except
that V1 is stored in values[i], and h1 is stored in chv[i].5

As before, the Bucket object is represented using list fusion: class Bucket2

(which extends the abstract class Bucket), stores the fused triples list when
the bucket is of size 2; class Bucket3, which extends class Bucket2, stores the
fused triples list when the bucket is of size 3, etc. Class Bucket6, designed for the
rare case in which a bucket has 6 keys or more, stores the first five triples and a
reference to a linked list in which the remaining triples reside. For simplicity, we
use standard Entry objects to represent this list. (A little more memory could
be claimed by using, as we did for F -hash, one of Bucket2, . . . , Bucket6 for
representing the bucket’s tail; this extra saving is minute.)

A squashed HashSet is similar to a squashed HashMap, except for the obvious
necessary changes: There is no values array, and a Bucket object for a k-sized
bucket stores pairs 〈Ki, hi〉, for i = 1, . . . , k (h1 is still stored in chv[i]).

Table 5.1 lists the introduced -and pulled-up- fields in classes Bucket, Bucket2,
. . . , Bucket6 in S-HashSet and S-HashMap on HotSpot32 and HotSpot64.

Of the twenty concrete classes described in the table, only four consume un-
used space: Bucket6 of S-HashMap and S-HashSet and Bucket2 of S-HashMap
and S-HashSet. The global waste due to the first two classes is meager since
buckets with six keys or more are rare, and the waste is divided among all keys
in the bucket. However, the effectiveness of squashed hashing on HotSpot64 in
somewhat limited by the waste in buckets of size 2.

Observe that since singleton buckets do not occupy any memory, the non-
decreasing compression property of fused hashing is not preserved. In other
words, unlike fusion, a key distribution in which all keys fall in distinct buckets
is the most memory efficient among all other distributions, and when more keys
are added to a bucket it does not necessarily become more efficient in reducing
the memory overhead per key.

5 Squashed hashing does not allow keys whose type inherits from class Bucket; this
is rarely a limitation as this class is normally defined as an inner private class of
HashMap.
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Table 5.1. Layout of squashed bucket variants in S-HashMap and S-HashSet on
HotSpot32 and HotSpot64

HotSpot32 HotSpot64
S-HashMap S-HashSet S-HashMap S-HashSet

introduced
fields

total
size

(bytes)

introduced
fields

total
size

(bytes)

introduced
fields

total
size

(bytes)

introduced
fields

total
size

(bytes)

Bucket
object
header

8
object
header

8 — 16 — 16

Bucket2
K1,K2,V2,
h2, ↑h3, ↑h4, ↑h5

24
K1,K2, ↑K3,
h2, ↑h3, ↑h4, ↑h5

24
K1,K2,V2,
h2, ↑h3, ↑h4, ↑h5

48
K1,K2,

h2, ↑h3, ↑h4, ↑h5
40

Bucket3 K3,V3 32 24 K3,V3 64 K3 48

Bucket4 K4,V4 40 K4, ↑K5 32 K4,V4 80 K4 56

Bucket5 K5,V5 48 32 K5,V5 96 K5 64

Bucket6 next 56 next 40 next 104 next 72

A search for a given key κ in a squashed bucket is carried out by comparing κ
with fields K1,K2, . . . in order, and if κ = Ki returning Vi. Unlike fused buckets,
this search cannot be implemented solely by dynamic dispatch since no Bucket

object exists for singleton buckets. Our implementation (Fig. 5.1) deals with
singleton buckets by overriding the equals method of Bucket; the alternative of
using instanceof and then checking for equality, is possible, but unlikely to be
as efficient.

public V get(Object κ) {
int h = hash1(κ.hashCode());
int i = hash2(h) &
keys.length - 1;
h = (byte) h;
Object k = keys[i];
if (k==null) return null;
if (chv[i]==h && (k==κ
|| k.equals(κ)))
return values[i];

if (!(k instanceof Bucket2))
return null;
Bucket2<K, V> b = (Bucket2) k;
if (b.h2==h &&
((k = b.K2)==κ || κ.equals(k)))
return b.V2;

if (!(b instanceof Bucket3))
return null;
Bucket3<K, V> b = (Bucket3) b;
// ...
}

class Bucket2<K, V> extends Bucket<K, V> {
K K1, K2;
V V2

byte h2, h3, h4, h5;
// . . .
@Override final boolean equals(Object κ) {
return K1==κ || K1.equals(κ);

}
// . . .

}

Fig. 5.1. Java code for searching a given key in a squashed bucket

After computing the index i and the CHV value h, the search begins by
considering the case of equality with K1, which is done by comparing keys[i]

with κ, and if these two are equal, values[i] is returned. In case of non-singleton
bucket, the call k.equals(κ) invokes method equals of Bucket2. This virtual
function call is made only if h == h1. The search continues with a check whether
a longer bucket resides in keys[i] by checking whether k is an instanceof class
Bucket2, in which case we proceed to comparing κ with field K2, etc.

The implementation of insertions and removals relied on a special case treat-
ment of singleton buckets and dynamic dispatch of all other buckets.
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A detailed analysis of the space overhead reduction is given in the appendix,
e.g., it is shown that for S-HashMap on HotSpot32, the expected bytes overhead
per table entry is

24− (
55 + e−p · (64 + 40p+ 20p2 + 4p3 + p4/3− p5/15

))
/p.

As it turns out, asymptotically, i.e., as p approaches infinity, the memory over-
heads of both S-HashMap and S-HashSet is the same as that of L-hash, i.e., 24
(48) bytes per table entry on HotSpot32 (HotSpot64). The reason is that buckets
of size k > 6 are not optimized in our implementation.

Nevertheless, in the typical range on HotSpot32, squashed hashing is even
more memory efficient than fused hashing. S-HashSet is particularly efficient,
making an about two fold compaction in this range. It is also evident that both
the absolute and relative savings in using squashed hashing are greater in the
64-bit memory model than in the 32-bits model.

6 Virtual Entries

public interface Map<K, V> {
// ...
Set<K> keySet();
Collection<V> values();
Set<Map.Entry<K, V>> entrySet();
// ...
interface Entry<K, V> {
K getKey();
V getValue()
V setValue(V value);
// ...

}
}

Fig. 6.1. Required methods for iteration
over Map entries and interface Map.Entry

Virtual entries enable read (and
even write) access to the actual
data (the “contained” portion in
the Mitchell and Sevitsky taxon-
omy) in a data structure whose
representation was compacted.
Such access is required e.g., for in-
order iteration over tree nodes, and for
implementing methods in the Map in-
terface (Fig. 6.1), which provide meth-
ods for the examination, and even
change of (i) the set of all keys stored
in the map, (ii) the multi-set of all val-
ues, and (iii) the set of all 〈key, value〉
pairs, nicknamed Entry.

abstract class VirtualEntry<K, V>
implements Map.Entry<K, V> {
abstract
VirtualEntry<K, V> next();
protected abstract
void setV(V v);
@Override public final
V setValue(V v) {
V old = getValue();
setV(v);
return old;

}
}

Fig. 6.2. Class VirtualEntry

The reference implementation of
these methods makes use of a
minimal collection data-structure con-
taining objects that implement in-
terface Map.Entry. Specifically, class
HashMap.Entry, which defines en-
tries in L-HashMap, implements this
interface. Function entrySet(), for
example, returns an instance of
AbstractSet wrapped around an iter-
ator over the entire set of hash table
entries.
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Bucket

final first():VirtualEntry
makeE1():VirtualEntry
makeE2():VirtualEntry
makeE3():VirtualEntry
makeE4():VirtualEntry
get(h:int, k:K, chv:byte):V
add(k:Object, v:V):Bucket
remove(k:Object):Bucket

Bucket1

makeE1():VirtualEntry
get(h:int, k:K, chv:byte):V
add(k:Object, v:V):Bucket
remove(k:Object):Bucket

Bucket2

makeE2():VirtualEntry
get(h:int, k:K, chv:byte):V
add(k:Object, v:V):Bucket
remove(k:Object):Bucket

Bucket3

makeE3():VirtualEntry
get(h:int, k:K, chv:byte):V
add(k:Object, v:V):Bucket
remove(k:Object):Bucket

Bucket4

makeE4():VirtualEntry
get(h:int, k:K, chv:byte):V
add(k:Object, v:V):Bucket
remove(k:Object):Bucket

return makeE1();

Bucket1.E1

next():VirtualEntry

Bucket2.E2

next():VirtualEntry

Bucket3.E3

next():VirtualEntry

Bucket4.E4

next():VirtualEntry

VirtualEntry

next():VirtualEntry

Map.Entry

Fig. 6.3. A UML class diagram for virtual entry views on fused buckets

Class VirtualEntry (introduced in Fig. 6.2) presents a Map.Entry view on the
fields defined e.g., in a fused bucket; where a fused bucket object typically offers
a number of such views. Method next() in VirtualEntry returns the view of the
next key-value pair, which is either in the same object or in a subsequent object.

The implementation of virtual entries for fused hash table includes a hierarchy
of VirtualEntry subclasses E1, E2, E3 and E4, which specialize the virtual entry
concept for classes Bucket1, . . . , Bucket4. Fig. 6.3 is a UML class diagram
portraying the essentials.

Start with class Bucket; the class defines add and remove methods which
are used for dynamic dispatch selection of the appropriate insertion and removal
method based on the concrete bucket type. Similarly, for each of the virtual views
E1, E2, E3 and E4, this class defines factory methods, with default implementation
returning null. The finalmethod first in Bucket calls the first of these factory
methods to return the first virtual entry stored in a fused bucket.

Then, each of Bucket1, . . . , Bucket4 (i) inherits the views of the class it
extends, (ii) adds a view in its turn, and, (iii) overrides the corresponding
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factory method defined in Bucket to return its view. For example, Bucket2
(i) inherits the view E1 from Bucket1 (ii) defines the view E2, and, (iii) over-
rides the factory method makeE2 to return an instance of this view. Class E2,
an inner class of Bucket2, implements the VirtualEntry interface by direct ac-
cess to the K2, V2 fields of Bucket2; method next() in Bucket2.E2 calls the
makeE3() factory method to generate the next view. this factory method returns
null in this class, but overridden in Bucket3 to return an instance of the view
Bucket3.E3.

Function next() method in Bucket4.E4 class is a bit special: if the next field
is not null it returns the first view of the bucket object that follows.

The virtual entry views technique carries almost as is to squashed hashing:
classes Bucket, Bucket2, . . . , Bucket6 and their inner virtual entry classes E2,
. . . , E5 are obtained by almost mechanical application of the pattern by which
each class (i) inherits the views of the class it extends, (ii) adds a view of its
own, and, (iii) overrides the corresponding factory method defined in Bucket.
Singleton buckets are special, since they are not represented by an object in
squashed hashing. A virtual entry view of these is by class HashMap.E1, a non-
static inner class of HashMap, which saves the table index passed to its con-
structor, as means for accessing later the singleton bucket residing at the ith

position.

7 Time Performance of Fused and Squashed Hashing

The impact of fusedand squashedhash table onapplicationperformancewasbench-
markedusing threewidely used standard suites: SPECjvm2008, SPECjbb2005 and
DaCapo.To this end,weassembled twoJREversions; thefirst replacingL-HashMap
andL-HashSetby S-HashMap and S-HashSet, tailored for the HotSpot32 memory
model; the second JRE versionwas prepared usingF -HashMap and S-HashSet tai-
lored for the HotSpot64 memory model.

Measurements were carried out on the 32-bit and 64-bit flavors of Linux Mint
11 (Katya) OS, installed on Intel Core i3 processor running at 2.93GHz clock rate
and equipped with 2GB RAM. The benchmarked code was compiled with Eclipse
Helios’s compiler, and linked with JRE version 1.6.0 26-b03 with the respective
flavor of HotSpot Server VM 20.1-b02, mixed-mode. To ensure a clean execution
environment, the benchmarked machine was placed in a single user mode, with
no network connection, and using text mode rather than GUI. Further, all but
one core were disabled, and clock rate on that core was set in force mode to
maximal value. We also made sure by manual inspection that no background
applications were running.

Since certain benchmarks gave rise to great variety in timing results (even
on identical, and as “clean” as possible settings), each benchmark was executed
ten times with each of the three JRE versions (baseline, fused and squashed).
Student’s t-test was then employed to evaluate the statistical significance of the
difference in running times; our reports include both the throughput change and
significance levels, i.e., the α value. However, results in which the significance
levels was less than 95%, i.e., α > 5%, are omitted.
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Table 7.1. Throughput change and statistical sig-
nificance in SPECjvm2008

HotSpot32 HotSpot64
throughput
change

α
throughput
change

α

compiler -2.37% 0.00% -3.28% 0.00%
derbi -1.94% 0.61%
mpegaudio 0.49% 4.74%
scimark.large -5.12% 0.00%
scimark.small 1.88% 0.00%
serial -1.61% 0.08% -3.01% 0.27%
startup -0.99% 4.38%
avg. -1.22% -2.10%

Table 7.2. Throughput change and statis-
tical significance in SPECjbb2005 warehouses
benchmarks

HotSpot32 HotSpot64
throughput
change

α
throughput
change

α

1 warehouse -0.34% 1.98% -2.26% 0.22%
2 warehouses -1.25% 0.33% -3.14% 0.02%
3 warehouses -1.94% 0.15% -4.35% 0.00%
4 warehouses -1.87% 0.11% -4.01% 0.00%
5 warehouses -1.41% 3.01% 1.31% 4.05%
6 warehouses 22.74% 0.00% 1.82% 1.78%
7 warehouses 1.74% 0.00% 5.82% 0.00%
8 warehouses 6.80% 0.00% 24.17% 0.00%
avg. 3.06% 2.42%

SPECjvm2008 benchmark
setup comprised -Xms1500m

-Xmx1500m JVM arguments (i.e.,
1.5GB initial and maximal
heap) and non-default applica-
tion arguments -ict -ikv --

-peak -bt 1. The results are
given in Table 7.1. Of the
eleven benchmarks in this suite,
four did not exhibit any sta-
tistically significant change to
the performance; five bench-
marks exhibited a statistically
significant change in only one
memory model; the remaining
two benchmarks exhibited sig-
nificant throughput change in
both memory models. Although
some of the values in the ta-
ble are positive, many show a
small performance degradation.
In the 32-bit version the average
throughput change was −1.22%
while the average throughput
change in the 64-bit version
was −2.10%.

On SPECjbb2005, the JVM
arguments were -Xms256m -Xmx256m, while the non-default application
arguments were input.deterministic random seed=true. Results are pre-
sented in Table 7.2. Evidently, all measured value were statistically significant.
Negative impact on throughput typifies the smaller numbers of warehouses, but
positive impact is witnessed in the larger number of warehouses.Overall, in the 32-
bit memorymodel the average throughput change was 3.06%; in the 64-bit version
it was 2.42%.

The JVM arguments for the DaCapo benchmark were -Xms1500m -Xmx1500m
while the non-default application arguments were --no-validation -C -t 1. A
few benchmarks could not be applied to our re-implementation of hash tables. The
reason is that these benchmarks relied on a stored serialized version of the collection
under test. The benchmarks actually usedwere therefore: avrora, batik, eclipse, h2,
jython, luindex, lusearch, pmd, sunflow, tomcat and xalan. All statistically signif-
icant results are presented in Table 7.3. In the 32-bit version the average speedup
was -0.74% while the average speedup in the 64-bit version was 4.71%.



376 J. Gil and Y. Shimron

Table 7.3. Throughput change and statis-
tical significance in DaCapo

HotSpot32 HotSpot64
speedup α speedup α

batik 5.30% 2.18%
h2 1.65% 3.55%
jython 1.17% 1.26%
luindex -17.32% 1.30% 14.55% 0.23%
pmd 8.65% 0.34%
xalan -1.92% 0.00% -1.59% 0.09%
avg. -0.74% 4.71%

We conclude that our proposed im-
plementations remain within practi-
cal runtimes, imposing in some cases
speedup to the JVM compared to
the base implementation, while im-
posing significant memory overhead
reduction.

Slowdowns, when they occur, do not
come as a surprise as the common
usage of hash tables is as tiny (less
than 16 entries) collections6 . Natu-
rally, our data-structures non-trivial
encoding requires a more sophisticated decoding. Some operations are expected
to noticeably slow down, i.e.: iterations and removals, compared to the almost
trivial baseline implementation of them.

Although guided by some benchmarking, the majority of the code in our im-
plementation was not hand optimized to achieve the ultimate time performance.
It is desirable of course to make this possible.

8 Compaction of Balanced Binary Tree Nodes

This section describes the two schemes for compact representation of tree nodes
of TreeMap (and TreeSet), i.e., class TreeMap.Entry (Fig. 1.1(a)): fused bi-
nary tree achieves this compaction with null-pointer and boolean eliminations;
squashed binary tree consolidates all fields in TreeMap.Entry, replacing point-
ers by integers. The memory saving that these achieve are as reported above in
Table 1.3.

Fusion. Field color is an obvious candidate for boolean elimination. Also, since
half of the children edges in binary trees (fields left and right in TreeMap.Entry)
are null, null-pointer-elimination is applicable to left and right. Fig. 8.1 shows
how these techniques can be used for the compaction of leaves.

Class Node (implementing interface VNode) is the base class of all specialized
tree node classes; it defines key, value and parent fields, just like TreeMap.Entry,
except that the parent is necessarily an internal node (class Internal). Fields
left, right are represented as abstract getter functions; null elimination of
these fields is by subclass Leaf overriding these functions to return null. Field
color is modeled as abstract getter and setter methods. The contract of the
setter color(c) is that if c is different from the current node’s color, it returns
a new node which is identical, except for the color. The setters’ implementation
in class Leaf, creates either a RLeaf or BLeaf object as necessary.

Classes RLeaf and BLeaf have only three data fields, all of which are pointers.
The object size of these classes is thus 24 bytes (with four bytes wasted on

6 http://mail.openjdk.java.net/pipermail/core-libs-dev/

2009-July/001969.html

http://mail.openjdk.java.net/pipermail/core-libs-dev/2009-July/001969.html
http://mail.openjdk.java.net/pipermail/core-libs-dev/2009-July/001969.html
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interface VNode<K, V>
extends Map.Entry<K, V> {
public boolean color();
public VNode<K, V> parent();
public VNode<K, V> left();
public VNode<K, V> right();
// ...

}
abstract static class Node<K, V>
implements VNode<K, V> {
final static boolean // colors
BLACK = true,
RED = !BLACK;
K key; V value; // contents
Internal<K, V> parent; // topology
VNode(K k, V v, Internal<K, V> p) {
key = k;
value = v;
parent = p;
}
public final VNode<K, V> parent() {
return parent;
}
public abstract Node<K, V>
color(boolean c);

// ...
}
abstract static class Leaf<K, V>
extends Node<K, V> {
Leaf(K k, V v, Internal<K, V> p) {
super(k,v,p);
}
final Node<K, V> left() {
return null;
}

final Node<K, V> right() {
return null;
}
final Leaf<K, V> color(boolean c) {
return c==color() ? this : make(c);

}
private Leaf<K, V> make(boolean c) {
Leaf<K, V> l = c==BLACK

? new BLeaf<K, V>(this)
: new RLeaf<K, V>(this);

// ...
return l;
}
// ...

}
static final class RLeaf<K, V>
extends Leaf<K, V> {
RLeaf(Node<K, V> l) {
super(l.key, l.value, l.parent);
}
@Override final public boolean color() {
return RED;
}
// ...

}
static final class BLeaf<K, V>
extends Leaf<K, V> {
BLeaf(Node<K, V> l) {
super(l.key, l.value, l.parent);
}
@Override final public boolean color() {
return BLACK;
}
// ...

}

Fig. 8.1. Employing null pointer elimination and boolean elimination for the com-
paction of leaf nodes in red-black binary search tree

alignment) on HotSpot32 and 40 bytes (with no alignments waste) on HotSpot64.
The size of the TreeSet version of these classes is 16 bytes on HotSpot32, and
32 bytes on HotSpot64.

We empirically found that ≈ 42.8% of nodes in a red-black tree are leaves, and
that this ratio is independent of tree size, nor of tree creation order.7 Employing
classes RLeaf and BLeaf, in an implementation of TreeMap reduces overhead
from 24 to 20.6 bytes on HotSpot32 (respectively 48 to 37.7 on HotSpot64)
which amounts to 14% (21%) savings. With TreeSet the respective reductions
are 28 to 21.1 and 56 to 42.3 (both 24% saving).

Since each of the tree’s nodes is “owned” by its parent, it makes sense to apply
fusion in tree nodes, just as we did for lists. The difficulty is in dealing with the
very many cases that could occur: Depth-� fusion may entail a specialized class
for the O(2�) trees of this depth. Attentions is therefore restricted to fusion of
nodes with their leaves (i.e., � = 2), distinguishing between three different cases:
(i) internal nodes which are parents to two leaves, (ii) internal nodes which are

7 This high value fraction is not accidental; similar fractions occur in e.g., AVL trees.
We can in fact analytically prove that about one quarter of the nodes are leaves in a
random unbalanced binary tree; balancing leads to increasing the number of leaves.
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parents to a single leaf, the other child being null, and (iii) nodes in which one
of the children is a leaf and the other is a non-leaf non-null node, which we will
ignore.

The characteristics of a red-black tree limit the variety of colors in cases (i) and
(ii). In (i), if the parent is RED, then children are both BLACK (if the parent
is BLACK then colors of children may be of any color). In (ii), if the parent
is BLACK then its leaf child must be RED. Five different concrete types of
nodes are thus defined: ParentLeftLeaf, ParentRightLeaf, ParentLeavesRBB,
ParentLeavesBBB, and, ParentLeavesBRR.

As shown in Fig. 8.2, the first two classes have five pointer fields, Fields
parent, key and value are inherited from the superclass Node, while two addi-
tional pointers, keyChild and valueChild are defined in ParentLeaf which is
the abstract superclass of both ParentLeftLeaf and ParentRightLeaf.

abstract static class
ParentLeaf<K, V>
extends Node<K, V> {
protected K keyChild;
protected V valueChild;
// methods and inner classes...

}
static final class
ParentLeftLeaf<K, V>
extends ParentLeaf<K, V> {
// methods and inner classes...

}
static final class
ParentRightLeaf<K, V>
extends ParentLeaf<K, V> {
// methods and inner classes...

}
abstract static class
ParentLeaves<K, V>
extends ParentLeaf<K, V> {

protected final K keyRightLeaf;
protected V valueRightLeaf;

// methods and inner classes...
}
static final class
ParentLeavesRBB<K, V>
extends ParentLeaves<K, V> {
// methods and inner classes...

}
static final class
ParentLeavesBBB<K, V>
extends ParentLeaves<K, V> {
// methods and inner classes...

}
static final class
ParentLeavesBRR<K, V>
extends ParentLeaves<K, V> {
// methods and inner classes...

}

Fig. 8.2. Classes for fusion of internal tree nodes with their leaf children

The footprint of ParentLeftLeaf and ParentRightLeaf classes for TreeMap
is 8 + 5 · 4 = 28 bytes, which are up-aligned to 32 bytes (on HotSpot32). Class
ParentLeaves adds two more pointers, making a 40 bytes footprint for each of
its three subclasses on HotSpot32.

Empirically we found that 14% of the nodes in a red-black tree have a sin-
gle leaf child, while 9% of the nodes have two leaves as their children. Then,
2 · 14% = 28% of the nodes consume 32/2 = 16 bytes each, while 3 · 9% = 27%
of the nodes consume 40/3 = 13.3 bytes each. Assuming that no compression is
done for the other nodes, we obtain 14.5 bytes of overhead per node, achiev-
ing 40% savings in overhead per node, just by using leaf level fusion. If the
remaining leaves are represented as in Fig. 8.1, then saving increases to 43% for
F -TreeMap on HotSpot32.

Our implementation of fused binary trees goes further, employing boolean
elimination to class TreeMap.Entry (Fig. 1.1(a)) which is used for all other
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abstract static class Internal<K, V>
extends Node<K, V> {
Node<K, V> left, right;
// ...
@Override final public
VNode<K, V> left() {
return left;

}
@Override final public
VNode<K, V> right() {
return right;

}
@Override final Internal<K, V>
color(boolean c) {
return c==color()

? this
: make(c);

}
private
Internal<K, V> make(boolean c) {
Internal<K, V> n = c==BLACK

? new BInternal<K, V>(this)
: new RInternal<K, V>(this);

// ...
return n;

}
// ...

}
final static class RInternal<K, V>
extends Internal<K, V> {
// ...
@Override final public boolean color() {
return RED;
}

}
final static class BInternal<K, V>
extends Internal<K, V> {
// ...
@Override final public boolean color() {
return BLACK;
}

}

Fig. 8.3. Abstract class Internal and boolean elimination in specialized internal nodes

kinds of tree nodes (internal nodes). (Described in Fig. 8.3.) Such elimination
capitalizes the memory reduction for the other F -tree types besides F -TreeMap
on HotSpot32, which due to alignment waste does not benefit from it. Combined
with the above techniques we achieve the following overhead savings: (i) 59%
for TreeSet on HotSpot32, (ii) 55% for TreeMap on HotSpot64, and (iii) 61%
for TreeSet on HotSpot64.

Not surprisingly, with nine different concrete classes for tree nodes, coding was
not easy. Difficulties include the fact that tree updates may turn internal nodes
into leaves and vice versa, and that rotations may change the tree topology.
Removals were particularly challenging as they may initiate any number of tree
rotations. As with hashing, dynamic dispatch was employed for abstracting over
the variety of node types, and virtual entries were used for iterating over the
tree nodes. Initial benchmarking results indicate that this abstraction layer lead
to 30-50% slowdown.

Full Field Consolidation. Squashing encodes the entire TreeMap<K,V>data struc-
ture without using any small objects. Instead, six tree-global arrays, K[] key, V
value[], boolean[] color, int[] left, int[] right, and int[] parent con-
solidate the fields of all tree nodes; node i is then the ith location in all of these
arrays, while pointers are replaced by array indices. This consolidation eliminates
both headers of all small objects, and alignment waste incurred to the byte sized
color field. When the arrays are fully occupied, a node overhead is reduced from
32 to 21 bytes on HotSpot32, and from 64 bytes to 20 bytes on HotSpot64. On
both memory models overhead is 13 bytes, and we achieve the following overhead
savings: (i) 46% for TreeMap on HotSpot32, (ii) 54% for TreeSet on HotSpot32,
(iii) 73% for TreeMap on HotSpot64, and (iv) 77% for TreeSet on HotSpot64. Im-
plementation, as expected, was almost mechanical; initial benchmarking results
indicate that the performance of the squashed tree implementation is comparable
to the baseline, and sometimes even slightly faster.
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Note that squashed trees come at the cost of shifting memory management
duties from the JVM back to the programmer. To avoid costly reallocations,
array should include sufficient slack. Still, a generous 50% slack places field
consolidation behind fusion.

Table 8.1. Computed saving in memory
overhead per tree entry due to the use of full
consolidation using different types of indices in
the implementation of TreeMap and TreeSet for
HotSpot32 and HotSpot64

HotSpot32 HotSpot64
int short byte int short byte

TreeMap 46% 71% 83% 73% 85% 92%
TreeSet 54% 75% 86% 77% 88% 93%

It is feasible to implement
a version of squashed trees,
in which the arrays’ type
changes by the current size of
the collection: byte[] arrays,
then short[] arrays and finally
int[] arrays. The expected
saving increases for small
collections as summarized in
Table 8.1. Table ignores
instance-memory waste (See 3) which may be slightly more significant for smaller
objects. Accounting for this waste, the expected addition is of two bytes per key
for a collection of size 50, and decreases rapidly as size increases.

9 Further Research

This research raises a number of interesting questions. First, it is important and
interesting to understand better the domain of tiny collections, of say up to say
16 entries, as their relative overhead is more significant. Reducing the overhead
of these seems more challenging, especially in adhering to the very general Map
interface. It would be useful to make estimates on abundance of tiny collections
in large programs and the manner in which they are used, with the conjecture
that a frugal yet less general implementation of these would be worthwhile.

Second, as we have seen in this work the variety of the user-level compaction
algorithms are not always easy to employ. A software framework or better yet,
automatic tools that abstract over encoding issues would make our findings more
accessible. It is crucial for such a framework to be able to produce code for
both (say) TreeMap and TreeSet without code duplication. The virtual entries
technique presented in Sect. 6 may serve as a starting point, but other directions
may include the use of aspects or more sophisticated generics.

Third, we are intrigued by the fact that despite fewer dereferencing operations,
F -hash and S-hash were not significantly faster than L-hash. Micro-benchmark
of individual operations should not only clarify this point, but also make room
for systematic hand- and later automatic- optimization of these.

Finally, we draw attention to the problems of memory profiling, a meaningful
and precise definition of the notion of “footprint” of an application, and its
impact on time. These issues are illusive since the “footprint” changes in the
course of computation, and the memory consumption curve may depend on
garbage collection cycles, which in general are not deterministic, yet may depend
on the allocation of physical memory and other factors.
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