

Lecture Notes in Computer Science 7313
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

James Noble (Ed.)

ECOOP 2012 –
Object-Oriented
Programming

26th European Conference
Beijing, China, June 11-16, 2012
Proceedings

13

Volume Editor

James Noble
Victoria University of Wellington
School of Engineering and Computer Science
Wellington 6140, New Zealand
E-mail: kjx@ecs.vuw.ac.nz

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-31056-0 e-ISBN 978-3-642-31057-7
DOI 10.1007/978-3-642-31057-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012939227

CR Subject Classification (1998): D.1.5, D.1-3, F.3, C.2, F.4, J.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

If objects did not exist, we would have to invent them.

In the last few days, I’ve been reading a couple of interesting pieces, ostensibly
on programming without objects. The first of these is Doug Hoyte’s Let over
Lambda—“one of the most hardcore computer programming books out there”—
according to the back-cover copy, and certainly an interesting and engaging
read. In six chapters and 200 pages, we start in Lisp and move from closures to
lambda expressions to alambdas, dlambdas and ultimately to plambdas. These
“Pandoric Lambdas” create a closure that can respond to different methods, and
whose state can either be encapsulated or visible outside. I seem to remember
SIMULA had something similar in the mid-1960s.

The second is Jonathan Shapiro’s Retrospective Thoughts on BitC (posted to
bitc-dev on March 23, 2012). Of the four reasons why Shapiro chose to abandon
BitC, the third is “The absence of some form of inheritance,” and Shapiro goes
on to say “I could nearly imagine getting what I needed by adding ThisType and
inherited interfaces. But . . . the combination is equivalent (from a type system
perspective) to single-inheritance subclassing.”

Truly, if objects did not exist, we would have to invent them. At ECOOP, of
course, we have an advantage: Ole-Johan Dahl and Kristen Nygaard did invent
objects; Alan Kay built a dynamic language based on objects; and the rest is
the history of a large fraction of practical and academic programming for the
last 30 years.

This year’s ECOOP continued in that tradition, and started some new tradi-
tions of its own. ECOOP 2012 was only the second ECOOP to be held outside
Europe (OOPSLA/ECOOP 1990 was held in Ottawa, and Canada is not techni-
cally part of Europe); ECOOP 2012 was the first ECOOP to be held in Asia; the
first to be co-located with another programming language conference (PLDI);
and the first to have a Program Chair from New Zealand. I must admit I was not
entirely sure how that combination of circumstances would affect the conference.
As far as the technical program represented in this volume is considered, this
has been a great success: 140 papers were submitted, a significant increase over
the last few ECOOPs.

Each paper was allocated to at least three Program Committee members
to review — some papers were allocated more. All in all, we received 466 re-
views, including external reviews contributed by 104 external reviewers. The
Program Committee discussed these reviews online, after which authors had the
opportunity to respond to reviews. The Program Committee then met in Lon-
don and selected the 30 papers presented here. Of the 140 submissions, 16 were
(co-)authored by members of the Program Committee. These papers received at
least five reviews, and four of them were accepted.

VI Preface

A conference is only as good as the research it presents. I would like to thank
all the authors who submitted their work to ECOOP: without your courage
in sending your work, there would be no conference! I would like to thank the
Program Committee, who collectively read and evaluated every paper submitted,
and provided as much feedback as they could manage to the papers’ authors.
The quality of the Program Committee has long been a strength of ECOOP,
and this year was no exception. Chairing the committee has been an honor and
a privilege.

Thanks are due to Tony Hosking and Hong Mei, ECOOP Conference Chairs,
for actually organizing the conference; to Tony Hosking (again), to Sophia Drosso-
poulou and Susan Eisenbach for organizing and hosting the PC meeting; and to
Richard van de Stadt for CyberChairPRO. Tony (again) and Steve Blackburn
chaired discussions on papers where I had a conflict of interest. Finally, thanks
are due to Jan Vitek, Co-chair of PLDI 2012, who first suggested collocating
ECOOP and PLDI in Beijing. That seems like a great decision (so far).

And now, all that remains is to ignore the talks, read email through the
keynotes, sleep through the summer school, tweet through the tutorials, disre-
gard the workshops, and enjoy all the many and varied sights and delights of
Beijing, sure in the knowledge that when we return home, these proceedings
will still be waiting for us — the twenty-sixth of their kind, this year’s modest
addition to the history of object-oriented programming.

March 2012 James Noble

Organization

ECOOP 2012 was organized by the Computer Science Department of Purdue
University, under the auspices of AITO (Association Internationale pour les
Technologies Objets), and in cooperation with ACM SIGPLAN and ACM
SIGSOFT.

TM

In-Cooperation

Conference Co-chairs

Antony Hosking Purdue University, USA
Hong Mei Peking University, China

Program Chair

James Noble Victoria University of Wellington, New Zealand

Local Organizing Co-chairs

Lu Zhang Peking University, China
Hongyu Zhang Tsinghua University, China

Publicity Chair

Tao Xie North Carolina State University, USA

Workshop Chair

Adam Welc Adobe, USA

Workshop Co-chair

Patrick Eugster Purdue University, USA

VIII Organization

Summer School Chair

Jan Vitek Purdue University, USA

Student Volunteer Co-Chairs

Max Schaefer University of Oxford, UK, and IBM Research,
USA

Xiaoying Bai Tsinghua University, China

Web Chair

Ahmed Hussein Purdue University, USA

Silver Sponsors

Bronze Sponsors

IBM Research

Program Committee

Elisa Baniassad Australian National University, Australia
Gavin Bierman Microsoft Research, UK
Steve Blackburn Australian National University, Australia
John Tang Boyland University of Wisconsin-Milwaukee, USA
Nick Cameron Victoria University of Wellington, New Zealand
Shigeru Chiba Tokyo Institute of Technology, Japan

Organization IX

Siobhán Clarke Trinity College Dublin, Ireland
Yvonne Coady University of Victoria, Canada
Wolfgang De Meuter Vrije Universiteit Brussel, Belgium
Matthew B. Dwyer University of Nebraska - Lincoln, USA
Matthew Flatt University of Utah, USA
Neal Glew Intel, USA
Kathryn E. Gray University of Cambridge, UK
Matthias Hauswirth University of Lugano, Switzerland
Robert Hirschfeld Hasso-Plattner-Institut Potsdam, Germany
Atsushi Igarashi Kyoto University, Japan
Bart Jacobs Katholieke Universiteit Leuven, Germany
Richard Jones University of Kent, UK
K. Rustan M. Leino Microsoft Research, USA
Nick Mitchell IBM Research, USA
Robert O’Callahan Mozilla Corporation, New Zealand
Jens Palsberg University of California, Los Angeles, USA
John Potter The University of New South Wales, Australia
Ganesan Ramalingam Microsoft Research, India
Dirk Riehle Friedrich-Alexander University of

Erlangen-Nurnberg, Germany
Yannis Smaragdakis University of Massachusetts, Amherst, USA,

and University of Athens, Greece
Eelco Visser Delft University of Technology,

The Netherlands
Tobias Wrigstad Uppsala University, Sweden
Hongseok Yang University of Oxford, UK
Jianjun Zhao Shanghai Jiao Tong University, China
Elena Zucca University of Genova, Italy

External Reviewers

Amal Ahmed
John Altidor
Davide Ancona
Malte Appeltauer
Beatrice Åkerblom
George Balatsouras
Nick Benton
Carl Friedrich Bolz
Silvia Bonomi
Johannes Borgström
Sebastian Burckhardt
Nicolas Cardozo
Andoni Lombide Carreton
Federico Cavalieri

Walter Cazzola
Maura Cerioli
Tom Van Cutsem
Theo D’Hondt
Danny Dig
Tom Dinkelaker
Hannes Dohrn
Stefan Engblom
Anthony Estey
Shayne Flint
Celina Gibbs
Matt Giles
Aaron Greenhouse
Danny M. Groenewegen

X Organization

Giovanna Guerrini
Sebastian Günther
John Hawthorn
Chris Hayden
Dave Herman
Michael Hicks
Lode Hoste
Cubtaro Igarashi
Lintaro Ina
Alan Jeffrey
Adrian Johnstone
Niels Joncheere
Peter A. Jonsson
Tetsuo Kamina
George Kastrinis
Lennart Kats
Rob Kelly
Andrew Kennedy
Liam Kiemele
Carsten Kolassa
Neelakantan Krishnaswami
Giovanni Lagorio
Doug Lea
I-Ting Angelina Lee
Jens Lincke
Donna Long
Geoffrey Mainland
Dmitri Makarov
Chris Matthews
Christopher McKnight
Mojtaba Mehrara
Francesco Zappa Nardelli
Jens Nicolay
Dominic Orchard
Scott Owens
Johan Östlund
Matthew Parkinson
Javier Perez

Michael Perscheid
Tomas Petricek
Dean Pucsek
William Retert
Noam Rinetzky
Claudio Russo
Chieri Saito
Michel A. Salim
Adrian Schroeter
Jaroslav Sevcik
Jeremy Siek
Daniel Spiewak
Manu Sridharan
Bastian Steinert
Reinout Stevens
Kohei Suenaga
Alexander J. Summers
Chao Sun
Qiang Sun
Marcel Taeumel
Ryan Tandy
Martin Tillenius
Sam Tobin-Hochstadt
Laurence Tratt
Stephen Tredger
Viktor Vafeiadis
Jorge Vallejos
Dimitris Vardoulakis
Mattias De Wael
Dennis Wagelaar
Luke Wagner
Jeff Walden
Brian Warner
Feng Xie
Xi Yang
Greta Yorsh
Cheng Zhang
Sai Zhang

Table of Contents

Keynote 1

When Compilers Are Mirrors . 1
Martin Odersky

Extensibility

Extensibility for the Masses: Practical Extensibility with Object
Algebras . 2

Bruno C.d.S. Oliveira and William R. Cook

Extensions during Software Evolution: Do Objects Meet Their
Promise? . 28

Romain Robbes, David Röthlisberger, and Éric Tanter

PQL: A Purely-Declarative Java Extension for Parallel Programming . . . 53
Christoph Reichenbach, Yannis Smaragdakis, and Neil Immerman

Language Evaluation

Is It Dangerous to Use Version Control Histories to Study Source Code
Evolution? . 79

Stas Negara, Mohsen Vakilian, Nicholas Chen,
Ralph E. Johnson, and Danny Dig

Evaluating the Design of the R Language: Objects and Functions for
Data Analysis . 104

Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek

McSAF: A Static Analysis Framework for MATLAB 132
Jesse Doherty and Laurie Hendren

Ownerhsip and Initialisation

Multiple Aggregate Entry Points for Ownership Types 156
Johan Östlund and Tobias Wrigstad

Inference and Checking of Object Ownership . 181
Wei Huang, Werner Dietl, Ana Milanova, and Michael D. Ernst

Object Initialization in X10 . 207
Yoav Zibin, David Cunningham, Igor Peshansky, and Vijay Saraswat

XII Table of Contents

Keynote 2: Dahl-Nygaard Junior Award Winner

Structured Aliasing . 232
Tobias Wrigstad

Language Features

Pause ’n’ Play: Formalizing Asynchronous C� . 233
Gavin Bierman, Claudio Russo, Geoffrey Mainland,
Erik Meijer, and Mads Torgersen

Lightweight Polymorphic Effects . 258
Lukas Rytz, Martin Odersky, and Philipp Haller

Cloud Types for Eventual Consistency . 283
Sebastian Burckhardt, Manuel Fähndrich, Daan Leijen, and
Benjamin P. Wood

Special-Purpose Analyses

Lock Inference in the Presence of Large Libraries . 308
Khilan Gudka, Tim Harris, and Susan Eisenbach

An Analysis of the Mozilla Jetpack Extension Framework 333
Rezwana Karim, Mohan Dhawan, Vinod Ganapathy, and
Chung-chieh Shan

Smaller Footprint for Java Collections . 356
Joseph Gil and Yuval Shimron

JavaScript

Enhancing JavaScript with Transactions . 383
Mohan Dhawan, Chung-chieh Shan, and Vinod Ganapathy

JavaScript as an Embedded DSL . 409
Grzegorz Kossakowski, Nada Amin, Tiark Rompf, and
Martin Odersky

Correlation Tracking for Points-To Analysis of JavaScript 435
Manu Sridharan, Julian Dolby, Satish Chandra, Max Schäfer, and
Frank Tip

Hardcore Theory

Soundness of Object-Oriented Languages with Coinductive Big-Step
Semantics . 459

Davide Ancona

Table of Contents XIII

Static Sessional Dataflow . 484
Dominic Duggan and Jianhua Yao

Java Wildcards Meet Definition-Site Variance . 509
John Altidor, Christoph Reichenbach, and Yannis Smaragdakis

Modularity

Constraint-Based Refactoring with Foresight . 535
Friedrich Steimann and Jens von Pilgrim

Magda: A New Language for Modularity . 560
Viviana Bono, Jarek Kuśmierek, and Mauro Mulatero

Marco: Safe, Expressive Macros for Any Language . 589
Byeongcheol Lee, Robert Grimm, Martin Hirzel, and
Kathryn S. McKinley

Updates and Interference

Practical Permissions for Race-Free Parallelism . 614
Edwin Westbrook, Jisheng Zhao, Zoran Budimlić, and Vivek Sarkar

Verification of Snapshot Isolation in Transactional Memory Java
Programs . 640

Ricardo J. Dias, Dino Distefano, João Costa Seco, and
João M. Lourenço

Scalable Flow-Sensitive Pointer Analysis for Java with Strong
Updates . 665

Arnab De and Deepak D’Souza

General-Purpose Analyses

Application-Only Call Graph Construction . 688
Karim Ali and Ondřej Lhoták

Program Sliding . 713
Ran Ettinger

Static Detection of Loop-Invariant Data Structures 738
Guoqing Xu, Dacong Yan, and Atanas Rountev

Author Index . 765

When Compilers Are Mirrors

Martin Odersky

EPFL
martin.odersky@epfl.ch

http://lampwww.epfl.ch/~odersky

Abstract. When compilers are reflective mirrors, interesting things
happen. Reflection and compilers do tantalizing similar things. Yet, in
mainstream, statically typed languages the two have been only loosely
coupled, and generally share very little code. In this talk I explore what
happens if one sets out to overcome their separation.

The first half of the talk addresses the challenge how reflection libraries
can share core data structures and algorithms with the language’s com-
piler without having compiler internals leaking into the standard library
API. It turns out that a component system based on abstract types and
path-dependent types is a good tool to solve this challenge. I’ll explain
how the ”multiple cake pattern” can be fruitfully applied to expose the
right kind of information.

The second half of the talk explores what one can do when strong,
mirror-based reflection is a standard tool. In particular, the compiler
itself can use reflection, leading to a particular system of low-level macros
that rewrite syntax trees. One core property of these macros is that
they can express staging, by rewriting a tree at one stage to code that
produces the same tree at the next stage. Staging lets us implement type
and abstract syntax tree reification. What’s more, staging can also be
applied to the macro system itself, with the consequence that a simple
low-level macro system can produce a high-level hygienic one, without
any extra effort from the language or compiler.

J. Noble (Ed.): ECOOP 2012, LNCS 7313, p. 1, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://lampwww.epfl.ch/~odersky

Extensibility for the Masses
Practical Extensibility with Object Algebras

Bruno C.d.S. Oliveira1 and William R. Cook2

1 National University of Singapore
bruno@ropas.snu.ac.kr

2 University of Texas, Austin
wcook@cs.utexas.edu

Abstract. This paper presents a new solution to the expression problem
(EP) that works in OO languages with simple generics (including Java
or C#). A key novelty of this solution is that advanced typing features,
including F-bounded quantification, wildcards and variance annotations,
are not needed. The solution is based on object algebras, which are an
abstraction closely related to algebraic datatypes and Church encodings.
Object algebras also have much in common with the traditional forms
of the Visitor pattern, but without many of its drawbacks: they are
extensible, remove the need for accept methods, and do not compromise
encapsulation. We show applications of object algebras that go beyond
toy examples usually presented in solutions for the expression problem.
In the paper we develop an increasingly more complex set of features for
a mini-imperative language, and we discuss a real-world application of
object algebras in an implementation of remote batches. We believe that
object algebras bring extensibility to the masses: object algebras work in
mainstream OO languages, and they significantly reduce the conceptual
overhead by using only features that are used by everyday programmers.

1 Introduction

The “expression problem” (EP) [38,10,46] is now a classical problem in program-
ming languages. It refers to the difficulty of writing data abstractions that can
be easily extended with both new operations and new data variants. Tradition-
ally the kinds of data abstraction found in functional languages can be extended
with new operations, but adding new data variants is difficult. The traditional
object-oriented approach to data abstraction facilitates adding new data vari-
ants (classes), while adding new operations is more difficult. The Visitor Pat-
tern [13] is often used to allow operations to be added to object-oriented data
abstractions, but the common approach to visitors prevents adding new classes.
Extensible visitors can be created [43,50,31], but so far solutions in the literature
require complex and unwieldy types, or advanced programming languages.

In this paper we present a new approach to the EP based on object algebras.
An object algebra is a class that implements a generic abstract factory inter-
face, which corresponds to a particular kind of algebraic signature [18]. Object

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 2–27, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Extensibility for the Masses 3

algebras are closely related to the Abstract Factory, Builder and Visitor

patterns and can offer improvements on those patterns. Object algebras have
strong theoretical foundations, inspired by earlier work on the relation between
Church encodings and the Visitor pattern [5,30,35,31].

Object algebras use simple, intuitive generic types that work in languages
such as Java or C#. They do not need the most advanced and difficult features
of generics available in those languages, e.g. F-bounded quantification [6], wild-
cards [44] or variance annotations. As a result, object algebras are applicable to
a wide range of programming languages that have basic support for generics.

An important advantage of object algebras over traditional visitors is that
there is no need for accept methods. As a consequence object algebras support
retroactive implementations [47] of interfaces or operations without preparation
of existing source code. This is unlike the Visitor pattern, which can only pro-
vide retroactive implementations if the original classes include accept methods.

We discuss applications of object algebras that go beyond toy examples usually
presented in solutions for the EP. In the paper an increasingly more complex set
of features for a mini-imperative language and a real-world application of object
algebras in an implementation of remote batches [22,48] are described.

Object algebras have benefits beyond the basic extensibility of the EP. They
can address harder related problems, including the expression families problem
(EFP) [31], family polymorphism [12] and independent extensibility [50].

Programming with object algebras does require learning new design strate-
gies. Rather than creating generic objects and then visiting them to perform
operations, object algebras encourage that object creation is done relative to a
factory, so that specialized factories can be defined to create objects with the
required operations in them. Programming against factories has some cost to it
because it requires parametrization of code by factories and uses of generic types.
However there are significant benefits in terms of flexibility and extensibility and,
in comparison with other solutions to the EP using generic types [46,3,43,50,31],
the additional cost is significantly smaller.

In summary, our contributions are:

– A solution to the EP using simple generic types. The solution can be used
in mainstream languages such as Java or C#. We use Java in this paper.

– An alternative to the Visitor pattern that avoids many of the disadvantages
of that pattern: it eliminates the need for accept methods; does not require
preparation of the “visited” classes; and it supports extensibility.

– Various techniques for dealing with challenges that arise in realistic applica-
tions. For example, multi-sorted object algebras deal with multiple recursive
types and generic combinator classes deal with independent extensibility.

– Insights on the relation between the Abstract Factory and Visitor pat-
terns. In some sense, factories and visitors are two faces of object algebras.

– Case study using remote batches. The Java implementation is available on-
line at batches.wikidot.com. Code for the smaller Java examples, as well
as solutions to the expression problem in other languages, is available at
http://ropas.snu.ac.kr/~bruno/oa.

batches.wikidot.com
http://ropas.snu.ac.kr/~bruno/oa

4 B.C.d.S. Oliveira and W.R. Cook

interface Exp {
Value eval();

}
class Lit implements Exp {
int x;
public Lit(int x) { this.x = x; }

public Value eval() {
return new VInt(x);

}}
class Add implements Exp {
Exp l, r;
public Add(Exp l, Exp r) { this.l = l; this.r = r; }

public Value eval() {
return new VInt(l.eval().getInt() + r.eval().getInt());

}}

Fig. 1. An object-oriented encoding of integer expressions

2 Background

While there is extensive literature on the expression problem and abstract alge-
bra in programming languages, we summarize the required background here.

2.1 The Expression Problem

Wadler’s [46] formulation of the expression problem prescribes four requirements
for potential solutions. Zenger and Odersky [50] add an extra requirement (in-
dependent extensibility) to that list. These requirements are summarized here:

– Extensibility in both dimensions : A solution must allow the addition of new
data variants and new operations and support extending existing operations.

– Strong static type safety: A solution must prevent applying an operation to
a data variant which it cannot handle using static checks.

– No modification or duplication: Existing code must not be modified nor du-
plicated.

– Separate compilation and type-checking: Safety checks or compilation steps
must not be deferred until link or runtime.

– Independent extensibility: It should be possible to combine independently
developed extensions so that they can be used jointly.

To illustrate the difficulty of solving the expression problem, we review two
standard forms of extensibility in object-oriented languages and show how they
fail to solve the problem.

Figure 1 shows an attempt to solve the EP using polymorphism. The basic
idea is to define an interface Exp for expressions with an evaluation operation
in it, and then define concrete implementations (data variants) of that interface

Extensibility for the Masses 5

for particular types of expressions. Note that evaluation returns a value of type
Value. For the purposes of this paper we assume the following definitions of
Value and its subclasses:
interface Value {
Integer getInt();
Boolean getBool();

}
class VInt implements Value {...}
class VBool implements Value {...}

It is easy to add new data variants to the code in Figure 1, but adding new
operations is hard. For example, supporting pretty printing requires modifying
the Exp interface and its implementations to add a new method. However this vi-
olates “no modification” requirement. While inheritance can be used to add new
operations, the changes must be made to the interface and all classes simulta-
neously, to ensure static type safety. Doing so is possible, but requires advanced
typing features.

An alternative attempt uses the Visitor pattern [13]. The Visitor pattern
makes adding new operations easy, although a different interface for expressions
is required:
interface Exp {
<A> A accept(IntAlg<A> vis);

}

The IntAlg visitor interface, defined in Figure 2, has a (visit) method for each
concrete implementation of Exp. These visit methods are used in the definitions
of the accept methods. For example, the definition of the Add class would be:
class Add implements Exp {
Exp left, right;
public Add(Exp left, Exp right) { this.left = left; this.right = right; }

public <A> A accept(IntAlg<A> vis) {
return vis.add(left.accept(vis), right.accept(vis));

}}

There are several kinds of visitors in the literature [35]. We use a (functional)
internal visitor [5,35] for our example since this type of visitors will be important
later in Section 5.1. An internal visitor is a visitor that produces a value by
processing the nodes of a composite structure, where the control flow is controlled
by the infrastructure rather than the visitor itself.

With visitors, new operations are defined in concrete implementations of vis-
itor interfaces like IntAlg. Figure 5 shows a concrete visitor for pretty printing.
Unlike the first solution, adding new operations can be done without modifying
Exp and its implementations. This is especially important when dealing with
objects created by library classes, because it is often impossible to change the
code of the library. From a software engineering viewpoint, Visitors localize code
for operations in one place, while conventional OO designs scatter code for op-
erations across multiple classes. Visitors also provide a nice way to have state
that is local to an operation (rather than to a class).

6 B.C.d.S. Oliveira and W.R. Cook

interface IntAlg<A> {
A lit(int x);
A add(A e1, A e2);

}

Fig. 2. Visitor interface for arithmetic expressions (also an object algebra interface)

Unfortunately, traditional visitors trade one type of extensibility for another:
adding new data variants is hard with visitors. The problem is the concrete
references to visitor interfaces IntAlg in the accept method. Adding new data
variants requires modifying IntAlg and all its implementations with new visit
methods to deal with the new variants. Another drawback of visitors is that
some initial preparation is required: the visited classes need to provide an accept
method. This can be a problem when the source code of the classes that we want
to visit is not available: if the classes have no accept method it is impossible to
use the Visitor pattern.

2.2 Algebraic Signatures, F-Algebras, and Church Encodings

An algebraic signature Σ [18] defines the names and types of functions that
operate over one or more abstract types, called sorts. We assume the existence
of some primitive built-in sorts for integers and booleans.

signature E
lit: Int → E
add: E × E → E

A general algebraic signature can contain constructors that return values of
the abstract set, as well as observations that return other kinds of values. In
this paper we restrict signatures to only contain constructors, as in the example
given above. We call such signatures constructive.

An Σ-algebra is a set together with a collection of functions whose type is
specified in the signature Σ. A given signature can have many algebras. For
example, one valid E-algebra has a set of two values and simple constant oper-
ations: (E={x, y}, lit=λn.x, add=λ(a, b).x), where x, y are arbitrary constants.
This algebra seems unsatisfying because it is degenerate, in that it ignores the
inputs of its functions, and messy, in that its set includes extra values that are
never used. A special algebra, called the initial or free algebra, is neither messy
nor degenerate. One way to create the initial algebra is to use a set that contains
expressions, which are applications of functions in all legal ways according to the
signature, and to define the functions simply as constructors. The initial algebra
looks like this:

E = { lit(0), lit(1), ..., add(lit(0), lit(0)), add(lit(0), lit(1)), ... }
lit = λn.lit(n)
add = λ(a, b).add(a, b)

The concept of a constructive signature defined above is a syntactic characteri-
zation of a class of algebras. A more fundamental approach comes from merging

Extensibility for the Masses 7

the signature’s constructor functions f1 : T1 → A, ..., fn : Tn → A into a single
function f : F (A) → A where F is a functor given by F (A) = T1 + ...+Tn. This
transformation is based on the isomorphism (S+T) → A ≈ (S → A)×(T → A).
The function f : F (A) → A is called an F -algebra. When F is a functor
built of sums and products, it can be used to give a (categorical) semantics
to algebraic datatypes [26]. For example, the functor for integer expressions is
F (E) = Int + (E × E). The free algebra is then the initial algebra in the cat-
egory of F-algebras. Because F-Algebras provide a nice framework to formalize
and reason about algebraic datatypes, they have been widely explored by the
functional programming community.

It is also possible to define free algebras in a complete different way, by using
Church encodings. Church encodings involve converting the algebra signature
into a particular kind of polymorphic type [17]. For example, given a signature
Σ with with sort A and functions f1 : T1 → A, ..., fn : Tn → A, the Church
encoding is given by the type

ChurchΣ = ∀A.(T1 → A) × ... × (Tn → A) → A

A Church encoding works by taking an algebra (sort and functions) as input
and using it to create an element of the sort. Thus a Church “value” is not really a
value, but rather a recipe for creating a value. The recipes in a Church encoding
are isomorphic to the free algebra because of parametericity [15]. As a concrete
example, the signature E defined above has the Church encoding:

ChurchE = ∀E.(Int → E) × (E × E → E) → E
When interpreted in object-oriented programming, Church encodings corre-

spond to internal visitors [5,35]. From a functional programming point of view,
Church encodings represent data as folds [15].

3 Object Algebras

Algebraic signatures can be defined in statically typed object-oriented languages
by creating a generic interface whose parameter is the abstract type. We call
an interface representing an algebraic signature an object algebra interface. An
example of an object algebra interface representing the abstract syntax of simple
expressions is given in Figure 2, which was previously introduced as the type of
an internal visitor. Object algebra interfaces correspond closely to Abstract

Factory interfaces [13]. The difference is that a factory interface typically uses
a specific concrete class or interface as the result type for the factory methods,
while the object algebra interface has a generic type. The factory interface can
be derived by instantiating the abstract type to the specific object interface of
the objects being created.

An object algebra is a class that implements an object algebra interface. Fig-
ure 3 defines an object algebra that plays the role of a factory for expressions.
The factory defines how to create each kind of object in the composite structure.

To create an actual object, some part of the code will instantiate the factory
and then invoke its methods repeatedly to create a specific instance. This object
construction process may also be parameterized by the factory itself, allowing the

8 B.C.d.S. Oliveira and W.R. Cook

class IntFactory implements IntAlg<Exp> {
public Exp lit(int x) {
return new Lit(x);

}
public Exp add(Exp e1, Exp e2) {
return new Add(e1, e2);

}}

Fig. 3. Using an object algebra as a factory

process to create specific objects using different factories. The result is similar to
a Church encoded value. For example, a function to create an expression object,
and an example test function that uses it, are given below.

<A> A make3Plus5(IntAlg<A> f) {
return f.add(f.lit(3), f.lit(5));

}
void test() {
Exp e = make3Plus5(new IntFactory());

}

Note that a similar function could be written to parse expressions or load them
from a binary representation. For example, the following function parses an
integer expression from a string.

<A> A parseExp(IntAlg<A> f, String s) {
if (s.equals("0"))

return f.lit(0);
else {... /* more interesting parsing cases */}

}

4 Retroactive Interface Implementations

This section shows one of the key advantages of object algebras: support for
retroactive interface implementations without requiring initial preparation of
code.

To illustrate retroactive implementations consider the simple object-oriented
implementation of arithmetic expressions in Figure 1. These expressions support
evaluation, but not pretty printing. Suppose that we now wanted to support
pretty printing. Normally, as discussed in Section 2.1, we would either:

1. change the definition of the interface Exp to support a printing operation and
change all the implementors of that interface to implement the operation; or

2. use the Visitor pattern, which would also require modifications in the class
hierarchy to introduce accept methods.

Both options require pervasive changes to existing code. Furthermore, these
changes are only an option if the source code is available. If the hierarchy is
part of a library or framework, then these solutions are not options.

Extensibility for the Masses 9

interface IPrint {
String print();

}
class IntPrint implements IntAlg<IPrint> {
public IPrint lit(final int x) {
return new IPrint() {
public String print() {
return new Integer(x).toString();

}};
}
public IPrint add(final IPrint e1, final IPrint e2) {
return new IPrint() {
public String print() {
return e1.print() + " + " + e2.print();

}};
}}

Fig. 4. A retroactive implementation of printing for arithmetic expressions

What we would like is a mechanism that allowed us to retroactively implement
interfaces for existing class hierarchies, without need for changes to existing
implementations.

As it turns out object algebras enable us to simulate such retroactive imple-
mentations of interfaces. To use object algebras to provide retroactive implemen-
tations we proceed very much like an implementation of internal visitors. The
idea is illustrated in Figure 4. To provide the retroactive implementation of the
interface, we create an implementation of the object algebra with the abstract
type instantiated to the interface type. In this case IPrint is the interface that
the arithmetic expressions should implement. The interface implementations are
done by creating a class IntPrint that implements the object algebra interface
IntAlg<IPrint>. The implementations of the two methods lit and add provide
the implementation of the interface for literals and addition.

The difference to the Visitor pattern is that we do not add accept methods
to Exp. Instead, following the approach presented in Section 3, we replace uses
of concrete constructors in the client code by the corresponding methods in the
object algebra. For example, instead of creating an expression
Exp exp = new Add(new Lit(3), new Lit(4));

we would abstract uses of the constructors as follows:
<A> A exp(IntAlg<A> v) {
return v.add(v.lit(3), v.lit(4));

}

With this transformation in place we could then write the following code:
void test() {
IntFactory base = new IntFactory();
IntPrint print = new IntPrint();

int x = exp(base).eval(); // int x = exp.eval();

10 B.C.d.S. Oliveira and W.R. Cook

String s = exp(print).print();
}

Compared to the conventional object-oriented style, uses of exp.m() are replaced
by exp(mFactory).m(), where mFactory is a factory that creates objects with
the required m method.

By using this simple pattern we can provide retroactive implementations of
interfaces to existing code. In comparison to Java extensions such as JavaGI [47],
which provide native language support for retroactive implementations, there is
of course some overhead in terms of additional code. On the other hand, no new
compiler is needed. One difficulty of using this pattern arises when the operations
in the retroactive interface implementations depend on existing operations in the
base classes or other retroactive implementations. The simple pattern presented
in this section is insufficient to allow such dependencies. However, with a bit
more work, we can get around this restriction as we shall see in Section 7.3.

Finally, note that this style of retroactive implementations is quite powerful: it
still allows us to simulate dynamically dispatched methods and open classes [9].
This is unlike approaches such as C# extension methods [1] or conventional
object-oriented encodings of type classes [34] which can only provide static dis-
patching in their retroactive implementations. Although the programming style
required by object algebras (and retroactive interface implementations) is simi-
lar to the use of object-oriented encodings of type classes, the key difference is
that object algebras overload constructors instead of regular methods.

5 Extensibility

There are two ways in which we may want to extend our expressions: adding
new variants; or adding new operations. The previous section has already shown
one way in which we can add new operations: via retroactive interface imple-
mentations. In this section we show another alternative way to define operations
and illustrate the addition of new variants. We also show how object algebras
go beyond many solutions to the EP and also provide solution to the expression
families problem [31].

5.1 Internal Visitors as Object Algebras

Object algebras provide a direct implementation of (functional) internal visi-
tors [35] (see also Section 2.1) since constructive algebraic signatures correspond
exactly to internal visitor interfaces. As such we can use object algebras to de-
fine new operations using concrete internal visitor implementations. As Figure 5
shows this offers an alternative way to implement pretty printing. Instead of
creating a new interface like IPrint and defining a retroactive implementation
for that type, we can directly define the printing operation. In this case it is the
IntAlg interface that is interpreted as an internal visitor interface.

Extensibility for the Masses 11

class Print2 implements IntAlg<String> {
public String lit(int x) {
return new Integer(x).toString();

}

public String add(String e1, String e2) {
return e1 + " + " + e2;

}
}

Fig. 5. Adding a printing operation

interface IntBoolAlg<A> extends IntAlg<A> {
A bool(Boolean b);
A iff(A e1, A e2, A e3);

}

Fig. 6. Adding boolean expression variants

Printing is used as follows:

Print2 p = new Print2();
String s = exp(p);

This object algebra visitor style avoids the creation of an intermediate object,
just to immediately invoke the print method afterwards. Unlike traditional visi-
tor implementations, this visitor style using object algebras supports data variant
extensibility and does not need accept methods.

Using internal visitors is best when the computation in the operation happens
bottom-up: essentially operations that could be defined as folds in functional pro-
gramming. This stems, of course, from the fact that internal visitors are basically
Church encodings and Church encodings encode data as folds. For operations
that do not naturally fit this bottom-up style of computation, or mutually depend
on other operations, the factory-oriented approach using retroactive implemen-
tations of interfaces is better.

5.2 Adding New Variants and Updating Operations

Adding new data variants is easy. The first step is to create new classes Bool
and Iff in the usual object-oriented style (like Lit and Add):

class Bool implements Exp {...}
class Iff implements Exp {...}

The second step, shown in Figure 6, is to create an extended algebra interface
with two new methods for the new boolean expressions. Finally the last step,
shown in Figure 7, is to provide extension for the new boolean expressions cases
for both the factory IntFactory and the retroactive implementation for printing.

12 B.C.d.S. Oliveira and W.R. Cook

/* Extended Expression Factory */
class IntBoolFactory extends IntFactory implements IntBoolAlg<Exp> {
public Exp bool(Boolean b) {return new Bool(b);}

public Exp iff(Exp e1, Exp e2, Exp e3) {return new Iff(e1,e2,e3);}
}

/* Extended Retroactive Implementation for Printing */
class IntBoolPrint extends IntPrint implements IntBoolAlg<IPrint> {
public IPrint bool(final Boolean b) {
return new IPrint() {
public String print() {return new Boolean(b).toString();}

};
}

public IPrint iff(final IPrint e1, final IPrint e2, final IPrint e3) {
return new IPrint() {
public String print() {
return "if (" + e1.print() + ") then " + e2.print() + " else " + e3.

print();
}

};
}

}

Fig. 7. Supporting boolean expression variants

5.3 Subtyping Relations

There are two interesting subtyping relations when we talk about the EP: sub-
typing between extended and base terms; and subtyping between the operations
on those terms. Object algebras support both types of subtyping.

Not many other solutions to the EP support such subtyping relations. Even
using advanced features like virtual classes [25] and similar mechanisms [4,27,29],
the extended terms and operations are incompatible with the base terms and
operations: only subtyping relations between classes in the same family are pre-
served. Oliveira [31] recognized this problem and suggested a variant of the EP:
the expression families problem, which requires solutions to preserve the subtyp-
ing relations across different families. There are two solutions that we are aware
of that do support such subtyping relations [43,31]. Still both of them require
variance annotations or wildcards.

Subtyping between object algebra interfaces follows from standard OO sub-
typing: an extension of an object algebra interface is a subtype of the original
interface. A consequence of this subtyping relation is that if we have some term
constructed using a certain object algebra, we can always use an operation de-
fined over an extension of that object algebra to process the term. For example:

IntBoolPrint p2 = new IntBoolPrint();
exp(p2).print();

Extensibility for the Masses 13

In this case we can use p2 (which supports integer and boolean expressions) in
an integer expression. However, the following code would be rejected:

IntPrint p = new IntPrint();
exp2(p).print(); // type-error

Here, we create a printing implementation p for integer expressions and try to
use it on an expression exp2 (see the definition below) defined for integer and
boolean expressions. As expected, this fails to type-check.

The subtyping relation between terms is induced by the subtyping relation
between object algebra interfaces. However, it follows the opposite direction: an
extended term type (that is, with more constructors) is a supertype of a base
term type. This subtyping relation is useful, for example, to build complex terms
using an extended set of constructors from simpler terms:

<A> A exp(IntAlg<A> v) {
return v.add(v.lit(3), v.lit(4));

}
<A> A exp2(IntBoolAlg<A> v) {
return v.iff(v.bool(false),exp(v),v.lit(0));

}

In this case exp is a type of terms which can only be built using integer ex-
pressions, whereas exp2 is type of terms which can use boolean expressions as
well. Since terms for integer expressions are a subtype of terms for integer and
boolean expressions, we can call exp in the definition of exp2 with the object
algebra argument v of type IntBoolAlg<A>.

Finally, note that there is an important difference to solutions to the EP
using open classes [9]. In those solutions, there is a single expression type which is
incrementally extended. So, once expressions are extended it becomes impossible
to distinguish the extended expressions from more basic expressions. Thus, unlike
a solution with object algebras, type distinctions between multiple variations of
expressions are lost.

6 Multiple Types and Multi-sorted Object Algebras

In larger programs, it is often the case that we need multiple (potentially mu-
tually) recursive types and operations evolving as a family. When the need for
multiple types arises, we need to generalize from simple object algebras to multi-
sorted object algebras. Multi-sorted object algebras also illustrate the relation-
ship with the Abstract Factory pattern better, since this pattern is normally
used with complex hierarchies with multiple types.

Multi-sorted object algebras are closely related to family polymorphism [12]
which allow a variation EP where multiple types evolve as a family. Normally,
without mechanisms like virtual types or classes, family polymorphism tends to
be extremely heavyweight (and impractical) to encode [40]. However, as we shall
see object algebras still scale well to the multiple type case.

14 B.C.d.S. Oliveira and W.R. Cook

interface StmtAlg<E, S> extends IntBoolAlg<E> {
E var(String x);
E assign(String x, E e);
S expr(E e);
S comp(S e1, S e2);

}

Fig. 8. Statements and expressions as a multi-sorted object algebra

6.1 Multiple Types

The need for multiple types appears, for example, when we want to have a lan-
guage with expressions and statements. Figure 8 shows how to add statements
to our little language of boolean and integers expressions. In order to introduce a
new syntactic sort (statements) in the language, we need to add a new type pa-
rameter S. This corresponds effectively to having a multi-sorted (object) algebra,
with E and S as the carrier types.1

As part of the statements object algebra interface we introduce two new forms
of expressions: variables (var) and assignments (assign). We also introduce two
forms of statements: sequential composition (comp) and liftings of expressions
into statements (expr).

6.2 Evaluation of Statements: Algebras with Local State

Evaluation of statements is interesting for two reasons. Firstly it illustrates the
definition of multi-sorted object algebras. Secondly it also illustrates an operation
with local state: namely, the mapping between variables and values associated
with those variables. If we would design the evaluation of statements using a more
conventional OO style, with independent classes for variables and assignments,
then we would have to coordinate the mapping of variables between those two
classes. This could be done, for example, by explicit passing the variable mapping
between those two classes. However, because this mapping is basically local to
evaluation, this design is a bit unfortunate as it loses some encapsulation.

With the Visitor pattern we could solve this problem more elegantly because
we could create state that is local to an operation. Because object algebras also
offer some of the same benefits as visitors, we can also exploit this design in our
case. To do so, we use a design that is similar to retroactive interface imple-
mentations. This design is illustrated in Figure 9. Instead of creating individual
classes, we use inner anonymous classes directly in the factory. The variable map
keeps the mapping between variables and values. In the case of variables, we
use map to retrieve the value associated with that variable. Assignments update
the variable in the map with the value of the assigned expression. Composi-
tion evaluates the two expressions sequentially. Finally, expr simply returns the
corresponding expression.

1 Note that, more generally, we can encode sets of n (potentially mutually) recursive
types by creating multi-sorted algebras with n type parameters (one for each type).

Extensibility for the Masses 15

interface Stmt {
void eval();

}
class StmtFactory extends IntBoolFactory implements StmtAlg<Exp, Stmt> {
HashMap<String, Value> map = new HashMap<String, Value>();

public Exp var(final String x) {
return new Exp() {
public Value eval() {
return map.get(x);

}};
}
public Exp assign(final String x, final Exp e) {
return new Exp() {
public Value eval() {
Value v = e.eval();
map.put(x, v);
return v;

}};
}
public Stmt comp(final Stmt s1, final Stmt s2) {
return new Stmt() {
public void eval() {
s1.eval();
s2.eval();

}};
}
public Stmt expr(final Exp e) {
return new Stmt() {
public void eval() {
e.eval();

}};
}}

Fig. 9. An abstract factory for expressions and statements

Note that the object algebra in Figure 9 can also be interpreted as a con-
crete builder object from the Builder pattern [13]. The Builder pattern, like
the Abstract Factory pattern, is a creational pattern. The main difference
between the Builder pattern and the Abstract Factory pattern is that
builders tend to have complex object construction processes. For example fac-
tories are typically stateless, while builders can maintain a state. In this case,
StmtFactory is stateful, which would justify calling that class a concrete builder.

Client Code: The extended object algebra of expressions and statements can be
used as before. For example we can create values for expressions and statements
as follows:

<E,S> E exp(StmtAlg<E,S> v) {
return v.assign("x", v.add(v.lit(3), v.lit(4)));

}
<E,S> S stmt(StmtAlg<E,S> v) {

16 B.C.d.S. Oliveira and W.R. Cook

interface BoolAlg<A> {
A bool(boolean x);
A iff(A b, A e1, A e2);

}

interface ExpIntBool<A> extends BoolAlg<A>, IntAlg<A> {}

Fig. 10. Composing algebra interfaces with interface inheritance

return v.comp(v.expr(exp(v)), v.expr(v.var("x")));
}

Note that the syntactic restrictions which dictate where expressions and state-
ments can occur are preserved. As such code like:

<E,S> S badStmt(StmtAlg<E,S> v) {
return v.comp(exp(v), v.var("x")); //type-error

}

is rejected by the type-checker since it tries to use two expressions as arguments
for sequential composition.

The evaluator is run as before: a factory is created, passed to exp and stmt
and eval is invoked in the resulting objects.

StmtFactory factory = new StmtFactory();
exp(factory).eval();
stmt(factory).eval();

7 Modularity and Object Algebra Combinators

This section shows techniques to modularly define and compose independent
components using object algebra combinator classes. One of the problems ad-
dressed in this section is how to achieve independent extensibility [50] in Java
(Section 7.2). It is easy to have independent extensibility if a language supports
traits [41] or mixin composition [2], but this is not as trivial in a language with
single inheritance like Java. Another problem that is addressed in this section
is the problem of defining retroactive implementations that depend on existing
operations in the base classes or other retroactive implementations (Section 7.3).

7.1 Modular Combination of Algebra Interfaces

Interface inheritance can be used to combine algebra interfaces. For example,
lets consider again the problem of developing boolean and integer expressions.
In Figure 6 we opted to make the algebra interface for boolean expression ex-
tend that of integer expressions. However, there’s nothing intrinsic to boolean
expressions that depends on integer expressions. A more modular alternative
implementation, shown in Figure 10, is to define integer and boolean algebras

Extensibility for the Masses 17

class Union<A> implements IntBoolAlg<A> {
BoolAlg<A> v1;
IntAlg<A> v2;
Union(BoolAlg<A> v1, IntAlg<A> v2) { this.v1 = v1; this.v2 = v2; }

public A lit(int x) { return v2.lit(x); }
public A add(A e1, A e2) { return v2.add(e1, e2); }
public A bool(Boolean b) { return v1.bool(b); }
public A iff(A e1, A e2, A e3) { return v1.iff(e1, e2, e3); }

}

Fig. 11. Composing operations with OO composition

as separate interfaces. Because most languages support multiple interface inheri-
tance, this mechanism can compose the two algebra interfaces. The new interface
IntBoolAlg illustrates this idea and shows how to compose IntAlg with BoolAlg
through interface inheritance.

7.2 Modular Combination of Algebras

Unfortunately modular combinations of algebras themselves is not as easy as
modular combination of algebra interfaces. The problem is that while languages
like Java support multiple interface inheritance, they only support single im-
plementation inheritance. As such we cannot use implementation inheritance in
Java to compose two independent extensions.

However, OO composition offers an alternative way to combine modular ex-
tensions, although it takes some manual work to set up the composition. For-
tunately it is possible to write fairly generic composition classes which allow
composing different types of interpretations. At the high-level what we want is
to define a combinator:

union ∈ V1 A × V2 A → (V1 ⊗ V2) A

which takes two object algebras of type V1 A and V2 A and it returns the
union of those algebras. In Java we can write union for two specific object
algebras interfaces V1 A and V2 A. Figure 11 illustrates the definition of union
for the object algebras interfaces BoolAlg and IntAlg. We can use Java’s multiple
interface inheritance to approximate the union of two object algebras interfaces
(that is the type-level operator ⊗). The actual implementation of the methods
of Union is straightforward: each method simply delegates to the corresponding
method in either v1 or v2.

Union can be used to define the factory for boolean and arithmetic expressions
from two independent extensions:
class IntBoolFactory2 extends Union<Exp> {
IntBoolFactory2() { super(new BoolFactory(), new IntFactory()); }

}

Essentially all we have to do is to instantiate factories for boolean and integer
expressions and invoke the constructor in Union. For retroactive implementations
such as pretty printing we would proceed in the same way.

18 B.C.d.S. Oliveira and W.R. Cook

class Pair<A, B> {
A a; B b;
Pair(A a, B b) { this.a = a; this.b = b; }

A a() { return a; }
B b() { return b; }

}

class Combine<A, B> implements IntAlg<Pair<A, B>> {
IntAlg<A> v1;
IntAlg v2;

Combine(IntAlg<A> v1, IntAlg v2) { this.v1 = v1;this.v2 = v2; }

public Pair<A, B> lit(int x) {
return new Pair<A, B>(v1.lit(x), v2.lit(x));

}
public Pair<A, B> add(Pair<A, B> e1, Pair<A, B> e2) {
return new Pair<A, B>(v1.add(e1.a(), e2.a()), v2.add(e1.b(), e2.b()));

}
}

Fig. 12. Combining operations in parallel

7.3 Combining Operations in Parallel

Sometimes it is useful to compose multiple operations together in such a way
that they are executed in parallel to the same input. Abstractly speaking what
we want is a combinator:

combine ∈ V A × V B → V (A × B)
That is given two object algebras with types V A and V B we want to derive a

third object algebra which combines the results of the two object algebras. This
combinator is analogous to the zip function in functional programming, and it
has been well-studied in the context of F-algebras [21].

Figure 12 shows how to define combine for integer expressions. Essentially,
combine becomes an class (Combine) that is parametrized by two other object
algebras v1 and v2. The implementation of each method (lit and add) basically
forwards the input to the corresponding cases in v1 and v2 and returns a pair
with both results.

Combine is useful, for example, when we need to define operations that depend
on multiple independent extensions. For example, consider adding some debug-
ging information to the evaluator. In order to do this it is helpful to have a pretty
printer. However, evaluation and pretty printing have been defined separately.
By inheriting from Combine we can create a new class Debug that allows us to
use evaluation and pretty printing at the same time.

class Debug extends Combine<Exp, IPrint> {
Debug() { super(new IntFactory(), new IntPrint()); }
Pair<Exp, IPrint> add(Pair<Exp, IPrint> e1, Pair<Exp, IPrint> e2) {
System.out.println("The first expression " + e1.b().print() +

Extensibility for the Masses 19

" evaluates to " + e1.a().eval().toString());
System.out.println("The second expression " + e2.b().print() +

" evaluates to " + e2.a().eval().toString());
return super.add(e1,e2);

}}

all we have to do is to invoke the constructor of the super class (Combine) with
the integer expressions factory and pretty printer. Then to access the pretty
printer and the evaluator, we just select the right component of the combined
pair.

7.4 Some Final Notes on Extensibility

The attentive reader may have noticed two additional extensibility challenges
that were left unaddressed. The first challenge is that the algebra class com-
binators that were just introduced are not extensible. The second challenge is
that while expressions (and statements) are extensible the values computed by
evaluation are not.

Both problems can be solved, but they require the most advanced use of
generics in this paper: bounded polymorphism. However, we are still able to
avoid F-bounded polymorphism since there is no need for recursive F-bounds.

We describe the key ideas of the solutions next, but refer the reader to our
online implementation for the full code.

Extensible Algebra Combinators: Both Union and Combine cannot be easily ex-
tended. This is because these classes require concrete classes like IntAlg or
BoolAlg in order to refer to the types of the object algebra parameters. It would
be quite unfortunate if those algebra combinator classes could not be extended,
because this would mean that each extension would have to create new algebra
combinator classes from scratch.

To make such algebra combinator classes extensible we first observe that in
Union and Combine there is no need to know about the concrete classes of the
object algebra parameters. Rather only the upper bounds matter. Exploiting this
observation we can define generalized versions of Union and Combine as follows:

class GUnion<A, V1 extends BoolAlg<A>, V2 extends IntAlg<A>> implements
IntBoolAlg<A> {

V1 v1; V2 v2;
GUnion(V1 v1, V2 v2) { this.v1 = v1; this.v2 = v2; }
...

}
class GCombine<A, B, V1 extends IntAlg<A>, V2 extends IntAlg>

implements IntAlg<Pair<A, B>> {
V1 v1; V2 v2;
GCombine(V1 v1, V2 v2) { this.v1 = v1;this.v2 = v2; }
...

}

20 B.C.d.S. Oliveira and W.R. Cook

Unlike Union and Combine these classes allow extensibility because the bounds
can be refined when the classes are extended. Therefore when defining combi-
nators for extensions we can extend the classes GUnion and GCombine to inherit
the cases for literals and addition.

Extensible Values: A similar idea is used to allow extensible values as well as
extensible expressions.

interface IntVal<A> {
A lit(int x);

}
interface IntExp<A> extends IntVal<A> {
A add(A x, A y);

}
interface IntValue {
int getInt();

}
class Eval<A extends IntValue,V extends IntVal<A>> implements IntExp<A> {
protected V valFact;
public Eval(V valFact) { this.valFact = valFact; }
public A lit(int x) { return valFact.lit(x); }
public A add(A x, A y) { return valFact.lit(x.getInt() + y.getInt()); }

}

Integer value factories are described by the IntVal algebra interface. There’s
a single constructor lit. The algebra interface for expressions then becomes
an extension of IntVal. We also need an integer value interface (IntValue) for
evaluation. With these 3 interfaces we can define an evaluation class (Eval) by
parametrizing that class by a value factory (valFact). This factory is then used
to avoid the use of concrete value constructors (as done in Figure 1). Again,
because the bounds are refinable in extensions, this design allows extensibility
of the value types.

8 Case Study

We have used this technique in implementing a new client model for invoking
remote procedure calls (RCP), web services, and database clients (SQL). The
system is called batches [22,48]. The system uses a custom scripting language
to communicate batches of operations from clients to servers. The base object
algebra of the system is defined in Figure 13. Some helper functions (which are
technically redundant) are omitted for brevity.

There are currently five implementations of this signature. The first three
implement direct evaluation of scripts, secure evaluation, and SQL translation,
respectively.

The direct evaluation classes are similar to the classes defined in Section 4.
The secure evaluation classes have the same basic structure, but carry additional
state so that they can check the legality of each operation for the current user.

The SQL translator injects the algebra into a object hierarchy that has multi-
ple mutually recursive translation functions, and also has additional SQL-specific

Extensibility for the Masses 21

interface BatchFactory<E> {
E Var(String name); // variable reference
E Data(Object value); // simple constant (number, string, or date)
E Fun(String var, E body);
E Prim(Op op, List<E> args); // unary and binary operators
E Prop(E base, String field); // field access
E Assign(Op op, E target, E source); // assignment
E Let(String var, E expression, E body); // control flow
E If(E condition, E thenExp, E elseExp);
E Loop(Op op, String var, E collection, E body);
E Call(E target, String method, List<E> args); // method invocation
E In(String location); // reading and writing forest
E Out(String location, E expression);

}

Fig. 13. Batch script language abstract syntax

interface SQLTranslation {
void toSQL(StringBuilder sb, List<Object> params, Forest data);
Expression normalize(ISchema schema, SQLQuery query,

Expression outerCond, Env env, NormType normType);
SQLTable getTable();
Expression invertPath(Expression e, Env env, boolean fromChild);
SQLTable getTableNoJoins(Env env);
SQLTable getBase(Env env);
Expression withoutTransformations();
Expression getTransformations(Expression base);
Expression trimLast(Env env);

}

Fig. 14. Interface of mutually recursive methods used by the SQL Translation algebra

objects. The signature of this class is given in Figure 14. Using a traditional visi-
tor approach, every one of these functions would have to be defined as a mutually
recursive visitor class. With object-algebras, the SQL translation objects can call
methods on sub-objects in the normal object-oriented style.

The final implementations are the most complex. They implement the par-
titioning mechanism required by the batch compiler. There are two parts, a
partitioning algebra and a code generation algebra. The partition algebra ex-
tends the base algebra signature with additional node types, to represent code
that does not belong to the batch. The methods, which are also mutually re-
cursive, are listed in Figure 15. The partition system then creates batches, but
then must visit the resulting objects to generate new code after the partition is
complete. This is the one case where something like a traditional visitor is used.
However, it is not used to create new operations. Instead it is used to build the
new objects into a final code-generation algebra.

Subjectively this architecture allows the different subsystems (security, par-
titioning, and SQL translation) to be kept separate. Within each subsystem
ordinary object-oriented dispatch is used. The main difference is that rather

22 B.C.d.S. Oliveira and W.R. Cook

interface PartitionFactory<E> extends BatchFactory<E> {
E Other(Object external, E... subs);
E DynamicCall(E target, String method, List<E> args);
E Mobile(String type, Object obj, E exp);

}

Fig. 15. Extended script language interface used for partitioning algebra

than constructing generic operations, and then trying to create complex mu-
tually recursive visitors that operate on the generic objects, the batch system
creates specialized objects for each task.

9 Related Work

Throughout the paper we have already compared object algebras with several
other related work. In this section we discuss additional related work.

Expression Problem in Java-like languages: Object algebras require only sim-
ple generics and work in languages like Java or C#. As far as we know Torg-
ersen’s [43] work on the EP presents the only solutions in the literature that can
also work in those languages. He presents 4 solutions, but the first 3 solutions
require advanced features like F-bounds or wildcards, while the last solution
makes use of C# reflection mechanisms and it does not satisfy the (static) type-
safety requirement of the expression problem. A drawback of Torgersen’s first 3
solutions is that they require quite a bit of redundant code just for the purposes
of satisfying the type-checker, and they are conceptually quite heavy. F-bounds
and wildcards are notorious for being difficult to grasp for everyday program-
mers. An advantage of object algebras is that they are comparably lightweight
on the amount of type annotations and they do not use those advanced features.

Before Torgersen’s work, there have been attempts to provide solutions that
work in Java-like languages. Wadler proposed a solution using generics to solve
the expression problem [46], but he later found a subtle typing problem. Kim
Bruce [3] proposed a solution to the expression problem using generics and self-
types. However self-types are not a widely available feature and, as such, his
solution does not work in most current mainstream OO languages. Finally, there
have also been some other solutions that are not statically type-safe, but still
allow extensibility [23,36,45].

Modular Visitors, Encodings of Datatypes and Embedded DSLs: There has been
a considerable amount of work on modular visitors and related techniques in
advanced programming languages like Haskell or Scala recently. This line of
work is closely related to object algebras.

Hinze [19] was the first to point out that type classes provide a way to rep-
resent encodings of datatypes in Haskell. He exploited this fact to implement
a generic programming library. Inspired by Hinze’s work, Oliveira and Gib-
bons [32] have shown general patterns for those techniques and used them to

Extensibility for the Masses 23

several other applications. In following work Oliveira et al. showed that variants
of these type-class based encodings are extensible and can be used to solve the
expression problem [33]. Later work by Carrete et al. [7] and Hofer et al. [20]
(in Scala) popularized those techniques for defining well-typed interpreters and
embedded DSLs. While all that work is closely related to object algebras, those
techniques require significant advanced language features not available in main-
stream OO languages like Java. A source of additional complexity in this line
of work is that most documented applications use encodings of generalized al-
gebraic datatypes [37]. Even with our simplified techniques, it is not possible
to define Church encodings of generalized algebraic datatypes in Java as this
requires type-constructor polymorphism [39,28].

The relationship between the Visitor pattern and Church encodings has been
folklore in the type-theory community. Buchlovsky and Thielecke [5] were the
first to precisely document that relationship. The link between the type class
based encodings, the Visitor pattern, encodings of datatypes and the extensi-
bility of such encodings was further developed by Oliveira [30,35]. In later work,
Oliveira [31] generalized and showed how to apply his results on extensibility to
two variations of the Visitor pattern. Still the Scala implementation of that
work used advanced features including type constructor polymorphism, variance
annotations, self-type annotations and mixins. None of these are available in
Java. A key insight of our work is that by avoiding accept methods and using
plain object algebras instead we can get most of the benefits of modular vis-
itors in Java. Furthermore, unlike visitors, object algebras support retroactive
implementations without requiring accept methods.

Another Haskell solution to the expression problem is based on folds (and
F-algebras) [11,42]. This solution also requires advanced features and it does not
translate well to object-oriented programming because most OO languages do
not have native support for sums-of-products, which are needed in that solution.

Finally Zenger and Odersky [50] proposed a solution to the expression problem
in Scala using virtual types [4] and the open class pattern [27]. As most other
solutions discussed here, this solution is quite heavyweight in terms of language
features and it requires a lot of type annotations and manual composition code.

Language-Based Solutions to the Expression Problem: Several programming lan-
guage features such as multi-methods [8], open classes [9], virtual classes [25,29],
virtual types [4], units [27], polymorphic variants [14] and others [49,24,47] are
aimed at solving problems related to the expression problem. The main advan-
tage of most of these approaches is that solutions to the expression problem can
be expressed quite naturally. In contrast, solutions that instead exploit general
programming language features (like generics or type classes) are commonly crit-
icized for being heavyweight, hard to use and requiring sophisticated features.
Our work shows that is possible to significantly reduce such complexity by using
object algebras. There is still some price to pay in terms of indirection, but com-
pared to other approaches using general programming language features this is a
relatively small cost: it is low enough that object algebras are useful in practice.
The main advantage of object algebras over language-based approaches is that

24 B.C.d.S. Oliveira and W.R. Cook

object algebras do not require a new language or language extension: they can
be used in any languages that support a simple form of generics.

Visitor Combinators and Functional Interpretations of Design Patterns: There
has been some work on visitor combinators for offering better traversal con-
trol. Visser [45] presented a number of combinators that can express interesting
traversal strategies like bottom-up, top-down or sequential composition of vis-
itors. This work is related to our algebra combinators in Section 7. However a
difference is that we use functional style object algebras whereas Visser uses
imperative style visitors. As part of our future work we would like to explore
more algebra combinators and develop a small algebra of combinators for object
algebras.

Gibbons [16] has proposed functional interpretations for various design pat-
terns. In particular he suggested that the Visitor and the Builder patterns
are closely related to folds in functional programming. Our work supports this
idea and extends it, suggesting that the Abstract Factory pattern is also
also part of the functional interpretation as folds.

10 Conclusion

This paper presents a new solution to the expression problem based on object
algebras. This solution is interesting because it is extremely lightweight in terms
of required language features; has a low conceptual overhead for programmers;
and it scales well with respect to other challenges related to the expression
problem.

Object algebras promote a factory-oriented programming style where concrete
constructors are avoided. This programming style has some overhead over a con-
ventional object-oriented programming style, but it also offers several advantages
in terms of extensibility. In comparison with the Visitor pattern, object algebras
retain most of the advantages and additionally they support extensibility and
do not require accept methods. As such object algebras can provide retroactive
implementations even when the original source code is not available.

Although this paper shows that object algebras can be encoded in languages
like Java, programming language extensions are still useful. With additional
language support we expect programming with object algebras to be even more
convenient. For example programming language extensions can be useful to man-
age factories better, or to automatically provide composition operators for object
algebras. This is something we would like to explore in future work.

Acknowledgements. We are grateful to Gavin Bierman, Alex Loh, Matthew
Parkinson, Tom Schrijvers, Tijs Van der Storm, Tarmo Uustalu and the anony-
mous reviewers for various discussions, comments and suggestions about this
work. This research was funded by the UT Austin-Portugal Colab Program and
by Singapore Ministry of Education research grant MOE2010-T2-2-073.

Extensibility for the Masses 25

References

1. Bierman, G.M., Meijer, E., Torgersen, M.: Lost in translation: formalizing proposed
extensions to C#. In: OOPSLA 2007 (2007)

2. Bracha, G., Cook, W.: Mixin-based inheritance. In: OOPSLA/ECOOP 1990 (1990)
3. Bruce, K.: Some challenging typing issues in object-oriented languages: Extended

abstract. Electronic Notes in Theoretical Computer Science 82(8), 1–29 (2003)
4. Bruce, K.B., Odersky, M., Wadler, P.: A Statically Safe Alternative to Virtual

Types. In: Jul, E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 523–549. Springer,
Heidelberg (1998)

5. Buchlovsky, P., Thielecke, H.: A type-theoretic reconstruction of the visitor pattern.
Electronic Notes in Theoretical Computer Science 155(0), 309–329 (2006)

6. Canning, P., Cook, W., Hill, W., Olthoff, W., Mitchell, J.C.: F-bounded polymor-
phism for object-oriented programming. In: FPCA 1989 (1989)

7. Carette, J., Kiselyov, O., Shan, C.C.: Finally tagless, partially evaluated: Tagless
staged interpreters for simpler typed languages. J. Funct. Program. 19, 509–543
(2009)

8. Chambers, C., Leavens, G.T.: Typechecking and modules for multimethods. ACM
Trans. Program. Lang. Syst. 17, 805–843 (1995)

9. Clifton, C., Leavens, G.T., Chambers, C., Millstein, T.: MultiJava: modular open
classes and symmetric multiple dispatch for java. In: OOPSLA 2000 (2000)

10. Cook, W.R.: Object-Oriented Programming Versus Abstract Data Types. In: de
Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1990. LNCS, vol. 489,
pp. 151–178. Springer, Heidelberg (1991)

11. Duponcheel, L.: Using catamorphisms, subtypes and monad transformers for writ-
ing modular functional interpreters (1995),
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.7093

12. Ernst, E.: Family Polymorphism. In: Lee, S.H. (ed.) ECOOP 2001. LNCS, vol. 2072,
pp. 303–326. Springer, Heidelberg (2001)

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addisson-Wesley professional computing se-
ries. Addisson-Wesley (1994)

14. Garrigue, J.: Programming with polymorphic variants (1998)
15. Ghani, N., Uustalu, T., Vene, V.: Build, Augment and Destroy, Universally. In: Chin,

W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 327–347. Springer, Heidelberg (2004)
16. Gibbons, J.: Design patterns as higher-order datatype-generic programs. In: WGP

2006 (2006)
17. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in The-

oretical Computer Science, vol. 7. Cambridge University Press (1989)
18. Guttag, J.V., Horning, J.J.: The algebraic specification of abstract data types. Acta

Informatica (1978)
19. Hinze, R.: Generics for the masses. Journal of Functional Programming 16(4-5),

451–483 (2006)
20. Hofer, C., Ostermann, K., Rendel, T., Moors, A.: Polymorphic embedding of DSLs.

In: GPCE 2008 (2008)
21. Hoogendijk, P., Backhouse, R.: When Do Datatypes Commute? In: Moggi, E.,

Rosolini, G. (eds.) CTCS 1997. LNCS, vol. 1290, pp. 242–260. Springer, Heidelberg
(1997)

22. Ibrahim, A., Jiao, Y., Tilevich, E., Cook, W.R.: Remote Batch Invocation for
Compositional Object Services. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 595–617. Springer, Heidelberg (2009)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.7093

26 B.C.d.S. Oliveira and W.R. Cook

23. Krishnamurthi, S., Felleisen, M., Friedman, D.P.: Synthesizing Object-Oriented
and Functional Design to Promote Re-Use. In: Jul, E. (ed.) ECOOP 1998. LNCS,
vol. 1445, pp. 91–113. Springer, Heidelberg (1998)

24. Löh, A., Hinze, R.: Open data types and open functions. In: PPDP 2006 (2006)
25. Madsen, O.L., Moller-Pedersen, B.: Virtual classes: a powerful mechanism in

object-oriented programming. In: OOPSLA 1989 (1989)
26. Malcolm, G.: Algebraic Data Types and Program Transformation. Ph.D. thesis,

Rijksuniversiteit Groningen (September 1990)
27. McDirmid, S., Flatt, M., Hsieh, W.C.: Jiazzi: new-age components for old-fashioned

java. In: OOPSLA 2001 (2001)
28. Moors, A., Piessens, F., Odersky, M.: Generics of a higher kind. In: OOPSLA 2008

(2008)
29. Nystrom, N., Qi, X., Myers, A.C.: J&: nested intersection for scalable software

composition. In: OOPSLA 2006 (2006)
30. Oliveira, B.C.d.S.: Genericity, extensibility and type-safety in the Visitor pattern.

Ph.D. thesis, Oxford University Computing Laboratory (2007)
31. Oliveira, B.C.d.S.: Modular Visitor Components. In: Drossopoulou, S. (ed.)

ECOOP 2009. LNCS, vol. 5653, pp. 269–293. Springer, Heidelberg (2009)
32. Oliveira, B.C.d.S., Gibbons, J.: Typecase: a design pattern for type-indexed func-

tions. In: Haskell 2005 (2005)
33. Oliveira, B.C.d.S., Hinze, R., Löh, A.: Extensible and modular generics for the

masses. In: Trends in Functional Programming (2006)
34. Oliveira, B.C.d.S., Moors, A., Odersky, M.: Type classes as objects and implicits.

In: OOPSLA 2010 (2010)
35. Oliveira, B.C.d.S., Wang, M., Gibbons, J.: The visitor pattern as a reusable,

generic, type-safe component. In: OOPSLA 2008 (2008)
36. Palsberg, J., Jay, C.B.: The essence of the visitor pattern. In: COMPSAC 1998

(1998)
37. Peyton Jones, S., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-

based type inference for GADTs. In: ICFP 2006 (2006)
38. Reynolds, J.C.: User-defined types and procedural data structures as complemen-

tary approaches to type abstraction. In: Schuman, S.A. (ed.) New Directions in
Algorithmic Languages, pp. 157–168 (1975)

39. Reynolds, J.C.: Towards a Theory of Type Structure. In: Robinet, B. (ed.)
Programming Symposium. LNCS, vol. 19, pp. 408–425. Springer, Heidelberg (1974)

40. Saito, C., Igarashi, A.: The essence of lightweight family polymorphism. Journal
of Object Technology, 67–99 (2008)

41. Scharli, N., Ducasse, S., Nierstrasz, O., Black, A.P.: Traits: Composable Units of
Behaviour. In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 248–274.
Springer, Heidelberg (2003)

42. Swierstra, W.: Data types à la carte. Journal of Functional Programming 18(4),
423–436 (2008)

43. Torgersen, M.: The Expression Problem Revisited – Four New Solutions Using
Generics. In: Vetta, A. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 123–146. Springer,
Heidelberg (2004)

44. Torgersen, M., Hansen, C.P., Ernst, E., von der Ahé, P., Bracha, G., Gafter, N.:
Adding wildcards to the Java programming language. In: SAC 2004 (2004)

45. Visser, J.: Visitor combination and traversal control. In: OOPSLA 2001 (2001)
46. Wadler, P.: The Expression Problem. Email (November 1998), discussion on the

Java Genericity mailing list

Extensibility for the Masses 27

47. Wehr, S., Thiemann, P.: JavaGI: The interaction of type classes with interfaces
and inheritance. ACM Trans. Program. Lang. Syst. 33 (July 2011)

48. Wiedermann, B., Cook, W.R.: Remote batch invocation for SQL databases. In:
The 13th International Symposium on Database Programming Languages, DBPL
(2011)

49. Zenger, M., Odersky, M.: Extensible algebraic datatypes with defaults. In: ICFP
2001 (2001)

50. Zenger, M., Odersky, M.: Independently extensible solutions to the expression prob-
lem. In: FOOL 2005 (2005)

Extensions during Software Evolution:
Do Objects Meet Their Promise?

Romain Robbes, David Röthlisberger, and Éric Tanter

PLEIAD Laboratory
Computer Science Department (DCC)

University of Chile, Chile
http://pleiad.cl

Abstract. As software evolves, data types have to be extended, possi-
bly with new data variants or new operations. Object-oriented design is
well-known to support data extensions well. In fact, most popular books
showcase data extensions to illustrate how objects adequately support
software evolution. Conversely, operation extensions are typically better
supported by a functional design. A large body of programming language
research has been devoted to the challenge of properly supporting both
kinds of extensions.

While this challenge is well-known from a language design standpoint,
it has not been studied empirically. We perform such a study on a large
sample of Smalltalk projects (over half a billion lines of code) and their
evolution over more than 100,000 committed changes.

Our study of extensions during software evolution finds that exten-
sions are indeed prevalent evolution tasks, and that both kinds of exten-
sions are equally common in object-oriented software. We also discuss
findings about the evolution of the kinds of extensions over time, and
about the viability of the Visitor pattern as an object-oriented solu-
tion to operation extensions. This study suggests that object-oriented
design alone is not sufficient, and that practical support for both kinds
of program decomposition approaches are in fact needed, either by the
programming language or by the development environment.

1 Introduction

Lehman’s laws of software evolution [13] tell us that software systems must
continuously adapt, or become progressively less useful to their users. Over time,
new functionality is added to software systems. Inevitably, some functionality
needs to extend existing system components. Depending on the programming
paradigm used, different extensions have different consequences.

Extensions can happen along two dimensions: new data variants, or new op-
erations. Object-oriented programming is well-known for seamlessly supporting
extensibility of data variants, by introducing new kinds of objects. In contrast,
the functional design approach [12]—where the variants of a data type are pro-
cessed by case-analyzing procedures—is better suited to support additions of

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 28–52, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Extensions during Software Evolution: Do Objects Meet Their Promise? 29

new operations, by introducing new procedures. Conversely, supporting new op-
erations for objects requires modifying all object definitions to add new methods,
and adding new data variants in the functional approach implies modifying all
existing procedures to handle the new cases.

This complementarity between data types and “procedural data values” (ob-
jects) dates back to the work of Reynolds in the 1970s [18] and has been described
by other researchers since then (e.g. [5,12,26]). Supporting both forms of exten-
sions appropriately is a challenge that has a strong practical relevance, because
the choice of a programming paradigm (or design approach) greatly influences
the kind of extension that is supported in a localized manner, without modifying
existing code. For instance, choosing an object-oriented decomposition to imple-
ment a system whose evolution predominantly involves operation extensions is
like using a hammer to paint a wall: possible, but painful. The object-oriented
programming community has in fact designed a solution to handle operation
extensions, called the Visitor design pattern [7]. A visitor makes it possible to
turn an operation extension scenario into a data extension scenario. But once
adopted, the Visitor pattern complicates data extensions. Many programming
language constructs have been proposed in order to support both dimensions of
extension in a modular (and type safe) manner (e.g. [12,15,24,27]).

As a matter of fact, the literature on object-oriented programming very of-
ten illustrates the superiority of objects in dealing with software evolution by
showcasing data extension scenarios (see Booch [4] and Shalloway Trott [22] for
two popular books). However, there is no empirical data on how frequently such
extensions do occur, nor is there evidence that data extensions are significantly
more common than operation extensions, even in object-oriented software.

The extensibility challenge can be looked at both from the point of view of
the implementers of a system—the kinds of extensions that have to be dealt
with in the evolution of the system—and from the point of view of black-box
third-party extensions (the latter is usually seen as the extensibility/expression
problem stricto sensu [26,24]). This work is concerned with the first part of the
question. We study the evolution of open-source object-oriented projects through
their commit history, looking at how the implementers of a project add new data
variants and operations to their class hierarchies as the system evolves. Even if
there is no strong impediment to change existing code in this setting, being able
to express these extensions modularly does matter; it is well-known that most
of the costs of software development are in maintenance and evolution, not in
initial development [6].

Concretely, we seek to answer the following research questions:

Q1: Are extensions prevalent in practice? Looking at the evolution of soft-
ware, is it really the case that new data variants and operations are frequently
added? Or are other kinds of changes (e.g. changing the implementation of
a method) much more common as to render the point moot?

Q2: Are data extensions more common than operation extensions? If
object-oriented programming is really superior in dealing with extensible
software, object-oriented projects should showcase a far greater number of

30 R. Robbes, D. Röthlisberger, and É. Tanter

data extension cases. Is it really the case? Or conversely, are there much
more operation extensions, suggesting that another programming abstrac-
tion would be more adequate? Or, are both kinds of extensions similarly
important in practice?

Q3: How do extensions occur over time? Over the lifetime of an object-
oriented system, do both kinds of extensions manifest regularly? Or are
unanticipated design decisions leading to more problematic extension cases
as the system ages?

Q4: Is the Visitor pattern a suitable solution? How much is the Visitor
pattern used in practice? In cases where it is adopted, are its benefits clearly
observable? Are visitor and visited hierarchies more stable than others?

By observing the evolution of a large number of open source Smalltalk projects,
this paper presents elements of answers to these questions. Note that because
Smalltalk is a dynamically-typed language, this study does not answer these
questions in a typed context. Whether or not static typing has an influence
on extensions during software evolution is an open question that future studies
should address. Also, because Smalltalk is an object-oriented language, we get
to observe how object programmers actually benefit (or not) from working in
that paradigm. Studies based on other languages, including those that natively
support both decomposition approaches, would be needed to answer the research
questions above in general. This study is therefore a first step towards provid-
ing substance to the long-running debate that takes place in the programming
language research community about different forms of data abstractions.

Structure of the Paper. Section 2 briefly reviews background and related
work. Section 3 describes the experimental setup, explaining how the data was
collected and processed. The next four sections report our findings related to the
four research questions stated above. Section 8 discusses threats to the validity
of this study, and Section 9 concludes.

2 Background and Related Work

We first explain the different kinds of extensions and how to deal with then
in object-oriented programming, including the Visitor design pattern. We then
review related studies of object-oriented programming practice.

2.1 Extensibility in OOP

Consider the object-oriented design of a simple programming language of arith-
metic expressions (Figure 1a)1. Expression subclasses Num and Add implement
their own evaluation method. A first kind of extension is data extension, which
consists in adding new data variants; in that case, a new kind of expression
1 Anticipating the fact that we study Smalltalk code, we present the example in a

dynamically-typed class-based setting, using inheritance to define data variants.

Extensions during Software Evolution: Do Objects Meet Their Promise? 31

abstract eval()
abstract print()

Expr

abstract eval()
Expr

eval(){ ... }
Num

eval(){ ... }
Add

eval(){ ... }
Sub

eval(){ ... }
print(){ ... }

Num
eval(){ ... }
print(){ ... }

Add
eval(){ ... }
print(){ ... }

Sub

abstract eval()
Expr

eval(){ ... }
Num

eval(){ ... }
Add

(a) (b) (c)

Fig. 1. A class hierarchy (a) and two extensions: data extension (b), and operation
extension (c). Changes are highlighted in gray.

(Figure 1b). Note how the object paradigm makes this extension localized: it
is enough to add a new subclass. A second kind of extension is operation ex-
tension, e.g. extending the protocol of expressions, such that they can also be
pretty-printed. The object-oriented decomposition is much less suited for this
kind of extension, which requires invasive and non-localized modifications of
existing classes (Figure 1c).

The Visitor design pattern [7] is the standard way to handle operation ex-
tensions in a modular manner in object-oriented programming. It consists of
preparing the hierarchy to extend so that it accepts visitor objects (e.g. add a
method accept on each class of the Expr hierarchy). A separate hierarchy of
visitors is then defined, each for its own operation (e.g. PrintVisitor extends
from ExprVisitor). Adding a new operation on the hierarchy is now expressed
as adding a new visitor subclass (e.g. TypeVisitor). Note that applying the Vis-
itor pattern increases the complexity of the system, and that adding a new data
variant in the visited hierarchy (e.g. Mult) implies extending all the visitors.

2.2 Related Work

As far as we are aware, there are no empirical studies of the prevalence of ex-
tensions during software evolution, nor on comparing the kinds of extensions
(data vs. operation) that happen in real world projects. There are however sev-
eral related studies of characteristics of source code, class hierarchies, and their
evolution.

Gîrba et al. define a visualization of class hierarchies that incorporates evo-
lutionary metrics, such as age of class, age of inheritance links etc. [8]. Based
on a study of two open-source systems, they identify several visual patterns to
characterize the evolution of the hierarchies. The patterns are however coarse as
the unit of granularity is the class, and are aimed to answer general evolution
questions, such as the distribution of changes across hierarchies.

A study by van Rysselberghe and Demeyer analyzed hierarchy changes on two
Java systems [20]. The exploratory study led to the formulation of 7 hypotheses
to be investigated, such as “Hierarchy changes are likely to insert an additional
abstraction between the old parent and the center class” and “Inheritance is only
rarely replaced by composition”. Due to its limited extent this study however only

32 R. Robbes, D. Röthlisberger, and É. Tanter

hinted at the answer to the hypotheses; its findings need to be confirmed by a
larger-scale study.

Baxter et al. performed an empirical study on 16 releases of several Java
systems, in order to investigate the distribution of several metrics and whether
those followed power laws [3]. Later, Tempero et al. focused on the use of in-
heritance in Java software, using the same corpus (expanded to 93 programs),
and a suite of 23 metrics [23]; they found a larger amount of inheritance than
they expected: around three-quarters of classes used inheritance (for half of the
applications in the corpus). A large-scale survey of programmers by Gorscheck
et al. [9] found a lack of consensus on what the size of classes and depth of
hierarchies should be. A recent large-scale study (2,080 Java programs, found
on Sourceforge) by Grechanik et al. formulated 32 research questions [10]. Of
those, several were related to class hierarchies. They found that almost 50%
of the classes are written without using inheritance, and that 71% of the hi-
erarchies had a depth of one. These findings differ somewhat from the ones of
Tempero, who found a higher usage of inheritance. However, the metrics used in
both studies differ, so comparison is difficult. All of these studies investigate a
large number of research questions—trading depth for breadth—while we focus
on the handful of questions that allow us to characterize extensions during the
evolution of object-oriented software.

Finally, Aversano et al. studied the evolution of several design patterns, in-
cluding the Visitor pattern, on 3 software systems [2]. They found that classes
involved in the Visitor pattern were among the most changed in one of the sys-
tems (Eclipse JDT), but that the changes were mostly in the visitor hierarchy,
not in the visited hierarchy. The study considers design patterns in general, and
is focused on three systems only.

3 Experimental Setup

3.1 Data Collection

We analyze a large extract of the Squeaksource2 repository for Smalltalk projects
written in either Squeak or Pharo (a fork of Squeak). Squeaksource is the foun-
dation for the software ecosystem that the Squeak and Pharo community have
built over the years. The majority of Squeak and Pharo developers use Squeak-
source as their primary source code repository, making it a nearly complete view
of the Squeak and Pharo software ecosystem. The Squeaksource extract we ana-
lyze spans 8 years and involves approximately 2,500 projects consisting of more
than 95,000 unique classes. Summing all versions of all projects yields nearly 600
million lines of code. Over the course of these 8 years, more than 2,300 developers
committed around 110,000 changes to Squeaksource.

To version their source code in Squeaksource, developers use the versioning
system Monticello. When committing a new version of a project, Monticello
stores a snapshot of the entire committed package, without computing the delta
2 http://www.squeaksource.com

http://www.squeaksource.com

Extensions during Software Evolution: Do Objects Meet Their Promise? 33

visitEntry:
CZVisitor

visitEntry:
CZRawOutputer

(a) (b)

visitEntry:
CZVisitor

visitEntry:
CZRawOutputer

visitEntry:
CZHtmlOutputer

(d)

visitEntry:
visitField:

CZRawOutputer
visitEntry:
visitField:

CZHtmlOutputer

visitEntry:
visitField:

CZOutputer

(c)

visitEntry:
CZOutputer

visitEntry:
CZRawOutputer

visitEntry:
CZHtmlOutputer

Fig. 2. The Citezen visitor hierarchy: (a) initial version, (b) after a data extension, (c)
after renaming the root class, and (d) after an operation extension

to the previous version. Squeaksource is hence a large filesystem directory. With
each commit, meta-information is recorded. Monticello versions code at the level
of packages, classes, and methods, not at the level of files and lines of code.

To actually analyze the Squeaksource repository we use the Ecco model [19].
Ecco is a lightweight representation of software systems and their versions in
an ecosystem. The main unit of abstraction is the system (or software project).
For each pair of successive versions of a system, Ecco only keeps the changes
between the versions. These changes consist of sets of additions, modifications,
and removals of classes and methods in the system. Meta-information such as
author, timestamp, and links to one or more ancestors and successors versions
are maintained as well. Ecco allows us to effectively and efficiently process and
analyze the large set of changes (approx. 13GB of compressed source code) we
extracted from Squeaksource.

3.2 Data Processing

Before analyzing extension scenarios in the code base, we process the changes
from Squeaksource in various steps, described below.

Extension Detection. We limit our analysis to the granularity of methods. We
do not look into the source code of methods, but stop at the method boundary.
Moreover, we only study the additions of classes and methods, but not their
modifications. The kinds of extensions can be well quantified by keeping track
of additions of classes and methods, since a data extension corresponds to the
addition of one or more classes to a hierarchy and an operation extension to the
addition of a new method to several classes of a hierarchy.

To detect operation and data extensions, we track the evolution of each class
hierarchy in a software project. A real example of such a hierarchy evolution is
depicted in Figure 2, which shows the visitor hierarchy of Citezen, an applica-
tion for managing bibtex files on the web. If in a particular change a new class
is added to a hierarchy, we consider the addition to be a data extension3 (shown
in Figure 2b where class CZHtmlOutputer has been added). The addition of a
method with the same name to a least two classes of a hierarchy in a particular
change is considered to be an operation extension (e.g. Figure 2d, where method
visitField: is introduced). If a change adds only one method to a class hier-
archy, but previous or subsequent changes add methods with that name to the
3 Adding a new subclass of Object is not considered a data extension.

34 R. Robbes, D. Röthlisberger, and É. Tanter

same hierarchy, this single method addition is also considered to be part of an
operation extension.

In the case where several classes containing methods with the same name are
added to the same hierarchy in the same change, these added methods could
actually be detected as operation extensions. For a data extension, we however
consider all methods added in the new classes to belong to this data extension,
thus no operation extensions are identified in such a scenario.

The root class of any hierarchy can be renamed during the lifetime of a project
(e.g. root class CZVisitor is renamed to CZOutputer in Figure 2c). In Monticello,
renaming an entity means removing the entity with the old name and adding
a new entity with the new name. As we can hence not directly determine a
rename of a root class in the changes, we employ an algorithm that tests for
every removed root class whether any class newly added in the same change
might actually be the renamed version of this root class. For this we compare
the set of methods of the removed class with the one of the newly-added class
(subclasses of the new and old class are not compared to make the algorithm
independent of possible renames to subclasses occurring in the same change). If
these sets overlap for at least 80% of the methods, we consider this change as a
rename and exchange the old root of the hierarchy with the newly-added class.

Extension Weighting. To estimate the effort to realize an extension, it is not
enough to compare the number of operation extensions with the number of data
extensions. The former is adding just methods, while the latter is adding an
entire class to a system. For this reason, we weight a data extension with the
number of methods with which the class has been added to the system to obtain a
measure for the effort needed to perform an extension. This allows us to compare
operation and data extensions in terms of effort, while in the unweighted case
we compare the frequency of the two kinds of extensions.

Visitor Detection. To detect occurrences of the Visitor pattern and extensions to
them, we search for methods whose name is starting with accept or visit. What
follows this prefix is usually the name of the class being visited, e.g. visitField:
typically accepts an instance of class Field (or subclasses). The visitor hierarchy
is the class hierarchy in which one or more methods following this name pattern
are located, while the visited hierarchy is the hierarchy containing the visited
class (e.g. Field). We also support the case when a visitor is visiting various
hierarchies, or when a visited hierarchy is visited by several independent visitors.

Aggregation. Beyond class hierarchies, we are also interested in how our analysis
translates to the level of projects. Recent work by Posnett et al. shows that find-
ings at one level of abstraction do not necessarily translate to finer or coarser
levels—a phenomenon known as the ecological fallacy [17]. For our study we ex-
pect that the proportion of projects featuring extensions is higher than the same
proportion for class hierarchies. Since the extensions could also be concentrated
on a few, possibly large projects, the project level analysis is important to reveal
how extensions are distributed over the projects.

Extensions during Software Evolution: Do Objects Meet Their Promise? 35

Classification. To ease the analysis of the data, we classify the changes, that is,
the commits to the projects in three categories: (i) initial, (ii) large, and (iii)
selected commits. (i) The first commit to a project reflects the initial develop-
ment of a project. (ii) Large commits consist of more than 50 added classes and
methods. Note that initial commits are often also large commits. (iii) Selected
commits are all commits neither classified as initial nor large. This classifica-
tion is necessary because initial commits carry no change information, and large
commits can hardly be meaningfully analyzed because they contain too many
changes and are therefore considered as noise [28].

We also classify class hierarchies and projects in two categories: (i) all and
(ii) large hierarchies or projects. A large hierarchy has a size of more than five
classes. A large project is one with more than 50 classes. This classification is
interesting because the impact of an operation extension is arguably more critical
in large cases.

Filtering. A large and publicly accessible repository like Squeaksource typically
also contains many toy or abandoned projects that would add undesired noise
to our analysis. Hence we only take into account class hierarchies that have been
changed at least five times and that contain at least two classes (one root and
one subclass). Except for the first measurement of Section 4, we only analyze
selected commits.

3.3 Basic Statistics in Squeaksource

Processing the dataset as discussed gives us the following information to be
analyzed in detail in subsequent sections: We start with 111,071 commits; of
those, 10,718 commits are classified as large or initial commits, leaving us with
100,353 selected commits. The 95,662 classes are organized in 48,595 hierarchies.
Of those, 20,046 have more than one class. This means that 28,550 of the 95,662
classes (29.84%) do not use inheritance, a figure that concords with that reported
by Tempero et al. [23]. Out of these hierarchies, we select 10,390 satisfying our
thresholds of size (at least 2 classes) and activity (at least 5 changes); these are
the focus of our analysis. Of these 10,390 class hierarchies, 2,879 have at least
an operation or a data extension in selected commits. Also, 2,360 of these 10,390
class hierarchies are classified as large (more than 5 classes). We analyze 2505
projects, of which 569 are classified as large (more than 50 classes); 1036 of the
projects feature either operation or data extensions in selected commits.

In a single commit, the largest operation extension we found added 40 methods
to the hierarchy, whereas 36 classes were added to the same hierarchy in a single
commit. This excludes large and initial commits, including several legitimate
operation extensions. These large values lead us to investigate the distribution
of the metrics.

Distribution of Metrics. Figure 3 shows the distribution of our metrics of interest
across projects and class hierarchies. None of the distribution follows the charac-
teristic “bell shape” of a normal distribution. Instead, the overwhelming majority

36 R. Robbes, D. Röthlisberger, and É. Tanter

Hierarchies: (a) Size

Number of classes

F
re

q
u

e
n

c
y

0 200 400 600

0
1

0
0

2
0

0
3

0
0

4
0

0

(b) Operation extensions

Number of operation extensions
F

re
q

u
e

n
c
y

0 50 100 200 300

0
1

0
0

2
0

0
3

0
0

4
0

0

(c) Data extensions

Number of data extensions

F
re

q
u

e
n

c
y

0 50 100 150

0
1

0
0

2
0

0
3

0
0

4
0

0

Projects: (d) Size

Number of classes

F
re

q
u

e
n

c
y

0 500 1000 2000

0
1

0
0

2
0

0
3

0
0

4
0

0

(e) Operation extensions

Number of operation extensions

F
re

q
u

e
n

c
y

0 100 300 500 700

0
1

0
0

2
0

0
3

0
0

4
0

0

(f) Data extensions

Number of data extensions

F
re

q
u

e
n

c
y

0 100 200 300 400

0
1

0
0

2
0

0
3

0
0

4
0

0

Fig. 3. Histograms showing the distribution of size and extension metrics across hier-
archies and projects. Note that the first bar is cut as it would be too tall otherwise.

of observations has very low metric values, and a minority has high values. This
observation and the presence of outliers on the tail end of the distributions,
leads us to use robust descriptors when characterizing the distributions, i.e. the
median instead of the mean, and boxplots (showing percentiles) as a visual sum-
mary of the distributions. In Section 5.2 we discuss which statistical tests can
be used to analyze the data even though its distribution strongly departs from
normality and thus breaks the assumptions of most parametric tests.

4 Are Extensions Prevalent?

We first estimate the prevalence of extensions by looking at the frequency of
extension changes in commits. In a second step, we study the frequency of ex-
tensions in hierarchies and projects.

4.1 Frequency of Extensions in Commits

Intuitively, the frequency of extension events across commits tells us how often
developers need to perform extensions over time: if extensions are extremely rare,
then the challenge of dealing with both kinds of extensions is interesting from a
theoretical standpoint, but has little practical impact. Figure 4 shows the pro-
portion of commits featuring operation and data extensions versus commits that

Extensions during Software Evolution: Do Objects Meet Their Promise? 37

Operation Data Both Either Neither

(a) All commits

0
2
0

4
0

6
0

8
0

1
0
0

Operation Data Both Either Neither

(b) Selected commits

0
2
0

4
0

6
0

8
0

1
0
0

Fig. 4. Percentages of commits featuring extensions. (a) all commits; (b) selected
commits.

feature neither of these4. Of the 111,071 commits we analyzed, 13,063 (11.76%)
feature either an operation or a data extension. If we only consider selected
commits (that is, we filter out both large and initial commits), the proportion
rises to 12.99%. This means that in more than 1/8 of the commits, developers
perform either a data or an operation extension in the system they work on.

An extension is problematic in an object-oriented program as soon as an
operation extension is needed. We can see that operation extensions occur in
6.77% of all commits (7.48% of selected commits).

4.2 Frequency of Extensions in Class Hierarchies and Projects

To view the problem from another angle, we also measure the proportion of
hierarchies that feature extensions at any given point in their life. This gives
the proportion of hierarchies for which a developer will be expected to perform
extensions. Figure 5 shows the proportions of hierarchies featuring at least one
extension during their lifetime, versus hierarchies that do not. Out of the 10,390
hierarchies we observed, 27.70% (2,879) become subject of extensions sooner or
later. Clearly, a large portion of hierarchies need refinements over time. Impor-
tantly, 19.35% of all class hierarchies are subject to operation extensions, which
are not modularly supported by objects.

Intuitively, extensions are more problematic for larger hierarchies, where the
complexity is higher. We measured the proportion of large hierarchies that are
subject to extensions. We find that an overwhelming majority (1,883 out of
2,360, i.e. 79.81%) of these large hierarchies feature extensions. Also, more than
62.48% of these hierarchies are subject to operation extensions. Across large,
more complex hierarchies, the modularity issue to express extensions is no longer
a minority case; it is the norm.

4 We discuss the relative prevalence of both kinds of extensions in Section 5.

38 R. Robbes, D. Röthlisberger, and É. Tanter

Operation Data Both Either Neither

(a) All hierarchies

0
2
0

4
0

6
0

8
0

1
0
0

Operation Data Both Either Neither

(b) Large hierarchies

0
2
0

4
0

6
0

8
0

1
0
0

Fig. 5. Percentages of hierarchies featuring extensions. (a) all hierarchies; (b) large
hierarchies only (5 or more classes).

For space reasons, we do not provide graphs for projects featuring exten-
sions. In brief, 41% of all projects feature extensions (data extensions: 37.16%;
operation extensions: 33.35%; both: 29.06%). Almost all (95%) large projects
(i.e. projects with more than 50 classes) have to deal with extensions (data
extensions: 87.07 %; operation extensions: 89.11%; both: 81.63%).

4.3 Executive Summary

Extensions regularly occur in practice: one out of eight commits (13%) features
an extension. Further, a fifth of all class hierarchies have to be extended with new
operations; this rate increases to over 60% for large hierarchies. We can conclude
that developers are often confronted with extensions that are not modularly
supported by object-oriented design. Moreover, for large hierarchies—where one
can suppose the impact is more severe—the problem is all the more prevalent.

Far from being a theoretical curiosity, properly supporting both kinds of ex-
tensions is of practical concern for software developers, and hence effectively
deserves the attention of the community.

5 Comparing Data and Operation Extensions

Having established that extensions are prevalent, we now focus on the distribu-
tion of the extension cases across the two categories of extensions. Underlying
the research question is the intuition that if the object-oriented paradigm is well-
suited for most kinds of evolutions, we expect data extensions to be much more
common than operation extensions.

5.1 Frequency of Both Kinds of Events

We have already seen in the previous section that both kinds of extensions
happen in practice. Looking back at Figure 4 and Figure 5, we notice that both

Extensions during Software Evolution: Do Objects Meet Their Promise? 39

Operation Data

0
2

4
6

8
1
0

(a) Count

Operation Data

0
1
0

2
0

3
0

4
0

(b) Weighted count

Fig. 6. Boxplots of distribution of extensions for hierarchies featuring them. (a) un-
weighted; (b) weighted.

types of extensions happen with a somewhat similar frequency (i.e. 7–8% of all
commits, 60–65% of large hierarchies, etc.) and routinely overlap5. This gives us
a first impression that operation extensions are actually not uncommon; rather,
they seem to occur with relatively the same frequency as data extensions.

To investigate the problem more closely, we look at the distributions of both
kinds of events, for the subset of hierarchies which experience these events. In
order to evaluate the problem beyond frequency, we also look at the distribu-
tions of the weighted coefficients we introduced earlier—where the weight of an
extension is defined by the number of methods it contains—, which gives us a
more accurate metric of the effort involved in each kind of extension.

Figure 6 shows the distributions of both kinds of events as box-and-whiskers
plots, for both unweighted—to evaluate frequency—and weighted—to evaluate
effort—distributions, for the 27% of hierarchies that feature at least one of
the two events during their life time. The thick line across each box represents
the median value of the distribution, the boxes delimit the interquartile range
(the 50% of the values that are between the 25th and the 75th percentile), while
the whiskers depict the 5th and the 95th percentile; outliers are not displayed.

If only frequency is considered (Figure 6a), we see that in both cases, the
median value (2) is identical. This tells us that the distributions are very similar
in terms of frequency. The impression is reinforced by the significant overlap of
the boxes. All in all, both kinds of extensions seem to happen with the same
regularity, with data extensions being only slightly more common.

5 Cases where both kinds of extensions overlap in the same hierarchy are especially
interesting because they correspond to scenarios that no single data abstraction
mechanism would be able to handle properly.

40 R. Robbes, D. Röthlisberger, and É. Tanter

If we consider effort (Figure 6b), a different picture emerges. The median effort
in introducing data extensions is higher (7 methods) than the effort involved in
introducing operation extensions (3 methods). However, the boxes still overlap
significantly: the 75th percentile of operation extensions is higher than the me-
dian of data extensions. If operation extensions need more effort, the difference
is not so high that one can ignore operation extensions altogether.

Due to space limitations, we do not provide the graphs for commits and
projects. These however feature the same pattern of an extremely large overlap
in the unweighted case, and a still large overlap in the weighted case—with the
upper quartile of weighted operation extensions above the median of weighted
data extensions. For commits, the weighted data extension median is 2, while
the weighted operation extension’s 3rd quartile is 3; for projects, we have 20 and
25, respectively.

5.2 Quantifying the Difference between Kinds of Extension

A visual inspection of the distributions of extensions shows that the distribution
of the two kinds of extensions largely overlap in terms of frequency, and still
overlap significantly when effort is taken into account. In this section, we seek
to quantify the difference.

Given the large size of our sample, a statistical test such as the non-parametric
Mann-Whitney U -test would almost certainly find a difference in the values of
the distributions, and being in favor of data extensions. However, such a test
would not tell us anything about the magnitude of the difference. As such, we
measure the effect size of the differences in the distributions.

The most well-known effect-size metric is Cohen’s d; however, it is not robust
to departures from normality. As such, we opted for a non-parametric effect size,
Vargha and Delaney’s Â12 [25]. This effect size measure was recommended by
Arcuri and Briand in the case of algorithms whose performance follow geometric
distributions which strongly depart from normality [1]. Â12 ranges from 0 to 1,
and measures the probability that a value taken at random from the first sample
is higher than a value taken at random from the second sample.

In the case of unweighted frequencies of both kinds of extensions, we obtain
an Â12 value of 0.5554 in favor of data extensions, i.e. there is a 55% probability
that a randomly chosen frequency of data extension is higher than a randomly
chosen frequency of operation extension. This is very close to 50%, where the
effect would be null. Since Cohen’s d has well-accepted thresholds for effect
sizes, we computed an estimate of the equivalent Cohen’s d for this value. Our
estimation of Cohen’s d gives us 0.03, an effect that is considered as trivial,
barely worth mentioning6.

If we weight the measurements by effort, the picture is somewhat differ-
ent. The advantage towards data extensions increases, with Â12 being 0.6197:

6 Cohen’s d varies from -1 to 1; the commonly accepted thresholds for effect size are
0.2 (small), 0.5 (medium), and 0.8 (strong). Negative values of d indicate an effect
in the opposite direction, and have identical thresholds.

Extensions during Software Evolution: Do Objects Meet Their Promise? 41

●●●●●●●●

●

●

●

●●
●

●●●●●●●●●● ●●●●●●●●●●●●●●

●

●●●●●●●●
●
●

●

●●●●

●

●

●

●●

●

●●●●●●● ●

●

●●
●

● ●●●●● ●●●●●●●●●●
●

●●
●●●●

●
●●●● ●●●●●

●

●
●

●●●

●

●●
●

●●●
●

●●●●
●

●●●

●

●
●

●●●●● ●
●
●

●●
●
●●●●●
●

●●●●●●●●
●

●●
● ●

●
●

●

● ●●●

●

●●●●●●
●

●●●● ●●●●●● ●●●
●

●●●●●●

●
●

●●●●
●●●●●●● ●● ●
●

●●●
●

●
●

●
●●●●●●●

●

●●
●●
●●●●● ●●

●

●

●●●●●●●●

●

●●●

●

●

●
●

●
●

● ●●
●

●●
●

●●●●●●●●●

●

●●●●●●●
●

●●●●
●
●●●●●●●

●
●●●●●●

●●
●●●●●●●●

●

●●
●●●●●●●●●●●●●●

●
●●● ●●●●●●●●●● ●●●

●

●●●●●●●● ●●●●●

●

●●●●
●●●●

●● ●●●
●●●

●
●

●

●●●●●●●
●●
●

●●●●

●

●●●
●

●●●●●●●
●
●●●●●●●●●
●●
●

●
●

●●●●●●●●● ●●●● ●● ●●

●
●

●●●●●

●

●●
●

●●● ●●

●

●

●

●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●
●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●

●

●●●●●●●
● ●

● ●●●●●●
●

●●
●●●
●

●●●
●●●

●●●
●

●
●
●●

●●●●●

●

●●●●●●

●

●● ●●●
●●

●●
●

● ●●●●
●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●

●

●
●●

●

●●●●●●●

●
●●●●●●●
●
●●●●●
●

●

●

●●●●●●●●●●●●●

●

●
●

●●

●

●●●●●●●

●

●●●
●

●
●●●
●

●●●●●

●

●
●●

●●●●●●●●●●●
●

●●●●
●●●● ●●●●●●●●●●●●

●

●●
●●●●

●

●●● ●
●
●

●

●
●

●

●

●●●●●●●●
●●

●●●●●●●

●

●●●●
●●●●●
●●

●●●

●
●●●

●●●●●
●

●
●

●●●●●●●

●

●

●

●
●

●

●●
●

●●●

●

●●

●

●●●●●●●●
●●

●●● ●●●

●

●●●
●●

●

●●●●●
●●●●●●● ●●● ●●●●●●●

●
●

●●●●●●● ●●●●●● ●●●●●●●●●●

●

●● ●●●●●

●

●●●●●● ●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●

● ●●●●
●
●●●●●

●●
●●●●

●
●

●●●●●●●●●●
●

●●●●●●●
●

●

●
●

●
●●●●●

●

●●● ●●●●

●

●●●●●●●●● ●
●●● ●●●●●●●●●●●●●●●● ●●

●
●●●●
●

●●●●●●●● ●

●

●●●●●●
●
●●

●
●●●●●
● ●
●●●
●

●

●●●●●●●●●●●● ●●

●●
●●
●

●●●

●

●●●●

●

●●●●
● ●●●●●●

●
●●
●

●●● ●●●●●●●●
●●●●●

●

●
●

● ●●●●●●●
●

●●●●
●

●●●●●●●●●●● ●●●●●●●

●

●
●●●●

●●●

●●●
●
●
●
●●●●●●●
●

●

● ●
●●●●●●●●●●●●

●

●●●●
●

●● ●●
●

●●●●

●

●●

●

●
●
●●●●●●●●●●
●●●●●●●

●

●●

●
●
●
●●●●●●●

●
●●●●●●●

●
●●●●●● ●●●●

●

●
●

●●●●●●●●●●●
●

●●
●

●●●●●

●

●●

●
●
●●●

●

●●●●●●
●
●●●●

●●●
●

● ●

●
●●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●
●●●

●

●●
●

●●●

●

●●●●●●●●●● ●
●●●●●●●●

●
●

●
●●●●

●●●

●●●
●

●●●●●●●●●●●●
●

● ●●●●●●●●
● ●●
●
●

●●
●
●●●●●●

●
●
● ●

●●●●●●●
●

●
●

●●●●●●●●
●

●●●●●●

●

●●●
●
● ●●●●●

●

●

●
●●

●

●
●

●

●●●●●
●●●

●

●●●

●

●●●●●●●●●

●

●●●●

●
●●
●

● ●
●●●●●●

●
●●

●

●●●●●●

●
●

●

●

●

●●●●●●
●

●●●●●●●●

●
●

●
●

●●● ●●●●●●●●●●●●●●●● ●●●●
●

●
●
●● ●●

●

●●
●●●

●●●●●●●●
●●●●
●
●●●●
●●●●●●●●●●
●●

●●●●●●●● ●
●●

●●●● ●●●●●

●

●●
●●●●●●●●

●

●●● ●●●●
●
●

●●●●●●

●

●●●●●
●

●●●●●●●●
●
●●●●●

●

●

●

●●
●

●●●●●
●●●●●●●●

●

●●●●● ●●
●

●
●●●●●●
●●

●
●●

●

●

● ●●●●●●

●

● ●●●●●

●

●●●●● ●●

●

●●●●
●●●

●
●●

●

●●
●

●●●

●

●●●

●

●●

●

●

●●●●
●●●●
●●●● ●●●●
●

●●●●●●●●
●

●
●

●●●●●
●

●●

●

●
●

● ●●
●●

●
●●●●

●

●●●●●●
●●●●

●

●
●

●●●●●●
●●●●●●

●

●

●

●●●●

●

●●●●●●●
●

●●●●●●●

●

●●●●● ●●●●●●●●●●●

●

●●●●● ●●●●
●

●
●

●
●●●●

●
●

●●●●●
●

●●●●●● ●●●●●●●●●●●●

●

●●● ●
●

●●●●●
●●●●● ●●●

●

●●●
●

●

●

●●
●●●●●● ●●●●

●●

●

●
●●●

●●

●

●●●●
●●●

●

● ●
●●●

●● ●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●
●●

●
●
●●●●●
●

●●●
●

●●●
●

●●●●●
●● ●●●●●●●
●

●●●●●

●

●

●
●●

●

●●

●

●●●●● ●●
●

●●●●●●●
●

●●●
●

●●●
●
●●●● ●●
●●●●●●● ●

●
●●●●●●●●●●
●

●●●●●●●●●●
●●●

●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●

●●●●●●●●●●● ●●●●●●●
●●

●

●

●●
●

●●●●●● ●
●

●

●

●
●
●

●●●● ●●●●●●●
●

●●●
●●●

●

●

●

●

●●●●
●

●●●●●●

●
●●●●●

●

●
●

●●●●●●● ●●
●●

●

●●●●●●●●●
●

●●● ●●●●●●●●●●●●●●●●●●●
●

●●●●

●

●●●●●●●●
●

●●●●●●●
●

●
●●●●

●

●

●●
●●●●

●●
●●
●
●●●●●●●●

●

●●●● ●●
●
●●●●●●●●●

●

●

● ●●●

●

●
●

●●●●●●●●●
●

●●●
●●●

●

●●●●●●●●●●●●●

●●

●
●

●●●●●●●●●●
●

●●●●●

●

●●●●●●●●●●●●●
●

●●●●

●

●●●●

●

●● ●●●

●

●

●

●●●●●●
● ●
●
●●●●●●

●
●●

●●
●●●●● ●●●● ●●

●

●

●● ●●●●●
●

●●●●●
●

●●●
●

●●●
●●●●●●●●●●

●
●● ●●●●●●●●●● ●● ●●●

●
●●●

●●

●

●●●●●●●●
●

●●●●●●●●●●
●●●●
●

●●

●

●●●●●
●●●●● ●●●●

●
●●●

●

●●● ●●●
●

●●
●●
●●●

●
●●
●●●●●●●●

●

●●●●
●●

●
●●●●●●●●

●
●●

●
●●●●

●

●●●
●

●● ●
●

●
●●●●

●
● ●●●●
●
● ●●

●

●

●
●●●

●

●
●●●

●
●●●●●●●●
● ●●●

●

●
●

●●
●

●●●●●

●

●●
●

●●●●●●● ●●
●

● ●●●● ●●●● ●●●●●●●●●●●●
●

●

●

●●●

● ●
●

●●●●●●● ●●●●●

●●●
●●●●●●

●●

●●●

●

●●●●●

● ●

● ●
●●●●●

●
●●●

●

●●●● ●●●

●

●●●●

●

●

●

●●●●●●●●
●

●●●●●
●

●●●●●●●
●●●●●●●●●●●

●
●●●

●
●● ●●●●●
●●●●●●●●●

●
●

0 100 200 300 400 500 600 700

0
1

0
0

2
0

0
3

0
0

4
0

0
(a) All extensions

Size in classes

A
m

o
u

n
t

●●●●●●●●

●

●

●

●● ●
●●●●●●
●●●● ●●●●●
●●●●●●●●●

●

●●●●●●●●
●
●

●
●●
●
●

●

●

●

●
● ●●●●●●●● ●

●

●●

●

●
●

●
●●● ●●●●●●●●●●

●
●●

●
●●

●

●

●
●
●● ●
●●●
●

●

●
●

●●●

●

●●

●

●
●
●●●●●
●●

●●●

●

●

●
●

●
●

●●
●

●
●

●●●●●●●●
●

●●●●
●

●●●
●

●
●●

●
●

●

●

●
●●●

●

●●●●●●

●

●●●●
●

●●
●●
● ●●●

●
●●
●

●●●

●

●

●●●
●
●

●●●●●● ●● ●
●●●

●

●

●●●
●●●

●●
●●

●

●●●

●

●●●●● ●●

●●

●●●●●●●● ●●●●

●

●

●●●
●

● ●●●●●

●

●
●

●●
●●
●●●

●

●●●●●●
●●
●●●●●●●●●●●●

●

●●●
●

●
●

●

●
●●●●●●●●

●

●
●

●

●●●●●●●●●●●●●

●
●

●
●

●
●●●●●

●
●●●

●
●●

●

●●●●●●●● ●●●
●

●

●

●●
●
●
●●●
●

●● ●
●●

●●●

●

●

●

●●●●●●●

●
●

●

●●●●

●

●●●

●

●●●●●
●●●●●●●●●●
●
●●●
●

●
●●

●●●●●
●
●

● ●●●● ●● ●●

●

●●●●●
●

●

●●
●

●●●
●
●

●

●

●

●●●
●

●●●●
●

●●●●
●●●●●●●
●●
●

●●●●●
●

●●●●●●

●

●●●●●●●●●●
●
●●●●●●●●●●●
●

●●●●●●
●●

●

●●
●

●

●

●
●●
●
●●●
●

●

●
●●●●●●

●

●●
●

●●

●

●●

●
●●●●
●●●●

●
●●●●●●●

●

●●
●●●●

●

●
●

●
●●

●
●

●● ●● ●
●
●●

●●●
●

●●●●●● ●
●

●●●●●●●●●●●●
●
●●●●
●
●●●
●

●● ●
●

●●
●

●●

●
●●●●●●

●

●

●●

●

●●●●
●

●●

●

●●●●●●●
●
●●●●●
●

●

●

●●●
●
●●●
●●●●●●

●

●
●

●●

●

●●●
●
●●●

●

●●●
●●
●

●
●●

●●●●●

●

●
●●●●

●●
●●●●●

●
●

●
●

●
●●

●
●●●

●
●●●●●●●●●

●
●

●

●●
●
●●●

●

●●● ●
●●

●

●
●

●

●
●
●●●●

●●●●

●

●●●●●●
●

●

●●●●

●●
●●●

●

●

●●●

●
●

●
●

●●●●●
●●●

●
●●

●
●●●

●

●

●

●
●

●

●●
●

●●●

●

●
●

●

●●
●

●
●●●●
●
●

●●● ●●●

●

●●●
●●

●

●
●

●●●
●

●●●●●● ●●●
●

●●●●●●

●

●
●●●●●●●

●
●●●
●

● ●●●●
●●●●●●

●

●● ●●●●●

●

●●
●

●●● ●●●
●

●●●●
●●

●●●
●●
●

●●●●●●●●●●
●

●●●

●
●

● ●●●●●●●●
●●●

●
●●●
●

●

●
●●

●●
●●●●
●● ●
●●●●●
●● ●

●

●
●

●

●
●●●●

●

●●● ●
●●●

●

●●
●●●●●●●

●

●●●
●

●●●●●●●●●●●●●
●
●

●●●●●●●
●

●●●●●●●● ●
●

●●●
●

●●

●
●

●
●

●●●●●
● ●●
●● ●

●
●●●●
●
●●
●

●●●● ●●●
●●

●

●

●●●

●

●
●

●●

●

●●

●

●
● ●
●●

●●
●

●
●●●●●● ●●●●●●
●
●●●●●●

●●
●

● ●●
●●●●
●●●●●●
●

●●●●●
●●
●●●● ●●●●●●●

●

●

●●●●

●●●

●●●
●●●
●●●
●
●●●

●

●

● ●●●●●●●●●●●
●●

●

●●●●
●

●● ●●
●●

●●●

●

●●

●

●●●●●●●●●●●●
●●●●●●●
●

●●

●

●●●
●
●●●
●

● ●●
●
●●

●●●

●

●●●
●●● ●●●●

●

●
●

●
●●●

●●●●●●●

●

●●

●

●
●●●●

●

●●

●
●●●
●

●

●●●●●●

●

●●●
●●
●●

●
● ● ●●●●

●
●●

●
●●●●
●●●●●●●●●●●●●●●●
●
●●●●●●●

●

●

●
●●

●

●●

●

●●●

●

●●●●●●
●●

●
●

●
●●●●●
●
●●●

●●
●●●●

●
●

●●●●
●

●
●

●●●
●
●

●
●●●●
●● ●●●●●

●
●●●

●
●●●●●●●●●●●●

●

●
●

●

●●●●●●
●

●

●

●

●●●●●●●
●

●

●●●●●●

●

●●●

●

● ●●●●●●

●

●
●●

●

●

●

●

●
●
●●●

●
●●

●

●●●

●

●●●●●●●
●● ●●
●

●●

●●
● ●● ●●
●
●●●●

●

●●

●

●●●●●●
●

●

●

●

●

●●●
●●●

●
●●●●●●●●

●

●

●
●

●●● ●●●●●●●●●●●●●●●● ●●●●

●

●

●

●●
●●

●

●●●

●

●

●●●
●●●●●

●
●●●
●
●●●●
●●●

●●●
●●●●

●
●

●●●●●●●
● ●●
●●●
●
● ●
●●●
●

●

●
●

●●
●
●●
●●● ●
●●● ●●●●

●

●

●
●
●

●

●●

●

●●●●●

●

●●●●●●●●

●

●●●●
●

●

●

●

●●

●

●●●●●●
●●●●●●
●●●
●
●●
●

●●●

●

●●●●●●
●
●

●
●●

●

●

● ●●●●●●

●

● ●●●●●

●

●●
●
●● ●●

●

●
●●●

●
●
●●●●

●

●●

●

●●● ●
●●●

●

●●

●

●

●●●●

●
●●
●

●

●●● ●●●●

●

●●●●
●●●●

●

●

●

●●●●●
●

●●

●

●

●

● ●●
●● ●●
●●●

●

●●
●
●●
●●
●●●

●

●
●

●●●●●●
●●
●●●● ●●

●

●
●●
●

●

●●●●●●●
●●●●●●

●●

●

●●●●●
●●●

●
●●●
●●

●●

●

●●●●● ●●●●●●●

●

●
●●

●
●
●

●●●●●

●

●●●●●● ●●●
●
●●●●

●
●●●

●

●●● ●

●

●●
●

●●
●

●●●● ●●●

●

●●● ●
●

●

●●●●●●
●● ●
●

●●

●

●
●

●
●
●

●
●●

●

●●●●●●●

●

● ●

●

●●
●● ●●
●

●●●
●

●●●●
●

●●●
●

●
●
●●●●●●●

●

●●●

●

●●●●
●

●
●●

●

●●●

●

●●●

●

●●●●●
●
●

●

●●●●●●

●

●●
●

●●

●

●
●●

●

●

●●

●

●●●●● ●● ●●●●●
●●●

●

●●●
●

●●●

●

●●●● ●●
●●

●●
●

●
●

●

●
●
●●●
●

●●●●●●●●●●●●●●●
●

●●●

●

●●●●●●●●●●●●●●●●
●
●●●●
●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●
●
●

●
●●

●●

●

●

●● ●●●
●

●
●
● ●

●

●

●

●●●
●
●●● ●●
●
●

●
●●

●
●●●

●
●●

●

●

● ●

●●●
●●

●●●●

●

●
●●●

●●●

●

●

● ●
●●●●●●

●
●

●
●

●

●●●
●●
●●●●

●
●●
● ●●●●●●●●●
●●●●●●●
●●● ●●●●●

●
●●●●●
●

●●
●

●●●●●
●

●

●

●

●●
●●● ●
●●

●●●
●

●●
●●
●●●●●●●●●

●

●
●

●
●

●
●

●
●●

●

●●●●●●
●

●

● ●●●

●

●
●●●●●●●
●●●●
●●●●●●

●

●
●●●●●●●●●●●●

●
●

●

●

●●
●

●●●●
●
●
●●●●●●●●●●●●●
●
●●●●●●●

●

●
●
●
●

●

●●
●
●
●

●● ●●●
●

●

●

●
●●●●●
● ●
●

●
●

●●●● ●●●
●●

●●●●● ●●●●
●●

●
●

●
●

●●●●●

●

●●●●
●●
●●
● ●●●
●●●
●
●●●●
●●●

●
●● ●●●●●●●●●● ●● ●●●

●

●●●●●

●

●●●
●●●●●

●
●●●●●●●●●

●●

●

●
●
●

●●

●

●●●●●

●

●●
●● ●

●●●

●

●
●●

●

●●● ●●●●●●
●

●●●●●●
●●●●●●
●●●

●

●●●●
●

●

●

●
●●●●●●●

●
●

● ●●●●●

●

●●●
●

●● ●●
●

●●●●●
● ●●●●

●

● ●●

●

●
●

●

●●

●

●
●●●

●
●●●

●
●●●●

●
●●

●

●

●

●

●●
●

●●
●
●●

●

●●
●

●●●●
●●
● ●●

●

● ●●
●

● ●●●● ●●●●●●●●●●
●●●●

●

●●●

● ●●

●●●●
●
●● ●●
●

●● ●

●
●

●●●●●●
●

●

●●●
●

●●●●●

●

●

●
●

●●●●●

●

●●●

●

●●●● ●●●

●

●●●● ●●

●

●●
●

●●●●●
●●●●●●

●●●
●

●●●●●
●●

●
●●●●
●
●
●

●
●

●●

●

●● ●●●●●●
●●●●●
●●●

●
●

0 100 200 300 400 500 600 700

0
5

0
1

0
0

1
5

0

(b) Data extensions

(b) Size in classes

A
m

o
u

n
t

●●●●●●●●

●

●

●

●●
●

●●●●●●●●●● ●●●●●●●●●●●●●●

●

●●●●●●●●
●●

●

●●●● ●●

●

●
●

●

●●●●●●● ●

●

●●
●

● ●●●●● ●●●●●
●
●●●●●●● ●●●●●●●●● ●●●●● ●
●
●

●●
●

●

●● ●●●●
●

●●●●
●

●●●

●

●
●

●●●●● ●
●

●

●●
●
●●●●●●●

●
●
●
●●●●
●

●●

●
●●●
●

● ●●●
●

●●●●●●
●●●●● ●●●●●● ●●●

●

●●●●●● ●●
●●
●
●●●●●●●● ●● ●

●

●●●
● ●

●
●

●●●●●●●

●

●●
●

●●●●●●
●●

●

●

●●●●●●●●

●

●●●

●
●

●
●

●●● ●●
●

●●●●●●●●●●●●

●

●●●●●●●
●

●●●●
●
●●●●●●●
●●●●●●●●
●
●

●
●●●●●●

●

●● ●●
●●●
●
●●●●●●●●●●●● ●●●●●
●
●●●● ●●● ●●●●●●●●● ●●●●●

●
●●●●●●●●●● ●●●
●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●
●
●●●●●●●●●
●

●
●

●
●

●●●●●●●●● ●●●● ●● ●●
●

●

●●●●●

●

●
●

●

●●● ●●

●

●

●
●●●●●●

●
●●●
●

●●●●●●●●●
●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●
●

●●●●
●

●●● ●● ●●●●●●●●●●●●
●

●●●●●●
●●●

●
●
●
●
●

●●●●● ●●●●●●●

●

●● ●●●●
●

●●
●

● ●●●●
●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●
●

●●●

●

●●●●●●●●●●●●●●●●●●●●●
●

●
●●●●●●●●●●●●●●

●
●●●●

●

●●●●●●●

●

●●●
●

● ●●●
●

●●●●●
●

●
●●

●●●●●●●●●●●

●

●●●● ●●●● ●●●●●●●●●●●●
●

●●
●●●●●●●● ●

●

●
●

●
●

●

●

●●●●●●●●
●
●●●●●●●●

●

●●●● ●●
●

●●
●

●●●●
●

●●●●●●●●
●

●
●

●●●●●●●

●

● ●●●

●

●●●●●●

●
●●

●
●●●●●●

●
●
●●●●●

●
●●

●
●●
●●● ●●●●●●●●●●●●● ●●● ●●
●●●●●

●●

●●●●●●● ●●●●●● ●●●●●●●●●●
●

●
● ●
●●●●

●

●●●●●● ●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

● ●●●●

●

●●●●●
●●

●●●●

● ●

●●●●●●●●●●

●

●●●●
●●●
●

●

●● ●●●●●●
●

●●● ●●●●
●

●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●● ●●
●

●●●●●●●●●●●●● ●

●

●●●●●●
●
●●

●
●●●●●
● ●
●●●

●
●

●●
●

●●●●●●●●● ●●

●●

●
●●●●●

●
●●●●

●

●●●

●

● ●●●●●
● ●
●●

●

●●● ●●●●●●●●
●●●●●

●

●
●

● ●●●●●●●
●

●●●●●●●●●●●●●●●● ●●●●●●●

●

●●●●● ●●
●

●●●
●
●
●

●●●●●●●●

●

● ●
●
●●●●●●●●●●●

●
●●●●

●
●● ●●

●
●●●●

●

●● ●●
●
●●●●●●●●●●●●●●●●●

●

●●●●
●

●●●●●●●
●

●●●●●●● ●●●●●●● ●●●●

●

●●●●●●●
●●●

●
●●

●●● ●●●●●●

●

●●

●
●
●●●

●

●
●
●●●●●●●●●●●●
●

● ●

●

●●
●●●●

●
●●●●●●●●●●●●●●●●●●●●●

●
●●●●●
●
●●●●●

●●●●●●●

●

●●●●●●●●●● ●●●●●●●●●

●

●
●

●●●●
●●

●

●●
●●

●●●●●●●●●●●●
●

● ●●●●●●●●
● ●●
●

●

●●
●
●

●
●●●● ●●

● ●●●●●●●● ●●●●●●●●●●● ●●●●●●●

●

●●●●● ●●●●●
●

●

●●●
●

●● ●●●●●●●●● ●●●●

●

●●●●●●●●●

●

●●●●
●

●●
●

●
●

●●●●●●●●●
●

●●●●●●

●
●

●

●

●

●●●●●●
●

●●●
●●●●
●

●●
●

●●●● ●●●●●●●●●●●●●●●●
●

●●● ●●●●● ●● ●●●

●
●
●

●
●
●●●●●●●●●●

●●●●●
●

●●●●●●●●● ●●●●●●●●●● ●
●●

●●●● ●●●●●

●

●●●●●●●●●●

●

●●● ●●●● ●●●●●●●● ● ●●●●●●●●●●
●
●●● ●●●●●●

●

●

●

●● ●●●●●
●
●
●●●●●●●

●

●●●●●
●

●
● ●●

●●●●●●●
●

●
●
● ●

● ●●●●
●●

●

● ●●●●●

●

●●●●● ●●
●

●●●● ●●●
●
●●●●●●●●●

●

●●●
●

●●

●
●

●●●●●●●●●●●● ●●●●●●●●●●
●●● ●●

●
●●●●●

●●●

●

●
●

● ●●●●

●

●●●●

●

●●●●●●
●●●●

●

●
●

●●●●●
●●●●●●●

●

●

●

●●●●

●

●●●●●●●

●

●●●
●
●●●

●

●●●●● ●●●●●●●●●●●

●

●●●●● ●●●●
●

●

● ●●●●● ●

●

●●●●●●●●●●●● ●●●●●●●●●●●●

●

●●● ●●●●●●●●●●●● ●●●

●

●●
● ●
●

●

●
●

●●●●●● ●●●● ●●

●

●
●
●

●
●●

●

●●●●
●●●

●

● ●●●●●● ●●●●
●
●●●●●●

●

●●●●●●●●●●●●●

●

●●●●
●
●

●
●●●●●●●

●
●

●
●●●●●●●●●●

●
●●●●●●●●●●●

●
●

●

●

●
●●

●

●●
●

●●●●● ●●

●

●●●●●●●
●

●●●
●

●●●●●●●● ●● ●●●●●●●
●●

●●●
●●●●●●●

●
●●●●●●●●●●●●● ●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●
●
●

●●●●●●●●● ●●●●●●● ●●●

●

●●
●

●●●●●● ●●●

●

●

●
●

●●●● ●●●●●●●
●

●●●●●●

●

●

●

●
●●●●

●
●●●●●●

●

●●●●●

●

●●
●

●
●●●●● ●●●●

●

●●●●●●●●●●●●● ●●
●●●●●●●●●●●●●●●●●

●
●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●
●
●

●

●●●●●●
●●

●●
●
●●●●●●●● ●●●●● ●●●●
●
●●●●●●●
●

●

● ●●●
●●●

●
●●●●

●
●●●
●

●●●
●●●

●

●●●●●●●●●●●●●

●●

● ●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●

●

●● ●●●

●

●

●

●●●●●●● ●

●
●

●●●●●
●

●●
●●●●●●●

●
●●● ●●●

●

●● ●●●●●●●●●●●●●●●
●

●●●
●

●●●●●●●●●
●●●

●
●●●●●●●●

● ●
●

●
●●●●●●
●●

●
●●●●●●

●
●

●
●●●●●●●●●●●
●●●

●
●●

●

●●●●● ●●●●● ●●●●●●●●

●

●●● ●●●
●

●●●
●

●●●
●

●●●●●●●●●●●●●●●●● ●●●●●●●●●
●

●●
●

●●●●

●

●●
● ●

●● ●

●

●●●●●
●

● ●●●●●● ●
● ●

●

●●●●

●

●
●●●●●●●●●●●●● ●●● ●● ●●●

●
●●●●●

●

●●
●

●●●●●●● ●
●
●● ●●●● ●●●● ●●●●●●●●●●●●

●

● ●●●●
● ●

●●●●●●●● ●●●●●

●

●●●●●●●●

●

●
●●●

●
●●●●●● ●
● ●●●●●● ●●●●

●

●●●● ●●●
●

●●●●

●

● ●
●●●●●●●●

●
●●●●●

●

●●●●●●●
●

●●●●●●
●

●●●

●

●●● ●●● ●●
●●●
●●
●●●●●●●

●
●

0 100 200 300 400 500 600 700

0
5

0
1

0
0

2
0

0

(c) Operation extensions

Size in classes

A
m

o
u

n
t

●●●

●

●

●●

●

●

●

●
●●

●

●

●●

●

●

●

●
●

●

● ●

●

●

●

●●●

●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●●●

●

●

●●●●

●

●

●●

●

●

●

●

●●●●

●

●

●●

●

●

●

●●●●●●

●●

●
●

●●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●

●

●

●●●

●

●●

●●

●

●

●

●

●

●

●●

●●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

● ●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●●

●

●

●●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●

●

● ●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

0 100 200 300 400 500 600 700

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

(d) Operations over all extensions

Size in classes

R
a

ti
o

Fig. 7. Effect of size of hierarchies on kinds of extensions

A randomly-chosen weighted data extension count has a 62% probability of be-
ing larger than a randomly picked weighted operation extension count. If this
higher probability seems reassuring, we do not know how to interpret that value.
We again computed an estimate of the equivalent Cohen’s d for this probabil-
ity; we obtained a value of 0.25, which gives us a small effect. In other words,
if data extensions are more common (barely), and involve more effort (some-
what), a large part of the extensions still are done by adding operations. For the
object-oriented paradigm to be most suited for most extensions, we would have
expected a much larger advantage in favor of data extensions, with at least a
medium, if not a large effect size.

We quantified the effect size at the level of projects, where we obtained nearly
identical results (Â12: 0.5514 (unweighted) and 0.6307 (weighted); estimate of d:
0.05 and 0.25). These findings show that in practice, both kinds of extensions
are needed in object-oriented programs; as such, adequate means to express both
kinds of extensions are required in order to assist developers.

5.3 Relationship with Size of Hierarchies

We now look at how the size of hierarchies affects the number of extensions and
their kinds. The scatterplots in Figure 7 show the relationship between size of
hierarchies and: all extensions (a); data extensions (b); operation extensions (c);
and ratio of operation extensions over all extensions (d).

42 R. Robbes, D. Röthlisberger, and É. Tanter

To quantify the relationships, we measure the Spearman correlation between
the number of extensions and the size of the hierarchies. Correlation ranges from
1 (perfectly correlated), to -1 (perfect inverse correlation), with 0 being uncorre-
lated. Spearman’s ρ is a rank-based, non-parametric correlation, and as such it is
less sensitive to outliers than alternatives (e.g. Pearson’s product-moment corre-
lation). Commonly-used thresholds for correlation are: 0.1 (small), 0.3 (medium),
and (0.5) strong. We also report the statistical significance of the correlations
we encounter, using the common threshold of p < 0.05 for significance. All the
correlations below are highly statistically significant: in all cases, p ≪ 0.01.

We start with both kinds of extensions taken together (Figure 7a). We see
an upward trend (large hierarchies have more extensions) and find a strong
correlation (ρ = 0.67). This corroborates our findings in Section 4.2, where we
found that 80% of the hierarchies with five or more classes had extensions.

Figure 7b shows the relation between the size of hierarchies and the number
of data extensions. We see an upward trend as well, giving us the impression
that overall larger-sized hierarchies have more data extensions. The Spearman
correlation yields a value of ρ = 0.48, which qualifies for a medium correlation.

The same situation holds with respect to the relationship between operation
extensions and size, as shown in Figure 7c. Surprisingly, we observe a higher
correlation between size and number of operation extensions, passing the strong
threshold, with ρ = 0.55. If we weight the observations, we see an increase
in the correlation for operation extensions (ρ = 0.59), and a decrease in the
correlation for data extensions (ρ = 0.42). We have seen previously that both
kinds of extensions are prevalent, with a small advantage for data extensions;
here, operation extensions tend to increase more with the size of the hierarchies.

Having observed that operation extensions seem to “take the edge” in large hi-
erarchies, we investigated if this behavior extends to the proportion of extensions.
We computed the ratio of operation extensions over all extensions, and investi-
gated its relationship to size. However, as Figure 7d shows, we found no visible
relationship: hierarchies are nearly evenly spread across the ratio spectrum. Since
the overall difference in correlation was not very large, the relationship practi-
cally disappears when the ratio is taken into account. Clearly, there are other
factors at play also influencing the relationship between the two variables, as we
see next.

In the interest of completeness, we mention that relationships taken at the
project level exhibit a similar behavior, having significant, medium-to-strong
correlations in the first three cases (a, b, and c).

5.4 Executive Summary

Analyzing the frequency and the effort invested in each kind of extension, we see
overall that data extensions are slightly more frequent than operation extensions.
However, this difference is very small: operation extensions are mostly as frequent
as data extensions, and only somewhat smaller. If the extension mechanisms of
object-oriented programming was adequate in most cases, the proportion of data
extensions would be much larger.

Extensions during Software Evolution: Do Objects Meet Their Promise? 43

To make matters worse, while both kinds of extensions are unsurprisingly
correlated with the size of hierarchies, we find that operation extensions are
actually slightly more correlated with size. Large hierarchies seem to necessitate
more operation extensions.

6 Extensions and Evolution

In the previous section, we have seen that even if both kinds of extensions are
correlated with the size of hierarchies, the ratio of operation extensions over
both extensions was not obviously correlated with size. However, there may be
other factors influencing this ratio. In particular, Lehman’s laws of software
evolution [13] say that software systems tend to decay over time, if no effort is
undertaken to prevent that. Thus it seems reasonable to think that over time,
unanticipated design decisions lead to more extensions that do not fit the class
hierarchy, and as such need to be done via operation extensions. Hence, we
analyze the proportion of operation extensions out of all extensions over time.

6.1 Introducing Periods

To answer this question we split the evolution of class hierarchies in periods.
We gather all the commits affecting a candidate hierarchy, sort them according
to time, and split the resulting list in 50 slices, each representing one period of
the evolution. If a hierarchy was changed less than 50 times, we distribute the
changes across the periods as close to being equidistant as possible. Since there is
considerable variation in the number of changes between hierarchies, this ensures
a uniform distribution of the changes over the 50 periods7.

We then aggregate all the changes of all the hierarchies that belong to the same
period. For each of these sets of changes, we sum the number of operation and
data extensions, and compute the ratio of data extensions over all extensions,
resulting in a proportion between 0 and 1 for all periods.

We also investigate the phenomenon at the level of projects; there, the only
difference is that we gather all the changes related to a project before splitting
the history in 50 periods. If a hierarchy is added later in a project, its changes
will be distributed across the later periods of the project evolution only.

6.2 Evolution of the Ratio of Operation Extensions

Figure 8 plots the evolution of the proportion of operation extensions among
all extensions over time, considering both hierarchies (a) and projects (b). To
highlight the overall trend, a smoothed fitted curve is added to the scatterplots.
7 We contemplated splitting the sets of changes in equal time periods, instead of

equal number of commits per period. However, determining the time periods involves
computing the time interval based on the first and the last change of the hierarchies.
This introduces a bias in the earlier and later periods (more changes are found in
the very first and very last periods), hence we discarded that idea.

44 R. Robbes, D. Röthlisberger, and É. Tanter

●

●

●●
●

●

●

●

●●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●●
●

●

●

●

●●
●

●
●

●
●●

●

●

●

●

●

●
●

0 10 20 30 40 50

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

(a) Hierarchies

Time periods

R
a
ti
o
 o

f
o
p
e
ra

ti
o
n
s
 o

ve
r

a
ll

e
x
te

n
s
io

n
s

●

●
●●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●
●

●
●●

●

●

●●●
●

●

●●●●

●
●

●
●

●

●

●

●

●

●

●●●
●

●

0 10 20 30 40 50

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

(b) Projects

Time periods

R
a
ti
o
 o

f
o
p
e
ra

ti
o
n
s
 o

ve
r

a
ll

e
x
te

n
s
io

n
s

Fig. 8. Proportion of operation extensions among all extensions over time. (a) hierar-
chies; (b) projects.

In both cases, there is clearly an increase of the ratio of operation extensions
over all extensions over time. The effect is more pronounced when hierarchies
are considered on their own, which is not surprising: a possible reason being that
new hierarchies may be added to projects later on. These hierarchies will then
be “younger” and for a while offset the upward trend. It is interesting that the
smoothed curve on the project scatterplot rises more sharply in the last periods:
a possible explanation is that by then, the “young” hierarchies have begun to
also become older, and seen their ratio increase, in turn impacting the project.

After a visual check, we quantify the relationship. The Spearman correlation
indicates for both cases a significant relationship, which also confirms the visual
impression that the effect is more pronounced for hierarchies in isolation than
it is for projects. We find a Spearman correlation of ρ = 0.60 (p ≪ 0.01) for
hierarchies, and of ρ = 0.51 (p ≪ 0.01) for projects.

If we take weighting into account (not shown in the figure), the relationship—
unsurprisingly—drops. It however stays significant. The correlation of the
weighted ratio with time for hierarchies is ρ = 0.38 (p = 0.007), and for projects,
ρ = 0.33 (p = 0.018, less than the usual 0.05 threshold).

Of course, these correlations are not very strong; nor should we expect them to
be. There are many more factors, beyond mere time passing, that could explain
why a given hierarchy may need more of a certain kind of extension than others.

6.3 Executive Summary

If we consider the higher ratio of operation extensions as a sign of decay of
object-oriented software, these results certainly confirm Lehman’s observations

Extensions during Software Evolution: Do Objects Meet Their Promise? 45

Visitees Visitors Either None

Prevalence of visitors

0
2
0

4
0

6
0

8
0

1
0
0

Fig. 9. Proportion of visitors, visited hierarchies, across all hierarchies

that software systems decay over time. We have found a moderate, yet significant,
relationship between the ratio of operation extensions over all extensions and the
age (as changes per periods), for both hierarchies and projects.

In our overall analysis, this adds evidence towards the emerging trend that
more complex hierarchies (i.e. larger, older, etc.) are more confronted with ex-
tensions that do not fit the paradigm than other ones. Further, they seem to
require proportionally more operation extensions than data extensions. These
results cement the relevance of supporting both kinds of extensions adequately,
as the most problematic hierarchies are the ones that need solutions the most.

7 Is the Visitor Pattern a Suitable Solution?

The well-known solution to operation extensions in object-oriented software is
the Visitor pattern [7], as briefly described in Section 2.1. Is the Visitor pattern
enough? We first analyze the prevalence of visitors in our data set, and then
look at how both visitor hierarchies and the hierarchies they visit are themselves
subject to operation extensions.

7.1 Prevalence of the Visitor Pattern

Figure 9 shows the results of our categorization of the hierarchies according to
our visitor detection algorithm (Section 3.2). One can clearly see that a minority
of classes are involved as either visitors or visitees. Out of the 2,879 hierarchies
that experienced at least an extension (shown in the figure), 34 are visitors, and
49 are visitees, corresponding to a total of 2.88% of these hierarchies. In all the
10,271 hierarchies, we find 57 visitor hierarchies, and 62 visited hierarchies, for
an even smaller proportion of 1.16%8.
8 The discrepancy in number is because there may not be a 1-to-1 mapping between

visitors and visited hierarchies.

46 R. Robbes, D. Röthlisberger, and É. Tanter

None Visitors Visitees Either

0
5

1
0

1
5

2
0

2
5

3
0

3
5

(a) Data extensions

A
m

o
u
n
t

None Visitors Visitees Either

0
5

1
0

1
5

2
0

2
5

3
0

(b) Operation extensions

A
m

o
u
n
t

Fig. 10. Distribution of data and operation extensions by role in the Visitor pattern

All in all, usages of the Visitor pattern are few and far between. If it allevi-
ates the issue of dealing with operation extensions, it cannot do so on a large
scale, either because it cannot cover all cases, because few programmers have
knowledge of the pattern (which, considering the popularity of design patterns,
seems somewhat unlikely), or because the adoption cost of the pattern is judged
too high. We also notice that the proportion of visitor and visited classes that
experience extensions (83 out of 119, or 69.7%) is much higher than the propor-
tion of hierarchies overall (2,879 out of 10,271, or 28%). This seems to indicate
that classes involved in the visitor pattern are extended more than other classes.
This warrants further investigation.

7.2 How Are Visitors and Visitees Extended?

Considering the documented drawbacks of the Visitor pattern (adding a new
class in the visited hierarchy impacts all the visitors), we would expect the uses
of the Visitor pattern to follow the Gang of Four’s recommendations, and be
applied to stable visited hierarchies only [7]. This means that visited hierarchies
should feature less data extensions, and the corresponding visitor hierarchies
should undergo less operation extensions.

Figure 10 shows the distribution of extension metrics, contrasting normal hi-
erarchies, visitor hierarchies, visited hierarchies, and the last two kinds of hierar-
chies taken together. What we see contradicts our intuition. First, in Figure 10a,
visitors seem to exhibit the same number or less data extensions than normal
hierarchies, and visited hierarchies seem to feature considerably more! In Fig-
ure 10b, we see that visitors seem to feature slightly more operation extensions,
and visitees considerably more.

Extensions during Software Evolution: Do Objects Meet Their Promise? 47

There is, however, an important confounding factor: size. If a hierarchy has
many data extensions, it is by definition large. Examining the data, we found
that, indeed, an overwhelmingly large proportion of visited hierarchies are large.
Thus we account for size in our statistical tests to assess whether the observed
effect is significant.

Since there is no statistical test to determine the impact of a confounding
factor [16], we employ an alternative strategy. We test for the statistical signif-
icance of differences in the number of data and operation extensions, for both
visitor and visited hierarchies compared to normal hierarchies, using the Mann-
Whitney U -test (the non-parametric equivalent to Student’s t-test), under the
null hypothesis H0 that there is no difference between the quantities of data and
operation extensions. In case we find a significant difference and hence reject H0,
we control for the size factor by doing a subsequent Mann-Whitney test, but this
time comparing only the hierarchies with more than five classes.

After doing this procedure, the only significant differences below the p = 0.05
threshold were the number of data and operation extensions of visited hierarchies
compared to normal hierarchies. However, most visited hierarchies actually have
more than ten classes (44 out of 49). Repeating the same procedure but with a
threshold of ten classes, both relationships lose their significance9.

All in all, we can safely assume that any relationship between role (i.e. visitor,
visitee) in the Visitor pattern and number of extensions is primarily due to the
confounding factor of size. This makes classes involved in the Visitor pattern no
worse, but also no better, than regular classes, for both roles and both metrics.
Overall this suggests that the GoF advice of using the Visitor pattern on stable
hierarchies may not be followed in practice. We have observed several examples
of operation extensions in visitors that were performed to retrofit the visitors to
data extensions in the visited hierarchies.

7.3 Executive Summary

We find that the Visitor pattern is not used very often in our dataset. Further,
visitor and visited hierarchies seem to feature the same rate of extensions as
other hierarchies (when accounting for size). We can conclude that the Visitor
pattern is a viable solution only for a subset of all the extension cases. In addition,
we noticed that visited hierarchies still suffer from operation extensions, which
should normally be handled in the visitors. Finally, the results show that the
GoF advice—the Visitor pattern should be applied only to stable hierarchies—
is hardly followed in practice. This differs from Aversano’s study, which found
that visited hierarchies were stable, albeit on three systems only [2].

8 Threats to Validity

In this section we report on the threats to validity of our study. We distinguish
between (i) construct validity, that is, threats due to how we operationalized
9 The p-value of 0.06 for operation extensions is close to significance; however, raising

the number of classes further eliminates this tenuous relationship.

48 R. Robbes, D. Röthlisberger, and É. Tanter

the measures, (ii) internal validity, that is, threats affecting the measured cause-
effect relationship, and (iii) external validity, which refers to threats concerning
the generalization of the experiment results.

8.1 Construct Validity

By weighting each data extension with the number of methods added along with
the new class, we might not correctly represent the severity of a data extension.
For instance, after the initial addition of the class in a particular commit, the
class might be extended with more methods in subsequent commits, methods
that should also be considered when weighting this data extension.

The various thresholds we impose during data analysis (e.g. only class hier-
archies with more than two classes and that have been changed more than five
times are studied), have an influence on how many data and operation extensions
we measure. However, we carefully selected these thresholds empirically, that is,
by experimenting with different threshold values. The currently selected thresh-
olds are most reasonable given the analyzed data. In the case of the threshold
for large commits (addition of more than 50 entities in a commit), we observed
that some genuine operation extensions were actually above that threshold; for
instance, a polymorphic method was added on 61 classes of the same hierarchy
in a single commit.

Since we do not analyze the source code inside methods, we do not account
for methods that perform an explicit dispatch based on the type of an object in
a functional design manner (e.g. anObject isFoo ifTrue: [...] ...). These
methods are in fact operation extensions in disguise, for which the developer did
not adopt the object-oriented paradigm in order to avoid having to add methods
in scattered places. As such, we may under-estimate the amount of operation
extensions that are performed.

Another source of underestimation of operation extensions is that we do not
consider the class extension mechanism of Smalltalk. Class extensions are meth-
ods added to existing classes in one project by another project. For instance, the
class Object in the kernel of Pharo Smalltalk has several dozens methods defined
by other projects. These are excluded from our analysis, and may reflect poten-
tial operation extensions. We counted the number of methods defined as class
extensions, and found that they represented 3.79% of all methods (2,732,618 out
of 72,028,070 method definitions across all versions). As such, they are unlikely
to influence our results.

We only study additions of methods and classes, not their modifications. If
we considered modifications as well, we may find a higher proportion of changes
related to data and operation extensions, for instance because such extensions
tend to trigger more modifications than other additions.

8.2 Internal Validity

Squeaksource contains a considerable amount of code duplication, since projects
are stored several times in the repository, for instance once as an individual

Extensions during Software Evolution: Do Objects Meet Their Promise? 49

project and once embedded in another project. In a recent study, we found that
10-15% of the code in Squeaksource is duplicated [21]. This aligns with the code
duplication rate found in the literature [11,14]. The effect of the presence of
code duplication on the results of our study is hard to predict. We assume that
duplicated projects do not stand out regarding data or operation extensions and
hence expect the effect of code duplication to be minimal.

If the same method is added to two unrelated siblings, we count this as an
operation extension, even if all other classes in the hierarchy do not either define
or inherit the method. Such a case may either be an incomplete operation ex-
tension, two unrelated single-method extensions, a bug, or an incremental step
towards a consistent extension. In a dynamically-typed language, it is hard to
tell whether this scenario corresponds to an operation extension or not, unless
we rely on human judgment. This is because object interfaces are totally implicit
in such languages. In a statically-typed language, object interfaces are explicit
and the type system ensures that an extension of the interface is consistently
implemented.

The detection of renames of root classes in a hierarchy is not perfect and might
not detect some renames. In such a case we end up with having an old, obso-
lete hierarchy in our dataset to which we cannot relate any subsequent changes
and thus not detect operation or data extensions affecting such a hierarchy. We
however expect such cases to be rare and could not find a single false-negative
case while overviewing most of the very large hierarchies in Squeaksource.

The visitor detection heuristic we implemented is also not perfect. However,
we validated each identified visitor manually and did not find any false-positives,
thus the detection algorithm yields a precision of 100%. The recall is not as-
sessable though, our algorithm might not detect all visitors, thus we possibly
underestimate the presence of visitors and visited hierarchies. Since we search
for variations in terminology (e.g. accept and visit for visitor methods), we
expect the recall to be fairly high.

We took dispositions against the ecological fallacy [17]—incorrectly assuming
that observations holding at a level of abstraction holds at another level—by
systematically verifying that findings we found at the level of class hierarchies
also applied at the level of projects, when it was pertinent to do so.

8.3 External Validity

The generalization of our study is dependent on how representative the analyzed
projects are for object-oriented software projects in general. As Squeaksource is
a very large repository containing more than 2,500 projects to which more than
2,300 developers contributed, we expect that very different programming styles
and flavors have been applied in these projects, making the analyzed projects
well representative of object-oriented software.

A possible bias is that our sample of project contains only open-source soft-
ware systems. Practices in the industry may differ and limit the generalization of
our results. However, access to a large sample of closed-source software systems
is notoriously difficult.

50 R. Robbes, D. Röthlisberger, and É. Tanter

Smalltalk is a dynamically-typed programming language. In a statically-typed
language, data and operation extensions might be employed differently, following
different rules and patterns. It is very hard to assess whether one or both type
of extensions are more or less frequent in a statically-typed languages than in its
dynamic pendant. Also, we cannot claim that the results we found for Smalltalk
also hold for other dynamically-typed object-oriented languages, although we
expect to find similar patterns. It would be very interesting to replicate our
study for e.g. Java and Ruby, to assess the use of data and operation extensions
in other object-oriented languages.

Smalltalk is an object-oriented language. The extensibility challenge we stud-
ied is a general problem that occurs with other abstraction mechanisms as well.
We cannot claim that the results related to the kinds of extensions that occur in
Smalltalk projects also apply to other mechanisms. Studying programs written
in languages with different mechanisms (e.g. ML, Haskell), including combina-
tions of objects and others (e.g. Scala, Racket), would be extremely interesting
to shed more light on this topic.

9 Conclusions

Reconciling the two kinds of extensions to data types has been a subject of
interest for years, if not decades; we assessed the prevalence of this challenge with
a large-scale empirical study. Our empirical study of the Squeaksource ecosystem
analyzed more than half a billion lines of code, distributed over 2,505 projects
and 111,071 commits. Thousands of contributors performed these commits over
the course of 8 years.

We found the following:

1. Extensions do occur: one out of eight commits introduces an operation or
a data extension; large projects and large hierarchies are more prone to
extensions. More than half of the large class hierarchies have to be extended
with new operations.

2. Both kinds of extensions happen with roughly the same frequency. When
effort is measured, data extensions take a small advantage. However, the
margin is very small, so the data-extension friendly mechanism of objects
needs supplementation for operation extensions.

3. Over time, projects and hierarchies tend to need more operation extensions,
as the new extensions were not envisioned by the initial design. These larger,
older hierarchies need better extensibility support all the more.

4. The Visitor pattern, the de-facto solution to modularly support operation ex-
tensions in object-oriented software, is not applied frequently. Furthermore,
classes involved in the pattern still need operation extensions: in visited
classes when the extensions do not fit well the Visitor pattern, and in visitor
classes to react to data extensions in the visitees.

We see these findings as a call to the community to continue investigation on
this topic, and, perhaps more crucially, to propose solutions to practitioners.

Extensions during Software Evolution: Do Objects Meet Their Promise? 51

If the first can be done with novel languages, perhaps tool support is best to
assist practitioners working on existing systems. For instance, IDEs could pro-
vide programmers with a way to switch between a data-centric view and an
operation-centric view of the program. The seed of such tool support already
exists in the venerable Smalltalk class browser, which is able to display all the
implementors of a polymorphic method in a single, editable view. As for the ex-
tensibility problem stricto sensu, further studies are needed to see if our results
also reflect black-box third-party extension scenarios.

Acknowledgments. We thank the ECOOP reviewers for their helpful com-
ments. R. Robbes and É. Tanter are partially funded by FONDECYT Projects
11110463 and 1110051, respectively. D. Röthlisberger is funded by the Swiss
National Science Foundation, SNF Project No. PBBEP2 135018.

References

1. Arcuri, A., Briand, L.C.: A practical guide for using statistical tests to assess
randomized algorithms in software engineering. In: Proceedings of ICSE 2011, pp.
1–10 (2011)

2. Aversano, L., Canfora, G., Cerulo, L., Del Grosso, C., Di Penta, M.: An empirical
study on the evolution of design patterns. In: Proceedings of ESEC/SIGSOFT FSE
2007, pp. 385–394 (2007)

3. Baxter, G., Frean, M.R., Noble, J., Rickerby, M., Smith, H., Visser, M., Melton,
H., Tempero, E.D.: Understanding the shape of Java software. In: Proceedings of
OOPSLA 2006, pp. 397–412 (2006)

4. Booch, G.: Object-Oriented Analysis and Design with Applications, 2nd edn.
Addison-Wesley (1994)

5. Cook, W.R.: Object-Oriented Programming Versus Abstract Data Types. In: de
Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) REX 1990. LNCS, vol. 489,
pp. 151–178. Springer, Heidelberg (1991)

6. Erlikh, L.: Leveraging legacy system dollars for e-business. IT Professional 2(3),
17–23 (2000)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements
of Reusable Object-Oriented Software. Professional Computing Series. Addison-
Wesley (October 1994)

8. Gîrba, T., Lanza, M., Ducasse, S.: Characterizing the evolution of class hierarchies.
In: Proceedings of CSMR 2005, pp. 2–11 (2005)

9. Gorschek, T., Tempero, E.D., Angelis, L.: A large-scale empirical study of practi-
tioners’ use of object-oriented concepts. In: Proceedings of ICSE 2010, pp. 115–124
(2010)

10. Grechanik, M., McMillan, C., DeFerrari, L., Comi, M., Crespi, S., Poshyvanyk, D.,
Fu, C., Xie, Q., Ghezzi, C.: An empirical investigation into a large-scale java open
source code repository. In: Proceedings of ESEM 2010, pp. 11:1–11:10 (2010)

11. Kapser, C.J., Godfrey, M.W.: Supporting the analysis of clones in software sys-
tems: A case study. Journal of Software Maintenance and Evolution: Research and
Practice 18 (2006)

12. Krishnamurthi, S., Felleisen, M., Friedman, D.P.: Synthesizing Object-Oriented
and Function Design to Promote Reuse. In: Jul, E. (ed.) ECOOP 1998. LNCS,
vol. 1445, pp. 91–113. Springer, Heidelberg (1998)

52 R. Robbes, D. Röthlisberger, and É. Tanter

13. Lehman, M., Belady, L.: Program Evolution: Processes of Software Change. London
Academic Press, London (1985)

14. Mayrand, J., Leblanc, C., Merlo, E.M.: Experiment on the automatic detection
of function clones in a software system using metrics. In: Proceedings of Software
Maintenance, pp. 244–253 (November 1996)

15. Oliveira, B.C.d.S.: Modular Visitor Components: A Practical Solution to the
Expression Families Problem. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 269–293. Springer, Heidelberg (2009)

16. Pearl, J.: Why there is no statistical test for confounding, why many think there
is, and why they are almost right. Technical report, Department of Statistics,
University of California, Los Angeles (1998)

17. Posnett, D., Filkov, V., Devanbu, P.: Ecological inference in empirical software
engineering. In: Proceedings of ASE 2011, pp. 362–371 (2011)

18. Reynolds, J.C.: User-defined types and procedural data structures as complemen-
tary approaches to data abstraction. In: New Advances in Algorithmic Languages,
pp. 157–168 (1975)

19. Robbes, R., Lungu, M.: A study of ripple effects in software ecosystems. In: Pro-
ceedings of ICSE 2011, NIER Track, Honolulu, Hawaii, USA, pp. 904–907. ACM
Press (May 2011)

20. Van Rysselberghe, F., Demeyer, S.: Studying versioning information to understand
inheritance hierarchy changes. In: Proceedings of MSR 2007, p. 16 (2007)

21. Schwarz, N., Lungu, M., Robbes, R.: On how often code is cloned across reposito-
ries. In: Proceedings of ICSE 2012, NIER Track (2012)

22. Shalloway, A., Trott, J.R.: Design Patterns Explained: A New Perspective on
Object-Oriented Design, 2nd edn. Addison-Wesley (2004)

23. Tempero, E., Noble, J., Melton, H.: How Do Java Programs Use Inheritance? An
Empirical Study of Inheritance in Java Software. In: Ryan, M. (ed.) ECOOP 2008.
LNCS, vol. 5142, pp. 667–691. Springer, Heidelberg (2008)

24. Torgersen, M.: The Expression Problem Revisited: Four New Solutions Using
Generics. In: Vetta, A. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 123–146. Springer,
Heidelberg (2004)

25. Vargha, A., Delaney, H.D.: A critique and improvement of the cl common language
effect size statistics of McGraw and Wong. Journal of Educational and Behavioral
Statistics 25(2), 101–132 (2000)

26. Wadler, P.: The expression problem. Mail to the java-genericity mailing list (1998)
27. Zenger, M., Odersky, M.: Independently extensible solutions to the expression prob-

lem. In: Proceedings of FOOL 2005, Long Beach, USA (January 2005)
28. Zimmermann, T., Weißgerber, P., Diehl, S., Zeller, A.: Mining version histories to

guide software changes. IEEE Transactions on Software Engineering 31(6), 429–445
(2005)

PQL: A Purely-Declarative Java Extension
for Parallel Programming

Christoph Reichenbach1, Yannis Smaragdakis1,2, and Neil Immerman1

1 University of Massachusetts, Amherst
2 University of Athens, Greece

{creichen,yannis,immerman}@cs.umass.edu

Abstract. The popularization of parallelism is arguably the most fundamental
computing challenge for years to come. We present an approach where paral-
lel programming takes place in a restricted (sub-Turing-complete), logic-based
declarative language, embedded in Java. Our logic-based language, PQL, can ex-
press the parallel elements of a computing task, while regular Java code captures
sequential elements. This approach offers a key property: the purely declarative
nature of our language allows for aggressive optimization, in much the same way
that relational queries are optimized by a database engine. At the same time,
declarative queries can operate on plain Java data, extending patterns such as
map-reduce to arbitrary levels of nesting and composition complexity.

We have implemented PQL as extension to a Java compiler and showcase its
expressiveness as well as its scalability compared to competitive techniques for
similar tasks (Java + relational queries, in-memory Hadoop, etc.).

1 Introduction

Parallelism is here to stay. Parallel hardware has already transitioned from niche archi-
tectures to mainstream computing. Power and latency trends (of electronics, as well as
of other foreseeable physical processes) dictate that the computer industry shift perma-
nently to parallel processing, instead of trying to improve on traditional single-core se-
quential designs. Programming parallel computers, however, is a formidable challenge.
Various forms of parallel hardware have been around for decades, and generation after
generation of programmers have been unable to utilize such hardware fully and easily
through traditional programming models: Although there are well-known parallel algo-
rithms, the base algorithmic thinking in computer science is sequential. Even worse, it
is not the case that we can “start from scratch” and disregard sequential computation. A
pure parallel future is unlikely. Fast sequential processing is the greatest advantage that
digital computers hold over massively parallel natural computers, such as the human
and animal brain. Thus, it seems inevitable that we are heading towards a future where
we will need to program both sequential and parallel algorithms in a unified manner.

Our work advances parallel programmability through a unified sequential-parallel
programming model, reified in a language design we call PQL/Java. We use a
general-purpose programming language (Java) as the substrate and extend it with PQL:
a declarative, logic-based sublanguage (based on first-order logic operators). Any pro-
gram expressible in PQL will be automatically parallelized. In fact, the expressiveness
of PQL is explicitly limited so as to allow efficient parallelization.

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 53–78, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

54 C. Reichenbach, Y. Smaragdakis, and N. Immerman

For a preliminary example of PQL, consider a simple program fragment:

int[] arr = query (Array[x] == y): range(1, 1000).contains(x) && y == x∗x;

The above Java declaration uses a PQL expression to initialize an int array variable.
The PQL expression starts by stating the form of the result: it will be an array (PQL
keyword Array is one of three possible at this position, the others being Map and Set)
mapping x to y. The body of the query specifies that y is the square of x, for x between
1 and 1000. (“range” is a library method that produces sets.) PQL will parallelize the
evaluation, if deemed profitable, and split it among the available processors. (We give
this and several other very short examples only language illustration: parallelization
will not help for such simple expressions and small data amounts.)

The distinguishing feature of PQL is that it is transparently integrated in Java yet
fully declarative, without any order dependencies between clauses. The New Oxford
Dictionary of English defines “declarative” in the context of Computing as “denoting
high-level programming languages which can be used to solve problems without re-
quiring the programmer to specify an exact procedure to be followed”. In other words,
a program or language is declarative when it specifies what needs to be computed but
not how. The “how” can be highly variable and the language implementation has a lot
of choice in this decision.

To see what declarativeness means in our context, consider what is perhaps the clos-
est conceptual relative of PQL: the .Net PLINQ facility for parallel queries [9]. PLINQ
is also a parallel query language with explicit syntactic support (inside .Net).1 PLINQ
and PQL differ in a myriad of language design choices—e.g., logic-based sentences
(forall/exists clauses) vs. relational queries (select−from−where clauses). But the deep-
est difference is that PQL is fully declarative, thus allowing far more optimization and
transformation of the parallel query code, but also limiting what can be expressed in
a query. Consider a query that combines two data structures: a set, premiumcustomers,
and a map, cust2orders, returning a new data structure that maps every customer in the
set to their high-value orders (e.g., above a value of 1000). Both PQL and PLINQ can
easily express such queries. In the case of PQL, we have:

Map m = query (Map.get(cust) == order):
premiumcustomers.contains(cust) &&
cust2orders.get(cust) == order && order.amount > 1000;

Similarly, in PLINQ one might write (adapting to C# idioms and structures):

var m = from cust in premiumcustomers.AsParallel()
from order in cust2orders[cust].AsParallel()
where order.amount > 1000
select new { cust, order };

The difference is that the implementation of the PLINQ query has fewer degrees of
freedom than the implementation of the PQL query. The programmer needs to specify
which traversals are done in parallel. Also, the traversals are pre-ordained: the system
will iterate over all elements in set premiumcustomers and then over all elements in each
set of orders for the given customer. In contrast, the PQL query offers no guarantee or

1 Strictly speaking, the syntax extensions to VB and C# are for LINQ, the sequential querying
interface, and PLINQ requires no extra support.

PQL: A Purely-Declarative Java Extension for Parallel Programming 55

even indication of how parallelism is applied or the order of traversal. The PQL imple-
mentation is free to reorder the query clauses in many ways, since all PQL expressions
are guaranteed side-effect-free. (PQL queries can contain arbitrary Java expressions that
refer to Java program variables, but not to PQL “variables”, i.e., can be evaluated just
once for the entire query.) The system may decide to iterate over all elements of the
cust2orders map first, or over all elements of the premiumcustomers set, or even over
all objects of type Customer that exist on the heap, even if they are not guaranteed to
be members of premiumcustomers. The latter will not be cost-optimal for this query, but
either of the former two traversals may be, depending on the sizes of the data structures.
Similarly the implementation of the query may choose to partition (and parallelize the
traversal of) either the premiumcustomers set, or the cust2orders map, or even the traver-
sal of all heap objects.

PQL can express many parallel tasks, but its main strength is for generalized, arbi-
trarily nested map-reduce-like relation manipulations. Indeed, the language is explic-
itly designed to combine logical queries and reduction operators. The query language
design targets a specific level of expressiveness, in order to enable parallelization. The
inspiration comes from complexity theory. “Descriptive complexity” [11] is the sub-area
of complexity theory that matches logical languages with complexity classes. In terms
of descriptive complexity, first-order logic over finite structures is a language that can
express exactly the problems that can be optimally parallelized, i.e., solved in constant
time by a CRAM (Concurrent Random Access Machine)—a theoretical abstraction of a
parallel machine—using a polynomial number of processors. Of course, this highly theo-
retical view ignores important practical overheads and constraints (e.g., when finding the
minimum of n elements, we do not want to perform n2 comparisons in practice, even if
these are in parallel). Still, the theoretical expressiveness class serves as a good guideline
for our design, and we can classify PQL precisely as a first-order query language.

Generally, the main contributions of our work are as follows:

• We present a new approach to parallel programming, consisting of an embedding of
a fully declarative query language inside a general-purpose language.
• We discuss the embodiment of our approach in a specific language setting and detail

its essential features for expressiveness and optimization. Although one can discern
high-level similarities of our PQL/Java language with others (e.g., database query
languages embedded inside general purpose languages), our need for tight integration
of the two language models creates unique demands and opportunities at both the
language design and implementation level.
• We present performance measurements of PQL/Java for sample tasks to showcase

its areas of strength and implementation scalability. The results validate the ease with
which simple declarative tasks can exploit parallelism, reaching the performance of
manually optimized code.

2 Language Illustration

We begin with a description of the PQL/Java language, with several examples inter-
spersed for illustration.2

2 Language specification and implementation are available at http://creichen.net/pql

http://creichen.net/pql

56 C. Reichenbach, Y. Smaragdakis, and N. Immerman

2.1 Language Constructs Overview

At the high level, PQL is primarily a first-order query language. This means that it
can be viewed as a first-order logic, with the usual boolean connectives (“and”, “or”,
etc.) and quantifiers (“forall”, “exists”). As in every first-order language, the main func-
tionality is defined as specialized predicates and functions that can be used in this logic.
Additionally, PQL has an extra-logical component: it adds the ability to aggregate query
results in more powerful ways than allowed by the logic (“reduce” them).

In more concrete terms, PQL defines the keywords query, reduce, forall, exists,
and over. It further re-purposes existing Java constructs, including many operators
(such as &&, ||) and some invocation-like expressions (such as set.contains(element)).
In this idea it follows the Java Query Language JQL [16]. To integrate with Java, these
constructs assume the meaning defined in this document in source files that contain the
import statement:
import static edu.umass.pql.Query;

In the absence of this statement, the syntax and semantics of a PQL/Java program are
identical to those of a regular Java program.

Syntactically, PQL/Java extends Java by allowing any Java expression (JAVA-EXPR)
to be a query (QUERY). (We show the full syntax of PQL later, in Figure 1, but explain
it here incrementally.) A query, in turn, follows the production:

QUERY ::= 〈QUANT-EXPR〉 | id | 〈JAVA-EXPR〉 | 〈QEXPR〉

(We inherit from Java the usual non-terminals JAVA-EXPR, for Java expressions, JAVA-
TY, for Java types, and id , for Java identifiers.) That is, a query may be a quan-
tifier expression (QUANT-EXPR) that quantifies one or more logical variables (e.g.,
forall x, y : a[x] > b[y]), a single identifier that references such a logical variable (such
as x or y in the above example), or one of two unquantified expressions: an arbitrary
Java expression (which may contain side effects but cannot use logical variables—i.e.,
variables declared inside the PQL query) or a Q-Expression (QEXPR), which may use
logical variables and sub-queries but no side effects. Since Java expressions may con-
tain PQL queries, it is possible to nest multiple queries in the same expression, though
these must not share variables.

Quantifier Expressions. Quantifier expressions take one of the following forms:

QUANT-EXPR ::= 〈QUANT〉 〈ID〉 ‘:’ 〈QUERY〉
| query ‘(’ 〈MATCH〉 ‘)’ ‘:’ 〈QUERY〉
| reduce ‘(’ id ‘)’ 〈ID〉 [over 〈ID-SEQ〉] : 〈QUERY〉

The first form of quantification is universal or existential quantification: QUANT may
be either forall or exists. Such an expression has boolean value, true or false. The second
form of quantification, a container query, constructs maps, sets, or arrays. The third and
final form is a general-purpose reduction operation.

Universal and Existential Quantifications. Universal or existential quantification ex-
tends over an identifier ID, which can explicitly declare a type:

ID ::= id | 〈JAVA-TY〉 id

PQL: A Purely-Declarative Java Extension for Parallel Programming 57

For now, consider an example of the second form:
forall int x : x == x

This tests whether all x that are of type int are equal to themselves. This particular test
should always evaluate to true. Similarly,

exists int x : x∗x == −1

will test whether there exists an integer x whose square is equal to -1; this test will
evaluate to false. (Of course, the system has no way of knowing this fact statically,
hence the query will be evaluated in parallel over all ints.)

We refer to the logical variable occurring in the ID construct as the query variable.
If a Java type (JAVA-TY) is present, the query variable is explicitly typed, otherwise
the range of values for the variable is inferred. These two cases behave differently.
Informally, the difference is that for queries
/∗ A ∗/ forall int x : rel[x] > 0
/∗ B ∗/ forall x : rel[x] > 0

the compiler will infer the static type for case B, and also infer that it should only
consider values for x that occur in the domain of rel, whereas for case A it will consider
all 232 possible int values for x, regardless of the size of rel. This topic is discussed in
more detail in Section 2.3.

Container Queries. A container query has the syntax

query ‘(’ 〈MATCH〉 ‘)’ ‘:’ 〈QUERY〉

where a MATCH is one of the following:

MATCH ::= ‘Set’ ‘.’ ‘contains’ ‘(’ 〈ID〉 ‘)’
| ‘Map’ ‘.’ ‘get’ ‘(’ 〈ID〉 ‘)’ ‘==’ 〈ID〉 [default 〈QUERY〉]
| ‘Array’ ‘[’ 〈ID〉 ‘]’ ‘==’ 〈ID〉

The first of the above productions then constructs a set, as in the following example:
query (Set.contains(x)): x == 0

This would construct a set of integers containing precisely the number zero. (The use
of Set.contains in the syntax is an allusion to the method by the same name in the Java
standard API Set interface, and similarly for Map.get.)
The second construction builds a map:

query (Map.get(x) == y): range(1, 10).contains(x) && y == x∗x
This would construct a map of all numbers from 1 to 10 to their squares. range(1, 10)
here is a logical constant and a Java expression, denoting a set of all integers from
1 through 10. By contrast, y == x∗x is a PQL subexpression: both x and y are logical
variables. Note that the above does not provide mappings for numbers outside the range.
For example, index 0 of the generated map will be null.
Maps may contain a default clause. For instance:
query(Map.get(x) == y default −1): range(1, 10).contains(x) && y==x∗x
This would construct the same map as above, except that all numbers outside of the
range 1 through 10 are mapped to −1.
Our third construct builds arrays. For example,

query (Array[x] == y): range(1, 10).contains(x) && y == x∗x

58 C. Reichenbach, Y. Smaragdakis, and N. Immerman

is the same as our map construction without defaults, with one exception: the missing
array index (0) is filled in with the default value for the relevant type (i.e., 0 for integers).
Thus, this will construct an 11-element array containing 0, 1, . . . , 81, 100. Any attempt
to define the array at a negative offset raises an exception.

Reductions. The last kind of quantifier expression in PQL is a reduction, which follows
the syntax below:

reduce ‘(’ id ‘)’ 〈ID〉 [over 〈ID-SEQ〉] : 〈QUERY〉

(ID-SEQ denotes a comma-separated sequence of ID.) The first parameter to a reduction
is always a reduction operator, such as the built-in sumInt, sumLong and sumDouble
operators. Consider:

reduce (sumInt) x : myset.contains(x)

This will sum up all numbers contained in myset after coercing them to int. The type of
a reduce expression is the type of the value being reduced over (e.g., int for a sum of
Java primitive integers).

Sometimes reduction requires additional free variables. We obtain these using the
keyword over:

reduce (sumDouble) x over y : set.contains(y) && x == 1.0 / y

This will sum up the inverses of all numbers contained in the container set.
In later sections we will see all built-in reductors as well as how to provide user-

defined ones.

QUERY ::= 〈QUANT-EXPR〉 | id | 〈JAVA-EXPR〉 | 〈QEXPR〉
QUANT-EXPR ::= 〈QUANT〉 〈ID〉 ‘:’ 〈QUERY〉

| query ‘(’ 〈MATCH〉 ‘)’ ‘:’ 〈QUERY〉
| reduce ‘(’ id ‘)’ 〈ID〉 [over 〈ID-SEQ〉] : 〈QUERY〉

QUANT ::= forall | exists
QEXPR ::= ‘(’ 〈QUERY〉 ‘)’ | 〈QUERY〉 〈BINOP〉 〈QUERY〉

| 〈QUERY〉 instanceof 〈JAVA-TY〉 | 〈UNOP〉 〈QUERY〉
| 〈QUERY〉 ‘?’ 〈QUERY〉 ‘:’ 〈QUERY〉 | 〈QUERY〉 ‘.’ ‘get’ ‘(’ 〈QUERY〉 ‘)’
| 〈QUERY〉 ‘[’ 〈QUERY〉 ‘]’ | 〈QUERY〉 ‘.’ ‘contains’ ‘(’ 〈QUERY〉 ‘)’
| 〈QUERY〉 ‘.’ id | 〈QUERY〉 ‘.’ length | 〈QUERY〉 ‘.’ size ‘(’ ‘)’

BINOP ::= ‘||’ | ‘&&’ | ‘|’ | ‘&’ | ‘ˆ’ | ‘%’ | ‘∗’ | ‘+’ | ‘−’ | ‘/’ | ‘>’ | ‘<’
| ‘<=’ | ‘>=’ | ‘!=’ | ‘==’ | ‘<<’ | ‘>>’ | ‘>>>’ | ‘=>’

UNOP ::= ‘!’ | ‘˜’ | ‘−’
MATCH ::= ‘Set’ ‘.’ ‘contains’ ‘(’ 〈ID〉 ‘)’

| ‘Map’ ‘.’ ‘get’ ‘(’ 〈ID〉 ‘)’ ‘==’ 〈ID〉 [default 〈QUERY〉]
| ‘Array’ ‘[’ 〈ID〉 ‘]’ ‘==’ 〈CM〉

ID ::= 〈ID〉 | 〈JAVA-TY〉 id
ID-SEQ ::= 〈ID〉 | 〈ID-SEQ〉 ‘,’ 〈ID〉

Fig. 1. PQL/Java syntax

Q-Expressions. A Q-expression (non-terminal QEXPR in Figure 1) has essentially
the same syntax as regular Java non-side-effecting expressions, with the exception of

PQL: A Purely-Declarative Java Extension for Parallel Programming 59

method calls, which are not supported in general (though we do borrow method call
syntax for a number of set and map operations). Q-expressions can freely refer to log-
ical variables, and form the basis of parallel computations in PQL. All familiar Java
operators have the same meaning inside a Q-Expression (including emulating the Java
exception behavior). The only new operator is =>, denoting logical implication: ‘a => b’
is equivalent to ‘(!a) || b’, with ! being logical negation.

There are some slight differences in how operators can be used with different types.
Q-expressions of the form q.get(x) or q[x] are equivalent. Both denote a map or array
lookup (depending on the static type of q) and evaluate to the element indexed by x.
For example, myArray.get(3) for an integer array myArray would obtain the 4th element
of the array. This operation raises the same exceptions as regular Java array accesses
might raise. Q-expressions of the form q.f are projections that obtain the contents of field
f. Field f must be accessible from the context in which the query originates according
to the rules of reflective field access in Java (i.e., the field may be private and in a
different class, but field access via the Java reflection API must be permitted). Finally,
Q-expressions of the form q.length or q.size() are equivalent. Both evaluate to the size
of an array, java.util.Collection, or java.util.Map, as determined by the static type of q.

2.2 Examples and Expressiveness

Before we discuss more advanced language features and semantics, we present exam-
ples of useful queries, to establish the usage model more firmly.

Consider the following prototypical map-reduce task [6]: identifying a three-
character word in a set of strings. We here represent the strings as arrays of bytes (akin
to the assumptions of Dean and Ghemawat [6]) and store them in an array of arrays,
data array. We compute the set of arrays that contain the string of interest (’0’, ’1’, ’2’)
with the following PQL query:
result = query(Set.contains(byte[] ba)):

exists i: data array[i] == ba
&& exists j: range(0, RECORD SIZE − 3).contains(j)

&& ba[j] == ((byte)’0’) && ba[j+1] == ((byte)’1’) && ba[j+2] == ((byte)’2’);

(Here, RECORD SIZE is the number of bytes in all strings. We could equivalently use
ba.length or ba.size(), which are evaluated at run-time, but we choose to keep the Dean
and Ghemawat scenario of having static knowledge that we can exploit in the query.)

The PQL runtime automatically parallelizes this query, as it deems appropriate. For
instance, the implementation may iterate sequentially over the contents of data array in
search of an appropriate component array ba, but then search each ba in parallel for a
matching index, j. In later sections we use this query for illustration and describe how
we translate it into our intermediate language and optimize it.

For a more complex example consider an adaptation of a common map-reduce moti-
vating scenario [7]. An application keeps track of entities called Pages and Sites. A Page
object uniquely maps to a Site (i.e., every page has a unique site, while a site “owns”
pages) and Pages can refer to other Pages (i.e., every page is mapped to a set of other
pages). This information is captured by regular Java maps and sets, namely two data
structures “Map<Page,Site> page2site” and “Map<Page,Set<Page>> refersTo”. Imagine
that the programmer wants to implement the following functionality: for each page p,

60 C. Reichenbach, Y. Smaragdakis, and N. Immerman

count the number of sites that own pages that refer to p. This is captured by the follow-
ing PQL query:

Map<Page,Integer> result =
query(Map.get(p) == i):

i == reduce (sumInt) one over Site s:
one == 1 &&
(exists Page pReferrer:

page2site.get(pReferrer) == s && (refersTo.get(pReferrer)).contains(p));

In words, the program text says: compute a map from each page p to an integer i, so that
i is the number of sites s (count one for each site) that own a page (and possibly more
than one) that refers to p.

The query is automatically optimized, parallelized and executed by multiple pro-
cessors. We can see some of the optimization reasoning in intuitive terms. The runtime
system will first identify that there is a loop “exists pReferrer” over Page objects, another
loop over Site objects (using variable s, over which we reduce), and implicitly a loop
over variable p of type Page (which appears in the result). Thus, the query can certainly
be evaluated by enumerating all n3 combinations of values for p, s, and pReferrer. We
can do better than that, however, since these values are related. The current pReferrer
object is enough to index all relations used in the query (page2site and refersTo) and
bind the values of p and s. To retrieve only relevant pReferrer objects, the system can
partition the refersTo data and assign a portion to each processor. The results of each
processor’s computation will then be combined and finally reduced.

To see high-level optimization reasoning in more depth, consider another example
over the same relations, page2site and refersTo. We would like to compute for every site
the number of pages it owns that have outside references. This is accomplished by the
following query:

Map<Page,Integer> result =
query(Map.get(s) == i):

i == reduce (sumInt) one over Page p:
one == 1 && page2site.get(p) == s &&
(exists Page pReferrer:

page2site.get(pReferrer) != s && (refersTo.get(pReferrer)).contains(p));

For this example, an efficient evaluation will likely not start by traversing either instance
of relation page2site. Examining an element of this relation does not lead to an efficient
indexing of the other two relations involved in the query. (This is because the page2site
map is efficient for retrieving sites given a page, but not vice versa.) Instead, a good
evaluation order would start by enumerating relation refersTo and using the values of
pReferrer and p that it obtains to index into the two instances of relation page2site.
Furthermore, the expression “page2site.get(pReferrer) != s” does not really bind variable
s: examining tuples of page2site for a given pReferrer tells us what s is not. Therefore,
the optimal join order (for reasonable assumptions of relation sizes) is to start with
refersTo, proceed to the first instance of page2site and then to the second. We see that
an automatic optimizer is highly desirable even for small queries. For larger queries,
it quickly becomes invaluable and relieves the programmer of the obligation to think
about evaluation details, instead concentrating on the specification of the desired task.

PQL: A Purely-Declarative Java Extension for Parallel Programming 61

In general, the optimizer needs to find the evaluation strategy (i.e., program trans-
formations and join order) that binds all variables in the result tuple with the minimum
lookup cost and space requirements for intermediate results. Any iteration over the el-
ements of a type or a relation whose size exceeds a pre-defined threshold can be paral-
lelized for efficiency: all that is required is a partitioning of the relation and assignment
of each partition to the appropriate processor. A welcome property is that the problem of
parallelization becomes easier the larger the size of the data involved in a query. Ideally,
a single relation is partitioned and the rest of the evaluation logic (i.e., joining the rest of
the logical conditions) is executed sequentially by the processor assigned to the partition.

Overall, PQL is quite expressive and allows arbitrary combinations of queries. Ef-
fectively, every query that one can express in relational algebra or SQL can also be
expressed in PQL (since PQL includes full first-order logic plus aggregation operators,
in the form of built-in reducers), although the difference in the structure of the query can
be significant. In theoretical terms, this is exactly the class of queries that can be par-
allelized optimally, i.e., executed in constant time if the number of processors is large
(but still polynomial relative to the input size) [11, Theorem 14.9, 5.27].3 However,
one should be careful in interpreting complexity theory results in a practical setting: al-
though an algorithm expressed in such a query language can be parallelized optimally,
this is useless if expressing the algorithm in the language greatly grows the cumulative
work to be done by all processors together, e.g., from Θ(n) to Θ(n2).

2.3 Beyond Basics

To complete our informal description of the language, we next discuss some important
design issues: types, exceptions, our notion of equality, and user-specified reductors.

Types. PQL type checking generally imitates Java, with some exceptions. Types are
implicit, unless annotated explicitly. As we have seen, logical variables can either be
declared ‘with type’ (as in forall int i : ...) or ‘without type’ (as in forall i : ...). These dec-
larations specify different semantics. The explicitly typed variant has the obvious se-
mantics, for example, forall int i : i == i will loop over all 232 integer values and check
that they are equal to themselves. At runtime, explicitly typed variables conceptually
iterate over all viable values of their type τ, where viable is defined as follows:
• If τ is an enumeration, the viable values of τ are all members of the enumeration, as

per java.util.EnumSet.allOf.
• If τ is an ordinal type such as int or boolean, the viable values of τ are all possible

values for τ permitted by the Java programming language.
• If τ is a floating-point type, i.e., float or double, then the viable values for τ are all

the values of that type that exist in live objects on the Java heap.4

3 Strictly speaking, this bound makes unrealistic assumptions with respect to the complexity of
merging results (especially for reduction operations). Still, the practical approximation of such
theoretical models typically incurs a log(n) slowdown factor, where n is the input size, which
is perfectly acceptable as a bound for parallelization purposes.

4 Support for iterating over floating point and reference values requires a runtime with either
heap traversal functionality (through a VM extension) or load-time code rewriting. We show
that finding objects by type on the heap can be efficient in our earlier DeAL system [13],
though our current PQL implementation does not yet replicate this feature.

62 C. Reichenbach, Y. Smaragdakis, and N. Immerman

• Otherwise, τ is a reference type, and the viable values for τ are all the objects of that
type that exist in live objects on the Java heap.

By contrast, a logical variable without explicit type is subject to domain inference. This
means that the variable’s type and bounds are inferred from the body of the quantifi-
cation. In terms of static types, we infer the type of a query variable as the least upper
bound of all the types it can assume, eagerly defaulting to java.lang.Object at the least
precise. In terms of runtime values, domain inference computes the domain of rele-
vant relations. For instance, for an array a, the domain of an index variable (i.e., an x
used in an expression a[x]) is the set 0 to a.length − 1 (inclusive). We use domain in-
ference only on expressions where such a binding is intuitive and obvious—i.e., for
predicates set.contains(x), array[x], and map.get(x). Domain inference extracts all syntac-
tic occurrences of such subterms for quantified variables, including any dependencies:
for example, when processing

forall x: forall int[] a: b.contains(a) && a[x] > 0
we must make sure to extract all viable a in order to determine bindings for b. When
there are multiple matching subterms, such as

forall x: a[x] > 0 && b[x] > 0
the domain is the union of all possible domains, in this case the union of the index
domains of a and b.

It is a static error whenever there is no such domain. In practice, this occurs precisely
whenever the user omits an explicit type for a quantified variable x and in the body of
the quantification this variable never appears as an index, key, or set element, or any
such element, or only occurs in a context that depends on x itself, such as x.contains(x).

Exceptions. Exceptions in a query body are propagated to the outside. The language
guarantees no order in which exceptions are delivered.
Queries such as
query(Map.get(int a) == int b) : a == 1 && range(1,2).contains(b)

(which compute multiple mappings for a map key) are invalid and raise a query failure
through the edu.umass.pql.AmbiguousMapException.

PQL performs boxing/unboxing conversions implicitly, and failed conversions (i.e.,
attempts to unbox null) raise an exception.

Equality. We allow both the == operator and the = operator for equality comparison
(albeit at different operator precedence, following the Java language definition).

Equality is reference equality, except in the following two situations:
• Equality between strings is always equality via equals (value equality).
• Objects in a map or set are considered equal under the terms of the dynamic map or

set type. For example, keys of a java.util.HashMap are equal iff they are equal in terms
of equals.

User-Defined Reductions. We allow user-defined reductions. A reduction operator r
must have the following properties:
• r must be a static method with signature public static T r(T, T). The type T must be com-

patible with the values being reduced and determines the result type of the reduction.
• The type T must be unambiguous. This requirement is relevant when r is overloaded

and type inference cannot determine a unique T.

PQL: A Purely-Declarative Java Extension for Parallel Programming 63

• r must be associative. We distribute the reduction phase by having each core run
reductions on part of the data, then merge the results of individual cores. Hence, our
runtime system partitions reductions based on what hardware the program is run on.
If r is not associative, we may get wrong results.
• r must be commutative. This is not technically required by our current implemen-

tation, as it merges the data in order. However, future implementations may choose
other reduction orders.
• r must have a neutral element. If T is a reference type, the neutral element is always

null. For primitive types, r must have a special-purpose Java annotation that specifies
the neutral element.

User-defined reduction operators can violate both the parallelization properties (since
their execution is sequential and can take arbitrarily long, although multiple are run in
parallel) and the declarativeness of PQL. The language blindly trusts that such reduc-
tions respect the above stated properties, and chooses an evaluation plan based on this
assumption.

3 Implementation and Optimization

Our current prototype implementation of PQL consists of a front-end compiler (inte-
grated with the Oracle javac). Our implementation generates ASTs directly and leaves
it to the javac backend to generate bytecode (which the JIT compiler may optimize fur-
ther). The runtime support is currently entirely library-based, requiring no VM changes.
However, specialized VM support can enable higher levels of optimization in the future.
(E.g., by storing fields in random-access tables instead of contiguous objects, it may be
more profitable to perform a query using such tables than using other participating re-
lations.) In order to anticipate different back-ends in the future, and also to isolate the
front-end language from back-end optimization techniques, we have introduced an in-
termediate language, PQIL. PQIL is a complex IL—here we discuss its essence and
design rationale.

PQL is translated into PQIL and optimized using relational optimization techniques
(similarly to an SQL query optimizer), with emphasis on interfacing with Java data and
on parallelization. The minimal independent code unit in PQIL is a “join”, which can be
either a primitive join or a control structure. Control structures allow the sequencing of
joins (i.e., conjunction) or combination of all their alternatives (disjunction). Consider
the example query of Section 2.2 for identifying a three-character word in a set of
strings. We repeat the query below for ease of reference:

result = query(Set.contains(byte[] ba)):
exists i: data array[i] == ba
&& exists j: range(0, RECORD SIZE − 3).contains(j)

&& ba[j] == ((byte)’0’) && ba[j+1] == ((byte)’1’) && ba[j+2] == ((byte)’2’);

This query is translated to the following PQIL representation:

Reduce[SET(?ba): ?result]: {
JAVA TYPE<byte[]>(?ba);
ARRAY LOOKUP Object(?data array; ?i, ?ba);
ARRAY LOOKUP Byte(?ba; ?j, ’0’);

64 C. Reichenbach, Y. Smaragdakis, and N. Immerman

ADD Int(?j, 1; ?i8);
ARRAY LOOKUP Byte(?ba; ?i8, ’1’);
ADD Int(?j, 2; ?i10);
ARRAY LOOKUP Byte(?ba; ?i10, ’2’);
INT RANGE CONTAINS(0, (RECORD SIZE − 3); ?j);

}
The above is a reduction over the result of a series of joins that we consider in con-
junction. Question marks as prefix indicate variables (named and temporary), all other
identifiers are constants of one form or another. As can be seen, PQIL contains pre-
defined predicates for all primitive expressions of the PQL language, turning eval-
uation of Q-expressions into relational joins. There are some 100 predefined predi-
cates in total, covering types (e.g., JAVA TYPE<byte[]> above), arithmetic (e.g., Add Int,
BITOR Int), comparisons (e.g., LTE Int), array/set/map lookup operations (CONTAINS,
INT RANGE CONTAINS, ARRAY LOOKUP OBJECT), and more.

At the outermost level, the translation of a PQL query always contains a reduction
operation. Operations forall and exists, as well as constructing maps, sets, etc. are all
translated into special-purpose reduction operators. In the above PQIL code, the first
line indicates the reduction: we compute a set of all ba, which we write into a result. To
compute ba, we consider the body: we locate all ba that satisfy the conjunction of all
conditions specified below:

• “JAVA TYPE<byte[]>(?ba);”: correct type.
• “ARRAY LOOKUP Object(?data array; ?i, ?ba);”: contained in data array at index i (a

variable that has no further purpose).
• “ARRAY LOOKUP Byte(?ba; ?j, ’0’);”: at index j, ba has the character ‘0’.
• “ADD Int(?j, 1; ?i8);”: j+1 = i8.
• “ARRAY LOOKUP Byte(?ba; ?i8, ’1’);”: at index i8, ba has character ‘1’.
• “ADD Int(?j, 2; ?i10);”: j+2 = 10.
• “ARRAY LOOKUP Byte(?ba; ?i10, ’2’);”: at index i10, ba has character ‘2’.
• “INT RANGE CONTAINS(0, (RECORD SIZE − 3); ?j);”: j is contained in the range 0

through RECORD SIZE − 3.

Here, RECORD SIZE − 3 is a Java expression— RECORD SIZE is not a query variable.
Just as any other Java expression (however complex), it is a constant from the perspec-
tive of the query. Our query execution mechanism ensures that we compute the Java
expression’s value only once and cache it for the rest of query execution. (Recall that
we make the assumption that queries do not have side effects, which is true modulo
a few remaining effects “by design” such as OutOfMemoryExceptions, and user-defined
reductors, which may violate our assumptions.)

The above list captures all constraints we want to have on ba, but the order of
joining the 8 relations is crucial for performance. The order is determined by “ac-
cess path selection”, a standard optimization from the database literature [14], to
estimate the cheapest way to join the predicates together. The overall process in-
volves a number of steps. We begin with domain inference, which in this case has
no effect: no more restrictions on the values of the existential variable can be in-
ferred. Next, we determine dependencies between joins and eliminate unused variables
(such as i in our example, transforming ARRAY LOOKUP Object(?data array; ?i, ?ba); to

PQL: A Purely-Declarative Java Extension for Parallel Programming 65

ARRAY LOOKUP Object(?data array; , ?ba);). Finally, we compute an access plan, i.e.,
the order in which the components of the reduction’s join should be executed. There are
several concerns in selecting this sequence. For instance:

• We reason about indexing: in which order do we bind our variables? Section 2.2 gives
high-level examples of this challenge. In our IL, we write J(!x) to indicate that J binds
variable x. After access path selection, there must be no free variables remaining.
• We avoid relations that cannot be traversed in the current implementation. For in-

stance, in the above PQIL block, the predicate JAVA TYPE<byte[]>(?ba); cannot form
the beginning of the traversal: we have no way to enumerate all byte[] objects on the
program heap without VM support, even if this were the most efficient way to evalu-
ate the query. Therefore, the predicate can only appear at a position in the sequence
where variable ba has been bound.
• Even if a relation can be traversed, it may not be parallelizable. For parallelization, each

in-memory join object can expose an interface that allows (depending on the join itself)
reductions such as our set computation to perform random access into the join. Queries
that can be executed in parallel get a significant bonus during access path selection.
• We translate the query access plan into nested Java loops for later execution inside

the VM (after JIT compilation and VM optimization of the bytecode). In practice, the
outer loop is often parallel, hence it is important to have it be over a relation large
enough to be profitably partitioned. It is also important to ensure good locality (e.g.,
accesses to consecutive, related data) for the computations in inner loops.

We represent each join in our intermediate language as a join object. There are three
classes of join objects: primitive joins (such as ARRAY LOOKUP Object), composite
joins (e.g., the above block of atomic joins, or the reduction), and “custom joins”, which
represent the custom generated code in the form of nested Java loops that we just de-
scribed. This design gives us flexibility since it isolates the optimization logic from the
runtime system implementation.

Note that our current implementation makes all scheduling decisions statically. In
general, this may not be optimal; there are cases where dynamic information can make a
significant difference between picking one option or another. Such dynamic information
concerns mainly the size of relations and the distribution of values in a map or set (i.e.,
the likelihood of that a key will return a value, which determines the selectivity of a join).
For example, when joining two maps over their key, it is preferable to iterate over the
smaller map in the outer loop and perform lookups on the bigger map. PQIL has explicit
primitives %SELECT PATH and %SCHEDULE to designate that the sequencing of joins
in a block is to occur at a later phase and what information it can use. We currently do
not use the dynamic access path selection facility because it only works with interpreted
execution of our intermediate language (i.e., not with the nested loops execution model).

The PQIL implementation also integrates several optimizations. These include sim-
ple optimizations, such as elimination of redundant joins (e.g., two occurrences of
the same primitive join in the same conjunctive block, or a type check that is stati-
cally known to be true, such as the JAVA TYPE<byte[]>(?ba) in our earlier example),
or unification of joins (e.g., simplifying LOOKUP(m, k,) and LOOKUP(m, k, v) to just
LOOKUP(m, k, v)). There are also advanced optimizations for flattening and merging
nested queries. For a good example, consider the query:

66 C. Reichenbach, Y. Smaragdakis, and N. Immerman

query(Map.contains(key) == newset):
newset == query(Set.contains(value)): array[value] == key;

This query inverts the mapping of an array, producing a map where all the array values
become keys for the sets of all array indices where each value appears. In PQIL, this
translates (after domain inference) into:
Reduce[MAP(?key, ?newset):!result]: {

ARRAY LOOKUP Object(?array; , !key);
Reduce[SET(?value):!newset]: {

ARRAY LOOKUP Object(?array; !value, ?key);
}

}
which is correct but inefficient: we iterate over all entries in array to bind key, then in
the inner reduction iterate over array again to find all the values that map to key.

PQIL flattens the nested queries by allowing nested reductors and an accompanying
optimization. Nested reductors are only usable in the ‘value’ field of maps and default
maps, where they provide a more compact notation for reductions such as the above:
Reduce[MAP(?key, SET(?value)):!result]: { ARRAY LOOKUP Object(?array; !value, !key); }
Note that the variable ?newset has completely vanished from the query. Furthermore,
the query (rewritten in this form) can be executed in a single traversal over array, reduc-
ing the iteration time from quadratic to linear.

The condition for this optimization to apply is that we have a reduction of the form
Reduce[MAP(?key, ?value):!result1] { ...before... Reduce[R:!value]: body ...after... }
such that before and after do not reference value. If this is the case, we rewrite to
Reduce[MAP(?key, R):!result1] { ...before... body ...after... }

4 Evaluation

We evaluate the efficiency of our prototype PQL implementation by applying it to a
number of tasks from prior literature:
• bonus, the task of computing the salary bonuses of employees. This is a well-known

example from the databases literature, employed, e.g., in Yang et al.’s map-reduce-
merge work [17].

In this task we are given a set of employees such that each employee has an asso-
ciated department and a set of accumulated bonuses. We compute a map from each
employee to the total bonus, modified by a departmental modifier factor.
• threegrep, the example discussed in sections 2.2 and 3, of finding all strings (in a set

of 100-character strings) that contain the substring “012” [6].
• webgraph, a task defined by Yang et al. [17], in which we are given a set of documents

and links between them: each document has a set of out-link objects, which identify
the origin document and the document it points to. The task here is to identify the set
of all documents that point to themselves via one point of indirection.
• wordcount is the task of computing the absolute numbers of occurrences of words

in documents. We assume that the words have already been tokenized, stemmed etc.,
and are matched to a unique integer word ID. The result of this computation is a map
from word IDs to the number of times they occur in a collection of documents.

PQL: A Purely-Declarative Java Extension for Parallel Programming 67

We implemented each of the above tasks in several different ways:

• pql: As a PQL/Java query.
• manual: As a single-threaded Java method.
• manual-para: As multi-threaded, hand-optimized Java code.
• sql: As an SQL database query together with SQL database table configurations, both

for Postgres and MySQL.
• hadoop: As a map-reduction running on the Hadoop framework.

SQL and Hadoop are not the most natural points of comparison technology-wise, but in
conceptual terms they are the most closely related systems on Java that we are aware of.

In all of our implementations, we made sure to use the same container classes for
results and intermediate computations, so as to not bias the evaluation results in that
respect. We also used the same sources of data:
• bonus uses a set of employees and an array of departments. Bonuses are stored as a

set as part of the employee object. bonus also stores an array of employees, indexed
by employee number, which we use for the SQL and Hadoop implementations as well
as for the manually parallelized version.
• threegrep uses an array of byte arrays to store the strings we are looking for.
• webgraph uses a set of document objects, each of which stores a set of link objects

that contain references to the link target object. Document objects have unique IDs
and are stored in an array, which we use for communicating with SQL and Hadoop,
and for our manually parallelized implementation.
• wordcount uses the same representation as webgraph for documents, with each doc-

ument containing an array of integers representing the words in the document body,
in sequence.

Our manual and manually parallelized implementations were mostly straightforward,
except as we note below. The manual implementations and the PQL implementations
were the only ones that consistently used the ‘canonical’ data representation (i.e., sets
for bonus, webgraph, and wordcount). All other implementations had to rely on auxil-
iary arrays/tables either for communication or for optimization (manually parallelized
code). As a result, the SQL implementations shown are often simpler, but only because
a single relation combines information from multiple Java data structures. The SQL ver-
sion becomes significantly more complex if the translation code from Java is included.
In contrast, the PQL implementation works directly on the Java structures, provides
static type checking, and, arguably, is a better syntactic fit for everyday parallel tasks.

4.1 Benchmark Implementation Details

To understand the details of our benchmark implementations, it is helpful to recall some
particulars of the systems we compare to. Hadoop processes all data as 〈key, value〉
pairs. It first goes through a map phase, which maps 〈k,v〉 to different 〈k2,v2〉, then
aggregates all v2 for the same k2 in the reduce phase, which produces 〈kOut,vOut〉 pairs.

SQL databases do not expose direct access to their database internals, but instead use
the JDBC interface for database-to-Java connectivity. We made an effort to consistently
employ best-practice idioms, such as always using batch updates for setting up and
prepared statements for updates and queries.

68 C. Reichenbach, Y. Smaragdakis, and N. Immerman

Bonus. The PQL query for bonus is:
result = query(Map.get(employee) == double bonus):

employees.contains(employee) &&
bonus == employee.dept.bonus factor ∗

(reduce(sumDouble) v:
exists Bonus b: employee.bonusSet.contains(b) && v == b.bonus base);

In the SQL implementation, we use three tables (employees, bonuses, departments)
with suitable SQL types. The main SQL query is:
SELECT employees.eid, SUM(bonuses.base ∗ factor)

FROM employees
JOIN departments ON departments.did = employees.dept
JOIN bonuses ON bonuses.eid = employees.eid

GROUP BY employees.eid

(The SQL code shown here and later intends to illuminate the main component of the
benchmark in terms of performance. It is not representative for conciseness compar-
isons, since it omits large amounts of scaffolding code to convert the data from and to
Java structures.)

For the Hadoop implementation, we make the department table available and transmit
employees via employee ID, followed by department ID, followed by a sequence of
bonus values. (All these form the map key, with a constant value—we encode the set
of the other implementations into a Hadoop map.) The mapper sums up bonus values,
looks up the department and multiplies. The reducer merely aggregates.

In our manually parallelized version of this benchmark we pre-allocated a result hash
map to a sufficient size to avoid having to resize the map. Furthermore, we arranged for
the employee hash method to map each key to a unique bucket in the table. This allowed
us to have our parallel threads write to the same result table without contention.

Threegrep. We have already seen the PQL query for threegrep in Section 2.2. For the
SQL implementation, data are stored in single table, as string ID (for communicating
with Java heap) and char string. The core query is (for Postgres, with a slight difference
for MySQL):

SELECT id FROM data WHERE (POSITION (”012” IN BODY) > 0)

This is a particularly friendly benchmark for SQL implementations. Once the data setup
is complete, the above query is quite simple, with explicit support in the language for
substring matching.

The Hadoop implementation uses an input map with key-value pairs of the form
〈string-id:int, string:byte string〉. The mapper outputs IDs of matching strings, and the
aggregator does a straightforward aggregation.

In our manually parallelized implementation we used a synchronized result table
shared among the worker threads.

Webgraph. The PQL query for webgraph is:
result = query(Set.contains(Webdoc doc)):

documents.contains(doc) &&
exists link: doc.outlinks.contains(link) &&

exists link2: link.destination.outlinks.contains(link2) && link2.destination == doc;

PQL: A Purely-Declarative Java Extension for Parallel Programming 69

Lines of Java code
benchmark size (# objects) manual manual-parallel Hadoop SQL PQL
bonus 2, 360, 000 9 50 130 48 8
threegrep 800, 000 9 46 60 21 6
webgraph 92, 000, 000 13 50 105 39 4
wordcount 92, 000, 000 8 98 93 38 4

Fig. 2. Summary of our experimental setup, including heap size (approximate, due to random-
ization) and non-comment non-whitespace lines of Java code, excluding syntactic overhead from
our benchmarking and import declarations, but including any encoding or decoding overhead
required by the framework

The SQL implementation consists of three tables: webdocs (with IDs), links (source
ID, target ID, link ID), and words (owner-webdoc-id, offset-in-doc, word-id). (The words
table is used for the next benchmark, wordcount.) The SQL query is:

SELECT links.source FROM links
JOIN links as links2

ON links.destination = links2.source AND links2.destination = links.source;

For Hadoop, we provide tuples 〈document-id, array-of-referenced-documents〉 to the map-
per, i.e., we flatten the link set to become part of the document during preprocessing.
As output, the mapper produces one pair of each for 〈src-doc, target-doc〉 as well as
〈target-doc, −1− src-doc〉. (The use of negative ‘id’s serves to encode inlinks and out-
links differently.) The reducer aggregates all data for the same document and stores
everything in a hashmap. If the reducer encounters both a link to ‘d’ and a link to ‘−1−
d’, it knows that we have a circle through ‘d’ and emits the current document.

Wordcount. The PQL query for wordcount is:

result = query(Map.get(int word id) == int idf default 0):
idf == reduce(sumInt) one over doc:

one == 1 && documents.contains(doc) && exists i: doc.words[i] == word id;

The SQL setup is the same as in webgraph but only uses the words table in a simple
query:

SELECT word, COUNT(docid) FROM words GROUP BY word

The above illustrates our earlier point about PQL using the canonical representations
of data, while the SQL and Hadoop implementations can use auxiliary data structures.
The words table combines both the documents and the words structures in the PQL im-
plementation. This representational simplification permits a very concise SQL query,
but comes at a cost in run-time and code size during setup.

The Hadoop implementation is straightforward, with the mapper input in the form
〈doc-id, words-as-int-array〉, mapper output as 〈word-id, counts-of-word-in-doc〉, and re-
ducer output 〈word-id, aggregate-counts-of-word〉. Figure 2 summarizes our experimental
setup. We note that PQL is significantly more compact than any of the parallel alterna-
tives, even though we often broke up our query expressions generously across multiple
lines of code, for readability. We did not do the same for SQL: since SQL statements
are encoded as strings in Java, formatting them is inconvenient.

70 C. Reichenbach, Y. Smaragdakis, and N. Immerman

4.2 Configuration

We ran our experiments on a Sun SPARC64 (Sparc v9) Enterprise-T5120 system, with 8
cores at 8 SMT threads each, and a dual 6-core Intel Xeon X5650 machine. As runtime
we used the native Java 1.7.0-01 on Sun and 1.6.0 26-b03 on Intel, configured to pre-
allocate 2 GiB of RAM. For our Hadoop experiments we used the most recent release,
Hadoop 0.20.205.0. Our SQL experiments we conducted both on PostgreSQL 8.3.1
and MySQL 5.1.46. The databases were set up to run locally, with no special tuning
parameters except as mentioned in the previous section.

PQL Compiler and Runtime. We configured our PQL runtime for its default execution
model. In this setup, our runtime executes the body of a reduction in parallel, with
each evaluation thread processing a slice of the index space the reduction body has to
iterate over. Once a thread has finished its own slice of the ‘embarrassingly parallel’
initial computation, it follows a pre-assigned merge procedure in which it waits for and
merges the results of other threads, in a binary tree fashion: on every round, each thread
synchronizes with one other thread to merge their results, and one of them goes on to
the next round for further merging. This guarantees that there are precisely n merge
steps. We use no further synchronization.

We also enabled all optimizations in our compiler, specifically redundant join elim-
ination, access path selection, and the nested join optimization and translation to Java
code (rather than interpretation).

4.3 Measurement Results

Figures 3 and 4 (for the Intel and Sun architectures, respectively) summarize the running
times of our PQL implementation on the four benchmarks. The run-times vary from
around 100 ms (threegrep on Intel) to roughly half a minute (webgraph on SPARC).
Our graphs only show curves for the PQL, manual (single-threaded) and manual-para
(hand-optimized multithreaded) versions. The Hadoop and SQL curves are excluded
since they skew the results and interfere with their visualization. Hadoop and SQL con-
sistently suffer from low overall performance due to the cost of transferring data back
and forth between different heaps and converting it between representations. For refer-
ence, we show, in log-scale, the performance of all six implementations for a single-
threaded run (i.e., running on a single core, even for the parallel versions) of threegrep,
in Figure 5. For this benchmark we reduced the size of threegrep’s data to 1

10 th.
It is clear that the SQL and Hadoop implementations do not perform at nearly the

same level as techniques for running in the same memory space. For native heap exe-
cution, setup and result transfer time are negligible. For Hadoop, setup time is small,
since we translate values to efficient binary representations, but for both SQL imple-
mentations it is prohibitive, most likely due to the necessity of (de)serializing to and
from text. Without this overhead MySQL comes within an order of magnitude (but still
several times slower) of our native implementations. We chose threegrep as a represen-
tative benchmark since it is comparatively small and reports only a few dozen results,
permitting negligible result transfer cost (which we do not report separately). Our mea-
surements for larger benchmarks are comparable or worse for SQL, though Hadoop

PQL: A Purely-Declarative Java Extension for Parallel Programming 71

��

���
���

���
���

���

�	�
�
�

���
���

����

� � � 	 ��

�
��

��
��

��
��

��
��

��
���

��
��

��

�������� �!�����"���#�

�����

$%&
$���'�����&

�����&

��

���

���

���

���

����

����

����

� � � � ��

��
	

��
	�

	
	�

��
��

��
���

	�
��

��

����	
�����������
	���

��
		�
	�

��
��
�!�����

�����

��

����

�����

�����

�����

�����

�����

�����

�����

� � � 	 ��

��
	

��
	�
	
	�
��
��
��
���

	�
��

��

����	
�����������
	���

�	��
���

� !
��
�"�����!

�����!

��

����

�����

�����

�����

�����

� � � � ��

��
��

	

��

��
��

�
��

��
���

��
��

��

����������	�	�����	��

��������

���
�	�	 �	�	�

�	�	�

Fig. 3. Results for Intel architecture

72 C. Reichenbach, Y. Smaragdakis, and N. Immerman

��

����

����

����

����

�����

�����

� � � � �� #� ��

��
	

��
	�
	
	�
��
��
��
���

	�
��

��

����	
�����������
	���

�����

���
��
� ������

������

��

����

����

����

����

�����

�����

� � � � �� #� ��

��
	

��
	�
	
	�
��
��
��
���

	�
��

��

����	
�����������
	���

��
		�
	�

���
��
� ������

������

��

�!���

������

��!���

������

��!���

������

��!���

� � � � �� �� ��

�	

�
�

�

�

�
��
��
��
���

�
��

��

����
�������	�����
���

�
��� �

 !"
 ���#�����"

�����"

��

�$���

������

��$���

������

��$���

������

� � � � �� �� ��

�	

�
�

�

�

�
��
��
��
���

�
��

��

����
�������	�����
���

���������

 !"
 ���#�����"

�����"

Fig. 4. Results for Sun architecture

PQL: A Purely-Declarative Java Extension for Parallel Programming 73

��

���

����

�����

������

�����	 	�
���
�� ��
�� 	�� 	��������� ������

Fig. 5. Results (runtime in ms), in log-scale for all implementations, single-threaded (i.e., on one
core only) run of threegrep on the Sun architecture. Lighter segments in the bars show setup
overheads (i.e., initialization time)—these are large enough to be discernible only for SQL im-
plementations. The figure contains error bars that are non-discernible at this scale

improves (relatively speaking), e.g., Hadoop on regular threegrep is “only” 25× slower
than our baseline, compared to 84× at reduced benchmark size. Measurements with
multithreaded Hadoop show slight improvement, but not enough to be discernible at
the scale of Figure 5.

On the more interesting topic of PQL performance compared to manually tuned Java
code, we see that the PQL implementation scales in roughly the same patterns as man-
ual code, and nearly matches manual code performance. For webgraph, wordcount,
and threegrep, the performance of PQL is strong on both architectures. The remaining
benchmark, bonus, scales less ideally. The culprit is contention and the high cost of
merging results, which dominates the cost of producing the per-processor results. As
we described earlier, the manual implementation of bonus exploits knowledge about
the amount of results it will produce, to pre-allocate a table of the right size and avoid
all locking. Such powerful manual optimizations are hard for compilers to reason about
or devise. This low-level optimization is particularly important for bonus because of its
otherwise simple computation. In the PQL implementation, the merge component be-
comes comparatively bigger than the embarrassingly parallel computation component.
At 64 threads, the runtime overhead of a merge is 5.64 for bonus (i.e., merge cost is
over 5 times as high as computation cost)! (Comparatively, this overhead is 0.01 for
webgraph and wordcount.) The merge overhead thus overrides much of the benefit of
parallelization. On Intel, the effect is more pronounced, especially once we exceed 6
threads and start using simultaneous multi-threading.

Wordcount depends critically on our nested join optimization (Section 3): This op-
timization merges the blocks of joins of inner and outer reduction and thus gives us
greater freedom during access path selection. In practice, this allows us to traverse over
all documents as the outermost loop, allowing each worker thread to analyze a subset
of documents. Without the inner reduction optimization, the only viable outermost loop
would be over all array indices in all documents, which means that each thread would
have to touch (a slice of) each document. We validated that this rejected access path
would parallelize poorly.

For completeness, we list PQL and manually parallelized overhead compared to the
baseline, together with the speedups (inverse overhead) observed for PQL, in Figures 6
and 7.

74 C. Reichenbach, Y. Smaragdakis, and N. Immerman

Overhead over manual PQL speedup
benchmark para-manual PQL/1 1 2 4 6 8 10 12

bonus 1.14 + 0.00σ 0.94 + 0.00σ 0.94 1.00 1.03 1.03 0.97 0.97 0.98
threegrep 0.99 + 0.00σ 0.61 + 0.00σ 0.61 1.11 2.03 2.95 3.73 4.33 3.93
webgraph 0.82 + 0.00σ 0.85 + 0.00σ 0.85 1.56 2.95 4.20 5.33 6.12 6.83
idf 1.03 + 0.00σ 0.95 + 0.00σ 0.95 1.83 3.51 5.00 6.35 6.78 6.72

Fig. 6. Overhead and speedup measurements on Intel

Overhead over manual PQL speedup
benchmark para-manual PQL/1 1 2 4 8 16 32 64

bonus 0.83 + 0.00σ 1.20 + 0.00σ 0.83 1.02 1.18 1.52 1.58 1.69 1.66
threegrep 0.99 + 0.00σ 1.18 + 0.00σ 0.85 1.68 3.32 6.39 10.01 13.27 9.91
webgraph 0.97 + 0.00σ 1.17 + 0.00σ 0.85 1.71 3.39 6.68 12.98 23.16 35.61
idf 0.98 + 0.01σ 1.11 + 0.00σ 0.90 1.84 3.60 7.04 12.78 19.63 24.73

Fig. 7. Overhead and speedup measurements on Sun

Overall, the experiments show how casual in-memory tasks can benefit from PQL,
making seamless declarative parallel processing possible in the middle of a Java appli-
cation. Achieving the observed level of performance is the result of significant optimiza-
tion in the PQL back-end—our original unoptimized implementation (also exploiting
parallelism) was more than 10 times slower.

4.4 Discussion

In practice, applications that rely on databases usually store data separately from the
Java heap. Doing so in our context would have eliminated the setup cost (though not the
query transfer cost). However storing data in databases comes at the price of a seman-
tic gap between Java and the data representation: we cannot add methods to database
tables, refactor them in a Java IDE or write unit tests for them easily. The semantic gap
extends to the language. We found SQL and PQL to be the languages with the most
concise ways to express the computations we were interested in. However, SQL oper-
ates on database tables, not sets, maps, objects, and arrays; we thus found it to be an
imperfect match for the queries we wished to express. As we saw in Table 2, the pro-
grammatic cost of bridging this semantic gap can be considerable. PQL/Java avoids the
gap altogether, making declarative parallel programming easy for everyday tasks.

We found (not unexpectedly, but to a larger degree than expected) that Hadoop is not
designed for data processing at such a (comparatively) fine-grained scale, i.e., for data
that fits into a single computer’s memory. For such tasks, we found Hadoop’s overhead
to be prohibitive. The amount of implementation work needed to communicate with
Hadoop efficiently was significantly greater than the amount needed for SQL, since not
all queries fit obviously into a map-reduce framework (esp. webgraph’s).

For a fair comparison, we should note that Hadoop and SQL databases provide addi-
tional features, specifically persistence layers, that are beyond the scope of PQL. How-
ever, our experiments suggest that programmers who do not need such persistence and

PQL: A Purely-Declarative Java Extension for Parallel Programming 75

are only interested in efficient, parallelizable queries that fit within the Java heap have
much more to gain from PQL than from (mainstream, unspecialized) SQL database
engines or Hadoop.

5 Related Work

It is virtually impossible to be comprehensive when describing related work in parallel
languages. There have been numerous and quite diverse approaches, spanning multi-
ple decades. Compared to all of them, the distinguishing feature of our work is that
it promotes purely declarative extensions for parallelism, yet keeps the close integra-
tion between the declarative sub-language and the sequential host language, with both
operating on the same data.

In terms of programming model, the PQL/Java approach can be viewed as map-
reduce-on-steroids. Map-reduce computations have a simple, fixed structure that is an
easy-to-express special case of our declarative language. PQL/Java generalizes this to
offer a full logic-based language in which complex program flows can be expressed and
automatically parallelized/optimized. For instance, instead of a plain map-reduce-like
structure, an application in our system can have a forall-exists-forall structure, exam-
ining combinations of existing data structures and not just mapping over a single one.
This need has already been identified in the map-reduce domain. For instance, Google
recently introduced the FlumeJava library [4], which supports “a pipeline of MapRe-
duces”. In terms of control-flow structures, this is again a special case of our declar-
ative language: the parallel program structures expressible in FlumeJava can also be
expressed in PQL/Java. Furthermore, our approach has a much higher-level nature, as
it allows aggressive automatic optimization—a direction that FlumeJava begins to pur-
sue with fusion-like parallel loop optimizations, but cannot exploit to nearly the same
extent. Of course, directly comparing to specific map-reduce facilities is not appropri-
ate, because the focus of our work is quite different: PQL/Java only targets shared-
memory parallelism,5 while map-reduce libraries are distinguished by their support for
distributed, fault-tolerant parallel computations.

Relational databases also have the declarative flavor of the PQL/Java approach,
and there is intense research and practical interest in integrating support for relational
queries into mainstream programming languages. Microsoft’s LINQ and its parallel
version, PLINQ [8], are some of the best known such facilities. We already discussed
how the design of PLINQ is explicitly not as declarative as that of PQL/Java. Further-
more, we believe that SQL-like syntax is a mismatch for general purpose parallelism:
expressing an arbitrary computation with SQL operators such as select, project, join,
and difference is awkward. In contrast, we offer a language that has a much more ex-
plicit looping structure (forall and exists loops), and an optimizer that leverages the ac-
cumulated knowledge from database optimizers, while also understanding the structure
of first-order logic sentences. Finally, mainstream relational database engines, such as

5 The language is designed with the prospect of distributed execution in mind, for future incar-
nations. The current implementation is for shared-memory machines, however. Other parallel
languages—e.g., Fortress [1]—follow the same pattern of starting from shared-memory but
designing with an eye for distribution as well.

76 C. Reichenbach, Y. Smaragdakis, and N. Immerman

MySQL and Postgres, do not offer parallelization of a single query, although they sup-
port parallel execution of separate queries. This is another example of how applying
relational techniques to the usual objects of a Java heap decisively changes the lan-
guage implementation tradeoffs: Intra-query parallelization makes sense for read-only
in-memory data, but less so for traditional transactions in a real database.

In terms of language support for parallelism, there is a multitude of designs that are
impossible to cover exhaustively, but follow lines quite distinct from our work. These
designs can be as simple as libraries for task-parallelism (e.g., offering a “parallel-for”
primitive [12]) and as complex as entire languages for matrix computations, media pro-
cessing, stream processing, etc. [15,3,10]. Compared to the former, our approach aims
to be higher-level, due to the declarativeness of parallel computation. That is, task-
parallel libraries only hide the specific mechanisms for parallelism but do not otherwise
help address the inherent difficulty of parallel programming. The user is still burdened
with structuring the parallel program and little optimization takes place automatically,
unlike in PQL/Java. Compared to domain-specific mechanisms for parallelism, our ap-
proach is explicitly unifying, with a general declarative language for a substantial subset
of all parallel programming tasks.

Finally, PQL/Java is conceptually related to languages that emphasize concurrency
and avoid imperative features. It is not a new observation that declarativeness is
a good match for parallelism. For instance, the “Declarative Aspects of Multicore
Programming” (DAMP) workshop has been held since 2006 and has hosted the pre-
sentation of several approaches relating to declarative support for concurrency. Past
approaches, however, are typically less general or less declarative than our pure logic-
based approach—we offer the first approach that is completely declarative (based on
first-order logic, which is truly a specification language, without order dependencies
and side-effects), general (can express in a single language the parallel elements of
programs from different domains), and unified with a sequential language in a way
directly inspired by complexity theory. For a representative comparison, Erlang [2] is
a celebrated success story of declarative languages in parallel programming. Never-
theless, Erlang is a Turing-complete and not purely declarative language. (E.g., it is
not the case that clauses can be freely reordered without affecting program meaning.)
This means that, although Erlang program components communicate asynchronously
and, thus, can be easily run in parallel, the responsibility for structuring the program
is left with the programmer. Similar comments apply to most high-level languages ex-
plicitly designed with parallelism in mind, such as Fortress [1] and X10 [5]. (As with
map-reduce mechanisms, however, X10 explicitly targets the much harder problem of
distributed execution, while we focus on shared-memory parallelism.) In contrast to
such work, our declarative approach consists of specifying in queries what is to be done
in parallel but not the exact parallel program structure. The terms of such queries can
be freely reordered, factored, and aggressively optimized by the runtime system. Also,
the runtime system is fully responsible for deciding what constitutes a task that gets
assigned to a processor, unlike in Erlang, where this is dictated by program structure. In
short, it is important that our declarative language is not by itself a full, Turing-complete
language: the potential for automatic optimization and parallelization is much higher.

PQL: A Purely-Declarative Java Extension for Parallel Programming 77

We consider this feature crucial for getting higher-level programmability and address-
ing the challenges of parallel programming.

6 Conclusions

We presented PQL/Java: an approach to parallel programming that employs a purely
declarative sublanguage for parallelism, integrated with a mainstream language for se-
quential computation. PQL queries operate over regular Java data and get automatically
optimized by exploiting the declarativeness of the specification. PQL is not a full pro-
gramming language but it is well-suited for combining, filtering, and reducing large
data structures, in a control flow that generalizes map-reduce patterns. Because PQL is
a general logic, we expect its users to find innovative ways to express interesting com-
putations, beyond the motivating examples of the original design, fulfilling the promise
of a truly high-level, programmer-friendly parallel sublanguage.

Acknowledgments. We would like to thank the anonymous ECOOP reviewers for
their feedback. This work was funded by the National Science Foundation under grants
CCF-0917774, CCF-0934631, and CCF-1115448.

References

1. Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessen, J.-W., Ryu, S., Steele, G.,
Tobin-Hochstadt, S.: The Fortress Language Specification. Technical report, Sun Microsys-
tems (2008)

2. Armstrong, J.: A history of Erlang. In: HOPL III: Proceedings of the third ACM SIGPLAN
Conference on History of Programming Languages (2007)

3. Catanzaro, B., Fox, A., Keutzer, K., Patterson, D., Su, B.-Y., Snir, M., Olukotun, K., Hanra-
han, P., Chafi, H.: Ubiquitous parallel computing from Berkeley, Illinois, and Stanford. IEEE
Micro 30(2), 41–55 (2010)

4. Chambers, C., Raniwala, A., Perry, F., Adams, S., Henry, R.R., Bradshaw, R., Weizenbaum,
N.: FlumeJava: easy, efficient data-parallel pipelines. In: Programming Language Design and
Implementation, PLDI (2010)

5. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun, C.,
Sarkar, V.: X10: an object-oriented approach to non-uniform cluster computing. In: Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA (2005)

6. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: Oper-
ating Systems Design & Implementation (OSDI) (2004)

7. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

8. Duffy, J.: A query language for data parallel programming: invited talk. In: Declarative As-
pects of Multicore Programming Workshop, DAMP (2007)

9. Duffy, J., Essey, E.: Parallel LINQ: Running queries on multi-core processors. MSDN Mag-
azine (2007)

10. Gordon, M.I., Thies, W., Amarasinghe, S.: Exploiting coarse-grained task, data, and pipeline
parallelism in stream programs. In: ASPLOS-XII: Architectural Support for Programming
Languages and Operating Systems (2006)

11. Immerman, N.: Descriptive Complexity. Springer (1998)

78 C. Reichenbach, Y. Smaragdakis, and N. Immerman

12. Leijen, D., Schulte, W., Burckhardt, S.: The design of a task parallel library. In:
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA (2009)

13. Reichenbach, C., Immerman, N., Smaragdakis, Y., Aftandilian, E.E., Guyer, S.Z.: What can
the GC compute efficiently? A language for heap assertions at GC time. In: Object Oriented
Programming Systems, Languages, and Applications, OOPSLA (2010)

14. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access path
selection in a relational database management system. In: ACM SIGMOD Int. Conf. on
Management of Data, pp. 23–34 (1979)

15. Snyder, L.: The design and development of ZPL. In: HOPL III: Proceedings of the third
ACM SIGPLAN Conference on History of Programming Languages (2007)

16. Willis, D., Pearce, D.J., Noble, J.: Efficient Object Querying for Java. In: Hu, Q. (ed.) ECOOP
2006. LNCS, vol. 4067, pp. 28–49. Springer, Heidelberg (2006)

17. Yang, H.-C., Dasdan, A., Hsiao, R.-L., Parker, D.S.: Map-reduce-merge: simplified relational
data processing on large clusters. In: ACM SIGMOD Int. Conf. on Management of Data
(2007)

Is It Dangerous to Use Version Control Histories

to Study Source Code Evolution?

Stas Negara, Mohsen Vakilian, Nicholas Chen,
Ralph E. Johnson, and Danny Dig

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA
{snegara2,mvakili2,nchen,rjohnson,dig}@illinois.edu

Abstract. Researchers use file-based Version Control System (VCS) as
the primary source of code evolution data. VCSs are widely used by
developers, thus, researchers get easy access to historical data of many
projects. Although it is convenient, research based on VCS data is incom-
plete and imprecise. Moreover, answering questions that correlate code
changes with other activities (e.g., test runs, refactoring) is impossible.

Our tool, CodingTracker, non-intrusively records fine-grained and di-
verse data during code development. CodingTracker collected data from
24 developers: 1,652 hours of development, 23,002 committed files, and
314,085 testcase runs.

This allows us to answer: How much code evolution data is not stored
in VCS? How much do developers intersperse refactorings and edits in the
same commit? How frequently do developers fix failing tests by changing
the test itself? How many changes are committed to VCS without being
tested? What is the temporal and spacial locality of changes?

1 Introduction

Any successful software system continuously evolves in response to ever-changing
requirements [35]. Developers regularly add new or adjust existing features, fix
bugs, tune performance, etc. Software evolution research extracts the code evo-
lution information from the system’s historical data. The traditional source of
this historical data is a file-based Version Control System (VCS).

File-based VCSs are very popular among developers (e.g., Git [20], SVN [47],
CVS [7]). Therefore, software evolution researchers [1, 10, 11, 13, 14, 16–19, 21,
22, 24, 27, 28, 31, 34, 40, 45, 46, 49–51, 54] use VCS to easily access the historical
data of many software systems. Although convenient, using VCS code evolution
data for software evolution research is inadequate.

First, it is incomplete. A single VCS commit may contain hours or even days
of code development. During this period, a developer may change the same code
fragment multiple times, for example, tuning its performance, or fixing a bug.
Therefore, there is a chance that a subsequent code change would override an
earlier change, thus shadowing it. Since a shadowed change is not present in the

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 79–103, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

80 S. Negara et al.

code, it is not present in the snapshot committed to a Version Control System
(VCS). Therefore, code evolution research performed on the snapshots stored in
the VCS (like in [16–18]) does not account for shadowed code changes. Ignoring
shadowed changes could significantly limit the accuracy of tools that try to infer
the intent of code changes (e.g., infer refactorings [10, 11, 21, 49, 50], infer bug
fixes [23, 30, 32, 33, 39, 53]).

Second, VCS data is imprecise. A single VCS commit may contain several
overlapping changes to the same program entity. For example, a refactored pro-
gram entity could also be edited in the same commit. This overlap makes it
harder to infer the intent of code changes.

Third, answering research questions that correlate code changes with other
development activities (e.g., test runs, refactoring) is impossible. VCS is limited
to code changes, and does not capture many kinds of other developer actions:
running the application or the tests, invoking automated refactorings from the
IDE, etc. This severely limits the ability to study the code development process.
How often do developers commit changes that are untested? How often do they
fix assertions in the failing tests rather then fixing the system under test?

Code evolution research studies how the code is changed. So, it is natural to
make changes be first-class citizens [42, 44] and leverage the capabilities of an In-
tegrated Development Environment (IDE) to capture code changes online rather
than trying to infer them post-mortem from the snapshots stored in VCS. We
developed a tool, CodingTracker, an Eclipse plug-in that unintrusively collects
the fine-grained data about code evolution of Java programs. In particular, Cod-

ingTracker records every code edit performed by a developer. It also records
many other developer actions, for example, invocations of automated refactor-
ings, tests and application runs, interactions with VCS, etc. The collected data
is so precise that it enables us to reproduce the state of the underlying code at
any point in time. To represent the raw code edits collected by CodingTracker

uniformly and consistently, we implemented an algorithm that infers changes as
Abstract Syntax Tree (AST) node operations. Section 2.1 presents more details
about our choice of the unit of code change.

We deployed CodingTracker to collect evolution data for 24 developers work-
ing in their natural settings. So far, we have collected data for 1,652 hours of
development, which involve 2,000 commits comprising 23,002 committed files,
and 9,639 test session runs involving 314,085 testcase runs.

The collected data enables us to answer five research questions:

Q1: How much code evolution data is not stored in VCS?
Q2: How much do developers intersperse refactorings and edits in the same

commit?
Q3: How frequently do developers fix failing tests by changing the test itself?
Q4: How many changes are committed to VCS without being tested?
Q5: What is the temporal and spacial locality of changes?

We found that 37% of code changes are shadowed by other changes, and are not
stored in VCS. Thus, VCS-based code evolution research is incomplete. Second,

Is It Dangerous to Use Version Control Histories 81

programmers intersperse different kinds of changes in the same commit. For
example, 46% of refactored program entities are also edited in the same com-
mit. This overlap makes the VCS-based research imprecise. The data collected
by CodingTracker enabled us to answer research questions that could not be
answered using VCS data alone. The data reveals that 40% of test fixes in-
volve changes to the tests, which motivates the need for automated test fixing
tools [8, 9, 36]. In addition, 24% of changes committed to VCS are untested.
This shows the usefulness of continuous integration tools [2, 3, 25, 26]. Finally,
we found that 85% of changes to a method during an hour interval are clustered
within 15 minutes. This shows the importance of novel IDE user interfaces [4]
that allow developers to focus on a particular part of the system.

This paper makes the following major contributions:

1. The design of five questions about the reliability of VCS data in studying
code evolution. These five research questions have never been answered be-
fore.

2. A field study of 24 Java developers working in their natural environment.
To the best of our knowledge, this is the first study to present quantitative
evidence of the limitations of code evolution research based on VCS data.

3. CodingTracker, an Eclipse plug-in that collects a variety of code evolution
data online and a replayer that reconstructs the underlying code base at
any given point in time. CodingTracker is open source and available at
http://codingspectator.cs.illinois.edu.

4. A novel algorithm that infers AST node operations from low level code edits.

2 Research Methodology

To answer our research questions, we conducted a user study on 24 participants.
We recruited 13 Computer Science graduate students and senior undergraduate
summer interns who worked on a variety of research projects from six research
labs at the University of Illinois at Urbana-Champaign. We also recruited 11
programmers who worked on open source projects in different domains, including
marketing, banking, business process management, and database management.
Table 1 shows the programming experience of our participants1. In the course of
our study, we collected code evolution data for 1,652 hours of code development
with a mean distribution of 69 hours per programmer and a standard deviation
of 62.

To collect code evolution data, we asked each participant to install Coding-

Tracker plug-in in his/her Eclipse IDE. During the study, CodingTracker

recorded a variety of evolution data at several levels ranging from individual
code edits up to the high-level events like automated refactoring invocations, test
runs, and interactions with Version Control System (VCS). CodingTracker em-
ployed CodingSpectator’s infrastructure [48] to regularly upload the collected

1 Note that only 22 out of 24 participants filled the survey and specified their pro-
gramming experience.

82 S. Negara et al.

Table 1. Programming experience of the participants

Number of participants Programming Experience (years)

1 1 - 2
4 2 - 5
11 5 - 10
6 > 10

data to our centralized repository. Section 4 presents more details about the data
CodingTracker collects.

2.1 Unit of Code Change

Our code evolution questions require measuring the number of code changes.
Therefore, we need to define a unit of code change. Individual code edits collected
by CodingTracker represent code changing actions of a developer in the most
precise way, but they are too irregular to serve as a unit of change in our code
evolution analysis. A single code edit could represent typing a single character
or inserting a whole class declaration. Moreover, even if several code edits are
equivalent in the number of affected characters, they could have a totally different
impact on the underlying code depending on whether they represent editing
a comment, typing a long name of a single variable, or adding several short
statements.

We define a unit of code change as an atomic operation on an Abstract Syntax
Tree (AST) node: add, delete, or update, where add adds a node to AST, delete
removes a node from AST, and update changes a property of an existing AST
node (e.g., name of a variable). We represent a move operation, which moves a
child node from one parent to another one in an AST, as two consequent AST
node operations: delete and add.

To infer AST node operations from the collected raw edits, we apply our
novel inferencing algorithm described in Section 5. Our research questions re-
quire establishing how AST node operations correlate with different developer’s
actions, e.g., whether an AST operation is a result of a refactoring, whether AST
operations are followed by a commit or preceded by tests, etc. Therefore, Coding-

Tracker inserts the inferred AST node operations in the original event sequence
right after the subsequence of code edits that produce them. We answer every
research question by processing the output of the inferencing algorithm with the
question-specific analyzer.

3 Research Questions

3.1 How Much Code Evolution Data Is Not Stored in VCS?

A single VCS commit may contain hours or days worth of development. During
this period, a developer may change the same code fragment multiple times,
with the latter changes shadowing the former changes.

Is It Dangerous to Use Version Control Histories 83

Figure 1 presents a code evolution scenario. The developer checks out the
latest revision of the code shown in Figure 1(a) and then applies two refac-
torings and performs several code changes to a single method, adjust. First,
the developer renames the method and its local variable, base, giving them
intention-revealing names. Next, to improve the precision of the calculation, the
developer changes the type of the computed value and the production factor,
unit, from int to float and assigns a more precise value to unit. Last, the de-
veloper decides that the value of unit should be even more precise, and changes
it again. Finally, the developer checks the code shown in Figure 1(d) into the
VCS.

Fig. 1. A code evolution scenario that illustrates a shadowed code change and an
overlap of refactorings with other code changes

Note that in the above scenario, the developer changes the value assigned
to unit twice, and the second change shadows the first one. The committed
snapshot shown in Figure 1(d) does not reflect the fact that the value assigned
to unit was gradually refined in several steps, and thus, some code evolution
information is lost.

To quantify the extent of code evolution data losses in VCS snapshots, we
calculate how many code changes never make it to VCS. We compute the total
number of changes that happen in between each two commits of a source code
file and the number of changes that are shadowed, and thus, do not reach VCS.
We get the number of reaching changes by subtracting the number of shadowed
changes from the total number of changes. To recall, a unit of code change is an
add, delete, or update operation on an AST node. For any two operations on the
same AST node, the second operation always shadows the first one. Additionally,
if an AST node is both added and eventually deleted before being committed,
then all operations that affect this node are shadowed, since no data about this
node reaches the commit.

Figure 2 shows the ratio of reaching and shadowed changes for our partici-
pants. Note that we recorded interactions with VCS only for 15 participants who
used Eclipse-based VCS clients. A separate bar presents the data for each such
participant. The last bar presents the aggregated result. Overall, we recorded
2,000 commits comprising 23,002 committed files.

The results in Figure 2 demonstrate that on average, 37% of changes are
shadowed and do not reach VCS. To further understand the nature of shadowed

84 S. Negara et al.

Fig. 2. Ratio of reaching and shadowed changes

code changes, we counted separately those shadowed changes that are comment-
ing/uncommenting parts of the code or undoing some previous changes. If a
change is both commenting/uncommenting and undoing, then it is counted as
commenting/uncommenting. Figure 3 presents the results. Overall, 78% of shad-
owed code changes are authentic changes, i.e., they represent actual changes
rather than playing with the existing code by commenting/uncommenting it or
undoing some previous changes.

Fig. 3. Composition of shadowed changes. The fifth bar is missing, since there are no
shadowed changes for this participant.

Our results reveal that more than a third of all changes do not reach VCS
and the vast majority of these lost changes are authentic. Thus, a code evolution
analysis based on snapshots from VCS misses a significant fraction of important
code changes, which could lead to imprecise results. Further research is required
to investigate the extent of this imprecision.

Is It Dangerous to Use Version Control Histories 85

3.2 How Much Do Developers Intersperse Refactorings and Edits
in the Same Commit?

Many tools [10, 11, 21, 29, 49, 50] compare a program’s snapshots stored in VCS to
infer the refactorings applied to it. As the first step, such a tool employs
different similarity measures to match the refactored program entities in the two
compared snapshots. Next, the tool uses the difference between the two matched
program entities as an indicator of the kind of the applied refactoring. For ex-
ample, two methods with different names but with similar code statements could
serve as an evidence of a Rename Method refactoring [11]. If a refactored program
entity is additionally changed in the same commit, both matching it across com-
mits and deciding on the kind of refactoring applied to it become harder. Such
code evolution scenarios undermine the accuracyof the snapshot-based refactoring
inference tools.

Figure 1 shows an example of such a scenario. It starts with two refactorings,
Rename Method and Rename Local Variable. After applying these refactorings,
the developer continues to change the refactored entities – the body and the
return type of the renamed method; the type and the initializer of the renamed
local variable. Consequently, versions (a) and (d) in Figure 1 have so little in
common that even a human being would have a hard time identifying the refac-
tored program entities across commits.

To quantify how frequently refactorings and edits overlap, we calculate the
number of refactored program entities that are also edited in the same commit.
Our calculations employ the data collected by CodingTracker for ten partici-
pants who both used Eclipse-based VCS clients and performed automated refac-
torings. Note that we do not consider manual refactorings since they can not be
directly captured by our data collector, but rather need to be inferred from the
collected data as an additional, non-trivial step.

First, we look at a single kind of program entities – methods. Figure 4 shows
the ratio of those methods that are refactored only once before being commit-
ted (pure refactored methods) and those methods that are both refactored and
edited (e.g., refactored more than once or refactored and edited manually) be-
fore being committed to VCS. We consider a method refactored/edited if either
its declaration or any program entity in its body are affected by an automated
refactoring/manual edit. Figure 4 shows that on average, 58% of methods are
both refactored and additionally changed before reaching VCS.

Next, we refine our analysis to handle individual program entities. To detect
whether two refactorings or a refactoring and a manual edit overlap, we introduce
the notion of a cluster of program entities. For each program entity, we compute
its cluster as a collection of closely related program entities. A cluster of a pro-
gram entity includes this entity, all its descendants, its enclosing statement, and
all descendants of its enclosing statement, except the enclosing statement’s body
and the body’s descendants. We consider a program entity refactored/edited if
any of the entities of its cluster is affected by an automated refactoring/manual
edit. Figure 5 demonstrates that on average, 46% of program entities are both
refactored and additionally changed in the same commit.

86 S. Negara et al.

Fig. 4. Ratio of purely refactored methods and those that are both refactored and
additionally changed before being committed to VCS

Fig. 5. Ratio of purely refactored program entities and those that are both refactored
and additionally changed before reaching a commit

Our results indicate that most of the time, refactorings are tightly intermixed
with other refactorings or manual edits before reaching VCS. This could severely
undermine the effectiveness of refactoring inference tools that are based on VCS
snapshots [10, 11, 21, 29, 49, 50]. Our findings serve as a strong motivation to
build a refactoring inference tool based on the precise, fine-grained data collected
by CodingTracker and compare its accuracy against the existing snapshot-
based tools.

3.3 How Frequently Do Developers Fix Failing Tests by Changing
the Test Itself?

In response to ever-changing requirements, developers continuously add new
features or adjust existing features of an application, which could cause some
unit tests to fail. A test that fails due to the new functionality is considered

Is It Dangerous to Use Version Control Histories 87

broken since making it a passing test requires fixing the test itself rather than the
application under test. Developers either have to fix the broken tests manually
or use recent tools that can fix them automatically [8, 9, 36].

Figure 6 presents a unit test of a parser. This test checks that the parser
produces a specific number of elements for a given input. A new requirement to
the system introduces an additional parsing rule. Implementing this new feature,
a developer breaks this test, because the number of elements in the same input
has changed. Thus, the developer needs to update the broken test accordingly.

Fig. 6. A unit test of a parser that checks the total number of elements in the parser’s
result

We justify the need for the automated test fixing tools by showing how of-
ten such scenarios happen in practice, i.e., how many failing tests are fixed by
changing the test itself. We look for these scenarios in the data collected for
15 participants who ran JUnit tests as part of their code development process.
Overall, we recorded 9,639 test session runs, involving 314,085 testcase runs. We
track a failing test from the first run it fails until the run it passes successfully.
Each such scenario is counted as a test fix. If a developer changes the test’s
package during this time span, we consider that fixing this failing test involves
changing it.

Figure 7 shows the ratio of test fixes involving and not involving changes to
the tests. Our results show that on average, 40% of test fixes involve changes
to the tests. Another observation is that every participant has some failing
tests, whose fix requires changing them. Hence, a tool like ReAssert [9] could
have benefited all of the participants, potentially helping to fix more than one
third of all failing tests. Nevertheless, only a designated study would show
how much of the required changes to the failing tests could be automated by
ReAssert.

3.4 How Many Changes Are Committed to VCS without Being
Tested?

Committing untested code is considered a bad practice. A developer who
commits untested code risks to break the build and consequently, cause the
disruption of the development process. To prevent such scenarios and catch bro-
ken builds early, the industry adopted continuous integration tools (e.g., Apache
Gump [2], Bamboo [3], Hudson [25], and Jenkins [26]), which build and test every
commit before integrating it into the trunk. Only those commits that successfully

88 S. Negara et al.

Fig. 7. Ratio of test fixes involving and not involving changes to the tests

pass all the tests are merged into the trunk. Nevertheless, these tools are not
pervasive yet. In particular, the majority of the projects that we studied did not
employ any continuous integration tools. Therefore, we would like to quantita-
tively assess the necessity of such tools.

To assess the number of untested, potentially build-breaking changes that
are committed to VCS, we measure how much developers change their code in
between tests and commits. Our measurements employ the data collected for
ten participants who both used Eclipse-based VCS clients and ran JUnit tests.
We consider each two consecutive commits of a source code file. If there are no
test runs in between these two commits, we disregard this pair of commits2.
Otherwise, we count the total number of code changes that happen in between
these two commits. Also, we count all code changes since the last test run until
the subsequent commit as untested changes. Subtracting the untested changes
from the total number of changes in between the two commits, we get the tested
changes.

Figure 8 shows the ratio of tested and untested changes that reach VCS. Al-
though the number of untested changes that reach a commit varies widely across
the participants, every participant committed at least some untested changes.
Overall, 24% of changes committed to VCS are untested. Figure 9 shows that
97% of the untested changes are authentic, i.e., we discard undos and comments.

Note that even a small number of code changes may introduce a bug, and
thus, break a build (unless the code is committed to a temporary branch). Be-
sides, even a single developer with a habit to commit untested changes into the
trunk may disrupt the development process of the entire team. Thus, our re-
sults confirm the usefulness of continuous integration tools, which ensure that
all commits merged into the trunk are fully tested.

2 We are conservative in calculating the amount of untested changes in order to avoid
skewing our results with some corner case scenarios, e.g., when a project does not
have automated unit tests at all (although this is problematic as well).

Is It Dangerous to Use Version Control Histories 89

Fig. 8. Ratio of tested and untested code changes that reach VCS

Fig. 9. Composition of untested changes that reach VCS

3.5 What Is the Temporal and Spacial Locality of Changes?

Simplifying the development process and increasing the productivity of a de-
veloper are among the major goals of an Integrated Development Environment
(IDE). The better an IDE supports code changing behavior of a developer, the
easier it is for him/her to develop the code. Code Bubbles [4] is an example of a
state-of-the-art IDE with a completely reworked User Interface (UI). The novel
UI enables a developer to concentrate on individual parts of an application. For
example, a developer could pick one or more related methods that he/she is
currently reviewing or editing and focus on them only.

To detect whether developers indeed focus their editing efforts on a particular
method at any given point in time, we calculate the distribution of method-
level code changes over time. We perform this calculation for all 24 participants
who took part in our study, since it does not depend on any particular activity
of the participant (e.g., interactions with VCS or test runs). We employ three
sliding time windows spanning 15, 30, and 60 minutes. For every code change

90 S. Negara et al.

that happens in a particular method, we count the number of changes to this
method within each sliding window, i.e., the number of changes 7.5 minutes, 15
minutes, and 30 minutes before and after the given change. Then, we sum the
results for all code changes of each method. Finally, we add up all these sums
for all the methods.

Figure 10 shows the ratio of method-level code changes for each of our three
sliding time windows. On average, 85% of changes to a method during an hour
interval are clustered within 15 minutes. Our results demonstrate that developers
tend to concentrate edits to a particular method in a relatively small interval of
time. The implication of this finding is that IDEs should provide visualizations
of the code such that a programmer can focus on one method at a time.

Fig. 10. Ratio of method-level code changes for three sliding time windows: 15, 30,
and 60 minutes

4 Collecting Code Evolution Data

To collect code evolution data for our research questions, we developed an Eclipse
plug-in, CodingTracker. CodingTracker registers 38 different kinds of code
evolution events that are grouped in ten categories. Table 2 presents the com-
plete list of the registered events. CodingTracker records the detailed informa-
tion about each registered event, including the timestamp at which the event
is triggered. For example, for a performed/undone/redone text edit, Coding-

Tracker records the offset of the edit in the edited document, the removed text
(if any), and the added text (if any). In fact, the recorded information is so
detailed and precise that CodingTracker’s replayer uses it to reconstruct the
state of the evolving code at any point in time. Note that we need to replay
the recorded data to reproduce the actions of a developer since our AST node
operations inferencing algorithm is applied offline.

CodingTracker’s replayer is an Eclipse View that is displayed alongside other
Views of an Eclipse workbench, thus enabling a user to see the results of the
replayed events in the same Eclipse instance. The replayer allows to load a
recorded sequence of events, browse it, hide events of the kinds that a user is
not interested in, and replay the sequence at any desired pace.

Is It Dangerous to Use Version Control Histories 91

Table 2. The complete list of events recorded by CodingTracker

Category Event Description

Text editing

Perform/Undo/Redo Perform/Undo/Redo a text edit
text edit in a Java editor

Perform/Undo/Redo Perform/Undo/Redo a text edit
compare editor text edit in a compare editor

File editing

Edit file Start editing a file in a Java editor

Edit unsynchronized file
Start editing a file in a Java editor

that is not synchronized with
the underlying resource

New file
A file is about to be edited

for the first time

Refresh file
Refresh a file in a Java editor to synch-
ronize it with the underlying resource

Save file Save file in a Java editor
Close file Close file in a Java editor

Compare
editors

Open compare editor Open a new compare editor
Save compare editor Save a compare editor
Close compare editor Close a compare editor

Refactorings
Start refactoring Perform/Undo/Redo a refactoring
Finish refactoring A refactoring is completed

Resource
manipulation

Create resource Create a new resource (e.g., file)
Copy resource Copy a resource to a different location
Move resource Move a resource to a different location
Delete resource Delete a resource

Externally modify Modify a resource from outside of Eclipse
resource (e.g., using a different text editor)

Interactions CVS/SVN update file Update a file from VCS
with CVS/SVN commit file Commit a file to VCS

Version Control CVS/SVN initial
Commit a file to VCS for the first time

System (VCS) commit file

JUnit test runs

Launch test session A test session is about to be started
Start test session Start a test session
Finish test session A test session is completed
Start test case Start a test case
Finish test case A test case is completed

Start up events
Launch application Run/Debug the developed application

Start Eclipse Start an instance of Eclipse

Workspace Change workspace
Change global workspace options

and options
Project Options Change project options Change options of a refactored project

Project Change referencing Change the list of projects that
References projects reference a refactored project

92 S. Negara et al.

To ensure that the recorded data is correct, CodingTracker records redun-
dant information for some events. This additional data is used to check that
the reconstructed state of the code matches the original one. For example, for
every text edit, CodingTracker records the removed text (if any) rather than
just the length of the removed text, which would be sufficient to replay the
event. For CVS/SVN commits, CodingTracker records the whole snapshot of
the committed file. While replaying text edits and CVS/SVN commits, Coding-

Tracker checks that the edited document indeed contains the removed text and
the committed file matches its captured snapshot3.

Eclipse creates a refactoring descriptor for every performed automated refac-
toring. Refactoring descriptors are designed to capture sufficient information to
enable replaying of the corresponding refactorings. Nevertheless, we found that
some descriptors do not store important refactoring configuration options and
thus, can not be used to reliably replay the corresponding refactorings. For exam-
ple, the descriptor of Extract Method refactoring does not capture information
about the extracted method’s parameters [5]. Therefore, besides recording refac-
toring descriptors of the performed/undone/redone automated Eclipse refactor-
ings, CodingTracker records the refactorings’ effects on the underlying code.
A refactoring’s effects are events triggered by the execution of this refactoring –
usually, one or more events from Text editing, File editing, and Resource manip-
ulation categories presented in Table 2. In a sequence of recorded events, effects
of an automated refactoring are located in between its Start refactoring and
Finish refactoring events. To ensure robust replaying, CodingTracker replays
the recorded refactorings’ effects rather than their descriptors.

5 AST Node Operations Inferencing Algorithm

Our inferencing algorithm converts the raw text edits collected by Coding-

Tracker into operations on the corresponding AST nodes. First, the algorithm
assigns a unique ID to every AST node in the old AST. Next, the algorithm con-
siders the effect of each text edit on the position of the node in the new AST in
order to match the old and the new AST nodes. The matched nodes in the new
AST get their IDs from their counterparts in the old AST. If the content of a
matched AST node has changed, the algorithm generates the corresponding up-
date operation. The algorithm generates a delete operation for every unmatched
node in the old AST and an add operation for every unmatched node in the new
AST, assigning it a unique ID.

Given an edited document, a single text edit is fully described by a 3-tuple
(<offset>, <removed text length>, <added text>), where <offset> is the
offset of the edit in the edited document, <removed text length> is the length
of the text that is removed at the specified offset, and <added text> is the text
that is added at the specified offset. If <removed text length> is 0, the edit

3 Note that replaying CVS/SVN commits does not involve any interactions with Ver-
sion Control System (VCS), but rather checks the correctness of the replaying pro-
cess.

Is It Dangerous to Use Version Control Histories 93

does not remove any text. If <added text> is empty, the edit does not add any
text. If <removed text length> is not 0 and <added text> is not empty, the
edit replaces the removed text with the <added text> in the edited document.

In the following, we describe several heuristics that improve the precision of
our inferencing algorithm. Then, we explain our algorithm in more details and
demonstrate it using an example.

Gluing. Figure 11(a) illustrates an example of text edits produced by a de-
veloper, who renamed variable i1 to j2 by first removing the old name using
backspace and then typing in the new name. This single operation of changing
a variable’s name involves four distinct text edits that are recorded by Cod-

ingTracker. At the same time, all these text edits are so closely related to
each other that they can be “glued” together into a single text edit with the
same effect on the underlying text, which is shown in Figure 11(b). We call such
“glued” text edits coherent text edits and use them instead of the original text
edits recorded by CodingTracker in our AST node operations inferencing al-
gorithm. This drastically reduces the number of inferred AST node operations
and makes them better represent the intentions of a developer.

(a) A sequence of text edits recorded by CodingTracker for renaming variable i1 to j2.

(b) A coherent text edit that “glues” together all text edits shown in Figure 11(a).

Fig. 11. An example of changing a variable’s name represented both as individual
text edits recorded by CodingTracker (Figure 11(a)) and as a single coherent text edit
(Figure 11(b)). Each box shows the content of the edited document. The offset of every
document’s character is shown under each box. The 3-tuples describing text edits are
shown above the arrows that connect boxes.

To decide whether a text edit e2 should be “glued” to a preceding text edit
e1, we use the following heuristics:

1. e2 should immediately follow e1, i.e., there are no other events in between
these two text edits.

2. e2 should continue the text change of e1, i.e., text edit e2 should start at
the offset at which e1 stopped.

Note that in the above heuristics e1 can be either a text edit recorded by Cod-

ingTracker or a coherent text edit, produced from “gluing” several preceding
text edits.

94 S. Negara et al.

Linked Edits. Eclipse offers a code editing feature that allows simultaneous
editing of a program entity in all its bindings that are present in the opened
document. Each binding of the edited entity becomes an edit box and every
text edit in a single edit box is immediately reflected in all other boxes as well.
This feature is often used to rename program entities, in particular to name
extracted methods. Since text edits in a single edit box are intermixed with
the corresponding edits in other edit boxes, to apply our “gluing” heuristics
presented above, we treat edits in each box disjointly, constructing a separate
coherent text edit for every edit box. When a boxed edit is over, the constructed
coherent text edits are processed one by one to infer the corresponding AST
node operations.

Jumping over Unparsable Code. Our AST node operations inferencing al-
gorithm processes coherent text edits as soon as they are constructed, except the
cases when text edits introduce parse errors in the underlying code. Parse errors
might confuse the parser that creates ASTs for our algorithm, which could lead
to imprecise inferencing results. Therefore, when a text edit breaks the AST, we
postpone the inferencing until the AST is well-formed again. Such postponing
causes accumulation of several coherent text edits, which are processed by our
inferencing algorithm together. Figure 12 shows an example of a code editing sce-
nario that requires inference postponing. A developer inserts brackets around the
body of an if statement. The first coherent text edit adds an opening bracket,
breaking the structure of the AST, while the second coherent text edit adds a
closing bracket, bringing the AST back to a well-formed state. The inference is
postponed until the second edit fixes the AST. Note that sometimes we have to
apply the inferencing algorithm even when the underlying program’s AST is still
broken, for example, when a developer closes the editor before fixing the AST.
This could lead to some imprecision in the inferred AST node operations, but
we believe that such scenarios are very rare in practice. In particular, our per-
sonal experience of replaying the recorded sequences shows that the code rarely
remains in the unparsable state for long time.

Fig. 12. An example of two code edits: the first edit breaks the AST of the edited
program, while the second edit brings the AST back to a well-formed state

Pseudocode. Figure 13 shows an overview of our AST node operations infer-
encing algorithm. The algorithm takes as input the list of coherent text edits,
cteList, the AST of the edited code before the text edits, oldAST, and the AST

Is It Dangerous to Use Version Control Histories 95

after the edits, newAST. The output of the algorithm is an unordered collection
of the inferred AST node operations.

The inferencing algorithm is applied as soon as a new coherent text edit is
completed, unless the underlying code is unparsable at that point, in which case
the inferencing is postponed until the code becomes parsable again. As long as
the code remains parsable, cteList contains a single coherent text edit. If the
code becomes unparsable for some time, cteList will contain the accumulated
coherent text edits that bring the code back into the parsable state. Note that
newAST represents the code that is a result of the edits in cteList applied to
the code represented by oldAST. Since replaying the edits in cteList is not a
part of the inferencing algorithm, we supply both oldAST and newAST as the
algorithm’s inputs.

Each inferred operation captures the persistent ID of the affected AST node.
Persistent IDs uniquely identify AST nodes in an application throughout its
evolution. Note that given an AST, a node can be identified by its position in
this AST. A node’s position in an AST is the traversal path to this node from
the root of the AST. Since the position of an AST node may change with the
changes to its AST, we assign a unique persistent ID to every AST node and keep
the mapping from positions to persistent IDs, updating it accordingly whenever
a node’s position is changed as a result of code changes.

Most of the time, edits in cteList affect only a small part of the code’s AST.
Therefore, the first step of the algorithm (lines 3 – 5) establishes the root of the
changed subtree – a common covering node that is present in both the old and
the new ASTs and completely encloses the edits in cteList. To find a common
covering node, we first look for a local covering node in oldAST and a local
covering node in newAST. These local covering nodes are the innermost nodes
that fully encompass the edits in cteList. The common part of the traversal paths
to the local covering nodes from the roots of their ASTs represents the position
of the common covering node (assigned to coveringPosition in line 3).

Next, every descendant node of the common covering node in the old AST is
checked against the edits in cteList (lines 6 – 18). An edit does not affect a node
if the code that this node represents is either completely before the edited code
fragment or completely after it. If a node’s code is completely before the edited
code fragment, the edit does not impact the node’s offset. Otherwise, the edit
shifts the node’s offset with <added text length> - <removed text length>.
These shifts are calculated by getEditOffset and accumulated in deltaOffset (line
12). If no edits affect a node, the algorithm looks for its matching node in the
new AST (line 15). Every matched pair of nodes is added to matchedNodes.

In the following step (lines 19 – 25), the inferencing algorithm matches yet
unmatched nodes that have the same AST node types and the same position in
the old and the new ASTs. Finally, the algorithm creates an update operation
for every matched node whose content has changed (lines 26 – 30), a delete
operation for every unmatched node in the old AST (lines 31 – 33), and an add
operation for every unmatched node in the new AST (lines 34 – 36).

96 S. Negara et al.

input: oldAST, newAST, cteList // the list of coherent text edits
output: astNodeOperations
1 astNodeOperations = �;
2 matchedNodes = �;
3 coveringPosition = getCommonCoveringNodePosition(oldAST, newAST, cteList);
4 oldCoveringNode = getNode(oldAST, coveringPosition);
5 newCoveringNode = getNode(newAST, coveringPosition);
6 foreach (oldNode ∈ getDescendants(oldCoveringNode)) { // matches outliers
7 deltaOffset = 0;
8 foreach (textEdit ∈ cteList) {
9 if (affects(textEdit, oldNode, deltaOffset) {
10 continue foreach line6;
11 } else {
12 deltaOffset += getEditOffset(textEdit, oldNode, deltaOffset);
13 }
14 }
15 if (∃ newNode ∈ getDescendants(newCoveringNode) :

getOffset(oldNode) + deltaOffset == getOffset(newNode) &&
haveSameASTNodeTypes(oldNode, newNode)) {

16 matchedNodes ∪= (oldNode, newNode);
17 }
18 }
19 foreach (oldNode ∈ getDescendants(oldCoveringNode) :

oldNode /∈ getOldNodes(matchedNodes)) { // matches same-position nodes
20 oldPosition = getNodePositionInAST(oldNode, oldAST);
21 newNode = getNode(newAST, oldPosition);
22 if (∃ newNode ∈ getDescendants(newCoveringNode) :

haveSameASTNodeTypes(oldNode, newNode) {
23 matchedNodes ∪= (oldNode, newNode);
24 }
25 }
26 foreach ((oldNode, newNode) ∈ matchedNodes) {
27 if (getText(oldNode) �= getText(newNode)) {
28 astNodeOperations ∪= getUpdateOperation(oldNode, newNode);
29 }
30 }
31 foreach (oldNode ∈ getDescendants(oldCoveringNode) :

oldNode /∈ getOldNodes(matchedNodes)) {
32 astNodeOperations ∪= getDeleteOperation(oldNode);
33 }
34 foreach (newNode ∈ getDescendants(newCoveringNode) :

newNode /∈ getNewNodes(matchedNodes)) {
35 astNodeOperations ∪= getAddOperation(newNode);
36 }

Fig. 13. Overview of our AST node operations inferencing algorithm

Is It Dangerous to Use Version Control Histories 97

Example. Figure 14 illustrates a coherent text edit that changes a variable
declaration. Figure 15 demonstrates the inferred AST node operations for this
edit. Connected ovals represent the nodes of the old and the new ASTs. Dashed
arrows represent the inferred operations. Labels above the arrows indicate the
kind of the corresponding operations.

Fig. 14. An example of a text edit that changes a variable declaration

Fig. 15. The inferred AST node operations for the text edit in Figure 14

6 Threats to Validity

There are several factors that might negatively impact the precision of our re-
sults. This section discusses the potential influence and possible mitigation for
each of these factors.

6.1 Experimental Setup

Issues like privacy, confidentiality, and lack of trust in the reliability of research
tools made it difficult to recruit programmers to participate in our study. There-
fore, we were unable to study a larger sample of experienced programmers.

Many factors affect programmers’ practices. For example, programmers may
write code, refactor, test, and commit differently in different phases of software
development, e.g., before and after a release. As another example, practices of
programmers who work in teams might be different than those who are the sole
authors of their programs. Due to the uncontrolled nature of our study, it is not
clear how such factors affect our results.

98 S. Negara et al.

Our participants have used CodingTracker for different periods of time (See
Section 2). Therefore, those participants who used CodingTracker more influ-
enced our results more.

Our results are limited to programmers who use Eclipse for Java programming
because CodingTracker is an Eclipse plug-in that captures data about the
evolution of Java code. However, we expect our results to generalize to similar
programming environments.

6.2 AST Node Operations Inferencing Algorithm

To decide whether two individual text edits should be “glued” together, we
apply certain heuristics, which are sufficient in most cases. Nevertheless, as any
heuristics, they can not cover all possible scenarios. As a result, our algorithm
might infer multiple operations for a single change intended by a developer (e.g.,
a single rename of a variable). This artificial increase in the number of AST
node operations can potentially skew the results for each question. However,
such corner case scenarios are infrequent and thus, their influence on our results
is negligible.

The current implementation of our AST node operations inferencing algorithm
does not support the move operation, but rather represents the corresponding
action as delete followed by add. Consequently, the number of AST node oper-
ations that our data analyzers operate on might be inflated. At the same time,
all our results are computed as ratios of the number of operations, which sub-
stantially diminishes the effect of this inflation.

Although our AST node operations inferencing algorithm does not expect that
the underlying code is always parsable, it produces the most precise results for
a particular subsequence of text edits when there is at least one preceding and
one succeeding state, in which the code is parsable. The algorithm uses these
parsable states to “jump over the gap” of intermediate unparsable states, if any.
A scenario without a preceding and succeeding parsable states could cause the
algorithm to produce some noise in the form of spurious or missing AST node
operations. Such scenarios are very uncommon and hence, their impact on our
results is minimal.

7 Related Work

7.1 Empirical Studies on Source Code Evolution

Early work on source code evolution relied on the information stored in VCS as
the primary source of data. The lack of fine-grained data constrained researchers
to concentrate mostly on extracting high-level metrics of software evolution, e.g.,
number of lines changed, number of classes, etc.

Eick et al. [13] identified specific indicators for code decay by conducting a
study on a large (∼100,000,000 LOC) real time software for telephone systems.
These indicators were based on a combination of metrics such as number of

Is It Dangerous to Use Version Control Histories 99

lines changed, commit size, number of files affected by a commit, duration of a
change, and the number of developers contributing to a file.

Xing et al. [51] analyzed the evolution of design in object-oriented software
by reconstructing the differences between snapshots of software releases at the
UML level using their tool, UMLDiff. UML level changes capture information
at the class level and can be used to study how classes, fields, and methods have
changed from each version. From these differences, they tried to identify distinct
patterns in the software evolution cycles.

Gall et al. [16] studied the logical dependencies and change patterns in a prod-
uct family of Telecommunication Switching Systems by analyzing 20 punctuated
software releases over two years. They decomposed the system into modules and
used their CAESAR technique to analyze how the structure and software metrics
of these modules evolved through different releases.

For these kinds of analyses, the data contained in traditional VCS is ade-
quate. However, for more interesting analyses that require program comprehen-
sion, relying only on high-level information from VCS is insufficient. In partic-
ular, Robbes in his PhD thesis [41, p.70] shows the difference in the precision
of code evolution analysis tools applied to fine-grained data vs. coarse-grained
VCS snapshots. This client level comparison is complementary to our work, in
which we quantify the extent of data loss and imprecision in VCS snapshots
independently of a particular client tool.

7.2 Tools for Reconstructing Program Changes

To provide greater insight into source code evolution, researchers have proposed
tools to reconstruct high-level source code changes (e.g., operations on AST
nodes, refactorings, restructurings, etc.) from the coarse-grained data supplied
through VCS snapshots.

Fluri et al. [15] proposed an algorithm to extract fine-grained changes from
two snapshots of a source code file and implemented this algorithm in a tool,
ChangeDistiller. ChangeDistiller represents the difference between two versions
of a file as a sequence of atomic operations on the corresponding AST nodes.
We also express changes as AST node operations, but our novel algorithm infers
them directly from the fine-grained changes produced by a developer rather than
from snapshots stored in VCS.

Kim et al. [29] proposed summarizing the structural changes between different
versions of a source code file as high-level change rules. Change rules provide a
cohesive description of related changes beyond deletion, addition, and removal
of a textual element. Based on this idea, they created a tool that could automat-
ically infer those change rules and present them as concise and understandable
transformations to the programmer.

Weissgerber et al. [50] and Dig et al. [11] proposed tools for identifying refac-
torings between two different version of a source code. Such tools help developers
gain better insights into the high-level transformations that occurred between
different versions of a program.

100 S. Negara et al.

All these tools detect structural changes in the evolving code using VCS snap-
shots. However, the results of our field study presented in Section 3 show that
VCS snapshots provide incomplete and imprecise data, thus compromising the
accuracy of these tools. The accuracy of such tools could be greatly improved by
working on the fine-grained changes provided through a change-based software
tool such as CodingTracker.

7.3 Tools for Fine-Grained Analysis of Code Evolution

Robbes et al. [42, 44] proposed to make a change the first-class citizen and cap-
ture it directly from an IDE as soon as it happens. They developed a tool, Spy-
Ware [43], that implements these ideas. SpyWare gets notified by the Smalltalk
compiler in the Squeak IDE whenever the AST of the underlying program
changes. SpyWare records the captured AST modification events as operations
on the corresponding AST nodes. Also, SpyWare records automated refactoring
invocation events.

Although our work is inspired by similar ideas, our tool, CodingTracker,
significantly differs from SpyWare. CodingTracker captures raw fine-grained
code edits rather than a compiler’s AST modification events. The recorded data
is so precise that CodingTracker is able to replay it in order to reproduce the
exact state of the evolving code at any point in time. Also, CodingTracker

implements a novel AST node operations inferencing algorithm that does not
expect the underlying code to be compilable or even fully parsable. Besides,
CodingTracker captures a variety of evolution data that does not represent
changes to the code, e.g., interactions with VCS, application and test runs, etc.

Sharon et al. [12] implemented EclipsEye, porting some ideas behind SpyWare
to Eclipse IDE. Similarly to SpyWare, EclipsEye gets notified by Eclipse about
AST changes in the edited application, but these notifications are limited to the
high-level AST nodes starting from field and method declarations and up.

Omori and Maruyama [37, 38] developed a similar fine-grained operation
recorder and replayer for the Eclipse IDE. In contrast to CodingTracker, their
tool does not infer AST node operations but rather associates code edits with
AST nodes, to which they might belong. Besides, CodingTracker captures more
operations such as those that do not affect code like runs of programs and
tests and version control system operations. The additional events that Cod-

ingTracker captures enabled us to study the test evolution patterns and the
degree of loss of code evolution information in version control systems.

Yoon et al. [52] developed a tool, Fluorite, that records low-level events in
Eclipse IDE. Fluorite captures sufficiently precise fine-grained data to reproduce
the snapshots of the edited files. But the purpose of Fluorite is to study code
editing patterns rather than software evolution in general. Therefore, Fluorite
does not infer AST node operations from the collected raw data. Also, it does
not capture such important evolution data as interactions with VCS, test runs,
or effects of automated refactorings.

Chan et al. [6] proposed to conduct empirical studies on code evolution em-
ploying fine-grained revision history. They produce fine-grained revision history

Is It Dangerous to Use Version Control Histories 101

of an application by capturing the snapshots of its files at every save and compi-
lation action. Although such a history contains more detailed information about
an application’s code evolution than a common VCS, it still suffers from the
limitations specific to snapshot-based approaches, in particular, the irregular in-
tervals between the snapshots and the need to reconstruct the low level changes
from the pairs of consecutive snapshots.

8 Conclusions

The primary source of data in code evolution research is the file-based Ver-
sion Control System (VCS). Our results show that although popular among
researchers, a file-based VCS provides data that is incomplete and imprecise.
Moreover, many interesting research questions that involve code changes and
other development activities (e.g., automated refactorings or test runs) require
evolution data that is not captured by VCS at all.

We conducted a field study using CodingTracker, our Eclipse plug-in, that
collects diverse evolution data. We analyzed the collected data and answered
five code evolution research questions. We found that 37% of code changes are
shadowed by other changes, and are not stored in VCS. Thus, VCS-based code
evolution research is incomplete. Second, programmers intersperse different kinds
of changes in the same commit. For example, 46% of refactored program entities
are also edited in the same commit. This overlap makes the VCS-based research
imprecise. The data collected by CodingTracker enabled us to answer research
questions that could not be answered using VCS data alone. In particular, we
discovered that 40% of test fixes involve changes to the tests, 24% of changes
committed to VCS are untested, and 85% of changes to a method during an
hour interval are clustered within 15 minutes.

These results confirm that more detailed data than what is stored in VCS is
needed to study software evolution accurately.

Acknowledgments. This work was partially supported by the Institute for Ad-
vanced Computing Applications and Technologies (IACAT) at the University of
Illinois at Urbana-Champaign, by the United States Department of Energy un-
der Contract No. DE-F02-06ER25752, and by the National Science Foundation
award number CCF 11-17960.

References

1. Adams, B., Jiang, Z.M., Hassan, A.E.: Identifying crosscutting concerns using his-
torical code changes. In: ICSE (2010)

2. Apache Gump continuous integration tool, http://gump.apache.org/
3. Bamboo continuous integration and release management,

http://www.atlassian.com/software/bamboo/

4. Bragdon, A., Reiss, S.P., Zeleznik, R., Karumuri, S., Cheung, W., Kaplan, J.,
Coleman, C., Adeputra, F., LaViola Jr., J.J.: Code Bubbles: rethinking the user
interface paradigm of integrated development environments. In: ICSE (2010)

http://gump.apache.org/
http://www.atlassian.com/software/bamboo/

102 S. Negara et al.

5. Eclipse bug report, https://bugs.eclipse.org/bugs/show_bug.cgi?id=365233
6. Chan, J., Chu, A., Baniassad, E.: Supporting empirical studies by non-intrusive

collection and visualization of fine-grained revision history. In: Proceedings of the
2007 OOPSLA Workshop on Eclipse Technology eXchange (2007)

7. CVS - Concurrent Versions System, http://cvs.nongnu.org/
8. Daniel, B., Gvero, T., Marinov, D.: On test repair using symbolic execution. In:

ISSTA (2010)
9. Daniel, B., Jagannath, V., Dig, D., Marinov, D.: ReAssert: Suggesting repairs for

broken unit tests. In: ASE (2009)
10. Demeyer, S., Ducasse, S., Nierstrasz, O.: Finding refactorings via change metrics.

In: OOPSLA (2000)
11. Dig, D., Comertoglu, C., Marinov, D., Johnson, R.: Automated Detection of Refac-

torings in Evolving Components. In: Hu, Q. (ed.) ECOOP 2006. LNCS, vol. 4067,
pp. 404–428. Springer, Heidelberg (2006)

12. EclipsEye, http://www.inf.usi.ch/faculty/lanza/Downloads/Shar07a.pdf
13. Eick, S.G., Graves, T.L., Karr, A.F., Marron, J.S., Mockus, A.: Does code decay?

assessing the evidence from change management data. TSE 27, 1–12 (2001)
14. Eshkevari, L.M., Arnaoudova, V., Di Penta, M., Oliveto, R., Guéhéneuc, Y.G.,

Antoniol, G.: An exploratory study of identifier renamings. In: MSR (2011)
15. Fluri, B., Wuersch, M., Pinzger, M., Gall, H.: Change distilling: Tree differencing

for fine-grained source code change extraction. TSE 33, 725–743 (2007)
16. Gall, H., Hajek, K., Jazayeri, M.: Detection of logical coupling based on product

release history. In: ICSM (1998)
17. Gall, H., Jazayeri, M., Klsch, R.R., Trausmuth, G.: Software evolution observations

based on product release history. In: ICSM (1997)
18. Gall, H., Jazayeri, M., Krajewski, J.: CVS release history data for detecting logical

couplings. In: IWMPSE (2003)
19. Girba, T., Ducasse, S., Lanza, M.: Yesterday’s weather: Guiding early reverse en-

gineering efforts by summarizing the evolution of changes. In: ICSM (2004)
20. Git - the fast version control system, http://git-scm.com/
21. Gorg, C., Weisgerber, P.: Detecting and visualizing refactorings from software

archives. In: ICPC (2005)
22. Hassaine, S., Boughanmi, F., Guéhéneuc, Y.G., Hamel, S., Antoniol, G.: A

seismology-inspired approach to study change propagation. In: ICSM (2011)
23. Hassan, A.E.: Predicting faults using the complexity of code changes. In: ICSE

(2009)
24. Hindle, A., German, D.M., Holt, R.: What do large commits tell us?: a taxonomical

study of large commits. In: MSR (2008)
25. Hudson extensive continuous integration server, http://hudson-ci.org/
26. Jenkins extendable open source continuous integration server,

http://jenkins-ci.org/

27. Kagdi, H., Collard, M.L., Maletic, J.I.: A survey and taxonomy of approaches for
mining software repositories in the context of software evolution. J. Softw. Maint.
Evol. 19 (March 2007)

28. Kawrykow, D., Robillard, M.P.: Non-essential changes in version histories. In: ICSE
(2011)

29. Kim, M., Notkin, D., Grossman, D.: Automatic inference of structural changes for
matching across program versions. In: ICSE (2007)

30. Kim, S., James Whitehead Jr., E., Zhang, Y.: Classifying software changes: Clean
or buggy? TSE 34(2) (2008)

https://bugs.eclipse.org/bugs/show_bug.cgi?id=365233
http://cvs.nongnu.org/
http://www.inf.usi.ch/faculty/lanza/Downloads/Shar07a.pdf
http://git-scm.com/
http://hudson-ci.org/
http://jenkins-ci.org/

Is It Dangerous to Use Version Control Histories 103

31. Kim, S., Pan, K., Whitehead Jr., E.J.: Micro pattern evolution. In: MSR (2006)
32. Kim, S., Zimmermann, T., Pan, K., Whitehead, E.J.J.: Automatic identification

of bug-introducing changes. In: ASE (2006)
33. Lee, T., Nam, J., Han, D., Kim, S., In, H.P.: Micro interaction metrics for defect

prediction. In: ESEC/FSE (2011)
34. Lehman, M.M., Belady, L.A. (eds.): Program evolution: processes of software

change. Academic Press Professional, Inc. (1985)
35. Lehman, M.M.: Programs, life cycles, and laws of software evolution. Proc.

IEEE 68(9), 1060–1076 (1980)
36. Mirzaaghaei, M., Pastore, F., Pezze, M.: Automatically repairing test cases for

evolving method declarations. In: ICSM (2010)
37. Omori, T., Maruyama, K.: A change-aware development environment by recording

editing operations of source code. In: MSR (2008)
38. Omori, T., Maruyama, K.: An editing-operation replayer with highlights support-

ing investigation of program modifications. In: IWMPSE-EVOL (2011)
39. Rahman, F., Posnett, D., Hindle, A., Barr, E., Devanbu, P.: BugCache for inspec-

tions: hit or miss? In: ESEC/FSE (2011)
40. Ratzinger, J., Sigmund, T., Vorburger, P., Gall, H.: Mining software evolution to

predict refactoring. In: ESEM (2007)
41. Robbes, R.: Of Change and Software. Ph.D. thesis, University of Lugano (2008)
42. Robbes, R., Lanza, M.: A change-based approach to software evolution.

ENTCS 166, 93–109 (2007)
43. Robbes, R., Lanza, M.: SpyWare: a change-aware development toolset. In: ICSE

(2008)
44. Robbes, R., Lanza, M., Lungu, M.: An Approach to Software Evolution Based on

Semantic Change. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422,
pp. 27–41. Springer, Heidelberg (2007)

45. Śliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? In: MSR
(2005)

46. Snipes, W., Robinson, B.P., Murphy-Hill, E.R.: Code hot spot: A tool for extraction
and analysis of code change history. In: ICSM (2011)

47. Apache Subversion centralized version control, http://subversion.apache.org/
48. Vakilian, M., Chen, N., Negara, S., Rajkumar, B.A., Bailey, B.P., Johnson, R.E.:

Use, disuse, and misuse of automated refactorings. In: ICSE (2012)
49. Van Rysselberghe, F., Rieger, M., Demeyer, S.: Detecting move operations in ver-

sioning information. In: CSMR (2006)
50. Weissgerber, P., Diehl, S.: Identifying refactorings from source-code changes. In:

ASE (2006)
51. Xing, Z., Stroulia, E.: Analyzing the evolutionary history of the logical design of

object-oriented software. TSE 31, 850–868 (2005)
52. Yoon, Y., Myers, B.A.: Capturing and analyzing low-level events from the code

editor. In: PLATEAU (2011)
53. Zimmermann, T., Nagappan, N., Zeller, A.: Predicting bugs from history. Software

Evolution (2008)
54. Zimmermann, T., Weisgerber, P., Diehl, S., Zeller, A.: Mining version histories to

guide software changes. In: ICSE (2004)

http://subversion.apache.org/

Evaluating the Design of the R Language
Objects and Functions for Data Analysis

Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek

Purdue University

Abstract. R is a dynamic language for statistical computing that combines lazy
functional features and object-oriented programming. This rather unlikely linguis-
tic cocktail would probably never have been prepared by computer scientists,
yet the language has become surprisingly popular. With millions of lines of R
code available in repositories, we have an opportunity to evaluate the fundamen-
tal choices underlying the R language design. Using a combination of static and
dynamic program analysis we assess the success of different language features.

1 Introduction

Over the last decade, the R project has become a key tool for implementing sophis-
ticated data analysis algorithms in fields ranging from computational biology [7] to
political science [11]. At the heart of the R project is a dynamic, lazy, functional, object-
oriented programming language with a rather unusual combination of features. This
computer language, commonly referred to as the R language [15,16] (or simply R), was
designed in 1993 by Ross Ihaka and Robert Gentleman [10] as a successor to S [1]. The
main differences with its predecessor, which had been designed at Bell labs by John
Chambers, were the open source nature of the R project, vastly better performance, and,
at the language level, lexical scoping borrowed from Scheme and garbage collection [1].
Released in 1995 under a GNU license, it rapidly became the lingua franca for statisti-
cal data analysis. Today, there are over 4 000 packages available from repositories such
as CRAN and Bioconductor.1 The R-forge web site lists 1 242 projects. With its 55 user
groups, Smith [18] estimates that there are about 2 000 package developers, and over 2
million end users. Recent interest in the financial sector has spurred major companies
to support R; for instance, Oracle is now bundling it as part of its Big Data Appliance
product.2

As programming languages go, R comes equipped with a rather unlikely mix of fea-
tures. In a nutshell, R is a dynamic language in the spirit of Scheme or JavaScript, but
where the basic data type is the vector. It is functional in that functions are first-class
values and arguments are passed by deep copy. Moreover, R uses lazy evaluation by
default for all arguments, thus it has a pure functional core. Yet R does not optimize
recursion, and instead encourages vectorized operations. Functions are lexically scoped
and their local variables can be updated, allowing for an imperative programming style.
R targets statistical computing, thus missing value support permeates all operations.

1 http://cran.r-project.org and http://www.bioconductor.org
2 http://www.oracle.com/us/corporate/press/512001

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 104–131, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://cran.r-project.org
http://www.bioconductor.org
http://www.oracle.com/us/corporate/press/512001

Evaluating the Design of R 105

The dynamic features of the language include forms of reflection over its environment,
the ability to obtain source code for any unevaluated expression, and the parse and
eval functions to dynamically treat text as code. Finally, the language supports ob-
jects. In fact, it has two distinct object systems: one based on single-dispatch generic
functions, and the other on classes and multi-methods. Some surprising interactions be-
tween the functional and object parts of the language are that there is no aliasing, object
structures are purely tree-shaped, and side effects are limited.

The R language can be viewed as a fascinating experiment in programming language
design. Presented with a cornucopia of programming models, which one will users
choose, and how? Clearly, any answer must be placed in the context of its problem
domain: data analysis. How do these paradigms fit that problem domain? How do they
strengthen each other and how do they interfere? Studying how these features are used
in practice can yield insights for language designers and implementers. As luck would
have it, the R community has several centralized code repositories where R packages
are deposited together with test harnesses. Thus, not only do we have all the open source
contributions made in the last 15 years, but we also have them in an executable format.
This paper makes the following contributions:

– Semantics of Core R: Some of the challenges dealing with R come from the fact
it is defined by a single implementation that exposes its inner workings through
reflection. We make the first step towards addressing this issue. Combining a careful
reading of the interpreter sources, the R manual [16], and extensive testing, we give
the first formal account of the semantics of the core of the language. We believe
that a precise definition of lazy evaluation in R was hitherto undocumented.

– TraceR Framework: We implemented TraceR, an open source framework for analy-
sis of R programs. TraceR relies on instrumented interpreters and off-line analyzers
along with static analysis tools.

– Corpus Gathering: We curated a large corpus of R programs composed of over
1 000 executable R packages from the Bioconductor and CRAN repositories, as
well as hand picked end-user codes and small performance benchmark programs
that we wrote ourselves.

– Implementation Evaluation: We evaluate the status of the R implementation. While
its speed is not acceptable for use in production systems, many end users report
being vastly more productive in R than in other languages. R is decidedly single-
threaded, its semantics has no provisions for concurrency, and its implementation
is hopelessly non-thread safe. Memory usage is also an issue; even small programs
have been shown to use immoderate amounts of heap for data and meta-data. Im-
proving speed and memory usage will require radical changes to the implementa-
tion, and a tightening of the language definition.

– Language Evaluation: We examine the usage and adoption of different language
features. R permits many programming styles, access to implementation details,
and little enforcement of data encapsulation. Given the large corpus at hand, we
look at the usage impacts of these design decisions.

The code and data of our project are available in open source from:
http://r.cs.purdue.edu/

http://r.cs.purdue.edu/

106 F. Morandat et al.

2 An R Primer

We introduce the main concepts of the R programming language. To understand the
design of R, it is helpful to consider the end-user experience that the designers of R and
S were looking for. Most sessions are interactive, the user loads data into the virtual
machine and starts by plotting the data and making various simple summaries. If those
do not suffice, there are some 4 338 statistical packages that can be applied to the data.
Programming proper only begins if the modeling steps become overly repetitive, in
which case they can be packaged into simple top-level functions. It is only if the existing
packages do not precisely match the user’s needs that a new package will be developed.
The design of the language was thus driven by the desire to be intuitive, so users who
only require simple plotting and summarization can get ahead quickly. For package
developers, the goal was flexibility and extendibility. A tribute to the success of their
approach is the speed at which new users can pick up R; in many statistics departments
the language is introduced in a week.

The basic data type in R is the vector, an ordered collection of values of the same kind.
These values can be either numerics, characters, or logicals. Other data types include
lists (i.e., heterogeneous vectors) and functions. Matrices, data frames, and objects are
built up from vectors. A command for creating a vector and binding it to x is:

x <- c(1, 2.1, 3, NA)

Missing values, NA, are crucial for statistical modeling and impact the implementation,
as they must be represented and handled efficiently. Arithmetic operations on vectors
are performed element by element, and shorter vectors are automatically extended to
match longer ones by an implicit extension process. For instance,

v <- 1 + 3*x

binds the result of the expression 1+3*x to v. There are three different vectors: x and
two vectors of length one, namely the numeric constants 1 and 3. To evaluate the expres-
sion, R will logically extend the constant vectors to match the length of x. The result
will be a new vector equivalent to c(4,7.3,10,NA). Indexing operators include:

v1 <- x[1:3]; v2 <- x[-1]; x[is.na(x)] <- 0

here v1 is bound to a new vector composed of the first three elements of x, v2 is bound
to a new vector with everything but the first value of x, and finally, x is updated with 0
replacing any missing values.

In R, computation happens by evaluating functions. Even the assignment, x<-1, is
a call to the built-in assign("x",1). This design goes as far as making the (in a
parenthesized expression a function call. Functions are first class values that can be
created, stored and invoked. So,

pow <- function(b,e=2) if(e==1) b else b*pow(b,e-1)

creates a function which takes two arguments and binds it to pow. Function calls can
specify parameters either by position or by name. Parameters that have default values,
such as e above, need not be passed. Thus, there are three equivalent ways to call pow:

pow(3); pow(3,2); pow(e=2,3)

Evaluating the Design of R 107

The calls all return the 1-element vector 9. Named arguments are significantly used;
functions such as plot accept over 20 arguments. The language also supports ‘...’
in function definition and calls to represent a variable number of values. Explicit type
declarations are not required for variables and functions. True to its dynamic roots, R
checks type compatibility at runtime, performing conversions when possible to provide
best-effort semantics and decrease errors.

R is lazy, thus evaluation of function arguments is delayed. For example, the with
function can be invoked as follows:

with(formaldehyde, carb*optden)

Its semantics is similar to the JavaScript with statement. The second argument is eval-
uated in the context of the first which must be an environment (a list or a special kind
of vector). This behavior relies on lazy evaluation, as it is possible that neither carb or
optden are defined at the point of call. Arguments are boxed into promises which con-
tain the expression passed as an argument and a reference to the current environment.
Promises are evaluated transparently when their value is required. The astute reader will
have noticed that the above example clashes with our claim that R is lexically scoped.
As is often the case, R is lexically scoped up to the point it is not. R is above all a
dynamic language with full reflective access to the running program’s data and repre-
sentation. In the above example, the implementation of with sidesteps lexical scoping
by reflectively manipulating the environment. This is done by a combination of lazy
evaluation, dynamic name lookup, and the ability turn code into text and back:

with.default <- function(env, expr, ...)

eval(substitute(expr),env, enclose=parent.frame())

The function uses substitute to retrieve the unevaluated parse tree of its second
argument, then evaluates it with eval in the environment constituted by composing the
first argument with the lexically enclosing environment. The ‘...’ is used to discard
any additional arguments.

R associates attributes to all data structures, thus every vector, list, or function has
a hidden map that associates symbols to values. For a vector, these include length, di-
mensions, and column names. Attributes are a key to R’s extensibility. They are used as
hooks for many purposes. As we will see in the next section, the object system relies on
attributes to encode class membership. It is sometimes the case that all the interesting
data for some value is squirreled away in attributes. Attributes can be updated by an
assignment, e.g., to turn the vector x into a 2-by-2 matrix:

attr(x, "dim") <- c(2,2)

R has two different object systems. The simplest one uses a class attribute for imple-
menting ad-hoc polymorphism. This attribute holds a series of strings denoting base
class and parent classes in order. Any data structure can be labeled as the programmer
wishes. The new object system allows for true class definitions and instance creation. It
gives the programmer a similar multiple inheritance model as the early object system,
but now allows for virtual classes and multi-method dispatch.

3 The Three Faces of R

We now turn to R’s support for different paradigms.

108 F. Morandat et al.

3.1 Functional

R has a functional core reminiscent of Scheme and Haskell.

Functions as first-class objects. Functional languages manipulate functions as first-
class objects. Functions can be created and bound to symbols. They can be passed as
arguments, or even given alternate names such as f<-factorize; f(v).

Scoping. Names are lexically scoped with no difference between variable and function
declarations, as in Scheme [6]. All symbols introduced during the evaluation of a func-
tion are collected in a frame. Frames are linked to their lexically enclosing frame to
compose environments. However, unlike many languages, bindings are performed dy-
namically [8]. Symbols can be added to an environment after it has been entered. This
forces name resolution to be performed during function evaluation. The mechanism is
subtle and has led to mistaken claims that R is not lexically scoped3. Consider,

function(){ f<-function()x; x<-42; f() }

where the function bound to f accesses a variable, x, that does not exist at the time
of definition. But when f is called, lookup will succeed as x is in scope. Scoping has
another somewhat surprising wrinkle, lookup is context sensitive. Looking up c and c()
can yield different results from CommonLisp [19] or Scheme. By default, c is bound to
the built-in function that creates new vectors. In these examples, the first code fragment

c <- 42

c(2,3)

c <- 42

d <- c

d(2,3)

binds 42 to c. When c is looked up in the function call,
the binding is skipped because 42 is not a function, and
lookup instead returns the default definition of c which
is indeed a function. The second code fragment adds an
assignment of c to d. When d is looked up, the only
definition of d in the environment is the one that binds it
to 42, so the call fails.4 This is an example of best effort semantics; the lookup rules try
to find a function when in a call context, which can yield surprising results.

Lazy. R does not evaluate function arguments at calls. Instead, expressions are boxed into
promises that capture the lexical environment. Promises are forced whenever their value
is required by the computation. Languages like Haskell [9] delay evaluation as much as
possible. This allows, e.g., for the elegant definition of infinite data structures. The R
manual [16] does not state when promises are forced. As R is not purely functional, the
order of evaluation is observable through side effects performed or observed by promises.
Our investigation uncovered that promises are evaluated aggressively. They typically do
not outlive the function that they are passed into.5 Another surprising discovery is that
name lookup will force promises in order to determine if a symbol is bound to a function.
Consider the following three-argument function declaration:

function(y, f, z) { f(); return(y) }

3 E. Blair, A critique of R (2004) http://fluff.info/blog/arch/00000041.htm
4 Our core R semantics models this behavior with the [FORCEF] and [GETF] rules of Fig. 3.
5 Unbounded data structures can be created by hiding promises in closures, e.g., Cons
<-function(x,y)list(function()x, function()y). An application is needed
to get the value, e.g., Car <-function(cons)cons[[1]]().

http://fluff.info/blog/arch/00000041.htm

Evaluating the Design of R 109

If it is not a function, evaluation forces f. In fact, each definition of f in the lexical
environment is forced until a function is found. y is forced as well and z is unevaluated.

Referential transparency. A language is referentially transparent if any expression can
be replaced by its result. This holds if evaluating the expression does not side effect
other values in the environment. In R, all function arguments are passed by value, thus
all updates performed by the function are visible only to that function. On the other
hand, environments are mutable and R provides the super assignment operator (<<-) in
addition to its local one (<-). Local assignment, x<-1, either introduces a new symbol
or updates the value of an existing symbol in the current frame. This side effect remains
local and is arguably easier to reason about than generalized side effects. The super
assignment operator is a worse offender as it skips the current frame and operates on
the rest of the environment. So, x<<-1, will ignore any definition of x in the current
frame and update the first existing x anywhere in the environment or, if not found,
define a new binding for x at the top-level. This form of side effect is harder to reason
about as it is non-local and may be observed directly by other functions.

my <-

function(a,k=min(d),...,p=TRUE){

a <- as.matrix(a);

d <- dim(a);

l <- k+1;

if (p) # some behavior.
}

Parameters. R gives programmers
much freedom in how functions are
defined and called. Function declara-
tions can specify default values and a
variable number of parameters. Func-
tion calls can pass parameters by posi-
tion or by name, and omit parameters
with default values. Consider the my function declaration, it has three parameters, a, k,
and p. The ellipsis specifies a variable number of parameters which can be accessed by
the array notation or passed on to another function in bulk. This function can be called
in different ways, for instance,

my(x); my(x, y); my(x, y, z); my(k=y, x, z, p=FALSE)

A valid call must have at least one, positional, parameter. Any argument with a default
value may be omitted. Any argument may be passed by name, in which case the order in
which it appears is irrelevant. Arguments occurring after an ellipsis must be passed by
name. The default values of arguments can be expressions; they are boxed into promises
and evaluated within the same environment as the body of the function. This means that
they can use internal variables in the function’s body. So min(d) above refers to d,
which is only created during evaluation of the function. As k is always forced after d
has been defined, the function will work as intended. But this shows that code can be
sensitive to the order of evaluation, which can lead to subtle bugs.

3.2 Dynamic

Given R’s interactive usage, dynamic features are natural. These features are intended
to increase the expressiveness and flexibility of the language, but complicate the imple-
mentor’s task.

Dynamic typing. R is dynamically typed. Values have types, but variables do not. This
dynamic behavior extends to variable growth and casting. For instance:

110 F. Morandat et al.

v <- TRUE; v[2] <- 1; v[4] <- "1"

Vector v starts as a logical vector of length one, then v grows and is cast by the assign-
ment to a numerical vector of length two, equivalent to c(1, 1). The last assignment
turns v into a string vector of length four, equivalent to c("1", "1", NA, "1").

Dynamic evaluation. R allows code to be dynamically evaluated through the eval

function. Unevaluated expressions can be created from text with the quote function,
and variable substitution (without evaluation) can be done with substitute and partial
substitution with bquote. Further, expressions can be reduced back to input strings with
the substitute and deparse functions. The R manual [16] mentions these functions
as useful for dynamic generation of chart labels, but they are used for much more.

Extending the language. One of the motivations to use lazy evaluation in R is to ex-
tend the language without needing macros. But promises are only evaluated once, so
implementing constructs like a while loop, which must repeatedly evaluate its body
and guard, takes some work. The substitute function can be used to get the source
text of a promise, the expression that was passed into the function, and eval to execute
it. Consider this implementation of a while loop in user code,

mywhile <- function(cond, body)

repeat if(!eval.parent(substitute(cond))) break

else eval.parent(substitute(body))
Not all language extensions require reflection, lazy evaluation can be sufficient. The
implementation of tryCatch is roughly,

tryCatch <- function(expr, ...) {

set up handlers specified in ...
expr

}

Explicit Environment Manipulation. Beyond these common dynamic features, R’s re-
flective capabilities also expose its implementation to the user. Environments exist as
a data type. Users can create new environments, and view or modify existing ones, in-
cluding those used in the current call stack. Closures can have their parameters, body, or
environment changed after they are defined. The call stack is also open for examination
at any time. There are ways to access any closure or frame on the stack, or even return
the entire stack as a list. With this rich set of building blocks, user code can implement
whatever scoping rules they like.

3.3 Object Oriented

R’s use of objects comes from S. Around 1990, a class attribute was added to S3 for
ad-hoc polymorphism [4]. The value of this attribute was simply a list of strings used
to dispatch methods. In 1998, S4 added proper classes and multi-methods [3].

S3. In the S3 object model there are neither class entities nor prototypes. Objects are nor-
mal R values tagged by an attribute named classwhose value is a vector of strings. The
strings represent the classes to which the object belongs. Like all attributes, an object’s
class can be updated at any time. As no structure is required on objects, two instances that

Evaluating the Design of R 111

have the same class tag may be completely different. The only semantics for the values
in the class attribute is to specify an order of resolution for methods. Methods in S3 are
functions which, in their body, call the dispatch function UseMethod. The dispatch func-
tion takes a string name as argument and will perform dispatch by looking for a function
name.cl where cl is one of the values in the object’s class attribute. Thus a call to
who(me) will access the me object’s class attribute and perform a lookup for each class
name until a match is found. If none is found, the function who.default is called. This
mechanism is complemented by NextMethod which calls the super method according
to the Java terminology. The function follows the same algorithm as UseMethod, but
starts from the successor of the name used to find the current function. Consider the fol-
lowing example which defines a generic method, who, with implementations for class
the man as well as the default case, and creates an object of class man. Notice that the

who <- function(x) UseMethod("who")

who.man <- function(x) print("Ceasar!")

who.default <- function(x) print("??")

me <- 42; who(me) # prints ”??”
class(me) <- ’man’;who(me) # prints ”Ceasar!”

vector me dynamically
acquires class man as a
side effect. UseMethod

may take multiple ar-
guments, but dispatches
only on the first one.

S4. The S4 object model, reminiscent of CLOS [12], adds a class-based system to R.
A class is defined by a call to setClass with an ordered list of parent classes and a
representation. Multiple inheritance is supported, and repeated inheritance is allowed,
but only affects the method’s dispatch algorithm. A class’ representation describes the
fields, or slots, introduced by that class. Even though R is dynamically typed, slots must
be assigned a class name. Slots can be redefined covariantly, i.e., a slot redefinition can
be a subclass of the class tag used in the previous declaration. When a class inherits a slot
with the same name from two different paths, the class tag coming from the first super-
class is retained, and tags from other parents must be subclasses of that tag. Classes can
be redeclared at any time. When a class is modified, existing instances of the class retain
their earlier definition. Redeclaration can be prevented by the sealClass function. Ob-
jects are instantiated by calling new. A prototype object is created with the arguments
to new and passed along to the initialize generic function which copies the proto-
type into the new object’s slots. This prototype is only a template and does not contain
any methods. Any values left unset become either NA, or a zero-length vector. Classes
without a representation, or classes with VIRTUAL in their representation, are abstract
classes and cannot be instantiated. Another mechanism for changing the behavior of ex-
isting classes is to define class unions. A class union introduces a new virtual class that
is the parent of a list of existing classes. The main role of class union is to change the
result of method dispatch for existing classes. The following example code fragment
defines a colored point class, creates an instance of the class, and reads its color slot.

setClass("Point", representation(x="numeric", y="numeric"))

setClass("Color", representation(color="character"))

setClass("CP", contains=c("Point","Color"))

l <- new("Point", x = 1, y = 1)

r <- new("CP", x = 0, y = 0, color = "red")

r@color

112 F. Morandat et al.

Methods are introduced at any point outside of any class by a call to setGeneric. In-
dividual method bodies for some classes are then defined by setMethod. R supports
multi-methods [2], i.e., dispatch considers the classes of multiple arguments to deter-
mine which function to call. Multi-methods make it trivial to implement binary meth-
ods, they obviate the need for the visitor pattern or other forms of double dispatch, and
reduce the number of explicit subclass tests in users’ code. The following defines an
add method that will operate differently on points and colored points:

setGeneric("add", function(a, b) standardGeneric("add"))

setMethod("add", signature("Point", "Point"),

function(a, b) new("Point", x= a@x+b@x, y=a@y+b@y))

setMethod("add", signature("CP", "CP"),

function(a, b) new("CP",x=a@x+b@x,y=a@y+b@y,color=a@color)

R does not prevent the declaration of ambiguous multi-methods. At each method call,
R will attempt to find the best match between the classes of the parameters and the
signatures of method bodies. Thus add(r, l) would be treated as the addition of
two “Point” objects. The resolution algorithm differs from Clos’s and if more than one
method is applicable, R will pick one and emit a warning. One unfortunate side ef-
fect of combining generic functions and lazy evaluation is that method dispatch forces
promises to assess the class of each argument. Thus when S4 objects are used, evalua-
tion of arguments becomes strict.

4 A Semantics for Core R

This section gives a precise semantics to the core of the R language. To the best of
our knowledge this is the first formal definition of key concepts of the language. The
semantics was derived from test cases and inspection of the source code of version
2.12 of the R interpreter. Core R is a proper subset of the R language. Any expres-
sion in Core R behaves identically in the full language. Some features are not covered

e::= n | s | x | x[[e]] | {e; e}
| function(f) e
| x(a) | x<− e | x<<− e

| x[[e]]<− e | x[[e]]<<−e

| attr(e, e) | attr(e, e)<− e

| u | ν(a)
f::= x | x = e

a::= e | x = e

Fig. 1. Syntax

for brevity: logicals and complex numbers,
partial keywords, variadic argument lists,
dot-dot symbols, superfluous arguments, gen-
eralized array indexing and subsetting. Gener-
alized assignment, f(x)<-y, requires small
changes to be properly supported, essen-
tially desugaring to function calls such as
‘f<-‘(x,y) and additional assignments. Per-
haps the most glaring simplification is that we
left out reflective operation such as eval and
substitute. As the object system is built
on those, we will only hint at its definition.
The syntax of Core R, shown in Fig. 1, consists of expressions, denoted by e, ranging
over numeric literals, string literals, symbols, array accesses, blocks, function decla-
rations, function calls, variable assignments, variable super-assignments, array assign-
ments, array super-assignments, and attribute extraction and assignment. Expressions

Evaluating the Design of R 113

also include values, u, and partially reduced function calls, ν(a), which are not used
in the surface syntax of the language but are needed during evaluation. The parame-
ters of a function declaration, denoted by f, can be either variables or variables with
a default value, an expression e. Symmetrical arguments of calls, denoted a, are ex-
pressions which may be named by a symbol. We use the notation a to denote the
possibly empty sequence a1 . . . an. Programs compute over a heap, denoted H , and a

H ::= ∅ | H [ι/F]
| H [δ/eΓ] | H [δ/ν]
| H [ν/κα]

α::= ν⊥ ν⊥ u ::= δ | ν
κ::= num[n] | str[s]
| gen[ν] | λf.e, Γ

F ::= [] | F [x/u]
Γ ::= [] | ι ∗ Γ
S::= [] | eΓ ∗ S

Fig. 2. Data

stack, S, as shown in Fig. 2. For simplicity, the heap dif-
ferentiates between three kinds of addresses: frames, ι,
promises, δ, and data objects, ν. The notation H [ι/F]
denotes the heap H extended with a mapping from ι
to F . The metavariable ν⊥ denotes ν extended with the
distinguished reference ⊥ which is used for missing val-
ues. Metavariable α ranges over pairs of possibly missing
addresses, ν⊥ ν′⊥. The metavariable u ranges over both
promises and data references. Data objects, κα, consist
of a primitive value κ and attributes α. Primitive val-
ues can be either an array of numerics, num[n1 . . . nn],
an array of strings, str[s1 . . . sn], an array of references
gen[ν1 . . . νn], or a function,λf.e, Γ , whereΓ is the func-
tion’s environment. A frame, F , is a mapping from a sym-

bol to a promise or data reference. An environment,Γ , is a sequence of frame references.
Finally, a stack, S, is a sequence of pairs, eΓ , such that e is the current expression and
Γ is the current environment.

Reduction relation. The semantics of Core R is defined by a small step operational
semantics with evaluation contexts [21]. The reduction relation S;H =⇒S’;H’, shown
in Fig. 3, takes a stack S and a heap H and performs one step of reduction. The rules

[EXP]
eΓ ; H → e′; H ′

C[e] Γ ∗ S; H =⇒ C[e′] Γ ∗ S; H ′

[FORCEP]
H(δ) = eΓ ′

C[δ] Γ ∗ S; H =⇒ eΓ ′ ∗C[δ] Γ ∗ S; H

[FORCEF]
getfun(H, Γ, x) = δ

C[x(a)] Γ ∗ S; H =⇒ δ Γ ∗C[x(a)] Γ ∗ S; H

[GETF]
getfun(H, Γ, x) = ν

C[x(a)] Γ ∗ S; H =⇒ C[ν(a)] Γ ∗ S; H
[INVF]

H(ν) = λf.e, Γ ′ args(f, a, Γ, Γ ′, H) = F, Γ ′′, H ′

C[ν(a)] Γ ∗ S; H =⇒ eΓ ′′ ∗C[ν(a)] Γ ∗ S; H ′

[RETP]
H ′ = H[δ/ν]

R[ν] Γ ′ ∗C[δ] Γ ∗ S; H =⇒ C[δ] Γ ∗ S; H ′

[RETF]

R[ν] Γ ′ ∗C[ν′(a)] Γ ∗ S; H =⇒ C[ν] Γ ∗ S; H ′

Evaluation Contexts:

C ::= [] | x<−C | x[[C]] | x[[e]] <−C | x[[C]] <− ν | {C; e} | {ν;C}
| attr(C, e) | attr(ν,C) | attr(e, e) <−C | attr(C, e) <− ν | attr(ν,C) <− ν

R ::= [] | {ν;R}

Fig. 3. Reduction relation =⇒

114 F. Morandat et al.

rely on two evaluation contexts, C, to return the next expression to evaluate and R, to
return the result of a sequence of expressions. There are seven reduction rules. Rule
[EXP] deals with expressions, where C[e] uniquely identifies the next expression e to
evaluate. The expression is reduced in a single step, eΓ ;H → e′;H ′, where e′ is
resulting expression. H ′ is the modified heap. If the expression is a promise, C[δ], and
δ has not been evaluated, rule [FORCEP] will push a new frame on the stack containing
the body of the promise, e δ ∗ Γ ′. Rule [RETP] pops a fully evaluated promise frame
and binds the result to a promise address. Context sensitive lookup is implemented by
[FORCEF] and [GETF]. The former forces the evaluation of promises bound to the name
of the function being looked up, the latter selects a reference, ν, to a function. The
getfun() auxiliary function, defined in Fig. 4, looks up x in the environment, skipping
over bindings to data objects. Function invocation is handled by [INVF], which retrieves
the function bound to ν and invokes args() to process the arguments a and the default
values f of the call. The output of args() is a mapping from parameters to values, F , an
environment, Γ ′′, and a modified heap, H ′. For each argument, a promise is allocated
in the heap and the current environment is captured. The rule [RETF] simply pops the
evaluated frame and replaces the call with its result.

The → relation has fourteen rules dealing with expressions, shown in Fig. 5, along
with some auxiliary definitions given in Fig. 18 (where s and g denote functions that con-
vert the type of their argument to a string and vector respectively). The first two rules
deal with numeric and string literals. They simply allocate a vector of length one of the

[GETF1]
Γ = ι ∗ Γ ′ ι(H, x) = ν H(ν) = λf.e, Γ ′′

getfun(H, Γ, x) = ν

[GETF2]
Γ = ι ∗ Γ ′ ι(H, x) = ν H(ν) �= λf.e, Γ ′′

getfun(H, Γ, x) = getfun(H, Γ ′, x)

[GETF3]
Γ = ι ∗ Γ ′ ι(H, x) = δ H(δ) = ν H(ν) = λf.e, Γ ′′

getfun(H, Γ, x) = ν

[GETF4]
Γ = ι ∗ Γ ′ ι(H, x) = δ H(δ) = eΓ ′′

getfun(H, Γ, x) = δ

[GETF5]
Γ = ι ∗ Γ ′ ι(H, x) = δ H(δ) = ν H(ν) �= λf.e, Γ ′′

getfun(H, Γ, x) = getfun(H, Γ ′, x)

[SPLIT1]
split(a, P, N) = P ′, N ′

split(x = e a, P, N) = P ′, x = eN ′

[SPLIT2]
split(a, P, N) = P ′, N ′

split(e a, P, N) = eP ′, N ′

[SPLIT3]

split([], P, N) = P, N

[ARGS]
split(a, [], []) = P, N ι fresh Γ ′′ = ι ∗ Γ ′ args2(f, P, N, Γ, Γ ′′, H) = F, H ′ H ′′ = H ′[ι/F]

args(f, a, Γ, Γ ′, H) = F, Γ ′′, H ′′

[ARGS1]
(f0 ≡ x ∨ f0 ≡ x = e′) N ≡ N ′x = eN ′′

args2(f, P, N ′N ′′, Γ, Γ ′, H) = F, H ′

δ fresh H ′′ = H ′[δ/eΓ]

args2(f0f, P, N, Γ, Γ ′, H) = F [x/δ], H ′′

[ARGS2]
(f0 ≡ x ∨ f0 ≡ x = e′) x �∈ N
args2(f, P, N, Γ, Γ ′, H) = F, H ′

δ fresh H ′′ = H ′[δ/eΓ]

args2(f0f, eP, N, Γ, Γ ′, H) = F [x/δ], H ′′

[ARGS3]
x �∈ N

args2(f, [], N, Γ, Γ ′, H) = F, H ′

args2(x f, [], N, Γ, Γ ′, H) = F [x/⊥], H ′

[ARGS4]
x �∈ N args2(f, [], N, Γ, Γ ′, H) = F, H ′

δ fresh H ′′ = H ′[δ/eΓ ′]

args2(x = e f, [], N, Γ, Γ ′, H) = F [x/δ], H ′′

[ARGS5]

args2([], [], [], Γ, Γ ′, H) = [], H

Fig. 4. Auxiliary definitions: Function lookup and argument processing

Evaluating the Design of R 115

[NUM]

ν fresh α = ⊥⊥
H ′ = H [ν/num[n]α]

nΓ ;H → ν;H ′

[STR]

ν fresh α = ⊥⊥
H ′ = H [ν/str[s]α]

sΓ ;H → ν;H ′

[FUN]

ν fresh α = ⊥⊥
H ′ = H [ν/λf.e, Γα]

function(f) eΓ ;H → ν;H ′

[FIND]

Γ (H,x) = u

xΓ ;H → u;H

[GETP]

H(δ) = ν

δ Γ ;H → ν;H ′

[ASS]

cpy(H,ν) = H ′, ν′ Γ = ι ∗ Γ ′ H(ι) = F F ′ = F [x/ν′] H ′′ = H ′[ι/F ′]

x<− ν Γ ;H → ν;H ′′

[DASS]

cpy(H,ν) = H ′, ν′ Γ = ι ∗ Γ ′ assign(x, ν′, Γ ′, H ′) = H ′′

x<<− ν Γ ;H → ν;H ′′

[GET]

Γ (H,x) = ν′ readn(ν,H) = m get(ν′, m,H) = ν′′,H ′

x[[ν]]Γ ;H → ν′′;H ′

[SETL]

cpy(H,ν′) = H ′, ν′′ Γ = ι ∗ Γ ′ ι(H ′, x) = ν′′′

readn(ν,H ′) = m set(ν′′′, m, ν′′,H ′) = H ′′

x[[ν]] <− ν′ Γ ;H → ν′;H ′′

[SETG]

cpy(H,ν′) = H ′, ν′′ Γ = ι ∗ Γ ′ H ′(ι) = F x �∈ F Γ ′(H ′, x) = ν′′′

cpy(H ′, ν′′′) = H ′′, ν′′′′ F ′ = F [x/ν′′′′] H ′′′ = H ′′[ι/F ′]
readn(ν,H) = m set(ν′′′′, m, ν′′,H ′′′) = H ′′′′

x[[ν]] <− ν′ Γ ;H → ν′;H ′′′′

[GETA]

H(ν) = κα α = ν⊥ ν′
⊥ index(ν′, ν′

⊥, H) = n get(ν⊥, n, H) = ν′′

attr(ν, ν′)Γ ;H → ν′′;H
[REPLA]

H(ν) = κα α = ν⊥ ν′
⊥ index(ν′, ν′

⊥,H) = n set(ν,n, ν′′,H) = H ′

attr(ν, ν′)<− ν′′ Γ ;H → ν′′;H ′

[SETA]

cpy(H,ν′′) = H ′, ν′′′ H ′(ν) = κν⊥ ν′
⊥ index(ν′, ν′

⊥, H
′) = ⊥ reads(ν′,H ′) = s

H ′(ν⊥) = gen[ν]α H ′(ν′
⊥) = str[s]α

′
H ′′ = H ′[ν⊥/gen[νν′′′]α][ν′

⊥/str[ss]α
′
]

attr(ν, ν′)<− ν′′ Γ ;H → ν′′;H ′′

[SETB]

cpy(H, ν′′) = H ′, ν3 H ′(ν) = κ⊥⊥ ν4, ν5 fresh reads(ν′,H ′) = s

H ′′ = H ′[ν4/gen[ν3]⊥⊥][ν5/str[s]⊥⊥]

attr(ν, ν′)<− ν′′ Γ ;H → ν′′;H ′′

Fig. 5. Reduction relation →

corresponding type with the specified value in it. By default, attributes for these values
are empty. A function declaration, [FUN], allocates a closure in the heap and captures the
current environment Γ . Variable lookup, [FIND], returns the value of the variable from

116 F. Morandat et al.

the environment. The value of an already evaluated promise is returned by [GETP]. The
assignment, [ASS], and super-assignment, [DASS], rules will either define or redefine the
target symbol. The value being assigned and all of its attributes are copied recursively.
The auxiliary function assign walks the stack and performs the assignment in the first
environment that has a binding for the target symbol. If not found, the symbol is added
at the top-level. The [GET] rule for array access, x[[ν]], is straightforward, it accesses the
array at the offset passed as argument. Note that the value returned must be packed in
a newly allocated vector of length one of the right type. There are two rules for vector
assignment x[[ν]]<− ν′. Rule [SETL] applies when the vector is a local variable of the
current frame. In that case, the value to be assigned is copied and the assignment is per-
formed in place. Rule [SETG] is more complex. If the variable holding the vector does not
occur in the current scope, a new variable will be added to the current scope, the vector is
copied with its attributes into the new variable, and finally the assignment is performed.6

Notice also that all assignment rules yield the right hand side value and not its copy. Fi-
nally, there are four rules dealing with attributes. Reading an attribute, attr(ν, ν′), uses
ν′ as a key to find the corresponding value in the attribute vector ([GETA]).7 The auxiliary
function index() returns the index of a string in a vector of strings or⊥ if not found. The
rules for updating attributes, attr(ν, ν′)<− ν′′, must consider the two cases. First, when
an attribute already exists, the update is done directly ([REPLA]). Second, when an at-
tribute is not present, then the value and name sequences must grow to accommodate the
new attribute ([SETA]). Finally, if the attributes are empty, rule [SETB] will create them.
It is noteworthy that attributes are modified in place; the objects that they decorate are
not copied.

Observations. One of our discoveries while working out the semantics was how eager
evaluation of promises turns out to be. The semantics captures this with C[]; the only
cases where promises are not evaluated is in the arguments of a function call and when
promises occur in a nested function body, all other references to promises are evaluated.
In particular, it was surprising and unnecessary to force assignments as this hampers
building infinite structures. Many basic functions that are lazy in Haskell, for example,
are strict in R, including data type constructors. As for sharing, the semantics cleary
demonstrates that R prevents sharing by performing copies at assignments. The R imple-
mentation uses copy-on-write to reduce the number of copies. With super-assignment,
environments can be used as shared mutable data structures. The way assignment into
vectors preserves the pass-by-value semantics is rather unusual and, from personal ex-
perience, it is unclear if programmers understand the feature. Extending the semantics
to supporting reflection and objects should be possible. Objects are encoded by vectors
with attributes that hold their class, as a vector of strings, fields. Methods are functions
that abide by a particular naming convention. Dispatch is done by reflecting over de-
fined functions. It is noteworthy that objects are mutable within a function (since fields
are attributes), but are copied when passed as an argument.

6 Our semantics only allows extension of vector at the end. R allows vector to be extended at
arbitrary offsets, with missing values added in unused positions.

7 In R, attributes are represented by a normal vector (values) which, itself, has attributes (names).
We simplify the structure for conciseness in the semantics.

Evaluating the Design of R 117

5 Corpus Analysis

Given the mix of programming models available to the R user, it is important to under-
stand what features users favor and how they are using those in practice. This section
describes the tools we have developed to analyze R programs and the extensive corpus
of R programs that we have curated.

5.1 The TraceR Framework

TraceR is a suite of tools for analyzing the performance and characteristics of R code. It
consists of three data collection tools built on top of version 2.12.1 of R and several post-
processing tools. TrackeR generates detailed execution traces, ProfileR is a low-overhead
profiling tool for the internals of the R VM, and ParseR is static analyzer for R code.

TrackeR. To precisely capture user-code behavior, we built TrackeR, a heavily instru-
mented R VM which records almost every operation executed at runtime. TrackeR’s
design was informed by our previous work on JavaScript [17]. TrackeR exposes inter-
actions between language features, such as evaluation of promises triggered by function
lookups, and how these features are used. It also records promise creation and evalua-
tion, scalar and vector usage, and internally triggered actions (e.g. duplications used
for copy-on-write mechanisms). These internal effects are recorded through a mix of
trace events and counters. Complex feature interactions such as lazy evaluation and
multi-method dispath can result in eager argument evaluation. To capture the triggers
for this behavior, prologues are emitted for function calls and associated with the trig-
gering method. Properly tracking the uniqueness of short lived objects, like promises,
is complicated by the recycling memory of addresses during garbage collection. R’s
memory allocations are too large and numerous to use memory maps to resolve this.
Instead, a tagging system was used to track the liveness of traced objects. Since, at
runtime, function objects are represented as closure with no name, we use R built-in de-
bugging information to map closure addresses to source code. Moreover, control flow
can jump between various parts of the call stack when executions are abandoned (e.g.
with tryCatch or break function calls). Keeping the trace consistent requires effort
since the implementation of the VM is riddled with calls to longjmp. Off-line analysis
of traces can quickly exceed machine memory if they are analyzed in-core. Therefore,
the tree is processed during its construction and most of it is discarded right away. Spe-
cialized trace filters use hooks to register information of interest (e.g. promises currently
alive in the system).

ProfileR. While TrackeR reveals program evaluation flow and effects, its heavy instru-
mentation makes it unsuitable for understanding the runtime costs of language features.
For this we built ProfileR, a dedicated counter based profiler which tracks the time costs
of operations such as memory management, I/O and foreign calls. Unlike a sampling
profiler, ProfileR is precise. It was implemented with care to minimize runtime over-
heads. The validity of its results was verified against sampling profilers such as oprofile
and Apple Instruments. The results are consistent with those tools, and provide more
accurate context information. The only notable differences are for very short functions
called very frequently, which we avoided instrumenting. R also has a built-in sampling
profiler but we found that it did not deliver the accuracy or level of detail we needed.

118 F. Morandat et al.

ParseR. Tracing only yields information on code triggered in a given execution. For
a more comprehensive view, ParseR performs static analysis of R programs. It is built
on a LL-parser generated with AntLR [14]. Our R grammar seems comprehensive as
it parses correctly all R code we could find. Lexical filters can be easily written by
using a mixture of tree grammars and visitors. Even though ParseR can easily find
accurate grammatical patterns, the high dynamism of R forced us to rely on heuristics
when looking for semantic information. ParserR was also used to synchronize the traces
generated by TrackeR with actual source code of the programs.

5.2 A Corpus of R Code

We assembled a body of over 3.9 million lines of R code. This corpus is intended to
be representative of real-world R usage, but also to help understand the performance
impacts of different language features. We classified programs in 5 groups. The Bio-
conductor project open-source repository collects 515 Bioinformatics-related R pack-
ages.8 The Shootout benchmarks are simple programs from the Computer Language
Benchmark Game9 implemented in many languages that can be used to get a perfor-
mance baseline. Some R users donated their code; these programs are grouped under the
Miscellaneous category. The fourth and largest group of programs was retrieved from
the R package archive on CRAN.10 The last group is the base library that is bundled
with the R VM. Fig. 6 gives the size of these datasets. A requirement of all packages

Name Bioc. Shoot. Misc. CRAN Base

Package 515 11 7 1 238 27
Vignettes 100 11 4 – –
R LOC 1.4M 973 1.3K 2.3M 91K
C LOC 2M 0 0 2.9M 50K

Fig. 6. Purdue R Corpus

in the Bioconductor repository is the
inclusion of vignettes. Vignettes are
scripts that demonstrate real-world
usage of these libraries to potential
users. Vignettes also double as simple
tests for the programs. They typically
come with sample data sets. Out of
the 515 Bioconductor programs, we
focused on the 100 packages with the longest running vignettes. Some CRAN pack-
ages do not have vignettes; this is unfortunate as it makes them harder to analyze. We
retained 1 238 out of 3 495 available CRAN packages. It should be noted that while
some of the data associated to vignettes are large, they are in general short running.

The Shootout benchmarks were not available in R, so we implemented them to
the best of our abilities. They provide tasks that are purely algorithmic, determinis-
tic, and computationally focused. Further, they are designed to easily scale in either
memory or computation. For a fair comparison, the Shootout benchmarks stick to the
original algorithm. Two out of the 14 Shootout benchmarks were not used because
they required multi-threading and one because it relied on highly tuned low-level li-
braries. We restricted our implementations to standard R features. The only excep-
tion is the knucleotide problem, where environments served as a substitute for
hash maps.

8 http://www.bioconductor.org
9 http://shootout.alioth.debian.org/

10 http://cran.r-project.org/

http://www.bioconductor.org
http://shootout.alioth.debian.org/
http://cran.r-project.org/

Evaluating the Design of R 119

6 Evaluating the R Implementation

Using ProfileR and TraceR, we get an overview of performance bottlenecks in the cur-
rent implementation in terms of execution time and memory footprint. To give a rela-
tive sense of performance, each diagnostic starts with a comparison between R, C and
Python using the shootout benchmarks. Beyond this, we used Bioconductor vignettes
to understand the memory and time impacts in R’s typical usage.

All measurements were made on an 8 core Intel X5460 machine, running at 3.16GHz
with the GNU/Linux 2.6.34.8-68 (x86 64) kernel. Version 2.12.1 of R compiled with
GCC v4.4.5 was used as a baseline R, and as the base for our tools. The same compiler
was used for compiling C programs, and finally Python v2.6.4 was used. During bench-
mark comparisons and profiling executions, processes were attached to a single core
where other processes were denied. Any other machine usage was prohibited.

6.1 Time

We used the Shootout benchmarks to compare the performance of C, Python and R. Re-
sults appear in Fig. 7. On those benchmarks, R is on average 501 slower than C and 43
times slower Python. Benchmarks where R performs better, like regex-dna (only 1.6
slower than C), are usually cases where R delegates most of its work to C functions.11

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
10

S
11

S
12 A
vg

1
5

10
50

50
0

Python R

Name Input
S-1 Binary trees 16
S-2 Fankuch redux 10
S-3 Fasta 2.5M
S-4 Fasta redux 2.5M
S-5 K-nucleotide 50K
S-6 Mandelbrot 4K
S-7 N-body 500K
S-8 Pidigits 500
S-9 Regex-dna 2.5K
S-10 Rev. complement 5M
S-11 Spectral norm 640
S-12 Spectral norm alt 11K

Fig. 7. Slowdown of Python and R, normalized to C for the Shootout benchmarks

To understand where time is typically spent, we turn to more representative R pro-
grams. Fig. 8 shows the breakdown of execution times in the Bioconductor dataset ob-
tained with ProfileR. Each bar represents a Bioconductor vignette. The key observation
is that memory management accounts for an average of 29% of execution time.

11 For C and Python implementations, we kept the fastest single-threaded implementations. When
one was not available, we removed multi-threading from the fastest one. The pidigits prob-
lem required a rewrite of the C implementation to match the algorithm of the R implementation
since the R standard library lacks big integers.

120 F. Morandat et al.

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

mm
alloc.cons
alloc.list
alloc.vector
duplicate
lookup
match
external
builtin
arith
special

Fig. 8. Breakdown of Bioconductor vignette runtimes as % of
total execution time

Memory management breaks
down into time spent in
garbage collection (18%), al-
locating cons-pairs (3.6%),
vectors (2.6%), and duplica-
tions (4%) for call-by-value
semantics. Built-in functions
are where the true computa-
tional work happens, and on
average 38% of the execu-
tion time. There are some in-
teresting outliers. The max-
imum spent in garbage col-
lection is 70% and one pro-
gram spends 63% copying ar-
guments. Lookup (4.3% and
match 1.8%) represent time
spent looking up variables
and matching parameters with
arguments. Both of these
would be absent in Java as
they are resolved at compile time. Variable lookup would also be absent in Lisp or
Scheme as, once bound, the position of variables in a frame are known. Given the na-
ture of R, many numerical functions are written in C or Fortran; one could thus expect
execution time to be dominated by native libraries. The time spent in calls to foreign
functions, on average 22%, shows that this is clearly not the case.

6.2 Memory

S
−

1

S
−

2

S
−

3

S
−

4

S
−

5

S
−

6

S
−

7

S
−

8

S
−

9

S
−

10

S
−

11

S
−

12

1
10

10
0

10
00

10
00

0

C R User data R internal

Fig. 9. Heap allocated memory (MB log scale). C vs. R.

Not only is R slow, but it also
consumes significant amounts
of memory. Unlike C, where
data can be stack allocated, all
user data in R must be heap
allocated and garbage collected.
Fig. 9 compares heap memory
usage in C (calls to malloc)
and data allocated by the R vir-
tual machine. The R allocation
is split between vectors (which
are typically user data) and lists
(which are mostly used by the
interpreter for, e.g., arguments
to functions). The graph clearly
shows that R allocates orders
of magnitude more data than C.

Evaluating the Design of R 121

In many cases the internal data required is more than the user data. Call-by-value se-
mantics is implemented by a copy-on-write mechanism. Thus, under the covers, func-
tion arguments are shared and duplicated when needed. Avoiding duplication reduces
memory footprint; on average only 37% of arguments end up being copied. Lists are
created by pairlist and mostly used by the R VM. In fact, the standard library only
has three calls to pairlist, the whole CRAN code only eight, and Bioconductor none.
The R VM uses them to represent code and to pass and process function call arguments.
It is interesting to note that the time spent on allocating lists is greater than the time
spent on vectors. Cons cells are large, using 56 bytes on 64-bit architectures, and take
up 23 GB on average in the Shootout benchmarks.

Another reason for the large footprint, is that all numeric data has to be boxed into
a vector; yet, 36% of vectors allocated by Bioconductor contain only a single number.
An empty vector is 40 bytes long. This impacts runtime, since these vectors have to be
dereferenced, allocated and garbage collected.

Observations. R is clearly slow and memory inefficient. Much more so than other dy-
namic languages. This is largely due to the combination of language features (call-by-
value, extreme dynamism, lazy evaluation) and the lack of efficient built-in types. We
believe that with some effort it should be possible to improve both time and space usage,
but this would likely require a full rewrite of the implementation.

7 Evaluating the R Language Design

One of the key claims made repeatedly by R users is that they are more productive with
R than with traditional languages. While we have no direct evidence, we will point out
that, as shown by Fig. 10, R programs are about 40% smaller than C code. Python is
even more compact on those shootout benchmarks, at least in part, because many of
the shootout problems are not easily expressed in R. We do not have any statistical

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
10

S
11

S
12

A
vg

.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Python

R

Fig. 10. Shootout Python and R code size, nor-
malized to C

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

C 1292 R 2685

Fig. 11. Bioconductor R and C source code size.
(LOC, no comments)

122 F. Morandat et al.

analysis code written in Python and R, so a more meaningful comparison is difficult.
Fig. 11 shows the breakdown between code written in R and code in Fortran or C in
100 Bioconductor packages. On average, there is over twice as much R code. This is
significant as package developers are surely savvy enough to write native code, and
understand the performance penalty of R, yet they would still rather write code in R.

7.1 Functional

Side effects. Assignments can either define or update variables. In Bioconductor, 45%
of them are definitions, and only two out of 217 million assignments are definitions in
a parent frame by super assignment. In spite of the availability of non-local side effects
(i.e., <<-), 99.9% of side effects are local. Assignments done through functions such as
[]<- need an existing data structure to operate on, thus they are always side effecting.
Overall they account for 22% of all side effects and 12% of all assignments.

1

1K

1M

1G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20
−

39

1

1K

1M

1G

1

1K

1M

1G

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20
−

39

40
−

59

60
−

79

80
−

99

10
0−

11
9

12
0−

13
9

14
0−

15
9

17
1−

19
6

20
0−

20
1

25
5+

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20
−

39

Position
Keyword
Variadic

Fig. 12. Histogram of the number of function arguments in
Bioconductor. (Log scale)

Scoping. R symbol lookup
is context sensitive. This fea-
ture, which is neither Lisp nor
Scheme scoping, is exercised
in less than 0.05% of func-
tion name lookups. However,
even though this number is low,
the number of symbols actually
checked is 3.6 on average. The
only symbols for which this fea-
ture actually mattered in the Bio-
conductor vignettes are c and
file, both popular variables
names and built-in functions.

Parameters. The R function dec-
laration syntax is expressive and
this expressivity is widely used.
In 99% of the calls, at most
3 arguments are passed, while
the percentage of calls with
up to 7 arguments is 99.74%
(see Fig. 12). Functions that
are close to this average are
typically called with positional
arguments. As the number of
parameters increases, users are
more likely to specify function
parameters by name. Similarly,
variadic parameters tend to be
called with large numbers of
arguments.

Evaluating the Design of R 123

Bioc Shootout Misc CRAN Base
stat. dyn. stat. dyn. stat. dyn. stat. stat.

Calls 1M 3.3M 657 2.6G 1.5K 10.0G 1.7G 71K
by keyword 197K 72M 67 10M 441 260M 294K 10K
keywords 406K 93M 81 15M 910 274M 667K 18K
by position 1.0M 385M 628 143M 1K 935M 1.6G 67K
positional 2.3M 6.5G 1K 5.2G 3K 18.7G 3.5G 125K

Fig. 13. Number of calls by category

Fig. 13 gives the
number of calls in our
corpus and the total num-
ber of keyword and vari-
adic arguments. Positional
arguments are most com-
mon between 1 and 4 ar-
guments, but are used all
the way up to 25 argu-
ments. Function calls with between 1 and 22 named arguments have been observed.
Variadic parameters are used to pass from 1 to more than 255 arguments. Given the per-
formance costs of parsing parameter lists in the current implementation, it appears that
optimizing calling conventions for function of four parameters or less would greatly
improve performance. Another interesting consequence of the prevalent use of named
parameters is that they become part of the interface of the function, so alpha conversion
of parameter names may affect the behavior of the program.

Laziness. Lazy evaluation is a distinctive feature of R that has the potential for reducing
unnecessary work performed by a computation. Our corpus, however, does not bear
this out. Fig. 14(a) shows the rate of promise evaluation across all of our data sets. The
average rate is 90%. Fig. 14(b) shows that on average 80% of promises are evaluated in
the first function they are passed into. In computationally intensive benchmarks the rate
of promise evaluation easily reaches 99%. In our own coding, whenever we encountered
higher rates of unevaluated promises, finding where this occurred and refactoring the
code to avoid those promises led to performance improvements.

Promises have a cost even when not evaluated. Their cost in in memory is the same
as a pairlist cell, i.e., 56 bytes on a 64-bit architecture. On average, a program allocates
18GB for them, thus increasing pressure on the garbage collector. The time cost of
promises is roughly one allocation, a handful of writes to memory. Moreover, it is a data

80 85 90 95 100

0
2

4
6

8
1
0

1
2

(a) Promises evaluated (in %)

70 75 80 85 90 95 100

0
5

1
0

1
5

2
0

2
5

(b) Promises evaluated on same level (in %)

Fig. 14. Promises evaluation in all data sets. The y-axis is the number of programs.

124 F. Morandat et al.

type which has to be dispatched and tested to know if the content was already evaluated.
Finally, this extra indirection increases the chance of cache misses. An example of how
unevaluated promises arise in R code is the assign function, which is heavily used in
Bioconductor with 23 million calls and 46 million unevaluated promises.

function(x,val,pos=-1,env=as.environment(pos),immediate=TRUE)

.Internal(assign(x,val,env))

This function definition is interesting because of its use of dependent parameters. The
body of the function never refers to pos, it is only used to modify the default value of
env if that parameter is not specified in the call. Less than 0.2% of calls to assign

evaluate the promise associated with pos.
It is reasonable to ask if it would be valid to simply evaluate all promises eagerly. The

answer is unfortunately no. Promises that are passed into a function which provides a
language extension may need special processing. For instance in a loop, promises are
intended to be evaluated multiple times in an environment set up with the right variables.
Evaluating those eagerly will result in a wrong behavior. However, we have not seen any
evidence of promises being used to extend the language outside of the base libraries. We
infer this from calls to the substitute and assimilate functions. Another possible
reason for not switching the evaluation strategy is that promises perform and observe
side effects.

x <- y <- 0

fun <- function(a, b) if(runif(1)>.5) a+b else b+a

fun(x<-y+1, y<-x+2) # Result is always a+b, but can be either 4 or 5

This code snippet will yield different results depending on the order the two promises
passed to fun are going to be evaluated. Taking into account the various oddities of R,
such as lookups that force evaluation of all promises in scope, it is reasonable to wonder
if relying on a particular evaluation order is a wise choice for programmers.

7.2 Dynamic

Eval. The eval function is widely used in R code with 8 500 static calls in CRAN and
5 800 calls in Bioconductor. The total number of dynamic calls in our benchmarks was
2.2 million. These are rather large numbers. We focus on the 15 call sites where each
represents more than 1% of the total dynamic calls. Together these call sites account
for 88% of eval. The match.arg function is the highest user with 54% of all calls
to eval. In the 14 other call sites to eval, we see two uses cases. The most common
is the evaluation of the source code of a promise retrieved by substitute in a new
environment. This is done in the with function. The other use case is the invocation of
a function whose name or arguments are determined dynamically. For this purpose, R
provides do.call, and thus using eval is overkill.

Substitute. Promises provide a kind of limited automatic quoting of arguments as the
substitute function can retrieve the textual representation of the source expression
of any promise. A typical use case is to add a legend to a chart when no text is provided;
this is done by retrieving the expression passed to the plot function and using it as a

Evaluating the Design of R 125

legend. However, this usage is limited to one level of nesting, and passing a promise to
another function will destroy that information.

f <- function(x) substitute(x)

b <- function(x) (function(y) substitute(y))(x)

f(1 + 1) # 1 + 1
b(1 + 1) # x

The example above shows that substitute only retrieves the text of the last argument.
In Bioconductor, substitute is called from 51 call sites 3.6 million times, but only
11 call sites are in user code (the rest comes from the standard library). They account
for 2% of dynamic calls.

match.arg. The match.arg function takes arguments arg and choices; it matches
arg against a table of candidate values as specified by choices. In practice, 75% of
the calls to this function only pass the first argument, like the following code snippet:

magic <- function(type=c("mean","median","trimmed"))

return (match.arg(type))

A call to magic("t") returns trimmed. Notice that the string trimmed only occurs in
the default argument which is not used in this case as a value of "t" is provided. What
happens is that match.arg reaches into its caller, reflectively finds the default value
for type and uses it as the value of choices; this is done as follows,

match.arg <- function (arg, choices)

if (missing(choices)) {

formal.args <- formals(sys.function(sys.parent()))

choices <- eval(formal.args[[deparse(substitute(arg))]])

...

The first line checks if the choices argument was passed to the function. The second
line gathers the list of parameters of the caller. Finally, the last line extracts from this
list the parameter that has the same name as arg and evals it.

Environments. Explicit environment manipulation hinders compiler optimizations. In
our benchmarks these functions are called often. But it turns out that they are most often
used to short-circuit the by-value semantics of R. We discovered that 87% of the calls
to remove, which deletes a local variable from the current frame, are used as part of
an implementation of a hash map. R also allows programs to change the nesting of an
environment with parent.env. But 69% of these changes are used by the R VM’s lazy
load mechanism, and 30% by the proto library which implements prototypes [20] and
uses environments to avoid copies.

7.3 Objects

The S4 object model has been promoted as a replacement for S3 by parts of the R com-
munity [16,3]. However, our numbers do show this happening. Thirteen years after the
introduction of S4, S3 classes still dominate. From the number of methods introduced
and the number of times they are redefined, S3 classes seem to be used quite differently
than S4 classes.

126 F. Morandat et al.

Bioc Misc CRAN Base Total

S3

classes 1 535 0 3 351 191 3 860
methods 1 008 0 1 924 289 2 438
Avg. redef. 6.23 0 7.26 4.25 9.75
Method calls 13M 58M - - 76M
Super calls 697K 1.2M - - 2M

S4

classes 1 915 2 1 406 63 2 893
singleton 608 2 370 28 884
leaves 819 0 621 16 1 234
Hier. depth 9 1 8 4 9
Direct supers 1.09 0 1.13 0.83 1.07
methods 4 136 22 2 151 24 5 557
Avg. redef. 3 1 3.9 2.96 3.26
Redef. depth 1.12 1 1.21 1.08 1.14
new 668K 64 - - 668K
Method calls 15M 266 - - 15M
Super calls 94K 0 - - 94K

Fig. 15. Object usage in the corpus

Fig. 15 summarizes the use
of object-orientation in the cor-
pus. In our corpus, 1 055 S3
classes, or roughly one fourth
of all classes, have no meth-
ods defined on them and 1 107
classes, 30%, have only a print
or plot method. Fig. 16 gives
the number of redefinitions of
S3 methods. Any number of def-
initions larger than one suggest
some polymorphism. Unsurpris-
ingly, plot and print domi-
nate. While important, does the
need for these two functions re-
ally justify an object system? At-
tributes already allow the pro-
grammer to tag values, and
could easily be used to store clo-
sures for a handful of methods like print and plot. A prototype-based system would
be simpler and probably more efficient than the S3 object system. Finally, only 30% of
S3 classes are really object-oriented. This translates to one class for every two packages.
This is quite low and makes rewriting them as S4 objects seem feasible. Doing so could
simplify and improve both R code and the evaluator code.

0 1 2 3 4 5 6 7 8 9 10
11

−
12

13
−

14
15

−
19

20
−

24
24

−
29

30
−

39
40

−
49

50
−

69
70

−
99

10
0−

19
9

20
0−

29
9

30
0−

40
2

99
6

>
 1

00
0

0
10

0
20

0
30

0
40

0
50

0

Fig. 16. S3 method redefinitions (on x axis)

S4 objects on the other hand, seem to
be used in a more traditional way. The
class hierarchies are not deep (maximum
is 9), however they are not flat either.
The number of parent classes is surpris-
ingly low (see [5] for comparison), but
reaches a maximum of 50 direct super-
classes. In Fig. 15, singleton classes, i.e.,
classes which are both root and leaf, are
ignored. At first glance, the number of
method redefinitions seems to be a bit
smaller than what we find in other ob-
ject languages. This is partially explained
by the absence of a root class, the use of
class unions, and because multi-methods
are declared outside of classes. The num-
ber of redefinitions, i.e., one method ap-
plied to a more specific class, is very low
(only 1 in 25 classes). This pattern suggests that the S4 object model is mostly used to
overcome an absence of structure declarations rather than to add objects in statistical
computing. Even when biased by Bioconductor, which pushes for S4 adoption, the use

Evaluating the Design of R 127

of S4 classes remains low. Part of the reason may be the perception that S3 classes are
less verbose and clumsy to write than S4; it may also come from the fact that the base
libraries use S3 classes intensively and this is reflected in our data.

7.4 Experience

Implementing the shootout problems highlighted some limitations of R. The pass-by-
value semantics of function calls is often cumbersome. The R standard library does not
provide data structures such as growable arrays or hash maps found in many other lan-
guages. Implementing them efficiently is difficult without references. To avoid copying,
we were constrained to either use environments as a workaround, or to inline these op-
erations and then make use of scoping and <<- as needed. Either choice makes the code
unnecessarily verbose and readability suffers. Moreover, the former choice brings the
question of whether the environments are used as intended, and the latter has a serious
impact on code maintenance.

We found performance hard to predict. Without a solid understanding

Input size 12 13 14
Base time 6s 12s 31s
() +7.4% +5.3% +6.3%
return +4.6% +5.4% +5.4%

Fig. 17. Adding overheads

of the implementation, users are bound to be sur-
prised by the impact of seemingly small changes to
their code. In the binary tree program, adding an
extra (and unneeded) return statement or a pair
of parentheses () will impact performance in a no-
ticeable way. Fig. 17 shows impact of adding these
operations on performance for different input sizes.

8 Conclusions

This paper reports on our investigations into the design and implementation of the R
language. Despite having millions of users and being, in many respects, a success story,
R has received little attention from our community. With the exception of [13], which
mistakenly characterized R as strict and imperative, ours is the first attempt to introduce
R to a mainstream computer science audience.

Our first challenge was to understand the unconventional semantics of the language
and the sometimes subtle interactions between its features. While some documentation
exists, it is incomplete. The language is effectively defined by the successive releases of
its implementation. Relying on an implementation as the authoritative specification of a
language is unsatisfactory; the R interpreter is constrained by implementation decisions
and presents a programming model that is at same time overconstrained and ambiguous.
Implementation details are exposed and slowly bleed into the language. We have found
it useful, for our own sake, to formalize the current implementation of R, focusing
on features such as lazy evaluation, variable scoping and binding, and copy-semantics.
Even though our semantics does not cover all of R, we did not oversimplify. We present
a proper subset of R; we are confident that we will be able to extend it to larger portions
of the language. As a language, R is like French; it has an elegant core, but every rule
comes with a set of ad-hoc exceptions that directly contradict it.

A language definition is only part of the picture. The next question is how it is used in
practice. Even the most elegant feature can be misused, and the ugliest language design

128 F. Morandat et al.

can be used well when sufficient discipline is employed. To understand R in the wild,
we implemented the TraceR framework and gathered over 3 million lines of code from
various sources to form the largest open source R benchmark suite. Armed with these
tools we started looking at how the exotic features of R are used by programs and what
are the overheads and costs involved in supporting those features.

The R user community roughly breaks down into three groups. The largest groups
are the end users. For them, R is mostly used interactively and R scripts tend to be short
sequences of calls to prepackaged statistical and graphical routines. This group is mostly
unaware of the semantics of R, they will, for instance, not know that arguments are
passed by copy or that there is an object system (or two). The second, smaller and more
savvy, group is made up of statisticians who have a reasonable grasp of the semantics
but, for instance, will be reluctant to try S4 objects because they are “complex”. This
group is responsible for the majority of R library development. The third, and smallest,
group contains the R core developers who understand both R and the internals of the
implementation and are thus comfortable straddling the native code boundary.

One of the reasons for the success of R is that it caters to the needs of the first group,
end users. Many of its features are geared towards speeding up interactive data analysis.
The syntax is intended to be concise. Default arguments and partial keyword matches
reduce coding effort. The lack of typing lowers the barrier to entry, as users can start
working without understanding any of the rules of the language. The calling convention
reduces the number of side effects and gives R a functional flavor. But, it is also clear
that these very features hamper the development of larger code bases. For robust code,
one would like to have less ambiguity and would probably be willing to pay for that
by more verbose specifications, perhaps going as far as full-fledged type declarations.
So, R is not the ideal language for developing robust packages. Improving R will re-
quire increasing encapsulation, providing more static guarantees, while decreasing the
number and reach of reflective features. Furthermore, the language specification must
be divorced from its implementation and implementation-specific features must be dep-
recated.

The balance between imperative and functional features is fascinating. We agree with
the designers of R that a purely functional language whose main job is to manipulate
massive numeric arrays is unlikely to be a success. It is simply too useful to be able to
perform updates and have a guarantee that they are done in place rather than hope that
a smart compiler will be able to optimize them. The current design is a compromise be-
tween the functional and the imperative; it allows local side effects, but enforces purity
across function boundaries. It is unfortunate that this simple semantics is obscured by
exceptions such as the super-assignment operator (<<-) which is used as a sneaky way
to implement non-local side effects.

One of the most glaring shortcomings of R is its lack of concurrency support. In-
stead, there are only native libraries that provide behind-the-scenes parallel execution.
Concurrency is not exposed to R programmers and always requires switching to native
code. Adding concurrency would be best done after removing non-local side effects,
and requires inventing a suitable concurrent programming model. One intriguing idea
would be to push on lazy evaluation, which, as it stands, is too weak to be of much use
outside of the base libraries, but could be strengthened to support parallel execution.

Evaluating the Design of R 129

The object-oriented side of the language feels like an afterthought. The combination
of mutable objects without references or cyclic structures is odd and cumbersome. The
simplest object system provided by R is mostly used to provide printing methods for
different data types. The more powerful object system is struggling to gain acceptance.

The current implementation of R is massively inefficient. We believe that this can, in
part, be ascribed to the combination of dynamism, lazy evaluation, and copy semantics,
but it also points to major deficiencies in the implementation. Many features come at
a cost even if unused. That is the case with promises and most of reflection. Promises
could be replaced with special parameter declarations, making lazy evaluation the ex-
ception rather than the rule. Reflective features could be restricted to passive introspec-
tion which would allow for the dynamism needed for most uses. For the object system,
it should be built-in rather than synthesized out of reflective calls. Copy semantics can
be really costly and force users to use tricks to get around the copies. A limited form of
references would be more efficient and lead to better code. This would allow structures
like hash maps or trees to be implemented. Finally, since lazy evaluation is only used
for language extensions, macro functions à la Lisp, which do not create a context and
expand inline, would allow the removal of promises.

Acknowledgments. The authors benefited from encouragements, feedback and com-
ments from John Chambers, Michael Haupt, Ryan Macnak, Justin Talbot, Luke Tierney,
Gaël Thomas, Olga Vitek, Mario Wolczko, and the reviewers. This work was supported
by NSF grant OCI-1047962.

References

1. Becker, R.A., Chambers, J.M., Wilks, A.R.: The New S Language. Chapman and Hall (1988)
2. Bobrow, D.G., Kahn, K.M., Kiczales, G., Masinter, L., Stefik, M., Zdybel, F.: In: Conference

on Object-Oriented Programming, Languages and Applications, OOPSLA (1986)
3. Chambers, J.M.: Software for Data Analysis: Programming with R. Springer (2008)
4. Chambers, J.M., Hastie, T.J.: Statistical Models in S. Chapman & Hall (1992)
5. Ducournau, R.: Coloring, a Versatile Technique for Implementing Object-Oriented Lan-

guages. Software: Practice and Experience 41(6), 627–659 (2011)
6. Kent Dybvig, R.: The Scheme Programming Language. MIT Press (2009)
7. Gentleman, R., et al. (eds.): Bioinformatics and Computational Biology Solutions Using R

and Bioconductor. Statistics for Biology and Health. Springer (2005)
8. Gentleman, R., Ihaka, R.: Lexical scope and statistical computing. Journal of Computational

and Graphical Statistics 9, 491–508 (2000)
9. Hudak, P., Hughes, J., Peyton Jones, S., Wadler, P.: A history of Haskell: being lazy with

class. In: Conference on History of programming languages, HOPL (2007)
10. Ihaka, R., Gentleman, R.: R: A language for data analysis and graphics. Journal of Computa-

tional and Graphical Statistics 5(3), 299–314 (1996)
11. Keele, L.: Semiparametric Regression for the Social Sciences. Wiley (2008)
12. Kiczales, G., Rivieres, J.D., Bobrow, D.G.: The Art of the Metabobject Protocol: The Art of

the Metaobject Protocol. MIT Press (1991)
13. Mitchell, E.G.: Functional programming through deep time: modeling the first complex

ecosystems on earth. In: Conference on Functional Programming, ICFP (2011)
14. Parr, T., Fisher, K.: Ll(*): the foundation of the Antlr parser generator. In: Conference on

Programming Language Design and Implementation, PLDI (2011)

130 F. Morandat et al.

15. R Development Core Team: R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing (2011)

16. R Development Core Team: The R language definition. R Foundation for Statistical Comput-
ing, http://cran.r-project.org/doc/manuals/R-lang.html

17. Richards, G., Lesbrene, S., Burg, B., Vitek, J.: An analysis of the dynamic behavior of
JavaScript programs. In: Conference on Programming Language Design and Implementa-
tion, PLDI (2010)

18. Smith, D.: The R ecosystem. In: The R User Conference 2011 (August 2011)
19. Steele Jr., G.L.: Common LISP: the language, 2nd edn. Digital Press (1990)
20. Ungar, D., Smith, R.B.: Self: The power of simplicity. In: Conference on Object-Oriented

Programming, Languages and Applications, OOPSLA (1987)
21. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information and Com-

putation 115, 38–94 (1992)

http://cran.r-project.org/doc/manuals/R-lang.html

Evaluating the Design of R 131

[READS]
H(ν) = num[n]α

reads(ν, H) = n

[READB]
H(ν) = str[s]α

readn(ν, H) = s

[GETN]
H(ν) = num[n1 . . . nm . . .]α

ν′ fresh H ′ = H[ν′/num[nm]⊥⊥]

get(ν, m, H) = ν′, H ′

[GETS]
H(ν) = str[s1 . . . sm . . .]α

ν′ fresh H ′ = H[ν′/str[sm]⊥⊥]

get(ν, m, H) = ν′, H ′

[GETG]

H(ν) = gen[ν1 . . . νm . . .]α

get(ν, m, H) = νm, H
′

[SETN]
readn(ν′, H) = n

H(ν) = num[n1 . . . nm . . .]α

H ′ = H[ν/num[n1 . . . n . . .]α]

set(ν, m, ν′, H) = H ′

[SETS]
reads(ν′, H) = s

H(ν) = str[s1 . . . sm . . .]α

H ′ = H[ν/str[s1 . . . s . . .]α]

set(ν, m, ν′, H) = H ′

[SETG]

H(ν) = gen[ν1 . . . νm . . .]α

H ′ = H[ν/gen[ν1 . . . ν′ . . .]α]

set(ν, m, ν′, H) = H ′

[SETNE]
readn(ν′, H) = n

H(ν) = num[n1 . . . nm]
α

H ′ = H[ν/num[n1 . . . nm n]
α]

set(ν, m + 1, ν′, H) = H ′

[SETSE]
reads(ν′, H) = s

H(ν) = str[s1 . . . sm]
α

H ′ = H[ν/str[s1 . . . sm s]
α]

set(ν, m + 1, ν′, H) = H ′

[SETGE]

H(ν) = gen[ν1 . . . νm]
α

H ′ = H[ν/gen[ν1 . . . νm ν′]α]

set(ν, m + 1, ν′, H) = H ′

[SETNS]
reads(ν′, H) = s H(ν) = num[n1 . . . nm . . .]α

H ′ = H[ν/str[s(n1) . . . s . . .]α]

set(ν, m, ν′, H) = H ′

[SETNG]

H(ν′) = gen[ν1 . . .]α
′

H(ν) = num[n1 . . . nm . . .]α

H ′ = H[ν/str[g(n1) . . . ν′ . . .]α]

set(ν, m, ν′, H) = H ′

[SETSN]
readn(ν′, H) = n H(ν) = str[s1 . . . sm . . .]α

H ′ = H[ν/str[s1 . . . s(n) . . .]α]

set(ν, m, ν′, H) = H ′

[SETSG]

H(ν′) = gen[ν1 . . .]α
′

H(ν) = str[s1 . . . sm . . .]α

H ′ = H[ν/gen[g(s1) . . . ν′ . . .]α]

set(ν, m, ν′, H) = H ′

[SETNSE]
reads(ν′, H) = s H(ν) = num[n1 . . . nm]

α

H ′ = H[ν/str[s(n1) . . . s(nm) s]
α]

set(ν, m + 1, ν′, H) = H ′

[SETNGE]

H(ν′) = gen[ν1 . . .]α
′

H(ν) = num[n1 . . . nm]
α

H ′ = H[ν/str[g(n1) . . . g(nm) ν′]α]

set(ν, m + 1, ν′, H) = H ′

[SETSNE]
readn(ν′, H) = n H(ν) = str[s1 . . . sm]

α

H ′ = H[ν/str[s1 . . . sm s(n)]α]

set(ν, m + 1, ν′, H) = H ′

[SETSGE]

H(ν′) = gen[ν1 . . .]α
′

H(ν) = str[s1 . . . sm]
α

H ′ = H[ν/gen[g(s1) . . . g(sm) ν′]α]

set(ν, m + 1, ν′, H) = H ′

[LOOK0]
H(ι) = F F (x) = ν

ι(H, x) = ν

[LOOK1]
Γ = ι ∗ Γ ′ ι(H, x) = ν

Γ (H, x) = ν

[LOOK2]
Γ = ι ∗ Γ ′ H(ι) = F x �∈ dom(F) Γ ′(H, x) = ν

Γ (H, x) = ν

[COPY0]
cpy(H, ν⊥) = H ′, ν′′

⊥ cpy(H ′, ν′
⊥) = H ′′, ν′′′

⊥
cpy(H, ν⊥, ν′

⊥) = H ′′, ν′′
⊥, ν′′′

⊥

[COPY1]

cpy(H,⊥) = H,⊥
[COPY2]

H(ν) = κα α = ν⊥ν′
⊥ cpy(H, ν⊥, ν′

⊥) = H ′ ν′′
⊥, ν′′′

⊥ ν′′ fresh H ′′ = H ′[ν′′/κν′′
⊥ ν′′′

⊥]

cpy(H, ν) = H ′′, ν′′

[SUPER1]
Γ = ι ∗ Γ ′ H(ι) = F x ∈ dom(F) F ′ = F [x/ν] H ′ = H[ι/F ′]

assign(x, ν, Γ, H) = H ′

[SUPER2]
Γ = ι ∗ Γ ′ H(ι) = F x �∈ dom(F) assign(x, ν, Γ ′, H) = H ′

assign(x, ν, Γ, H) = H ′

[SUPER3]
Γ = ι H(ι) = F F ′ = F [x/ν] H ′ = H[ι/F ′]

assign(x, ν, Γ, H) = H ′

Fig. 18. Auxiliary definitions

McSAF: A Static Analysis Framework

for MATLAB�

Jesse Doherty and Laurie Hendren

School of Computer Science, McGill University, Montreal, QC, Canada
{jesse,hendren}@cs.mcgill.ca

Abstract. Matlab is an extremely popular programming language used
by scientists, engineers, researchers and students world-wide. Despite its
popularity, it has received very little attention from compiler researchers.
This paper introduces McSaf, an open-source static analysis framework
which is intended to enable more compiler research for Matlab and
extensions of Matlab. The framework is based on an intermediate rep-
resentation (IR) called McLast, which has been designed to capture all
the key features of Matlab, while at the same time being simple for
program analysis. The paper describes both the IR and the procedure
for creating the IR from the higher-level AST. The analysis framework
itself provides visitor-based traversals including fixed-point-based traver-
sals to support both forwards and backwards analyses. McSaf has been
implemented as part of the McLab project, and the framework has al-
ready been used for a variety of analyses, both for Matlab and the
AspectMatlab extension.

1 Introduction

Matlab is a popular dynamic (“scripting”) programming language that has
been in use since the late 1970s, and a commercial product of MathWorks since
1984, with millions of users in the scientific, engineering and research communi-
ties.1 There are currently over 1200 books based on Matlab and its companion
software, Simulink (http://www.mathworks.com/support/books).

Despite the popularity of the language, there exists relatively little compiler
research for Matlab, and without an existing framework it is difficult for re-
searchers to tackle such research. McSaf, the topic of this paper, is a compiler
analysis framework that is intended to enable compiler research by providing
both a convenient intermediate representation and an intraprocedural analysis
framework which can be used both for Matlab and language extensions of
Matlab. It has been developed as a key component of the McLab project [3].

� This work was supported, in part, by NSERC. A special thanks to Soroush Radpour
for his help with the experiments.

1 The most recent data from MathWorks shows that the number of users
of Matlab was 1 million in 2004, with the number of users doubling ev-
ery 1.5 to 2 years.(From www.mathworks.com/company/newsletters/news notes/-

clevescorner/jan06.pdf.)

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 132–155, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

McSAF: A Static Analysis Framework for MATLAB 133

This paper does not just report on a standard compiler engineering effort.
Designing an intermediate representation (IR) for Matlab that is suitable for
program analysis was quite challenging for three reasons. First, the Matlab lan-
guage has grown somewhat organically and does not have a precise documented
semantics. Thus, the IR needs to expose those semantics both correctly and in a
manner that simplifies subsequent analyses. One example is the correct handling
of the “&” and “|” operators, which are short-circuiting in some situations and
not in others. Secondly, Matlab supports several high-level features that are
convenient for programmers, but difficult for compilers. For example, an assign-
ment statement may assign to numerous variables at the same time, and the
number of such variables may not be known statically. The IR must expose and
simplify such features. Thirdly, the IR must correctly encode which identifiers
refer to variables, and which refer to named functions. This is not trivial since
the syntax of Matlab is ambiguous, and there are no explicit declarations of
variables. For example, the expression “a(i)” could mean four different things,
depending on whether “a” is a variable or function, and whether “i” is a variable
or a function. Consider two of the cases. If both “a” and “i” are variables, the
expression “a(i)” means the ith element of array “a”. If both “a” and “i” are
named functions, then “a(i)” is a call to function “a”, where the argument is
a call to the built-in function “i” (which returns the complex value i). Clearly
a program analysis will apply very different analysis rules for an array access or
a function call. Thus, these syntactic ambiguities should be resolved in the IR.

Given a suitable IR, another important challenge is to design an analysis
framework that supports a wide variety of intraprocedural analyses. Our goal
was to design a framework that is easy to use, thus enabling others to design new
analyses. We also felt that it was important that our approach should support
language extensions so that an analysis originally designed for Matlab could
be easily adapted to an extension of Matlab.

In this paper we provide our solution to these challenges. Our contributions
are as follows:

Design of McLast IR: The design and implementation of McLast, a lower-
level AST-based intermediate representation that both exposes important
Matlab semantics and simplifies program analysis.

Generating McLast: The design and implementation of a collection of sim-
plifying transformations that together provide a mechanism for generating
the McLast IR from the higher-level AST. This simplification framework
encodes the dependency structure between simplifications to enable the ap-
plication of a subset of simplifications and also to allow for a structured
way of introducing future simplifications. The simplifying transformations
themselves support both standard and Matlab-specific transformations.

Analysis Framework: The design and implementation of an extensible pro-
gram analysis framework for Matlab. The framework supports a variety
of visitor-based traversal mechanisms including a depth-first style traver-
sal suitable for flow-insensitive analyses and a structured-program-analysis

134 J. Doherty and L. Hendren

traversal which supports both forward and backwards flow-sensitive analyses.
The flow-sensitive traversal mechanism automatically supports conditional
control flow, and iterative constructs, including support for “break” and
“continue” statements.

Extensibility: Both the simplification and analysis frameworks have been de-
signed to support extensions of Matlab.

The remainder of this paper is structured as follows. In Section 2 we provide an
overview of the whole McLab project and show how the McSaf framework fits
into the big picture. Section 3 introduces the McLast IR and the simplifying
transformations, while Section 4 describes the analysis framework. Related work
is discussed in Section 5 and Section 6 concludes.

2 Overview

The McSaf system forms a key component of the McLab project as illus-
trated in Figure 1. As a whole, McLab is intended as a complete toolkit for
Matlab systems including an extensible front-end built using MetaLexer [5]
and JastAdd [2,12], and several back-ends including source-to-source tools like
the refactoring toolkit [18], static compilers such as the Matlab-to-Fortran
translator (McFor) [16] and the Matlab Tamer [10], and dynamic virtual ma-
chine/JIT systems (McVM) [6]. All parts of McLab, with the exception of
McVM, are implemented using Java and Java-based tools.

McSaf is the heart of the system, providing both the lower-level McLast

IR and the analysis toolkit/engine (as indicated by the grey boxes). The dot-
ted boxes in Figure 1 denote existing implementations of flow analyses that
use the McSaf toolkit. Note that McSaf can be used to build analyses both
on the higher-level AST (for example, kind analysis), as well as on the lower-
level McLast. McSaf includes three different implementations of kind anal-
ysis [9], and a variety of standard dataflow analyses. Other components of the
larger McLab system also build analyses using McSaf. The refactoring toolkit
implements a variety of specialized analyses to enable refactoring transforma-
tions [18], and the Matlab Taming toolkit implements specialized simplifica-
tions and analyses to generate a call graph and type/class information [10].
McVM uses both the IR and some standard flow analysis information generated
by McSaf.2

It is our intention that future users of McSaf would add to both the standard
flow analyses and develop new specialized analyses for both our existing back-
ends and for their own projects/tools.

3 Intermediate Representations and Simplifications

One of the key steps in designing McSaf was to design and implement an ap-
propriate intermediate representation which exposed key semantics of Matlab

2 Specialized analyses in McVM are implemented in C++ and LLVM [15], and thus
do not use McSaf.

McSAF: A Static Analysis Framework for MATLAB 135

*.m

MATLAB Tamer

Front
End

Kind
Analysis

Standard
Analyses

VMMc

Specialized
Analyses

Specialized
Analyses

Refactoring
Toolkit

Simplifications

McLAST + flow info

FORMc

McLAST + kinds

AST + kinds

AST

Flow

Analysis

Framework

Fig. 1. Overview of McLab and McSaf. The grey boxes indicate the components
presented in this paper: Simplifications are discussed in Section 3 and the Flow Analysis
Framework is presented in Section 4. The dotted boxes correspond to existing analyses
implemented using McSaf.

and provided a good basis for analyses. Although we hope the end result is quite
clean and accomplishes these goal, the process of determining the correct IR
was not at all straightforward. In this section we introduce the existing high-
level AST and then discuss the simplifications we developed that result in the
lower-level IR, McLast.

3.1 High-Level AST

The McLab front-end already has a well-defined AST specification and a Java
implementation of the AST that is generated based on a JastAdd specification.
Figure 2 gives an extract of the AST specification.

For those not familiar with JastAdd, we give a quick introduction. Each dec-
laration defines a node type, which may be abstract or concrete. An abstract

136 J. Doherty and L. Hendren

1 // Top−level structure
2 abstract Program;
3 CompilationUnits ::= Program∗;
4 Script : Program ::= HelpComment∗ Stmt∗;
5 FunctionList : Program ::= Function∗;
6 Function ::= OutputParam:Name∗ <Name:String> InputParam:Name∗
7 HelpComment∗ Stmt∗ NestedFunction:Function∗;
8

9 // Statements
10 abstract Stmt;
11 WhileStmt : Stmt ::= Expr Stmt∗;
12 ForStmt : Stmt ::= AssignStmt Stmt∗;
13 BreakStmt : Stmt;
14 ContinueStmt : Stmt;
15 ReturnStmt : Stmt;
16 IfStmt : Stmt ::= IfBlock∗ [ElseBlock];
17 IfBlock ::= Condition:Expr Stmt∗;
18 ElseBlock ::= Stmt∗;
19 SwitchStmt : Stmt ::= Expr SwitchCaseBlock∗ [DefaultCaseBlock];
20 SwitchCaseBlock ::= Expr Stmt∗;
21 DefaultCaseBlock ::= Stmt∗;
22 AssignStmt : Stmt ::= LHS:Expr RHS:Expr;
23 ExprStmt : Stmt ::= Expr;
24

25 // Expressions
26 abstract Expr;
27 abstract LiteralExpr : Expr;
28 abstract LValueExpr : Expr;
29 abstract UnaryExpr : Expr ::= Operand:Expr;
30 abstract BinaryExpr : Expr ::= LHS:Expr RHS:Expr;
31 NameExpr : LValueExpr ::= Name;
32 ParameterizedExpr : LValueExpr ::= Target:Expr Arg:Expr∗;
33 CellIndexExpr : LValueExpr ::= Target:Expr Arg:Expr∗;
34 DotExpr : LValueExpr ::= Target:Expr Field:Name;
35 MatrixExpr : LValueExpr ::= Row∗;
36 Name ::= <ID : String>;
37 Row ::= Element:Expr∗;
38 ...
39 RangeExpr : Expr ::= Lower:Expr [Incr:Expr] Upper:Expr;
40 ColonExpr : Expr;
41 EndExpr : Expr;
42 CellArrayExpr : Expr ::= Row∗;
43 FunctionHandleExpr : Expr ::= Name;
44 LambdaExpr : Expr ::= InputParam:Name∗ Body:Expr;

Fig. 2. AST Definition

McSAF: A Static Analysis Framework for MATLAB 137

declaration, such as in line 2, will result in an abstract Java class being generated.
Declarations can declare subtypes, for example on lines 4 and 5, Script and
FunctionList are declared to be subtypes of Program. Each declaration may list
children, for example, lines 6-7 declare that a Function has six children. Children
may be explicitly named or not. For example, the first child of Function has the
name OutputParam, whereas the fourth and fifth children are not named. A
child may be a list of a specific type (indicated by ∗), a singleton, or optional
(indicated by [...]).

The AST definition follows the natural abstract syntax of Matlab. A Mat-

lab program consists of a collection of compilation units. Each compilation unit
can contain either a script or a list of functions. Scripts contain only comments
and statements. Functions have output parameters, input parameters, and pos-
sibly nested functions. The function body consists of comments and statements.
Statements can be simple expression or assignment statements, or control-flow
statements. Since Matlab supports many high-level array operations, there are
quite a few types of expressions.

3.2 Simplification Process

Although it is possible to define program analyses over the high-level AST, such
an analysis must be able to handle arbitrarily complicated expressions and must
correctly handle the semantics of Matlab constructs. Thus, we have defined a
lower-level, simpler AST called McLast. Figure 3 shows the overall simplifica-
tion process. The front-end delivers the high-level AST (also called McAst) and
we wish to create a semantically equivalent lower-level representation.

One of the first surprises for us was that we could not create a lower-level
AST before we resolved the meaning of all identifiers. For example, it is not
possible to correctly simplify an expression of the form a(f(end)) before one
knows whether f is a function or a variable. Thus, before simplification, kind
analysis [9] must be applied to determine the meaning of identifiers (AST nodes
of type Name). The kind analysis has itself been implemented using the McSaf

framework presented in this paper, and it computes, for each Name node, one of
the following kinds: Var, the Name refers to a variable; Fn, the Name refers to
a named function; or Id, the Name could be either a Var or Fn at run-time.

Another challenge is that the simplifying transformations depend on each
other, and we wanted to be able to: (1) support applying only some transfor-
mations; and (2) allow for new transformations to be added in a consistent and
simple fashion. Thus, each simplification forms part of a dependency structure
which is enforced by the framework.

In the following sections, Sec. 3.3 to Sec. 3.6 outline the highlights of the indi-
vidual simplfications, and then in Sec. 3.7 we describe our approach to handling
dependencies between simplifications. We also provide some empirical measure-
ments on the frequency of simplifications in Sec. 3.8. More detailed descriptions
can be found in the first author’s thesis [8] and in the implementation [3].

138 J. Doherty and L. Hendren

T
ra

ns
fo

rm
at

io
n

1

T
ra

ns
fo

rm
at

io
n

2

T
ra

ns
fo

rm
at

io
n

N

Front−End Kind
Analysis

Simplifier

Simplification Phase

kind info
McLASTsource McAST +

McAST

Fig. 3. Simplifications

3.3 Exposing Implicit Control Flow

One important group of simplifications is to expose implicit control flow. Explicit
and simple control flow makes the subsequent implementation of flow-sensitive
analyses much more straightforward.

The case of Matlab short-circuit operators illustrates the difficulty in cap-
turing the semantics of Matlab, which often includes special and somewhat
irregular rules that seem to have emerged over time. Matlab supports im-
plicit control flow via the scalar logical operators && and ||, which are always
short-circuit operators in the usual sense. The logical operator simplification
transforms all occurrences of these operators to equivalent explicit control flow
with conditional statements, ensuring that code copying is minimized. For exam-
ple, the original expression in Figure 4(a) would be converted to the conditional
statement in Figure 4(b).

1 t = E1 && E2;

1 t = E1;

2 if (E1)

3 t = E2;

4 else

5 t = false;

6 end

1 t = E1;

2 CheckScalarStmt(t);

3 if (E1)

4 t = E2;

5 CheckScalarStmt(t);

6 else

7 t = false;

8 end

(a) original (b) first try (c) correct

Fig. 4. Example of simplifying short-circuit &&

In implementing the short-circuit transformations we were careful not to du-
plicate code and we were also quite careful to capture the correct Matlab

semantics of short-circuits. In particular, the Matlab semantics for the scalar
logical operators dictate that the result of any operand that is evaluated must
be a scalar logical, and if it is not a scalar, a run-time error is raised. However,

McSAF: A Static Analysis Framework for MATLAB 139

the same run-time check is not made for conditional expressions for if and while

statements. These conditional statements are considered true when the result is
non-empty and contains all nonzero elements (logical or real numeric), and false
otherwise. Thus, to maintain the correct semantics the simplification introduces
new CheckScalarStmt nodes, as shown in Figure 4(c).

Another non-obvious twist is that Matlab also has implicit short-circuits for
the element-wise operators & and |, but only when they appear as the top-level
operators in the condition of an if or while construct. Thus, the simplification for
element-wise logical operators must ensure that the short-circuit simplification is
applied in the correct contexts. In particular, such simplifications must be done
before another transformation moves the expression out of the condition.

3.4 Simplifying Control Constructs

In addition to exposing implicit control flow, simplifications are also applied to
if and for statements. The if simplification simply restructures elseif con-
structs to equivalent nested if-else constructs. This ensures that subsequent
flow analyses only have to deal with two control-flow branches.

The for simplification is somewhat more Matlab-specific. Many Matlab

for loops are written in the style of Figure 5(a), where i takes on values from
1 to n in steps of k. This style of loop, which we call a range for loop, is ideal
for subsequent analysis and loop transformations. However, the general form of
a Matlab for loop is shown in Figure 5(b). The general semantics is that the
expression E is evaluated to an array a, and a is treated as a two-dimensional
array. The loop iterates over a, assigning to i the i’th column of a. If a is empty,
then the loop body does not execute, and the final value of i is the empty
array. Figure 5(c) shows the simplification that converts a general array to an
equivalent range for loop.

1 for i = 1:k:n

2 <BODY>

3 end

1 for i = E

2 <BODY>

3 end

1 t1=E;

2 [t2,t3] = size(t1);

3 i = [];

4 for t4 = 1:t3

5 i = t1(:,t4);

6 <BODY>

7 end

(a) range for loop (b) original general loop (c) simplified loop

Fig. 5. Example of simplifying for loops

3.5 Simplifying Single Statements and Expressions

A key part of the simplification process is simplifying single assignment state-
ments and expressions. The key idea is that each statement and expression is sim-
plified as much as possible, thus reducing the complexity for subsequent analyses.

140 J. Doherty and L. Hendren

The first simplification merely divides an assignment so that it has a complex
expression only on the right-hand-side (rhs) or only on the left-hand-side (lhs).
Thus, statements of the form E1=E2; are transformed to t1=E2; E1=t1;. Subse-
quent simplifications then simplify either the rhs (RValue) or the lhs (LValue).

Each RValue is simplified so that it contains at most one complex opera-
tion (function call, operand, index, field access or range expression). For ex-
ample, assuming that x, a and i have kind Var, the RValue expression in
lhs=a(f(g(i),sin(x))).bwouldbe simplified to t1=g(i); t2=sin(x); t3=f(t1,t2);
t4=a(t3); lhs=t4.b.

Simplifying complex expressions that are LValue’s (i.e. expressions on the lhs
of assignment statements) is more difficult because the expression now denotes an
address and not a value andMatlab has no natural way of expressing addresses.
Thus, the simplification of LValues simplifies internal expressions as much as pos-
sible, but does allow for a chain of indexing and field expressions. The grammar in
Figure 6 gives the rules for LValue, with a further restriction that NameExpr must
refer to names with kind Var. If we take the same expression as before but use
it as an LValue, as in the assignment statement a(f(g(i),sin(x))).b = rhs, the
simplification would be: t1=g(i); t2=sin(x); t3=(t1,t2); a(t3).b = rhs. Note
that the final statement in the simplification uses the chain of references a(t3).b,
which cannot be further simplified.

LV alue := NameExpr

| Indexing

| Access

Indexing := NameExpr(NameOrV al∗)

| Access(NameOrV al∗)

Access := LV alue.Name

NameOrV al := NameExpr

| LiteralExpr

Fig. 6. LValue grammar

There is one additional Matlab-specific expression that must be simplified
correctly, which is the end expression. The end expression binds to the tightest
enclosing array or cell array, and it returns the last index of the dimension in
which it appeared. For example, the expression a(foo()).b(i,end,k) where a

has kind Var and foo has kind Fn, end refers to the last index of the second
dimension of the 3-dimensional view of the array resulting from the evalua-
tion of a(foo()).b. The end simplification replaces the end expression with an

McSAF: A Static Analysis Framework for MATLAB 141

explicit call to the endfn function which has three arguments: the array, the
dimension in which the end expression was found, and the total number of di-
mensions. For the example above, the simplification is quite straightforward and
would be t1=foo(); t2=a(t1); t3=t2.b; t4=endfn(t3,2,3); t3(i,t4,k). How-
ever, more complex situations can arise, especially when end is used inside
an LValue. Consider the example, a(foo()).b(i,bar(end),k)=rhs, assuming bar

has kind Fn. This will be simplified to t1=foo(); t2=endfn(?,2,3); t3=bar(t2);

a(t1).b(i,t3,k)=rhs where the ? must be filled in with correct simplified LValue,
which in this case is a(t1).b.

3.6 Dealing with Multiple Assignments

In the previous simplifications we have assumed that assignments have a sim-
ple lhs. However, Matlab supports assignments to multiple variables on the
lhs. Dealing with multiple values on the lhs is not usually difficult, but with
Matlab there is an important complication. That is, that Matlab allows an
unknown number of lhs variables. The simplifications handle the simple and
more complicated cases as follows.

In the case where the number of lhs variables is known, the simplification
ensures that only simple variables, without repetition occur on the lhs. For ex-
ample, [a,b.c,a]=lhs would be simplified to [a,t1,t2]=lhs; b.c=t1; a=t2. This
simplification simplifies subsequent interprocedural analyses since the number
and names of the return parameters are explicit.

The case where the number of variables on the lhs is not known is harder,
and it was quite difficult to decide how to handle this case. In the end we
decided to introduce a new CSL IR node. A typical example is the statement
[a,b{:},c]=rhs. In Matlab this specifies that the first return value is bound
to a, the last return value is bound to c, and the middle values are bound to
the cell array b. The simplification for these cases introduces an explicit CSL

node for each item in the return list than can possibly correspond to a list
of values (known in Matlab as a Comma Separated List (CSL)). For each
such CSL, the simplification introduces an explicit CSL node associated with
a new temporary name. For example, [a,b{:},c]=rhs would be simplified to
[a,CSL[t1],c] = rhs; [b{:}] = CSL[t1].

3.7 Simplification Dependencies

The complete simplification procedure is implemented as a collection of simpli-
fying transformations. Some simplifications depend upon others having already
been applied. The dependencies between the existing simplifications is given in
Figure 7. The simplification called FULL represents the case where all simplifi-
cations should be applied. However, framework users might want to only apply
some simplifications, for example loop transformations may just want to apply
the FOR simplifications.

142 J. Doherty and L. Hendren

Multi
Assign

Simple
Assign

CSL
left

Simple
IF

FULL

FORLeft COND

Right

Element−wise
short circuit

Fig. 7. Dependencies for Simplifications

To enforce the dependencies, the framework provides the Simplifier class.
In addition, each simplification is implemented as a class extending Abstract -

Simplification . The AbstractSimplification class requires that each simplification
have a method called getDependencies that returns a set of dependencies. In or-
der to use the simplifier, an instance must be constructed with a given set of
simplifications to perform. The simplifier then performs a depth first traversal
of the dependency DAG producing a list of simplifications, avoiding duplica-
tion. Executing the simplifications in the order of the list will ensure that all
dependencies will be met. To make it simpler to perform any given simplifica-
tion and its dependencies, each simplification has a getStartSet static method.
This method returns a singleton set containing the simplification itself. Clearly
framework users can add new simplifications and state their dependencies quite
easily. In fact, the Matlab Taming project has recently built upon the McSaf

framework by introducing new simplifications which were inserted quite easily
using this approach.

3.8 Simplification Frequencies

In order to examine the relative frequency applications for each simplification
type, we instrumented our simplification framework to count the number of
times each simplification caused a statement to be rewritten and the number
of times the simplification extracted an expression to a temporary variable. We
applied the instrumented simplifier to a large collection of Matlab functions

McSAF: A Static Analysis Framework for MATLAB 143

and scripts.3 The benchmarks come from a wide variety of application areas
including Computational Physics, Statistics, Computational Biology, Geome-
try, Linear Algebra, Signal Processing and Image Processing. We analyzed 3057
projects composed of 11698 functions and 2349 scripts. The projects vary in size
between 283 files in one project to a single file. A summary of the data collected
is given in Figure 8, ordered by increasing frequency.

Simplification # rewrites (%total) # temps extracted

FOR 329 (0.1%) 329
Multi-Assign 354 (0.1%) 651
Element-wise short-circuit 1791 (0.5%) 4068
Simple IF 4518 (1.3%) 0
Left 6649 (1.9%) 7969
Simple-Assign 24478 (7.1%) 24478
Right 306397 (88.9%) 325780

Fig. 8. Frequencies for Simplifications

These results show that the FOR and Simple IF transformations are applied
relatively infrequently. The benchmarks contained 12189 for statements and
only 329 required the FOR simplifications. Similarly only 4518 elseif statements
needed to be simplified, out of a total of 31758 if statements in the benchmarks.
We were somewhat surprised that there were almost 1800 occurrences of the
element-wise short-circuit simplification. The use of element-wise short-circuiting
is discouraged by MathWorks, but it appears that existing code does use this
feature. This may be a potential refactoring opportunity. It was also interesting
to note that there were relatively few applications of the Multi-Assign simplifica-
tion, especially as compared to the Simple-Assign. As expected, by far the most
frequent simplification was the Right simplification which simplifies expressions
by extracting sub-expressions to a temporary.

4 Analysis Framework

A key part of the McSaf toolkit is an analysis framework that supports a va-
riety of pre-defined and extensible traversal mechanisms; built-in and extensible
support for representing a variety of flow data types; and support for depth-first
and structure-based analyses. The toolkit has been designed to work both for
the higher-level AST, as well as for the lower-level McLast IR.

3 Benchmarks were obtained from individual contributors plus projects from
http://www.mathworks.com/matlabcentral/fileexchange,
http://people.sc.fsu.edu/~jburkardt/m src/m src.html,
http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/ and
http://www.mathtools.net/MATLAB/. This is the same set of benchmarks that are
used in [9].

144 J. Doherty and L. Hendren

4.1 Traversal Mechanism

The traversal mechanism is central to the framework - in fact it is used both
to drive the simplifications presented in the previous section and the analyses
presented later in this section. The framework accommodates different traversals
by implementing a variant of the visitor pattern. The IR consists of instances
of different types of AST nodes. The types form a class hierarchy, which is
induced by the JastAdd specification, an excerpt of the hierarchy is depicted in
Figure 9.

Fig. 9. Excerpt of AST class hierarchy. The grey class, CheckScalarStmt is an AST
node that is part of McLast and not McAst. All white classes in this diagram are
part of both McLast and McAst.

To facilitate traversal, there is a Java interface, NodeCaseHandler, that consists
of methods of the form void caseStmt(Stmt node). There is one such method for
every AST class. The framework also provides a simple abstract implementation
called AbstractNodeCaseHandler. This implementation provides default behaviour
for each node case. This default behaviour is that for each AST class, the node
case for that class simply forwards to the node case of its parent class. The
forwarding is done by calling the case for the parent class with the input from
the case for the given class. We demonstrate this with the following excerpt
from AbstractNodeCaseHandler for the AssignStmt and Stmt classes. Notice that
case AssignStmt(...) is forwarding up to the case belonging to its parent class,
Stmt.

public void caseAssignStmt(AssignStmt node) { caseStmt(node); }
public void caseStmt(Stmt node) { caseASTNode(node); }
Figure 9 shows that the AssignStmt node type extends the Stmt node type. This
means that the default behaviour for case AssignStmt(...) is to forward to case -

Stmt(...), which is done by passing the argument from case AssignStmt(...) to
case Stmt(...). The definition for the case AssignStmt(...) method demonstrates
the forwarding behaviour. This method takes in an instance of AssignStmt and
calls case Stmt(...) with that instance. Note that ASTNode is the root type of
the AST class hierarchy. The Stmt class is a top level node type, which directly
extends ASTNode, so the case Stmt(...) will forward to case ASTNode(...). The
AbstractNodeCaseHandler leaves the case ASTNode(...) method unimplemented.

McSAF: A Static Analysis Framework for MATLAB 145

Each AST class implements a method called analyze that takes a
NodeCaseHandler as an argument. These methods will call the appropriate node
case of the given handler, passing itself to the handler. For example, here is the
code implementing the analyze method in the AssignStmt class.

public void analyze(NodeCaseHandler handler) { handler.caseAssignStmt(this); }
In order to create a particular traversal, a programmer needs to create a special-
ized NodeCaseHandler. The different types of analyses are implemented in this
manner, but a programmer can also directly create a specialized traversal. To
demonstrate this process we present a simple traversal, called StmtCounter, that
counts the number of statements in a given AST. Code for this traversal is given
is Figure 10.

1 public class StmtCounter extends AbstractNodeCaseHandler {
2 private int count = 0;
3 private StmtCounter() { super(); }
4

5 public static int countStmts(ASTNode tree) { tree.analyze(new StmtCounter()); }
6

7 public void caseASTNode(ASTNode node)
8 { for(int i = 0; i<node.getNumChild(); i++)
9 node.getChild(i).analyze(this);

10 }
11

12 public void caseStmt(Stmt node) { count++; caseASTNode(node); }
13 }

Fig. 10. Example traversal counting statements

To use this class, a programmer simply needs to call the static method
countStmts. This method creates a new instance of the traversal and starts the
analysis off.

This traversal will visit all nodes in the tree in depth-first order, and count each
statement node. There are two important details to note from this example. The
first thing is the case ASTNode(...) implementation. In this example, this method
does the actual traversal over the tree, looping through and visiting each of a
node’s children. Since StmtCounter extends AbstractNodeCaseHandler all cases
that are not overridden will forward up until they reach this case. This means
that the default behaviour for AST nodes will be to simply traverse through
their children. This is a common pattern when implementing traversals. The
flow-insensitive traversal is implemented similar to this, and the flow-sensitive
traversals have a similar case ASTNode(...) with other behaviour implemented
for control structures like loops and conditionals.

The second thing to notice is the case Stmt(...) method. Besides case ASTNode

(...), this is the only case implemented by StmtCounter. Again, since StmtCounter

extends AbstractNodeCaseHandler, all node types that are descendants of Stmt

146 J. Doherty and L. Hendren

will forward up to this case. So this case will capture all statements, which gives
a good place to perform the count. Note that this implementation of case Stmt-

(...) forwards to case ASTNode(...). This is because there are some statements,
such as if statements, that can contain other statements. We wish to visit all of
the statements contained in other statements, so we need to visit the children of
a given statement. To do this, we simply forward to case ASTNode(...).

The StmtCounter example does have some inefficiencies. It will visit all chil-
dren of a given node, even children that cannot be, or contain, statements. For
example, the children of an expression cannot be a statement, nor can it contain
statements. This shortcoming can be overcome by providing specialized imple-
mentations of appropriate cases. To avoid visiting unnecessary expression chil-
dren one could add the following method to the class. This method will prevent
all children of any expression from being visited.

...
public void caseExpr(Expr node) { return; }
...

The example can be refined further, but the original version is concise and cor-
rect, and demonstrates how simple it can be to create new traversals. The traver-
sal mechanism is also used by the simplifications presented in Sec. 3. There is
a specialized traversal created for all simplifications. This traversal implements
the rewrite mechanisms as well as the AST traversal. Each simplification extends
this simplification traversal, implementing it’s own behaviour for the appropriate
node cases.

4.2 Representations for Flow-Data

An analysis is written to produce information about the program being analyzed.
McSaf’s analysis classes are generic in the type of information produced. An
analysis of type StructuralAnalysis<D> is an analysis that produces information
of type D. To make the framework as general as possible, the information can be
of any type. However, the type of information often falls into certain categories.
One example is an analysis that produces, for every program point, a set of
variables that must be defined at that program point. Alternatively, for every
program point, the analysis could have produced a map from variable names
to their types. To make implementing analyses that produce such information
easier, the McSaf framework defines interfaces and implementations for basic
flow-data. A class hierarchy for flow-data structures provided by the framework
is given in Figure 11.

The FlowData<D> interface is the base type for all predefined flow-data rep-
resentations. This type represents a collection of data of type D. The interface
is primarily intended to tag a class as representing flow-data. As such, it defines
no methods. In addition to this basic interface, the framework also provides two
more specific interfaces, one for sets and the other for maps. For each of these,

McSAF: A Static Analysis Framework for MATLAB 147

Fig. 11. flow-data class hierarchy

an abstract implementation is provided to make creating new implementations
simpler. In addition, each of these interfaces also have concrete implementations.

4.3 Depth-First Analysis

The simplest form of analysis supported by the framework is the depth-first
analysis. This type of analysis is intended to traverse the tree structure of the
AST, visiting each node in a depth-first order. The depth-first analysis type can
be used to implement flow-insensitive analyses.

This type of analysis is implemented by extending the AbstractDepthFirst-

Analysis<A> class. The AbstractDepthFirstAnalysis implements the Analysis in-
terface and extends AbstractNodeCaseHandler. This relationship is depicted in
Figure 12.

Fig. 12. Class hierarchy snipet for depth-first analysis

Since AbstractDepthFirstAnalysis extends AbstractNodeCaseHandler it inherits
all the default traversal behaviour. It extends this behaviour with default im-
plementations of the new case methods defined by the Analysis interface. The
behaviour for these new cases is to forward to the case associated with the type
of the argument that the case accepts. For instance case LoopVar(AssignStmt

loopVar) accepts an AssignStmt. So the default behaviour will be to forward
to case AssignStmt(...). The case WhileCondition(...) and case IfCondition(...) are

148 J. Doherty and L. Hendren

exceptions to this. These cases are specialized versions of case Condition(...) so
they will both forward to case Condition(...) by default.

The most important feature of AbstractDepthFirstAnalysis is that it imple-
ments a case ASTNode(...) method. The implementation of this method provides
the basic traversal for this type of analysis. Figure 13 presents the source code
for this method. The case ASTNode(...) method takes in the ASTNode being vis-
ited. For each child of that node, that child is analyzed. So to reiterate, since
AbstractDepthFirstAnalysis extends AbstractNodeCaseHandler, and due to its im-
plementation of case ASTNode(...), the default behaviour for every node is to
simply analyze all children of that node.

1 public void caseASTNode(ASTNode node)
2 { // visit each child node in forward order
3 for(int i = 0; i<node.getNumChild(); i++){
4 if (node.getChild(i) != null)
5 node.getChild(i).analyze(callback);
6 }
7 }

Fig. 13. Depth-first caseASTNode(...) source code

AbstractDepthFirstAnalysis also defines some new methods and fields for stor-
ing and accessing the data being produced by the analysis. It provides a map
from AST nodes to the data being computed. This allows data to be associated
with any desired node. In order to implement a new depth-first analysis, a pro-
grammer must create a concrete class that extends AbstractDepthFirstAnalysis.
To create this class, a programmer must: (1) select an analysis data type; (2)
implement an appropriate newInitialFlow method; and (3) implement an appro-
priate constructor. This will result in an analysis that will traverse the entire
tree visiting each node in depth-first order. To get the analysis to perform a use-
ful task, the programmer must override appropriate case methods. The analysis
will usually build up flow-data, and can also associate flow-data with particular
nodes in the tree.

To demonstrate the process of implementing a depth-first analysis, we present
a simple example analysis, given in Figure 14. This analysis collects all names
that are assigned to. It performs two tasks. First, for each assignment statement
in the tree, it associates all names that are assigned to by that assignment
statement to the assignment statement. Second, it collects in one set, all names
that are assigned to in the entire AST. Names are stored as strings, so the flow-
data has type HashSetFlowSet<String>. The analysis defines a field to store the
full set of names, and a flag for indicating when the traversal is in the lhs of a
statement. There are two accessor methods, one to get all the names, and the
other to get the full set. The core of the analysis is defined by the three “case”
methods which guide the traversal and collect the information.

McSAF: A Static Analysis Framework for MATLAB 149

1 public class NameCollector extends
2 AbstractDepthFirstAnalysis<HashSetFlowSet<String>>
3 { private HashSetFlowSet<String> fullSet;
4 private boolean inLHS = false;
5

6 public NameCollector(ASTNode tree)
7 { super(tree);
8 fullSet = new HashSetFlowSet<String>();
9 }

10

11 public HashSetFlowSet<String> newInitialFlow()
12 { return new HashSetFlowSet<String>(); }
13

14 public Set<String> getAllNames() { return fullSet.getSet(); }
15

16 public Set<String> getNames(AssignStmt node)
17 { HashSetFlowSet<String> set = flowSets.get(node);
18 if (set == null) return null; else return set.getSet();
19 }
20

21 public void caseName(Name node)
22 { if (inLHS) currentSet.add(node.getID()); }
23

24 public void caseAssignStmt(AssignStmt node)
25 { inLHS = true;
26 currentSet = newInitialFlow(); // init set for this stmt
27 analyze(node.getLHS()); // analyze only the lhs
28 flowSets .put(node,currentSet); // store names in node
29 fullSet .addAll(currentSet); // add to full set
30 inLHS = false;
31 }
32

33 public void caseParameterizedExpr(ParameterizedExpr node)
34 { analyze(node.getTarget()); } // only the target can be a defn
35 }

Fig. 14. NameCollector definition

4.4 Structure-Based Analysis

Structure-based flow analysis is the core part of the analysis framework. Structure-
based flow analyses perform a complete forwards or backwards analysis over the
AST or McLast representation, merging control flow for conditional and switch
statements and computing fixed-points for loops, including the proper handling
of break and continue statements. The computational part is driven via spe-
cialized traversal mechanisms, either forwards or backwards. The user of the
framework only needs to focus on the analysis rules for basic statements and the

150 J. Doherty and L. Hendren

implementation of the flow-data type (which is either a direct use of a flow-data
type provided by the framework or a specialized user-provided type).

The organization of the structure-based analyses are illustrated in Figure 15.
The abstract implementation, called AbstractStructuralAnalysis, provides con-
structors and implementations for most of the API methods and has extensions
to support forwards and backwards analyses.

Fig. 15. Class hierarchy snipet for structural analysis

The AbstractStructuralAnalysis implementation is similar to the AbstractDepth

FirstAnalysis implementation in that it also provides a protected method void

analyze(ASTNode node) and is also intended to abstract away from the basic
traversal mechanism. Unlike AbstractDepthFirstAnalysis, AbstractStructuralAnal

ysis does not provide an implementation for case ASTNode(...). This is because
structural analyses are split into two flavours, forwards and backwards, and
each of these flavours requires its own implementation of case ASTNode(...). The
forwards and backwards analyses are implemented in a similar way. For each,
the framework provides a general abstract implementation and a simple abstract
implementation.

The general implementation provides an implementation for the basic API
methods. It also provides an implementation for some traversal methods,
including loops and conditionals. These implementations for the traversal meth-
ods are what makes analyses derived from these classes capable of comput-
ing flow-sensitive analyses. In the case of the loop cases, case ForStmt(...) and
case WhileStmt(...), they provide the fixed-point computation procedure, and
the traversal also correctly handles the control-flow due to break and continue

statements.
The simple implementations go beyond this core functionality. They

implement certain behaviour that would not be applicable to all analyses. Such
behaviour includes how to deal with continue and break statements. These im-
plementations represent the functionality needed to write analyses that do not

McSAF: A Static Analysis Framework for MATLAB 151

need more complex behaviour. They were provided to make analyses simpler to
write, requiring less duplication of code.

Handling Control Flow: Unlike analysis frameworks that operate on control
flow graphs, our framework computes the flow information based on the struc-
ture of the AST. Figure 16 gives a high-level diagrammatic view of how the
traverser handles the control flow. Figure 16(a) demonstrates that the condi-
tion is evaluated first, and then the flow information is sent to the if and else

branches. The user of the toolkit is given the ability to specialize the flow sets for
each branch, so an analysis can use the results of analyzing the condition to spe-
cialize the analysis for different branches. The 	
 operator demonstrates where
the data flow merge operation is applied. Figure 16(b) gives the traversal for
switches which demonstrates that for Matlab the conditions can be arbitrary
expressions that must be evaluated before the body of the case. Figure 16(c) and
(d) illustrate the behaviour for while and for loops. In this case the framework
takes care of merging the flow information from breaks and continues at the
appropriate places, as well as computing a fixed point.

These general implementations represent the core functionality that is needed
for these types of analyses. This functionality should be applicable to most anal-
yses of this type, and most flow analysis developers should not have to override
them. However, should a flow analyses developer have a special kind of fixed
point that he/she would like to implement, this can be done by specifying a new
specialized traversal.

Creating an Analysis Instance: To create a forwards analysis, a programmer
must extend one of the forward classes from Figure 15. The flow-analysis compu-
tations are implemented in the case methods for various node types. The case -

ASTNode(...) implements the basic traversal. It does this by looping through the
children of a given node and using the provided analyze (ASTNode node) method.
Recall that this method deals with basic traversal and also guarantees that the
current InSet is set to the previous current OutSet. The case IfStmt(...) and case -

SwitchStmt(...) implement the behaviour for non-looping branching code. The if

statement behaviour provides what we call branching analysis. This means that, if
the analysis writer wishes, they can provide a different out flow for when the if con-
dition is true or false. This would be done in an implementation of case IfCondition

(...). When a programmer provides true and false flow-data, case IfStmt(...) will
ensure that each branch of the if will have the appropriate in flow-data.

Creating a backwards analysis is very similar, except that the backwards
analysis does not support the option of different flow information for the different
branches of an if.

4.5 Analyses for Language Extensions

One of the goals of the McLab project is to support modularly defined language
extensions (as illustrated by the extension for AspectMatlab [20]). Extensi-
bility is also one of the goals for the design of McSaf. The framework has been

152 J. Doherty and L. Hendren

fa
ls

e
flo

w

<COND>

In

Out

<THEN PART>

end

<ELSE PART>
else

true flow

if

Out

<SWITCH EXP>

case <CASE EXP 1>

case <CASE EXP 2>

otherwise

<BODY 3>

<BODY 1>

<BODY 2>

end

In

switch

(a) if (b) switch

no

continue
...

break
...

continue
...

break
...

FP

C

B

while <COND>

end

yes

In

Out

...

no

B

...

continue
...

break
...

continue
...

break
...

INIT COND UPDATE<LV>for

end

FP

C

Out

In

yes

(c) while (d) for

Fig. 16. Diagrammatic illustration of structural traversal rules

designed to support three kinds of extensions: (1) adding new syntactic nodes
that are desugared before analysis; (2) adding nodes that need to be included
in existing and new analyses; and (3) adding nodes that require new kinds of
complex flow analysis - for example a new kind of loop. The framework comes

McSAF: A Static Analysis Framework for MATLAB 153

with three example language extensions, one for each type. Although the second
and third kind require slightly more glue code, all three kinds of extensions can
be accomplished by defining new pieces and reusing the previous code.

5 Related Work

The McLab Static Analysis Framework is an extensible framework for creat-
ing static analyses for the Matlab language. This is the first open framework
created for analyzing Matlab.

Soot [21] is one example of an optimization framework for Java which was
developed by our research group for over a decade. McSaf emulates many of
the positive features of Soot, including having a well-defined IR and a flexible
and easy-to-use flow analysis framework. However,McLab solves veryMatlab-
specific problems in the IR design and uses a structured traversal-based approach
(rather than a graph-based approach) to the flow analysis framework. So, in the
end we found our experience with Soot helped us know the goals for the McSaf

project, but developing a framework for Matlab required solving very different
problems. Soot has enabled a lot of research for Java and we hope that McSaf

will do the same for Matlab.
The JastAdd toolkit is designed for creating extensible compilers [2,12] and

was also used in the development of McLab and McSaf. One feature of Jas-
tAdd that was not discussed in great detail in this paper is its attribute gram-
mar system. JastAdd allows a developer to define attributes as part of the AST
grammar specification. These attributes are effectively functions operating on
the AST nodes. They can be used to propagate information through the tree
and they can even be defined in a circular fashion. The JastAdd system provides
a fixed-point computation for calculating the results of such circular attributes.
JastAdd’s attribute system provides a low-level means of performing flow anal-
ysis on an AST. It is up to the compiler writer to use these tools and to take the
semantics of the language they are implementing into account, in order to create
any meaningful analyses. It isn’t a full dataflow analysis framework. However,
some work [17] has been done to implement flow analysis for Java using the
JastAdd extensible Java compiler [11].

In the past, there has also been some work towards open Matlab systems
such as Octave [1]. These systems concentrate on front-ends and interpreters and
so do not include analysis and optimization frameworks.

There has also been work on optimizingMatlab. The FALCON project [19,7]
aimed to compile Matlab code into Fortran. Falcon focuses on type inference
and code inlining to produce Fortran code. The Magica tool [14,13] focuses on
type inference for matrix operations and functions. It not only infers the intrin-
sic type of matrices, such as int32, double, or char; but also matrix sizes
and shapes. Magica is part of a larger Matlab compiler project, and is used for
performing code optimizations. MaJIC incorporates a Just-In-Time(JIT) com-
piler component [4]. This allows it to achieve speedups similar to those produced
by Falcon, without sacrificing the interactive nature of Matlab. These projects

154 J. Doherty and L. Hendren

differ from McSaf in that their main goal was to improve the performance of
Matlab programs.McSaf, on the other hand, was created with the goal of cre-
ating an open tool for researching compiler techniques in scientific programming.
In fact the techniques used in these other projects could have been implemented
using McSaf.

6 Conclusions and Future Work

In this paper we have presented the McSaf framework, an open source toolkit
for developing analyses for Matlab. The goal of the toolkit is to enable compiler
researchers to develop a wide variety of analyses which can target optimizations,
source-to-source translators, and software engineering tools such as refactoring
tools.

The toolkit includes a suite of simplifications which convert the high-level AST
to a lower-level AST which is designed to expose important Matlab-specific
semantics and to provide a simple IR which eases the burden of developing new
analyses rules. Our simplifying transformations have been implemented along
with a dependency structure so that it is easy for a user to enable only some
simplifications or add new simpflications, while at the same time ensuring that
all prerequisite simplifications have already been performed.

The heart of the toolkit is the support for different kinds of flow analysis
driven by a collection of traversals, including a depth-first traversal which works
well for flow-insensitive analyses and a family of structure-based traversals for
forward and backward flow-sensitive analyses.

Developing this toolkit was not just an engineering exercise. At each step we
had to understand the very Matlab-specific requirements and ensure that our
approach captured the correct semantics in a way that made the IR and flow
analysis framework easy to use. Indeed, we found the entire exercise much harder
than we had anticipated, with the Matlab semantics often going against our
expectations or enforcing some constraint that was not obvious.

Our goal was to make a toolkit that is easy to understand, and which is easy
to extend. We don’t want the compiler/analysis/tool developer to have to worry
about all of the details of Matlab, but rather concentrate on using a well-
structured object-oriented toolkit that provides an IR and analysis framework
which has dealt with the messy details.

The McSaf toolkit has been implemented in Java as part of the McLab

system and numerous analyses have already been implemented using it, including
those mentioned in Figure 1. To date we have found that toolkit users find it
quite easy to use and we look forward to feedback from users to help us improve
it further.

Our intention is to continue using the toolkit in our own back-ends and tools,
and we hope that other compiler researchers will also be able to use the toolkit
as a simple and low overhead way to apply their research to the very popular
Matlab language.

McSAF: A Static Analysis Framework for MATLAB 155

References

1. GNU Octave, http://www.gnu.org/software/octave/index.html
2. JastAdd, http://jastadd.org/
3. McLAB (2011), http://www.sable.mcgill.ca/mclab/
4. Almási, G., Padua, D.: MaJIC: compiling MATLAB for speed and responsiveness.

In: Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
Design and Implementation, pp. 294–303. ACM, New York (2002)

5. Casey, A., Hendren, L.: MetaLexer: A modular lexical specification language. In:
AOSD, pp. 7–18 (2011)

6. Chevalier-Boisvert, M., Hendren, L., Verbrugge, C.: Optimizing Matlab through
Just-In-Time Specialization. In: Gupta, R. (ed.) CC 2010. LNCS, vol. 6011, pp.
46–65. Springer, Heidelberg (2010)

7. Derose, L., De Rose, L., Gallivan, K., Gallivan, K., Gallopoulos, E., Gallopoulos, E.,
Marsolf, B., Marsolf, B., Padua, D., Padua, D.: FALCON: A MATLAB Interactive
Restructuring Compiler. In: Huang, C.-H., Sadayappan, P., Banerjee, U., Gelernter,
D., Nicolau, A., Padua, D.A. (eds.) LCPC 1995. LNCS, vol. 1033, pp. 269–288.
Springer, Heidelberg (1996)

8. Doherty, J.: McSAF: An extensible static analysis framework for the MATLAB
language. Master’s thesis. McGill University (December 2011)

9. Doherty, J., Hendren, L., Radpour, S.: Kind analysis for MATLAB. In: OOPSLA
(2011)

10. Dubrau, A.: Taming MATLAB. Master’s thesis. McGill University (April 2012)
11. Ekman, T., Hedin, G.: The JastAdd extensible Java compiler. In: OOPSLA 2007:

Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems and Applications, pp. 1–18. ACM, New York (2007)

12. Ekman, T., Hedin, G.: The JastAdd system – modular extensible compiler con-
struction. Science of Computer Programming 69(1-3), 14–26 (2007)

13. Joisha, P.G.: A Type Inferenence System for MATLAB with Applications to Code
Optimization. Ph.D. thesis, Northwestern University (2003)

14. Joisha, P.G., Banerjee, P.: The MAGICA Type Inference Engine for MATLAB.
In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 121–125. Springer, Heidelberg
(2003)

15. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis and transformation. In: CGO, pp. 75–88 (2004)

16. Li, J.: McFor: A MATLAB to FORTRAN 95 compiler. Master’s thesis. McGill
University (August 2009)

17. Nilsson-Nyman, E., Hedin, G., Magnusson, E., Ekman, T.: Declarative intraproce-
dural flow analysis of Java source code. Electron. Notes Theor. Comput. Sci. 238,
155–171 (2009)

18. Radpour, S.: Understanding and Refactoring MATLAB. Master’s thesis, McGill
University (April 2012)

19. Rose, L.D., Padua, D.: Techniques for the translation of MATLAB programs into
Fortran 90. ACM Trans. Program. Lang. Syst. 21(2), 286–323 (1999)

20. Toheed Aslam, A.D., Doherty, J., Hendren, L.: AspectMatlab: An aspect-oriented
scientific programming language. In: AOSD, pp. 181–192 (March 2010)

21. Vallée-Rai, R., Gagnon, E.M., Hendren, L., Lam, P., Pominville, P., Sundaresan,
V.: Optimizing Java Bytecode Using the Soot Framework: Is It Feasible? In: Watt,
D.A. (ed.) CC 2000. LNCS, vol. 1781, pp. 18–34. Springer, Heidelberg (2000)

http://www.gnu.org/software/octave/index.html
http://jastadd.org/
http://www.sable.mcgill.ca/mclab/

Multiple Aggregate Entry Points
for Ownership Types�

Johan Östlund and Tobias Wrigstad

Uppsala University

Abstract. Deep ownership types gives a strong notion of aggregate by
enforcing the so-called owners-as-dominators property: every path from
a system root to an object must pass through its owner. Consequently,
encapsulated aggregates must have a single bridge object that mediates
all external interaction with its internal objects.

In this paper, we present an extension of deep ownership that re-
laxes the single bridge object constraint and allows several bridge objects
to collectively define an aggregate with a shared representation. We call
such bridge objects ombudsmen to emphasise their benevolent nature;
ombudsmen-sharing is explicit and all ombudsmen are created internal
to the aggregate, purposely.

The resulting system brings the aggregate notion close to the com-
ponent notion found in e.g., UML by clearly separating aggregation from
the stronger composition, and further allows expressing common pro-
gramming patterns such as iterators without resorting to systems that
give unclear or unprincipled guarantees, or require additional complex
machinery such as read-only references.

1 Introduction

Ownership types allow programmers to express encapsulation properties of pro-
grams in a compile-time checkable way. Ownership-based encapsulation has been
used in many areas, including verification [22,27,31], reasoning about computa-
tional effects [13,34,15], information flow [3], memory management [9], object
upgrades [8] and concurrent programming [6,17,15,39].

In classical “Clarkean” ownership types [12] every object belongs to another
object and may be the owner of other objects. An owned object is said to belong
to the representation of its owning object and cannot escape outside its owner.
Consequently, an external object can only interact with a representation object
via the public interface of its owner, which allows maintaining invariants and
facilitates automated and manual reasoning. If we think of a heap as a graph of
objects, all paths from the root of the graph to an object will include its owner—
this is the owners-as-dominators property first formulated by Clarke et al. [16].

By imposing a hierarchical structure on the heap, owners-as-dominators gives
strong and useful encapsulation guarantees, but at the cost of excluding some
� Supported in part by the Swedish Research Council within the UPMARC Linnaeus

centre of Excellence.

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 156–180, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Multiple Aggregate Entry Points for Ownership Types 157

common programming patterns. A common example of such a pattern is the
iterator pattern for linked lists, which is the canonical example when introducing
ownership types. A linked list should encapsulate its links, but for an iterator
object to be able to access the next element in O(1), it requires a direct reference
to the “current” link in the list, which is only allowed in ownership systems if
the iterator is internal to the list itself.

An alternative implementation that does not break the strong encapsulation
of owners-as-dominators is to unencapsulate the list’s links so that they become
external to the list and therefore can be referenced by the iterator. This of course
destroys the encapsulation.

In a nutshell: either the iterator can only be used inside the list (which renders
it useless) or the list’s encapsulation must be broken.

We can interpret a list as a software component with multiple service ports—
one which implements the list interface and one which allows iterating over it.
In this mindset, it makes sense to think of the links as encapsulated inside the
(composite) component instead of inside some particular object that constructs
it. However, implementing such a component in a Clarkean ownership system
leads to exactly the above-mentioned problem of losing the encapsulation of the
links: there is no way to specify a set of objects shared between two or more objects
that collaborate in defining a larger unit. The problem is the unification of units of
encapsulation and objects—the only way to introduce a unit K of encapsulation
is by introducing a new object, which by virtue of owners-as-dominators blocks
all direct access to the objects in K from external objects.

Contributions. This paper contributes to the field of Clarkean ownership sys-
tems by distinguishing between composition and aggregation. Just like traditional
ownership systems, an object can be composed from representation objects which
it dominates; additionally, an object may also aggregate other objects to which it
may share ownership with other objects in a novel unit of encapsulation called an
aggregate. Consequently, we can allow multiple entry points into an aggregate.

Our design allows programming idioms which rely on “principled sharing of
representation” to be encoded in Clarkean ownership systems without compro-
mising encapsulation by using aggregation instead of composition. The result en-
capsulation property is as easy to understand and almost as powerful as owners-
as-dominators. Concretely, we:

– extend ownership types to support multiple entry points to a shared
aggregate in a disciplined way with a strong encapsulation invariant called
ombudsmen-as-dominators, which is clearly visible in the types;

– provide a simple and intuitive extension, adding only two new keywords;
– design the extension to be “pluggable”—it concerns only objects inside a

shared aggregate, the semantics of old keywords is unmodified, and other
objects enjoy strong encapsulation with owners-as-dominators;

– formalize the extension in a core language, and prove type soundness and
our novel encapsulation invariant;

– have implemented our system on top of a Joline-like type checker; and
– provide an extensive coverage of related work.

158 J. Östlund and T. Wrigstad

class List<owner, data> {
Link<this, data> first;
void insert(Object<data> e) {

Link<this, data> l =
new Link<this, data>();

l.data = e;
l.next = first;
first = l;

}
}
class Link<owner, data> {

Object<data> data;
Link<owner, data> next;

}

world

a

b

list

link

data first

next

object name

subheap
references

name
b inside aba

joe

a
joe owns a

joe

a
joe aggre-
gates a invalid reference

Fig. 1. Left: A list with ownership annotations. Right: Ownership structure of the
linked list. The context a contains the linked list object which defines the context b
for its representation objects (its links). Each link has a data field which points to its
element objects. In this particular instance, the element objects reside in the outermost
context world. The type of the list object is therefore List<a,world> binding the class’
owner parameters owner and data to a and world, respectively.

2 Ombudsmen-as-Dominators

In this section we give an informal presentation of our system. First, however,
we recap Clarkean ownership types as our encapsulation property ombudsmen-
as-dominators builds directly on the classic notion of deep ownership types.

We use two main examples: iterators, with the dual purpose of introducing
key concepts, and a shared bank account.

2.1 Clarkean Ownership Types

In Clarkean systems, the heap is hierarchically divided into a number of contexts,
which can simply be thought of as sets of objects. Every object introduces a new
context to hold its representation, nested inside the context where the object re-
sides. In the source code, labels that denote run-time contexts are called owners.
Owners are embedded in types to capture ownership and access permissions.

Linked Lists. Consider the linked list implementation shown in the left of Fig-
ure 1. Classes are parametrized over permissions to reference contexts; we call
these owner parameters. The first owner parameter is always called owner and
is special in that it also denotes the owner of the list instance, i.e., the context
where the list resides. The second parameter, called data in this example, is a
necessary permission to reference the elements stored in the list.

Multiple Aggregate Entry Points for Ownership Types 159

world

a

b

list

link

data first

next

iterator

current

world

a

b

list

link

data first

next

current iter ator

object name

subheap
references

name
b inside aba

joe

a
joe owns a

joe

a
joe aggre-
gates a invalid reference

Fig. 2. Linked list with an iterator (showed with thicker lines). The iterator needs
to reference the list’s links, which breaks encapsulation. On the right, the iterator is
moved inside the list shifting the problem to accessing the iterator.

The ubiquitous, implicitly declared owner this denotes the context intro-
duced by the current object to hold its representation. In the list, all links are
owned by this and are therefore encapsulated inside the list and cannot be
exported outside. The data owner is forwarded to the links, as they too need
permission to reference the element objects. In the Link class the next field has
type Link<owner,data>, where owner is the list’s representation.

The right hand side of Figure 1 depicts an instance of a heap with a list and
a few contexts denoted by rounded boxes. The box b is the list’s representation
context, containing all its links, as they are owned by this in the List class.
The list elements belong to the context world, which is the outermost context.

Owners-as-dominators allows references going outwards in the hierarchy, e.g.,
the links may reference the elements, but not the converse. If an object x refer-
ences an object y in a context k dominated by object z, then either x = z or x
must be inside k. In terms of Figure 1, if a reference crosses into a context, then
the origin of the reference must be the object that owns the context.

The list implementation in Figure 1 makes sense from an object-oriented de-
sign point of view. The links are an implementation detail of the list and should
not be observable from the outside. The problem with single entry point ag-
gregates surfaces when we try to add an iterator to the List class, depicted in
Figure 2 (left). Owners-as-dominators allows outward-going references, but the
iterator needs to point inwards, into the list. The only way we can allow the
iterator to reference the links is if we move the iterator into the list (context b),
but then the iterator cannot be exported to a client of the list, Figure 2 (right).

The general problem is that ownership types cannot express two objects en-
capsulating a common context, for reasons made clear in the upcoming example.

160 J. Östlund and T. Wrigstad

class Person<owner, q> {
Account<q> account; // private
Person<owner, q> spouse;
void share() {

account = spouse.getAccount();
}
Account<q> getAccount() {

return account;
}
... // omitted

}

world

k

d

s

a

davesophia

$$$

kevin
paul

paley

alex

nick bob

b

Fig. 3. Sophia and Dave sharing a bank account ($$$) in a system with owners-as-
dominators. Bob also has access to the account. The legend can be found in Figure 2.

class Person<owner> {
Account<aggregate> account;
Person<bridge> spouse;
void share() {

account = spouse.getAccount();
}
Account<aggregate> getAccount() {

return account;
}
... // omitted

}

world

k

d

ds

s

a

davesophia

$$$

kevin
paul

paley

alex

nick bob

b

Fig. 4. Sophia and Dave sharing a private bank account in a system with owners-as-
ombudsmen. The area ds denotes a shared context.

Shared Bank Account. Consider a bank account shared between two persons,
sophia and dave. Let p be the owner of both sophia and dave, and q be the owner
of the bank account. As should be clear by now, in Clarkean systems, the only
way in which both sophia and dave can reference the account is if p is nested
inside q, meaning that the account has at most the same level of encapsulation
as sophia or dave. Figure 3 accomplishes this with the resulting ownership graph
depicted to the right, which also includes a third person, bob.

For sophia and dave to be able to share an account, there must be a way for
sophia to install (e.g., a setter) a reference to the account in dave alternatively a
way for dave to read the reference from sophia (e.g., a getter). In either case, any
object (e.g., bob) with access to sophia or dave can access the shared account
or install another one. Ombudsmen allow us to express the three objects as an
aggregate where dave and sophia are in the aggregate’s interface whereas the
account is private. Figure 4 shows the code and resulting ownership graph.

Schäfer and Poetzsch-Heffter’s work on CoBoxes [36,37] include more examples,
e.g., a DOM, file system, that need multiple aggregate entry points.

Multiple Aggregate Entry Points for Ownership Types 161

2.2 Ombudsmen

As Figure 4 hints, our proposal allows several objects—ombudsmen—to act as
bridge objects, or entry points, between their common aggregate and the outside
world. In terms of ownership types they share a common context. Objects in this
context are “ombudsman-dominated”1, meaning that

every path from a root in the system to an object in an ombudsman-
dominated context contains one of the context’s ombudsmen.

As the rightmost picture of Figure 3 shows, in owners-as-dominators systems,
every context is nested inside some other context, and references cannot cross a
context from the outside to the inside. With ombudsmen-as-dominators, objects
on the same level of nesting can share a common context, and references may
cross from the “private contexts” of these objects into their shared context.

In the example in Figure 4 (right), sophia and dave are ombudsmen for a col-
laboratively defined aggregate containing a shared bank account. Their common
aggregate context is depicted as the area ds. In addition, sophia and dave each
have a representation context (s and d, respectively). The objects sophia and
dave, as well as objects in their representation contexts, can reference objects in
the aggregate context (e.g., nick may reference $$$). Objects outside sophia or
dave may not refer to objects in their aggregate context (e.g., bob may not refer-
ence $$$). Objects in the aggregate context cannot reference the representation
contexts of their ombudsmen (e.g., $$$ may not refer to alex).

2.3 Typing Ombudsmen

We design the type system that lets us express aggregate encapsulation with mul-
tiple entry points as a relatively straightforward extension of Clarkean ownership
types systems as found in e.g., Joe1 [13], Joline [14,38] or OGJ [35]. Classes are
parametrized over permissions to access external contexts and types instanti-
ate those parameters with actual permissions, so-called owner parameters. From
now on, we will use the word owner to denote a symbol in the program text that
represents a run-time context.

The first owner parameter of a type is the owner of the instance, available
internally inside each class through the owner keyword. Additionally, each class
knows the owners world, rep, aggregate, and bridge. The world keyword
denotes the global outermost context. The rep keyword denotes the represen-
tation of the object and is equivalent to this in traditional ownership systems;
aggregate denotes the aggregate context, which may be shared with other ob-
jects; and finally bridge denotes a bridge object of the same aggregate as the
current instance. Notably, if we think of an owner α as denoting the set of objects
owned by α, then bridge ⊆ owner.

In terms of the rightmost picture in Figure 4, a field in sophia referencing dave
(or the inverse) may have the owner owner or bridge. A reference from nick to
1 We slightly abuse the term dominator to stay close to owners-as-dominators.

162 J. Östlund and T. Wrigstad

$$$ must have the owner aggregate (from the view of sophia, inside nick it is
some other owner parameter which will be bound to sophia’s aggregate); and
sophia’s reference to nick must have the owner rep.

Whether a field has owner bridge or owner makes an important difference.
In the first case, we know that the field contains a reference to an object sharing
the same aggregate. In the second case, we don’t know if the reference points to
an ombudsman for the same aggregate, or some other aggregate. In terms of our
example, sophia could only ask for dave’s reference to $$$ if sophia knows dave
is a bridge object for the same aggregate. Otherwise, the reference might point
to the representation of a different aggregate, which would break encapsulation.

Same Object, Different Types. Figure 5 shows an example of a Library compo-
nent with two provided services with different privileges to access documents,
normalDocAccess and privilegedDocAccess, and a required service remote-
Library. To a client, the objects referred to by normalDocAccess and privil-
egedDocAccess are siblings to the component—they have the same owner. From
the view of the client, the field normalDocAccess has type AccessService<rep>
rather than AccessService<bridge> which would denote a bridge object of the
aggregate in the client and not the component. For similar reasons, writing to a
field containing an ombudsman is not possible externally, since external objects
cannot tell what objects are ombudsmen for the same aggregate.

Discussion. The bridge owner identifies other ombudsmen of the same aggregate
as the aggregate of the current object, which is therefore also an ombudsman.

Well-formed construction of aggregate objects is one of the key considerations
of our system design. Any ombudsman has the capability to construct other
ombudsmen and access the parts of their interface that mention aggregate. All
ombudsmen are owned by owner (or its more specific subset context bridge),
and consequently—all dominating objects of the shared aggregate are siblings.
Coalescing an existing ombudsman object created externally with an aggregate
is possible using ownership transfer [14,38,32]. In this case, one object must act
as the “initial object” and move the unique objects into bridge (cf. Section 2.6).

Although we have defined ombudsmen for the Joe/Joline family of ownership
systems [13,14,34,15], we believe they could easily be added to universe types
[30,19,32] as well as OGJ [35], and similar.

We now continue our introduction to ombudsmen by way of a few examples
including two common programming idioms: components and external iterators.

2.4 Components

Standard UML components are implemented as aggregates of collaborating ob-
jects [5]. A component may provide several different interfaces (aka required
and provided services); different applications may use different interfaces or a
combination of different interfaces.

With ownership types, a component that wishes to export several different
interfaces must do so through a single object if encapsulation is to be retained.

Multiple Aggregate Entry Points for Ownership Types 163

class Library<owner> {
DocumentDB<aggregate> db = new DocumentDB<aggregate>;
AccessService<bridge> normalDocAccess = new RestrictedPolicy<bridge>(db);
AccessService<bridge> privilegedDocAccess =

new UnrestrictedPolicy<bridge>(db);
AccessService<owner> remoteLibrary;

}

class Client<owner> {
Library<rep> lib, otherLib;
...
AccessService<rep> s1 = lib.normalDocAccess;
c.remoteLibrary = s1; // = otherLib.normalDocAccess is also type sound
AccessService<bridge> s2 = lib.normalDocAccess; // Fails!!
lib.privilegedDocAccess = lib.privilegedDocAccess; // Fails!!

}

Fig. 5. Defining a component with two provided services and one required service

If each interface was implemented as a separate object, the objects would not
be able to share any data unless that data could also be exposed outside the
component, with the problems detailed on Page 160. To implement components
with proper encapsulation, several objects must be able to share a common
representation which cannot leak, as we did in Figure 4 and Figure 5.

2.5 Iterators with Ombudsmen

Figure 6 shows the ownership diagram for a linked list aggregate and Figure 7
the source code. Modulo the use of the novel bridge and aggregate owners, the
code should be straightforward.

world

k

a

iteratorlist

kevinpaul

next next

data

current

first

Fig. 6. Iterators with ombudsmen

In the example, the list’s links are
part of the aggregate, and the list
has no representation data. Initially,
the list object is the only ombudsman
through which the links can be manip-
ulated. The iterator method in the
list class creates and returns an om-
budsman in the form of an iterator. As
an ombudsman for the list aggregate,
the iterator may reference the list’s
links in the cursor field. Any num-
ber of iterators may exist; the pattern
would even allow several list objects
that shared a common set of links—
for whatever purpose.

Notably, in this solution, links are not considered part of the list object’s rep-
resentation, but part of the “list component’s” aggregate context, which clearly
reflects its degree of encapsulation.

164 J. Östlund and T. Wrigstad

class List<owner,data> {
Link<aggregate,data> first;

Iterator<bridge,data> iterator() {
Iterator<bridge,data> iter =

new Iterator<bridge,data>();
iter.cursor = first;
return iter;

}
}

class Link<owner,data> {
Link<owner,data> next;
Object<data> data;

}

class Iterator<owner,data> {
Link<aggregate,data> cursor;

Object<data> next() {
Object<data> value = cursor.data;
cursor = cursor.next;
return value;

}
}

Fig. 7. A list component with a (standard) list service and an iterator service

2.6 Staged Aggregate Construction

Allowing staged construction of aggregates is desirable as it allows e.g., adding
user-defined bridges to library aggregates. Attaching an additional bridge object
O to an existing aggregate A will merge O’s aggregate context, B say, with A.2
This has consequences for all other bridges to B and unless we provide additional
mechanisms for restricting merging of aggregate contexts, we have introduced a
back door in the system. Going back to our bank accounts example, if bob can
attach himself to dave and sophia’s aggregate, then bob can suddenly call the
getters and setters for the shared account, thereby gaining access to it.

Allowing the assignment from unique types to bridge types elegantly allows
staged construction of an aggregate. Regular non-unique bridge objects cannot
be attached to some other aggregate to gain access to its innards. Since an ag-
gregate’s bridge owner cannot be named externally, the aggregate implementer
must explicitly provide a method to perform the attachment. Unless such a
method is specified in any of the aggregate’s bridges, staged construction is not
possible. (This allows preventing bob from using the trick above.)

Aggregates can be constructed incrementally or in stages by attaching om-
budsmen to each other, thereby merging their aggregate contexts. This practice
is sound as the uniquely referenced ombudsman is always a dominating node to
any object inside its aggregate context, akin to the relation between an owner
and its this context in classical ownership types.

Figure 8 (on Page 165) shows an excerpt of a List class that allows an ob-
ject external to the aggregate to be made part of an existing aggregate. In the
example, a unique iterator object is passed to the list’s iterator method, which
subsequently attaches it to its current aggregate by storing it in variable owned
by bridge.

2 And unless O is a sibling of A’s bridge objects, the attachment is unsound since it
would merge differently dominated aggregates.

Multiple Aggregate Entry Points for Ownership Types 165

Iterator<bridge,data> iterator(Iterator<unique,data> i) {
Iterator<bridge,data> iter = i--; // move into bridge
iter.cursor = first;
return iter;

}

Fig. 8. Attaching an external iterator to a list aggregate; -- is a destructive read

3 Formalizing Ombudsmen

In this section we formalize ombudsmen as an extension to deep ownership. The
most relevant changes are in the type rules (expr-select), (expr-update) and
(expr-method-call). Our formalism is inspired by [13,38].

When reading or updating a field f of a non-bridge receiver x, f may not
point to objects in x’s aggregate. This is a straightforward adaptation of the
static visibility constraint of Clarkean systems that reads rep ∈ Owners(τ) ⇒
e = this, which our system also uses. Further, if f under the same circumstances
points to an ombudsman of x’s aggregate, its type is reported to us as a sibling
of x. These can be seen in (expr-select) and to some extent in (expr-update).

We consider only unary methods for simplicity and without loss of general-
ity. Ombudsman adaptation is employed to translate internal types to external
types and there is an additional visibility constraint that prevents calling meth-
ods which expect ombudsman arguments, unless the receiver object is itself an
ombudsman. The same constraint must hold for field update. This is visible in
(expr-update) and (expr-method-call).

Any type owned by bridge can be subsumed by the equivalent type owned
by owner, since for all contexts, bridge denotes a subset of owner. This is accom-
plished by adding an additional subtyping rule, see (bridge-owner-subsumption).

Conventions and Conveniences. We follow the practice of FJ [25] and use an
overbar notation for sequences of terms in the standard fashion. For example,
p denotes a sequence p1, . . . , pn and f : τ denotes a sequence f1 : τ1, . . . fn : τn

for n ≥ 0. To turn such a sequence into a set, we write it within { }, e.g.,
{p} = {p | p ∈ p}.

Like many ownership types papers before us [16,12,14,38,34], we sometimes
write C〈σ〉 for a type C〈p〉 where σ is a map from the names of the formal
parameters of C to the actual owner arguments p. For example, if C is declared
class C〈owner, a, b〉 · · · in the program, then if C〈p1, p2, p3〉 is a well-formed
type, we sometimes write C〈σ〉 for the implicitly defined σ = {owner �→ p1, a �→
p2, b �→ p3}. As a further convenience—following previous work—we sometimes
write σp to mean σ ∪ {owner �→ p} and σp to mean σ ∪ {aggregate �→ p} (used
in the dynamic semantics, possibly combined with σp).

3.1 Static Semantics

Syntax. The syntax of our system is defined in Figure 9. The meta variables x
and y are used for names of variables (including this) and p and q for names

166 J. Östlund and T. Wrigstad

P ::= C class Object〈owner〉 { } e (Program)
C ::= class C〈owner, p〉 extends D〈p〉 { F M } (Class decl.)
F ::= τ f (Field decl.)
M ::= τ m(τ x) { e } (Method decl.)
e ::= let x = e in e | x | x.f | x.f = y | (Expressions)

x.m(y) | null | new τ
τ ::= C〈p〉 (Types)

Fig. 9. Syntax

of contexts (including rep, owner, bridge and aggregate). For simplicity, local
variables and sequences are encoded using standard let-expressions.

For the static semantics, we use a standard environment E, containing map-
pings from local variables to types and relations between contexts in the current
scope: E ::= ε | E, x : τ | E, p ≺∗ q | E, p �∗ q. Declarations and let-
expressions extend E in a straightforward fashion. Table 1 shows an overview of
the judgments used in our static system.

Helper Predicates. A key helper predicate is OmbudsmanAdaptation, defined
thus:

OmbudsmanAdaptation(bridge, τ) = τ
OmbudsmanAdaptation(p, τ) = τ{owner/bridge}

where p = bridge is assumed in the last case. This predicate is used to change
the internal view of an object as a bridge object of the current object’s aggregate
to the external view of an object—a bridge object for some aggregate at the
same nesting depth.

For every class C, we can derive a “field table” FT (C) and a “method ta-
ble” MT (C). We define FT (C) for class C〈p〉 extends D〈σ〉 { F M } as
F •σ(FT (D)) and similar for MT (C). F (f) = τ if τf ∈ F , else ⊥. Isomorphically,
M(m) = (τ1 → τ2, x, e) if τ2 m(τ1 x) { e } ∈ M , else ⊥. Lookup in these tables
is performed left–right, so FT (C)(f) when FT (C) = F • σ(FT (D)) is defined as
F (f) when f ∈ dom(F), else σ(FT (D)(f)). The root class has empty field and
method tables; FT (Object) = MT (Object) = ∅ and ∅(f) = ∅(m) = ⊥.

Using the tables, we define lookup helper predicates in a straightforward fash-
ion where first, second, etc. extract the 1st, 2nd, etc. tuple compartments.

FieldType(C, f) = FT (C)(f)
Signature(C, m) = MT (C)(m)

Param(C, m) = second(MT (C)(m))
Body(C, m) = third(MT (C)(m))

Fields(C) = {f | FT (C)(f) = ⊥}

We also define functions for looking up owners from types: Owners(C〈p〉) = {p}
and σ(C〈p〉) = C〈σ(p)〉.

Multiple Aggregate Entry Points for Ownership Types 167

Table 1. Judgments in the static system
� P : τ P is a well-formed program with type τ

� C C is a well-formed class
� E, x : τ E is extended by a variable x with type τ

� E, p R q E is extended by a good nesting relation (R ∈ {≺∗, �∗}) between con-
texts p and q

E; τ � F F is a well-typed field declaration and does not override a field in a
supertype

E; τ � M M is a well-typed method declaration, overriding preserves typing
E � e : τ e is a well-formed expression with type τ

E � p p is a good owner in the scope E

E � p R q p is inside/outside q in the scope E; R ∈ {≺∗, �∗}
E � p →ok q p may reference q in the scope E

E � τ τ is a well-formed type in the scope E

E � τ <: τ ′ τ is a subtype of τ ′ in the scope E

Last, we assume the existence of a predicate Arity(C) that returns the number
of owner parameters, including owner, declared for the class C, e.g., Arity(List) =
2 from the example in Figure 7.

Declarations. A program is well-formed if all its classes are well-formed and the
starting expression of the program is well-typed. For simplicity, the root class
Object is treated special.

(wf-program)

� C ε � e : τ

� C class Object〈owner〉 { } e : τ

A class is well-formed if its fields and methods are well-formed, the owner pa-
rameters passed to the super class are good (respect the nesting), and owner is
only used in the first position of the owner formals.

(wf-class)
E = owner ≺∗ world, rep ≺∗ owner, bridge ≺∗ owner, \

aggregate ≺∗ owner, p �∗ owner, this : C〈bridge, p〉 {q} ⊆ {p}
owner ∈ {p} τs = D〈owner, q〉 E � τs E; τs � F E; τs � M

� class C〈owner, p〉 extends D〈q〉 { F M }

A field is well-typed if its type is valid in the current scope, and there is no field
with the same name in a superclass.

(wf-field)
E � C〈σ〉 E � τ FieldType(C, f) = ⊥

E; C〈σ〉 � τ f

168 J. Östlund and T. Wrigstad

A method is well-formed if its types are well-formed in the current scope, its
body corresponds to the declared return type, and overriding preserves types.

(wf-method)
E � C〈σ〉 E � τ E, x : τ ′ � e : τ

Signature(C, m) = ⊥ ∨ Signature(C, m) = σ(τ ′) → σ(τ)
E; C〈σ〉 � τ m(τ ′ x) { e }

Expressions. Expressions are typed given the type information E derived ini-
tially for each method in (wf-class), and extended with variables by (wf-
method) and (expr-let). For simplicity, we assume that all variables have unique
names.

(expr-let)
E � e′ : τ ′ E, x : τ ′ � e : τ

E � let x = e′ in e : τ

(expr-var)
� E E(x) = τ

E � x : τ

Reading a field of an object makes use of two key constraints: first, the two vis-
ibility constraints that say representation objects may only be accessed through
the special this receiver, which is due to Clarke et al. [16], and that aggregate
objects may only be accessed through ombudsmen. Last, we apply the Ombuds-
manAdaptation helper function that make ombudsmen appear as regular objects
when viewed externally.

(expr-select)
E � x : C〈σp〉 FieldType(C, f) = τ

rep ∈ Owners(τ) ⇒ x = this
aggregate ∈ Owners(τ) ⇒ p = bridge

OmbudsmanAdaptation(p, τ) = τ ′

E � x.f : σp(τ ′)

(expr-update) is very similar to (expr-select), although it does not use Om-
budsmanAdaptation (that would not be sound as we are writing, not reading a
field—similar to wild-cards in Java generics) and adds an additional restriction: a
field holding an ombudsman can only be accessed through another ombudsman.

(expr-update)
E � x : C〈σp〉 FieldType(C, f) = τ E � y : σp(τ)

rep ∈ Owners(τ) ⇒ x = this
bridge, aggregate ∈ Owners(τ) ⇒ p = bridge

E � x.f = y : σp(τ)

The semantics for calling a method is straightforward and contains the amalga-
mation of the restrictions of (expr-select) and (expr-update) as well as uses
OmbudsmanAdaptation so that returning a bridge object from an invocation on
a non-bridge object type loses its “bridge status” (in the type system’s view).

Multiple Aggregate Entry Points for Ownership Types 169

(expr-method-call)
E � x : C〈σp〉 Signature(C, m) = τ1 → τ2 E � y : σp(τ1)

rep ∈ Owners(τ1) ∪ Owners(τ2) ⇒ x = this
bridge, aggregate ∈ Owners(τ1) ⇒ p = bridge

aggregate ∈ Owners(τ2) ⇒ p = bridge
OmbudsmanAdaptation(p, τ2) = τ

E � x.m(y) : σp(τ)

The static semantics for null and instantiation are straightforward. Last, (expr-
subsumption) allows the type of an expression to be subsumed into a supertype.

(expr-null)
E � τ

E � null : τ

(expr-new)
E � τ

E � new τ : τ

(expr-subsumption)
E � e : τ ′ E � τ ′ <: τ

E � e : τ

Type Environment Construction. We use a standard static type environment E.

(e-ε)

� ε

(e-var)
E � τ x ∈ dom(E)

� E, x : τ

(e-context)
E � q p ∈ dom(E) R ∈ {≺∗, �∗}

� E, p R q

Contexts. Statically, contexts are added to the environment in (wf-class). The
only manifest owner is world.

(good-context)
� E p ∈ dom(E)

E � p

(good-world)
� E

E � world

Rules for nesting relations are straightforward and follow a wealth of ownership
papers in the Clarkean family.

(inside)
� E

p ≺∗ q ∈ E

E � p ≺∗ q

(outside)
� E

q �∗ p ∈ E

E � p ≺∗ q

(inside-reflexive)
E � p

E � p ≺∗ p

(inside-transitive)
E � p ≺∗ p′

E � p′ ≺∗ q

E � p ≺∗ q

Permissions. Permissions in our system govern how references may cross context
boundaries. Inside nesting implies permission to reference, just like in classical
ownership types in (p-inside).

(p-inside)
E � p ≺∗ q

E � p →ok q

(p-rep)
� E p ∈ {bridge, aggregate}

E � rep →ok p

An ombudsman’s representation may reference its aggregate in (p-rep).

170 J. Östlund and T. Wrigstad

Types and Subtyping. In our system, a type is well-formed if its owner has
the right to reference all its owner parameters, and additionally, the number of
parameters must correspond to the class declaration.

(good-type)

E � p E � p →ok p Arity(C) = |p, p|
E � C〈p, p〉

Subtyping follows the same rules as for classic ownership types. Reference per-
missions are propagated upward in the class hierarchy by the forwarding in the
class declaration, and the subtyping relation is reflexive and transitive.

(subtype-direct)
E � C〈σ〉

class C〈· · ·〉 extends D〈q〉 · · · ∈ P

E � C〈σp〉 <: D〈p, σ(q)〉

(subtype-reflexive)
E � τ

E � τ <: τ

(subtype-trans)
E � τ1 <: τ3
E � τ3 <: τ2

E � τ1 <: τ2

The single novel subtyping rule in our system allows an ombudsman to be sub-
sumed by its owner. This is required to safely export an ombudsman outside of
its (aggregate) representation without compromising safety.

(bridge-owner-subsumption)
E � C〈bridge, p〉 E � C〈owner, p〉

E � C〈bridge, p〉 <: C〈owner, p〉

As an example of the use of this practice, see the list iterator example. Internally,
the list’s view of its iterator is Iterator〈bridge, data〉, but when obtained from
some external object, the iterator’s type is Iterator〈owner, data〉. This is sound
since bridge always denotes a subset of owner.

3.2 Dynamic Semantics

The dynamic semantics is a big-step operational semantics. To distinguish di-
verging computation from stuck states, we use a standard trick to limit stack
space [21,38]. Each reduction carries the remaining stack space and each method
call reduces this number. A method call when there is no remaining stack space
triggers an error.

Objects are represented by triples of type, aggregate context id α, and field
mappings. Run-time types are the same as static types, but static owner names
are substituted for run-time contexts. Run-time contexts are κ (an object id ι,
aggregate context id α, or the special context world). Values are ι or ε (null).

H ::= [] | H [ι �→ (C〈κ〉, α, F)] (Heap)
B ::= ε | B, x �→ v | B, p �→ κ (Bindings)
F ::= [] | F [f �→ v] (Fields)

v ::= ε | ι (Values)
κ ::= ι | α | world (Contexts)

A configuration is a triple 〈H ; B; e〉 of a heap H , bindings of variables to values
and context names to contexts B, and an expression e. The initial configuration
is 〈[]; ∅; e〉 that is, an empty heap and bindings, plus the initial expression.

Multiple Aggregate Entry Points for Ownership Types 171

Rules (d-let) and (d-var) are unsurprising. (d-let) evaluates the expression
e and binds the value v′ to the variable x in the environment under which e′ is
evaluated. (d-var) just looks up the value bound to x in the frame.

(d-let)
〈H ; B; e〉 →n 〈H ′; v′〉

〈H ′; B, x �→ v′; e′〉 →n 〈H ′′; v′′〉
〈H ; B; let x = e in e′〉 →n 〈H ′′; v′′〉

(d-var)
B(x) = v

〈H ; B; x〉 →n 〈H ; v〉

Looking up a field on an object receiver is straightforward. We write H(ι.f) as
a shorthand for F(f) when H(ι) = (C〈κ〉, α, F). Field updates are similar, and
we write H(ι.f) := v for H [ι �→ (C〈κ〉, α, F [f �→ v])] when H(ι) = (C〈κ〉, α, F).

(d-select)
B(x) = ι H(ι.f) = v

〈H ; B; x.f〉 →n 〈H ; v〉

(d-update)
B(x) = ι B(y) = v

〈H ; B; x.f = y〉 →n 〈H(ι.f) := v; ε〉

In our simple semantics, method calls cause the evaluation of a method body
under a new B with all owner names substituted for their run-time equivalents,
derived from the current this. Furthermore, this is substituted for the current
object, and the parameter is substituted for the actual argument value.

(d-method-call)
B(x) = ι B(y) = v H(ι) = (C〈σκ〉, α, _)

Body(C, m) = e Param(C, m) = x
B′ = rep �→ ι, bridge �→ κ, this �→ ι, x �→ v, aggregate �→ α

n > 0 〈H ; B′, σκ; e〉 →(n−1) 〈H ′; v′〉
〈H ; B; x.m(y)〉 →n 〈H ′; v′〉

The run-time representation of null is denoted by ε. Object creation is simple
due to the absence of constructors and custom field initialization. A fresh object
has all its fields initialized to null and a fresh context α is picked to represent
its aggregate, unless it is a ombudsman, in which case the aggregate context is
that of the current object.

(d-null)

〈H;B; null〉 →n 〈H ; ε〉

(d-new)
F =[f �→ ε | f ∈ Fields(C)] ι is fresh

p = bridge⇒α fresh p = bridge⇒α = B(aggregate)
〈H ; B; new C〈p, p〉〉 →n 〈H [ι �→ (C〈B(p), B(p)〉, α, F)]; ι〉

For brevity, we omit the trivial error trapping rules for dereferencing null pointers
and propagating errors and stack overflow.

3.3 Meta Theory

In our reasoning about well-formedness, we rely on a combined type environment
and store type Γ ::= ε | Γ, x : τ | Γ, ι : τ | Γ, α : κ | Γ, o ι : α. The entry α : κ

172 J. Östlund and T. Wrigstad

Table 2. Judgments in the meta-theoretic part of the formalism

� Γ Γ is a well-formed store type
Γ � 〈H ; B; e〉 : τ
Γ � 〈H ; B; v〉 : τ

〈H ; B; e/v〉 is a well-formed configuration
with type τ under Γ

Γ � C〈κ〉 C〈κ〉 is a well-formed type under Γ

Γ � κ →ok κ′ Objects in context κ have permission to reference ob-
jects immediately in κ′ under Γ

Γ � H H is a well-formed heap under Γ

Γ � v : τ Value v has type τ under Γ

maps an aggregate context α to the owner κ of all its ombudsmen. In a similar
fashion, the entry o ι : α maps an object ι into an aggregate context α for which
it acts as an ombudsman. Table 2 overviews the judgments in the meta theory.

(Γ -ε)

� ε

(Γ -var)
x ∈ dom(Γ) Γ � τ

� Γ, x : τ

(Γ -object)
ι ∈ dom(Γ) Γ � τ

� Γ, ι : τ

The rules (Γ -bridge) and (Γ -aggregate) are key elements here; in a well-formed
store type, all ombudsmen of the same aggregate have the same owner.

(Γ -bridge)
Γ � κ α ∈ dom(Γ)

� Γ, α : κ

(Γ -aggregate)
� Γ o ι ∈ dom(Γ) α : κ ∈ Γ Γ (ι) = C〈σκ〉

� Γ, o ι : α

A well-formed heap can be extended by an object whose field contents correspond
to that of the class declaration. All ombudsmen for the same aggregate must have
the same owner.

(heap-[])
� Γ

Γ � []

(heap-object)
Γ (ι) = C〈σκ〉 Γ (o ι) = α Γ (α) = κ Γ � H

Γ � v : (σκ
α ∪ {rep �→ ι, bridge �→ κ})(τ)

Fields(C) = {f} FieldType(C, f) = τ

Γ � H, ι �→ (C〈σκ〉, α, [f �→ v])

A configuration is well-formed given an environment Γ if its heap is well-formed
and its expression/value is well-typed.

(good-configuration)
Γ � H Γ � e {B} : τ {B}

Γ � 〈H ; B; e〉 : τ

(good-final-configuration)
Γ � H Γ � v : τ {B}

Γ � 〈H ; B; v〉 : τ

We assume a function e/τ {B} that replaces static names of owners in the domain
of B with their dynamic counterparts, e.g., C〈p〉 {B} = C〈B(p)〉. The judgments

Multiple Aggregate Entry Points for Ownership Types 173

Γ � e : τ are “copy-and-patch” from the corresponding type rules E � e : τ and
therefore omitted.

(null-type)
Γ � τ

Γ � ε : τ

(object-type)
Γ (ι) = τ ′ Γ � τ ′ <: τ

Γ � ι : τ

Rules for good dynamic contexts are similar to their static counterparts. A type
is well-formed if its owner has the right to reference all other owner parameters.

(context-world)
� Γ

Γ � world

(context-object/aggregate)
� Γ κ ∈ dom(Γ)

Γ � κ

(d-type)
Γ � κ →ok κ Arity(C) = |κ, κ|

Γ � C〈κ, κ〉

Except for aggregates and bridges, relations between contexts are not explicitly
stored in Γ . Instead we infer them from the types present in a well-formed Γ .
Reflexivity and transitivity of this relation are trivial and therefore omitted.

(d-inside)
� Γ Γ (κ) = C〈κ〉 κ′ ∈ κ

Γ � κ ≺∗ κ′

(d-ombudsman)
� Γ Γ (α) = κ

Γ � α ≺∗ κ

Last, a context κ may reference another context κ′ if an inside relation can be
inferred from the first to the second, or if the second is an aggregate context and
the first is inside an object defining it.

(d-mayref)
Γ � κ ≺∗ κ′ ∨ Γ � κ ≺∗ ι ∧ Γ (o ι) = κ′

Γ � κ →ok κ′

We define → (“points to”) and � (“aggregates”) as binary relations between ob-
jects for some heap H such that ι → ι′ ⇐⇒ ∃ f s.t. H(ι.f) = ι′ and ι � ι′ ⇐⇒
H(ι) = (C〈κ〉, α, _) ∧ H(ι′) = (C〈α, _〉, _, _). We can now define “ombudsmen-
as-dominators” as a straightforward extension to owners-as-dominators.

Theorem 1: Ombudsmen-as-dominators. For any two objects ι1, ι2 in a well-
formed heap, ι1 → ι2 ⇒ ι1 ≺∗ Owner(ι2) ∨ ∃ ι s.t. ι � ι2 ∧ ι1 ≺∗ ι.

In plain English this states that if an object ι1 references another object
ι2, then either the owner of ι2 is a dominator of ι1 (this is the standard
owners-as-dominators property, the non-savvy ownership reader can con-
sult e.g., Clarke’s dissertation [12] for additional details), or ι2 is part of
some aggregate and ι1 is inside the representation of this aggregate.

Proof. Assume Γ � H in which ι1 → ι2. Let the run-time type of ι1 be some type
C〈k〉. By (heap-object), ι2 is owned by some owner, k say, in k, or the run-time
values for world, rep (ι1), bridge (ι1’s owner) and aggregate (α, say).

174 J. Östlund and T. Wrigstad

First, let k′ be the owner of ι1. By (d-inside) follows ι1 ≺∗ k′ and by (d-type)
follows k′ →ok k for any k in k. Now, by (d-mayref), either k′ ≺∗ k (implying
ι1 ≺∗ k by transitivity), or exists ι s.t. ι1 ≺∗ ι (by transitivity) and Γ (o ι) = k′,
which implies ι � ι2. (*) If k = world then ι1 ≺∗ k by definition. If k = ι1,
then ι1 ≺∗ k by reflexivity of ≺∗. The case when k = i1’s owner is subsumed by
the above since ι1’s owner is in k. If k = α, then second part of the theorem’s
implication holds for ι = ι1 (**)

For clarity, in (*), ι1 belongs to the representation of an object that aggregates
ι2. In (**), ι1 aggregates ι2.

Theorem 2: Subject Reduction We prove subject reduction in the standard fash-
ion of progress plus preservation.
Progress: If Γ � 〈H ; B; e〉 : τ , then 〈H ; B; e〉 →n 〈H ′; v〉 or 〈H ; B; e〉 →n ERR
for some finite value of n.

Proof. The proof is straightforward by induction on the big-step rules where
most cases are immediate. The slightly more intricate cases, (d-select), (d-
update) and (d-method-call) are all guarded by versions of the same rule (elided
in this presentation) that capture null-dereferencing or stack overflow. By (heap-
object), a well-formed object (τ, α, F) has all its expected fields in F , with the
expected types, therefore, evaluation cannot get stuck accessing a non-existent
field, and a similar argument applies to method calls. ��

Preservation: If Γ � 〈H ; B; e〉 : τ and 〈H ; B; e〉 → 〈H ′; v〉, then there exists
Γ ′ ⊇ Γ s.t. Γ ′ � 〈H ′; B; v〉 : τ (omitting stack space for simplicity).

Proof. The proof is straightforward by structural induction on the shape of e.
There are no surprising cases. (Although B might be updated by evaluating e,
such updates will only be of local variables—not owners, which are the interesting
elements of B w.r.t. final configurations.) ��

4 Related Work

Several researchers have proposed relaxations of Clarkean ownership types that
can be used to overcome the single bridge object-problem. The main difference
with these systems is that ombudsmen explicate the notions of aggregates and
bridges in the types, e.g., allowing an object to clearly identify other bridges to
its aggregate, and work within the confines of owners-as-dominators, rather than
providing a “back door” which allow external access to an object’s internals.

Boyapati et al. [7] allow relaxing owners-as-dominators for instances of inner
classes. A list may define an inner iterator class that can be exported arbitrar-
ily, but still access the enclosing object’s representation. This allows expressing
mutating and non-mutating iterators, but at the same time destroys the strong
encapsulation, as there is no way for a type system to detect whether a back
door to an object’s representation exists or not.

Multiple Aggregate Entry Points for Ownership Types 175

Boyapati’s proposal is somewhat close in spirit to ours: a single object starts
as the initial bridge object for an aggregate, and may create additional bridge
objects internally. However, a closer look reveals several shortcomings, which our
system avoids:

Non-modular. All bridge objects must be defined within a single lexical scope.
This destroys separate compilation, and also prevents reusing external classes
for bridge objects (e.g., it is not possible to have a common iterator class for
different list classes).

Inflexible. The initial bridge object must always be the outermost enclosing
class of the classes defining an aggregate. This is inflexible as it does not allow
defining an aggregate which can be created in multiple ways, using different
classes (e.g., a component with different ports for different configurations).
Also, staged construction of aggregates is not possible.

State confusion. There is no support for distinguishing between the repre-
sentation of the initial bridge object (private implementation details) and
the aggregate’s representation (which might be exported to another bridge).
Consequently, an iterator can leak details about the list which were not
intended to be exported. Strangely enough, the iterator can have represen-
tation which is private from the list.

Ad hoc encapsulation. Boyapati’s bridge objects can be exported arbitrarily
high up in the nesting hierarchy, making it hard to reason about the origins
of changes and completely destroying strong encapsulation.

The strength of Boyapati’s proposal is the ability to allow bridge objects to es-
cape arbitrarily outside their defining aggregate. The downside of this flexibility
is lack of flexibility in all other domains and the unclear guarantees that this
built-in back door gives the system.

OIGJ [40] take Boyapati’s approach and suffers from all but the last problem
above. In OIGJ, inner classes have access to the representation of the enclosing
object. The difference to Boyapati’s system is that in OIGJ the inner class must
have the same owner as the outer object (e.g., iterator has same owner as its list),
and thus cannot be arbitrarily exported, similar to our system. There is however
no way to distinguish bridges of a common aggregate from other peers. As in
Boyapati’s system the outer object grants subsequent bridge objects access to all
its state, there is no distinguishing of aggregate and bridge object representation.

The encapsulation property of Universe Types [30], owners-as-modifiers, re-
laxes owners-as-dominators for read-only references. Thus, traditional universe
types can express the iterator pattern, but only allow obtaining read-only refer-
ences to the list elements via an iterator (modulo expensive and unsafe down-
casts). Generic Universe Types [19] overcome this limitation, but do not allow
iterators that change its originating collection. In summary, Universe types allow
multiple entry points to aggregates, but only one of these entry points may have
mutating capabilities. Furthermore, the multiple entry points can be exported
arbitrarily in the system. In a concurrent setting this may not be desirable as
read-only references do not preclude the existence of mutable aliases, making

176 J. Östlund and T. Wrigstad

them subject to possible data races. Clarke et al. [15] similarly relax owner-as-
dominators but for safe references (that may only be used to read immutable
parts of objects), and for references to immutable data, guaranteeing that no
mutation may occur concurrently.

Lu et al. [29] overcome some of the limitations of Boyapati’s escaping in-
ner classes by allowing dynamically exposing internal representation through a
“downgrading” operation. This voids the need of a specific inner class for ex-
posure, which allows separate compilation and reuse, but just like with inner
classes, their downgrading operation destroys the strong notion of encapsulation
resulting in unclear properties of the resulting system. Shallow ownership (e.g.,
[2]) is reminiscent of downgrading in that an object internal to an aggregate
can arbitrarily pass on permission to reference aggregate objects to an exter-
nal object that it creates. Shallow ownership however has no strong (or clear)
encapsulation guarantee.

Ownership Domains [1] allows a programmer to manually specify contexts
and how objects in these contexts may refer to each other by linking them
together. For instance, a list class may define a public domain for its iterators,
which is linked to both the domain containing the list links and the element
domain. While this is straightforward and flexible, it is difficult to identify the
encapsulation invariants of a system: it is necessary to look at large parts of a
system and how its components introduce new links between contexts that would
invalidate assumptions about encapsulation drawn locally by just studying the
list class. Ownership domains further suffer from problems similar to Boyapati’s
inner classes in that public domains are publicly accessible, and therefore an
iterator may be arbitrarily exported.

CoBoxes [36] (and JCoBoxes [37]) are active-objects-like systems with asyn-
chronous message sends and futures. CoBoxes are similar to our aggregates in
that they are defined in terms of the objects they contain and may have multi-
ple entry points into an aggregate. However, both CoBoxes and JCoBoxes rely
entirely on run-time checks to protect a box’s innards, whereas our system can
express and check fortified aggregates with multiple entry points at compile-time.

MOJO [11] and Mojojojo [28]3 support multiple ownership, which is more
general than our proposal, but this flexibility comes with very high complexity.
The descriptive nature of MOJO and Mojojojo allows a programmer to express
an aggregate in the types, but encapsulation is not enforced. Further, because
the aggregate is visible (in the types) from the outside it can be constructed,
populated and extended from the outside. In our system such operations are
under complete control of the aggregate itself.

In the context of verification of object invariants, Barnett and Naumann [4]
define a friendship protocol in which a granting class can give privileges to an-
other friend class that allows invariants in the friend to depend on fields in the
granting class. Objects are connected using an explicit attach construct, but
there is no notion of collaboratively defined state, and once a value of a field

3 Although MOJO and Mojojojo differ in expressiveness and technical details they are
very similar in spirit, so we treat them as one here.

Multiple Aggregate Entry Points for Ownership Types 177

in a granting class has been obtained by a friend, the value may be exported
arbitrarily.

Boyland et al. [10] use effects and a novel “from” annotation to allow a data
structure to temporarily yield its state to an external object (e.g., a list to an
iterator). Such access permissions are treated linearly, and therefore cannot be
used to express multiple (read/write) entry points to an aggregate, including
fail-fast iterators with mutating capabilities and our shared bank account.

Lastly, Joe1 by Clarke and Drossopoulou [13] allow final variables to be used as
owners to externally name an object’s representation. This relaxation is however
only made for variables on the stack and therefore cannot be used to express
multiple entry points to aggregates in a straightforward fashion.

5 Discussion

Ombudsmen-as-dominators is a straightforward extension to owners-as-domina-
tors: the owners-as-dominators property holds for all objects in the rep context;
objects inside aggregate contexts are instead dominated by an unknown subset
of objects of the directly enclosing context. Thus, objects inside an aggregate con-
text enjoy a weaker encapsulation than representation objects which is precisely
the intention of our proposal since many aggregates cannot be expressed in the
hierarchical fashion that deep ownership types dictate. This has consequences
for reuse and computational effects, which is discussed below.

5.1 Ombudsmen and Reuse

Internally, an object will not know whether it lives inside another object’s rep-
resentation, or constructs an aggregate, which allows programmers to design
objects without concern for how they will be used in future systems. Conse-
quently, an object cannot know whether it is dominated by a single object or a
collection of several objects (which would presumably violate abstraction), but
we have not yet seen a programming pattern where this is an important factor.

A drawback of our system is that a class cannot be retrofitted to be an om-
budsman unless it makes use of the aggregate context. Removing this restric-
tion is simple, just give bridge objects implicit permission to reference aggregate
objects, and involves the addition of a single type rule:

(p-ombudsman)
� E

E � bridge →ok aggregate

This causes a problem with presenting a type of an ombudsman external to the
aggregate, since there is no external name for the aggregate context. This can be
solved using “lost owners” [18]. The type C〈bridge, aggregate〉 will externally
be C〈owner, ?〉 where ? is an owner that cannot be named in the current context.

178 J. Östlund and T. Wrigstad

5.2 Ombudsmen and Ownership-Based Computational Effects

The idea of ombudsmen was conceived during our work on extending Joëlle [15],
a language for safe, reliable and efficient parallel programming based on the
active object pattern [23]. To achieve the necessary isolation for active objects,
Joëlle relies on an “flat” ownership types system where ownership forms a forest
and every active object is a root of a tree in the forest.

Our extension to Joëlle sports a type and effect system which is an amalga-
mation of Greenhouse and Boyland’s OOFX [24] and Clarke and Drossopoulou’s
Joe1 together with support for externally unique (from Wrigstad’s Joline [14,38]),
immutable and safe [33] references.

In Section 2.6, we showed how external uniqueness can be used to allow the
external creation of a bridge object for an aggregate without introducing back
doors. Owner-polymorphic methods, such as found in Clarke’s dissertation [12]
or Joline [38], can be used to temporarily export objects inside an aggregate
context past their ombudsmen, but only for the duration of a method call.

When combining ombudsmen with an ownership-based effect system, such
as the one in Joe1 or our extension of Joëlle, the obvious question arises, how
to report an effect to an object in the shared aggregate? The answer to the
question is to externally report effects under the shared aggregate as effects to
owner. This is imprecise, as not all objects in the owner context may access
the aggregate. Without additional machinery, like path dependent-types (see
e.g., [13]), regions (see e.g., [24]), linearity (see e.g., [10]) or data groups [26],
distinguishing ombudsmen for different aggregates is in any case impossible, so
the subsuming aggregate into owner for effects is required for soundness.

6 Concluding Remarks

We have presented an extension to Clarkean ownership types that slightly relaxes
owners-as-dominators to enable multiple entry points into a single aggregate. Our
extension works well with existing deep ownership systems, and only requires two
additional ownership contexts, aggregate and bridge, and minor extensions to
existing type rules. In terms of increasing complexity for the programmer, we
believe that multiple contexts of an object does not overly complicate program-
ming, especially since the contexts are limited to two, and the notion of owner
specialization, bridge is a subset of owner, should be as straightforward as any
simple notion of regions.

We have implemented the ombudsman system as part of our extended Joëlle
compiler on top of JastAddJ [20]. It currently supports deep ownership types,
external uniqueness, and a complete implementation of ombudsmen, including
staged aggregate construction with ownership transfer.

Acknowledgments. We thank the anonymous reviewers at IWACO 2011 and
the ECOOP 2012 reviewers for their valuable feedback which helped us improve
our presentation, and correct mistakes.

Multiple Aggregate Entry Points for Ownership Types 179

References

1. Aldrich, J., Chambers, C.: Ownership Domains: Separating Aliasing Policy from
Mechanism. In: Vetta, A. (ed.) ECOOP 2004. LNCS, vol. 3086, pp. 1–25. Springer,
Heidelberg (2004)

2. Aldrich, J., Kostadinov, V., Chambers, C.: Alias Annotations for Program Under-
standing. In: OOPSLA (November 2002)

3. Banerjee, A., Naumann, D.A.: Secure Information Flow and Pointer Confinement
in a Java-like Language. In: Proceedings of the Fifteenth IEEE Computer Security
Foundations Workshop (CSFW), pp. 253–267. IEEE Computer Society Press (June
2002)

4. Barnett, M., Naumann, J.D.A.: Friends Need a Bit More: Maintaining Invariants
Over Shared State. In: Kozen, D. (ed.) MPC 2004. LNCS, vol. 3125, pp. 54–84.
Springer, Heidelberg (2004)

5. Booch, G., Maksimchuk, R.A., Engle, M.W., Young, B.J., Connallen, J.,
Houston, K.A.: Object-oriented analysis and design with applications, third edi-
tion. SIGSOFT Softw. Eng. Notes, 33, 11:29–11:29 (2008)

6. Boyapati, C., Lee, R., Rinard, M.: Ownership Types for Safe Programming:
Preventing Data Races and Deadlocks. In: OOPSLA (2002)

7. Boyapati, C., Liskov, B., Shrira, L.: Ownership Types for Object Encapsulation.
In: POPL (2003)

8. Boyapati, C., Liskov, B., Shrira, L., Moh, C.-H., Richman, S.: Lazy Modular Up-
grades in Persistent Object Stores. In: OOPSLA, pp. 403–417. ACM, New York
(2003)

9. Boyapati, C., Salcianu, A., Beebee, W., Rinard, M.: Ownership Types for Safe
Region-Based Memory Management in Real-Time Java. In: PLDI (June 2003)

10. Boyland, J., Retert, W., Zhao, Y.: Iterators can be Independent from Their Col-
lections. In: IWACO (2007)

11. Cameron, N.R., Drossopoulou, S., Noble, J., Smith, M.J.: Multiple Ownership. In:
OOPSLA (2007)

12. Clarke, D.: Object Ownership and Containment. PhD thesis, School of Computer
Science and Engineering, University of New South Wales, Sydney, Australia (2001)

13. Clarke, D., Drossopolou, S.: Ownership, Encapsulation and the Disjointness of
Type and Effect. In: OOPSLA (2002)

14. Clarke, D., Wrigstad, T.: External Uniqueness is Unique Enough. In: Cardelli, L.
(ed.) ECOOP 2003. LNCS, vol. 2743, pp. 176–201. Springer, Heidelberg (2003)

15. Clarke, D., Wrigstad, T., Östlund, J., Johnsen, E.B.: Minimal Ownership for Active
Objects. In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 139–154.
Springer, Heidelberg (2008)

16. Clarke, D.G., Potter, J., Noble, J.: Ownership Types for Flexible Alias Protection.
In: OOPSLA, pp. 48–64 (1998)

17. Cunningham, D., Drossopoulou, S., Eisenbach, S.: Universe Types for Race Safety.
In: VAMP 2007, pp. 20–51 (September 2007)

18. Dietl, W.: Universe Types: Topology, Encapsulation, Genericity, and Tools. Ph.D.,
Department of Computer Science, ETH Zurich, Doctoral Thesis ETH No. 18522
(December 2009)

19. Dietl, W., Drossopoulou, S., Müller, P.: Generic Universe Types. In: Bateni, M.
(ed.) ECOOP 2007. LNCS, vol. 4609, pp. 28–53. Springer, Heidelberg (2007)

20. Ekman, T., Hedin, G.: The Jastadd Extensible Java Compiler. In: OOPSLA, pp.
1–18. ACM, New York (2007)

180 J. Östlund and T. Wrigstad

21. Ernst, E., Ostermann, K., Cook, W.R.: A Virtual Class Calculus. In: Proceedings
of Principles of Programming Languages (POPL) (January 2006)

22. Fahndrich, M., Xia, S.: Establishing Object Invariants with Delayed Types.
SIGPLAN Not. 42(10), 337–350 (2007)

23. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
Boston (1995)

24. Greenhouse, A., Boyland, J.: An Object-Oriented Effects System. In: Guerraoui,
R. (ed.) ECOOP 1999. LNCS, vol. 1628, pp. 205–229. Springer, Heidelberg (1999)

25. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core cal-
culus for Java and GJ. ACM Transactions on Programming Languages and Sys-
tems 23(3), 396–450 (2001)

26. Leino, K.R.M.: Data groups: specifying the modification of extended state. In:
OOPSLA, pp. 144–153. ACM, New York (1998)

27. Leino, K.R.M., Müller, P.: Object Invariants in Dynamic Contexts. In: Vetta, A.
(ed.) ECOOP 2004. LNCS, vol. 3086, pp. 491–515. Springer, Heidelberg (2004)

28. Li, P., Cameron, N., Noble, J.: Mojojojo - more ownership for multiple owners.
In: International Workshop on Foundations of Object-Oriented Languages, FOOL
(2010)

29. Lu, Y., Potter, J., Xue, J.: Ownership Downgrading for Ownership Types. In: Hu,
Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 144–160. Springer, Heidelberg (2009)

30. Müller, P., Poetzsch-Heffter, A.: Universes: A type system for controlling represen-
tation exposure. In: Poetzsch-Heffter, A., Meyer, J. (eds.) Programming Languages
and Fundamentals of Programming, pp. 131–140. Technical Report 263, Fernuni-
versität Hagen (1999)

31. Müller, P., Poetzsch-Heffter, A., Leavens, G.T.: Modular Specification of Frame
Properties in JML. In: Concurrency and Computation Practice and Experience
(2003)

32. Müller, P., Rudich, A.: Ownership Transfer in Universe Types. In: OOPSLA, pp.
461–478. ACM, New York (2007)

33. Noble, J., Vitek, J., Potter, J.: Flexible Alias Protection. In: Jul, E. (ed.) ECOOP
1998. LNCS, vol. 1445, pp. 158–185. Springer, Heidelberg (1998)

34. Östlund, J., Wrigstad, T., Clarke, D., Åkerblom, B.: Ownership, Uniqueness, and
Immutability. In: Paige, R.F., Meyer, B. (eds.) TOOLS EUROPE 2008. LNBIP,
vol. 11, pp. 178–197. Springer, Heidelberg (2008)

35. Potanin, A., Noble, J., Clarke, D., Biddle, R.: Generic Ownership for Generic Java.
In: OOPSLA, pp. 311–324. ACM, New York (2006)

36. Schäfer, J., Poetzsch-Heffter, A.: CoBoxes: Unifying Active Objects and Structured
Heaps. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp.
201–219. Springer, Heidelberg (2008)

37. Schäfer, J., Poetzsch-Heffter, A.: JCoBox: Generalizing Active Objects to Con-
current Components. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp.
275–299. Springer, Heidelberg (2010)

38. Wrigstad, T.: Ownership-Based Alias Management. PhD thesis, Royal Institute of
Technology, Kista, Stockholm (May 2006)

39. Wrigstad, T., Pizlo, F., Meawad, F., Zhao, L., Vitek, J.: Loci: Simple Thread-
Locality for Java. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp.
445–469. Springer, Heidelberg (2009)

40. Zibin, Y., Potanin, A., Li, P., Ali, M., Ernst, M.D.: Ownership and Immutability
in Generic Java. In: OOPSLA 2010, pp. 598–617. ACM, New York (2010)

Inference and Checking of Object Ownership

Wei Huang1, Werner Dietl2, Ana Milanova1, and Michael D. Ernst2

1 Rensselaer Polytechnic Institute
2 University of Washington

Abstract. Ownership type systems describe a heap topology and en-
force an encapsulation discipline; they aid in various program correctness
and understanding tasks. However, the annotation overhead of ownership
type systems has hindered their widespread use. We present a unified
framework for specification, type inference and type checking of owner-
ship type systems, and instantiate the framework for two such systems:
Universe Types and Ownership Types. We present an objective metric
defining a “best typing” for these type systems, and develop an inference
approach that maximizes the metric. The programmer can influence the
inference by adding partial annotations to the program. We implemented
the approach on top of the Checker Framework and present the results
of an experimental evaluation.

1 Introduction

When a type system requires annotations in the source code, the annotation
burden on programmers inhibits practical adoption. Therefore, it is important
to help programmers transform unannotated or partially-annotated programs to
fully-annotated ones. Another benefit of type inference is that it reveals valuable
information about how existing programs use the concepts expressed in the type
system.

Automatic type inference is especially difficult for type systems that allow
multiple valid typings, such as ownership type systems [7]. The notion of the
“best typing” is not well-understood or formalized.

This paper presents a unified framework for specifying ownership-like type sys-
tems as well as efficient type inference and checking techniques. We give a formal
way to define the best typing and design efficient type inference techniques that
infer best typings. We have instantiated the framework for two well-known own-
ership type systems: Universe Types [8], which enforces the owner-as-modifier
encapsulation discipline, and Ownership Types [4], which enforces the owner-as-
dominator encapsulation discipline, and present an empirical evaluation.

This paper makes the following contributions:

– A unified framework for specifying the type rules of ownership type systems
and instantiations of the framework for two well-known ownership type sys-
tems, Universe Types (UT), and Ownership Types (OT). (See Sect. 2.)

– A formalization of the notion of “best typing” for ownership type systems.
The programmer specifies a ranking over all valid typings; the highest ranked

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 181–206, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

182 W. Huang et al.

cd ::= class C extends D { fd md } class
fd ::= τ f field
md ::= τ m(τ x) { τ y s; return y } method
s ::= s; s | x = new τ () | x = y | x.f = y | this.f = y statement

| x = y.f | x = this.f | x = y.m(z) | x = this.m(z)
τ ::= q C qualified type
q ∈ Q qualifier

Fig. 1. Syntax of a core OO language. The set Q of all qualifiers q is a framework
parameter instantiated for specific ownership type systems.

typing is the best typing. The ranking is a heuristic reflecting the desire for
deep ownership trees — higher ranked (i.e., “better”) typings give rise to
deeper runtime ownership trees. Deep ownership trees are desirable, because
they expose high degree of encapsulation. (See Sect. 3.)

– A unified type inference approach. The inference reflects programmer in-
tent in two ways: (1) it accepts a programmer-specified ranking over typ-
ings, which guides the automatic inference towards the best of many valid
typings, and (2) it accepts partially-annotated programs and seamlessly inte-
grates programmer-provided annotations with automatic inference: the pro-
grammer may choose to annotate a subset of the variables; the automatic
inference fills in the rest, guided by the ranking towards the best typing. (See
Sect. 4.)

– A formulation of Universe Types inference as an instance of the unified
approach. We infer the “best UT typing”, in quadratic time, without anno-
tations. (See Sect. 4.3.)

– A demonstration that while the best UT typing is tractable, the best OT
typing is challenging. Our approach cannot always infer the best OT typ-
ing without annotations. We scale Ownership Type inference by asking the
programmer to provide a small number of annotations (6 per kLOC on av-
erage). We infer the “best OT typing” for the partially-annotated program
in quadratic time. (See Sect. 4.4.)

– An empirical evaluation which presents type inference results for UT and
OT on Java programs of up to 110kLOC, and a comparison of UT and OT.
(See Sect. 5.)

2 Unified Framework for Ownership Type Systems

This sectiondescribes our unified framework for specifying ownership type systems.
The framework can be instantiated to specific ownership type systems. Sect. 2.1
describes the framework’s unified typing rules, Sect. 2.2 instantiates the frame-
work for Universe Types, and Sect. 2.3 instantiates it for Ownership Types.

For brevity, we restrict our formal attention to a core calculus in the style of
Vaziri et al. [26] whose syntax appears in Fig. 1. The language models Java with
a syntax in A-normal form. For brevity, we assume in the presentation that all
methods have a single parameter; our implementation handles the general case.

Inference and Checking of Object Ownership 183

2.1 Framework and Unified Typing Rules

The framework is instantiated to a specific type system by defining three frame-
work parameters: (1) the set of type qualifiers Q with the corresponding sub-
typing hierarchy, (2) the viewpoint adaptation function � (described below),
and (3) type-system-specific constraints B, enforced in addition to the standard
subtyping and viewpoint adaptation constraints.

In contrast to a formalization of pure Java, a type τ has two orthogonal
components: ownership type qualifier q and Java class type C. The ownership
type system is orthogonal (i.e., independent) to the Java type system, which
allows us to specify typing rules over type qualifiers q alone.

Framework parameter � defines viewpoint adaptation [8]. For example, the
type of x.f is not just the declared type of field f — it is the type of f adapted
from the point of view of x. In ownership type systems, viewpoint adaptation
adapts the type of a field, formal parameter, or return type, from the viewpoint
of the receiver at the corresponding field access or method call to the viewpoint
of the current object this. Viewpoint adaptation is performed at field accesses
and method calls and is written q�q′, which denotes that type q′ is adapted from
the point of view of type q to the viewpoint of the current object this. Viewpoint
adaptation rules for each type system are given in Sections 2.2 and 2.3.

Fig. 2 shows the unified typing rules over the A-normal-form Java syntax.
The figure makes use of the three framework parameters. The environment Γ
is used to look up the type qualifier of a variable. Rule (tnew) ensures that the
instantiated type is a subtype of the type of the left-hand side and enforces
the additional type-system-specific constraints determined by B. Similarly, rule
(tassign) checks the types in assignments. The rules in Fig. 2 separate access
through the current object this from other accesses. Rule (twrite) adapts the
type of the field, and creates the subtype constraint between the type on the
right-hand-side and the adapted type of f. Auxiliary function typeof (f) retrieves
the type of field f from its declaration. Rule (tread) ensures that the adapted field
type is a subtype of the type of the left-hand-side. Rule (tcall) uses typeof (m)
to retrieve the type of method m, namely q → q′, from its declaration. Rule
(tcall) then creates the expected subtyping constraint between the type of the
actual argument z and the adapted type of the formal parameter, as well as
the subtyping constraint between the adapted return type and the type of the
left-hand-side x. Finally, rules (twritethis), (treadthis), and (tcallthis) perform the
corresponding operations, without viewpoint adaptation.

We now instantiate the framework for two well-known ownership type systems,
Universe Types (UT) [8,5] and Ownership Types (OT) [4]. The framework can
also be instantiated for a variety of other ownership-like type systems, including
EnerJ [22], a type system for energy efficiency, and AJ [26], a type system for
data-centric synchronization.

2.2 Universe Types

Universe Types (UT) [8,5] is a lightweight ownership type system that optionally
enforces the owner-as-modifier encapsulation discipline. Informally, this means

184 W. Huang et al.

(tnew)

Γ (x) = qx q <: qx

B(tnew)(qx, q)

Γ
 x = new q C

(tassign)

Γ (x) = qx Γ (y) = qy qy <: qx

B(tassign)(qx, qy)

Γ
 x = y

(twrite)

Γ (x) = qx typeof (f) = qf Γ (y) = qy

qy <: qx � qf

B(twrite)(qx, qf , qy)

Γ
 x.f = y

(twritethis)

typeof (f) = qf Γ (y) = qy

qy <: qf

B(twritethis)(qf , qy)

Γ
 this.f = y

(tread)

Γ (x) = qx Γ (y) = qy typeof (f) = qf

qy � qf <: qx

B(tread)(qy, qf , qx)

Γ
 x = y.f

(treadthis)

Γ (y) = qy typeof (f) = qf

qf <: qx

B(treadthis)(qf , qx)

Γ
 x = this.f

(tcall)

typeof (m) = q → q′

Γ (x) = qx Γ (y) = qy Γ (z) = qz

qz <: qy � q qy � q′ <: qx

B(tcall)(m, qy, qx)

Γ
 x = y.m(z)

(tcallthis)

typeof (m) = q → q′

Γ (x) = qx Γ (z) = qz

qz <: q q′ <: qx

B(tcallthis)(m, qx)

Γ
 x = this.m(z)

Fig. 2. Unified typing rules. The ownership type system is independent from the Java
type system, which allows us to specify the typing rules over qualifiers q alone.

that an object can be modified only by its owner and by its peers, i.e., objects
that have the same owner. There are three source-level qualifiers, i.e., QUT =
{peer, rep, any}:
– peer: an object that is referenced by a peer reference x is part of the same

representation as the current object. In other words, the two objects have
the same owner.

– rep: an object that is referenced by a rep reference x is part of the current
(i.e., this) object’s representation. In other words, the current object is the
owner of the object referenced by x.

– any: the any qualifier does not provide any information about the ownership
of the object.

The formalization of Universe Types uses the qualifier lost to express that the
result of viewpoint adaptation cannot be expressed statically, that is, a type
declaration enforces an ownership constraint, but the constraint is not expressible
from the current viewpoint. Qualifier lost is used only internally and users cannot
annotate references as lost. In contrast to previous work [5], we type the current
object this as peer and use separate rules for accesses through this, instead of
adding a self qualifier.

Inference and Checking of Object Ownership 185

1 class XStack {
2 any Link top;
3 XStack() {
4 top = null;
5 }
6 void push(any X d1) {
7 rep Link newTop;

8 newTop = new rep Link(); l

9 newTop.init(d1);
10 newTop.next = top;
11 top = newTop;
12 }
13 void main(String[] arg) {
14 rep XStack s;
15 s = new rep XStack(); s

16 any X x = new rep X(); x

17 s.push(x);
18 }
19 }
20 class Link {
21 any Link next;
22 any X data;
23 void init(any X d2) {
24 next = null;
25 data = d2;
26 }
27 }

1 class XStack {
2 〈rep|p〉 Link top;
3 XStack() {
4 top = null;
5 }
6 void push(〈p|p〉 X d1) {
7 〈rep|p〉 Link newTop;

8 newTop = new 〈rep|p〉 Link(); l

9 newTop.init(d1);
10 newTop.next = top;
11 top = newTop;
12 }
13 void main(String[] arg) {
14 〈rep|rep〉 XStack s;
15 s = new 〈rep|rep〉 XStack(); s

16 〈rep|rep〉 X x = new 〈rep|rep〉 X(); x

17 s.push(x);
18 }
19 }
20 class Link {
21 〈own|p〉 Link next;
22 〈p|p〉 X data;
23 void init(〈p|p〉 X d2) {
24 next = null;
25 data = d2;
26 }
27 }

Fig. 3. A program with qualifiers for UT (left) and OT (right) as inferred by our tool.
The boxed italic letters denote object allocation sites.

The qualifiers form the following subtyping hierarchy:

rep <: lost peer <: lost lost <: any

that is, qualifiers peer and rep are incomparable to each other and are subtypes
of lost, and all qualifiers are below any.

Viewpoint adaptation in UT is defined as follows:

peer � peer = peer
rep � peer = rep

� any = any
q � q′ = lost otherwise

Viewpoint adaptation is applied only when the receiver is not this. The type of
the receiver is qx at (twrite), qy at (tread) and qy at (tcall). Consider x.f = y. If x is
rep, then the current object is the owner of the x object. If the type of f is peer,
then the x object and field f object are peers. Therefore, the current object is the

186 W. Huang et al.

owner of the f object, which is expressed by the fact that the type of f, adapted
from the point of view of x’s rep, is rep.

UT imposes additional constraints, beyond the standard subtyping and view-
point adaptation constraints. In our framework, these constraints are expressed
by framework parameters B:

B(tnew)(ql, qr) = {qr �= any}
B(twrite)(qr, qf , qo) = {qr �= any, qr � qf �= lost}
B(tcall)(m, qr, qo) = let typeof (m) = q → q′ in

if impure(m) then {qr �= any, qr � q �= lost}
else {qr � q �= lost}

The B sets for (tassign), (twritethis), (tread), (treadthis), and (tcallthis) are all empty;
these rules do not impose additional constraints.

In (tnew), the newly created object needs to be created in a concrete ownership
context and therefore needs peer or rep as ownership qualifiers. In (twrite), the
adapted field type cannot be lost, and in (tcall), the adapted formal parameter
type cannot be lost.

The underlined constraints above enforce the owner-as-modifier encapsulation
discipline — they disallow modifications in statically unknown contexts. The
receiver cannot be any in (twrite) or in (tcall) if the method is impure, that is, if
the method might have nonlocal side effects. We use our method purity inference
tool [13], which relies on a type system for reference immutability and is another
instantiation of the unified framework described here. Note that, in contrast to
other formalizations [7], we do not need to forbid lost as receiver, because our
syntax here is in A-normal form and the programmer cannot explicitly write
lost.

Fig. 3 (left) shows a program annotated with Universe types. Variable newTop
at line 7 and the Link object l are typed rep, meaning that the XStack object is
the owner of the Link object. References top (line 2) and next are any because
they are never used to modify the object that they refer to. References d1 and
d2 are any as well, as they are never used to modify the object they refer to.

Ownership type systems give rise to a hierarchical ownership structure shown
with an ownership tree. Fig. 4 shows the object graph and the corresponding
ownership tree for the program in Fig. 3. root is the owner of objects s and x
and s is the owner of l.

2.3 Ownership Types

We now consider the classical Ownership Types (OT) [4], restricted to one own-
ership parameter. The system enforces the owner-as-dominator encapsulation
discipline, meaning that an object cannot be exposed outside of the boundary of
its owner, or in other words, all access paths to the object go through its owner.
There are three base ownership modifiers in Ownership Types:
– rep refers to the current object this.
– own refers to the owner of the current object.
– p is an ownership parameter passed to the current object.

Inference and Checking of Object Ownership 187

root

s

l

x

root

s

l

x

Fig. 4. Object graph (left) and ownership tree (right) for the example in Fig. 3. UT
and OT give rise to the same ownership tree. In the object graph we show all references
between objects. In the ownership tree we draw an arrow from the owned object to its
owner and put all objects with the same owner into a dashed box.

OT qualifiers have the form 〈q0|q1〉, where q0 and q1 are one of rep, own, or p.
A qualifier 〈q0|q1〉 for reference variable x is interpreted as follows. Let i be the
object referenced by x. q0 is the owner of i, from the point of view of the current
object, and q1 is the ownership parameter of i, again, from the point of view of
the current object. Informally, the ownership parameter q1 refers to an object,
which objects referenced by i might use as owner. For example, 〈rep|own〉 x means
that the owner of i is the current object this, and the ownership parameter passed
to i is the owner of the current object. Transitively, objects referenced by i, for
example, from its fields, can have as owner (1) i itself, by using rep, (2) the
current object, by using own, or (3) the owner of the current object, by using p.

There are six type qualifiers:
QOT = {〈rep|rep〉, 〈rep|own〉, 〈rep|p〉, 〈own|own〉, 〈own|p〉, 〈p|p〉}, and there is no
subtyping hierarchy. The type of this is 〈own|p〉.

Viewpoint adaptation � is defined as follows:

〈q0|q1〉 � 〈own|own〉 = 〈q0|q0〉
〈q0|q1〉 � 〈own|p〉 = 〈q0|q1〉
〈q0|q1〉 � 〈p|p〉 = 〈q1|q1〉

Viewpoint adaptation disallows the adapted type from containing rep, which
accounts for the static visibility constraint [4].

As an example, let us discuss the first rule: the adapted type of 〈own|own〉
from the point of view of 〈q0|q1〉 is 〈q0|q0〉. If an object i has type 〈q0|q1〉 from
the point of view of the current this object, this means that the owner of i is q0.
If object j has type 〈own|own〉 from the point of view of i, this means that both
j’s owner and ownership parameter are instantiated to the owner of i. Therefore,
j will have type 〈q0|q0〉 from the point of view of this.

As in UT, viewpoint adaptation is applied only when the receiver variable
is not this. When the receiver is this, there is no need to adapt, as the object
remains in the same context, the context of this.

For example, consider a field read x = y.f. Let y have type 〈rep|rep〉 and let
field f have type 〈own|p〉. Then y.f has type 〈rep|rep〉. The first rep in this type
can be explained as follows: Owner own in the type of f gives us that the owner

188 W. Huang et al.

of the f object is the same as the owner of the y object, and owner rep in the
type of y gives us that the owner of the y object is the current object. Thus, the
owner of the f object, from the point of view of the current object, is the current
object.

In OT, all B sets are empty as the system does not impose additional con-
straints beyond the standard subtyping and viewpoint adaptation constraints.
Note that the subtyping constraints degenerate into equality constraints as OT
does not have a subtyping hierarchy.

Fig. 3 (right) shows the XStack program annotated with Ownership Types.
The XStack object s is 〈rep|rep〉 meaning that the owner of s is root and the own-
ership parameter passed to s is root as well. The Link object l is 〈rep|p〉 meaning
that the enclosing XStack object is the owner of l, and the ownership parameter
of the XStack object is passed to l as an ownership parameter. Variable next
(line 21) has type 〈own|p〉 which means that the next link and the current link
have the same owner, the enclosing XStack object. data is typed 〈p|p〉 meaning
that its owner is the ownership parameter of Link which resolves to root . The
resulting ownership tree is shown in Fig. 4. Note that for this program UT and
OT give rise to the same ownership tree. In general however, UT and OT capture
different ownership structure, as we will discuss in Sect. 5.

We conclude this section with a brief discussion of why we choose to restrict
OT to one ownership parameter. As an experiment, we instantiated the uni-
fied framework for ownership type systems with 2 and 3 ownership parameters.
However, the complexity of annotations was so overwhelming that we could not
manually verify the inferred results. We concluded that in order to use Owner-
ship Types in practice, we must restrict the system to one ownership parameter.

3 Heuristic Ranking over Typings

Ownership type systems typically allow many different typings for a given pro-
gram. The trivial typings that apply to every program (peer in Universe Types,
or 〈p|p〉 in Ownership Types) give rise to flat ownership trees where every object
is a child of root . These typings permit every access and modification, so they
do not express the programmer’s intent nor detect/prevent coding errors. These
goals are better served by inferring deep ownership trees, not trivial flat trees.

This section formalizes the notion of the best typing using a ranking over all
typings. For ownership types, the ranking is a heuristic/proxy for deep ownership
trees — a higher ranked typing would likely give rise to a deeper (i.e., better)
runtime ownership tree than a lower ranked typing.

We begin by defining the notion of a valid typing. Let P be a program and
F be an ownership type system with universal set of qualifiers QF . A typing
TP,F is a mapping from the variables1 in P to the type qualifiers in QF . A typ-
ing TP,F is a valid typing for P in F when it renders P well-typed in F . Note that

1 For the rest of the paper we use “variables” to denote all annotatable types, that is,
local variable, parameter, return, allocation site, and field types.

Inference and Checking of Object Ownership 189

a valid typing TP,F must maintain programmer-provided annotations in P , that
is, if a variable v is annotated by the programmer with q, then for every valid
typing TP,F , we have TP,F (v) = q.

We proceed to define an objective function o that can be used to rank valid
typings, and instantiations for UT and OT. The objective function o takes a
valid typing T and returns a tuple of numbers2. The tuples are ordered lexico-
graphically.

To create the tuple, the objective function o assumes that the qualifiers are
partitioned and the partitions are ordered. Then, each element of the tuple is
the number of variables in T whose type is in the corresponding partition.

3.1 Objective Function for Universe Types

For UT, the function is instantiated as

oUT (T) = (|T−1(any)|, |T−1(rep)|, |T−1(peer)|)
The partitioning and ordering is

{any} > {rep} > {peer}
Each qualifier falls in its own partition. This means, informally, that we prefer
any over rep and peer, and rep over peer. More formally, the partitioning and
ordering gives rise to a preference ranking OUT over all qualifiers:

OUT : any > rep > peer

Note that this preference ranking is not related to subtyping. We have T1 > T2

iff T1 has a larger number of variables typed any than T2, or T1 and T2 have the
same number of any variables, but T1 has a larger number of rep variables than
T2. Function oUT gives a natural ranking over the set of valid typings for UT. In
fact, the maximal (i.e., best) typing according to the above ranking, maximizes
the number of allocation sites typed rep, which is a good proxy for a deep UT
ownership tree.

It is interesting to note that an o with exactly one qualifier per partition gives
a meaningful heuristic ranking for other type systems, most notably reference
immutability [13,25] and AJ [26].

3.2 Objective Function for Ownership Types

OT cannot use an objective function with one qualifier per partition. Informally,
the base modifiers are preference-ranked as

rep > own > p

2 Strictly, o and T are defined in terms of a specific type system F and program P ;
for brevity, we omit the subscripts when they are clear from context.

190 W. Huang et al.

root

i

m k

l

j

l’

root

i

m k l l’

j

root

m i

k

l l’

j

(a) Object graph (b) OT tree for T1 (c) OT tree for T2

Fig. 5. Ownership trees resulting from typings T1 and T2. Edges i → m and k → l
(shown in red in the object graph) cannot be typed with owner rep simultaneously.

but, say, 〈rep|rep〉 should not carry more weight than 〈rep|p〉. The objective
function should maximize the number of rep owners regardless of ownership
parameters.

To illustrate this point, suppose that qualifiers 〈q0|q1〉were ordered lexicographi-
cally based on the ranking of base modifiers, and consider Fig. 5. A variable roughly
corresponds to an edge in the object graph [14], and therefore, we use typing of
edges instead of typing of variables. Edges i → m and k → l cannot be typed with
owner rep simultaneously, because of the restriction to one ownership parameter.
Thus, one valid typing, call it T1, types root → i, root → j and i → m as 〈rep|rep〉,
i → k as 〈rep|own〉, and the rest of the edges as either 〈own| 〉 or 〈p|p〉. T1 gives rise
to the ownership tree in Fig. 5(b); T1 flattens the tree at l and l′ — the owner of l
and l′ is i, even though k dominates both l and l′ and we would like to have k as
the owner of l and l′. Another valid typing, call it T2, types root → i, root → j as
〈rep|rep〉, i → k as 〈rep|own〉, k → l and k → l′ as 〈rep|p〉, and the rest of the edges
as either 〈own| 〉 or 〈p|p〉. T2 gives rise to the tree in Fig. 5(c); this tree is better
than the tree in Fig. 5(b) because it has more dominance. Note that lexicographi-
cal ordering ranks T1 higher than T2 because it contains 3 〈rep|rep〉 typings, while
T2 contains only 2 〈rep|rep〉 typings. However, T2 is the better typing, because it
contains 5 〈rep| 〉 typings, one more than T1, and therefore, it preserves more dom-
inance in the ownership tree than T1.

In OT, valid typings are ranked using the following o:

oOT (T) = (|T−1(〈rep| 〉)|, |T−1(〈own| 〉)|, |T−1(〈p| 〉)|)
Here T−1(〈rep| 〉) is the set of variables typed with owner rep, i.e., typed 〈rep|rep〉,
〈rep|own〉 or 〈rep|p〉. T−1(〈own| 〉) is the set of variables typed with owner own,
and T−1(〈p| 〉) is the set of variables typed with owner p. The primary goal is to
maximize the number of variables typed with owner rep (regardless of ownership
parameters). Thus, the ranking maximizes the number of edges in the object
graph that are typed rep, or in other words, the best typing preserves the most
dominance (ownership). This is a good proxy for a deep OT ownership tree.

Inference and Checking of Object Ownership 191

Our type inference approach (Sect. 4) requires that all qualifiers are preference-
ranked and the ranking over qualifiers preserves partition ranking. Unlike oUT ,
oOT does not give rise to such ranking (e.g., 〈rep|rep〉 and 〈rep|p〉 are equally
preferred by oOT). We use lexicographical order over the base modifiers:

OOT : 〈rep|rep〉 > 〈rep|own〉 > 〈rep|p〉 > 〈own|own〉 > 〈own|p〉 > 〈p|p〉
OOT preserves the partition ranking (e.g., 〈rep|p〉 > 〈own|own〉) and preference-
ranks qualifiers within partitions (e.g., 〈rep|rep〉 > 〈rep|own〉 > 〈rep|p〉).

3.3 Maximal Typing

A maximal typing is a typing that maximizes o (i.e., the best typing(s) according
to the heuristics encoded in o).

Definition 1. Maximal Typing. Given an objective function o over the set of
valid typings, a valid typing T is a maximal typing of P in F under o, if for every
valid typing T ′, we have T ′ �= T ⇒ T ≥ T ′.

Perhaps somewhat unexpectedly, for UT, as well as other interesting systems
such as reference immutability [13], there exists a unique maximal typing. This
is discussed in detail in the next section. For OT however, in general, there are
multiple maximal typings, i.e., there are multiple typings that maximize oOT .
Consider the following program:

1 x = new X(); x

2 y = new Y(); y

3 x.f = y;

There are variables x, y, field f, and allocation sites x and y. Typing T1 types
the program as follows: T1(x) = T1(x) = 〈rep|own〉, T1(y) = T1(y) = 〈rep|own〉,
and T1(f) = 〈own|p〉. Typing T2 types the program as follows:. T2(x) = T2(x) =
〈rep|rep〉, T2(y) = T2(y) = 〈rep|rep〉, and T2(f) = 〈own|own〉. Clearly, oOT (T1) =
oOT (T2) = (4, 1, 0). There are other valid typings that maximize oOT as well.
There are nontrivial examples as well.

The following section describes a unified type inference approach, which can
be used to compute the unique maximal typing for UT, and a maximal typing
for OT given user annotations.

4 Unified Type Inference

The unified inference and checking system works on completely unannotated
programs, as well as on partially-annotated programs. We believe that neither
fully automatic inference nor fully manually annotated programs are feasible
choices. In many interesting systems, fully automatic inference is impossible;
that is, the programmer must provide initial annotations which typically reflect
semantics that is impossible to infer. We envision a cooperative system that fills
in as many annotations as possible and queries the programmer for a small set of

192 W. Huang et al.

annotations on certain variables to resolve ambiguities. The system seamlessly
integrates programmer-provided annotations with inferred annotations.

The key idea in our system is to compute a set-based solution S instead of a
single typing. S maps variables to sets of qualifiers: for every statement s, for
every variable v in s, and for every qualifier q ∈ S(v), there are qualifiers in
the sets of the remaining variables in s, such that q and those qualifiers make
statement s type check. Interestingly, for some systems such as UT, the set-based
solution S, which is inexpensive to compute, implies the unique maximal typing.
For other systems, such as OT, where the unique maximal typing does not exist,
S pinpoints the places where programmer-provided annotations must be added,
and as a result, reduces the number of manual annotations significantly.

Sect. 4.1 describes the computation of the set-based solution S and Sect. 4.2
describes its properties. Then, Sects. 4.3 and 4.4 describe how the type inference
is instantiated for the two ownership type systems in our study.

4.1 Set-Based Solution

Set Mapping. S maps each program variable (annotatable reference) to a set
of possible type qualifiers. We fix the program P and type system F , and we
write S instead of SP,F for brevity.

The initial mapping, S0, is defined as follows. Programmer-annotated variables
are initialized to the singleton set which contains only the programmer-provided
annotation. Variables that are not annotated are initialized to the maximal set of
qualifiers QF . The analysis, a fixpoint iteration, iterates over the statements in the
program and refines the initial sets, until it reaches the fixpoint.

Transfer Functions. We now describe the transfer functions applied by fix-
point iteration. There is a transfer function fs for each statement s. Statements
s can be of kinds as shown in Fig. 2. Each fs takes as input mapping S and
outputs an updated mapping S′. Informally, fs removes all infeasible qualifiers
from the sets of the variables v ∈ s. After the application of fs, for each variable
vi ∈ s and each qi ∈ S′(vi), there exist q1 ∈ S′(v1), . . . , qi−1 ∈ S′(vi−1), qi+1 ∈
S′(vi+1), . . . , qk ∈ S′(vk), such that q1, . . . , qk type check with the rule for s in
Fig. 2. The transfer functions are defined in terms of the typing rules in Fig. 2;
making s type check requires that the subtyping, viewpoint adaptation, and B
constraints for s hold.

More formally fs : S → S′ is defined as follows:

foreach vi ∈ s
S′(vi) = { qi | qi ∈ S(vi) and

∃q1 ∈ S(v1), . . . , qi−1 ∈ S(vi−1), qi+1 ∈ S(vi+1), . . . , qk ∈ S(vk)
s.t. q1, . . . , qk type check with the rule for s in Fig. 2 }

For example, the transfer function fx=y : S → S′ for UT is as follows:

S′(x) = { q | q ∈ S(x) and ∃qy ∈ S(y) s.t. qy <: q }
S′(y) = { q | q ∈ S(y) and ∃qx ∈ S(x) s.t. q <: qx }

Inference and Checking of Object Ownership 193

Suppose that we apply transfer function fx=y for UT on S, where S(x) =
{rep, peer} and S(y) = {any, peer}. fx=y removes rep from S(x) because there
does not exist qy ∈ S(y) that will make the type constraint for (tassign), namely
qy <: rep, hold. Next, it removes any from S(y) because any <: peer does not hold.
After the application of the transfer function, S′(x) = {peer} and S′(y) = {peer}.

As another example, consider fx.f=y for OT applied on S, where S(x) =
{〈rep|rep〉, 〈rep|own〉, 〈rep|p〉, 〈own|own〉, 〈own|p〉, 〈p|p〉}, the set for field f, S(f) =
{〈rep|rep〉, 〈rep|own〉, 〈rep|p〉, 〈own|own〉, 〈own|p〉, 〈p|p〉} and S(y) = {〈own|own〉}.
〈rep|rep〉 is removed from S(x) because there does not exist q ∈ S(f) such that
the type constraint for (twrite), namely 〈rep|rep〉 � q = 〈own|own〉, holds. 〈rep|p〉
and 〈p|p〉 are removed as well, and S′(x) = {〈rep|own〉, 〈own|own〉, 〈own|p〉}.
Similarly, 〈rep|rep〉, 〈rep|own〉, and 〈rep|p〉 are removed from S(f) (recall that
viewpoint adaptation for OT disallows exposed fields from being rep). Thus,
S′(f) = {〈own|own〉, 〈own|p〉, 〈p|p〉} and S′(y) remains the same.

Fixpoint Iteration. The analysis is a fixpoint iteration. It initializes the map-
ping S0 as described earlier in this section, and keeps iterating over the program
statements, using the above transfer functions, until one of the following hap-
pens: (1) S reaches the fixpoint, i.e., S remains unchanged from the previous iter-
ation, in which case the analysis terminates successfully, or (2) a key is assigned
the empty set, in which case the analysis terminates indicating the program is
untypable.

The computation fits the requirements of a monotone framework [19]. The
property space is the standard lattice of subsets, with the set of qualifiers QF

being the bottom 0, and the empty set ∅ being the top 1 of the lattice. The
transfer functions are monotone. Therefore, the set-based solution S produced
by fixpoint iteration is the unique least solution (for historical reasons sometimes
this solution is referred to as the “maximal fixpoint solution” [19]).

4.2 Properties of the Set-Based Solution

Let us now consider the properties of the set-based solution S. These properties
help establish that for certain type systems one can derive a maximal (i.e., best)
typing from the set-based solution S.

The first proposition states that if the algorithm removes a qualifier q from
the set S(v) for variable v, then there does not exist a valid typing that maps v to
q. The notation T ∈ S0 denotes that for every variable v we have T (v) ∈ S0(v).

Proposition 1. Let S be the set-based solution. Let v be any variable in P and
let q be any qualifier in F . If q /∈ S(v) then there does not exist a valid typing
T ∈ S0, such that T (v) = q.

Proof. (Sketch) We say that q is a valid qualifier for v if there exists a valid
typing T , where T (v) = q. Let v be the first variable that has a valid qualifier
q removed from its set S(v) and let fs be the transfer function that performs
the removal. Since q is a valid qualifier there exist valid qualifiers q1, ..., qk that
make s type check. If q1 ∈ S(v1) and q2 ∈ S(v2), . . . , and qk ∈ S(vk), then by

194 W. Huang et al.

definition, fs would not have had q removed from S(v). Thus, one of v1, . . . , vk

must have had a valid qualifier removed from its set before the application of
fs. This contradicts the assumption that v is the first variable that has a valid
qualifier removed.

The second proposition states that if we map every variable v to the maximal
qualifier in its set S(v) according to its preference ranking over qualifiers3, and
the typing is valid, then this typing maximizes the objective function.

Proposition 2. Let o be the objective function over valid typings, and S be the
set-based solution. The maximal typing T is the following: T (v) = max(S(v))
for every variable v in P . If T is a valid typing, then T is a maximal typing of
P in F under o.

Proof. (Sketch) We show that T is a maximal typing. Suppose that there exists a
valid typing T ′ > T . Let pi be the most-preferred partition such that T ′−1(pi) �=
T−1(pi). Since T ′ > T , there must exist a variable v such that T ′(v) = q′ ∈ pi,
but T (v) = q /∈ pi. In other words, T ′ types v with T ′(v) = q′ ∈ pi, but T types v
differently — and lesser in the preference ranking, because T ′−1(pk) = T−1(pk)
for 0 ≤ k < i (here pk are the more-preferred partitions than pi). Since T (v) =
max (S(v)), it follows that q′ /∈ S(v). By Proposition 1, if q′ /∈ S(v) there does
not exist a valid typing which maps v to q′, which contradicts the assumption
that T ′ is a valid typing.

When each partition in the preference ranking has only a single element, then
the weaker assumption “there exists a valid typing T ′ ≥ T ” can be contradicted,
showing that the maximal typing is unique.

The optimality property holds for a type system F and a program P if and only
if the typing derived from the set-based solution S by typing each variable with
the maximally/preferred qualifier from its set, is a valid typing.

Property 1. Optimality Property. Let F be a type system augmented with
objective function o and let P be a program. The optimality property holds for
F and P iff T (v) = max (S(v)), for all variables v, is a valid typing.

The set-based solution is computed in O(n2) time where n is the size of the
program. At each iteration through the program, at least one of the O(n) vari-
ables changes its set to a smaller set. Therefore, there are at most O(|QF | ∗ n)
iterations. At each iteration, the computation goes through O(n) statements.
Since |QF | is a small constant (3 in UT, 6 in OT), it follows that the complexity
is O(n2). Therefore, for type systems for which the optimality property holds for
arbitrarily annotated programs, a maximal typing can be computed in quadratic
time, with no manual annotations. If the programmer provides inconsistent ini-
tial annotations in P , the computation would terminate within O(n2) time with
a message that there is no valid typing for P .

Remarkably, for several interesting systems (UT, AJ, reference immutability),
the optimality property holds for unannotated programs, which means that the
3 Rankings OUT and OOT ensure that the maximal qualifier is uniquely defined.

Inference and Checking of Object Ownership 195

Variable Initial Iteration 1 Iteration 2

top all all all

d1 all any, peer any, peer
newTop all rep, peer rep, peer

new Link() all rep, peer rep, peer

s all rep, peer rep, peer
new XStack() all rep, peer rep, peer

x all all all

new X() all rep, peer rep, peer
next all any, peer any, peer

data all any, peer any, peer
d2 all any, peer any, peer

Fig. 6. Inference of Universe Types for the example in Fig. 3

unique maximal typing can be computed in O(n2) time with no manual annota-
tions. However, for OT, the property does not hold for unannotated programs.
We will discuss each ownership system in turn in the next two subsections.

4.3 Inference of Universe Types

For Universe Types, the preference ranking over all qualifiers is OUT (previously
defined in Sect. 3). Libraries receive default type {peer}.

Fig. 6 illustrates the computation of the set-based solution for UT for the
example in Fig. 3. Consider statement s.push(x) at line 17. Initially, S(s) =
S(x) = S(d1) = {any, rep, peer}. In iteration 1, the transfer function for s.push(x)
removes any from S(s) because push is impure. It also removes rep from S(d1)
because q�rep = lost which the type rule for (tcall) forbids. See Fig. 6. Choosing
the maximal type from each set gives us T (s) = rep, T (x) = any, and T (d1) = any,
which type checks with the rule for (tcall).

We show through case analysis that for each statement s, after the application
of the transfer function for s, s type checks with the maximal typing:

(tassign) Consider x = y. We must show that after the application of fx=y, x = y
type checks with max (S′(x)) and max (S′(y)).
• If max (S′(x)) = any the statement type checks with any value for

max (S′(y)).
• Suppose that max (S′(x)) = rep. Thus, any is not in S′(x), and there-

fore any cannot be in S′(y). max (S′(y)) cannot be peer; this contra-
dicts the assumption that max (S′(x)) = rep (rep would have been
removed from x’s set). Thus, max (S′(y)) = rep and x = y type
checks.

• Suppose now that max (S′(x)) = peer. The only possible value for
max (S′(y)) is peer and the statement again type checks.

(tnew) is shown exactly the same way.
(tread) Consider x = y.f. We must show that after the application of the transfer

function fx=y.f , the statementwill type check withmax(S′(x)),max (S′(f))
and max (S′(y)).

196 W. Huang et al.

Variable Initial Iteration 1 Iteration 2 Iteration 3

top all all 〈rep|p〉 〈rep|p〉
d1 all 〈p|p〉 〈p|p〉 〈p|p〉
newTop all 〈rep|p〉 〈rep|p〉 〈rep|p〉
new Link() 〈rep|p〉 〈rep|p〉 〈rep|p〉 〈rep|p〉
s all all all all

new XStack() all all all all

x all all all all

new X() all all all all

next all 〈own|own〉, 〈own|p〉, 〈p|p〉 〈own|p〉 〈own|p〉
data all 〈own|own〉, 〈own|p〉, 〈p|p〉 〈p|p〉 〈p|p〉
d2 all 〈own|own〉, 〈own|p〉, 〈p|p〉 〈p|p〉 〈p|p〉

Fig. 7. Inference of Ownership Types for the example in Fig. 3

• If max (S′(x)) = any this is clearly true.
• Suppose that max (S′(x)) = rep; then max (S′(f)) must be peer and

max (S′(y)) must be rep.
• Finally, when max (S′(x)) = peer, one can easily see that max (S′(f))

must be peer and max (S′(y)) must be peer as well.

(twrite) and (tcall) are analogous; they are omitted for brevity. We implemented
an independent type checker which verifies the inferred solution.

4.4 Inference of Ownership Types

For Ownership Types, the preference ranking over all qualifiers is OUT (see
Sect. 3). Library variables receive default {〈own|p〉, 〈p|p〉} as explained in [12].

Fig. 7 shows the computation of the set-based solution for the example pro-
gram in Fig. 3. Note that this computation assumes annotation 〈rep|p〉 at allo-
cation site new Link(); given this annotation, the optimality property holds, and
the set-based solution computes the maximal typing for the program.

As mentioned earlier, the optimality property does not always hold in OT. As
an example, consider the program:

1 x = new A();
2 y = new 〈own|own〉 C();
3 x.f = y;

The application of transfer functions yields S(x) = {〈rep|own〉, 〈own|own〉, 〈own|p〉},
S(f) = {〈own|own〉, 〈own|p〉, 〈p|p〉} and S(y) = {〈own|own〉}. If we map every vari-
able to the maximal qualifier we have

T (x) = 〈rep|own〉, T (f) = 〈own|own〉, T (y) = 〈own|own〉
which fails to type check because 〈rep|own〉 � 〈own|own〉 equals 〈rep|rep〉, not
〈own|own〉. The set-based solution contains several valid typings. If we chose the
maximal value at x, we will have typing

Inference and Checking of Object Ownership 197

T (x) = 〈rep|own〉, T (f) = 〈p|p〉, T (y) = 〈own|own〉
and if we chose the maximal value at f, we will have

T (x) = 〈own|own〉, T (f) = 〈own|own〉, T (y) = 〈own|own〉
The set-based solution is valuable for two reasons. First, it restricts the search
space significantly. Initially, there are 6 possibilities for each variable and there
are n variables, leading to 6n potential typings. Second, the set-based solution
highlights the points of non-determinism where programmer-provided annota-
tions can guide the inference to choose one typing over another. With a small
number of programmer-provided annotations, OT inference can scale up to large
programs. We explain the process in the remainder of this section.

The points of non-determinism arise at field access and method call statements
due to viewpoint adaptation. A statement s is a conflict if it does not type check
with the maximal assignment derived from the set-based solution. In the example
above, statement x.f = y is a conflict, because if we map every variable to the
maximal qualifier, the statement fails to type check. Our approach performs the
following incremental process. Given a program P , which may be unannotated or
partially annotated, the tool runs the set-based solver, and if there are conflicts,
these conflicts are printed. The programmer selects a subset of conflicts (usually
the first 1 to 5), and for each conflict, annotates variables. Then the programmer
runs the set-based solver again. This process continues until a program P ′ is
reached, where the optimality property holds for P ′. The solver computes a
maximal typing for P ′.

In the above example, the solver prints conflict x.f = y and the set-based
solution

S(x) = {〈rep|own〉, 〈own|own〉, 〈own|p〉}
S(f) = {〈own|own〉, 〈own|p〉, 〈p|p〉}
S(y) = {〈own|own〉}

If the programmer chooses to annotate x with 〈rep|own〉, this results in typing

T (x) = 〈rep|own〉, T (f) = 〈p|p〉, T (y) = 〈own|own〉
and if he/she chooses to annotate f with 〈own|own〉 this results in typing

T (x) = 〈own|own〉, T (f) = 〈own|own〉, T (y) = 〈own|own〉

5 Empirical Results

5.1 Implementation

Our inference tool is built on top of the Checker Framework [20,6]. The tool
extends the Checker Framework to specify type system constraints and prefer-
ence ranking over qualifiers; it generates the constraints for the type systems by
traversing the AST and it implements the set-based constraint solver described
in Sect. 4. The tool is freely available at http://www.cs.rpi.edu/~huangw5/
cf-inference/.

http://www.cs.rpi.edu/~huangw5/cf-inference/
http://www.cs.rpi.edu/~huangw5/cf-inference/

198 W. Huang et al.

The constraint solver takes as input a number of constraints and it iteratively
refines the sets of valid type qualifiers until it reaches a fixpoint. If conflicts
(as defined in Sect. 4.4) occur in the solution, the solver prints all conflicts and
prompts the user to solve the conflicts by providing manual annotations.

5.2 Results

Benchmarks. We evaluated our implementation using eight Java programs
of up to 110kLOC (see Fig. 8). The analysis processes only application code;
libraries are handled using the defaults specified in Sect. 4.3 and Sect. 4.4. The
analysis is modular, in the sense that it can analyze whatever code is available,
including libraries with no main method.

All evaluations were conducted on a server with IntelR© XeonR© CPU X3460
@2.80GHz and 8 GB RAM (all benchmarks run within a memory footprint of
1GB). The software environment consists of JDK 1.6 and GNU/Linux 2.6.38.

Benchmark #Lines #Meths Description

JOlden 6223 326 Benchmark suit of 10 small programs

tinySQL 31980 1597 Database engine

htmlparser 62627 1698 HTML parser

ejc 110822 4734 Compiler of the Eclipse IDE

javad 4207 140 Java class file disassembler

SPECjbb 12076 529 SPEC’s benchmark for evaluating server side Java

jdepend 4351 328 Java package dependency analyzer

classycle 8972 440 Java class and package dependency analyzer

Fig. 8. The benchmark programs used in our evaluation

UniverseTypes. Inference ofUniverseTypes requires information aboutmethod
side effects. As stated earlier, we used our purity inference tool [13]. The purity in-
ference relies on a type system for reference immutability, which itself instantiates
our unified framework. The optimality property holds for unannotated programs
for UT, and the set-based solver infers the unique maximal typing.

Fig. 9 shows the inference results for Universe Types. Across all benchmarks,
9%–33% of all variables are inferred as any, the best qualifier. 1% to 10% of all
variables are inferred as rep. A relatively large percentage (57%–92%) of the vari-
ables are inferred as peer, resulting in a flat ownership structure. This is consistent
with previous results [7]. There are several possible reasons that lead to flat owner-
ship structures. One is due to utility methods whose formal parameters are passed
to impure methods. This forces the formal parameters to be peer. Another reason
is that the inference uses the default peer annotation for libraries.

Compared to previous results [7], our inference reports a larger percentage
of any variables. One reason is that there are more pure methods in our infer-
ence than in [7]. In our inference, pure methods are inferred automatically while
in [7] pure methods are annotated manually. For example in javad, 40 methods

Inference and Checking of Object Ownership 199

Benchmark #Pure #Ref #any #rep #peer #Manual Time

JOlden 175 685 227 (33%) 71 (10%) 387 (56%) 0 11.3

tinySQL 965 2711 630 (23%) 104 (4%) 1977 (73%) 0 18.2

htmlparser 642 3269 426 (13%) 153 (5%) 2690 (82%) 0 22.9

ejc 1701 10957 1897 (17%) 122 (1%) 8938 (82%) 0 119.7

javad 60 249 31 (12%) 11 (4%) 207 (83%) 0 4.1

SPECjbb 195 1066 295 (28%) 74 (7%) 697 (65%) 0 13.6

jdepend 102 542 95 (18%) 14 (3%) 433 (80%) 0 7.2

classycle 260 946 87 (9%) 11 (1%) 848 (90%) 0 9.9

Fig. 9. The inference results for Universe Types. Column #Ref gives the total number of
references excluding implicit parameters this. Column #Pure gives the number of pure
methods inferred automatically based on reference immutability [13]. Columns #any,
#rep, and #peer give the number of references inferred as any, rep, and peer, respectively.
No user annotations are needed for the inference of Universe Types; therefore, there are
only zeros in the #Manual column. Last column Time shows the total running time in
seconds including parsing the source code, type inference, and type checking.

were manually annotated as pure in [7] while 60 were inferred automatically in
our inference; we verified that the extra 20 methods were indeed pure. Another
reason is that our qualifier ranking always prefers any over rep. When a variable
is mapped to set {any, rep} in the set-based solution, our tool picks any instead
of rep. This happens for variable x in Fig. 6. Although x is assigned by a rep
allocation site, the tool still infers x as any because x is readonly in the main
method. In contrast, Dietl et al. [7] use a different heuristic which uses program
location to preference-rank qualifiers. They choose rep over any in certain cases,
which results in a larger percentage of variables reported as rep. It is important to
note that the larger percentage of any variables does not imply a flatter ownership
tree compared to [7]; this is because an any variable can refer to a rep object
as is the case with variable x. What matters for ownership structure are the
allocation sites, and as we shall see shortly, the inference reports a considerably
larger percentage of reps for allocation sites compared to reference variables.

Ownership Types. In OT, we add an additional modifier norep, which refers
to root , as described in detail in [12]. We use norep as the default type for String
and boxed primitives such as Boolean, Integer, etc.

Fig. 10 shows the inference results for OT. Note that there are many 〈norep| 〉
variables; the majority of these are strings and boxed primitives, e.g. 521 out of
688 〈norep|norep〉 variables in SPECjbb are strings and boxed primitives whose
default type is norep.

Compared to UT, a relatively large percentage (4%–24%) of variables are in-
ferred as 〈rep| 〉 in OT. Note however, that this does not imply a deeper ownership
tree compared to UT . In UT, many of the any variables can refer to a rep object
(as UT distinguishes readonly access); in contrast, in OT only a rep variable
can refer to a rep object. Due to the fact that the optimality property does not
hold for OT, as discussed in Sect. 4.4, the inference requires manual annotations.

200 W. Huang et al.

Benchmark #Ref #〈rep| 〉 #〈own| 〉 #〈p| 〉 #〈norep| 〉 #Manual Time

JOlden 685 67 (10%/10%) 497 (73%) 24 (4%) 97 (14%) 13 (2) 10.3

tinySQL 2711 224 (8%/11%) 530 (20%) 5 (0%) 1952 (72%) 215 (7) 18.4

htmlparser 3269 330 (10%/11%) 629 (19%) 36 (1%) 2274 (70%) 200 (3) 33.6

ejc 10957 467 (4%/ 4%) 1768 (16%) 50 (0%) 8672 (79%) 592 (5) 122.4

javad 249 44 (18%/19%) 27 (11%) 74 (30%) 104 (42%) 46 (10) 5.5

SPECjbb 1066 166 (16%/16%) 141 (13%) 71 (7%) 688 (65%) 73 (6) 17.1

jdepend 542 130 (24%/25%) 156 (29%) 128 (24%) 128 (24%) 26 (6) 13.7

classycle 946 153 (16%/20%) 173 (18%) 28 (3%) 592 (63%) 90 (10) 11.7

Fig. 10. The inference results for Ownership Types. Column #Ref again gives the
total number of references excluding the implicit parameters this. Columns #〈rep| 〉,
#〈own| 〉, #〈p| 〉, and #〈norep| 〉 give the numbers of variables whose owners are in-
ferred as rep, own, p, and norep, respectively. The boldfaced number in parentheses in
column #〈rep| 〉 is an upper bound on rep typings; it is discussed in the text. #Man-
ual shows the total number of manual annotations and, in parentheses, the number of
annotations per 1kLOC. Time shows the running time in seconds.

Column #Manual gives the total numbers of manual annotations that were
added and, in parentheses, the number of annotations per 1kLOC. The anno-
tation burden is low — on average, 6 annotations per 1kLOC. Although the
set-based solver cannot produce a maximal typing automatically, it is quite valu-
able, because it reduces the burden of annotations on programmers. The set-
based solver prints all conflicts and lets the programmer choose an annotation
that resolves the conflict in such a way that it reflects their intent. This process
continues until all conflicts are resolved. By doing so, the first author annotated
JOlden (6223 LOC) in approximately 10 minutes and SPECjbb in approximately
2 hours. The annotations reflect the intent of the first author, but not necessary
the intent of the programmers of these benchmarks. Finally, the last column
Time shows the time in seconds to do type inference and type checking after the
manual annotations. It is approximately equal to the initial run that outputs all
conflicts and does not include the time to annotate the benchmark.

The boldfaced percentage shown in parentheses in column #〈rep| 〉, is the
percentage of all references that contain a 〈rep|rep〉, 〈rep|own〉 or 〈rep|p〉 in their
set-based solution. This is an upper bound on the possible rep typings: even an
ownership type system with many ownership parameters will be unable to type a
larger percentage of variables as rep. The fact that the percentage of #〈rep| 〉’s in
our typing is close to this bound, has two implications: (1) our typing is precise
(at least with respect to the heuristic defined in Sect. 3), and (2) one ownership
parameter may be sufficient in practice (again, if the goal is to maximize the
number of rep typings).

5.3 Comparing Universe Types vs. Ownership Types

In this section, we compare Universe Types, which enforce the owner-as-modifier
encapsulation discipline, to Ownership Types, which enforce the owner-as-dom-
inator encapsulation discipline, using examples we observed in the benchmarks.

Inference and Checking of Object Ownership 201

root

i

j

k

root

i

j

k

root

i j k

(a) Object graph (b) OT tree (c) UT tree

Fig. 11. Write access to enclosing context results in flatter structure for UT as com-
pared to OT (The bold edge from j to k highlights the write access)

root

x

c

e

i

root

x

c i e

root

x

c

e i

(a) Object graph (b) OT tree (c) UT tree

Fig. 12. Readonly sharing of internal representation results in flatter structure for OT
as compared to UT (The dotted edge from i to e highlights the readonly access)

In some cases, Universe Types inferred flatter structures than Ownership
Types. This happens when an object j modifies an object k in an enclosing
context. For example, consider Fig. 11. If object j modifies k, j and k must
be peers in UT, which will force the flat ownership tree in Fig. 11(c). In con-
trast, OT reflects dominance and produces the deeper ownership tree shown in
Fig. 11(b).

In other cases, Ownership Types inferred flatter structures than Universe
Types. OT disallows exposure of internal objects outside of the boundary of the
owner. UT is more permissive, in the sense that it allows readonly exposure.
Consider Fig. 12. which represents a container c, its internal representation e
and an iterator i over e. The OT tree is flatter because the iterator i creates a
path to e which does not go through c. Therefore, c, e, and i must have x as
their owner. In contrast, UT allows the exposure of i to x because this exposure
is readonly. Therefore, c remains the owner of both e and i.

Fig. 13 compares OT and UT on the benchmarks. We consider only allocation
sites, excluding strings and boxed primitives. Allocation sites provide the best
approximation of ownership structure. On average 25% of the OT 〈rep| 〉 sites
are typed rep in UT as well. On the other hand, on average 64% of the UT

202 W. Huang et al.

Benchmark OT: 〈rep| 〉 〈rep| 〉 not 〈rep| 〉 not 〈rep| 〉
UT: rep peer rep not rep

JOlden 26 (22%) 8 (7%) 19 (16%) 66 (55%)

tinySQL 32 (6%) 123 (24%) 13 (2%) 355 (68%)

htmlparser 27 (2%) 234 (20%) 16 (1%) 926 (77%)

ejc 44 (2%) 336 (12%) 81 (3%) 2321 (83%)

javad 6 (10%) 38 (66%) 0 (0%) 14 (24%)

SPECjbb 75 (26%) 84 (29%) 25 (9%) 110 (37%)

jdepend 13 (7%) 71 (41%) 1 (1%) 90 (51%)

classycle 1 (0%) 109 (45%) 5 (2%) 128 (53%)

Fig. 13. Ownership Types vs. Universe Types on allocation sites. The four columns give
the number of OT/UT pairings and, in parenthesis, the corresponding percentages. For
example, column 〈rep| 〉/peer shows the number of allocation sites that were inferred
as rep in OT and peer in UT.

rep sites are typed 〈rep| 〉 in OT as well. The discrepancy shows that it may
be more common to have write access to enclosing context (which lowers rep
to peer in UT), than it is to have readonly sharing of internal structure (which
allows an object to stay rep in UT while it is not rep in OT). On average 40%
of all allocation sites are inferred as rep in OT, and 14% are inferred as rep in
UT, which suggests that write access to enclosing context is more common than
readonly sharing of internal structure. The results suggest that in general, UT
and OT capture distinct ownership structure. Note that as expected, there is
a significantly larger percentage of rep allocation sites in UT compared to rep
variables.

To further understand the differences between UT and OT, we examined the
results of two of the benchmarks, javad and SPECjbb. Fig. 14(a) shows a partial
object graph for javad. Here j represents the jvmDump object, c is the classFile
object, f and f ′ are the fieldSection and fieldInfo objects, and m and m′ are the
methodSection and methodInfo objects. d is the DataStream object. All of c, f ,
f ′, m and m′ modify d, which is an object from enclosing context. This forces
all c, f , f ′, m, m′ and d to be peers, and children of j in the UT ownership tree.
Edges c → f, f → f ′, c → m and m → m′ are 〈rep| 〉 in OT, but are peer in UT.

root

j

c

f f ’ m m’

d

root

c

w

d a

j

m

t b

(a) javad (b) SPECjbb

Fig. 14. Partial object graphs for the javad and SPECjbb case studies

Inference and Checking of Object Ownership 203

Now consider Fig. 14(b). It shows a partial object graph for SPECjbb. c is the
Company object, w is a Warehouse object, d is a District object, and a is Address
object which represents the District’s address. j is a JBBmain thread, m is a
TransactionManager, t is a Transaction and b is an array that stores transactions.
Edges w → a and t → a expose the Address object outside of its creating object
d. Therefore, the edge d → a cannot be 〈rep| 〉 in OT. However, the exposure is
readonly, and it remains rep in UT.

6 Related Work

We discuss related work on ownership inference as well as other work on inference
of pluggable and extended types.

Several dynamic approaches for ownership inference exist [9,18,21,27]. Al-
though a dynamic approach may produce more precise results, it is inherently
unsound and incurs a significant performance overhead. Also, it is difficult to gen-
eralize a dynamic approach to different type systems. In contrast, our approach
is static and can be applied to multiple type systems.

Aldrich et al. [1] present an ownership type system and a type inference algo-
rithm. Their inference creates equality, component and instantiation constraints
and solves these constraints. Our inference solves different kinds of constraints,
namely subtyping and adapt constraints.

Ma and Foster [16] propose Uno, a static analysis for automatically inferring
ownership, uniqueness, and other aliasing and encapsulation properties in Java.
Uno infers “stricter” ownership in which an owned object can only be accessed by
its owner. Our inference has a less-restrictive ownership model. Uno’s inference
is based on Soot and it is difficult to map the inference results back to the source
code, subsequently inhibiting type checking. Our type inference is integrated into
the Checker Framework; we perform type checking as well.

Greenfieldboyce and Foster [11] present a framework called JQual for infer-
ring user-defined type qualifiers in Java. JQual is effective for source-sink type
systems, for which programmers need to add annotations to the sources and
sinks and JQual infers the intermediate annotations for the rest of the program.
Our tool handles more complex type systems such as Ownership type systems.
In addition, JQual does not scale well in its field-sensitive mode as reported by
Artzi et al.[2]. In contrast, our inference scales to programs of up to 110kLOC.

Chin et al. [3] propose CLARITY for the inference of user-defined qualifiers
for C programs based on user-defined rules, which can also be inferred given user-
defined invariants. CLARITY infers several type qualifiers, including pos and neg
for integers, nonnull for pointers, and tainted and untainted for strings. These type
qualifiers are not context-sensitive. Our tool focuses on type systems for Java,
and it is context-sensitive (viewpoint adaptation models context sensitivity).

Dietl et al. [7] present a tunable static inference for Generic Universe Types
(GUT). Constraints of GUT are encoded as a boolean satisfiability problem,
which is solved by a weighted Max-SAT solver. The inference is tunable in the

204 W. Huang et al.

sense that programmers can direct the inference by setting different weights or
partially annotating the source code. In contrast, our inference can only be tuned
by accepting programmers’ manual annotations. However, by defining a ranking
over typings, we avoid the exponential SAT solver and manage to scale to larger
programs. A detailed comparison is left as future work.

Milanova and Vitek [17] present a static dominance inference analysis, based
on which they perform Ownership Type inference. Our current work is an im-
provement over [17]. First, it accepts manual annotations to direct the inference,
while [17] does not. Second, it provides optimality guarantees, while the inference
in [17] does not provide guarantees — in theory, it may end up with a solution
which produces a flat ownership tree. Third, our work includes a type checker
which is not available in [17], and it works on more and larger benchmarks.

Sergey and Clark [23] introduce the notion of gradual ownership types and a
corresponding consistent-subtyping relation. Their formalism provides a static
guarantee of ownership invariants for fully annotated programs, but requires
dynamic checks for partially-annotated programs. Their prototype works on non-
generic Java programs and they analyzed 8,200 lines of code. In contrast, our
inference is static and works on Java programs of up to 110kLOC.

Work on introducing generics to Java [10,15] solves similar challenges, because
leaving every type as raw is a legal typing, but a useless one that expresses no
design intent and detects no coding errors. In contrast to our work, Donovan et
al. [10] use heuristics to find desirable solutions and their inference requires a
pointer analysis. Kieżun et al. [15] make use of type constraints to ensure behav-
ior preservation. They also use heuristics, otherwise user’s input is required.

Our algorithm for computing the set-based solution (Sect. 4.1) is similar to the
algorithm used by Tip et al. [15,24]. Both algorithms start with sets containing
all possible answers and iteratively remove elements that are inconsistent with
the typing rules. Our work differs as we introduce a ranking over valid typings
and use the ranking to guide the automatic inference towards a final “best”
typing.

Our work, as well as [24], falls in the category of type-based and constraint-
based analysis, originally proposed by Palsberg and Schwartzbach [24].

7 Conclusion

We presented a unified framework for type inference and type checking of owner-
ship type systems, and instantiated the framework for two such systems: Universe
Types and Ownership Types. We presented a heuristic ranking over valid typings,
and an efficient inference approach that produced maximal typings. We imple-
mented the approach on top of the Checker Framework and presented results
for Universe Types and Ownership Types on benchmarks of up to 110kLOC.

Acknowledgments. We thank the anonymous reviewers for their extensive
feedback. This work was supported by NSF grants CNS-0855252 and CCF-
0642911.

Inference and Checking of Object Ownership 205

References

1. Aldrich, J., Kostadinov, V., Chambers, C.: Alias annotations for program under-
standing. In: OOPSLA, pp. 311–330 (2002)

2. Artzi, S., Kieżun, A., Quinonez, J., Ernst, M.D.: Parameter reference immutability:
formal definition, inference tool, and comparison. ASE 16, 145–192 (2008)

3. Chin, B., Markstrum, S., Millstein, T., Palsberg, J.: Inference of User-Defined Type
Qualifiers and Qualifier Rules. In: Sestoft, P. (ed.) ESOP 2006. LNCS, vol. 3924,
pp. 264–278. Springer, Heidelberg (2006)

4. Clarke, D., Potter, J.M., Noble, J.: Ownership types for flexible alias protection.
In: OOPSLA, vol. 33, pp. 48–64 (1998)

5. Cunningham, D., Dietl, W., Drossopoulou, S., Francalanza, A., Müller, P.,
Summers, A.J.: Universe Types for Topology and Encapsulation. In: de Boer, F.S.,
Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382,
pp. 72–112. Springer, Heidelberg (2008)

6. Dietl, W., Dietzel, S., Ernst, M.D., Muşlu, K., Schiller, T.W.: Building and Using
Pluggable Type-Checkers. In: ICSE, pp. 681–690 (2011)

7. Dietl, W., Ernst, M.D., Müller, P.: Tunable Static Inference for Generic Universe
Types. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 333–357. Springer,
Heidelberg (2011)

8. Dietl, W., Müller, P.: Universes: Lightweight ownership for JML. Journal of Object
Technology 4(8), 5–32 (2005)

9. Dietl, W., Müller, P.: Runtime Universe type inference. In: IWACO (2007)
10. Donovan, A., Kiežun, A., Tschantz, M.S., Ernst, M.D.: Converting Java programs

to use generic libraries. In: OOPSLA, pp. 15–34 (2004)
11. Greenfieldboyce, D., Foster, J.S.: Type qualifier inference for Java. In: OOPSLA,

pp. 321–336 (2007)
12. Huang, W., Milanova, A.: Towards effective inference and checking of ownership

types. In: IWACO (2011)
13. Huang, W., Milanova, A.: A Type System for Reference Immutability. Technical

report, Rensselaer Polytechnic Institute, Department of Computer Science (2011)
14. Huang, W., Milanova, A.: On optimality of ownership type inference. Poster at

ECOOP (2011)
15. Kieżun, A., Ernst, M.D., Tip, F., Fuhrer, R.M.: Refactoring for parameterizing

Java classes. In: ICSE, pp. 437–446 (2007)
16. Ma, K.-K., Foster, J.S.: Inferring aliasing and encapsulation properties for Java.

In: OOPSLA, pp. 423–440 (2007)
17. Milanova, A., Vitek, J.: Static Dominance Inference. In: Bishop, J., Vallecillo, A.

(eds.) TOOLS 2011. LNCS, vol. 6705, pp. 211–227. Springer, Heidelberg (2011)
18. Mitchell, N.: The Runtime Structure of Object Ownership. In: Hu, Q. (ed.) ECOOP

2006. LNCS, vol. 4067, pp. 74–98. Springer, Heidelberg (2006)
19. Nielson, F., Nielson, H.R., Hankin, C.: Principles of program analysis. Springer-

Verlag New York, Inc. (1999)
20. Papi, M.M., Ali, M., Correa Jr., T.L., Perkins, J.H., Ernst, M.D.: Practical plug-

gable types for Java. In: ISSTA, pp. 201–212 (2008)
21. Potanin, A., Noble, J., Biddle, R.: Checking ownership and confinement. Concur-

rency and Computation: Practice and Experience 16(7), 671–687 (2004)
22. Sampson, A., Dietl, W., Fortuna, E., Gnanapragasam, D., Ceze, L., Grossman, D.:

EnerJ: Approximate Data Types for Safe and General Low-Power Computation.
In: PLDI, pp. 164–174 (2011)

206 W. Huang et al.

23. Sergey, I., Clarke, D.: Gradual Ownership Types. In: Seidl, H. (ed.) ESOP 2012.
LNCS, vol. 7211, pp. 579–599. Springer, Heidelberg (2012)

24. Palsberg, J., Schwartzbach, M.I.: Object-Oriented Type Systems. John Wiley and
Sons (1994)

25. Tschantz, M.S., Ernst, M.D.: Javari: Adding reference immutability to Java. In:
OOPSLA, pp. 211–230 (2005)

26. Vaziri, M., Tip, F., Dolby, J., Hammer, C., Vitek, J.: A Type System for Data-
Centric Synchronization. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp.
304–328. Springer, Heidelberg (2010)

27. Vetchev, M., Yahav, E., Yorsh, G.: PHALANX: Parallel Checking of Expressive
Heap Assertions. In: ISMM, pp. 41–50 (2010)

Object Initialization in X10

Yoav Zibin1, David Cunningham2, Igor Peshansky1, and Vijay Saraswat2

1 Google (work done at IBM)
{yzibin,igorp}@google.com

2 IBM research in TJ Watson
{dcunnin,vsaraswa}@us.ibm.com

Abstract. X10 is an object oriented programming language with a sophisticated
type system (constraints, class invariants, non-erased generics, closures) and
concurrency constructs (asynchronous activities, multiple places). Object initial-
ization is a cross-cutting concern that interacts with all of these features in deli-
cate ways that may cause type, runtime, and security errors. This paper discusses
possible designs for object initialization, and the “hardhat” design chosen and
implemented in X10 version 2.2. Our implementation includes a fixed-point inter-
procedural (intra-class) data-flow analysis that infers, for each method called dur-
ing initialization, the set of fields that are read, and those that are asynchronously
and synchronously assigned. Our codebase of more than 200K lines of code only
had 104 annotations. Finally, we formalize the essence of initialization checking
with an effect system intended to complement a standard FJ style formalization
of the type system for X10. This system is substantially simpler than the masked
types of [10], and it is more practical (for X10) than the free-committed types
of [12]. This is the first formalization of a type and (flow-sensitive) effect system
for safe initialization in the presence of concurrency constructs.

1 Introduction

Constructing an object in a safe way is not easy: it is well known that dynamic dispatch
or leaking this during object construction is error-prone [2,11,6], and various type sys-
tems and verifiers have been proposed to handle safe object initialization [7,14,4,10].
As languages become more and more complex, new pitfalls are created due to the inter-
actions among language features.

X10 is an object oriented programming language with a sophisticated type system
(constraints, class invariants, non-erased generics, closures) and concurrency constructs
(asynchronous activities, multiple places). This paper shows that object initialization is
a cross-cutting concern that interacts with other features in the language. We discuss
several language designs that restrict these interactions, and explain why we chose the
hardhat design for X10.

Hardhat [6] is a design that prohibits dynamic dispatch or leaking this (e.g., storing
this in the heap) during construction. Such a design limits the user but also protects her
from future bugs (see Fig. 1 below for two such bugs). X10’s hardhat design is more
complex due to additional language features such as concurrency, places, and closures.

On the other end of the spectrum, Java and C# allow dynamic dispatch and leaking
this. However, they still maintain type and runtime safety by relying on the fact that
every type has a default value (also called zero value, which is either 0, false, or null),
and all fields are zero-initialized before the constructor begins. As a consequence, a

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 207–231, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

208 Y. Zibin et al.

half-baked object can leak before all its fields are set. Phrased differently, when reading
a final field, one can read the default value initially and later read a different value.
Another source of subtle bugs is related to the synchronization barrier at the end of a
constructor [9] after which all assignments to final fields are guaranteed to be written.
The programmer is warned (in the documentation only!) that immutable objects (using
final fields) are thread-safe only if this does not escape its constructor. Finally, if the
type-system is augmented, for example, with non-null types, then a default value no
longer exists, which leads to complicated type-systems for initialization [4,10].

C++ sacrifices type-safety on the altar of performance: fields are not zero-initialized.
(X10 has both type-safety and the performance for not zero-initializing fields.) There-
fore if this leaks in C++, one can read an uninitialized field resulting in an arbitrary
value. Moreover, method calls are statically bound during construction, which may re-
sult in an exception at runtime if one tries to invoke a virtual method of an abstract class
(see Fig. 3b below). (Determining whether this happens is intractable [5].) We believe
a design for object initialization should have these desirable properties:

Cannot read uninitialized fields. One should not be able to read uninitialized fields.
In C++ it is possible to read uninitialized fields, returning an unspecified value which
can lead to unpredictable behavior. In Java, fields are zero initialized before the
constructor begins to execute, so it is possible to read the default or zero value, but
never an unspecified value.

Single value for final fields. Final fields can be assigned exactly once, and should be
read only after assigned. In Java it is possible to read a final field before it was
assigned, therefore returning its default value.

Immutable objects are thread-safe. Immutable classes are a common pattern where
fields are final/const and instances have no mutable state, e.g., String in Java. Im-
mutable objects are often shared among threads without any explicit synchronization,
because programmers assume that if another thread gets a handle to an object, then
that thread should see all assignments done during initialization. However, weak
memory models today do not necessarily have this guarantee and immutable objects
could be thread-unsafe! Sec. 1.3 below will show that this can happen in Java if this
escapes from the constructor [9].

Simple. The order of initialization should be clear from the syntax, and should not sur-
prise the user. Dynamic dispatch during construction disrupts the order of initializa-
tion by executing a subclass’s method before the superclass finished its initialization.
This kind of initialization order is error-prone and often surprises the user.

Flexible. The user should be able to express the common idioms found in other lan-
guages with minor variations.

Type-safe. The language should continue to be statically type-safe even if it has rich
types that do not have a default or zero value, such as non-null types (T{self!=null}
in X10’s syntax). Type-safety implies that reading from a non-null type should never
return null. Adding non-null types to Java [3,4,10] has been a challenge precisely
due to Java’s relaxed initialization rules.

We took the ideas of prohibiting dynamic dispatch or leaking this during construc-
tion from [6], and materialized them into a set of rules that cover all aspects of X10
(type-system, closures, generics, properties, and concurrent and distributed constructs).
This hardhat design in X10 (version 2.2) has the above desirable properties, however

Object Initialization in X10 209

they come at a cost of limiting flexibility: it is not possible to express cyclic immutable
structures in X10. We chose simplicity over flexibility in our design choices, e.g., X10
prohibits creating an alias of this during object construction (whereas a more flexible
design could track aliases via alias-analysis, at the cost of sacrificing simplicity). To our
knowledge, X10 is the first object-oriented (OO) language to adopt the strict hardhat
initialization design.

Because one cannot read uninitialized fields in X10, there is no need zero-initialize
the object’s fields (as done in Java before the constructor executes). A recent study [13]
measured the direct cost of zero initialization, which “is surprisingly high: up to 12.7%,
with average costs ranging from 2.7 to 4.5% on a high performance virtual machine on
IA32 architectures.” (Note that the indirect costs due to caching might even be higher.)

X10 version 2.0 till 2.2 had an alternative initialization design called proto that
allowed cyclic immutable structures at the cost of a more complicated design. In OOP-
SLA’11, Summers and Müller [12] presented an initialization type-system that is al-
most identical to our proto proposal, but with different terminology: fully initialized
objects are termed committed (non-proto), and objects under initialization are termed
free (proto). Whereas in our proto proposal one cannot read uninitialized fields, in Sum-
mers’ type-system reading uninitialized fields is allowed and it returns an unclassified
type (and reading non-null fields from an unclassified type is allowed but it may return
null). Phrased differently, reading a field is always allowed, but it may return null even
for non-null fields. In contrast, X10 and C++ have types that cannot contain null (in
C++ only pointers may be null, and X10 has structs which are inlinable objects that
may not contain null), thus Summers’ type-system is not applicable in such languages.
Moreover, proto was used in X10 in the past 3 years prior to X10 2.2, and it was made
obselete in favor of the hardhat design presented in this paper because proto did not
work well in practice. For example, consider an implementation of LinkedList that has
a non-null field header:
class LinkedList extends SuperClass {
final Entry header = new Entry();
LinkedList(Collection c) { addAll(c); }
public boolean addAll(Collection c) {
// this.header is null if SuperClass calls addAll in its constructor.

}
}

During construction we must read from this.header, but this is still proto and it is
illegal to read from a proto object (in Summer’s type-system, reading is allowed but
it may return null). It is tempting to think that a dataflow algorithm can prove that
header was already assigned, however the dataflow must be inter-procedural, and it is
further complicated by overriding and this escaping. For example, if SuperClass calls
addAll in its constructor, then header will still have the default value of null. The newly
proposed hardhat design can modularly type-check this code assuming that addAll is
annotated as non-escaping (see Sec. 2).

The contributions of this paper are: (i) a complete and strict hardhat design in a
full-blown advanced OO language with many cross-cutting concerns (default values,
final fields, dataflow analysis, overriding, and especially the concurrent and distributed
aspects), (ii) an inter-procedural fixed-point algorithm for definite-async assignment,
(iii) implementation inside the X10 open-source compiler and converting the entire
X10 code-base (+200K lines of code) to conform to the hardhat principles, (iv) FX10

210 Y. Zibin et al.

formalism which is the first to present a flow-sensitive effect system with concurrency
constructs and a soundness theorem stating that one can never read an uninitialized field
in a statically correct program.

For object initialization rules, the details matter. Instead of basing our work on ab-
stract theoretical discussions, we have chosen to work with a concrete language (X10,
see Sec. 3) in which all these rules have been worked out to illustrate the subtleties in-
volved. Our analysis and design will be applicable to any OO language with fine-grained
concurrency. Object initialization rules must be dealt with in order to support determi-
nate computation. For example, Deterministic Parallel Java (DPJ) [1] also have similar
rules for object initialization to prevent this from leaking: “the DPJ type and effect
system ensures that no other task can access this until after the constructor returns.”

The remainder of this introduction presents common initialization pitfalls (in sequen-
tial, concurrent, and distributed code in both Java and X10) and how the hardhat design
prevents them. Specifically, it presents initialization pitfalls in sequential code (Sec. 1.1),
concurrent code (Sec. 1.3), and distributed X10 code (Sec. 1.4), and the crux of the hard-
hat design that prevents these sequential pitfalls (Sec. 1.2).

1.1 Initialization Pitfalls in Sequential Code

Fig. 1a demonstrates the two most common initialization pitfalls in Java: leaking this
and dynamic dispatch. We will first explain the surprising output due to dynamic dis-
patch, and then the less known possible bug due to leaking this.

Executing new B() prints a=42,b=0, which is surprising to most Java users. One would
expect b to be 2, and a to be either 1 or 44. However, due to initialization order and
dynamic dispatch, the user sees the default value for b which is 0, and therefore the value
of a is 42. We will trace the initialization order for new B(): we first allocate a new object
with zero-initialized fields, and then invoke the constructor of B. The constructor of B first
calls super(), and only afterward it will run the field initializer which sets b to 2. This
is the cause of surprise, because syntactically the field initializer comes before super(),
however it is executed after. (And writing b=2;super(); is illegal in Java because calling
super must be the first statement). During the super() call we perform two dynamic
dispatches: the two calls (initA() and toString()) execute the implementation in B (and
recall that b is still 0). Therefore, initA() returns 42, and toString() returns a=42,b=0.
This bug might seem pretty harmless, however if we change the type of b from int to
Integer, then this code will throw a NullPointerException, which is more severe.

The second pitfall is leaking this before the object is fully-initialized, for example,
S.add(this). Note that we leak a partially-initialized object, i.e., the fields of B have not
yet been assigned and they contain their default values. Suppose that some other thread
iterates over S and prints them. Then that thread might read b=0. In fact, it might even
read a=0, even though we just assigned 42 to a two statements ago! The reason is that
this write is guaranteed to be seen by other threads only after an implicit synchronization
barrier that is executed after the constructor ends. Sec. 1.3 further explains final fields
in Java and the implicit synchronization barrier.

1.2 The Crux of the Hardhat Design

The hardhat design in X10 (described in Sec. 2) prevents both pitfalls, because its rules
allow dynamic dispatching only when this cannot be accessed (first pitfall) and prohibit

Object Initialization in X10 211

class A {
static HashSet S = new HashSet();
final int a;
A() {
a = initA(); // dynamic dispatch!
System.out.println(toString());
S.add(this); // leakage!
}
int initA() { return 1; }
public String toString() {
return "a="+a; }

}
class B extends A {
int b = 2;
int initA() { return b+42; }
public String toString() {
return super.toString()+",b="+b;}

}

(a) Initialization pitfalls

class A {
static HashSet S = new HashSet();
final int a;
protected A() {
a = initA(); // ok
System.out.println(toStringOfA());
// S.add(this); // Would be an error
}
@NoThisAccess int initA() {return 1;}
public String toString() {
return toStringOfA(); }
@NonEscaping final String toStringOfA(){
return "a="+a; }
public static A createA() {
A res = new A(); S.add(res);
return res;
}
}
class B extends A {
int b = 2;
@NoThisAccess int initA() {return 42;}
public String toString() {
return super.toString()+",b="+b;}
public static B createB() {
B res = new B(); S.add(res);
return res;
}
}

(b) Fixed to conform to the hardhat design

Fig. 1. Two initialization pitfalls in Java: leaking this and dynamic dispatch

leaking this (second pitfall). We use two method annotations to mark that a method is
non-escaping: @NonEscaping and @NoThisAccess; the first prohibits leaking this, and
the second is even more strict and prohibits any access of this. The essence of the
hardhat design are these two rules: (i) Constructors and non-escaping methods may
leak/alias this only to other non-escaping methods (i.e., this can only be used as the
receiver of a non-escaping method call), (ii) Non-escaping methods are either private
or final (thus they cannot be overridden), except @NoThisAccess methods that may be
overridden but they cannot access this. These two rules prevent the two pitfalls of
leaking this and dynamic dispatching.

Initialization in X10 has the following main attributes: (i) this is the only accessible
raw/uninitialized object in scope, (ii) only @NoThisAccess methods can be dynamically
dispatched during construction, (iii) one can read a field only after it was assigned, and
all fields are assigned by the time the constructor finishes, (iv) reading a final field
always results in the same value. (In contrast to Java and [12] where reading a final
field might return different values at different times.) Furthermore, with the hardhat
rules there is even no need to zero-initialize all fields before executing the constructor
(as done in Java), thus reducing the program runtime. (We are now in the process of
measuring this reduction in runtime; Using a simple bytecode verifier it is possible to
ensure that this optimization is safe.)

212 Y. Zibin et al.

Fig. 1b shows how to convert the code of Fig. 1a to the hardhat design and thus avoid
these two pitfalls (but the original program behavior is changed). We made the follow-
ing changes: (i) toString now delegates to a final non-escaping method toStringOfA,
and the constructor of A can call toStringOfA; B cannot override this method because it
is final, (ii) initA is @NoThisAccess and therefore B.initA cannot read the field b (which
has not been assigned yet), (iii) instead of leaking this into S in the constructor of A, we
refactored the code into two factory methods that create instances of A and B, and only
then add the fully-initialized instance to S.

1.3 Initialization Pitfalls in Concurrent Code

We will start with an anecdote: suppose you have a friend that playfully removed all the
occurrences of the final keyword from your legal Java program. Would your program
still run the same? On the face of it, final is used only to make the compiler more strict,
i.e., to catch more errors at compile time (to make sure a method is not overridden, a
class is not extended, and a field or local is assigned exactly once). After compilation
is done, final should not change the runtime behavior of the program. However, this is
not the case due to interaction between initialization and concurrency: a synchronization
barrier is implicitly added at the end of a constructor [9] ensuring that assignments to
final fields are visible to all other threads. (Assignments to non-final fields might not be
visible to other threads!)

The synchronization barrier was added to the memory model of Java 5 to ensure
that the common pattern of immutable objects is thread-safe. The memory model does
not guarantee sequential consistency, but only weak consistency. (The barrier would not
be needed with sequential consistency.) Without this barrier another thread might see
the default value of a field instead of its final value. For example, it is well-known that
String is immutable in Java, and its implementation uses three final fields: char[] value,
and two int fields named offset and count. The following code "AB".substring(1)
will return a new string "B" that shares the same value array as "AB", but with offset
and count equal to 1. Without the barrier, another thread might see the default values
for these three fields, i.e., null for value and 0 for offset and count. For instance, if
one removes the final keyword from all three fields in String, then the following code
might print B (the expected answer), or it might print A or an empty string, or might even
throw a NullPointerException:

final String name = "AB".substring(1);
new Thread() { public void run() {

System.out.println(name); } }.start();

A similar bug might happen in Fig. 1a because this was leaked into S before the barrier
was executed. Consider another thread that iterates over S and reads field a. It might
read 0, because the assignment of 42 to a is guaranteed to be visible to other threads
only after the barrier was reached.

Java’s documentation recommends using final fields when creating an immutable
class, and avoid leaking this in the constructor. However, javac does not even give a
warning if that recommendation is violated. To summarize, final fields in Java enable
thread-safe immutable objects, but the user must be careful to avoid the pitfall of leaking
this. The hardhat design in X10 prevents any leakage of this, thus making it safe and
easy to create immutable classes.

Object Initialization in X10 213

1.4 Initialization Pitfalls in Distributed X10 Code

X10 supports parallelism in the form of both concurrent and distributed code. Next we
describe parallelism in X10 and its interaction with object initialization.

Concurrent code uses asynchronous un-named activities that are created with the
async construct, and it is possible to wait for activities to complete with the finish
construct. Informally, statement async S executes statement S asynchronously; we say
that the newly created activity locally terminated when it finished executing S, and
that it globally terminated when it locally terminated and any activity spawned by S
also globally terminated. Statement finish S blocks until all the activities created by S
globally terminated.

Distributed code is run over multiple places that do not share memory, therefore ob-
jects are (deeply) copied from one place to another. The expression at(p) E evaluates p
to a place, then copies all captured references in E to place p, then evaluates E in place
p, and finally copies the result back to the original place. Note that at is a synchronous
construct, meaning that the current activity is blocked until the at finishes. This con-
struct can also be used as a statement, in which case there is no copy back (but there is
still a notification that is sent back when the at finishes, in order to release the blocked
activity in the original place).

Fig. 2a (and Fig. 2b) shows how to (correctly) calculate the Fibonacci number fib(n)
in X10 using concurrent and distributed code. The keywords val and var are modifiers
that correspond to final and non-final variables, respectively. Note how fib(n-2) is
calculated asynchronously at the next place (next() returns the next place in a cyclic
ordering of all places), while simultaneously recursively calculating fib(n-1) in the
current place (that will recursively spawn a new activity, and so on). Therefore, the
computation will recursively continue to spawn activities at the next place until n is
1. When both calculations globally terminate, the finish unblocks, and we sum their
result into the final field fib.

We note that using final local variables for fib2 and fib1 instead of fields would
have made this example more elegant, however we chose the latter because this paper
focuses on object initialization. X10 has similar initialization rules for final locals and
final fields, but it is outside the scope of this paper to present all forms of initialization
in X10 (including local variables and static fields). Details of those can be found in
X10’s language specification at x10-lang.org.

There are two possible pitfalls in this example. The first is a distributed pitfall, where
one assigns to a field of a copy of this in another place (instead of assigning in the
original place). Leaking this to another place before it is fully initialized might also
cause bugs in custom serialization code (see Sec. 2.10). The second is a concurrency
pitfall, where we forget to use finish, and therefore we might read from a field be-
fore its assignment was definitely executed. Java has definite-assignment rules (using
an intra-procedural data-flow analysis) to ensure that a read can only happen after a
write; The hardhat design in X10 adopted those rules and extended them in the face of
concurrency to support the pattern of asynchronous initialization where an async must
have an enclosing finish (using an intra-class inter-procedural analysis, see Sec. 2.11).

The hardhat design in X10 prevents both pitfalls by ensuring that all fields of an
object are definitely-synchronously assigned when construction of that object ends, and
that only fully initialized objects can cross places.

214 Y. Zibin et al.

class Fib {
val fib2:Int, fib1:Int, fib:Int;
def this(n:Int) {

async {
val p = here.next();
at(p) if (n<=1)
fib2 = 0; else // Err1
fib2 = new Fib(n-2).fib; // Err1

}

if (n<=0)
fib1 = 0;
else if (n<=1)
fib1 = 1;
else
fib1 = new Fib(n-1).fib;

fib = fib2+fib1; // Err2
}
}

(a) Initialization pitfalls in X10

class Fib {
val fib2:Int, fib1:Int, fib:Int;
def this(n:Int) {
finish {
async {
val p = here.next();
fib2 = at(p) (n<=1) ?
0 :
new Fib(n-2).fib;

}
}
if (n<=0)
fib1 = 0;
else if (n<=1)
fib1 = 1;
else
fib1 = new Fib(n-1).fib;
fib = fib2+fib1;

}
}

(b) Fixed to conform to the hardhat design

Fig. 2. Concurrent and distributed Fibonacci example in X10. Concurrent code is expressed using
async and finish: async starts an asynchronous activity, and finish waits for all spawned
activities to finish. Distributed code uses at to shift among places; here denotes the current place.
at(p) E evaluates expression E in place p, and finally copies the result back; any final variables
captured in E from the outer environment (e.g., n) are first copied to place p. The two initialization
pitfalls: (1) write to field this.fib2 in another place, which causes (an uninitialized) this to be
copied to p, so one writes to a copy of this (and the original object is never fully initialized!),
(2) read from fib2 before its write definitely finished.

The rest of this paper is organized as follows. Sec. 2 presents the hardhat initializa-
tion rules of X10 version 2.2 using examples, by slowly adding language features and
describing their interaction with object initialization. Sec. 3 outlines our implementa-
tion within the X10 compiler using the polyglot framework, the compilation time over-
head of checking these initialization rules, and the annotation overhead in our X10 code
base. Sec. 4 presents Featherweight X10 (FX10), which is a formalization of core X10
that includes finish, async, and flow-sensitive type-checking rules. Sec. 5 summarizes
previous work in the field of object initialization. Finally, Sec. 6 concludes.

2 X10 Initialization Rules

X10 is an advanced object-oriented language with a complex type-system and concur-
rency constructs. This section describes how object initialization interacts with X10
features. We begin with object-oriented features found in mainstream languages, such
as constructors, inheritance, dynamic dispatch, exceptions, and inner classes. We then
proceed to X10’s type-system features, such as constraints, properties, class invariants,
closures, (non-erased) generics, and structs, followed by the parallel features of X10 for

Object Initialization in X10 215

writing concurrent code (finish and async), and distributed code (at). Finally, we de-
scribe the inter-procedural data-flow analysis that ensures that a field is read only after
it has been assigned.

2.1 Constructors and Inheritance

Inheritance is the first feature that interacts with initialization: when class B inherits
from A then every instance of B has a sub-object that is like an instance of A. When we
initialize an instance of B, we must first initialize its A sub-object. We do this in X10
by forcing the constructors of B to make a super call, i.e., call a constructor of A (either
explicitly or implicitly).

Fig. 3 shows X10 code that demonstrates the interaction between inheritance and
initialization, and explains by example why leaking this during construction can cause
bugs. In all the examples, all errors issued by the X10 compiler are marked with //err
(and if there is no such mark then the code is correct).

We say that an object is raw (also called partially initialized) before its constructor
ends, and afterward it is cooked (also called fully initialized). Note that when an object
is cooked, all its sub-objects must be cooked as well. X10 prohibits any aliasing or
leaking of this during construction, therefore only this or super can be raw (any other
variable is definitely cooked).

Object initialization begins by invoking a constructor, denoted by the method defini-
tion def this(). The first leak would cause a problem because field a was not assigned
yet. However, even after all the fields of A have been assigned, leaking is still a problem
because fields in a subclass (field b) have not yet been initialized. Note that leaking is
not a problem if this is not raw, e.g., in m1().

We begin with two definitions: (i) when an object is raw, and (ii) when a method is
non-escaping. (i) Variables this and super are raw during the object’s construction, i.e.,
in field initializers and in non-escaping methods (methods that cannot escape or leak
this). (ii) Obviously constructors are non-escaping, but you can also annotate methods
explicitly as @NonEscaping, or they can be inferred to be implicitly non-escaping if they
are called on a raw this receiver.

For example, m2 is implicitly non-escaping (and therefore cannot leak this) because
of the call to m2 in the constructor. The user could also mark m2 explicitly as non-
escaping by using the annotation @NonEscaping. (Like in Java, @ is used for annotations
in X10.) We recommend explicitly marking non-escaping methods as @NonEscaping to
show intent, as done on method m3. Without this annotation the call super.m3() in B
would be illegal, due to rule 2. (We could infer that m3 must be non-escaping, but that
would cause a dependency from a subclass to a superclass, which is not natural for peo-
ple used to separate compilation.) Finally, we note that all errors in this example are due
to rule 1 that prevents leaking a raw this or super.

2.2 Dynamic Dispatch

Dynamic dispatch may transfer control to the subclass before the superclass completed
its initialization. Fig. 3b demonstrates why dynamic dispatch is error-prone during con-
struction: calling m1 in A would dynamically dispatch to the implementation in B that
would read the default value.

216 Y. Zibin et al.

class A {
val a:Int;
def this() {
LeakIt.foo(this); //err
this.a = 1;
val me = this; //err
LeakIt.foo(me);
// so m2 is implicitly non-escaping
this.m2();
}
// permitted to escape
final def m1() {
LeakIt.foo(this);
}
// implicitly non-escaping
final def m2() {
LeakIt.foo(this); //err
}
// explicitly non-escaping
@NonEscaping final def m3() {
LeakIt.foo(this); //err
} }
class B extends A {
val b:Int;
def this() {
super(); this.b = 2; super.m3();

}
}

(a) Escaping this example

abstract class C {
val a1:Int, a2:Int;
def this() {
// Can only call non-escaping methods
this.a1 = m1(); //err1
this.a2 = m2();
m4(); m5();
}
abstract def m1():Int;
@NoThisAccess abstract def m2():Int;
@NonEscaping def m3():void {} // err
@NonEscaping final def m4():void {}
@NonEscaping private def m5():void {}
}
class D extends C {
var b:Int = 3; // non-final field
def m1() {
val x = super.a1;
val y = this.b;
return 1;
}
@NoThisAccess def m2() {
// Cannot use this or super
val x = super.a1; //err2
val y = this.b; //err3
return 2;
}
}

(b) Dynamic dispatch example

Fig. 3. Definition of raw: this and super are raw in non-escaping methods and in field initial-
izers. Definition of non-escaping: A method is non-escaping if it is a constructor, or annotated
with @NonEscaping or @NoThisAccess, or a method that is called on a raw this receiver. Rule
1: A raw this or super cannot escape or be aliased. Rule 2: A call on a raw super is allowed
only for a @NonEscaping method. Rule 3: A non-escaping method must be private or final, unless
it has @NoThisAccess. Rule 4: A method with @NoThisAccess cannot access this or super
(neither read nor write its fields).

X10 prevents dynamic dispatch by requiring that non-escaping methods must be
private or final (so overriding is impossible). For example, err1 is caused by rule 3
because m1 is neither private nor final nor @NoThisAccess.

However, sometimes dynamic dispatch is required during construction. For exam-
ple, if a subclass needs to refine initialization of the superclass’s fields. Such refine-
ment cannot have any access to this, and therefore such methods must be marked with
@NoThisAccess. For example, err2 and err3 are caused by rule 4 that prohibits access
this or super when using @NoThisAccess. @NoThisAccess prohibits any access to this,
however, one could still access the method parameters. (If the subclass needs to read a
certain field of the superclass that was previously assigned, then that field can be passed
as an argument.)

Object Initialization in X10 217

In C++, the call to m1 is legal, but at runtime methods are statically bound, so you
will get a crash trying to call a pure virtual function. In Java, the call to m1 is also legal,
but at runtime methods are dynamically bound, so the implementation of m1 in B will
read the default values of a1 and b.

2.3 Exceptions

Constructing an object may not always end normally, e.g., building a date object from
an illegal date string should throw an exception. Exceptions combined with inheritance
interact with initialization in the following way: a cooked object must have cooked sub-
objects, therefore if a constructor ends normally (thus returning a cooked object) then
all preceding constructor calls (either super(...) or this(...)) must end normally as
well. Phrased differently, in a constructor it should not be possible to recover from an
exception thrown by a this or super constructor call. This is one of the reasons why a
constructor call must be the first statement in Java; failure to verify this led to a famous
security attack [2].

class B extends A {
def this() {
try { super(); } catch(e:Throwable){} //err

}
}

Fig. 4. Exceptions example: if a constructor ends normally (without throwing an exception), then
all preceding constructor calls ended normally as well. Rule 5: If a constructor does not call
super(...) or this(...), then an implicit super() is added at the beginning of the constructor;
the first statement in a constructor is a constructor call (either super(...) or this(...)); a
constructor call may only appear as the first statement in a constructor .

Fig. 4 shows that it is an error to try to recover from an exception thrown by a
constructor call; the reason for the error is rule 5 that requires the first statement to be
super().

2.4 Inner Classes

Inner classes usually read the outer instance’s fields during construction, e.g., a list iter-
ator would read the list’s header node. Therefore, X10 requires that the outer instance
is cooked, and prohibits creating an inner instance when the receiver is a raw this.

Fig. 5a shows it is an error in X10 to create an inner instance if the outer is raw (from
rule 6), but it is ok to create an instance of a static nested class, because it has no outer
instance.

In fact, it is possible to view this rule as a special case to the rule that prohibits leaking
a raw this (because when you create an inner instance on a raw this receiver, you create
an alias of this, and now you have two raw objects: Inner.this and Outer.this). We
wish to keep the invariant that only one this can be raw.

In our rules, we assume that there is a single this reference, because we can convert
all inner, anonymous and local classes into static nested classes by passing the outer
instance and all other captured variables explicitly as arguments to the constructor.

218 Y. Zibin et al.

class Outer {
val a:Int;
def this() {
// Outer.this is raw
Outer.this. new Inner(); //err
new Nested(); // ok
a = 3;

}
class Inner {
def this() {
// Inner.this is raw, but
// Outer.this is cooked
val x = Outer.this.a;

}
}
static class Nested {}

}

(a) Inner class example: the outer instance is
always cooked.

class DefaultValuesExample {
val i0:Int; //err
// Note the fields below are non-final
var i1:Int; //ok, has default
// no default
var i2:Int{self!=0}; //err
// ok, has initializer
var i3:Int{self!=0} = 3;

var i4:Int{self==42}; //err

var s1:String;
var s2:String{self!=null}; //err

var b1:Boolean;
var b2:Boolean{self==true}; //err

}

(b) Default value example.

Fig. 5. Rule 6: a raw this cannot be the receiver of new.
Definition of has-zero: A type has-zero if it contains the zero value (which is either null, false,
0, or zero in all fields for user-defined structs) or if it is a type parameter guarded with haszero
(see Sec. 2.8). Rule 7: A var field that lacks a field initializer and whose type has-zero, is implic-
itly given a zero initializer..

We now turn our attention to X10’s sophisticated type-system features not found in
mainstream languages: constraints, properties, class invariants, closures, (non-erased)
generics, and structs.

2.5 Constraints and Default/Zero Values

X10 supports constrained types using the syntax T{c}, where c is a boolean expression
that can use final variables in scope, literals, properties (described below), the special
keyword self that denotes the type itself, field access, equality (==) and disequality (!=).
There are plans to add arithmetic inequality (<, <=) to X10 in the future, and one can
plug in any constraint solver into the X10 compiler.

As a consequence of constrained types, some types do not have a default value, e.g.,
Int{self!=0}. Therefore, in X10, the fields of an object cannot be zero-initialized as
done in Java. Furthermore, in Java, a non-final field does not have to be assigned in a
constructor because it is assumed to have an implicit zero initializer. X10 follows the
same principle, and a non-final field is implicitly given a zero initializer if its type has-
zero. Fig. 5b defines when a type has-zero, and gives examples of types without zero.
Note that i0 has to be assigned because it is a final field (val), as opposed to i1 which
is non-final (var).

2.6 Properties and the Class Invariant

Properties are final fields that can be used in constraints, e.g., Array has a size prop-
erty, so an array of size 2 can be expressed as: Array{self.size==2}. The differences

Object Initialization in X10 219

between a property and a final field are both syntactic and semantic, as seen in class E
of Fig. 6. Syntactically, properties are defined after the class name, must have a type
and cannot have an initializer, and must be initialized in a constructor using a property
call statement written as property(...). Semantically, properties are initialized before
all other fields, and they can be used in constraints with the prefix self.

class E(a:Int) { class F(b:Int) {b==a} extends E {
def this(x:Int) { val f1 = a+b, f2:Int, f3:E{this.a==self.a};

property(x); def this(x:Int) {
} super(x);

} val i1 = super.a;
val i2 = this.b; //err
val i3 = this.f1; //err
f2 = 2; //err (must be after property(x))
property(x);
f3 = new E(this.a);

}
}

Fig. 6. Properties and class invariant example: properties (a and b) are final fields that are ini-
tialized before all other fields using a property call (property(...); statement). If a class does
not define any properties, then an implicit property() is added after the (implicit or explicit)
super(...). Field initializers are executed in their declaration order after the (implicit or ex-
plicit) property call. Rule 8: If a constructor does not call this(...), then it must have exactly
one property call, and it must be unconditionally executed (unless the constructor throws an ex-
ception). Rule 9: The class invariant must be satisfied after the property call. Rule 10: The super
fields can only be accessed after super(...), and the fields of this can only be accessed after
property(...).

When using the prefix this, you can access both properties and other final fields.
The difference between this and self is shown in field f3 in Fig. 6: this.a refers to the
property a stored in this, whereas self.a refers to a stored in the object to which f3
refers. (In the constructor, we indeed see that we assign to f3 a new instance of E whose
a property is equal to this.a.)

Properties must be initialized before other fields because field initializers and field
types can refer to properties (see initializer for f1 and the type of f3). The superclass’s
fields can be accessed after the super call, and the other fields after the property call;
field initializers are executed after the property call.

The class invariant ({b==a} in Fig. 6) may refer only to properties, and it must be
satisfied after the property call (rule 9).

2.7 Closures

Closures are functions that can refer to final variables in the enclosing scope, e.g., they
can refer to final method parameters, locals, and this. When a closure refers to a vari-
able, we say that the variable is captured by the closure, and the variable is thus stored
in the closure object. Closures interact with initialization when they capture this during
construction.

Fig. 7a shows why it is prohibited to capture a raw this in a closure: that closure can
later escape to another place which will serialize all captured variables (including the

220 Y. Zibin et al.

class A {
var a:Int = 3;
def this() {
val closure1 = ()=>this.a; //err
at(here.next()) closure1();
val local_a = this.a;
val closure2 = ()=>local_a;

}

}

(a) Closures example.

class B[T] {T haszero} {
var f1:T;
val f2 = Zero.get[T]();
}
struct WithZeroValue(x:Int,y:Int) {}
struct NoZeroValue(x:Int{self!=0}) {}
class Usage {
var b1:B[Int];
var b2:B[Int{self!=0}]; //err
var b3:B[WithZeroValue];
var b4:B[NoZeroValue]; //err
}

(b) haszero type predicate example.

Fig. 7. Rule 11: A closure cannot capture a raw this.
Rule 12: A type must be consistent, i.e., it cannot contradict method guards or class invariants.

raw this, which should not be serialized, see Sec. 2.10). The work-around for using a
field in a closure is to define a local that will refer only to the field (which is definitely
cooked) and capture the local instead of the field as done in closure2.

2.8 Generics and Structs

Structs in X10 are header-less inlinable objects that cannot inherit code (i.e., they can
implement interfaces, but cannot extend anything). Therefore an instance of a struct
type has a known size and can be inlined in a containing object. Java’s primitive types
(int, byte, etc) are represented as structs in X10. Structs, as opposed to classes, do not
contain the value null.

Generics in X10 are reified, i.e, not erased as in Java. For example, a Box[T] has
a single field of type T, and instances of Box[Byte] and Box[Double] have the same
size in Java but different sizes in X10. Although generics are not a new concept, the
combination of generics and the lack of default values leads to new pitfalls. For example,
in Java and C#, it is possible to define an equivalent to

class A[T] { var a:T; }
However, this is illegal in X10 because we cannot be sure that T has-zero (see Fig. 5b),
e.g., if the user instantiates A[Int{self!=0}] then field a cannot be assigned a zero value
without violating type-safety. Therefore X10 has a type predicate written X haszero
that evaluates to true if type X has-zero. Using haszero in a constraint (e.g., in a class
invariant or a method guard), makes it possible to guarantee that a type-parameter will
be instantiated with a type that has-zero.

Fig. 7b shows an example of a generic class B[T] that constrains the type-parameter
T to always have a zero value. According to rule 7, field f1 has an implicit zero field
initializer. It is also possible to write the initializer explicitly (as done in field f2) by
using the static method Zero.get[X]() (that is guarded by X haszero). Next we see
two struct definitions: the first has two properties that has-zero, and the second has a
property that does not have zero. According to the definition of has-zero in Fig. 5b, a
struct has-zero if all its fields has-zero, therefore WithZeroValue haszero is true, but
NoZeroValue haszero is false. Finally, we see an example of usages of B[T], where two
usages are legal and two are illegal (see rule 12).

Object Initialization in X10 221

We now turn our attention to the parallel features of X10 for concurrent programming
(finish and async) and distributed programming (at). Sec. 1.4 already explained how
parallel code is written in X10, and what are the common pitfalls of initialization in
parallel code. Next we present the rules that prevent these pitfalls.

2.9 Concurrent Programming and Initialization

class A {
var f1:Int; // note: var field
val f2:Int; // note: val field
val f3:Int;
//err: f2 was not definitely assigned
def this() {
async f1 = 1; async f2 = 2;
finish { async f3 = 3; }

}
}

(a) Concurrency in initialization example: asyn-
chronously assign to a field.

class A {
val f:Int;

//err: f was not definitely assigned
def this() {
// Execute at another place
at (here.next())
this.f = 1; //err: this escaped

}
}

(b) Distributed initialization example.

Fig. 8. Rule 13: A constructor must finish assigning to all fields at least once. Rule 14: A final
field can be assigned at most once.
Rule 15: a raw this cannot be captured by an at.

Fig. 8a shows how to asynchronously assign to fields. Recall that we wish to guaran-
tee that one can never read an uninitialized field, therefore rule 13 ensures that all fields
are assigned at least once.

All three fields in A are asynchronously assigned, however, only f2 is not definitely
assigned at the end of the constructor. Assigning to f3 has an enclosing finish, so it is
definitely assigned. Field f1 is also definitely assigned, because it is non-final so from
rule 7 it has an implicit zero field initializer. However, field f2 is final so it does not
have an implicit field initializer. Moreover, f2 is only asynchronously assigned, and the
constructor does not have to wait for this assignment to finish, thus violating rule 13.
(The exact data-flow analysis to enforce rule 13 is described in Sec. 2.11.) Rule 14 is
the same as in Java: a final field is assigned at most once (and, combined with rule 13,
we know it is assigned exactly once).

2.10 Distributed Programming and Initialization

X10 programs can be executed on a distributed system with multiple places that
have no shared memory. Objects are copied from one place to another when cap-
tured by an at. Copying is done by first serializing the object into a buffer, send-
ing the buffer to the other place, and then de-serializing the buffer at the other place.
As in Java, one can write custom serialization code in X10 by implementing the
CustomSerialization interface, and defining the method serialize():SerialData and
the constructor this(data:SerialData).

Fig. 8b shows a common pitfall where a raw this escapes to another place, and the
field assignment would have been done on a copy of this. We wish to de-serialize only
cooked objects, and therefore rule 15 prohibits this to be captured by an at. Conse-
quently, we also report that field f was not definitely assigned.

222 Y. Zibin et al.

2.11 Read and Write of Fields

We now present a data-flow analysis for guaranteeing that a field is read only after it was
written, and that a final field is assigned exactly once. Java performs an
intra-procedural data-flow analysis in constructors to calculate when a final field is
definitely-assigned and definitely-unassigned. In contrast, X10 performs an
inter-procedural fixed-point data-flow analysis in all non-escaping methods (and con-
structors) to calculate when a field (both final and non-final) is definitely-assigned,
definitely-asynchronously-assigned, and definitely-unassigned. The details are explained
using examples (Fig. 9) by comparison with Java; the full analysis is described in X10’s
language specification.

X10, like Java, allows writing to a final field only when it is definitely-unassigned,
and it allows reading from a final field only when it is definitely-assigned. X10 also has
the same read restriction on non-final fields (recall that rule 7 adds a field initializer if
the field’s type has-zero).

Consider first only final fields. They are easier to type-check because they can only be
assigned in constructors. X10 extends Java rules, by calculating for each non-escaping
method m the set of final fields it reads, and calling m is legal only if these fields have been

class A {
val a:Int;
def this() {
readA(); //err1
finish {
async {
a = 1;
// assigned={a}
readA();

}
// asyncAssigned={a}
readA(); //err2

}
// assigned={a}
readA();

}
// reads={a}
private def readA() {
val x = a;
}

}

(a)

class B {
var i:Int{self!=0}, j:Int{self!=0};
def this() {
finish {
asyncWriteI(); // asyncAssigned={i}
} // assigned={i}
writeJ();// assigned={i,j}
readIJ();

}
// asyncAssigned={i}
private def asyncWriteI() {
async i=1;

}
// reads={i} assigned={j}
private def writeJ() {
if (i==1) writeJ(); else this.j = 1;

}
// reads={i,j}
private def readIJ() {
val x = this.i+this.j;

}
}

(b)

Fig. 9. Read-Write order for fields. We infer for each method three sets: (i) fields it reads (i.e.,
these fields must be assigned before the method is called), (ii) fields it assigns, (iii) fields it
assigns asynchronously. The data-flow maintains these three sets before and after each state-
ment; assigned becomes asyncAssigned after an async, and asyncAssigned becomes
assigned after a finish. In this example, we omitted empty sets. Rule 16: A field may be
read only if it is definitely-assigned. Rule 17: A final field may be written only if it is definitely-
unassigned.

Object Initialization in X10 223

definitely assigned. For example, in class A, method readA reads field a and therefore
cannot be called before a is assigned (e.g., err1). Note that Java does not perform this
check, and it is legal to call readA which will return the zero value of a. X10 also adds
the notion of definitely-asynchronously-assigned which means a field was definitely-
assigned within an async (so it cannot be read, e.g., err2), but after an enclosing finish
it will become definitely-assigned (so it can be read). The flow maintains three sets:
reads, assigned, and asyncAssigned. If a method reads an uninitialized field, then
we add it to its reads set; however, if a constructor reads an uninitialized field, then it
is an error. Phrased differently, the reads set of a constructor must be empty.

Now consider non-final fields. They can be assigned and read in methods, thus re-
quiring a fixed-point algorithm. For example, consider method writeJ. Initially, reads
is empty, while assigned and asyncAssigned are the entire set of fields. In the first
iteration, we add i to reads, and when we join the two branches of the if, assigned
is decreased to only j. The fixed-point calculation, in every iteration, increases reads
and decreases assigned and asyncAssigned, until a fixed-point is reached.

3 Implementation

This section discusses our implementation inside the X10 compiler of the hardhat ini-
tialization rules. Our X10 code-base of more than 200K lines of code (loc) uses only
104 annotations. We give some measurements such as compilation time and annotation
overhead, and conclude with two examples for @NonEscaping and @NoThisAccess.

The X10 compiler is based on the Polyglot extensible compiler framework, which
includes a dataflow framework that has 1309 loc. X10 initialization rules extend this
dataflow framework using two classes: one for checking definite-initialization for local
variables (805 loc), and another for fields (951 loc). (The rules of local variables are
simpler than those for fields because local variables do not span multiple methods and
they must be assigned before use. The focus point of this paper has been object initial-
ization, therefore these rules were not described in this paper.) The dataflow algorithm
tracks for each field (or local) the flow of this information: (i) whether the field was read
(to find the set of fields each non-escaping method reads), (ii) the minimal and maximal
number of times it was sequential and asynchronously written (to make sure a variable
is assigned before read, and that final variables are assigned exactly once). The number
of times a variable is assigned is sufficient to range between 0, 1, and more-than-one,
because the error message is the same whether a final variable was assigned twice or
more. When flowing out of an async, sequential writes become asynchronous writes,
and the opposite happens for a finish.

Our code-base consists of 5 major components: (i) XRX: X10 runtime and libraries,
(ii) SPECjbb: SPECjbb from 2005 converted to X10, (iii) M3R: map-reduce in X10,
(iv) UTS: global load balancing library, (v) MISC: those include examples from our pro-
grammer guide, our test suite, jira issues, and samples. SPECjbb and M3R are still under
development and not publicly available, whereas the rest are open-source and available
at x10-lang.org (see revision 23028 of https://x10.svn.sf.net/svnroot/x10/trunk).

Tab. 1 shows the compilation times broken down according to the time spent for
checking fields and locals. We can see that the initialization rules take only a small
fraction (0-2%) from the total compilation time, and a maximum of 3.3 seconds for the
entire M3R project.

224 Y. Zibin et al.

Table 1. Compilation times in milliseconds of our code-base broken down into the time spent by
the initialization rules for fields and locals. We used a standard lenovo T500 laptop with 4GB of
RAM and Intel Core 2 Duo processor.

XRX SPECjbb M3R UTS MISC
Total compilation time 65,241 78,952 254,020 72,205 548,547
Time of checks for fields 156 1,649 3,330 1,272 2,862
Time of checks for locals 32 51 117 33 126

Tab. 2 shows the annotation burden in our code-base. X10 has only two possible
method annotations: @NonEscaping and @NoThisAccess. Recall that all methods transi-
tively called from a constructor are implicitly non-escaping, i.e., the user does not have
to explicitly annotate them as @NonEscaping, however the compiler issues a warning
recommending that they should be marked as such to show intent. Obviously, the num-
ber of non-escaping methods is always greater or equal to the number of @NonEscaping
annotations. As can be seen, the annotations burden is minor: only 104 annotations in
total.

Table 2. The annotation burden in our code-base

XRX SPECjbb M3R UTS MISC
of lines 27,153 14,603 71,682 2,765 155,345
of files 257 63 294 14 2,283
of constructors 276 267 401 23 1,297
of methods 2,216 2,475 2,831 124 8,273
of non-escaping methods 8 38 34 3 83
of @NonEscaping 7 7 13 1 62
of @NoThisAccess 1 0 1 0 12

Our applications only use @NoThisAccess twice: once in M3R to allow a subclass to
determine the value of a final field of the superclass during initialization, and the second
time in XRX in method typeName() of interface Any (this method may be overridden and
it is often called during construction for debugging purposes).

The following example shows a common pattern for using @NonEscaping and a com-
mon refactoring that was done when converting Java code to X10. Class HashMap in Java
calls put in two constructors: the deserialization constructor and the copy constructor
(that gets a map argument and creates a copy of that map). However, put is not a final
method and it might be useful to override it in subclasses, and therefore it cannot be
called during construction. Thus, we refactored this code in X10 and called instead a
non-escaping method called putInternal and method put delegates to that method:

public def put(k: K, v: V) { putInternal(k,v); }
@NonEscaping protected final def putInternal(k:K, v:V) { ... }

A similar refactoring was also done in HashMap for method rehash.
Asynchronous initialization was not used in our big applications because they pre-

date this feature. (It is used in our smaller examples and tests more than 50 times.)

Object Initialization in X10 225

This pattern is especially useful for local variables, and more importantly, the analysis
prevents bugs such as:

val x:Int; val y:Int;
finish { async { x = doCalculation1(); }
y = doCalculation2(); // WRONG to use variable x here

} // OK to use variable x now

4 Formalism: FX10

Featherweight X10 (FX10) is a formal calculus for X10 intended to complement Feath-
erweight Java (FJ). It models imperative aspects of X10 including the concurrency con-
structs finish and async. FX10 models the heart of the field initialization problem: a
field can be read only after it is definitely assigned.

The basic idea behind the formalization is very straightforward. We break up the
formalization into two distinct but interacting subsystems, a type system (Sec. 4.2) and
an effect system (Sec. 4.3). The type system is completely standard – think the system
of FJ, adapted to the richer constructs of FX10.

The effect system is built on a very simple logic of initialization assertions. The
primitive formula +x (+p.f) asserts that the variable x (the field f of p) is definitely
initialized with a cooked object, and the formula −x (−p.f) asserts that it is being
initialized by a concurrent activity (and hence it will be definitely initialized once an
enclosing finish is crossed). An initialization formula φ or ψ is simply a conjunction
of such formulas φ∧ψ. An effects assertion φ S ψ (for a statement S) is read as a
partial correctness assertion: when executed in a heap H that satisfies the constraint φ,
S will on termination result in a heap H ′ that satisfies ψ. Since we do not model null,
our formalization can be particularly simple: variables, once initialized, stay initialized,
hence H ′ will also satisfy φ (see Sec. 4.4 for a definition of heaps and when a heap
satisfy φ).

Another feature of our approach is that, unlike Masked Types [10], the source pro-
gram syntax does not permit the specification of initialization assertions. Instead we
use a standard least fixed point computation to automatically decorate each method
def m(x : C){S} with pairs (φ,ψ) (in the free variables this,x) such that under the as-
sumption that all methods satisfy their corresponding assertion we can show that φ S ψ.1

This computation must be sensitive to the semantics of method overriding, that is a
method with decoration (φ,ψ) can only be overridden by a method with decoration
(φ′,ψ′) that is “at least as strong as” (φ,ψ) (viz, it must be the case that (φ � φ′ and
ψ′ � ψ). Further, if the method is not marked @NonEscaping, then φ is required to entail
+this (that is, this is cooked), and if it marked @NoThisAccess then φ,ψ cannot have
this free.

1 Note that this approach permits a formal x to a method to be completely raw (φ does not entail
+x or +x.f for any field f) or partially raw (φ does not entail +x but may entail +x.f for some
fields f). As a result of the method invocation the formal may become more cooked. In X10, in
order for the inference to be intra-class, we require that all method parameters x (except this)
are cooked, i.e., +xi. In FX10 we are more relaxed and allow methods to receive and initialize
raw parameters.

226 Y. Zibin et al.

By not permitting the user to specify initialization assertions we make the source
language much simpler than [10] and usable by most programmers. The down side is
that some initialization idioms, such as cyclic initialization, are not expressible.

For reasons of space we do not include the details behind the decoration of meth-
ods with initialization assertions. We also omit many extensions (such as generics, in-
terfaces, constraints, casting, inner classes, overloading, co-variant return types, final,
field initializers etc.) that were discussed in the first half of the paper. FX10 also does
not model places because the language design decision to only permit cooked objects
to cross places means that the rules for at are routine.

We use the usual notation of x to represent a vector or set of x1, . . . ,xn. A program P
is a pair of class declarations L (that is assumed to be global information) and a state-
ment S.

4.1 Syntax

Fig. 10 shows the syntax of FX10. Expression val x = e;S evaluates e, assigns it to a
new variable x, and then evaluates S. The scope of x is S.

The syntax is similar to the real X10 syntax with the following difference: FX10
does not have constructors; instead, an object is initialized by assigning to its fields or
by calling non-escaping methods.

P ::= L,S Program.
L ::= class C extends D { F; M } cLass declaration.
F ::= varf : C Field declaration.
M ::= G def m(x : C) : C{S} Method declaration.
G ::= @NonEscaping | @NoThisAccess Method modifier.
p ::= l | x Path.
e ::= p.f | new C Expressions.
S ::= p.f= p; | p.m(p); | val x = e;S
| finish {S} | async {S} | S S Statements.

Fig. 10. FX10 Syntax. The terminals are locations (l), parameters and this (x), field name (f),
method name (m), class name (B,C,D,Object), and keywords (new, finish, async, val). The
program source code cannot contain locations (l), because locations are only created during
execution/reduction in R-NEW of Fig. 12.

4.2 Type System

The type system for FX10 checks that every parameter and variable has a type (a type
is the name of a class), and that a variable of type C can be assigned only expressions
whose type is a subclass of C, and can only be the receiver of invocations of methods
defined in C. The type system is formalized along the lines of FJ. No complications are
introduced by the extra features of FX10 – assignable fields, local variable declarations,
finish and async. We omit details for lack of space and because they are completely
routine. In the rest of this section we shall assume that the program being considered
L,S is well-typed.

Object Initialization in X10 227

φ �+p.f φ,+x S ψ
φ val x = p.f;S ψ (T-ACCESS)

φ S ψ
φ val x = new C;S ψ (T-NEW)

φ �+q
φ p.f= q +p.f

(T-ASSIGN)

φ S ψ
φ finish {S} +ψ
φ async {S} −ψ

(T-FINISH,ASYNC)

φ S1 ψ1 φ∧ψ1 S2 ψ2
φ S1 S2 ψ1 ∧ψ2

(T-SEQ)
m(x) :: φ′ ⇒ ψ′ φ � φ′[p/this,p/x]

φ p.m(p) ψ′[p/this,p/x] (T-INVOKE)

Fig. 11. FX10 Effect System (φ S ψ)

4.3 Effect System

We use a simple logic of initialization for our basic assertions. This is an intuitionistic
logic over the primitive formulas +p (the variable or parameter p is initialized), +p.f
(the field p.f is initialized), and −p,−p.f (it is being concurrently initialized). We are
only concerned with conjunctions and existential quantifications over these formulas:
φ,ψ::=true | + x | + p.f | − p.f | φ∧ψ

The notion of substitution on formulas φ[x/z] is specified in a standard fashion.
The inference relation is the usual intuitionistic implication over these formulas, and

the following additional proof rules: (1) if φ �+p then φ � −p; (2) if φ �+p.f then φ �
−p.f; (3) if φ �+p (φ � −p) then φ �+p.f (φ � −p.f); and (4) if the exact class of p is
C, and C has the fields f, then φ �+p (φ � −p) if φ �+p.fi (φ � −p.fi), for each i. (We
only know the exact class for a local p when val p = new C;S.)

The proof rules for the judgement φ S ψ are given in Figure 11. They use two syntac-
tic operations on initialization formulas defined as follows. +ψ is defined inductively as
follows: +true= true, +± x=+x, +± p.f=+p.f, +(φ∧ψ) = (+φ)∧ (+ψ). −ψ is
defined similarly:−true= true,−±x=−x,−±p.f=−p.f,−(φ∧ψ)= (−φ)∧(−ψ).

The rule (T-ACCESS) can be read as asserting: if φ entails the field p.f is initialized
(together with +x which states that x is initialized to a cooked object), we can establish
that execution of S satisfies the assertion ψ then we can establish that execution of
val x = p.f;S in (a heap satisfying) φ establishes ψ. Here we must take care to project
x out of ψ since x is not accessible outside its scope S; similarly we must take care to
project x out of φ when checking S. The rule (T-NEW) can be read in a similar way except
that when executing S we can make no assumption that x is initialized, since it has been
initialized with a raw object (none of its fields are initialized). Subsequent assignments
to the fields of x will introduce effects recording that those fields have been initialized.
The rule (T-ASSIGN) checks that q is initialized to a cooked object and then asserts that p.f
is initialized to a cooked object. The rule (T-FINISH) can be understood as recording that
after a finish has been “crossed” all asynchronous initializations ψ can be considered
to have been performed φ. Conversely, the rule (T-ASYNC) states that any initializations
must be considered asynchronous to the surrounding context. The rule (T-SEQ) is a slight
variation of the stadard rule for sequential composition that permits φ to be used in the
antecedent of S2, exploiting monotonicity of effects. Note the effects recorded for S1 S2
are a conjunction of the effects recorded for S1 and S2. The rule (T-INVOKE) is routine.

228 Y. Zibin et al.

As an example, consider the following classes. Assertions are provided in-line.

class A extends Object {
var f:Object; var g:Object; var h:Object;
@NonEscaping def build(a:Object) {
// inferred decoration: phi => psi
// phi= +this.g, +a
// psi= -this.h, +this.f
// checks phi implies +this.g
val x = this.g;
async { this.h = x; } // psi= -this.h
finish {

// checks phi implies +a
async { this.f = a; } // psi= -this.h,-this.f

} // psi= -this.h,+this.f
}

}
class B extends A { e:Object; }

Method build synchronously (asynchronously) initializes fields this.f (this.h), and it
assumes that this.g and a are cooked. The following statement completely initializes
b:

val b = new B();
val a = new Object(); // psi= +a
b.g = a; // psi= +a,+b.g
finish {
b.build(a); // psi= +a,+b.g,+b.f,-b.h
async { b.e = a; } // psi= +a,+b.g,+b.f,-b.h,-b,-b.e,-b

} // psi= +a,+b

4.4 Reduction

A heap H is a mapping from a given set of locations to objects. An object is a pair C(F)
where C is a class (the exact class of the object), and F is a partial map from the fields
of C to locations. We say the object l is total/cooked (written cookedH(l)) if its map is
total, i.e., H(l) = C(F) dom(F) = fields(C).

We say that a heap H satisfies φ (written H � φ) if the plus assertions in φ (ignoring
the minus assertions) are true in H, i.e., if φ �+l then l is cooked in H and if φ �+l.f
then H(l) = C(F) and F(f) is cooked in H.

The reduction relation is described in Figure 12. An S-configuration is of the form
S,H where S is a statement and H is a heap (representing a computation which is to exe-
cute S in the heap H), or H (representing terminated computation). An E-configuration
is of the form e,H and represents the computation which is to evaluate e in the config-
uration H. The set of values is the set of locations; hence E-configurations of the form
l,H are terminal.

Two transition relations� are defined, one over S-configurations and the other over
E-configurations. For X a partial function, we use the notation X [v �→ e] to represent the
partial function which is the same as X except that it maps v to e. The rules defining
these relations are standard. The only minor novelty is in how async is defined. The
critical rule is the last rule in (R-STEP) – it specifies the “asynchronous” nature of async

Object Initialization in X10 229

S,H� H ′
finish {S},H� H ′
async {S},H� H ′
S S′,H� S′,H ′

(R-TERM)

S,H� S′,H ′
finish {S},H� finish {S′},H ′
async {S},H� async {S′},H ′
S S1,H� S′ S1,H ′
async {S1} S,H� async {S1} S

′,H ′

(R-STEP)

e,H� l,H ′
val x = e;S,H� S[l/x],H ′ (R-VAL)

l′ ∈ dom(H)
new C,H� l′,H[l′ �→ C()]

(R-NEW)
H(l′) = C(. . .) mbody(m,C) = x.S
l′.m(l),H� S[l/x,l′/this],H (R-INVOKE)

H(l) = C(f �→ l′)
l.fi,H� l′i,H

(R-ACCESS)
H(l) = C(F) cookedH(l′)

l.f= l′,H� H[l �→ C(F [f �→ l′])] (R-ASSIGN)

Fig. 12. FX10 Reduction Rules (S,H� S′,H ′ | H ′ and e,H� l,H ′)

by permitting S to make a step even if it is preceded by async {S1}. The rule (R-NEW)

returns a new location that is bound to a new object that is an instance of C with none
of its fields initialized. The rule (R-ACCESS) ensures that the field is initialized before it is
read (fi is contained in f).

4.5 Results

We say a heap H is correctly cooked (written � H) if a field can point only to cooked
objects, i.e., for every object o = C(F) in the range of H and every field f ∈ dom(F)
it is the case that every object l = H(F(f)) is cooked (cookedH(l)). We shall only
consider correctly cooked heaps (valid programs will only produce correctly cooked
heaps). As the program is executed, the heap monotonically becomes more and more
cooked. Formally, H ′ is more cooked than H (written H ′ � H) if for every l ∈ dom(H),
we have H(l) = C(F), H ′(l) = C(F ′), and dom(F)⊆ dom(F ′).

A heap typing Γ is a mapping from locations to classes. H is said to be typed by
Γ if for each l ∈ dom(H), the class of H(l) is a subclass of Γ(l). Since our treatment
separates out effects from types, and the treatment of types is standard, we shall assume
that all programs and heaps are typed.

A statement S is closed (written � S) if it does not contain any free variables. We say
that S is annotatable if there exists φ,ψ such that φ S ψ can be established.2

We say that a program P = LS is proper if it is well-typed and each method in L can
be decorated with pre-post assertions (φ,ψ), and S is annotatable. The decorations must
satisfy the property that under the assumption that every method satisfies its assertion
(this is for use in recursive calls) we can establish for every method def m(x : C){S} with
assertion (φ,ψ) that it is the case that the free variables of φ,ψ are contained in this,x,
and that φ S ψ.

2 An example of a statement that is not annotatable is val x = new C;val y = x.f;z.g = y
where C has a field f. This attempts to read a field of a variable initialized with a brand-new
object.

230 Y. Zibin et al.

We prove the following theorems. In all these theorems the background program P
is assumed to be proper. The first theorem is analogous to subject-reduction for typing
systems.

Theorem 1. Preservation Let φ S ψ, � S, �H, H � φ. (a) If S,H�H ′ then �H ′, H ′ �H,
H ′ �+ψ. (b) If S,H� S′,H ′ then � S′, �H ′, H ′ �H, there exists φ′,ψ′ such that H ′ � φ′,
φ′ S′ ψ′, φ′ � φ, ψ′ � ψ.

Theorem 2. Progress Let φ S ψ, � S, � H, H � φ. The configuration S,H is not stuck.

For proofs, please see associated technical report.
Because our reduction rules only allow reads from initialized fields, a corollary is

that a field can only be read after it was assigned, and an attempt to read a field will
always succeed.

5 Related Work

A static analysis [11], has been used to find some default value reads in Java programs,
and supports our belief that default value reads can be found in real programs and
should be considered errors. Our approach is stronger (detecting all errors at the expense
of some correct programs) and considers additional language constructs that are not
present in Java.

There has been a study on a large body [6] of Java code, showing that initialization
order issues pervade projects from the real world. A bytecode verification system for
Java initialization has also been explored [7].

An early work to support non-null types in Java [3] has the notion of a type con-
structor raw that can be applied to object types and means that the fields of the object
(in X10 terminology) may violate the constraints in their types. Our approach permits
optimization of the representation of fields whose types are very constrained, since they
will never have to hold a value other than the values allowed by their type constraint.

A later work [4,10] allows to specify the time (in the type) when the object will
be fully constructed. Field reference types of a partially constructed objects must be
fully constructed by the same time, which allows graphs of objects to be constructed
like our proto design. However the system is more complicated, allowing the object to
become fully constructed at a given future time, instead of at the specific time when its
constructor terminates.

Masked types [10] present types that describe the exact fields that have not yet been
initialized. Summers and Müller [12] describe a simpler type system that is almost
identical to our proto design, however they only treat non-null types and they allow
reading a field before it was assigned. Our type system is simpler but less expressive
because it cannot handle immutable cyclic structures.

There is also a time-aware type system [8] that allows the detection of data-races, and
understands the concept of shared variables that become immutable only after a certain
time (and can then be accessed without synchronization). The same mechanisms can
also be used to express when an object becomes cooked.

Ownership types can be used to create immutable cycles [14]. This is comparable
to our proto design because it also allows this to be linked from an incomplete object.
However the ownership structure is used to implement a broader policy, allowing code

Object Initialization in X10 231

in the owner to use a reference to its partially constructed children, whereas we only
allow code to use a reference to objects that are being partially constructed in some
nesting stack frame. Our approach does not use ownership types.

6 Conclusion

The hardhat design in X10 is strict but it protects the user from error-prone initialization
idioms, especially when combined with a rich type system and parallel code. This pa-
per showed the interaction between initialization and other language features, possible
pitfalls in Java, and how they can be prevented in X10. It also presented the rules of
this design, the virtues of these rules, and possible design alternatives. The rules were
incorporated in the open-source X10 compiler, and are being used in production code.

References

1. Bocchino Jr., R.L., Adve, V.S., Dig, D., Adve, S.V., Heumann, S., Komuravelli, R., Overbey,
J., Simmons, P., Sung, H., Vakilian, M.: A type and effect system for deterministic parallel
java. In: OOPSLA 2009, pp. 97–116. ACM, New York (2009)

2. Dean, D., Felten, E., Wallach, D.S.: Java security: From hotjava to netscape and beyond. In:
IEEE Symposium on Security and Privacy, pp. 190–200 (1996)

3. Fähndrich, M., Leino, K.R.M.: Declaring and checking non-null types in an object-oriented
language. In: OOPSLA 2003, pp. 302–312 (2003)

4. Fähndrich, M., Xia, S.: Establishing object invariants with delayed types. In: OOPSLA 2007,
pp. 337–350 (2007)

5. Gil, J., Itai, A.: The Complexity of Type Analysis of Object Oriented Programs. In: Jul, E.
(ed.) ECOOP 1998. LNCS, vol. 1445, pp. 601–634. Springer, Heidelberg (1998)

6. Gil, J.Y., Shragai, T.: Are We Ready for a Safer Construction Environment? In: Drossopoulou,
S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 495–519. Springer, Heidelberg (2009)

7. Hubert, L., Jensen, T., Monfort, V., Pichardie, D.: Enforcing Secure Object Initialization in
Java. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345,
pp. 101–115. Springer, Heidelberg (2010)

8. Matsakis, N.D., Gross, T.R.: A time-aware type system for data-race protection and guaran-
teed initialization. In: OOPSLA 2010, pp. 634–651 (2010)

9. Pugh, W.: JSR 133: Java memory model and thread specification revision (2004),
http://jcp.org/en/jsr/detail?id=133

10. Qi, X., Myers, A.C.: Masked types for sound object initialization. In: POPL 2009, pp. 53–65
(2009)

11. Seo, S., Kim, Y., Kang, H.-G., Han, T.: A static bug detector for uninitialized field references
in java programs. IEICE - Trans. Inf. Syst. E90-D, 1663–1671 (2007)

12. Summers, A.J., Müller, P.: Freedom before commitment - a lightweight type system for ob-
ject initialisation. In: OOPSLA 2011 (2011)

13. Yang, X., Blackburn, S.M., Frampton, D., Sartor, J.B., McKinley, K.S.: Why nothing matters:
the impact of zeroing. In: OOPSLA 2011, pp. 307–324. ACM, New York (2011)

14. Zibin, Y., Potanin, A., Li, P., Ali, M., Ernst, M.D.: Ownership and immutability in generic
java. In: OOPSLA 2010, pp. 598–617 (2010)

http://jcp.org/en/jsr/detail?id=133

Structured Aliasing

Tobias Wrigstad

Uppsala University
tobias.wrigstad@it.uu.se

http://wrigstad.com

Abstract. Aliasing, mutable state and stable object identities are in-
herent in object-oriented programming. It is a well-known fact that this
troika of features cause problems for practitioners, tool developers and
formalists alike. Patterns for aliasing, and patterns for structuring ob-
ject graphs exist, and manipulating aliases and managing these graphs or
graph-like structures are among the most frequent operations in object-
oriented programming. Yet, mainstream languages provide only low-level
support for these operations in reading and writing of variables. The
bookkeeping, making sure graph structures are preserved, temporary
aliases deleted, etc. is left to the programmer.

In this talk, I will review some of my work on managing aliases in
object-oriented systems, and talk about some recent efforts to unify these
approaches to provide what we could call a theory and practise of struc-
tured aliasing for object-oriented programming.

J. Noble (Ed.): ECOOP 2012, LNCS 7313, p. 232, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://wrigstad.com

Pause ’n’ Play: Formalizing Asynchronous C�

Gavin Bierman1, Claudio Russo1, Geoffrey Mainland1,
Erik Meijer2, and Mads Torgersen3

1 Microsoft Research
2 Microsoft Corp. and TU Delft

3 Microsoft Corporation
{gmb,crusso,gmainlan,emeijer,madst}@microsoft.com

Abstract. Writing applications that connect to external services and yet remain
responsive and resource conscious is a difficult task. With the rise of web program-
ming this has become a common problem. The solution lies in using
asynchronous operations that separate issuing a request from waiting for its com-
pletion. However, doing so in common object-oriented languages is difficult and
error prone. Asynchronous operations rely on callbacks, forcing the programmer
to cede control. This inversion of control-flow impedes the use of structured control
constructs, the staple of sequential code. In this paper, we describe the language
support for asynchronous programming in the upcoming version of C�. The fea-
ture enables asynchronous programming using structured control constructs. Our
main contribution is a precise mathematical description that is abstract (avoiding
descriptions of compiler-generated state machines) and yet sufficiently concrete
to allow important implementation properties to be identified and proved correct.

1 Introduction

Mainstream programmers are increasingly adopting asynchronous programming tech-
niques once the preserve of hard-core systems programmers. This adoption is driven
by a variety of reasons: hiding the latency of the network in distributed applications;
maintaining the responsiveness of single-threaded applications or simply avoiding the
resource cost of creating too many threads. To facilitate this programming style, operat-
ing systems and platforms have long provided non-blocking, asynchronous alternatives
to possibly blocking, synchronous operations. While these have made asynchronous
programming possible they have not made it easy.

The basic principle behind these asynchronous APIs is to decompose a synchronous
operation that combines issuing the operation with a blocking wait for its completion,
into a non-blocking initiation of the operation, that immediately returns control, and
some mechanism for describing what to do with the operation’s result once it has com-
pleted. The latter is typically described by a callback—a method or function. The call-
back is often supplied with the initiation as an additional argument. Alternatively, the
initiation can return a handle which the client can use to selectively register an asyn-
chronous callback or (synchronously) wait for the operation’s result.

Whatever the mechanism, the difficulty with using these APIs is fundamentally this:
to transform a particular synchronous call-site into an asynchronous call-site requires the
programmer to represent the continuation of the original site as a callback. Moreover,
for this callback to resume from where the synchronous call previously returned, it must
preserve all of the state pertinent to the continuation of the call. Some aspects of the state

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 233–257, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

234 G. Bierman et al.

will be explicitly available (such as the values of local variables), but other aspects may
not be. A prime example is the remainder of the current call stack. For languages that
do not provide support for first-class continuations, like Java and C�, accounting for this
state often requires a manual transformation to continuation-passing-style of not only
the enclosing method, but also all of its callers. Once reified as an explicit continuation,
the state of a computation can be saved at the initiation of an asynchronous operation
and restored on its completion by supplying it with a result.

The upcoming version of C� (and Visual Basic) features dedicated linguistic sup-
port for asynchronous programming that removes the need for explicit callbacks. C�

5.0 allows certain methods to pause and then later resume their computation, without
blocking, at explicitly marked code points. The basic idea is to allow a method, desig-
nated as asynchronous, to await the completion of some other event, not by blocking its
executing thread, but by pausing its own execution and releasing its thread to do further
work. The caller of the paused method then receives a task representing the method’s
future result and is free to proceed. Subsequent completion of the awaited event causes
the paused method to resume playing from where it left off. Since its original thread
has carried on, the resumed method is played on some available thread. Depending on
run-time context, this thread may be drawn from the .NET thread pool, or it may be
the same, issuing thread but at a later opportunity (e.g., the resumed method might be
re-enqueued in the user interface’s message loop). The events that can be awaited are
typically tasks returned by nested calls to asynchronous methods. They can also, more
generally, belong to any (user-defined) awaitable type or primitive implementations
provided by the framework. The aim of these new features is to make it easy to write
asynchronous methods, without having to resort to continuation-passing-style and its
debilitating inversion of control flow.

As we shall see, the new asychronous features in C� 5.0 are quite subtle. Current,
draft Microsoft specifications [16] describe the features using precise prose and by ex-
ample, giving illustrative source-to-source translations from C� 5.0 to ordinary C� 4.0.
Unfortunately, the translation is intricate—it compiles source to optimized, finite state
machines—so its output is both verbose and difficult to comprehend. We believe a for-
mal, mathematical approach can yield both a precise foundation for researchers, but
also a better mental model for developers and compiler writers to justify the correctness
of their translation. The primary contribution of this paper is to provide such a model:
a direct, operational semantics of the feature in a representative fragment of C� 5.0.
Our semantics both capture the intent of the feature and explain its performance-driven
limitations, without appealing to low-level compiler output.

The paper is structured as follows. §2 gives an informal yet precise description of the
feature. §2.1 presents a realistic example, re-coding a non-trival synchronous method
to an asynchronous one, first using the feature, then adding concurrency and finally
contrasting with an equivalent, hand-crafted implementation. §3 formally describes our
core fragment of C� 5.0 and presents both a type system and an operational seman-
tics. §4 sketches some of the correctness properties that our formalization satisfies. §5
presents some extensions to our basic setting; in §5.1 we show how to develop our op-
erational semantics to be less abstract, and much closer to the implementation but still
without having to resort to a finite state machine translation. In §5.2 we show how to ex-
tend our formalization to capture the awaitable pattern. §6 surveys briefly related work
on asynchronous programming; and §7 presents conclusions and some future work.

Pause ’n’ Play: Formalizing Asynchronous C� 235

2 Background: Async C� Extensions in a Nutshell

Syntactically, the additions to C� are surprisingly few: one new modifier ����� to mark
a member as asynchronous and one new expression, ����� e, for awaiting the result—
control, a value or exception—of some awaitable expression. An ����� expression
can also be used as a statement, ����� e;, discarding its value. The ����� modifier
can be placed on methods (excluding iterators) and some other method-like constructs
(anonymous, first-class methods, i.e., lambdas and delegates). An ����� expression
can only appear in an ����� method; other occurrences are static errors.

Statically, an ����� method must have a taskable return type of Task<σ>, Task
or 	
��. The ����� statements of an ����� method with return type Task<σ> may
only return values of type σ, never Task<σ>! The return statements in other �����
methods may only return control (but never a value).

The argument, e, of an ����� e expression must have an awaitable type. The concept
of awaitable type is defined by a pattern (of available methods). A type is awaitable
when it statically supports a GetAwaiter() instance method that returns some awaiter
type (possibly the same type). In turn, the awaiter type must support:

– a boolean instance property IsCompleted testing if the awaiter has a result now.
– a 	
��-returning instance method OnCompleted(a), accepting a callback of del-

egate type Action.1 Action a is a one-shot continuation; calling a() resumes the
awaiting method. The action should be invoked at most once, on completion.

– a τ -returning instance method GetResult() for retrieving the result of a com-
pleted awaiter. GetResult() should either return control, some stored value, or
throw some stored exception.

If the return type of GetResult is τ , then expression ����� e is an expression of type
τ . All these operations should be (essentially) non-blocking.

Crucially, the types Task<σ> and Task are awaitable, allowing ����� methods to
await the tasks of nested ����� method calls. A caller can use a returned task just like
any other task (asynchronously awaiting its result, synchronously waiting for its com-
pletion or by registering an asynchronous callback). Asynchronous methods that return
	
�� cannot be awaited; such methods are intended for ‘fire-and-forget’ scenarios.

Dynamically, an ����� method executes like an ordinary method until it encoun-
ters an ����� on some value. If the value’s awaiter is complete, the method continues
executing using the result of the awaiter as the result of the await expression. If the
awaiter is incomplete, the method registers its continuation as a callback on the awaiter
and then suspends its execution. Execution will resume with the result of the awaiter,
on some thread,2 when the callback is invoked. Invoking an async method allocates a
fresh, incomplete task, representing this invocation, immediately enters the method (on
the caller’s thread) and executes it until it encounters its first await on an incomplete
awaiter. Exiting from an async method, either via return or throwing an exception, stores
the result in its task, thus completing it. The first suspension of an async method call re-
turns its incomplete task (or void) to its caller. If the call exits without ever suspending,
it simply returns its completed task.

1 Defined as �������� ��	� Action().
2 We are deliberately vague here; the awaiter is free to choose how the method is resumed,

catering for different behaviours in, for example, single- and multi-threaded applications.

236 G. Bierman et al.

The operational semantics is deliberately designed to minimize context switches.
Continuing when an awaiter is already complete ensures methods only suspend when
necessary. Dually, allowing an ����� method call to begin execution on its caller’s
thread gives the method the opportunity to enter-and-exit quickly when possible, with-
out imposing the cost of a context switch just to get running in the first place. This
design choice morally obliges the method not to block nor even spend too much time
before ceding its caller’s thread (by suspension).

2.1 Example

To both illustrate and motivate the feature we present an example adapted from the
Async CTP.3 Consider the following synchronous copy function, which incrementally
copies an input stream to an output stream in manageable chunks.

���	 ����	 ���� CopyTo(Stream src, Stream dst) {

��� buffer = ��� ����[0x1000]; 	�� bytesRead; ���� totalRead = 0;

��	�� ((bytesRead = src.Read(buffer, 0, buffer.Length)) > 0) {

dst.Write(buffer, 0, bytesRead);

totalRead += bytesRead; }

������ totalRead; }

Depending on their receivers, the calls to Stream methods Read and Write may well
be blocking IO operations. Since this method could spend much of its time blocked,
one might prefer an asynchronous variant. One way to achieve this is by replacing the
synchronous calls to Read and Write with their asynchronous counterparts:

Task<	��> ReadAsync(����[] buffer, 	�� offset, 	�� count);

Task WriteAsync(����[] buffer, 	�� offset, 	�� count);

The asynchronous variants initiate an asynchronous operation and immediately return
a task representing its completion. Method ReadAsync begins a read and immediately
returns a Task<���> that, once completed, will record the number of bytes actually
read. The method WriteAsync begins a write and returns a Task that just tracks its
completion. Tasks are completed at most once with some result. The result may be a
value or some exception.

Asynchronous clients can register zero or more callbacks on a task, to be executed
(on some thread) once the task has completed with a result, e.g.:

Task<	��> rdTask = src.ReadAsync(buffer, 0, buffer.Length);

rdTask.ContinueWith((Task<	��> completedRdTask) => {

	�� bytesRead = completedRdTask.Result; /* won’t block */

dst.WriteAsync(buffer, 0, bytesRead); });

// do some work now

Since ContinueWith is also non-blocking, the client will quickly proceed with its
work. The call to property completedRdTask.Result in the callback is guaranteed
not to block because its task (aliasing rdTask) must, by causality, already be
completed.

Synchronous clients can also access a task’s Result property or just Wait() for its
completion; these calls will block until or unless the task has completed:

3 http://msdn.microsoft.com/vstudio/async

http://msdn.microsoft.com/vstudio/async

Pause ’n’ Play: Formalizing Asynchronous C� 237

Task<	��> rdTask = src.ReadAsync(buffer, 0, buffer.Length);

// do some work now

	�� bytesRead = rdTask.Result; /* may block */

Task wrTask = dst.WriteAsync(buffer, 0, bytesRead);

// do some more work now

wrTask.Wait(); /* may block */

Now let us show how C� 5.0 enables the simple implementation of an asynchronous ver-
sion of CopyTo. First we mark the method as �����, and then simply await the results
of src.ReadAsync and dst.WriteAsync. Otherwise the code remains the same.

���	 ����	 ���� Task<����> CopyToAsync(Stream src, Stream dst) {

��� buffer = ��� ����[0x1000]; 	�� bytesRead; ���� totalRead = 0;

��	�� ((bytesRead = ���	� src.ReadAsync(buffer,0,buffer.Length)) > 0) {

���	� dst.WriteAsync(buffer, 0, bytesRead);

totalRead += bytesRead; }

������ totalRead; }

Awaiting the task returned by ReadAsync pauses the method unless the read has com-
pleted; when play is resumed, the await expression extracts the integer value of the
task. WriteAsync returns a non-generic Task; the await statement pauses the method
unless the write has completed; when it is played again, execution proceeds from the
next statement. Note that the return type of our asynchronous method is Task<�
��>
even though its body �����s a �
��. Clearly, this is no ordinary ����� statement.

Though the code is almost identical to the original, the behaviour and resource con-
sumption is quite different. A call to CopyTo will repeatedly block (in the kernel) on
each call to Read and Write, tying up the resources dedicated to that thread. A call
of CopyToAsync, on the other hand, will never block; instead, each continuation of an
await will be executed on demand, on some available thread in the .NET thread pool. 4

CopyToAsync’s reads and writes are still being executed sequentially, but from dif-
ferent threads rather than a single one, so we would not expect to gain any performance
from the asynchronous implementation. Indeed, given the additional scheduling and
compilation overheads, the synchronous CopyTo is likely to execute faster.

However, we are now in a good position to overlap the last write with the next read,
leading to this potentially faster, concurrent implementation:

���	 ����	 ���� Task<����> CopyToConcurrent(Stream src, Stream dst) {

��� buffer = ��� ����[0x1000]; ��� oldbuffer = ��� ����[0x1000];

	�� bytesRead; ���� totalRead = 0; Task lastwrite = ����;

��	�� ((bytesRead = ���	� src.ReadAsync(buffer,0,buffer.Length)) > 0) {

	� (lastwrite != ����) ���	� lastwrite; // wait later

lastwrite = dst.WriteAsync(buffer, 0, bytesRead); // issue now

totalRead += bytesRead;

{ ��� tmp = buffer; buffer = oldbuffer; oldbuffer = tmp; }; }

	� (lastwrite != ����) ���	� lastwrite;

������ totalRead; }

In order to achieve this, we exploit the ability to separate the initiation of a task from
the act of awaiting its completion, so that we can issue the next read during the last

4 If invoked from a user interface thread, each continuation will be scheduled on that thread’s
event queue.

238 G. Bierman et al.

write. The example illustrates the crucial advantage of allowing asynchronous methods
to return incomplete, concurrently executing tasks, not just completed results. Though
we emphasize concurrency, the reads and writes could also be executing in parallel,
depending on the underlying streams.

In comparison, TaskJava [8] also provides constructs to avoid inversion of control
while programming with asynchronous APIs. Like C� 5.0, TaskJava compiles straight-
line code to a state machine, but its syntax is slightly more heavyweight and requires
explicit calls to an event scheduler. TaskJava does not make a distinction between in-
voking and awaiting an asynchronous operation, so although it presents a pleasant pro-
gramming model for those who wish to invoke asynchronous APIs sequentially, it is of
no use to a programmer who must write code that executes multiple operations concur-
rently, like CopyToConcurrent. C� 5.0 does not sacrifice concurrency for convenience.

To appreciate the concision of CopyToAsync, let us contrast it with a representative
hand-crafted version of CopyToAsync, CopyToManual, written in C� 4.0. Actually, this
code is very close to the decompiled code emitted by the C� 5.0 compiler and described
in the feature documentation. As mentioned earlier, the aim of our work is to eliminate
the need to understand this compilation strategy.

���	 ����	 Task<����> CopyToManual(Stream src, Stream dst) {

��� tcs = ��� TaskCompletionSource<����>(); // tcs.Task new & incomplete

��� state = 0; TaskAwaiter<	��> readAwaiter; TaskAwaiter writeAwaiter;

����[] buffer = ����; 	�� bytesRead = 0; ���� totalRead = 0;

Action act = ����; act = () => {

��	�� (����) ��	�� (state++) {

��� 0: buffer = ��� ����[0x1000]; totalRead = 0; ���	���;

��� 1: readAwaiter=src.ReadAsync(buffer,0,buffer.Length).GetAwaiter();

	� (readAwaiter.IsCompleted) ���	���; // goto post-read

���� { readAwaiter.OnCompleted(act); ������;} // suspend at 2

��� 2: 	� ((bytesRead = readAwaiter.GetResult()) > 0) {

writeAwaiter=dst.WriteAsync(buffer,0,bytesRead).GetAwaiter();

	� (writeAwaiter.IsCompleted) ���	���; // goto post-write

���� { writeAwaiter.OnCompleted(act); ������;} // suspend at 3

} ���� { state = 4; ���	���;} // goto post-while

��� 3: writeAwaiter.GetResult();

totalRead += bytesRead;

state = 1; ���	���; // goto pre-while

��� 4: tcs.SetResult(totalRead); // complete tcs.Task & "return"

������; // exit machine

}}; // end of act delegate

act(); // start the machine on this thread

������ tcs.Task; } // on first suspend or exit from machine

Without going into too many details, notice how the control flow has been obscured by
encoding the continuation of each await as states (here 2 & 3) of a finite state machine.
The original locals, arguments and internal state of the method are (implicitly) allocated
on the heap. (Note that C� lambdas such as act close over L-values, not R-values,
automatically placing them on the heap; updates to those locations persist across lambda
invocations.) State 0 is the initial state that sets up locals; state 1 is the ���� loop
header, states 2 and 3 are the continuations of the ����� statements; state 4 is the final
state and the continuation of the original ���� statement. State 4 exits the machine,

Pause ’n’ Play: Formalizing Asynchronous C� 239

setting the result in the task held by shared variable tcs (completing the task). The
finite state machine only suspends (by calling ����� without completing the task) in
states 2 and 3 (just after an await); the other states encode internal control flow points.

3 Formalization: Featherweight C� 5.0

In the rest of the paper we study the essence of the new asynchronous features of C�. To
do so we take a formal, mathematical approach and define an idealized fragment, Feath-
erweight C� 5.0, or FC�

5 for short. Whilst FC�
5 programs remain syntactically valid C�, it

is a heavily restricted fragment—any language feature that is not needed to demonstrate
the essence of the asynchronous features has been removed, and the resulting fragment
has been further refactored to allow for a more succinct presentation.

As the new asynchronous features predominantly affect the control flow of C� pro-
grams, most of our attention is on the operational semantics. In contrast, other minimal
fragments such as, for example, Featherweight Java [13], and Classic Java [10], are pri-
marily concerned with typing issues. The asynchronous features in C� 5.0 have almost
no impact on the type system. Consequently we have stripped the type system of FC�

5

to the core: we have only simple non-generic classes, some value types and no subtyp-
ing at all! However, we emphasize that our formalization exposes enough of the inner
workings of C� 5.0 to allow the reader to reason about how aspects of the language, like
the split between invocation and awaiting, affect the concurrent execution of multiple
threads of control. There is a danger in cutting out too much of a language during for-
malization. For example, Fischer et al. [8] give a semantics for CJT, a simplified version
of TaskJava, that avoids a heap at the expense of any ability to model communication
between tasks, including a spawned thread signaling completion to its parent. In con-
trast, our semantics models what we claim to be the essential features of task-based
programming: concurrent execution of multiple, communicating tasks that are invoked
by the same thread of control.

FC�
5 programs and types:

p ::= cd mb Program
cd ::=
���	 ���� C {fd md} Class declaration
fd ::=
���	 σ f; Field declaration
md ::=
���	 φ m(σ x)mb | ����
���	 ψ m(σ x)mb Method declaration
mb ::= { σ x;s } Method body
φ ::= σ | ��	� Return type
σ, τ ::= γ | ρ Type
γ ::= ���� | 	�� Value type
ρ ::= C | Task<σ> Reference type
ψ ::= Task<σ> Taskable return type

Our formalization makes heavy use of the Featherweight Java [13] overbar notation,
i.e., we write x for a possibly empty sequence x1, . . . xn. We write the empty sequence
as ε. We abbreviate operations on pairs of sequences, writing for example σ x for the
sequence σ1 x1, . . . , σn xn, similarly σ x; for the sequence of variable declarations
σ1 x1; . . . σn xn; and finally f(σ) for the sequence f(σ1), . . . , f(σn).

240 G. Bierman et al.

A FC�
5 program consists of a collection of class declarations and a single method

body (C�’s main method). A FC�
5 class declaration ������ ����� C {fd md} intro-

duces a class C. We repeat that FC�
5 does not support any form of subtyping so class

declarations do not specify a superclass. This is a valid declaration in full C� as all
classes inherit from
���� by default, but we do not even support the
���� class in
FC�

5. Subtyping and inheritance are orthogonal to the new features in C� 5.0 and so we
removed them from our fragment to concentrate solely on the support for asynchronous
programming.5 The class C has fields f with types σ and a collection of methods md .

Method declarations can be either synchronous or asynchronous. A synchronous
method ������ φ m(σ x)mb declares a public method m with return type φ, for-
mal parameters x of type σ and a method body mb. Methods may be 	
��-returning,
i.e., they return control not a value. Method bodies are constrained to be of a particular
form: σ x;s, i.e., they must declare all their local variables x at the start of the method,
and then contain a sequence of statements s.

An asynchronous method is marked with the ����� keyword and is syntactically the
same as a synchronous method, although it is type checked differently. The return type
of an asynchronous method must be of a so-called taskable type. For FC�

5 this means
it must be of the form Task<σ>. C� 5.0 also classifies the non-generic class Task and
	
�� as taskable return types as discussed in §2.

FC�
5 types are a simple subset of the C� types. Note that FC�

5 does not support user-
defined generics; again these are orthogonal to asynchrony and have been removed. For
simplicity, we assume that Task<σ> is the only generic type.

FC�
5 expressions and statements:

e ::= Expressions
c Constant (boolean b, integer i or ����)
x⊕ y Built-in operator
x Variable
x.f Field access
x.m(y) Method invocation
��� C() Object creation
���	� x Await expression
Task.AsyncIO<γ>() Async primitive

s, t ::= Statement
x=e; Assignment statement
	� (x) {s} ���� {t} Conditional statement
��	�� (x) {s} Iteration
x.f = y; Field assignment statement
x.m(y); Method invocation statement
������; Return statement
������ x; Return value statement

FC�
5 expressions are restricted to a form that we call statement normal form (SNF). SNF

forces all subexpressions to be named; i.e., all subexpressions are simply variables. SNF

5 The extensions to support single inheritance, overloading, constructor methods and many of
the complications of the full C� type system have appeared elsewhere [2,3].

Pause ’n’ Play: Formalizing Asynchronous C� 241

is the natural analogue to the A-normal-form popular in functional languages [9]. This
regularity makes the presentation of the operational semantics (and the type system)
much simpler at no cost to expressivity.

FC�
5 expressions include constants, c, which can be an integer, i, a boolean, b, or the

literal ����. We assume a number of built-in primitive operators, such as ==, <, > and
so on. In the grammar we write x ⊕ y, where ⊕ denotes an instance of one of these
operators. We do not specify operators further as their meaning is clear. We assume that
x, y, z range over variable names, f ranges over field names and m ranges over method
names. We assume that the set of variables includes the special variable ����, which
cannot be used as a formal parameter of a method declaration or declared as a local.

FC�
5 supports awaitable expressions, written ����� x. To get things off the ground

we assume an in-built asynchronous method Task.AsyncIO<γ>() that spawns a thread
and immediately returns a task. The thread may complete the task, depending on the
scheduler, with some result of value type γ.

FC�
5 statements are standard. In what follows we assume that FC�

5 programs are
well-formed, e.g., the identifier ���� does not appear as a formal parameter, all control
paths in a method body contain a ����� statement, etc. These conditions can be easily
formalized and are identical to restrictions on earlier fragments of C� but we suppress
the details for lack of space. The only new well-formedness condition is that �����
expressions are only allowed to appear inside asynchronous method declarations.

We assume that a correct program induces a number of utility functions that we will
use in the typing rules. First, we assume the partial function ftype , which is a map from
a type and a field name to a type. Thus ftype(σ, f) returns the type of field f in type
σ. Second, we assume a partial function mtype that is a map from a type and a method
name to a type signature. For example, we write mtype(C,m) = (τ) → φ when class
C contains a method m with formal parameters of type τ and return type φ.

The type system for full C� is actually a bidirectional type system [18] consisting of
two typing relations: a type conversion relation and a type synthesis relation [3], along
with a number of conversion (subtyping) judgements. However, the extreme parsimony
of FC�

5 means that we have no subtyping judgements, and we need only a single judge-
ment for type checking an expression. The judgement is written Γ � e:σ where Γ is a
function from variables to types. We extend the overbar notation and write Γ � e:σ to
mean the judgements Γ � e1:σ1, . . . , Γ � en:σn.

FC�
5 expression type checking:

[C-Bool]
Γ � b: ����

[C-Int]
Γ � i: 	��

[C-Null]
Γ � ����: ρ

[C-Op]
Γ � x:σ0 Γ � y:σ1 ⊕:σ0 × σ1 → τ

Γ � x⊕ y: τ

[C-New]
Γ � ��� C(): C

[C-Var]
Γ, x: τ � x: τ

[C-Field]
ftype(σ, f) = τ

Γ, x:σ � x.f : τ

[C-MethInv]
mtype(σ0,m) = (τ)→ σ1 Γ, x:σ0 � y: τ

Γ, x:σ0 � x.m(y):σ1

[C-Await]
Γ, x:Task<σ> � ���	� x:σ

[C-IO]
Γ � Task.AsyncIO<γ>(): Task<γ>

242 G. Bierman et al.

Most of the type checking rules are quite standard, but there are two new rules for
dealing with asynchronous methods. Rule [C-Await] states that if x is of type Task<σ>
then awaiting x results in a value of type σ. As discussed earlier, Rule [C-IO] states that
Task.AsyncIO<γ>()returns a value of type Task<γ>.

FC�
5 statement type checking:

[C-Asn]
Γ, x:σ � e:σ

Γ, x:σ � x = e;:φ
[C-Cond]

Γ, x: ���� � s:φ Γ, x:���� � t:φ

Γ, x:���� � 	� (x) {s} ���� {t}:φ

[C-While]
Γ, x:���� � s̄:φ

Γ, x: ���� � ��	�� (x) {s}:φ

[C-FAsn]
ftype(σ0, f) = σ1 Γ, x:σ0 � y:σ1

Γ, x:σ0 � x.f=y;:φ

[C-MInv]
mtype(σ0,m) = (τ)→ ��	� Γ, x:σ0 � y: τ

Γ, x:σ0 � x.m(y);: φ

[C-Return]
Γ � ������;: ��	�

[C-ReturnExp]
Γ, x:σ � ������ x;:σ

As for full C�, we give type checking rules for statements; the judgement is written
Γ � s:φ. The key rules are [C-ReturnExp] that asserts that the statement ����� x;
is of return type σ if x is of type σ and [C-Return] that asserts that the statement
�����; is of return type 	
��. In other words, the role of the type φ in the judgement
Γ � s:φ is to check any return statement. Again, we adopt an overbar notation and
write Γ � s:φ to denote the judgements Γ � s1:φ, . . . , Γ � sn:φ.

FC�
5 method and class typing (rule for programs omitted due to space):

[Class-OK] C � md ok

�
���	 ���� C {fd md } ok

[Meth-OK]
x:σ, y: τ , ��	�: C � s:φ ∀e ∈ s, e �= ���	�

C �
���	 φ m(σ x){τ y;s} ok

[AsyncMeth-OK]
x: σ, y: τ, ��	�: C � s:σ0

C � ����
���	 Task<σ0>m(σ x){τ y;s} ok

Rule [Class-OK] asserts that a class declaration is well-typed provided that all its
method declarations are well-typed. Rule [Meth-OK] asserts that the (synchronous)
method declaration ������ φ m(σ x){τ y;s} is well-typed in class C provided that
the statements s can be typed at return type φ in the context x:σ, y: τ, ����: C. More-
over, s cannot contain �����. Rule [AsyncMeth-OK] asserts that the asynchronous
method ����� ������ Task<σ0> m(σ x){τ y;s} is well-typed if the statements s
can be typed at return type σ0 (not Task<σ0>) in the context x:σ, y: τ , ����: C.

We assume two methods on the Task<σ> type, Result and GetResult, which both
take no argument and return a value of type σ, i.e., mtype(Task<σ>,) = ()→ σ. Both
these methods return the result of a complete task object, but will differ operationally
on an incomplete task. In C�, Result is actually a method-like property.

Pause ’n’ Play: Formalizing Asynchronous C� 243

3.1 Operational Semantics

The key contribution of this paper is a precise description of the operational behaviour of
the new asynchronous features in C�. The syntactic restrictions of FC�

5 mean that the op-
erational semantics can be given as single-step transition rules between configurations.

A heap, H , is a partial map from an object identifier (ranged over by o) to a heap
object. A heap object can be one of three forms: 〈C,FM 〉 denotes a non-task object of
class C with a field map, FM , which is a partial map from fields f to values. A task
heap object is either of the form 〈Task<σ>, running(F)〉 or 〈Task<σ>, done(v)〉. We
explain these forms later. A value, v is either a constant, c, or an object identifier (the
address of an object in the heap).

A frame, F , is written 〈L, s̄〉� and consists of a locals stack, L, and a sequence of
statements, s, along with a frame label, �. A locals stack is a partial map from local
variables to values. A frame label, �, is either s to denote a synchronous frame, or a(o)
for an asynchronous frame whose associated Task is stored at heap address o. A frame
stack, FS , is essentially a list of frames. An empty frame stack is written ε, and we write
F ◦FS to denote a frame stack whose head is a frame F and tail is the frame stack FS .
A process, P , is a collection of frame stacks, written {FS1, . . . ,FSn}.

We factor the transition rules into three relations describing the small step evaluation
of frames (method bodies), frame stacks (corresponding to individual threads) and col-
lections of frame stacks (corresponding to a process, i.e., a pool of threads mutating a
shared heap). Thus, a frame configuration is written H � F and the transition relation
between frame configurations is written H1�F1 → H2�F2. A frame stack configura-
tion is written H�FS and the transition relation between frame stack configurations is
written H1 �FS1 � H2 �FS2. Finally, a process configuration is written H �P and
the transition relation between process configurations is written H1 � P1 � H2 � P2.

Simple frame transition rules:

H � 〈L, x=c;s〉� → H � 〈L[x �→ c], s〉� [E-Constant]

H � 〈L, x=y;s〉� → H � 〈L[x �→ L(y)], s〉� [E-Var]

H � 〈L, x=y ⊕ z;s〉� → H � 〈L[x �→ L(y)⊕ L(z)], s〉� [E-Op]

H � 〈L, x=y.f;s〉� → H � 〈L[x �→ FM (f)], s〉� where H(L(y)) = 〈ρ,FM 〉 [E-Field]

H � 〈L, 	� (x) {s} ���� {t} u〉� → H � 〈L, s u〉� where L(x) = ���� [E-CondEq]
H � 〈L, 	� (x) {s} ���� {t} u〉� → H � 〈L, t u〉� where L(x) = �����

H � 〈L, ��	�� (x){s} t〉� → H � 〈L, s ��	�� (x){s} t〉� where L(x) = ���� [E-While]
H � 〈L, ��	�� (x){s} t〉� → H � 〈L, t〉� where L(x) = �����

H0 � 〈L, x.f=y;s〉� → H1 � 〈L, s〉� [E-Asn]
where L(x) = o,H0(o) = 〈σ,FM 〉 and H1 = H0[o �→ 〈σ,FM [f �→ L(y)]〉]
H0 � 〈L, x=��� C();s〉� → H1 � 〈L[x �→ o], s〉� [E-New]
where fields(C) = τ f , o �∈ dom(H0) and H1 = H0[o �→ 〈C, f �→ default(τ)〉]

244 G. Bierman et al.

In these transition rules the frames are labeled with meta-variable �: they apply for
both synchronous and asynchronous frames, factoring common semantics. Our transi-
tion rules H0 � 〈L0, s〉� → H1 � 〈L1, t〉� always preserve labels, i.e., a synchronous
frame transitions to another synchronous frame, and an asynchronous frame transitions
to an asynchronous frame with the same task. In rule [E-New] we use an auxiliary func-
tion, default that returns a default constant for a given type. This notion is taken from
full C� [12, §5.2] but for FC�

5 it simply maps type ��� to the value 0, type �

� to the
value ���� and all other types to the ���� literal. These simple transition rules are
quite standard and for space reasons we do not elaborate on them further.

Next we consider the evaluation of a synchronous method call and returning from
a synchronous method. For a ����� (though not a call) the label on the frame is
important; as we shall see, the ����� rule is different for asynchronous frames.

Synchronous method call/return transition rules:

H0 � F0 ◦ FS � H1 � F1 ◦ FS if H0 � F0 → H1 � F1 [E-Frame]

H � 〈L0, y0=y1.m(z);s〉� ◦ FS � H � 〈L1, t〉s ◦ 〈L0, s〉�y0 ◦ FS [E-Method-Exp]
where H(L0(y1)) = 〈ρ,FM 〉,mbody(ρ,m) = mb: (σ x)→s σ1,mb = τ y; t and

L1 = [x �→ L0(z), y �→ default(τ), ��	� �→ L0(y1)]

H � 〈L0, x.m(y);s〉� ◦ FS � H � 〈L1, t〉s ◦ 〈L0, s〉� ◦ FS [E-Method-Stmt]
where H(L0(x)) = 〈ρ,FM 〉,mbody(ρ,m) = mb: (σ x)→s ��	�,mb = τ z; t and

L1 = [x �→ L0(z), z �→ default(τ), ��	� �→ L0(x)]

H � 〈L0, ������ y;s〉s ◦ 〈L1, t〉�x ◦ FS � H � 〈L1[x �→ L0(y)], t〉� ◦ FS [E-Return-Val]

H � 〈L0, ������;s〉s ◦ 〈L1, t〉� ◦ FS � H � 〈L1, t〉� ◦ FS [E-Return]

These transition rules are also quite standard. Rule [E-Frame] transitions the top-
most, active frame of a frame stack. Rule [E-Method-Exp] transitions a method invo-
cation. It first looks up in the heap the runtime type of the receiver. We make use of
another auxiliary function induced by correct program: mbody is a map from a type
and a method name to a method body and an annotated type signature. For example, we
write mbody(C,m) = mb: (σ x)→s φ, when the method m in class C is a synchronous
method, with formal parameters σ x, return type φ, and method body mb.

Rule [E-Method-Exp] applies when the receiver object supports method m and m
is a synchronous method. In this case, we push a new synchronous frame (labeled s)
on to the frame stack to execute the method body. Notice that we annotate the caller
frame with the identifier that is waiting for the return value (this will be used in rule
[E-Return-Val]). Rule [E-Method-Stmt] is similar except that m is a 	
��-returning
method, returning control. Note that the semantics of synchronous calls are the same
whether issued from a synchronous or asynchronous frame (� can be any label).

Rule [E-Return-Val] shows how a synchronous method returns a value to its caller.
The caller frame, 〈L1, t〉�x, is waiting for a value for local identifier x. The active syn-
chronous frame is popped and the caller frame becomes active and assigns the return
value to x. Rule [E-Return] is similar except that no value is returned and the caller
frame is not annotated with an identifier: the caller only expects control, not a value.

Pause ’n’ Play: Formalizing Asynchronous C� 245

Asynchronous method call/return transition rules:

H0 � 〈L0, y0=y1.m(z);s〉� ◦ FS [E-Async-Method]
� H1 � 〈L1, t〉a(o) ◦ 〈L0[y0 �→ o], s〉� ◦ FS
where H0(L0(y1)) = 〈ρ,FM 〉, mbody(ρ,m) = mb: (σ x)→a ψ, and mb = τ y; t

o �∈ dom(H0),H1 = H0[o �→ 〈ψ, running(ε)〉]
L1 = [x �→ L0(z), y �→ default(τ), ��	� �→ L0(y1)]

H0 � {〈L, ������ y;s〉a(o) ◦ FS} ∪ P [E-Async-Return]
� H1 � {FS} ∪ resume(F) ∪ P
where H0(o) = 〈Task<σ>, running(F)〉 and H1 = H0[o �→ 〈Task<σ>, done(L(y))〉]

H � 〈L, x=���	� y;s〉a(o) ◦ FS � H � 〈L[x �→ v], s〉a(o) ◦ FS [E-Await-Continue]
where H(L(y)) = 〈Task<σ>, done(v)〉
H0 � 〈L, x=���	� y;s〉a(o) ◦ FS � H1 � FS [E-Await]
where L(y) = o1,H0(o1) = 〈Task<σ>, running(F)〉

H1 = H0[o1 �→ 〈Task<σ>, running(〈L, x=y.GetResult();s〉a(o), F)〉]

H � 〈L, x=y.Result();s〉� → H � 〈L[x �→ v], s〉� [E-Result]
where H(L(y)) = 〈Task<σ>, done(v)〉
H � 〈L, x=y.Result();s〉� → H � 〈L, x=y.Result();s〉� [E-Result-Block]
where H(L(y)) = 〈Task<σ>, running(F)〉

H � 〈L, x=y.GetResult();s〉� → H � 〈L[x �→ v], s〉� [E-GetResult]
where H(L(y)) = 〈Task<σ>, done(v)〉

H0 � {〈L, x=Task.AsyncIO<γ>();s〉� ◦ FS} ∪ P [E-Async-IO]
� H1 � {〈L[x �→ o], s〉� ◦ FS} ∪ P ∪ {〈{y �→ v}, ������ y;〉a(o) ◦ ε}
where o �∈ dom(H0),H1 = H0[o �→ 〈Task<γ>, running(ε)〉] and v ∈ Values(γ)

These transition rules cover the new asynchronous features in C� 5.0. First we re-
call that task heap objects are of the form 〈Task<σ>, done(v)〉 for some value v, or
〈Task<σ>, running(F)〉 where F is a sequence of frames—we will refer to this se-
quence as the running state of the task heap object. (In reality these two forms are en-
coded as conventional objects using delegates for the frames.) Tasks are stateful: a task
heap object is created in initial state 〈Task<σ>, running(ε)〉, with no waiters; can tran-
sition from state 〈Task<σ>, running(F)〉 to 〈Task<σ>, running(Fo, F)〉, adding one
waiter, and may terminate in a completed state 〈Task<σ>, done(v)〉 for some value v
of type σ. Once completed, a task cannot change state again.

Rule [E-Async-Method] shows how to transition a call to an asynchronous method.
We create a fresh Task object in the heap (at address o), and set its state to be running.
Initially, there are no waiters for this task, so its running sequence is empty. We push a
new frame containing the method body on the frame stack and label it as asynchronous,
i.e., with the label a(o). The caller frame is updated with the heap address of the task in
its locals stack. Notice that the calling frame is not awaiting a value, just control.

[E-Async-Return] pops the active asynchronous frame, storing the return value
in the task. It also resumes any waiters (there may be zero or more). The operation

246 G. Bierman et al.

resume(F) is used to resume a sequence of suspended frames. It creates a bag of sin-

gleton frame stacks and is defined as resume(F)
def
= {〈L, s〉� ◦ ε | 〈L, s〉� ∈ F}.

Rule [E-Await-Continue] covers the case when a task being awaited is already com-
pleted. In this case we simply read out the value from the task and continue. Rule
[E-Await] covers the case when the task being awaited is still running. In this case we
need to pause the asynchronous method. Thus we pop the active asynchronous frame
from the frame stack and add it to the sequence of awaiters of the incomplete task. No-
tice that we unfold the ����� y to y.GetResult()—once resumed, the first thing the
frame will do is read the value from y’s (completed) task object in the shared heap.

Rule [E-Result] and [E-Result-Block] implement the in-built method Result on
tasks. If the task is completed then it returns the result; if it is running then it ‘blocks’
(which for simplicity we simulate by spinning, i.e. by transitioning to itself). In contrast,
rule [E-GetResult] implements GetResult. It too returns the result if the task is com-
pleted. However, if the task is incomplete, no rule applies and the configuration is stuck
(the implementation raises an exception). GetResult is non-blocking and partial.

Rule [E-Async-IO] models a prototypical asynchronous method. It immediately re-
turns a fresh, running task to be completed, with some value v, by a separate thread.

Process transition rules:

H � {ε} ∪ P � H � P [E-Exit]

H0 � {FS0} ∪ P � H1 � {FS 1} ∪ P if H0 � FS0 � H1 � FS1 [E-Schedule]

Recall that a process is a collection of frame stacks, i.e., threads. Rule [E-Exit] deletes
an empty frame stack from the process. Rather than formalizing a particular scheduler,
rule [E-Schedule] simply transitions a process by non-deterministically selecting and
transitioning a thread, possibly side-effecting the shared heap. Our semantics is an in-
terleaved semantics, allowing preemption at every atomic statement.

4 Correctness Properties

Given our formalization of FC�
5 we are able to prove some important correctness prop-

erties; specifically, type soundness. Interestingly, establishing these properties involves
non-trivial extensions of the conventional techniques [4]. In this section we give some
details of these extensions and the precise forms of the correctness properties; complete
details are given in a technical report.

The typical approach to proving type soundness involves extending the notion of type
checking to configurations, and then establishing preservation and progress properties.
However, for FC�

5 this is not strong enough—in particular to establish progress—we
have to consider not only type correctness but also crucial non-interference properties
of tasks; both those being executed on framestacks and also those that are waiters on
others tasks (and so are suspended in the heap). We also need to establish that the
stateful protocol of tasks described in §3.1—that tasks begin in an empty running state,
acquire waiters and then terminate in a done state (and never transition once in a done
state)—is preserved too.

Rather than combine the typing and non-interference properties into a single relation,
we keep them separate (at the expense of more verbose theorem statements). The rules

Pause ’n’ Play: Formalizing Asynchronous C� 247

for non-interference for processes, framestacks, frames, heaps and heap objects are
as follows.

Non-interference properties:

[Proc-ok]

� (H � FS0) ok · · · � (H � FSn) ok
∀i �= j ∈ {0..n}.taskIds (FS i)#taskIds(FS j)

� (H � {FS 0, . . . ,FSn}) ok

[EmpFS-ok]
H � ε ok

[FS-ok]
H � F ok H � FS ok taskIds(F)#taskIds(FS)

H � F ◦ FS ok

[SF-ok]
H � F s ok

[CSF-ok] H � F s ok
H � F s

x ok

[AF-ok]
Running(H(o)) ∀o1 ∈ dom(H).o �∈ runningIds(H(o1))

H � F a(o) ok

[H-ok]

∀o ∈ dom(H).H � H(o) ok
∀o1 �= o2 ∈ dom(H).runningIds(H(o1))#runningIds(H(o2))

� H ok

[HO-ok]
H � 〈C,FM 〉 ok [DTHO-ok]

H � 〈Task<σ>, done(v)〉 ok

[RTHO-ok]

∀i �= j ∈ {0..n}.taskIds (Fi)#taskIds(Fj)
∀i ∈ {0..n}.∀o ∈ taskIds(Fi).Running(H(o))

H � 〈Task<σ>, running(F0, . . . , Fn)〉 ok

We use a function taskIds(FS) which returns the task ids of a frame stack FS (i.e.,
the set of all object ids o found in asynchronous frame labels a(o) in the frame stack).
We also overload this function over frames. We use a function runningIds that returns
the task ids of the running state of a given task heap object. The predicate Running
tests whether the state of a task heap object is currently running.

Rule [Proc-ok] ensures that the task ids in the frame stacks in a process are pairwise
disjoint (we use the symbol # to denote disjointness). Rule [FS-ok] ensures that in a
frame stack the task ids are all distinct. Rule [AF-ok] ensures that any task id in an
asynchronous frame label is not included in the task ids of any running state in the
heap. Rule [H-ok] ensures that for all the task heap objects in the heap, the task ids of
the running states are disjoint. Rule [RTHO-ok] ensures that a given running task heap
object has no duplicate task ids in its running state, and that all task ids in its running
state refer to running (non-completed) tasks.

We also define a relation between heaps that preserves the typing of the heap objects
and also enforce non-interference of any new running state whilst bounding the task ids
of any new running state.

Definition 1 (Heap evolution). Heap H0 evolves to H1 wrt a set of task ids S, written
H0 ≤S H1 if (i) ∀o ∈ dom(H1). if o ∈ dom(H0) and H1(o1) = 〈ψ, running(F)〉
then F = ε, and (ii) ∀o ∈ dom(H0). if H0(o) = 〈C,FM 0〉 then H1(o) = 〈C,FM 1〉, if
H0(o) = 〈ψ, done(v)〉 then H1(o) = 〈ψ, done(v)〉, and if H0(o) = 〈ψ, running(F0)〉
then H1(o) = 〈ψ, running(F1, F0)〉, taskIds(F0)#taskIds(F1) and taskIds(F1) ⊆ S.

248 G. Bierman et al.

We also have typing relations for processes, framestacks, frames and heaps, written
� (H � P): �,H � FS :φ0 → φ1, H � F :φ0 → φ1 and � H : �, respectively. Space
prevents us from giving definitions of these relations, but they are routine.

Theorem 1 (Preservation). If � H0: � and � H0 ok then:

1. If Γ ;H0 � F0:φ0 → φ1, H0 � F0 ok and H0 � F0 → H1 � F1 then � H1: �,
� H1 ok, Γ ;H1 � F1:φ0 → φ1, H1 � F1 ok and ∀S.H0 ≤S H1.

2. If H0 � FS 0:φ0 → φ1, H0 � FS 0 ok and H0�FS 0 � H1 �FS1 then � H1: �,
� H1 ok, H1 � FS1:φ0 → φ1, H1 � FS 1 ok and H0 ≤taskIds(FS0) H1.

3. If � (H0 � P0): �, � (H0 � P0) ok and H0 � P0 � H1 � P1 then � H1: �,
� H1 ok, � (H1 � P1): � and � (H1 � P1) ok.

Proof. Part (1) is proved by case analysis on H0 � F0 → H1 � F1. Part (2) is proved
by induction on the derivation of H0 � FS0 � H1 � FS 1 and part (1), and part (3) by
induction on the derivation of H0 � P0 � H1 � P1 and part (2).

Theorem 2 (Progress). If � (H0 � P0): � and � (H0 � P0) ok then

1. H0 � P0 � H1 � P1, for some H1, P1; or
2. for all FS ∈ P0, one of the following holds:

(a) FS = 〈L, return x;t〉s ◦ ε.
(b) FS = 〈L, y=x.m(z);t〉l ◦ FS ′, or FS = 〈L, x.m(z);t〉l ◦ FS ′, or FS =

〈L, y=x.f;t〉l ◦ FS ′, or FS = 〈L, x.f=y;t〉l ◦ FS ′, where L(x) = null.
(c) FS = 〈L, y=await x;t〉a(o) ◦ FS ′, where L(x) = null.
(d) FS = 〈L, ε〉l ◦ FS ′.
(e) FS = 〈L, y=x.GetResult();t〉l ◦ FS ′, where L(x) = o and

H(L(x)) = 〈Task<τ>, running(F)〉.
The progress theorem states a well-formed process can either transition or must en-
tirely consist of stacks in terminal or stuck states (the latter includes the case P0 = {}).
Case 2a, a terminal state, can only arise from finishing a call to a program’s non-	
��
main method. Cases 2b–2c are familiar and new expected stuck states due to ����

references. Case 2d is excluded by applying C�’s restriction that all control paths in
a (non-	
��) method body contain a ����� statement [12, §8.1]. Note that an asyn-
chronous ����� x;t is never stuck due to the enclosing frame’s task being in an unex-
pected done() state; this potential case is ruled out by � H0�P0 ok. Interestingly, we
could also rule out case 2e by simply excluding any occurrences of GetResult in the
original program; although the formal details are beyond the scope of this paper. With
this restriction, the only occurrences of GetResult arise from the [E-Await] transition.
These frames are only resumed by the rule [E-Async-Return] which also transitions
the state of the task object to done(v). We can also show a property that no transition
rule changes the state of a task that is completed back to running. These two properties
allow us to show that case 2e does not arise for GetResult-free source programs.

5 Extensions

5.1 Extension 1: Optimized, One-Shot Semantics

The semantics presented so far is idealized: when an asynchronous frame is suspended
to await a task, rule [E-Await] appends a copy of the frame to the task’s list of waiters.

Pause ’n’ Play: Formalizing Asynchronous C� 249

At first glance, the act of copying the frame appears to require an expensive allocation
of a fresh frame to store its contents. Notice, however, that frames are never duplicated:
after copying the frame, [E-Await] pops the active frame, discarding it to proceed with
its continuation, the calling stack FS . Since frames are used in a linear fashion, the ex-
pensive allocation on each suspend is entirely avoidable. The trick to avoiding repeated
allocation is to allocate just one container for each asynchronous frame and destruc-
tively update its contents at each suspension of that frame.

The C� 5.0 implementation does just this, representing a suspended frame on the heap
as a “stateful” delegate of type Action. Delegates [12, Chapter 15] are just closures,
containing the address of some environment and the address of some static code taking
the environment as a first argument. Both addresses are immutable. The state of the
frame is therefore maintained, not directly in the closure, but in its environment. To
achieve this, the environment itself has mutable fields that store the current values of
the frame’s locals, its associated task, and the current state of the finite state machine.
All read and writes of locals in the original code are compiled to indirected operations
on fields of the environment. The delegate’s code pointer just contains the fixed code
interpreting the frame’s state machine.

In this section, we formalize a high-level abstraction of this implementation. Our for-
malization makes the more efficient, destructive update explicit without descending all
the way to the low-level representation of closures used in the concrete implementation.
To do so, we require a new reference type, the delegate type Action. In our semantics,
if not in the actual implementation, the heap representation of an action is just an object
whose mutable state is a frame, containing some locals and statements. The locals map
contains the current values of local variables. The statements represent the frame’s orig-
inal body in some state of unfolding, i.e., the frame’s current “program counter”. This
allows us to adequately represent a paused frame, without exposing the compilation de-
tails of its encoding as a C� 4.0 delegate with a fixed pointer to a mutable environment
and static code. Making this change also paves the way for our formalization of the
awaitable pattern in §5.2.

First, we must extend FC�
5 with the Action type and syntax for invoking an action:

FC�
5 additional types and statements:

ρ ::= . . . | Action Delegate reference type
s ::= . . . | a(); Action invocation statement

We also need to extend and adjust our run-time representations. Action is a new
reference type so action values are just addresses of objects in the heap. An Action

object, 〈Action, F 〉, contains a (mutable) frame F , storing locals, statements and la-
bel of a suspended frame. We also need to modify tasks to track, not waiting frames
(running(F)), but waiting actions, represented as a sequence of addresses (running(o)).
Thus a running task will have representation 〈Task<σ>, running(o)〉; completed tasks
remains the same. The form of an asynchronous label, placed on frames, is now a(o1, o2).
The new label carries not one but two addresses: the address of the frame’s task, o1, as
before, and a second address, o2, of an action. The action stores the previous state of
the frame; recording its address in the frame label indicates where to save the next state
of the frame prior to suspending.

250 G. Bierman et al.

Completing a task will need to resume a list of actions, not frames, so we adapt the
definition of resume(o) to set up appropriate synchronous stubs, one per action in o:

resume(o)
def
= {〈{x �→ oi}, x();�����; 〉s ◦ ε | oi ∈ o}.

Asynchronous method transition rules (One-shot semantics):

H � 〈L, x();s〉� ◦ FS � H � F ◦ 〈L, s〉� ◦ FS [E-Action-Invoke]
where H(L(x)) = 〈Action, F 〉

H0 � 〈L0, y0=y1.m(z);s〉� ◦ FS [E-Async-MethodOS]
→ H1 � 〈L1, t〉a(o1,o2) ◦ 〈L0[y0 �→ o1], s〉� ◦ FS
where H0(L0(y1)) = 〈σ0,FM 〉 and mbody(σ0,m) = mb: (σ x) →a ψ

mb = τ y; t and o1, o2 �∈ dom(H0), o1 �= o2
H1 = H0[o1 �→ 〈ψ, running(ε)〉, o2 �→ 〈, 〉Action〈L1, t〉a(o1,o2)]
L1 = [x �→ L0(z), y �→ default(τ), ��	� �→ L0(y1)]

H0 � {〈L, ������ y;s〉a(o1,o2) ◦ FS} ∪ P [E-Async-ReturnOS]
� H1 � {FS} ∪ resume(o) ∪ P
where H0(o1) = 〈Task<σ>, running(o)〉

H1 = H0[o1 �→ 〈Task<σ>, done(L(y))〉, o2 �→ 〈Action, 〈L, s〉a(o1,o2)〉]

H � 〈L, x=���	� y;s〉a(o1,o2) ◦ FS [E-Await-ContinueOS]
� H � 〈L[x �→ v], s〉a(o1,o2) ◦ FS where H(L(y)) = 〈Task<σ>, done(v)〉
H0 � 〈L, x=���	� y;s〉a(o1,o2) ◦ FS � H1 � FS [E-AwaitOS]
where L(y) = o3,H0(o3) = 〈Task<σ>, running(o)〉

H1 = H0[o3 �→ 〈Task<σ>, running(o2, o)〉,
o2 �→ 〈Action, 〈L, x= GetResult(y); s〉a(o1,o2)〉]

Rule [E-Action-Invoke] formalizes the invocation of an action, similar to a method
call. Notice that the entire frame, including label, is restored from the heap. In particular,
an asynchronous frame will continue to signal completion through its task and have
access to its action (for future suspension, if needed).

Rule [E-Async-MethodOS] is similar to [E-Async-Method] but it additionally al-
locates a new Action, storing the initial state of the asynchronous method. The address
of the action, o2, is recorded in the extended label of the pushed frame.

Rule [E-Async-ReturnOS] is similar to [E-Async-Return], completing the asyn-
chronous frame’s task. Though it is not necessary, we save the current locals and con-
tinuation of the �����, s, in the frame’s Action. For this simple semantics, it should
be possible to show that this action can never be invoked again.6

Rule [E-Await-ContinueOS] is almost identical to [E-Await-Continue], continuing
execution of the current frame with the argument’s result. The only difference is the ex-
tended label. There is no need to update the value of o2 at this point. Rule [E-AwaitOS]
is similar to [E-Await], but the suspend mechanism is different. This rule writes the
frame’s current state, locals and continuation, to its associated action, stored at ad-
dress o2, available from the frame’s label. It then adds the address of that action to the

6 When we add support for the awaitable pattern, the potential for abuse of the awaitable proto-
col, will mean that this property no longer generally holds.

Pause ’n’ Play: Formalizing Asynchronous C� 251

incomplete task’s list of waiters. Notice how the state of the action in the heap is de-
structively modified - there is no way to “go back” to a previous state of this frame.

Consider rule [E-Async-MethodOS]. It directly pushes a new asynchronous frame
and assigns its task, o1, to the caller’s variable, y0. An alternative formulation would be
to push a synchronous stub that invokes the new action, o2, and then returns the task, o1,
to the waiting caller. This would be less direct, but equivalent, and somewhat more faith-
ful to the actual implementation. For example, the implementation of CopyToManual
from §2.1 is essentially a stub method that, when called, invokes its internal delegate,
act(), before returning its task.

At this point, the change to using mutable state to represent suspended frames is
just an optimization. The reason is that user-code is never provided with access to a
suspended frame, so the change in semantics cannot be observed.

5.2 Extension 2: The Awaitable Pattern

As detailed in §2, in C� 5.0 it is possible to await not just tasks, but values of any
awaitable type. Our formalization has assumed that the only awaitable type is Task<σ>.
In this section, we embrace the full awaitable pattern, replacing rule [C-Await] with:

New typing rule for awaitable expressions ([C-Awaitable])

mtype(σ0, GetAwaiter) = ()→ σ1 mtype(σ1, IsCompleted) = () → ����

mtype(σ1, OnCompleted) = (Action)→ ��	� mtype(σ1, GetResult) = ()→ σ2

Γ, x:σ0 � ���	� x:σ2

We simplify C� 5.0 and assume the property IsCompleted is an ordinary method;
the distinction between methods and properties is entirely cosmetic so nothing is lost.

In the transition semantics ����� expressions can no longer transition atomically
but must, instead, be evaluated in multiple steps. These steps commence with obtaining
the argument’s awaiter and proceed with calls to the awaiter’s members, thus interleav-
ing (potentially) user-defined code with the semantics of the ����� construct. Rule
[C-Awaitable] statically ensures that these dynamic unfoldings are well-typed.

But first, we need to arrange that tasks are awaitable and implement the remain-
ing requirements of the awaitable pattern. Our system already provides an appropri-
ate GetResult for tasks; we are left with providing GetAwaiter,IsCompleted and
OnCompleted, ascribed with the following types:

mtype(Task<σ>, GetAwaiter) = ()→ Task<σ>
mtype(Task<σ>, IsCompleted) = ()→ ����

mtype(Task<σ>, OnCompleted) = (Action)→ ��	�

mtype(Task<σ>, GetResult) = ()→ σ

To avoid hard-wiring C� 5.0’s generic TaskAwaiter<σ> type, we simplify the C� 5.0
design and assume that Task<σ> is self-sufficient and serves as its own awaiter type.
Correspondingly,x.GetAwaiter()’s type is just the type of task x; its implementation,
by rule [E-Task-GetAwaiter] below, just returns the receiver.

252 G. Bierman et al.

Additional transition rules for ����’s awaitable operations:

H � 〈L, x=y.GetAwaiter();s〉� [E-Task-GetAwaiter]
→ H � 〈L[x �→ L(y)], s〉� where H(L(y)) = 〈Task<σ>,FM 〉

H � 〈L, x=y.IsCompleted();s〉� [E-Task-IsCompleted]
→ H � 〈L[x �→ ����], s〉� where H(L(y)) = 〈Task<σ>, done(v)〉
→ H � 〈L[x �→ �����], s〉� where H(L(y)) = 〈Task<σ>, running(o)〉

H0 � 〈L, x.OnCompleted(y);s〉� → H1 � 〈L, s〉� [E-Task-OnCompleted-Suspend]
where L(x) = o1 and H0(o1) = 〈Task<σ>, running(o)〉

L(y) = o2 and H1 = H0[o1 �→ 〈Task<σ>, running(o2, o)〉
H � {〈L, x.OnCompleted(y);s〉� ◦ FS} ∪ P [E-Task-OnCompleted-Resume]
� H � {〈L, s〉� ◦ FS} ∪ resume(o) ∪ P
where H(L(x)) = 〈Task<σ>, done(v)〉 and L(y) = o

Task’s implementation of IsCompleted() tests the state field of the receiver, return-
ing ��� if and only if it is done(). The implementation of OnCompleted(y) adds
its callback y (an Action), to the receiver’s list of waiters. If the task is already com-
pleted, the action cannot be stored and must, instead, be resumed in the process. The
latter rule is required since there is a race between testing that a task IsCompleted(),
finding it is ����, and calling OnCompleted(y)—some other thread could intervene
and complete the task before OnCompleted(y) executes.

We can now formalize the operational semantics of ����� on any awaitable. Because
we need to interleave the execution of methods from the awaitable pattern—which take
several transitions and could be user-defined—with the semantics of �����, we need
to introduce two additional, transient control statements that can only appear within
asynchronous frames.

FC�
5 additional control statements:

s ::= . . . | suspend; | getcc(Action a){s}; suspend & get-current-continuation statements

Though artificial, these statements have direct interpretations as intermediate steps of a
compiler generated finite-state-machine.7

We define unfold(x = ����� y; s)(z,b) to be the syntactic unfolding of an ����� as
a new sequence of statements using temporaries z and b (note a is bound):

unfold(x = ���	� y; s)(z,b)
def
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

z = y.GetAwaiter();
b = z.IsCompleted();
	� (b) {} ����

{ getcc(Action a){z.OnCompleted(a);suspend;};}
x = z.GetResult();
s

The operation unfolds an ����� of an awaitable object y by first retrieving its awaiter z
and setting b to determine if the awaiter is complete. If complete, the code falls through

7 For example, in our hand-coded CopyToManual from §2.1, suspend corresponds to a
������; from the act delegate that pauses execution (cases 1 and 2 of the switch);
getcc(Action a){s}; corresponds to advancing the (shared) state variable to the next log-
ical state (following getcc(Action a){s};) and accessing the task’s state machine (act).

Pause ’n’ Play: Formalizing Asynchronous C� 253

the conditional. If incomplete, the code transfers the current continuation of the getcc
statement to z (through a) and suspends. The continuation of both the ��� branch and
the getcc statement is just x = z.GetResult();s. It assigns the result of the awaiter to
x, and proceeds with the original continuation s of the �����.

Awaitable pattern, asynchronous method transition rules:

H0 � 〈L0, x=���	� y;s〉a(o1,o2) [E-Awaitable]
→ H0 � 〈L1, unfold(x = ���	� y; s)(z,b)〉a(o1,o2)
where L1 = L0[z �→ ����, b �→ �����] and z, b �∈ dom(L0), z �= b

H0 � 〈L, getcc(Action a){s};t〉a(o1,o2) → H1 � 〈L[a �→ o2], s〉a(o1,o2) [E-GetCC]
where a �∈ dom(L) and H1 = H0[o2 �→ 〈Action, 〈L, t〉a(o1,o2)〉]

H � 〈L, suspend;s〉a(o1,o2) ◦ FS � H � FS [E-Suspend]

Rule [E-Awaitable] unfolds its await expression using fresh temporaries, z and b. In
rule [E-GetCC], getcc(Action a){s} unfolds by first saving its continuation t in the
frame’s task, o2, discarding it from the active frame, and then entering the body s. When
s is just z.OnCompleted(a);suspend;, as per rule [E-Awaitable], s will transfer the
current continuation to the awaiter and suspend.

In rule [E-Suspend] the suspend control statement pauses the asynchronous frame.
This is similar to a �����, but the frame’s task is not marked completed and remains
in its current state. One might expect this state to be running() but it may not be,
depending on the semantics of OnCompleted.

Although our semantics unfolds �����s dynamically, it is possible to statically ex-
pand well-typed ����� expressions by a source-to-source translation, sketched here:

[x = ���	� y; s0]
Γ def

= (Γ1, s2) where mtype(Γ (y),GetAwaiter) = ()→ σ1

(Γ1, s1) = [s0]
Γ,z:σ1,b:����

s2 = unfold(x = ���	� y; s1)
(z,b)

b, z �∈ dom(Γ), b �= z

[s; s]Γ
def
= . . .

This translation must be type-directed (in order to determine awaiter types) and needs
to produce a new context as well as the list of statements in order to properly account
for generated variables. Notice, however, that it is finite and does not need to duplicate
the input continuation s0, making it suitable for compile-time expansion.

���
�����’s one-shot Restriction, Explained. Once we add the awaitable pattern
to the mix, the optimization described in §5.1 becomes a proper change to the semantics,
with observable consequences. The culprit is the awaitable pattern’s OnCompleted(a)
method since it provides user-code with access to the one-shot continuation, a, of the
frame, represented not as a pure value but as a stateful object. Recall that our informal
description of the awaiter pattern stipulated that implementations of OnCompleted are
required to invoke their action at most once. The reason why should now be clear. In-
voking the action will resume the frame and potentially modify the action’s state. In our
semantics, the update would happen at the next suspension. In the real implementation,

254 G. Bierman et al.

the update would happen at the next write to some notionally local, but actually shared,
variable of the frame. Two concurrent invocations of the same action have unpredictable
behaviour: each would race to save its next, possibly different state in the same action.
Frame execution depends on the shared heap, modified non-deterministically by rule
[E-Schedule], so two invocations could very easily reach different states.

As it happens, when extended with the awaitable pattern, even the simpler, copying
semantics cannot tolerate multiple invocations of a continuation, but the reason is more
subtle. In the copying semantics, even a copy of a frame is inherently stateful because
its label will contain a reference to the original frame’s task. Allocated on the heap,
this task is shared state: several invocations of the same continuation would race, with
possibly different results, to complete the very same task on exit. Part of the semantics
of tasks is that they should complete at most once. This invariant is violated by any
abuse of one-shot continuations, as enabled by the awaitable pattern.

6 Related Work

The debate regarding how asynchronous software should be structured is both old and
ongoing. Lauer and Needham [14] noted that the thread-based and event-based models
are dual; a program written in one style can be transformed into a program written in
the other style. Though this establishes that the two models are equivalent in expressive
power, it does not resolve the question of which model is easier to use or reason about.

Ousterhout [17] famously stated that “threads are a bad idea (for most programs).”
His argument revolves around the claim that threads are more difficult to program
than events because the programmer must reason about shared state, locks, race con-
ditions, etc., and that they are only necessary when true concurrency–in contrast to
asynchrony—is desired. Though he conflates the threaded model of programming, in
which there is no inversion of control, with concurrency, his observation that the pro-
grammer should be able to reason about the operation of code is well-taken.

SEDA [25] demonstrates that the event model can be highly scalable. Servers de-
signed using SEDA are broken into separate stages with associated event queues. Each
stage automatically tunes its resource usage and computation to meet application-wide
performance goals. Within each stage multiple threads may process events, but these
threads are utilized only for concurrency. The programmer still has to manually manage
the state associated with each event. SEDA’s goal is to provide a self-tuning architecture
that adapts to overload conditions, not to make programming servers easier.

The dual argument in favor of threads over events is made by von Behren et al. [22].
They tease apart the different aspects of threads that may make them undesirable and ar-
gue that most of these deficiencies are merely implementation artifacts. Capriccio [23]
demonstrates that this is the case by providing a very efficient cooperative thread-
ing mechanism that avoids inversion of control and provides an efficient runtime. Be-
cause it uses cooperative threading, Capriccio avoids the overhead of concurrency,
and code transformations to insert stack checks allow threads’ stacks to grow without
requiring large amounts of pre-allocated stack space. Like Capriccio, asynchronous C�

allows programs to be written in a natural way while providing an efficient implementa-
tion. However, instead of attempting to provide a general cooperative threading mech-
anism, it permits programmers to write asynchronous code in a straight-line fashion by

Pause ’n’ Play: Formalizing Asynchronous C� 255

automating stack-ripping [1] via compilation to a state machine. Like the state machine
translation C� employs, it is reminiscent of simpler coroutine implementations [21,7]
built on Duff’s device [6] that, however, make no attempt to maintain local state.

The observation that continuations provide a natural substrate on which to build a
threading mechanism was made by Wand [24]. The observation that more restrictive,
but more efficient, one-shot continuations suffice for continuation based threading dates
back to [5]. Li and Zdancewic [15] use continuations to unify the event and thread-
based models. They leverage the continuation monad in Haskell to allow programmers
to write straight line code that is desugared into continuation passing style (CPS), thus
allowing it to be used in an event-based IO framework they construct.

The computation expressions [20] of F� provide a generalized monadic syntax, which
is essentially an extended form of Haskell’s do-notation. When specialised to F�’s asyn-
chronous workflow monad—itself a continuation monad—they allow programmers to
write monadic code that is syntactically expanded to explicit continuation-passing-code.
This offers much of the legibility of programming in direct-style while, at the same
time, providing access to the implicit continuations (as F� functions) whenever required
(e.g., when supplying callbacks to asynchronous calls). The generality of computation
expressions has a cost: each continuation of a monadic let is a heap-allocated function;
and every wait on an asynchronous value typically requires an expensive allocation of
a fresh continuation. This is similar to our idealized semantics in §3. The upshot is that
these continuations can, in principle, be invoked several times, allowing the encoding
of a much wider range of control operators than the one-shot actions of C�’s feature.
But there are more differences. In F�, computation expressions produce inert values that
are easily composed but must be explicitly run to produce a result. In C�, on the other
hand, each task returned by an async method call represents a running computation.
This makes it easier to initiate asynchronous work but, perhaps, harder to define combi-
nators that compose asynchronous methods. Though inspired by F�, C� 5.0 support for
asynchrony is quite different in performance, expressivity and usage.

Scala actors [11] provide an asynchronous, message passing model for program-
ming with concurrent processes. Asynchronous programs may be written in terms of
receive, which suspends the current thread until a message is received, or react, which
enqueues a continuation that is called when a message is received; receive provides
a thread-based interface and react provides an event-based interface to an underlying
message passing framework. Although the two programming models are made sim-
ilar through the use of various combinators, the programmer must still significantly
modify code to move between styles. Rompf et al. [19] use a type and effect sys-
tem to selectively CPS convert Scala programs, providing a less onerous path from
threads to event-based asynchronous code, but C� 5.0’s ����� keyword is even more
lightweight.

Despite Ousterhout’s early admonition that reasoning about threads is difficult and
error-prone, none of the work mentioned makes an explicit attempt to provide program-
mers with a set of reasoning principles for asynchronous code. Although we believe
C�’s support for asynchrony exists at a useful point in the design space, our focus is on
providing these reasoning principles. Threads or events, manual stack ripping or CPS,
a programmer must have clear ways to reason about code behavior in order to build
correct systems of any kind.

256 G. Bierman et al.

7 Conclusions

Real-world software construction demands effective methods for dealing with asyn-
chrony. For such a method to be termed “effective,” it must not require large-scale,
manual code transformations such as stack ripping. Sequential computations should
be expressible with sequential code, even if individual operations may execute asyn-
chronously. Splitting sequential code up into a series of callbacks or explicitly rewrit-
ing it as a state machine is a steep price to pay, making code difficult to write, difficult
to read, and difficult to reason about; if in doubt, contrast the synchronous, �����-
enabled, and hand-written state machine versions of the stream copying function from
§2.1. While previous work has provided syntactic and library support for dealing with
asynchrony, C� 5.0 brings this support to a widely-deployed, mainstream language.

One deficiency of this previous work is a lack of reasoning principles for asyn-
chronous code. Our primary contribution is an operational semantics for C� 5.0 that
allows programmers to answer questions about the code they write and make conclu-
sions about the impact of adding asynchrony to their code. For example, using our
semantics, the programmer can see that calling an ����� method does not spawn a
new thread, but instead executes the method on the current stack. With the optimized
semantics in §5.1, one can even begin to reason about space usage by, e.g., observing
that the state of an ����� method is always stored in the same Action, allocated just
once.

We plan to continue our formalization of C� 5.0 by incorporating additional lan-
guage features, such as cancellation tokens and synchronization context object—we
have already formalized exceptions and their interaction with �����, but due to space
restrictions this formalization, as well as an asynchronous tail-call optimization, is only
available in a separate tech report.Our semantics have been translated to Coq. We will
use this as a foundation to validate a translation from Featherweight C� 5.0—including
the ����� construct—to Featherweight CIL, an idealized version of the bytecode tar-
geted by the C� 5.0 compiler. Validation of this translation will prove that programmers
can reason in terms of our high-level operational semantics even though the high-level
program has been translated to bytecode and it is the bytecode that is actually executed.

While syntax is important for easing the pain of writing asynchronous code, a corre-
sponding semantics is vital for writing correct software. With our semantics, C� 5.0 both
provides relief and the necessary tools for thinking carefully about the remedy.

Acknowledgements. We thank the C� and Visual Basic teams for their collaboration,
especially Lucian Wischik who led much of the design and implementation effort.

References

1. Adya, A., Howell, J., Theimer, M., Bolosky, W.J., Douceur, J.R.: Cooperative task manage-
ment without manual stack management. In: Proceedings of USENIX (2002)

2. Bierman, G., Meijer, E., Torgersen, M.: Lost in translation: Formalizing proposed extensions
to C�. In: Proceedings of OOPSLA (2007)

3. Bierman, G., Meijer, E., Torgersen, M.: Adding Dynamic Types to C�. In: D’Hondt, T. (ed.)
ECOOP 2010. LNCS, vol. 6183, pp. 76–100. Springer, Heidelberg (2010)

4. Bierman, G., Parkinson, M., Pitts, A.: MJ: An imperative core calculus for Java and Java
with effects. Technical Report 563, University of Cambridge Computer Laboratory (2003)

Pause ’n’ Play: Formalizing Asynchronous C� 257

5. Bruggeman, C., Waddell, O., Dybvig, R.K.: Representing control in the presence of one-shot
continuations. In: Proceedings of PLDI (1996)

6. Duff, T.: Re: Explanation, please! (August 1988), USENET Article
7. Dunkels, A., Schmidt, O., Voigt, T., Ali, M.: Protothreads: Simplifying Event-Driven pro-

gramming of Memory-Constrained embedded systems. In: Proceedings of SenSys (2006)
8. Fischer, J., Majumdar, R., Millstein, T.: Tasks: language support for event-driven program-

ming. In: Proceedings of PEPM (2007)
9. Flanagan, C., Sabry, A., Duba, B., Felleisen, M.: The essence of compiling with continua-

tions. In: Proceedings of PLDI (1993)
10. Flatt, M., Krishnamurthi, S., Felleisen, M.: A programmer’s reduction semantics for classes

and mixins. Technical Report TR-97-293, Rice University (1997)
11. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based programming.

Theoretical Computer Science 410(2-3), 202–220 (2009)
12. Hejlsberg, A., Torgersen, M., Wiltamuth, S., Golde, P.: The C� Programming Language, 4th

edn. Addison-Wesley (2011)
13. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: A minimal core calculus for Java and

GJ. ACM TOPLAS 23(3), 396–450 (2001)
14. Lauer, H.C., Needham, R.M.: On the duality of operating system structures. Operating Sys-

tems Review 13(2), 3–19 (1979)
15. Li, P., Zdancewic, S.: Combining events and threads for scalable network services. In: Pro-

ceedings of PLDI (2007)
16. Microsoft Corporation. C# language specification for asynchronous functions (2011),

http://msdn.microsoft.com/en-us/vstudio/async

17. Ousterhout, J.K.: Why threads are a bad idea (for most purposes). In: USENIX Winter Tech-
nical Conference, Invited Talk (June 1996)

18. Pierce, B., Turner, D.: Local type inference. In: Proceedings of POPL (1998)
19. Rompf, T., Maier, I., Odersky, M.: Implementing first-class polymorphic delimited continu-

ations by a type-directed selective CPS-transform. In: Proceedings of ICFP (2009)
20. Syme, D., Petricek, T., Lomov, D.: The F# Asynchronous Programming Model. In: Rocha,

R., Launchbury, J. (eds.) PADL 2011. LNCS, vol. 6539, pp. 175–189. Springer, Heidelberg
(2011)

21. Tatham, S.: Coroutines in C (2000),
http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html

22. von Behren, R., Condit, J., Brewer, E.: Why events are a bad idea (for high-concurrency
servers). In: Proceedings of HotOS (2003)

23. von Behren, R., Condit, J., Zhou, F., Necula, G.C., Brewer, E.: Capriccio: scalable threads
for internet services. In: Proceedings of SOSP (2003)

24. Wand, M.: Continuation-based multiprocessing. In: Proceedings of LISP and Functional Pro-
gramming (1980)

25. Welsh, M., Culler, D., Brewer, E.: SEDA: an architecture for well-conditioned, scalable in-
ternet services. In: Proceedings of SOSP (2001)

http://msdn.microsoft.com/en-us/vstudio/async
http://www.chiark.greenend.org.uk/~sgtatham/coroutines.html

Lightweight Polymorphic Effects

Lukas Rytz, Martin Odersky, and Philipp Haller

EPFL, Switzerland
first.last@epfl.ch

Abstract. Type-and-effect systems are a well-studied approach for rea-
soning about the computational behavior of programs. Nevertheless,
there is only one example of an effect system that has been adopted
in a wide-spread industrial language: Java’s checked exceptions. We be-
lieve that the main obstacle to using effect systems in day-to-day pro-
gramming is their verbosity, especially when writing functions that are
polymorphic in the effect of their argument. To overcome this issue,
we propose a new syntactically lightweight technique for writing effect-
polymorphic functions. We show its independence from a specific kind
of side-effect by embedding it into a generic and extensible framework
for checking effects of multiple domains. Finally, we verify the expres-
siveness and practicality of the system by implementing it for the Scala
programming language.

1 Introduction

Type-and-effect systems are a well understood and widely used approach in
the research literature for reasoning about computational effects. Originally de-
signed to delimit the scope of dynamically allocated memory [21], the technique
has been applied to various kinds of effects such as exceptions [8], purity [18],
atomicity [1] or parallel programming [2]. Marino et al. [14] factor out the com-
monalities of different effect systems into a generic framework.

However, when taking a look at the most wide-spread programming languages
used in industry, there is only one example of an effect system that has been
put into practice: Java’s checked exceptions. In addition, this particular system
has earned a lot of critique about its verbosity and lack of expressiveness ([10],
[22]), which in turn influenced language designers not to put effect systems into
their languages ([10], [16]).

We believe that the fundamental property that makes effect systems expressive
enough to be useful in everyday programming is effect-polymorphism. Functions
are often implemented using delegation, by calling functions they receive as
argument, and therefore the effect of a function can depend on the effect of its
arguments. Polymorphic effect systems have been around for more than 20 years
[13], and within limits,1 Java also supports methods that are polymorphic in the
thrown exception type.

1 It is only possible to abstract over a fixed number of exception types

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 258–282, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Lightweight Polymorphic Effects 259

abstract class List<T> {

public <U> List<U> mapM(Function<T, U> f) throws Exception

public <U, E extends Exception> List<U> mapP(FunctionE<T, U, E> f) throws E

}

This example shows two higher-order methods mapM and mapP in Java. The
monomorphic version mapM can only accept functions with arbitrary effects as ar-
gument if it declares the effect throws Exception. The second version is polymor-
phic in the exception type of its argument function. Note that also the function
type FunctionE has to be extended with an explicit exception type parameter.

The crucial issue is that writing effect-polymorphic methods results in code
which is syntactically heavy and hard to understand. Also, polymorphism is tied
to one specific effect domain: adding a new kind of effect system to Java would
often also require to integrate a new syntax for effect-polymorphism.

In this paper, we propose a pragmatic and expressive new way for writing
effect-polymorphic code. We present a system for lightweight polymorphic effect
checking with the following contributions:

– We propose a syntax for writing effect-polymorphic functions which is as
lightweight as writing an ordinary, monomorphic function, without the need
for explicit effect parameters.

– To support these functions in the type system, we introduce a new kind of
function type for effect-polymorphic functions. These types co-exist with or-
dinary function types. In a monomorphic function type T

e=⇒ U , the latent
effect, the effect that might occur when the function is invoked, is anno-
tated as e. For an effect-polymorphic function type T

e−→ U , the latent effect
consists of both e and the latent effect of its argument type T .

– We embed the new kind of functions into a generic effect checking framework
which is independent of a specific effect domain. This extends the generic
effect system proposed in [14] with effect-polymorphism. The framework is
extensible and allows checking multiple kinds of effects at the same time,
given a description of each effect domain. We show that every effect domain
profits from the effect-polymorphism available through the framework.

– The described framework is implemented as a compiler plugin for the Scala
programming language. We added effect checking for exceptions and success-
fully applied polymorphic effects to the core of the Scala collections library.

The rest of this paper is structured as follows. Section 2 gives an informal
overview of the system, Section 3 presents the formalization, in Section 4 we
report our practical experience, Section 5 discusses related work and Section 6
concludes.

2 Overview

In this section, we give an informal overview of our polymorphic type-and-effect
system and we show that it constitutes a pragmatic and practical compromise
between syntactic simplicity and expressivity.

260 L. Rytz, M. Odersky, and P. Haller

2.1 Effect-Polymorphic Function Types

The main idea of our type-and-effect system is to introduce a new kind of function
type which, by definition, denotes effect-polymorphic functions. A function is
said to be effect-polymorphic if its latent effect, the effect that occurs when the
function is applied, depends on the effect of its argument. To give an example,
we define a simple higher-order function hof which applies its argument function
to the constant 1.

val hof = (f: Int ⇒ Int) → f 1

Intuitively, the effect of applying hof to a function f depends on the effect of
the argument f. For instance, if “f = (x: Int) ⇒ x + 1” is a pure function,2
then the invocation of hof does not have any side-effect. But if we apply it to a
function “f = (x: Int) ⇒ throw ex” that throws an exception, then so does the
invocation. We therefore conclude that the function hof is effect-polymorphic in
its argument function f.

To differentiate between effect-polymorphic and ordinary, effect-monomorphic
functions, we use two kinds of arrows in function types. The double arrow ⇒
is used for ordinary function types. For instance, the function (x: Int) ⇒ x + 1

has type Int
⊥=⇒ Int. The effect annotation on the arrow denotes the latent effect

of the function, the effect that may occur when the function is applied. The
symbol ⊥ denotes purity. If the effect annotation is omitted, the largest possible
effect � is assumed.

An effect-polymorphic function type, such as the type of hof, is expressed with
a single arrow →. Like ordinary function types, also polymorphic function types
are annotated with an effect, however the default effect when the annotation is
omitted is ⊥. So the function hof has the following type:

hof: (Int
�=⇒ Int)

⊥−→ Int // equivalent to (Int ⇒ Int) → Int

The crucial property of an effect-polymorphic function type is that its latent
effect consist of two components:

– The annotated effect, an effect that may occur when the function is invoked,
independently of the argument. In the example of hof, this effect is ⊥.

– The effect of the argument.

The second component is the source of effect-polymorphism. For each invocation
of the polymorphic function, the effect of the argument can be different, which
results in a different overall effect. We take a closer look at the types of the two
function literals from the previous example:

val f: (Int
⊥=⇒ Int) = (x: Int) ⇒ x + 1

val g: (Int
throw(ex)=====⇒ Int) = (x: Int) ⇒ throw ex

2 Instead of using the traditional abstraction syntax λx : T.t, we write function literals
in the form (x : T) ⇒ t

Lightweight Polymorphic Effects 261

For each invocation of the function hof, the effect gets computed based on the
actual argument type. Therefore, the invocation “hof f” has no effect, while the
invocation “hof g” has the effect of throwing an exception.

2.2 Programming with Effect-Polymorphic Functions

We believe that the introduction of effect-polymorphic function types is a very
efficient technique for adding polymorphic effect checking to a programming lan-
guage, while keeping the annotation overhead for programmers within reasonable
limits. To illustrate this point, we look at the higher-order function map which
applies a given function to all elements of a list.

val map: IntList
⊥=⇒ (Int ⇒ Int) → IntList =

(l: IntList) ⇒ (f: Int ⇒ Int) → l match {

case Nil => Nil

case Cons x xs => Cons (f x) (map xs f)

}

Even though the signature of the map function is fully effect-polymorphic, there
is only one single effect annotation ⊥, which denotes purity of the outer function.
Since pure functions are very common, especially when currying is used to encode
functions with multiple arguments, it might be worthwhile to introduce syntactic
sugar for pure functions. In this case, the polymorphic map function would not
need any effect annotation at all.

There are many higher-order functions that can be made effect-polymorphic
by replacing a normal function type with an effect-polymorphic one. However,
the type system we introduce does not only apply to functional programming.
On the contrary: the presented ideas are based on our work on a polymorphic
effect system for the Scala programming language. We decided to present the
system using a simpler lambda calculus in order not to distract from the main
concepts. In Section 4 we show how lightweight effect-polymorphism can be
expressed in the object-oriented setting, and we present the results obtained
with our implementation for Scala in Section 4.3.

Effect-polymorphism is a crucial ingredient to make effect-checking practica-
ble in a real-world programming language, and this applies equally to object-
oriented languages. For instance, many of the object-oriented design patterns
identified in [5] are based on delegation. In order to correctly annotate the effect
of methods which are implemented by calling methods of their parameters, poly-
morphic effect annotations are indispensable. The widely used strategy pattern
is the most prominent example: it basically models higher-order functions. A
method that is implemented in terms of its argument strategy is polymorphic in
the effect of that strategy.

The effect system for checked exceptions in Java illustrates the need for effect-
polymorphism. It is possible in Java to write methods that are polymorphic in
the thrown exception type, but doing so is very verbose and therefore often
avoided in practice. This limitation is at the source of the well-known issues

262 L. Rytz, M. Odersky, and P. Haller

with Java’s checked exceptions ([15], [22]): throws declarations are often copy-
pasted from the callee to the caller method, which has a negative impact on the
maintainability and readability of the program code.

2.3 An Extensible Framework for Multiple Effect Domains

The polymorphic type-and-effect system outlined in the previous section is not
tied to a specific kind of side effect, such as exceptions that might be thrown or
state that might be modified. Instead, it defines an extensible framework that
allows effect checking of multiple effect domains in the same language, at the
same time.

In order to add a new kind of side effect to be checked by the framework, a de-
scription of the effect domain in the form of a semi-lattice has to be provided. The
semi-lattice consists of a set of effects for the domain, a join operation to compute
the combination of two effects, and a sub-effect relation which compares two ef-
fects.3 The following example shows a simple effect lattice for tracking IO effects:

– Effect set: EI = {noIO, IO}
– Join operation: e1 �I e2 =

{
IO if (e1 = IO) ∨ (e2 = IO)
noIO otherwise

– Sub-effect relation: e1 �I e2 = (e1 = noIO) ∨ (e2 = IO)

The framework also needs to know the top and bottom elements of each effect
lattice. In the case of IO effects, these are �I = IO and ⊥I = noIO.

In addition to the effect lattice, every concrete effect domain has to define
the effect associated with each syntactic construct of the language. For instance,
an effect system for tracking exceptions declares that a throw expression adds
an effect, and that a try expression can mask effects. This information has to
be provided in the form of a function effD which receives as argument a repre-
sentation of the program fragment in question and returns its side-effect.4 This
function is closely related to the “adjust” function in [14], and we will give a
precise definition in Section 3.3.

In the domain of IO, effects are introduced by calling pre-defined functions
that have a latent IO effect. There are no syntactic constructs that introduce
or mask IO effects, therefore the effI function can be left unspecified and the
framework will use a default definition.

Annotating Multiple Effect Domains. Since the effect checking framework
supports tracking effects from multiple domains, the effect annotations on func-
tion types have to declare an effect for every domain that is being checked.
This is achieved by annotating the function types with a tuple consisting of
3 Note that the lattice operations need to fulfill the common lattice properties, such as

transitivity for . Also, the join and sub-effect operations are related: for all effects
e1, e2, we have e1 e2 ⇐⇒ e1 � e2 = e2.

4 We will discuss the effect domain of exceptions in detail in Section 3.4

Lightweight Polymorphic Effects 263

domain-specific effect annotations. For instance, if there are three effect domains
D1, D2 and D3, a function type has the form T1

eD1 eD2 eD3========⇒ T2.
However, this example shows that the annotation scheme does not scale very

well: effect annotations quickly become long and are hard to maintain. When
adding a new effect domain, the annotation in every function type needs to be
updated. Fortunately, there is a simple solution to this problem. It is based on
the observation that in many cases, function types have either no effect, a small
number of effects, or the topmost effect. To backup this claim, we look at a few
examples:

– The function map accepts as argument a function that can have any effect.
Therefore, this argument is annotated with the topmost effect.

– The implementation of map itself is pure, there is no other effect than the
effect of its argument.

– The map function is only one example of a large class of library functions
that are pure. The same is true for instance for all operations on immutable
datatypes.

– Functions that do have side-effects usually have effects in one or very few
effect-domains. For instance, a random generator is non-deterministic, oper-
ations on mutable data structures modify state, or functions from a file-API
have IO-effects. In addition, these functions might have exceptional behav-
ior. However, it is rather uncommon to have functions with side-effects from
all those domains at the same time.

In order to simplify the multi-domain effect annotations and take the above
observations into account, we introduce two specific effect annotations which, by
definition, range over all effect domains: � and ⊥. When used as such, the two
annotations have the expected meaning: � = �D1 . . . �DN , similarly for ⊥.

The crucial characteristic however is that the multi-domain annotations can be
combined with concrete effect annotations from individual effect domains. For in-
stance, the type T1

⊥ eDi===⇒ T2 denotes a function which can have effect eDi in the
domainDi, but is pure in all other domains. Similarly, combining the� annotation

⊥

⊥ �D1 ⊥ �D2 ⊥ �D3

D1 D2

D3

� ⊥D3

� ⊥D1

� ⊥D2

�

⊥ e3

� e3

Fig. 1. Effect annotations in multiple domains

264 L. Rytz, M. Odersky, and P. Haller

with concrete effects restricts the allowed effect in certain domains. This behavior
is illustrated in Figure 1, showing an example with three effect domains.

3 Formalization

In order to formalize the ideas presented in the previous section, we extend a
simply typed lambda calculus with effect annotations and effect-polymorphic
function types. The syntax of the formal language is summarized in Figure 2.
Note that the syntax for function abstraction is different than usual and does
not use the λ symbol.

t ::= x parameter
| t t application
| v value

v ::= (x : T) ⇒ t monomorphic abstraction
| (x : T) → t effect-polymorphic abstraction

T ::= T
e
=⇒ T function type

| T
e−→ T effect-polymorphic function type

e ::= ⊥ eD | � eD | eD effect annotation
eD ::= eD eD | · concrete effects

Γ ::= ∅ | Γ, x : T parameter context
f ::= ε | x polymorphism context

Fig. 2. Core language syntax

The effect annotation e on a function type declares the latent effect, the effect
that may occur when the function is invoked. Note that e defines an effect
for every active effect domain. Subsection 3.1 explains how the integration of
multiple effect domains into one effect system is handled.

There are two kinds of functions: ordinary, monomorphic functions denoted
using the double arrow ⇒, and effect-polymorphic functions denoted with a
single arrow →. The two kinds of arrows appear in function abstraction terms
and in function types.

A monomorphic function type T1
e=⇒ T2 declares a latent effect e, the effect that

may occur when the function is applied. In the type of an effect-polymorphic
function T1

e−→ T2 however, the annotated effect e does not denote the entire
latent effect of the function. Instead, the effect of such a function consists of
two parts: the concrete, annotated effect e and the effect of its argument of
type T1. Only higher-order functions, functions that take another function as
argument, can be effect-polymorphic. This invariant is checked by the typing
rule T-Abs-Poly which enforces the parameter type T1 to be a function type.
The effect of the argument function is implicitly added to the total effect of an
effect-polymorphic function.

For syntactic convenience, the effect annotations on function types can be
omitted, in which case the following default effects are used:

Lightweight Polymorphic Effects 265

– T1 ⇒ T2 is a equivalent to T1
�=⇒ T2

– T1 → T2 is a equivalent to T1
⊥−→ T2

Example 1. We inspect the type of the simple higher-order function hof intro-
duced in Section 1:

val hof: (Int
�=⇒ Int)

⊥−→ Int = (f: Int
�=⇒ Int) → f 1

Using the default effects mentioned above, the effect annotations in the type of
hof as well as the one in the function abstraction can be omitted:

val hof: (Int ⇒ Int) → Int = (f: Int ⇒ Int) → f 1

3.1 A Multi-domain Effect Lattice

When checking multiple kinds of effects at the same time, every effect domain
needs to be described as a join-semilattice as explained in Section 2.3. For a
domain D, the lattice consists of a set of atomic effects ED, a join operation �D
and a sub-effect relation �D. Additionally, the bottom and top elements ⊥D and
�D of ED have to be specified.

These individual domains are combined into one multi-domain effect lattice
that is used in this section. The elements of this lattice are tuples of effects from
the individual domains:

E = {eD1 . . . eDn | eD1 ∈ ED1 ∧ . . . ∧ eDn ∈ EDn}
The � and � operations are defined element-wise using �Di and �Di for every
domain Di. We omit their definitions here for brevity.

3.2 Subtyping

The subtyping relation of our calculus has the common reflexivity and transitiv-
ity properties.

T <: T
(S-Refl) T ′ <: S S <: T

T ′ <: T
(S-Trans)

The subtyping rules covering the two kinds of function types in our system
are entirely symmetrical.

T1 <: T ′
1 T ′

2 <: T2 e′ � e

T ′
1

e′
=⇒ T ′

2 <: T1
e=⇒ T2

(S-Fun-Mono)

T1 <: T ′
1 T ′

2 <: T2 e′ � e

T ′
1

e′−→ T ′
2 <: T1

e−→ T2

(S-Fun-Poly)

In S-Fun-Mono, a function with a latent effect e′ can only be a subtype of
another function with effect e if e′ � e. As an example, we take a higher-order
function hof that requires its argument to be pure:

val pureHof = (f: Int
⊥=⇒ Int) ⇒ f 1

266 L. Rytz, M. Odersky, and P. Haller

The subtyping rule will only allow pure functions to be passed into pureHof.
When looking at effect-polymorphic function types in S-Fun-Poly, remem-

ber that we defined previously the latent effect of T1
e−→ T2 to consists of two

parts: the annotated effect e plus the latent effect of the argument type T1. This
raises the question why the subtyping rule for polymorphic function types only
compares the annotated effects. Assume we have two functions:

val maybePure: (Int
�=⇒ Int)

⊥−→ Int = ...

val pure: (Int
⊥=⇒ Int)

⊥−→ Int = ...

In general, an invocation of maybePure might have any effect, while an invocation
of pure is always pure. However, the subtyping relation seems to contradict this
observation: due to contra-variance of arguments, the type of maybePure is a
subtype of the type of pure.

To build an intuition why the subtyping rule is correct, we take a closer look
at the two function types. The type of pure says: “Give me a pure function from
Int to Int, and I compute a result without producing a side-effect.” For instance,
in the body of a function m

val m = (pure: (Int
⊥=⇒ Int)

⊥−→ Int) ⇒ ...

the function pure only accepts pure functions. Now assume that we use the
function maybePure where a function of the type of pure is expected, e.g.

m maybePure

As explained before, this is allowed by the subtyping rules. We can now see
that it is also correct, because in the body of method m only pure functions
will be passed into maybePure. Due to effect-polymorphism, those invocations of
maybePure have no effect. In other words, the type of the function maybePure says:
“If you give me a pure function, I also compute a result without producing a
side-effect!”

3.3 Static Semantics

Extensible Type-and-Effect Checking. Since we are creating an extensible
framework for tracking side-effects of multiple effect domains, we want to give
each concrete effect system the possibility of customizing the effect of evalu-
ating a term. For that reason, the typing rules introduced in this section are
parametrized by an auxiliary function eff.

For every effect domain D, the function effD computes the effect of evaluat-
ing a term, given the effects of its sub-terms. It takes two arguments: a name
indicating the syntactic form in question, and a list of effects of its sub-terms.
By default it combines all the argument effects using the �D operator:

effD(∗, e) =
⊔

D e

The default effD function can be specialized by concrete effect domains; we
will discuss the example of exceptions in Section 3.4. However, arbitrary effD

Lightweight Polymorphic Effects 267

functions can make the type-and-effect system unsound. For the system to be
correct, the effD functions needs to meet the following monotonicity requirement.

Lemma 1. Monotonicity.
For every effect domain D and every syntactic form Trm,
1. if ∀ ei ∈ e, di ∈ d . ei � di, then effD(Trm, e) � effD(Trm, d)
2. effD(Trm, e1, . . . , ei1 � ei2, . . . , en) � effD(Trm, e1, . . . , ei1, . . . , en) � ei2

The first clause of the monotonicity lemma requires the effD functions to be mono-
tonic. Implementing effect masking remains possible, as we will see in the effect
domain of exceptions. The second part of the monotonicity lemma prevents the
output effect to depend on the presence of a certain input effect. This restriction
falls in line with the general semantics of effect annotations in type-and-effect sys-
tems: an annotated effect may occur, but it is not required to occur.

The function eff used in the typing statements works on all effect domains at
the same time, similar to the multi-domain lattice operations described in Section
3.1. It is composed of the individual effDi functions in the straightforward way:

eff(Trm, e) = effD1(Trm, e) . . . effDn(Trm, e)

Typing Rules. Terms are assigned a type and an effect using a judgement of
the form Γ ; f � t : T ! e where Γ maps variables to their types. The additional
environment variable f is used for type-checking effect-polymorphic methods.
While its exact role will be discussed later, remember for now that it holds either
a parameter x ∈ Γ , or the special value ε which is distinct from all parameter
names.

As is common, referencing a parameter does not have a side-effect:

x : T ∈ Γ

Γ ; f � x : T ! ⊥ (T-Param)

Next, we look at the typing rules for monomorphic function abstraction and
application.

Γ, x : T1; ε � t : T2 ! e

Γ ; f � (x : T1) ⇒ t : T1
e=⇒ T2 ! ⊥

(T-Abs-Mono)

Γ ; f � t1 : T1
e=⇒ T ! e1

Γ ; f � t2 : T2 ! e2 T2 <: T1

Γ ; f � t1 t2 : T ! eff(App, e1, e2, e)
(T-App-Mono)

The typing rule for abstraction infers the result type T2 and the latent effect e of
a function. By using the value ε in the environment for type-checking the function
body, we propagate the information that the term belongs to a monomorphic
function.

The rule T-App-Mono is a standard typing rule for method applications.
The resulting effect consists of three parts: e1 is the effect of evaluating the
function, e2 is the effect of evaluating the argument and e is the latent effect of

268 L. Rytz, M. Odersky, and P. Haller

the function. These three effects are combined using the eff function introduced
in the beginning of this section.5

Next we analyze the typing rules for effect-polymorphic function abstractions
and invocations. But before that, we take a close look at the functionality of the
extended typing environment Γ ; f .

Suppose we are analyzing the effect of a simple effect-polymorphic function

val hof = (f: Int
�=⇒ Int) → f 1

The computed type should be (Int �=⇒ Int) ⊥−→ Int, i.e., the function hof itself has
effect ⊥. The effect of invoking f can be ignored because it is already expressed
in the function type through effect-polymorphism.

To achieve this special treatment of the argument function, the parameter f
is placed in the extended environment as Γ ; f when type-checking the function
body of an effect-polymorphic function.

T1 = Ta
e1=⇒ Tb Γ, f : T1; f � t : T2 ! e

Γ ; f ′ � (f : T1) → t : T1
e−→ T2 ! ⊥ (T-Abs-Poly)

Note that the typing rule forces the argument type T1 to be a monomorphic
function type — only higher-order functions can be effect-polymorphic. We will
explain later why the argument function has to be monomorphic.

The following typing rule T-App-Param implements the mentioned special
treatment of the argument function f :

f : T1
e=⇒ T ∈ Γ

Γ ; f � t : T2 ! e2 T2 <: T1

Γ ; f � f t : T ! eff(App,⊥, e2,⊥)
(T-App-Param)

When applying a function f which is the parameter of an enclosing effect-
polymorphic function, then the latent effect of f is not taken into account.

The last element of the static semantics is the typing rule for invocations of
effect-polymorphic functions.

Γ ; f � t1 : T1
e−→ T ! e1

Γ ; f � t2 : T2 ! e2 T2 <: T1

Γ ; f � t1 t2 : T ! eff(App, e1, e2, e � latent(T2))
(T-App-Poly)

There is one single but crucial difference to the rule T-App-Mono for monomor-
phic function applications. The latent effect of the function t1 consists of two
components: the concrete effect e annotated in the function type, and the latent
effect of the argument function t2 which is computed using latent(T2).

Note that the rule T-App-Poly is at the root of our effect-polymorphic type
system. We obtain effect-polymorphism by computing for each invocation of t1
the effect of the actual argument type T2.
5 Remember that by default, eff computes the join of its argument effects

Lightweight Polymorphic Effects 269

The parameter type T1 is known to be a monomorphic function type: this is
enforced by the typing rule T-Abs-Poly. Since T2 <: T1, we know that also
T2 is a monomorphic function type. Therefore, the auxiliary function computing
the latent effect is simply defined as

latent(T) = e where T = T1
e=⇒ T2

The reason why only monomorphic functions are allowed as parameters of effect-
polymorphic functions is that the typing rules become simpler without decreasing
the expressiveness. Imagine that a polymorphic function takes another polymor-
phic function as argument:

val highHof = (f: (Int ⇒ Int) → Int) → f ((x: Int) ⇒ x + 1)

When looking at the type of highHof, the information that its argument f is
applied to a pure function cannot be recovered. Therefore, there is no advantage
in allowing effect-polymorphic functions as arguments.

3.4 Examples of Concrete Effect Domains

We now present two extensions of the core calculus that implement effect check-
ing for two concrete effect domains. Both extensions are orthogonal to the mech-
anisms of effect-polymorphism in the base language. Every concrete effect system
that is added to the framework profits from effect-polymorphism without any
additional effort: the extensions would be exactly the same in a monomorphic
effect checking framework.

Exceptions. In order to add effect checking for exceptions, we first need to
extend the base language with primitives to throw and handle exceptions. The
additions to the language syntax are presented in Figure 3. We use a finite set
of exceptions p1 . . . pn that can be thrown and caught, however the system could
be easily extended to an open hierarchy of effects such as the exception types in
languages like Scala or Java. An effect annotation throws(p) denotes that any of
the exceptions in p might be thrown. The effect lattice for the exception domain
E is defined in Figure 4.

To give a valid type to the throw primitive, we introduce a bottom type Nothing
which is a subtype of every other type.

t ::= ...
| throw(p) throwing an exception
| try t catch(p) t catching and handling exceptions

T ::= ...
| Nothing bottom type

eD ::= ...
| throws(p) exception effect annotation

p ::= p1 | . . . | pn exceptions

Fig. 3. Extended syntax for exceptions

270 L. Rytz, M. Odersky, and P. Haller

EE = {throws(p) | p ⊆ {p1, . . . , pi}} throws(p) E throws(q) ⇐⇒ p ⊆ q
⊥E = throws() throws(p) �E throws(q) = throws(p ∪ q)
�E = throws(pi, ..., pn)

Fig. 4. Effect lattice for exceptions

Nothing <: T
(S-Nothing)

The typing rules for the two new syntactic forms are defined as follows:

e = eff(Throw(p))
Γ ; f � throw(p) : Nothing ! e

(T-Throw)

Γ ; f � t1 : T1 ! e1 T1 <: T
Γ ; f � t2 : T2 ! e2 T2 <: T

et = eff(Try, e1) e = eff(Catch(p), et, e2)
Γ ; f � try t1 catch(p) t2 : T ! e

(T-Try)

Finally, to complete the description of the new effect domain we have to inform
the framework that throw expressions can add effects, while try expressions can
mask effects. This is achieved by defining the function effE :

effE(Throw(p)) = throws(p)
effE(Try, e) = e
effE(Catch(p), e1, e2) = throws((q \ p) ∪ s) where throws(q) ∈ e1

throws(s) ∈ e2

Asynchronous Operations. The second extension that we present can be used
to check the correct and/or efficient use of asynchronous computations. Several
popular languages, including C#, F# [20], and Scala, support constructs to start
a computation asynchronously, returning a handle (typically called a “future”)
used to retrieve the result, once it becomes available.

For example, in Scala a long-running computation can be started as follows:

val ft = future {

// long-running computation

}

For efficiency, the body of future is executed on a thread pool. ft is a handle
for the result; when retrieving its result, it blocks the current thread until the
future’s result has been computed or an unhandled exception has been thrown
in the future’s body:

val result = ft()

Retrieving the result as shown above is a blocking operation. However, when
run using a fixed-size thread pool, calling blocking operations inside the bodies

Lightweight Polymorphic Effects 271

t ::= ...
| future t asynchronous expression
| block blocking expression
| blocking t delimiting blocking expression

eD ::= ...
| B | noB blocking / non-blocking effect annotation

Fig. 5. Extended syntax for asynchronous operations

of futures is problematic. Blocking operations are operations that may cause the
underlying thread to wait indefinitely. Examples are waiting for the completion
of a synchronous I/O operation, or waiting on a condition variable inside a
monitor. Such thread-blocking operations may lead to starvation, and, in the
worst case, may lock up the entire thread pool [9].

Using an effect system, it is possible to prevent these system-induced dead-
locks at compile time. The idea is to require wrapping blocking operations, so
that the underlying thread pool can be resized temporarily. This approach to sup-
porting blocking operations has been adopted in the fork/join pool of Java 7 [12].
In the following we present an effect system which guarantees that all blocking
operations are properly wrapped, thereby eliminating an entire class of concur-
rency errors when using thread pools.

The additions to the language syntax are presented in Figure 5. For simplic-
ity, we use a fixed blocking expression block; in practice, many more expres-
sions could be potentially blocking, for example, functions for synchronization
or blocking I/O. The future t expression asynchronously runs an expression t
which must be non-blocking, i.e., pure in this effect system. The fact that an
expression is blocking is expressed using the B effect annotation. We omit the
definition of the effect lattice, since it is trivial in this case. Finally, the blocking t
expression wraps a potentially blocking expression t, such that the effect of the
wrapped expression is non-blocking.

The typing rules for the three new syntactic forms are defined as follows:

Γ ; ε � t : T ! e B /∈ e

Γ ; f � future t : T ! eff(Future, e)
(T-Future)

Γ ; f � block : T ! eff(Block)
(T-Block)

Γ ; f � t : T ! e

Γ ; f � blocking t : T ! eff(Blocking, e)
(T-Blocking)

Finally, to complete the description of the new effect domain we have to define
an effB function:

effB(Future, e) = e
effB(Block) = B

effB(Blocking, e1) = noB

272 L. Rytz, M. Odersky, and P. Haller

The effB function expresses the fact that block expressions add a blocking effect,
while blocking expressions mask a blocking effect.

3.5 Dynamic Semantics

In order to model the runtime behavior of our formal language we define a big-
step operational semantics. A term t reduces in one step to either a value v or
an error throw(p), written t ⇓ 〈r, S〉 where r ::= v | throw(p). The set S contains
the effects that occurred while evaluating the term. Every element e ∈ S is an
atomic effect, i.e., S ⊆ E where E is the effect lattice defined in Section 3.1.

Extensible Effect Domains. In the sprit of extensibility to multiple effect
domains, the evaluation rules are parametrized by an auxiliary function dynEff
which computes the effect of evaluating a term based on the effects of its sub-
terms. This function is closely related to the function eff used in the typing
judgements, but it operates on sets of effects instead of atomic effects. The
reason is that in contrast to the static semantics, the operational semantics does
not approximate the occurrence of two distinct atomic effects by their join, but
keeps both effects in the resulting set S.

In the case of exceptions, the function dynEffE is defined as follows:

dynEffE(App, S1, S2, Sl) = S1 ∪ S2 ∪ Sl

dynEffE(Throw(p)) = throws(p)
dynEffE(Try, S) = S
dynEffE(Catch(p), S1, S2) = (S1 \ {throws(pi) | pi ∈ p}) ∪ S2

In order for the type system to be sound, the eff function needs to model
dynEff conservatively and correctly. This requirement is explained in Section
3.6.

Evaluation Rules. We now present the evaluation rules.

t1 ⇓ 〈throw(p), S1〉
S = dynEff(App, S1, ∅, ∅)

t1 t2 ⇓ 〈throw(p), S〉
(E-App-E1)

t1 ⇓ 〈v1, S1〉 t2 ⇓ 〈throw(p), S2〉
S = dynEff(App, S1, S2, ∅)

t1 t2 ⇓ 〈throw(p), S〉
(E-App-E2)

When evaluating an application, if one of the two terms evaluates to throw(p)
for some exception p, then so does the entire expression.

t1 ⇓ 〈(x : T) �→ t, S1〉 t2 ⇓ 〈v2, S2〉
t[v2/x] ⇓ 〈r, Sl〉 S = dynEff(App, S1, S2, Sl)

t1 t2 ⇓ 〈r, S〉 (E-App)

In the evaluation rule for applications, we write t[v/x] for the term t with all
occurrences of the variable x replaced by value v. We use the special arrow �→
to range over both, effect-polymorphic and monomorphic functions.

Lightweight Polymorphic Effects 273

S = dynEff(Throw(p))
throw(p) ⇓ 〈throw(p), S〉 (E-Throw)

A throw expression does not evaluate, but the evaluation rule still computes the
set of dynamic effects of the expression.

t1 ⇓ 〈throw(p), S1〉 p ∈ p
t2 ⇓ 〈r2, S2〉 St = dynEff(Try, S1)

S = dynEff(Catch(p), St, S2)
try t1 catch(p) t2 ⇓ 〈r2, S〉 (E-Try-E)

The evaluation of a try-catch expression depends on the result obtained for the
first subterm t1. In case it evaluates to an error throw(p), and the exception p is
handled by the catch clause, then the final result is the evaluation of the handler
t2. Otherwise the following rule applies.

t1 ⇓ 〈r1, S1〉 S = dynEff(Try, S1)
try t1 catch(p) t2 ⇓ 〈r1, S〉

(E-Try)

The last evaluation rule applies to try-catch expressions in which the evaluation
of t1 either does not raise an exception, or it raises an exception that is not
handled by the catch(p) clause. In this case, the obtained result r1, which might
be an error, is propagated.

3.6 Effect Soundness

In this section we state two important theorems for the soundness of the type sys-
tem presented in Section 3.3 with respect to the dynamic semantics introduced
in the previous section.

We use the following notational convenience: in the static semantics, every
expression has an effect e, while in the dynamic semantics, the evaluation of an
expression yields a set of effects S. We write S � e to express that every effect
in S is smaller than e, i.e., ∀es ∈ S . es � e.

Theorem 1. Preservation.
If Γ ; f � t : T ! e is a valid typing statement for term t and the term evaluates
as t ⇓ 〈r, S〉, then there is valid a typing statement Γ ; f � r : T ′ ! e′ for r with
T ′ <: T .

Theorem 2. Effect soundness.
If Γ ; f � t : T ! e and t ⇓ 〈r, S〉, then S � e � latent(Γ (f)).

The effect soundness theorem states that every effect that occurs when evaluating
a term t is represented in the typing derivation for t. Remember that in the typing
rule for effect-polymorphic functions, T-Abs-Poly, the argument function f is
propagated in the extended environment Γ ; f . Invocations of f are thereafter
treated as pure by typing rule T-App-Param.

Therefore, given a typing statement Γ ; f � t : T ! e, the effect that might
occur when evaluating t consists of e and the latent effect of f , latent(Γ (f)).

274 L. Rytz, M. Odersky, and P. Haller

Consistency Requirement. In both semantics, we use an auxiliary function
to compute the effect that occurs when evaluating a term. The preservation and
soundness theorems are based on the assumption that the static eff function
conservatively models the behavior of the dynEff function in the operational
semantics.

Lemma 2. Consistency.

– Let S = dynEff(Trm, S) be the set of dynamic effects that occur when eval-
uating a term t of the form Trm. The list S contains an effect set for every
subterm of t.

– Let Γ ; f be an environment and e be a list of static effects such that every
effect set in S is approximated by Si � ei � latent(Γ (f)).

– Then the static effect e = eff(Trm, e) is a conservative approximation of the
effects in S, i.e., S � e � latent(Γ (f)).

This consistency lemma has to be verified for every effect domain. In the case
of exceptions or asynchronous operations, the verification is straightforward and
therefore omitted here.

Proof Sketch. We give a proof sketch for the effect soundness theorem. In
addition to preservation, the proof makes use of a lemma showing that effects
are preserved in typing statements under value substitution. This lemma comes
in two flavors: one for monomorphic and one for effect-polymorphic abstractions.

Lemma 3. Preservation under substitution for monomorphic abstractions.
If Γ, x : T1; f � t : T ! el, f �= x and Γ ; g � v : T2 ! ⊥ with T2 <: T1,
then Γ ; f � t[v/x] : T ′ ! e′l such that T ′ <: T and e′l � el.

Lemma 4. Preservation under substitution for polymorphic abstractions.
If Γ, x : T1; x � t : T ! el and Γ ; f � v : T2 ! ⊥ with T2 <: T1,
then Γ ; ε � t[v/x] : T ′ ! e′l such that T ′ <: T and e′l � el � latent(T2).

The two lemmas state that the type and the effect of a term t decrease when a
free variable in t is replaced by a value with a conforming type.

The proof of Theorem 2 is carried out using induction on the evaluation rules
for a term t. We look at the most interesting case E-App that produces the
following derivations:

t = t1 t2
t1 ⇓ 〈(x : T ′

1) �→ t11, S1〉
t2 ⇓ 〈v2, S2〉
t11[v2/x] ⇓ 〈r, Sl〉
S = dynEff(App, S1, S2, Sl)

There are multiple typing rules for type-checking an application expression. We
investigate the key case T-App-Poly and obtain the following sub-derivations:

Lightweight Polymorphic Effects 275

Γ ; f � t1 : T1
el−→ T ! e1

Γ ; f � t2 : T2 ! e2

T2 <: T1

e = eff(App, e1, e2, el � latent(T2))

Our goal is to show that in environment Γ ; f , the static effect e correctly ap-
proximates the dynamic effects S, i.e., S � e � latent(Γ (f)).

We see that t1 evaluates to a function abstraction. The preservation theo-
rem states that the type of this resulting function is a subtype of t1’s original
type T1

el−→ T . Since the term is a function abstraction, the subtyping rules
restrict the type to be a polymorphic function type. Looking at the canonical
forms, we observe that the term can only be a polymorphic function abstraction
(x : T ′

1) → t11, and we obtain the following typing derivation:
Γ, x : T ′

1; x � t11 : T ′ ! e′l with T1 <: T ′
1, T ′ <: T and e′l � el

Applying preservation to the term t2, we obtain v2 : T ′
2 with T ′

2 <: T2. Using
transitivity of subtyping, we obtain T ′

2 <: T ′
1, and we can apply the substitution

Lemma 4 to obtain
Γ ; ε � t11[v2/x] : T ′′ ! e′′l with T ′′ <: T ′ and e′′l � e′l � latent(T ′

2)

By applying the induction hypothesis on the subterm t11[v2/x], we obtain
Sl � e′′l � latent(Γ (ε))
Sl � e′l � latent(T ′

2) by e′′l � e′l � latent(T ′
2) and latent(Γ (ε)) = ⊥

Since T ′
2 <: T2 we can easily verify that latent(T ′

2) � latent(T2). Together with
the induction hypotheses on t1 and t2, we now have the necessary conditions to
apply the consistency Lemma 2:

S1 � e1 � latent(Γ (f))
S2 � e2 � latent(Γ (f))
Sl � el � latent(T2)

We obtain the desired result:
dynEff(App, S1, S2, Sl) � eff(App, e1, e2, el � latent(T2)) � latent(Γ (f))

The proofs of the remaining cases are conducted in a similar fashion. A full proof
for all lemmas and both theorems is available in a separate technical report [19].

4 Lightweight Polymorphic Effects in Scala

We implemented the ideas presented in the previous section as a generic frame-
work for polymorphic effect-checking in the Scala programming language. The
implementation comes in the form of a compiler plugin which adds new phases
to the compilation pipeline. These phases are executed after the unaltered type-
checking transformation and therefore, effect-checking can be seen as a pluggable
type system [3].

276 L. Rytz, M. Odersky, and P. Haller

4.1 Effect-Polymorphic Methods

Using the same ideas as in the formal system presented above, we extended Scala
with a new syntactic form for defining effect-polymorphic methods. While ordi-
nary methods are defined using the keyword def, an effect-polymorphic method
is introduced with fun:6

fun h(f: Int => Int): Int = f(1)

The method h is polymorphic in the effect of its argument. When applying it to
a pure function, then that invocation of h does not have a side-effect:

h(x => x + 1)

However, we glossed over one important property of Scala: it is an object-oriented
language, and the arguments passed to methods are objects. This is equally true
for first-class functions like f from the example. Concretely, a unary function in
Scala is represented as an object of type Function1:

– The trait Function1 has one abstract method named apply:
trait Function1[+A, -R] {

def apply(x: A): R

}

– The type Int => Int is a shorthand for Function1[Int, Int]
– The function literal x => x + 1 is syntactic sugar for an anonymous class7

new Function1[Int, Int] {

def apply(x: Int): Int = x + 1

}

This observation raises the question what it means for the method h to be effect-
polymorphic in its argument f, since f is an object. The answer is that in the
object-oriented case, a method is polymorphic in the effect of the member meth-
ods of its argument. In the example, method h is effect-polymorphic in the apply

method of its argument f.
The definition of effect-polymorphism for the object-oriented case is a slight

extension of the definition we used in the formal system: a method can be effect-
polymorphic in multiple argument methods. For instance, in

fun m(a: A): B = a.b()

the method m is effect-polymorphic in all members of a, not only in a.b. In the
same way, if an effect-polymorphic method has multiple parameters, it is effect-
polymorphic in all of them.

This extension is however not a fundamental change, because methods cannot
be partially applied. This means that when a method is invoked, all the param-
eters are defined and therefore all the argument methods and their effects are
known. The same situation could be simulated in our calculus using tuples.
6 This syntactic adjustment is the only language change that was performed. Alter-

natively, we could also have left the language unchanged and used an annotation.
7 Local type inference defines the two type parameters of Function1

Lightweight Polymorphic Effects 277

4.2 Effect Annotations in Scala

In order to annotate the latent effect of a method in Scala, our framework uses
standard type annotations on the return type of the method. For instance, the
following signature describes a method that might throw an exception:

def doIO(file: String): Unit @throws[IOException] = ...

Ordinary methods defined with the keyword def are impure by default. The
method doIO therefore allows any side-effects in effect domains other than ex-
ceptions. The annotation @pure marks a method as pure in all effect domains,
like the ⊥ annotation in Section 3.1.

Effect-polymorphic methods defined using fun are pure by default.
One question is how the effect of anonymous functions should be annotated.

For instance, the function literal (x: Int) => x + 1 has type Function1[Int, Int],
but this type does not have any effect annotation.

In order to propagate the effect information of anonymous functions using
their types, the effect checking framework makes use of refinement types [16].
Concretely, the type of the above function literal is extended to

Function1[Int, Int] {

def apply(x: Int): Int @pure

}

To make function types with effects more compact, we are planning to introduce
syntactic sugar for the above case, for instance Int ⇒ Int @pure.

4.3 Practical Experience

We verified the expressiveness of our polymorphic effect system by applying it
to the Scala collections framework. To illustrate the process of making a library
effect-polymorphic, we look at the method map which applies an argument func-
tion to all elements of a collection. This method is implemented at the root of the
collection hierarchy in class TraversableLike [17] and shared by all descending
collection classes such as lists, maps, sets and vectors.

In essence, the parent collection class TraversableLike has one abstract method
foreach which we make effect-polymorphic by changing def to fun:

fun foreach[U](f: Elem => U): Unit

Using this method, the class provides concrete implementations of common col-
lection operations that are shared across all collection types: filter, map, flatMap,
partition, forall and many more. The implementation of method map is as follows:

trait TraversableLike[+A, +Repr]

// ...

fun map[B, That](f: A => B,

implicit bf: CanBuildFrom[Repr, B, That]): That = {

val b: Builder[B, That] = bf.apply(this)

this.foreach(x => b += f(x))

278 L. Rytz, M. Odersky, and P. Haller

b.result

}

}

A detailed explanation of this code can be found in [17]. For every collection type
extending TraversableLike, the type parameter A represents the element type of
the collection, and Repr is the collection type itself. The method map takes the
target element type B and the target collection type That as argument. Allowing
map to produce a different collection type than the current Repr is important in
some situations, as explained in [17].

The additional value argument bf is called the “builder factory”. It is used to
obtain a builder object of type Builder[B, That]. The builder is a simple buffer
which collects elements of type B and produces a collection of type That with
these elements. Note that the builder factory is an implicit argument which does
not have to be provided by the programmer when using map, instead it is searched
and inserted by the compiler.

Using the method foreach, every element of the current collection is mapped
with the argument function f and added to the builder. At the end, the resulting
collection is obtained from the builder using result.

As previously with foreach, the only change we performed to make map effect-
polymorphic is changing the definition keyword from def to fun. Now, the method
map is effect-polymorphic in the argument function f, and in all member methods
of the builder factory bf. However, the class CanBuildFrom has only one member
method which is annotated pure:

trait CanBuildFrom[-From, -Elem, +To] {

def apply(from: From): Builder[Elem, To] @pure

}

Therefore the builder factory does not contribute any effect, and map is effect-
polymorphic in its argument function f.

Remember that effect-polymorphic functions are pure by default. Therefore,
the implementation of map is not allowed to have any side-effects, except the
effect of the argument f. If we look for instance at exceptions, purity can be
easily verified:

– Invoking bf.apply does not have an effect, as already discussed
– Adding elements to the builder and obtaining the final result do not throw

exceptions (i.e., the += and result methods are pure)
– The effect of calling foreach is the effect of the argument function; the

function x => b += f(x) calls the function f, which is allowed by effect-
polymorphism

This line of reasoning is applied by the framework for every checked effect do-
main. Verifying purity with respect to state modifications in this example is less
straightforward. However, a recent type-and-effect system for purity [18] is ex-
pressive enough to verify this case, and we are working on integrating it into our
framework.

Lightweight Polymorphic Effects 279

If an effect system is added to the framework in which the implementation
of map is not pure, then the return type of map has to be annotated with the
corresponding effect.

4.4 Implementing Concrete Effect Domains

We implemented the framework for polymorphic type-and-effect systems pre-
sented in this paper as a plugin for the Scala compiler. Extending the framework
with a new effect domain is simple, as explained in Section 2.3: the programmer
needs to provide

– an implementation of the effect lattice,
– the annotation definitions for annotating latent effects in the source code,
– two methods describing how to serialize and de-serialize the annotations into

lattice elements, and
– an implementation of the eff function in the form of a abstract syntax tree

traverser.

This information suffices the framework to verify a new effect domain.

Exceptions. The implementation of an effect system for exceptions was as
straightforward as expected. Empirical validation shows that the annotation
overhead is greatly reduced compared to the non-polymorphic throws clauses
found in Java. The work on anchored exceptions [22] gives more detailed insights
to research in this area.

There are however a few cases where a static effect analysis cannot compute
the possibly thrown exceptions of an expression correctly. Even though these
limitations are unrelated to the polymorphic effect checking framework presented
in this paper, we still mention them for completeness.

To make an example, assume that the method head of a list class throws an
exception when the list is empty. If we analyze the method

def headOrZero(l: List[Int]) = if (l.isEmpty) 0 else l.head

we clearly see that the invocation l.head will not throw an exception. However,
the effect system does not take conditional control flow into account and will
therefore conclude that the expression might throw an exception.

In Java, this specific problem is bypassed by having unchecked exceptions,
a class of exception types which are not tracked by the effect system. The
NoSuchElementException in Java is such an unchecked exception, and therefore
the example expression would be treated as pure.

Another solution we are considering is to allow programmers to override the
inferred effects by introducing syntax for effect casting. We think that this can
prevent programmers from disabling effect checking altogether just because in
some situations, the analysis computes an imprecise result.

280 L. Rytz, M. Odersky, and P. Haller

5 Related Work

Polymorphic effect systems are introduced in [13] as part of the fx program-
ming language [7]. The overhead of having explicit effect and region parameters
is overcome by later work on type and effect inference [21]. However, type recon-
structions requires the whole program to be known and does not allow modular
reasoning about effects. Our approach allows modular effect checking using la-
tent effect annotations and effect-polymorphic method types. It also enables
more immediate feedback while developing an application, for instance in an
IDE.

The work on anchored exceptions [22] extends the throws annotations in Java’s
checked exceptions to express effect-polymorphism. Instead of listing the con-
crete exception types that might be thrown, an annotation can take the form
throws like a.m() where a is a parameter of the method. Their system is tied
to checked exceptions, however we believe that the main ideas can be equally
applied in a generic system. In order to do so, our type system could be extended
with dependent types, allowing effect annotations to refer to parameter names.

Marino et al. [14] describe a generic type-and-effect system that can be instan-
tiated to different effect domains. Our effect framework can be seen as an exten-
sion of their work with effect polymorphism. There are a few differences however;
most importantly they support a tagging system for run-time values. Recon-
structing which tags can flow into a function argument uses a whole-program
analysis; the authors refer to type qualifier inference [4]. Our system is designed
to work modularly on the basis of annotations.

There exist a number of other approaches than type-and-effect systems to
delimit the scope of side effects. The most common alternative is monadic en-
capsulation of effects, which has been shown to be equivalent to effect systems
by Wadler et al. in [23]. One aspect of type-and-effect systems shown in Section
3.1 is that combining multiple effect domains is straightforward, while compos-
ing monads on the other hand is difficult [11]. Applicative functors [6] are one
promising upcoming alternative to monads which facilitate composition.

6 Conclusions and Future Work

We designed an extensible framework for polymorphic effect checking where
multiple effect domains can be integrated modularly. Annotating functions as
effect-polymorphic is lightweight in syntax and independent of specific effect
domains. We implemented the framework for the Scala programming language
in the form of a compiler plugin and successfully applied polymorphic effect
checking to real-world examples such as the Scala collections library.

We are studying two directions to make the presented type-and-effect system
more expressive. First, we investigate how annotations for effect-polymorphism
can be generalized using dependent types. This extension allows us to express
effect masking behavior in function types, and to denote the behavior of meth-
ods more precisely in the object-oriented case by stating which members of the
arguments contribute to effect-polymorphism.

Lightweight Polymorphic Effects 281

As a second extension, we are studying a generalization to support flow-
sensitive effects, so that more effect systems can be expressed as a plugin to
our framework. One example of a flow-sensitive effect system is the purity anal-
ysis presented in [18].

When integrating a type-and-effect system into an existing programming lan-
guage, there are also practical issues that need consideration. One question is how
to handle the interaction with legacy code that does not provide effect annota-
tions. A possible solution is to consider whole-program effect analysis techniques
to reconstruct effect annotations for existing libraries.

References

1. Abadi, M., Birrell, A., Harris, T., Isard, M.: Semantics of transactional mem-
ory and automatic mutual exclusion. In: Proceedings of the 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2008, pp. 63–74. ACM, New York (2008)

2. Bocchino Jr., R.L., Adve, V.S.: Types, Regions, and Effects for Safe Programming
with Object-Oriented Parallel Frameworks. In: Mezini, M. (ed.) ECOOP 2011.
LNCS, vol. 6813, pp. 306–332. Springer, Heidelberg (2011)

3. Bracha, G.: Pluggable type systems. In: OOPSLA 2004 Workshop on Revival of
Dynamic Languages (2004)

4. Foster, J.S., Johnson, R., Kodumal, J., Aiken, A.: Flow-insensitive type qualifiers.
ACM Trans. Program. Lang. Syst. 28, 1035–1087 (2006)

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.,
Boston (1995)

6. Gibbons, J., Oliveira, B.C.D.S.: The essence of the iterator pattern. In: McBride,
C., Uustalu, T. (eds.) Mathematically-Structured Functional Programming (2006)

7. Gifford, D.K., Jouvelot, P., Sheldon, M.A., O’Toole, J.W.: Report on the FX pro-
gramming language. Technical report (1992)

8. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java(TM) Language Specification,
3rd edn. Addison-Wesley Professional (2005)

9. Haller, P., Odersky, M.: Scala actors: Unifying thread-based and event-based pro-
gramming. Theor. Comput. Sci. 410(2-3), 202–220 (2009)

10. Hejlsberg, A.: The trouble with checked exceptions (2003),
http://www.artima.com/intv/handcuffs.html

11. King, D., Wadler, P.: Combining monads. In: Mathematical Structures in Com-
puter Science, pp. 61–78 (1992)

12. Lea, D.: A Java fork/join framework. In: Java Grande, pp. 36–43 (2000)
13. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: Proceedings of the

15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 1988, pp. 47–57. ACM, New York (1988)

14. Marino, D., Millstein, T.: A generic type-and-effect system. In: Proceedings of the
4th International Workshop on Types in Language Design and Implementation,
TLDI 2009, pp. 39–50. ACM, New York (2009)

15. Mikhailova, A., Romanovsky, A.: Supporting evolution of interface exceptions, pp.
94–110. Springer-Verlag New York, Inc., New York (2001)

16. Odersky, M.: The Scala language specification (2011),
http://www.scala-lang.org/docu/files/ScalaReference.pdf

http://www.artima.com/intv/handcuffs.html
http://www.scala-lang.org/docu/files/ScalaReference.pdf

282 L. Rytz, M. Odersky, and P. Haller

17. Odersky, M., Moors, A.: Fighting bit rot with types (experience report: Scala col-
lections). In: Kannan, R., Narayan Kumar, K. (eds.) IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS
2009). Leibniz International Proceedings in Informatics (LIPIcs), vol. 4, pp. 427–
451. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl (2009)

18. Pearce, D.J.: JPure: A Modular Purity System for Java. In: Knoop, J. (ed.) CC
2011. LNCS, vol. 6601, pp. 104–123. Springer, Heidelberg (2011), doi:10.1007/978-
3-642-19861-8_7

19. Rytz, L., Odersky, M.: Lightweight polymorphic effects - proofs. Technical report,
EPFL (2012)

20. Syme, D., Petricek, T., Lomov, D.: The F# Asynchronous Programming Model.
In: Rocha, R., Launchbury, J. (eds.) PADL 2011. LNCS, vol. 6539, pp. 175–189.
Springer, Heidelberg (2011)

21. Talpin, J.-P., Jouvelot, P.: Polymorphic type, region and effect inference. Journal
of Functional Programming 2(3), 245–271 (1992)

22. van Dooren, M., Steegmans, E.: Combining the robustness of checked exceptions
with the flexibility of unchecked exceptions using anchored exception declara-
tions. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2005,
pp. 455–471. ACM, New York (2005)

23. Wadler, P., Thiemann, P.: The marriage of effects and monads. ACM Trans. Com-
put. Logic 4, 1–32 (2003)

Cloud Types

for Eventual Consistency

Sebastian Burckhardt1, Manuel Fähndrich1,
Daan Leijen1, and Benjamin P. Wood2

1 Microsoft Research
2 University of Washington

Abstract. Mobile devices commonly access shared data stored on a
server. To ensure responsiveness, many applications maintain local repli-
cas of the shared data that remain instantly accessible even if the server
is slow or temporarily unavailable. Despite its apparent simplicity and
commonality, this scenario can be surprisingly challenging. In particular,
a correct and reliable implementation of the communication protocol and
the conflict resolution to achieve eventual consistency is daunting even
for experts.

To make eventual consistency more programmable, we propose the
use of specialized cloud data types. These cloud types provide eventually
consistent storage at the programming language level, and thus abstract
the numerous implementation details (servers, networks, caches, proto-
cols). We demonstrate (1) how cloud types enable simple programs to use
eventually consistent storage without introducing undue complexity, and
(2) how to provide cloud types using a system and protocol comprised
of multiple servers and clients.

1 Introduction

As technology progresses, new applications emerge. Of growing popularity are
downloadable applications, so-called apps, that offer specialized functionality on
a mobile device such as a phone or a tablet. Often, these apps include social
aspects where users share information online. The capability of sharing data be-
tween devices is typically achieved by developing custom webservices. Increas-
ingly, such services are deployed in the cloud, hosted environments that offer
virtualized storage and computing resources.

Some apps require synchronization of data among multiple devices by the same
users. For example, users may want to share settings, calendars, contact lists, or
personal music databases. Other apps empower data sharing and communication
among multiple users. For example, a simple grocery list can help family members
keep track of items to be purchased on the next trip to the store. Moreover, many
apps can benefit from including social features that let users share information,
comments, reviews, achievements, high scores, and so on.

A pervasive requirement for apps is that they remain responsive at all times.
Unfortunately, server connections are notoriously prone to slowness or temporary

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 283–307, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

284 S. Burckhardt et al.

outages. Another important requirement is that apps consume little battery
power, and do not transfer much data. Thus, well-engineered apps must avoid
reliance on excessive server communication.

A common technique is to maintain a replica of the data on each device. Since
this replica is always available for queries and updates, apps remain responsive
even if the device is disconnected. When reconnected, updates can be propa-
gated to all other replicas in such a way that the resulting data is eventually
consistent [12,11]. Not only does this ensure responsiveness, but users can limit
connections to times where power or bandwidth are ample (such as while the
device is charging at home and connected to a home network).

Clearly, sharing data via eventually consistent local replicas is an attractive
solution for many applications; unfortunately, it can be daunting to implement.
Typical challenges include:

– Representation. Because app programming is at the intersection of
historically separate communities, programmers often end up writing and
maintaining inordinate amounts of code to translate between different data
representations (SQL, HTTP, JSON, XML, object heaps). Moreover, app
programmers are forced to write custom web services, and may have to deal
with subtle programming platform differences between clients and servers.

– Consistency. Since multiple devices can update their local replicas at the
same time while disconnected, clients can detect conflicts only after the fact,
when sending changes to the server. When such transactions fail, one must
write code explicitly to resolve the conflict. For example, if several users
update the same entry in a grocery list, we must be careful not to lose
updates.

– Change sets. Support for disconnected operation typically means that an
app must store not just a local replica, but also log a delta of all the updates
that are performed locally. When the device is reconnected, these are the
updates that are now sent to the server replica. Reliably resolving conflicting
operations inside a large change set can be a difficult problem.

Given these hurdles and challenges it is not surprising that many apps do not im-
plement our requirements fully: for example, updates can often only be performed
while connected, and the app blocks while the transaction takes place. Other apps
allow non-blocking updates but do not guarantee eventual consistency.

To make it easier for app developers to share data in the cloud, we propose the
use of cloud types at the programming language level. Cloud types provide an
abstraction layer that frees app developers of the recurring engineering challenges
(web service implementation, communication protocol, local storage) and allows
them to focus on the essentials: declaring the data strucures and writing client
code that accesses them. The two main ingredients of our solution are:

1. Cloud Types. Programmers declare the data they wish to share using special
cloud types. This data is automatically shared between all devices, and is
automatically persisted both on local storage as well as in cloud storage.
Our cloud types include both simple types (cloud integers, cloud strings)

Cloud Types for Eventual Consistency 285

and structured types (cloud arrays, cloud entitities). Because cloud types
are carefully chosen to behave predictably under concurrent modfication,
conflict resolution is automatic and the developer need not write special
code to handle merging.

2. Revision Consistency. Our system uses revision diagrams to guarantee even-
tual consistency, as proposed in [1]. Conceptually, the cloud stores the main
revision, while devices maintain local revisions that are periodically synchro-
nized. Revision diagrams are reminiscent of source control systems and pro-
vide an excellent intuition for reasoning about multiple versions and eventual
consistency.

Our approach integrates all aspects of the data model (declarations, queries,
and updates) directly into the programming language. Thus, there is only one
program and only one data format. Code can read and modify the data directly,
without buffering or copying, and without blocking. Note that we do not propose
a new language as such. Many existing languages could be extended seamlessly
with support for our data model, or use libraries to expose the functionality.
Currently, we have a partial implementation of our model in the TouchDevelop
[17] language and development environment.

Although cloud servers are used tomaintain consistency, the app developer does
not write any code that executes on the server. The data declarations completely
determine the functionality of the server. For the purpose of this paper, we leave
out session and authorization management as they can be dealt with separately.

Overall, we make the following contributions:

– We present a data model that directly integrates support for eventually
consistent data into the programming language. We demonstrate how this
model allows us to write simple programs for common scenarios by walking
through several examples (Section 2).

– We show how the data schema can be composed from basic cloud types
(Section 2.4), and how advanced cloud types (such as observed-remove sets
[13]) can be built up from simpler ones (Section 5).

– We provide a comprehensive formal syntax and semantics. It connects a
small, but sufficiently expressive programming language (Section 3) with a
detailed operational model of a distributed system containing a server-pool
and multiple client devices (Section 4). These models are connected by a
fork-join automaton (an abstract data type supporting eventual consistency)
derived automatically from the schema (Section 5). Together, these models
extend and concretize earlier work on eventually consistent transactions [1].

2 Overview

In this section we introduce our model in more detail, by gradually introduc-
ing the basic cloud types (cloud integers, cloud strings, cloud arrays, and cloud
entitites) using examples. Along the way, we explain the execution model (revi-
sion diagrams) and the synchronization primitives (yield, flush). We start with a

286 S. Burckhardt et al.

simple grocery list, followed by a customer database, and conclude with a seat
reservation example.

For the purposes of this paper, all examples are in pseudocode using a typed
javascript-like language. We believe that the essential features of our system can
be incorporated in most real-world static or dynamic languages in a seamless
way. We currently have a partial implementation directly in the TouchDevelop
language and as a library in C#.

2.1 Cloud Integers and Cloud Arrays

A simple but quite common scenario is the ever popular grocery list application
found on all mobile devices. We show the code for this example in Fig. 1, and
now proceed to explain it in detail.

// declaration of cloud data

global totalItems : CInt ;

array Grocery[name : String]
{
toBuy : CInt ;

}

// operations representing user actions

function ToBuy(name : String, count : Int)
{
totalItems.add(count) ;
Grocery[name].toBuy.add(count) ;

}

function Bought(name : String, count : Int)
{
totalItems.add(− count) ;
Grocery[name].toBuy.add(− count) ;

}

function Display()
{
foreach g in entries Grocery.toBuy
{
Print(g.toBuy.get() + ” ” + g.name) ;

}
Print(totalItems.get() + ” total”) ;

}

// main event loop

function main()
{

bool done = false ;
while (not done)
{
//allow send/receive of updates
yield() ;

match (NextUserCommand()) with
{

buy s n:
ToBuy(s, n) ;

bought s n:
Bought(s, n) ;

display:
Display() ;

quit:
done = true ;

}
}

}

Fig. 1. Pseudocode for the grocery list example

Cloud Types for Eventual Consistency 287

First, consider the cloud data declarations (Fig. 1, left column, top). We
use the term “cloud data” to emphasize that the data declared in this section
is automatically replicated across all devices. One could say we are declaring
global variables, literally. For this example, we chose to store both (1) a count
of the total groceries to buy, and (2) a count for each individual grocery item.
Although not really important for this example, storing the total count is helpful
to illustrate the consistency model later on.

– To represent the total count, we declare a variable called TotalCount of type
CInt. This type is a primitive datatype for storing and manipulating cloud
integers. It differs from ordinary integer variables in that it offers higher level
operations that have better conflict resolution semantics than using get and
set operations alone. In particular, it offers an add operation to express a
relative change, reminiscent of atomic or interlocked instructions in shared-
memory programming.

– To represent the quantity of each item, we use a cloud array called Grocery.
The array is indexed by the name of the grocery item, and each entry stores
the quantity toBuy. This quantity is again of type CInt.

Cloud arrays are a bit different from standard arrays as the index type can be
infinite (as in this case, strings). Cloud array entries can have multiple fields,
although there is only one in this example (toBuy). Moreover, all array entries are
always defined, and we guarantee that all fields are initialized with the default
value (which is 0 for CInt). Next, consider the actions on the data (Fig. 1)

– (ToBuy) When adding count items of name name, we adjust both the total
totalItems as well as the specific item count stored in the array, using the
primitive add which is supported by the cloud integer type. To access the
array entry, we use the name of the cloud array (Grocery) and an index [name]

and field (toBuy).

– (Bought) When removing items from the list, we proceed the same way, but
subtract the quantity rather than adding it.

– (Display) To display the list, we need to iterate over the array. This requires
a bit of extra thought since we cannot just iterate over all (infinitely many)
strings. Rather, we iterate over entries Grocery.toBuy, which returns only array
entries for which the field toBuy is not the default value (0 for CInt). Thus,
we print the name and the count of all items for which the count is not zero.

Finally, consider the pseudocode for the main program (Fig. 1, right column).
Since the grocery list is an interactive program, it executes some form of loop to
handle user commands.1 The important part is the yield statement. Essentially,
the yield statement gives the runtime system the permission to both (1) propa-
gate changes made locally to the replica to other devices, and (2) apply changes
made by other devices to the local replica. yield is nonblocking and guaranteed

1 In a realistic event-based application framework the API is likely to be different, but
we believe our simple loop is sufficient to convey the idea.

288 S. Burckhardt et al.

to execute very quickly. yield does not force synchronization: it is perfectly ac-
ceptable for yield to do nothing at all (which is in fact all it can do in situations
where the device is not connected).

Another way to describe the effect of yield is that the absence of a yield guaran-
tees isolation and atomicity; yield statements thus partition the execution into a
form of transaction (called eventually consistent transactions in [1]). Effectively,
this implies that everything is always executing inside a transaction. The resulting
atomicity is important for maintaining invariants; in this example, it guarantees
that the total count is always equal to the sum of all the individual counts, since
all changes made to Grocery and totalCount are always applied atomically.

2.2 Revision Diagrams and Cloud Types

Now that we have sketched some basic language features, it is time to explain the
execution model in more detail. Our semantics are based on concurrent revisions
[2], and rely on the following main concepts:

– Revision diagrams are reminiscent of source control systems, and show the
order in which revisions are forked and joined. Conceptually, each revision
keeps a log of all the updates that were performed in it. When a revision is
joined into another revision, it replays all logged updates into that revision.

– Cloud types are abstract data types that offer a precisely defined collection of
update and query operations. Moreover, cloud types can provide optimized
fork and join implementations and space-bounded representations of logs.

For example, consider a cloud variable x of type CInt and the revision diagram
examples in Fig 2. Note that join is not symmetric; join orders updates of the
joined revision after the updates of the joining revision, and update operations
are not always commutative (for example, two add operations do commute, but
set operations do not commute).

2.3 Execution Model and Eventual Consistency

We can now employ revision diagrams to build an eventually consistent dis-
tributed system. The idea is to keep the main revision on the server, and to keep
some revision always available on each device, whether connected or not. We can

x.get() → 5

x.set(5) x.set(1)

x.get() → 6

x.add(5) x.set(1)

x.get() → 1

x.set(1) x.add(5)

Fig. 2. Conflict resolution for CInt. Updates of the revision are replayed at the join
point.

Cloud Types for Eventual Consistency 289

send revisions from the server to clients, and vice versa, and perform forks and
joins on either one.

Program execution is nondeterministic if multiple devices are involved.2 Both
of the following revision diagrams represent possible executions of the grocery
list example. Because of timing differences, the Display() on device 2 may either
see the first update by device 1 (left) or not see it (right).

ToBuy(egg,2)

yield()

ToBuy(oil,1)

yield()

Display()
 8 egg
 1 oil
 9 total

ToBuy(egg,6)

yield()

Bought(egg, 6)

yield()

Device 2 Device 1
Server

ToBuy(egg,2)

yield()

ToBuy(oil,1)

yield()

Display()
 2 egg
 1 oil
 3 total

ToBuy(egg,6)

yield()

Bought(egg, 6)

yield()

Device 2 Device 1
Server

A

A

A

A

B

B

C

B

Forking and joining of revisions on the server is straightforward. The imple-
mentation of yield on the device is a bit more clever, since it is guaranteed to
always execute quickly and never block (regardless of message speed or lost mes-
sages). We achieve this by distinguishing 3 cases (labeled A,B,C in the executions
above): (A) If we are not currently expecting a server response, we send the cur-
rent revision to the server, after forking a new revision for continued local use.
(B) If a revision from the server has arrived, we merge the current local revision
into it. (C) If we are expecting a revision from the server but it is not present
yet, we do nothing.

As long as clients repeatedly call yield, and as long as messages are eventually
delivered (using retransmission if necessary), eventual consistency is achieved.
We present formal operational semantics for yield in Section 4.

Since revision diagrams are quite general, a wide variety of implementation
choices beyond the one sketched above can be employed (such as servers orga-
nized as trees, or clients bundled with servers connected peer-to-peer).We discuss
one specific multi-server implementation model (a server pool) in Section 4.

2.4 Entities

Our model is versatile enough to store complex relational data. In Fig. 3, we
consider a mobile application that maintains a database of customers and orders
(as may be used by a small business in an emerging market).

2 Determinism makes no sense for eventually consistent systems, since such systems
are expected to adapt opportunistically to unpredictable message latency and loss.

290 S. Burckhardt et al.

entity Customer
{

name : CString
}
array Product[id : string]
{

name : CString
price : CInt

}
entity Order(customer : Customer)
{

time : CTime
totalprice : CInt

}
array CartItem [

customer : Customer,
product : Product]

{
quantity : CInt ;

}
array OrderItem [

order : Order,
product : Product]

{
quantity : CInt
price : CInt

}
function AddToCart(c: Customer,

p: Product, q: int)
{

CartItem[c,p].quantity.add(q) ;
}
function DeleteCustomer(c: Customer)
{ delete c ; }

function SubmitOrder(customer : Customer)
{

// create fresh order
var order = new Order(customer) ;
order.time.set(now()) ;
// move items from cart
foreach cartitem in entries CartItem.quantity

where cartitem.customer == customer
{

var oitem = OrderItem[order, cartitem.product] ;
oitem.quantity = cartitem.quantity ;
oitem.price = cartitem.quantity

∗ cartitem.product.price ;
cartitem.quantity.add(−oitem.quantity) ;
order.totalprice.add(oitem.price) ;

}
}

function ShowOrders(customer : Customer)
{

foreach order in all Order
where order.Customer == customer
orderby order.time

{
Print(”Order of ” + order.time) ;
foreach(i in all OrderItem)

where i.order == order
{

Print(i.quantity + ” ” + i.product.name +
” for ” + i.price) ;

}
}

}

Fig. 3. Pseudocode for the customer database example

Since arrays do not support dynamic creation or deletion of entries, we intro-
duce an alternative form of data structures, called entities.3 We model customers
and orders as entities rather than array entries, which has two advantages: (1)
we can create them without first determining an index by which to identify them
uniquely, and (2) we can delete them explicitly, which removes them (as well as
all associated data) from the database.

3 Note that both our arrays and our entities are special cases of the general notion
of entities as used in Chen’s entity-relationalship model [3]. The distinction is that
our array entries have visible primary keys (the indexes), and can not be created or
deleted, while our entities have hidden, automatically managed primary keys, and
are explicitly created and deleted by the user.

Cloud Types for Eventual Consistency 291

Product is an array of products, indexed by a unique id, and CartItem is an array
of cart items, indexed by customers and products, storing the quantity. The entity
Order takes a customer as a construction argument (construction arguments are
like immutable fields, but also play an additional role explained below), and the
array OrderItem stores the quantity of each product in each order.

The function AddToCart adds items to a customer’s cart, just as we added items
to the grocery list in the previous example. The function SubmitOrder creates a new
order entity for the customer, then iterates through the cart items of this customer,
and adds them to the order, totaling the prices. Note that since there is no yield in
this function, we need not worry about the order entity becoming visible to other
devices before all of its information is computed. The function ShowOrders prints all
orders bya customer, sortedbydate. It uses thequery all Order where order.Customer

== order which returns all order entities belonging to this customer.
The function DeleteCustomer is simple, but has some interesting effects. Not

suprisingly, it deletes the customer entity. But beyond that, it also clears all
entries in all arrays that have the deleted customer as an index, and it even
deletes all orders that have the deleted customer as a construction argument.4

2.5 Stronger Consistency

Eventual consistency is not always sufficient. Some problems, such as reserving
a seat on an airplane, or withdrawing money from a bank account, involve a
limited resource and require true arbitration. In such cases, we must establish
a server connection and wait for a response. In this section, we show how to
reintroduce strong synchronization.

Consider an application making seat reservations, which may attempt some-
thing like the following:

array Seat [
row : int,
letter : string]

{
assignedTo : CString ;

}

function NaiveReserve(seat: Seat, customer : string)
{

if (seat.assignedTo.get() == ””)
seat.assignedTo.set(customer) ;

else
print(”reservation failed”) ;

}
Unfortunately, this does not work as desired: a seat may appear empty in the local
revision, but already be filled on the server. In this case, the NaiveReserve function
would appear to succeed, but in fact may overwrite another reservation once the
update reaches the server. We fix this problem by introducing a primitive opera-
tion setIfEmpty for the cloud type CString. This operation sets the string only if it
is currently empty, and this condition is reevaluated when the update operation
is applied on the server. Thus, existing reservations are never overwritten.

4 Entities whose existence depends on other entities are sometimes called ‘weak enti-
ties’ in the literature. In our system, those ’weak entities’ correspond to (1) entities
that have other entities appearing in their construction arguments, and (2) array
entries that have entities appearing as an index.

292 S. Burckhardt et al.

However, yield is still not sufficient to force mutual exclusion, since we can
not tell when the update has reached the server. Thus we support an additional
synchronization primitive called flush. Upon flush, execution blocks until (1) all
local updates have been applied to the main revision, and (2) the result has
become visible to the local revision. Now we can implement the body of the
reservation function as follows:

seat.assignedTo.setIfEmpty(customer) ;
flush ;
if (seat.assignedTo.get() �= customer) print(”reservation failed”) ;

Since flush could block indefinitely if the device is not connected, our implemen-
tation supports the specification of a timeout.

This example is interesting since it shows that our model is at least as ex-
pressive as shared-memory programming with locks (locks can be implemented
analogously). However, it does not represent the type of application for which our
model is most suited. On the contrary, for applications that frequently require
strong synchronization, the benefits of our model are marginal, and traditional
OLTP (online transaction processing) is likely more appropriate.

3 Syntax, Types, and Local Semantics

Figure 4 describes the syntax of types, schemas, and expressions. We distinguish
three kinds of types. The index type ι is the type of values that can be used as
indices into an array or entity, and consists of simple read-only values like Int,
String, and array and entity identifiers (A and E). The cloud type ω is used for
mutable cloud values that are persisted. We prefix such types with the letter C to
distinguish them from regular value types. Examples of cloud types are CInt and
CString. In Section 5 we give precise semantics to these cloud values using fork-
join automata. The type CSet〈ι〉 is the type of observed-remove sets as described
by Shapiro [13]. Finally, we have expression types τ which includes index types
ι, functions, products, and regular sets. We denote the trivial product (n = 0)
by Unit.

A schema S consists of a sequence of declarations. A declaration is either an
array A, an entity E, or a property p. Properties map an index ι to a mutable
cloud type ω. In our examples, we used the following syntactic sugar to define
properties as part of an array or entity declaration:

entity E(k1 : ι1, ..., km : ιm) { p1 : ω1, ..., pn : ωn}
≡ entity E(k1 : ι1, ..., km : ιm); property p1 : E → ω1; ...; property pn : E → ωn

array A[k1 : ι1, ..., km : ιm] { p1 : ω1, ..., pn : ωn}
≡ array A[k1 : ι1, ..., km : ιm]; property p1 : A→ ω1; ...; property pn : A→ ωn

Also, global persisted values (as used for example in the grocery list in Figure 1)
are syntactic sugar for cloud arrays without any keys and a single value property:

global x : ω ≡ array x[] { value : ω }

Cloud Types for Eventual Consistency 293

entity names Ent � E ::= ...
array names Arr � A ::= ...

index types ι ::= Int | String | E | A
cloud types ω ::= CInt | CString | CSet〈ι〉 | ...
expression types τ ::= ι | Set〈τ 〉 | τ → τ | (τ1, ..., τn)

key names k ::= ...
property names p ::= ...

declarations decl ::= entity E(k1 : ι1, ..., kn : ιn)
| array A[k1 : ι1, ..., kn : ιn]
| property p : ι→ ω

schema S ::= decl1; ...; decln

unique id’s Uid � uid ::= ... (abstract)
constants Con � c ::= ... (integer and string literals)
updates opu ::= ... (predefined)
queries opq ::= ... (predefined)
operations op ::= opu | opq

values Val � v ::= A[v1, ..., vn] | E[uid, v1, ..., vn]
| c | x | (v1, ..., vn) | λ(x : τ). e

expressions e ::= new E(e1, ..., en)
| delete e
| A[e1, ..., en]
| e.p.op(e1, .., en)
| e.k
| all E
| entries p
| yield | flush
| v | e1 e2 | e1; e2 | (e1, ..., en)

program program ::= S ; e

Fig. 4. Syntax of types, schemas, and expressions. A subscript n without an explicit
bound is assumed n � 0.

where all operations on x are replaced with operations on the array value:

x.op(e1, ..., en) ≡ x[].value.op(e1, ..., en)

The syntax of expressions is separated into values v and expressions e to facilitate
the description of the evaluation semantics. Values can be regular values such

294 S. Burckhardt et al.

as literals c, variables x, products of values, or lambda expressions. Moreover,
we have array and entity values which encode a particular entry of an array,
as A[v1, ..., vn], or a particular entity as E[uid, v1, ..., vn]. The entity value is
not an expression that users can write down themselves and only occurs in the
evaluation semantics as the result of a new expression (which also supplies the
unique id uid for the entity value).

Expressions consist of both cloud specific expressions, and of regular expres-
sions like applications e1 e2, sequence e1; e2, products and lambda expressions.
The keywords new and delete respectively create and delete entities. The ex-
pression A[e1, ..., en] is used to index into an array. The operation expression
e.p.op(e1, ..., en) invokes an update or query operation op on a property p in-
dexed by e. The creation keys of an entity, or the indices of an array expression
can be queried using the e.k expression.

The all and entries keywords return all elements of an entity or all non-initial
entries of a property respectively. These primitive expressions allow us to con-
struct general queries. Finally, the yield and flush operations are used for syn-
chronization with the cloud.

Figure 5 defines a type system for our expression language. A derivation S, Γ �
e : τ states that for a certain (well-formed) schema S and type environment Γ ,
the expression e is well-typed with a type τ . The initial Γ is written as Γ0 and
contains the type of primitive functions (i.e. add : (Int, Int)→ Int), together with
the types of primitive cloud type operations (i.e. CInt.add : (Int)→ Unit).

Most rules are standard and self-explanatory. There are some important de-
tails though. In particular, in the type rule for operation expressions, we can see
that the type ω of the mutable cloud value never ‘escapes’: values with a cloud
type ω are not first-class and expressions always have a type τ (which does not
include ω). This is by construction since an operation expression e.p.op(e1, ..., en)
always occurs as a bundle and the cloud value never occurs in isolation.

3.1 Client Execution

Figure 6 and 7 give the evaluation semantics for local client execution. Figure 6
defines the evaluation order within an expression. An execution context E is an
expression “with a hole �”, and we use the notation E�e� to denote the expres-
sion obtained from E by replacing the hole with e. Essentially, the execution
context acts as an abstraction of a program counter and specifies where the next
evaluation step can take place.

Figure 7 defines the operational semantics in the form of transition rules
e;σ → e′;σ′ where an expression e with a local state σ is evaluated to a new
expression e′ and updated local state σ′. The client state σ is the state of the
schema fork-join automaton ΣS described in Section 5.

The first three rules, new, delete, and operation expressions just update the lo-
cal state by invoking the corresponding updates on the fork-join automaton. The
following three query rules just return the result of executing the corresponding
query on the fork-join automaton. The fresh uid for the create call is produced
locally. We assume each client can generate such globally unique ids.

Cloud Types for Eventual Consistency 295

entity E(k1 : ι1, ..., kn : ιn) ∈ S S , Γ � ei : ιi

S , Γ � new E(e1, ..., en) : E

S , Γ � e : E

S , Γ � delete e : Unit

array A[k1 : ι1, ..., kn : ιn] ∈ S S , Γ � ei : ιi

S , Γ � A[e1, ..., en] : A

entity E(...) ∈ S
S , Γ � E[uid, v1, ..., vn] : E

S , Γ � e : ι property p : ι→ ω ∈ S ω.op : (τ1, ..., τn)→ τ ∈ Γ S , Γ � ei : τi

S , Γ � e.p.op(e1, ..., en) : τ

entity E(...) ∈ S
S , Γ � all E : Set〈E〉

S , Γ � e : E entity E(..., k : ι, ...) ∈ S
S , Γ � e.k : ι

property p : ι→ ω ∈ S
S , Γ � entries p : Set〈ι〉

S , Γ � e : A array A[..., k : ι, ...] ∈ S
S , Γ � e.k : ι

x : τ ∈ Γ
S , Γ � x : τ

S , (Γ, x : τ1) � e : τ2

S , Γ � λ(x : τ1). e : τ1 → τ2

S , Γ � e1 : τ2 → τ S , Γ � e2 : τ2
S , Γ � e1 e2 : τ

S , Γ � ei : τi

S , Γ � (e1, ..., en) : (τ1, ..., τn)

S , Γ � e1 : τ1 S , Γ � e2 : τ2
S , Γ � e1; e2 : τ2 S , Γ � yield : Unit S , Γ � flush : Unit

Fig. 5. Types of expressions

E ::= �
| new E(v1, ..., vi, E , ej , ..., en)
| delete E
| A[v1, ..., vi, E , ej , ..., en]
| E .p.op(e1, ..., en)
| v.p.op(v1, ..., vi, E , ej , ..., en)
| E .k
| E e | v E | E ; e
| (v1, ..., vi, E , ej , ..., en)

Fig. 6. Evaluation contexts

The final four rules are standard evaluation rules on the expressions and do
not use the local state at all. Note that we chose to keep the creation keys of
arrays and entities around explicitly in the value representation which makes the
key selection a completely local operation. However, realistic implementations
can use just the uid to represent entities and store the creation values in the
local state (and similarly for arrays).

The operations yield, flush, and barrier cannot be described as local operations
and are handled by the semantic rules defined over the clients and servers as
shown in the next section.

296 S. Burckhardt et al.

E�newE(v1, ..., vn)�; σ → E�E[uid, v1, ..., vn]�;σ.createE(E[uid, v1, ..., vn]) (fresh uid)

E�deleteE[uid, ...]�;σ → E�()�; σ.deleteE(uid)

E�v.p.opu(v1, ..., vn)�; σ → E�()�; σ.updatep(v, opu(v1, ..., vn))

E�v.p.opq(v1, ..., vn)�; σ → E�σ.queryp(v, opq(v1, ..., vn))�; σ

E�all E�;σ → E�σ.allE�;σ

E�entries p�;σ → E�σ.entriesp�; σ

E�A[v1, ..., vn].ki�; σ → E�vi�; σ

E�E[uid, v1, ..., vn].ki�; σ → E�vi�; σ

E�(λ(x : τ).e) v]�; σ → E�e[v/x]�; σ

E�v; e�;σ → E�e�; σ

Fig. 7. Expression semantics

4 System Model and Distribution

In the previous section, we have established the local execution semantics of ex-
pressions. In this section, we present an operational whole-system model includ-
ing multiple clients and an elastic server pool. We follow the general blueprint
for modeling eventually consistent systems presented in [1], where we prove that
to achieve eventual consistency, it is sufficient to enforce that all executions pro-
duce proper revision diagrams, and that we use proper fork and join functions
to manage the state of replicas.

Fig. 8(a) shows a brief example of an execution with three servers in the pool,
and two clients. Clients that perform yield or flush initiate transitions of two kinds,
push and pull. These transitions communicate with an eligible server in the pool.
Not all servers are eligible, as we will explain shortly. Servers behave similarly
to clients, initiating push and pull transitions with other eligible servers.

When synchronizing, clients and servers need to ensure that proper revision
diagrams result. In particular, they must observe the join rule [1]: joiners must
be downstream from the fork that forked the joinee (see Fig. 8b for examples).
To ensure this condition, we assign round numbers to servers and clients, and
use round maps (a form of vector clocks) to determine eligibility (by determining
which forks are in the visible history). We show round numbers in Fig. 8(a). All
clients and servers start with round 0, except the main revision that starts (and
forever remains) in round 1.

We now proceed to give formal definitions of the ideas outlined above. We
begin by introducing some notation to prepare for the operational rules in Fig. 9
and Fig. 10. We define a system configuration C to be a partial function from
identifiers (representing servers or clients) to a server or client state, respectively.
For a client identifier c, the client state C(c) is a tuple (r, e, σ) consisting of a
round number r, an expression e, and the revision σ. For a server identifier s,
the server state C(s) is a tuple (r, R, σ) consisting of a round number r, a round
map R and a revision state σ.

Cloud Types for Eventual Consistency 297

[YieldPull]

[YieldPush]

s1

[FlushPush]

s3 c2

[FlushPull]

s2 c1

[SyncPush]

[SyncPull]

[SyncPush]

[SyncPush]

[SyncPull]

[SyncPull]

[YieldPull]

[YieldPush]

NO

OK

Join rule

1 0 0

1

0 0

1

1

1

2

2 2

3

4

3

4

Fig. 8. (a) (left) An illustration of an execution with 2 clients and 3 servers. (b)
(right) An illustration of the join rule.

The revision state σ represents the state of the current replica. We defer the
description of the implementation of σ until Section 5, where we discuss cloud
types and define fork-join automata. For now, we simply postulate that σ is in
some set Σ, supports all the local data operations, has an initial state σ0, and
supports fork and join functions fork : Σ → Σ × Σ and join : Σ × Σ → Σ,
respectively. Moreover, we assume that fork (σ0) = (σ0, σ0) (forking from the
initial state yields the initial state).

The round numbers r are used to track which clients (and servers) can syn-
chronize with particular servers. After each fork, the round number of a client
or server is incremented. The round map R on a server s is a total function that
maps each identifier i of a client or server to a round number R(i) which is the
number of the last round whose fork is in the visible history of s. The initial
round map R0 maps all clients and servers to round 0 (since round 0 is always
forked from the initial state of the main revision, it is retroactively in the visible
history). The rules are set up to enforce that a client c (or server s) with round
number r can only communicate with a server where R(c) = r.

Fig. 9 presents transition rules of the form C ⇒ C′ where cloud state C updates
to C′. We use the pattern match notation C(a1 �→ b1, ..., an �→ bn) to match on
a partial function C satisfying C(ai) = bi ∀i.1 � i � n. We write C[a �→ b] to
denote a partial function that is equivalent to C except that C(a) = b.

For any cloud state there are potentially many valid transitions which capture
the inherent concurrency and non-determinism of cloud execution. For example,
clients can be spawned at any time using the rule [Spawn],and clients can arbi-
trarily interleave local evaluation.

The rules [Yield-Nop], [Yield-Push] and [Yield-Pull] describe how clients synchro-
nize with servers. The [Yield-Nop] states that a yield instruction can be ignored,

298 S. Burckhardt et al.

[Eval]

e; σ → e′; σ′

C(c �→ (r, e, σ)) ⇒ C[c �→ (r, e′, σ′)]

[Spawn]

c �∈ dom(C)
C ⇒ C[c �→ (0, e, σ0)]

[Yield-Push]

R(c) = r R′ = R[c �→ r + 1] fork(σc) = (σ′
c, σ

′′
c) join(σs, σ′

c) = σ′
s

C(s �→ (rs, R, σs), c �→ (r, E�yield�, σc)) ⇒ C[s �→ (rs, R′, σ′
s), c �→ (r + 1, E�()�, σ′′

c)]

[Yield-Pull]

R(c) = r R′ = R[c �→ r + 1] fork (σs) = (σ′
s, σ

′′
s) join(σ′′

s , σc) = σ′
c

C(s �→ (rs, R, σs), c �→ (r, E�yield�, σc)) ⇒ C[s �→ (rs, R′, σ′
s), c �→ (r + 1, E�()�, σ′

c)]

[Yield-Nop] C(c �→ (r, E�yield�, σ)) ⇒ C[c �→ (r, E�()�, σ)]

Fig. 9. Cloud evaluation rules for clients

[Create]

s �∈ dom(C)
C ⇒ C[s �→ (0, R0, σ0)]

[Sync-Push] Rs(t) = rt R′
s = max(Rs, Rt)

R′′
s = R′

s[t �→ rt + 1] fork(σt) = (σ′
t, σ

′′
t) join(σs, σ

′
t) = σ′

s

C(s �→ (rs, Rs, σs), t �→ (rt, Rt, σt)) ⇒ C[s �→ (rs, R
′′
s , σ

′
s), t �→ (rt + 1, Rt, σ

′′
t)]

[Sync-Pull] Rs(t) = rt R′
t = max(Rs, Rt)

R′
s = Rs[t �→ rt + 1] fork(σs) = (σ′

s, σ
′′
s) join(σ′′

s , σt) = σ′
t

C(s �→ (rs, Rs, σs), t �→ (rt, Rt, σt)) ⇒ C[s �→ (rs, R
′
s, σ

′
s), t �→ (rt + 1, R′

t, σ
′
t)]

[Retire]

Rs(t) = rt R′
s = max(Rs, Rt) join(σs, σt) = σ′

s

C(s �→ (rs, Rs, σs), t �→ (rt, Rt, σt)) ⇒ C[s �→ (rs, R
′
s, σ

′
s), t �→ ⊥]

Fig. 10. Cloud evaluation rules for servers

allowing disconnected clients to keep executing. The rule [Yield-Push] sends a re-
vision to an eligible server, while the rule [Yield-Pull] receives a revision from an
eligible server. In both cases, the round number of the client is incremented and
the round map of the server is updated. The new states of the client and server
are determined by forking/joining revisions appropriately (see Fig. 8).

Figure 10 shows the rules for server synchronization. The rules [Create] and
[Retire] create and retire servers on demand. The [Sync] rule is the synchroniza-
tion rule for servers and is like a simplified (more synchronous) version of [Yield].
The premise ensures that the round number matches, the round number is in-
cremented, and the state is first joined and then forked again. What is different
is that the round maps of both servers are also joined using R = max(Rs, Rt)
(taking the pointwise max of the vector clocks).

Cloud Types for Eventual Consistency 299

[Flush-Push]

R(c) = r R′ = R[c �→ r + 1] join(σs, σc) = σ′
s

C(s �→ (rs, R, σs), c �→ (r, E�flush�, σc)) ⇒ C[s �→ (rs, R′, σ′
s), c �→ (r + 1, E�block�, σc)]

[Flush-Pull]

R(cflush) = r fork (σs) = (σ′
s, σ

′
c)

C(s �→ (rs, R, σs), c �→ (r, E�block�, σc)) ⇒ C[s �→ (rs, R, σ′
s), c �→ (r, E�()�, σ′

c)]

[Commit]

R′ = R[∀c. cflush �→ R(c))

C(smain �→ (0, R, σ)) ⇒ C[smain �→ (0, R′, σ)]

Fig. 11. Semantics of the flush operation

4.1 Flush

To describe the flush operation, we distinguish an initial main server smain. The
flush operation must not only guarantee that all updates of a client are joined in
the main server smain, but also that the client sees all the state changes in the
main server that were applied before the client state was joined.

To track which client updates have been seen by the main server, we add
an extra round number cflush in the round map. As shown in Figure 11, the
main server can always execute the rule [Commit] to set the cflush entries to
the corresponding round numbers of the clients that have synchronized with
the main server. Through rule [Sync] (Fig 10) any servers that synchronize with
the main server will propagate these cflush entries automatically.

The rule [Flush-Push] is applied whenever the client does a flush operation. The
rule is similar to [Yield-Push] but blocks the client. Also, only the state of the
client is joined with the server state, but the client state itself does not fork a
new revision. The round map of the server s is updated though with the new
round number c �→ r+1. Now, servers can execute [Sync] until the state changes
are propagated all the way up to smain. At that point, the main server can make a
[Commit] transition, making cflush �→ r+1. After again doing more [Sync] transitions,
the new cflush entry makes it back to the original server. At this point, [Flush-Pull]
can apply where the server state is forked now into a new server state σ′

s and
client state σ′

c, and where the client is unblocked again.

4.2 Message Protocols and Server State

The rules presented are still somewhat more abstract than needed for an ac-
tual implementation, to keep the presentation from becoming too technical. In
practice, all communication is asynchronous (based on message delivery) and
unreliable. Thus, our actual implementation breaks synchronous transition rules
(like Yield-Push, Yield-Pull, Sync, Flush-Pull, Flush-Push) into message proto-
cols, uses state machines that are locally persisted, and retransmits messages if
they are lost.

300 S. Burckhardt et al.

Another very important optimization concerns the size of messages. Sending
the full replica state in messages is of course impractical. Thus we use compres-
sion by sending diffs of the state.

5 Cloud Types

We now examine our cloud type implementations in more detail. To this end
we define the concept of a fork-join automaton. Fork-join automata are concrete
implementations of cloud types, consisting of implementations for the abstract
update and query operations, and concrete implementations of fork and join.

Definition 1. A fork-join automaton (FJA) is a tuple (Q,U,Σ, σ0, f , j) where

– Q is an abstract set of query operations
– U is an abstract set of update operations
– Σ is a set of states
– σ0 ∈ Σ is the initial state
– Queries and updates have an interpretation as functions, specifically (1) each

query operation q ∈ Q defines a function q# : Σ → Val, and (2) each update
operation u ∈ U defines a function u# : Σ → Σ.

– f : Σ → Σ ×Σ is a function for splitting the current state on a fork.
– j : Σ ×Σ → Σ is a function for merging states on a join.

Fork-join automata must satisfy a correctness conditions: they must correctly
track and apply updates when revisions are forked and joined (as we illustrated
earlier in Section 2.2). We discuss this condition only informally here, since its
definition depends on the definition of revision diagrams, which is outside the
scope of this paper. A full exposition is available in [1].

In the remainder of this section, we define a fork-join automaton for the entire
cloud state (i.e. for all cloud data declared by the user). First, we define fork-join
automata for the primitive cloud types CInt and CString. Then we show how to
define the cloud types for entities and arrays. Finally, we show how to provide
the cloud type CSet as syntactic sugar.

5.1 A Fork-Join Automaton for CInt

For cloud integers, we support operations get and set to read and write the
current value, as well as add (Fig. 12). In the state, we store three values: a
boolean indicating whether the current revision performed any set operations, a
base value, and an offset. On fork, the boolean is reset, the base value is set to
the current value, and the offset is set to zero. Add operations change only the
offset, while set operations set the boolean to true, set the base value, and reset
the offset. On join, we assume the value of the joined revision (if it performed
a set) or add its offset (otherwise). This produces the desired semantics (see
Section 2.2 for examples).

Cloud Types for Eventual Consistency 301

QCInt : {get}
UCInt : {set(n) | n ∈ int} ∪ {add(n) | n ∈ int}
ΣCInt : bool× int× int

σCInt0 : (false, 0, 0)

add(n)# (r, b, d) = (r, b, d+ n)

set(n)# (r, b, d) = (true, n, 0)

get# (r, b, d) = b+ d

f CInt (r, b, d) = (r, b, d), (false, b+ d, 0)

jCInt (r1, b1, d1)(r2, b2, d2) =

{
(true, b2, d2) if r2 = true
(r1, b1, d1 + d2) otherwise

Fig. 12. Fork-join automaton for CInt

5.2 A Fork-Join Automaton for CString

For cloud strings, we support operations get and set to read and write the current
value, and a conditonal operation setIfEmpty (Fig. 13). In the state, we record the
current value and whether it has not been written (⊥), has been written (wr), or
has been conditionally written (cond). A conditional write succeeds only if the
current value is empty, and this test is repeated on merge.

5.3 A Fork-Join Automata for the Complete State

For a fixed schema S, we can now define the entire state as a fork-join automaton.
First, we define the query operations QS and the update operations US as in
the following table.

QCString : {get}
UCString : {set(s) | s ∈ string} ∪ {setIfEmpty(s) | s ∈ string \ {””}}
ΣCString : {⊥,wr, cond(string)} × string

σ
CString
0 : (⊥, ””)
set(s)# (r, t) = (wr, s)

setIfEmpty(s)# (r, t) =

⎧⎪⎪⎨
⎪⎪⎩

(wr, s) if r = wr ∧ t =””
(cond(s), s) if r = ⊥ ∧ t =””
(cond(s), t) if r = ⊥ ∧ t �=””
(r, t) otherwise

get# (r, s) = s

fCString (r, s) = (r, s), (⊥, s)

jCString (r1, s1)(r2, s2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(wr, s2) if r2 = wr
(wr, s) if r1 = wr ∧ s1 = ”” ∧ r2 = cond(s)
(cond(s), s) if r1 = ⊥ ∧ s1 = ”” ∧ r2 = cond(s)
(cond(s), s1) if r1 = ⊥ ∧ s1 �= ”” ∧ r2 = cond(s)
(r1, s1) otherwise

Fig. 13. Fork-join automaton for CString

302 S. Burckhardt et al.

operation argument types return type entity/property definition
allE Set〈E〉 entity E(k1 : ι1, ..., kn : ιn)
createE(e) E entity E(k1 : ι1, ..., kn : ιn)
deleteE(e) E entity E(k1 : ι1, ..., kn : ιn)
entriesp Set〈ι〉 property p : ι→ ω
queryp(i, q) ι, Qω Val property p : ι→ ω
updatep(i, u) ι, U

ω property p : ι→ ω

Next, we define the state space to consist of separate components for each
entity type and each property

ΣS =
∏
p∈S

Σp ×
∏
E∈S

ΣE .

For each declaration property p : ι → ω we store a total function from keys to
values, where keys are of the corresponding index type, and values belong to the
state space of the corresponding fork-join automaton:

Σp = ι→ Σω

For each declaration entity E(k1 : ι1, ..., kn : ιn) we store a total function from
entities to a state that indicates whether this entity is not yet created (⊥), exists
as a normal entity (ok), or has been deleted (�):

ΣE = E → {⊥, ok,�}
For a state σ ∈ ΣS , we let σp and σE be the projection on the respective
components.

Naturally, in the initial state σS
0 , we map all property indexes to Σω

0 (the
initial state of the corresponding fork-join automaton) and all entities to ⊥. We
show the implementation of queries, updates, fork, and join in Fig. 14, using
pseudocode, and explain them in the following.

– Create adds a fresh element to an entity by mapping it to ok. We assume
each client can create fresh elements (based on a local id and counter).

– Delete maps the deleted element to � to mark it as deleted. We cannot simply
remove it because at joins, it would be impossible to determine if one side
is fresh, or the other deleted. Extra book-keeping can be used to eventually
collect these tombstones.
Deletion also causes any dependent entities to be deleted. This is achieved
by Propagate. Note that entity dependencies cannot be cyclic, since an entity
can only be used in the creation of another when it is already defined.

– allE returns all non-deleted values of a given entity.
– A query q on an entry i of property p is answered by delegating it to the

FJA of p at i, provided that i is not deleted.
– Similarly, an update u on an entry i of property p is delegated to the FJA

of p at i, provided i is not deleted.
– entriesp returns all the entries of a property p that map to non-default FJAs

and are not deleted.

Cloud Types for Eventual Consistency 303

– Forking the overall FJA turns into a point-wise forking of all the FJA’s of
each property. The entity maps are unaffected by forking.

– Joining is similarly performed point-wise on all properties. For entities, join-
ing requires computing the maximum in the order ⊥ < ok < �. This achieves
deleting the entry, provided any one side has it deleted, or keeping it allo-
cated, if any one side has it allocated. At joins, we also need to repropagate
deletions to all dependent elements, as new deletions can be merged into the
revision.

It is remarkable that the complete state FJA operations are commutative by
themselves. The only non-commutative operations are in the FJAs implementing
cloud types. This property makes using arrays and entities very natural and
does not introduce unexpected conflict resolutions. Furthermore, our design was
careful to enable a completely modular implementation of the complete state
FJA with respect to the cloud type implementations. In part, this structure
makes a single parameterized, reusable implementation of cloud storage and
synchronization possible. Any schema and any extensions of cloud types can be
supported without further changes.

5.4 Implementation of CSet

Rather than defining sets directly, we encode them relationally, building on the
abstraction mechanism provided by entities. Given a schema definition for a
property of type CSet〈ι〉, we rewrite it to an entity definition whose entities
represent “instances” of additions of elements:

property p: ι′ → CSet〈ι〉 ≡ entity Ep[index : ι′, element : ι]

Then we encode operations as follows:

x.add(i) ≡ { new Ep(x, i) ; }
x.contains(i) ≡ { return (all Ep where index == x and element == i).isNotEmpty() ; }
x.remove(i) ≡ { foreach (e in all Ep where index == x and element == i) e.delete() ; }
Our indirect encoding has two advantages (illustrated in the picture below):

– Removing an element from a set only removes instances that were visibly
added before the remove. This is known as observed-remove behavior, as
proposed in [13] as a reasonable semantics for eventually consistent sets (see
examples on the left and in the middle below).

– If the user deletes an entity, that entity disappears automatically from all
sets that contain it (see example on the right below).

x.contains(e)
 →true

x.add(e)
x.remove(e)

x.add(e) delete e x.add(e)

x.contains(e)
 →false

x.add(e)
x.remove(e)

x.add(e)

x.contains(e)
 →false

304 S. Burckhardt et al.

// operations on entities

createE(e) {
σE(e) := σE(e)[e �→ ok] ;

}
deleteE(e) {

σE(e) := σE(e)[e �→ �] ;
propagate() ;

}
allE {

return {e ∈ E | σE(e) = ok} ;
}

// auxiliary functions

propagate() {
while exists E, e such that
σE(e) �= � and deleted(e)

do
σE(e) := σE(e)[e �→ �] ;

}
deleted(i) {

match i with
A[i1, . . . , in]:

return (exists j such that deleted(ij)) ;
E[uid, i1, . . . , in]:

return σE(i) = �
or (exists j such that deleted(ij)) ;

else // string or int
return false ;

}
isdefault(σ) {

if σ ∈ ΣCInt

return get#σ = 0 ;

else if σ ∈ ΣCString

return get#σ =”” ;

else if σ ∈ ΣCSet〈ι〉

return elems#σ = ∅ ;
}

// operations on properties

queryp(i, q) {
if (deleted(i))
return ⊥ ;

else
return σp(i).q ;

}
updatep(i, u) {

if (not deleted(i))
σp(i).u ;

}
entriesp {

return all i ∈ ι
where (not isdefault(σp(i))
and (not deleted(i))

}

// fork and join functions

fork() {
var σ′ = σ ; // copy the state
foreach property p : ι→ ω
foreach i ∈ ι
(σp(i), σ

′
p(i)) := f ω(σp(i)) ;

return σ′ ;
}

join(σ′) {
foreach property p : ι→ ω
foreach i ∈ ι
σp(i) := jω(σp(i), σ

′
p(i)) ;

foreach entity E(k1 : ι1, ..., kn : ιn)
foreach e ∈ E
σE(e) := max(σE(e), σ

′
E(e))) ;

propagate() ;
}

max(s1, s2) uses the order ⊥ < ok < �

Fig. 14. Complete fork-join automaton

6 Related Work

At the heart of our work is the idea of using revision diagrams and fork-join
automata to achieve eventual consistency, which was introduced in [1]. In this
paper we extend and concretize this idea, by (1) devising a composable way to

Cloud Types for Eventual Consistency 305

construct schema from basic cloud types, which eliminates the need for user-
defined conflict resolution code, (2) giving examples of concrete programs and
cloud types, (3) devising primitives that are sufficient to recover stronger syn-
chronization. Moreover, we provide a formal syntax and semantics that connects
a small, but sufficiently expressive programming language with a detailed oper-
ational system model.

Eventual consistency is motivated by the impossibility of achieving strong
consistency, availability, and partition tolerance at the same time, as stated by
the CAP theorem [5]. Eventual consistency across the literature uses a variety of
techniques to propagate updates (e.g. general causally-ordered broadcast [14,15],
or pairwise anti-entropy [10]). For a general high-level comparison of our work
with various notions of eventual consistency appearing in the literature, we refer
to the discussion in [1].

Most closely related to ourwork are conflict-free replicated data types (CRDTs)
[14] and Bayou’s weakly consistent replication [16].

– CRDTs are very similar to our cloud types, insofar that they separate the
use of eventually consistent data types from their implementation. In fact,
CRDTs can serve as cloud types (as exemplified by the observed-remove set
proposed in [13]). However, we are not aware of prior work on how to compose
individual CRDTs into a larger schema. Furthermore, CRDTs only support
commutative operations, whereas our approach supports non-commutative
operations while still achieving eventual consistency. Furthermore, we sup-
port stronger synchronization primitives like flush when necessary, in the
same framework.

– In Bayou [16], and in the original Concurrent Revisions work[2], conflict
resolution is achieved by explicit merge functions written by the user. In
contrast, this paper uses conflict resolution that is automatically inferred
from the structure of the type declarations.

Research on persistent data types [8] is related to our definition of cloud types
insofar it concerns itself with efficient implementations of data types that permit
retrieval and mutations of past versions. However, it does not concern itself with
apects related to transactions or distribution.

Prior work on operational transformations [15] can be understood as a special-
ized form of eventual consistency where updates are applied to different replicas
in different orders, and modified in such a way as to guarantee convergence.
This specialized formulation can provide highly efficient broadcast-based real-
time collaboration, but poses significant implementation challenges [7].

There is of course a large body of work on transactions. Most academic work
considers strong consistency (serializable transactions) only, and is thus not di-
rectly applicable to eventual consistency. Nevertheless there are some similarities,
such as:

– [6] provides insight on the limitations of serializable transactions, and pro-
poses similar workarounds as used by eventual consistency (timestamps and
commutative updates). However, transactions remain tentative during dis-
connection.

306 S. Burckhardt et al.

– Snapshot isolation [4] relaxes the consistency model, but transactions can
still fail, and can not commit in the presence of network partitions.

– Automatic Mutual Exclusion [9], like our work, uses yield statements to sep-
arate transactions.

7 Conclusion

Providing good programming abstractions for cloud storage, synchronization,
and disconnected operation appears crucial to accelerate the production of use-
ful and novel applications on today’s and tomorrow’s mobile devices. In this
paper, we provided a sound foundation upon which to build such programming
abstractions through the use of automatically synchronized cloud data types
that can be composed into a larger data schema using indexed arrays and enti-
ties. The design we presented allows implementing all the difficult parts of such
a system (the cloud service, the local persistence, the caching, the conflict res-
olution, and the synchronization) once and for all, while guaranteeing eventual
consistency. An application programmer declares only the data schemas and fo-
cuses on writing code performing operations on the data, as well as identifying
points in his program where synchronization is desired.

References

1. Burckhardt, S., Leijen, D., Fähndrich, M., Sagiv, M.: Eventually Consistent Trans-
actions. In: Seidl, H. (ed.) Programming Languages and Systems. LNCS, vol. 7211,
pp. 67–86. Springer, Heidelberg (2012)

2. Burckhardt, S., Leijen, D.: Semantics of Concurrent Revisions. In: Barthe, G. (ed.)
ESOP 2011. LNCS, vol. 6602, pp. 116–135. Springer, Heidelberg (2011)

3. Chen, P.P.-S.: The entity-relationship model toward a unified view of data. ACM
Trans. Database Syst. 1, 9–36 (1976)

4. Fekete, A., Liarokapis, D., O’Neil, E., O’Neil, P., Shasha, D.: Making snapshot
isolation serializable. ACM Trans. Database Syst. 30(2), 492–528 (2005)

5. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News 33, 51–59 (2002)

6. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a
solution. SIGMOD Record 25, 173–182 (1996)

7. Imine, A., Rusinowitch, M., Oster, G., Molli, P.: Formal design and verification
of operational transformation algorithms for copies convergence. Theoretical Com-
puter Science 351, 167–183 (2006)

8. Kaplan, H.: Persistent data structures. In: Handbook on Data Structures and Ap-
plications, pp. 241–246. CRC Press (1995)

9. Martin, A., Birrell, A., Harris, T., Isard, M.: Semantics of transactional mem-
ory and automatic mutual exclusion. In: Principles of Programming Languages
(POPL), pp. 63–74 (2008)

10. Petersen, K., Spreitzer, M., Terry, D., Theimer, M., Demers, A.: Flexible update
propagation for weakly consistent replication. Operating Systems Review 31, 288–
301 (1997)

Cloud Types for Eventual Consistency 307

11. Saito, Y., Shapiro, M.: Optimistic replication. ACM Computing Surveys 37, 42–81
(2005)

12. Shapiro, M., Kemme, B.: Eventual consistency. In: Encyclopedia of Database Sys-
tems, pp. 1071–1072. Springer (2009)

13. Shapiro, M., Preguica, N., Baquero, C., Zawirski, M.: A comprehensive study of
convergent and commutative replicated data types. Technical Report Rapport de
recherche 7506, INRIA (2011)

14. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-Free Replicated Data
Types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011)

15. Sun, C., Ellis, C.: Operational transformation in real-time group editors: issues,
algorithms, and achievements. In: Conference on Computer Supported Cooperative
Work, pp. 59–68 (1998)

16. Terry, D., Theimer, M., Petersen, K., Demers, A., Spreitzer, M., Hauser, C.:
Managing update conflicts in bayou, a weakly connected replicated storage sys-
tem. SIGOPS Oper. Syst. Rev. 29, 172–182 (1995)

17. Tillmann, N., Moskal, M., de Halleux, J., Fähndrich, M.: Touchdevelop: Pro-
gramming cloud-connected mobile devices via touchscreen. In: ONWARD 2011
at SPLASH (also available as Microsoft TechReport MSR-TR-2011-49) (2011)

Lock Inference in the Presence of Large Libraries

Khilan Gudka1, Tim Harris2, and Susan Eisenbach1

1 Imperial College London
{khilan,susan}@imperial.ac.uk
2 Microsoft Research Cambridge

tharris@microsoft.com

Abstract. Atomic sections can be implemented using lock inference. For
lock inference to be practically useful, it is crucial that large libraries be
analysed. However, libraries are challenging for static analysis, due to
their cyclomatic complexity.

Existingapproaches either ignore libraries, require library implementers
to annotate which locks to take or only consider accesses performed upto
one level deep in library call chains. Thus, some library accesses may go
unprotected, leading to atomicity violations that atomic sections are sup-
posed to eliminate.

We present a lock inference approach for Java that analyses library
methods in full. We achieve this by (i) formulating lock inference as an
Interprocedural Distributive Environment dataflow problem, (ii) using a
graph representation for summary information and (iii) applying a num-
ber of optimisations to our implementation to reduce space-time require-
ments and locks inferred. We demonstrate the scalability of our approach
by analysing the entire GNU Classpath library comprising 122KLOC.

1 Introduction

Atomic sections [1] are an abstraction for shared-memory concurrency. They al-
low a programmer to demarcate a block of code that should execute without
interference from concurrent threads but leave the low-level details of achieving
this to the compiler and/or run-time. If used correctly, they can remove many of
the problems that have plagued programmers for decades, such as low-level race
conditions, deadlock, priority inversion and convoying [2]. With current abstrac-
tions, the frequency of such unfortunate encounters is only likely to increase,
given that multi-core processors are the norm [3, 4].

Atomic sections are a language-level construct, hence an important question
is, how should we implement them? Software Transactional Memory (STM) [5] is
a popular approach, wherein memory updates are buffered during execution and
then committed atomically. If a conflicting update has already been committed
by another thread, the buffer is discarded and the transaction is re-executed
(rollback). This ability to abort and re-run is essential to STM, as implementa-
tions are typically optimistic; they execute with the assumption that interference
is unlikely to occur. Rolling back execution is unappealing because irreversible

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 308–332, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Lock Inference in the Presence of Large Libraries 309

operations (e.g. system calls) cannot be rolled back and performance can be
harmed by maintaining undo-logs to allow rollback.

In light of these shortcomings, pessimistic alternatives have been proposed,
based on lock inference. These alternatives statically infer enough locks to pre-
vent interference and instrument the program with the corresponding lock op-
erations. Since lock inference must consider all possible execution paths, this
compile-time approach may introduce more lock/unlock operations than strictly
necessary, resulting in less concurrency.

Real-world programs make extensive use of libraries, hence being able to anal-
yse them is important. However, libraries create a scalability challenge for static
analysis [6] because they are large and have a high cyclomatic complexity.1

Most problematic is that an analysis may not be able to complete if the mem-
ory requirements are too great. Furthermore, even simple programs can involve
vast amounts of library code. Consider a “Hello World!” example extended with
atomic sections:

atomic {
System . out . p r i n t l n ("Hello World!") ;

}

Lock inference prides itself on being able to support I/O, so one would expect it
to be able to handle this library call. In practice, this example is non-trivial with
a compile-time call graph containing 1150 library methods for GNU Classpath
0.97.2. Analysing the library is a hard problem as is evident from the fact that
existing work either ignores libraries [8–11], requires library implementers to
annotate which method parameters should be locked prior to the call [12] or only
considers accesses performed upto one level deep in library call chains [13]. All of
these have the potential that some shared accesses performed within the library
may go unprotected, leading to atomicity violations. Our previous approach [14]
on this example was intractable.

Our main contribution is a lock inference approach for Java that analyses
library methods in full. Specifically:

– We formulate lock inference as an Interprocedural Distributive Environment
(IDE) dataflow problem.

– We adapt the pointwise graph representation of Sagiv et al [15] to reduce
the number of edges in our summary graphs.

– We present delta transformers that dramatically reduce IDE analysis space-
time requirements by only propagating new dataflow information.

– We identify and remove many locks for thread-local, internal, dominated and
read-only objects.

– We implement our whole-program analyses in Soot.

1 Cyclomatic complexity [7] is a measure of the number of linearly independent paths.
Library call chains can be long and consist of large strongly connected components.

310 K. Gudka, T. Harris, and S. Eisenbach

We evaluate our approach as follows:

– We demonstrate analysis scalability by analysing the entire GNU Classpath
library (122KLOC) and the popular Java SQL database engine HSQLDB
(150KLOC) on top of GNU Classpath.

– We evaluate the effects of a number of analysis optimisations: delta trans-
formers, CFG summarisation [6], parallel processing of worklists and work-
list ordering. We show that our delta transformers give the biggest speedup
whilst also reducing memory usage.

– We evaluate the run-time performance of a range of benchmarks instru-
mented with our locks and compare results with the original synchronisation
and Halpert et al [13].

2 General Approach

Our general approach is to use the Soot framework [16] to analyse Java classes
annotated with atomic sections (we treat synchronized blocks and methods as
atomic sections) and replace these annotations with suitable locks. Our analysis
ensures weak atomicity.

First, we perform a dataflow analysis to infer what objects are accessed in
each atomic section. Nested atomics are flattened and merged. We compute a
summary for each method, which describes the accesses performed by it and all
transitively called methods. The result is a graph describing all objects accessed
in the atomic section, which we convert to locks.

We infer instance locks where possible, however, for those portions of the
graph that describe a statically unbounded set of accesses, we infer locks on
the types of these objects. We use multi-granularity locking [17] to support both

1 class Schedu ler {
2 Pr in t e r p1 , p2 ;
3
4 atomic boolean s chedu le (Job j) {
5 // lockRead (t h i s)
6 // lockWri te (t h i s . p1) ;
7 // lockWri te (t h i s . p2) ;
8 i f (this . p1 . job == null) {
9 this . p1 . job = j ;

10 } else i f (this . p2 . job == null) {
11 this . p2 . job = j ;
12 }
13 // unlockWrite (t h i s . p2) ;
14 // unlockWrite (t h i s . p1) ;
15 // unlockRead (t h i s)
16 }
17 }

Fig. 1. An example atomic method and the locks we infer

Lock Inference in the Presence of Large Libraries 311

kinds of lock simultaneously: a type lock can be acquired if none of the locks on
its instances are currently acquired and vice-versa.

We use simple analyses to identify objects that don’t have to be locked such
as thread-local or internal objects. We also detect when only a single thread is
executing to avoid acquiring/releasing locks.

Finally, we instrument the program with the inferred set of locks, such that
they are acquired upon entry to the atomic section and released upon exit. Ac-
quiring all locks together at the start, allows us to test for deadlock at run-time.
If it occurs, we release all locks that have already been acquired and subsequently
attempt to re-acquire them. As no updates have been performed this is safe.

Fig. 1 shows an atomic method and the lock operations that would be instru-
mented by our analysis. The example consists of two Printers and a Scheduler,
which allocates a given job to the next available Printer (which handles one job
at a time). Statically, we can’t be sure which conditional branch will be executed,
so we must acquire a write lock on both Printers.

3 Inferring Accesses

In this section, we present our analysis for inferring which objects are accessed by
each atomic section. We represent object accesses as syntactic expressions called
paths [18, 14]. A path is an expression used to identify an object in code and
consists of a variable followed by zero or more field and/or array lookups in any
order. An example of a path expression is x.f.g[i].h. Our main contribution
is that our analysis can scale to large programs that make use of large libraries.

We compute a summary function for each method m that describes the cu-
mulative effects of m (including all methods transitively called by m). These
functions are computed by composing the individual transfer functions for each
of m’s statements where the dataflow information are these transfer functions.
For scalability, it is essential to have a compact representation for transfer func-
tions with fast composition and meet operations.

For the general class of dataflow problems, called Interprocedural Distributive
Environment (IDE), Sagiv et al [15] represent transfer functions as graphs, al-
lowing composition to be computed by taking the transitive closure and meet by
graph union or intersection. Rountev et al [6] have also shown that IDE analyses
with this representation can scale well to programs using large Java libraries. We
thus formulate our analysis as an IDE dataflow problem. In an IDE problem,
dataflow values are mappings called environments. Transfer functions are called
environment transformers.

In previous work [14], we represent sets of paths as non-deterministic finite
automata (NFA). Fig. 2(a) shows an example NFA we might infer for the set
{this, this.pl}. In our NFAs, numbers within states refer to the CFG node that
generated the access. So, in this case, CFG nodes 1 and 2 generated an access
of this and CFG node 3 generated an access of this.p1 (whereby the this

was generated at CFG node 1). We assume three-address code and thus each
CFG node dereferences at-most one object. Labelling NFA states with the CFG

312 K. Gudka, T. Harris, and S. Eisenbach

0

1

2

3
this

this

.p1

this �→ {(0, 1), (0, 2)}
.p1 �→ {(1, 3)}

(a) (b)

Fig. 2. (a) Example NFA for the set of paths {this, this.p1} and its environment rep-
resentation (b)

node that generated them allows us to efficiently detect looping accesses [14].
Transition labels correspond to variables, class names (for static lookups), field
names and [*] to represent an array lookup.

IDE analyses require dataflow values to be maps, so in this paper, we represent
NFAs as mappings of the form Σ → P(Q×Q), where Σ is the set of transition
labels and Q is the set of NFA states. The states in each pair refer to the source
and destination of the transition respectively.

3.1 IDE Transformers

We now define the environment transformers for our analysis. Transformers de-
scribe how dataflow values, i.e. environments, should be translated for a partic-
ular program statement. The challenge we face is that the object referred to by
a path, such as x, may differ between the point where x is dereferenced and the
point where locks are acquired, due to assignments that occur in-between. Our
analysis is a backwards analysis because we push path expressions upwards. Our
transformers translate these paths to preserve the set of objects that are accessed
below, albeit potentially introducing new accesses due to the conservatism of our
alias analysis (we use type information).

Fig. 3 contains our transformers, which we now describe in turn. We use
Soot’s three-address Jimple representation. We also assume a control flow graph
(CFG) exists, whereby each CFG node is labelled with a unique identifier n. We
represent a CFG node in text with the notation [...]n

[x = y]n. The object referenced by x after this assignment was pointed-to by y

before the assignment. To preserve object accesses performed lower down, paths
beginning with x are rewritten to begin with y. We achieve this by modifying the
incoming environment e by replacing all automaton transitions of the form 0

x−→
n′ with 0

y−→ n′. This involves copying x’s transitions to y’s set: y �→ e(y)∪ e(x),
and deleting x’s transitions: x �→ ∅.

[x = new]n and [x = null]n. In these two cases, accesses of x below the assign-
ment will either be local to the atomic section (new) or generate a NullPoint-

erException (null). No locks need to be acquired, so we delete paths beginning

with x by removing all 0
x−→ n′ transitions: x �→ ∅.

Lock Inference in the Presence of Large Libraries 313

t[x = y]n = λe.e[y �→ e(y) ∪ e(x)][x �→ ∅]
t[x=null or new]n = λe.e[x �→ ∅]

t[x=y.f]n = λe.e[y �→ e(y) ∪ {(0, n)}]
[.f �→ e(.f) ∪ {(n, n′)|(0, n′) ∈ e(x)}]
[x �→ ∅]

t[x.f=y]n = λe.e[x �→ e(x) ∪ {(0, n)}]
[y �→ e(y) ∪ {(0, n′′)|(n′, n′′) ∈ e(.f)}]

t[x.f=null or new]n = λe.e[x �→ e(x) ∪ {(0, n)}]
t[x=y[∗]]n = λe.e[y �→ e(y) ∪ {(0, n)}]

[[∗] �→ e([∗]) ∪ {(n, n′)|(0, n′) ∈ e(x)}]
[x �→ ∅]

t[x[∗]=y]n = λe.e[x �→ e(x) ∪ {(0, n)}]
[y �→ e(y) ∪ {(0, n′′)|(n′, n′′) ∈ e([∗])}]

t[x[∗]=null or new]n = λe.e[x �→ e(x) ∪ {(0, n)}]

Fig. 3. Environment transformers for path inference

[x = y.f]n. The transformer for this statement performs two tasks. Firstly, it
records that the object pointed-to by y is being accessed, by adding the transition

0
y−→ n to the incoming environment e: y �→ e(y)∪{(0, n)}. Secondly, it preserves

object accesses performed via paths prefixed with the variable x by rewriting
them to start with y.f instead. For example, in atomic { x = y.f; x.g =

1; }, to protect the object access x in x.g at the start of the atomic section,
we require locking y.f. This is achieved by replacing all transitions of the form

0
x−→ n′ with the pair of transitions 0

y−→ n (already generated above) and n
.f−→ n′:

.f �→ e(.f) ∪ {(n, n′)|(0, n′) ∈ e(x)}. Finally, we delete x’s transitions: x �→ ∅.

[x.f = y]n. This statement accesses the object x and modifies its f field to point
to object y. Our transformer records the access by adding it to x’s transition set
in the incoming environment e: x �→ e(x) ∪ {(0, n)}.

With previous statements, we preserve object accesses made below by simply
rewriting paths beginning with the lvalue to instead be prefixed with the rvalue.
However, this assignment could, in addition to paths starting with x.f, also
affect paths prefixed with z.f for all variables z that alias x. For example, in
atomic { x.f = y; z.f.g = 1; }, to protect the access z.f in z.f.g, there
are two possibilities. (i) x and z are aliases: the atomic section is then the same
as atomic { z.f = y; z.f.g = 1; }, so we lock y. (ii) x and z are not aliases:
the object z is not modified by the assignment, therefore the path z.f is not
affected so we lock z.f (and not y).

Our analysis uses type information to determine whether two paths may alias
each other. In particular, the assignment x.f = y affects the path z.f if the
classes that define the field f being accessed in both x.f and z.f (determined
statically in Java) are the same. If they are, we add the path y, otherwise we
conclude that z.f will definitely not be affected and do nothing. Note, even if x
and z may be aliases, the original path z.f is not deleted in case they’re not.

314 K. Gudka, T. Harris, and S. Eisenbach

In general, the affected path may be of the form v.f̄.f where f̄ is a sequence
of zero or more field lookups that could include f. Hence, our transformer adds

a transition 0
y−→ n′ for each n′′ f−→ n′ transition whereby the field f is the same

as that being accessed in x.f: y �→ e(y) ∪ {(0, n′′)|(n′, n′′) ∈ e(.f)}. Points-to
information would reduce the number of 0

y−→ n′′ transitions but may complicate
the composition of transformers.

[x.f = new]n and [x.f = null]n As type information only tells us if two paths
may alias, we can never assert that they definitely must alias. Hence, we cannot
assume that accesses of the form z.f will be local (new) or generate a Null-

PointerException (null). We can assume this for paths prefixed with x.f as
we know x.f aliases itself. In this latter case, we would not acquire the lock
for x.f. To cover both scenarios where we can and can’t delete the path, the
transformer only adds the access of x.

[x = y[∗]]n. The transformer for this statement is similar to that for x = y.f.
We record the access of the array object y in the incoming environment e:
y �→ e(y) ∪ {(0, n)}. We do not distinguish between different array locations
representing them all using [*], which can be read as “somewhere in the array.”
Our transformer preserves object accesses by translating all paths that begin
with x to start with y[*]. We replace each transition 0

x−→ n′ with the pair

0
y−→ n (generated above) and n

[∗]−→ n′: [∗] �→ e([∗]) ∪ {(n, n′)|(0, n′) ∈ e(x)}. At
run-time, locking y[*] involves locking all elements of the array y.

[x[∗] = y]n. We assume all arrays are aliased, so this assignment could affect all
paths that end in [*]. When translating, we cannot be sure they refer to the
same array location being assigned to. Even in the case of x[*], although we are
certain the same array is being modified, the indices may differ. Consequently,
our transformer does not delete any paths (like for x.f = y) but adds a transition

0
y−→ n′ for each transition of the form n′′ [∗]−→ n′: y �→ e(y) ∪ {(0, n′)|(n′′, n′) ∈

e([∗])}.

3.2 Graph Representation of Transformers

We now present the pointwise graph representations for our transformers. Infor-
mally, these graphs describe how the outgoing environment e′ is derived from
the incoming environment e when passing through a program statement. An

edge d1
f−→ d2 in the graph means that e′(d2) is obtained from e(d1), with edge

function f : P(Q×Q) → P(Q×Q) describing exactly how so. In the simplest
case, f = λl.l (the identity function), so e′(d2) = e(d1). If e

′(d2) is dependent
on multiple e(dk), the meet of the values (after applying the edge functions) is
taken. New values are introduced using the special symbol Λ.

Fig. 4 shows the pointwise representations for t[x=y]n , t[x=y.f]n and t[x.f=y]n

from Fig. 3 (we assume that Σ = {x, y, .f}). Note: our analysis is backwards.
Our analysis has five edge functions:

Lock Inference in the Presence of Large Libraries 315

Λ x y .f

Λ x y .f

λl.l

λ
l.
∅

λ
l.
l

λl.l

λl.l

(a) t[x=y]n

Λ x y .f

Λ x y .f

λl.l λ
l.
∅

λl
.{(
0,
n)
}

lo
ad

n

λl.l

λl.l

(b) t[x=y.f]n

Λ x y .f

Λ x y .f

λl.l

λ
l.
{(0

, n
)}

λl.l

λl.l store
n

λl.l

(c) t[x.f=y]n

Fig. 4. Pointwise representations for Fig. 3 key transformers

1. λl.{(n′, n′′)} for introducing a new automaton transition n′ d−→ n′′. For ex-
ample, the statement [x = y.f]n of Fig. 4(b) accesses object y and there-
fore e′(y) must contain the new pair (0, n). This is represented by the edge

Λ
λl.{(0,n)}−−−−−−→ y.

2. λl.∅ for killing transitions. For example, in Fig. 4(a), e′(x) = ∅ corresponds

to the edge Λ
λl.∅−−→ x.

3. λl.l for copying transitions. The edges y
λl.l−−→ y and x

λl.l−−→ y in Fig. 4(a)
collectively give that e′(y) = e(y) ∪ e(x) (as defined in Fig. 3).

4. loadn = λl.{(n, n′)|(n′′, n′) ∈ l} for preserving object accesses across state-
ments of the form [x = y.f]n and [x = y[∗]]n. In Fig. 4(b), the edge

x
loadn−−−→ .f rewrites all paths beginning with x to instead begin with y.f

(the access of y is represented with the edge Λ
λl.{(0,n)}−−−−−−→ y). The important

thing to note is that n is common in both edges.
5. storen = λl.{(0, n′)|(n′′, n′) ∈ l} for preserving object accesses across state-

ments of the form [x.f = y]n and [x[∗] = y]n. In Fig. 4(c), .f
storen−−−−→ y adds

an access of y for every path ending in .f. Existing paths ending in .f are

preserved with the edge .f
λl.l−−→ .f .

3.3 Sparsity

Sparsity is important to keep memory usage down. We keep graphs sparse by not

explicitly representing trivial edges of the form d
λl.l−−→ d. These implicit edges

should not have to be made explicit, as that would be expensive. However, it
turns out that determining whether an implicit edge exists is costly for our analy-
sis. Fig. 5(a) shows an example transformer and Fig. 5(b) is its sparse equivalent.
Dashed edges are used for trivial edges. Both x and y have no outgoing edges

but while the implicit edge y
λl.l−−→ y exists, the same is not true for x

λl.l−−→ x.
This is because x is killed in the outgoing environment, as represented by the

edge Λ
λl.∅−−→ x. To determine if an implicit edge di

λl.l−−→ di exists, the transitive

closure now requires checking whether the edge Λ
λl.∅−−→ di exists. This has to be

done for all di, which will slow down transformer composition tremendously.

316 K. Gudka, T. Harris, and S. Eisenbach

Λ y x

Λ y x
λ
l.
∅

Λ x y

Λ x y

λ
l.
∅

Λ ∅ x y

Λ ∅ x y

(a) All edges (b) Sparse (c) Refined

Fig. 5. Determining whether an implicit edge exists is costly

To overcome this problem, we firstly introduce a new special symbol ∅. Killing
the value for symbol di in the outgoing environment is then represented with
the edge di → ∅. Secondly, we observe that a large majority of our transformers
perform kills, hence we implicitly encode killing within transformer edges. That

is, an edge d1
f−→ d2 now additionally has the meaning e′(d1) = ∅. This latter

refinement removes the need for kill edges when rewriting paths (e.g. [x = y]n),
leading to sparser graphs. The two refinements combined yield the result that
an implicit edge di → di exists iff di has no outgoing edges. Fig. 5(c) shows
the refined graph. Symbols Λ, ∅ and y have no outgoing edges and so each
have implicit edges. x has an outgoing edge, therefore has no implicit edge.
Fig. 6 shows the refined sparse pointwise representations of Fig. 4. In the case
of Fig. 4(c), as we do not kill .f in the outgoing environment, we must add an

explicit edge .f
λl.l−−→ .f . However, statements of the form [x = ...]n are more

common, hence the overall effect is that our transformers contain significantly
fewer edges.

Transformer Meet. When all edges are explicitly represented, the meet of trans-
formers is graph union. However, when edges are implicitly represented this is
not the case and extra care is needed. Fig. 7(a) gives two example transformers
whose meet is to be computed. The first transformer preserves all values from
the incoming environment to the outgoing environment. The second transformer,
however, copies x’s value across to y before killing x’s value. Hence, the com-
bined transformer should both preserve x’s value and also copy it to y. Fig. 7(b)
shows the resulting transformer after union, which is not the desired result. This
is because graph union is oblivious to the fact that x has an implicit edge in
the first transformer. To resolve this, our meet operation makes an implicit edge

Λ ∅ x y .f

Λ ∅ x y .f

λ
l.
l

(a) t[x=y]n

Λ ∅ x y .f

Λ ∅ x y .f

λl
.{(0

, n
)}

lo
ad

n

(b) t[x=y.f]n

Λ ∅ x y .f

Λ ∅ x y .f

λl
.{(
0,
n)
}

store
n

λl.l

(c) t[x.f=y]n

Fig. 6. Refined pointwise representations for Fig. 4

Lock Inference in the Presence of Large Libraries 317

Λ ∅ x y

Λ ∅ x y

Λ ∅ x y

Λ ∅ x y

λl.l

Λ ∅ x y

Λ ∅ x y

λl.l

Λ ∅ x y

Λ ∅ x y

λl.l

λl.l

(a) Transformers to meet (b) Graph union (c) Correct result

Fig. 7. Computing the meet when implicit edges are present

explicit if at least one other transformer doesn’t also have the implicit edge. If
none of the transformers have the implicit edge, then it isn’t generated in the
merged result. The result for this example is shown in Fig. 7(c).

3.4 Native Code, Reflection and Dynamic Loading

All prior lock inference approaches, including our own [14], assume a closed
world. Hence, they typically ignore native code, reflection and dynamic loading
and assume that the only classes loaded are those that are analysed. We deal
with native code/VM calls in this paper like Halpert et al by assuming all effects
on the receiver and parameter objects. We do not handle reflection but could
approximate the effects of reflective calls by using a tool such as TamiFlex [19],
which executes a Java program and produces a reflection trace file. This trace
can then be used by the analysis. It would not be possible to acquire locks late
in dynamically loaded code, as it may lead to deadlock.

4 Inferring Locks

In this section, we describe how we convert NFAs computed by our analysis
to locks. The important challenge here is to balance concurrency and locking
overhead. We use instance locks where possible and revert to coarse type locks
when we cannot statically determine the set of objects being accessed. We would
like to acquire fine-grained locks when we can but still allow the possibility of
acquiring type locks when necessary, so we use multi-granularity locking. We
also describe how we identify objects that do not need to be locked.

From the summary function computed by our IDE analysis at the start of the
atomic section, we extract the NFA describing all objects that may be accessed
in the atomic section. We use our previous algorithm [14] to convert the NFA to
instance and type locks with the modification that for this paper we use points-to
information to determine the possible types of objects involved in cyclic accesses
(e.g. linked list traversal), rather than conservatively inferring all types in the
class hierarchy rooted at the object’s static type.

Our access inference analysis assumes that all object accesses need to be
locked. However, there are some objects which do not need to be locked. We
identify several classes of such objects: thread-local, instance-local, method-local,

318 K. Gudka, T. Harris, and S. Eisenbach

class-local, read-only and dominated objects. We also detect when there is only
a single thread executing and avoid taking locks in this case. We now describe
each of these.

4.1 Thread-Local Objects (TLA)

An object only needs to be locked if it may be accessed by multiple concurrent
threads. We perform a simple analysis to identify objects that are thread-local
and do not infer a lock for them. We use Lhotak [20]’s BDD-based thread lo-
cal analysis implemented in Soot’s Paddle framework. This analysis defines all
objects reachable from static fields or fields in Runnable classes as being thread
shared [34]. It uses Paddle’s points-to graph to find these objects.

4.2 Internal Objects (ILA)

Another class of objects we avoid locking are internal objects that exist solely
to implement the functionality of another object. An example is the underlying
array object used in Java’s ArrayList implementation. Such internal objects
are dominated by their enclosing object O, meaning that all accesses to them
are performed solely by O. This means that to protect accesses to them, when
locking is performed outside O, it is sufficient to acquire a lock on O.

We use a simple and conservative flow-insensitive escape analysis to identify
objects that are never accessed outside the instance they are created in. Our
escape analysis has two escape modes: Internal and External (whereby External
< Internal). When an object is created, it is marked as being Internal and may
become external if:

– It is assigned to a field that is external.
– It is passed as an argument to a method and the receiver object is external

or the method is static.
– The object was created in the application’s main() method or a thread’s

run() method.

A field may become external if:

– It is accessed through an external reference.
– It is assigned an external reference.

Initially, static fields are marked External, instance fields are marked Internal,
non-static method parameters are Internal and static method parameters are
External. We model the return value as assignment to a special return variable r,
which is initially Internal for instance methods and External for static methods.
For all methods, this is always Internal. We model array lookups as fields.

Our whole-program analysis finds all reachable methods in the program (in-
cluding all reachable library methods) and processes them sequentially until a
fixed-point is computed. We do not process the call graph in any particular or-
der. We compute per-class and per-method state during fixed-point computation.

Lock Inference in the Presence of Large Libraries 319

Per-class summaries keep track of the escape state of fields, while per-method
summaries do so for locals, parameters and the return value. Our analysis can
also handle inner classes (as used by iterators) and object handover, such as A
a = new A(new B()); (here the new instance of B is being handed-over to the
new instanceof A).

We use the results of our escape analysis when converting the access NFA to
locks by locking the outermost object to protect accesses of internal objects. We
can handle multiple levels of internal objects within a single outermost object.

4.3 Single-Threaded Execution

We have found that during the initialisation of an application, many objects are
accessed but there is typically only a single-thread executing. Lock acquisitions
and releases of our locks can impose significant overheads in this scenario (we do
not use thin locks). Thus, we optimise our lock implementation so that locks are
treated as no-ops when there is only one thread executing. These object accesses
are not thread-local but just that they are only being accessed by a single thread
at present. We already remove thread-local locks, as described above.

We detect whether only a single thread is executing or not by incrementing and
decrementing a counter when Thread.start() and Thread.join() are called
respectively. If this counter is 0 then we elide the locks otherwise we acquire
them as normal. This works because we assume that threads are not spawned
by atomic sections.

4.4 Multi-granularity Locks

We use the multi-granularity locking protocol of Gray et al [17] to simultaneously
support both type and instance locks. Usually, both coarse- and fine-grained
locks cannot protect the same data simultaneously so only one of them would
be used. However, multi-granularity locking allows both to be used at the same
time for the same data. The multi-granularity locking protocol allows an instance
lock to be taken if a coarse-grained type lock protecting the same object hasn’t
already been acquired and vice-versa. When locking a large number of objects,
such as all instances of a type, one can reduce locking overhead by locking
the type, whereas in other cases one can lock individual instances to get more
concurrency. This orchestration is done at run-time. We implement [21] these
locks using Doug Lea’s Synchronizer framework [22, 23] for performance.

4.5 Other Optimisations

In addition to removing thread-local and instance-local locks, we perform a num-
ber of optimisations to further reduce the locks inferred. This includes analyses
for finding: locks that are dominated by other locks (DOM), locks for method-
local objects (MLA), locks for objects referred to by static fields that never
escape the enclosing class and can therefore be protected by locking the corre-
sponding Class object (CLA), objects that are only ever locked in read-mode

320 K. Gudka, T. Harris, and S. Eisenbach

and are thus read-only (RO) and finally, types that do not need to be locked in
intention mode [17] when their instances are locked (IMP).

Many of these analyses require looking at locks across all atomic sections (e.g.
to find out which objects are read-only), therefore we did a final optimisation to
ignore atomic sections that are not-reachable from the program’s main method
and will thus never be executed. This greatly improved the results of the previous
mentioned analyses.

4.6 Deadlock

Atomic sections must not deadlock as a result of the locks we insert. We ac-
quire locks at the start of the atomic section, allowing us to prevent deadlock
at run-time and thus keep per-instance locks, rather than coarsen the locking
granularity or impose a static ordering at compile-time and thus potentially hin-
der concurrency [13, 12]. Given that deadlock rarely occurs, such compile-time
approaches to deadlock-avoidance are undesirable.

We avoid deadlock at run-time as follows: when a thread is about to block
on a lock l, it first releases all already acquired locks. It then blocks waiting
for l to become available after which it starts from scratch to try to acquire all
locks (starting from the first lock). This guarantees freedom from deadlock, as
it means that locks are not held while waiting, thereby breaking one of the four
necessary conditions for deadlock [24].2 Path expressions must be re-evaluated
when re-acquiring locks after waiting because there may have been concurrent
updates to the heap. This approach to avoiding deadlock is essentially the same
as retry used in STM [25]. To improve performance, we use an adaptive locking
scheme whereby we first poll l N times before releasing all already acquired
locks. Thereafter, we don’t block waiting on l but poll until it becomes available
before starting the locking stage from scratch as mentioned above.

5 Implementation

We implemented our lock inference approach as a whole-program transformation
in Soot (SVN r3588). Here, we give details including optimisations to reduce the
memory consumption and running time of our analysis.

5.1 Summary Computation

In this section we describe how we compute per-method summaries. Each method
m has a unique entry node Nm and exit node Xm. We store for each CFG node n
in m, its local transformer tn that describes how n transforms environments (see
Fig. 3) and an aggregate transformer tn,Xm that summarises the transformation
on environments along all execution paths between n andXm inclusive. The local
transformer for a method invocation statement [x = y.foo(a1, ..., ak)]

n encapsu-
lates three steps: (i) parameter passing, (ii) invocation of the callee method foo

2 We reduce the likelihood of livelock by using random backoffs.

Lock Inference in the Presence of Large Libraries 321

and (iii) storing the return value to result variable x. Thus, tn can be expressed
as tn = tnparams ◦ tninvoke

◦ tnresult
. The transformer tninvoke

is the summary of
the callee foo, i.e. Tfoo. However, due to polymorphism, there may be several
possible callees. We therefore take the meet of all such callee summaries.

The summary Tm for a method m is obtained from tNm,Xm by removing
method-local information. Aggregate transformers are computed using a worklist
algorithm with two worklists: intra and inter. Intra consists of nodes whose ag-
gregate transformer needs to be recomputed because the aggregate transformer
of at least one intraprocedural successor has changed. Inter contains call nodes
n whose invoke transformer tninvoke

needs to be updated because the summary
of at least one callee has changed. If tninvoke

changes as a result, n’s aggregate
transformer also needs to be recomputed. Per CFG node information is only
needed during summary computation after which only the method’s summary
is kept. Initially, intra contains the exit statement Xm of each method m in the
current strongly connected component. Either list is processed exclusively until
it becomes empty because interprocedural propagation is expensive and hence
it is more efficient to do as much intraprocedural propagation as possible before
propagating across method boundaries.

5.2 Reducing Space and Time Requirements

There can be many CFG nodes and transformers can get very large, leading to
vast memory usage and slow analysis times. We employ the following techniques
to reduce both memory and running time.

Delta Transformers. We observed that after an initial period of propaga-
tion, transformers only grow. That is, each time a transformer (tn; tn,Xm ; Tm)
is updated, it contains at least the edges it did previously and possibly more.
This leads to redundant work because (i) transformer composition is distribu-
tive, hence if two edges (one from each transformer) have already been composed
before, composing them again will give the same result and (ii) taking the meet
is union and unioning old edges gives nothing new. The distributive nature of
the analysis thus allows us to process only new edges and then union the results
with what has already been computed. We differentiate new edges using a dif-
ferent type of transformer, which we call delta transformers. This approach of
only propagating additions gives us the biggest speed up and the second best
reduction in memory usage.

Summarising CFGs. We implement the technique of Rountev et al [6] that
summarises the effects of all execution paths between a pair of CFG nodes n1 and
n2 in a method m, by combining transformers for statements along these paths.
This summary tn1→n2 allows dataflow information to be propagated from n2 to n1

(backwards analysis) in one step by composing with it thus reducing propagation
and storage. The result of this optimisation is a reduced CFG for m containing
three types of nodes: Nm, Xm and recursive calls rci together with a set of sum-
mary transformers describing effects along execution paths between them.

322 K. Gudka, T. Harris, and S. Eisenbach

Parallel Propagation. Another technique we employ to speed up the analysis
is to perform propagation in parallel when possible. Our intra worklist contains
all CFG nodes that may have to be updated because at least one successor has
changed. Although an ordering exists between CFG nodes in the same method,
we can exploit the independence between different methods to construct a set of
per-method worklists and process the lists in parallel. Our inter worklist contains
call nodes that need to be updated when the summary of at least one callee
has changed. This involves taking the meet of all callee summaries and then
performing parameter-to-argument renaming. There is no dependence between
different call nodes in the list so we process them all in parallel.

Efficient Data Structures. Efficient implementations typically use primitives
to represent state [22] and manipulate it very quickly using bit-wise operations.
We represent transformer edges as 64-bit longs and implement edge composi-
tion as a bit-wise operation. However, using primitives with the Java Collections
classes leads to boxing/unboxing in/out of their corresponding wrapper classes
(e.g. Long), which again is not ideal. We use the Trove library3, which pro-
vides primitive implementations of many data structures such as HashSets and
HashMaps. We implement transformers as maps, using integers to represent sym-
bols (and sets of longs for their edges).

Worklist Ordering. Ordering the worklist so that successor CFG nodes are
given preference over predecessor nodes is an important and well-known opti-
misation. This makes intuitive sense because dataflow information propagates
up the CFG, so if a successor is to be processed again (i.e. it is in the work-
list), it may as well be processed before its predecessors in case its value changes
once more, thus avoiding unnecessary propagation. We were surprised that this
optimisation gave a bigger speed up than CFG summarisation.

6 Evaluation

We now present experimental results for our lock inference approach. We used
two experimental machines: (1) liatris : a commodity machine consisting of an 8-
core 3.4GHz Intel Core i7-2600 CPU, 8GB RAM and running Ubuntu 11.04; and
(2) ax3 : a much larger machine containing 32 8-core 2.67GHz Intel Xeon E7-8837
CPUs totalling 256 cores, 3TB RAM and running SUSE Linux Enterprise Server
11. We use ax3 for analysing hsqldb and liatris for analysing all other code and
for executing all programs. For running our analysis, we used Oracle’s 64-bit JVM
and for instrumented runs, we used a modified version of the Jikes RVM. On lia-
tris, we used Oracle JVM version 1.6.0 26-b03 with a minimum/maximum heap
size of 4GB and version 1.7.0 03-b04 with a minimum/maximum heap size of 70GB
on ax3. We did not specify a stack size in either case. For running programs, we
used a modified version of the production build of Jikes RVM version 3.1.1+svn
(r15989M). Details of the modifications we made are given below.

3 http://trove4j.sourceforge.net/

http://trove4j.sourceforge.net/

Lock Inference in the Presence of Large Libraries 323

We begin by giving results for Hello World and use it as a basis for comparing
the effect of our different analysis optimisations, as described in Section 5. We
demonstrate in Sections 6.4–6.5 that our analysis techniques can scale to large
programs by analysing the GNU Classpath library (122KLOC) and the Java
database engine hsqldb (150KLOC). Note, for Hello World and GNU Classpath,
we used a minimum/maximum heap size of 10GB.

We evaluate the run-time performance of the benchmarks sync, pcmab, bank,
traffic, mtrt and hsqldb instrumented with our locks and compare results with
Halpert et al [13], the benchmark’s original synchronisation as well as using a
single global lock in Section 6.6. Our running times are for all lock optimisations
enabled (thread-local, internal object, dominators, etc.). Furthermore, for a fairer
comparison, we replace the original synchronized blocks and methods with our
locks (albeit still maintaining the same locking policy and behaviour as the
original synchronized blocks).

For fast instance lock retrieval, we modify Jikes by adding an ilock field
to every object. For fast lookup of type locks, we extend java.lang.Class

with a tlock field. We minimise the additional overhead to object creation by
lazily instantiating the lock field. While using a lock table would avoid this,
it introduces a lookup overhead which is encountered every time the lock is
required. We also extend the Thread class for quick access to thread local data
(as opposed to using java.lang.ThreadLocal that incurs high overhead).

6.1 Soundness of Halpert et al

Halpert et al [13] analyse library call chains upto one level deep and rely on
original library synchronisation beyond that. There are many programs where
this is sufficient, but it is not sufficient for all problems. Code which has deep
library calls fails. Furthermore, if there is no manual synchronisation present
then their approach does not guarantee safety of library accesses. For instance,
we ran their tool (r3043) on the Hello World program, having removed the
existing synchronisation in the library4 and observed that because they only
analyse one level deep they inferred empty read and write sets and when the
program executed, print buffers were corrupted causing strings to be printed out
multiple times or not at all.5 Any comparison with their work is a loose one but
we do so because it is the closest work to ours.

6.2 Hello World

Although the Hello World program may appear to be a simple one-liner, it
requires analysing 1150 methods from the library. Previous work does not fully
analyse libraries, hence it is not clear whether existing work can handle this
program. Using our own previous work [14], we found it intractable.

4 See http://www.doc.ic.ac.uk/~khilan/code/ConcurrentPrintln.java.txt

for the program code
5 The output of running their tool on Hello World can be found on
http://www.doc.ic.ac.uk/~khilan/code/ConcurrentPrintlnHalpertOutput.txt

http://www.doc.ic.ac.uk/~khilan/code/ConcurrentPrintln.java.txt
http://www.doc.ic.ac.uk/~khilan/code/ConcurrentPrintlnHalpertOutput.txt

324 K. Gudka, T. Harris, and S. Eisenbach

(a) Analysis (b) Locks
(secs) Instance Type

Paths Locks Total Read Write Read Write

33 0.6 47 215 54 148 34

Fig. 8. Analysis results for Hello World

The running times (in seconds) for the path and lock inference analyses are
given in Fig. 8(a). The Total column gives the time it took to run the whole anal-
ysis including Soot-related costs, such as building the call graph and performing
the points-to analysis. The times reported are with all analysis optimisations en-
abled and 8 worker threads. The number of instance read, instance write, type
read and type write locks inferred are given in Fig. 8(b). We do not remove any
locks. Memory usage peaks at 3.1GB and averages 1.6GB.

6.3 Analysis Optimisations

In this section we evaluate the impact of the analysis optimisations from Sec-
tion 5.2. We use the Hello World program and compare the effects of delta
transformers, CFG summarisation, worklist ordering and parallel propagation
on memory usage and running time. All configurations uses the efficient data
structures detailed in Section 5.2. Fig. 9 shows our comparison.

The comparison gives a number of interesting insights. Summarising CFGs
gives the biggest reduction in memory usage. This is because the number of
CFG nodes is significantly reduced and thus so is the amount of analysis state.
Secondly, deltas give the best running time performance even if only one thread is
used. This is not surprising, because firstly it performs very little redundant work
and secondly, as the analysis progresses, the amount of dataflow information
propagated reduces thus leading to lesser work over time. Memory usage is also
lower because temporary objects are reduced.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13
 14
 15
 16
 17

1 2 3 4 5 6 7 8

R
u

n
n

in
g

 t
im

e
 (

m
in

u
te

s
)

Number of threads

None
Summarise CFGs
Worklist Ordering

Deltas
All

Optimisation Average MB Peak MB

None 4923.92 8183.18

Summarise CFGs 2094.68 3470.65

Worklist Ordering 4804.73 8037.14

Deltas 3848.98 6538.27

All 1741.39 3122.84

(a) (b)

Fig. 9. Effect of each optimisation on analysis time (a) and memory usage (b) for Hello
World

Lock Inference in the Presence of Large Libraries 325

(a) Library Info (b) Analysis (c) Locks
(secs) Instance Type

Package Methods Paths Locks R W R W

gnu 16882 64.43 9.40 16536 6235 7510 1310

java 13815 46.11 13.67 30065 9940 30007 5354

javax 14088 11.06 6.03 7640 3307 0 0

org 2794 1.31 1.09 1275 401 0 0

sun 28 0.01 0.03 11 4 0 0

Total 47607 127.79 30.22 55527 19887 37517 6655

Fig. 10. Analysis results for GNU Classpath 0.97.2

Also, parallel propagation only gives gains in speed for up to three threads.
We think the reason for this is because we process our two worklists in sequence
(we do not start processing inter until there is nothing left to do in intra and
vice-versa). Consequently, threads that have become free cannot proceed with
the other list until all threads have completed. Some methods may require more
propagation than others and so this creates a bottleneck.

We were surprised that ordering the worklist so that successors are given pref-
erence over their predecessors outperformed the running time when summarising
CFGs. This might indicate that unnecessary propagation occurs quite often if
worklists are not ordered appropriately.

6.4 GNU Classpath

To evaluate the scalability of our path analysis, we analyse the entire GNU Class-
path 0.97.2 library. It consists of 47607 non-private methods and totals about
122KLOC. We analyse each of these non-private methods in turn6, treating it
as an atomic method. We re-use summaries if they have been computed already
(during the current analysis run).

We ran our analysis with all analysis optimisations turned on and with 8
worker threads. It took 5 minutes and produced a summary file of size 381MB.
Memory usage peaks at 5.1GB and averages 3GB. Fig. 10 gives a per-package
breakdown of: (a) number of methods; (b) path inference and lock inference
analysis times in seconds and (c) gives the number of each type of lock inferred.
Again, we do not remove any locks.

Themethodwhich took the longest to analysewasLogger.getLogger(String)
(30 seconds). Upon inspection, we found that this pulled in the same part of the
library as HelloWorld. Once this set ofmethods had been analysed, the summaries
for methods called by most other methods had already been computed and so did
not have to be recomputed. The remaining methods were analysed in a fraction of
the time (average of 2ms).

From the locks inferred (Fig. 10(c)), it can be observed that 78% are read
locks. This is crucial, as it means that most accesses can proceed in parallel.
Furthermore, although nearly 40% of all locks are types, 85% of them are read
locks. This again is promising, because it implies that coarse grained locking

6 Private methods are analysed implicitly with non-private callers.

326 K. Gudka, T. Harris, and S. Eisenbach

would not necessarily cripple concurrency (although in the case of Hello World
above, we see that the type write locks do).

6.5 HSQLDB

Large real-world programs make extensive use of libraries. We evaluate how well
our approach can handle one such program: hsqldb.

This is an SQL relational database engine providing both in-memory and
disk-based tables. It is widely used in many open-source as well as commercial
products. We use the benchmark version (1.8.0 4) packaged in the Dacapo bench-
mark suite [26], consisting of an in-memory banking database against which a
number of transactions are executed. It comprises a total of 150KLOC and 240
atomic sections (we treat synchronized blocks and methods as atomic sections),
as well as making extensive use of GNU Classpath. Fig. 11(a)(i) gives a break-
down of the total number of client and library methods called by atomic sections.
Of the 5062 methods called, 58% are in the library.

Our path analysis was able to handle this program after enabling all our anal-
ysis optimisations and with a heap size of 70GB. Memory usage peaked at 64.4GB
and averaged 32.4GB. During the ∼7 hours taken to complete the analysis, only
153 seconds (i.e. 2.5 minutes) were spent doing GC. The long analysis time is
due to long call chains, large call graph components and consequently vast num-
bers of transformer edges that are propagated. Unsurprisingly, after the first few
atomics had been analysed, the remainder were quicker because a large number
of methods were common across atomics. Our lock-removing analyses were able
to identify many locks that could be removed, as shown in Fig. 12(a).

6.6 Comparison with Halpert et al

We compare the running times of a selection of benchmark programs transformed
using our approach with the closest known existing work of Halpert et al [13]
in Fig. 11(a).7 We choose all benchmarks from their paper that do not use
wait/notify (our implementation does not currently support this) and provide
analysis and run-time statistics for each. We treat all synchronized blocks and
methods as if they are atomics and translate them using our algorithm. For a
fair comparison when comparing against manual, global and Halpert et al, we
replace synchronized blocks with calls to lock() and unlock() on our locks
instead (we maintain the original locking policy).

An important difference between our approaches is that we analyse library
methods in full whereas they only consider accesses upto one level deep in li-
brary call chains and rely on original library synchronisation beyond that. Their
approach can thus be unsound (see Section 6.1). In Fig. 11(a)(i), we list the
number of client and library methods called by atomic sections. Fig. 11(a)(ii)

7 We do not use their published work [13] but their later improved version [27] that
they kindly made available to us. This infers sets of fine-grained locks per atomic
whereas in their published version they inferred at most one lock per atomic.

Lock Inference in the Presence of Large Libraries 327

Program Threads
Atomics (i) Methods (ii) Analysis (secs) (iii) Run (secs)

Total Reachable Client Library Halpert Ours Manual Global Halpert Ours

sync 8 2 2 0 0 22 127 69.14 71.22 72.69 56.61

pcmab 50 2 2 2 15 22 127 2.28 3.15 2.28 2.47

bank 8 8 6 6 7 22 127 20.89 19.50 35.69 3.88

traffic 2 24 19 4 63 24 130 2.56 4.22 2.65 4.42

mtrt 2 6 4 67 1324 29 169 0.80 0.82 0.78 0.85

hsqldb 20 240 158 2107 2955 48104 23886 3.25 3.12 3.25 11.39

(a)

Program
Paths Locks Lock optimisations (secs)
(secs) (secs) TLA ILA DOM CLA RO IMP MLA

sync 0.053 0.0090 0.598 8.441 1.42 3.979 0.0010 0.0 0.0010

pcmab 0.194 0.018 0.603 8.309 1.444 3.855 0.0010 0.0 0.0020

bank 0.151 0.019 0.408 8.177 1.376 3.802 0.0020 0.0010 0.0020

traffic 0.433 0.059 0.569 9.267 1.625 3.861 0.0060 0.0020 0.465

mtrt 33.901 1.902 0.623 9.063 1.741 4.259 0.079 0.03 0.0050

hsqldb 21936.024 1345.859 1.667 28.589 9.597 53.125 1.84 2.724 0.079

(b)

Fig. 11. Analysis and run-time results comparison for a selection of benchmarks from
Halpert et al [13, 27]. (a) is an overview of analysis and execution times and (b) gives
a breakdown of the time taken for each part of our lock inference analysis. The locks
column in (b) gives the time taken to convert NFAs to locks (before optimisations).

compares analysis times (both columns include Soot-related costs). We give a
breakdown for the running time of each component in our analysis in Fig. 11(b).

Fig. 12(a) gives a comparison of locks inferred. Fig. 12(a)(i) are the locks
inferred by Halpert et al, Fig. 12(a)(ii) the locks we infer and Fig. 12(a)(iii) again
shows the locks we infer but this time after applying all our lock optimisations.

Program

(i) Halpert Ours

Static Dynamic
(ii) No lock opt. (iii) With all lock opt.
Inst. Type Inst. Type

R W R W R W R W

sync 0 2 1 2 0 0 0 2 0 0

pcmab 0 3 1 5 0 0 0 2 0 0

bank 0 3 0 12 0 0 0 6 0 0

traffic 0 19 33 67 0 0 11 18 0 0

mtrt 1 0 905 268 726 130 0 48 6 66

hsqldb 2 11 32508 24956 26429 10943 1725 4155 9792 8301

(a)

Program
(i) TLA (ii) ILA (iii) DOM (iv) CLA (v) RO (vi) IMP (vii) MLA

Inst. Type Inst. Type Inst. Inst. Inst. Type Inst. Inst. Type
R W R W R W R W R W R W R W R W R W R W R W

sync 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 2 0 0 0 0

pcmab 0 1 0 0 1 2 0 0 0 0 0 0 0 0 0 0 1 5 0 0 0 0

bank 0 0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0 12 0 0 0 0

traffic 0 1 0 0 4 41 0 0 1 0 1 6 31 0 0 0 31 49 0 2 0 0

mtrt 52 5 24 20 92 57 24 60 491 204 119 6 613 0 702 0 560 63 0 0 0 0

hsqldb 464 6045 492 450 2352 3315 1682 2552 19775 13780 4951 487 17948 0 15672 0 15070 2276 0 0 0 0

(b)

Fig. 12. Locks inferred for benchmarks in Fig. 11 by Halpert et al (a)(i) and our
approach for both without (a)(ii) and with all our lock optimisations enabled (a)(iii).
(b) gives a breakdown of how many locks are removed by each of our lock optimisations.

328 K. Gudka, T. Harris, and S. Eisenbach

We give a breakdown of how many locks are removed by each respective lock
optimisation in Fig. 12(b). The number for IMP indicates how many instances
do not need to intentionally lock their type.

Halpert et al distinguish between two types of lock: (i) static locks are known
at compile-time and (ii) dynamic locks are the same as instance locks. Static locks
are not equivalent to our type locks because acquiring a type lock implicitly locks
all instances. That is, there is no relationship between static and dynamic locks
in their approach. Furthermore, all locks are write locks.

Fig. 11(c) gives execution times. We are noticeably slower for hsqldb due to the
larger number of locks being acquired. Note, hsqldb involves a large number of
library methods, which are not analysed by Halpert et al so a direct comparison
is not appropriate. At run-time, only 2745 of the 5062 methods (54%) analysed
for hsqldb are called. We are looking into using run-time coverage information to
reduce the number of locks taken for code paths that are infrequently executed.

7 Related Work

Lock Inference. While software transactional memory remains the popular ap-
proach for implementing atomic sections, recent work has also looked at statically
inferring locks sufficient for atomic and deadlock-free execution.

In McCloskey et al’s Autolocker tool [12], the programmer annotates which
locks protect each path expression. Locks are acquired before object accesses
and released at the end of the atomic section. Deadlock is prevented statically
by ordering path expressions for locks, with the program being rejected if an
ordering is not possible. This approach is shown to scale to a 50KLOC web
server. Autolocker allows internal objects to be protected by the same lock with
a suitable annotation, however our approach differs because we automatically
infer these objects. Emmi et al [10] extend upon Autolocker by removing the
need for annotations. They have two types of lock: per-instance and per-path
expression whereby the latter protects all instances of a path expression and
is used when two path expressions p1 and p2 may alias each other along some
execution path. Lock inference is formulated as an 0-1 ILP problem that aims to
minimise the number of locks as well as the number of conflicts between atomic
sections. Their approach is shown to scale to 15KLOC. These two approaches do
not translate path expressions past assignments and subsequently lock operations
cannot be pushed further up without coarsening the locking granularity.

Hicks et al [8] infer abstract objects that are each protected by their own
lock. This has the advantage that deadlock can be prevented statically, as the
number of locks is known at compile-time. However, less concurrency may occur
because per-instance locks are not supported. Locks are acquired at the start
and released at the end of the atomic section. We base our dominators analysis
on theirs but ours differs because we do it for path expressions. Furthermore, we
have a working implementation.

Cherem et al [9] also infer path expressions and translate them when pushing
through assignments. They also acquire locks at the start of the atomic and

Lock Inference in the Presence of Large Libraries 329

release them at the end. However, there is a major difference: we represent
paths as non-deterministic finite state automata, allowing unbounded accesses
to be represented precisely, whereas they immediately collapse these accesses to
some lock R. The focus of their work is a general theoretical framework for lock
inference analyses.

Finally, Halpert et al [13] and Zhang et al [11] take a top-down approach
(whereas those previously mentioned and this paper are bottom-up approaches)
by instead determining which atomic sections may conflict with each other and
then preventing them from proceeding in parallel by allocating to each an ap-
propriate set of locks. These locks may or may not have any relation to the
objects being accessed but their purpose is just to prevent conflicting atom-
ics from running concurrently. Bottom-up approaches, like ours, map accesses
to locks, which implicitly prevent conflicting atomics from running in parallel.
Halpert et al use a May Happen In Parallel [28] analysis to improve the preci-
sion of conflict detection and a thread-local/thread-shared analysis to reduce the
size of the read/write set of each atomic section. They do not require two-phased
locking. However, deadlock is prevented by assigning the same static lock to each
atomic section involved in the wait-cycle, thus preventing them from executing
in parallel, even if on some/most runs they could. Halpert et al analyse Java
programs but only analyse library call chains upto one level deep.

Interprocedural Analysis of Large Programs. The original callstrings approach
for interprocedural analysis [29] is known to not scale well [30]. Khedker et
al [30] propose grouping callstrings into equivalence classes based upon dataflow
values and subsequently performing propagation through a method only once per
value. We implemented this but were not successful for Hello World. However,
this may be due to our implementation of the technique. Regardless of this, the
callstrings approach also has the limitation of not allowing pre-computed results
for a method to be stored for re-use later, as it does not encode how methods
translate dataflow information. Consequently, library methods would have to be
re-analysed at each call site.

Recent work [15, 31, 32, 6, 33, 34] has looked at scalable interprocedural
analyses using procedure summaries. [15] present an efficient graphical represen-
tation for transfer functions and [6] apply this to Java programs that make use
of the library. Our work differs from [6] as they present a general framework for
whole-program IDE analyses but do not apply it specifically to lock inference
. We assume a closed world whereas they consider the possibility of call backs
from the library to client code. Our work could be extended to cater for this.

While propagation of delta information is not a new idea, we believe that this
is the first time that they have been presented for the IDE framework.

8 Conclusion and Future Work

We believe that this is the first lock inference approach that can analyse precisely
programs built with large libraries. Previous lock inference work [14, 11, 13, 12,
8–10] either ignores libraries, requires library implementors to annotate which

330 K. Gudka, T. Harris, and S. Eisenbach

locks to take or only consider accesses performed upto one level deep in library
call chains [13]. We are able to handle large programs by formulating our previous
path inference analysis [14] as an IDE dataflow problem. We have shown that
our analysis can scale to 122KLOC when using the pointwise representation of
[15, 6] together with a number of optimisations, which in turn we have evaluated.
We also analysed the large Java database engine HSQLDB comprising 150KLOC
(plus 3000 methods from GNU Classpath).

We have also implemented several analyses to reduce locks inferred, such as
for thread-local and internal objects. Our lock inference approach is the first to
automatically identify internal objects and elide locks for them. Furthermore,
these analyses are conservative but scale to library code and are still able to
identify many such objects, which we have shown through the hsqldb benchmark.
We detect when only a single thread is executing and elide locks in this case too.
This is orthogonal to thread locality because these are locks for shared objects.
This reduced our run-times tremendously, as the locking overheads incurred
during single-threaded execution were mitigated.

We evaluate the run-time performance of our instrumented programs for a
range of benchmarks and compare results with Halpert et al [13]. Halpert et
al only analyse library call chains up to one level deep. For benchmarks that
involve little library code, we obtain similar performance but for programs that
make extensive use of the library, we are slower. However, our approach analyses
all library code and is therefore sound, whereas it can be shown that Halpert et
al’s approach can produce unsound results (see Section 6.1).

In this kind of work there are always ways to improve it. We believe that major
areas of a program may rarely be executed and are looking to take advantage of
this to reduce the number of locks taken at run-time by delaying the acquisition
of locks protecting such cold code regions.

We don’t expect our run-times to match those of optimal hand-crafted locks,
however for most code they are probably acceptable. More importantly it should
be a far simpler task for programmers to annotate blocks of code as atomic than
to get them to place locks correctly, and a correctly annotated program will be
a deadlock free, race free program.

Acknowledgements. We are grateful to Microsoft for funding this work. We
would like to thank Dave Cunningham for the original idea [14] and the belief
that reasonable results could be obtained. We are also very appreciative of the
detailed discussions we had with Tristan O. R. Allwood and Sophia Drossopoulou
and all their helpful advice. We thank Richard Halpert for providing his bench-
mark programs and scripts. We also thank the entire Slurp research group at
Imperial College for interesting discussions about earlier versions of this work.
The work would not have been possible without the advice of members of the
Soot, Jikes RVM and concurrency-interest mailing lists.

Lock Inference in the Presence of Large Libraries 331

References

1. Lomet, D.B.: Process structuring, synchronization, and recovery using atomic ac-
tions. SIGPLAN Not. (1977)

2. Grossman, D.: The transactional memory/garbage collection analogy. In: Proceed-
ings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems and Applications (2007)

3. Cantrill, B., Bonwick, J.: Real-world concurrency. ACM Queue (2008)

4. Sutter, H.: The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in
Software. Dr. Dobb’s Journal (2005)

5. Larus, J., Rajwar, R.: Transactional Memory (Synthesis Lectures on Computer
Architecture). Morgan & Claypool Publishers (2007)

6. Rountev, A., Sharp, M., Xu, G.: IDE Dataflow Analysis in the Presence of Large
Object-Oriented Libraries. In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959, pp.
53–68. Springer, Heidelberg (2008)

7. McCabe, T.: A complexity measure. IEEE Trans. on Soft. Eng. (1976)

8. Hicks, M., Foster, J.S., Pratikakis, P.: Lock inference for atomic sections. In:
Proceedings of the First ACM SIGPLAN Workshop on Languages Compilers, and
Hardware Support for Transactional Computing (TRANSACT) (2006)

9. Cherem, S., Chilimbi, T.M., Gulwani, S.: Inferring locks for atomic sections. In:
PLDI (2008)

10. Emmi, M., Fischer, J.S., Jhala, R., Majumdar, R.: Lock allocation. In: POPL
(2007)

11. Zhang, Y., Sreedhar, V.C., Zhu, W., Sarkar, V., Gao, G.R.: Minimum Lock Assign-
ment: A Method for Exploiting Concurrency among Critical Sections. In: Amaral,
J.N. (ed.) LCPC 2008. LNCS, vol. 5335, pp. 141–155. Springer, Heidelberg (2008)

12. McCloskey, B., Zhou, F., Gay, D., Brewer, E.: Autolocker: synchronization infer-
ence for atomic sections. ACM SIGPLAN Notices (2006)

13. Halpert, R.L., Pickett, C.J.F., Verbrugge, C.: Component-based lock allocation.
In: PACT (2007)

14. Cunningham, D., Gudka, K., Eisenbach, S.: Keep Off the Grass: Locking the Right
Path for Atomicity. In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959, pp. 276–290.
Springer, Heidelberg (2008)

15. Sagiv, Reps, Horwitz: Precise Interprocedural Dataflow Analysis with Applications
to Constant Propagation. TCS: Theoretical Computer Science 167 (1996)

16. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L.J., Lam, P., Sundaresan, V.: Soot
- a java bytecode optimization framework. In: CASCON (1999)

17. Gray, J.N., Lorie, R.A., Putzolu, G.R.: Granularity of locks in a shared data base.
In: VLDB 1975: Proceedings of the 1st International Conference on Very Large
Data Bases (1975)

18. Chan, B., Abdelrahman, T.S.: Run-time support for the automatic parallelization
of java programs. J. Supercomput. (2004)

19. Bodden, E., Sewe, A., Sinschek, J., Oueslati, H., Mezini, M.: Taming reflection:
Aiding static analysis in the presence of reflection and custom class loaders. In:
ICSE 2011: International Conference on Software Engineering (2011)

20. Lhotak, O.: Program Analysis Using Binary Decision Diagrams. PhD thesis

21. Gudka, K., Eisenbach, S.: Fast Multi-Level Locks for Java: A Preliminary Perfor-
mance Evaluation. In: EC2 2010: Workshop on Exploiting Concurrency Efficiently
and Correctly (2010)

332 K. Gudka, T. Harris, and S. Eisenbach

22. Lea, D.: The java.util.concurrent synchronizer framework. Sci. Comput. Program
(2005)

23. Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., Lea, D.: Java Concur-
rency in Practice. Addison-Wesley (2006)

24. Magee, J., Kramer, J.: Concurrency: state models & Java programs. Wiley, New
York (2006)

25. Harris, T., Marlow, S., Peyton-Jones, S., Herlihy, M.: Composable memory trans-
actions. In: Proceedings of the Tenth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (2005)

26. Blackburn, S.M., et al.: The DaCapo benchmarks: Java benchmarking development
and analysis. In: OOPSLA 2006: Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-Oriented Programing, Systems, Languages, and Applications
(2006)

27. Halpert, R.L.: Static lock allocation. Master’s thesis. McGill University (2008)
28. Naumovich, G., Avrunin, G.S.: A conservative data flow algorithm for detecting

all pairs of statement that happen in parallel. In: SIGSOFT FSE (1998)
29. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:

Program Flow Analysis: Theory and Applications (1981)
30. Khedker, U.P., Karkare, B.: Efficiency, Precision, Simplicity, and Generality in In-

terprocedural Data Flow Analysis: Resurrecting the Classical Call Strings Method.
In: Hendren, L. (ed.) CC 2008. LNCS, vol. 4959, pp. 213–228. Springer, Heidelberg
(2008)

31. Gulwani, S., Tiwari, A.: Computing Procedure Summaries for Interprocedural
Analysis. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 253–267.
Springer, Heidelberg (2007)

32. Rountev, A.: Component-Level Dataflow Analysis. In: Heineman, G.T., Crnković,
I., Schmidt, H.W., Stafford, J.A., Ren, X.-M., Wallnau, K. (eds.) CBSE 2005.
LNCS, vol. 3489, pp. 82–89. Springer, Heidelberg (2005)

33. Whaley, J., Lam, M.S.: An Efficient Inclusion-Based Points-To Analysis for
Strictly-Typed Languages. In: Hermenegildo, M.V., Puebla, G. (eds.) SAS 2002.
LNCS, vol. 2477, pp. 180–195. Springer, Heidelberg (2002)

34. Choi, J., Gupta, M., Serrano, M., Sreedhar, V., Midkiff, S.: Escape analysis for
Java. In: Proceedings of the 14th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (1999)

An Analysis of the Mozilla Jetpack
Extension Framework

Rezwana Karim1, Mohan Dhawan1, Vinod Ganapathy1, and Chung-chieh Shan2

1 Rutgers University
{rkarim,mdhawan,vinodg}@cs.rutgers.edu

2 University of Tsukuba, Japan
ccshan@post.harvard.edu

Abstract. The Jetpack framework is Mozilla’s newly-introduced extension
development technology. Motivated primarily by the need to improve how
scriptable extensions (also called addons in Firefox parlance) are developed, the
Jetpack framework structures addons as a collection of modules. Modules are iso-
lated from each other, and communicate with other modules via cleanly-defined
interfaces. Jetpack also recommends that each module satisfy the principle of
least authority (POLA). The overall goal of the Jetpack framework is to ensure
that the effects of any vulnerabilities are contained within a module. Its modular
structure also facilitates code reuse across addons.

In this paper, we study the extent to which the Jetpack framework achieves
its goals. Specifically, we use static analysis to study capability leaks in Jetpack
modules and addons. We implemented Beacon, a static analysis tool to identify
the leaks and used it to analyze 77 core modules from the Jetpack framework and
another 359 Jetpack addons. In total, Beacon analyzed over 600 Jetpack modules
and detected 12 capability leaks in 4 core modules and another 24 capability leaks
in 7 Jetpack addons. Beacon also detected 10 over-privileged core modules. We
have shared the details with Mozilla who have acknowledged our findings.

1 Introduction

Several modern browsers support an extensible architecture that allows end-users to
enhance and customize the functionality of the browser. Extensions come in a variety
of flavors, such as executable plugins to interpret specific MIME formats (e.g., PDF
readers, ActiveX, Flash players), browser helper objects, and scriptable addons.

Our focus in this paper is on scriptable extensions for the Mozilla Firefox browser.
Such scriptable extensions, also called addons, are written in JavaScript, are widely avail-
able, and have contributed in large part to the popularity of the Firefox browser and re-
lated tools, such as the Thunderbird mail client. As of December 2011, over 7000 addons,
supporting a wide variety of functionalities, are available for Firefox via the Mozilla ad-
dons page 1. Popular examples of addons for Firefox include GreaseMonkey [3], which
customizes the look and feel of Web pages using user-defined scripts, Firebug [2], which
is a JavaScript code development environment, and NoScript [10], which is a security
addon that aims to prevent the execution of unauthorized third-party scripts.

1 http://addons.mozilla.org

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 333–355, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://addons.mozilla.org

334 R. Karim et al.

To support rich functionality, the browser exports an API that JavaScript code in
an addon can use to access privileged browser objects and services. On Firefox, this
API is called the XPCOM interface (cross-domain component object model) [25], and
allows JavaScript code in addon to access a wide variety of services, such as the file
system and the network. Access to the XPCOM interface endows JavaScript code in
an addon with capabilities that are normally not available to JavaScript code in a Web
page. For example, JavaScript code in an addon can freely send XMLHttpRequests to
any Web domain, without being constrained by the same-origin policy. The addon can
also freely access objects stored on the file system, such as the user’s browsing history,
cookie store, or any other files accessible by the browser process.

Unfortunately, the privileges endowed by the XPCOM interface can be misused by
attacks directed against vulnerable extensions. A recent study of over 2400 Firefox
addons [14] found several addons demonstrating insecure programming practices and
exploitable vulnerabilities. A successful exploit against vulnerable addons gives the
attacker privileges to access the XPCOM interface, via which he can access the rest of
the system.

A key problem that has contributed thus far to vulnerabilities and insecure program-
ming of Firefox addons is the lack of development tools for addon authors. Addon au-
thors have thus far been required to write their code from scratch, directly accessing the
XPCOM interface to perform privileged actions. Such an approach lacks modularity,
and provides too much authority to each addon. An exploitable vulnerability anywhere
in the addon typically exposes the entire XPCOM interface to the attacker.

To address this problem, Mozilla has recently been developing the Jetpack frame-
work [5], officially known as addon SDK [7], a new extension development technology
that aims to improve the way addons are developed. It does so using modularity and
by attempting to enforce the principle of least authority (POLA) [26]. A Jetpack addon
consists of a number of modules. Each module explicitly requests the capabilities that it
requires, e.g., access to specific parts of the XPCOM interface, and is isolated from the
other modules at the framework level, i.e., its objects are not visible to other modules in
the Jetpack addon unless they are explicitly exported by the module. The Jetpack frame-
work therefore aims to contain the effects of vulnerabilities within individual modules
by structuring the addon as a set of modules that communicate with each other with
clearly defined interfaces, and by ensuring that each module only requests access to the
XPCOM interfaces that it needs. The design of the Jetpack addon framework also facili-
tates code reuse: Jetpack addon authors can contribute the modules used in their addons
to the community, following which others can use the modules within their own ad-
dons. To bootstrap this process, Mozilla has provided a set of core modules that provide
a library of features that will be useful for a wide variety of addons.

In this paper, we study the extent to which the Jetpack framework achieves its goals.
Specifically, we use static analysis to study capability leaks in Jetpack modules and ad-
dons. A capability leak happens when a module requests access to a specific XPCOM
interface (i.e., a capability), and inadvertently exports a pointer to this interface. Ca-
pability leaks allow other modules to access this XPCOM interface (via the exported
pointer) without explicitly requesting access to the interface, thereby violating mod-
ularity. We also use the same static analysis to study violations of POLA, i.e., cases
where a module requests access to an XPCOM interface, but never uses it. A vulnerable

An Analysis of the Mozilla Jetpack Extension Framework 335

module that violates POLA can endow an attacker with more privileges than if the mod-
ule satisfied POLA.

We applied our analysis to a corpus of over 600 Jetpack modules, which include 77
core modules from Mozilla’s Jetpack addon framework and 359 Jetpack addons. Our
results show that there are 12 capability leak in 4 core modules and another 24 capability
leaks in 7 Jetpack addons. Our analysis also detected 10 core modules violating POLA
by requesting privileged resources that they do not utilize. We have shared the details
with Mozilla who have acknowledged our findings for the core modules.

2 Background and Motivation

The Jetpack framework [5] focuses on easing the extension development process with
an emphasis on modular development, code sharing and security. The framework pro-
vides high-level APIs, allowing addon authors the ease of writing extensions using stan-
dard Web technologies, like JavaScript and CSS. This is in contrast with traditional
extension development, which required developers to be proficient in Mozilla specific
technologies like XUL [12] and XPCOM [25].

A Jetpack addon is a hierarchical collection of JavaScript modules, with each mod-
ule exporting some key functionality. A typical Jetpack addon consists of core modules,
user modules and some glue code. Core modules provide low-level functionality and are
provided by Mozilla itself. User modules are usually authored by the addon developer
or other third-parties who have contributed their code to the community. Glue code ties
up all the modules to provide the expected functionality of the addon. On execution, the
Jetpack runtime loads each component module in a separate sandboxed environment
resulting in namespace separation for code within the modules. Inter-module commu-
nication is facilitated by special JavaScript constructs, exports and require, which
serve as well-defined entry and exit points for the modules. The exports interface en-
ables a module to expose functionality by attaching properties to the exports object.
The require function enables a module to import such exported functionality.

The guidelines by Mozilla advise developers to follow the principle of least author-
ity (POLA) [8] when designing modules. This helps in attenuating the capabilities of
modules. The modular architecture of a Jetpack addon coupled with strong isolation
between the modules helps to confine the effects of module execution. This is in sharp
contrast to the traditional extension development model, where monolithic extensions
shared the same namespace and had privileged access to large number of resources via
the XPCOM interface. Prior work [15,19] has shown that such extensions are vulnera-
ble to a variety of security threats.

Although not recommended, a Jetpack module may also directly invoke XPCOM
interfaces if the desired functionality is not exported by either the core or user modules.
However, this is dangerous since interaction with XPCOM interfaces provides access to
privileged resources and inexperienced addon authors could inadvertently attach such
capabilities to the exports interface. Importing such modules would make the request-
ing module over-privileged and violate POLA.

Figure 1 shows the architecture of a simple Jetpack addon which enables the user to
download files from the Web. Each of the dotted boxes in the figure represents a module.
Modules such as file, network, preferences represent the core modules and are provided

336 R. Karim et al.

Fig. 1. Structure of a simple Jetpack addon

by Mozilla. The user-level modules include the helper module, the UI module and third-
party file utilities. As shown in the figure, the helper module and file utilities build on top
of the services exported by the core modules. The UI module directly invokes XPCOM
interfaces to support functionality not provided by core modules, such as user alerts or
dialog boxes. Although such direct invocations are not recommended (as shown by the
dotted line), they are allowed till the Jetpack framework matures and Mozilla develops
core modules for all key services.

Capability Leak in a Jetpack Addon

Consider the code snippet as shown in Figure 2 which represents the actual code of
the Preferencesmodule from ‘Customizable Shortcuts’ [1], a popular Jetpack addon
with over 5000 users. This module exports a method getBranch which inadvertently
enables access to the browser’s entire preference tree. If another module imports the
Preferenecsmodule, it would receive additional capabilities to access and modify the
user’s preferences for all extensions without explicitly requiring access to the user pref-
erences; in effect the importing module becomes over-privileged. Although the Jetpack
framework recommends adherence to POLA, it does not safeguard against developer
mistakes, with the result that unintended capability leaks are frequent.

Let us now examine the code in detail to understand the cause of the capabil-
ity leak. In line 1, the module requests chrome authority to enable it to access any
XPCOM interface. Line 2-11 declare a Preferences object with several properties
(including branches and getBranch) defined on it. On line 12, the module ex-
ports the Preferences object by attaching it to the exports object. Since the entire

An Analysis of the Mozilla Jetpack Extension Framework 337

(1) const {Cc, Ci} = require("chrome");
(2) let Preferences = {
(3) branches: {},
(4) caches: {},
(5) getBranch: function (name) {
(6) if (name in this. branches) return this. branches[name];

(7) let branch = Cc["@mozilla.org/preferences-service;1"]

.getService(Ci.nsIPrefService).getBranch(name);

(8) .../* other statements */

(9) return this. branches[name] = branch;

(10) }, ... /* other properties */
(11) };
(12) exports.Preferences = Preferences;

Fig. 2. Code snippet of a module from a real-world Jetpack addon which leaks the capability to
access and modify browser preferences

Preferences object is exported, a module which requires this module would have
access to all its properties, including getBranch.

The getBranch method utilizes the chrome privileges acquired in line 1 to first
create an instance of the XPCOM interface nsIPrefService and then invoke the
getBranch method defined on the interface. The getBranch method returns an in-
stance of another XPCOM interface nsIPrefBranch, which provides a handle to ac-
cess and modify user preferences. After the assignment in line 7 is complete, branch
stores an instance of nsIPrefBranch. In line 9, the method returns this privileged
instance to the caller. Thus, the capability to manipulate the preference tree is leaked
through the exports interface of the module.

The capability leak from Preferences module thus makes an importing module
over-privileged, thereby violating POLA. Such a capability leak might even cause inad-
vertent deletion of user preferences. Ideally, the module should have been designed in
a manner to either export access only to its own preference branch, or return primitive
values corresponding to the preferences rather than a reference to the branch.

The module also violates another Jetpack addon design principle, which is to utilize
capabilities of core modules whenever possible and maintain the hierarchical module
structure. The Preferences module accesses and returns a reference to the prefer-
ences XPCOM interface even though the core modules provide equivalent functionality
through the preferences-servicemodule, thereby breaking the expected hierarchi-
cal structure. The absence of any restriction on developers to use core modules only
exacerbates the problem.

Failure to adhere to Jetpack addon guidelines and principles is common in Jetpack
modules, in part due to the absence of functionality in core modules and also because of
the available choices during module design and implementation. Although adherence
to POLA ensures that a module has the minimal set of capabilities required to perform
its desired functionality, it is hard to implement in practice due to developer mistakes
and refactoring oversights. A capability leak analysis for Jetpack modules would help
to identify modules that violate POLA and restrict any security threat only to the con-
cerned module.

338 R. Karim et al.

Table 1. List of some privileged resources and their access interfaces

Entity Sensitive attributes and methods
Bookmarks nsIRDFDataSource
Chrome Components.classes, Components.interfaces, Components.utils, Components.result
Cookies nsICookieService, nsICookieManager
Document window.gBrowser.contentDocument, window.document
Files nsILocalFile, nsIFile
Passwords nsIPasswordManager, nsIPasswordManagerInternal.
Preferences nsIPrefService, nsIPrefBranch
Serivces nsIIOService, nsIObserverService, nsIPromptService
Streams nsIInputStream, nsIFileInputStream
Window nsIWindowMediator, nsIWindowWatcher
XPCOMUtils nsIModule, generateQI

3 Static Analysis of Jetpack Modules and Addons

In this section we describe a static analysis to detect sources of capability generation in
Jetpack modules, flow of capabilities through a module and across the module interface.

The capability leak analysis is an instance of static information flow tracking where
taint is modeled as the capability of accessing sensitive sources. A list of the sensitive
sources considered in our analysis is given in Table 1. These sources are classified as
sensitive as they allow module code to access browser resources and perform privileged
operations, such as access to arbitrary DOM elements, read/write access to the cookie
and password stores, unrestricted access to the local file system and the network, etc.

In the context of Jetpack modules, an object acquires capabilities if (a) it directly
accesses any of the sensitive sources (XPCOM interfaces) or (b) aliases capabilities in-
herited by the module via an explicit require call. In our analysis, an object is marked
privileged if it directly acquires capabilities, while it is considered tainted if it transi-
tively acquires the capabilities.

Both privileged and tainted objects propagate the associated capability through dif-
ferent program paths and can potentially leak it through the module’s exports inter-
face. Thus, the exports interface of each module is an information sink. A module can
leak capabilities if it exports:

– direct references to privileged or tainted objects, and/or
– functions that provide references to privileged or tainted objects on invocation or

on construction.

To identify capability leaks through module interfaces, we do a flow- and context-
insensitive call-graph based static analysis of JavaScript in the module code. Our anal-
ysis converts the JavaScript code into the Static Single Assignment (SSA) [18] form
and analyzes each SSA instruction. It then processes these facts to perform capability
leak analysis. The analysis obtains a degree of flow sensitivity by performing a flow
insensitive analysis on an SSA representation of the program.

Our analysis models taint values to flow upwards in an object hierarchy i.e. an object
is tainted if it itself is tainted or any of its properties are tainted. The key insight is that
properties can be accessed given a reference to the parent object but not vice-versa.
Thus, for the code snippet in Figure 2, branches in line 9 is tainted because one of its

An Analysis of the Mozilla Jetpack Extension Framework 339

Fig. 3. Overall workflow of our analysis

properties is assigned to branch, which is privileged (line 7). Similarly, Preferences
also gets tainted as one of its children (branches) is tainted. Since there was no capa-
bility assignment to caches, it remains untainted.

We have adopted a conservative approach to handle arrays. Since it is statically impos-
sible to precisely determine the index for every array load, store, or access instructions, if
any element in the array is tainted then the entire array is marked tainted. Unlike objects,
our analysis models all array properties to be tainted if any of the siblings is tainted.

The analysis is inter-procedural. It models functions call sites, arguments and captures
the appropriate flow of taint across function invocations. Primitive values are not mod-
eled. Our analysis also does not implement any string analysis. This could affect capabil-
ity flows arising from string manipulation and dynamic constructs like eval. JavaScript
containing eval is supported, however the code introduced by eval is not modeled.

3.1 Stages of the Analysis

Our analysis is based upon Datalog and proceeds in three stages. In the first stage,
the analysis pre-processes the addon code to make it amenable to static analysis. The
next stage performs the core analysis on the pre-processed code. The core analysis
generates Datalog facts that represent capability flow in the Jetpack addon code. The
results of core analysis are then processed in the third stage to identify offending flows
in the source code of the Jetpack addon. Figure 3 illustrates a schematic diagram of the
analysis of a Jetpack addon. The components gray are contributions of this work, while
those in white are off-the-shelf tools.

We now describe the various stages of the analysis in detail:

3.1.1 Pre-processing
Our core analysis (as will be described in Section 3.1.2) is based on call-graph con-
struction. The pre-processing stage process the module code to facilitate construction
of a complete call-graph for the module.

Since functions are first-class objects in JavaScript and can be properties of other
objects, it is possible that such functions are never invoked within the module. Further,
if these functions are exported by the module, they could be invoked by the module
requesting them. A call-graph generated for such a module would be incomplete since

340 R. Karim et al.

Table 2. Pre-processed JavaScript constructs and their desugared forms.† We desugar all forms
of let i.e. statement, expression and definition.

Construct Desugared to Code Desugared Code
Destructuring property access var {Cc, Ci} = require("chrome"); var Cc = require("chrome").Cc;
assignment and assignment var Ci = require("chrome").Ci;

let † var let foo = 5; var foo = 5;

const var const SIZE = 100 var SIZE = 100

lambda Function Function f(x) x * x f(x) { return x * x; }

it would not reflect invocations for all the functions. Therefore, we append the module
code with additional JavaScript code which would enable the call-graph generator to
invoke all functions and generate the complete call-graph for the module. To do so, we
consider all functions and properties (including JavaScript getters and setter) reachable
from the module’s exports interface and append appropriate JavaScript statements for
their invocation.

We do not append function objects defined in event handling or callback code be-
cause the Jetpack runtime freezes the exports interface when the module has finished
loading. This restricts all event handlers from attaching or modifying exports inter-
face. However, the loader does not perform deep freeze of the exports object making
it possible to modify any property reachable from the interface. Beacon may therefore
have false negatives. We plan to extend Beacon to analyze all event handlers.

The pre-processing stage is also required to make the Jetpack addon code amenable
for static analysis. To do so, we desugar some of the JavaScript constructs into simpler
forms. For example, ‘destructuring assignment’ is a popular JavaScript construct that
mirrors the construction of array and object literals. In essence it only represents syntac-
tic sugar to extract data from arrays or objects. As part of pre-processing, we desugar it
and convert it to statements involving simple property access and assignment. For other
constructs like let and const, we change them to var statements while keeping the
semantics unchanged. Table 2 lists set of the pre-processed constructs along with their
desugared forms.

The pre-processing stage also includes code re-writing to simplify statements in-
volving Mozilla specific XPCOM [25] interfaces, which indicate creation or access of
privileged resources. To do so, we replace all such XPCOM instances by stubs indi-
cating function calls. For example, the statement in line 7 of Figure 2 is re-written as
shown below:

let branch = Cc["@mozilla.org/preferences-service;1"] → let branch = MozPrefService()
.getService(Ci.nsIPrefService).getBranch(name); .getBranch(name);

We also create summaries to indicate capabilities accessible from the stub methods.
This summary is fed to the analysis engine to enable it to accurately model the flow of
capabilities when handling code that accesses properties on the stub method. For exam-
ple, the module summary of MozPrefService would have one entry for getBranch
which returns the capability PrefBranch.

An Analysis of the Mozilla Jetpack Extension Framework 341

Table 3. Summary of preferences module showing the capability leak

Entity Type Capability
exports Object prefBranch
exports.Preferences Object prefBranch
exports.Preferences. branches Object prefBranch
exports.Preferences.getBranch Function prefBranch

3.1.2 Core Analysis
For the purpose of statically analyzing the pre-processed JavaScript code we use an off-
the-shelf tool to generate a call-graph in the SSA format. We then generate appropriate
Datalog facts corresponding to statements in the JavaScript code and apply inference
rules for points-to and capability flow analysis.

Our points-to analysis is inspired by the JavaScript points-to analysis introduced in
Gatekeeper [21]. The key distinction is that in our analysis, all program variables carry
taint information as well, thereby performing capability flow analysis together with
points-to analysis. Similar to prior works [21], we adopt a relatively standard way to
represent a program as a database of facts. The set of Datalog relations deployed for the
analysis are summarized in Table 4. Each of these relations is of fixed type and arity.
The relations specify how points-to and taint information are propagated. We represent
heap-allocated objects and functions using the alphabet H, program variables by V,
fields by F, call sites by I, integers by Z and capabilities by P.

Unlike prior works [21] which perform whole program analysis, our analysis focuses
on modular JavaScript code, such as Jetpack modules. Analysis of individual modules
requires that capabilities of each module be appropriately seeded based on which other
modules it imports. Since invoking functions from an imported module is akin to using
library or foreign functions, we model such functionality as a summary of each module.
Thus, a comprehensive analysis of a particular module requires that the summary of
each of the imported modules be fed to the analysis engine.

Our analysis focuses primarily on detecting capability flows, thus our summaries
only reflect capability leaks possible through the module’s exports interface, A mod-
ule’s summary typically contains information about the properties of the exports in-
terface, their types and taint values reflecting the capabilities associated with the object.
Table 3 shows the summary for the code module shown in Figure 2.

Our module summaries simply list the capabilities exported by specific properties
exported by a module. In JavaScript, functions can also be exported. However, our
summaries are currently not parameterized by the arguments to such functions, which
may lead to false negatives in our analysis.

Once summaries for all the imported modules are available, the analysis engine con-
structs a call graph along with the control-flow graphs for each method in the module to
be analyzed. These control-flow graphs consist of several basic blocks which comprise
of SSA statements. The analysis engine traverses each of these statements and produces
Datalog facts capturing its semantics, as illustrated in Table 5. It also generates heap
allocation mappings for the objects and functions, denoted by h f resh. During this phase,
several Datalog facts corresponding to the relations shown in Table 4 are generated.
The analysis engine then applies the Datalog inference rules presented in Table 6 over

342 R. Karim et al.

Table 4. Datalog relations used in our static analysis

Relations for points-to analysis

Heap mapping
ptsTo(V, H) represents a points-to relation for a variable
heapPtsTo(H1, F, H2) represents points-to relation for heap objects
prototypeOf(H1, H2) record object prototype

Object manipulation
assign(V1, V2) represents variable assignments
store(V1, F, V2) represents field store for an object
load(V1, V2, F) represents field load from an object

Function manipulation

calls(I, H) represents call site I invoking method M
formal(H, Z, V) represents formal argument of method M
methodRet(H, V) represents return value of a method
actual(I, Z, V) represents actual parameter of a call site
callRet(I, V) represents return value for a call site

Relations for capability flow analysis

Capability flow
isPrivileged(H, P) indicates heap object H is privileged with type P
isTainted(H, P) indicates heap object H is tainted with type P
idIsPrivileged(V, P) indicates variable V is privileged with type P
idIsTainted(V, P) indicates variable V is tainted with type P

Table 5. Datalog facts generated for each JavaScript statement

Statement Example Code Generated Facts

ASSIGNMENT v1 = v2 assign(v1, v2)
RETURN return v callRet(v)

OBJECT LITERAL v = {} ptsTo(v, h f resh)
STORE v1.f = v2 store(v1, f, v2)
LOAD v1 = v2.f load(v1, v2, f)

FUNCTION v = function(v1, v2, ..., vn) ptsTo(v, h f resh)
DECLARATION heapPtsTo(h f resh, prototype, p f resh)

for z ∈ 1...n, generate formal(h f resh , z, vz)
methodRet(h f resh, v)

OBJECT v = new v0(v1, v2, ..., vn) ptsTo(v, h f resh)
CONSTRUCTION prototypeOf(h f resh, d) :- ptsTo(v0, hmethod),

heapPtsTo(hmethod, prototype, d)
for z ∈ 1...n, generate actual(i, z, vz)

callRet(i, v)

FUNCTION CALL v = v0(vthis, v1, v2, ..., vn) ptsTo(v, h f resh)
for z ∈ 1...n, this, generate actual(i, z, vz)

callRet(i, v)

the initial set of facts to keep track of aliases and the flow of capability through the
JavaScript code.

An Analysis of the Mozilla Jetpack Extension Framework 343

Table 6. Datalog inference rules for points-to analysis

Basic rules

ptsTo(V1, H) :- ptsTo(V2, H), assign(V1, V2)

ptsTo(V2, H2) :- load(V2, V1, F), ptsTo(V1, H1), heapPtsTo(H1, F, H2)
heapPtsTo(H1, F, H2) :- store(V1, F, V2), ptsTo(V1, H1), ptsTo(V2, H2)

Call graph

calls(I, H) :- actual(I, 0, V), ptsTo(V, H)

Inter-procedural assignments

assign(V1, V2) :- calls(I, H), formal(H, Z, V1), actual(I, Z, V2)
assign(V2, V1) :- calls(I, H), methodRet(H, V1), callRet(I, V2)

Prototype handling

heapPtsTo(H1, F, H2) :- prototypeOf(H1, H), heapPtsTo(H, F, H2).
prototypeOf(O, H) :- heapPtsTo(M, prototype, P), heapPtsTo(M, prototype, H),

prototypeOf(O, P)

Taint propagation

isTainted(H1, P) :- heapPtsTo(H1, F, H2), isPrivileged(H2, P)
isTainted(H1, P) :- heapPtsTo(H1, F, H2), isTainted(H2, P)

idIsTainted(V, P) :- ptsTo(V, H), isPrivileged(H, P), not(idIsPrivileged(V, P))
idIsTainted(V, P) :- ptsTo(V, H), isTainted(H, P)

3.1.3 Post-processing
The combination of initial set of Datalog facts and facts generated after the application
of inference rules abstract the behavior of the Jetpack module under analysis. These
facts provide information regarding capability flows for the module being analyzed.
The post-processing stage links this information back to the source code, identifying
possible locations in the source code where capabilities were generated and the prop-
erties of the exports interface through which they were externalized. This processed
information is also utilized for generating a summary for the analyzed module.

3.2 Capability Flow: A Concrete Example

We now demonstrate how the analysis detects capability flows from the exports in-
terface of Jetpack addon modules. Figure 4 represents a pre-processed module and the
initial set of points-to facts generated by the analysis.

The pre-processed module indicates the use of capabilities within the module by the
stub function MozPrefService. The ptsTo relations represent object allocations in the
heap for each object or function declaration. The analysis engine generates a call-graph
with invocation for all methods reachable from the exports interface to determine
the capabilities flowing out of the module. In the example, the analysis invokes the
exports.Preference.getBranch method. For brevity, we omit the details of the
invocation itself and the associated facts generated for the relevant statements.

344 R. Karim et al.

Pre-processed JavaScript statements Generated Datalog facts
(1) var exports = {}; ptsTo(vexports, hexports)
(2) var Preferences = { ptsTo(vPre f erences , hPre f erences)
(3) branches: {}, ptsTo(v branches, h branches)

store(vPre f erences , branches, v branches).
(4) getBranch: function (name) { ptsTo(v branches, h branches).

store(vPre f erences , getBranch, vgetBranch)
(5) var branch = MozPrefService().getBranch(name); ptsTo(vbranch, hpre f Branch).
(6) return this. branches[name] = branch; store(v branches , , vbranch)
(7) }, ... /* other properties */
(8) };
(9) exports.Preferences = Preferences; ptsTo(vexports, hexports)

store(vexports, preferences, vPre f erences)

Fig. 4. Example showing the flow of capabilities through the module’s exports interface

The analysis detects capability leaks from the module by determining whether
exports is tainted or not. To do so, it must answer the following Datalog query:

idIsTainted(vexports, X)?

where vexports is the SSA representation for the exports interface and X is the
capability being exported.

Instead of operating on SSA representations, the analysis transforms the above Dat-
alog query to operate on heap allocation representation. Thus, the new query to be
resolved is:

isTainted(hexports, X)?

where hexports represents heap allocation for vexports.
When the analysis invokes the getBranch method and analyzes line 5, it

reads the summary for MozPrefService. This summary lists getBranch as
method that returns the capability PrefBranch. Thus, the analysis engine al-
locates a heap object (hpre f Branch) for nsIPrefBranch and generates the fact:
isPrivileged(hpre f Branch, prefBranch). At line 6, vbranch holds the return value of the
function MozPrefService.getBranch(name), and thus vbranch points to hpre f Branch.
For sake of brevity, we omit the processing of the return statement.

On consulting the Datalog inference rules in Table 6 and existing facts, the analy-
sis infers that hpre f Branch is stored in the heap allocation object h branches thus tainting
h branches. As mentioned earlier in the section, taints propagate upwards in an object hi-
erarchy. Thus the capability PrefBranch flows from h branches to the heap allocation of
the parent object, hPre f erences and generates the fact: isTainted(hPre f erences, prefBranch).
This in turn generates a similar fact: isTainted(hexports, prefBranch). Coupled with the
fact that vexports points to the heap allocation hexports, the analysis resolves X to be
PrefBranch and determines PrefBranch as the capability flowing out of the module
through the exports.Preferences.getBranchmethod.

4 Implementation

We realized the analysis described in Section 3 in a tool named Beacon. Beacon is
built atop WALA [28], an existing static analysis tool, and uses WALA’s capabilities to

An Analysis of the Mozilla Jetpack Extension Framework 345

Table 7. List of capability leaks observed in the core modules. † indicates multiple reference
leaks.

Core module Capability Leak mechanism Essential
tabs/utils † Active tab, browser window and tab container Function return Yes
window-utils † Browser window Function return Yes
xhr Reference to the XMLHttpRequestobject Property of this object No
xpcom Entire XPCOM utility module Exported property No

convert pre-processed JavaScript code into an SSA-based register-transfer intermediate
representation (IR) and generate appropriate control-flow graph. Beacon analyzes each
IR to generate corresponding Datalog facts, which are processed using the DES Datalog
query engine [16]. The core analysis in Beacon was implemented in about 2.8K lines
of Java code while an additional 700 lines of scripts were required for pre- and post-
processing.

5 Results

We evaluated the effectiveness and accuracy of Beacon in detecting capability leaks by
analyzing the entire set of 359 Jetpack addons and 77 core modules available to us at the
time of writing the paper. In total, Beacon analyzed over 600 modules consisting of over
68K lines of JavaScript code. The performance of Beacon’s static analysis heavily de-
pends on the size of the analyzed module. On average, Beacon takes a couple of minutes
and consumes 200MB per module. For the largest module (tab-browser.js/25KB),
Beacon took 30mins and 243MB of memory. In Section 5.1 we present results from
analysis of the capability leaks in core modules and Jetpack addons. In Section 5.2
we study the nature and usage of capabilities in various Jetpack addons. Lastly, in
Section 5.3 we report on the use of Beacon to analyze the privileges associated with
Jetpack addons and the core modules to detect over-privileged modules.

Our evaluation methodology involved pre-processing the modules to desugar any
incompatible JavaScript constructs and append additional JavaScript code to ensure
complete code coverage (see Section 3.1 for details). Each pre-processed module file
was individually analyzed by Beacon to generate appropriate Datalog facts that were
later processed to extract information about capability leaks. The post-processing also
generated a summary for the module that was utilized for analysis of another modules
which imported it.

5.1 Capability Leaks

Beacon detected 12 capability leaks in four core modules and another 24 leaks in seven
Jetpack addons. Most of the detected leaks were subtle and hard to catch through man-
ual code review. This is reinforced by the fact that Beacon managed to detect 12 capa-
bility leaks in production quality code which has undergone numerous code reviews and
has a relatively stable code base. For each of the reported leaks, we manually verified
the results and observed no false positives. We shared the details of our findings with
Mozilla who acknowledged capability leaks in the four core modules. Tables 7 and 8
summarize the findings.

346 R. Karim et al.

Table 8. Capability leaks in Jetpack addons

Jetpack addon Capability Leak mechanism Essential
Bookmarks Deiconizer Entire XPCOM services module Exported property No
Browser Sign In window, document Return from exported function No
Customizable Shortcut nsIPrefBranch, nsIAtomService Property of this object No

window Return of function attached to this No
Firefox Share nsIPrefBranch, window Property of this object No

Reference to built-in SQLite database Property of this object No
nsIObserverService Exported property No
nsIScriptableInputStream, nsIBinaryInputStream Return value of exported function No
nsISocketTransportService, nsISocketTransport Property of this object No
nsIInputStreamPump Property of this object No
Instance of the imported Socketmodule Property of this object No

Most Recent Tab nsIPrefBranch Property of this object No
window Function return No

Open Web Apps nsIPrefBranch, window Property of this object No
Reference to built-in SQLite database Property of this object No
nsIObserverService Exported property No

Recall Monkey nsIIOService, nsIFaviconService Property of this object No

Capability Leaks in Core Modules: Beacon discovered two kinds of capability leaks
in the core modules. First, capability leaks that occur due to the intended functionality
of the module and must therefore be white-listed. Second, capability leaks that occur
due to exporting direct references to privileged objects. We list two examples which are
representative of the nature of capability leaks in the core modules.

– window-utils: The core module window-utils as part of its intended functionality
exports utility methods to access and track the browser’s windows. As mentioned in
Section 2, the Jetpack framework executes each module within a sandbox without
access to the privileged window, document or gBrowser objects. On analyzing
window-utils, Beacon reported several capability leaks for methods and prop-
erties defined on the exports interface that return references to the window and
document objects. Since all of these violations were due to intended functionality
as documented in the Jetpack addon SDK [7], we white-listed the offending leaks
for the window-utilsmodule.

– xpcom: The xpcom module provides functionality to register a user-defined com-
ponent with XPCOM and make it available to all XPCOM clients. This module also
exposes the XPCOMUtilsmodule which offers several utility routines for the com-
ponents loaded by the JavaScript component loader. Due to the privileged nature of
these utility routines, we modeled the XPCOMUtilsmodule as a capability source.
Our analysis of the xpcom module reported a capability leak which we confirmed
manually as the reference to the exported XPCOMUtilsmodule.
Exporting a reference to a privileged interface is inconsistent with the philosophy
of Jetpack. We believe that instead of the reference to the XPCOMUtils module,
separate accessor methods that invoke its functionality should be exported by the
xpcom module. We reported our observation about the xpcom module to Mozilla
and they agree with our suggestion to wrap the functionality of XPCOMUtils with
xpcom accessors to decrease the surface area for vulnerabilities.

Capability Leaks in Jetpack Addons: Capability leaks discovered by Beacon in the Jet-
pack addons can be classified into four categories. The first category of leaks occurs due

An Analysis of the Mozilla Jetpack Extension Framework 347

to export of capabilities through direct references of privileged objects or due to func-
tion objects which return capabilities on invocation. The second class of leaks occurs
when a module attaches a capability to an exported function’s this object. The third
class of capability leaks occur if the module utilizes the functionality of a core mod-
ule which itself leaks capabilities, such as window-utils or xpcom. Lastly, we also
observed capability leaks when a Jetpack addon uses third-party modules which them-
selves leak capabilities. We describe two popular Jetpack addons which demonstrate all
four classes of capability leaks.

– Customizable Shortcuts: Customizable Shortcuts is a popular Jetpack addon with
over 5000 users. It enables users to easily create keyboard shortcuts to customize
the Web browser. We analyzed the addon using Beacon and found 3 capability leaks
which cover three out of the four classes of leaks. The first leak results from one
of the modules exposing a method that on invocation returns reference to the entire
preferences tree, instead of the sub-tree specific to the addon. Accessing the entire
preferences tree is not recommended since tree modifications on other branches
could result in inadvertent loss of user data.

The second capability leak occurs in a module which exports a wrapper
method over the window-utils core module. The wrapper invokes functions on
window-utilswhich return references to the window and document objects.

The last capability leak occurs as a result of the module attaching an instance
of the nsIAtomServiceXPCOM interface to the exported function’s this object.
Although, the nsIAtomService interface does not provide any security critical
functionality, leaking capabilities implicitly through the this object is a bad pro-
gramming practice.

On manually verifying the leaks, we observed that none of the leaked capabili-
ties was being used by other modules in the Jetpack addon. This suggests that the
module author inadvertently exported the capability instead of keeping it local to
the module.

– Firefox share: Firefox share is a Jetpack addon by Mozilla Labs which allows
fast and easy sharing of links from any Web page. This addon has 25 modules with
over 5300 lines of JavaScript code. Several of these modules have been reused from
another Jetpack addon, Open Web Apps, also by Mozilla Labs.

Analyzing Firefox share with Beacon, we discovered 10 diverse capability leaks
ranging from leaking preference trees, the window object, access to a built-in
SQLite database to leaking socket services, which would enable a module to lever-
age benefits equivalent of using raw UDP/TCP sockets. Table 8 enumerates all the
observed violations in Firefox share. On manual verification, we observed that in
each case the leaked capability was never invoked from any another module. This
clearly indicates that the leaks were inadvertent.

We also found that four of the leaks originated in the code modules that were
shared with Open Web Apps. This demonstrates that sharing of over-privileged
code modules exacerbates capability leaks.

348 R. Karim et al.

5.1.1 Accuracy
Beacon detected a total of 36 capability leaks in over 600 modules. For each capabil-
ity leak, we manually validated the results and observed no false positives. However,
Beacon could miss capability flows due to a combination of the following reasons:

– Dynamic features: Our analysis currently does not handle some of the dynamic
and reflective features available in JavaScript. For example, privilege propagation
through iterators, generators and reflective constructs like arguments.callee are
not modeled. Accurate propagation of privileges for such constructs cannot be
achieved statically alone and requires dynamic analysis [19,20].

– Unsupported constructs: There are a few constructs in JavaScript for which the
WALA analysis engine throws exceptions, and thus they are not supported by Bea-
con. Such constructs include for..each, yield and case statement over a vari-
able. We re-wrote all instances of such constructs (by hand) in the Jetpack modules
to make them amenable to analysis. Although hard to quantify, it is possible that
the re-written code may miss some capability flows.

– Unmodeled constructs: There are some constructs which have not been appro-
priately modeled yet in our analysis. These include nested try/catch/throw se-
quences, eval and with. During our experiments, we found no instance of either
eval or with in any of the modules.

Also, our analysis currently does not model DOM function calls, like
setAttribute and property assignments, like innerHTML. Such constructs are
handled similar to normal JavaScript function calls and property assignments and
could affect capability flows.

Although foreign function calls, like those invoked on imported modules, are
modeled, the analysis does not consider the taint value of arguments passed to them.
Instead, the analysis determines the taint value of function returns by consulting the
module’s summary. Ignoring taint values of arguments of foreign functions could
also affect the detection of capability flow.

– Latent bugs: Lastly, in-spite of exhaustive testing, it is possible that there are latent
bugs in Beacon or the automated module summary generation which might affect
capability flows.

5.2 Capability Use

The Jetpack framework automatically generates a manifest for each Jetpack addon that
provides a dossier about the core modules ‘required’ by the addon, but provides no in-
formation about the XPCOM interfaces invoked by the modules in the addon. As re-
vealed in Section 5.1, a large number of capability leaks originated from the direct use
of XPCOM interfaces. In this section, we analyze the Jetpack addons and determine the
XPCOM-level capabilities associated with them. A concrete understanding of the capa-
bilities associated with a Jetpack addon is useful to both the end-user and Mozilla itself.

– Addon reviewers at Mozilla can use capability leak analysis to publish fine-grained
Jetpack addon manifests that accurately lists all its capabilities. This would be help-
ful to end-users in making a well-informed choice when installing an addon. For
example, if a Jetpack addon invokes the nsICookieManager and also has access

An Analysis of the Mozilla Jetpack Extension Framework 349

Table 9. Top 10 XPCOM interfaces used in Jetpack addons

XPCOM # Jetpack XPCOM # Jetpack
Interface addons Interface addons

nsIWindowMediator 18 nsIWindowWatcher 4
nsIIOService 10 nsIFaviconService 4
Services 8 AddonManager 3
nsIPrefService 6 nsILocalFile 3
nsIProperties 5 nsIObserverService 3

to the network, then the end-user can be made aware of the fact that the addon is
capable of reading user cookies from all domains and sending them over the net-
work.

– A capability analysis of existing Jetpack addons would help Mozilla in two ways.
First, the analysis would identify the set of XPCOM interfaces that are most widely
used by developers and for which there do not exist any core modules. This knowl-
edge would help Mozilla in prioritizing the development of core modules. Sec-
ondly, the analysis would help the curators at Mozilla to identify addons that use
XPCOM interfaces for which a core module already exists. The curator can then
suggest the desired modifications to the developer and ensure that all Jetpack ad-
dons conform to the hierarchical model where the developer maximizes the use of
the built-in core modules for the Jetpack addon functionality.

Table 10. Top 10 core modules used in Jetpack addons

Core # Jetpack Core # Jetpack
module addons module addons

self 243 request 101
tabs 160 chrome 94
widget 157 panel 83
page-mod 126 simple-storage 82
context-menu 117 selection 52

To understand the usage pattern of capabilities in Jetpack addons, we modify Beacon
to collect two kinds of capability usage characteristics. First, we track all heap object
creations that occur when a Jetpack addon invokes an XPCOM interface. Second, we
measure the usage of core modules, i.e.,the number of core modules imported using a
require call.

Figure 5 shows the frequency distribution of XPCOM interfaces for the 359 Jetpack
addons which directly invoke atleast one XPCOM interface. We observe that 46 of the
addons directly invoke XPCOM functionalities, with one Jetpack addon (Firefox share
by Mozilla Labs) invoking 14 XPCOM interfaces. Thus over 12% of Jetpack addons
directly use XPCOM to include functionality and features not available in the core
modules. We believe that as the Jetpack framework becomes popular, this number will
increase and along with it the number of modules that leak capabilities.

Tables 9 and 10 list the top 10 XPCOM interfaces and core modules currently
in use by Jetpack addons. We observe that 5 of the XPCOM interfaces listed
in Table 9, namely nsIWindowMediator, nsIPrefService, nsIWindowWatcher,

350 R. Karim et al.

Fig. 5. Frequency of XPCOM interfaces used in Jetpack addons

nsILocalFile and nsIObserverService, are used by addon authors even though
there exist core modules that provide equivalent functionality. For example, the core
module preference-services provides functionality equivalent to the XPCOM in-
terface nsIPrefService.Two of the popular interfaces nsIIOService and Services
provide rich functionality that currently do not have any functionally equivalent core
modules. Although a Jetpack addon author can access these capabilities by requesting
chrome privileges, it increases the privileges associated with the module manifold. The
surface area for vulnerabilities in Jetpack addons would greatly reduce if Mozilla could
provide core modules for privileged, but frequently used XPCOM interfaces.

Careless handling of multiple capabilities in a module could result in capability leak
through the module’s exports interface. To determine if the modules in Jetpack addons
can be split up into better-confined subsets of authority, we used Beacon to detect all
modules which accessed more that one XPCOM interface. We grouped the XPCOM
interfaces by their functionality and identified modules that used XPCOM interfaces
from different categories. If a module uses functionalities from more than one category,
then it is a candidate for isolating the authorities used by the module.

We grouped the XPCOM interfaces into 6 categories — namely Application,
Browser, DOM, I/O, Security and Miscellaneous — each representing distinct classes of
functionalities, All XPCOM interfaces that access application or user preferences, cre-
ate application threads, etc. are categorized under Application. The category Browser
contains interfaces that represent browser neutral functionality like access to timers and
console. DOM provides access to the window and document objects. Services that han-
dle browser permissions and cookies are grouped under Security, while interfaces which
require access to the network, file system or storage come under I/O. The remaining in-
terfaces are grouped as Miscellaneous.

We found 26 modules in 19 Jetpack addons, where each module invoked XPCOM in-
terfaces to obtain capabilities of different nature. Table 11 lists the findings. We observe

An Analysis of the Mozilla Jetpack Extension Framework 351

Table 11. List of Jetpack modules accessing multiple categories of XPCOM interfaces

Categories
Jetpack addon Module name Application Browser DOM I/O Security Misc.

Add-on Builder Helper
main ✓ ✓
bootstrap ✓ ✓ ✓

Auto Shutdown NG countdown ✓ ✓ ✓ ✓

Awesome Screenshot ui ✓ ✓

Bookmarks Deiconizer main ✓ ✓ ✓ ✓ ✓ ✓

Browser Sign In sessions ✓
Do Not Fool localization ✓ ✓

Fastest Search main ✓ ✓ ✓ ✓

Firefox Share

api ✓ ✓
oauthconsumer ✓ ✓
socket ✓ ✓
typed-storage ✓ ✓

Image2Icon main ✓ ✓

LepraPanel 2 main ✓ ✓ ✓ ✓
Memory Meter main ✓ ✓ ✓ ✓ ✓ ✓

Open Web Apps
api ✓ ✓
oauthconsumer ✓ ✓
typed-storage ✓ ✓

PriceBlink main ✓ ✓
Read Later Fast main ✓ ✓

Recall Monkey
helper ✓ ✓
main ✓ ✓ ✓ ✓ ✓ ✓

Snaporama main ✓ ✓ ✓ ✓ ✓ ✓

Springpad main ✓ ✓ ✓

Socat main ✓ ✓ ✓ ✓

Wsad.it Bookmarks main ✓ ✓

that these modules request a wide variety of authorities, with 4 modules requesting ac-
cess to all 6 categories. We believe that such modules could be split into better-confined
subsets.

5.2.1 Accuracy
We evaluated the accuracy of capability use analysis by comparing the results against
the ground truth. By manually analyzing all the modules, we found 53 Jetpack addons
which had direct invocations to XPCOM interfaces. Beacon detected 46 addons with
XPCOM capabilities. The remaining 7 addons invoked XPCOM interfaces from within
event handling code (which Beacon does not model — for reasons stated in 3.1).

5.3 Over-Privileged Modules

The Jetpack addon documentation outlines several guidelines about best practices for
developing modules. One of them recommends module authors to follow the principle
of least authority (POLA) [8]. To study how the existing core modules conform to this
guideline, we analyzed all 77 core modules using Beacon. Our analysis revealed 10
over-privileged core modules.

Table 12 lists the core modules and the nature of the unused privilege. We observe 11
instances of additional privileges which are requested but never utilized in the module
code. We also see that 5 of the core modules request critical capabilities like chrome
and XPCOM but never use it. Two modules request file and directory-servicecapa-
bilities, which give them privileges to navigate through and read/write to the file system,

352 R. Karim et al.

Table 12. List of core modules violating POLA

Core module Privilege Severity
file Directory service Moderate
hidden-frame Timer None
tab-browser Errors None
content/content-proxy Chrome Critical
content/loader File Moderate
content/worker Chrome Critical
keyboard/utils Chrome Critical
clipboard Errors None
widget Chrome Critical
windows XPCOM, apiUtils Critical

while the remaining three modules import harmless capabilities which are never used.
We contacted Mozilla and notified them about the over-privileged core modules, which
they acknowledged as refactoring oversights [6].

5.3.1 Accuracy
To measure the accuracy of false positives in detection of over-privileged modules, we
manually validated the Beacon’s results for all 77 core modules. Beacon generated a
total of 18 warnings for all core modules, out of which 11 were true positives, while
the remaining 7 were false positives. On verifying the 7 instances of false positives, we
observed that the over-privileged objects were defined in the module’s global scope but
were used within event handling code. As mentioned in Section 3.1, Beacon does not
analyze event handling code, thereby causing false positives.

6 Related Work

Recently, there has been much interest in the analysis of browser extensions for security.
To our knowledge, this paper is the first to analyze the Jetpack addon framework.

Sabre [19] and Djeric and Goel [20] both present dynamic information-flow tracking
system to detect insecure flow patterns in JavaScript extensions. While the goal of these
systems is to detect extensions that can leak sensitive browser data, Beacon instead aims
to detect poor software engineering practices in Jetpack modules and addons that can
potentially lead to such situations. Moreover, Beacon employs static analysis, which
makes it better suited to proactively prevent unwanted information flows in browser
extensions.

VEX [13,14] also implements static analysis of JavaScript to study vulnerabilities
in extensions. It implements a flow- and context-sensitive analysis that was applied to
over 2400 Firefox addons to detect unsafe programming practices. In VEX, vulnera-
bilities are specified as bad flow patterns; the analysis attempts to verify the absence
of these patterns in addons. While VEX was originally applied to traditional Firefox
addons, it can also be applied to Jetpack modules to detect bad programming patterns.
Beacon’s analysis goes further to detect capability leaks that may violate modularity,
and violations of POLA, which VEX cannot. Unlike VEX, Beacon employs flow- and
context-insensitive analysis of JavaScript. Despite the use of lower-precision analysis,
Beacon is able to find real vulnerabilities in Jetpack modules and addons.

An Analysis of the Mozilla Jetpack Extension Framework 353

IBEX [23] provides tools for extension curators to detect policy violating JavaScript
extensions. However, IBEX is a framework for specifying fine-grained access control
policies guarding the behavior of monolithic browser extensions, while Beacon per-
forms information-flow for modular JavaScript extensions and is designed to detect
modules that violate POLA or leak capabilities across module interface. IBEX also re-
quires extensions to first be written in a dependently-typed language (to make them
amenable to verification), following which they are translated to JavaScript. In contrast,
Beacon works directly with Jetpack extensions written in JavaScript.

More generally, there has been much recent work on static analysis of JavaScript
code executing on Web pages. Beacon borrows and builds upon the techniques intro-
duced in these papers (discussed below), but applies them to the analysis of the Jetpack
framework.

The core analysis of Beacon is most similar to that of Gatekeeper [21]. While Gate-
keeper was originally applied to study the security of small JavaScript-based widgets,
we applied Beacon to study capability leaks in Jetpack addon. Actarus [22] is another
static analysis based system that studies insecure flows in JavaScript Web applications.
Its set of sources and sinks are thus based on rules targeting specific vulnerabilities. For
example, the DOM property innerHTML or the method document.write is a sink be-
cause they facilitate code injection attacks. Beacon in comparison targets Jetpack addon,
which have well defined sources (require and XPCOM) and sinks (exports) for each
module. ENCAP [27] is related to Beacon in the domain of identifying capability leaks
via static analysis. Like Beacon, ENCAP implements a flow- and context-insensitive
static analysis of JavaScript, but Beacon differs in both its implementation and applica-
tion domain. ENCAP uses static analysis to detect API circumvention, where as Beacon
detects capability flows in modular JavaScript code.

Chugh et al.present staged information flow [17], an analysis infrastructure for
JavaScript code. The goal of their original analysis was to detect insecure flows in
JavaScript Web applications. However, they developed a novel phased analysis that
would allow new code generated in previous phases to be analyzed. Beacon can possi-
bly use these techniques to analyze dynamic constructs, such as eval and with.

Although not directly related to the analysis of the Jetpack framework, Google
Chrome’s extension architecture also encourages a modular design [15]. Its extensions
consist of a scriptable part, and a native part, and each extension is required to specify
its resource requirements upfront in a manifest. The contents of the manifest are then
enforced by the browser, thereby limiting the effect of any exploits against the exten-
sion. However, recent works have shown that this model may be insufficient to ensure
the security of Chrome extensions [24].

7 Conclusions

In this paper, we described Beacon, a system for capability flow analysis of JavaScript
modules. Beacon uses static analysis to detect flow of capabilities through the module’s
exports interface. The techniques used by Beacon are generic, and can detect capa-
bility leaks in any modular JavaScript code base, e.g., node.js [9], Harmony modules
[4], SproutCore [11]. However, our focus was on browser addons implemented using
Jetpack. Beacon cannot directly be applied to non-modular addons.

354 R. Karim et al.

We implemented Beacon and used it to analyze 77 core modules from Mozilla’s
Jetpack framework and another 359 Jetpack addons. In total, Beacon analyzed over
600 Jetpack modules and detected 12 capability leaks in 4 core modules and another
24 capability leaks in 7 Jetpack addons. Beacon also detected 10 over-privileged core
modules. We have shared the details with Mozilla who have acknowledged our findings
for the core modules.

In conclusion, the Jetpack framework attempts to improve how scriptable extensions
for the Mozilla Firefox browser are developed. Although it provides guidelines for de-
veloping modular addons and recommends POLA, it does not enforce these guidelines.
Our evaluation of the Jetpack framework suggests that even heavily-tested core modules
may contain capability leaks. The use of a tool such as Beacon during addon develop-
ment can help prevent such leaks.

The overall security of the Jetpack framework can further be improved by dynami-
cally enforcing permissions requested in extension manifests and by deep freezing the
exports object. Dynamic enforcement of manifests will ensure that addons are not
able to access any resources that they have not explicitly requested. Deep freezing the
exports object will prevent any capability leak through event handlers. We are inves-
tigating other design recommendations in current work.

Acknowledgments. We thank Myk Melez, Brian Warner, David Herman and the whole
Jetpack team at Mozilla for helping us in better understanding of the framework. This
work was supported in part by NSF grants CNS-0952128 and CNS-0915394.

References

1. Customizable shortcuts,
https://addons.mozilla.org/en-US/firefox/addon/

customizable-shortcuts/L

2. Firebug: Web development evolved, http://getfirebug.com
3. Greasespot: The weblog about Greasemonkey, http://www.greasespot.net
4. Harmony modules, http://wiki.ecmascript.org/doku.php?id=harmony:modules
5. Jetpack, https://wiki.mozilla.org/Jetpack
6. Jetpack addon refactoring oversights,
https://github.com/mozilla/addon-sdk/pull/291

7. Jetpack sdk, https://addons.mozilla.org/en-US/developers/docs/sdk/1.3/
8. Jetpack security model,
http://people.mozilla.com/˜bwarner/jetpack/components

9. node.js, https://nodejs.org
10. NoScript—JavaScript blocker for a safer Firefox experience, http://noscript.net
11. Sproutcore, http://sproutcore.com/
12. Xul, https://developer.mozilla.org/En/XUL
13. Bandhakavi, S., King, S.T., Madhusudan, P., Winslett, M.: Vex: Vetting browser extensions

for security vulnerabilities. In: Usenix Security (2010)
14. Bandhakavi, S., King, S.T., Madhusudan, P., Winslett, M.: Vetting browser extensions for

security vulnerabilities with VEX. CACM 54(9) (September 2011)
15. Barth, A., Felt, A.P., Saxena, P., Boodman, A.: Protecting browsers from extension vulnera-

bilities. In: NDSS (2010)

https://addons.mozilla.org/en-US/firefox/addon/customizable-shortcuts/L
https://addons.mozilla.org/en-US/firefox/addon/customizable-shortcuts/L
http://getfirebug.com
http://www.greasespot.net
http://wiki.ecmascript.org/doku.php?id=harmony:modules
https://wiki.mozilla.org/Jetpack
https://github.com/mozilla/addon-sdk/pull/291
https://addons.mozilla.org/en-US/developers/docs/sdk/1.3/
http://people.mozilla.com/~bwarner/jetpack/components
https://nodejs.org
http://noscript.net
http://sproutcore.com/
https://developer.mozilla.org/En/XUL

An Analysis of the Mozilla Jetpack Extension Framework 355

16. Caballero-Roldn, R., Garc-Ruiz, Y., Senz-Prez, F.: Datalog educational system,
http://www.fdi.ucm.es/profesor/fernan/des/

17. Chugh, R., Meister, J., Jhala, R., Lerner, S.: Staged information flow in JavaScript. In: ACM
SIGPLAN PLDI (2009)

18. Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., Kenneth Zadeck, F.: Efficiently com-
puting static single assignment form and the control dependence graph. ACM Trans. Pro-
gram. Lang. Syst. 13, 451–490 (1991)

19. Dhawan, M., Ganapathy, V.: Analyzing information flow in javascript based browser exten-
sions. In: ACSAC (2009)

20. Djeric, V., Goel, A.: Securing script-based extensibility inweb browsers. In: Usenix Security
(2010)

21. Guarnieri, S., Livshits, B.: GateKeeper: Mostly static enforcement of security and reliability
policies for JavaScript code. In: USENIX Security,

22. Guarnieri, S., Pistoia, M., Tripp, O., Dolby, J., Teilhet, S., Berg, R.: Saving the world wide
web from vulnerable javascript. In: ISSTA (2011)

23. Guha, A., Fredrikson, M., Livshits, B., Swamy, N.: Verified security for browser extensions.
In: IEEE S&P (2011)

24. Yan, G., Liu, L., Zhang, X., Chen, S.: Chrome extensions: Threat analysis and countermea-
sures. In: NDSS (2012)

25. Mozilla Developer Network. Xpcom, http://developer.mozilla.org/en/XPCOM
26. Saltzer, J.H., Schroeder, M.D.: The protection of information in computer systems. Proceed-

ings of the IEEE 63(9), 1278–1308 (1975)
27. Taly, A., Erlingsson, U., Miller, M.S., Mitchell, J.C., Nagra, J.: Automated analysis of

security-critical javascript apis. In: IEEE S&P (2011)
28. IBM Watson. Watson libraries for analysis,
wala.sourceforge.net/wiki/index.php/Main_Page

http://www.fdi.ucm.es/profesor/fernan/des/
http://developer.mozilla.org/en/XPCOM
wala.sourceforge.net/wiki/index.php/Main_Page

Smaller Footprint for Java Collections

Joseph Gil� and Yuval Shimron

Department of Computer Science,
The Technion—Israel Institute of Technology,

Technion City, Haifa 32000, Israel
yogi@cs.technion.ac.il

Abstract. In dealing with the container bloat problem, we identify
five memory compaction techniques, which can be used to reduce the
footprint of the large number of small objects that make these con-
tainers. Using these techniques, we describe two alternative methods
for more efficient encoding of the JRE’s ubiquitous HashMap data struc-
ture, and present a mathematical model in which the footprint of this
can be analyzed. The fused hashing encoding method reduces mem-
ory overhead by 20%–45% on a 32-bit environment and 45%–65% on
a 64-bit environment. This encoding guarantees these figures as lower
bound regardless of the distribution of keys in hash buckets. The more
opportunistic squashed hashing, achieves expected savings of 25%–70%
on a 32-bit environment and 30%–75% on a 64-bit environments, but
these savings can degrade and are not guaranteed against bad (and un-
likely) distribution of keys to buckets. Both techniques are applicable
and give merit to an implementation of HashSet which is independent of
that of HashMap. Benchmarking using the SPECjvm2008, SPECjbb2005
and DaCapo suites does not demonstrate significant major slowdown or
speedup. For TreeMap we show two encodings which reduce the overhead
of tree nodes by 43% & 46% on a 32-bit environment and 55% & 73%
on a 64-bit environment. These also give to separating the implemen-
tation of TreeSet from that of TreeMap, which gives rise to footprint
reduction of 59% & 54% on a 32-bit environment and 61% & 77% on
a 64-bit environment.

1 Introduction

Java and the underlying virtual machine provide software engineers with a pro-
gramming environment that abstracts over many hardware specific technicalities.
The runtime cost of this abstraction is offset by modern compiler technologies,
including just in time compilations [1, 5, 7, 13, 15, 19, 22]. Indeed, there are indi-
cations [5,13,19] that Java’s time performance is approaching that of languages
such as C++ and Fortran which execute directly on the hardware and are free
of potential performance penalties incurred by automatic memory management.

In contrast, memory consumption is not an easy target for automatic opti-
mization. The reason is that there is a direct mapping of programmer-defined

� Corresponding author.

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 356–382, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Smaller Footprint for Java Collections 357

data structures to runtime layout. An optimizing compiler cannot easily alter
programmer defined data structures without disturbing the program semantics.
On the other hand, with the ever increasing use of Java for implementing servers
and other large scale applications, evidence accumulates that the openhanded
manner of using memory, which is so easy to resort to in Java, leads to memory
bloat, with negative impacts on time performance, scalability and usability [17].

The research community response includes methods for diagnosing the overall
“memory health” of a program and acting accordingly [18], leak detection algo-
rithms [20], and methods for analyzing [16] profiling [27, 29] and visualizing [23]
the heap. (See also a recent survey on the issue of both time and space bloat [28].)

This work is concerned primarily with what might be called “container bloat”
(to be distinguished e.g., from temporaries bloat [9]), which is believed to be
one of the primary contributors to memory bloat. (Consider, e.g., Mitchell &
Sevitsky’s example of a large on-line store application consuming 2.87 · 109 bytes,
42% of which are dedicated to class HashMap (OOPSLA’07 presentation).)

Previous work on the container bloat problem included methods for detecting
suboptimal use of containers [30] or recommendations on better choice of con-
tainers based on dynamic profiling [24]. Our line of work is different in that we
propose a more compact implementation of containers. Much in the line of work
of Kawachiya, Kazunori and Onodera [14] which directly attacks bloat due to
the String class, our work focuses on space optimization of collection classes,
concentrating on HashMap and HashSet, and to a lesser extent on the TreeMap

and TreeSet classes.
Our work does not propose a different and supposedly better algorithmic

method for organizing these collections, e.g., by using open-addressing for hash-
ing, prime-sized table, or AVL trees in place of the current implementations.
Research taking this direction is rich, but our focus here is on the question of
whether given data and data structures can be encoded more efficiently. After
all, whatever method an efficient data structure is organized in, its compaction
should lead to an even more frugal use of memory, just as subjecting a super
fast algorithm to automatic optimization could improve it further.

To this end, we insist on full compatibility with the existing implementations,
including e.g., preserving the order of keys in hash table, and the tree topology of
TreeMap. Unlike Kawachiya et. al’s work, we do not rely on changes to the JVM—
the optimization techniques we describe here can be employed by application
programmers not only to collections, but to any user defined data structure.

Table 1.1. Minimal
no. of bytes per en-
try in a set and a map
data structures

32-bit 64-bit
Map 8 16
Set 4 8

Still, the employment of our compaction techniques for
aggressive space optimization cannot in general be done
without some familiarity with the underlying object
model.

We are also motivated by the hope that the techniques
we offer could serve optimizing compilers or be employed
by other automatic tools for memory optimization (al-
though it is clear that more research is required before
all techniques discussed here can thus be exploited).

358 J. Gil and Y. Shimron

To appreciate the scale of container overhead, note first that a simple infor-
mation theoretical consideration sets a minimum of n references for any repre-
sentation of a set of n keys, and 2n references for any representation of n pairs
of key and values.

Table 1.1 summarizes these minimal values for 32-bits and 64-bits memory
models, e.g., on a 64-bits memory model no map can be represented in fewer
than 16 bytes per entry. Achieving these minimal values is easy if we neglect
the time required for retrieval and the necessary provisions for updates to the
underlying data structure: A set can be implemented e.g., as a compact sorted
array, in which search is logarithmic, while updates consume linear time. The
challenge is in an implementation which does not compromise search and update
times. Despite recent theoretical results [3] by which one can use, e.g., n+ o(n)
words for the representation of a dynamic set, while still paying constant time for
retrievals and updates, this ideal seems far from being practical: Contemporary
implementations of data structures are known to be tolerant of some memory
overhead, but, the magnitude of this overhead may be surprising. Consider e.g.,
java.util.TreeMap, an implementation of a red-black balanced binary search
tree, which serves as the JRE principal mechanism for the realization of a sorted
map datastructure. Memory overheads incurred by this data structure are in-
ferred by examining fields defined for each tree node, realized by the internal
class TreeMap.Entry.

public class TreeMap<K, V> {
// . . .
static final class Entry<K, V>
implements Map.Entry<K, V> {
final K key;
V value;
Entry<K, V> left = null;
Entry<K, V> right = null;
Entry<K, V> parent;
boolean color = BLACK;

// . . .
}
// . . .

}

public class HashMap<K, V> {
// . . .
static class Entry<K, V>
implements Map.Entry<K, V> {
final K key;
V value;
Entry<K, V> next;
final int hash;

// . . .
}
// . . .

}

Fig. 1.1. Fields defined in TreeMap.Entry (a) and in HashMap.Entry (b)

Fig. 1.1(a) shows that on top of the object header, each tree nodes stores 5
pointers and a boolean whose minimal footprint is only 1 bit, but typically
requires at least a full byte (and even an eight bytes word on e.g., the jikes virtual
machines). On 32-bits implementation of the JVM which uses 8 bytes per object
header and 4 bytes per pointer total memory for a tree node is 8 + 5 · 4 + 1 = 29
bytes. With the common 4-alignment or 8-alignment requirements (as found in
e.g., the HotSpot32 implementation of the JVM), 3 bytes of padding must be
added, bringing memory per entry to four times the minimum.

The situation is twice as bad in the implementation of the class TreeSet

(of package java.util), the standard JRE method for realizing a sorted set.

Smaller Footprint for Java Collections 359

Internally, this class is implemented as proxy to TreeMap with a dummy mapped
value, bringing memory per entry to eight times the minimum.

A hash-table implementation of the Map and Set interfaces is provided by
the JRE’s class java.util.HashMap and its proxy class java.util.HashSet.
Memory per entry of these is determined by two factors. First, as we will ex-
plain in greater detail below, each hash table entry consumes 4/p bytes (on a
32-bits architecture), where p is the table density parameter ranging typically

Table 1.2. Memory overhead per
entry of common data structure in
central JRE collections

HotSpot32 HotSpot64
L-TreeMap 24 48
L-TreeSet 28 56
L-HashMap 16 + 4/p 32 + 8/p
L-HashSet 20 + 4/p 40 + 8/p

between 3/8 and 3/4. Secondly, an object of
the internal class HashMap.Entry (depicted
in Fig. 1.1(b)) is associated with each such
entry.

On HotSpot32, instances of HashMap.

Entry occupy 24 bytes, bringing the memory
requirements of each HashMap entry to the
range of 29.33–34.67 bytes in typical ranges
of p, i.e., within 10% of memory use with class
TreeMap.

Table 1.2 summarizes the overhead, in bytes, for representing the four funda-
mental JRE collections we discussed. Note that the numbers in the table are of
the excess, i.e., bytes beyond what is required to address the key (and value, if
it exists) of the data structure.

We describe a tool chest consisting of five memory compaction techniques,
which can be used to reduce the footprint of the small Entry objects that
make the HashMap and TreeMap containers. These are: null pointer elimina-
tion, boolean elimination, object fusion, field pull-up and field consolidation.
Techniques can be applied independently, but they become more effective if
used wisely together, with attention to the memory model and to issues such as
alignments.

Using these techniques, we describe fused hashing (F -hash henceforth) and
squashed hashing (S-hash henceforth): two alternative methods for more efficient
encoding of the JRE’s implementation of HashMap data structure. Fusion and
squashing are extended to TreeMap as well. Our compaction gives also reason
to separating the implementation of HashSet from HashMap and TreeSet from
that of TreeMap.

We present a mathematical model in which the footprint of these implementa-
tions can be analyzed. In this model, we deduce that F -HashMap reduces memory
overhead by 20%–34% on a 32-bit environment and 48%–54% on a 64-bit envi-
ronment.

Timing results indicate that no significant improvement or degradation in
runtime is noticeable for in three common JVM benchmarks: SPECjvm2008,
SPECjbb2005 and DaCapo. Naturally, some specific map operations are slowed
down in compare to the simple base implementation due to a more complex and
less straightforward implementation.

Table 1.3 summarizes the savings ofF -hash, S-hash, F -tree and S-tree. A fully
compatible Map implementation of the 32-bit and 64-bit versions of F -HashMap,

360 J. Gil and Y. Shimron

Table 1.3. Memory overhead reduction for a common Map instance; implementation
of the marked entries is publicly available

Hash Tree
Fused Squashed Fused Squashed

Map
32-bit 20%–34%† 26%–53%† 43%† 46%†
64-bit 48%–54%† 32%–56%† 55%† 73%†

Set
32-bit 22%–38% 58%–67%† 59% 54%
64-bit 50%–62% 64%–73%† 61% 77%

S-HashMap, S-HashSet, F -TreeMap and S-TreeMap can be found on the first
author’s website.These implementations were thoroughly checked correct by the
JRE test suite and our own additional testing.

The programming labor in producing the implementations inspired us to
present an instrument virtual entries that enables transparent inspection of com-
pacted data structures.

A mathematical model was developed for computing the expected savings as
a function of the hash table density. This model provides a lower bound on the
savings of fused hashing; should the distribution of keys into hash buckets be not
as even as the distribution of balls thrown at random into urns, then the actual
savings may be greater. For squashed hashing, the model yields an expected
value. A non-fully random distribution of keys into buckets may improve, but
sometimes worsen the reported savings.

For trees, the balancing algorithms make the reported savings valid for tree
with a handful of keys created in any order of key insertions and removals.

A similar analytical approach would not be informative for evaluating time
performance. The reason is that the alternative implementations were designed
to have the same underlying structure as L-hash: the number of comparisons
required to find a key κ is the same in all implementations. Therefore, to evaluate
time performance we conducted benchmarking; these were carried out using
HotSpot32 (exact settings are described below).

We conjecture that searches in fused and squashed hash tables should be
faster than the baseline (due to fewer memory dereferencing operations), but
that insertions and removals are slower (as they involve repacking of small ob-
jects). Initial experiments, not reported here, confirm this conjecture. However,
a detailed benchmark timing operations as a function of table density and table
size is left for further work, given the intriguing results we, in cooperation with
Lenz found [12]. In particular, it was demonstrated that the so called “steady
state” which is supposedly reached after sufficient warm-up is not as steady as
one might think, with results fluctuating between multiple steady states.

Worse, it was found that the timing of an operation depends on code exe-
cuted prior to the benchmark. For this reason, the reported benchmarking here
focuses on the performance of the compacted data structures as part of a client
benchmark application.

Applications using sorted maps and sets are not abundant. Our initial tim-
ing of squashed tree data structures indicate that it is as fast, and sometimes

Smaller Footprint for Java Collections 361

faster than the baseline. However, fused trees are about two times slower; their
use should probably be limited to applications operating under strict memory
constraints in which either time performance is not a factor, or tree operations
are rare.

Outline. The remainder of this article is organized as follows. The five mem-
ory compaction techniques we identified are described in Section 2. Sec. 3 then
reviews the JRE’s implementation class HashMap, highlighting the locations in
which the optimization can take place based on the statistical properties of dis-
tribution of keys into hash table cells. F -hash and S-hash are then described
(respectively) in sects. 4 and 5. In Sect. 6 we explain how virtual entries are
implemented. Time performance of the compacted hash tables is the subject
of Sect. 7. Sect. 8 describes our fused and squashed versions of TreeMap and
TreeSet. Sect. 9 concludes.

2 Compaction Techniques

The space compaction techniques that we identify include the following three:

– Null pointer elimination. Say a class C defines an immutable pointer field p

which happens to be null in many of C’s instances. Then, this pointer can be
eliminated from C by replacing the data member p with a non-finalmethod
p() which returns null. This method is overridden in a class Cp inheriting
from C, to return the value of data member p defined in Cp. Objects with
null values of p are instantiated from C; all other objects instantiate Cp.

– Boolean elimination. A similar rewriting process can be used to eliminate
immutable boolean fields from classes. A boolean field in a class C can be
emulated by classes Ct (corresponding to true value of the field) and Cf

(corresponding to false), both inheriting from C.
In a sense, both null-pointer elimination and boolean elimination move

data from an object into its header, which encodes its runtime type. Both
however are applicable mostly if class C does not have other subclasses,
and even though they might be used more than once in the same class to
eliminate several immutable pointers and booleans, repeated application will
lead to an exponential blowup in the number of subclasses.

Mutable fields may also benefit from these techniques if it makes sense
to recreate the instances of C should the eliminated field change its value.

– Object fusion. Say that a class C defines an ownership [6] pointer in field of
type C′, then all fields of type C′ can be inlined into class C, eliminating
the C → C′ pointer. Fusion also eliminates header of the C′ object, and the
back pointer C′ → C if it exists. It is often useful to combine fusion with
null-pointer elimination, moving the fields of C′ into C, only if the pointer
to the owned object is not null.

362 J. Gil and Y. Shimron

Before describing the two additional techniques, a brief reminder of Java’s ob-
ject model is in place. Unlike C++, all objects in Java contain an object header,
which encodes a pointer to a dynamic dispatch table together with synchroniza-
tion, garbage collection, and other bits of information. In the HotSpot imple-
mentation of the JVM, this header spans 8 bytes on HotSpot32, and 16 bytes
on HotSpot64 (but other sizes are possible [4], including an implementation of
the JVM in 64-bit environment in which there is no header at all [25]).

The mandatory object header makes fusion very effective. In C++, small
objects would have no header (vptr in the C++ lingo [10]), and fusion in C++
would merely save the inter-object pointer.

Following the header, we find data fields: long and double types span 8
bytes each, 4 bytes are used for int, 2 bytes for char and short and 1 byte
for types byte and boolean. References, i.e., non-primitive types take 4 bytes
on HotSpot32, and 8 bytes on HotSpot64. Arrays of length m occupy ms bytes,
up-aligned to the nearest 8-byte boundary, where s is the size of an array entry.
Array headers consume 12 bytes in a 32-bit JVM , 8 for header and 4 for the
array length field (20 bytes in a 64-bit JVM). Finally, all objects and sub-objects
are aligned on an 8-bytes boundary.1

Both the header and alignment issues may lead to significant bloat, attributed
to what the literature calls small objects. Class Boolean for example, occupies
16 bytes on Hotspot32 (8 for header, one for the value field, and 7 for align-
ment), even though only one bit is required for representing its content. Applying
boolean elimination to Boolean, i.e., by making class Boolean abstract, while
introducing singleton classes True and False which extend it, would halve the
footprint of all Boolean objects.

Alignment issues give good reasons for applying the space compaction tech-
niques together. Applying null pointer elimination to class HashMap.Entrywould
not decrease its size (on HotSpot32); one must remove yet another field to reach
the minimal saving quantum of 8 bytes per entry.

We propose two additional techniques for dealing with waste due to alignment:

– Field Pull-up. Say that a class C′ inherits from a class C, and that class C
is not fully occupied due to alignment. Then, fields of class C′ could be pre-
defined in class C, avoiding alignment waste in C‘, in which the C′ subobject
is aligned, just as the entire object C. We employ field pull up mostly for
smaller fields, typically byte sized.

In a scan of some 20, 000 classes of the JRE, we found that the footprint
of 13.6% of these could be reduced by 8 bytes by applying greedy field pullup,
while 1.1% of the classes would lose 16 bytes. (Take note that field pullup
could be done by the JVM as well, in which case, fields of different subclasses
could share the same alignment hole of a superclass, and that the problem
of optimizing pullup scheme is NP-complete.)

1 See more detailed description in
http://kohlerm.blogspot.com/2008/12/

how-much-memory-is-used-by-my-java.html or
http://www.javamex.com/tutorials/memory/object_memory_usage.shtml

http://kohlerm.blogspot.com/2008/12/how-much-memory-is-used-by-my-java.html
http://kohlerm.blogspot.com/2008/12/how-much-memory-is-used-by-my-java.html
http://www.javamex.com/tutorials/memory/object_memory_usage.shtml

Smaller Footprint for Java Collections 363

– Field Consolidation. Yet another technique for avoiding waste due to align-
ment is by consolidation: instead of defining the same field in a large number
of objects, one could define an array containing the field. If this is done, the
minimal alignment cost of the array is divided among all small objects, and
can be neglected.

Of course, consolidation is only effective if there is a method for finding
the array index back from the object whose field was consolidated.

Object fusion was also called object inlining in the literature and used for au-
tomatic optimization of Java programs (see Wimmer’s Ph.D. thesis [26] for a
survey). We suspect that the other techniques enumerated above were employed
by programmers without identifying their universality.

3 Hash Tables of the JRE

Other than the implementations designed for concurrent access, we find three prin-
cipal implementations of hash tables in the JRE: class IdentityHashMap uses
open-addressing combined with linear probing, i.e., all keys and values are stored
in an array of size m, and a new key κ is stored in position (H(κ) + j mod m)
where H(κ) is the hash value of κ and j is the smallest integer for which this ar-
ray position is empty. Class HashMap (henceforth called L-HashMap) uses chained
hashing method, by which the ith table position contains a bucket of all keys κ for
which H(κ) mod m = i. This bucket is modeled as a singly-linked list of nodes of
type HashMap.Entry (depicted in Fig. 1.1(b)). The hash table itself is then simply
an array table of type HashMap.Entry[]. Finally, class HashSet is a wrapper of
HashMap, delegating all set operations to map, an internal private field of type
HashMap that maps all keys in the set to some fixed dummy object value.

It is estimated2 that class IdentityHashMap is 15% to 60% faster than HashMap,
and occupies around 40% smaller footprint. Yet class IdentityHashMap is rarely
used3 since it breaks the Map contract in comparing keys by identity rather than
the semantic equals method. One may conjecture that open addressing would
benefit HashMap as well. However, Lea’s judgment of an experiment he carried in
employing the same open addressing for the general purpose HashMap was that it
is not sufficiently better to commit.

static int hash(int h) {
h ˆ= h >>> 20 ˆ h >>> 12;
return h ˆ h >>> 7 ˆ h >>> 4;
}

Fig. 3.1. Bit spreading function
implementation from HashMap class

Function H is realized in HashMap as
hash(key.hashCode())where function hash

is as in Fig. 3.1. This function’s purpose is
to improve those overridden versions of the
hashCode()method in which some of the bits
returned are less random than others. This
correction is necessary since m, the hash ta-
ble’s size, is selected as a power of two, and the computation of H(κ) mod m

2 http://www.mail-archive.com/core-libs-dev@openjdk.java.net/msg02147.html

msg02147.html
3 http://khangaonkar.blogspot.com/2010/06/

what-java-map-class-should-i-use.html

http://www.mail-archive.com/core-libs-dev@openjdk.java.net/
http://www.mail-archive.com/core-libs-dev@openjdk.java.net/msg02147.html
http://khangaonkar.blogspot.com/2010/06/what-java-map-class-should-i-use.html
http://khangaonkar.blogspot.com/2010/06/what-java-map-class-should-i-use.html

364 J. Gil and Y. Shimron

is carried out as a bit-mask operation. With the absence of this “bit-spreading”
function, implementation of hashCode in which the lower-bits are not as random
as they should be would lead to a greater number of collisions.

public V get(Object κ) {
if (κ == null)
return getForNullKey();

int h = hash(κ.hashCode());
for (
Entry<K, V> e = table[h & table.length-1];
e != null; e = e.next) {
Object k;
if (e.h == h
&& ((k = e.K) == κ || κ.equals(k)))
return e.V;

}
return null;

}

Fig. 3.2. Java code for searching in L-HashMap

Class HashMap caches,
for each table entry, the
value of H on the key
stored in that entry.
This Cached Hash Value
(CHV) makes it possible
to detect (in most cases)
that a searched for key
is not equal to the key
stored in an entry, with-
out calling the poten-
tially expensive equals

method in function hash.
Function get (Fig. 3.2) demonstrates how this CHV field accelerates search-

ing: Before examining the key stored in an entry, the function compares the CHV
of the entry with the hash value computed for the searched key. (The listing in-
troduces the abbreviated notation K, V, and h for fields key, value and hash,
to be used henceforth.)

A float typed parameter known by the name loadFactor governs the be-
havior of the hash table as it becomes more and more occupied. Let n denote
the number of entries in the table, and let p = n/m. That is what we shall
henceforth call table density. Then, if p exceeds the loadFactor, the table size
is doubled, and all elements are rehashed using the CHV. It follows that (after
first resize, with the absence of removals), loadFactor/2 < p ≤ loadFactor.
The default value of loadFactor is 0.75, and it is safe to believe [8] that users
rarely change this value, in which case, 3/8 < p ≤ 3/4, is an equality we shall
call the typical range of p, or just the “typical range”. The center of the typ-
ical range, p = (3/8 + 3/4)/2 = 9/16 is often used in benchmarking as a point
characterizing the entire range.

The memory consumed by the HashMap data structure (sans content), can be
classified into four kinds:

1. class-memory. This includes memory consumed when the class is loaded, but
before any instances are created, including static data fields, memory used
for representing methods’ bytecodes, and the reflective Class data structure.

2. instance-memory. This includes memory consumed regardless of the hash
table’s size and the number of keys in it, e.g., scalars defined in the class,
references to arrays, etc.

3. arrays-memory. This includes memory whose size depends solely on the table
size.

4. buckets-memory. This includes memory whose size depends on the number
of keys in the table, and the way these are organized.

Smaller Footprint for Java Collections 365

Our analysis ignores the first two categories, taking note, for the first category
that some of its overheads are subject of other lines of research [21], and for the
second, that applications using many tiny maps probably require a conscious
optimization effort, which is beyond the scope of this work.

We now compute the memory use per entry, i.e., the total memory divided
by the number of entries in the table. On HotSpot32 array table consumes 4m
bytes for the array content along with 12 bytes for the array header, which falls in
the “instance-memory” category and thus ignored. These 4m bytes are divided
among the n entries, contributing 4/p bytes per entry.

Examining Fig. 1.1(b), we see that each instance of class Entry has 8 bytes per
header, 3 words for the K , V , and next pointers and another word for the CHV,
totaling in 8 + 4 · 4 = 24 bytes per object. The number of bytes per table entry
is therefore 24 + 4/p. For HotSpot64, the header is 8 bytes, the 3 pointers are
8 bytes each and the integer CHV is 4 bytes, which total, thanks to alignment,
is 48 + 8/p bytes per object. (Comparing these values with Table 1.1 gave the
memory overheads of L-HashMap and L-HashSet, as tabulated in Table 1.2.)
Observe that the decision to implement HashSet as HashMap does not incur any
memory toll: eliminating the value field gives the same number of bytes per
Entry object (at least on HotSpot32).

��
���
���
���
���
���
	��

��
���
���

����

�� ������������
� �� ������������
� �� ������������
� �� ���������

� �
�	

��

��
�
��
���
��
���

��

	������������

���
���
���
���
���

Fig. 3.3. Expected fraction of buckets of
size k, k = 0, . . . , 4 vs. table density (and ex-
pected fraction of keys falling in buckets of
size k + 1)

Hashing can be modeled
by the famous “balls into
urns” statistical model [11],
which gives rise to the Pois-
son distribution: The frac-
tion of hash table buckets
with precisely k keys is pk

k! e
−p

where p = n/m, n being the
total number of keys and m
the total number of buck-
ets. Fig. 3.3 plots these frac-
tions for k = 0, . . . , 4. The
endpoints of the typical range
as well as its center are shown
as vertical blue lines in the fig-
ure. We see that in the typical
range a significant portion of the buckets are empty, ranging from 69% (maximal
value), to 47% (minimal value). Even when p = 1, 37% of the buckets are empty.

As it turns out, the expected fraction of keys which fall into buckets of
size k > 1, is nothing but the expected fraction of buckets of size k − 1. We
can therefore read the fraction of keys falling into buckets of size k by inspect-
ing the (k − 1)th curve in Fig. 3.3. In the range of p = 3/8 through p = 3/4,
we have that the fraction of keys in buckets of size 1 is the greatest, ranging
between 69% and 47%. The fraction of keys in buckets of size 2 is between 26%
and 35%. At p = 3/4, fewer than 15% of the keys fall in buckets of size 3, and,
fewer than 4% of the keys are in buckets of size 4.

366 J. Gil and Y. Shimron

We identify several specific space optimization opportunities in the L-HashMap
implementation: First, cells of array table which correspond to empty buckets
are always null. Second, in the list representation of buckets, there is a null

pointer at the end. A bucket of size k divides this cost among the k keys in it.
The greatest cost for key is for singleton buckets, which constitute 47%–69% of
all keys in the typical range.

These two opportunities were called “pointer overhead” by Mitchell and Se-
vitsky [18]. Our fusion and squashing hashing deal with the second overhead
(pointer overhead/entry in the Mitchell and Sevitsky terminology) but not the
first (pointer overhead/array): The number of empty buckets is determined solely
by p and we see no way of changing this.

Non-null pointers (collection glue) are those next pointers which are not null.
These occur in buckets with two or more keys and are dealt with using fusion
and squashing. The small objects overhead in HashMap refers to the fact that
each Map.Entry object has a header, whose size (on HotSpot32) is the same as
the essential 〈K,V〉 pair stored in an entry.

The CHV, the fourth (and last) field of class HashMap.Entry (Fig. 1.1(b)), is
classified as primitive-overhead in the GM taxonomy [18, footnote 4], and can
be optimized as well: If m = 2�, then the � least significant bits of all keys that
are hashed into a bucket i, are precisely the number i. The remaining 32− �
most significant bits of the CHV are the only meaningful bits in the comparison
of keys that fall into the same bucket.

static int hash1(int h) {
return h ˆ h >>> 20;

}
static int hash2(int h) {

h ˆ= h >>> 12;
return h ˆ h >>> 7 ˆ h >>> 4;

}

Fig. 3.4. Two steps hash code modifi-
cation function implementation

We found that storing a byte instead of
an int for the CHV has minimal effect on
runtime performance, eliminating 255/256
of failing comparisons. Best results were
found for a CHV defined by the co-
ercion (byte) hash1(key.hashCode()).
where hash1 is the first stage in computing
hash (see Fig. 3.4).

4 Fused Buckets Hashing

Employing list fusion and pointer-elimination for the representation of a bucket
calls for a specialized version of Entry for buckets of size k, k = 1, . . . , �, for some
small integer constant �. The näıve way of doing so is not too effective since in
singleton buckets (which form the majority of buckets in the typical range), the
specialized entry should include two references (to the key and value) as well as
the CHV. With 8-byte alignment, the size of a specialized Entry for a singleton
bucket is the same as that of the unmodified Entry.

Instead, our fused-hashing implementation consolidates the CHV of the first
key of all non-empty buckets into a common array byte[] chv of length m,
which parallels the main table array. If the ith bucket is empty, then table[i]

is null and chv[i] is undefined. Otherwise, chv[i] is the CHV of the first key in
the ith bucket, and table[i] points to a Bucket object that stores the bucket’s

Smaller Footprint for Java Collections 367

contents: for F -HashMap this includes all triples 〈Kj ,Vj , hj〉 that belong in this
bucket, with the exception of h1; for F -HashSet, the bucket contents includes
all pairs 〈Kj , hj〉, with the exception of h1.

We define four successive specializations of the abstract class Bucket:Bucket1
represents singleton buckets and extends class Bucket; Bucket2 that extends
Bucket1 represents buckets of size 2; Bucket3 that extends Bucket2, is dedicated
for buckets of size 3; finally, buckets of size 4 or more are represented by class
Bucket4which extends class Bucket3. We thus fuse buckets of up to four entries
into a single object, and employ pointer elimination in buckets of size k = 1, 2, 3. In
larger buckets, every four consecutive entries are packed into a single object: buck-
ets of size k > 4 consist of a list of �k/4� objects of type Bucket4. If k is divisible
by 4, then the next pointer of the last Bucket4 object of this list is null. Other-
wise, this next field points to a Bucketk′ object which represents the remaining k′

entries in the bucket, where 1 ≤ k′ ≤ 3 is determined by k′ = k mod 4.
As shown in Table 4.1 in the inheritance chain of Bucket, Bucket1, . . . ,

Bucket4 each class adds the fields required for representing buckets of the corre-
sponding length; field pull-up (which depends on the memory model) is employed
to avoid wastes incurred by alignment.

Table 4.1. Layout of fused bucket variants in F-HashMap and F-HashSet on HotSpot32
and HotSpot64

HotSpot32 HotSpot64
F-HashMap F-HashSet F-HashMap F-HashSet

introduced
fields

total
size

(bytes)

introduced
fields

total
size

(bytes)

introduced
fields

total
size

(bytes)

introduced
fields

total
size

(bytes)

Bucket
object
header

8
object
header

8
object
header

16
object
header

16

Bucket1 K1,V1 16
K1,

↑h2, ↑h3, ↑h4, ↑h516 K1,V1 32 K1, 24

Bucket2
K2,V2, ↑K3,
h2, ↑h3, ↑h4, ↑h532 K2, ↑K3 24

K2,V2,
h2, ↑h3, ↑h4, ↑h5

56
K2

h2, ↑h3, ↑h4, ↑h5
40

Bucket3 V3, ↑K4 40 24 K3,V3 72 K3 48

Bucket4 V4, next 48 K4, next 32
K4,V4,
next

96 K4, next 64

For each class, the table shows the introduced fields along with fields pulled-
up into it (such fields are prefixed by an up-arrow). The set of fields present in a
given class is thus obtained by accumulating the fields introduced in it and all of
its ancestors, shown as former table rows. Concentrating on HotSpot32 we see
that class Bucket2 in F -HashMap introduces three fields: K2, V2 and h2, but also
includes fields K3 and h3 which were pulled-up from Bucket3, and field h4 which
was pulled-up from Bucket4. Class Bucket2 includes also a h5 field, which is the
CHV of the first key in the subsequent Bucket object (or undefined if no such
object exists.) The layout of buckets in F -HashSet, is similar, except that the
absence of value fields increases field pull-up opportunities, leading to greater
memory savings.

The “total size” columns in the table suggest that F -HashMap and F -HashSet
are likely to be more memory efficient than L-hash, e.g., a bucket of size 4 that

368 J. Gil and Y. Shimron

requires 96 bytes in L-hash is represented by 48 bytes in F -HashMap and only 32
bytes in F -HashSet. More importantly, the bulk of the buckets, that is singleton
buckets, require only 16 bytes (32 bytes on HotSpot64), as opposed to the 24
bytes (respectively 48 bytes) footprint in the L-hash implementation.

Naturally, objects consume more memory in moving from a 32-bits memory
model to a 64-bits model. However, examining the righthand side of Table 4.1
shows that this increase is not always as high as two fold, e.g., a Bucket1 object
doubles up from 16 bytes to 32 bytes in F -HashMap but only to 24 bytes in
F -HashSet (50% increase), and a Bucket2 object increases from 32 bytes to 56
bytes in F -HashSet and from 24 bytes to 40 bytes in F -HashSet (both increases
are by 67%).

An important property of fusion is that of non-decreasing compression, i.e.,
the number of bytes used per table entry decreases as the bucket size increases.
On HotSpot32, overhead per entry in buckets of size 1,2,3,4 is 16, 16, 13.33, 12
bytes in FHashMap and 16, 12, 8, 8 in FHashSet. In the HotSpot64 model, the
respective numbers are 32, 28, 24, 24 bytes in FHashMap and 24, 20, 16 ,16 bytes
in FHashSet. It is easy to check that this property is preserved even in longer
buckets.

A search for a given key κ in a fused bucket is carried out by comparing κ
with fields K1,K2, . . . in order, and if κ = Ki returning Vi, except that Ki is
to be accessed if the current Bucket object is of type Bucketi or a subtype
thereof. It is natural to implement this restriction by overriding function get in
each of the Bucket classes. We found however that, in this trivial inheritance
structure, dynamic dispatch is slightly inferior to the direct application of Java’s
instanceof operator to determine the bucket’s dynamic type. Fig. 4.1 shows
some of the details.

public V get(Object κ) {
int h = hash1(κ.hashCode());
int i = hash2(h) &
table.length-1;
Bucket1<K, V> b1 = table[i];
if (b1==null)
return null; // Empty bucket
h = (byte) h;
Object k;
if (chv[i]==h && ((k = b1.K1)==κ
|| κ.equals(k)))
return b1.V1;

if (!(b1 instanceof Bucket2))
return null;

Bucket2<K, V> b2 = (Bucket2)b1;
// ...
if (b4.h4==h && ((k = b3.K4)==κ
|| κ.equals(k)))
return b3.V4;

return b4.next==null
? null
: b4.next.get(h, κ, b4.h5);

}

Fig. 4.1. Java code for searching a key in a fused bucket

In comparing with of L-hash in Fig. 3.2, we see that the first iterations of
the loop are unrolled: the search begins with an object b1 of type Bucket1;
if κ, the searched key, is different from the K1 field of b1, we check whether the
current bucket is of type Bucket2, in which case, b1 is down casted into type
Bucket2, saving the result in b2, proceeding to examining field K2, etc. As before
the CHV fields (h1, h2, . . .) are used to accelerate the search, and as before an
identity comparison precedes the call to the potentially slower equals method.

Smaller Footprint for Java Collections 369

It is generally believed that search operations, and in particular, successful
search, are the most frequent operations on collections.4 This is the reason we
did not try to similarly optimize insertions (method put) and removals (method
remove); these were implemented by dynamic dispatch into appropriate methods
in the Bucket hierarchy.

We turn to space analysis. For that we employ an analytical model to compute
the expected number of bytes per table entry. This kind of analysis is justified
by the fact that empirical results generally agree with the theoretical model
of buckets’ distribution: This is true for the initial implementation of function
hashCode in class Object, which on HotSpot is by a pseudo-random number gen-
erator. Class designers, particularly of common library classes such as String,
usually make serious effort to make hashCode as randomizing as possible. It is
also known [2] that the design of a particularly bad set of distinct hash values is
difficult. Finally, the bit-spreading preconditioning of function hash (Fig. 3.1),
compensates for suboptimal overriding implementations of hashCode.

Note that a distribution of keys among buckets which is not random means
that buckets tend to be fewer and larger than that predicted by the Poisson
distribution. The “non-decreasing compression” property of F -hash guarantees
that the analytical model is a lower-bound on the memory savings which can
only be larger in practice. For example, in the extreme case in which function
hashCode() always returns 0, all entries will fall in the first bucket, each map
entry will consume only 12 bytes. (The same lower bound could not be stated for
S-HashMap in which the non-decreasing compression property does not hold.)

A detailed analysis of the space overhead reduction is given in the appendix,
for F -HashMap on HotSpot32, the expected number of bytes per table entry is

12 +
(
9− 4 cosp · e−p

)
/p.

We see that throughout the entire “typical” range, list fusion improves memory
use for the hash data structure, reducing it by about a third at p = 3/4, and
that the improvement increases with p. As it turns out, fusion improves upon the
baseline representation throughout the entire typical range as reported above in
Table 1.3. Further, this improvement increases monotonically with p; for slightly
larger values of p (e.g., in load factor p ≈ 1.5 in which buckets are still very small)
both F -HashMap and F -HashSet are close to their asymptotic utility, requiring
just a little over 12 bytes of overhead (F -HashMap) and just little over 8 bytes of
overhead (F -HashSet), thus reaching a two (three) fold improvement over the
24 bytes of overhead in L-hash.

The same behavior is exhibited by the 64 bit memory model: significant im-
provement in the typical range (which surpasses that seen in the 32 bit model),
and reaching the same two- or three- fold improvement for larger values of p.

4 See for example discussion in http://mail.openjdk.java.net/pipermail/

core-libs-dev/2009-June/001807.html

http://mail.openjdk.java.net/pipermail/core-libs-dev/2009-June/001807.html
http://mail.openjdk.java.net/pipermail/core-libs-dev/2009-June/001807.html

370 J. Gil and Y. Shimron

5 Squashed Buckets Hashing

Squashed buckets hashing further reduces the footprint of fused. The enabling
observation is that a singleton bucket does not need to be represented by an
object. Consider a cell in array table data structure, whose associated bucket is
a singleton. Instead of storing in the cell a reference to a singleton bucket object,
squashing means that the cell references the key residing at this bucket, while
the value is consolidated into a table-global array. Thus, a hash map consists of
three arrays of length m: keys and values of type Object, and, as before, array
chv of bytes storing the CHV of the first key in buckets.

If the ith bucket is empty, then keys[i] and values[i] are null. If it is a
singleton, keys[i] is the key stored in this bucket, values[i] is the associated
value, while chv[i] is the CHV of this key. Otherwise, bucket i has k entries for
some k ≥ 2. In this case, cell keys[i] references a Bucket object, which must
store all triples 〈Kj ,Vj , hj〉, for j = 1, . . . , k, that fall in this bucket, except
that V1 is stored in values[i], and h1 is stored in chv[i].5

As before, the Bucket object is represented using list fusion: class Bucket2

(which extends the abstract class Bucket), stores the fused triples list when
the bucket is of size 2; class Bucket3, which extends class Bucket2, stores the
fused triples list when the bucket is of size 3, etc. Class Bucket6, designed for the
rare case in which a bucket has 6 keys or more, stores the first five triples and a
reference to a linked list in which the remaining triples reside. For simplicity, we
use standard Entry objects to represent this list. (A little more memory could
be claimed by using, as we did for F -hash, one of Bucket2, . . . , Bucket6 for
representing the bucket’s tail; this extra saving is minute.)

A squashed HashSet is similar to a squashed HashMap, except for the obvious
necessary changes: There is no values array, and a Bucket object for a k-sized
bucket stores pairs 〈Ki, hi〉, for i = 1, . . . , k (h1 is still stored in chv[i]).

Table 5.1 lists the introduced -and pulled-up- fields in classes Bucket, Bucket2,
. . . , Bucket6 in S-HashSet and S-HashMap on HotSpot32 and HotSpot64.

Of the twenty concrete classes described in the table, only four consume un-
used space: Bucket6 of S-HashMap and S-HashSet and Bucket2 of S-HashMap
and S-HashSet. The global waste due to the first two classes is meager since
buckets with six keys or more are rare, and the waste is divided among all keys
in the bucket. However, the effectiveness of squashed hashing on HotSpot64 in
somewhat limited by the waste in buckets of size 2.

Observe that since singleton buckets do not occupy any memory, the non-
decreasing compression property of fused hashing is not preserved. In other
words, unlike fusion, a key distribution in which all keys fall in distinct buckets
is the most memory efficient among all other distributions, and when more keys
are added to a bucket it does not necessarily become more efficient in reducing
the memory overhead per key.

5 Squashed hashing does not allow keys whose type inherits from class Bucket; this
is rarely a limitation as this class is normally defined as an inner private class of
HashMap.

Smaller Footprint for Java Collections 371

Table 5.1. Layout of squashed bucket variants in S-HashMap and S-HashSet on
HotSpot32 and HotSpot64

HotSpot32 HotSpot64
S-HashMap S-HashSet S-HashMap S-HashSet

introduced
fields

total
size

(bytes)

introduced
fields

total
size

(bytes)

introduced
fields

total
size

(bytes)

introduced
fields

total
size

(bytes)

Bucket
object
header

8
object
header

8 — 16 — 16

Bucket2
K1,K2,V2,
h2, ↑h3, ↑h4, ↑h5

24
K1,K2, ↑K3,
h2, ↑h3, ↑h4, ↑h5

24
K1,K2,V2,
h2, ↑h3, ↑h4, ↑h5

48
K1,K2,

h2, ↑h3, ↑h4, ↑h5
40

Bucket3 K3,V3 32 24 K3,V3 64 K3 48

Bucket4 K4,V4 40 K4, ↑K5 32 K4,V4 80 K4 56

Bucket5 K5,V5 48 32 K5,V5 96 K5 64

Bucket6 next 56 next 40 next 104 next 72

A search for a given key κ in a squashed bucket is carried out by comparing κ
with fields K1,K2, . . . in order, and if κ = Ki returning Vi. Unlike fused buckets,
this search cannot be implemented solely by dynamic dispatch since no Bucket

object exists for singleton buckets. Our implementation (Fig. 5.1) deals with
singleton buckets by overriding the equals method of Bucket; the alternative of
using instanceof and then checking for equality, is possible, but unlikely to be
as efficient.

public V get(Object κ) {
int h = hash1(κ.hashCode());
int i = hash2(h) &
keys.length - 1;
h = (byte) h;
Object k = keys[i];
if (k==null) return null;
if (chv[i]==h && (k==κ
|| k.equals(κ)))
return values[i];

if (!(k instanceof Bucket2))
return null;
Bucket2<K, V> b = (Bucket2) k;
if (b.h2==h &&
((k = b.K2)==κ || κ.equals(k)))
return b.V2;

if (!(b instanceof Bucket3))
return null;
Bucket3<K, V> b = (Bucket3) b;
// ...
}

class Bucket2<K, V> extends Bucket<K, V> {
K K1, K2;
V V2

byte h2, h3, h4, h5;
// . . .
@Override final boolean equals(Object κ) {
return K1==κ || K1.equals(κ);

}
// . . .

}

Fig. 5.1. Java code for searching a given key in a squashed bucket

After computing the index i and the CHV value h, the search begins by
considering the case of equality with K1, which is done by comparing keys[i]

with κ, and if these two are equal, values[i] is returned. In case of non-singleton
bucket, the call k.equals(κ) invokes method equals of Bucket2. This virtual
function call is made only if h == h1. The search continues with a check whether
a longer bucket resides in keys[i] by checking whether k is an instanceof class
Bucket2, in which case we proceed to comparing κ with field K2, etc.

The implementation of insertions and removals relied on a special case treat-
ment of singleton buckets and dynamic dispatch of all other buckets.

372 J. Gil and Y. Shimron

A detailed analysis of the space overhead reduction is given in the appendix,
e.g., it is shown that for S-HashMap on HotSpot32, the expected bytes overhead
per table entry is

24− (
55 + e−p · (64 + 40p+ 20p2 + 4p3 + p4/3− p5/15

))
/p.

As it turns out, asymptotically, i.e., as p approaches infinity, the memory over-
heads of both S-HashMap and S-HashSet is the same as that of L-hash, i.e., 24
(48) bytes per table entry on HotSpot32 (HotSpot64). The reason is that buckets
of size k > 6 are not optimized in our implementation.

Nevertheless, in the typical range on HotSpot32, squashed hashing is even
more memory efficient than fused hashing. S-HashSet is particularly efficient,
making an about two fold compaction in this range. It is also evident that both
the absolute and relative savings in using squashed hashing are greater in the
64-bit memory model than in the 32-bits model.

6 Virtual Entries

public interface Map<K, V> {
// ...
Set<K> keySet();
Collection<V> values();
Set<Map.Entry<K, V>> entrySet();
// ...
interface Entry<K, V> {
K getKey();
V getValue()
V setValue(V value);
// ...

}
}

Fig. 6.1. Required methods for iteration
over Map entries and interface Map.Entry

Virtual entries enable read (and
even write) access to the actual
data (the “contained” portion in
the Mitchell and Sevitsky taxon-
omy) in a data structure whose
representation was compacted.
Such access is required e.g., for in-
order iteration over tree nodes, and for
implementing methods in the Map in-
terface (Fig. 6.1), which provide meth-
ods for the examination, and even
change of (i) the set of all keys stored
in the map, (ii) the multi-set of all val-
ues, and (iii) the set of all 〈key, value〉
pairs, nicknamed Entry.

abstract class VirtualEntry<K, V>
implements Map.Entry<K, V> {
abstract
VirtualEntry<K, V> next();
protected abstract
void setV(V v);
@Override public final
V setValue(V v) {
V old = getValue();
setV(v);
return old;

}
}

Fig. 6.2. Class VirtualEntry

The reference implementation of
these methods makes use of a
minimal collection data-structure con-
taining objects that implement in-
terface Map.Entry. Specifically, class
HashMap.Entry, which defines en-
tries in L-HashMap, implements this
interface. Function entrySet(), for
example, returns an instance of
AbstractSet wrapped around an iter-
ator over the entire set of hash table
entries.

Smaller Footprint for Java Collections 373

Bucket

final first():VirtualEntry
makeE1():VirtualEntry
makeE2():VirtualEntry
makeE3():VirtualEntry
makeE4():VirtualEntry
get(h:int, k:K, chv:byte):V
add(k:Object, v:V):Bucket
remove(k:Object):Bucket

Bucket1

makeE1():VirtualEntry
get(h:int, k:K, chv:byte):V
add(k:Object, v:V):Bucket
remove(k:Object):Bucket

Bucket2

makeE2():VirtualEntry
get(h:int, k:K, chv:byte):V
add(k:Object, v:V):Bucket
remove(k:Object):Bucket

Bucket3

makeE3():VirtualEntry
get(h:int, k:K, chv:byte):V
add(k:Object, v:V):Bucket
remove(k:Object):Bucket

Bucket4

makeE4():VirtualEntry
get(h:int, k:K, chv:byte):V
add(k:Object, v:V):Bucket
remove(k:Object):Bucket

return makeE1();

Bucket1.E1

next():VirtualEntry

Bucket2.E2

next():VirtualEntry

Bucket3.E3

next():VirtualEntry

Bucket4.E4

next():VirtualEntry

VirtualEntry

next():VirtualEntry

Map.Entry

Fig. 6.3. A UML class diagram for virtual entry views on fused buckets

Class VirtualEntry (introduced in Fig. 6.2) presents a Map.Entry view on the
fields defined e.g., in a fused bucket; where a fused bucket object typically offers
a number of such views. Method next() in VirtualEntry returns the view of the
next key-value pair, which is either in the same object or in a subsequent object.

The implementation of virtual entries for fused hash table includes a hierarchy
of VirtualEntry subclasses E1, E2, E3 and E4, which specialize the virtual entry
concept for classes Bucket1, . . . , Bucket4. Fig. 6.3 is a UML class diagram
portraying the essentials.

Start with class Bucket; the class defines add and remove methods which
are used for dynamic dispatch selection of the appropriate insertion and removal
method based on the concrete bucket type. Similarly, for each of the virtual views
E1, E2, E3 and E4, this class defines factory methods, with default implementation
returning null. The finalmethod first in Bucket calls the first of these factory
methods to return the first virtual entry stored in a fused bucket.

Then, each of Bucket1, . . . , Bucket4 (i) inherits the views of the class it
extends, (ii) adds a view in its turn, and, (iii) overrides the corresponding

374 J. Gil and Y. Shimron

factory method defined in Bucket to return its view. For example, Bucket2
(i) inherits the view E1 from Bucket1 (ii) defines the view E2, and, (iii) over-
rides the factory method makeE2 to return an instance of this view. Class E2,
an inner class of Bucket2, implements the VirtualEntry interface by direct ac-
cess to the K2, V2 fields of Bucket2; method next() in Bucket2.E2 calls the
makeE3() factory method to generate the next view. this factory method returns
null in this class, but overridden in Bucket3 to return an instance of the view
Bucket3.E3.

Function next() method in Bucket4.E4 class is a bit special: if the next field
is not null it returns the first view of the bucket object that follows.

The virtual entry views technique carries almost as is to squashed hashing:
classes Bucket, Bucket2, . . . , Bucket6 and their inner virtual entry classes E2,
. . . , E5 are obtained by almost mechanical application of the pattern by which
each class (i) inherits the views of the class it extends, (ii) adds a view of its
own, and, (iii) overrides the corresponding factory method defined in Bucket.
Singleton buckets are special, since they are not represented by an object in
squashed hashing. A virtual entry view of these is by class HashMap.E1, a non-
static inner class of HashMap, which saves the table index passed to its con-
structor, as means for accessing later the singleton bucket residing at the ith

position.

7 Time Performance of Fused and Squashed Hashing

The impact of fusedand squashedhash table onapplicationperformancewasbench-
markedusing threewidely used standard suites: SPECjvm2008, SPECjbb2005 and
DaCapo.To this end,weassembled twoJREversions; thefirst replacingL-HashMap
andL-HashSetby S-HashMap and S-HashSet, tailored for the HotSpot32 memory
model; the second JRE versionwas prepared usingF -HashMap and S-HashSet tai-
lored for the HotSpot64 memory model.

Measurements were carried out on the 32-bit and 64-bit flavors of Linux Mint
11 (Katya) OS, installed on Intel Core i3 processor running at 2.93GHz clock rate
and equipped with 2GB RAM. The benchmarked code was compiled with Eclipse
Helios’s compiler, and linked with JRE version 1.6.0 26-b03 with the respective
flavor of HotSpot Server VM 20.1-b02, mixed-mode. To ensure a clean execution
environment, the benchmarked machine was placed in a single user mode, with
no network connection, and using text mode rather than GUI. Further, all but
one core were disabled, and clock rate on that core was set in force mode to
maximal value. We also made sure by manual inspection that no background
applications were running.

Since certain benchmarks gave rise to great variety in timing results (even
on identical, and as “clean” as possible settings), each benchmark was executed
ten times with each of the three JRE versions (baseline, fused and squashed).
Student’s t-test was then employed to evaluate the statistical significance of the
difference in running times; our reports include both the throughput change and
significance levels, i.e., the α value. However, results in which the significance
levels was less than 95%, i.e., α > 5%, are omitted.

Smaller Footprint for Java Collections 375

Table 7.1. Throughput change and statistical sig-
nificance in SPECjvm2008

HotSpot32 HotSpot64
throughput
change

α
throughput
change

α

compiler -2.37% 0.00% -3.28% 0.00%
derbi -1.94% 0.61%
mpegaudio 0.49% 4.74%
scimark.large -5.12% 0.00%
scimark.small 1.88% 0.00%
serial -1.61% 0.08% -3.01% 0.27%
startup -0.99% 4.38%
avg. -1.22% -2.10%

Table 7.2. Throughput change and statis-
tical significance in SPECjbb2005 warehouses
benchmarks

HotSpot32 HotSpot64
throughput
change

α
throughput
change

α

1 warehouse -0.34% 1.98% -2.26% 0.22%
2 warehouses -1.25% 0.33% -3.14% 0.02%
3 warehouses -1.94% 0.15% -4.35% 0.00%
4 warehouses -1.87% 0.11% -4.01% 0.00%
5 warehouses -1.41% 3.01% 1.31% 4.05%
6 warehouses 22.74% 0.00% 1.82% 1.78%
7 warehouses 1.74% 0.00% 5.82% 0.00%
8 warehouses 6.80% 0.00% 24.17% 0.00%
avg. 3.06% 2.42%

SPECjvm2008 benchmark
setup comprised -Xms1500m

-Xmx1500m JVM arguments (i.e.,
1.5GB initial and maximal
heap) and non-default applica-
tion arguments -ict -ikv --

-peak -bt 1. The results are
given in Table 7.1. Of the
eleven benchmarks in this suite,
four did not exhibit any sta-
tistically significant change to
the performance; five bench-
marks exhibited a statistically
significant change in only one
memory model; the remaining
two benchmarks exhibited sig-
nificant throughput change in
both memory models. Although
some of the values in the ta-
ble are positive, many show a
small performance degradation.
In the 32-bit version the average
throughput change was −1.22%
while the average throughput
change in the 64-bit version
was −2.10%.

On SPECjbb2005, the JVM
arguments were -Xms256m -Xmx256m, while the non-default application
arguments were input.deterministic random seed=true. Results are pre-
sented in Table 7.2. Evidently, all measured value were statistically significant.
Negative impact on throughput typifies the smaller numbers of warehouses, but
positive impact is witnessed in the larger number of warehouses.Overall, in the 32-
bit memorymodel the average throughput change was 3.06%; in the 64-bit version
it was 2.42%.

The JVM arguments for the DaCapo benchmark were -Xms1500m -Xmx1500m
while the non-default application arguments were --no-validation -C -t 1. A
few benchmarks could not be applied to our re-implementation of hash tables. The
reason is that these benchmarks relied on a stored serialized version of the collection
under test. The benchmarks actually usedwere therefore: avrora, batik, eclipse, h2,
jython, luindex, lusearch, pmd, sunflow, tomcat and xalan. All statistically signif-
icant results are presented in Table 7.3. In the 32-bit version the average speedup
was -0.74% while the average speedup in the 64-bit version was 4.71%.

376 J. Gil and Y. Shimron

Table 7.3. Throughput change and statis-
tical significance in DaCapo

HotSpot32 HotSpot64
speedup α speedup α

batik 5.30% 2.18%
h2 1.65% 3.55%
jython 1.17% 1.26%
luindex -17.32% 1.30% 14.55% 0.23%
pmd 8.65% 0.34%
xalan -1.92% 0.00% -1.59% 0.09%
avg. -0.74% 4.71%

We conclude that our proposed im-
plementations remain within practi-
cal runtimes, imposing in some cases
speedup to the JVM compared to
the base implementation, while im-
posing significant memory overhead
reduction.

Slowdowns, when they occur, do not
come as a surprise as the common
usage of hash tables is as tiny (less
than 16 entries) collections6 . Natu-
rally, our data-structures non-trivial
encoding requires a more sophisticated decoding. Some operations are expected
to noticeably slow down, i.e.: iterations and removals, compared to the almost
trivial baseline implementation of them.

Although guided by some benchmarking, the majority of the code in our im-
plementation was not hand optimized to achieve the ultimate time performance.
It is desirable of course to make this possible.

8 Compaction of Balanced Binary Tree Nodes

This section describes the two schemes for compact representation of tree nodes
of TreeMap (and TreeSet), i.e., class TreeMap.Entry (Fig. 1.1(a)): fused bi-
nary tree achieves this compaction with null-pointer and boolean eliminations;
squashed binary tree consolidates all fields in TreeMap.Entry, replacing point-
ers by integers. The memory saving that these achieve are as reported above in
Table 1.3.

Fusion. Field color is an obvious candidate for boolean elimination. Also, since
half of the children edges in binary trees (fields left and right in TreeMap.Entry)
are null, null-pointer-elimination is applicable to left and right. Fig. 8.1 shows
how these techniques can be used for the compaction of leaves.

Class Node (implementing interface VNode) is the base class of all specialized
tree node classes; it defines key, value and parent fields, just like TreeMap.Entry,
except that the parent is necessarily an internal node (class Internal). Fields
left, right are represented as abstract getter functions; null elimination of
these fields is by subclass Leaf overriding these functions to return null. Field
color is modeled as abstract getter and setter methods. The contract of the
setter color(c) is that if c is different from the current node’s color, it returns
a new node which is identical, except for the color. The setters’ implementation
in class Leaf, creates either a RLeaf or BLeaf object as necessary.

Classes RLeaf and BLeaf have only three data fields, all of which are pointers.
The object size of these classes is thus 24 bytes (with four bytes wasted on

6 http://mail.openjdk.java.net/pipermail/core-libs-dev/

2009-July/001969.html

http://mail.openjdk.java.net/pipermail/core-libs-dev/2009-July/001969.html
http://mail.openjdk.java.net/pipermail/core-libs-dev/2009-July/001969.html

Smaller Footprint for Java Collections 377

interface VNode<K, V>
extends Map.Entry<K, V> {
public boolean color();
public VNode<K, V> parent();
public VNode<K, V> left();
public VNode<K, V> right();
// ...

}
abstract static class Node<K, V>
implements VNode<K, V> {
final static boolean // colors
BLACK = true,
RED = !BLACK;
K key; V value; // contents
Internal<K, V> parent; // topology
VNode(K k, V v, Internal<K, V> p) {
key = k;
value = v;
parent = p;
}
public final VNode<K, V> parent() {
return parent;
}
public abstract Node<K, V>
color(boolean c);

// ...
}
abstract static class Leaf<K, V>
extends Node<K, V> {
Leaf(K k, V v, Internal<K, V> p) {
super(k,v,p);
}
final Node<K, V> left() {
return null;
}

final Node<K, V> right() {
return null;
}
final Leaf<K, V> color(boolean c) {
return c==color() ? this : make(c);

}
private Leaf<K, V> make(boolean c) {
Leaf<K, V> l = c==BLACK

? new BLeaf<K, V>(this)
: new RLeaf<K, V>(this);

// ...
return l;
}
// ...

}
static final class RLeaf<K, V>
extends Leaf<K, V> {
RLeaf(Node<K, V> l) {
super(l.key, l.value, l.parent);
}
@Override final public boolean color() {
return RED;
}
// ...

}
static final class BLeaf<K, V>
extends Leaf<K, V> {
BLeaf(Node<K, V> l) {
super(l.key, l.value, l.parent);
}
@Override final public boolean color() {
return BLACK;
}
// ...

}

Fig. 8.1. Employing null pointer elimination and boolean elimination for the com-
paction of leaf nodes in red-black binary search tree

alignment) on HotSpot32 and 40 bytes (with no alignments waste) on HotSpot64.
The size of the TreeSet version of these classes is 16 bytes on HotSpot32, and
32 bytes on HotSpot64.

We empirically found that ≈ 42.8% of nodes in a red-black tree are leaves, and
that this ratio is independent of tree size, nor of tree creation order.7 Employing
classes RLeaf and BLeaf, in an implementation of TreeMap reduces overhead
from 24 to 20.6 bytes on HotSpot32 (respectively 48 to 37.7 on HotSpot64)
which amounts to 14% (21%) savings. With TreeSet the respective reductions
are 28 to 21.1 and 56 to 42.3 (both 24% saving).

Since each of the tree’s nodes is “owned” by its parent, it makes sense to apply
fusion in tree nodes, just as we did for lists. The difficulty is in dealing with the
very many cases that could occur: Depth-� fusion may entail a specialized class
for the O(2�) trees of this depth. Attentions is therefore restricted to fusion of
nodes with their leaves (i.e., � = 2), distinguishing between three different cases:
(i) internal nodes which are parents to two leaves, (ii) internal nodes which are

7 This high value fraction is not accidental; similar fractions occur in e.g., AVL trees.
We can in fact analytically prove that about one quarter of the nodes are leaves in a
random unbalanced binary tree; balancing leads to increasing the number of leaves.

378 J. Gil and Y. Shimron

parents to a single leaf, the other child being null, and (iii) nodes in which one
of the children is a leaf and the other is a non-leaf non-null node, which we will
ignore.

The characteristics of a red-black tree limit the variety of colors in cases (i) and
(ii). In (i), if the parent is RED, then children are both BLACK (if the parent
is BLACK then colors of children may be of any color). In (ii), if the parent
is BLACK then its leaf child must be RED. Five different concrete types of
nodes are thus defined: ParentLeftLeaf, ParentRightLeaf, ParentLeavesRBB,
ParentLeavesBBB, and, ParentLeavesBRR.

As shown in Fig. 8.2, the first two classes have five pointer fields, Fields
parent, key and value are inherited from the superclass Node, while two addi-
tional pointers, keyChild and valueChild are defined in ParentLeaf which is
the abstract superclass of both ParentLeftLeaf and ParentRightLeaf.

abstract static class
ParentLeaf<K, V>
extends Node<K, V> {
protected K keyChild;
protected V valueChild;
// methods and inner classes...

}
static final class
ParentLeftLeaf<K, V>
extends ParentLeaf<K, V> {
// methods and inner classes...

}
static final class
ParentRightLeaf<K, V>
extends ParentLeaf<K, V> {
// methods and inner classes...

}
abstract static class
ParentLeaves<K, V>
extends ParentLeaf<K, V> {

protected final K keyRightLeaf;
protected V valueRightLeaf;

// methods and inner classes...
}
static final class
ParentLeavesRBB<K, V>
extends ParentLeaves<K, V> {
// methods and inner classes...

}
static final class
ParentLeavesBBB<K, V>
extends ParentLeaves<K, V> {
// methods and inner classes...

}
static final class
ParentLeavesBRR<K, V>
extends ParentLeaves<K, V> {
// methods and inner classes...

}

Fig. 8.2. Classes for fusion of internal tree nodes with their leaf children

The footprint of ParentLeftLeaf and ParentRightLeaf classes for TreeMap
is 8 + 5 · 4 = 28 bytes, which are up-aligned to 32 bytes (on HotSpot32). Class
ParentLeaves adds two more pointers, making a 40 bytes footprint for each of
its three subclasses on HotSpot32.

Empirically we found that 14% of the nodes in a red-black tree have a sin-
gle leaf child, while 9% of the nodes have two leaves as their children. Then,
2 · 14% = 28% of the nodes consume 32/2 = 16 bytes each, while 3 · 9% = 27%
of the nodes consume 40/3 = 13.3 bytes each. Assuming that no compression is
done for the other nodes, we obtain 14.5 bytes of overhead per node, achiev-
ing 40% savings in overhead per node, just by using leaf level fusion. If the
remaining leaves are represented as in Fig. 8.1, then saving increases to 43% for
F -TreeMap on HotSpot32.

Our implementation of fused binary trees goes further, employing boolean
elimination to class TreeMap.Entry (Fig. 1.1(a)) which is used for all other

Smaller Footprint for Java Collections 379

abstract static class Internal<K, V>
extends Node<K, V> {
Node<K, V> left, right;
// ...
@Override final public
VNode<K, V> left() {
return left;

}
@Override final public
VNode<K, V> right() {
return right;

}
@Override final Internal<K, V>
color(boolean c) {
return c==color()

? this
: make(c);

}
private
Internal<K, V> make(boolean c) {
Internal<K, V> n = c==BLACK

? new BInternal<K, V>(this)
: new RInternal<K, V>(this);

// ...
return n;

}
// ...

}
final static class RInternal<K, V>
extends Internal<K, V> {
// ...
@Override final public boolean color() {
return RED;
}

}
final static class BInternal<K, V>
extends Internal<K, V> {
// ...
@Override final public boolean color() {
return BLACK;
}

}

Fig. 8.3. Abstract class Internal and boolean elimination in specialized internal nodes

kinds of tree nodes (internal nodes). (Described in Fig. 8.3.) Such elimination
capitalizes the memory reduction for the other F -tree types besides F -TreeMap
on HotSpot32, which due to alignment waste does not benefit from it. Combined
with the above techniques we achieve the following overhead savings: (i) 59%
for TreeSet on HotSpot32, (ii) 55% for TreeMap on HotSpot64, and (iii) 61%
for TreeSet on HotSpot64.

Not surprisingly, with nine different concrete classes for tree nodes, coding was
not easy. Difficulties include the fact that tree updates may turn internal nodes
into leaves and vice versa, and that rotations may change the tree topology.
Removals were particularly challenging as they may initiate any number of tree
rotations. As with hashing, dynamic dispatch was employed for abstracting over
the variety of node types, and virtual entries were used for iterating over the
tree nodes. Initial benchmarking results indicate that this abstraction layer lead
to 30-50% slowdown.

Full Field Consolidation. Squashing encodes the entire TreeMap<K,V>data struc-
ture without using any small objects. Instead, six tree-global arrays, K[] key, V
value[], boolean[] color, int[] left, int[] right, and int[] parent con-
solidate the fields of all tree nodes; node i is then the ith location in all of these
arrays, while pointers are replaced by array indices. This consolidation eliminates
both headers of all small objects, and alignment waste incurred to the byte sized
color field. When the arrays are fully occupied, a node overhead is reduced from
32 to 21 bytes on HotSpot32, and from 64 bytes to 20 bytes on HotSpot64. On
both memory models overhead is 13 bytes, and we achieve the following overhead
savings: (i) 46% for TreeMap on HotSpot32, (ii) 54% for TreeSet on HotSpot32,
(iii) 73% for TreeMap on HotSpot64, and (iv) 77% for TreeSet on HotSpot64. Im-
plementation, as expected, was almost mechanical; initial benchmarking results
indicate that the performance of the squashed tree implementation is comparable
to the baseline, and sometimes even slightly faster.

380 J. Gil and Y. Shimron

Note that squashed trees come at the cost of shifting memory management
duties from the JVM back to the programmer. To avoid costly reallocations,
array should include sufficient slack. Still, a generous 50% slack places field
consolidation behind fusion.

Table 8.1. Computed saving in memory
overhead per tree entry due to the use of full
consolidation using different types of indices in
the implementation of TreeMap and TreeSet for
HotSpot32 and HotSpot64

HotSpot32 HotSpot64
int short byte int short byte

TreeMap 46% 71% 83% 73% 85% 92%
TreeSet 54% 75% 86% 77% 88% 93%

It is feasible to implement
a version of squashed trees,
in which the arrays’ type
changes by the current size of
the collection: byte[] arrays,
then short[] arrays and finally
int[] arrays. The expected
saving increases for small
collections as summarized in
Table 8.1. Table ignores
instance-memory waste (See 3) which may be slightly more significant for smaller
objects. Accounting for this waste, the expected addition is of two bytes per key
for a collection of size 50, and decreases rapidly as size increases.

9 Further Research

This research raises a number of interesting questions. First, it is important and
interesting to understand better the domain of tiny collections, of say up to say
16 entries, as their relative overhead is more significant. Reducing the overhead
of these seems more challenging, especially in adhering to the very general Map
interface. It would be useful to make estimates on abundance of tiny collections
in large programs and the manner in which they are used, with the conjecture
that a frugal yet less general implementation of these would be worthwhile.

Second, as we have seen in this work the variety of the user-level compaction
algorithms are not always easy to employ. A software framework or better yet,
automatic tools that abstract over encoding issues would make our findings more
accessible. It is crucial for such a framework to be able to produce code for
both (say) TreeMap and TreeSet without code duplication. The virtual entries
technique presented in Sect. 6 may serve as a starting point, but other directions
may include the use of aspects or more sophisticated generics.

Third, we are intrigued by the fact that despite fewer dereferencing operations,
F -hash and S-hash were not significantly faster than L-hash. Micro-benchmark
of individual operations should not only clarify this point, but also make room
for systematic hand- and later automatic- optimization of these.

Finally, we draw attention to the problems of memory profiling, a meaningful
and precise definition of the notion of “footprint” of an application, and its
impact on time. These issues are illusive since the “footprint” changes in the
course of computation, and the memory consumption curve may depend on
garbage collection cycles, which in general are not deterministic, yet may depend
on the allocation of physical memory and other factors.

Smaller Footprint for Java Collections 381

References

1. Adl-Tabatabai, A.-R., Cierniak, M., Lueh, G.-Y., Parikh, V.M., Stichnoth, J.M.:
Fast, effective code generation in a just-in-time Java compiler. In: Proc. of the
Conference on Programming Language Design and Implementation (PLDI 2008),
Tucson, Arizona, June 7-13. ACM Press (2008)

2. Alon, N., Dietzfelbinger, M., Miltersen, P.B., Petrank, E., Tardos, G.: Linear hash
functions. J. ACM 46 (September 1999)

3. Arbitman, Y., Naor, M., Segev, G.: Backyard Cuckoo hashing: Constant worst-
case operations with a succinct representation. In: Proc. of the 51st IEEE Annual
Symp. on Foundation of Comp. Sci. (FOCS 2010), Las Vegas, Navada, October
23-26. IEEE Computer Society Press (2010)

4. Bacon, D.F., Fink, S.J., Grove, D.: Space and time efficient implementation of the
Java object model. In: Proc. of the 17th Ann. Conf. on OO Prog. Sys., Lang.,
& Appl. (OOPSLA 2002), Seattle, Washington, November 4-8 (2002); ACM SIG-
PLAN Notices 37(11)

5. Caromel, D., Reynders, J., Philippsen, M.: Benchmarking Java against C and For-
tran for scientific applications. In: Thomas, D. (ed.) Proc. of the 20th Euro. Conf.
on OO Prog. (ECOOP 2006), Nantes, France, July 3-7. LNCS, vol. 4067. Springer
(2006)

6. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protection.
In: Proc. of the 13th Ann. Conf. on OO Prog. Sys., Lang., & Appl. (OOPSLA
1998), Vancouver, British Columbia, Canada, October 18-22 (1998); ACM SIG-
PLAN Notices 33(10)

7. Cramer, T., Friedman, R., Miller, T., Seberger, D., Wilson, R., Wolczko, M.: Com-
piling Java just in time. IEEE Micro 17(3) (May/June 1998)

8. Cranor, L.F., Wright, R.N.: Influencing software usage. In: Proc. of the 10th Con-
ference on Computers, Freedom and Privacy (CFP 2000). ACM (2000)

9. Dufour, B., Ryder, B.G., Sevitsky, G.: A scalable technique for characterizing the
usage of temporaries in framework-intensive Java applications. In: Proc. of the
16th ACM SIGSOFT Symp. on the Foundations of Soft. Eng. (FSE 2008), Atlanta,
Georgia, November 9-14. ACM Press (2008)

10. Eckel, N., Gil, J.: Empirical Study of Object-Layout Strategies and Optimization
Techniques. In: Bertino, E. (ed.) ECOOP 2000. LNCS, vol. 1850, pp. 394–421.
Springer, Heidelberg (2000)

11. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. I.
Wiley (1968)

12. Gil, Y., Lenz, K., Shimron, Y.: A microbenchmark case study and lessons learned.
In: Proc. of the 5th International Conference Companion on Object Oriented Pro-
gramming Systems Languages and Applications Companion (VMIL 2011). ACM
(2011)

13. Hsieh, C.H.A., Conte, M.T., Johnson, T.L., Gyllenhaal, J.C., Hwu, W.M.W.: Com-
pilers for improved Java performance. Computer 30(6) (June 1997)

14. Kawachiya, K., Ogata, K., Onodera, T.: Analysis and reduction of memory ineffi-
ciencies in Java strings. In: Harris, G.E. (ed.) Proc. of the 23rd Ann. Conf. on OO
Prog. Sys., Lang., & Appl. (OOPSLA 2008), Nashville, Tennessee, October 19-23.
ACM (2008)

15. Kotzmann, T., Wimmer, C., Mossenbock, H., Rodriguez, T., Russell, K., Cox, D.:
Design of the Java HotSpot client compiler for Java 6. ACM Trans. Prog. Lang.
Syst. 5(1) (May 2008)

382 J. Gil and Y. Shimron

16. Maxwell, E.K., Back, G., Ramakrishnan, N.: Diagnosing memory leaks using graph
mining on heap dumps. In: Proc. of the 16th ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining (KDD 2010), Washington, DC, July 25-28. ACM
Press (2010)

17. Mitchell, N., Schonberg, E., Sevitsky, G.: Four trends leading to Java runtime bloat.
IEEE Software 27(1) (2010)

18. Mitchell, N., Sevitsky, G.: The causes of bloat, the limits of health. In: Gabriel,
R.P., Bacon, D. (eds.) Proc. of the 22nd Ann. Conf. on OO Prog. Sys., Lang., &
Appl. (OOPSLA 2007), Montreal, Quebec, Canada, October 21-25. ACM Press
(2007)

19. Moreira, J.E., Midkiff, S.P., Gupta, M.: A comparison of Java, C/C++, and FOR-
TRAN for numerical computing. IEEE Antennas and Propagation Magazine 40(5),
102–105 (1998)

20. Novark, G., Berger, E.D., Zorn, B.G.: Efficiently and precisely locating memory
leaks and bloat. In: ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI (2009)

21. Ogata, K., Mikurube, D., Kawachiya, K., Onodera, T.: A study of Java’s non-Java
memory. In: Cook, W.R., Clarke, S., Rinard, M.C. (eds.) Proc. of the 25th Ann.
Conf. on OO Prog. Sys., Lang., & Appl. (OOPSLA 2010), Reno/Tahoe, Nevada,
USA, October 17-21. ACM (2010)

22. Paleczny, M., Vick, C., Click, C.: The Java Hotspot server compiler. In: Proc.
of the Java Virtual Machine Research and Technology Symposium (JVM 2001),
Monterey, California, April 23-24. USENIX C++ Technical Conf. Proc. (2001)

23. Reiss, S.P.: Visualizing the Java heap. In: Proc. of the 32nd Int. Conf. on Soft.
Eng. (ICSE 2010), Cape Town, South Africa, May 2-8. ACM (2010)

24. Shacham, O., Vechev, M., Yahav, E.: Chameleon: Adaptive selection of collections.
In: Proc. of the Conference on Programming Language Design and Implementation
(PLDI 2009), Dublin, Ireland, June 15-20. ACM Press (2009)

25. Venstermans, K., Eeckhout, L., Bosschere, K.D.: Java object header elimination
for reduced memory consumption in 64-bit virtual machines. TACO 4(3) (2007)

26. Wimmer, C.: Automatic Object Inlining in a Java Virtual Machine. PhD thesis,
Institute for System Software, Johannes Kepler University Linz (2008)

27. Xu, G., Arnold, M., Mitchell, N., Rountev, A., Sevitsky, G.: Go with the flow: Pro-
filing copies to find runtime bloat. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI (2009)

28. Xu, G., Mitchell, N., Arnold, M., Rountev, A., Sevitsky, G.: Software bloat analysis:
finding, removing, and preventing performance problems in modern large-scale
object-oriented applications. In: Proc. of the 18th ACM SIGSOFT Symp. on the
Foundations of Soft. Eng. (FSE 2010), Santa Fe, New Mexico, November 7-11.
ACM Press (2010)

29. Xu, G., Rountev, A.: Precise memory leak detection for Java software using con-
tainer profiling. In: Proc. of the 30th Int. Conf. on Soft. Eng. (ICSE 2008), Leipzig,
Germany, May 10-18. ACM (2008)

30. Xu, G., Rountev, A.: Detecting inefficiently-used containers to avoid bloat. In:
Proc. of the Conference on Programming Language Design and Implementation
(PLDI 2010), Toronto, Canada, June 5-10. ACM Press (2010)

Enhancing JavaScript with Transactions

Mohan Dhawan1, Chung-chieh Shan2, and Vinod Ganapathy1

1 Rutgers University
{mdhawan,vinodg}@cs.rutgers.edu

2 University of Tsukuba
ccshan@post.harvard.edu

Abstract. Transcript is a system that enhances JavaScript with support for trans-
actions. Hosting Web applications can use transactions to demarcate regions that
contain untrusted guest code. Actions performed within a transaction are logged
and considered speculative until they are examined by the host and committed.
Uncommitted actions simply do not take and cannot affect the host in any way.
Transcript therefore provides hosting Web applications with powerful mecha-
nisms to understand the behavior of untrusted guests, mediate their actions and
also cleanly recover from the effects of security-violating guest code.

This paper describes the design of Transcript and its implementation in Fire-
fox. Our exposition focuses on the novel features introduced by Transcript to
support transactions, including a suspend/resume mechanism for JavaScript and
support for speculative DOM updates. Our evaluation presents case studies show-
ing that Transcript can be used to enforce powerful security policies on untrusted
JavaScript code, and reports its performance on real-world applications and
microbenchmarks.

1 Introduction

It is now common for Web applications (host) to include untrusted, third-party
JavaScript code (guest) of arbitrary provenance in the form of advertisements, libraries
and widgets. Despite advances in language and browser technology, JavaScript still
lacks mechanisms that enable Web application developers to debug and understand the
behavior of third-party guest code. Using existing reflection techniques in JavaScript,
the host cannot attribute changes in the JavaScript heap and the DOM to specific guests.
Further, fine-grained context about a guest’s interaction with the host’s DOM and net-
work is not supported. For example, the host cannot inspect the behavior of guest code
under specific cookie values or decide whether to allow network requests by the guests.

This paper proposes to enhance the JavaScript language with builtin support for
introspection of third-party guest code. The main idea is to extend JavaScript with a
new transaction construct, within which hosts can speculatively execute guest code
containing arbitrary JavaScript constructs. In addition to enforcing security policies on
guests, a transaction would allow hosts to cleanly recover from policy-violating ac-
tions of guest code. When a host detects an offending guest, it simply chooses not to
commit the transaction corresponding to the guest. Such an approach neutralizes any
data and DOM modifications initiated earlier by the guest, without having to undo them

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 383–408, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

384 M. Dhawan, C.-c. Shan, and V. Ganapathy

1 <script type="text/javascript">

2 var editor = new Editor(); initialize(editor);

3 var builtins = [], tocommit = true;

4 for(var prop in Editor.prototype) builtins[prop] = prop;

5 var tx = transaction { Guest code: Lines 6–9

6 Editor.prototype.getKeywords = function(content) {...}
...

7 var elem = document.getElementById("editBox");

8 elem.addEventListener("mouseover", displayAds, false);

...

9 document.write(‘<div style="opacity:0.0; z-index:0; ... size/loc params">

 Evil Link </div>’);

10 };
11 tocommit = gotoIblock(tx); Implements the host’s security policies

12 if (tocommit) tx.commit();

13 ... /* rest of the Host Web application’s code */

14 </script>

Fig. 1. Motivating example. This example shows how a host can mediate an untrusted guest
(lines 6–9). The introspection block (invoked in line 11) enforces the host’s security policies (see
Figure 2) on the actions performed by the guest.

explicitly. The introspection mechanism (transaction) is built within the JavaScript
language itself, thereby allowing guest code to contain arbitrary JavaScript constructs
(unlike contemporary techniques [13,18,36,29,31]).

Let us consider an example of a Web-based word processor that hosts a third-party
widget to display advertisements (see Figure 1). During an editing session, this wid-
get scans the document for specific keywords and displays advertisements relevant to
the text that the user has entered. Such a widget may modify the host in several ways
to achieve its functionality, e.g., it could install event handlers to display advertise-
ments when the user places the mouse over specific phrases in the text. However, as
an untrusted guest, this widget may also contain malicious functionality, e.g., it could
implement a clickjacking-style attack by overlaying the editor with transparent HTML
elements pointing to malicious sites.

Traditional reference monitors [16], which mediate the action of guest code as it ex-
ecutes, can detect and prevent such attacks. However, such reference monitors typically
only enforce access control policies, and would have let the guest modify the host’s
heap and DOM (such as to install innocuous event handlers) until the attack is detected.
When such a reference monitor reports an attack, the end-user faces one of two un-
palatable options: (a) close the editing session and start afresh; or (b) continue with the
tainted editing session. In the former case, the end-user loses unsaved work. In the latter
case, the editing session is subject to the unknown and possibly undesirable effects of
the heap and DOM changes that the widget initiated before being flagged as malicious.
In our example, the event handlers registered by the malicious widget may also imple-
ment undesirable functionality and should be removed when the widget’s clickjacking
attempt is detected.

Enhancing JavaScript with Transactions 385

Speculative execution allows hosts to introspect all actions of untrusted guest code.
In our example, the host speculatively executes the untrusted widget by enclosing it in
a transaction. When the attack is detected, the host simply discards all changes initiated
by the widget. The end-user can proceed with the editing session without losing unsaved
work, and with the assurance that the host is unaffected by the malicious widget.

This paper describes the Transcript system, that has the following novel features:

(1) JavaScript Transactions. Transcript allows hosting Web applications to specula-
tively execute guests by enclosing them in transactions. Transcript maintains read and
write sets for each transaction to record the objects that are accessed and modified by
the corresponding guest. These sets are exposed as properties of a transaction object
in JavaScript. Changes to a JavaScript object made by the guest are visible within the
transaction, but any accesses to that object from code outside the transaction return the
unmodified object. The host can inspect such speculative changes made by the guest
and determine whether they conform to its security policies. The host must explicitly
commit these changes in order for them to take effect; uncommitted changes simply do
not take and need not be undone explicitly.

(2) Transaction Suspend/Resume. Guest code may attempt operations outside the
purview of the JavaScript interpreter. In a browser, these external operations include
AJAX calls that send network requests, such as XMLHttpRequest. Transcript introduces a
suspend and resume mechanism that affords unprecedented flexibility to mediate exter-
nal operations. Whenever a guest attempts an external operation, Transcript suspends
it and passes control to the host. Depending on its security policy, the host can per-
form the action on behalf of the guest, perform a different action unbeknownst to the
guest, or buffer up and simulate the action, before resuming this or another suspended
transaction.

(3) Speculative DOM Updates. Because JavaScript interacts heavily with the DOM,
Transcript provides a speculative DOM subsystem, which ensures that DOM changes
requested by a guest will also be speculative. Together with support for JavaScript trans-
actions, Transcript’s DOM subsystem allows hosts to cleanly recover from attacks by
malicious guests.

Transcript provides these features without restricting or modifying guest code in any
way. This allows reference monitors based on Transcript to mediate the actions of
legacy libraries and applications that contain constructs that are often disallowed in
safe JavaScript subsets [13,18,36,29,31] (e.g., eval, this and with).

In the rest of the paper, we discuss the design, implementation and evaluation of
Transcript.

2 Overview of Transcript

Transcript enables hosts to understand the behavior of untrusted guests, detect attacks
by malicious guests and recover from them, and perform forensic analysis. We briefly
discuss Transcript’s utility and then provide an overview of its functionality for confin-
ing a malicious guest.

386 M. Dhawan, C.-c. Shan, and V. Ganapathy

(1) Understanding Guest Code. Analysis of third-party JavaScript code is often hard
due to code obfuscation. Using Transcript, a host can set watchpoints on objects of
interest. Coupled with suspend/resume, it is possible to perform a fine grained debug
analysis by inspecting the read/write sets on every guest initiated object read/write and
method invocation. Transcript’s speculative execution provides an ideal platform for
concolic unit testing [44,20] of guests. For example, using Transcript, a host can test a
guest’s behavior under different values of domain cookies.

(2) Confining Malicious Guests. Transcript’s speculative execution permits buffering
of network I/O and writing to a speculative DOM, thereby allowing unprecedented
flexibility in confining untrusted guest code. For example, to prevent clickjacking-style
attacks, the host can simply discard guest’s modifications to the speculative DOM.

(3) Forensic Analysis. Since Transcript suspends on external and user-defined oper-
ations, the suspend/resume mechanism is an effective tool for forensic analysis of a
suspected vulnerability exploited by the guest. For example, code-injection attacks us-
ing DOM or host APIs [4] can be analyzed by observing the sequence of suspend calls
and their arguments.

Transcript in Action. We illustrate Transcript’s ability to confine untrusted guests
by further elaborating on the example introduced in Section 1. Suppose that the
word processor hosts the untrusted widget using a <script> tag, as follows: <script
src="http://untrusted.com/guest.js">. In Figure 1, lines 6–9 show a snippet from guest.js,
which displays advertisements relevant to keywords entered in the editor. Line 6 regis-
ters a function to scan for keywords in the editor window by adding it to the prototype of
the Editor object. Lines 7 and 8 show the widget registering an event handler to display
advertisements on certain mouse events. While lines 6–8 encode the core functional-
ity related to displaying advertisements, line 9 implements a clickjacking-style attack
by creating a transparent <div> element, placed suitably on the editor with a link to an
evil URL.

When hosting such a guest, the word processor can protect itself from attacks by
defining and enforcing a suitable set of security policies. These may include policies to
prevent prototype hijacks [41], clickjacking-style attacks, drive-by downloads, stealing
cookies, snooping on keystrokes, etc. Further, if an attack is detected and prevented,
it should not adversely affect normal operation of the word processor. We now illus-
trate how the word processor can use Transcript to achieve such protection and cleanly
recover from attempted attacks.

The host protects itself by embedding the guest within a transaction construct (line 5,
Figure 1) and specifies its security policy (lines D–O, Figure 2). When the transaction
executes, Transcript records all reads and writes to JavaScript objects in per-transaction
read/write sets. Any attempts by the guest to modify the host’s JavaScript objects
(e.g., on line 6, Figure 1) are speculative; i.e., these changes are visible only to the guest
itself and do not modify the host’s view of the JavaScript heap. To ensure that DOM
modifications by the guest are also speculative, Transcript’s DOM subsystem clones the
host’s DOM at the start of the transaction and resolves all references to DOM objects in
a transaction to the cloned DOM. Thus, references to document within the guest resolve
to the cloned DOM.

Enhancing JavaScript with Transactions 387

A do { Function gotoIblock implements the host’s introspection block: Lines A–R

B var arg = tx.getArgs(); var obj = tx.getObject();

C var rs = tx.getReadSet(); var ws = tx.getWriteSet();

D for(var i in builtins) {
E if (ws.checkMembership(Editor.prototype, builtins[i])) tocommit = false;

F } ... /* definition of ‘IsClickJacked’ to go here */
G if (IsClickJacked(tx.getTxDocument())) tocommit = false;

H ... /* more policy checks go here */ inlined code from libTranscript: Lines I–O

I switch(tx.getCause()) {
J case "addEventListener":

K var txHandler = MakeTxHandler(arg[1]);

L obj.addEventListener(arg[0], txHandler, arg[2]); break;

M case "write": WriteToTxDOM(obj, arg[0]); break; ... /* more cases */

N default: break;

O };
P tx = tx.resume();

Q } while(tx.isSuspended());
R return tocommit;

Fig. 2. An iblock. An iblock consists of two parts: a host-specific part, which encodes the host’s
policies to confine the guest (lines D–H), and a mandatory part, which contains functionality that
is generic to all hosts (lines I–O).

When the guest performs DOM operations, such as those on lines 7–9, and other ex-
ternal operations, such as XMLHttpRequest, Transcript suspends the transaction and passes
control to the host. This situation is akin to a system call in a user-space program causing
a trap into the operating system. Suspension allows the host to mediate external oper-
ations as soon as the guest attempts them. When a transaction suspends or completes
execution, Transcript creates a transaction object in JavaScript to denote the completed
or suspended transaction. In Figure 1, the variable tx refers to the transaction object.
Transcript then passes control to the host at the program point that syntactically follows
the transaction. There, the host implements an introspection block (or iblock) to enforce
its security policy and perform operations on behalf of a suspended transaction.

Transaction Objects. A transaction object records the state of a suspended or completed
transaction. It stores the read and write sets of the transaction and the list of activation
records on the call stack of the transaction when it was suspended. It provides builtin
methods, such as getReadSet and getWriteSet shown in Figure 2, that the host can invoke to
access read and write sets, observe the actions of the guest, and make policy decisions.

When a guest tries to perform an external operation and thus suspends, the resulting
transaction object contains arguments passed to the operation. For example, a transac-
tion that suspends due to an attempt to modify the DOM, such as the call document.write
on line 9, will contain the DOM object referenced in the operation (document), the name of
the method that caused the suspension (write), and the arguments passed to the method.
(Recall that Transcript’s DOM subsystem ensures that document referenced within the
transaction will point to the cloned DOM.) The host can access these arguments using
builtin methods of the transaction object, such as getArgs, getObject and getCause. De-
pending on its policy, the host can either perform the operation on behalf of the guest,
simulate the effect of performing it, defer the operation for later, or not perform it at all.

388 M. Dhawan, C.-c. Shan, and V. Ganapathy

The host can resume a suspended transaction using the transaction object’s builtin
resume method. Transcript then uses the activation records stored in the transaction ob-
ject to restore the call stack, and resumes control at the program point following the
instruction that caused the transaction to suspend (akin to resumption of program exe-
cution following a system call). Transactions can suspend an arbitrary number of times
until they complete execution. The builtin isSuspended method determines whether the
transaction is suspended or has completed.

A completed transaction can be committed using the builtin commit method. This
method copies the contents of the write set to the corresponding objects on the host’s
heap, thereby publishing the changes made by the guest. It also synchronizes the host’s
DOM with the cloned version that contains any DOM modifications made by the guest.
A completed transaction’s call stack is empty, so attempts to resume a completed trans-
action will have no effect. Note that Transcript does not define an explicit abort oper-
ation. This is because the host can simply discard changes made by a transaction by
choosing not to commit them. If the transaction object is not referenced anymore, it
will be garbage-collected.

Introspection Blocks. When a transaction suspends or completes, Transcript passes con-
trol to the instruction that syntactically follows the transaction in the code of the host.
At this point, the host can check the guest’s actions by encoding its security policies in
an iblock. The iblock in Figure 2 has two logical parts: a host-specific part that encodes
host’s policies (lines D–H), and a mandatory part that performs operations on behalf of
suspended guests (lines I–O). The iblock in Figure 2 illustrates two policies:

(1) Lines D–E detect prototype hijacking attempts on the Editor object. To do so, they
check the transaction’s write set for attempted redefinitions of builtin methods and fields
of the Editor object.

(2) Line G detects clickjacking-style attempts by checking the DOM for the presence
of any transparent HTML elements introduced by the guest. (The body of IsClickJacked,
which implements the check, is omitted for brevity).

The body of the switch statement encodes the mandatory part of the iblock and imple-
ments two key functionalities, which are further explained in Section 3.1:

(1) Lines J–L in Figure 2 create and attach an event handler to the cloned DOM
when the guest suspends on line 8 in Figure 1. The MakeTxHandler function creates a new
wrapped handler, by enclosing the guest’s event handler (displayAds) within a transaction
construct. Doing so ensures that the execution of any event handlers registered by the
guest is also speculative, and mediated by the host’s security policies. The iblock then
attaches the event handler to the corresponding element (elem) in the cloned DOM.

(2) Line M in Figure 2 speculatively executes the DOM modifications requested when
the guest suspends on line 9 in Figure 1. The WriteToTxDOM function invokes the write call
on obj, which points to the document object in the cloned DOM.

If a transaction does not commit because of a policy violation, the host’s DOM and
JavaScript objects will remain unaffected by the guest’s modifications. For instance,

Enhancing JavaScript with Transactions 389

... // Code of the host�

tx = transaction {�

 ...�

 node.addEventListener(...);�

 ...�

};�

do {�

 ... �

 tx = tx.resume();�

 ...�

} while(tx.isSuspended());�

tx.commit();�

... // Rest of the host�

Host including a guest

1

Introspection block

Transcript runtime

system

2

3 4

5

6

Guest

(a) Locations of traps/returns to/from

Transcript.

Transaction object tx�

tx’s write

set
+ Heaporig Heapnew

2 3

4 5
Transaction object tx�

JavaScript runtime

Transcript runtime system

6

Speculative DOM

DOMorig DOMTX

1

DOMTX

3 4 -

DOMTX MTX

wrapped

handler

+

DOMTX MTX DOMnew

6

Host’s stack

call stack

Guest’s

…
Host’s stack

…

Host
…

resume

t Host

call stack

Guest’s

…
t

Clone

addEventListener

Replace

DOMTX

R/W sets call stack

Guest’s

DOMTX

R/W sets call stack

Guest’s

(b) Corresponding actions within the Transcript runtime system for a

trap/return.

Fig. 3. Workflow of a Transcript-enhanced host. Part (a) of the figure shows a host enclosing a
guest within a transaction and an inlined introspection block, while part (b) shows the JavaScript
runtime and the DOM subsystem. The labels ①-⑥ in the figure show: ① the host’s DOM be-
ing cloned at the start of the transaction, ② the host’s call stack before a call that suspends the
transaction, ③ the call stack after suspension, ④ the host’s call stack when the transaction is
about to resume; the speculative DOM has been updated with the requested changes, ⑤ the host’s
call stack just after resumption, ⑥ shows the transaction committing, which copies all specula-
tive changes to the host’s DOM and JavaScript heap. The thick lines on the call stacks denote
transaction delimiters. Arrows show control transfer from the transaction to the iblock and back.

when the host aborts the guest after it detects the clickjacking attempt, the host’s DOM
will not contain any remnants of the guest’s actions (such as event handlers registered
by the guest). The host’s JavaScript objects, such as Editor, are also unaffected. Specu-
latively executing guests therefore allows hosts to cleanly recover from attack attempts.

Iblocks offer hosts the option to postpone external operations. For example, a host
may wish to defer all network requests from an untrusted advertisement until the end
of the transaction. It can do so using an iblock that buffers these requests when they
suspend, and thereafter resume the transaction; the buffered requests can be processed
after the transaction has completed. Such postponement will not affect the guest if the
buffered requests are asynchronous, e.g., XMLHttpRequest.

Because a transaction may suspend several times, the iblock is structured as a loop,
whose body executes each time the transaction suspends and once when the transaction
completes. This way, the same policy checks apply whether the transaction suspended
or completed.

3 Design of Transcript

We now describe the design of Transcript’s mechanisms using Figure 3, which sum-
marizes the workflow of a Transcript-enhanced host. The figure shows the operation of
the Transcript runtime system at key points during the execution of the host, which has
included an untrusted guest akin to the one in Figure 1 using a transaction.

When a transaction begins execution, Transcript first provides the transaction with
its private copy of the host’s DOM tree. It does so by cloning the current state of the

390 M. Dhawan, C.-c. Shan, and V. Ganapathy

host’s DOM, including any event handlers associated with the nodes of the DOM (① in
Figure 3). When a guest references nodes in the host’s DOM, Transcript redirects these
references to the corresponding nodes in the transaction’s private copy of the DOM.

Next, the Transcript runtime pushes a transaction delimiter on the JavaScript call
stack. Transcript places the activation records of methods invoked within the trans-
action above this delimiter. It also records the locations of JavaScript objects ac-
cessed/modified within the transaction in read/write sets. If the transaction executes
an external operation, the runtime suspends the transaction. To do so, it creates a trans-
action object and (a) initializes the object with the transaction’s read/write sets; (b) pops
all the activation records on the JavaScript call stack until the topmost transaction delim-
iter; (c) stores these activation records in the transaction object; (d) saves the program
counter; and (e) sets the program counter to immediately after the end of the transaction,
i.e., the start of the iblock (steps ② and ③ in Figure 3).

The iblock logically extends from the end of the transaction to the last resume or commit
call on the transaction object (e.g., lines A–R in Figure 2). The iblock can access the
transaction object and its read/write sets to make policy decisions. If the iblock invokes
resume on a suspended transaction, the Transcript runtime (a) pushes a transaction delim-
iter on the current JavaScript call stack; (b) pushes the activation records saved in the
transaction object; and (c) restores the program counter to its saved value. Execution
therefore resumes from the statement following the external operation (see ④ and ⑤).
If the iblock invokes commit instead, the Transcript runtime updates the JavaScript heap
using the values in the transaction object’s write set. The commit operation also replaces
the host’s DOM with the cloned DOM (step ⑥).

The Transcript runtime behaves in the same way even when transactions are nested:
Transcript pushes a new delimiter on the JavaScript call stack for each level of nesting
encountered at runtime. Each suspend operation only pops activation records until the
topmost delimiter on the stack. Nesting is important when a guest itself wishes to con-
fine code that it does not trust. This situation arises when a host includes a guest from a
first-tier advertising agency (1sttier.com), which itself includes code from a second-tier
agency (2ndtier.com). Whether the host confines the advertisement using an outer trans-
action, 1sttier.com may itself confine code from 2ndtier.com using an inner transaction
using its own security policies. If code from 2ndtier.com attempts to modify the DOM,
that call suspends and traps to the iblock defined by 1sttier.com. If this iblock attempts
to modify the DOM on behalf of 2ndtier.com, the outer transaction suspends in turn and
passes control to the host’s iblock. In effect, the DOM modification succeeds only if it
is permitted at each level of nesting.

3.1 Components of an Iblock

As discussed in Section 2, an iblock consists of two parts: a host-specific part, which
codifies the host’s policies to mediate guests, and a mandatory part, which contains
functionality that is generic to all hosts. In our implementation, we have encoded the
second part as a JavaScript library (libTranscript) that can simply be included into the
iblock of a host. This mandatory part implements two functionalities: gluing execution
contexts and generating wrappers for event handlers.

Enhancing JavaScript with Transactions 391

Gluing Execution Contexts. Guests often use document.write or similar calls to modify
the host’s DOM, as shown on line 9 of Figure 1. When such guests execute within a
transaction, the document.write call traps to the iblock, which must complete the call on
behalf of the guest and render the HTML in the cloned DOM. However, the HTML
code in document.write may contain scripts, e.g., document.write(’<script src = code.js>’).
The execution of code.js, having been triggered by the guest, must then be mediated by
the same security policy that governs the guest.

Thus, code.js should be executed in the same context as the transaction where the
guest executes. To achieve this goal, the mandatory part of the iblock encapsulates the
content of code.js into a function and uses a builtin glueresumemethod of the transaction
object to instruct the Transcript runtime to invoke this function when it resumes the
suspended transaction. The net effect is similar to fetching and inlining the content of
code.js into the transaction. We call this operation gluing, because it glues the code in
code.js to that of the guest.

To implement gluing, the iblock must recognize that the document.write includes
additional scripts. This in turn requires the iblock to parse the HTML argument
to document.write. We therefore exposed the browser’s HTML parser through a new
document.parse API to allow HTML (and CSS) parsing in iblocks. This API accepts a
HTML string argument, such as the argument to document.write, and parses it to recog-
nize <script> elements and other HTML content. It also recognizes inline event-handler
registrations, so that they can be wrapped as described in Section 3.1. When the iblock
invokes document.parse (in Figure 2, it is invoked within the call to WriteToTxDOM on line M),
the parser creates new functions that contain code in <script> elements. It returns these
functions to the host’s iblock, which can then invoke them by gluing. The parser also
renders other (non-script) HTML content in the cloned DOM.

Guest operations involving innerHTML are handled simlarly. Transcript suspends a guest
that attempts an innerHTML operation, parses the new HTML code for any scripts, and
glues their execution into the guest’s context.

Generating Wrappers for Event Handlers. Guests executing within a transaction
may attempt to register functions to handle asynchronous events. For example, line 8 in
Figure 1 registers displayAds as an onMouseOver handler. Because displayAds is guest code,
it is important to associate it with the iblock for the transaction that registered it and
to subject it to the same policy checks. Transcript does so by creating a new function
tx displayAds that wraps displayAds within a transaction guarded by the same iblock, and
registering tx displayAds as the event handler for the onMouseOver event.

To this end, the mandatory part of the iblock includes creating wrappers (such
as tx displayAds) for event handlers. When the guest executes a statement such as
elem.addEventListener(...), it would trap to the iblock, which can then examine the
arguments to this call and create a wrapper for the event handler. Guests can al-
ternatively use document.write calls to register event handlers e.g., document.write (’<div
onMouseOver="displayAds();">’). In this case, the iblock recognizes that an event handler
is being registered by parsing the HTML argument of the document.write call (using the
document.parseAPI) when it suspends, and wraps the call. Our wrapper generator handles
all the event models supported by Firefox [47].

392 M. Dhawan, C.-c. Shan, and V. Ganapathy

Besides event handlers, JavaScript supports other constructs for asynchronous exe-
cution: AJAX callbacks, which execute upon receiving network events (XMLHttpRequest),
and features such as setTimeOut and setInterval that trigger code execution based upon
timer events. The mandatory part of the iblock also handles these constructs by wrap-
ping callbacks as just described.

3.2 Hiding Sensitive Variables

The iblock of a transaction checks the guest’s actions against the host’s policies. These
policies are themselves encoded in JavaScript, and may use methods and variables
(e.g., tx, tocommit and builtins in Figure 1) that must be protected from the guest. Without
precautions, the guest can use JavaScript’s extensive reflection capabilities to tamper
with these sensitive variables. Figure 4 presents an example of one such attack, a refer-
ence leak, where the malicious guest obtains a reference to the tx object by enumerating
the properties of the this object, and redefines the method tx.getWriteSet speculatively.
As presented, the example in Figure 1 is vulnerable to such a reference leak.

var tx = transaction { ... //code that suspends ...
for (var x in this) {
if (this[x] instanceof Tx obj) txref = this[x];

}; txref.getWriteSet = function() { };
}

Fig. 4. A guest that implements a ref-
erence leak. The tx object is created and
attached to this when guest suspends.

To protect such sensitive variables, we adopt
a defense called variable hiding that eliminates
the possibility of leaks by construction. This
technique mandates that guests be placed out-
side the scope of the iblock’s variables, such as
tx. The basic idea is to place the guest and the
iblock in separate, lexically scoped functions,
so that variables such as tx, tocommit and builtins
are not accessible to the guest. By so hiding
sensitive variables from the guest, this defense
prevents reference leaks. Figure 8 illustrates this
defense after introducing some more details of our implementation.

4 Security Assurances

Transcript’s ability to protect hosts from untrusted guests depends on two factors: (a) the
assurance that a guest cannot subvert Transcript’s mechanisms, i.e., the robustness of
the trusted computing base; and (b) host-specific policies used to mediate guests.

4.1 Trusted Computing Base

Transcript’s trusted computing base (TCB) consists of the runtime component imple-
mented in the browser and the mandatory part of the host’s iblock. The TCB pro-
vides the following security properties: (a) complete mediation, i.e., control over all
JavaScript and external operations performed by a guest; and (b) isolation, i.e., the abil-
ity to confine the effects of the guest.

(1) Complete Mediation. The Transcript runtime and the mandatory part of the host’s
iblock together ensure complete mediation of guest execution. The runtime: (a) records

Enhancing JavaScript with Transactions 393

all guest accesses to the host’s JavaScript heap in the corresponding transaction’s
read/write sets; (b) causes a trap to the host’s iblock when the guest attempts an external
operation; and (c) redirects all guest references to the host’s DOM to the cloned DOM.
The mandatory part of the iblock, consisting of wrapper generators and the HTML
parser, ensures that any additional code fetched by the guest or scheduled for later exe-
cution (e.g., event handlers or callbacks for XMLHttpRequest) will itself be enclosed within
transactions mediated by the same iblock. This process recurs so that the host’s policies
mediate all guest code, even event handlers installed by callbacks of event handlers.

(2) Isolation. Transcript isolates guest operations using speculative execution. It
records changes to the host’s JavaScript heap within the guest transaction’s write set,
and changes to the host’s DOM within the cloned DOM. The host then has the opportu-
nity to review these speculative changes within its iblock and ensure that they conform
to its security policies. Observe that a suspended/completed transaction may provide
the host with references to objects modified by the guest, e.g., in Figure 1, a reference
to elem is passed to the iblock via the getObject API. Speculative execution ensures that
if the transaction has not yet been committed, then accesses to the object’s methods
and fields via this reference will still resolve to their values at the beginning of the
transaction. Thus, for instance, a call to the toString method of the elem object in the
iblock of Figure 1 would still work as intended if even if the guest had redefined this
method within the transaction. Note that variables hidden from the guest cannot even
be speculatively modified, thereby automatically isolating them from the guest.

Together, the above properties ensure the following invariant: At the point when a trans-
action suspends or completes execution and is awaiting inspection by the host’s iblock,
none of the host’s JavaScript objects or its DOM would have been modified by the
guest. Further, host variables hidden from the guest will not be modified even after the
transaction has committed. Overall, executing a transaction never incurs any side ef-
fect, and any side effect that would be incurred by committing a transaction can be first
vetted by inspecting the transaction.

4.2 Whitelisting for Host Policies

Hosts can import the speculative changes made by a guest after inspecting them against
their security policies. Even though complete mediation and isolated execution ensure
that the core mechanisms of Transcript cannot be subverted by guest execution (i.e., they
ensure that all of the guest’s speculative actions will be available for inspection by the
host), the ability of the host to isolate itself from the guest ultimately depends on its
policies.

Host policies are necessarily domain-specific and have to be written manually in our
current prototype. Though our experiments (Section 6.4) suggest that the effort required
to write policies in Transcript is comparable to that required in other systems, writing
policies is admittedly a difficult exercise and further research is needed to develop tools
for policy authors to debug/verify the completeness of their policies. However, iblock
policies once written can be reused across applications if applications share similar
protection criteria. As a deployment model, we envision a vendor or community-driven

394 M. Dhawan, C.-c. Shan, and V. Ganapathy

curated database of commonly-used iblock policies, which hosts can use to secure un-
trusted guests.

We suggest that iblock authors should employ a whitelist which specifies the host
objects that can legitimately be modified by the guest and reject attempts to modify
objects outside the whitelist. This guideline may cause false positives if the whitelist
is not comprehensive. For example, both window.location and window.location.href can be
used to change the location field of the host, but a whitelist that includes only one
will reject guests that modify guest location using the other. Nevertheless, whitelisting
allows hosts to be conservative when allowing guests to modify their objects.

5 Implementation in Firefox

We implemented Transcript by modifying Firefox (version 3.7a4pre). Overall, our pro-
totype adds or modifies about 6,400 lines of code in the browser 1. The bulk of this
section describes Transcript’s enhancements to SpiderMonkey (Firefox’s JavaScript in-
terpreter) (Section 5.1) and its support for speculative DOM updates (Section 5.2). We
also discuss Transcript’s support for conflict detection (Section 5.3) and the need to
modify the <script> tag (Section 5.4).

5.1 Enhancements to SpiderMonkey

Our prototype enhances SpiderMonkey in five ways:

• Transaction objects. We added a new class of JavaScript objects to denote transac-
tions. This object stores a pointer to the read/write sets, activation records of the trans-
action, and to the cloned DOM. It implements the builtin methods shown in Figure 5.
• A transaction keyword. We added a transaction keyword to the syntax of JavaScript.
When the Transcript-enhanced JavaScript parser encounters this keyword, it (a) com-
piles the body of the transaction into an anonymous function; (b) inserts a new instruc-
tion, JSOP BEGIN TX, into the generated bytecode to signify the start of a transaction;
and (c) inserts code to invoke the anonymous function. The transaction ends when the
anonymous function completes execution. Finally, the anonymous function returns a
transaction object when it suspends or completes execution.
• Read/write sets. Transcript adds read/write set-manipulation to the interpretation of
several JavaScript bytecode instructions. We enhanced the interpreter so that each
bytecode instruction that accesses or modifies JavaScript objects additionally checks
whether its execution is within a transaction (i.e., if an unfinished JSOP BEGIN -
TX was previously encountered in the bytecode stream). If so, the execution of the
instruction also logs an identifier denoting the JavaScript object (or property) ac-
cessed/modified in its read/write sets, which we implemented using hash tables. We
used SpiderMonkey’s identifiers for JavaScript objects; references using aliases to the
same object will return the same identifier.

1 Transcript’s design does not impose any fundamental restrictions on JITing of code within a
transaction. However, to ease the development effort for our Transcript prototype, we chose
not to handle JITed code paths in the prototype.

Enhancing JavaScript with Transactions 395

API Description
getReadSet Exports transaction’s read set to JavaScript.
getWriteSet Exports transaction’s write set to JavaScript.
getTxDocument Returns a reference to the speculative document object.
isSuspended Returns true if the transaction is suspended.
getCause Returns cause of a transaction suspend.
getObject Returns object reference on which a suspension was invoked.
getArgs Returns set of arguments involved in a transaction suspend.
resume Resumes suspended transaction.
glueresume Resumes suspended transaction and glues execution contexts.
isDOMConflict Checks for conflicts between the host’s and cloned DOM.
isHeapConflict Checks for conflicts between the host and guest heaps.
commit Commits changes to host’s JavaScript heap and DOM.

Fig. 5. Key APIs defined on the transaction object

• Suspend. We modified the interpreter’s implementation of bytecode instructions that
perform external operations and register event handlers to suspend when executed
within a transaction. The suspend operation and the builtin resume function of transaction
objects are implemented as shown in Figure 3. We also introduced a suspend construct
that allows hosts to customize transaction suspension. Hosts can include this construct
within a transaction (before including guest code) to register custom suspension points.
The call suspend [obj.foo] suspends the transaction when it invokes foo (if it is a method)
or attempts to read from or write to the property foo of obj.
• Garbage Collection. We interfaced Transcript with the garbage collector to traverse
and mark all heap objects that are reachable from live transaction objects. This avoids
any inadvertent garbage collection of objects still reachable from suspended transac-
tions that could be resumed in the future.

Integrating these changes into a legacy JavaScript engine proved to be a challenging
exercise. We refer interested readers to Appendix A for a description of how our imple-
mentation addressed one such challenge, non-tail recursive calls in SpiderMonkey.

5.2 Supporting Speculative DOM Updates

Transcript provides each executing transaction with its private copy of the host’s docu-
ment structure and uses this copy to record all DOM changes made by guest code. This
section presents notable details of the implementation of Transcript’s DOM subsystem.

Transcript constructs a replica of the host’s DOM when it encounters a JSOP BE-
GIN TX instruction in the bytecode stream. It clones nodes in the host’s DOM tree, and
iterates over each node in the host’s DOM to copy references to any event handlers and
dynamically-attached JavaScript properties associated with the node. If a guest attempts
to modify an event handler associated with a node, the reference is rewritten to point to
the function object in the transaction’s write set.

Crom [35] also implemented DOM cloning for speculative execution (albeit not for
the purpose of mediating untrusted code). Unlike Crom, which implemented DOM
cloning as a JavaScript library, Transcript implements cloning in the browser itself. This
feature simplifies several issues that Crom’s designers faced (e.g., cloning DOM-level
2 event handlers) and also allows efficient cloning.

When a guest references a DOM node within a transaction, Transcript transpar-
ently redirects this reference to the cloned DOM. It achieves this goal by modifying

396 M. Dhawan, C.-c. Shan, and V. Ganapathy

the browser to tag each node in the host’s DOM with a unique identifier (uid). During
cloning, Transcript assigns each node in the cloned DOM the same uid as its counterpart
in the host’s DOM. When the guest attempts to access a DOM node, Transcript retrieves
the uid of the node and walks the cloned DOM for a match. We defined a getElementByUID
API on the document object to return a node with a given uid.

If the guest’s operations conform to the host’s policies, the host commits the trans-
action, upon which Transcript replaces the host’s DOM with the transaction’s copy of
the DOM, thereby making the guest’s speculative changes visible to the host.

5.3 Conflict Detection

When a host decides to commit a transaction, Transcript will replace the host’s DOM
with the guest’s DOM. Objects on the host’s heap are also overwritten using the write
set of the guest’s transaction. During replacement, care must be taken to ensure that
the host’s state is consistent with the guest’s state. Consider, for instance, a guest that
performs an appendChild operation on a DOM node (say node N). This operation causes
a new node to be added to the cloned DOM, and also suspends the guest transaction.
However, the host may delete node N before resuming the transaction; upon resumption,
the guest continues to update a stale copy of the DOM (i.e., the cloned version). When
the transaction commits, the removed DOM node will be added to the host’s DOM.

function hasParent(txNode) {
var parent = txNode.parentNode;

if (document.getElementByUID(parent.uid) != null) return true;

else return false;

} ...
var isAllowed = tx.isDOMConflict(hasParent); // tx is the transaction object

Fig. 6. Example showing conflict detection

Transcript adds the
isDOMConflict and isHeapConflict

APIs to the transaction object,
which allow host developers to
register conflict detection poli-
cies. When invoked in the host’s
iblock, the isDOMConflict API
invokes the conflict detection
policy on each DOM node speculatively modified within the transaction (using the
transaction’s write set to identify nodes that were modified). The isHeapConflict API
likewise checks that the state of the host’s heap matches the state of the guest’s heap
at the start of the transaction. The snippet in Figure 6 shows one example of such a
conflict detection policy (using isDOMConflict) encoded in the host’s iblock that verifies
that each node speculatively modified by the guest (txNode) has a parent in the host’s
DOM.

While Transcript provides the core mechanisms to detect transaction conflicts, it does
not dictate any policies to resolve them. The host must resolve such conflicts within the
application-specific part of its iblocks.

5.4 The <script> Tag

The examples presented thus far show hosts including guest code by inlining it within
a transaction. However, hosts typically include guests using <script> tags, e.g., <script
src="http://untrusted.com/guest.js">. Transcript also supports code inclusion using <script>
tags. To do so, it extends the <script> tag so that the fetched code can be encapsulated in a
function rather than run immediately. The host application can use the modified <script>

Enhancing JavaScript with Transactions 397

tag as: <script src="http://untrusted.com/guest.js" func="foobar">. This tag encapsulates the
code in foobar, which the host can then invoke within a transaction.

By itself, this modification unfortunately affects the scope chain in which the fetched
code is executed. JavaScript code included using a <script> tag expects to be executed
in the global scope of the host, but the modified <script> tag would put the fetched code
in the scope of the function specified in the func attribute (e.g., foobar).

We addressed this problem using a key property of eval. The ECMAScript stan-
dard [9, Section 10.4.2] specifies that an indirect eval (i.e., via a reference to the eval
function) is executed in the global scope. We therefore extracted the body of the com-
piled function foobar and executed it using an indirect eval call within a transaction (see
Figure 8). This transformation allowed all variables and functions declared in the func-
tion foobar to be speculatively attached to the host’s global scope.

6 Evaluation

We evaluated four aspects of Transcript. First, in Section 6.1 we study the applicability
of Transcript to real-world guests, which varied in size from about 1,400 to 7,500 lines
of code. Second, we show in Section 6.2 that a host that uses Transcript can protect itself
and recover gracefully from malicious and buggy guests. Third, we report a performance
evaluation of Transcript in Section 6.3. Last, in Section 6.4, we study the complexity of
writing policies for Transcript. All experiments were performed with Firefox v3.7a4pre
on a 2.33Ghz Intel Core2 Duo machine with 3GB RAM and running Ubuntu 7.10.

6.1 Case Studies on Guest Benchmarks

Benchmark Size (LoC) <script> tags
1 JavaScript Menu [7] 1,417 1
2 Picture Puzzle [40] 1,709 3
3 GoogieSpell [38] 2,671 4
4 GreyBox [39] 2,338 7
5 Color Picker [6] 7,543 6

Fig. 7. Guest benchmarks. We used trans-
actions to isolate each of these benchmarks
from a simple hosting Web page

To evaluate Transcript’s applicability to real-
world guests, we experimented with five
JavaScript applications, shown in Figure 7.
For each guest benchmark in Figure 7, we
played the role of a host developer attempt-
ing to include the guest into the host, i.e., we
created a Web page and included the code
of the guest into the page using <script> tags.
Most of the guests were implemented in sev-
eral files; the <script> column in Figure 7 shows the number of <script> tags that we had
to use to include the guest into the host. We briefly describe these guest benchmarks
and the domain-specific policies that were implemented for each iblock.

(1) JavaScript Menu is a standalone widget that implements pull-down menus.
Figure 8 shows how we confined JavaScript Menu using Transcript. The iblock for
JavaScript menu enforced a policy that disallowed the guest from accessing the net-
work (XMLHttpRequest) or domain cookies.

JavaScript Menu makes extensive use of document.write to build menus, with several of
these calls used to register event handlers, as shown below (event handler registrations
are shown in bold). Each document.write call causes the transaction to suspend and pass
control to the iblock. The iblock uses document.parse to (a) parse the arguments to identify

398 M. Dhawan, C.-c. Shan, and V. Ganapathy

1 <script src="jsMenu.js" func="menu"></script> 5 var tx = transaction { e(getFunctionBody(menu));}
2 <script src="libTranscript.js></script> 6 to commit = gotoIblock(tx);

3 <script>(function () { 7 if(to commit) tx.commit();

4 var to commit = true, e = eval; // indirect eval 8 })(); </script>

Fig. 8. Confining JavaScript Menu. (a) lines 1 and 5 demonstrate the enhanced <script> tag
and the host’s use of indirect eval to include the guest, which is compiled into a function (called
menu; line 1) (Section 5.4). getFunctionBody extracts the code of the function menu; (b) line 3 imple-
ments variable hiding (Section 3.2), making tx invisible to the guest; (c) our supporting library
libTranscript (line 2) implements the mandatory part of the iblock and is invoked from gotoIblock.

the HTML element(s) being created; (b) identify whether any event handlers are being
registered and wrap them; and (c) write resulting HTML to the transaction’s speculative
DOM.

(2) Picture Puzzle uses the drag-and-drop features provided by the AJS JavaScript li-
brary [2] to build an application that prompts the user to arrange jumbled pieces of a
picture within a 3 × 3 grid (we adapted this benchmark from [40]). We ran the bench-
mark within a transaction and enforced a domain-specific security policy that prevented
the transaction from committing its changes if it attempted to install a handler to capture
the user’s keystrokes (e.g., any event with onkey as a substring).

(3) GoogieSpell extends the AJS library to provide a spell-checking service. When a
user clicks the “check spelling” button, GoogieSpell sends an XMLHttpRequest to a third-
party server to fetch suggestions for misspelled words. We created a transactional ver-
sion of GoogieSpell, whose iblock implemented a domain-specific policy that prevents
an XMLHttpRequest once the benchmark has read domain cookies or if the target URL of
XMLHttpRequest does not appear on a whitelist.2

(4) GreyBox is content-display application that also extends the AJS library. It can be
used to display external pages, build image galleries, receive file uploads and even show
video or Flash content. The application creates an <iframe> to load new content. Our
transactional version of the GreyBox application encoded a domain-specific iblock pol-
icy that only allowed the creation of <iframe>s to whitelisted URLs.

(5) Color Picker builds upon the popular jQuery library [5] and lets a user pick a color
by moving sliders depicting the intensities of red, blue and green. We executed the entire
benchmark (including all the supporting jQuery libraries) as a transaction and encoded
an iblock that disallowed modifications to the innerHTML property of arbitrary <div> nodes.

However, for this guest, it turns out that an iblock that disallows any changes to the sen-
sitive innerHTML property of any <div> element is overly restrictive. This is because Color
Picker modified the innerHTML property of a <div> element that it created. We therefore
loosened our policy into a history-based policy that let the benchmark change innerHTML
properties of <div> elements that it created. The iblock determines whether a <div> ele-
ment was created by the transaction by querying its write set. The relevant snippet from
the iblock is shown below; the tx variable denotes the transaction:

2 Such cross-origin resource sharing permits cross-site XMLHttpRequests, and is supported by
Firefox-3.5 and higher [37].

Enhancing JavaScript with Transactions 399

1 var ws = tx.getWriteSet(); ...

2 if (tx.getCause().match("innerHTML") && ws.checkMembership(tx.getObject(), "*")

&& !(tx.getObject() instanceof HTMLBodyElement))

3 // perform action on behalf of untrusted code

6.2 Fault Injection and Recovery

To evaluate how Transcript can help hosts detect and debug malicious guest activity,
we performed a set of fault-injection experiments on a real Web application that al-
lows integration of untrusted guest code. We used the Bigace Web content management
system [3] running on our Web server as the host, and created a Web site that mashed
content from Bigace with content provided by untrusted guests (each guest was included
into the mashup using the <script> tag). We wrote guests that emulated known attacks
and studied host behavior when the host (1) directly included the guest in its protection
domain; and (2) used Transcript to isolate the guest.

Our experiments show that with appropriate iblock policies, speculative execution
ensured clean recovery; neither the JavaScript heap nor the DOM of the host was af-
fected by the misbehaving guest.

(1) Misplaced Event Handler. JavaScript provides a preventDefault method that sup-
presses the default action normally taken by the browser as a result of the event. For
example, the default action on clicking a link is to fetch the page corresponding to the
URL referenced in the link. Several sites use preventDefault to encode domain-specific
actions instead, e.g., displaying a popup when a link is clicked.
In this experiment, we created a buggy guest that displays an advertisement within
a <div> element. This guest mistakenly registers an onClick event handler that uses
preventDefault with the document object instead of with the <div> element. The result of
including this guest directly into the host’s protection domain is that all hyperlinks on
the Web page are rendered unresponsive. We then modified the host to isolate the guest
using a policy that disallows a transaction to commit if it attempts to register an onClick
handler with the document object. This prevented the advertisement from being displayed,
i.e., the <div> element containing the misbehaving guest was not even created, but other-
wise allowed the host to function correctly. JavaScript reference monitors proposed in
prior work can prevent the registration of the onClick handler, but leave the div element
of the misbehaving guest on the host’s Web page.

(2) Prototype Hijacking. We implemented a prototype hijacking attack by writing a
guest that set the Array.prototype.slice function to null. To illustrate the ill-effects of this
attack, we modified the host to include two popular (and benign) widgets, namely Twit-
ter [8] and AddThis [1], in addition to the malicious guest. The prototype hijacking
attack prevented both the benign widgets from functioning properly.
However, when the malicious guest is enclosed within a transaction whose iblock pre-
vents a commit if it detects prototype hijacking attacks, the host and both benign wid-
gets worked normally. We further inspected the transaction’s write set and verified that
none of the heap operations attributed to the malicious guest were actually applied to
the host. Although traditional JavaScript reference monitors can detect and prevent pro-
totype hijacking attacks by blocking further <script> execution, they do not allow the
hosts to cleanly recover from all heap changes.

400 M. Dhawan, C.-c. Shan, and V. Ganapathy

Fig. 9. Performance of guest benchmarks. This chart compares the time to load the unmodified
version of each guest benchmark against the time to load the transactional version in the two
variants of Transcript.

(3) Oversized Advertisement. We created a guest that displayed an interactive
JavaScript advertisement within a <div> element. In an unprotected host, this advertise-
ment expands to occupy the full screen on a mouseover event, i.e., the guest registered a
misbehaving event-handler that modifies the size of the <div>. We modified the host to
isolate this guest using a transaction and an iblock that prevents a commit if the size of
the <div> element increased beyond a pre-specified limit. With this policy, we observed
that the host could successfully prevent the undesired <div> modification by discarding
the speculative DOM and JavaScript heap changes made by the event handler executing
within the transaction.

6.3 Performance

We measured the overhead imposed by Transcript both using guest benchmarks, to es-
timate the overall cost of using transactions, and with microbenchmarks, to understand
the impact on specific JavaScript operations.

Guest Benchmarks. To evaluate the overall performance impact of Transcript, we
measured the increase in the load time of each guest benchmark. Recall that each bench-
mark is included in the Web page using a set of <script> tags; the version that uses
Transcript executes the corresponding JavaScript code within a single transaction using
modified <script> tags. The onload event fires at the end of the document loading process,
i.e., when all scripts have completed execution. We therefore measured the time elapsed
from the moment the page is loaded in the browser to the firing of the onload event.

To separately assess the impact of speculatively executing JavaScript and DOM op-
erations, each experiment involved executing the benchmarks on two separate vari-
ants of Transcript, namely Transcript (full) which supports both speculative DOM
and JavaScript operations and Transcript (JS only) which only supports speculative
JavaScript operations (and therefore does not isolate DOM operations of the guest).
Figure 9 presents the results averaged over 25 runs of this experiment. On average,
Transcript (JS only) increased load time by just 0.11 seconds while Transcript (full)
increased the load time by 0.16 seconds. These overheads are typically imperceptible
to end users. Only Color Picker had above-average overheads. This was because (a) the

Enhancing JavaScript with Transactions 401

guest heavily interacted with the DOM, causing frequent suspension of its transaction;
and (b) the guest had several Array operations that referenced the length of the array. Each
such operation triggered a traversal of read/write sets to calculate the array length.

Note that Transcript only degrades performance of JavaScript code executing within
transactions (i.e., guests). The performance of code executing outside transactions
(i.e., hosts) is not affected by our prototype.

Microbenchmark Overhead
Native Functions

eval("1") 6.69×
eval("if (true)true;false") 6.87×
fn.call(this, i) 1.89×

External operations
getElementById("checkbox") 6.78×
getElementsByTagName("input") 6.89×
createElement("div") 3.69×
createEvent("MouseEvents") 3.82×
addEventListener("click", clk, false) 26.51×
dispatchEvent(evt) 1.20×
document.write("Hi") 1.26×
document.write("<script>x=1;</script>") 2.01×

Fig. 10. Performance of function call
microbenchmarks

Microbenchmarks. We further dissected the
performance of Transcript using microbench-
marks designed to stress specific functionalities.
We used two sets of microbenchmarks: func-
tion calls and event dispatchers. In our ex-
periments, we executed each microbenchmark
within a transaction whose iblock simply per-
mitted all actions and resumed the transaction
without enforcing additional security policies,
and compared its performance against the non-
transactional version.

Function calls. We devised a set of microbench-
marks (Figure 10) that stress the performance of
Transcript’s function call-handling code. Each benchmark invoked the code in first col-
umn of Figure 10 10, 000 times.

Recall that Transcript suspends on function calls that cause external operations and
for certain native function calls, such as eval. Each suspend operation requires Tran-
script to save the state of the transaction, execute the iblock, and restore the transaction
state upon the execution of a resume call. Most of the benchmarks in Figure 10 trigger
a suspension, which induces significant overheads. In particular, addEventListener had an
overhead of 26.51×. The bulk of the overhead was induced by code in the iblock that
generates wrappers for the event handler registered using addEventListener.

Overhead
Event name Normalized Raw (µs)
Drag Event (drag) 1.71× 97
Keyboard Event (keypress) 1.16× 150
Message Event (message) 1.17× 85
Mouse Event (click) 1.54× 86
Mouse Event (mouseover) 2.05× 88
Mutation Event (DOMAttrModified) 2.14× 88
UI Event (overflow) 1.97× 61

Fig. 11. Performance of event dispatch
microbenchmarks

User Events. A JavaScript application ex-
ecuting within a transaction may dispatch
user events, such as mouse clicks and key
presses, which must be processed by the
event handler associated with the relevant
DOM node. The promptness with which
events are dispatched typically affects end-
user experience.

To measure the impact of transactions on
this aspect of browser performance, we de-
vised a set of microbenchmarks that dispatched user events such as clicking a check-
box, moving the mouse, pressing keys, etc. and measured the delay in handling them
(Figure 11).

In each case, code that generated and dispatched the event executed as a transaction
with an iblock that allowed all actions. To measure overhead, we executed this code
1,000 times and compared its performance against a native event dispatcher. Figure 11

402 M. Dhawan, C.-c. Shan, and V. Ganapathy

Policy T-LOC C-LOC Policy T-LOC C-LOC
Conscript-#1 7 2 Conscript-#2 5 6
Conscript-#3 6 3 Conscript-#4 9 7
Conscript-#5 9 9 Conscript-#6 5 8
Conscript-#7 7 5 Conscript-#8 5 6
Conscript-#10 9 16 Conscript-#11 12 17
Conscript-#12 5 4 Conscript-#13 4 6
Conscript-#14 3 5 Conscript-#15 6 7
Conscript-#16 6 4 Conscript-#17 7 5

Fig. 12. Policy complexity. Comparing policies in Transcript (T-LOC) and Conscript (C-LOC).
Policies are numbered as in Conscript [34]. We omitted Conscript-#9 since it is IE-specific.

presents the results, which show the normalized overhead as well as the raw delay to
process a single event. As this figure shows, although the normalized overheads range
from 16% to 114%, the raw delays average about 94 microseconds, which is impercep-
tible to end users.

6.4 Complexity of Policies

To study the complexity of writing policies in Transcript, we compared the number of
lines of code needed to write policies in Transcript and in Conscript [34]. We consid-
ered the policies discussed in Conscript and wrote equivalent policies in Transcript;
Figure 12 compares the source lines of code (counting number of semi-colons) of poli-
cies in Transcript and Conscript. This shows that the programming effort required to
encode policies in both systems is comparable.

7 Related Work

This paper builds upon the idea of extending JavaScript with transactions, which was
proposed in a recent position paper [14]. While that paper focused on the semantics of
the extended language, this paper is the first to report the design and implementation of
a complete speculative execution system for JavaScript.

There is much prior work in the broad area of isolating untrusted guests. Transcript
is unique because it allows hosts to recover cleanly and easily from the effects of ma-
licious or buggy guests (Figure 13). In exchange for requiring no modification to the
guest, Transcript requires modifications both to the host (i.e., the server side) and to the
browser (i.e., the client side) to enhance the JavaScript language.

Static Analysis. Despite the dynamic nature of JavaScript, there have been a few efforts
at statically analyzing JavaScript code. Gatekeeper [21] presents a static analysis to
validate widgets written in a subset of JavaScript. It does so by matching widget source
code against a database of patterns denoting unsafe programming practices. Guha et
al. [22] developed static techniques to improve AJAX security. Their work uses static
analysis to enhance a server-side proxy with models of AJAX computation on the client.
The proxy then ensures that AJAX requests from the client conform to these models.

Chugh et al. [12] developed a staged information-flow tracking framework for
JavaScript to protect hosts from untrusted guests. Its static analysis identifies constraints
on host variables that can be read or written by guests. It validates these constraints on

Enhancing JavaScript with Transactions 403

System Recovery
Unrestricted

guest
Unmodified

browser
Policy

coverage
Transcript ✓ ✓ ✗ Heap + DOM
Conscript [34] ✗ ✓ ✗ Heap + DOM
AdJail [26] ✗ ✓ ✓ DOM(1)

Caja [36] ✗ ✗ ✓ Heap + DOM
Wrappers [29,30,33] ✗ ✓(2) ✓ Heap + DOM
Info. flow [12] ✗ ✓ ✓ Heap
IRMs [42,48,43] ✗ ✓ ✓ Heap + DOM
Subsetting [30,13,18] ✗ ✗ ✓ Static policies(3)

Fig. 13. Techniques to confine untrusted guests. (1) Adjail uses a separate <iframe> to disal-
lows guests from executing in the host’s context. (2) Some wrapper-based solutions [29] restrict
JavaScript constructs allowed in guests. (3) Subsetting is a static technique and its policies are
not enforced at runtime.

code loaded at runtime via eval or <script> tags, and rejects such code if it violates these
constraints. Unlike Transcript, which tracks changes to both the heap and DOM, Chugh
et al.’s work only tracks changes to the heap.

Language Restriction. Several projects have defined subsets of JavaScript that omit
dynamic constructs, such as eval, with and this, to make it amenable to static
analysis [13,18,36,21]. However, designing safe subsets of JavaScript is non-trivial
[31,28,30,19], and also prevents code developers from using arbitrary constructs of the
language in their applications. Transcript places no such restrictions on guest code.

Object Capabilities, Wrappers, and Code Rewriting. Object capability and wrapper-
based solutions (e.g., [33,30,29]) create wrapped versions of JavaScript objects to be
protected, and ensure that such objects can only be accessed by code that has the capa-
bility to do so. In contrast to these techniques, which provide isolation by wrapping the
host’s objects, Transcript wraps guest code using transactions, and mediates its actions
with the host via iblocks. Prior research has also developed solutions to inline runtime
checks into untrusted guests. These include BrowserShield [43], CoreScript [48], and
the work of Phung et al. [42]. Unlike these works, Transcript simply wraps untrusted
code in a transaction, and does not modify it. These works also do not explicitly address
recovery.

Aspect-Oriented Policy Enforcement. Aspect-oriented programming (AOP) techniques
have previously been used to enforce cross-cutting security policies [17,10,16]. Among
the AOP-based frameworks for JavaScript [34,23], our work is most closely related
to Conscript [34], which uses runtime aspect-weaving to enforce policies on untrusted
guests. Both Conscript and Transcript require changes to the browser to support their
policy enforcement mechanisms. However, unlike Transcript, Conscript does not ad-
dress recovery from malicious guests, and also requires guests to be written in a subset
of JavaScript. While recovery may also be possible in hosts that use Conscript, the
hosts would have to encode these recovery policies explicitly. In contrast, hosts that use
Transcript can simply discard the speculative changes made by a policy-violating guest.

Browser-Based Sandboxing. Both BEEP [25] and MashupOS [45] enhance the browser
with new HTML constructs. BEEP’s constructs allow the browser to detect script-
injection attacks, while MashupOS provides sandboxing constructs to improve the se-
curity of client-side mashups. While Transcript requires modified <script> tags as well,

404 M. Dhawan, C.-c. Shan, and V. Ganapathy

it provides the ability to speculatively execute and observe the actions of untrusted code,
which neither BEEP nor MashupOS provide.

AdJail aims to protect hosts from malicious advertisements [26]. It confines adver-
tisements by executing them in a separate <iframe>, and uses postMessage to allow the
<iframe> to communicate with the host. Hosts use access control policies to determine
the set of DOM modifications allowed by an advertisement. AdJail is effective at confin-
ing advertisements, which cannot affect the host’s heap. However, it is unclear whether
this approach will work in scenarios where hosts and guests need to interact extensively,
e.g., in the case where the guest is a library that the host wishes to use. The forthcoming
EcmaScript 6 / Harmony modules [15] and HTML5 <iframe sandbox> attribute [24] also
enable new isolation mechanisms by constraining the way guest code interacts with the
host, but unlike Transcript they do not address recovery.

Sandboxing through Speculation. Blueprint [27] and Virtual Browser [11] confine
guests by setting up a virtual environment for their execution. This environment is it-
self written in JavaScript and parses HTML and script content, thereby mediating the
execution of guests on unmodified browsers. However, unlike Transcript, they do not
address recovery. Transcript is most closely related to Worlds [46] in its motivation to
provide first-class primitives that enable programmers to contain side-effects. However,
there are major design and implementation differences including Transcript’s ability to
enforce fine-grained security policies and its implementation in SpiderMonkey.

Using Transactions for Performance. Crom [35] applies speculation to event handlers
and takes non-speculative event handlers to create speculative versions, running them in
a cloned browser context. ParaScript [32] implements a selective checkpointing scheme
which avoids JavaScript constructs that allow code injection like document.write, inner-
HTML, etc., and stops speculation if checkpointing becomes expensive. Both, Crom
and ParaScript use speculation to improve performance. In contrast, Transcript ad-
dresses all scenarios in the design and implementation of a fully speculative JavaScript
engine and required several new contributions, such as the ability to suspend/resume
transactions and wrap event handlers.

8 Conclusion

Our research shows that extending JavaScript with support for transactions allows host-
ing Web applications to speculatively execute and enforce security policies on untrusted
guests. Speculative execution allows hosts to cleanly and easily recover from the effects
of malicious and misbehaving guests. In building Transcript, we made several contribu-
tions, including suspend/resume for JavaScript, support for speculative DOM updates,
and novel strategies to implement transactions in commodity JavaScript interpreters.

Acknowledgements. We thank James Mickens and the anonymous reviewers for their
comments. This work was supported by NSF award 0952128.

Enhancing JavaScript with Transactions 405

References

1. Addthis, http://www.addthis.com/
2. AJS: The ultra lightweight JavaScript library,
http://orangoo.com/labs/AJS/

3. BIGACE web content management system, http://www.bigace.de/
4. Dom-based xss injection, https://www.owasp.org/index.php/
Interpreter Injection#DOM-based XSS Injection

5. jQuery: The write less, do more, JavaScript library, http://jquery.com
6. Jquery UI slider plugin, http://jqueryui.com/demos/slider
7. JavaScript widgets/menu, http://jswidgets.sourceforge.net
8. Twitter/profile widget,
http://twitter.com/about/resources/widgets/widget_profile

9. ECMAScript language spec., ECMA-262, 5th edn. (December 2009)
10. Bauer, L., Ligatti, J., Walker, D.: Composing security policies with Polymer. In: ACM PLDI

(2005)
11. Cao, Y., Li, Z., Rastogi, V., Chen, Y.: Virtual browser: a Web-level sandbox to secure third-

party JavaScript without sacrificing functionality (poster). In: ACM CCS (2010)
12. Chugh, R., Meister, J., Jhala, R., Lerner, S.: Staged information flow in JavaScript. In: ACM

SIGPLAN PLDI (2009)
13. Crockford, D.: ADsafe - Making JavaScript safe for advertising, http://adsafe.org
14. Dhawan, M., Shan, C.-C., Ganapathy, V.: Position paper: The case for JavaScript transac-

tions. In: 5th ACM SIGPLAN PLAS Workshop (June 2010)
15. ECMAScript. Harmony modules,
http://wiki.ecmascript.org/doku.php?id=harmony:modules

16. Erlingsson, Ú.: The Inlined Reference Monitor Approach to Security Policy Enforcement.
PhD thesis, Cornell University (2004)

17. Evans, D., Twyman, A.: Flexible policy-directed code safety. In: IEEE S&P (1999)
18. Facebook. FBJS - Facebook developerwiki (2007)
19. Finifter, M., Weinberger, J., Barth, A.: Preventing capability leaks in secure JavaScript sub-

sets. In: NDSS (2010)
20. Godefroid, P., Klarlund, N., Sen, K.: Dart: directed automated random testing. SIGPLAN

Not. 40 (June 2005)
21. Guarnieri, S., Livshits, B.: GateKeeper: Mostly static enforcement of security and reliability

policies for JavaScript code. In: USENIX Security (2009)
22. Guha, A., Krishnamurthi, S., Jim, T.: Using static analysis for Ajax intrusion detection. In:

WWW (2009)
23. Washizaki, H., et al.: AOJS: Aspect-oriented JavaScript programming framework for Web

development. In: Intl. Wkshp. Aspects, Components, and Patterns for Infrastructure Software
(2009)

24. Hickson, I.: Html iframe sandbox attribute,
http://www.whatwg.org/specs/web-apps/current-work/multipage/

the-iframe-element.html#attr-iframe-sandbox

25. Jim, T., Swamy, N., Hicks, M.: Defeating script injection attacks with browser-enforced em-
bedded policies. In: WWW (2007)

26. Louw, M.T., Ganesh, K.T., Venkatakrishnan, V.N.: Adjail: Practical enforcement of confi-
dentiality and integrity policies on Web advertisements. In: USENIX Security (2010)

27. Ter Louw, M., Venkatakrishnan, V.N.: Blueprint: Robust prevention of cross-site scripting
attacks for existing browsers. In: IEEE S&P (2009)

http://www.addthis.com/
http://orangoo.com/labs/AJS/
http://www.bigace.de/
https://www.owasp.org/index.php/Interpreter_Injection#DOM-based_XSS_Injection
https://www.owasp.org/index.php/Interpreter_Injection#DOM-based_XSS_Injection
http://jquery.com
http://jqueryui.com/demos/slider
http://jswidgets.sourceforge.net
http://twitter.com/about/resources/widgets/widget_profile
http://adsafe.org
http://wiki.ecmascript.org/doku.php?id=harmony:modules
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-iframe-element.html#attr-iframe-sandbox

406 M. Dhawan, C.-c. Shan, and V. Ganapathy

28. Maffeis, S., Mitchell, J.C., Taly, A.: An Operational Semantics for JavaScript. In: Rama-
lingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 307–325. Springer, Heidelberg (2008)

29. Maffeis, S., Mitchell, J.C., Taly, A.: Isolating JavaScript with Filters, Rewriting, and Wrap-
pers. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 505–522.
Springer, Heidelberg (2009)

30. Maffeis, S., Mitchell, J.C., Taly, A.: Object capabilities and isolation of untrusted Web appli-
cations. In: IEEE S&P (2010)

31. Maffeis, S., Taly, A.: Language based isolation of untrusted JavaScript. In: IEEE CSF (2009)
32. Mehrara, M., Hsu, P.-C., Samadi, M., Mahlke, S.: Dynamic parallelization of javascript ap-

plications using an ultra-lightweight speculation mechanism. In: International Symposium
on High-Performance Computer Architecture, pp. 87–98 (2011)

33. Meyerovich, L., Porter Felt, A., Miller, M.S.: Object views: Fine-grained sharing in browsers.
In: WWW (2010)

34. Meyerovich, L., Livshits, B.: Conscript: Specifying and enforcing fine-grained security poli-
cies for JavaScript in the browser. In: IEEE S&P (2010)

35. Mickens, J., Elson, J., Howell, J., Lorch, J.: Crom: Faster Web browsing using speculative
execution. In: NSDI (2010)

36. Miller, M.S., Samuel, M., Laurie, B., Awad, I., Stay, M.: Caja: Safe active content in sanitized
JavaScript (2008) (manuscript)

37. Mozilla Developer Center. HTTP access control,
http://developer.mozilla.org/En/HTTP_access_control

38. Orangoo-Labs. GoogieSpell, http://orangoo.com/labs/GoogieSpell
39. Orangoo-Labs GreyBox, http://orangoo.com/labs/GreyBox
40. Orangoo-Labs. Sortable list widget,
http://orangoo.com/AJS/examples/sortable_list.html

41. Di Paola, S., Fedon, G.: Subverting Ajax: Next generation vulnerabilities in 2.0 Web appli-
cations. In: 23rd Chaos Communication Congress (2006)

42. Phung, P., Sands, D., Chudnov, A.: Lightweight self-protecting JavaScript. In: ASIACCS
(2009)

43. Reis, C., Dunagan, J., Wang, H.J., Dubrovsky, O., Esmeir, S.: Browsershield: Vulnerability-
driven filtering of dynamic HTML. ACM Trans. Web 1(3), 11 (2007)

44. Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine for c. SIGSOFT Softw.
Eng. Notes 30 (September 2005)

45. Wang, H.J., Fan, X., Howell, J., Jackson, C.: Protection and communication abstractions for
web browsers in MashupOS. In: ACM SOSP (2007)

46. Warth, A., Ohshima, Y., Kaehler, T., Kay, A.: Worlds: Controlling the Scope of Side Effects.
In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 179–203. Springer, Heidelberg
(2011)

47. WWW-Consortium. Document object model events (November 2000),
http://www.w3.org/TR/DOM-Level-2-Events/events.html

48. Yu, D., Chander, A., Islam, N., Serikov, I.: JavaScript instrumentation for browser security.
In: ACM POPL (2007)

http://developer.mozilla.org/En/HTTP_access_control
http://orangoo.com/labs/GoogieSpell
http://orangoo.com/labs/GreyBox
http://orangoo.com/AJS/examples/sortable_list.html
http://www.w3.org/TR/DOM-Level-2-Events/events.html

Enhancing JavaScript with Transactions 407

A Non-tail-Recursive Interpreters

1 function f() { document.body.appendChild(...); }
2 var tx = transaction { f(); }
3 g(tx);

(a) Problematic code for an interpreter with non-tail
recursion.

call to JS interpret

Native (C++) stack

call to f

JavaScript stack

tx delimiter

main program

⎫
⎪⎪⎬
⎪⎪⎭

re
m

ov
ed

(b) When the transaction suspends, the interpreter
removes activation records from the front of the
JavaScript stack, up to and including the (youngest)
transaction delimiter.

call to JS interpret

Native (C++) stack

call to g

JavaScript stack

main program

.

.

.
read set
write set

call to f

tx delimiter

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

transaction
object

(c) Before resuming the transaction, the main pro-
gram may invoke other functions, say g.

call to JS interpret

Native (C++) stack

call to f

JavaScript stack

tx delimiter

call to g

main program

⎫
⎪⎪⎬
⎪⎪⎭

re
in

st
at

ed

(d) When the transaction is resumed, its activation
records are reinstated onto the front of the JavaScript
stack.

call to JS interpret

call to JS interpret

Native (C++) stack

call to f

JavaScript stack

tx delimiter

main program

⎫
⎪⎪⎬
⎪⎪⎭

to
re

m
ov

e

(e) If JS interpret were to implement JavaScript
function calls by calling itself recursively (as happens
in the implementation of certain constructs, such as
eval), an older call to JS interpret (the lower one in
this diagram) would need to return before a younger
one does. Control flow in C++ is not flexible enough
to enable this.

Fig. 14. Native versus JavaScript call stacks

A key challenge in enhancing a legacy
JavaScript interpreter, such as Spider-
Monkey, with support for transactions
is in how the interpreter uses recursion.
To support the suspend/resume mecha-
nism for switching control flow between
a transaction and its iblock, the inter-
preter must not accumulate any activa-
tion records in its native stack (e.g., the
C++ stack, for SpiderMonkey) between
when a transaction starts and when it sus-
pends. In particular, the interpreter must
not represent JavaScript function calls by
C++ function calls. The same issue also
arises when a compiler or JIT interpreter
is used to turn JavaScript code into ma-
chine code.

To illustrate this point, consider
SpiderMonkey, which implements the
bytecode interpreter in C++. The main
entry point to the bytecode interpreter
is the C++ function JS interpret, which
maintains the JavaScript stack as a linked
list of activation records, each of which
is a C++ structure. When one function
calls another in JavaScript, the JS inter-
pret function does not call itself in C++;
instead, it adds a new activation record
to the front of the linked list and con-
tinues with the same bytecode interpreter
loop as before. Similarly, when a func-
tion returns to another in JavaScript, JS -
interpret does not return in C++; instead,
it removes an old activation record from
the front of the linked list and continues
with the same bytecode interpreter loop
as before. For the most part, SpiderMon-
key does not represent JavaScript calls by
C++ calls.

The fact that SpiderMonkey does not
represent JavaScript calls by native calls
helps us add transactions to it without making invasive changes, as the following exam-
ple illustrates. Suppose a transaction invokes a function f that suspends for some reason,

408 M. Dhawan, C.-c. Shan, and V. Ganapathy

e.g., in Figure 14(a), the function f calls appendChild. If the C++ call to JS interpret that
executes the transaction were not same as the one that executes the called function f,
then the former, although older, would have to return before the latter returns. As de-
tailed in Figure 14, the former has to return when suspending the transaction, whereas
the latter has to return when resuming the transaction. Even exception handling in C++
does not allow such control flow.

Unfortunately, JS interpret in SpiderMonkey does call itself in a few situations. For
example, it handles the eval construct in this way, and the problem of the C++ stack in
Figure 14(e) does arise if we replace the document.body.appendChild(...) of Figure 14(a) by
eval("document.body.appendChild(...)"). One way to solve this problem requires applying
the continuation-passing-style transformation to the interpreter to put it into tail form,
i.e., convert all recursive calls to JS interpret to tail calls. However, this transformation
is invasive, especially if done manually on legacy interpreters.

Transcript uses a less invasive mechanism to enable suspend/resume in SpiderMon-
key. This mechanism is similar in functionality to gluing (see Section 3.1), and we ex-
plain it with an example. Consider the eval construct, whose functionality is to parse its
input string, compile it into bytecode, and then execute the bytecode as usual. Because
only the last step, i.e., that of executing the bytecode, can suspend, we simply changed
the behavior of eval so that, if invoked inside a transaction, it suspends the transaction
right away. The iblock of the transaction can then compile the string into bytecode and
include the bytecode into the execution of the transaction. This is achieved by adding
a new activation record to the front of the transaction’s JavaScript stack and modi-
fying the program counter to execute this code when the transaction resumes. When
the suspended transaction resumes, it transfers control to the evaled code, which can
freely suspend. Besides eval, our current Transcript prototype also implements gluing
for document.write (as discussed in Section 3.1) and JavaScript builtins call and apply,
which make non-tail recursive calls to JS interpret.

JavaScript as an Embedded DSL

Grzegorz Kossakowski, Nada Amin, Tiark Rompf, and Martin Odersky

Ecole Polytechnique Fédérale de Lausanne (EPFL)
first.last@epfl.ch

Abstract. Developing rich web applications requires mastering different
environments on the client and server sides. While there is considerable
choice on the server-side, the client-side is tied to JavaScript, which poses
substantial software engineering challenges, such as moving or sharing
pieces of code between the environments. We embed JavaScript as a
DSL in Scala, using Lightweight Modular Staging. DSL code can be
compiled to JavaScript or executed as part of the server application.
We use features of the host language to make client-side programming
safer and more convenient. We use gradual typing to interface typed
DSL programs with existing JavaScript APIs. We exploit a selective CPS
transform already available in the host language to provide a compelling
abstraction over asynchronous callback-driven programming in our DSL.

Keywords: JavaScript, Scala, DSL, programming languages.

1 Introduction

Developing rich web applications requires mastering a heterogeneous
environment: though the server-side can be implemented in any language, on
the client-side, the choice is limited to JavaScript. The trend towards alterna-
tive approaches to client-side programming (as embodied by CoffeeScript [9],
Dart [14] & GWT [17]) shows the need for more options on the client-side. How
do we bring advances in programming languages to client-side programming?

One challenge in developing a large code base in JavaScript is the lack of static
typing, as types are helpful for maintenance, refactoring, and reasoning about
correctness. Furthermore, there is a need for more abstraction and modularity.
“Inversion of control” in asynchronous callback-driven programming leads to code
with control structures that are difficult to reason about. Another challenge is
to introduce helpful abstractions without a big hit on performance and/or code
size. Communication between the server side and the client side aggravates the
impedance mismatch: in particular, data validation logic needs to be duplicated
on the client-side for interactivity and on the server-side for security.

There are three widely known approaches for addressing the challenges out-
lined above. One is to create a standalone language or DSL that is compiled to
JavaScript and provides different abstractions compared to JavaScript. Exam-
ples include WebDSL [36], Links [10,11] and Dart [14]. However, this approach
usually requires a lot of effort in terms of language and compiler design, and

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 409–434, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

410 G. Kossakowski et al.

tooling support, although WebDSL leverages Spoofax [19] to alleviate this ef-
fort. Furthermore, it is not always clear how these languages interact with other
languages on the server-side or with the existing JavaScript ecosystem on the
client-side.

Another approach is to start with an existing language like Java, Scala or Clo-
jure and compile it to JavaScript. Examples include GWT [17], Scala+GWT [30]
and Clojurescript [8]. This approach addresses the problem of impedance mis-
match between client and server programming but comes with its own set of
challenges. In particular, compiling Scala code to JavaScript requires compil-
ing Scala’s standard library to JavaScript as any non-trivial Scala program uses
Scala collections. This leads to not taking full advantage of libraries and ab-
stractions provided by the target platform which results in big code size and
suboptimal performance of Scala applications compiled to JavaScript. For ex-
ample, a map keyed by strings would be implemented natively in JavaScript
as an object literal, while, in Scala, one would likely use the hash map from
the standard library, causing it to be compiled to and emulated in JavaScript.
Moreover, both approaches tend to not accommodate very well to different API
design and programming styles seen in many existing JavaScript libraries. A
drawback of this second approach is that the whole starting language needs to
be translated to JavaScript: there is no easy or modular way to limit the scope
of the source language. The F# Web Tools [26] are an interesting variation of
this approach that employ F# quotations to translate only parts of a program
and allow programmers to define custom mappings for individual data types.

A third approach is to design a language that is a thin layer on top of
JavaScript but provides some new features. A prime example of this idea is Cof-
feeScript [9]. This approach makes it easy to integrate with existing JavaScript
libraries but does not solve the impedance mismatch problem. In addition, it
typically does not give rise to new abstractions addressing problems seen in
callback-driven programming style, though some JavaScript libraries such as
Flapjax [22] and Arrowlets [20] are specifically designed for this purpose.

We present a different approach, based on Lightweight Modular Staging
(LMS) [28], that aims to incorporate good ideas from all the approaches pre-
sented above but at the same time tries to avoid their described shortcomings.
LMS is a technique for embedding DSLs as libraries into a host language such as
Scala, while enabling domain-specific compilation / code-generation. The pro-
gram is split into two stages: the first stage is a program generator that, when
run, produces the second stage program. Whether an expression belongs to the
first or second stage is decided by its type. Expressions belonging to the sec-
ond stage, also called “staged expressions”, have type Rep[T] in the first stage
when yielding a computation of type T in the second stage. Expressions evalu-
ated in the first stage become constants at the second stage. Other approaches
to staging include MetaML [34], LISP quasiquotations, and binding-time anal-
ysis in partial evaluation. Previous work has established LMS as a pragmatic
approach to runtime code generation and compiled DSLs. In particular, the
Delite framework [4,29,7] uses this approach to provide an extensible suite of

JavaScript as an Embedded DSL 411

high-performance DSLs targeting heterogeneous parallel platforms (with options
to generate code to Scala, C and Cuda) [21], for domains such as machine learn-
ing [33], numeric array processing [35] and mesh-based partial differential equa-
tion solvers [6]. LMS has also been used to generate SQL queries [37].

We propose to embed JavaScript as a DSL in a host language. 1 Through LMS
(reviewed in section 2), we tackle the challenges outlined above with minimal
effort, as most of the work is off-loaded to the host language. In particular, we
make the following contributions:

– Our DSL is statically typed through the host language, yet supports grad-
ual typing notably for incorporating external JavaScript libraries and APIs
(section 3).

– In addition to generating JavaScript code, our DSL can be executed directly
in the host language, allowing code to be shared between client and server
(section 4).

– We use advanced object-oriented techniques to achieve modularity in our
DSL: each language primitive and API is defined in a separate module (sec-
tion 5).

– Our DSL supports typed object literals and class-based objects. The trans-
lations to JavaScript are lightweight and intuitive: the object literals trans-
late to JSON-like object literals and the class-based objects to JavaScript
constructor-based objects (section 6).

– On top of the straightforward embedding, we implement advanced abstrac-
tions in the host language. With minimal effort, we exploit the selective CPS
transform already existing in Scala to provide a compelling abstraction over
asynchronous callback-driven programming in our DSL (section 7). The new
insight here is that CPS transforming a program generator allows it to gen-
erate code that is in CPS. This case-study demonstrates the fruitfulness of
re-using existing host language features to enhance our embedded DSL.

In section 8, we describe our experience in using the DSL, and conclude in
section 9.

In addition to the contributions above, the present work significantly ex-
tends the LMS framework, which is beneficial to future DSL efforts taking
the JavaScript work as a case study. Previous LMS embeddings had to define
each staged operation explicitly (like in section 2.2). This paper contributes
lifting of whole traits or classes (through the repProxy mechanism described
and used in sections 3.1& 6.3), untyped or optionally typed operations (sec-
tions 3.2, 3.3& 3.4), and typed object literals (section 6.2) including necessary
language support of the Scala-Virtualized [24] compiler.

1 Surely, the embedded language is not exactly JavaScript: it naturally is a subset of
Scala, the host language. However, it is quite close to JavaScript. Often one can take
snippets of JavaScript code and use them in the DSL with minor syntactic tweaking,
as demonstrated by the Snowflake example described in section 4.

412 G. Kossakowski et al.

2 Introduction to LMS

In LMS, a DSL is split into two parts, its interface and its implementation.
Both parts can be assembled from components in the form of Scala traits. DSL
programs are written in terms of the DSL interface only, without knowledge of
the implementation.

Part of each DSL interface is an abstract type constructor Rep[_] that is
used to wrap types in the DSL programs. The DSL implementation provides
a concrete instantiation of Rep as IR nodes. When the DSL program is staged,
it produces an intermediate representation (IR), from which the final code can
be generated. In the DSL program, wrapped types such as Rep[Int] represent
staged computations while expressions of plain unwrapped types (Int, Bool, etc.)
are evaluated at staging time as in [5,18].

Consider the difference between these two programs:

def prog1(b: Bool, x: Rep[Int]) = if (b) x else x+1
def prog2(b: Rep[Bool], x: Rep[Int]) = if (b) x else x+1

The only difference in these two programs is the type of the parameter b, il-
lustrating that staging is purely type-driven with no syntactic overhead as the
body of the programs are identical.

In prog1, b is a simple boolean, so it must be provided at staging time, and
the if is evaluated at staging time. For example, prog1(true, x) evaluates to x.
In prog2, b is a staged value, representing a computation which yields a boolean.
So prog2(b, x) evaluates to an IR node for the if: If(b, x, Plus(x, Const(1))).

For prog2, notice that the if got transformed into an IR node. To achieve
this, LMS uses Scala-Virtualized [24], a suite of minimal extensions to the reg-
ular Scala compiler, in which control structures such as if can be reified into
method calls, so that alternative implementations can be provided. In our case,
we provide an implementation of if that constructs an IR node instead of act-
ing as a conditional. In addition, the + operation is overloaded to act on both
staged and unstaged expressions. This is achieved by an implicit conversion from
Rep[Int] to a class IntOps, which defines a + method that creates an IR node Plus

when executed. Both of Plus’s arguments must be staged. We use an implicit
conversion to stage constants when needed by creating a Const IR node.

2.1 Example: A DSL Program and Its Generated JavaScript Code

The following DSL snippet creates an array representing a table of multiplica-
tions:

def test(n: Rep[Int]): Rep[Array[Int]] =
for (i <- range(0, n); j <- range(0, n)) yield i*j

Here is the JavaScript code generated for this snippet:

function test(x0) {
var x6 = []

JavaScript as an Embedded DSL 413

for(var x1=0;x1<x0;x1++){
var x4 = []
for(var x2=0;x2<x0;x2++){
var x3 = x1 * x2
x4[x2]=x3

}
x6.splice.apply(x6, [x6.length,0].concat(x4))

}
return x6

}

The generated code resembles single-assignment form. The nested for-loop is
desugared into a flatMap which generates the nested for-loop and the splice pat-
tern concatenating the inner x4 arrays into one x6 array in the JavaScript code.2

2.2 Walkthrough: Defining a DSL Component

To conclude the introduction to LMS, we show how to add a component for
logging in a DSL, generating JavaScript code which calls console.log.

We start by defining the interface:

trait Debug extends Base {
def log(msg: Rep[String]): Rep[Unit]

}

The Base trait is part of the core LMS framework and provides the abstract
type constructor Rep.

Now, we define the implementation:

trait DebugExp extends Debug with EffectExp {
case class Log(msg: Exp[String]) extends Def[Unit]
def log(msg: Exp[String]): Exp[Unit] = reflectEffect(Log(msg))

}

The EffectExp trait is part of the core LMS framework. It inherits from BaseExp

which instantiates Rep as Exp. Exp represents an IR via two subclasses: Const for
constants and Sym for named values defining a Def. Def is the base class for all
IR nodes. In our DebugExp trait, we extend Def to support a new IR node: Log.

IR nodes are defined as Defs but they are never referenced explicitly as such.
Instead each Def has a corresponding symbol (an instance of Sym). IR nodes
refer to each other using their symbols. This is why, in the code shown, the
msg parameter is of type Exp (not Def). The method log returns an Exp. Calling
reflectEffect is what creates this symbol from the Def.

In general, the framework provides an implicit conversion from Def to Exp,
which performs common subexpression elimination by re-using the same symbol
for identical definitions. We do not use the automatic conversion here, because

2 Obviously, the generated code can be optimized further.

414 G. Kossakowski et al.

log is a side-effecting operation, and we do not want to (re)move any such calls
even if their message is the same.

The framework schedules the code generation from the graph of Exps and their
dependencies through Defs. It chooses which Sym/Def pairs to emit and in which
order. To implement code generation to JavaScript for our logging IR node, we
simply override emitNode to handle Log:

trait JSGenDebug extends JSGenEffect {
val IR: DebugExp
import IR._
override def emitNode(sym: Sym[Any], rhs: Def[Any])(
implicit stream: PrintWriter) = rhs match {
case Log(s) => emitValDef(sym, "console.log(" + quote(s) + ")")
case _ => super.emitNode(sym, rhs)

}
}

Notice that in order to compose nicely with other traits, the overridden method
just handles the case it knows and delegates to other traits, via super, the emit-
ting of nodes it doesn’t know about.

3 Gradual Typing for Interfacing with Existing APIs

Since our DSL is embedded in Scala, it inherits its static type system. However,
the generated JavaScript code doesn’t need the static types. Therefore, to help in-
tegrate external JavaScript libraries and APIs (for example, the browser’s DOM
API), we support a form of gradual typing. This has proved especially useful for
rapid-prototyping, where external libraries are first incorporated dynamically,
and later declared as typed APIs. Various practical and theoretical aspects of
gradual typing have been studied by [38,2,1,31,32].

3.1 Typed APIs

First, we show how to incorporate an external JavaScript API in a fully-typed
way into our DSL. As an example, consider the following DSL snippet, which
gets the context of an HTML5 canvas element selected by id:

val context = document.getElementById("canvas").as[Canvas].getContext()

At the DSL interface level, we declare our typed APIs as abstract Scala traits:

trait Dom {
val document: Rep[Element]
trait Element
trait ElementOps {
def getElementById(id: Rep[String]): Rep[Element]

}
trait Canvas extends Element

JavaScript as an Embedded DSL 415

trait CanvasOps extends ElementOps {
def getContext(context: Rep[String]): Rep[Context]

}
trait Context
trait ContextOps {
def lineTo(x: Rep[Int], y: Rep[Int]): Rep[Unit]
// etc.

}
}

Notice that document has type Rep[Element], and needs to implement the inter-
face of ElementOps, so that document.getElementById("canvas") is well-typed. We
achieve this using an implicit conversion from Rep[Element] to ElementOps. At the
DSL implementation level, the ElementOps returned by this implicit conversion
needs to generate an IR node for each method call, as shown in the walkthrough
in section 2.2. For example, document.getElementById("canvas") becomes the IR
node MethodCall(document, "getElementById", List("canvas")). This is a me-
chanical transformation, implemented by repProxy, a library method using re-
flection to intercept method calls and generate IR nodes based on the method
name and the arguments of the invocation. Note that this use of reflection is
purely at staging time, so there is no overhead in the generated code.

trait DomLift extends Dom with JSProxyBase {
implicit def repToElementOps(x: Rep[Element]): ElementOps =
repProxy[Element,ElementOps](x)

implicit def repToCanvasOps(x: Rep[Canvas]): CanvasOps =
repProxy[Canvas,CanvasOps](x)

implicit def repToContextOps(x: Rep[Context]): ContextOps =
repProxy[Context,ContextOps](x)

}

Note also that since getElementById returns an arbitrary DOM element, we need
to cast it to a Canvas using as[Canvas]. The as operation is implemented simply
as a cast in the host language (no IR node is created):

trait AsRep {
def as[T]: Rep[T]

}
implicit def asRep(x: Rep[_]): AsRep = new AsRep {
def as[T]: Rep[T] = x.asInstanceOf[Rep[T]]

}

Instead of this no-op implementation, it is possible to insert run-time check-cast
assertions in the generated JavaScript code.

3.2 Casting and Optional Runtime Type Checks

The need for casting arises in a few contexts. One of them is the boundary
between typed and untyped portions of a program [38,2]. Passing a value from

416 G. Kossakowski et al.

an untyped portion to a typed one usually requires a cast. Another situation
where casts are needed is interaction with external services. For example, to
process data from an external service such as Twitter, we cast it to its expected
type (an array of JSON objects, each with a field called text):

type TwitterResponse = Array[JSLiteral {val text: String}]
def fetchTweets(username: Rep[String]) = {
val raw = ajax.get { ... }
raw.as[TwitterResponse]

}

A more complete example is provided in section 7. In this situation, it is useful
to generate runtime checks either as an aid during development and debugging
time or as a security mechanism that validates data coming from an external
source. In the example above, if runtime checks are enabled, by failing early,
we obtain a guarantee that all data returned from fetchTweets conforms to
type TwitterResponse which means that any later access to the text field of any
element of the data array will never fail, and always return a string.

Notice that when a typed API is defined for an external library, there are
implicit casts introduced for argument and return types of the defined methods.
These casts can also be checked at runtime to ensure compliance.

We have implemented a component that generates JavaScript code that as-
serts casts at runtime. It was fairly straightforward as the host language allows
us to easily inspect types involved in casting. Since this component just provides
a different implementation of the same casting method as, it can be enabled
selectively for performance reasons.

3.3 Scala Dynamic

Since our DSL compiles to JavaScript, which is dynamically typed, it is appealing
to allow expressions and APIs in our DSL to also, selectively, be dynamically
typed. This is especially useful for rapid-prototyping.

We provide a component, JSDynamic, which allows any expression to become
dynamically typed, by wrapping it in a dynamic call. The dynamic wrapper returns
a DynamicRep, on which any method call, field access and field update is possible.
A dynamic method call and field access returns another DynamicRep expression,
so dynamic expressions can be chained.

DynamicRep exploits a new Scala feature3, based on a special trait Dynamic:
An expression whose type T is a subtype of Dynamic is subject to the following
rewrites:

– x.f rewrites to x.selectDynamic("f"),
– x.m(a, ..., z) rewrites to x.applyDynamic("m")(a, ..., z),
– x.f = v rewrites to x.updateDynamic("f")(v).

These rewrites take place when the type T doesn’t statically have field f and
method m.
3 C#’s type “dynamic” [3] can serve the same purpose.

JavaScript as an Embedded DSL 417

At the implementation level, as these rewriting take place, we generate IR
nodes which allow us to then generate straightforward JavaScript for the origi-
nal expressions. For example, for the expression dynamic(x).foo(1, 2), we would
generate an IR node like MethodCall(x, "foo", List(Const(1), Const(2))). From
this IR node, it is easy to generate the JavaScript code x.foo(1, 2). Note the
similarity with the IR nodes generated for typed APIs.

3.4 From Dynamic to Static

This possibility to escape into dynamic typing is particularly useful in simplifying
the incorporation of external JavaScript APIs and libraries. Sometimes, the user
might not want to build a statically typed API for each external JavaScript
library. In addition, for some library, it might be awkward to come up with such
a statically-typed interface. In general, we expect users to start with a dynamic
API for an external library, and progressively migrate it to a typed API as the
code matures. Consider again the example introduced in the typed API section:

val context = document.getElementById("canvas").as[Canvas].getContext()

In a fully dynamic scenario, we declare the DOM API simply as:

trait Dom extends JSDynamic {
val document: DynamicRep

}

The as[Canvas] cast is not necessary in this dynamically typed setting:

val context = document.getElementById("canvas").getContext()

As a first step towards statically typing the API, we declare the type Element:

trait Dom extends JSProxyBase with JSDynamic {
val document: Rep[Element]
trait Element
trait ElementOps {
def getElementById(id: Rep[String]): DynamicRep

}
implicit def repToElementOps(x: Rep[Element]): ElementOps =
repProxy[Element,ElementOps](x)

}

Since the method getElementById returns a DynamicRep, only the emphasized part
of the expression is statically typed:

val context = document.getElementById("canvas").getContext()

We can then complete the static typing by declaring types for Canvas and Context

as seen in the typed API section.
In our gradual typing scheme, an expression is either completely statically

typed or completely dynamically typed. Once document is declared as Rep[Element]

418 G. Kossakowski et al.

instead of DynamicRep, it is a type error to call an arbitrary method which is not
part of its declared ElementOps interface. If needed, it is always possible to ex-
plicitly move from a statically-typed expression to a dynamically-typed one by
wrapping it in a dynamic call.

4 Sharing Code between Client and Server

In addition to generating JavaScript / client-side code, we want to be able to
re-use our DSL code on the Scala / server-side. In the LMS approach, the DSL
uses the abstract type constructor Rep [23]. When generating JavaScript, this
abstract type constructor is defined by IR nodes. Another definition, which we
dub “trivial embedding”, is to use the identity type constructor: Rep[T] = T. By
stripping out Reps in this way, our DSL can operate on concrete Scala types,
replacing staging with direct evaluation. Even in the trivial embedding, when
the DSL code operates on concrete Scala types, virtualization still occurs because
the usage layer of the DSL is still in terms of abstract Reps.

As an example, consider the following DSL snippet, which computes the ab-
solute value:

trait Ex extends JS {
def abs(x: Rep[Int]) = if (x < 0) -x else x

}

We can use this DSL snippet to generate JavaScript code:

new Ex with JSExp { self =>
val codegen = new JSGen { ... }
codegen.emitSource(abs _, "abs", ...)

}

We can also use this DSL snippet directly in Scala via the trivial embedding
(defined by JSInScala):

new Ex with JSInScala { self =>
println(abs(-3))

}

In the JavaScript example (when mixing in JSExp) evaluating abs(x) results in an
IR tree roughly equivalent to If(LessThan(Sym("x"), Const(0)), Neg(Sym("x")),

Sym("x")). In the trivial embedding, when abs(-3) gets called, it evaluates to 3 by
executing the virtualized if as a normal condition. In short, in the trivial embed-
ding, the virtualized method calls are evaluated in-place without constructing
IR nodes.

In the previous section, we showed how to define typed APIs to represent
JavaScript external libraries or dependencies. In the trivial embedding, we need
to give an interpretation to these APIs. For example, we can implement a Canvas
context in Scala by using native graphics to draw on a desktop widget instead
of a web page. We translated David Flanagan’s Canvas example from the book

JavaScript as an Embedded DSL 419

Fig. 1. Snowflakes rendered using HTML5 Canvas and Java’s 2D

“JavaScript: The Definitive Guide” [16], which draws Koch snowflakes on a can-
vas [15]. First, the translation from JavaScript to our DSL is straightforward:
the code looks the same except for some minor declarations. Then, from our
DSL code, we can generate JavaScript code to draw the snowflakes on a canvas
as in the original code. In addition, via the trivial embedding, we can execute
the DSL code in Scala to draw snowflakes on a desktop widget. Screenshot pre-
senting snowflakes rendered in a browser using HTML5 Canvas and Java’s 2D
are presented in figure 1.

HTML5 Canvas is a standard that is not implemented by all browsers yet so
a fall-back mechanism is needed to support users of older browsers. This can be
achieved through the trivial embedding by drawing using Java’s 2D API, saving
the result as an image and sending it to the browser. The decision to either
generate a JavaScript snippet that draws on canvas and send it to the browser,
or render the image on the server can be made at runtime (e.g. after inspecting
information about the client’s browser). In the case of rendering on the server-
side, one can store computation that renders an image using Java’s graphics 2D
in a hash map and send back to the client the key as an url for an image. When
a browser makes a second request, computation can be restored from the hash
map, executed and the result sent back to the browser. All of that is possible
because the computation itself is expressed against an abstract DSL API so we
can swap implementations to either generate JavaScript or run the computation
at the server side. Moreover, our DSL is just a library and computations are
expressed as first-class values in a host language so they can be passed around
the server program, stored in a hash map, etc.

A drawback of the trivial embedding is that although lightweight, virtualiza-
tion is not completely free, and a small virtualization overhead is incurred each
time the program is evaluated. To avoid this, we could generate Scala code in

420 G. Kossakowski et al.

the same way as we now generate JavaScript code, relying on a mechanism to
incorporate the generated Scala code into the rest of the program. In fact, this
approach is taken by the Delite framework.

5 Modularity Interlude

The design of our DSL supports modularity at many levels. We use Scala’s
traits heavily to allow our DSL to be assembled from and extended with com-
ponents [25].

For example, the feature to escape into dynamic typing is implemented as an
independent component that can be mixed and matched with others. Similarly,
users specify external APIs as components. The separation between the interface
level and the implementation level is also done by having distinct components
for each level. This allows the same DSL program to be interpreted in multiple
ways, as has been shown with the trivial embedding to Scala.

As the features available in a DSL program are specified by composing com-
ponents, it is possible to use this mechanism to enforce that a subprogram
only uses a restricted set of features. For example, worker threads in JavaScript
(“WebWorkers”) are not allowed to manipulate the DOM. This can be enforced
by not mixing in the DOM component in the subprogram for a worker thread.

The code generation level is assembled from components as in the interface
and implementation levels. Furthermore, optimizations in code generation can
be implemented as optional components to be mixed in.

6 Reification of Objects

By exploiting staging, the generated code can remain simple and relatively un-
structured as many of the high-level constructs can be evaluated away at staging
time. However, it is sometimes useful to be able to reify more complex structures.
For example, APIs sometimes expect arguments or return results as object liter-
als. Therefore, we support a few type-safe ways to create more complex staged
structures, which we explain below.

6.1 Functions

A function in the host language acting on reified types has type: Rep[A] => Rep[B].
For example, the function inc has type Rep[Int] => Rep[Int]:

val inc = (x: Rep[Int]) => x + 1

Invoking such a function at staging time simply inlines the call: inc(4*x) results
in 4*x + 1. This is useful and nice, because it removes abstraction overhead from
the generated code.

We also want the ability to treat functions as first-class staged values, since
JavaScript supports them. In order to do this, we provide a higher-order function

JavaScript as an Embedded DSL 421

fun which takes a function of type Rep[A] => Rep[B] and converts4 it to a staged
function of type Rep[A => B]. For example, if we define inc in the following way,
its type is Rep[Int => Int]:

val inc = fun { (x: Rep[Int]) => x + 1 }

Calling inc(4*x) results in an Apply IR node. We actually generate JavaScript
code for the staged inc function, while we did not for the unstaged one, since
it is inlined at every call site during staging. The generated code looks roughly
like the following:

var inc = function(a) {
return a+1

}
inc(4*x)

First-class functions are widely used in JavaScript. One particular common case
is for callback-driven programming. Therefore, staged functions are important
to interface with existing libraries. They will also play a crucial role in section 7,
where we abstract over callback-driven programming.

6.2 Typed Object Literals

Our DSL provides typed immutable object literals to represent JavaScript object
literals. As an example:

val o = new JSLiteral {
val a = 1
val b = a + 1

}

o has type Rep[JSLiteral {val a: Int; val b: Int}]. All the fields of o are Reps,
so o.a has type Rep[Int]. The translation to JavaScript is straightforward:

var o = { a : 1, b : 2 }

This straightforward translation makes it possible to pass the typed object lit-
erals of our DSL to JavaScript functions which expects object literals, such as
JSON.stringify or jQuery’s css.

As for implementation, notice that the type of a new JSLiteral {...} ex-
pression is not JSLiteral {...} but Rep[JSLiteral {...}]. This is achieved with
support from the Scala-Virtualized compiler. JSLiteral inherits from a special
trait, which indicates its new expressions should be reified. So the new expression
is turned into a method call, with information about all the field definitions. A
complication is that a field definition might reference another field being defined
(such as b being defined in terms of a in the example above). So each definition
is represented by its name and a function which takes a self type for the object

4 We refer the reader to [28] for implementation details.

422 G. Kossakowski et al.

literal. These definition functions are evaluated in an order which allows the self
references to be resolved.

6.3 Classes

Our DSL also supports reified classes. For convenience, these are defined as traits,
use the repProxy mechanism underlying typed APIs and are also implemented
using reflection. The translation to JavaScript, based on constructors and pro-
totypes, is straightforward. Through the trivial embedding, classes implemented
in our DSL can be used on both the server and client sides.

7 CPS Transformation for Asynchronous Code Patterns

A callback-driven programming style is pervasive in JavaScript programs. Be-
cause of lack of thread support, callbacks are used for I/O, scheduling and event-
handling. For example, in an Ajax call, one has to provide a callback that will
be called once the requested data arrives from the server. This style of program-
ming is known to be unwieldy in more complicated scenarios. To give a specific
example, let’s consider a scenario where we have an array of Twitter account
names and we want to ask Twitter for the latest tweets of each account. Once
we obtain the tweets of all users, we would like to log that fact in a console.

We’ll implement this program both in JavaScript and in our DSL. Let’s start
by implementing logic that fetches tweets for a single user by using the jQuery
library for Ajax calls (listings 1.1 & 1.2).

Listing 1.1. Fetching tweets in
JavaScript

function fetchTweets(username, callback) {
jQuery.ajax({

url:"http://api.twitter.com/1/
statuses/user_timeline.json/",

type: "GET",
dataType: "jsonp",
data: {
screen_name : username,
include_rts : true,
count : 5,
include_entities : true

},
success: callback

})
}

Listing 1.2. Fetching tweets in DSL

def fetchTweets(username: Rep[String]) =
(ajax.get {
new JSLiteral {
val url = "http://api.twitter.com/1/

statuses/user_timeline.json"
val ‘type‘ = "GET"
val dataType = "jsonp"
val data = new JSLiteral {
val screen_name = username
val include_rts = true
val count = 5
val include_entities = true

}
}

}).as[TwitterResponse]

type TwitterResponse =
Array[JSLiteral {val text: String}]

Note that JavaScript version takes a callback as second argument that will be
used to process the fetched tweets. We provide the rest of the logic that iterates
over an array of users and makes Ajax requests (listings 1.3 & 1.4).

JavaScript as an Embedded DSL 423

Listing 1.3. Twitter example in
JavaScript

var processed = 0
var users = ["gkossakowski", "odersky",

"adriaanm"]
users.forEach(function (user) {

console.log("fetching " + user)
fetchTweets(user, function(data) {

console.log("finished fetching " + user)
data.forEach(function (tweet) {

console.log("fetched " + tweet.text)
})
processed += 1
if (processed == users.length) {

console.log("done")
}

})
})

Listing 1.4. Twitter example in DSL

val users = array("gkossakowski", "odersky",
"adriaanm")

for (user <- users.parSuspendable) {
console.log("fetching " + user)
val tweets = fetchTweets(user)
console.log("finished fetching " + user)
for (t <- tweets)

console.log("fetched " + t.text)
}
console.log("done")

Because of the inverted control flow of callbacks, synchronization between
callbacks has to be handled manually. Also, the inverted control flow leads to
a code structure that is distant from the programmer’s intent. Notice that the
in JavaScript version, the call to console that prints “done" is put inside of the
foreach loop. If it was put it after the loop, we would get “done” printed before
any Ajax call has been made leading to counterintuitive behaviour.

As an alternative to the callback-driven programming style, one can use an
explicit monadic style, possibly sugared by a Haskell-like “do”-notation. This
is the approach taken by F# Web Tools [26]. However, this requires rewriting
possibly large parts of a program into monadic style when a single async oper-
ation is added. Another possibility is to automatically transform the program
into continuation passing style (CPS), enabling the programmer to express the
algorithm in a straightforward, sequential way and creating all the necessary
callbacks and book-keeping code automatically. Links [10] uses this approach.
However, a whole-program CPS transformation can cause performance degrada-
tion, code size blow-up, and stack overflows. In addition, it is not clear how to
interact with existing non-CPS libraries as the whole program needs to adhere to
the CPS style. We suggest using a selective CPS transformation, which precisely
identifies what needs to be CPS transformed.

In fact, the Scala compiler already does selective CPS transformations of Scala
programs, driven by @suspendable type annotations [27,12,13]. We show how
this mechanism can be used for transforming our DSL code before staging and
stripping out most CPS abstractions at staging time. The generated JavaScript
code does not contain any CPS-specific code but is written in CPS-style by use
of JavaScript anonymous functions.

Our implementation to support continuations is an example of an interest-
ing technique of applying selective cps transformation to embedded DSLs by
means of a deep linguistic reuse, exploiting a host language feature to implement
the corresponding DSL feature without (much) additional work. An interesting

424 G. Kossakowski et al.

insight is that our method of CPS transforming a direct-style program generator
allows it to generate code that is in CPS.

7.1 CPS in Scala

Before presenting how CPS transformations are used in our DSL, let’s consider
a typical situation where CPS rewrites act on Scala programs.

As an example, we consider a sleep method implemented in non-blocking,
asynchronous style. This is useful, for example, when using ThreadPools as no
thread is being blocked during the sleep period. Let’s see how our sleep method
written in CPS can be used:

def foo() = {
sleep(1000)
println("Called foo")

}
reset {

println("look, Ma ...")
foo()
sleep(1000)
println(" no threads!")

}

The reset delimits the scope of CPS rewrite. Let’s see how the rewrite itself
looks like:

def foo(): ControlContext = {
sleep(1000).map((tmp1: Unit) => println("Called foo"))

}
reset {

println("look, Ma ...")
foo().flatMap((tmp2: Unit) =>
sleep(1000).map((tmp3: Unit) => println(" no threads!"))

)
}

There are a few things worth noting here. First, the return type of foo method is
rewritten to be ControlContext.5 This is due to the fact that sleep is used in the
body of foo. Also, note that the code to be executed after sleeping is captured as a
continuation (anynomous function) and passed to the ControlContext through a
call of the map method. The body of the reset block is rewritten in a similar vein.

Now, let’s have a closer look how sleep itself is implemented:

5 The ControlContext class implements the continuation monad and is provided by
Scala’s standard library. ControlContext[A,B,C] is similar to C#’s Task<T>, but
more general. In our discussion, we omit the type parameters for simplicity.

JavaScript as an Embedded DSL 425

Listing 1.5. sleep implementation

import java.util.{Timer,TimerTask}
val timer = new Timer
def sleep(delay: Int): Unit @suspendable = shift { k =>

val task = new TimerTask { def run() = k() }
timer.schedule(task, delay.toLong)

}

Notice the @suspendable type annotation attached to sleep’s return type Unit.
The @suspendable annotation means that the sleep method can be used in a
side-effecting continuation context. In the definition of the sleep method, we use
Java’s Timer and TimerTask abstractions for asynchronous, delayed task execu-
tion. The TimerTask interface has one method, run, that will be executed after a
specified period of time. The shift control abstraction allows us to capture the
continuation as a first-class value and then use it in the body of the run method.
Both the reset and shift control abstractions are described in detail in [12].

After the CPS transformation, the code presented above becomes

def sleep(time: Int): ControlContext =
shiftR { k =>
val task = new TimerTask { def run() = k() }
timer.schedule(task, delay.toLong)

}

After the rewriting, all CPS-related type annotations are dropped and use of
the ControlContext class that supports continuation passing is introduced. The
shiftR method is an internal method that takes a block (which itself is a function)
and wraps it in ControlContext structure.

7.2 CPS and Staging

Let’s write the example from listing 1.5 in our DSL. We need to define sleep to
use JavaScript’s setTimeout 6 as a replacement for the Timer abstraction.

def sleep(delay: Rep[Int]) = shift { k: (Rep[Unit]=>Rep[Unit]) =>
window.setTimeout(fun(k), delay)

}

The setTimeout method expects an argument of type Rep[Unit=>Unit] which
denotes a representation of a function of type Unit=>Unit. The shift method
offers us a function of type Rep[Unit] => Rep[Unit], so we need to reify it to
obtain the desired representation. The reification is achieved by the fun function
(described in 6.1) provided by our framework and performed at staging time.

It is important to note that reification preserves function composition (roughly
speaking it is a homomorphismbetween DSL code and generated JavaScript code).
6 The setTimeout function asynchronously executes a function passed as argument

after a specified delay.

426 G. Kossakowski et al.

Specifically, let f: Rep[A] => Rep[B] and g: Rep[B] => Rep[C] then fun(g compose

f) == (fun(g) compose fun(f)) where we consider two reified functions to be equal
if they yield the same observable effects at runtime 7. That property of function
reification is at the core of reusing the continuation monad in our DSL. Thanks
to the fact that the continuation monad composes functions, we can just insert
reification at some places (like in a sleep) and make sure that we reify effects of
the continuation monad without the need to reify the monad itself.

7.3 CPS for Suspendable Traversals

We need to be able to suspend our execution while traversing an array in order
to implement functionality from listing 1.4. Let’s consider a simplified exam-
ple where we want to iterate over an array and sleep during each iteration. We
present both code written in JavaScript and our DSL that achieves that (list-
ings 1.6 & 1.7).

Listing 1.6. JavaScript

var xs = [1, 2, 3]
var i = 0
var msg = null
function f1() {
if (i < xs.length) {

window.setTimeout(f2, xs[i]*1000)
msg = xs[i]
i++

} else {
console.log("done")

}
}
function f2() {
console.log(msg)
f1()

}
f1()

Listing 1.7. DSL

val xs = array(1, 2, 3)
// shorthand for xs.suspendable.foreach
for (x <- xs.suspendable) {
sleep(x * 1000)
console.log(String.valueOf(x))

}
log("done")

Both programs, when executed, will print the following to the JavaScript
console:

//pause for 1s
1
//pause for 2s
2
//pause for 3s
3
done

In the DSL code, we use a suspendable variant of arrays, which is achieved
through an implicit conversion from regular arrays:
7 Note that composition on the left and the right hand side of the equation is not the

same operation but they have the same observable runtime effect.

JavaScript as an Embedded DSL 427

implicit def richArray(xs: Rep[Array[A]]) = new {
def suspendable: SArrayOps[A] = new SArrayOps[A](xs)

}

The idea behind suspendable arrays is that iteration over them can be suspended.
We’ll have a closer look at how to achieve that with the help of CPS. The
suspendable method returns a new instance of the SArrayOps class defined here:

Listing 1.8. Suspendable foreach

class SArrayOps(xs: Rep[Array[A]]) {
def foreach(yld: Rep[A] => Rep[Unit] @suspendable):
Rep[Unit] @suspendable = {

var i = 0
suspendableWhile(i < xs.length) { yld(xs(i)); i += 1 }

}
}

Note that one cannot use while loops in CPS but we can simulate them with
recursive functions. Let’s see how a regular while loop can be simulated with a
recursive function with call-by-name parameters:

def recursiveWhile(cond: => Boolean)(body: => Unit): Unit = {
def rec = () => if (cond) { body; rec() } else {}
rec()

}

By adding CPS-related declarations and control abstractions, we implement
suspendableWhile:

def suspendableWhile(cond: => Rep[Boolean])(
body: => Rep[Unit] @suspendable): Rep[Unit] @suspendable =
shift { k =>
def rec = fun { () =>

if (cond) reset { body; rec() } else { k() }
}
rec()

}

7.4 Defining the Ajax API

With the abstractions for suspendable loops and traversals at hand, what re-
mains to complete the Twitter example from the beginning of the section is the
actual Ajax request/response cycle.

The Ajax interface component provides a type Request that captures the re-
quest structure expected by the underlying JavaScript/jQuery implementation
and the necessary object and method definitions to enable the use of ajax.get

in user code:

428 G. Kossakowski et al.

trait Ajax extends JS with CPS {
type Request = JSLiteral {
val url: String
val ‘type‘: String
val dataType: String
val data: JSLiteral

}
type Response = Any
object ajax {
def get(request: Rep[Request]) = ajax_get(request)

}
def ajax_get(request: Rep[Request]): Rep[Response] @suspendable

}

Notice that the Request type is flexible enough to support an arbitrary object
literal type for the data field through subtyping. The Response type alias points
at Any which means that it is the user’s responsibility to either use dynamic or
perform an explicit cast to the expected data type.

The corresponding implementation component implements ajax_get to cap-
ture a continuation, reify it as a staged function using fun and store it in an
AjaxGet IR node.

trait AjaxExp extends JSExp with Ajax {
case class AjaxGet(request: Rep[Request],
success: Rep[Response => Unit]) extends Def[Unit]

def ajax_get(request: Rep[Request]): Rep[Response] @suspendable =
shift { k =>

reflectEffect(AjaxGet(request, fun(k)))
}

}

During code generation, we emit code to attach the captured continuation as a
callback function in the success field of the request object:

trait GenAjax extends JSGenBase {
val IR: AjaxExp
import IR._
override def emitNode(sym: Sym[Any], rhs: Def[Any])(
implicit stream: PrintWriter) = rhs match {

case AjaxGet(req, succ) =>
stream.println(quote(req) + ".success = " + quote(succ))
emitValDef(sym, "jQuery.ajax(" + quote(req) + ")")

case _ => super.emitNode(sym, rhs)
}

}

JavaScript as an Embedded DSL 429

It is interesting to note that, since the request already has the right structure
for the jQuery.ajax function, we can simply pass it to the framework-provided
quote method, which knows how to generate JavaScript representations of any
JSLiteral.

The Ajax component completes the functionality required to run the Twitter
example with one caveat: The outer loop in listing 1.4 uses parSuspendable to
traverse arrays instead of the suspendable traversal variant we have defined in
listing 1.8.

In fact, if we change the code to use suspendable instead of parSuspendable

and run the generated JavaScript program, we will get following output printed
to the JavaScript console:

fetching gkossakowski
finished fetching gkossakowski
fetched [...]
fetched [...]
fetching odersky
finished fetching odersky
fetched [...]
fetched [...]
fetching adriaanm
finished fetching adriaanm
fetched [...]
fetched [...]
done

Notice that all Ajax requests were done sequentially. Specifically, there was just
one Ajax request active at a given time; when the callback to process one request
is called, it would resume the continuation to start another request, and so on.
In many cases this is exactly the desired behavior, however, we will most likely
want to perform our Ajax request in parallel.

7.5 CPS for Parallelism

The goal of this section is to implement a parallel variant of the foreach method
from listing 1.8. We’ll start with defining a few primitives like futures and
dataflow cells. Let’s start with cells, which we decide to define in JavaScript,
as another example of integrating external libraries with our DSL:

Listing 1.9. JavaScript-based implementation of a non-blocking Cell

function Cell() {
this.value = undefined
this.isDefined = false
this.queue = []
this.get = function (k) {
if (this.isDefined) {

430 G. Kossakowski et al.

k(this.value)
} else {

this.queue.push(k)
}

}
this.set = function (v) {
if (this.isDefined) {

throw "can’t set value twice"
} else {

this.value = v
this.isDefined = true
this.queue.forEach(function (f) {

f(v) //non-trivial spawn could be used here
})

}
}

}

A cell object allows us to track dependencies between values. Whenever the get

method is called and the value is not in the cell yet, the continuation will be added
to a queue so it can be suspended until the value arrives. The set method takes
care of resuming queued continuations. We expose Cell as an external library
using our typed API mechanism and we use it for implementing an abstraction
for futures.

def createCell(): Rep[Cell[A]]
trait Cell[A]
trait CellOps[A] {

def get(k: Rep[A => Unit]): Rep[Unit]
def set(v: Rep[A]): Rep[Unit]

}
implicit def repToCellOps(x: Rep[Cell[A]]): CellOps[A] =

repProxy[Cell[A],CellOps[A]](x)

def spawn(body: => Rep[Unit] @suspendable): Rep[Unit] = {
reset(body) //non-trivial implementation uses

//trampolining to prevent stack overflows
}
def future(body: => Rep[A] @suspendable) = {

val cell = createCell[A]()
spawn { cell.set(body) }
cell

}

The last bit of general functionality we need is RichCellOps that ties Cells and
continuations together inside of our DSL.

JavaScript as an Embedded DSL 431

class RichCellOps(cell: Rep[Cell[A]]) {
def apply() = shift { k: (Rep[A] => Rep[Unit]) =>
cell.get(fun(k))

}
}
implicit def richCellOps(x: Rep[Cell[A]]): RichCell[A] =

new RichCellOps(x)

It is worth noting that RichCellOps is not reified so it will be dropped at staging
time and its method will get inlined whenever used. Also, it contains CPS-
specific code that allows us to capture the continuation. The fun function reifies
the captured continuation.

We are ready to present the parallel version of foreach defined in listing 1.8.

def foreach(yld: Rep[A] => Rep[Unit] @suspendable):
Rep[Unit] @suspendable = {
val futures = xs.map(x => future(yld(x)))
futures.suspendable.foreach(_.apply())

}

We instantiate each future separately so they can be executed in parallel. As
a second step we make sure that all futures are evaluated before we leave the
foreach method by forcing evaluation of each future and “waiting” for its com-
pletion. Thanks to CPS transformations, all of that will be implemented in a
non-blocking style.

The only difference between the parallel and serial versions of the Twitter
example 1.4 is the use of parSuspendable instead of suspendable so the parallel
implementation of the foreach method is used. The rest of the code stays the
same. It is easy to switch between both versions, and users are free to make their
choice according to their needs and performance requirements.

8 Evaluation

We have implemented our DSL in Scala.8
We used our DSL to develop a few web ap-
plications, which are simple but not trivial.
First, we implemented a few drawing exam-
ples like the snowflakes of figure 1. We ex-
tended the Twitter example from section 7,
which presents the latest tweets from se-
lected users in an interactive way. In order
to do so, we incorporated a useful subset of
the DOM API and jQuery library using our
typed APIs.

8 The code can be found at http://github.com/js-scala

http://github.com/js-scala

432 G. Kossakowski et al.

Moreover, we integrated our DSL with an existing web framework, Play 2.0.9
Our DSL can be used to define Play form validators that are executed on both
the client and server sides. We managed to achieve that without deep changes
to the framework, proving that our DSL can be used as a library.

Finally, we developed a collaborative drawing application, which includes a
server-side component (implemented using the Jetty web server). We use web
sockets to communicate between the server and clients. Each client transmits
drawing commands to the server, which broadcasts them to all the clients. When
a new client joins, the server sends the complete drawing history to the new
client, and the client reconstructs the image by playing back the commands. A
very simple improvement is to make the server execute the drawing commands as
well, and keep an up-to-date bitmap of the drawing – this can easily be achieved
by using the trivial embedding described in section 4. New clients then just
obtain the bitmap instead of replaying the history, which can be large and grow
unboundedly.

9 Conclusion

In this paper, we have shown how to embed a JavaScript DSL in Scala using
LMS. A recurring theme of our approach is to exploit the features of the host
language to enhance the DSL with minimal effort. Moreover, through staging, we
can use many abstractions at the code-generation stage, without complexity and
performance overhead in the generated code. We believe this approach addresses
some important challenges of developing rich web applications.

Acknowledgments. We thank Adriaan Moors for maintaining the
Scala-Virtualized compiler, adding our feature requests, fixing our reported bugs,
and for insightful discussions.

References

1. Abadi, M., Cardelli, L., Pierce, B., Plotkin, G.: Dynamic typing in a statically
typed language. ACM Trans. Program. Lang. Syst. 13, 237–268 (1991)

2. Ahmed, A., Findler, R.B., Matthews, J., Wadler, P.: Blame for all. In: Proceedings
for the 1st Workshop on Script to Program Evolution, STOP 2009, pp. 1–13. ACM,
New York (2009)

3. Bierman, G., Meijer, E., Torgersen, M.: Adding Dynamic Types to C�. In: D’Hondt,
T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 76–100. Springer, Heidelberg (2010)

4. Brown, K., Sujeeth, A., Lee, H., Rompf, T., Chafi, H., Olukotun, K.: A hetero-
geneous parallel framework for domain-specific languages. In: 20th International
Conference on Parallel Architectures and Compilation Techniques, PACT (2011)

5. Carette, J., Kiselyov, O., Shan, C.-C.: Finally tagless, partially evaluated: Tagless
staged interpreters for simpler typed languages. J. Funct. Program. 19, 509–543
(2009)

9 http://www.playframework.org

http://www.playframework.org

JavaScript as an Embedded DSL 433

6. Chafi, H., DeVito, Z., Moors, A., Rompf, T., Sujeeth, A.K., Hanrahan, P., Odersky,
M., Olukotun, K.: Language Virtualization for Heterogeneous Parallel Computing.
Onward! (2010)

7. Chafi, H., Sujeeth, A.K., Brown, K.J., Lee, H., Atreya, A.R., Olukotun, K.: A
domain-specific approach to heterogeneous parallelism. In: Proceedings of the 16th
ACM Symposium on Principles and Practice of Parallel Programming, PPoPP
(2011)

8. https://github.com/clojure/clojurescript/wiki
9. http://jashkenas.github.com/coffee-script/

10. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: Links: Web Programming Without
Tiers. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO
2006. LNCS, vol. 4709, pp. 266–296. Springer, Heidelberg (2007)

11. Cooper, E., Lindley, S., Wadler, P., Yallop, J.: The Essence of Form Abstraction.
In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 205–220. Springer,
Heidelberg (2008)

12. Danvy, O., Filinski, A.: Abstracting control. In: Proceedings of the 1990 ACM
Conference on LISP and Functional Programming, LFP 1990, pp. 151–160. ACM,
New York (1990)

13. Danvy, O., Filinski, A.: Representing control: A study of the cps transformation.
Mathematical Structures in Computer Science 2(4), 361–391 (1992)

14. http://www.dartlang.org/
15. Flanagan, D.: (2011), https://github.com/davidflanagan/

javascript6_examples/blob/master/examples/21.06.koch.js
16. Flanagan, D.: JavaScript: The Definitive Guide, 6th edn. O’Reilly Media, Inc.

(2011)
17. http://code.google.com/webtoolkit/
18. Hofer, C., Ostermann, K., Rendel, T., Moors, A.: Polymorphic embedding of dsls.

In: Proceedings of the 7th International Conference on Generative Programming
and Component Engineering, GPCE 2008, pp. 137–148. ACM, New York (2008)

19. Kats, L.C.L., Visser, E.: The Spoofax language workbench. Rules for declarative
specification of languages and IDEs. In: Rinard, M. (ed.) Proceedings of the 25th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2010, Reno, NV, USA, October 17-21, pp.
444–463 (2010)

20. Khoo, Y.P., Hicks, M., Foster, J.S., Sazawal, V.: Directing javascript with arrows.
SIGPLAN Not. 44, 49–58 (2009)

21. Lee, H., Brown, K., Sujeeth, A., Chafi, H., Rompf, T., Odersky, M., Olukotun,
K.: Implementing domain-specific languages for heterogeneous parallel computing.
IEEE Micro. 31, 42–53 (2011)

22. Meyerovich, L.A., Guha, A., Baskin, J., Cooper, G.H., Greenberg, M., Bromfield,
A., Krishnamurthi, S.: Flapjax: a programming language for ajax applications. In:
Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA 2009, pp. 1–20. ACM, New
York (2009)

23. Moors, A., Piessens, F., Odersky, M.: Generics of a Higher Kind. ACM SIGPLAN
Notices 43, 423–438 (2008)

24. Moors, A., Rompf, T., Haller, P., Odersky, M.: Scala-virtualized. In: PEPM 2012
(2012)

25. Odersky, M., Zenger, M.: Scalable Component Abstractions. In: Proceedings of
OOPSLA 2005 (2005)

26. Petříček, T., Syme, D.: F# web tools: Rich client/server web applications in f#

https://github.com/clojure/clojurescript/wiki
http://jashkenas.github.com/coffee-script/
http://www.dartlang.org/
https://github.com/davidflanagan/javascript6_examples/blob/master/examples/21.06.koch.js
https://github.com/davidflanagan/javascript6_examples/blob/master/examples/21.06.koch.js
http://code.google.com/webtoolkit/

434 G. Kossakowski et al.

27. Rompf, T., Maier, I., Odersky, M.: Implementing First-Class Polymorphic Delim-
ited Continuations by a Type-Directed Selective CPS-Transform. In: Proceedings
of the 14th ACM SIGPLAN International Conference on Functional Programming.
ACM, New York (2009)

28. Rompf, T., Odersky, M.: Lightweight Modular Staging: A Pragmatic Approach to
Runtime Code Generation and Compiled DSLs. In: GPCE (2010)

29. Rompf, T., Sujeeth, A.K., Lee, H., Brown, K.J., Chafi, H., Oderksy, M., Olukotun,
K.: Building-blocks for performance oriented DSLs. In: Electronic Proceedings in
Theoretical Computer Science (2011)

30. http://scalagwt.github.com/
31. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Scheme and

Functional Programming Workshop (September 2006)
32. Siek, J.G., Taha, W.: Gradual Typing for Objects. In: Bateni, M. (ed.) ECOOP

2007. LNCS, vol. 4609, pp. 2–27. Springer, Heidelberg (2007)
33. Sujeeth, A.K., Lee, H., Brown, K.J., Rompf, T., Wu, M., Atreya, A.R., Odersky,

M., Olukotun, K.: OptiML: an implicitly parallel domain-specific language for ma-
chine learning. In: Proceedings of the 28th International Conference on Machine
Learning, ICML (2011)

34. Taha, W., Sheard, T.: Metaml and multi-stage programming with explicit annota-
tions. Theor. Comput. Sci. 248, 211–242 (2000)

35. Ureche, V., Rompf, T., Sujeeth, A., Chafi, H., Odersky, M.: Stagedsac: A case
study in performance-oriented dsl development. In: PEPM (2012)

36. Visser, E.: WebDSL: A Case Study in Domain-Specific Language Engineering. In:
Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 291–
373. Springer, Heidelberg (2008)

37. Vogt, J.C.: Type Safe Integration of Query Languages into Scala. Diplomarbeit,
RWTH Aachen, Germany (2011)

38. Wadler, P., Findler, R.B.: Well-Typed Programs Can’t Be Blamed. In: Castagna,
G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 1–16. Springer, Heidelberg (2009)

http://scalagwt.github.com/

Correlation Tracking for Points-To Analysis

of JavaScript

Manu Sridharan, Julian Dolby, Satish Chandra, Max Schäfer, and Frank Tip

IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
{msridhar,dolby,satishchandra,mschaefer,ftip}@us.ibm.com

Abstract. JavaScript poses significant challenges for points-to analysis,
particularly due to its flexible object model in which object properties
can be created and deleted at run-time and accessed via first-class names.
These features cause an increase in the worst-case running time of field-
sensitive Andersen-style analysis, which becomes O(N4), where N is the
program size, in contrast to the O(N3) bound for languages like Java. In
practice, we found that a standard implementation of the analysis was
unable to analyze popular JavaScript frameworks.

We identify correlated dynamic property accesses as a common code
pattern that is analyzed very imprecisely by the standard analysis, and
show how a novel correlation tracking technique enables us to handle this
pattern more precisely, thereby making the analysis more scalable. In an
experimental evaluation, we found that correlation tracking often dramat-
ically improved analysis scalability and precision on popular JavaScript
frameworks, though in some cases scalability challenges remain.

Keywords: Points-to analysis, call graph construction, JavaScript.

1 Introduction

JavaScript is rapidly gaining in popularity because it enables programmers to
write rich web applications with full-featured user interfaces and portability
across desktop and mobile platforms. Recently, pointer analysis for JavaScript
has been used to enable applications such as security analysis [10, 12], bug find-
ing [14], and automated refactoring [8].

Real-world web applications increasingly make use of framework libraries like
jquery1 that abstract away browser incompatibilities and provide advanced DOM
manipulation and user interface libraries. A recent survey [27] found that more
than half of all surveyed sites use one of the nine most popular frameworks.
These frameworks present a formidable challenge to static analysis, since they
are relatively large and make frequent use of highly dynamic language features.

In particular, JavaScript’s flexible object model presents a major challenge
for scalable and precise points-to analysis. In JavaScript, an object has zero or
more properties (corresponding to instance fields in languages like Java), each

1 http://jquery.com

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 435–458, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://jquery.com

436 M. Sridharan et al.

identified by a unique name. Properties may contain any kind of value, including
first-class functions, and programmers may define a “method” on an object by
assigning a function to one of its properties, as in the following example:

o.foo = function f1() { return 23; };

o.bar = function f2() { return 42; };
o.foo();

To identify the precise call target for the call o.foo(), an analysis must be able
to compute points-to targets for o.foo and o.bar separately and not conflate
them. This is usually achieved by a field-sensitive analysis [16].

Field-sensitive analysis for JavaScript is complicated by the fact that proper-
ties can be accessed by computed names. Consider the following code:

f = p() ? "foo" : "baz";

o[f] = "Hello, world!";

Here, f is assigned either the value "foo" or the value "baz", depending on the
return value of p. A dynamic property access is then used to store a string value
into a property of object o whose name is determined by the value of f. If f
is "foo", the existing property o.foo is overwritten, otherwise a new property
o.baz is created and initialized to the given value.

In the presence of dynamic property accesses, performing a field-sensitive anal-
ysis poses both theoretical and practical challenges. We show that, surprisingly,
extending a standard implementation of field-sensitive Andersen’s points-to anal-
ysis [3] to handle dynamic property accesses causes the implementation to run
in worst-case O(N4) time, where N denotes the size of the program, compared
to the typical O(N3) bound for other programming languages.

This increased complexity is not merely of theoretical interest—we were un-
able to scale a traditional field-sensitive analysis to handle JavaScript frameworks
like jquery. These frameworks generally make heavy use of dynamic property ac-
cesses to reflectively access object properties. In combination with other features
of JavaScript such as first-class functions, these operations cause an explosion in
analysis imprecision that makes call graph construction intractable in practice,
as we illustrate on an example in Section 2. And while these operations are most
idiomatic and common in JavaScript, exactly the same operations can be written
in other scripting languages like Python.

We have devised a technique that helps address issues caused by dynamic
property accesses by making the points-to analysis more precise. We observed
that for property writes that cause imprecision in practice, there is often an
obvious correlation between the updated location and the stored value that is
ignored by the points-to analysis. For example, for the statement x[p] = y[p]
(which copies the value for property p in y to property p in x), a standard
points-to analysis does not track the fact the same property p is accessed on
both sides of the assignment. If p ranges over many possible values, this leads
to conflation of many unrelated property-value pairs and cascading imprecision.
Our technique regains precision by tracking such correlated read/write pairs and
analyzing them separately for each value of p. The analysis thus ends up only

Correlation Tracking for Points-To Analysis of JavaScript 437

copying values between properties of the same name, dramatically improving
precision and performance in many cases. This correlation tracking is achieved
by extracting the relevant code into new functions and analyzing them with
targeted context sensitivity.

We implemented our technique as an extension to the Watson Libraries for
Analysis (WALA) [26] and conducted experiments on five widely-used JavaScript
frameworks: dojo, jquery, mootools, prototype.js, and yui. On these benchmarks,
WALA’s default implementation of a field-sensitive Andersen-style analysis usu-
ally is not able to complete analysis within a reasonable amount of time and
produces very imprecise results. We show that correlation tracking significantly
improves both analysis performance and precision: most benchmarks can now
be analyzed in seconds, though some scalability challenges remain.

The presence of eval and other constructs for executing dynamically gener-
ated code means that a (useful) static analysis for JavaScript cannot be sound,
and ours is no exception. Nevertheless, there are interesting applications for un-
sound call graphs in security analysis and bug finding [12, 24], and we expect
existing tools to benefit significantly from our techniques.

The contributions of this paper can be summarized as follows:

– We show that a standard implementation of field-sensitive Andersen’s points-
to analysis extended to handle dynamic property accesses has O(N4) worst-
case running time, in contrast to the O(N3) bound for other languages.

– We demonstrate that this increased complexity has practical repercussions
by showing that a previously developed field-sensitive implementation of
Andersen’s points-to analysis for JavaScript is unable to analyze several
widely-used JavaScript frameworks.

– We present a technique to address scalability issues caused by dynamic prop-
erty accesses by enhancing the points-to analysis to track correlated dynamic
property accesses that must at run-time refer to properties with the same
name.

– We report on an implementation of our correlation tracking technique on
top of WALA and its application to JavaScript frameworks, demonstrating
significantly improved scalability and precision in many cases.

The remainder of this paper is organized as follows. Section 2 presents a motivat-
ing example that illustrates the complexity of points-to analysis for JavaScript.
Section 3 formulates field-sensitive points-to analysis for JavaScript and shows
the O(N4) worst-case running time of a standard implementation extended with
handling of computed property names. Section 4 presents our approach for im-
proved handling of dynamic property accesses. Experimental results are pre-
sented in Section 5. Section 6 discusses how similar scalability issues may arise
in other languages, demonstrating that the techniques presented in this paper
may be more widely applicable. Finally, related work is discussed in Section 7
and conclusions are presented in Section 8.

438 M. Sridharan et al.

6 function extend(destination, source) {
7 for (var property in source)

8 destination[property] = source[property];

9 return destination;
10 }

11

12 extend(Object , {

13 extend: extend ,

14 inspect: inspect ,

15 ...

16 });

17

18 Object.extend(String.prototype, (function() {
19 function capitalize () {

20 return this.charAt(0). toUpperCase ()
21 + this.substring(1). toLowerCase ();
22 }

23 function empty() {
24 return this == ’’;
25 }

26 ...

27 return {
28 capitalize: capitalize,

29 empty: empty,

30 ...

31 };

32 })());

33 "javaScript".capitalize (); // == "Javascript"

Fig. 1. The extend function and some of its uses in prototype.js; the definition of
inspect is omitted

2 Motivation

In this section, we illustrate how some of JavaScript’s dynamic features impact
points-to analysis and call-graph construction. We illustrate these points using
Figure 1, which shows a few fragments of the widely used prototype.js library.2

2.1 JavaScript Objects and Functions

JavaScript’s model of objects and functions is extremely flexible:

– Unlike class-based languages like Java, JavaScript has no built-in concept
of an object instance method. Instead, functions are first-class values, and
methods are simply functions stored in object properties. For instance on

2 http://www.prototypejs.org/

http://www.prototypejs.org/

Correlation Tracking for Points-To Analysis of JavaScript 439

lines 12-16 in Figure 1, an object is created with two properties, extend and
inspect, and extend is bound to the function defined on line 6.

– Object properties are dynamic in that they are not declared and can be
accessed with first-class names. On line 8, the destination object has prop-
erties assigned based on the property variable; if a given property exists in
destination, it is overwritten; if not, it is created. Thus, the set of prop-
erties an object may have is not evident from the code, unlike in a static
language like Java.

– The notion of a method call is idiosyncratic; since functions are assigned
dynamically to objects, the notion of a receiver is defined by the call itself.
Consider the extend function defined on line 6. On line 18, this function will
be invoked by the Object.extend call, and this will be bound to Object.
However, on line 12, extend is called directly by name, and this defaults to
the global object.

Since there is no a priori distinction between properties containing values and
properties containing methods, a field-sensitive analysis, which represents each
property of each abstract object separately, is necessary for obtaining a pre-
cise call graph for JavaScript programs. A field-insensitive analysis, which uses
a merged representation for each object’s properties, would conclude that the
invocation of Object.extend could possibly invoke Object.inspect as well, a
very imprecise result.

Several techniques used in other languages to remove obviously invalid re-
sults from points-to sets are not applicable in JavaScript. The language lacks
classes and declared types for variables, so type filters [9] cannot be employed.
Properties are created upon first write, so assignments to non-existent proper-
ties cannot be discarded as invalid by the analysis. Finally, although functions
declare formal parameters, they can be invoked with any number of actual argu-
ments. If too few arguments are passed, the remaining parameters are assigned
the value undefined. All arguments (including those not corresponding to any
declared parameter) can be accessed via the built-in arguments array. This flex-
ibility makes it impossible to perform arity matching to narrow down the set of
functions that may be invoked at a given call site.

As a consequence, local imprecision in the analysis can easily cascade and
pollute much of the analysis result.

2.2 Dynamic Property Accesses

Figure 1 illustrates how JavaScript’s dynamic property accesses pose a major
challenge for points-to analysis. In particular, the example illustrates how pro-
totype.js uses such accesses to dynamically extend objects, a feature often used
within prototype.js itself. Several other frameworks, including jquery, offer simi-
lar functionality.

The program of Figure 1 declares a function extend on lines 6–10. It uses
a for-in loop to iterate over the names of all properties of the object bound to
its source parameter, assigning them to the loop variable property.

440 M. Sridharan et al.

The value of each property is then read using a dynamic property access expres-
sion source[property], and stored in a property of the same name in object
destination by assigning it to destination[property]. The following aspects
of JavaScript’s semantics should be noted:

– The name of the property accessed by a dynamic property access expression
is computed at run-time.

– As mentioned above, a write to a property creates that property if it does
not exist yet.

Together, these observations imply that it is possible for a JavaScript program
to create objects with an unbounded number of properties, which is impossible
in statically typed languages such as Java or C#.

Figure 1 also shows two examples of how extend is used inside the prototype.js
library itself.

– On lines 12–16, extend is called to bind several functions to properties in
the built-in Object object. Note that the extend function itself is bound to
a property extend of Object.

– On lines 18–32, the extend function is invoked as Object.extend to ex-
tend the prototype property of the built-in String object with properties
capitalize and empty. As shown on line 33, these properties then become
available on all String objects, since they have String.prototype as their
prototype object and hence inherit all its properties.

Now, consider applying Andersen’s points-to analysis [3] to the example in Fig-
ure 1. As discussed earlier, field-sensitive analysis is necessary to obtain sufficient
precision. To handle dynamic property accesses, the analysis must furthermore
track the possible values of property-name expressions (like property on line 8)
and use that information to reason about what properties a dynamic access can
read or write. Section 3 formulates such an analysis in more detail and discusses
the effect of dynamic property accesses on worst-case complexity.

For the example of Figure 1, variable property on line 8 may be bound to the
name of any property of any object bound to source. In particular, property
may refer to any property name of the object passed as the second argument in
the call on line 12 ("extend", "inspect", etc.) and the one passed on line 18
("capitalize", "empty", etc.). This means that the points-to set for the dy-
namic property expression source[property]must include all properties of the
source objects. The write to destination[property] therefore causes Ander-
sen’s analysis to add all of these functions to the points-to sets for properties
"extend", "inspect", "capitalize" etc. in all the destination objects (recall
that a write to a non-existent property creates the property). In particular, such
an analysis would conclude, very imprecisely, that the call Object.extend(...)
on line 18 might invoke any of the functions Object is extended with on line 12.

By the same reasoning, it can be seen that due to the invocation of extend()
at line 18, this points-to analysis would compute for each property added to
String.prototype a points-to set that includes capitalize, empty, and any

Correlation Tracking for Points-To Analysis of JavaScript 441

34 function extend(destination , source) {
35 for (var property in source)

36 (function(p){
37 destination[p] = source[p];

38 })(property);

39 return destination;
40 }

Fig. 2. Transformed example

other function stored in the object literal on line 32. Consequently, an invocation
of a function read from one of these properties would be approximated as a call
to any one of them by the analysis. The resulting loss of precision is detrimental
because String objects are used pervasively.

This kind of precision loss arose for several widely-used JavaScript frame-
works that we attempted to analyze (see Section 5), making straightforward
field-sensitive points-to analysis intractable due to the long time it takes to com-
pute the highly imprecise points-to relation, and the excessive space required to
store it. This problem is exacerbated by the fact that JavaScript frameworks use
mechanisms such as the extend function of Figure 1 internally during initial-
ization, which means that merely including the code for these libraries in a web
page will trigger the problem.

Our Technique. In Section 4, we propose correlation tracking as a solution to
this problem that can dramatically improve both precision and performance. The
key idea is to enhance Andersen’s analysis to track correlations between dynamic
property reads and writes that use the same property name. For our example,
the value read from source[property] is written into destination[property];
since the value of property cannot have changed between the read and the write,
the enhanced analysis can reason that a property value from source may only
be copied to the property with the same name in destination.

This is implemented by first extracting the relevant code—in this case the
body of the for-in loop—into a new function with the property name as its
only parameter, as shown for function extend in Figure 2.3 The new function is
then analyzed context-sensitively with a separate context for each value of the
property name parameter, thereby achieving the desired precision.

This context-sensitivity policy is reminiscent of Agesen’s Cartesian Product
Algorithm [1] and object-sensitive analyses [18, 20] in the sense that different
contexts are introduced for a function based on the values passed as arguments
(further discussion in Section 4.2). These enhancements enable our analysis to
efficiently compute call graphs for framework-based JavaScript applications in
many cases that could not be handled by the baseline field-sensitive analysis.

3 Other variables of the surrounding scope remain accessible in the extracted code,
since JavaScript supports lexical scoping.

442 M. Sridharan et al.

Table 1. Our formulation of field-sensitive Andersen’s points-to analysis in the pres-
ence of first-class fields

Statement Constraint

x = {}i {oi} ⊆ pt(x) [Alloc]

v = "name" {name} ⊆ pt(v) [StrConst]

x = y pt(y) ⊆ pt(x) [Assign]

x[v] = y
o ∈ pt(x) s ∈ pt(v)

pt(y) ⊆ pt(o.s)
[StoreField]

y = x[v]
o ∈ pt(x) s ∈ pt(v)

pt(o.s) ⊆ pt(y)
[LoadField]

v = x.nextProp()
o ∈ pt(x) o.s exists

{s} ⊆ pt(v)
[PropIter]

3 Field-Sensitive Points-To Analysis for JavaScript

In this section, we formulate a field-sensitive points-to analysis for a core lan-
guage based on the object model of JavaScript. This formulation describes the
existing points-to analysis implementation in WALA [26], which we use as our
baseline. Then, we show that a standard implementation of Andersen’s analysis
runs in worst-case O(N4) time for this formulation, where N is the size of the
program, due to computed property names. Finally, we give a minimal example
illustrating the imprecision that our techniques address.

Formulation. The relevant core language features of JavaScript are shown in
the leftmost column of Table 1. Note that property stores and loads act much
like array stores and loads in a language like Java, where the equivalent of array
indices are string constants.4 Property names are first class, so they can be copied
between variables and stored and retrieved from data structures. As discussed
in Section 2, properties are added to objects when values are first stored in
them. The v = x.nextProp() statement type is used to model the JavaScript
for-in construct (see Section 2); it updates v with the next property name of
the object x points to.5 So, assuming a corresponding hasNextProp construct,
for (v in x) { B } could be modeled as:

4 In full JavaScript, not all string values originate from constants in the program
text; as discussed further in Section 5.1, we handle this by introducing a special
“unknown” property name that is assumed to alias all other property names.

5 Property names from objects in the prototype chain are also considered [7, §12.6.4],
but we elide this detail here for clarity.

Correlation Tracking for Points-To Analysis of JavaScript 443

while (x.hasNextProp ()) { v = x.nextProp(); B }

The second column of Table 1 presents Andersen-style points-to analysis rules for
the core language. The only way in which this differs from a standard Andersen-
style analysis for Java [21] is that it supports tracking of property names as they
flow through assignments. We represent the points-to set of a program variable
x as pt(x). The rules are presented as inclusion constraints over points-to sets
of program variables and of properties of abstract objects (e.g., o.name). We
assume that object allocations are named with one abstract heap object per
static statement, e.g., abstract object oi for statement i. Note that pt-sets track
not just abstract objects, but also string constants possibly representing property
names.6

Complexity. Computing an Andersen-style points-to analysis can be viewed as
solving a dynamic transitive closure (DTC) problem for a graph of constraints
similar to those in Table 1: o ∈ pt(x) iff x is reachable from o in the graph.
Reachability information is stored by maintaining points-to sets for variables and
for fields of abstract-locations, and “propagating” abstract locations to points-to
sets based on the constraint edges [21]. The problem requires dynamic transitive
closure since the StoreField and LoadField rules introduce new constraints
based on other points-to facts, which translates to adding new graph edges based
on other reachability facts. Most efficient implementations of Andersen’s analysis
essentially work by computing a dynamic transitive closure; see previous work
for details [21].

For Java-like languages, the worst-case complexity of the DTC computation
for points-to analysis is O(N3). The key constraint rules to consider are for field
accesses, e.g., the StoreField rule for a statement x.f = y (reasoning about
LoadField is similar):

o ∈ pt(x)

pt(y) ⊆ pt(o.f)

Note that since the field name is manifest in the Java statement, the field-name
precondition seen in Table 1 is not required in this rule. Via this rule, the algo-
rithm may add O(N) constraints of the form pt(y) ⊆ pt(o.f) to the graph in the
worst case (since |pt(x)| is O(N)). Considering O(N) abstract locations that may
be propagated across each such generated constraint, and O(N) field-write state-
ments in the program, we obtain an O(N3) worst-case bound on running time.

Now, consider the StoreField rule from Table 1, which includes an addi-
tional pre-condition s ∈ pt(v) to handle computed property names. Unlike Java,
this rule may introduce O(N2) new constraints, one for each (abstract loca-
tion, property name) pair. Factoring in O(N) worst-case propagation work for
each constraint and O(N) store statements in the program now yields an O(N4)
running-time bound for the analysis, worse than that for Java. This bound as-
sumes that the analysis may find each abstract location to have O(N) fields in

6 If a non-String object o is used as a property name in a dynamic property access,
a name is obtained by coercing o to a String [7, §11.2.1]; we elide modeling of this
behavior here for clarity.

444 M. Sridharan et al.

1 src = {}

2 dest = {}

3 src["ext"] = {}

4 src["ins"] = {}

5 prop = (*) ? "ext" : "ins";

6 t = src[prop];

7 dest[prop] = t;

(a)

o4ext

o3

ins

o2

src

dest

prop “ext”
“ins”

ext
ins

o1

t

(b)

Fig. 3. Imprecisely analyzed property accesses, and the corresponding points-to graph
computed by the analysis in Table 1; the red, dashed edges are spurious

the worst-case. In a language with classes, an assumption of a constant num-
ber of fields per object becomes reasonable [21]. But, with JavaScript’s lack of
classes and semantics of creating fields when written, such an assumption cannot
be made. In fact, our techniques are designed to address a common pattern that
causes a blowup in the number of fields per object, as discussed below.

l4

o1 ∈ pt(src)

o4 ∈ pt(o1.ins)

o1 ∈ pt(src) ins ∈ pt(prop)

pt(o1.ins) ⊆ pt(t)
l6

o4 ∈ pt(t)

ext ∈ pt(prop) o2 ∈ pt(dest)

pt(t) ⊆ pt(o2.ext)
l7

o4 ∈ pt(o2.ext)

Fig. 4. Imprecise derivation of o4 ∈ pt(o2.ext) for the example of Figure 3(a), using
the rules of Table 1. Rule applications are labeled with the corresponding line number
from Figure 3(a) as appropriate.

Imprecision Example. Consider the sequence of statements in Figure 3(a). This
program is intended to model normalized statements corresponding to the for-in
loop in Figure 1 as they would appear to Andersen’s analysis; identifier names
have been abbreviated.7 The program creates properties ext and ins in the ob-
ject o1 (named by the line number of its allocation), and then copies one of these
properties to object o2. Figure 3(b), which gives the points-to relation computed
for the program, shows that the analysis has imprecisely conflated the ext and
ins properties in o2, concluding that they both may point to either o3 or o4.

Figure 4 shows in detail how the analysis imprecisely concludes that o4 ∈
pt(o2.ext), based on the rules of Table 1. Here, the imprecision stems from failing
to take into account that lines 6 and 7 of Figure 3(a) must read the same property
name from variable prop—the rule applied for line 6 uses ins ∈ pt(prop), while
the line 7 rule uses ext ∈ pt(prop).

Note that conversion of JavaScript statements to their normal form for Ander-
sen’s analysis (see Table 1) may in fact introduce the imprecision illustrated above.
Say that lines 6 and 7 of Figure 3(a) were written as a single statement
dest[prop] = src[prop].Apoints-to analysis thatprocessed this statementdirectly

7 We avoid full normalization to the statement types of Table 1 to ease readability.

Correlation Tracking for Points-To Analysis of JavaScript 445

1 src = {}

2 dest = {}

3 src["ext"] = {}

4 src["ins"] = {}

5 if (*) {

6 prop1 = "ext";

7 t1 = src[prop1];

8 dest[prop1] = t1;

9 } else {
10 prop2 = "ins";

11 t2 = src[prop2];

12 dest[prop2] = t2;

13 }

(a)

1 src = {}

2 dest = {}

3 src["ext"] = {}

4 src["ins"] = {}

5 prop = (*) ? "ext" : "ins";

6 (function(ff) {

7 t = src[ff];

8 dest[ff] = t;

9 })(prop);

(b)

Fig. 5. Transformed versions of the example of Figure 3, to illustrate our technique

could avoid the above imprecision—even without flow sensitivity, it is clear that
prop cannot be re-defined between its two uses in this statement.8 However, a
flow-insensitive analysis must allow for prop to be re-defined between the normal-
ized statements t = src[prop]; dest[prop] = t, adding imprecision. In contrast to
a previous study showing that this normalization does not cause imprecision for
points-to analysis of C in practice [5], we have observed real examples (e.g., that of
Figure 1) where normalization causes imprecision for JavaScript. Our techniques
can recover precision in these cases, and also in cases where multiple source-level
statements are relevant, as discussed in the next section.

4 Correlation Tracking

We now discuss our correlation tracking technique for improving the scalability
of JavaScript points-to analysis in practice. We first illustrate the technique on
a small example (Section 4.1), and then detail how we achieve the correlation
tracking by extracting code into new functions and analyzing them with targeted
context sensitivity (Section 4.2).

4.1 Example

Recall that in the example from Figure 3 of Section 3 the field-sensitive points-to
analysis of Table 1 imprecisely concluded that o4 ∈ pt(o2.ext) since it did not
track the fact that the property read on line 6 must refer to the same property
name as the write on line 7.

We can force the analysis to recognize this by splitting variable prop, which
contains the property name, into two variables prop1 and prop2, respectively
corresponding to prop’s possible values of "ext" and "ins", as shown in
Figure 5(a).

8 Unfortunately, no polynomial-time algorithm is known for such an analysis [5].

446 M. Sridharan et al.

Considering again the derivation from Figure 4, we see that the analysis can
derive a modified constraint pt(t1) ⊆ pt(o2.ext) for Figure 5(a) (via line 8),
but it cannot derive the corresponding o4 ∈ pt(t1) fact required to imprecisely
conclude that o4 ∈ pt(o2.ext). Instead, the analysis can only derive o4 ∈ pt(t2)
(via line 11), leading to o4 ∈ pt(o2.ins) (line 12), which is in fact feasible.

This example in Figure 5(a) is handled more precisely since the cloning enables
the points-to analysis to track the correlation of the property name between
the copied dynamic property reads and writes—it only copies src["ext"] to
dest["ext"] and src["ins"] to dest["ins"].

In general, of course, it is not straightforward to determine the set of possi-
ble property names a correlated read/write pair may refer to. Thus, instead of
cloning the relevant section of code once for every property name, we extract
it into a fresh anonymous function taking the property name as a parameter as
shown in Figure 5(b).9 Combined with a special context sensitivity policy that
analyses the fresh function separately for every (abstract) parameter value, we
obtain the same precision as with cloning.

4.2 Implementing Correlation Tracking

Identifying Correlations. A dynamic property read r and a property write w are
said to be correlated if w writes the value read at r, and both w and r must refer
to the same property name.

We identify such correlated read/write pairs by a data flow analysis on an
intra-procedural def-use graph. Starting from a dynamic property read r of the
form o[p], we follow def-use edges to track where the read value flows. If it may
flow into a dynamic property write w of the form o’[p’] = e and we can prove
that p must have the same value as p’, then r and w are correlated. In practice,
we have found it sufficient to only consider cases where p and p’ refer to the
same local variable p, and p is not redefined between r and w.

In some cases, r and w may be in different functions. To capture this situa-
tion, we conservatively assume that any called function may perform a dynamic
property write. Thus, if both the value read by r and the value of p flow into a
function call c, we consider r and c to be correlated. The reverse situation, with
the property read occurring in a callee, does not appear to occur in practice and
we do not handle it.

While this analysis is not complete and hence will not identify all correlated
pairs, it is simple to implement and suffices in practice.

Function Extraction. Once we have identified a correlation between r and w on
property name p, we extract the snippet of code containing the two accesses into
a new function with p as its parameter. In practice, it turns out to be sufficient
to only consider the case where the read r and the write w (or the call c for
inter-procedural correlations) occur in two statements sr and sw such that sr
precedes sw inside the same block of statements.

9 Note that local variables src and dest are accessible inside the anonymous function
due to JavaScript’s lexical scoping discipline.

Correlation Tracking for Points-To Analysis of JavaScript 447

If the extraction regions corresponding to different correlated pairs overlap,
they are merged and extracted into a function taking all the relevant property
name parameters as arguments.

Some language constructs need to be treated specially. In particular, the this
value of the enclosing method needs to be passed as a separate parameter to the
extracted function if there are any this references in the extraction region, and
these references must be rewritten to access the parameter instead. We currently
do not extract code that references the arguments array. Finally, unstructured
control flow (such as continue or break) across the boundaries of the extraction
region needs to be rewritten to instead return a special flag value; this value is
checked by the enclosing function, and the appropriate jump is performed. All
these checks and transformations are of the same kind as those performed by
implementations of the Extract Method refactoring [19].

Context Sensitivity. To ensure that correlated pairs are analyzed once per prop-
erty name, we analyze the extracted function using the following context sensi-
tivity policy:

If function f uses a parameter p as the property name in a dynamic
property access, f is analyzed context-sensitively, with a separate context
for each value of p.

For the example of Figure 5(b), the policy creates a separate context for each
value of the ff parameter for the function at line 6. This policy effectively clones
the extracted function for each possible value of ff ("ext" and "ins"), matching
the cloning in Figure 5(a) and hence adding the desired correlation tracking. Our
context-sensitivity policy can be viewed as a variant of object sensitivity [18, 20],
using the property name parameter instead of the this parameter to distinguish
contexts.10

The policy is not restricted to functions generated by the extraction of corre-
lated pairs. Thus it is able to handle cases where correlated reads and writes hap-
pen in different functions. For instance, consider the following example (loosely
based on code found in the mootools framework):

function doWrite(d,p,v) { d[p] = v; }

function extend(destination, source) {
for (property in source)
doWrite(destination ,property ,source[property]);

}

Here, the read in extend is correlated with the write in doWrite. Our intra-
procedural analysis will identify this correlation due to its conservative treatment
of function calls, hence the call to doWrite will be extracted into a fresh func-
tion with parameter property. Both the fresh function and doWrite use their

10 In the case where a function uses multiple parameters as property names in dynamic
accesses, we choose one such parameter arbitrarily to distinguish contexts. We have
not observed this case in practice.

448 M. Sridharan et al.

parameter as a property name, hence they are both analyzed context sensitively,
yielding the desired precision.

This additional context sensitivity does not improve the worst-case running
time of the analysis; in fact, the analysis could in principle become slower since
more constraints are generated for functions analyzed under the new contexts. As
the next section shows, however, the technique dramatically improves scalability
in practice because we end up creating much sparser points-to graphs.

5 Evaluation

Here we present an experimental evaluation of the effectiveness of our techniques
to make field-sensitive points-to analysis for JavaScript scale in practice.

5.1 Implementation

Our analysis implementation is built on top of WALA [26]. WALA provides a
points-to analysis implementation for JavaScript, which we extended with corre-
lation tracking. WALA’s JavaScript points-to analysis is built on a highly-tuned
constraint solver also used for Java points-to analysis [21], and it has already been
used in production-quality security analyses for JavaScript [12, 24]. Our work
was motivated by the fact that WALA’s analysis could not scale to analyze many
JavaScript frameworks. By building on WALA, we were able to re-use its han-
dling of various intricate JavaScript language constructs such as the prototype
chain and arguments array (also discussed in previous work [10, 14]). WALA
also provides handwritten models of various pre-defined JavaScript objects and
standard library functions.

Default Context Sensitivity. WALA’s JavaScript points-to analysis uses context
sensitivity by default to handle two key JavaScript language features, and we
preserved these techniques in our modified version of the analysis. The first con-
struct is new, used to allocate objects. The new construct has a complex seman-
tics in JavaScript based on dispatch to a first-class function value [7, §11.2.2].11
WALA handles new by generating synthetic functions to model the behaviors
of possible callees. As any one of these synthetic functions may be invoked for
multiple new expressions, they must be analyzed with one level of call-string
context in order to achieve the standard allocation-site-based heap abstraction
of Andersen’s analysis.

Accesses to variables in enclosing lexical scopes are also handled via context
sensitivity by WALA. Handling lexical scoping for JavaScript can be compli-
cated, as nested functions may read and/or write variables declared in enclosing
functions [7, §10.2]. WALA employs contexts to ensure that a lexical access only
reads or writes the appropriate clones of the accessed variable in the call graph.
Without this approach, lexical accesses may lead to merging across call graph

11 In some cases, a new expression may not even create an object [7, §15.2.2.1].

Correlation Tracking for Points-To Analysis of JavaScript 449

clones, muting the benefits of other context-sensitivity policies. Also, lexical in-
formation is stored in abstract-location contexts for function objects as needed,
to handle closure accesses performed by the function after it is returned from its
enclosing lexical scopes. Note that our function extraction technique is eased by
WALA’s precise treatment of lexical accesses, as fewer parameters and return
values need to be introduced (see Section 4.2).

Unknown Properties. While our analysis formulation in Section 3 allowed for
only constant strings as property names, in a JavaScript property access a[e], e
may be an arbitrary expression, computed using user inputs, arithmetic, complex
string operations, etc. Hence, in some cases WALA cannot compute a complete
set of constant properties that a statement may access, i.e., the statement may
access an unknown property. WALA handles such cases conservatively via ab-
stract object properties, each of which represents the values stored in all proper-
ties of some (abstract) object. When created, an abstract property is initialized
with all possible property values discovered for the object thus far. A read of
an unknown object property is modeled as reading the object’s abstract prop-
erty, while a write to an unknown property is treated as possibly updating the
object’s abstract property and any other property whose name is known. This
strategy avoids pollution in the case where all reads and writes are to known
constant property names.

call and apply. JavaScript function objects provide two built-in methods call
and apply to reflectively invoke the represented function [7, §15.3.4]. Whenever
the analysis determines that a call may dispatch to one of these methods, it
creates a synthetic stub function that models the reflective call taking place at
this call site.

Soundness. WALA’s points-to analysis attempts to treat most commonly used
JavaScript constructs conservatively. However, unsoundness will occur in some
cases:

– We currently do not handle with blocks, which put the properties of an
object in the local scope. Of the frameworks we evaluate, only one (dojo)
uses with blocks in two places. We manually desugared these uses in a similar
way as suggested in [13].

– We do not model the semantics of eval and the Function constructor as well
as several other constructs for executing dynamically generated code. This is
analogous to how analyses of Java commonly ignore complex reflection and
dynamic code loading.

– Some implicit conversions prescribed by the language standard are not yet
modeled. In particular, some of these conversions can result in calls to
toString or valueOf methods that we currently ignore.

– Our model of the JavaScript library and the DOM is incomplete, which can
lead to unsoundness. Again, this is similar to how analyses of Java work,
few of which model the intricate native implementation of portions of the
libraries.

450 M. Sridharan et al.

Table 2. Overview of the JavaScript frameworks used in our experiments. The “LOC”
column gives the number of lines of non-blank, non-comment source code as determined
by CLOC (http://cloc.sf.net), and the “Correlated Pairs” column gives the number
of correlated access pairs extracted by our technique.

Framework Home Page Version LOC Correlated Pairs

dojo http://www.dojotoolkit.org 1.6.1 4748 20

jquery http://jquery.com 1.6.1 5896 34

mootools http://mootools.net 1.4.0 3815 41

prototype.js http://prototypejs.org 1.7 4956 9

yui http://developer.yahoo.com/yui 2.9 24088 31

In spite of possible unsoundness, the points-to analysis is still useful for a variety
of clients, e.g., bug-finding tools [12, 24]. Furthermore, we expect that correlation
tracking would provide significant benefits for a sound approach to JavaScript
points-to analysis as well.

5.2 Experimental Setup

We evaluated our approach on five popular JavaScript frameworks listed in Ta-
ble 2, which are among the most widely used frameworks according to a recent
survey [27]. For each framework, we collected six small benchmark applications
that use the framework, ranging from trivial web pages that do nothing but load
the framework scripts to toy web applications of up to 155 lines of code.12 Note
that even just loading each framework already causes significant initialization
code to run.

For each benchmark, we attempted to construct call graphs (and hence points-
to graphs) using both WALA’s standard points-to analysis and our improved
technique. We found that most of the frameworks contain sophisticated uses of
the above-mentioned reflective methods call and apply. To more clearly sepa-
rate out the impact of these features (which is orthogonal to the issue addressed
by correlation tracking) we additionally ran our analysis once with modeling
of call and apply, and once without, thus yielding a total of four different
configurations.

From now on, we will refer to the configuration using WALA’s standard anal-
ysis without call/apply support as “Baseline−” and to the one with support as
“Baseline+”; “Correlations−” and “Correlations+” are the corresponding con-
figurations using correlation tracking.

Table 2 also shows, in its last column, the number of correlated access pairs
that our technique extracts into fresh functions, which is relatively modest. The
benchmark applications themselves did not contain any correlated access pairs.

We performed a separate manual transformation of the extend function in
jquery to eliminate its complex use of the arguments array, which again is or-
thogonal to our focus in this paper. Here is an excerpt of the relevant code:

12 A complete list of the benchmark applications used and all of our experimental data
is available online at http://tinyurl.com/JSPointers.

http://www.dojotoolkit.org
http://jquery.com
http://mootools.net
http://prototypejs.org
http://developer.yahoo.com/yui
http://tinyurl.com/JSPointers

Correlation Tracking for Points-To Analysis of JavaScript 451

jQuery.extend = function () {

var target = arguments[0] || {}, i = 1,
length = arguments.length , deep = false;

// Handle a deep copy situation

if (typeof target === "boolean") {
deep = target;

target = arguments[1] || {};

// skip the boolean and the target

i = 2;

}

...

// extend jQuery itself if only one argument is passed

if (length === i) {

target = this;
--i;

} ...

}

The function explicitly tests both the number of arguments and their types,
with significantly different behaviors based on the results. If the first argument
is a boolean, its value determines whether a deep copy is performed, and if
there is only one argument, then its properties are copied to this. Any sort
of traditional flow-insensitive analysis of this function gets hopelessly confused
about what is being copied where, since target, the destination of the copy, can
be an argument, a fresh object, or this depending upon what is passed.

We manually specialized the above function for the different possible num-
bers and types of arguments, and this specialized version is analyzed in all four
configurations of the points-to analysis. Without the specialization, neither the
baseline analysis nor our modified version is able to build a call graph for jquery.
We leave it to future work to build an analysis to automatically perform these
specializations.

All our experiments were run on a Lenovo ThinkPad W520 with a 2.20 GHz
Intel Core i7-2720QM processor and 8GB RAM running Linux 2.6.32. We used
the OpenJDK 64-Bit Server VM, version 1.6.0 20, with a 5GB maximum heap.

5.3 Results

Performance. We first measured the time it takes to generate call graphs for our
benchmarks using the different configurations, with a timeout of ten minutes.
The results are shown in Table 3. Since our benchmarks are relatively small,
call graph construction time is dominated by the underlying framework, and
different benchmarks for the same framework generally take about the same
time to analyze. For this reason, we present average numbers per framework,
except in the case of dojo where one benchmark took significantly longer than
the others; its analysis time is not included in the average and given separately
in parentheses.

Configuration Baseline− does not complete within the timeout on any bench-
mark except for mootools, which it analyzes in less than a second on average.

452 M. Sridharan et al.

Table 3. Time (in seconds) to build call graphs for the benchmarks, averaged per
framework; ‘*’ indicates timeout. For dojo, one benchmark takes significantly longer
than the others, and is hence listed separately in parentheses.

Framework Baseline− Baseline+ Correlations− Correlations+

dojo * (*) * (*) 3.1 (30.4) 6.7 (*)
jquery * * 78.5 *
mootools 0.7 * 3.1 *
prototype.js * * 4.4 4.5
yui * * 2.2 2.1

However, once we move to Baseline+ and take call and apply into considera-
tion, mootools also becomes unanalyzable.

Our improved analysis fares much better. Correlations− analyzes most bench-
marks in less than five seconds, except for one dojo benchmark taking half a
minute, and the six jquery benchmarks, which take up to 80 seconds. Adding
support for call and apply again impacts analysis times: the analysis now times
out on the jquery and mootools tests, along with the dojo outlier (most likely
due to a sophisticated nested use of call and apply on the latter), and runs
more than twice as slow on the other dojo tests; on prototype.js and yui, on
the other hand, there is no noticeable difference. However, our precision mea-
surements indicate that some progress has been made even for the cases with
timeouts in Correlations+ (see below).

Our timings for the “+” configurations do not include the overhead for finding
and extracting correlated pairs, which is very low: on average, the former takes
about 0.1 seconds, and the latter even less than that.

In summary, correlation tracking speeds up the analysis dramatically in most
cases, though reflective language features like call and apply still present a
challenge for some of the benchmarks.

Memory Consumption. Introducing a more sophisticated context sensitivity pol-
icy may in general lead to larger points-to graphs since the same function may
now be analyzed under many more contexts than before, which in turn leads to
increased memory consumption. For our benchmarks, we measured the number
of points-to edges as a proxy for memory consumption. We found that correla-
tion tracking usually decreases this number by two to three orders of magnitude,
indicating that the less precise analysis configurations build much denser graphs.

There are two exceptions to this pattern. On jquery, the decrease only amounts
to 60% to 90%. On mootools, there is a case where correlation tracking leads to
larger points-to graphs: Correlations− on average yields about four times as
many points-to edges as Baseline−. This is not surprising, since mootools is the
only benchmark that the imprecise analysis configurations can actually handle.

Reachable Functions. To assess the quality of the generated call graphs, we
measured the percentage of functions the analysis considers reachable. In cases

Correlation Tracking for Points-To Analysis of JavaScript 453

Table 4. Percentage of functions considered reachable by our analysis, averaged by
framework; ‘≥’ indicates that the number is a lower bound due to analysis timeout. As
before, numbers for the outlier on dojo are given separately.

Framework Baseline− Baseline+ Correlations− Correlations+

dojo ≥ 60.8% (≥60.4%) ≥ 60.5% (≥60.1%) 16.7% (24.5%) 18.8% (≥28.3%)
jquery ≥ 35.9% ≥ 36.2% 26.7% ≥ 31.5%
mootools 9.5% ≥ 35.5% 9.5% ≥ 10.9%
prototype.js ≥ 40.5% ≥ 40.7% 17.8% 18.7%
yui ≥ 16.6% ≥ 16.6% 12.0% 12.2%

of timeout, we base our measurements on the partial call graphs available after
ten minutes; the numbers then represent lower bounds.

For every framework under every configuration, Table 4 shows the average
percentage of reachable functions over all the benchmarks; variance between
benchmarks was very low except for the same dojo benchmark that produced
atypical timings, which is again listed separately. The baseline configurations
consistently deem more functions to be reachable than the correlation tracking
configurations, in many cases dramatically so, indicating poor call graph quality.

Polymorphism. As a final measure of call graph quality, Table 5 shows the
number of highly polymorphic call sites with more than five targets. Once more,
these tend to be very similar for benchmarks based on the same framework, so
we average over frameworks, except for the by now well-known outlier on dojo.

The correlation-tracking configurations report very few highly polymorphic
call sites: the maximum number is 11 such sites on the problematic dojo bench-
mark under configuration Correlations+, and the maximum number of call tar-
gets is 22 on some of the jquery benchmarks. We inspected several of these sites
and found that they involved higher-order functions and callbacks, justifying
the higher call graph fanout. The baseline configurations, on the other hand,
produce very dense call graphs with many highly imprecisely resolved call sites,
some with more than 300 call targets.

Note that even for cases where Correlations+ times out, the number of highly-
polymorphic call sites is dramatically reduced compared to Baseline+. This result
is an indication that correlation tracking is still helpful in these cases, even

Table 5. Number of highly polymorphic call sites (i.e., call sites with more than five
call targets) for the benchmarks, averaged per framework; ‘≥’ indicates that the result
is a lower bound due to timeout. The outlier on dojo is separated out.

Framework Baseline− Baseline+ Correlations− Correlations+

dojo ≥239.4 (≥240) ≥226.4 (≥225) 0.0 (1) 1.0 (≥11)
jquery ≥244.0 ≥249.0 3.0 ≥9.0
mootools 0.0 ≥29.2 0.0 ≥0.0
prototype.js ≥164.5 ≥166.0 0.0 0.2
yui ≥29.0 ≥34.5 0.0 0.0

454 M. Sridharan et al.

though further work on scalability is needed. For clients that do not require a
full call graph, the partial call graph computed by Correlations+ would likely be
more useful than that of Baseline+ due to its lower density.

In summary, these results clearly show that correlation tracking significantly
improves scalability and precision of field-sensitive points-to analysis for a range
of JavaScript frameworks.

6 Other Languages

We have shown that correlation tracking improves analysis of several common
JavaScript frameworks. But while our work focuses on JavaScript, there are
analogs in other languages. Some languages allow writing code equivalent to the
extend function from prototype.js, and most languages provide string-indexed
maps that can cause a similar precision loss. We briefly discuss both cases.

Dynamic Property Accesses in Python. Like JavaScript, Python is a highly dy-
namic scripting language with features for reflective property access: dir lists all
properties of an object, and getattr and setattr provide first-class property
access. An equivalent of the extend function of Figure 1 can easily be written:

def extend(a, b):
for f in dir(b): setattr(a, f, getattr(b, f))

This style is less idiomatic and pervasive in Python, however, so the kind of
imprecision we see when analyzing JavaScript is less likely to occur in practice.

Imprecision with Maps. Maps are a core data structure in many applications
and can cause precision loss in the same manner as dynamic property accesses
in JavaScript. Most maps have accessors to get and set entries and to list all keys.
Consider an example in Java: for server-side web applications, the HttpSession
class stores state that persists across multiple user interactions with a server
that share a session; the following code, to enhance security, sanitizes all this
persistent state:

for(String n : session.getAttributeNames ())
session.setAttribute (n, sanitize(session.getAttribute (n)));

This is essentially the same pattern as extend, and will cause imprecision in
modeling session state, unless techniques like correlation tracking are employed.

7 Related Work

We distinguish several threads of related work.

Complexity. Chaudhuri [6] presents an optimization to CFL-reachability / recur-
sive state machine algorithms (which can handle standard field-sensitive
points-to analysis [22]) that yields O(N3/log(N)) worst-case running time. We
conjecture that similar techniques could shave a logarithmic factor from our
O(N4) bound for points-to analysis in the presence of dynamic property ac-
cesses, but devising and analyzing such an algorithm remains as future work.

Correlation Tracking for Points-To Analysis of JavaScript 455

JavaScript Semantics. Guha et al. [13] present a formalization of a core calculus
λJS for JavaScript, which includes computed property names, prototype chains
and other troublesome features, but excludes eval. Our implementation is not
based on translating JavaScript to λJS , but even with such an approach the
key analysis challenges that we face would remain. A complete formalization of
JavaScript (again without eval) is described by Maffeis et al. [17], but their
semantics is too complex to be useful for reasoning about static analyses.

Argument Sensitivity. The Cartesian product algorithm [1] (CPA) and object
sensitivity [18] both inspired our context-sensitivity policy for extracted func-
tions (see Section 4.2). These techniques create contexts based on the concrete
types of arguments at call sites, thus allowing analysis of a function to be spe-
cialized based on what types of values are being passed to it. CPA does this for
all parameters, and object sensitivity applies just to the receiver argument.

Smaragdakis et al. [20] conduct a thorough analysis of object sensitivity, clas-
sifying the prior work in terms of how it chooses contexts based on receiver
objects. They also introduce type sensitivity in which contexts are distinguished
not based on abstract objects themselves, but rather on their types. They show
that this is a promising approach for improving the cost/precision balance in
analysis, but clearly it depends on having a useful notion of static types, which
JavaScript lacks.

Other JavaScript Analyses. JavaScript combines the program analysis challenges
of a higher-order functional language with those of a very dynamic scripting
language, and considerable work has focused on addressing some of these issues.

– Jensen et al. [14, 15] deal with issues arising from JavaScript’s prototype-
based inheritance and the use of automatic coercions. They construct a de-
tailed lattice of types and adapt the recency abstraction of Balakrishnan
et al. [4] to precisely handle writes to inherited properties in constructors.
The JSRefactor refactoring tool for JavaScript [8] also includes a points-to
analysis for JavaScript, which is influenced by this line of work.

– Vardoulakis and Shivers [25] introduce CFA2 to tackle the limitations of
CFA with respect to the deep nesting of first-class function calls common in
higher-order languages. They use a continuation passing style transformation
of the code and a summarization scheme based on local state to match
deeply-nested calls and returns. The DoctorJS type inference tool13 is based
on CFA2; it uses a special form of context sensitivity to analyze for-in loop
bodies once for every abstract value of the loop variable, thus achieving (for
this special case) a similar effect to our more general technique.

These techniques mostly address other challenges that arise when analyzing dy-
namic languages such as JavaScript, and are complementary to our work. There
is also much work that focuses on problems that are specific to JavaScript:

13 www.doctorjs.org.

www.doctorjs.org

456 M. Sridharan et al.

– Zheng et al. [28] present a JavaScript analysis to find data races in code used
in asynchronous ways in a Web browser. They analyze JavaScript code that
uses several of the popular frameworks that we handle (jquery, prototype.js,
and yui); however, they do not actually analyze the framework code, but
instead design inference rules with the framework semantics encoded.

– Guarnieri and Livshits’s Gatekeeper [10] and Gulfstream [11] tools perform
points-to analyses for JavaScript for use in security analysis, with a focus on
incremental analysis in the face of dynamically loaded code on Web pages.
They treat dynamic property accesses precisely when a single possible prop-
erty name can be determined statically (by a separate constant propagation
pass), and otherwise assume that any property might be referenced. They
do not focus on the problems caused by constructs such as for-in loops.

To the best of our knowledge, none of these systems is able to analyze JavaScript
frameworks.

Dynamic Type Inference for Scripting Languages. An et al. [2] present a dynamic
analysis for inferring static types in Ruby,14 sidestepping many of the challenges
a static analysis for Ruby would have to face, which are similar to the issues
arising in JavaScript. Despite being dynamic, however, their analysis is sound.
Their focus is on type inference, so they do not track some information needed
for our analysis, like the values of different string constants. Also, their technique
requires test inputs, which are not readily available for JavaScript frameworks.

Field Sensitivity. Tripp et al. [23] present a taint analysis for Java that imple-
ments a form of field sensitivity when handling common J2EE idioms.15 J2EE
uses a context structure that is essentially a hash table, and it is usually refer-
enced in practice with constant strings as keys. They employ an abstraction of
the semantics of the context object rather than the actual Java code, applying
field sensitivity to distinguish different constant keys used in each context.

8 Conclusions

JavaScript is a uniquely challenging language for pointer analysis: ubiquitous use
of dynamic property accesses and of idioms for iterating across all of an object’s
properties together complicate points-to analysis in a fundamental way.

We introduce correlation tracking, a technique for targeted context sensitivity
to handle situations where values from dynamic property reads flow to dynamic
writes of the same property. We show that this technique aids analyzing common
JavaScript frameworks, dramatically improving scalability and precision in many
cases. We also provide a sense of why analysis is so much more expensive by
showing that extending a standard implementation of Andersen’s analysis with
support for dynamic property accesses increases its worst-case running time from
O(N3) to O(N4), where N is the size of the program.

14 http://www.ruby-lang.org/
15 http://download.oracle.com/javaee

http://www.ruby-lang.org/
http://download.oracle.com/javaee

Correlation Tracking for Points-To Analysis of JavaScript 457

Work remains to further improve points-to analysis for JavaScript; while cor-
relation tracking makes many popular frameworks tractable, there are some that
still cannot be fully analyzed. Hence, our future work will focus on finding and
solving the further causes of complexity in these frameworks, including bet-
ter handling of call and apply and automation of the precise handling of the
arguments array that was crucial for jquery (see Section 5). We also plan to
integrate our current analysis with existing tools [12, 24], as we expect corre-
lation tracking to significantly improve their effectiveness on framework-based
web sites.

References

1. Agesen, O.: The Cartesian Product Algorithm: Simple and Precise Type Inference
of Parametric Polymorphism. In: Olthoff, W. (ed.) ECOOP 1995. LNCS, vol. 952,
pp. 2–26. Springer, Heidelberg (1995)

2. An, D., Chaudhuri, A., Foster, J.S., Hicks, M.: Dynamic Inference of Static Types
for Ruby. In: POPL (2011)

3. Andersen, L.O.: Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, University of Copenhagen, DIKU (1994)

4. Balakrishnan, G., Reps, T.: Recency-Abstraction for Heap-Allocated Storage. In:
Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006)

5. Blackshear, S., Chang, B.-Y.E., Sankaranarayanan, S., Sridharan, M.: The Flow-
Insensitive Precision of Andersen’s Analysis in Practice. In: Yahav, E. (ed.) SAS
2011. LNCS, vol. 6887, pp. 60–76. Springer, Heidelberg (2011)

6. Chaudhuri, S.: Subcubic Algorithms for Recursive State Machines. In: POPL
(2008)

7. ECMA. ECMAScript Language Specification, 5th edn., ECMA-262 (2009)
8. Feldthaus, A., Millstein, T., Møller, A., Schäfer, M., Tip, F.: Tool-supported Refac-

toring for JavaScript. In: OOPSLA (2011)
9. Grove, D., Chambers, C.: A Framework for Call Graph Construction Algorithms.

TOPLAS 23(6) (2001)
10. Guarnieri, S., Livshits, V.B.: Gatekeeper: Mostly Static Enforcement of Security

and Reliability Policies for JavaScript Code. In: USENIX Security Symposium
(2009)

11. Guarnieri, S., Livshits, V.B.: Gulfstream: Incremental Static Analysis for Stream-
ing JavaScript Applications. In: WebApps (2010)

12. Guarnieri, S., Pistoia, M., Tripp, O., Dolby, J., Teilhet, S., Berg, R.: Saving the
World Wide Web from Vulnerable JavaScript. In: ISSTA (2011)

13. Guha, A., Saftoiu, C., Krishnamurthi, S.: The Essence of JavaScript. In: D’Hondt,
T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 126–150. Springer, Heidelberg (2010)

14. Jensen, S.H., Møller, A., Thiemann, P.: Type Analysis for JavaScript. In: Palsberg,
J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 238–255. Springer, Heidelberg
(2009)

15. Jensen, S.H., Møller, A., Thiemann, P.: Interprocedural Analysis with Lazy Propa-
gation. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 320–339.
Springer, Heidelberg (2010)

16. Lhoták, O., Hendren, L.: Scaling Java Points-to Analysis Using SPARK. In: Hedin,
G. (ed.) CC 2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg (2003)

458 M. Sridharan et al.

17. Maffeis, S., Mitchell, J.C., Taly, A.: An Operational Semantics for JavaScript.
In: Ramalingam, G. (ed.) APLAS 2008. LNCS, vol. 5356, pp. 307–325. Springer,
Heidelberg (2008)

18. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized Object Sensitivity for
Points-to Analysis for Java. TOSEM 14(1) (2005)

19. Schäfer, M., Verbaere, M., Ekman, T., de Moor, O.: Stepping Stones over the
Refactoring Rubicon. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653,
pp. 369–393. Springer, Heidelberg (2009)

20. Smaragdakis, Y., Bravenboer, M., Lhoták, O.: Pick Your Contexts Well: Under-
standing Object-sensitivity. In: POPL (2011)

21. Sridharan, M., Fink, S.J.: The Complexity of Andersen’s Analysis in Practice.
In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 205–221. Springer,
Heidelberg (2009)

22. Sridharan, M., Gopan, D., Shan, L., Bod́ık, R.: Demand-Driven Points-To Analysis
for Java. In: OOPSLA (2005)

23. Tripp, O., Pistoia, M., Fink, S.J., Sridharan, M., Weisman, O.: TAJ: Effective
Taint Analysis of Web Applications. In: PLDI (2009)

24. Tripp, O., Weisman, O.: Hybrid Analysis for JavaScript Security Assessment. In:
ESEC/FSE 2011, Industrial Track (2011)

25. Vardoulakis, D., Shivers, O.: CFA2: A Context-Free Approach to Control-Flow
Analysis. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 570–589.
Springer, Heidelberg (2010)

26. Watson, T.J.: Libraries for Analysis (WALA), http://wala.sf.net
27. Web Technology Surveys. Usage of JavaScript libraries for websites,
http://w3techs.com/technologies/overview/javascript_library/all (ac-
cessed March 30, 2012)

28. Zheng, Y., Bao, T., Zhang, X.: Statically Locating Web Application Bugs Caused
by Asynchronous Calls. In: WWW (2011)

http://wala.sf.net
http://w3techs.com/technologies/overview/javascript_library/all

Soundness of Object-Oriented Languages

with Coinductive Big-Step Semantics�

Davide Ancona

DISI, Università di Genova, Italy
davide@disi.unige.it

Abstract. It is well known that big-step operational semantics are not
suitable for proving soundness of type systems, because of their inability
to distinguish stuck from non-terminating computations. We show how
this problem can be solved by interpreting coinductively the rules for the
standard big-step operational semantics of a Java-like language, thus
making the claim of soundness more intuitive: whenever a program is
well-typed, its coinductive operational semantics returns a value.

Indeed, coinduction allows non-terminating computations to return
values; this is proved by showing that the set of proof trees defining the
semantic judgment forms a complete metric space when equipped with
a proper distance function.

In this way, we are able to prove soundness of a nominal type system
w.r.t. the coinductive semantics. Since the coinductive semantics is sound
w.r.t. the usual small-step operational semantics, the standard claim of
soundness can be easily deduced.

1 Introduction

It is well known that standard big-step operational semantics are less amenable
to prove soundness of type systems than small-step semantics; several impor-
tant motivations for this statement can be found in the literature [12,13], but,
basically, the main source of all problems is the inability of big-step operational
semantics to distinguish stuck from non-terminating computations.

Besides addressing this problem, our work seeks to find simpler, and easy
to be automated, techniques for proving soundness of abstract compilation of
object-oriented languages [7,4,6,5], a novel approach which aims to reconcile type
analysis and symbolic execution, where programs are compiled into a constraint
logic program (CLP), and type analysis corresponds to solving a certain goal
w.r.t. the coinductive semantics of CLP.

The idea of using coinduction to allow big-step semantics to capture non-
terminating computations is not new (see the conclusion for a brief survey); Leroy

� This work has been partially supported by MIUR DISCO - Distribution, Interaction,
Specification, Composition for Object Systems. I would like to thank Erik Ernst for
his useful comments and suggestions; many thanks also to Sophia Drossopoulou,
Atsushi Igarashi, Alan Mycroft and Elena Zucca for all their useful suggestions and
questions.

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 459–483, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

460 D. Ancona

and Grall [13] have investigated coinductive operational semantics in the con-
text of functional programming, with the main aim of elaborating techniques for
automatically proving the correctness of compilation. Among several approaches
considered by the authors, the simplest one consists in interpreting coinductively
the standard rules for the big-step operational semantics of lambda-calculus, and
then expressing the soundness claim in a very direct way: if an expression e has
type τ , then the coinductive semantics of e yields a value v of type τ . Unfor-
tunately, such a claim fails to hold, as shown by the authors themselves, since
there exist well-typed non-terminating expressions for which the coinductive se-
mantics is not defined. This happens because only finite values are considered,
whereas the values that should be returned by the coinductive semantics of
such counter-example expressions correspond to necessarily infinite limits of se-
quences of finite (that is, inductively defined) values. More formally, if only finite
values are considered, then it is not possible to define a complete metric space
over the set of possibly infinite proof trees for the judgment of the coinductive
semantics.

Interestingly enough, if the same approach is taken for a Java-like language,
and, more importantly, infinite values are considered as well, then the claim of
soundness holds when expressed in terms of a coinductive big-step semantics.

Figure 1 provides a road-map to the main defined judgments and proved
claims in this paper. Symbols � and � denote judgments defined inductively
and coinductively, respectively.

Sect. 5 Sect. 6 Sect. 4

Γ � e:τ ⇒ Γ�e:τ ⇒ ∃ �.Π�e ⇒ � ⇒ e diverges or ∃ v .e ∗→ v

Fig. 1. Relationship between the main judgments

After having introduced the syntax and the standard small-step semantics
(abbreviated with ISS) of the language (Section 2), and the mathematical back-
ground (Section 3) needed for the proofs, in Section 4 we define the coinductive
big-step semantics (abbreviated with CBS) of the language, show, by means of
examples, its behavior in case of non-termination, and formalize its relationship
with the ISS (rightmost implication in Figure 1): if the CBS of e yields a value �,
then the ISS of e either returns a value v , or does not terminate; in other words,
whenever the CBS of e yields a value, the ISS of e cannot get stuck, hence, the
CBS is sound w.r.t. the ISS. Note the different nature of values (and hence the
use of different meta-variables) in the CBS, where they can be infinite, and in
the ISS, where they can only be finite.

In Section 5 a conventional inductive and nominal type system is defined
(judgment Γ � e:τ), and a coinductive type system is derived from it (judgment
Γ�e:τ): such a coinductive system is closer to the CBS, indeed it can be regarded

Soundness of Object-Oriented Languages 461

as an abstraction of the CBS. Furthermore we prove that all judgments that
hold in the inductive type system can be derived in the coinductive one as well
(leftmost implication in Figure 1).

The core and most difficult part of the formalization concerns the proof of the
soundness of the coinductive type system w.r.t. the CBS (middle implication in
Figure 1, proved in Section 6). The overview in Figure 1 clearly shows that, as
expected, in the end we obtain the the standard soundness result expressed in
terms of the ISS. At the end of the section we propose a scheme for proving
soundness for a generic type system and language; the rightmost implication in
Figure 1 is needed only if one wants to relate the CBS to the ISS, and derive from
it a standard soundness claim expressed in terms of the ISS. Furthermore, such
an implication needs to be proved just once per programming language, since
it does not depend from the considered type system. We expect the definition
of the coinductive type system in terms of the inductive one, and the proof of
the leftmost implication in Figure 1 to be standard, whereas the proof given in
Section 6, with the corresponding definitions of metric spaces, should provide a
template to be adapted for proving the middle implication in Figure 1.

Finally, in Section 7 we outline conclusions and related work.
This paper is an extension of a previous work by the same author [3], where

the following contributions have been added: The definition of the coinductive
type system and the corresponding proof of the leftmost implication in Figure 1
are new; the coinductive type system has been introduced to make the proof of
soundness simpler and more modular; it also reveals how coinduction is related
to the inductive type system.

While the justification for the introduction of infinite values in the CBS is
only informally motivated in the previous work, here it has been made rigorous
by means of the notion of complete metric space; in particular, the definition
of the metric space of proof trees for the CBS judgment, and the proof of its
properties, represent a non trivial task and an original contribution.

In Section 4 a new example has been added (case 2 (c)), showing that sound-
ness does not hold if only infinite but regular values are considered.

All main proofs have been detailed. All omitted proofs and definitions can be
found in the companion technical report1.

2 Definition of the Language

In this section we present our simple Java-like language, which will be used as
reference language throughout the paper, together with its standard call-by-value
small-step operational semantics.

Syntax: The syntax of the language is defined in Figure 2.
The language is a modest variation of Featherweight Java (FJ) [11], where the

main differences concern the introduction of conditional expressions and boolean
values, and the omission of type casts.

1 Available at ftp://ftp.disi.unige.it/person/AnconaD/ecoop12long.pdf

ftp://ftp.disi.unige.it/person/AnconaD/ecoop12long.pdf

462 D. Ancona

p ::= cd
n
e

cd ::= class c1 extends c2 { fd
n
md

k } (c1 �= Object)
fd ::= τ f ;

md ::= τ0 m(τ xn) {e} xi �= this ∀i = 1..n
τ ::= c | bool
e ::= new c(en) | x | e.f | e0.m(en) | if (e) e1 else e2

| false | true
Assumptions: n, k ≥ 0, inheritance is acyclic, names of declared classes in a program,
methods and fields in a class, and parameters in a method are distinct.

Fig. 2. Syntax of the language

Standard syntactic restrictions are implicitly imposed in the figure. Bars de-
note sequences of n items, where n is the superscript of the bar and the first index

is 1. Sometimes this notation is abused, as in f
h
= e ′

h
; which is a shorthand for

f1 = e ′1; . . . fh = e ′h;.
A program consists of a sequence of class declarations and a main expression.

Types can only be class names and the primitive type bool; we assume that the
language supports boxing conversions, hence bool is a subtype2 of the predefined
class Object, which is the top type.

A class declaration contains field and method declarations; in contrast with
FJ, constructors are not declared, but every class is equipped with an implicit
constructor with parameters corresponding to all fields, in the same order as
they are inherited and declared. For instance, the classes defined below

c lass P extends Object{bool b; P p;}

c lass C extends P{C c;}

have the following implicit constructors:

P(bool b,P p){super(); this .b=b; this .p=p;}

C(bool b,P p,C c){super(b,p); this.c=c;}

Method declarations are standard; in the body, the target object can be accessed
via the implicit parameter this, therefore all explicitly declared formal parame-
ters must be different from this. Expressions include instance creation, variables,
field selection, method invocation, conditional expressions, and boolean literals.

Small-Step Operational Semantics. The definition of the conventional small-
step operational semantics of the language can be found in Figure 3. We follow
the approach of FJ, even though for simplicity we have preferred to restrict the
semantics to the deterministic call-by-value evaluation strategy.

Values are either the literals false or true, or object expressions in nor-
mal form having shape new c(vn). As happens for FJ, the semantics of object

2 This assumption ensures the existence of the join between types, without introducing
union types, to make the typing rule for conditional expressions simpler in the type
system defined in Section 5.

Soundness of Object-Oriented Languages 463

creation is more liberal than the expected one; indeed, new c(vn) is always
a correct expression which reduces to itself in zero steps, even when class c
is not declared, or the number of arguments does not match the number of
fields of c. As we will see, the big-step semantics follows a less liberal semantics,
more in accordance with the standard semantics of mainstream object-oriented
languages.

As usual, the reduction relation → should be indexed over the collection of all
class declarations contained in the program (conventionally called class table),
however for brevity we leave implicit such an index in all judgments defined in
the paper. The reflexive and transitive closure of → is denoted by

∗→ .
The definition of the standard auxiliary functions fields and meth is straight-

forward (see the companion technical report). For compactness, such functions
provide semantic and type information at once, since they are instrumental for
the definition of both the semantics and the type system of the language. Func-
tion fields returns the list of all fields which are either inherited or declared in
the class, in the standard order and with the corresponding declared types. In
the case of the predefined class Object the returned list is empty (ε); field hiding
is not supported, hence fields is not defined if a class declares a field with the
same name of an inherited one. Function meth performs standard method look-
up: if meth(c,m) = τn xn.e:τ , then look-up of method m starting from class c
returns the corresponding declaration where τn xn are the formal parameters
with their declared types, and e and τ are the body and the declared returned
type, respectively. If meth(c,m) is undefined, then it means that look-up of m
from c fails.

In rule (fld), if fi is a field of the class, then the expression reduces to the
corresponding value passed to the implicit constructor. If the selected field is
not in such a list, then the evaluation of the expression gets stuck.

In rule (inv), if method look-up succeeds starting from the class of the target
object, then the corresponding body is executed, where the implicit parameter
this and the formal parameters are substituted with the target object and
the argument values, respectively. The notation ei[x

n �→ vn] denotes parallel
substitution of the distinct variables xn with values vn in the expression e.

Rules for conditional expressions (ift) and (iff), and for context closure (ctx)
are straightforward. Contexts are the standard ones corresponding to left-to-
right, call-by-value strategy.

3 Background

In the following, with the term tree over a set S we will mean a finitely branching
tree with nodes in S that is allowed to contain infinite paths. If t is a tree, we
denote with root(t) the root of t.

More rigorously, a tree with infinite paths can be defined in terms of partial
functions over finite paths of natural numbers (denoted by �∗) [9,7].

464 D. Ancona

v ::= new c(vn) | false | true
C[] ::= � | new c(vn,�, ek) | �.f | �.m(en) | v .m(vn,�, ek) | if (�) e1 else e2

(fld)
fields(c) = τn f

n
, 1 ≤ i ≤ n

new c(vn).fi → vi

(inv)
meth(c,m) = τn xn.e:τ

new c(vk).m(v ′n)→ e[this �→ new c(vk), xn �→ v ′n]

(ift)
if (true) e1 else e2 → e1

(iff)
if (false) e1 else e2 → e2

(ctx)
e → e ′

C[e]→ C[e ′]

Fig. 3. Call-by-value inductive small-step operational semantics

Definition 1. A tree over a set S is a partial function t : �∗ → S satisfying the
following properties:

1. its domain is not empty: dom(t) = ∅;
2. its domain is prefix-closed: p ·n ∈ dom(t) implies p ∈ dom(t), for all p ∈ �

∗,
and n ∈ �;

3. if p · n ∈ dom(t) and k ≤ n, then p · k ∈ dom(t) for all p ∈ �
∗ and n, k ∈ �;

4. there exists n ∈ � s.t. p · n ∈ dom(t), for all p ∈ �
∗.

Every path p ∈ dom(t) identifies a unique subtree t′ of t whose root is t(p):
dom(t′) = {p′ ∈ �

∗ | p · p′ ∈ dom(t)}, and t′(p′) = t(p · p′) for all p′ ∈ dom(t′).

Definition 2. A regular (a.k.a. rational) tree is a tree whose set of subtrees is
finite.

Trivially, every finite tree (that is, tree with only finite paths) is regular, but
there exist also infinite trees that are regular.

Definition 3. A metric space (S, d) is a set S equipped with a function d:S ×
S → �, called metric or distance, satisfying the following properties, for all x,
y, and z in S:

– (identity) d(x, y) = 0 iff x = y;
– (symmetry) d(x, y) = d(y, x);
– (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z).

Definition 4. Let (S, d) be a metric space.

– A sequence (xi)i∈� has limit l iff for all ε > 0 there exists k ∈ � s.t. d(xn, l) <
ε, for all n > k.

– A Cauchy sequence (xi)i∈� is a sequence s.t. for all ε > 0 there exists k ∈ �

s.t. d(xn, xm) < ε for all n,m > k.
– A metric space is complete iff all Cauchy sequences have a limit.

Soundness of Object-Oriented Languages 465

Proposition 1. Let TS be the set of all trees over S. Then, TS is a complete
metric space [8,2] with the following metric:

dT (t1, t2) = 2−c

where c = shtp(t1, t2) = min{n ∈ � | p ∈ �
n, t1(p) =⊥ t2(p)}, min ∅ = ∞,

2−∞ = 0, t1(p) =⊥ t2(p) iff either p ∈ dom(t1) and p ∈ dom(t2), or p ∈
dom(t1) ∩ dom(t2) and t1(p) = t2(p). That is, c is the length of a shortest path
that distinguishes t1 from t2, if t1 = t2, or c =∞ if t1 = t2.

By definition, for all pairs of trees t1 and t2, dT (t1, t2) ∈ {0} ∪ {2−c | c ∈ �},
that is, 0 ≤ dT (t1, t2) ≤ 1. It can be proved that the set of finitely branching
trees with infinite paths, with the metric defined above, is the (unique up to
isometries) completion of the set of finitely branching trees with finite paths
with the same metric.

Definition 5. Let us consider a judgment where all possible instantiations range
over the set J .

A proof tree ∇ for an instantiation j ∈ J of the judgment is a tree ∇ over
J s.t. root(∇) = j.

A valid proof tree for an instantiation j ∈ J of the judgment is a proof tree
∇ s.t. for any node j in ∇, if j1, . . . , jk are the children of j, then j1,...,jk

j is a
correct instantiation of one of the meta-rules defining this kind of judgment.

We simply write that ∇ is a (valid) proof tree for the judgment, when we are
not interested in specifying the particular instantiation j ∈ J which is the root
of the tree.

We write ok (R)(∇) to indicate that the root of ∇ together with its children
are a correct instantiation of the meta-rule labeled by R. Hence, a valid proof
tree ∇ is a proof tree s.t. for all subtrees ∇′ of ∇ (including ∇), there exists a
meta-rule R s.t. ok(R)(∇′).

Definition 6. A complete lattice is a partially ordered set (L,≤) s.t. any subset
S of L has a supremum (a.k.a. least upper bound) denoted with supS.

Since, by definition of inf and sup, inf S = sup{x ∈ L|∀ y ∈ S.x ≤ y}, sup ∅ is
the least element ⊥ of L, and inf ∅ is the greatest element � of L, then every
subset of a complete lattice has an infimum (greatest lower bound) and every
complete lattice is bounded.

Definition 7. Let (L,≤) be a complete lattice. A (total) function f : L → L
is continuous iff it preserves the supremum of every subset of L: for all S ⊆ L,
f(supS) = sup{f(x)|x ∈ S}.
It is easy to prove that a continuous function is monotone and preserves infima
as well.

Definition 8. Let (L,≤) be a partially ordered set, f a (total) function from L
to L, and x an element of L.

466 D. Ancona

– x is a pre-fixed point of f (a.k.a. f -closed) iff f(x) ≤ x;
– x is a post-fixed point of f (a.k.a. f -dense or f -justified or f -consistent) iff

x ≤ f(x).

Trivially, x is a fixed-point of f iff x is both a pre-fixed and a post-fixed point
of f .

Theorem 1 (Tarski-Knaster). Let (L,≤) be a complete lattice, and f : L →
L a monotone function. Then

1. f(inf{x ∈ L|x pre-fixed point of f}) = inf{x ∈ L|x pre-fixed point of f};
2. f(sup{x ∈ L|x post-fixed point of f}) = sup{x ∈ L|x pre-fixed point of f}.
From Theorem 1 one can trivially deduce that a monotone function defined on a
complete lattice has always a least fixed-point (which is also the least pre-fixed
point), and a greatest fixed point (which is also the greatest post-fixed point).

Given a judgment defined by a set of meta-rules, with instantiations ranging
over J , it is possible to define the one step inference function F over the power-
set of J as follows: for any subset J of J , F(J) is the subset J ′ of J s.t.
for any j ∈ J ′, there exists a correct instantiation j1,...,jk

j of a meta-rule with

{j1, . . . , jk} ⊆ J .
Such a function is always trivially monotone, and it can be proved [7,5,13,17]

that its least fixed point is the set of j ∈ J s.t. there exists a finite valid proof
tree for j, whereas its greatest fixed point is the set of j ∈ J s.t. there exists a
(possibly infinite) valid proof tree for j.

We denote with fn(x) n iterated applications of f to x (with n ∈ �, f0(x) =
x).

Theorem 2 (Kleene). Let (L,≤) be a complete lattice, and f : L → L a
continuous function. Then

1. sup{fn(⊥)|n ∈ �} is the least fixed point of f ;
2. inf{fn(�)|n ∈ �} is the greatest fixed point of f .

Since f is monotone, we have that f0(⊥) ≤ f1(⊥) ≤ . . . fn(⊥) ≤ fn+1(⊥) ≤ . . .
is an ascending chain, and dually, f0(�) ≥ f1(�) ≥ . . . fn(�) ≥ fn+1(�) ≥ . . .
is a descending chain. Note that the two claims of Theorem 2 hold also under
the weaker assumption that f is a monotone function preserving suprema of
ascending chains (claim 1), or infima of descending chains (claim 2).

4 A Coinductive Semantics

In this section we define a call-by-value coinductive big-step operational seman-
tics for our language.

Such a semantics is obtained by simply interpreting coinductively the def-
inition of values and the rules of the standard inductive big-step operational
semantics (with no rules for error handling).

Soundness of Object-Oriented Languages 467

Definition of the Semantics. The CBS judgment uses value environments (see
below), just for uniformity with the type judgment defined in Section 5. Value
environments are not strictly necessary, since the rule for method invocation can
be equivalently defined with parallel substitution as in ISS. Values are separated
from expressions since they are infinite, while expressions are always finite. Such
a separation is further stressed by the fact that values belong to a different
syntactic category, that is, even finite values are different from expressions.

�, � ::= obj (c, [f
n �→ �

n]) | false | true (coinductive def.)

We recall that false and true are expressions of our language, and values (de-
noted by the meta-variable v) in the ISS, whereas false and true are not expres-
sions, but just the corresponding values (denoted by the meta-variable �) in the
CBS. Similarly, new c(true) is both an expression and a value in ISS, whereas
obj (c, [f �→ true]) is the corresponding value in CBS (assuming that the only
field of c is f), and is not an expression.

As an example of an infinite value, let us consider the object value � defined
by the equation

� = obj (List , [hd �→ obj (Elem , []), tl �→ �])

which represents an infinite list; in our language, such a value can only be re-
turned by an infinite computation. Of course in a lazy or imperative language,
this value could be returned also by a terminating computation; however, the
important point here is that type correct expressions which do not terminate
must always return a value in the CBS: as explained in case 2 in the second part
of this section, without infinite values the claim of soundness proved in Section 5
would not hold.

The CBS is defined in Figure 4. Thicker lines manifest that rules are inter-
preted coinductively. A value environment Π is a finite sequence xi

n �→ �
n,

where all variables xi
n are distinct, denoting a finite partial function mapping

variables to values (∅ denotes the empty environment, dom(Π) the domain of
Π). Environments model stack frames of method invocations.

Rules (var), (fal), and (tru) are straightforward. Evaluation of instance cre-
ation (new) succeeds only if fields(c) is defined (that is, if c and its ancestors are
declared in the program and no field is hidden), and returns a list of fields whose
length must coincide with the number of arguments; then all arguments are eval-
uated and the obtained values are associated with the corresponding fields in the
object value. For field selection (fld) the target expression is evaluated; then
evaluation succeeds only if an object value is returned, and the selected field
is present in the object value; in this case the corresponding associated value is
returned. For method invocation (inv) all expressions denoting the target object
and the arguments are evaluated. If the value corresponding to the target is an
object of class c, method look-up starting from c succeeds and returns a method
declaration with a number of formal parameters coinciding with the number of
passed arguments, then the method body is evaluated in the environment where

468 D. Ancona

this and the formal parameters are associated with their corresponding values.
If such an evaluation succeeds, then the returned value is the value of the method
invocation. Finally, rules (ift) and (iff) deal with the straightforward evaluation
of conditional expressions.

(var)

Π(x) = �

Π�x ⇒ �

(fal)

Π�false ⇒ false
(tru)

Π�true ⇒ true

(new)

∀ i = 1..n.Π�ei ⇒ �i fields(c) = τn f
n

Π�new c(en)⇒ obj (c, [f
n �→ �

n])
(ift)

Π�e ⇒ true Π�e1 ⇒ �

Π� if (e) e1 else e2 ⇒ �

(iff)

Π�e ⇒ false Π�e2 ⇒ �

Π� if (e) e1 else e2 ⇒ �

(fld)

Π�e ⇒ obj (c, [f
n �→ �

n]) 1 ≤ i ≤ n

Π�e.fi ⇒ �i

(inv)

∀ i = 0..n.Π�ei ⇒ �i this �→ �0, x
n �→ �

n�e ⇒ �

�0 = obj (c, [. . .]) meth(c,m) = τn xn.e:τ

Π�e0.m(en)⇒ �

Fig. 4. Call-by-value coinductive big-step operational semantics

Note that in the CBS, object creation is less liberal than in the ISS: as an
example, new c() is a value in the ISS, whereas the same expression may not
evaluate to a value in the CBS; this happens if either c is not declared in the
program, or if c contains at least one field.

Coinductive Semantics of Non-terminating Expressions. We have al-
ready observed that if the definition of values and the evaluation rules are in-
terpreted inductively, then we obtain a standard inductive big-step operational
semantics. Obviously, if an expression evaluates to a value in the inductive se-
mantics, then the same value is obtained in the coinductive one; however, this
case concerns terminating expressions, whereas what we do really care about
here is the behavior of the CBS for non-terminating expressions. We show that
three different cases may occur. All expressions e considered in the examples
below are well-typed and do not terminate in the ISS, that is, there exists no
normal form e ′ s.t. e ∗→ e ′.

Case 1: There exist many values � s.t. ∅�e ⇒ �

Let us consider the expression e = new C().m(), where C is the only class
declared in the program:

c lass C extends Object{bool m(){this.m()}}

Then ∅�e ⇒ � for all values �, as shown in the valid proof tree of Figure 5.
Ellipsis means that such a tree is infinite (hence, it cannot be a valid proof
for an inductive system), although regular, that is, it can be folded into a fi-
nite graph, because of the repeated finite pattern originated from the judgment

Soundness of Object-Oriented Languages 469

∅�new C()⇒ �

Π�this⇒ �

...

Π�this.m()⇒ �

Π�this.m()⇒ �

∅�new C().m()⇒ �

Fig. 5. Proof tree for ∅�e ⇒ �, where � = obj (C, []), Π = this �→ �

Π�this.m() ⇒ �. Such non-determinism is naturally reflected in the conven-
tional nominal type system (see Section 5) where the return type bool can in
fact be correctly replaced by any other type defined in the program.

There are also cases where finitely many values are returned. For instance,

∅� if(new C().m()) true else false⇒ true
∅� if(new C().m()) true else false⇒ false

and no other values can be returned.

Case 2 (a), (b) and (c): There exists a unique value � s.t. ∅�e ⇒ �

We consider three possible cases (a), (b), and (c), where the returned value is
finite (a), or infinite but regular (b), or infinite and non regular (c). For case (a), if
C is the class of case 1, then the expression if(new C().m()) true else true triv-
ially evaluates to the unique value true (although with two different valid proof
trees). For case (b), let us consider a program with the following declarations
(where M, L, and n are abbreviations for Main, List, and next, respectively):

c lass M extends Object{L m(){new L(this.m())}}

c lass L extends Object{L n;}

The main expression new M().m() evaluates to a unique value which is an
infinite but regular object of class L; Figure 6 shows the unique valid proof tree
for ∅�new M().m() ⇒ obj (L, [n �→ �]); such a tree is infinite, but regular. The
proof tree is valid if and only if the following proposition holds:

Π�new L(this.m())⇒ � iff Π�new L(this.m())⇒ obj (L, [n �→ �])

with Π = this �→ obj (M, []). Such a proposition cannot be satisfied by finite
values, but holds for the unique infinite regular value � s.t. � = obj (L, [n �→ �]).

In the conventional nominal type system the return type τ of method m in M

must verify L ≤ τ , since the body of the method returns a new instance of class
L, but also τ ≤ L, since the formal parameter of the implicit constructor of L
has the same type as field n; therefore, similarly to what happens in the CBS,
there exists only one possible return type: L. This example shows that if rules
are interpreted coinductively, but values can only be finite, then the soundness
claim proved in Section 5, (that is, any well-typed expression evaluates to a
value) does not hold.

Finally, for case (c), let us consider the following class declarations:

470 D. Ancona

∅�new M()⇒ obj (M, [])

Π�this ⇒ obj (M, [])

...

Π�new L(this.m())⇒ �

Π�this.m()⇒ �

Π�new L(this.m())⇒ obj (L, [n �→ �])

∅�new M().m()⇒ obj (L, [n �→ �])

Fig. 6. Proof of ∅�new M().m() ⇒ obj (L, [n �→ �]), with � = obj (L, [n �→ �]), Π =
this �→ obj (M, [])

c lass Nat extends Object{ }

c lass Z extends Nat{ }

c lass NZ extends Nat{Nat p;}

c lass M extends Object{L m(Nat e){new L(e,this.m(new NZ(e)))}}

c lass L extends Object{Nat e; L n;}

Then, the expression new M().m(new Z()) is well-typed and evaluates to the
unique infinite and non regular value �0 where

�i = obj (L, [e �→ �i, n �→ �i+1]) for all i ∈ �

�0 = obj (Z, []) �i = obj (NZ, [p �→ �i−1]) for all i ∈ � \ {0}
Figure 7 shows the non regular valid proof tree for the judgment, defined in terms
of a countably infinite set of equations whose solutions are valid proof trees ⇒∇i,
for all i ∈ �. This example shows that if rules are interpreted coinductively, but
values can only be regular, then the soundness claim proved in Section 5, (that
is, any well-typed expression evaluates to a value) does not hold.

⇒∇i =
Πi�e⇒ �i

Πi�this⇒ obj (M, [])

Πi�e⇒ �i

Πi�new NZ(e)⇒ �i+1 ⇒∇i+1

Πi�this.m(new NZ(e))⇒ �i+1

Πi�new L(e,this.m(new NZ(e)))⇒ �i

∅�new M()⇒ obj (M, []) ∅�new Z()⇒ �0 ⇒∇0

∅�new M().m(new Z())⇒ �0

Fig. 7. Proof of ∅�new M().m(new Z()) ⇒ �0, with Πi = this �→ obj (M, []), e �→ �i

for all i ∈ �

Soundness of Object-Oriented Languages 471

Case 3: There exist no values � s.t. ∅�e ⇒ �

If C is as in case 1 (that is, new C().m() does not terminate), then the
expression if(new C().m()) true.m() else true.m() does not evaluate to any
value; this is a direct consequence of the fact that no rules are applicable for the
expression true.m() since true does not evaluate to an object value. The main
difference with the previous two cases is that here the expression to be evaluated
cannot be typed in any type system insensitive to non-termination. Indeed, in
the conventional nominal type system defined in Section 5 all examples except
for this are well-typed. This example shows the main difference between the ISS
and the CBS: in the former, there exist ill-typed expressions whose evaluation
does not terminate (that is, does not get stuck), whereas in the latter all ill-typed
expressions do not evaluate to a value.

Soundness of CBS w.r.t. ISS. We prove now that the CBS is sound w.r.t.the
ISS. More precisely, if ∅�e ⇒ �, then in the ISS either e diverges (that is, e does
not reduce to a normal form), or e reduces in zero or more steps to a value v s.t.
∅�v ⇒ �. In other words, we are guaranteed that the evaluation of an expression
will never get stuck in the ISS whenever it returns a value in the CBS. Under this
point of view the CBS plays a role similar to that of a type system; indeed, to
prove this property we use the standard proof technique based on the progress
and subject reduction properties. Such a property tells us an important fact:
type soundness of a type system can be equivalently proved in terms of the
CBS, instead of the ISS. If soundness holds in terms of the CBS, then it holds in
terms of the ISS as well, by virtue of the soundness property of the CBS w.r.t.
the ISS we are going to prove.

The progress and subject reduction properties can be proved routinely (see
the companion technical report), the former by induction on e, the latter by
induction on the rules defining ISS. Proof by coinduction is only needed for the
substitution lemma.

Theorem 3 (Progress). If ∅�e ⇒ �, then either e is a value, or there exists
e ′ s.t. e → e ′.

Subject reduction relies on the following restricted form of substitution lemma
which suffices for proving Theorem 4.

Lemma 1 (Substitution). If xn �→ �
n�e ⇒ �, and for all i = 1..n ∅�vi ⇒ �i,

then ∅�e[xn �→ vn]⇒ �.

Theorem 4 (Subject reduction). If ∅�e ⇒ �, and e → e ′, then ∅�e ′ ⇒ �.

Corollary 1. If ∅�e ⇒ �, e
∗→ e ′, and e ′ is a normal form, then e ′ is a value,

and ∅�e ′ ⇒ �.

Proof. By induction on the number n of steps needed to reduce e to e ′. If n = 0,
then e = e ′, and trivially ∅�e ′ ⇒ �; furthermore, since e ′ is a normal form, by
progress (Theorem 3) e ′ is a value. If n > 0, then there exists e ′′ s.t. e → e ′′, and
e ′′ reduces to e ′ in n − 1 steps. By subject reduction (Theorem 4) ∅�e ′′ ⇒ �,
then we conclude by inductive hypothesis.

472 D. Ancona

5 Type Systems

To make the proof of soundness simpler and more modular, we first define a
standard inductive nominal type system for our reference language, and then we
derive from it a coinductive nominal type system, and prove that if an expression
is well-typed in the inductive type system, than it is assigned the same type in
the coinductive one. In other words, the inductive type system is sound w.r.t. the
coinductive one; we conjecture that in fact the two systems are equivalent (hence,
the coinductive system is sound w.r.t. the inductive one as well), but here we
prove only the only implication we are interested in. In this way, soundness of the
inductive type system in terms of the CBS can be directly derived from soundness
of the coinductive type system in terms of the CBS (prove in Section 6).

Auxiliary Definitions. Besides functions fields and meth, already used for defin-
ing both the ISS and the CBS, the typing rules are based on the following auxil-
iary functions/operators, whose definition is straightforward (see the companion
technical report). The standard subtyping relation ≤ between nominal types; the
override predicate s.t. override(c,m, τn, τ) holds iff meth(c′,m) is undefined or
meth(c′,m) = τ ′

n
xn.e:τ ′, τ ′

n ≤ τn, and τ ≤ τ ′, with c′ direct superclass of c;
the join operator ∨ which computes the least upper bound ∨(τ1, τ2) of two types
τ1 and τ2 (this is always defined since inheritance is single, and bool is a subtype
of the top type Object).

Typing Rules. The typing rules, which can be found in Figure 8, are quite stan-
dard. A type environment Γ is a finite sequence xi

n:τn, where all variables xi
n

are distinct, denoting a finite function mapping variables to types (∅ denotes
the empty type environment, dom(Γ) the domain of Γ). Rules (pro), (cla), and
(met) define well-typed programs, classes, and methods, respectively. The other
rules define well-typed expressions w.r.t. a given type environment. Let us recall
that, similarly to what happens for the operational semantics, all typing judg-
ments are implicitly indexed over a class table containing all needed information
on the classes declared in the program.

Membership Relation. To prove soundness of the type system w.r.t. the CBS,
we first define a relation � ∈ τ between the CBS values and nominal types:
intuitively, such a relation defines the intended semantics of types as set of
values [6]. Such a relation is coinductively defined by the following rules:

(top)

� ∈ Object
(bool)

� = false or � = true

� ∈ bool

(obj)

∀ i = 1..n.�i ∈ τi c ≤ c′ fields(c) = τn f
n

obj (c, [f
n �→ �

n]) ∈ c′

The membership relation is easily extended to environments and type environ-
ments:

Π ∈ Γ ⇔ dom(Γ) ⊆ dom(Π) and ∀ x ∈ dom(Γ).Π(x) ∈ Γ (x).

Soundness of Object-Oriented Languages 473

(pro)
∀ i = 1..n. � cd i:� ∅ � e:τ

� cd
n
e:� (cla)

∀ i = 1..k.c � md i:� fields(c) defined

� class c extends c′ { fd
n
md

k }:�

(met)
this:c, xn:τn � e:τ τ ≤ τ0 override(c,m, τn, τ0)

c � τ0 m(τn xn) {e}:�

(var)
Γ (x) = τ

Γ � x :τ
(fal)

Γ � false:bool
(tru)

Γ � true:bool

(new)
∀ i = 1..n.Γ � ei:τi fields(c) = τ ′n f

n ∀ i = 1..n.τi ≤ τ ′
i

Γ � new c(en):c

(fld)
Γ � e:c fields(c) = τn f

n
1 ≤ i ≤ n

Γ � e.fi:τi
(if)

Γ � e:bool Γ � e1:τ1 Γ � e2:τ2
Γ � if (e) e1 else e2:∨(τ1, τ2)

(inv)
∀ i = 0..n.Γ � ei:τi meth(τ0,m) = τ ′n xn.e:τ ∀ i = 1..n.τi ≤ τ ′

i

Γ � e0.m(en):τ

Fig. 8. Nominal type system

Coinductive Type System. The coinductive type system is derived from the in-
ductive one defined in Figure 8 as follows:

– all rules for typing expressions are interpreted coinductively (rules for well-
typed programs, classes, and methods can be indifferently interpreted induc-
tively or coinductively, since they are not recursive);

– all rules are unchanged, except for rule (inv) which is modified in (co-inv):

(co-inv)

∀ i = 0..n.Γ�ei:τi this:τ0, x
n:τn�e:τ ′

meth(τ0,m) = τ ′n xn.e:τ ∀ i = 1..n.τi ≤ τ ′
i , τ

′ ≤ τ

Γ�e0.m(en):τ

Rule (co-inv) is clearly not compositional: instead of type checking a method
once for all, and using subtyping and type safe overriding (as happens in the
inductive system), the coinductive type system checks a method body, not only
when it is declared (rule (cla)), but also whenever it is called. However, from a
more theoretical point of view, the coinductive type system is a step closer to
the CBS. Of course the type system must be interpreted coinductively, otherwise
typechecking of recursive methods would always fail. Consider for instance case
2 (b) presented in Section 4. The judgment ∅�new M().m():L can be derived
only with an infinite proof tree, as depicted in Figure 9. Note that the proof tree
is isomorphic to the proof tree for ∅�new M().m()⇒ obj (L, [n �→ �]) shown in
Figure 6.

We can now prove soundness of the inductive type system w.r.t. the coinduc-
tive one.

474 D. Ancona

∅�new M():M

this:M�this:M

...

this:M�new L(this.m()):L

this:M�this.m():L

this:M�new L(this.m()):L

∅�new M().m():L

Fig. 9. Proof for ∅�new M().m():L

The following lemmas are instrumental to the proof of the theorem 5 that
follows; in the claims of all lemmas we implicitly assume that judgments refer
to a well-typed program. All omitted proofs can be found in the companion
technical report.

Lemma 2. If τ ′1 ≤ τ1 and τ ′2 ≤ τ2 then ∨(τ ′1, τ ′2) ≤ ∨(τ1, τ2).
Lemma 3. If fields(c) = τn f

n
, and c′ ≤ c, then fields(c′) = τm f

m
with

n ≤ m.

Lemma 4. If meth(c,m) = τn xn.e:τ , then there exist c′, τ ′ s.t. c ≤ c′, τ ′ ≤ τ
and this:c′, xn:τn � e:τ ′.

Lemma 5. If xn:τn � e:τ and for all i = 1..n τ ′i ≤ τi, then there exists τ ′ s.t.
τ ′ ≤ τ , and xn:τ ′

n � e:τ ′.

Lemma 6. The subtyping relation is transitive: if τ1 ≤ τ2 and τ2 ≤ τ3, then
τ1 ≤ τ3.

Theorem 5. Let cd
n
be well-typed class declarations. If Γ � e:τ in cd

n
, then

Γ�e:τ in cd
n
.

Proof. By coinduction on the rules defining the judgment � : , and case analysis
on e. The only interesting case is when e is a method invocation e0.m(en), since
for all other cases the rules of the two type systems coincide. If Γ � e:τ , then by
definition of rule (inv) we have ∀ i = 0..n.Γ � ei:τi, meth(τ0,m) = τ ′

n
xn.e:τ ,

and ∀ i = 1..n.τi ≤ τ ′i . By lemma 4 there exists τ ′0, τ
′ s.t. τ0 ≤ τ ′0, τ

′ ≤ τ , and
this:τ ′0, x

n:τ ′
n � e:τ ′; therefore, by lemma 5 there exists τ ′′ s.t. τ ′′ ≤ τ ′, and

hence by transitivity (lemma 6) τ ′′ ≤ τ , and this:τ0, x
n:τn � e:τ ′′. We conclude

by coinductive hypothesis and by definition of rule (co-inv).

6 Proof of Soundness

In this section we prove the middle implication shown in Figure 1, which is
the core of our result: soundness of the coinductive type system in terms of the
CBS. Finally, by virtue of the soundness of the inductive type system w.r.t. the
coinductive one (proved in Section 5), and of the soundness of the CBS w.r.t.

Soundness of Object-Oriented Languages 475

the ISS (proved in Section 4), we can state soundness of the inductive type
system in terms of the ISS as a simple corollary.

The following lemmas are instrumental to the proof of the theorem 6 that
follows; in the claims of all lemmas we implicitly assume that judgments refer
to a well-typed program. All omitted proofs can be found in the companion
technical report.

Lemma 7. τ1 ≤ ∨(τ1, τ2) and τ2 ≤ ∨(τ1, τ2).
Lemma 8. If fields(c) = τn f

n
, and c ≤ c′, then fields(c′) = τm f

m
with

m ≤ n.

Lemma 9 (Soundness of subtyping). If � ∈ τ and τ ≤ τ ′, then � ∈ τ ′.

Lemma 10. If meth(c,m) = τn xn.e:τ and c′ ≤ c, then meth(c′,m) = τ ′
n
x ′n.

e ′:τ ′ where for all i = 1..n τi ≤ τ ′i and τ ′ ≤ τ .

To prove that the coinductive type system is sound w.r.t. the CBS, we coinduc-
tively define a concretization relation Rγ between valid proof trees �∇ ∈ VPT :

for Γ�e:τ and (possibly non valid) proof trees ⇒∇ ∈ PT⇒ for Π�e ⇒ �, and
show that for any valid proof tree �∇ for Γ�e:τ and any Π ∈ Γ , there exists a
value � and a valid proof tree ⇒∇ for Π�e ⇒ � s.t. �∇ Rγ ⇒∇, and � ∈ τ .

Definition 9. A relation R ⊆ VPT :×PT⇒ is a concretization iff the following
constraints are satisfied:

–
Γ�x :τ

R
Π�x ⇒ �

iff Π ∈ Γ , and ok(var)

(
Π�x ⇒ �

)

–
Γ�false:bool

R
Π�false ⇒ false

iff Π ∈ Γ

–
Γ�true:bool

R
Π�true ⇒ true

iff Π ∈ Γ

–
�∇

n

Γ�new c(en):c
R ⇒∇n

Π�new c(en) ⇒ �

iff for all i = 1..n �∇i R ⇒∇i, Π ∈ Γ , and

ok(new)

⎛
⎝ ⇒∇n

Π�new c(en)⇒ �

⎞
⎠

–
�∇

Γ�e.f :τ
R ⇒∇

Π�e.f ⇒ �

iff �∇ R ⇒∇, � ∈ τ , Π ∈ Γ , and ok(fld)

(
⇒∇

Π�e.f ⇒ �

)

–
�∇ �∇1 �∇2

Γ� if (e) e1 else e2:τ
R

⇒∇ ⇒∇1

Π� if (e) e1 else e2 ⇒ �

iff �∇ R ⇒∇, �∇1 R ⇒∇1,

root(⇒∇) = Π�e ⇒ true, � ∈ τ , Π ∈ Γ , and ok(ift)

(
⇒∇ ⇒∇1

Π� if (e) e1 else e2 ⇒ �

)

476 D. Ancona

–
�∇ �∇1 �∇2

Γ� if (e) e1 else e2:τ
R

⇒∇ ⇒∇2

Π� if (e) e1 else e2 ⇒ �

iff �∇ R ⇒∇, �∇2 R ⇒∇2,

root(⇒∇) = Π�e ⇒ false, � ∈ τ , Π ∈ Γ , and ok(iff)

(
⇒∇ ⇒∇2

Π� if (e) e1 else e2 ⇒ �

)

–
�∇0 �∇

n

�∇

Γ�e0.m(en):τ
R

⇒∇0 ⇒∇n

⇒∇

Π�e0.m(en)⇒ �

iff for all i = 0..n �∇iR⇒∇i, �∇R⇒∇, � ∈ τ ,

Π ∈ Γ , and ok(inv)

⎛
⎝ ⇒∇0 ⇒∇n

⇒∇

Π�e0.m(en)⇒ �

⎞
⎠.

The function F corresponding to the recursive definition of concretization rela-
tion is trivially monotone on the complete lattice defined by the power set of
VPT :×PT⇒, therefore by the Tarski-Knaster theorem there exists the greatest
concretization relation, denoted by Rγ . However, the Tarski-Knaster theorem
does not provide any guarantee that for any valid proof tree �∇ for Γ�e:τ and
any Π ∈ Γ , there exists a value � and a valid proof tree ⇒∇ for Π�e ⇒ � s.t.

�∇ Rγ ⇒∇, and � ∈ τ . To prove such a property we need to apply the Kleene the-
orem; indeed, F also preserves infima of descending chains in the same complete
lattice, hence, the concretization relation Rγ is defined by inf{Fn(�) | n ∈ �},
where � denotes the top element of the lattice defined by the power set of
VPT :×PT⇒, that is, the relation associating any valid proof tree for the judg-
ment � : , with any proof tree for the judgment � ⇒ . We abbreviate Fn(�)
with Rn

γ , hence R0
γ = �.

As an example, we have that �∇eRγ⇒∇e, where �∇e and ⇒∇e are the proof
trees defined in Figure 9 and 6, respectively. The easiest way to prove this fact
is to show that there exists a concretization relation R s.t. �∇e R ⇒∇e; this can
be achieved by considering the finite relation that associates each subtree of

�∇e (including �∇e itself), with the corresponding subtree3 of ⇒∇e (including ⇒∇e

itself); it is immediate to verify that such a relation is a concretization.
However, when proving soundness the proof tree for the CBS is unknown, and

therefore its existence is proved by showing that it can be obtained as the limit of
a Cauchy sequence in a complete metric space. Therefore, to better understand
the proof that will follow, it is instructive to show how the proof tree ⇒∇e can
actually be built from �∇e by using the Kleene construction. We assume that the
expression is evaluated in a program where the only available classes are M and
L as declared for case 2 (b) in Section 4, and we use ellipses . . . as a wildcard.

– �∇eR0
γ⇒∇ for any ⇒∇ ∈ PT⇒.

– �∇eR1
γ⇒∇ for any ⇒∇ ∈ PT⇒ s.t. ⇒∇ =

. . .

Π�new M() ⇒ �

. . .

this �→ ��new L(this.m()) ⇒ �0

Π�new M().m() ⇒ �0

3 We recall that the two trees are isomorphic; furthermore, they have a finite number
of subtrees, since they are regular.

Soundness of Object-Oriented Languages 477

where Π ∈ ∅ (hence, Π can be any value environment), � can be any value,
and �0 ∈ L, hence for all i ∈ �, �i = obj (L, [n �→ �i+1]), therefore �0 is
the unique value s.t. �0 = obj (L, [n �→ �0]) and �i = �i+1, for all i ∈ �. Note
that, since we have assumed that M and L are the only available classes of the
program, there exists only one possible subtype of L, namely L itself, and
the equations above can be directly derived by applying membership rule
obj. Therefore, for this particular case we get the returned value (in this
particular case it is unique) just at the first iteration; however, for getting
the corresponding valid proof tree all iterations have to be considered.
We proceed with the next iteration, to show how at each step the obtained
proof trees are better approximations of a valid proof tree.

– �∇eR2
γ⇒∇ for any ⇒∇ ∈ PT⇒ s.t. ⇒∇ =

Π�new M() ⇒ obj (M, [])

. . .

this �→ obj (M, [])�this.m() ⇒ �0

this �→ obj (M, [])�new L(this.m()) ⇒ �0

Π�new M().m() ⇒ �0

where Π ∈ ∅ (hence, Π can be any value environment). Note that, by virtue
of the equation �0 = obj (L, [n �→ �0]), the evaluation of new L(this.m())

and of this.m() returns the same vale �0.

It can be easily proved by standard induction over n that �∇eRn
γ⇒∇e, for all

n ∈ �, where ⇒∇e is the valid proof tree defined in Figure 6; since Rγ is the
greatest lower bound of {Rn

γ |n ∈ �}, we obtain that �∇eRγ⇒∇e.
To prove the main claim from which soundness of the coinductive type system

w.r.t. the CBS can be derived, we need to define a complete metric space of proof
trees for the CBS.

We first define the metric of value environment. We recall that a value envi-
ronment is a finite partial function mapping variables to values, and that values
are finitely branching trees with infinite paths (hence, they form a complete
metric space with the distance dT of Definition 1).

Proposition 2. The set of value environments forms a complete metric space
when equipped with the distance dΠ defined as follows:

dΠ (Π1, Π2) =

{
1 if dom(Π1) �= dom(Π2)
max({0, dT (Π1(x),Π2(x)) | x ∈ D}) if D = dom(Π1) = dom(Π2)

Proof. See the companion technical report.

Proposition 3. The set of pairs of value environments and values forms a com-
plete metric space when equipped with the distance dΠ ,� defined as follows:

dΠ ,�((Π1, �1), (Π2, �2)) = max{dΠ (Π1, Π2), dT (�1, �2)}
Proof. A well known property of product metric spaces that can be easily checked.
From Proposition 2 one can easily deduce that 0 ≤ dΠ ,�((Π1, �1), (Π2, �2)) ≤ 1,
since dΠ ,�((Π1, �1), (Π2, �2)) ∈ {0} ∪ {2−c | c ∈ �}.

478 D. Ancona

Let j be the judgment Π�e ⇒ �, then ev(j) and exp(j) denote (Π, �) and
e, respectively; furthermore, exp(⇒∇) denotes the tree t over expressions s.t.
dom(t) = dom(⇒∇), and for all p ∈ dom(t) t(p) = exp(⇒∇(p)).

Proposition 4. The set PT⇒ of proof trees for Π�e ⇒ � forms a complete
metric space when equipped with the distance d∇ defined as follows:

d∇(⇒∇1,⇒∇2) = max({2−c} ∪ S) where

S = {2−k · dΠ ,�(ev(⇒∇1(p)), ev (⇒∇2(p))) | p ∈ �
k ∩ dom(⇒∇1), 0 ≤ k < c}

c = shtp(exp(⇒∇1), exp(⇒∇2)), that is, c = min{n ∈ � | p ∈ �
n, exp(⇒∇1(p)) =⊥

exp(⇒∇2(p))} (see Proposition 1 for the definition of shtp and the related nota-
tion).

Proof. See the companion technical report.

Let us consider the Kleene approximations Ri
γ (i ∈ �) of the concretization

relation Rγ . Then the following lemma holds, where we assume that judgments
are indexed over a class table corresponding to a sequence of well-typed classes
cd

n
.

Lemma 11 (Substitution). Let �∇ be a valid proof tree for Γ�e:τ , and ⇒∇ a
(not necessarily valid) proof tree for Π�e ⇒ �. For all n ∈ �, if the following
facts hold:

1. �∇Rn
γ⇒∇

2. Π,Π ′ ∈ Γ , dΠ (Π,Π ′) ≤ 2−n

3. there exists ⇒∇′ s.t. �∇Rn+1
γ ⇒∇′ and d∇(⇒∇,⇒∇′) ≤ 2−n

then there exists a proof tree ⇒∇′′ forΠ ′�e ⇒ �
′ s.t. �∇Rn+1

γ ⇒∇′′ and d∇(⇒∇,⇒∇′′)
≤ 2−n.

Proof. The proof is by induction on n, and by case analysis on the expression e.

Lemma 12. For all n ∈ �, �∇ ∈ VPT :, and ⇒∇ ∈ PT⇒, if �∇Rn
γ⇒∇, then there

exists ⇒∇′ s.t. �∇Rn+1
γ ⇒∇′, and d∇(⇒∇,⇒∇′) ≤ 2−n.

Proof. The proof is by induction on n, and by case analysis on the expression e.

Basis: If n = 0, then by definition R0
γ = �, and, hence, �∇R0

γ⇒∇ for all

�∇ ∈ VPT :, and ⇒∇ ∈ PT⇒; therefore we have to show that there exists ⇒∇′

s.t. �∇R1
γ⇒∇′. Let us consider the case where e = e0.m(en) (for all other cases

the proof is analogous). If �∇ is a proof tree for Γ�e0.m(en):τ , then by rule
(co-inv) we have that Γ�e0:τ0 and meth(τ0,m) = τ ′

n
xn.e:τ . By definition of

membership, there always exist Π and � s.t. Π ∈ Γ , and � ∈ τ , hence we can
pick any Π and � s.t. Π ∈ Γ , and � ∈ τ , and build the following (not necessarily
valid) proof tree:

⇒∇′ =

∀ i = 0..n.
Π�ei ⇒ �i this �→ �0, x

n �→ �
n�e ⇒ �

Π�e0.m(en)⇒ �

Soundness of Object-Oriented Languages 479

with �0 = obj (τ0, [. . .]) and meth(τ0,m) = τ ′
n
xn.e:τ . Clearly, �∇R1

γ⇒∇′, since
by definition 9, and by definition of R1

γ ,

�∇0 �∇
n

�∇
Γ�e0.m(en):τ

R1
γ

⇒∇0 ⇒∇
n

⇒∇
Π�e0.m(en)⇒ �

iff for all i = 0..n �∇iR0
γ⇒∇i, �∇R0

γ⇒∇,

� ∈ τ , Π ∈ Γ , and ok (inv)

⎛
⎝ ⇒∇0 ⇒∇

n

⇒∇
Π�e0.m(en)⇒ �

⎞
⎠.

Finally, by Proposition 4 we have that d∇(⇒∇,⇒∇′) ≤ 2−0 = 1 for all ⇒∇,⇒∇′ ∈
PT⇒.

Inductive Step: we have to prove that for all n ≥ 1, �∇Rn−1
γ ⇒∇ ⇒ ∃⇒∇′ s.t.

�∇Rn
γ⇒∇′, and d∇(⇒∇,⇒∇′) ≤ 2−n+1 implies �∇Rn

γ⇒∇ ⇒ ∃⇒∇′ s.t. �∇Rn+1
γ ⇒∇′, and

d∇(⇒∇,⇒∇′) ≤ 2−n.
As for the basis, we consider the case where e = e0.m(en) (for all other cases

the proof is analogous). Therefore let us assume that �∇Rn
γ⇒∇, where �∇ is a valid

proof tree for Γ�e0.m(en):τ . By rule (co-inv) we have

�∇ =
�∇0 �∇

n

�∇′

Γ�e0.m(en):τ

with meth(τ0,m) = τ ′
n
xn.e:τ , ∀ i = 1..n.τi ≤ τ ′i , τ

′ ≤ τ , and where ∀ i =

1..n.root(�∇i) =

...

Γ�ei:τi
, root(�∇′) =

...

this:τ0, x
n:τn�e:τ ′

.

Since �∇Rn
γ⇒∇, by Definition 9 and by definition of Rn

γ we have

⇒∇ =
⇒∇0 ⇒∇

n

⇒∇′

Π�e0.m(en)⇒ �

and for all i = 0..n �∇iRn−1
γ ⇒∇i, �∇′Rn−1

γ ⇒∇′, � ∈ τ , Π ∈ Γ , and ok (inv)(⇒∇).

Then by inductive hypothesis we have that there exist ⇒∇′
0, . . . ,⇒∇′

n and ⇒∇′′ s.t.
for all i = 0..n �∇iRn

γ⇒∇′
i, d∇(⇒∇i,⇒∇′

i) ≤ 2−n+1, �∇′Rn
γ⇒∇′′, d∇(⇒∇′,⇒∇′′) ≤

2−n+1. Therefore we have that for all i = 0..n root(⇒∇′
i) = Πi�ei ⇒ �i,

root(⇒∇′′) = Π ′�e ⇒ �
′, with Πi ∈ Γ , Π ′ ∈ (this:τ0, x

n:τn), �i ∈ τi (hence,
�0 = obj (τ0, [. . .])) and �

′ ∈ τ . By lemma 11 we can derive from ⇒∇′
i (i = 0..n) and

from ⇒∇′′ the proof trees ⇒∇′′
i (i = 0..n) and ⇒∇′′′ s.t. for all i = 0..n �∇iRn

γ⇒∇′′
i ,

d∇(⇒∇i,⇒∇′′
i) ≤ 2−n+1, �∇′Rn

γ⇒∇′′′, d∇(⇒∇′,⇒∇′′′) ≤ 2−n+1, and root(⇒∇′′
i) =

Π�ei ⇒ �
′
i, root(⇒∇′′′) = this �→ �

′
0, x

n �→ �′
n�e ⇒ �

′′

Finally, the proof tree

¯
�∇ =

�∇′′
0 �∇′′n

�∇′′′

Γ�e0.m(en):τ

is s.t. �∇Rn+1
γ

¯
⇒∇, and d∇(⇒∇, ¯

⇒∇) ≤ 2−n, by definition of Rn+1
γ and d∇.

We can now state the main result.

480 D. Ancona

Theorem 6. Let cd
n
be well-typed class declarations. If Γ�e:τ and Π ∈ Γ in

cd
n
, then there exists � s.t. Π�e ⇒ � and � ∈ τ in cd

n
.

Proof. Let �∇ be a proof tree for Γ�e:τ ; directly from lemma 12 we deduce that
it is possible to build a Cauchy sequence (⇒∇i)i∈� of proof trees s.t. �∇Ri

γ⇒∇i for
all i ∈ �; by Proposition 4, such a sequence has a certain limit ⇒∇, s.t. �∇Rγ⇒∇,
which is a valid proof tree for Π�e ⇒ �, with � ∈ τ . Note that, if the metric
space of proof trees is not complete, then we could not deduce that the sequence
(⇒∇i)i∈� has a limit; indeed, if we restrict the CBS to finite or regular values,
then it is not possible to define a complete metric space, and, therefore, the
sequence (⇒∇i)i∈� has no limit, and the claim of soundness does not hold, as
already observed in the examples 2 (b) and (c) in Section 4.

Soundness of the inductive type system in terms of the CBS and of the ISS can
be derived as two simple corollaries.

Corollary 2. Let cd
n
be well-typed class declarations. If Γ � e:τ , and Π ∈ Γ

in cd
n
, then there exists � s.t. Π�e ⇒ � and � ∈ τ in cd

n
.

Proof. The theorem is a straightforward corollary of Theorems 5 and 6.

Corollary 3. If ∅ � e:τ , e
∗→ e ′, and e ′ is a normal form, then e ′ is a value.

Proof. Direct from corollaries 2 and 1.

Such a corollary is sufficient for guaranteeing the soundness of the type system
in terms of the ISS: a well-typed expression can never get stuck in the ISS.
However, by adding the following property (that can be proved easily), we can
also deduce that the value e ′ is s.t. ∅ � e ′:τ ′ with τ ′ ≤ τ .

Proposition 5. If ∅�v ⇒ �, and � ∈ τ , then ∅ � v :τ ′, with τ ′ ≤ τ .

We can now prove the generalization of Corollary 3.

Corollary 4. If ∅ � e:τ , e
∗→ e ′, and e ′ is a normal form, then e ′ is a value

and ∅ � e ′:τ ′ with τ ′ ≤ τ .

Proof. By Corollary 2 we know also that � ∈ τ , and by Corollary 1 we know
that ∅�e ′ ⇒ �, hence we can conclude by Proposition 5.

We end this section by providing a generic scheme to be adopted for proving
soundness of a type system in terms of the CBS of a language. We consider the
case where one would like also to relate the CBS to the ISS, and derive from
such a relation a standard soundness claim expressed in terms of the ISS.

We assume that the ISS is defined by a reduction relation e1 → e2, and a
set of values v (which are a subset of expressions in normal form), and the CBS
is defined by a judgment Π�e ⇒ �, where Π is an environment associating
variables with values, and � is a value (all definitions are expected to be coin-
ductive). The type system is defined by a judgment Γ � e:τ , where Γ is a type
environment associating variables with types, and τ is a type, and subtyping

Soundness of Object-Oriented Languages 481

τ1 ≤ τ2 and membership � ∈ τ (which is easily extended to environments) are
defined. Finally, a coinductive type system, defined by a judgment Γ�e:τ , can
be routinely defined from the inductive one.

Then the following properties have to be proved:

1. If ∅�e ⇒ �, then either e is a value, or there exists e ′ s.t. e → e ′.
2. If ∅�e ⇒ �, and e → e ′, then ∅�e ′ ⇒ �.
3. If Γ � e:τ , then Γ�e:τ .
4. If Γ�e:τ , and Π ∈ Γ , then there exists � s.t. Π�e ⇒ � and � ∈ τ .
5. If ∅�v ⇒ �, and � ∈ τ , then ∅ � v :τ ′, with τ ′ ≤ τ .

We stress again that primitive properties 1 and 2 involve ISS and CBS only and,
hence, can be proved once per each language, and reused for any type system.

From the claim above one can derive the following properties:

– If ∅ � e:τ , e
∗→ e ′, and e ′ is a normal form, then e ′ is a value. Derivable from

claims 1,2, 3, and 4.
– If ∅ � e:τ , e

∗→ e ′, and e ′ is a normal form, then e ′ is a value and ∅ � e:τ ′

with τ ′ ≤ τ . Derivable if claim 5 holds as well.

7 Conclusion and Related Work

We have shown that it is possible to prove soundness of a conventional inductive
and nominal type system for a Java-like language in terms of a coinductive
big-step operational semantics obtained by interpreting coinductively the rules
of the standard big-step semantics. We have also suggested a generic scheme,
where parts of the proofs can be reused, to be adopted for proving soundness of
a type system in terms of the CBS of a language. The key point of the result is
that infinite (including non regular) values have to be considered, otherwise the
claim fails. Infinite values allow the definition of a complete metric space of proof
trees for the CBS, which ensures that every well-typed expression evaluates into
a value in the CBS, even in case of non-termination.

We have also shown that the CBS can be regarded as the concretization of a
coinductive type system that can be directly derived from the standard inductive
type system. Beside making the proof of soundness clearer, this fact also reveals
how coinduction is related to the inductive type system.

With respect to the traditional one, the proposed approach may seem overly
more complex, although big-step operational semantics tend to be simpler than
small-step ones, especially when one wants to model more significant subsets of a
real language. The main source of complexity comes from the proofs in Section 6,
and from the fact that coinduction is less intuitive than induction. It would
be worth investigating whether coalgebraic techniques could be used, to avoid
using complete metric spaces. However, we hope that the provided definitions
and proofs can be easily adapted for other type systems and languages.

The pioneering work of Milner and Tofte [14] is one of the first where coinduc-
tion is used for proving consistency of the type system and the big-step semantics

482 D. Ancona

of a simple functional language; however rules are interpreted inductively, and
the semantics does not capture diverging evaluations.

In their work Leroy and Grall [13] analyze two kinds of coinductive big-step
operational semantics for the call-by-value λ-calculus, study their relationships
with the small-step and denotational semantics, and their suitability for compiler
correctness proofs. Besides the fact that here we consider a Java-like language,
the main contribution of this paper w.r.t. Leroy and Grall’s work is showing
that by interpreting coinductively a standard big-step operational semantics,
soundness of a standard nominal type system can be proved. We could prove such
a result because (1) in our semantics not only evaluation rules are interpreted
coinductively, but also the definition of values, and (2) the absence of first-class
functions in our language makes the treatment simpler. Leroy and Grall show
that a similar soundness claim does not hold in their setting; we conjecture that
the only reason for that consists in the fact that in their coinductive semantics
values are defined inductively (hence are finite), rather than coinductively (that
is, infinite). It would be interesting to investigate whether soundness holds for
the λ-calculus when values are defined coinductively.

Kusmierek and Bono propose a different approach and prove type soundness
w.r.t. an inductive big-step operational semantics; their proposal is centered on
the idea of tracing the intermediate steps of a program execution with a partial
derivation-search algorithm which deterministically computes the value and the
proof tree of evaluation judgments. Similar approaches, although their corre-
sponding semantics are not deterministic, are those of Ager [1] and Stoughton
[18].

Nakata and Uustalu [16,15] define a coinductive trace-based semantics, whose
main aim, however, is formal verification of non-terminating programs.

Finally we would like to mention the work by Ernst et al. [10] where a sound-
ness result w.r.t. a big-step operational semantics is proved thanks to a coverage
lemma ensuring that errors do not prevent expressions from evaluating to a re-
sult. Such a result is achieved by introducing a finite evaluation relation indexed
over natural numbers. A terminating expression is one for which there exists a
natural number n such that the finite evaluation indexed by n returns a value
(which may include also the usual runtime errors). However, in our approach
type soundness can be proved without introducing extra rules for dealing with
runtime errors generation and propagation, and finite evaluations.

References

1. Ager, M.S.: From Natural Semantics to Abstract Machines. In: Etalle, S. (ed.)
LOPSTR 2004. LNCS, vol. 3573, pp. 245–261. Springer, Heidelberg (2005)

2. Amadio, R., Cardelli, L.: Subtyping recursive types. ACM Transactions on Pro-
gramming Languages and Systems 15(4), 575–631 (1993)

3. Ancona, D.: Coinductive big-step operational semantics for type soundness of Java-
like languages. In: Formal Techniques for Java-like Programs (FTfJP 2011), pp.
5:1–5:6. ACM (2011)

Soundness of Object-Oriented Languages 483

4. Ancona, D., Corradi, A., Lagorio, G., Damiani, F.: Abstract Compilation of Object-
Oriented Languages into Coinductive CLP(X): Can Type Inference Meet Verifica-
tion? In: Beckert, B., Marché, C. (eds.) FoVeOOS 2010. LNCS, vol. 6528, pp. 31–45.
Springer, Heidelberg (2011)

5. Ancona, D., Lagorio, G.: Coinductive Type Systems for Object-Oriented Lan-
guages. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653, pp. 2–26.
Springer, Heidelberg (2009)

6. Ancona, D., Lagorio, G.: Coinductive subtyping for abstract compilation of object-
oriented languages into Horn formulas. In: Montanari, A., Napoli, M., Parente,
M. (eds.) Proceedings of GandALF 2010. Electronic Proceedings in Theoretical
Computer Science, vol. 25, pp. 214–223 (2010)

7. Ancona, D., Lagorio, G.: Idealized coinductive type systems for imperative object-
oriented programs. RAIRO - Theoretical Informatics and Applications 45(1), 3–33
(2011)

8. Arnold, A., Nivat, M.: The metric space of infinite trees. Algebraic and topological
properties. Fundamenta Informaticae 3, 445–476 (1980)

9. Courcelle, B.: Fundamental properties of infinite trees. Theoretical Computer Sci-
ence 25, 95–169 (1983)

10. Ernst, E., Ostermann, K., Cook, W.R.: A virtual class calculus. In: POPL, pp.
270–282 (2006)

11. Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight Java: a minimal core cal-
culus for Java and GJ. ACM Transactions on Programming Languages and Sys-
tems 23(3), 396–450 (2001)

12. Kusmierek, J.D.M., Bono, V.: Big-step operational semantics revisited. Fundam.
Inform. 103(1-4), 137–172 (2010)

13. Leroy, X., Grall, H.: Coinductive big-step operational semantics. Information and
Computation 207, 284–304 (2009)

14. Tofte, M., Milner, R.: Co-induction in relational semantics. Theoretical Computer
Science 87(1), 209–220 (1990)

15. Nakata, K., Uustalu, T.: Trace-Based Coinductive Operational Semantics for
While. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009.
LNCS, vol. 5674, pp. 375–390. Springer, Heidelberg (2009)

16. Nakata, K., Uustalu, T.: A Hoare Logic for the Coinductive Trace-Based Big-Step
Semantics of While. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp.
488–506. Springer, Heidelberg (2010)

17. Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive Logic Programming.
In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 330–345.
Springer, Heidelberg (2006)

18. Stoughton, A.: An operational semantics framework supporting the incremental
construction of derivation trees. Electr. Notes Theor. Comput. Sci. 10 (1997)

Static Sessional Dataflow

Dominic Duggan and Jianhua Yao

Department of Computer Science
Stevens Institute of Technology

Hoboken, New Jersey 07030, USA
{dduggan,jyao1}@stevens.edu

Abstract. Sessional dataflow provides a compositional semantics for dataflow
computations that can be scheduled at compile-time. The interesting issues arise
in enforcing static flow requirements in the composition of actors, ensuring that
input and output rates of actors on related channels match, and that cycles in
the composition of actors do not introduce deadlock. The former is ensured by
flowstates, a form of behavior type that constrains the firing behavior of dataflow
actors. The latter is ensured by causalities, a form of constraints that record de-
pendencies in the firing behavior. This article considers an example variant of the
sessional dataflow approach for dataflow applications, expressing known ideas
from signal processing in a compositional fashion.

1 Introduction

Dataflow has an honored tradition in declarative parallel programming [12,10]. It has
renewed significance today, given the importance attached to deterministic parallelism
as a way of coping with the challenges of scalable parallel programming. Many of the
applications of parallel processing are in stream processing, e.g., streaming multimedia
data, again motivating interest in dataflow processing. Part of the challenge of dataflow
processing is in scheduling the execution of dataflow graphs without unbounded buffer-
ing of data between actors in the net. In signal processing, synchronous dataflow has
enjoyed some success for multi-rate applications, with many variations of the basic idea
developed over the years [13].

The purpose of sessional dataflow is to provide a compositional semantics for dataflow
computations that can be scheduled at compile-time. To explain why compositionality
is important, in synchronous dataflow and its variants, a dataflow graph is described
in terms of atomic actors, and flow edges connecting them. A compositional seman-
tics allows both atomic actors, and subnets resulting from the composition of actors,
to be viewed uniformly as dataflow actors. Compositionality is obviously important for
scaling dataflow programming. The interesting issues arise in enforcing static flow re-
quirements in the composition of actors, ensuring that input and output rates of actors
on related channels match, and that cycles in the composition of actors do not introduce
deadlock. Ultimately the purpose of sessional dataflow is to support dynamic opera-
tions on subnets, including update and reconfiguration, while ensuring that assumptions
underlying static scheduling are not violated by these operations.

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 484–508, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Static Sessional Dataflow 485

In the embedded systems and digital signal processing community, a very useful
class of restricted Kahn networks has been identified, the so-called synchronous dataflow
(SDF) [13] networks. SDF networks assumed fixed static input and output rates for
actors when they fire in a dataflow network. Such networks are important because
they can be scheduled statically by the compiler, ensuring a fixed upper bound on the
amount of buffer space needed. Numerous extensions of SDF have been defined over the
years, all pushing the envelope of expressivity while remaining in the space of dataflow
applications that can be scheduled statically.

More recently, new domain-specific languages such as Streamit [16] have been de-
fined, based on the principles of SDF, but also providing support for compiling pro-
grammer code to run on modern parallel architectures. Streamit is a dataflow language
intended for the efficient compilation of stream processing programs. Its design ra-
tionale is that of structured dataflow. Rather than allowing arbitrary dataflow graphs,
Streamit imposes structure on the graph, in order to facilitate compiler analysis and
optimization. This is enforced by only supporting certain forms of nodes in a dataflow
graph.

In this work, we consider another form of dataflow language. We go back to Kahn’s
original idea, of a dataflow network consisting of a collection of software components
that communicate asynchronously via buffered message-passing. Deterministic paral-
lelism is provided by preventing contention for message channels, and by preventing
components from polling message channels. As with Kahn’s original proposal, our core
language is a conventional imperative language. We impose a type system on this lan-
guage that ensures the static behavior required for compile-time scheduling, as with
SDF. This allows the incremental construction of dataflow graphs as composite ac-
tors, based on connecting input and output channels in two graphs (that may be the
same graph). There are two components to the compositional description: a notion of
flowstate, analogous to typestate in object-oriented languages, that captures the static
message-passing behavior of a process, and a notion of causalities, that allows the
liveness of a dataflow graph to be checked compositionally even while channels are
encapsulating in composite graphs.

In Sect. 2 we introduce sessional dataflow with the interface and implementation
specification for a simple (atomic) actor. This relates the constraints on actor behav-
ior reflected in an actor interface, with the actual internal implementation of the actor
that is encapsulated by this interface. These two are not traditionally related in work on
synchronous dataflow and its derivative techniques, where actors are treated as “black
boxes” and the actor code left unanalyzed. In Sect. 3 we consider a compositional ap-
proach to building actor implementations, based on binding communication channels
between two existing actors. As an exercise in statically ensuring that the composition
of actors is well-formed, we require that the result of composing actors into a dataflow
net, effectively a composite actor, be statically schedulable. We provide a type system
in Sect. 4 and an operational semantics in Sect. 5. Sect. 6 considers related work, while
Sect. 7 provides our conclusions.

486 D. Duggan and J. Yao

2 Actors

In this section, we provide an example of a form of static dataflow that has been found
useful for parallel processing in signal processing and embedded systems. So-called
synchronous dataflow (SDF), more aptly named static dataflow, assumes that on each
actor “firing,” a statically fixed number of inputs is consumed on each input channel and
a statically fixed number of outputs is produced on each output channel. With this re-
striction on a fixed number inputs and outputs for each firing, and a further requirement
that there be no cyclic data dependencies in the graph connecting the actros, the schedul-
ing of a synchronous dataflow net can be performed by the compiler. All scheduling
decisions, and the amount of buffer space required, are determined at compile-time.

An actor specification needs a few other aspects to be defined. Although firing is
atomic in SDF, our semantics for firing is implemented in a C-like core language, that
consumes and produces messages one at a time. For modeling the states of an actor,
we use the notion of flowstate, that tracks the state of an actor during a firing cycle. In
addition, we need a specification of the input and output channels of an actor, that will
subsequently be coupled with channels for other actors to form a dataflow network. An
example of a specification for an actor in our type system is provided by the following:

actor interface IActor

{
in channel<float> a;

in channel<float> b;

out channel<float> c;

causality a < c, b< c;

flowstate 3’a, b, 2’c.

}
This is the expression of an actor type in our system. The type specifies input and out-
put communication channels, and allowable communications on those channels using a
flowstate specification. The flowstate rule in the example above requires that the actor
consume three inputs on the a channel and one input on the b channel, and produces two
outputs on the c channel. In what order should these inputs and outputs be performed? It
is tempting to restrict firings so that all inputs are consumed before any outputs are pro-
duced, but once we compose actors into composite actors (dataflow nets), it is no longer
possible to ensure this. Even if we restricted actors to only inputs or only outputs, but
not a mixture of the two, we could still have scenarios where the consumption of an
input in one actor depended on the production of an output in another actor. Therefore
we must allow for aribtirary interleavings of inputs and outputs, while avoiding dead-
lock where for example an output channel and input channel are linked to the same
underlying channel.

Therefore we enrich actor interfaces with a notion of causalities. This is demon-
strated in the example above, where the causalities specify that outputs on channel c
depend causally on inputs on channel a and on channel b (a< c and b< c). The exact
number of inputs is provided by the multiplicities in the flowstate.

Why provide the causalities, since in this example all of the outputs depend on all
of the inputs? This will be true in general for simple atomic actors, but may not be

Static Sessional Dataflow 487

true once we compose actors into nets of arbitrary complexity, with subnets running in
parallel. The causalities are then useful to ensure that connecting an input and an output
channel in such a composite actor does not introduce deadlock in the execution of the
dataflow graph.

(a) Composite Actor with Internal Parallelism

(b) Composite Actor with Input depending on
Output

Fig. 1. Sequential and Parallel Inputs

Fig. 1(a) and Fig. 1(b) demonstrate two composite actors. Fig. 1(a) provides a com-
posite actor where two actors on the left consume inputs in parallel, and these are then
consumed in a particular order by the actor on the right. We define causalities to reflect
the fact that message sending is asynchronous, so in some sense the outputs of an actor,
once their causally preceding input events occur, may occur in an indeterminate order.
Fig. 1(b) provides another composite actor, one where the output on channel c must
causally precede the input on channel a, since the output on internal channel d causally
precedes the input on internal channel a. Outputs are parallel despite the fact that they
are produced by a single sequential thread.

Our actor semantics is effectively a limited form of cyclostatic dataflow [2]. In the
latter, an actor has a finite state control logic, and transitions between states of this logic
on each firing. Its firing pattern then depends on the current state that it is in. Because we
are providing specifications for input consumption and output production at the level of
individual communication steps, the semantics of a “firing” in the traditional SDF sense
is non-atomic, and we are essentially tracking a finite state control logic in the process
of a firing. We consider how the language can be extended to cyclostatic firing at the
end of Sect. 4.

488 D. Duggan and J. Yao

The specifications of the input-output behavior make no reference to the actual values
that are transmitted. For simplicity we have assumed that the channel types are fixed,
so that only values of the declared type may be transmitted on a channel. In practice
it may be beneficial to relax this restriction, though we defer these considerations to
future work. We comment further on this and other future extensions in Sect. 6.

An implementation of this actor specification uses a conventional programming lan-
guage to define the actor behavior, in the style of Kahn’s original proposal for dataflow
networks:

actor Actor implements IActor

{
float x1, x2, x3, y1;

loop {
x1 = a↓; x2 = a↓; x3 = a↓; y1 = b↓;
c ↑ (x1+x2); c ↑ (y1+x3);

}
}
The definition of the actor implementation inherits the interface specification: input and
output channels, causalities and flowstates. The operation for reading from an input
channel c is denoted by c↓, while the operation of writing a value (asynchronously)
to an output channel is denoted by c ↑ v. The body of the actor is otherwise conven-
tional C code, except for the top-level loop construct that guarantees the actor is always
able to offer the specified firing behavior. The flowstate in the actor specification estab-
lishes behavior obligations for its execution, subject to the constraints imposed by the
causalities.

(a) Feedback Loop Requiring
a Delay

(b) Feedback Loop Not Re-
quiring a Delay

Fig. 2. Causality and Feedback

Fig. 2 clarifies the point of the causalities. In general the issue is to detect when con-
necting two open channels in the same actor may introduce a cycle in the dependencies
between the channels. To avoid this cycle which woud lead to deadlock, the connection
of the channels is required to introduce a “delay,” by filling the buffer for the channel
with default initial values. Fig. 2(a) illustrates this, where the single output channel of
an actor is connected to its input channel. The actor first reads from the input channel

Static Sessional Dataflow 489

a, before outputing to the output channel b. Note that we do not try to track data flow
dependencies, our interest is in the control flow dependency from the consumption of
input on a to the production of output on b. Suppose these two open channels are con-
nected to the same shared channel, We assume an obvious causality from the output
end of a shared channel to the input end, so this binding will introduce the causality
b < a. This will introduce a cycle in the causalities, which we cannot allow. Therefore
in this case the connection of two channels a and b on the same underlying channel
must include a delay, as indicated by the diamond in Fig. 2(a).

In the example in Fig. 2(b), on the other hand, the appending of data to the output
buffer is done before input is performed. This results in the causality b< a for the actor
body. This does not necessarily mean that data flows from the output event to the input
event, but there is at least a causal dependency, in that the occurrence of the output event
is a prerequisite for the occurrence of the input event. When these input and output open
channels are connected using the same shared input channel, then the output produced
on the output channel does indeed propagate to the input channel to be consumed, but
this is immaterial as far as scheduling is concerned, since communication is strictly
internal to the actor. The causality b < a that is added as a result of this binding of
channels b and a adds no further constraints, since there is already a dependency from
b to a, and no scheduling cycle is introduced, so a delay is not necessary.

3 Dataflow Nets

In the previous section, we considered the “programming-in-the-small” aspects of en-
suring that an actor satisfied its behavior specification. In this section, we consider
the “programming-in-the-large” aspect of ensuring that the composition of actors is
in some sense well-formed. We consider the case of ensuring that the composition of
synchronous dataflow actors is schedulable, based on the static firing rates of the actors.

In general, the approach to composition of actors is to provide a binary connection
operation for linking the output data channel on one actor with the input data channel
of another. We denote this operation by connect(A.a,B.b). Here it is important to
distinguish between open channels and shared channels. An open channel is one of the
form described in the previous section, a channel that is declared in an actor interface,
and referred to in an actor body by operations for consuming messages and appending
messages to message buffers.

For deterministic semantics, it is important that there be no nondeterministic con-
tention for access to a channel. For example, a nondeterministic merge might be pro-
vided by allowing multiple actors to send simultaneously to the same merge channel.
Synchronization on access to the channel, performed by the compiler and runtime sys-
tem, could ensure that the message append operations are atomic. However the order in
which messages are appended would be nondeterministic, based on dynamic schedul-
ing of actors and interleaving of their multithreaded executions. While nondeterminis-
tic merge is a useful operation in some cases, our intention is to establish a baseline
that ensures deterministic execution, before considering later how to extend this with
nondeterminism.

490 D. Duggan and J. Yao

(a) Initial net (b) After combining A1.c1
and A3.a3

(c) After combining A2.a2
and A1.a1

(d) After combining A2.b2
and A4.a4

(e) After combining A3.b3
and A4.c4

(f) After combining A4.b4
and A1.b1,

Fig. 3. Dataflow nets

Our approach is to ensure exclusive access to a communication channel between
two actors, the one actor sending on that channel and the other actor receiving on that
channel. The connection operation connect(A.a,B.b) creates a new private commu-
nication channel, binds the a output channel on the A actor to the output part of this
new private channel, and binds the b input channel on the B actor to the input part of
this new private channel. We refer to such a private channel as a shared channel. Since
(for now) we provide no way for an actor to send any of its communication channels to
another actor, exclusive access by a pair of actors to a shared channel is ensured.1

What is the result of connecting actors? The semantics should be compositional, so
that the connection of two actors should be indistinguishable to outside observers from
a single actor. For synchronous dataflow, the only part of the outside interface of note
for a combined actor is the remaining open channels after a connection, and the firing
rates for those channels.

A type system for interconnection should guarantee that the actors being combined
are in some sense compatible, so that the resulting actor is statically schedulable. The
firing rates for actors that are interconnected may be different on the channel on which
they are connected. The purpose of static scheduling is to match the relative input
and output rates of communicating actors during execution. For connection of distinct

1 Actor interfaces include polarity information about access to channels, and the connection
operation requires that the accesses by the actors be complementary. It is indeed possible that
the actors being connected are the same. The connection operation requires knowledge of when
it is the case that the same actors are being connected, as we will see.

Static Sessional Dataflow 491

actors, it is always the case that their firing rates are compatible: Simply adjust their
relative firing rates so that, on the connecting channel, their rates are the least common
multiple of the original rates on that channel.

Fig. 3(a) depicts four characters: A1, A2, A3 and A4. Each of these actors has open
channels with firing rates. For example, actor A1 has open channel a1 with firing rate 1,
open channel b1 with firing rate 2, and open channel c1 with firing rate 4. The names
of these channels outside the actor are not significant, and we assume for simplicity that
all channels are renamed apart.

In Fig. 3(b), the actors A1 and A3 are connected by binding the open channels A1.c1
and A3.a3 along an anonymous shared channel. Since the output rate of A1 does not
match the input firing rate of A3, we adjust the firing rates of the two actors to make them
compatible. The connection of an output channel of A1 to the input channel of A3 causes
the addition of the causality c1< a3. Although a3 is elided in the resulting interface
(since it has been bound to the output end of a communication channel), transitive
closure of causalities adds the constraint b1< b3 (from b1< a3 and a3< b3).

Fig. 3(c) depicts the result of connecting the composite actor connect(A1.c1,A3.a3)
with the actor A2, by binding the open channels connect(A1.c1,A3.a3).a1and A2.a2
to a shared channel. In this case, the data rates of the actors on the respective open
channels match, so no adjustment of firing rates is necessary.

Fig. 3(d) depicts the result of connecting the composite actor from Fig. 3(c) with
the actor A4. This connection is done on the b2 and a4 open channels. Because of the
difference in data rates, the firing rates for A4 must be adjusted

At this point, we have only one (composite) actor, with some remaining open chan-
nels. We now complete the net by connecting different channels within the same actor.
Fig. 3(e) depicts the result of connecting the b3 and c4 channels on this composite
actor.

This actor can be completed by forming a feedback loop by connecting the output of
the b4 channel to the input of the b1 channel. The types, and in particular the inclusion
b4< 24, reveals the existing data dependency from the output channel b4 to the input
channel b1. This data dependency, revealed in the inclusion constraint in the interface,
signals that linking the output channel to the input channel will in this case introduce a
feedback loop. In order to ensure that the resulting net does not deadlock, a delay must
be introduced in this new channel connection, as depicted by the diamond in Fig. 3(f).

What could possibly go wrong? Fig. 4 demonstrates how the checking during the
composition of actors may fail. We have three actors, B1, B2 and B3, with data rates
as described in Fig. 4(a). We compose B1 and B2 by binding the channels B1.a1 and
B2.a2 to a shared channel, adjusting the firing rates as necessary to make their data
rates on the shared channel match. We repeat this exercise by composing the resultant
composite actor with B3, binding the b1 and a3 channels to a shared channel. At this
point, there is a problem: It is not possible to bind the remaining open channels b2 and
b3 to each other, because they have different data rates.

To analyse the problem, we note that in general the scheduling of SDF actors can be
thought of as the solution of a homogeneous system of linear equations. The indepen-
dent variables in this system of equations are the number of times each actor fires on an
iteration of the dataflow net, and the equations specify the constraint that the amount of

492 D. Duggan and J. Yao

(a) Initial net (b) After combining B1.c1 and B2.a2.a3

(c) After combining B1.b1 and B3.a3 (d) Attempting to combine B2.b2 and B3.b3

Fig. 4. Unschedulable dataflow net

outputs produced by each actor must match the number of inputs consumed, on each net
iteration. If this constraint is not satisfied, then some message buffers will grow without
bound during the execution of the net.

For the example above, we obtain the following system of equations, where FBi

denotes the number of firings of actor Bi on each iteration of the net:

2 ·FB2− 3 ·FB1 = 0

2 ·FB3− 3 ·FB2 = 0

FB3− 2 ·FB1 = 0

Solving for the independent variables by eliminating FB3, we obtain the equation:

3 ·FB2− 4 ·FB1 = 0

Then using this and the first of the original equations to eliminate FB2, we obtain the
equation:

9 ·FB1− 8 ·FB1 = 0

The only solution to this equation is to fire B1, and therefore the other actors, zero
times, i.e., to never run the dataflow net. This demonstrates the importance of being
able to distinguish the cases when we are combining two distinct actors, and when we
are connecting two open channels in the same actor. In the former case, when the actors
are distinct, we can adjust the actors’ firing rates so that the data rates on the connecting

Static Sessional Dataflow 493

channel are the least common multiple of the data rates on the corresponding open
channels in the actors. In the latter case, when we are connecting channels on the same
actor, the data rates must match on the corresponding open channels. If they do not,
we do not have the extra degree of freedom that we have with distinct actors to adjust
firing rates. Indeed, discovering different data rates on the channels is an important part
of ensuring, at composition time, that we do not compose two actors into a composite
actor (i.e., a dataflow net) that cannot be scheduled.

Variable aliasing is a potentially troublesome issue, for two reasons. First, commu-
nication on a channel changes the type of that channel, since the channel type reflects
the communications that may be performed on that channel. we avoid the problem of
variable aliasing by not allowing aliased references to communication channels. This is
compatible with approaches such as for example session types that similarly constrain
the bindings of variables to resources whose usage is tracked by linear or affine types.

A second potentially troublesome issue is with the connection of actors. As we have
seen, connecting different actors provides a degree of freedom in adjusting the firing
rates of the actors so that they match on the channels on which they are connrected. If
we allow aliasing of actor references, then we must face the issue of how to deal with
scenarios such as the following:

IActor2 f (IActor A, IActor B)

return connect(A.a,B.b);
}
How can we prevent a scenario such as f(A0,A0), for some actor A0 that implements
the IActor specification? This is a known issue in type systems for safe resource man-
agement, as discussed in Sect. 6. In our semantics, we avoid this issue because the
connect operation makes copies of the two actors being composed. This is a potentially
expensive operation, and a better choice of operations might split this into a connection
operation that performed update in place on the argument actor specifications, and an
explicit clone operation for explicitly making a copy of an actor. This choice however
makes the actor connection operation a “strong update,” modifying the interface of the
original actor, which in turn requires ensuring that there be no references to the original
actor remaining in the program (including aliases). Our copying semantics avoids this
complication.

4 Type System

In this section we consider a core language to support the examples in the previous
sections, including a type system to ensure valid program executions. We consider an
operational semantics and type soundness in the next section. We name this kernel lan-
guage SSDF. We only consider synchronous dataflow in this account, but we comment
on the extension to the cyclostatic case at the end of this section.

The syntax of types is provided in Fig. 5. For simplicity we assume a single base type
of float, for floating point values. Similarly we assume that only floating point values
are exchanged between actors in each message exchange, so the channel type does not
need to describe the type of data exchanged on the channel. Although the polyadic pi-
calculus generalizes messages to include tuples of values, this is not necessary in our

494 D. Duggan and J. Yao

T ∈ Type ::= float | AS | channel π
AS ∈ Actor sig ::= actsig(O,FS)

K ∈ Causalities ::= {} | {a < b} | K1 ∪K2
O ∈ Open channels ::= {} | O1∪O2 | {((c,c) : channel π)}

π ∈ Polarity ::= + | - | ±
ES ∈ Event set ::= {} | {n ·a} | ES1 $ES2
FS ∈ Flowstate ::= ES | {FS | K} | (FS1;FS2) | (FS1 ‖ FS2) | FS∗ | FSω

Fig. 5. Abstract syntax of SSDF Types

current framework because channels are private to a single sender and receiver. We do
record polarity information for a channel, which records whether it can be used by that
actor for input (polarity +), or for output (polarity -), or both (polarity ±).

The type of interest is that of actors. An actor signature has three parts, as we have
seen:

1. A causality set K is a set of causality constraints between channels, of the form a <
b, that reflects firing constraints between channels: If a < b, then in a firing of the
actor or dataflow net, a communication on b depends on a communication on a. For
simplicity, we assume that all communications on b depend on all communications
on a. This set of dependencies must never contain a cycle.

2. A set of open channels O. Each element of this set is a triple ((c,c) : T), recording
for an “open” channel its channel type. This channel type has the form channel π ,
where T is the type of data transmitted on the channel (we only allows floats to be
transmitted in this article), and π is the polarity of the open channel. The channel
has two names: its internal name c by which it is identified internally in the ac-
tor, and its external name c by which it is referenced when composing with other
actors. We distinguish these names in order to allow renaming apart of internal
channel names when actors are composed, without affecting the external interface.
The internal and external names in different open channel bindings should obvi-
ously be distinct from each other. We define the domain of an open channel set
as:

dom(O) = {c | ((c,c) : T) ∈O}.
We define the external domain of an open channel set as:

edom(O) = {c | ((c,c) : T) ∈ O}.
3. The flowstate of an actor records its expected firing behavior. The primitive form

of an actor flowstate is an event state, a multiset of communication events {m1 ·
a1, . . . ,mk · ak}, where each ai represents a communication event, either a sending
of a message on a channel or a receipt of a message on a channel. In either case, we
use the channel name to denote the event; whether it is an input or an output event
can be determined by the channel’s polarity. The multiplicities m1, . . . ,mk record
the number of occurrences of each event in an actor execution. The remaining forms
of flowstate are used to describe the flowstate resulting from joining computations,
either sequentially (FS1;FS2) or in parallel (FS1 ‖ FS2). Note that in the latter case

Static Sessional Dataflow 495

there may be communication dependencies between the actors running in parallel.
The other forms of flowstates are for computations that can repeat an arbitrary
number of times (FS∗) and that loop infinitely often (FSω). The latter corresponds
to the top-level flowstate of an actor, primitive or composite.

v ∈ Values ::= n | a | x
s ∈ Statement ::= (var x = e; s) Bind variables

| if (v) s1; else s2 Conditional
| while (v) s Loop
| loop s Infinite loop
| fireK s Firing
| skip Do nothing
| (s1;s2) Sequential

e ∈ Expression ::= f (v1, . . . ,vk) Builtin
| v1 = v2 Assignment
| run v Run a network
| c ↓ Receive a message
| c ↑ v Send a message
| actor(O,s) Atomic actor
| connectm,n(v1.c1,v2.c2) Connect two actors
| connectSelfm(v1.c1,v1.c2) Connect within an actor
| connectSelfDelaym(v1.c1,v1.c2) Connect with delay

Fig. 6. Abstract syntax of SSDF statements

Fig. 6 provides the abstract syntax for programs in SSDF. Values are numbers n,
names a (for actors and channels, both allocated on the heap), and variables x. The syn-
tax of statements includes a conditional2, while loops, and a construct for doing nothing.
We also have a construct (fire) for explicitly specifying the firing behavior of an actor
body. The construct of interest is the binding statement, which introduces a new vari-
able bound to the result of evaluating a definition. Some of the definitional expressions
return a dummy value (the number 0). In these cases, the variable binding expression
is used solely to sequence the computation. Why do we also include the sequencing
of statements? Our expressional language is in A-normal form, but we have constructs
such as the while loop and the conditional that do not fit the definition of an execution
step in A-normal form. If we convert this language, both expressions and statements,
into A-normal form, we obtain an exponential blow-up in code size unless we resid-
ualize the continuation of a conditional. We avoid these complications by including
sequencing of statements.

The simplest form of definition is the invocation of builtin functions, presumably to
perform arithmetic operations on numeric values. We also allow assignment, though
only for values of base type, i.e., floating point values, because of the aliasing issue
described in Sect. 3. As expected, we also have operations for receiving and sending
messages.

2 We are assuming that our language has no round-off error. Obviously a more complete lan-
guage definition would include integers and Booleans.

496 D. Duggan and J. Yao

�Σ {} ok
ENV EMPTY �Σ Γ ok Γ �Σ T

�Σ Γ ,x : T ok
ENV EXTEND

�Σ Γ ok

Γ �Σ n : float
CONST

�Σ Γ ok (x : T) ∈ Γ
Γ �Σ x : T VAR

�Σ Γ ok (a : T) ∈ Γ
Γ �Σ a : T NAME

Γ ,K �Σ e : T : FS1 x /∈ dom(Γ) (Γ ∪{(x : T)}),K �Σ s : FS2

Γ ,K �Σ (var x = e;s) : (FS1;FS2)
BIND

�Σ Γ ok

Γ ,K �Σ skip : {} SKIP
Γ �Σ v : float Γ ,K �Σ s1 : FS Γ ,K �Σ s2 : FS

Γ ,K �Σ (if (v) s1; else s2) : FS
IF

Γ �Σ v : float Γ ,K �Σ s : FS
Γ ,K �Σ (while (v) s) : FS∗ WHILE

Γ ,K �Σ s : FS
Γ ,K �Σ (loop s) : FSω LOOP

Γ ,K �Σ s : FS
Γ ,{} �Σ (fireK s) : {FS | K} FIRE

(f :
−−→
float → float) ∈ Σ

−−−−−−−−−→
Γ �Σ vk : float

Γ ,K �Σ f (v1, . . . ,vk) : float : {} BUILTIN

v1 ∈ {x, l} Γ �Σ v1 : float Γ �Σ v2 : float

Γ ,K �Σ v1 = v2 : float : {} ASSIGN

(c : channel π) ∈ Γ π ≤ - Γ �Σ v : float

Γ ,K �Σ c ↑ v : float : {1 · c} SEND
(c : channel π) ∈ Γ π ≤ +

Γ ,K �Σ c ↓: float : {1 · c} RECEIVE

Γ �Σ v : actsig({},FS)
Γ ,K �Σ run v : {} RUN

Γ ,K �Σ s1 : FS1 Γ ,K �Σ s2 : FS2

Γ ,K �Σ (s1;s2) : (FS1;FS2)
SEQ

Γ ,K �Σ s : FS0 Γ �Σ FS Γ ,K �Σ FS0 ∼= FS
Γ ,K �Σ s : FS

STMT EQ

Fig. 7. Type system

The next three definitions are for defining actors: the definition of an atomic actor,
and operations for connecting actors on complementary open channels, with and with-
out a delay. An atomic actor has a causality set, open channel set and flowstate specifi-
cation, as with actor signatures. In addition, the actor has a (single-threaded) actor body,
an expression that is constrained by the flowstate specification. The final definition re-
turns no values, but starts the asynchronous execution of an actor that has no remaining
open channels.

To describe a type system for this simple minilanguage, we add a type environment
Γ , described as follows:

Γ ::= {} | Γ1∪Γ2 | {(a : T)} | {(x : T)}

Static Sessional Dataflow 497

Γ0 = {(c : T) | ((c,c) : T) ∈ O} Γ0,K0 �Σ s : FS

Γ ,K �Σ actor(O,s) : actsig(O,FS) : {} ACTOR

Γ �Σ vi : actsig(Oi,{ESi | K}ω)
dom(O1)∩dom(O2) = {} edom(O1)∩ edom(O2) = {} ((ci,ci) : Ti) ∈ Oi

m =| ES1 |c1 ,n =| ES2 |c2 , j ·m = k ·n = lcm(m,n)
K = (K1 ∪K2)\{c1,c2} O = (O1 ∪O2)\{c1,c2} π1 = +,π2 = -

FS = {((j ·ES1 $ k ·ES2)\{c1,c2}) | K}ω

Γ ,K �Σ connectm,n(v1.c1,v2.c2) : actsig(O,FS) : {} CONN

Γ �Σ v : actsig(O,{ES | K}ω) ((c1,c1) : T1),((c2,c2) : T2) ∈ O
K0 = K \{c1,c2} | ES |c1= m =| ES |c2 π1 = +,π2 = -

ES0 = ES\{c1,c2} O0 = O\{c1,c2} K,Γ �Σ c1 < c2

Γ ,K �Σ connectSelfm(v.c1,v.c2) : actsig(O0,{ES0 | K0}ω) : {} CONN SELF

Γ �Σ v : actsig(O,{ES | K}ω) ((c1,c1) : T1),((c2,c2) : T2) ∈ O
K0 = K \{c1,c2} | ES |c1= m =| ES |c2 π1 = +,π2 = -

ES0 = ES\{c1,c2} O0 = O\{c1,c2} K,Γ �Σ c1 < c2

Γ ,K �Σ connectSelfDelaym(v.c1,v.c2) : actsig(O0,{ES0 | K0}ω) : {} CONN DELAY

Fig. 8. Actor type rules

The type environment is not treated linearly, since we are not tracking usage of re-
sources. We instead rely on matching a statement against a flowstate during type-
checking. We also rely on some other meta-notations:

1. The expression O \V denotes the removal of all bindings for channel names in V
from O:

O\V = {((c,c) : T) ∈ O | c /∈V}.
We sometimes denote O\ {c} by O\ c.

2. For a set of causalities K, we denote the removal of all constraints involving chan-
nels in V by K \V . In other words, K \V = {(c1 < c2) ∈ K |V ∩{c1,c2}= {}}.

3. For event states, we denote a multiset by the set of elements with their multi-
plicities, so ES = {m1 · a1, . . . ,mk · ak} contains mi occurrences of ai (assuming
ai /∈ {a1, . . . ,ai−1,ai+1, . . . ,ak}). Denote the number of occurrences of ai in ES by |
ES |ai=mi, and say that c∈ES if and only if |ES |c> 0. The disjoint union ES1$ES2

adds the multiplicities of common elements, so | ES1$ES2 |c=| ES1 |c + | ES2 |c.
The expression ES \ {n · c} denotes the removal of n of occurrences of c from the
multiset ES, so | ES \ {n · c} |c= max(| ES |c −n,0). The expression n ·ES denotes
the multiplication of the multiplicities in ES by n: n ·ES = {n ·m ·a | m ·a ∈ ES}.

4. Finally we denote the projection of an event state onto the names that are in a set
of variables (typically the domain of a type environment) by:

ES[[V]] = {(m · c) ∈ ES | c ∈V}.
The homomorphic extension of this to the projection of a flowstate is denoted by
FS[[V]].

498 D. Duggan and J. Yao

π ≤ π ±≤ + ±≤ -

Γ � K ok (c1 < c2) ∈ K

Γ ,K �Σ c1 < c2
CAUS HYP

Γ ,K �Σ c1 < c2 Γ ,K �Σ c2 < c3

Γ ,K �Σ c1 < c3
CAUS TRANS

Fig. 9. Subtyping and subflow rules

The type system is formulated using judgements of the following forms:

�Σ Γ ok Environment
Γ �Σ T Type
Γ �Σ K Causal Set
Γ ,K �Σ a < b Causality
Γ �Σ v : T Value
Γ ,K �Σ e : T : FS Expression
Γ ,K �Σ s : FS Statement

The main type rules are provided in Fig. 7. The CONST, VAR and NAME rules are
used to type check values; variables and names should be bound in the environment
Γ . The skip construct has empty effect, while the conditional is required to have the
same effect in both branches of the conditional. There are two looping constructs. The
default rule, for while loops, has an iteration type FS∗. This may not be sufficient for
some circumstances, in particular for the top-level loop of an actor that is required to
always offer the specified behavior (after a complete firing). Therefore we provide an
additional loop construct, to separate loops in the type system that are guaranteed to
never terminate. While our type system sometimes requires infinite loops, it does not
attempt to prevent infinite loops, so it is possible for an actor network to fail to make
observable progress because an actor is stuck in an internal loop. The progress result for
the operational semantics guarantees that the network can always make progress, even
if this progress is just the iteration of an infinite loop without observable behavior.

For tracking flowstate, the key rule is the BIND rule, which evaluates an expression e,
and binds a new variable x to the result of this evaluation when evaluating the statement
s. Since the expression may include message sending or receiving, it has a flowstate that
is combined with the flowstate of the statement continuation.

The various forms of expressions are typed by the remaining rules in Fig. 7. The
BUILTIN rule type-checks a arithmetic expression resulting from the application of a
built-in function. The ASSIGN rule type-checks an assignment expression, which again
is restricted to primitive values of base type (i.e., float). The SEND and RECEIVE rules
type-check the message sending and receiving operations. The channel must have the
appropriate polarity in the environment, - for sending and + for receiving. The RUN

rule runs a dataflow network for which all open channels have been resolved. The return
value is a dummy value. The dataflow network operates asynchronously with the parent
network.

Static Sessional Dataflow 499

The STMT EQ rule allows the flowstate for a statement to be replaced with a flowstate
that is provably equal to it. We define the notion of equality between flowstates in the
next section, defining it as a bisimulation between flowstate computations.

The difficult rules are those for connecting actors together into composite actors.
These rules are provided in Fig. 8, where the rules for actor expressions are provided.
The ACTOR rule type checks an atomic actor expression, checking the body of the actor
in an environment binding the open channels with the appropriate polarities. The CONN

rule handles the case where two different actors are being connected. As we have seen,
it is because of this rule, and the difficulties with aliasing, that we do not allow actor
references to be copied in this language. The rule requires that the open channel names
in the two actors are distinct. In practice it would obviously be useful to have a way
to rename these when necessary, but it is not essential for the current account. The
top-level flowstate is required to be an infinite loop type for each actor, and the new
flowstate results from a merging of these infinite loop types, removing all references to
the open channels on which the actors are being linked. These channel names are also
removed from the open channel set for the resulting combination.

The CONN SELF and CONN DELAY rules handle the linking of two open channels in
the same actor. The first of these handles the case where the addition of the new binding
does not introduce a feedback loop, as reflected by the causality rules that require the
data paths in elided channels within the actor. The second of these two rules handles the
case where the linking would result in a feedback loop, and therefore fills the buffer for
the private channel linking the open channels to introduce a delay in firing.

Our language is essentially synchronous data flow, however its generalization to
cyclostatic is straightforward. We restrict the flowstate of an actor to have the form
{FS | K}ω . To extend this to cyclostatic behavior, we generalize the form of the body
({FS1 | K1}; . . . ;{FSm | Km})ω . The main complication is in the type rules for connect-
ing actors, and we eschew the details in this account.

5 Semantics

In this section, we consider an operational semantics for the language described in the
previous section. We provide a heap-based semantics that binds three kinds of values
on the heap:

1. Values n of base type, i.e., of type float. Every variable of type float is assumed to
be mutable, therefore we bind such variables to locations l that point to their heap
binding.

2. Actor values A, which may be either atomic or composite, resulting from allocating
atomic actors and then connecting them together on open channels. We extend ac-
tors with shared channel bindings S, containing bindings of the form (c : (k,m,T)).
An atomic actor is a special case of a composite actor:

actor(O,s) ≡ actor(O,{},s)

That is, an atomic actor has no shared channels, only open channels, and a single
thread.

500 D. Duggan and J. Yao

T ∈ Type ::= [T]k
S ∈ Shared Channels ::= {} | {(c : (k,n,T))} | S∪S

H ∈ Heap ::= ε | l �→ n | a �→ A | c �→ B | H1 $H2

HT ∈ Heap Type ::= ε | l : float | a : AS | c : channel π | HT1$HT2

A ∈ Actor ::= actor(O,S,P)

P ∈ Process ::= stop | FS | (P1 | P2)

B ∈ Buffer ::= εk | [v]k | B1@kB2

C ∈ Configuration ::= (e,H) | (s,H) | (P,H)

Fig. 10. Syntax of configurations

3. Message buffers B, which hold the values transmitted between actors on shared
channels. A message buffer is simply a sequence, ensuring FIFO delivery, where
@k is the operation for appending buffers. We assume that buffers have bounded
size, provided by a parameter k in the constructors and in the buffer type; the con-
structor operations are undefined for the case where the resulting buffer is larger
than the maximum size. We denote the number of items in a buffer by | B |, and the
maximum size of a buffer by size(B). We write [v1,v2, . . . ,vm]k as an abbreviation
for [v1]k@k[v2]k@k. . .@k[vm]k, where m≤ k. We use v ::k B to denote [v]k@kB. We
use [T]k to denote the type of a buffer that contains values of type T . These buffer
types are not first class, since buffers are handled by the compiler. Furthermore for
simplicity we restrict the contents of buffers to be floating point values, so T = float
for any buffer type [T]k.

To describe the operational semantics, we generalize the form of an actor, as described
in Fig. 10. An open channel always has polarity of + or -, reflecting the fact that it
is a uniplex channel. When two such shared channels are bound to the endpoints of a
shared channel, the latter has polarity ±. For open channels, we use the channel names
as representatives of events, since an open channel is either input or output, but not
both. When we instantiate open channels to shared channels, we need to distinguish the
sending and receiving ends of the shared channel, for dependency checking purposes,
since we need to distinguish sending and receiving events on that channel. We assume
a naming convention where, for any shared channel c, there are distinguished names c+

and c− for the receiving and sending parts, respectively, of that channel. The receiving
end c+ of a shared channel has polarity +, while the sending end c− has polarity -

(while the channel c itself has polarity ±). Whereas open channels have environment
bindings of the form (c : channel +) and (c : channel -), a shared channel binding has
the form (c : (k,n,channel ±)), that also implicitly binds the names c+ and c− for the
two ends of the channel. The parameter k denotes the maximum size required of the
corresponding buffer, while the parameter n denotes that a delay must be introduced in
the channel for a buffer, by initializing that buffer with n default values (either n = k or
n = 0). We denote the operation of adjusting these parameters, as a result of connecting
two actors and adjusting their firing rates, by:

Static Sessional Dataflow 501

j ·S = {(c : (j · k, j ·n,T)) | (c : (k,n,T)) ∈ S}.

In addition to the set of open channels O in an actor interface, we now also have a set
of shared channels S. We associate with each shared channel in S a number that is the
number of initial values to be inserted into a buffer when it is created. When this value
is non-zero, the buffer is required to provide a delay in the firing semantics.

The other extension to an actor expression is that the body is generalized from a
single thread to multiple threads, arising from the linking of actors together into a com-
posite actor or dataflow network. The body of a composite actor is the parallel compo-
sition of a collection of single-threaded actor bodies, where each body has the flowstate
specification given by the original atomic actor expression. The one change is that open
channels in the original flowstate constraint will have been replaced by an endpoint of
a shared channel, as a result of connecting that actor with another actor. By the time
a dataflow network runs, all channel names in flowstates will have been replaced by
shared channel endpoints. A configuration of the operational semantics is simply a par-
allel composition of threads paired with a global heap. This heap is actually partitioned
between the different dataflow nets that are running.

In order to reason about correctness, we define typing relations for heaps and pro-
cesses, using judgements of the form:

Γ �Σ H : HT Heap
Γ �Σ P : FS Process
Γ �Σ B : [T]k Buffer
Γ �Σ A : AS Actor

This last judgement just checks for well-formedness of the channel flow constraints in
an actor. The channels named in the constraints should be bound in the type environment
(obtained from the open channels in the case of an actor signature, and from the open
and shared channels in the case of an actor expression). The type rules are provided in
Fig. 11. In the ACTOR rule for typing actor bodies, the closure operation C (K) forms
the transitive closure of a set of causality constraints.

For evaluating expressions, mutable base type variables are bound to locations l,
and these must be dereferenced. This dereferencing is performed by the operation of
applying the heap to a value, H(v), defined by:

H(l) = n if l �→ n ∈H

H(a) = A if a �→ A ∈ H

H(c) = B if c �→ B ∈H

H(v) = v otherwise

For built-in functions, we assume a family of total functions {eval f } f for the functions
defined in the signature Σ .

502 D. Duggan and J. Yao

�Σ Γ ok

Γ �Σ stop : {} PROC STOP

Γ ,{} �Σ s : FS

Γ �Σ s : FS
PROC STMT

Γ �Σ P1 : FS1 Γ �Σ P2 : FS2

Γ �Σ (P1 | P2) : FS1 ‖ FS2
PROC PAR

K′ ⊇ K ∩ fn(FS) Γ �Σ P : {FS | K}
Γ �Σ P : {FS | K} PROC CAUSE

�Σ Γ ok

Γ �Σ εk : [T]k
BUFF EMPTY

Γ �Σ v : T

Γ �Σ [v]k : [T]k
BUFF CELL

Γ �Σ B1 : [T]k Γ �Σ B2 : [T]k
Γ �Σ B1@kB2 : [T]k

BUFF JOIN

�Σ Γ ok

Γ �Σ ε : ε HEAP EMPTY

Γ �Σ n : float

Γ �Σ (l �→ n) : (l : float)
HEAP FLOAT

T = float Γ �Σ B : [T]k
Γ �Σ (c �→ B) : (c : [T]k)

HEAP BUFFER

Γ �Σ A : AS

Γ �Σ (a �→ A) : (a : AS)
HEAP ACTOR

Γ �Σ H1 : HT1 Γ �Σ H2 : HT2

Γ �Σ H1$H2 : HT1 $HT2
HEAP JOIN

Γ0 = {(c : T) | ((c,c) : T) ∈ O} Γ1 = {(c : T) | (c : (k,n,T)) ∈ S}
dom(Γ0)∩dom(Γ1) = {} Γ0∪Γ1 �Σ P : FS FS0 = FS[[dom(Γ0)]]

Γ �Σ actor(O,S,P) : actsig(O,FS0)
ACTOR

Fig. 11. Type Rules for Heaps and Processes

(stop | P)≡ P (P1 | P2)≡ (P2 | P1) (P1 | (P2 | P3))≡ ((P1 | P2) | P3)

(skip;s)≡ s (s;skip)≡ s (s1;(s2;s3))≡ ((s1;s2);s3)

Fig. 12. Structural equivalence

The semantics is defined using a collection of reduction relations:

Reduction of expressions: (e1,H1)−→ (e2,H2) and (e1,H1)
a−−→ (e2,H2)

Reduction of statements: (s1,H1)−→ (s2,H2) and (s1,H1)
a−−→ (s2,H2)

Reduction of processes: (P1,H1)−→ (P2,H2) and (P1,H1)
a−−→ (P2,H2)

Reduction of types: K � FS1
a−−→ FS2

Static Sessional Dataflow 503

v = eval f (H(v1), . . . ,H(vk))

(f (v1, . . . ,vk),H) −→ (v,H)
BUILTIN

n = H(v) H ′ = H[l �→ n]

(l = v,H) −→ (n,H ′)
ASSIGN

n = H(v) k = size(H(c)) | H(c) | < k H ′ = H[c �→ H(c)@k[n]k]

(c− ↑ v,H) c−−−→ (0,H ′)
SEND

H(c) = [n]k@kB H ′ = H[c �→ B]

(c+ ↓,H) c+−−→ (n,H ′)
RECEIVE

(e,H)
[a]−−→ (n,H ′) l /∈ dom(H) H ′ = H ∪{l �→ n}
((var x = e;s),H)

[a]−−→ ({l/x}s,H ′)
BIND

H(v) �= 0
((if (v) s1; else s2),H) −→ (s1,H)

IF TRUE
H(v) = 0

((if (v) s1; else s2),H) −→ (s2,H)
IF FALSE

(s,H) a−−→ (s′,H)

((fireK s),H) a−−→ ((fireK s′),H)
FIRE

H(v) �= 0
((while (v) s),H) −→ ((s;while (v) s),H)

WHILE TRUE

H(v) = 0
((while (v) s),H) −→ (skip,H)

WHILE FALSE

(s1,H)
[a]−−→ (s′1,H

′)

((s1;s2),H)
[a]−−→ ((s′1;s2),H ′)

SEQ
(P1,H)

[a]−−→ (P′
1,H

′)

((P1 | P2),H)
[a]−−→ ((P′

1 | P2),H ′)
PAR

H(v) = actor({},S,P) dom(H)∩{c | (c : (n,T,∈))S} = {}
H2 = H1 ∪{c �→ dbuf k(n) | (c : (n,T,∈))S}

((run v;s),H1) −→ ((s | P),H2)
RUN

Fig. 13. Operational Semantics

The first three pairs relations describe reductions between configurations of an ex-
pression, statement and process, respectively, coupled with a heap. The heap is both
input into, and output from, each reduction step. A reduction of expressions of the
form (e1,H1)−→ (e2,H2) denotes an internal reduction, while a reduction of the form
(e1,H1)

a−−→ (e2,H2) denotes a reduction that involves a communication event a. We

write (e1,H1)
[a]−−→ (e2,H2) to generically denote a reduction that may be either internal

or involve a communication event. Similar remarks hold for reduction of statements and
of processes.

504 D. Duggan and J. Yao

a /∈ dom(H) e = actor(O,s) H ′ = H ∪{a �→ actor(O,{},s)}
((var x = e;s),H)−→ ({a/x}s,H ′) ACTOR

H(ai) = actor(Oi,Si,Pi) ((ci,ci) : Ti) ∈ Oi O = (O1 ∪O2)\{c1,c2}
π1 = +,π2 = - j1 ·m = j2 ·n = lcm(m,n) = k dom(S1)∩dom(S2) = {}

c /∈ dom(S1)∪dom(S2) S = j1 ·S1 ∪ j2 ·S2 ∪{(c : (k,0,T))}
P′1 = {c+/c1}P1 P′2 = {c−/c2}P2 A = actor(O,S,(P′1 | P′2))

((var x = connectm,n(a1.c1,a2.c2);s),H)−→ ({a/x}s,H ∪{a �→ A}) CONN

H(a) = actor(O,S,P) ((c1,c1) : T1),((c2,c2) : T2) ∈ O
dom(S1)∩dom(S2) = {} c /∈ dom(S1)∪dom(S2)

S′ = S∪{(c : (m,m,T))} π1 = +,π2 = - O′ = O\{c1,c2}
P′ = {c+/c1,c−/c2}P A = actor(O′,S′,P′)

((var x = connectSelfDelaym(a.c1,a.c2);s),H)−→ ({a/x}s,H ∪{a �→ A}) CONN DELAY

Fig. 14. Actor operational semantics

The reduction relation for flowstates is perhaps surprising, and reflects the use of
flowstate: Types themselves evolve during computation, since they are abstract process
descriptions for the underlying sequential program. This reduction relation is the basis
for a type equality for types, based on bisimulation:

Definition 1 (Flowstate Equality). Given a causality set K. Define K-bisimilarity to
be the largest symmetric binary relation R defined by: If (FS1,FS2) ∈ R, then if K �
FS1

a−−→ FS′1 for some FS′1, then K � FS2
a−−→ FS′2 for some FS′2 such that (FS′1,FS′2) ∈

R. If FS1 and FS2 are K-bisimilar, then we denote this by Γ ,K �Σ FS1
∼= FS2.

The RUN rule for launching a dataflow net initializes buffers using the function dbuf k(n),
defined by:

dbuf k(0) = εk

dbuf k(n+ 1) = 0 ::k dbuf k(n)

The operational semantics for agent expressions are provided in Fig. 14. The reduction
relation for flowstates is defined in Fig. 15.

The formal results for the type system are in two parts:

1. Type preservation verifies that the well-typedness (but not the types!) of actors are
preserved under evaluation.

2. Progress verifies that, given a flowstate that can perform a reduction step, a cor-
responding actor with that flowstate either diverges (loops infinitely) or eventually
(after internal reductions) can simulate that abstract reduction step.

Theorem 1 (Type Preservation). If Γ ,K �Σ (P1,H1) : FS1 and (P1,H1)
a−−→ (P2,H2)

then K � FS1
a−−→ FS2, and Γ ,K �Σ (P2,H2) : FS2.

Static Sessional Dataflow 505

{}∗ ≡ {} FSω ≡ FS;FS∗ FS1 ‖ FS2 ≡ FS2 ‖ FS1

(FS1;FS2);FS3 ≡ FS1;(FS2;FS3) (FS1 ‖ FS2) ‖ FS3 ≡ FS1 ‖ (FS2 ‖ FS3)

FSω
1 ‖ FSω

2 ≡ (FS1 ‖ FS2)
ω

{FS1 | K} ‖ {FS1 | K} ≡ {(FS1 ‖ FS2) | K}
K � FS1

a−−→ FS′1
K � (FS1 ‖ FS2)

a−−→ (FS′1 ‖ FS2)

K0∪K � FS
a−−→ FS′

K0 � {FS | K} a−−→ {FS | K}
K � FS1

a−−→ FS′1
K � (FS1;FS2)

a−−→ (FS′1;FS2)

K � FS
a−−→ FS′

K � ({};FS)
a−−→ ({};FS)

m > 0 ∃a0 ∈ ES.Γ ,K �Σ a0 < a

K � {m ·a}$ES
a−−→ {(m−1) ·a}$ES

FS1 ≡ FS′1 K � FS′1
a−−→ FS′2 FS2 ≡ FS′2

K � FS1
a−−→ FS2

Fig. 15. Type reduction rules

Let (P,H) =⇒ (P′,H ′) denote the reflexive transitive closure of (P,H) −→ (P′,H ′):
in other words, (P,H) evolves to (P′,H ′) in zero or more internal reductions. Let
(P1,H1)

a
==⇒ (P2,H2) denote that (P1,H1) =⇒ (P′1,H

′
1) and (P′1,H

′
1)

a−−→ (P′2,H
′
2) and

(P′2,H
′
2) =⇒ (P2,H2). Let (P1,H1)

(a1,...,ak)
=====⇒ (Pk+1,Hk+1) denote that (Pi,Hi)

ai==⇒
(Pi+1,Hi+1) for i = 1, . . . ,k and some (P1,H1), . . . ,(Pk+1,Hk+1) and a1, . . . ,ak.

Denote that a configuration (P,H) diverges, in the sense that it loops indefinitely per-
forming only internal reductions, by (P,H) ⇑. Denote that a configuration eventually of-
fers output on channel endpoint c−, perhaps after performing some internal reductions,
by (P,H) ⇓c− . Similarly (P,H) ⇓c+ denotes that a configuration eventually attempts to
perform input on channel endpoint c+, perhaps after performing some internal reduc-
tions.

Theorem 2 (Progress). If Γ ,K �Σ (P,H) : FS1 and

{
K � FS1

c+−−→ FS2

K � FS1
c−−−→ FS2

}
then either

(P,H)⇑, or

⎧⎨
⎩ (P,H)

−→
a+
==⇒ (P′,H ′)

(P,H)
−→
a−
==⇒ (P′,H ′)

⎫⎬
⎭ for some (P′,H ′) and−→a such that

{
(P′,H ′) ⇓c+

(P′,H ′) ⇓c−

}
.

506 D. Duggan and J. Yao

6 Related Work

The area of synchronous dataflow has seen some application in signal processing appli-
cations [13], with various extensions, in particular cyclostatic dataflow for actors whose
firing behavior is able to evolve in a regular fashion [2]. Traditionally the analysis of
synchronous dataflow has been non-modular, requiring analysis of the entire dataflow
graph. More recent work has considered the modular composition of hierarchical SDF
graphs [17], allowing graphs to be analyzed before the entire dataflow graph is con-
structed, with a focus on modular code generation. The interface of a modular actor is
described as a deterministic SDF with shared FIFOs (DSSF) profile, allowing a collec-
tion of actors to share an input queue while retaining determinacy of the execution. As
with SDF, atomic actors are considered as “black boxes,” and only SDF is considered.
In particular cyclostatic dataflow is not considered in that work.

Sessional dataflow comes out of the realm of linear [11,18] and affine type systems
for statically checking the safe usage of limited resources. Two particularly significant
lines of study in the “linear types” field have been the approach of typestate and that of
session types. Typestate is a concept that originated in the Hermes language of Strom
and Yemini [15]. It corresponds to an enrichment of the normal notion of a type, to
include the concept of types as states in a finite state machine. Fähndrich and Deline
incorporated this idea into object oriented languages [7] in a very natural way: each
object has a typestate, and the interface offered by an object, in the sense of the meth-
ods that can currently be invoked on the object, are determined by its current typestate.
Since typestate is updated imperatively, it is important that aliasing of such objects be
carefully controlled. Aldrich et al [14] have demonstrated that a notion of permissions,
based on earlier work on type-based capabilities, can be used to check the use of types-
tate in existing non-toy software systems. We have explicitly avoided introducing these
issues into the current report, but they are clearly relevant to incorporating sessional
dataflow into real programming languages.

The approach of session types [9] is commonly motivated by its support for safe Web
services. In the simplest case, session types are used to mediate the exchanges between
two parties in a dyadic interaction. Each session offers a “shared channel” (different
from our use of the terminology), essentially an service endpoint URL that a client
connects to. On connection, a new server thread is forked and a private session channel
is established between the client and this thread. This channel has a behavioral type that
is essentially an abstract single-threaded process, that constrains the communications
between the parties. Since only the client and the server share their private channel, the
execution is in fact deterministic.

Although sessional dataflow might appear at first related to session types, the con-
nection is actually rather weak, because of the nature of the interactions in dataflow. The
closest our system comes to a session types system is in the behavioral constraint on
the behavior of an actor, in terms of matching the specified input and output data rates
on each firing specified on an actor interface. However this behaviorial specification
only constrains a single actor, and places no constraint on the behavior of its neigh-
boring actors (upstream or downstream). Furthermore a session type specifies, for each
participant in an interaction, a very precise single-threaded behavior, in terms of data

Static Sessional Dataflow 507

exchanged on the private session channels at each point in the execution. In contrast,
the behavioral specification for an actor in sessional dataflow is declarative, specifying
expected communications subject to causality constraints. Deniélou and Yoshida [8]
describe a version of session types that allows a dynamic number of participants in a
session protocol. As with other approaches to session types, the approach is to provide
operational specifications of participant behaviors, using a top-down approach where
one reasons from the specified global protocol to the behavior of individual partici-
pants. In contrast, the sessional dataflow approach is bottom-up and declarative, spec-
ifying declarative causality constraints on individual actors independent of whatever
interactions they are integrated into.

Another related line of work is in synchronous languages for real-time and embedded
systems. Such languages assume a “clock” on all computations, with variables repre-
senting potentially infinite streams of values, indexed by clock ticks. Here the most rel-
evant example for sessional dataflow is that of Lustre [4], a language that is a dataflow
language in the tradition of Lucid, [1], and is a synchronous language in the sense of
the synchronous languages such as Esterel [3], but which we cannot call a synchronous
dataflow language for fear of confusing the reader. The constraints on the synchronous
languages preclude any need for buffering, since all actors operate in lock step on the
same clock. The theory of these “synchronous,” “dataflow” networks has been described
in terms of synchronous Kahn networks [5], which have the property that no buffering
is required at all between actors, since all execution is synchronous and governed by a
common clock. This is clearly a very strong restriction, albeit one that facilitates com-
pilation of programs to hardware circuits. The theory of N-synchronous Kahn networks
[6] relaxes this restriction, allowing different actors to have their own clock rates, and
allowing buffering between actors to match their clock rates. It is therefore very much
related to the approach of synchronous dataflow, with subtyping between clock rates
in multi-rate systems identifying where data must be buffered. However matching data
rates does not address the other aspect of sessional dataflow, causalities to ensure the
liveness of networks as they are composed.

7 Conclusions

This work builds on existing work in dataflow computation, particularly the work in
synchronous dataflow pursued in the signal processing community, as discussed in
Sect. 1. Our work considers how to relate the implementations of actors to the static
firing rates described in actor interfaces, where the latter are critical for static schedul-
ing of actors. We have also provided a compositional semantics for combining actors
together into dataflow nets, in such a way that we statically check the correctness of the
combination at each step of such a process.

There are extensions of synchronous dataflow that can be incorporated into sessional
dataflow, such as the extension to cyclostatic dataflow considered at the end of Sect. 4.
However our main interest is in using the framework of sessional dataflow to consider
the safety of operations such as reconfiguration and subnet replacement.

508 D. Duggan and J. Yao

References

1. Ashcroft, E.A., Wadge, W.W.: Lucid, the dataflow programming language. Academic Press
(1985)

2. Bilsen, G., Engels, M., Lauwereins, R., Peperstraete, J.A.: Cyclo-static data flow. In:
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 5,
pp. 3255–3258 (May 1995)

3. Boussinot, F., de Simone, R.: The Esterel language. Proc. IEEE 79, 1270–1282 (1991)
4. Boussinot, F., de Simone, R.: The synchronous data flow programming language Lustre.

Proc. IEEE 79, 1305–1320 (1991)
5. Caspi, P., Pouzet, M.: Synchronous kahn networks. In: International Conference on Func-

tional Programming, ICFP (1996)
6. Cohen, A., Duranton, M., Eisenbeis, C., Pagetti, C., Plateau, F., Pouzet, M.: N-synchronous

kahn networks: a relaxed model of synchrony for real-time systems. In: Principles of Pro-
gramming Languages (POPL), pp. 180–193. ACM Press (2006)

7. DeLine, R., Fähndrich, M.: Typestates for Objects. In: Vetta, A. (ed.) ECOOP 2004. LNCS,
vol. 3086, pp. 465–490. Springer, Heidelberg (2004)

8. Deniélou, P.-M., Yoshida, N.: Dynamic multirole session types. In: ACM Symposium on
Principles of Programming Languages, pp. 435–446. ACM, New York (2011)

9. Dezani-Ciancaglini, M., de’Liguoro, U.: Sessions and Session Types: An Overview. In: Lan-
eve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol. 6194, pp. 1–28. Springer, Heidelberg (2010)

10. Edwards, S.A.: Languages for Digital Embedded Systems. Kluwer (2000)
11. Girard, J.-Y.: Linear logic. Theoretical Computer Science (50), 1–102 (1987)
12. Kahn, G.: The semantics of a simple language for parallel programming. In: Information

Processing 74: Proceedings of the IFIP Congress, pp. 471–475. North-Holland, Stockholm
(1974)

13. Lee, E., Messerschmitt, D.: Synchronous data flow. Proc. IEEE 75(9), 1235–1245 (1987)
14. Stork, S., Marques, P., Aldrich, J.: Concurrency by default: using permissions to express

dataflow in stateful programs. In: Proceeding of the 24th ACM SIGPLAN Conference Com-
panion on Object Oriented Programming Systems Languages and Applications, OOPSLA
2009, pp. 933–940. ACM, New York (2009)

15. Strom, R.E., Yemini, S.: Typestate: A programming language concept for enhancing software
reliability. IEEE Trans. Softw. Eng. 12, 157–171 (1986)

16. Thies, W.: Language and Compiler Support for Stream Programs. Ph.D. thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA (February 2009)

17. Tripakis, S., Bui, D., Rodiers, B., Lee, E.A.: Compositionality in synchronous data flow:
Modular code generation from SDF graphs. Technical Report UCB/EECS-2009-143, Uni-
versity of California, Berkeley (October 2009)

18. Wadler, P.: Linear types can change the world? In: Programming Concepts and Methods.
North (1990)

Java Wildcards Meet Definition-Site Variance

John Altidor1, Christoph Reichenbach1, and Yannis Smaragdakis1,2

1 University of Massachusetts, Amherst
2 University of Athens, Greece

Abstract. Variance is concerned with the interplay of parametric poly-
morphism (i.e., templates, generics) and subtyping. The study of vari-
ance gives answers to the question of when an instantiation of a generic
class can be a subtype of another. In this work, we combine the mech-
anisms of use-site variance (as in Java) and definition-site variance (as
in Scala and C#) in a single type system, based on Java. This allows
maximum flexibility in both the specification and use of generic types,
thus increasing the reusability of code. Our VarJ calculus achieves a
safe synergy of def-site and use-site variance, while supporting the full
complexities of the Java realization of variance, including F-bounded
polymorphism and wildcard capture. We show that the interaction of
these features with definition-site variance is non-trivial and offer a full
proof of soundness—the first in the literature for an approach combining
variance mechanisms.

1 Introduction

Consider a generic type C<X>. When is a type-instantiation C<Exp1> a subtype
of another type instantiation C<Exp2>? This is the question that variance mech-
anisms in modern programming languages try to answer. Variance (specifically,
subtype variance with respect to generic type parameters) is a key topic in lan-
guage design because it develops the exact rules governing the interplay of the
two major forms of polymorphism: parametric polymorphism (i.e., generics or
templates) and subtype (inclusion) polymorphism.

Languages like C# and Scala support a type system with definition-site vari-
ance: at the point of defining the generic type C<X> we state its subtyping policy
and the type system attempts to prove that our assertion is statically safe. For
instance, a C# definition class C<out X> ... means that C is covariant : C<S> is
a subtype of C<T> if S is a subtype of T. The type system’s obligation is to ensure
that type parameter X of C is used in the body of C in a way that guarantees
type safety under this subtyping policy. For instance, X cannot appear as the
argument type of a public method in C—a rule colloquially summarized as “the
argument type of a method is a contravariant position”.

By contrast, the type system of Java employs the concept of use-site variance
[11]: a class does not itself state its variance when it is defined. Uses of the
class, however, can choose to specify that they are referring to a covariant,
contravariant, or bivariant version of the class. For instance, a method void

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 509–534, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

510 J. Altidor, C. Reichenbach, and Y. Smaragdakis

meth(C<? extends T> cx) can accept arguments of type C<T> but also C<S> where
S is a subtype of T. An object with type C<? extends T> may not offer the full
functionality of a C<T> object: the type system ensures that the body of method
meth employs only such a subset of the functionality of C<T> that would be safe
to use on any C<S> object (again, with S a subtype of T). This can be viewed
informally as automatically projecting class C and deriving per-use versions.

Each flavor of variance has its own advantages. Use-site variance is arguably
a more advanced idea, yet it suffers from specific usability problems because
it places the burden on the user of a generic type. (Although one should keep
in mind that the users of one generic type are often the implementors of an-
other.) Definition-site variance may be less expressive, but leaves the burden of
specifying general interfaces with the implementor of a generic. A natural idea,
therefore, is to combine the two flavors in the same language design and allow
full freedom: For instance, when a type is naturally covariant, its definition site
can state this property and relieve the user from any further obligation. Con-
versely, when the definition site does not offer options for fully general treatment
of a generic, a sophisticated user can still provide fully general signatures.

This natural combination of the two kinds of variance is complicated especially
by the interaction of use-site and definition-site annotations: for example, when
does the declared variance of a type variable agree with occurrences of that
variable in use-site annotations? We recently proposed a unifying framework for
checking and inferring both definition and use-site variance [1]. That proposal
was not accompanied by a language operational semantics however—its proof
of soundness was expressed as a meta-theorem, i.e., under assumptions over
what an imaginary language’s type system should be able to prove about sets of
values. This meta-theorem was welcome as an intuition about why it makes sense
to combine variances in a certain way, but did not establish a firm connection
with any real programming language.

This paper investigates combining of definition- and use-site variance with all
relevant language constructs using a new formal model, VarJ. VarJ applies novel
ideas and integrates techniques from various formalisms: Java wildcards are a
form of use-site variance that was proven sound with the TameFJ [4] calculus.
VarJ directly extends TameFJ with definition-site variance. VarJ also employs
ideas from our VarLang calculus [1], which introduces a variance transform op-
erator. Finally, VarJ integrates definition-site subtyping rules from the work of
Kennedy et al. [13,8]. The result is a language with highly expressive genericity.
For instance, given an invariant class List, our type system allows defining a
(definition-site) covariant class ROStack that returns covariant (intuitively: read-
only) Lists of members:

class ROStack<+X> {

X pop() { ... }

List<? extends X> toList() { ... }

}

Note the simultaneous use of a definition-site variance annotation (+) on ROStack,
as well as a use-site variance annotation on its toList method. The former is not
safe without the latter.

Java Wildcards Meet Definition-Site Variance 511

Overall our work makes several contributions. At the high level:

• Compared to the type systems of Java, C#, or Scala, our combination of
definition-site and use-site variance allows the programmer to pick the best
tool for the job. Libraries can avoid offering different flavors of interfaces just
to capture the notion of, e.g., “the covariant part of a list” vs. “the contravariant
part of a list”. Conversely, users can often use purely-variant types more easily
and with less visual clutter if the implementor of that type had the foresight
to declare its variance.

• Our approach maintains other features of the Java type system, namely full
support for wildcards, which are a mechanism richer than plain use-site variance
(e.g., [10]) and allow uses directly inspired by existential types.

• We provide a framework for determining the variance of the various positions
in which a type can occur. (For example, why is the upper bound of the type
parameter of a polymorphic method a contravariant position?)

Also, at the technical level:

• We show how definition-site variance interacts in interesting ways with ad-
vanced typing features, such as existential types, F-bounded polymorphism,
and wildcard capture. A naive application of our earlier work [1] to Java
would result in unsoundness, as we show with concrete examples. (Our earlier
approach avoided unsoundness when applied to actual Java code by making
several over-conservative assumptions to completely eliminate any interaction
between, e.g., definition-site variance and F-bounded polymorphism.)

• We clarify and extend the TameFJ formalism with definition-site variance.
TameFJ is a thorough, highly-detailed formalism and extending it is far from a
trivial undertaking. The result is that we offer the first full formal modeling and
proof of soundness for a language combining definition- and use-site variance.

2 Background

We next offer a brief background on definition- and use-site variance as well as
their relative advantages.

2.1 Definition-Site Variance

Languages supporting definition-site variance [14,9] typically require each type
parameter to be declared with a variance annotation. For instance, Scala [14]
requires the annotation + for covariant type parameters, - for contravariant type
parameters, and invariance as default. A well-established set of rules can then
be used to verify that the use of the type parameter in the generic1 is consistent
with the annotation.

In intuitive terms, we can understand the restrictions on the use of type pa-
rameters as applying to “positions”. Each typing position in a generic’s signature

1 We refer to all generic types (e.g., classes, traits, interfaces) uniformly as “generics”.

512 J. Altidor, C. Reichenbach, and Y. Smaragdakis

+

*

–

o

(covariance)

(bivariance)

(contravariance)

(invariance)

⊔

�

Fig. 1. Standard variance lattice

has an associated variance. For instance, method return and exception types,
supertypes, and upper bounds of class type parameters are covariant positions;
method argument types and class type parameter lower bounds are contravari-
ant positions; field types are both co- and contravariant occurrences, inducing
invariance. Type checking the declared variance annotation of a type parameter
requires determining the variance of the positions the type parameter occurs in.
The variance of all such positions should be at least the declared variance of the
type parameter. Figure 1 presents the variance lattice. Consider the following
templates of Scala classes, where vX , vY , and vZ stand for variance annotations.

abstract class RList[vXX] { def get(i:Int):X }

abstract class WList[vY Y] { def set(i:Int, y:Y):Unit }

abstract class IList[vZZ] { def setAndGet(i:Int, z:Z):Z }

The variance vX is the declared definition-site variance for type variable X of the
Scala class RList. If vX = +, the RList class type checks because X does not occur
in a contravariant position. If vY = +, the WList class does not type check because
Y occurs in a contravariant position (second argument type in set method) but
vY = + implies Y should only occur in covariant position. IList type checks only
if vZ = o because Z occurs in both a covariant and a contravariant position.

Intuitively, RList is a read-only list: it only supports retrieving objects. The
return type of a method indicates this “retrieval” capability. Retrieving objects
of type T can be safely thought of as retrieving objects of any supertype of T.
Thus, a read-only list of Ts (RList[T]) can always be safely thought of as a
read-only list of some supertype of Ts (RList[S], where T<:S). This is the exact
definition of covariant subtyping and the reason why a return type is a covariant
position. Thus, RList is covariant in X. Similarly, WList is a write-only list, and is
intuitively contravariant. Its definition supports this intuition: Objects of type T

can be written to a write-only list of Ts (WList[S]) and written to a write-only
list of Ss (WList[S]), where T<:S, because objects of type T are also objects of
type S. Hence, a WList[S] can safely be thought of as a WList[T], if T<:S.

The variance of type variables is transformed by the variance of the context
the variables appear in. Covariant positions preserve the variance of types that
appear in them, whereas contravariant positions reverse the variance of the types
that appear in them. The “reverse” of covariance is contravariance, and vice
versa. The “reverse” of invariance is itself. Thus, we can consider the occurrence

Java Wildcards Meet Definition-Site Variance 513

of a type parameter to be initially covariant. For instance, consider again the
Scala classes above. In RList, X only appears as the return type of a method,
which preserves the initial covariance of X, so RList is covariant in X. In WList,
Y appears in a contravariant position, which reverses its initial covariance, to
contravariance. Thus, WList is contravariant.

When a type parameter is used to instantiate a generic, its variance is further
transformed by the declared definition-site variance of that generic. For example:

class SourceList[+Z] { def copyTo(to:WList[Z]):Unit }

Suppose the declared definition-site variance of WList (with respect to its single
parameter) is contravariance. In WList[Z], the initial covariance of Z is trans-
formed by the definition-site variance of WList (contravariance). It is then trans-
formed again by the contravariant method argument position. As a result, Z

appears covariantly in this context, and SourceList is covariant in Z, as de-
clared. Any variance transformed by invariance becomes invariance. Thus, if Z

had been used to parameterize an invariant generic, its appearance would have
been invariant.

We have so far neglected to discuss bivariance: C<X> is bivariant implies that
C<S><:C<T> for any types S and T. Declaring a bivariant type parameter is not
supported by the widely used definition-site variant languages, since designating
a type parameter as bivariant typically means it does not appear in the generic’s
type signature. Nevertheless, the concept is useful in our more general treatment.

2.2 Use-Site Variance

An alternative approach to variance is use-site variance [11,18,4]. Instead of
declaring the variance of X at its definition site, generics are assumed to be
invariant in their type parameters. However, a type-instantiation of C<X> can be
made co-, contra-, or bivariant using variance annotations.

For instance, using the Java wildcard syntax, C<? extends T> is a covariant
instantiation of C, representing a type “C-of-some-subtype-of-T”. C<? extends T>

is a supertype of all type-instantiations C<S>, or C<? extends S>, where S<:T. In
exchange for such liberal subtyping rules, type C<? extends T> can only access
fully those methods and fields of C in which X appears covariantly. (Other meth-
ods can be used only with type-neutral values, e.g., called with null instead of
values of type X.) In determining this, use-site variance applies the same set of
rules used in definition-site variance, with the additional condition that the up-
per bound of a wildcard is considered a covariant position, and the lower bound
of a wildcard a contravariant position.

For example, consider an invariant generic class List that uses its type
parameter in both covariant and contravariant positions:

class List<X> {

... // other members that don’t affect variance

void add(int i, X x) { ... } // requires a List<? super X>

X get(int i) { ... } // requires a List<? extends X>

int size() { ... } // requires a List<?>

}

514 J. Altidor, C. Reichenbach, and Y. Smaragdakis

List<? extends T>, only has access to method “X get(int i)”, but not method
“void add(int i, X x)”. (More precisely, method add can only be called with
null for its second argument.)

Similarly, C<? super T> is the contravariant version of C, and is a supertype
of any C<S> and C<? super S>, where T<:S. Of course, C<? super T> has access
only to methods and fields in which X appears contravariantly or not at all. (The
get method returns Object for a C<? super T>.)

Use-site variance also allows the representation of the bivariant version of
a generic. In Java, this is accomplished through the unbounded wildcard: C<?>.
Using this notation, C<S><:C<?>, for any S. The bivariant type, however, only has
full access to methods and fields in which the type parameter does not appear
at all. In definition-site variance, these methods and fields would have to be
factored out into a non-generic class.

2.3 A Comparison

Both approaches to variance have their merits and shortcomings. Definition-
site variance enjoys a certain degree of conceptual simplicity: the generic type
instantiation rules and subtyping relationships are clear. However, the class or
interface designer must pay for such simplicity by splitting the definitions of
data types into co-, contra, and bivariant versions. This can be an unnatural
exercise. For example, the data structures library for Scala contains immutable
(covariant) and mutable (invariant) versions of almost every data type—and
this is not even a complete factoring of the variants, since it does not include
contravariant (write-only) versions of the data types.

The situation gets even more complex when a generic has more than one
type parameter. In general, a generic with n type parameters needs 3n (or 4n if
bivariance is allowed as an explicit annotation) interfaces to represent a complete
variant factoring of its methods. Arguably, in practice, this is often not necessary.

Use-site variance, on the other hand, allows users of a generic to create co-,
contra-, and bivariant versions of the generic on the fly. This flexibility allows
class or interface designers to implement their data types in whatever way is
natural. The users of these generics must pay the price, by carefully considering
the correct use-site variance annotations, so that the type can be as general
as possible. This might not seem very difficult for a simple instantiation such
as List<? extends Number>. However, type signatures can very quickly become
complicated. For instance, the following method signature is part of the Apache
Commons-Collections Library:

Iterator<? extends Map.Entry<? extends K,V>>

createEntrySetIterator(Iterator<? extends Map.Entry<? extends K,V>>)

3 Combining Definition- and Use-Site Variance

Our formalism supports combining definition- and use-site variance in the con-
text of Java. We next see informally some of its main insights and complications.

Java Wildcards Meet Definition-Site Variance 515

3.1 Insights for Combining Variances

High-level elements of our approach are inherited from our earlier work [1], in
which we presented rules for combining definition- and use-site variance in a type
system. These rules are a significant generalization over what has been explored
in the past (mainly in Scala) in two ways:2

• The variance of an arbitrary type expression with respect to a type variable is
defined for all cases with the help of a “transform” operator, ⊗. The operator
determines how variances compose. Given two generic types A<X> and B<X> with
declared variances vA and vB for their parameters (i.e., declared as A<vA X>

and B<vB X>), we can compute the variance of type A<B<X>> as v = vA ⊗ vB .
Variances take values from the lattice of Figure 1.
Figure 2 summarizes the behavior of the transform operator: invariance and

bivariance override other variances, while covariance preserves and contravari-
ance reverses variance (with invariance and bivariance being their own reverses,
respectively). To sample why the definition of the transform operator makes
sense, we derive one case relating the inputs and output. (Remaining cases are
derived similarly.)

– Case +⊗− = − : This means that type expression C<E> is contravariant
with respect to type variable X when generic C is covariant in its type
parameter and type expression E is contravariant in X. This is true because,
for any two types T1 and T2:

T1 <: T2

=⇒ E[T2/X] <: E[T1/X] (by contravariance of E)

=⇒ C<E[T2/X]> <: C<E[T1/X]> (by covariance of C)

=⇒ C<E>[T2/X] <: C<E>[T1/X]

Hence, C<E> is contravariant with respect to X.

Definition of variance transformation: ⊗
+⊗+ = + −⊗+ = − ∗ ⊗+ = ∗ o⊗+ = o
+⊗− = − −⊗− = + ∗ ⊗ − = ∗ o⊗− = o
+⊗ ∗ = ∗ −⊗ ∗ = ∗ ∗ ⊗ ∗ = ∗ o⊗ ∗ = ∗
+⊗ o = o −⊗ o = o ∗ ⊗ o = ∗ o⊗ o = o

Fig. 2. Variance transform operator

• The interaction of use-site and definition-site variance is expressed as a join
operation on the same variance lattice of Figure 1. In the VarLang calculus [1],
types have the form C<vT>, where v are use-site annotations. Considering the
List generic from Section 2.2, for example, List<+T> passes type T to a covariant

2 There is also a third way: our earlier framework allowed reasoning about unknown
variances, represented as variables in recursive constraints, thus enabling variance
inference instead of checking. This capability is not relevant here, however.

516 J. Altidor, C. Reichenbach, and Y. Smaragdakis

version of the List, where the add method was “removed”3 because it contains
the type parameter in a contravariant position. If generic C<X> has definition-
site variance v1 with respect to X, then the type expression C<v2X> has variance
v1 * v2 with respect to X. Consider a covariant class RList. If we request a
contravariant instantiation, we end up with a bivariant type expression (+*− =
∗). That is, a method “void foo(RList<? super Animal> l) {...} can really
accept any RList: the method is guaranteed to never use its argument in a way
that reveals anything about the type of element in the list. (In practice, this
means that the method may only take the size of the list, or only treats its
elements as being of the general type Object, etc.)

In practice, the ability to combine definition- and use-site variance gives the
programmer maximum flexibility. The variance of a generic class does not need
to be anticipated at its definition site. Consider the usual invariant List class
(from Section 2.2). This List supports both reading and writing of data, hence
it includes both kinds of methods, instead of being split into two types (as, for
instance, is common in the Scala libraries). The methods that use List can still
be made fully general, however, as long as they specify use-site annotations.
Generally, allowing both kinds of variance in a single language ensures modular-
ity: parts of the code can be made fully general regardless of how other code is
defined.

At the same time, allowing definition-site variance eliminates much of the need
for extensive use-site variance annotations and the risk of too-restricted types:
purely variant types can be declared up-front without burdening the programmer
at the use point.

Of course, combining definition- and use-site variance means more than just
using each kind separately, when applicable. It also includes using one kind of
annotation when reasoning about the other. For instance, consider the example
of a read-only stack type that we briefly saw in the Introduction. The stack refers
to the invariant class List (defined earlier):

class ROStack<+X> {

X pop() { ... }

List<? extends X> toList() { ... }

}

Note the use of a definition-site variance annotation (+) on ROStack, as well as
a use-site variance annotation on its toList method. The example would not
have been safe if the return type of toList were merely List<X>. With such an
invariant use of type parameter X, we could use a (dynamic) List<Dog> as a
(static) List<Animal> and thus dynamically add a Cat (which is fine to add to a
List<Animal>) to a List<Dog>.

3.2 Realistic Complications

The main contribution of our present work consists of formalizing and proving
sound the combination of definition- and use-site variance in the context of Java.
3 Again, method add can only be called with null for its second argument.

Java Wildcards Meet Definition-Site Variance 517

In order to do so, we need to reason about the interaction of definition-site vari-
ance with many complex language features, such as F-bounded polymorphism,
polymorphic methods, bounds on type parameters, and existential-types (aris-
ing in the use of wildcards). This interaction is highly non-trivial, as we see in
examples next.

One complication is that Java wildcards are not merely use-site variance, but
also include mechanisms inspired by existential typing mechanisms. Wildcard
capture is the process of passing an unknown type, hidden by a wildcard, as a
type parameter in a method invocation. Consider the following method, which
swaps the order the two elements at the top of a stack.

<E> void swapLastTwo(Stack<E> stack)

{ E elem1 = stack.pop(); E elem2 = stack.pop();

stack.push(elem2); stack.push(elem1); }

Although a programmer may want to pass an object of type Stack<?> as a
value argument to the swapLastTwo method, the type parameter to pass for E

cannot be manually specified because the type hidden by ? cannot be named by
the programmer. However, passing a Stack<?> type checks because Java allows
the compiler to automatically generate a name for the unknown type (capture
conversion) and use this name in a method invocation. Our formalism has to
model wildcard capture and its interaction with definition-site variance. This
handling comprises some of the more significant changes of our formalism relative
to TameFJ [4].

Another major complication concerns F-bounded polymorphism. Consider the
following definition:

interface Trouble<P extends List<P>> extends Iterator<P> {}

The type Trouble<P> extends Iterator<P>, which is assumed in the example to
be covariant (exporting a method “P next()”, per the Java library convention
for iterators). It would stand to reason that Trouble is also covariant: an object
of type Trouble<P> does precisely what an Iterator<P> object does, since it
simply inherits methods. Consider, however, the type Trouble<? super A>. This
is a contravariant use of a covariant generic. According to our approach for
combining variances, this results in a bivariant type (due to the variance joining).
For example, we can derive the following subtype relationship even though the
types, MyList and YourList, are not subtype related.

Trouble<YourList> <: Trouble<Object> (by covariance assumption of Trouble)

<: Trouble<? super Object>

<: Trouble<? super MyList>

The problem, however, is that the bounds of type variables (List<P> in this
case) are preserved in the existential type representing a use of Trouble with
wildcards. This results in unsoundness because, in F-bounded polymorphism,
the bound includes the hidden type, allowing its recovery and use. We can cause

518 J. Altidor, C. Reichenbach, and Y. Smaragdakis

a problem with the following code (ArrayList is a standard implementation of
the usual Java List interface, both invariant types):4

class MyList extends ArrayList<MyList> {}

class YourList extends ArrayList<YourList> {

int i = 0;

public boolean add(YourList list)

{ System.out.println(list.i); return super.add(list); }

}

void foo(Trouble<? super MyList> itr) { itr.next().add(new MyList()); }

Trouble<YourList> preitr = ...;

foo(preitr);

Function foo type checks because itr.next() is guaranteed to return an unknown
supertype, X, of MyList but also (due to the F-bound on Trouble) a subtype of
List<X>. Thus, X has a method add (from List) which accepts X instances, and
thus also accepts MyList instances (since X is a supertype of MyList).

The problem arises in the last line. If Trouble<? super MyList> were truly bi-
variant (as a contravariant use of a covariant generic), then that line would type
check, allowing the unsound addition of a MyList object to a list of YourLists.
Thus, the joining of definition- and use-site variances needs to be carefully re-
stricted in the presence of F-bounded polymorphism. We revisit the above ex-
ample more formally in Section 5.

4 VarJ

We investigate extending Java with definition-site variance by developing the
VarJ calculus. VarJ’s syntax found in Figure 3 is a slight extension of the
TameFJ syntax. A program that type checks in TameFJ also type checks in
VarJ. Significant differences are highlighted using shading. To improve read-
ability, some syntactic categories are overloaded with multiple meta-variables.
Existential types range over T, U, V, and S. Type variables range over X, Y, and Z.
Bounds range over B and A. Variances range over v and w. The bottom type, ⊥,
is used only as a lower bound. We follow the syntactic conventions of TameFJ:
all source-level type expressions are written as existential types, with an empty
range for non-wildcard Java type uses and type variables written as ∃∅.X; substi-
tution is performed as usual except [T/X]∃∅.X = T; � is a syntactic marker des-
ignating that a method type parameter (i.e., for a polymorphic method) should
be inferred. Class type parameters (X) now have definition-site variance annota-
tions (v) and lower bounds (BL). Method type variables now have lower bounds
as well. The remainder of this section focuses on semantic differences between
VarJ and TameFJ and new concepts from adding definition-site variance. Sec-
tions 4.1 and 4.2 formally present notions of the variance of type expression and
the variance of a type position. Section 4.3 covers subtyping with definition-site
and use-site variance in VarJ. Section 4.4 discusses the updates made to allow
safe interaction between wildcard capture and variant types.

4 This example is originally due to Ross Tate.

Java Wildcards Meet Definition-Site Variance 519

Syntax:

e : : = x | e.f | e.<P>m(e) | new C<T>(e) expressions
s : : = new C<T>(s) values
v : : = + | − | ∗ | o variance

Q : : = class C< v X→ [BL -BU]> � N { T f; M } class declarations

M : : = <X→ [BL -BU]> T m(T x) { return e; } method declarations

N : : = C<T> non-variable types
R : : = N | X non-existential types
T : : = ∃Δ.N | ∃∅.X existential types
B : : = T | ⊥ type bounds
P : : = T | � method type parameter

Δ : : = X→ [BL-BU] type ranges
Γ : : = x : T var environments
X : : = . . . type vars
x : : = . . . expr vars
C : : = . . . class names

Lookup Functions:
Shared premise for lookup rules except F-Obj:

CT (C) = class C<vX→ [BL-BU]> � N { S f; M }
fields(Object) = ∅ (F-Obj)

fields(C) = g, f, if N = D<U> and fields(D) = g (F-Super)

ftype(f; C<T>) = ftype(f; [T/X]N), if f /∈ f (FT-Super)

ftype(fi; C<T>) = [T/X]Si, (FT-Class)

mtype(m; C<T>) = mtype(m; [T/X]N), if m /∈M (MT-Super)

mtype(m; C<T>) = [T/X](<Δ> U→ U),

if <Δ> U m(U x) { return e; } ∈M (MT-Class)

mbody(m; C<T>) = mbody(m; [T/X]N), if m /∈M (MB-Super)

mbody(m; C<T>) = 〈x.[T/X]e〉,
if <Δ> U m(U x) { return e; } ∈M (MB-Class)

Fig. 3. Syntax and Lookup Functions

520 J. Altidor, C. Reichenbach, and Y. Smaragdakis

4.1 Variance of a Type

Before we embark on the specifics of the VarJ formalism, we examine the essence
of variance reasoning, i.e., how variances are computed in type expressions. For
now, consider the subtyping relation of our formalism as a black box—it will be
defined in Section 4.3. When is a type instantiation C<Exp1> a subtype of another
instantiation C<Exp2>? We answer a more general question by defining a general
predicate var (X; T), where X is a type variable and T is a type expression. The goal
of var is to determine: Given a type variable X and a type expression T that can
contain X, what is the subtyping relationship between different “instantiations”
of T with respect to (wrt) X, where an instantiation of T wrt to X is a substitution
for X in T. For example, we want var (X; T) = + to imply [U/X]T <: [U′/X]T, if
U <: U′.

To define var, we use predicate v(T; T′) as a notational shorthand, denoting
the type of subtype relation between T and T′:

• +(T; T′) ≡ T <: T′ • –(T; T′) ≡ T′ <: T
• o(T; T′) ≡ +(T; T′) ∧ -(T; T′) • *(T; T′) ≡ true

Note that, by the variance lattice (in Figure 1), we have

v ≤ w =⇒
[
v(T; T′) =⇒ w(T; T′)

]
(1)

In general, we want for var the following property, which is a generalization of
the subtype lifting lemma of Emir et al.’s modeling of definition-site variance [8]:

var (X; T) = v =⇒
[
v(U; U′) =⇒ [U/X]T <: [U′/X]T

]
(2)

By (1), (2) entails a more general implication:

v ≤ var(X; T) =⇒
[
v(U; U′) =⇒ [U/X]T <: [U′/X]T

]
(3)

We assume there is a usual class table CT that maps class identifiers C to their
definition (i.e. CT (C) = class C<vX→ [BL-BU]> � N { . . . }). Similarly, we
define a variance table V T that maps class identifiers to their type parameters
with their def-site variances. For example, assuming the class table mapping
above, V T (C) = vX. V T is overloaded to take an extra index parameter i to the
ith def-site variance annotation; e.g, if V T (C) = vX, then V T (C, i) = vi.

The expression var(X; B) computes the variance of type variable X in type
expression B. Figure 4 contains var ’s definition. var ’s type input is overloaded
for non-existential types (R) and type ranges (Δ). (var (X;φ) is further overloaded
in the expected way for computing variances for sequences of type variables.)

The var relation is used in our type system to determine which variance is
appropriate for each type expression. Eventually our proof connects it to the sub-
type relation, in Lemma 1. (Proofs of all key lemmas can be found in a technical
report available at http://people.cs.umass.edu/~jaltidor/ecoop12tr.pdf.)

Java Wildcards Meet Definition-Site Variance 521

Variance of Types and Ranges: var(X;φ), where φ : : = B | R | Δ
var(X; X) = + (Var-XX)

var(X; Y) = ∗, if X �= Y (Var-XY)

var(X; C<T>) =
�n

i=1

(
vi ⊗ var(X; Ti)

)
, if V T (C) = vX (Var-N)

var(X;⊥) = ∗ (Var-B)

var(X;∃Δ.R) = var(X;Δ) var(X; R), if X /∈ dom(Δ) (Var-T)

var(X; Y→ [BL-BU]) =
�n

i=1

((−⊗ var(X; BLi)
) (

+⊗ var(X; BUi)
))

(Var-R)[
var(X;φ) = v

] ≡ [∀i, var(Xi;φ) = vi
]
, where φ : : = B | R | Δ (Var-Seq)

Fig. 4. Variance of types and ranges

Lemma 1 (Subtype Lifting Lemma). If (a) v ≤ var(X; B) and (b) Δ � v(T; U)
then [T/X]B <: [U/X]B.

We provide some intuition on the soundness of var ’s definition. One “base case”
of var ’s definition is the Var-XX rule. To see why it returns +, note that the
desired implication from the subtype lifting lemma holds for this case: if +(T; U),
which is equivalent to T <: U, then [T/X]X = T <: U = [U/X]X. The Var-N

rule computes the variance in a non-variable type using the ⊗ operator, which
determines how variances compose, as described in Section 3. Var-R computes
the variance of a type variable in a range. Computing the variance of ranges is
necessary for computing the variance of constraints from type bounds on type
parameters, which occur in existential types and method signatures. The do-
mains of ranges are ignored by Var-R. A range becomes more “specialized” as
the bounds get “squeezed”. Informally, a range [BL − BU] is a subrange of range
[AL − AU] if AL <: BL and BU <: AU . The variance of the lower bound is trans-
formed by contravariance to “reverse” the subtype relation, since we want the
lower bound in the subrange to be a supertype of the lower bound in the super-
range.5 The subtype lifting lemma can be used to entail subrange relationships:

var (X; Y → [BL-BU]) = v and v(T; U)

=⇒ [U/X]BL <: [T/X]BL and [T/X]BU <: [U/X]BU

The variance of an existential type variable is just the meet of the variances of
its range (Δ) and its body (R). The Var-T rule has the premise “X /∈ dom(Δ)”
to follow Barendregt’s variable convention [19], as in the TameFJ formalism.
(var is undefined when this premise is not satisfied.) The variable convention
substantially reduces the number of places requiring alpha-conversion to be ap-
plied and allows for more elegant proofs. The rules of the convention basically
are: (1) relations in the type system are equivariant (respect alpha-renaming),
and (2) no binder (declared variable) in a rule occurs free in the conclusion.
For example, condition (1) holds for var(X; T) because we can rename binders

5 Intuitively, the upper/lower bounds are in co-/contravariant positions, respectively.

522 J. Altidor, C. Reichenbach, and Y. Smaragdakis

to fresh names in existential types in T without changing the variance of X in T.
Without the premise of rule Var-T, this property would no longer hold. So that
the important premises are more apparent, in the remaining rules we skip such
“side-conditions” in the text and just mention that the premises for following
the variable convention are implicit.

4.2 Variance of a Position

To see how var is used in our type system, we need to consider the variance
of positions in a class definition. For example, return types are assumed to be
in covariant positions while argument types are assumed to be in contravariant
positions. These assumptions are used to type check class and method definitions
and their def-site variance annotations.

The expressions “v ≤ var(X; B)” and “−⊗ v” are used frequently in the VarJ
formalism. To connect our notation to previous work, we define the following:[

vX � B mono
]
≡

[
v ≤ var (X; B)

]
(4)

[
¬v

]
=

[
−⊗ v

]
(5)

A “monotonicity” judgment of the syntactic form “vX � T mono” appears origi-
nally in Emir et al.’s definition-site variance treatment [8] and later in Kennedy
and Pierce [13] as “vX � T ok”. The semantics of these judgments in the afore-
mentioned sources are similar to its definition here but differs in that they had
no function similar to var nor a variance lattice. The negation operator ¬ also
appears in [8] and [13] and is used to transform a variance by contravariance.
Using the implications in Section 4.1, it is easy to show the following properties,
which are important for type checking class definitions:

w = ¬v =⇒
[
v(B, B′) ⇐⇒ w(B′, B)

]
(6)

vX � B mono =⇒
[
v(T, U) =⇒ [T/X]B <: [U/X]B

]
(7)

¬vX � B mono =⇒
[
v(T, U) =⇒ [U/X]B <: [T/X]B

]
(8)

Figure 5 contains rules for checking class and method definitions and the defini-
tion of the override predicate. Premises related to type checking with definition-
site variance are highlighted. Auxiliarly lookup functions are used to compute
the types of members (fields and methods) in class definitions. Their definitions
are in Figure 3. These lookup functions take in non-variable types (N) instead of
existential types. In the expression typing rules (in Figure 7), existential types
are implicitly “unpacked” to non-variable types to type some expressions such
as a field access. The process for packing and unpacking types is similar to the
process performed in the TameFJ formalism. Section 4.4 has a brief overview of
this process and an example type derivation.

Java Wildcards Meet Definition-Site Variance 523

Class and Method Typing:

vX � N, T mono Δ = X→ [BL-BU]

∅ � Δ OK Δ � N, T OK �M OK in C

� class C<vX→ [BL-BU]> � N { T f; M } OK
(W-Cls)

CT (C) = class C<vX→ [BL-BU]> � N { . . . }
Δ = X→ [BL-BU] Δ � Δ′ OK Δ,Δ′ � T, T OK

override(m; N; <Δ′
> T→ T) ¬vX � T,Δ′ mono vX � T mono

Δ,Δ′; x : T, this : ∃∅.C<X> � e : T | ∅
� <Δ′

> T m(T x) { return e; } OK in C

(W-Meth)

mtype(m; N) = <Δ> T→ T

override(m; N; <Δ> T→ T)
(Over-Def)

mtype(m; N) is undefined

override(m; N; <Δ> T→ T)
(Over-Undef)

Wellformed Ranges: Δ � Δ OK

Δ � ∅ OK
(W-Rng-empty)

X /∈ dom(Δ) Δ, X→ [BL-BU], Δ
′ � BL, BU OK

Δ � uboundΔ(BL) �: uboundΔ(BU)
Δ � BL <: BU Δ, X→ [BL-BU] � Δ′ OK

Δ � X→ [BL-BU],Δ
′ OK

(W-Rng)

Non-Variable Upper Bound: uboundΔ(B)

uboundΔ(B) =

{
uboundΔ(BU), if B = ∃∅.X, where Δ(X) = [BL − BU]

B, if B = ∃Δ′.N

Wellformed Types: Δ � φ OK, where φ : : = B | P | R

Δ � Object<> OK
(W-Obj)

X ∈ dom(Δ)

Δ � X OK
(W-X)

Δ � ⊥ OK
(W-B)

Δ � � OK
(W-I)

class C<vX→ [BL-BU]> � N { . . . }
Δ � [T/X]BL <: T Δ � T <: [T/X]BU

Δ � T OK

Δ � C<T> OK
(W-N)

Δ � Δ′ OK Δ,Δ′ � R OK

Δ � ∃Δ′.R OK
(W-T)

Wellformed Expression Variable Environments Δ � Γ OK

Δ � ∅ OK
(W-Env-Empty)

x /∈ dom(Γ) Δ � T OK Δ � Γ OK

Δ � Γ, x : T OK
(W-Env)

Fig. 5. Wellformedness Judgments

524 J. Altidor, C. Reichenbach, and Y. Smaragdakis

The definition-site subtyping relation judgment Δ � N ≺: N′ is defined over
non-variable types and considers definition-site annotations when concluding
subtype relationships. For example, V T (C) = +X =⇒ Δ � C<∃∅.Dog> ≺:
C<∃∅.Animal>, assuming Δ � ∃∅.Dog <: ∃∅.Animal. This relation is defined in
Figure 6.

Definition-Site Subtyping: R ≺: R

class C<vX→ [BL-BU]> � N { . . . }
C �= D Δ � [T/X]N ≺: D<U>

Δ � C<T> ≺: D<U>
(SD-Super)

V T (C) = vX

Δ � v(T, U)

Δ � C<T> ≺: C<U>
(SD-Var)

Δ � X ≺: X
(SD-X)

Existential Subtyping: Δ � B �: B

Δ,Δ′ � N ≺: N′

Δ � ∃Δ′.N �: ∃Δ′.N′

(SE-SD)
Δ � B �: B
(SE-Refl)

Δ � B �: B′ Δ � B
′ �: B′′

Δ � B �: B′′
(SE-Tran)

Δ � ⊥ �: B
(SE-Bot)

dom(Δ′) ∩ fv(∃X→ [BL-BU].N) = ∅ fv(T) ⊆ dom(Δ,Δ′)

Δ,Δ′ � [T/X]BL <: T Δ,Δ′ � T <: [T/X]BU

Δ � ∃Δ′.[T/X]N �: ∃X→ [BL-BU].N
(SE-Pack)

Subtyping: Δ � B <: B

Δ � B �: B′

Δ � B <: B′

(ST-SE)

Δ � B <: B′ Δ � B
′ <: B′′

Δ � B <: B′′

(ST-Tran)

Δ(X) = [BL − BU]

Δ � BL <: ∃∅.X
(ST-Lbound)
Δ � ∃∅.X <: BU
(ST-Ubound)

Fig. 6. Subtyping Relations

The motivation for the assumed variances of positions is to ensure the sub-
sumption principle holds for the subtyping hierarchy. Informally, if T <: U, then
a value of type T may be provided whenever a value of type U is required. In the
case of VarJ, the subsumption principle is established by showing appropriate
subtype relationships between types of members from class definitions. Lemma 2
states a goal subsumption property, which is to have the type of field f of the
supertype N′ become a more specific type for the subtype N. Although inherited
fields syntactically have the same type as in the superclass definition, definition-
site subtyping allows fields to have more specific types in the subtype. Lemma 3
states the goal subsumption property for types in method signatures; the sixth
conclusion of this lemma holds because of the override predicate.

Java Wildcards Meet Definition-Site Variance 525

Lemma 2 (Subtyping Specializes Field Type).
If (a) � class C<vX → [. . .]> � N . . . OK and (b) Δ � C<T> ≺: N′ and (c)
ftype(f; N′) = T, then Δ � ftype(f; C<T>) <: T.6

Lemma 3 (Subtyping Specializes Method Type).
If (a) � class C<vX → [. . .]> � N . . . OK and (b) Δ � C<T> ≺: N′

and (c) mtype(m; N′) = <Y→ [BL-BU]> U → U, then: (1) mtype(m; C<T>) =
<Y→ [AL-AU]> V → V, (2) Δ � V <: U, (3) Δ � U <: V, (4) Δ � AL <: BL,
(5) Δ � BU <: AU , and (6) var (Y; U) = var (Y; V).

To satisfy the two lemmas above, we make assumptions about the variance of the
positions that types can occur in. To preserve the subtype relationship order of
a type in a member signature, we assume the type occurs in a covariant position
(i.e., the subtype needs to have a more specific type appear in such a position).
To reverse the subtype relationship order of a type in a member signature, we
assume the type occurs in a contravariant position. The assumptions about the
variance of the positions are reflected in the mono judgments in the W-Cls and
W-Meth rules for checking class and method definitions. By (7), not negating
the def-site variance annotations, v, in the judgment “vX � T mono” reflects that
T is assumed to be in a covariant position. Since covariance, +, is the identity
element for the ⊗ operator (+ ⊗ v = v), the variances v do not need to be
transformed by +. By (8), negating the def-site variance annotations in the
judgment “¬vX � T mono” reflects that T is assumed to be in a contravariant
position. We need to reverse the subtype relationship order for argument types
and ranges in method type signatures. Negating the variance annotations for the
argument types ensures the argument types are more general supertypes for the
subtype.7

Negating the range of a method type signature ensures the range is wider for
the subtype. For code examples motivating why ranges need to be widened for
the subtype, see Section 2.4 of [8]. More generally, if (1) e.<T>m() type checks
implying the type actual T is within the type bounds for m’s type argument and
(2) typeof(e′) <: typeof(e), then e′.<T>m() should type check as well even if m

is overridden in the subclass. Hence, the subtype’s version of m should accept a
superset/wider range of types than accepted by the supertype’s version of m.

4.3 Subtyping

Subtyping in VarJ is defined similarly to TameFJ. Figure 6 contains the subtyp-
ing rules. There are three levels of subtyping in VarJ, as in TameFJ. The first
level of subtyping in TameFJ, the subclass relation, has been replaced with the
definition-site subtyping relation ≺: defined on non-existential types. Def-site

6 If field assignments were allowed, then field types would be in both co- and con-
travariant positions, and both ftype(f; C<T>) and ftype(f; N′) would be subtypes of
each other.

7 Bounds on class type parameters may make unrestricted use of type parameters by
similar reasoning as in [8, p.7]. Once an object is created, they are forgotten.

526 J. Altidor, C. Reichenbach, and Y. Smaragdakis

subtyping is defined by the SD-* rules, which are similar to the subtyping rules
from [13]. Like the subtype relation from [13], ≺: is defined by syntax-directed
rules8 and shares the reflexive and transitive properties by similar reasoning as
in [13]. The ≺: judgment requires a typing context to check subtyping relation-
ships between pairs of type actuals as done in the SD-Var rule.

The existential subtyping relation �: is defined by the SE-* rules and is similar
to the “Extended subclasses” relation in TameFJ. The XS-Env rule from TameFJ
was renamed to SE-Pack; it is the only subtyping rule that can pack (and ac-
tually also unpack) types into existential type variables. The XS-Sub-Class rule
was not only renamed to SE-SD, but its premise was updated to use def-site
subtyping. SE-SD allows def-site subtyping to be applied to both type variables
in the type context Δ and existential type variables in Δ′. As a result, a type
packed to an existential type variable may not be in the range of the variable. For
example, if Iterator is covariant in its type parameter (V T (Iterator) = +X),
then the following subtype relationship is derivable: ∃∅.Iterator<PrettyDog> <:
∃∅.Iterator<Dog> <: ∃Y → [Dog-Animal].Iterator<Y>. Subtyping between two
types implies the subsumption principle between the types. Since Iterator<Dog>

can be packed to ∃X → [Dog-Animal].Iterator<X> and Iterator<PrettyDog> <:
Iterator<Dog>, it must be the case that Iterator<PrettyDog> can also be packed
to ∃X → [Dog-Animal].Iterator<X>. This intuition is formalized in Lemma 4,
which is similar to Lemma 35 from TameFJ, and establishes a relationship be-
tween existential subtyping and def-site subtyping.

Lemma 4 (Existential subtyping to def-site subtyping). If (a) Δ �
∃Δ′.R′ �: ∃X→ [BL-BU].R and (b) ∅ � Δ OK, then there exists T such that: (1)

Δ,Δ′ � R′ ≺: [T/X]R and (2) Δ,Δ′ � [T/X]BL <: T and (3) Δ,Δ′ � T <: [T/X]BU
and (4) fv(T) ⊆ dom(Δ,Δ′).

Existential subtyping does not conclude subtype relationships for type variables
except for the reflexive case using SE-Refl. The (all) subtyping relation <: al-
lows non-reflexive subtype relationships with type variables by considering their
bounds in the typing context. Since T or U may be type variables in a subtype
relationship T <: U, we want a stronger relationship between the non-variable up-
per bounds of T and U. Lemma 5 formalizes this notion and is similar to lemma 17
from TameFJ. The non-variable upper bound of a type T is uboundΔ(T), defined
in Figure 5.

Lemma 5 (Subtyping to existential subtyping). If (a) Δ � T <: T′ and (b)
∅ � Δ OK then Δ � uboundΔ(T) �: uboundΔ(T′).

4.4 Typing and Wildcard Capture

The expression typing rules in VarJ are mostly the same as in TameFJ and are
given in Figure 7. Unlike TameFJ, VarJ allows method signatures to have lower

8 The syntax-directed nature of these rules does not ensure that an algorithmic test of
≺: is straightforward, because the premise of rule SD-Var appeals to the definition
of the full <: relation (hidden inside the v shorthand).

Java Wildcards Meet Definition-Site Variance 527

bounds. The sift function is needed for safe wildcard capture and is applied in
the T-Invk rule for typing method invocations. The definition of sift required
updating because of interaction with variant types. First, we give a brief overview
of expression typing; see [4] for more thorough coverage.

Expression Typing. Consider the Java segment below. It type checks because
the expression box.elem is typed as String. The type of box.elem is the same as
the type actual passed to the Box type constructor. In this case, the type actual
is “? extends String”, which refers to some unknown subtype of String. To type
box.elem with some known/named type, the most specific named type that can
be assigned to box.elem is chosen, which is String.

class Box<E> { E elem; Box(E elem) { this.elem = elem; } }

Box<? extends String> box = ...

box.elem.charAt(0);

We explain this type derivation through the formal calculus. Types hid-
den by wildcards such as “? extends String” are “captured” as existential
type variables. The type Box<? extends String> is modeled in VarJ by ∃X →
[⊥-String].Box<X>. Expression typing judgments have the form Δ; Γ � e :
T | Δ′. The second type variable environment Δ′ is the guard of the judgment.
It is used to keep track of type variables that have been unpacked from exis-
tential types during type checking. Variables in dom(Δ′) may occur free in T

and model hidden types. To type an expression without exposed (free) hidden
types (existential type variables), the T-Subs rule is applied to find a suitable
type without free existential type variables. The example typing derivation below
illustrates this process on typing the “box.elem” expression from the previous
code segment, where we assume Γ = box : ∃X→ [⊥-String].Box<X>.

∅; Γ � box : ∃X→ [⊥-String].Box<X> | ∅
ftype(elem; Box<X>) = X

∅; Γ � box.elem : X | X→ [⊥-String]

(T-Field)

∅, X→ [⊥-String] � X <: String
∅ � X→ [⊥-String] OK

∅ � String OK

∅; Γ � box.elem : String | ∅
(T-Subs)

Matching for Wildcard Capture. The T-Invk rule type checks a method
invocation and uses match to perform wildcard capture. The definition of match
is updated to use the definition-site subtyping relation (≺:). Ignoring return
types, consider a polymorphic method declared with type <Y>m(U) and called
with types <P>m(∃Δ.R). The parameters of match(R; U; P; Y; T) and their expected
conditions are:

1. The bodies of the actual value argument types of a method invocation (R).
2. The formal argument value types of a method (U).
3. The specified type actuals of a method invocation (P).
4. The formal type arguments of a method (Y).
5. The inferred type actuals of a method invocation (T).

528 J. Altidor, C. Reichenbach, and Y. Smaragdakis

Expression Typing: Δ; Γ � e : T | Δ

Δ; Γ � x : Γ (x) | ∅
(T-Var)

Δ � C<T> OK fields(C) = f

ftype(f, C<T>) = U

Δ; Γ � e : U | ∅
Δ; Γ � new C<T>(e) : ∃∅.C<T> | ∅

(T-New)

Δ; Γ � e : ∃Δ′.N | ∅
ftype(f; N) = T

Δ; Γ � e.f : T | Δ′

(T-Field)

Δ; Γ � e : U | Δ′

Δ,Δ′ � U <: T
Δ � Δ′ OK Δ � T OK

Δ; Γ � e : T | ∅
(T-Subs)

Δ; Γ � e : ∃Δ′.N | ∅ mtype(m; N) = <Y→ [BL-BU]> U→ U

Δ � P OK Δ; Γ � e : ∃Δ.R | ∅
sift(R; U; Y) = (R′; U′) match(R′; U′; P; Y; T)

Δ′′ = Δ,Δ′,Δ Δ′′ � ∃∅.R <: [T/Y]U

Δ′′ � [T/Y]BL <: T Δ′′ � T <: [T/Y]BU

Δ; Γ � e.<P>m(e) : [T/Y]U | Δ′,Δ
(T-Invk)

Match:
∀j, Pj = � =⇒ Yj ∈ fv(R′) ∀i, Pi �= � =⇒ Ti = Pi

∅ � R ≺: [T/Y, T′/X]R′

dom(Δ) = X fv(T, T′) ∩ Y, X = ∅
match(R;∃Δ.R′; P; Y; T)

(Match)

Sift: sift(R; U; Y) = (R′; U′)

sift(∅; ∅; Y) = (∅; ∅)
(Sift-Empty)

Y ∩ fv(U) = X var(X; U) = o

sift(R; U; Y) = (R′; U′)

sift((R, R); (U, U); Y) = ((R, R′); (U, U′))
(Sift-Add)

Y ∩ fv(U) = X var(Xj ; U) �= o, for some Xj ∈ X

sift(R; U; Y) = (R′; U′)

sift((R, R); (U, U); Y) = (R′; U′)
(Sift-Skip)

Fig. 7. Expression Typing and Auxiliary Functions For Wildcard Capture

Java Wildcards Meet Definition-Site Variance 529

Figure 8 contains the reduction rules for performing runtime evaluation. The
R-Invk rule also uses match to compute inferred type actuals because some of
the specified type actuals (P) may be the type inference marker �. Since each
occurrence of the � marker may refer to different types, match is needed to
compute the concrete types to substitute for the formal type arguments’ (Y)
occurrences in the method body.

Computation Rules: e �→ e

fields(C) = f

new C<T>(v).fi �→ vi
(R-Field)

v = new N(v′) v = new N(v′′) mbody(m; N) = 〈x.e0〉
mtype(m; N) = <Y→ [BL-BU]> U→ U

sift(N; U; Y) = (N′; U′) match(N′; U′; P; Y; T)

v.<P>m(v) �→ [v/x, v/this, T/Y]e0
(R-Invk)

Congruence Rules: e �→ e

e �→ e
′

e.f �→ e
′.f

(RC-Field)

ei �→ e
′
i

new C<T>(..ei..) �→ new C<T>(..e′i..)
(RC-New-Arg)

e �→ e
′

e.<P>m(e) �→ e
′.<P>m(e)

(RC-Inv-Recv)

ei �→ e
′
i

e.<P>m(..ei..) �→ e.<P>m(..e′i..)
(RC-Inv-Arg)

Fig. 8. Reduction Rules

Sifting for Wildcard Capture. The sift function is used in VarJ and TameFJ
to filter inputs passed to match (in the T-Invk and R-Invk rules). The goal
of sift is to only allow inference from types that are in “fixed” or invariant
positions. Without applying sift, counter examples to the subject reduction (type
preservation) theorem can result. First, note that the following two judgments
are derivable.

1. match(Dog; ∃∅.Y; �; Y; Dog) (mainly) because Dog ≺: [Dog/Y]Y = Dog.
2. match(Dog; ∃∅.Y; �; Y; Animal) (mainly) because Dog ≺: [Animal/Y]Y = Animal.

Assume List is invariant and consider the following.
<X> List<X> createList(X arg) { return new List<X>(); }

createList<*>(new Dog()) : List<Animal>

�→ new List<Dog>() : List<Dog>

530 J. Altidor, C. Reichenbach, and Y. Smaragdakis

The expression createList<*>(new Dog()) can be typed with List<Animal> be-
cause new Dog() : Animal, and the inferred type actual used for typing the ex-
pression can be Animal. However, the inferred type used for typing the method
invocation is not required to be the same inferred type, computed in the R-

Invk rule, substituted into the method body. Without sift, the above evaluation
step is possible, which contradicts the subject reduction theorem, since, by the
invariance of List, new List<Dog>() cannot be typed with List<Animal>.

In TameFJ, sift filters out a pair of a type actual body R and a formal type
U, if U = ∃∅.X and X is one of the formal type arguments (Y). Due to sift, the two
match judgments above could never be derived in TameFJ. Moreover, TameFJ
allows an existential type variable to be passed as parameter for a formal type
variable argument only if the formal type variable is used as a type parameter.
Since every type constructor in TameFJ is assumed to be invariant, every type
variable used for inference is in an invariant position. This no longer holds in
VarJ with variant type constructors. If we assume Iterator is covariant, a counter
example similar to the previous one can be produced with the following method:

<X> List<X> createList2(Iterator<X> arg) { return new List<X>(); }

Hence, we update the definition of sift to use var to check if a method type pa-
rameter occurs at most invariantly. We find the restriction of not allowing wild-
card capture in variant positions not to be practically restrictive. A wildcard type
for a variant type typically has an equivalent non-wildcard type. Iterator<?> is
equivalent to Iterator<Object> by covariance of Iterator. BiGeneric<?> is equiv-
alent to BiGeneric<T>, for any T, if BiGeneric is bivariant. In such cases, the need
for wildcard capture is eliminated because the required type actuals to specify in
a method call can be named. The VarJ grammar does not allow the bottom type
⊥ to be specified as a type actual. However, we have not found any practical
need for wildcard capture with contravariant types.

4.5 Type Soundness

We prove type soundness for VarJ by proving the progress and subject reduction
theorems below. As in TameFJ, a non-empty guard is required in the statement
of the progress theorem when applying the inductive hypothesis in the proof for
the case when the T-Subs rule is applied.

Theorem 1 (Progress). For any Δ, e, T, if ∅; ∅ � e : T | Δ, then either e �→ e′

or there exists a v such that e = v.

Theorem 2 (Subject Reduction). For any e, e′, T, if ∅; ∅ � e : T | ∅ and
e �→ e′, then ∅; ∅ � e′ : T | ∅.
The key difficulty in proving these theorems can be captured by a small number
of key lemmas whose proofs are substantially affected by variance reasoning.
Lemma 6 is probably the main one, which relates subtyping and wildcard cap-
ture, and is similar to lemma 36 from [4]. It states that the method receiver’s
ability to perform wildcard capture is preserved in subtypes with respect to the

Java Wildcards Meet Definition-Site Variance 531

method receiver. (A similar lemma holds for method arguments.) It shows that
the subsumption principle holds even under interaction with wildcard capture.

Lemma 6 (Subtyping Preserves matching (receiver)). If (a) Δ �
∃Δ1.N1 �: ∃Δ2.N2 and (b) mtype(m; N2) = <Y2 → [B2L-B2U]> U2 → U2 and (c)
mtype(m; N1) = <Y1 → [B1L-B1U]> U1 → U1 and (d) sift(R; U2; Y2) = (R′; U′2) and
(e) match(R′; U′2; P; Y2; T) and (f) ∅ � Δ OK and (g) Δ,Δ′ � T OK then: (1)
sift(R; U1; Y1) = (R′; U′1) and (2) match(R′; U′1; P; Y1; T).

5 Discussion

Boundary Analysis. Definition-site variance can imply that the variance of a type
does not depend on all of the type bounds that occur in the type. Our earlier work
[1] presented a definition of var (X; U) that performed a simple boundary analysis
to compute such irrelevant bounds. As discussed in Section 3.1, if generic C<Y>

is covariant wrt to Y, then the lower bound of a use-site variant instantiation is
ignored, which is sound for the VarLang calculus [1]: var(X; C<-T>) = (+ * −)⊗
var(X; T) = ∗ ⊗ var (X; T) = ∗. Hence, var (X; C<-T>) = ∗, even if X occurred in the
lower bound, T.

The ability to ignore type bounds is present in a disciplined way in our VarJ
formalism, although there is no explicit variance joining mechanism in the def-
inition of var. For example, if Iterator is covariant in its type parameter, we
can infer the following (where the notation T ≡ U denotes T <: U ∧ U <: T):
∃X → [Dog-Animal].Iterator<X> ≡ ∃X → [⊥-Animal].Iterator<X>. Clearly,
∃X → [Dog-Animal].Iterator<X> <: ∃X → [⊥-Animal].Iterator<X> because the
range of the type variable is wider in the supertype. The inverse is derivable by
applying a combination of the SE-SD, SE-Pack, and ST-* rules:

∃X → [⊥-Animal].Iterator<X> <: ∃X→ [⊥-Animal].Iterator<Animal>

<: ∃∅.Iterator<Animal> <: ∃X→ [Dog-Animal].Iterator<X>

As we saw in Section 3.2, this reasoning is not sound in the presence of F-bounded
polymorphism. It is important to realize that the issue with recursive bounds
is not specific to the use of bounds in type definitions.9 The counterexample
of Section 3.2 used interface Trouble<P extends List<P>> extends Iterator<P>

{}. However, even if we restrict our attention to a plain Iterator (or, equivalently,
if the class type bound, extends List<P>, of Trouble is removed) it is still not
safe to assume the following subtype relation, by reasoning similar to that used
in Section 3.2:
∃X → [YourList-List<X>].Iterator<X> <: ∃X → [MyList-List<X>].Iterator<X>.
The above subtype relationship would violate the subsumption principle. The

9 In our earlier work [1], when we performed an application to Java it sufficed to be
overly conservative at this point: the mere appearance of a type variable in the upper
bound of a type definition caused us to consider the definition as invariant relative
to this type variable. For VarJ, which is richer in terms of where bounds can appear,
even this kind of conservatism is not sufficient.

532 J. Altidor, C. Reichenbach, and Y. Smaragdakis

latter type can return a ∃X → [MyList-List<X>].List<X> from its next method,
but the former type cannot because
∃X → [YourList-List<X>].List<X> <: ∃X → [MyList-List<X>].List<X>, by the
invariance of List. In contrast to the earlier, correct subtyping, VarJ does not
support the above erroneous subtyping because it cannot establish that the upper
bounds of the two instatiations of Iterator are related: we cannot derive that
∃X → [YourList-List<X>].List<X> is a subtype of some non-existential type,
∃∅.List<T>, which is, in turn, a subtype of ∃X → [MyList-List<X>].List<X>.

Contrasting the two examples shows that boundary analysis is complex and
can be unintuitive to the programmer. Note, however, that the VarJ calculus
merely tells us what is possible to infer correctly. A practical implementation
may choose not to perform all possible inferences. A specific scenario is that
of separating boundary analysis from type checking. Useless bounds can be “re-
moved” during a preprocessing step performed before type checking. This is anal-
ogous to general type inference algorithms relative to type checking algorithms:
type checking can be performed independently of the type inference performed
to compute type annotations skipped by programmers. Our variance-based type
checking can be performed independently of the “useless boundary analysis”.
For example, a boundary preprocessing step could transform input type ∃X →
[Dog-Animal].Iterator<X> to the equivalent type ∃X→ [⊥-Animal].Iterator<X>.
This opens the door to many practical instantiations—e.g., an optimistic but
possibly unsound bound inference inside an IDE (which interacts with the user,
offering immediate feedback and suggesting relaxations of expressions the user
types in) combined with a simple but sound checking inside the compiler.

Definition-Site Variance and Erasure. A practical issue with definition-site vari-
ance concerns its use with an erasure-based translation. Consider a covariant
class A<+X> {...} and an invariant subtype class B<oX> extends A<X> {...}.
We can then have:

A<Integer> a = new B<Integer>;

A<Object> a2 = a; // fine by covariance of A

B<Object> b = (B<Object>) a2;

In a language with an expansion-based translation, such as C#, the last line will
fail dynamically: an object with dynamic type B<Integer> cannot be cast to a
B<Object>. In an erasure-based translation, however, the cast cannot check the
type parameter (which has been erased) and will therefore succeed, causing errors
further down the road. (In this case, a runtime error could result from a non-cast
expression, thus violating type soundness.) This practical consideration affects
all type systems that combine variance, casts, and erasure. For instance, Scala
already handles such cases with a static type warning. Effectively, no cast to a
subtype with tighter variance is safe. The result is somewhat counter-intuitive in
that it defies common patterns for safe casting. For instance, the cast could have
been performed after an “a2 instanceof B<Object>” check to establish that a2

is indeed of type B<Object>. In this case the programmer would think that the
cast warning can be ignored, which is not the case. In practice, any deployment

Java Wildcards Meet Definition-Site Variance 533

of our type system in an erasure-based setting would have to follow the same
policy as Scala regarding cast warnings.

6 Related Work

Definition-site variance was first investigated in the late 80’s [7,2,3] when paramet-
ric types were incorporated into object-oriented languages. It has recently expe-
rienced a resurgence as newer languages such as Scala [14] and C# [9] chose it as
means to support variant subtyping. Perhaps surprisingly,with such a long history,
it has only recently been formalized and proven sound in a non-toy setting [8].

Use-site variance was introduced by Thorup and Torgersen [17] in response to
the rigidity in class definitions imposedbydefinition-site variance.The conceptwas
later generalized and formalized by Igarashi andViroli [10]. The elegance and flexi-
bility of the approach evokedagreatdeal of enthusiasm, andwasquickly introduced
into Java [18]. The same flexibility also proved challenging to both researchers and
practitioners.The soundness ofwildcards in Java has only recently been proven [4],
and the implementation of wildcards has been mired in issues [5,15,16].

The work of Viroli and Rimassa [20] attempts to clarify when variance is to be
used, introducing concepts of produce/consume, which are an improvement over
the write/read view. Our approach offers a generalization and a high-level way to
reason soundly about the variance of a type. Other recent work discusses the com-
plex relationship between type-erasure and wildcards [6], as well as the concept of
variance at the level of tuning access to a path type in tree-like class definitions [12].

7 Conclusion

This paper presented VarJ, the first formal model for Java with definition-site
variance, wildcards, and intricate features such as wildcard capture. VarJ gives
a framework for reasoning about the variance of various types (e.g., bounded
existential types). We presented theory underlying the assumed variances of
the positions that types can occur in (e.g., the upper bound of a method type
parameter is contravariant). Thus, our calculus resolves questions that are central
in the design of any language involving parametric polymorphism and subtyping.

Acknowledgments. We thank the anonymous ECOOP reviewers for their
feedback, Ross Tate for providing examples on the complications of wildcards,
Nicholas Cameron for discussions on TameFJ and on performing type infer-
ence at runtime, Andrew Kennedy for discussions about the C# formalism with
definition-site variance, and Christian Urban for clarifying Barendregt’s variable
convention. This work was funded by the National Science Foundation under
grants CCF-0917774 and CCF-0934631.

References

1. Altidor, J., Huang, S.S., Smaragdakis, Y.: Taming the wildcards: Combining
definition- and use-site variance. In: Programming Language Design and Imple-
mentation, PLDI (2011)

534 J. Altidor, C. Reichenbach, and Y. Smaragdakis

2. America, P., van der Linden, F.: A parallel object-oriented language with in-
heritance and subtyping. In: European Conf. on Object-Oriented Program-
ming and Object-Oriented Programming Systems, Languages, and Applications,
OOPSLA/ECOOP (1990)

3. Bracha, G., Griswold, D.: Strongtalk: typechecking smalltalk in a production en-
vironment. In: Object-Oriented Programming Systems, Languages, and Applica-
tions, OOPSLA (1993)

4. Cameron, N., Drossopoulou, S., Ernst, E.: A Model for Java with Wildcards. In:
Ryan, M. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 2–26. Springer, Heidelberg
(2008)

5. Chin, W.-N., Craciun, F., Khoo, S.-C., Popeea, C.: A flow-based approach for
variant parametric types. In: Object-Oriented Programming Systems, Languages,
and Applications, OOPSLA (2006)

6. Cimadamore, M., Viroli, M.: Reifying wildcards in Java using the EGO approach.
In: SAC 2007: Proceedings of the 2007 ACM Symposium on Applied Computing
(2007)

7. Cook, W.: A proposal for making Eiffel type-safe. In: European Conf. on Object-
Oriented Programming, ECOOP (1989)

8. Emir, B., Kennedy, A., Russo, C.V., Yu, D.: Variance and Generalized Constraints
for C# Generics. In: Hu, Q. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 279–303.
Springer, Heidelberg (2006)

9. Hejlsberg, A., Wiltamuth, S., Golde, P.: C# Language Specification. Addison-
Wesley Longman Publishing Co., Inc., Boston (2003)

10. Igarashi, A., Viroli, M.: On Variance-Based Subtyping for Parametric Types. In:
Deng, T. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 441–469. Springer, Heidelberg
(2002)

11. Igarashi, A., Viroli, M.: Variant parametric types: A flexible subtyping scheme for
generics. ACM Trans. Program. Lang. Syst. 28(5), 795–847 (2006)

12. Igarashi, A., Viroli, M.: Variant path types for scalable extensibility. In:
Object-Oriented Programming Systems, Languages, and Applications, OOPSLA
(2007)

13. Kennedy, A.J., Pierce, B.C.: On decidability of nominal subtyping with variance,
2006. In: FOOL-WOOD 2007 (2007)

14. Odersky, M.: The Scala Language Specification v 2.8 (2010)
15. Smith, D., Cartwright, R.: Java type inference is broken: can we fix it? In: Object-

Oriented Programming Systems, Languages, and Applications, OOPSLA (2008)
16. Tate, R., Leung, A., Lerner, S.: Taming wildcards in Java’s type system. In: Pro-

gramming Language Design and Implementation, PLDI (2011)
17. Thorup, K.K., Torgersen, M.: Unifying Genericity: Combining the Benefits of Vir-

tual Types and Parameterized Classes. In: Guerraoui, R. (ed.) ECOOP 1999.
LNCS, vol. 1628, pp. 186–204. Springer, Heidelberg (1999)

18. Torgersen, M., Hansen, C.P., Ernst, E., von der Ahe, P., Bracha, G., Gafter, N.:
Adding wildcards to the Java programming language. In: SAC 2004: Proc. of the
2004 Symposium on Applied Computing (2004)

19. Urban, C., Berghofer, S., Norrish, M.: Barendregt’s Variable Convention in Rule
Inductions. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 35–50.
Springer, Heidelberg (2007)

20. Viroli, M., Rimassa, G.: On access restriction with Java wildcards. Journal of
Object Technology 4(10), 117–139 (2005)

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 535–559, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Constraint-Based Refactoring with Foresight

Friedrich Steimann and Jens von Pilgrim

Lehrgebiet Programmiersysteme
Fernuniversität in Hagen

D-58084 Hagen
steimann@acm.org, Jens.vonPilgrim@feu.de

Abstract. Constraint-based refactoring tools as currently implemented generate
their required constraint sets from the programs to be refactored, before any
changes are performed. Constraint generation is thus unable to see — and re-
gard — the changed structure of the refactored program, although this new
structure may give rise to new constraints that need to be satisfied for the pro-
gram to maintain its original behaviour. To address this problem, we present a
framework allowing the constraint-generation process to foresee all changes a
refactoring might perform, generating — at the outset of the refactoring — all
constraints necessary to constrain these changes. As we are able to demonstrate,
the computational overhead imposed by our framework, although threatening
viability in theory, can be reduced to tractable sizes.

1 Introduction

Refactoring is the discipline of changing a program in such a way that one or more of
its non-functional properties (readability, maintainability, etc.) are improved, while its
behaviour is maintained [4]. When applied to real programs written in real program-
ming languages, refactoring involves complex precondition checking and mechanics
that contain deeply nested case analyses, making refactoring without tool support
tedious and error-prone. A steadily growing number of fully automated refactoring
tools is therefore being devised; of these, a considerable part is constraint based (e.g.,
[1, 3, 5, 9, 10, 16– 20]).

Current approaches to constraint-based refactoring use so-called constraint rules to
generate sets of constraints from the programs to be refactored. The generated con-
straints rule over how the program may be changed without affecting its well-formed-
ness or behaviour. Constraints are said to be generated in a syntax-directed manner [1,
 5, 10, 20], i.e., based on the program’s abstract syntax tree (AST), which represents
the program as is before the refactoring.

One problem of this approach is that constraint rule application is unable to see the
structural changes of the AST imposed by a refactoring. For instance, if a refactoring
moves a program element to another location (corresponding to another node in the
AST), the constraints imposed on the element by this new location have not been
generated, since at the time of rule application, the element was still in its old loca-
tion. Note that taking the refactoring intent (here to move the element to a known
location) into account does not generally suffice to fix the problem, since the intended

536 F. Steimann and J. von Pilgrim

refactoring may require other elements to change as well (here: to move to the same
location), which precisely only being known after having solved the constraints de-
scribing the refactoring problem. Thus, constraint-based refactorings need some kind
of recognition of how a program is going to change.

In this paper, we present a solution to a class of problems that, following our first
mention of it in [17], we have dubbed the foresight problem of constraint-based refac-
toring. Our solution relies on constraint rule rewriting and quantified constraints ex-
tending the scope and expressiveness of constraint rules so that they can cover all
possible changes of a program’s structure that might infringe its well-formedness or
affect its behaviour. To address the computational complexity introduced by this, we
present an algorithm for cancelling constraints not needed for a concrete refactoring.
That our approach is indeed viable is demonstrated by applying it to five different
variants of the PULL UP FIELD refactoring.

The remainder of this paper is organized as follows. In Section 2, we motivate our
work by presenting various examples of the foresight problem, and reflect on the
related literature. In Section 3 we provide a quick introduction to constraint-based
refactoring, mostly for readers not acquainted with this refactoring technique. Sec-
tions 4 and 5 introduce our notions of quantified constraints and constraint rule rewrit-
ing that will be exploited in Section 6 for addressing the foresight problem (including
the complexity imposed by our solution). After a brief sketch of the implementation
in Section 7, our evaluation in Section 8 shows that the added complexity can be
reduced significantly for many practical cases.

2 Motivation

To give the reader an impression of how constraint-based refactoring works, we first
take a look at the following simple

EXAMPLE 1: Consider the Java program

class A {}
class B extends A {

 int i = 1;
 int j = this.i;
}

and the intended refactoring “pull up field j from class B to class A”. A quick analysis
shows that this is not possible if the pulling up of j is the only change the refactoring is
allowed to make; if it may perform additional changes, it may be made to work by pulling
up field i as well, or by separating the declaration of j from its initialization. An indeed,
Eclipse (whose implementation of the PULL UP FIELD refactoring is constraint-based [19])
warns the user of the fact that field i will be undefined in the new location of j. ♦

In constraint-based refactoring, what a refactoring tool must do in order to perform
the refactoring correctly is described as a constraint satisfaction problem (CSP) gen-
erated from the program as is, and the refactoring intent. The two constraints
sufficiently describing the refactoring problem of the above example are that

1. the declaring type of j, the location (i.e., the hosting type) of this, and the location
of the reference to i must be equal (since they are part of the same statement); and

 Constraint-Based Refactoring with Foresight 537

2. the location of this must be a (non-strict) subtype of the declaring type of i (so that
i is defined, either directly or via inheritance, for the object represented by this).

Note that both constraints are satisfied by the program as is:

1. the declaring type of j, the location of this, and the location of the reference to i are all
B and

2. the location of this, B, is a (non-strict) subtype of the declaring type of i, also B.

However, the constraints are not satisfied after the declaration of j has been pulled up
to A, since then the declaring type of j becomes A which, by satisfaction of Constraint
1, implies that the location of this is also A, which violates Constraint 2, since A is not
a subtype of the declaring type of i, B. Both constraints can be satisfied, however, by
changing the declaring type of i to A also, which is equivalent to pulling up i as well.

In current implementations of constraint-based refactoring, constraints like the
above are generated from a program to be refactored by application of so-called con-
straint rules, whose precedents are matched against the AST representation of the
program as is before the refactoring. As the following examples will demonstrate, this
approach (which worked fine for Example 1) is challenged by refactorings that
change the structure of the AST, by changing the locations of program elements.

2.1 Examples of the Foresight Problem

We begin our exploration of the foresight problem with the following simple

EXAMPLE 2: In the sample program
package p;

public class A {}
package q;
class B extends p.A { protected int i; }

class C extends B { void m(B b) { i = b.i; } }

pulling up i from B to A seems possible at first glance (since generally, protected ac-
cessibility suffices for inheritance across different packages), but will cause a compile
error on b.i in C.m(B), since a rule of the Java language specification (JLS; [6], §6.6.2)
mandates that

if a member (here: A.i) of an object (b) is accessed (b.i) from outside (q) the
package in which it is declared (p) by code (C.m(B)) that is not responsible
for the implementation of that object,

then accessibility must be public.

However, without special measures this rule (which corresponds to the rule Acc-2 of
[17]) fails to generate the constraint required for adjusting i’s accessibility to public. ♦

The problem exposed by Example 2 is that with the program as is, one conjunct of
the rule precedent, that the access occurs from outside the package, is not fulfilled
(since the declaration of i and its access in C.m are in the same package when the rule
is applied), so that no constraint requiring public accessibility will be generated by
applying this rule to the program. That public accessibility is required for i is known
only after the fact, namely after it has been pulled up. Generation of the correspond-
ing constraint thus requires foresight of the move.

538 F. Steimann and J. von Pilgrim

Of course, one could argue that required accessibility always depends on the loca-
tion of the accessor and the accessed, and that any constraint constraining accessibil-
ity should take the variability of the locations of the two into account. This is some-
what different for the following
EXAMPLE 3: In the sample program

class A {}
class B extends A { static int i = 0; }

interface I { int i = 1; }
class C extends A implements I {
 static int j = i;

}

pulling up the field i from class B to class A makes the access of i from class C am-
biguous, since it is unclear whether I.i or A.i is referenced. However, Eclipse’s con-
straint-based implementation does not foresee the problem and performs the refactor-
ing without warning. ♦

One possible remedy for the problem of Example 3 is to add a constraint requiring
an accessibility of A.i that makes it inaccessible from C, but then, this constraint
makes no sense for the program before the refactoring — there is no A.i and why
should accessibility of B.i be lowered? Again, a solution to this problem requires
foresight of the situation after the refactoring.

Example 3 differs from Example 2 in that for the program as is, the field B.i is com-
pletely unrelated to the rest of the program, so that there seems to be no reason at all to
generate a constraint for it (in fact, B.i could even be deleted without changing the mean-
ing of the program). This was different for Example 2, in which B.i was already consid-
ered in the constraint generation process, only not in a manner that was still sufficient
after the refactoring. However, both examples have in common that with the refactoring
intent known to the constraint generator, it could be tweaked to insert the necessary
constraints. This will be different for
EXAMPLE 4: Extending Example 1 to

class Z { int i = 0; }
class A extends Z { { assert this.i == 0; } }
class B extends A {

 int i = 1;
 int j = this.i;
}

the pulling up of B.j to A should be rejected since the necessary accompanying pulling
up of B.i to A changes the binding of references to i on instances of type A, unless all
receivers of references to Z.i of (static) type A (here: this in the assert statement) are
cast to Z, or one of Z.i and B.i is renamed. Again, the current constraint-based
implementation of PULL UP FIELD in Eclipse fails to see this. ♦

The problem highlighted by this example is that, given that the refactoring intent is to
pull up B.j, it is difficult to foresee, for a constraint generator applied to the original pro-
gram and refactoring intent, that access to Z.i should involve a cast, or a field should be
renamed, since it is unknown, before the generated CSP has been solved, that B.i must be
pulled up as well. Without foresight of that such a change might happen, no constraints
protecting bindings to Z.i will be generated. Generally, refactorings can have far-reaching
ripple effects that are difficult to foresee, and a correct implementation must account for
them all. This is a non-trivial problem.

 Constraint-Based Refactoring with Foresight 539

2.2 Related Work

In his doctoral dissertation, Griswold used bidirectional mappings between Scheme
programs and program dependence graphs that allowed him to perform restructurings
on the latter (and thus on a representation in which behaviour preservation is rela-
tively easy to assert) [8]. This approach is somewhat analogous to that taken by con-
straint-based refactoring, which transforms a program to a CSP, in which refactoring
amounts to constraint solving (see Section 3 for details).

Constraint-based type refactorings as pioneered by Tip et al. [19, 20] make a num-
ber of simplifying assumptions avoiding most problems that we are addressing here.
In particular, they assume that program elements whose moving may accidentally
change behaviour-critical dependencies (such as binding or overriding relationships)
are adequately renamed before the move [20]. However, even if programs are pre-
pared in such manner, the constraint rules provided in [20] still fail to address some of
the foresight problems we are solving: for instance, rule 12 (for hiding) makes sure
that existing hiding relationships are preserved (preventing a renaming), but cannot
avoid a change of binding due to the pulling up of a field, as in our Example 4.

The work of Schäfer et al. [13– 15] avoids accidental changes of behaviour-critical
program dependencies by recording them prior to refactoring and by introducing a
correction phase that restores the original dependencies, if possible, after the intended
refactoring has been performed (solving the problem with hindsight, so to say). How-
ever, the changes necessary to perform the correction may themselves affect well-
formedness and meaning of a program, which is why Schäfer’s approach of locked
dependencies has recently been combined with constraints [16]. As we will show, our
work presented here is more general not only in that it is capable of addressing the
primary refactoring and all corrections required using a single formalism (avoiding
the looping between dependency locking/unlocking and constraint solving), but also
in that it can choose between different measures for maintaining the original depend-
encies: for instance, it may rename problematic program elements, or make them
inaccessible, or move them to locations in which they do not interfere.

Dynamically changing systems gave rise to the investigation of so-called dynamic
constraint satisfaction problems [11], in which the activeness of certain constraints
depends on the satisfaction of others. More specifically, the introduction of condi-
tional constraints allows the constraint solver to explore dynamic reconfigurations of
(usually hardware) systems certain components of which may or may not be present
(i.e., switched on or off). This situation is not unlike the foresight problem of refactor-
ing, which must also let dynamically changing configurations (that is, changes to the
program structure) be explored by the constraint solver. However, restructuring soft-
ware must deal with the more general problem of moving program elements around,
and placing a switch at every possible location would be absurdly expensive (espe-
cially since, as has been shown in [7], the computational burden of conditional
constraints is heavy).

In object-oriented programming, conditional constraints have been used for type in-
ference [12] and also for certain constraint-based refactorings [1, 3]. In particular, [3]
has used conditional constraints (there called guarded constraints) to handle the inter-
play of parameterized and raw types when converting Java programs to use generic
libraries: whereas parameterized types require additional constraints on variables

540 F. Steimann and J. von Pilgrim

representing the type parameters, raw types do not give rise to such variables which,
consequently, cannot be constrained. Constraints generated from assignments must
therefore be made sensitive to the “parameterizedness” of the participants and, since the
parameterizedness may be changed by the refactoring, this sensitivity must be dynamic.
Similarly, [1] has used conditional constraints (there called implication constraints) to
let generated type constraints depend on a binary switch indicating whether an occur-
rence of a constructor or method call of a legacy type has been replaced (by the con-
straint solver) with an equivalent call of a migration type. However, both problems are
analogous to the hardware problem of switching on or off components, whereas we
have to deal with moving program elements to new locations.

In earlier work of ours on constraining accessibility under refactoring, we intro-
duced so-called foresight application of constraint rules which, knowing to which
location a program element was to be moved by a refactoring (the refactoring intent),
computed the required accessibilities for that location [17]. However, since this com-
putation occurred outside the constraint solving process, we had to know in advance
which program elements were to be moved where, which, as argued above, is an
unrealistic assumption in the general case.

3 A Brief Recap of Constraint-Based Refactoring

In constraint-based refactoring, a program is sufficiently represented by

• a set of variables, called constraint variables, representing selected properties of
the program and

• a set of relationships, called constraints, constraining the properties, representing
syntactic and semantic rules of the programming language as applied to the
program.

Together, the constraint variables and the constraints define a CSP whose solution
space represents programs that are refactorings of each other. For instance, the CSP
corresponding to the refactoring problem of Example 1 consists of the constraint set

 {v1 = v2 = v3, v2 ≤ v4} (1)

where v1 represents the declaring type of j, v2 represents the location of this, v3 repre-
sent the location of the reference to i, and v4 represents the declaring type of i (all
having the initial value B; note that (1) is solved with these values). Pulling up j trans-
lates to assigning v1 the new value A, which (via the equality constraint v1 = v2 = v3) is
propagated to v2, which in turn (via the inequality constraint v2 ≤ v4) requires v4 to
change to A as well, translating to pulling up i along with j.

Generally, the CSP representing a refactoring problem is solved with the initial
values of the constraint variables assigned. A refactoring intent (such as pulling up
field j from B to A) translates to changing one or more variable values, which may
require other variable values to change as well for the CSP to remain solved, which
ones precisely being computed by a constraint solver. Each solution of the CSP then
corresponds to a refactored program that is obtained by writing back the values of the
changed variables to the original program.

 Constraint-Based Refactoring with Foresight 541

3.1 Constraint Rules

A CSP such as (1) that represents a program to be refactored is generated from this
program by application of so-called constraint rules, which are generally of the form

program queries

constraints

Here, program queries is a set of predicates (implicitly conjoined) that are interpreted
as queries over a program, and constraints represents the set of constraints to be gen-
erated (added to the CSP) for program elements selected by the queries. Both the
program queries and constraints contain variables which are bound to program ele-
ments (declared entities and references to declared entities of a program; the nodes of
its AST) by the queries; the constraint rule is implicitly universally quantified over
these variables (note that these variables are not the constraint variables).

EXAMPLE. Application of the constraint rule

overrides(M2, M1)
accessible(M2, M1)

to a program searches the program for occurrences of pairs of methods (M2, M1) such
that M2 overrides M1, and generates for each found pair a constraint requiring that M1
is accessible from M2 ([6], §8.4.8.1). ♦

Constraints such as the above accessible(M2, M1) generated by the application of
constraint rules do not constrain program elements directly — rather, they constrain
properties of the program elements (which are therefore the constraint variables of the
CSP). The properties of program elements and their domains depend on the elements’
kinds (i.e., whether an element is a declared entity or a reference, whether a declared
entity is a method, a field, etc.): for instance, the declaration of a field has at least the
properties location (where the field is declared; the hosting type), type (the declared
type of the field), and accessibility (the access modifier used in the declaration, in
Java one of private, package, protected, or public). We use Greek letters to denote

Table 1. Properties of program elements used in more than one occasion throughout this paper

PROPERTY MEANING
e.α the declared accessibility of e (corresponding to e in [17])
e.λ the location of e, the type in whose body e occurs (corresp. to λ(e) in [17] and,

for declared entities, to Decl(e), the declaring type of e, in [19])
e.λT the top level type hosting e; same as e.λ for elements directly occurring in the

bodies of top level types
e.ι the identifier of e
e.π the package hosting e
e.τ the type of e (declared or inferred; corresponding to [e] in [19])

542 F. Steimann and J. von Pilgrim

properties: e.τ for the type of element e, e.λ for the location of e, e.α for the declared
accessibility, etc.; Table 1 summarizes the properties that we will be using repeatedly
throughout this paper.

EXAMPLE. A spelled out and extended variant of the previous constraint rule is

overrides(M2, M1)
M2.λ ≤τ M1.λ M1.α ≥α α(M2, M1)

in which ≤τ represents the subtype relationship defined by the program, >α represents the
(total) ordering of access modifiers in Java (with ≥α being defined as usual), and α is a
helper function computing the minimum required accessibility for the declared entity of
the second argument when accessed from the location of the first ([17]; see Figure 2 for
how α is defined in terms of constraints). Taken alone, these constraints allow it that M1
or M2 are moved up or down the class hierarchy as long as M2.λ remains a subtype of
M1.λ, and that the declared accessibility M1.α may be increased or lowered, as long as it
remains above what is required by the locations of M1 and M2 relative to each other. ♦

The constraint rules governing the PULL UP FIELD refactoring of Example 1 are

same-statement(e1, …, en)
e1.λ = … = en.λ

where the variable argument query same-statement(e1, …, en) finds all tuples of
program elements occurring in the same statement, and

binds(f, F) receiver(f, r)
r.τ ≤τ F.λ

where binds finds all pairs of field accesses f and field declarations F such that f binds to
F, and receiver finds all pairs of field accesses f and references r such that r is the receiver
of f.1 Applied to the program of Example 1, these two rules generate the constraint set

{ jB.λ = thisB.λ = iB.λ, thisB.τ ≤τ iB.λ }

(with jB representing B.j, thisB representing the reference to this in B, etc.).
It is instructive to note that to a certain extent, program queries and constraints can

be exchanged for each other. For instance, the expression e1.λ = e2.λ can be inter-
preted as a query, in which case it means “select all pairs of program elements (e1, e2)
such that e1 and e2 are located in the same type”, or interpreted as a constraint, mean-
ing “whatever the location of e1 or e2, it must be the same as the other”. The main
differences are operational: whereas the query finds all instances of e1 and e2 in the
program that satisfy the stated condition, the constraint makes sure that the properties
of the found instances (representing the constraint variables) always remain aligned.
Also, while program queries are evaluated at rule application (i.e., constraint genera-
tion) time, when all properties have their initial values, constraints are evaluated at
constraint solution time, during which the values of the properties may be changed.
This latter difference will play an important role below.

1 Following the convention of [19], we use upper case letters for variables representing declared

entities, and lower case letters for variables representing references.

 Constraint-Based Refactoring with Foresight 543

3.2 Conditional Constraints

A conditional constraint [7, 11] of the form P → C is a constraint over two (reified)
constraints, the premise constraint, P, and the consequent constraint, C. Satisfaction
of P → C requires satisfaction of C only if P is satisfied; if not, C can be ignored. P
can therefore be considered a guard switching C on or off. Conditional constraints are
readily handled by contemporary constraint solvers (e.g., [2]).

Conditional constraints have many uses in constraint-based refactoring. For in-
stance, the JLS mandates that if two fields are declared in the same statement, their
declared type, τ, must be the same ([6], §8.3). Expressed as a constraint rule:

 same-declaration(F1, F2) (2)
F1.τ = F2.τ

If, for some reason, a refactoring required that the declared type of one, but not both,
of f1 and f2 is changed, the refactoring would have to be refused. However, this rejec-
tion may be overly strict, namely if the declaration can be split as part of the
refactoring (in which case the constraint need no longer hold). The constraint rule

 same-declaration(F1, F2) (3)
F1.σ = F2.σ → F1.τ = F2.τ

in which the property σ represents the statement in which a field is declared, gener-
ates a conditional constraint that solves this problem: only if F1 and F2 are declared in
the same statement need the types of F1 and F2 be the same. If the constraint solver
can assign F1.σ or F2.σ a new value so that F1.σ ≠ F2.σ, the declared types of F1 and
F2 may differ. Thus, the constraint solver can compute that splitting the declaration
solves the refactoring problem.

3.3 Specification of Refactorings

Constraint rules are generally independent of refactorings. However, not all con-
straint rules are applicable or relevant for all refactorings. This is so because not
all properties may be changed by all refactorings: for instance, if the intended
refactoring is to pull up a field, renaming that field or others that stand in the way
of the pulling up may not be compatible with the refactoring intent, so that identi-
fiers are fixed for this refactoring. Thus, the full specification of an intended
refactoring (a refactoring problem) involves

• the program to be refactored,
• the set of constraint rules constraining the properties whose changes are associated

with the refactoring,
• the concrete refactoring to be performed, as expressed by a selection of properties

(usually one) and their new, mandatory values, and
• a specification of the other properties the constraint solver is allowed to change in

order to perform the refactoring. [18]

544 F. Steimann and J. von Pilgrim

The last item divides the properties extracted from a program into two kinds, those
whose values are fixed and those whose values are non-fixed. This distinction will
also play an important role in our treatment of the foresight problem.

4 Constraint Rule Rewriting

Ignoring the operational differences (noted at the end of Section 3.1) between the
query same-declaration(F1, F2) and the constraint F1.σ = F2.σ, the two appear to ex-
press the same thing in different terms. In fact, considering that both a constraint rule
and a conditional constraint are implications of some kind, (3) contains a tautology:
either the query of the constraint rule or the premise of the conditional constraint
could be dropped without affecting the contribution of the constraint rule to a
refactoring. The only caveat is that the choice which one to drop is not free.

To see why this is the case, we have to look at the variability of program properties
and the different evaluation times of queries and constraints. If all properties involved
in the premise of a conditional constraint are known to be always fixed (i.e., their only
allowed values are their initial values), satisfaction of the premise can be computed at
rule application time (when the constraints are generated), after the variables in the
queries have been instantiated with program elements. Thus, the premise can be
pulled up (“promoted”) to the rule precedent, transforming (3) to

same-declaration(F1, F2) F1.σ = F2.σ

F1.τ = F2.τ

Since F1.σ = F2.σ as a query has the same meaning as same-declaration(F1, F2), the
former can be dropped, giving us the simplified rule (2). This kind of rule rewriting is
worthwhile since it saves the generation of conditional constraints.

If however the properties involved in the premise of a conditional constraint are
non-fixed (so that their values may be changed by the solver), satisfaction of the
premise cannot be computed at rule application time. In fact, in this case it is even
questionable whether an equivalent query should be evaluated at this time, since this
restricts the generation of the conditional constraint to program elements fulfilling the
premise for the program as is. For instance, the query of (3) requires that F1 and F2
are declared in the same statement, so that no (conditional) constraint will be
generated for pairs of fields that are not, preventing the solver from merging two field
declarations separate at the time of constraint generation into one should their types
(become) equal. In that case, the query should be pushed down (“demoted”) to the
premise of a conditional constraint, transforming (3) to

F1 F2

same-declaration(F1, F2) → F1.σ = F2.σ → F1.τ = F2.τ

or, since F1.σ = F2.σ and same-declaration(F1, F2) as constraints are equivalent, to

F1 F2

F1.σ = F2.σ → F1.τ = F2.τ

 Constraint-Based Refactoring with Foresight 545

Generally, if the precedent of a constraint rule contains queries that relate to proper-
ties of the program that may change during the refactoring, those queries (rephrased
as constraints) should be pushed down from the rule precedent to the premise of a
conditional constraint in the consequent of the rule. This demotion of queries to prem-
ises of conditional constraints serves the generalization of constraint rules (so that
more constraints that cover more refactoring problems are generated). Conversely, if
the premise of a conditional constraint in a rule consequent can always be evaluated at
rule application time (since for every application it constrains only fixed properties),
the premise can be pulled up to the rule precedent. This promotion of premises of
conditional constraints to queries of constraint rules serves the tuning of constraint-
based refactoring, by making constraint generation more specific (so that, if the pro-
moted queries are not redundant to existing queries, fewer constraints are generated),
and by simplifying the constraints that must be solved. Both promotion and demotion
will be made use of in our solution of the foresight problem as presented in Section 6.

5 Quantified Constraints

As pointed out in Section 3.1, constraint rules are implicitly universally quantified
over the elements of a program. However, every single application of a constraint rule
generates only one instance of the constraints in its consequent. There are situations in
which this is insufficient, as demonstrated by the following

EXAMPLE: Beginning with Java 5, a method may be annotated with the @Override
annotation, in which case the compiler checks that the method overrides a method
defined by a superclass. This is captured by the constraint rule

overrides(M)
∃ M′ ≠ M : M.λ <τ M′.λ ∧ M′.α ≥α α(M, M′) ∧ override-equivalent(M′, M)

which requires that there is at least one method defined in a superclass that is accessi-
ble from M and has an override-equivalent signature ([6], §8.4.2). ♦

Unlike conditional constraints, quantified constraints are not readily handled by
available constraint solvers. However, since the domains that are being quantified
over, namely sets of program elements, are always finite, a quantified constraint can
be unrolled to a finite disjunction or conjunction of constraints. For instance, if a pro-
gram has three methods, M1, M2, and M3, of which M1 is annotated with @Override,
application of the above constraint rule unrolls to

 M1.λ ≤τ M2.λ ∧ M2.α ≥α α(M1, M2) ∧ override-equivalent(M2, M1)
∨ M1.λ ≤τ M3.λ ∧ M3.α ≥α α(M1, M3) ∧ override-equivalent(M3, M1)

Contrasting this simple one, below we will encounter examples of quantified con-
straints whose unrolling is exceedingly expensive.

Quantified constraints also offer opportunities for rule rewriting. Because constraint
rules are implicitly universally quantified over their variables, a universally quantified
constraint occurring in a rule consequent can be stripped of the quantifier, by moving the
quantified variable (representing program elements) to the rule precedent. Effectively,
this makes unrolling a universally quantified constraint an immanent part of constraint
generation (rule application). This “promotion” of universal quantification will be
exploited by our capture of foresight, as detailed in Section 6.

546 F. Steimann and J. von Pilgrim

EXAMPLE. The JLS mandates that of all top-level classes contained in a compilation
unit, only one may be declared public. This translates to the constraint rule

top-level-class(C) C.α = public

∀C′ ≠ C, top-level-class(C′): C′.υ = C.υ → C′.α <α public

(in which C.υ represents the compilation unit of C), which is equivalent to

top-level-class(C) C.α = public C′ ≠ C top-level-class(C′)
C′.υ = C.υ → C′.α <α public

in which the explicit universal quantification in the consequent has been replaced by
the introduction of C′ as a variable in the rule precedent whose quantification (and
unrolling) is implicit in rule application. If the intended refactoring does not allow
moving classes between compilation units, the rule can be further rewritten to

top-level-class(C) C.α = public C′ ≠ C top-level-class(C′) C′.υ = C.υ

C′.α <α public

(by promoting the premise of the conditional constraint to the rule precedent), saving
the generation of conditionals for classes of the same compilation unit, and the gen-
eration of constraints for classes from different compilation units altogether. ♦

6 A Constraint-Based Solution of the Foresight Problem

The foresight problem exposed by Examples 2–4 of Section 2.1 is that the constraints
generated from the constraint rules as applied to the program as is are insufficient:
certain constraints are missing. With constraint rule rewriting and quantified con-
straints at hand, we are sufficiently equipped to systematically generate them.

6.1 Foresight with Constraint Rule Rewriting

Example 2 of Section 2.1 suggests that a constraint should have been generated that
constrains the declared accessibility of field i to public after its pulling up to a class of
another package, a constraint that would however have constrained the program as is
incorrectly. Generation of a conditional constraint escapes this dilemma, by guarding
the constraint with the condition that the access occurs from another package via a
reference whose (static) type is not a (non-strict) supertype of the declaring type of i.
This is obtained by rewriting the constraint rule of Example 2, here formalized as

 binds(m, M) receiver(m, r) m.π ≠ M.π ¬ r.τ ≤τ r.λ
M.α = public

to

 binds(m, M) receiver(m, r)
(4)

m.π ≠ M.π ∧ ¬ r.τ ≤τ r.λ → M.α = public

 Constraint-Based Refactoring with Foresight 547

in which the queries m.π ≠ M.π and ¬ r.τ ≤τ r.λ have been demoted to the guard of a
conditional constraint. Applied to the program of Example 2, this rule generates a
consequent constraint (M.α = public) that is inactive (switched off) for the program as
is; if however the program is changed in such a way that the guard holds, the conse-
quent is activated, and contributes to the refactoring. Thus, the rewritten rule codes
foresight of the possible change.

As can be seen the use of constraint rules with demoted queries is expensive in that
it leads to the generation of more constraints, and conditional ones at that. Therefore,
if rule (4) is used in a specific refactoring, say GENERALIZE TYPE [19], fixed con-
straints should be promoted to queries, in the case of GENERALIZE TYPE leading to

binds(m, M) receiver(m, r) m.π ≠ M.π M.α ≠ public

r.τ ≤τ r.λ

if only the declared types of program elements may be changed by the refactoring.

6.2 Foresight with Quantified Constraints

As detailed in Section 2.1, the problem highlighted by Example 3 is of a different
nature than that of Example 2 in that a declared entity must be constrained that, for
the program as is, is unrelated to the program elements to be refactored. This lack of
relatedness suggests that such program elements escape ordinary constraint rules.

This is where quantified constraints step in. For the case of Example 3, that no
field must exist to which a reference could bind alternatively (so that the reference
would be ambiguous) is conveniently expressed using a non-existence constraint in
the consequent of a constraint rule, as in

 binds(f, F) receiver(f, r)
(5)

¬∃ F′ ≠ F : F′.ι = f.ι ∧ F′.α ≥α α(f, F′) ∧ r.τ ≤τ F′.λ ∧ ¬ F.λ <τ F′.λ

which reads “there must not exist a field F′ distinct from F that has the same name
(identifier) as f (the reference that must not be ambiguous), that is accessible for f, that
is declared in a supertype of the type of receiver r, and that is not declared in a super-
type of the declaring type of F ”. Similarly, the problem exposed by Example 4,
namely that no field must exist that hides the field a reference currently binds to, is
countered by generating the constraint

¬∃ F′ ≠ F : F′.ι = f.ι ∧ r.τ ≤τ F′.λ ∧ F′.λ <τ F.λ

Note that in both cases, all conjuncts of the quantified constraint but the last equally
apply as conditions required for f to bind to F — to avoid ambiguity or rebinding,
conditions sufficient for f binding to F must not hold for other fields F′ as well.

Unlike in the example of Section 5, unrolling quantified constraints such as the
above can be very expensive. In the worst case, if a refactoring may change the name
of a field and its location freely, a constraint must be generated for every other field in
the program, and with it for every reference to a field (which may have to be renamed
as well). However, most refactorings are not granted this freedom, so that constraint
rules such as the above (which directly mirror the rules of the programming language)
can be rewritten to suit specific refactorings.

548 F. Steimann and J. von Pilgrim

Generally, constraint rules expressing that no program element must exist with
properties that would infringe the program’s well-formedness or change its behaviour
have the form

 query(e, …)
(6)

C(e, …) ¬∃ e′ ≠ e : C′(e′, …)

in which C(e, …) and C′(e′, …) represent arbitrary constraints expressing the relation-
ships between the properties of e and others that must hold, and relationships between
the properties of e′ and others that must not hold. In a first rewriting step, we split the
constraint rule (6) into two

query(e, …) query(e, …)

C(e, …) ¬∃ e′ ≠ e : C′(e′, …)

and leave aside the first, since it is standard. Next, we split the quantified constraint
C′(e′, …) into two conjuncts F(e′, …) and N(e′, …), the former containing only con-
straints whose constrained properties (constraint variables) are fixed for the refactor-
ing, the latter containing the constraints of which at least one constrained property is
non-fixed (note that either conjunct may be empty). This lets us rewrite the rule to

query(e, …)
¬∃ e′ ≠ e : F(e′, …) ∧ N(e′, …)

which is equivalent to

query(e, …)
∀ e′ ≠ e : ¬(F(e′, …) ∧ N(e′, …))

which is in turn equivalent to

query(e, …)
∀ e′ ≠ e : F(e′, …) → ¬N(e′, …)

Since the rule consequent is now a universally quantified conditional constraint whose
premise depends on fixed properties only, we can rewrite the rule to

query(e, …) F(e′, …)
¬N(e′, …)

whose additional query F(e′, …) acts as a filter leading to the generation of fewer
constraints than would have been introduced by the unrolling of ¬∃ e′ ≠ e: C′(e′, …).
For instance, for a refactoring that is not allowed to change identifiers or declared
accessibilities, rule (5) can be rewritten to

 binds(f, F) receiver(f, r) F′ ≠ F F′.ι ≠ f.ι
(7)

F′.α ≥α α(f, F′) ∧ r.τ ≤τ F′.λ ∧ ¬ F.λ < F′.λ

Note that the conjunct constraining accessibility cannot be promoted to a query, since
it depends on location (cf. the definition of α in Figure 2), which may be changed by
the refactoring (but see below for further savings possible).

 Constraint-Based Refactoring with Foresight 549

Generally, what seems like a rather discouraging threat to the tractability of
constraint-based refactoring with foresight may be tamed by rule rewriting, allowing
the evaluation of constraints — as queries — at rule application time. How effective
this is in practice will be explored in the evaluation of Section 8.

6.3 Further Savings

The above introduced possible rewritings of constraint rules depend on the (lack of)
variability of constrained properties in the rule consequent, more specifically on
whether the satisfaction of a constraint can be decided — for every possible applica-
tion of the rule — at rule application time: if it can, the constraint can be promoted to
a query where it acts as a filter causing fewer generated constraints. This lets us tailor
general (i.e., refactoring-independent) constraint rules to a specific refactoring charac-
terized by which properties are non-fixed and which are fixed (cf. Section 3.3). This
tailoring can be carried out before the refactoring is actually applied, as it holds across
all possible applications. Practically, this means that it can be performed for the
tuning of a set of constraint rules to a specific refactoring tool.

However, further savings are possible when a (specifically tailored) refactoring is
actually performed. When a constraint rule is applied, i.e., when all variables of the
rule have been instantiated with concrete program elements, it may be the case that
individual constraints to be generated can already be evaluated. For instance, continu-
ing the example of rewriting rule (5) from the previous subsection to rule (7), for all
fields F′ whose declared accessibility is public, the constraint F′.α ≥α α(f, F′) in the
consequent of (7) need not be generated, since it is always satisfied (recall that the
refactoring was not allowed to change accessibility). Furthermore, reified constraints
(cf. Section 3.2) that can be evaluated at rule application time may lead to shortcut
evaluations of the Boolean constraints (including conditional constraints) constraining
them, which may lead to further savings (including immediate abortion of a refactor-
ing if a top-level constraint is unsatisfiable). These optimizations do not correspond to
rewritings of constraint rules, since they are performed individually, for single
applications of rules. We will evaluate their impact in Section 8.

6.4 Basic Algorithm of Constraint-Based Refactoring with Foresight

An algorithm for constraint-based refactoring with foresight that performs the possi-
ble tailoring described in Sections 6.1 and 6.2 and the additional optimizations of
Section 6.3 is shown in Figure 1. It takes as input the parameters necessary to specify
a constraint-based refactoring (as detailed in Section 3.3) and produces a refactored
program, if the refactoring can be performed.

The algorithm is split into four stages: the rewriting (tailoring) of the constraint
rules to the specific refactoring, the application of the rules to the program to be refac-
tored, the performing of the individual optimizations, and the generation and solution
of a CSP (including writing back the solution of the CSP to the original program).
Some explanations follow:

550 F. Steimann and J. von Pilgrim

Step 2: Conversion to DNF is performed after replacing ¬∃ x: ϕ(x) with ∀ x: ¬ϕ(x)
and dropping the explicit universal quantification as shown in Section 4.

Step 3: A disjunct is filtered as invariant if none of its constrained properties may be
changed (meaning that its satisfiability depends only on its instantiation dur-
ing rule application in Step 9). Note that since, at this stage, all properties are
properties of unbound variables (the rules have not yet been applied to actual
program elements), the filtering condition must hold for all program elements
that can be substituted for the variables. More specifically, only filters of the
kind “all access modifiers may be changed” can be evaluated at this stage.

Step 4: A set of invariant disjuncts A1, …, An with (variant) remainder B (which may
itself be a disjunction) is interpreted as the precedent A := ¬(A1 ∨ … ∨ An) of

Algorithm RefactoringWithForesight(P, R, I, F)
Input:

P, the program to be refactored
R, a set of constraint rules
I, the refactoring intent (a set of properties and their target values)
F(p), a filter selecting the non-fixed properties p

Output:
C, a CSP
P, the refactored program

Steps:
rule rewriting
1. for each constraint rule r in R
2. convert the rule consequent of r to disjunctive normal form (DNF)
3. extract the disjuncts of the DNF that are filtered as invariant
4. promote the extracted disjuncts to negated conjuncts of the rule precedent
5. if the remainder (variable disjuncts) is not empty, make it the new consequent
6. else drop the rule for this refactoring

rule application (constraint generation)
7. for each constraint rule r transformed as above
8. apply r to P, by evaluating the program queries and promoted constraints
9. for each match, instantiate the constraints of r’s consequent

early evaluation
10. for each instantiated constraint c
11. if any of its disjuncts evaluates to true, drop the entire constraint
12. else if all disjuncts evaluate to false, fail
13. else delete the disjuncts evaluating to false from the constraint and add it to C

initializing and solving the CSP, and writing back
14. for each property p in P constrained by a constraint in C
15. initialize p with its value from P
16. if p ∈ I, replace its initial value with that in I
17. if F(p) ∧ p ∉ I, set p’s domain according to the type of p
18. else make p constant
19. if C is solvable
20. solve C
21. for each changed property p in P write back its new value to P to reflect the change
22. else fail

Fig. 1. Basic algorithm of refactoring with foresight

 Constraint-Based Refactoring with Foresight 551

a conditional constraint A → B, which, as explained in Section 4, can be
promoted to the rule precedent (a conjunction of queries), where it is added
as ¬A1 ∧ … ∧ ¬An.

Step 6: If none of the constrained properties are changeable, the constraint adds noth-
ing to the solution (recall that all constraints are always satisfied initially).

Step 8: Evaluation of the program queries and promoted constraints substitutes the
variables of the rules with the program elements matching the queries.

Step 11: Since the constraints c are in DNF, one disjunct evaluating to true renders all
others irrelevant. For a disjunct to evaluate to true at this stage (i.e., before
the actual constraint solving), the values of the constrained properties must be
invariant; their value is then the initial value (obtained as in Step 15).

Step 12: Since all constraints of a CSP are implicitly conjoined, there is no chance of a
solution if a single constraint always (under all assignments) fails.

Step 13: There is a third case since not all disjuncts can always be evaluated at this
stage: those whose constrained properties are at least partly variable (as
decided by F) depend on values assigned by the solver (Step 20).

The effectiveness of the savings introduced by algorithm RefactoringWithForesight
depends on the number of disjuncts in the rule consequents (as introduced by the con-
ditional constraints expressing foresight) and on the selectivity of the filter F (Step 3).
In particular, if the filter F selects many properties as non-fixed (meaning that many
different kinds of changes are allowed), opportunities for rule rewriting are rare.
However, in these cases early evaluation may still be effective, especially if only
some properties of a specific kind (such as locations of fields) are non-fixed (as is
typically the case for filters such as “allow only locations of fields of the same class to
change”, a filter used by the PULL UP FIELD refactoring). Our evaluation in Section 8
will shed light on the effectiveness of rule rewriting and early evaluation.

7 Implementation

We have implemented refactoring with foresight as described here as an extension to
our refactoring constraint language REFACOLA [18]. REFACOLA allows the developer
of a refactoring tool to define different kinds of program elements (beyond the de-
clared entity and reference distinction made in this paper, e.g., Field, Method, Variable,
etc.), and to associate with each kind a fixed set of properties (such as the ones listed
in Table 1). Each property comes with a domain, which may be predefined (such as
Identifier), enumerated (such as Accessibility), or program-dependent (such as Loca-
tion). The REFACOLA language is complemented by a REFACOLA framework which
provides a predefined set of program queries, a generic algorithm for applying the
constraint rules to a program, an interface to constraint solvers such as Choco [2], and
routines for writing back the solved constraints to the program source. The REFACOLA
compiler and framework have been implemented as plugins to Eclipse, with adapters
for C# and Eiffel compilers. Refactoring specifications in REFACOLA are completely
declarative: refactoring tools can be generated from these specifications at the push of
a button. The generated tool used for the evaluation in Section 8 (enhanced with a
basic user interface) can be downloaded from www.feu.de/ps/prjs/refacola.

552 F. Steimann and J. von Pilgrim

One of the main contributions of the REFACOLA framework is its GenerateCon-
straints algorithm [18], which keeps constraint-based refactoring tractable by generat-
ing only the constraints constraining (properties of) program elements that are, di-
rectly or indirectly, related to the code change intended by the refactoring (so that the
change can propagate to them). In our current work, the savings achieved by this al-
gorithm appear to be traded for addressing the foresight problem, since quantified
constraints providently involve all program elements of a given kind, including ones
seemingly unrelated to the refactoring intent (cf. Example 3). However, as we will
show next, the promotion of constraints to queries and the early evaluation of
constraints allow us to retain much of the original savings in many cases.

8 Evaluation

To be able to judge the impact our solution to the foresight problem has on the viabil-
ity of constraint-based refactoring in practice, including the effectiveness of the rule
rewritings and early evaluation suggested, we have performed a systematic evaluation
on the basis of several variants of the PULL UP FIELD refactoring [4] used as an exam-
ple throughout this paper. We chose PULL UP FIELD because it strikes a good balance
between simplicity of the refactoring (so that our focus is not diffused by other prob-
lems of refactoring) and occurrence of foresight problems (as suggested by the moti-
vating examples). To be able to assess the impact rule rewriting and early evaluation
have on constraint generation, and also the dependence on the permissiveness of the
filter F (cf. Figure 1), we evaluated several variants of PULL UP FIELD that differ in
the degrees of freedom granted to the refactoring, i.e., whether it is allowed to pull up
other fields as well, rename fields, or change their accessibility.

8.1 Specification of PULL UP FIELD with Foresight

The constraint rules immediately relevant for PULL UP FIELD with foresight are shown
in Figure 2. The program queries are given expressive names that serve to name the
rules also (note how FIELDACCESS(r, f, F) combines binds(f, F) and receiver(r, f));
their implementation is of no interest here. We have omitted some general rules for
enforcing well-formedness of locations (every nested type residing in a top-level type
resides in the package the top-level type resides in; every program element residing in
a type resides in the top-level type and package the type resides in; etc.), for restrict-
ing the accessibility of top-level types (only package and public are allowed) and
members of interfaces (all public), etc.

The rules of Figure 2 are explained as follows: FIELDDECLARATION(F) requires
that no two fields exist in the same class that have the same name (note that both iden-
tifier and location are considered non-fixed by this rule, and all others for that matter).
INITIALIZINGFIELDDECLARATION(F,r) adds to it that each field F and the reference r
that is assigned to it reside in the same location (co-location) and that the (inferred)
type of the reference is a non-strict subtype of the declared type of the field (typing).
THISACCESS(t) is the standard type inference rule for this, expressing that the type of
this (as a reference) is the type it is located in.

 Constraint-Based Refactoring with Foresight 553

The rule FIELDACCESS(r, f, F) requires that: each field F and all references f to it
have the same name (name equality); that the inferred type of f is the declared type of
F (typing); that the type of the receiver r is a subtype of the declaring type of F (so
that r has f as a member; member); that F is accessible from the location of f (accessi-
ble member); that the receiver type is accessible for f (implicit type access); that an
inherited member cannot have private accessibility (inherited member access 1) and
must have public accessibility if any intervening class on the inheritance path resides
in a different package than F; and includes rule (4) of Section 6.1 (protected
accessibility), as well as the rules from Section 6.2 (no ambiguity and no hiding).

Finally, Figure 2 shows how the function α is expressed as a nested conditional
constraint, specifying how required accessibility of e2 adapts to changes of location of
e1 and e2 relative to each other.

As can be seen from Figure 2, the constraint rules FIELDDECLARATION and
FIELDACCESS introduce three negated existential quantifications which, given that
they are applied to each field declaration and field access of a program and that each
one needs to be unrolled to all fields declared in the program, must be expected to
lead to substantial numbers of additional constraints. This is countered by the

FIELDDECLARATION(F)

 ¬∃ F' ≠ F : F'.ι = F.ι ∧ F'.λ = F.λ (no name collision)

INITIALIZINGFIELDDECLARATION(F, r) THISACCESS(t)

F.λ = r .λ (co-location) t.τ = t .λ (typing)
r.τ ≤τ F.τ (typing)

FIELDACCESS(r, f, F)

f.ι = F.ι (name equality)
f.τ = F.τ (typing)
r.λ = f.λ (co-location)

r.τ ≤τ F.λ (member)
F.α ≥α α(f, F) (accessible member)

f.π ≠ r.τ.π→ r.τ.α = public (implicit type access)
r.τ < F.λ → F.α > private (inherited member access 1)

∀ T : r.τ <τ T ≤τ F.λ → (F.α <α protected → T.π = F.π) (inherited member access 2)
f.π ≠ F.π ∧ ¬ r.τ ≤τ r.λ → F.α = public (protected accessibility)

¬∃ F′ ≠ F: F′.ι = F.ι ∧ F′.α ≥α α(f, F′) ∧ r.τ ≤τ F′.λ ∧ ¬ F.λ <τ F′.λ (no ambiguity)
¬∃ F′ ≠ F : F'.ι = F.ι ∧ r.τ ≤τ F'.λ ∧ F'.λ <τ F.λ (no hiding)

e2.α ≥α α(e1, e2) ≡
if e1.λT = e2.λT then e2.α ≥α private
else if e1.π = e2.π then e2.α ≥α package
else if e1.λ ≤τ e2.λ then e2.α ≥α protected
else e2.α ≥α public

Fig. 2. Constraint rules for the PULL UP FIELD refactoring (excerpt)

554 F. Steimann and J. von Pilgrim

RefactoringWithForesight algorithm of Figure 1, whose rewriting stage, applied for
instance with the filter “allow only locations of fields of class C to change” (the filter
CL of Table 2), transforms the two constraint rules to

FIELDDECLARATION(F) F' ≠ F F'.ι = F.ι

F'.λ ≠ F.λ (no name collision)

FIELDACCESS(r, f, F) F' ≠ F F'.ι = F.ι

…
F′.α ≥α α(f, F′) ∧ r.τ ≤τ F′.λ ∧ ¬ F.λ <τ F′.λ (no ambiguity)

¬ r.τ ≤τ F'.λ ∨ ¬ F'.λ <τ F .λ (no hiding)

Note that, had the filter been different (for instance, “allow only changes of identifi-
ers”), the transformation would have been different. Also note that, although it is clear
from the filter that not all properties λ of a program may be changed by the refactor-
ing (only those of the same class), no further constraints from the rule consequents
can be promoted to the precedent, since the rule applies to all properties of all ele-
ments of a program. This is different for the early evaluation stage of the algorithm
which, when applied to the program of Example 4, generates the constraint set

{ iZ.λ ≠τ iB.λ, iB.λ ≠τ iZ.λ, thisB.τ ≤τ iB.λ, ¬ iZ.λ <τ iB.λ, ¬ thisA.τ ≤τ iB.λ ∨ ¬ iB.λ <τ iZ.λ }

in which thisA and thisB refer to the references to this in classes A and B, respectively,
and iZ and iB to the different declarations of i. As can be seen, these constraints (cor-
rectly) prevent the pulling up of i from B to A, since this would make the first disjunct
of the last constraint (¬ thisA.τ ≤τ iB.λ) false without making the second disjunct
(which is false with the program as is) true.

8.2 Variants of PULL UP FIELD

For our evaluation, we defined the PULL UP FIELD refactoring with five different
degrees of freedom, based on the definition of the filters described in Table 2:

• Filter NOC (for no other changes) specifies the basic variant of PULL UP FIELD: it
excludes the automatic pulling up of other fields (as required by Examples 1 and
4) and the automatic adaptation of accessibilities (required by Examples 2 and 3).

• Filter CL (for change location) enables the automatic pulling up of all other fields
of the same class to the same target class.

Table 2. Filters used for specifying the different variants of the PULL UP FIELD refactoring used
in the evaluation

FILTER DEFINITION (SPECIFYING NON-FIXED PROPERTIES)
NOC FI.λ, FI.λT, and FI.π, where FI is the field to be pulled up
CL F.λ, F.λT, and F.π, where F is all fields of the class of the field to be pulled up
CA FI.λ, FI.λT, FI.π, F.α, and T.α, where F is any field and T is a (its) type
CI FI.λ, FI.λT, FI.π, F.ι, and f.ι, where F is any field and f is any reference to a field
CLAI CL ∪ CA ∪ CI

 Constraint-Based Refactoring with Foresight 555

• CA (for change accessibility) adjusts the accessibility of the pulled up field and of

its type, if necessary. Any access modifier can be used.
• CI (change identifier) allows the refactoring to rename the pulled up field, or the

field with the same name, to a fresh one in case of name collision, ambiguity, or
hiding.

• CLAI (change location, accessibility, or identifier) allows all additional changes.

Note that all of the above variants of PULL UP FIELD are completely defined by specify-
ing the corresponding filter F that is supplied to the RefactoringWithForesight algorithm
of Figure 1, and by supplying the domains of the properties selected by F (cf. [18]). Of
the filters, NOC is the least permissive (allowing the fewest applications of the refactor-
ing, because no other changes can be computed that would make the refactoring
possible), and CLAI is the most permissive filter (allowing the most refactorings).

8.3 Experimental Setup and Results

To systematically evaluate our approach, we have applied our implementation of the
algorithm of Figure 1 using the ruleset of Figure 2 to the sample programs of Table 3,
using the following procedure:

let R be the constraint rules of Figure 2
for each sample program P of Table 3
 for each field f and class C of P such that f.λ<τC (ie, f is defined in a subclass of C)
 let I = { f.λ = C } (ie, pull up f to C)
 for each filter F of Table 2
 for each mode m of Table 4

 measure performance of RefactoringWithForesight(P, R, I, F) in mode m

The results of this procedure are shown in Table 5. Note that solvability and number
of solutions are the same for modes f +, f ++, and f +++: this is so because rule rewriting
and early evaluation are optimizations that have no effect on the solution space.

Table 3. Sample projects used as the basis of the evaluation

PROJECT NO. OF CLASSES NO. OF FIELDS PULL-UP OPPORTUNITIES
†

ANTLR V3.2 71 118 221
Apac. commons.codec V1.3 19 56 210
Apache commons.io V1.4 74 47 80
Apache math V2.1 178 532 1164
Cream V1.06 32 63 71
Fit V1.1 95 122 237
HTML Parser V1.6 148 275 636
Jaxen V1.1.1 167 142 359
Jester V1.2.2 30 39 41
Junit V3.8.1 105 104 234
PicoContainer V1.3 73 116 348
total 992 1614 3601

† one per field and non-library superclass of the class declaring that field

556 F. Steimann and J. von Pilgrim

Ignoring foresight problems (mode f −), PULL UP FIELD is almost always applicable
(meaning that the corresponding CSP is solvable), even with no other changes al-
lowed (filter NOC). Its applicability can only slightly be increased by allowing the
refactoring to pull up other fields as well (filters CL and CLAI). The picture is en-
tirely different when the constraints covering foresight problems are added (modes f +,
f ++, f +++): with no other changes allowed (NOC), applicability is reduced by more
than one half (64%). However, this reduced applicability (which prevents the refactor-
ing from producing ill-formed or behaviourally changed programs) can be fully com-
pensated by allowing PULL UP FIELD to make additional changes: with filter CLAI, all
foresight problems can be solved by adapting locations, accessibilities, or identifiers,
resulting in the exact same applicability (97.3%).

Of the additional changes permitted by CLAI, changing accessibility (filter CA)
makes the biggest single contribution: taken alone, it improves applicability by 55.5
percent points. Note that by comparison, changing only identifiers (CI, which is
equivalent in effect to Schäfer’s name unlocking via insertion of qualifiers [13]) en-
ables only a small fraction of refactorings affected by foresight problems. That allow-
ing PULL UP FIELD to change locations of other fields (CL) increases its applicability
in the foresight modes more than it does in f − is due to the fact that in the former,
pulling up a private field that is used to initialize another field requires pulling up the
other field as well, if accessibility cannot be changed. This is ignored in
mode f −.

With respect to the cost introduced by addressing the foresight problem, Table 5
shows that without further measures (mode f +), the rise in the number of constraints
generated is dramatic: it 1200-folds on average. As was to be feared, the added con-
straints linking seemingly unrelated program elements to the refactoring intent reduce
the effectiveness of the GenerateConstraints algorithm presented in [18] (cf. Section
 6.4). However, as can also be seen from Table 5, tailoring constraint rules to a spe-
cific refactoring (here: to a specific variant of PULL UP FIELD as represented by a
corresponding filter) via rule rewriting and applying early evaluation can reduce the
number of constraints substantially: for NOC, CL, and CA it cuts the rise to less than
10-fold. For CI, rule rewriting is not as effective, however: this is so because for the
expensive quantified constraints no name collision, no hiding, and no ambiguity,
(cf. Figure 2) the constraint F′.ι = F.ι cannot be promoted to a query (cf. Section 6.2),
as which it would by highly selective (i.e., preclude the generation of many con-
straints; the number of fields with the same name in a program is usually small when

Table 4. Modes of application

MODE FUNCTION
f − all foresight problem related constraints disabled
f + all foresight constraints, but no rewriting or constant evaluation, enabled
f ++ rule rewriting enabled
f +++ early evaluation of constraints enabled

 Constraint-Based Refactoring with Foresight 557

compared to the total number of fields). The additional constraints are approximately
halved by early evaluation, which can exploit the fixedness of most other properties.
However (and as was to be feared), average numbers suggest that both measures re-
main ineffective for the most permissive filter, CLAI: in this case, almost no rule
rewritings and early evaluations seem to be possible.

On average, the number of solutions for all investigated variants of PULL UP FIELD
remains within a range that would allow the user of the refactoring to inspect all alterna-
tives and pick the one that is closest to his intent. Somewhat surprisingly, this is also the
case for the foresight modes: one might have expected that covering more program
elements’ properties would lead to considerably more solutions. However, almost all
constraints generated for filters NOC, CL, and CI are equality constraints (equality of
locations or names) or disequality constraints with binary domains (old and new location
or name), and the number of choices for the inequality constraints introduced by CA is
limited to four (the number of different access modifiers; cf. Section 8.2).

In terms of the times required for generating (gen) and solving (solv) the CSPs rep-
resenting the refactoring problems, Table 5 shows that across all filters and modes,
gen (which includes querying a database representation of the program), is much lar-
ger than solv. In fact, while solv is negligible on average, gen can take up to 5 sec-
onds, which is however still quite fast (but see below). This result reflects the fact that
much of the effort previously burdened on the constraint solver has been shifted to the
constraint generation phase, where it takes its toll.

Secondly, the time required for generating the constraints with the filters allowing a
change of location (CL and CLAI) is significantly larger than for the rest. This is due to
the fact that almost every constraint generated contains λ, λT, or π; if these are non-fixed,

Table 5. Results of application to the pullable fields of Table 3 (all numbers averaged)

METRIC MODE FILTER
 NOC CL CA CI CLAI

Solvable
f − 97.0% 97.3% 97.0% 97.0% 97.3%

f +, f ++, f +++ 35.3% 36.6% 92.1% 38.7% 97.3%

No. of Constraints

f − 10 36 10 10 36

f + 16694 16884 16740 17201 17456

f ++ 52 75 75 14227 17452

f +++ 28 69 73 8816 17452

No. of Solutions
f − 1 1.19 1 1 1.19

f +, f ++, f +++ 1 1.19 2.33 1.09 3.22

Times Required [ms]†

f −
gen 3 330 6 10 339
solv 1 38 1 2 37

f +
gen 1251 2572 1807 1325 3191
solv 69 98 70 94 160

f ++
gen 907 1522 1587 5080 3085
solv 1 26 4 75 164

f +++
gen 343 1429 1542 2912 3058
solv 0 24 3 0 75

† all times obtained on contemporary laptops with 2 GHz clock speed running the Windows XP
operating system with JVM heap space set to 1 GB, using the Choco [2] constraint solver

558 F. Steimann and J. von Pilgrim

Refacola’s GenerateConstraints algorithm [18] will also look at all other properties
contained in the constraint and, if variable, how they are constrained further.

The overall favourable times are relativized by three facts:

• The time for constraint generation does not include the time needed for filling the
database against which the program queries are evaluated. We have excluded it since
it depends largely on the infrastructure provided by the IDE in which Refactoring-
WithForesight is integrated (Eclipse in our case). The brute force approach that we
used and that always analyses the whole program, regardless of the intended refactor-
ing, can take up to 2 minutes for the larger projects of Table 3; although this can
surely be optimized, one should bear in mind that many refactorings require a whole-
program analysis.

• In all four modes, we did not submit generated constraints to the solver whose
constrained properties all had fixed values: if such a constraint is satisfied, it does
not contribute to the solution; if not, the whole CSP is not solvable. Note that
“fixed values” here includes the properties of the refactoring intent, whose forced
change to a new value must not be revised by the solver (even though in order to
propagate the change, the properties count as non-fixed for RefactoringWithFore-
sight; cf. the filter definitions in Table 2). This could of course have been handled
by the constraint solver, but since all solvers we have experimented with had prob-
lems with large numbers of constraints, we added this optimization (whose inte-
gration in the algorithm of Figure 1 would have complicated its presentation).

• Times for generating constraints peaked at almost 2 minutes (for modes f++ and f+++
and filter CI) and for solving at slightly more than 30 seconds (for modes f+, f++, and
f+++ and filter CLAI). This suggests that the threat to viability of constraint-based
refactoring introduced by the foresight problem is very real; however, as evidenced by
the relatively short average times that we observed, it can be counteracted in most
cases.

9 Conclusion

Refactorings that change the structure of a program are subject to many restrictions, in-
cluding ones that become apparent only after the structure has been changed. This is
particularly a problem if not all structural changes are known in advance of the refactor-
ing, for instance because some changes are dependent on others, or may or may not be
needed to make a refactoring possible. To address this problem, we have identified two
measures that complement each other. One turns parts of the precedents of constraint-
generating rules to premises of conditional constraints, making the generated constraints
more flexible in that they can adapt — during the constraint solution process — to struc-
tural changes of the program. The other is the introduction of quantified constraints rep-
resenting an unlimited number of ordinary (non-quantified) constraints, constraining all
conceivable changes that could be performed by a refactoring, including those that will
actually be performed (which, therefore, need not be known in advance). Both measures
have in common that they may generate significantly more constraints than actually
needed for a specific refactoring; we have therefore devised an algorithm that keeps the
number of additional constraints low. Experiments that we have conducted suggest that
our algorithm can be highly effective, and that refactoring with foresight as proposed in
this paper can indeed be feasible.

 Constraint-Based Refactoring with Foresight 559

Acknowledgments. This work has been supported by the Deutsche Forschungs-
gemeinschaft (DFG) under grant STE 906/4-1. The authors thank Andreas Thies for
his contributions to the evaluation.

References

1. Balaban, I., Tip, F., Fuhrer, R.: Refactoring support for class library migration. In: Proc. of
OOPSLA, pp. 265–279 (2005)

2. CHOCO Team choco: an Open Source Java Constraint Programming Library, Research
Report 10-02-INFO, Ecole des Mines de Nantes (2010)

3. Donovan, A., Kiezun, A., Tschantz, M.S., Ernst, M.D.: Converting Java programs to use
generic libraries. In: Proc. of OOPSLA, pp. 15–34 (2004)

4. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley (1999)
5. Fuhrer, R., Tip, F., Kieżun, A., Dolby, J., Keller, M.: Efficiently Refactoring Java Applica-

tions to Use Generic Libraries. In: Gao, X.-X. (ed.) ECOOP 2005. LNCS, vol. 3586, pp.
71–96. Springer, Heidelberg (2005)

6. Gosling, J., Joy, B., Steele, G., Bracha, G.: The Java Language Specification,
http://java.sun.com/docs/books/jls/

7. Gottlob, G., Greco, G., Mancini, T.: Conditional constraint satisfaction: logical founda-
tions and complexity. In: Proc. of IJCAI, pp. 88–93 (2007)

8. Griswold, W.G.: Program Restructuring as an Aid to Software Maintenance. PhD Disserta-
tion, University of Washington (1992)

9. Kegel, H., Steimann, F.: Systematically refactoring inheritance to delegation in Java. In:
Proc. of ICSE, pp. 431–440 (2008)

10. Kiezun, A., Ernst, M.D., Tip, F., Fuhrer, R.M.: Refactoring for parameterizing Java
classes. In: Proc. of ICSE, pp. 437–446 (2007)

11. Mittal, S., Falkenhainer, B.: Dynamic constraint satisfaction problems. In: Proc. of AAAI,
pp. 25–32 (1990)

12. Palsberg, J., Schwartzbach, M.I.: Object-Oriented Type Systems. Wiley (1994)
13. Schäfer, M., Ekman, T., de Moor, O.: Sound and extensible renaming for Java. In: Proc. of

OOPSLA, pp. 277–294 (2008)
14. Schäfer, M., Dolby, J., Sridharan, M., Torlak, E., Tip, F.: Correct Refactoring of Concur-

rent Java Code. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 225–249.
Springer, Heidelberg (2010)

15. Schäfer, M., de Moor, O.: Specifying and implementing refactorings. In: Proc. of
OOPSLA, pp. 286–301 (2010)

16. Schäfer, M., Thies, A., Steimann, F., Tip, F.: A comprehensive approach to naming and
accessibility in refactoring Java programs. IEEE Trans. Soft. Eng. (2012)

17. Steimann, F., Thies, A.: From Public to Private to Absent: Refactoring JAVA Programs un-
der Constrained Accessibility. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS, vol. 5653,
pp. 419–443. Springer, Heidelberg (2009)

18. Steimann, F., Kollee, C., von Pilgrim, J.: A Refactoring Constraint Language and Its Ap-
plication to Eiffel. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 255–280.
Springer, Heidelberg (2011)

19. Tip, F., Kiezun, A., Bäumer, D.: Refactoring for generalization using type constraints. In:
Proc. of OOPSLA, pp. 13–26 (2003)

20. Tip, F., Fuhrer, R.M., Kiezun, A., Ernst, M.D., Balaban, I., De Sutter, B.: Refactoring us-
ing type constraints. ACM Trans. Program. Lang. Syst. 33(3), 9 (2011)

Magda: A New Language for Modularity�

Viviana Bono1, Jarek Kuśmierek2,3, and Mauro Mulatero1

1 Dipartimento di Informatica, University of Torino, Italy
2 Google Research, Krakow

3 MIMUW, University of Warsaw, Poland

Abstract. We introduce Magda, a modularity-oriented programming
language. The language features lightweight mixins as units of code reuse,
modular initialization protocols, and a hygienic approach to identifiers.
In particular, Magda’s modularity guarantees that the client code of
a library written in Magda will never break as a consequence of any
addition of members to the library’s mixins.

Keywords: modularity, mixin, constructor, accidental name clash.

1 Introduction

The limitations of mainstream object-oriented languages we are particularly con-
cerned with, and which have been our motivations for the design of a new lan-
guage, are the following.

– Limitations of composition mechanisms. The most widely applied composi-
tion and reuse mechanism is inheritance. In its classical, single-inheritance
version, this mechanism is simple, however often not sufficient. In order to
overcome its limits, other proposals were developed, like multiple inheri-
tance, mixins [43,17,15,8,24,14,7] and traits [46,22]. Multiple inheritance is
perceived as too complicated and too dangerous [20]. The two other con-
structs (mixins and traits) have been designed to tame multiple inheritance
and managed to improve reusability in many aspects. However, they suffer
from problems related to name clashes as described in Section 2.1.

– Non-modular initialization protocol. In most object-oriented languages, the
initialization protocols are implemented as constructors. Constructors are
responsible for the initialization of properties coming from different places
in the class hierarchy, yet they are monolithic, which means that they have
to perform all the job in one block of code. While a constructor can call a su-
perclass’ constructor to delegate part of the work, it still needs to keep all the
superclass constructor’s parameters in its own signature. This increases the
amount of work which must be performed when the initialization protocol
needs to be modified. Moreover, assumptions about the superclass’ construc-
tors are imposed, making those constructors more difficult to change.

� Work partially funded by the MIUR Project DISCO.

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 560–588, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Magda: A New Language for Modularity 561

– Accidental name clashes. Classes can be implemented from different com-
ponents (in standard languages, by extending other classes, or by imple-
menting some interfaces); it may then occur that the same method name
has different meanings in different components. This causes problems, from
non-compilation to unexpected behavior during the program execution.

Our new language Magda is built around the notion of mixin. A mixin is
a class parameterized over a superclass, introduced to model some forms
of multiple inheritance and improve code modularization and reusability
[43,17,15,8,24,14,7,3,45,16]. There are usually two operations defined on mixins:
(i) application, by which a mixin is applied to a class to obtain a fully-fledged
subclass (the class argument plays the role of the parent); (ii) composition, which
makes a more specialized mixin by composing two existing ones. Notice that an
indirect form of composition is possible even in the presence of application only,
by applying a chain of mixins to a class (which is the way a linearized multiple
inheritance is obtained). A mixin can defer definition and binding of methods
until runtime, though attributes and instantiation parameters are still defined
at compile time.

Our mixin construct has many points in common with its previous versions,
with one noticeable difference: in Magda there is no concept of a class, therefore
mixins are not interpreted as functions from classes to classes. Mixins are used
directly to create new objects from, and also induce types in the nominal static
type system of the language (as proposed independently in McJava [30]). Addi-
tionally, to take advantage of mixin reusability and enhance it, Magda contains
two unique features. The most innovative one is the modularization of construc-
tors, in such a way the part of the state initialization related to a feature is
declared together with that feature. Then, mixins with independent initializa-
tion protocols can be combined without the need to copy any code. This feature
was presented as a part of a Java extension called JavaMIP [13], and in [12] we
proved the type soundness of Featherweight JavaMIP, an extension of Feather-
weight Java [29] with the modular initialization protocol. The second distinctive
feature of Magda is the way of how declarations of new methods, overriding of
existing methods, and method calls are specified, by declaring and referencing
identifiers in a univocal way. This results in the absence of name clashes and acci-
dental overridings. A version of this feature is the base of the HygJava language,
presented in [37].

Magda was introduced in the second author’s PhD thesis [35], where the
language was presented together with its formal semantics and related properties.
In this paper we present Magda by examples, with particular emphasis on the
initialization design, which is the new and novel part of the language. In Section 2
we detail our motivations for introducing a new language with respect to the
composition constructs and the initialization design, in Section 3 we present
Magda by examples, in Section 4.3 we hint at the name-clashes related problems,
in Section 4 we compare Magda to other languages, and Section 5 summarizes
our work.

562 V. Bono, J. Kuśmierek, and M. Mulatero

A proof-of-concept implementation of Magda, with examples (including an
implementation of the Decorator pattern) and a how-to, is available [36].

Part of the material of this paper, notably the part present in Section 2 and
in Section 4, was already presented in some form in [13], for motivating modular
constructors for Java. Nevertheless, we believe it is necessary to include it also
in the present paper, in order to motivate Magda’s design choices.

2 Object-Oriented Languages: Limitations

In this section we present some limitations of the best known object-oriented
languages, which gave us motivations to introduce Magda.

2.1 Limitations of Composition Mechanisms

The ultimate goal of object-oriented programming should be code reuse. How-
ever, this goal is still not reached completely, despite various constructs oriented
to modularity introduced in different languages. We illustrate our point via a
hierarchy:

– BaseStream - an abstract class (or interface), with abstract methods read
and write.

– FileStream - a class representing streams which transfer data to and from
a file.

– NetworkStream - a class representing streams transfering data across the
network.

– BufferedStream - a class representing streams which buffer data before
sending them in one big batch.

– CompressedStream - a class representing streams which compress and
decompress data on the fly.

– StatsStream - a class representing streams which calculate different
statistics.

– EncryptedStream - a class representing streams which encrypt data when
written, and decrypt during reading.

– DatabaseStream - a class representing streams which transfer data to and
from a database.

We assume that BufferedStream has a method SetBufferSize, which sets the
amount of data in memory before the data is sent to the communication device.
Moreover, class CompressedStream uses the method SetBufferSize to decide
about the amount of data to be compressed. Additionally, we expect to be able
to obtain combinations of the above features, like compressed and encrypted
network stream, or buffered file stream with statistics.

Single Inheritance. With single inheritance, each class can have at most one
ancestor. When we want a class to reuse features from more than one class, we

Magda: A New Language for Modularity 563

can make it inherit from the class which contains most of the needed features and
then: either (i) we copy manually the code from the remaining classes; or (ii) we
use object composition, declaring fields of the types of the left-out classes and
then implementing methods associated to appropriate delegate objects. This
approach can however cause problems, when all the classes in question share
common ancestors defining a state. Then every change of the common state of
the “proper object” needs to be propagated also to the delegate objects. This
results in behavior which is in many aspects similar to the one of virtual multiple
inheritance in C++.

Object Composition/Decorator Design Pattern. One of the approaches which
exploit the object composition is the Decorator pattern [25]. In this approach,
to create, for instance, an EncryptedStream, a new class is implemented which
contains a reference to a stream object (called delegate). Then, in the new class
we declare all the methods of the BaseStream class. Methods whose behavior is
modified (like read and write in the stream hierarchy), perform their new tasks
and then call the corresponding methods in the delegate. All other methods are
implemented to just call their counterparts in the delegate object. This approach
has often the required compositional flexibility, and it is sometimes preferred over
inheritance. It is especially useful when additional features of objects should be
enabled and disabled dynamically during the life of an object. However, it has
numerous disadvantages when used instead of inheritance, because: it requires
declarations of methods which will only call the same method in the delegate
object; it creates unwanted dependencies in the code, because any modification
or addition of a method in the delegate object’s class requires a repetition of the
same operation in other classes; when a class A is composed with a class B and
redefines some of the methods from B by providing a new implementation in its
declaration (that corresponds to method override in inheritance), then this re-
definition is visible only from the point of view of external clients, since the other
methods in the object calling this method will call the original implementation,
not the redefined one.

Multiple Inheritance. Multiple inheritance, whose best known implementation
is the one in C++, is a powerful feature, however its complicated semantics
make it difficult and dangerous to use, as summarized by Cook [20]: “Multi-
ple inheritance is good, but there is no good way to do it.” The main problem
with multiple inheritance is the way it deals with ambiguous and conflicting fea-
tures. In the example, such problems would occur in a class inheriting from both
CompressedStream and BufferedStream, because both classes have method
SetBufferSize. Moveover, multiple inheritance does not allow the user to keep
in the resulting class both of the methods with the same name. In addition, when
the same method is defined or overridden in superclasses which share a common
ancestor, then the order in which overridden variants of the method are called
is not always obvious. As a result, many mainstream languages developed after

564 V. Bono, J. Kuśmierek, and M. Mulatero

C++ (like Java and C
), borrowed numerous features of that language, how-
ever not the multiple inheritance. There exist other languages which adopted
different flavors of multiple inheritance, like Loglan [34] and Python [10]. Those
languages use linearization algorithms to change the graph of ancestors into a list
over which dynamic dispatch is performed. However, linearization leads to cases
when the ordering of the overridings is non-trivial to understand and fragile to
innocent-looking changes in the hierarchy.

Mixins. In the case of methods with the same name occurring in different
mixins (like the aforementioned SetBufferSize), mixins permit explicit direct
control of the order in which those methods will override each other, however,
they might not allow the resulting class to have all variants. Nevertheless, there
are two proposals offering this feature: MixGen [3] and MixedJava [24]. In the
MixGen language, the class obtained from applying both CompressedStream

and BufferedStream mixins will keep both variants, while giving access to one
of them at each moment, depending on the static type of the variable referring
to the object. However, this approach does not allow the user to access both of
them at the same time and in some cases it is not obvious for the user which
implementation will be called in a given expression.

Traits. Traits [46,22] have been designed as an alternative mechanism of code
reuse. Initially they were introduced in a untyped setting as an extension of
Smalltalk [22,46]. Later on they were studied also in typed (thus often restricted)
settings [47,44,11,6]. One of the design goals of this approach was to overcome
problems with mixins mentioned above. Each trait is a minimal unit of reuse,
containing a set of implemented methods and a set of required methods. A class
is then built by composing traits (with or without the presence of single inher-
itance). The advantage of the composition mechanism available in trait-based
languages is that they issue warnings when name clashes occur and offers opera-
tors (like hiding, aliasing and renaming) to modify the way traits are composed
in a class definition. Some additional code in the class, called glue code, might
be needed to make the composition work.

In our example, one can specify traits CompressedStream and
EncryptedStream, where each of them would require methods read and
write and contain their overriding variants supporting compressed and en-
crypted data. Finally, using those traits, classes like CompressedFileStream,
or EncryptedNetworkStream can be created. Thanks to this flexible method
manipulation mechanism, the programmer has the choice of how to deal with
the method names conflicts. However, this does not come without a price.
Consider the following example (written in a Smalltalk-like syntax):

Magda: A New Language for Modularity 565

// Library containing trait EncryptedStream and class CertificateManager

trait named: #EncryptedStream

instanceVariableNames: ’aCertificate’

setCertificate: certificate

...do checks on the certificate...

aCertificate := certificate.

autoFindCertificate

| manager |

manager = getGlobalCertificateManager.

manager findCertificateFor: self.

Object subclass: #CertificateManager

findCertificateFor: encrypted_connection

| some_certificate |

some_certificate := ... do something to establish certificate....

encrypted_connection setCertificate: some_certificate.

// Client code with class CryptFileStream and its usage

FileStream subclass: #CryptFileStream

uses: {EncryptedStream @ {#setCertificate: -> #setEncryptCert:} -

{#setCertificate:}} + otherTrait

... a class declaration

// Usage of CryptFileStream class.

// The call to method autoFindCertificate fails, because the renamed method

// setCertificate is used by the CertificateManager object (created internally).

// This dependency is not visible in the signature!!!!!!!!!!!!!!!!!!!!!!!!!!

stream := CryptFileStream new.

stream autoFindCertificate.

Trait EncryptedStream encrypts data, and comes with a CertificateManager

(trait or class). This CertificateManager, depending on the user logged
in, sets certificates automatically for the encrypted streams. To do this, the
CertificateManager calls method setCertificate on the EncryptedStream

and also a getter to choose the certificate needed for the stream. Unfor-
tunately, when the new CryptFileStream class will be defined using the
EncryptedStream trait, and the setCertificatemethod will be renamed, then
the certificate manager will stop working on that stream. Notice that such a de-
pendency is not reflected in the specification of the methods required by a trait,
because the latter lists only methods required to be present in the same object.
In general, when traits are used to create functionalities spanning many objects,
it might be hard to predict which dependency will be broken, that is, when
any method in the trait will be renamed or hidden. This problem has already
been spotted and worked around using different solutions. The first solution was
developed in Chai, an extension of Java with traits [47], and independently in
the Fortress language [6,4,5]. The second solution is in the work adapting traits
to statically typed languages [44]. Finally, another solution is based on freez-
able traits [23]. In the first solution, when a method is removed, then another

566 V. Bono, J. Kuśmierek, and M. Mulatero

implementation of the method with the same signature must be added to the
class. However, those methods can sometimes be sematically different. Addi-
tionally, this restriction implies that conflicts of two different methods with the
same name and different result type cannot be resolved. In the Fortress language,
traits also induce types, therefore Fortress language is even more restrictive than
Chai: method renaming and hiding are forbidden. As a consequence, when two
traits with methods with the same name are composed, then one method over-
rides the other one. In the second solution, traits themselves are not visible in
the nominal type system of the language. Therefore, it is necessary to declare a
public interface containing (some of) the methods of a trait, and make sure that
all classes using that trait implement the interface. This implies that, when a
method is renamed in the declaration of a class, then it either requires the class
to stop implementing that interface or imposes additional changes in the code.
In the third solution based on the notion of method freezing [23], it is possible to
keep two versions of conflicting methods: one as private, and other one as public.
The private version is executed when a self call is performed, which means a call
from the trait in which this private, or frozen, method has been declared. How-
ever, this approach can only be used to solve the problem when the conflicting
method is called internally, by another method declared in the same trait. Unfor-
tunately, it cannot be used when this method is required by another class/trait,
as the method setCertificate:, called in method findCertificateFor: of
class CertificateManager.

2.2 Non-modular Initialization Protocol

Class-based languages are usually equipped with an object initialization proto-
col. Such protocol describes: (i) the information needed to create and initialize
an object; (ii) the code performing the initialization. In most languages (for
instance, C++ [48], C
 [28], Delphi [2], Java [27], and Visual Basic [1]), the
initialization protocol of a class is specified by constructors. Each constructor
consists of: (i) a list of parameters; (ii) a body. Unfortunately, this traditional
approach to initialization (TIP from now on) has drawbacks. We present them
via some Java examples, even though most of the problems occur also in other
mainstream languages.

Optional Parameters. Traditional initialization protocol leads to an exponential
number of constructors with respect to the number of optional parameters. In
Java, in classes like java.awt.TextArea, there is often one constructor with
the largest possible set of parameters. However, additional constructors with a
subset of those parameters must be declared when some parameters are optional.
Moreover, it is not possible to have two constructors with parameter lists of the
same length and compatible types of the corresponding parameters in the same
class. These drawbacks can be partially solved in languages containing named
parameters (like Python [10]) and default parameter values (like Delphi [2],
Python [10], C++ [48]).

Magda: A New Language for Modularity 567

Multiple Initialization Options and Code Duplication. TIP leads also to an expo-
nential number of constructors with respect to the number of object properties
with different initialization options. If each property can be initialized in more
than one way, then the possible number of initialization options of a given class
(thus the number of constructors) is a multiplication of the numbers of options
of the object properties. An example could be the combination of a property
color (with two palettes, RGB and CMYK) with a property position (with three
options, cartesian, polar, and complex) in a class ColorPoint, which induces six
constructors, with some duplication of code. The Java class java.net.Socket,
which contains nine constructors, is a more sophisticated, real-life example of
this problem.

Unnecessary Constructor Dependencies. It may happen that modifications of a
class force unnecessary changes in subclasses. Consider the following scenario:
class C1 with a set of constructors; class C2 declared as a subclass of C1, contain-
ing all parent constructors redeclared by adding a parameter Par’, calling the
corresponding constructors in C1; if another constructor is added to C1, C2 will
not inherit automatically the corresponding constructor. This class, depending
on the language design, will either retain the constructor added in C1 without
the additional parameter Par’, or just will not inherit it at all (as in the case of
Java). We think that neither of these options is good enough.

Fragile Overloaded Constructors. Overloaded constructors in TIP make safe-
looking changes non conservative. When a Java (or C++ or C
) class contains
different constructors, the choice of the constructor is done in the same way as
the choice of an overloaded method variant. Thus, it suffers the same problems,
as this example shows:

interface I1 {...}

interface I2 {...}

class C1 implements I1, I2 {...}

class C2 implements I2 {...}

class ClassWithOptions

{ ClassWithOptions (I1 a, I2 b);

ClassWithOptions (I2 a, I1 b);

}

...

new ClassWithOptions(new C1(), new C2());

This code compiles, because only one of constructors of class ClassWithOptions
matches the new expression. However, if the class C2 implements also the interface
I1, then the previous code will not work anymore (because the last new becomes
ambiguous). Notice that this is not a problem in languages in which it is possible
to name constructors (e.g., in Delphi [2]), since the overloading can be avoided.

Unnecessary Redeclarations of Checked Exceptions. In Java, if a constructor
throws some exceptions and is called by a constructor of a subclass, this one
must repeat the whole list of exception declarations. While such a repetition in

568 V. Bono, J. Kuśmierek, and M. Mulatero

methods is important, because methods have choices (to catch the exceptions, or
throw them further), the situation with constructors is different. A constructor
cannot catch the exceptions thrown by a superclass’ constructors, therefore the
repetition of the declarations is an additional, useless work.

Problems with Traditional Mixins. A mixin declaration, like any other subclass
declaration, may contain declarations of new constructors, which, in turn, may
reference the superclass constructors. There are cases in which it would be de-
sirable to compose independently designed mixins. We consider the following
example: a class Button and two mixins Blinking and Ringing, that, when ap-
plied separately to Button, will result in, respectively, a class of blinking buttons
and a class of ringing buttons. Then, we want to compose them to obtain a class
of blinking and ringing buttons (the order should not matter). Unfortunately, if
the mixins modify the interface of a constructor of the parent class, for example
by adding one parameter, then they are non-composable. Assume that Button
has a constructor with n parameters and that the mixin Blinking must define a
new constructor (that replaces the old one), having n+1 parameters (one more
for color) and calling the superclass constructor. Similarly, the Ringing mixin
may need, for example, the frequency, therefore it will have an (n+1)-parameter
constructor as well. Now, if we apply one of those mixins to the Button class,
then the resulting class will have a constructor with n + 1 parameters, and it
will not be an appropriate argument for the other mixin. Those problems have,
in fact, a similar nature as those occurring with standard subclassing. However,
mixins are designed for a wider reuse than subclasses, therefore problems may
occur more often and are more difficult to foresee. Notice that also the design-
ers of Jam [7] have encountered this problem. In order to simplify the matter,
they decided to disallow the declarations of constructors in mixins, thus forcing
programmers to write constructors manually in classes resulting from a mixin
application.

3 The Magda Language

In this section we present the Magda language by examples. A detailed descrip-
tion of its syntax can be found in [35].

Every program in Magda consists of two parts: a list of mixin declarations
and a list of instructions, called main instructions. The main instructions may
use the mixin declarations. Any type in Magda is a sequence of mixin names.
Values are either null or object references. Value null is the default value for
variables and fields. Magda expressions include:

– the creation of a new object. Each object in Magda is created from a non-
empty sequence of mixins. The sequence of mixins plays a role similar to the
one of a class in other languages.

– the method call. In Magda, as in most object-oriented languages, the set of
methods “understood” by an object depends on the “schema” from which
it was created. Therefore, the set of understood methods depends on the
sequence of mixins used to create the object.

Magda: A New Language for Modularity 569

This is a simple program printing “Hello World” written in Magda:

mixin HelloWorld of Object =

new Object MainMatter()

begin

"Hello world".String.print();

end;

end;

//

(new HelloWorld []).HelloWorld.MainMatter();

The program consists of the declaration of a mixin named HelloWorld and one
main instruction. The mixin HelloWorld contains a method named MainMatter.
This method begins with the keyword new which indicates the introduction of a
new method identifier, as opposed to method redefinition, and abstract methods,
both described later on. The main instruction starts with the creation of an
object from mixin HelloWorld, using the new HelloWorld[] expression. Then
it calls the method MainMatter on the object, that, in turn, calls the method
print, declared in mixin String. In Magda, String is a built-in mixin and
contains methods like print and add (which concatenates two strings). Similarly,
Magda contains other built-in mixins like Integer and Boolean. The Boolean

mixin cannot be used in object creation expressions. Then, the only way to
obtain a Boolean value is to use one of the Boolean constants: true and false.
Since booleans are object values, null is also the default value for Boolean.
Moreover, Magda features two control instructions: a conditional instruction if

and a loop instruction while.
In each method call, the method name is prefixed with the name of the mixin

in which it was introduced. This is to enforce hygiene of identifiers in order to
avoid accidental clashes, as explained earlier in the introduction.

In the current version of Magda all methods are visible. This results in a
similar behavior as the one of public methods in Java. Visibility is however
orthogonal to the Magda’s specific features presented in this paper, therefore it
is not discussed, but kept in mind for future versions of the language. In practice,
for a better code organization, the declarations of mixins should be split into
different modules, with their own namespaces. However, this issue could be dealt
with as in other languages (like Java and C
) and in this paper we assume that
every name of mixin is unique.

Object Fields and Local Variables. All fields of an object are declared, with a
name and a type, in the mixins from which the object is created. The type of a
field is a sequence of mixin names. The value of each field can be either the null
value or an object value, that is, a reference to an object. For simplicity, we have
chosen that each field in a Magda object can be only accessed by methods of
that object, via an invocation of the form this.fieldId. As a result we obtain
a behavior close to the one of protected fields in other languages. Furthermore,
similarly to method identifiers, all fields are prefixed with the name of the mixin
in which the fields have been declared.

570 V. Bono, J. Kuśmierek, and M. Mulatero

In the following example there is a declaration of a mixin Point2D containing
two field declarations, x and y.

mixin Point2D of Object =

x:Integer;

y:Integer;

new Object setCoords(ax:Integer; ay:Integer)

begin

this.Point2D.x := ax;

this.Point2D.y := ay;

end;

new Integer getX()

begin

return this.Point2D.x;

end;

end;

//

mixin MainClass of Object =

new Object MainMatter()

p1:Point2D;

p2:Point2D;

begin

p1 := new Point2D[];

p2 := p1;

p1.Point2D.setCoords(11, 10);

p2.Point2D.getX().Integer.print(); //this line prints out 11

end;

end;

//

(new MainClass []).MainClass.MainMatter();

As in MainClass.MainMattermethod, variable declarations are in the header of
the method, after the signature, before the keyword begin, (like in Pascal [9]). The
type of a variable is a sequence ofmixin names; in our example, variable p1 has type
Point2D. Similarly to fields, local variables can be assigned with object values.

Inheritance. The inheritance mechanism in Magda works in a different way than
in traditional single-inheritance languages (like Java, C
) or multiple-inheritance
ones (like C++), where a new class extending an existing class or classes auto-
matically includes all of their members (fields and methods).

In Magda, a mixin C can specify that it requires other mixins (with the key-
word of), for instance mixin A. In this case, we say that A is a base mixin of
C. Moreover, we call indirect base mixins the mixins beloging to the transitive
closure of the relation “requires’’ with respect to the mixin declarations in a
program. All code referring to an object created from mixin C can safely use
methods declared in the base mixin A. This applies also to the code of the meth-
ods declared within mixin C itself. However, unlike in traditional languages, all
the methods and the fields declared in A are not implicitly included in C, that is,

Magda: A New Language for Modularity 571

all the members declared within A are not visible in the same way as if they had
been declared in C. In particular it means that: (i) an object creation expression
using mixin C needs also to explicitly mention mixin A. Moreover, in the sequence
of mixins used to create an object from, A must occur at an earlier position than
C; (ii) every method call (and field dereference) on an object created from the
set of mixins {A, C}, is prefixed with the name of the mixin from which the
method originates. For instance, if the method was declared originally within A,
then the method call needs to specify it. Each mixin which is not declared to
extend explicitly any specific mixin extends implicitly Object which is the base
mixin of every mixin.

A simple example of a program containing the declaration of two mixins,
Point2D the base mixin and Point3D extending it, follows.

mixin Point2D of Object =

x:Integer;

y:Integer;

new Object setCoords2D(ax:Integer; ay:Integer)

begin

this.Point2D.x := ax;

this.Point2D.y := ay;

end;

new Integer getX()

begin

return this.Point2D.x;

end;

end;

mixin Point3D of Point2D =

z:Integer;

new Object setCoords3D(ax:Integer; ay:Integer; az:Integer)

begin

this.Point2D.setCoords2D(ax, ay); //a call to the method coming from

this.Point3D.z := az; //another mixin is prefixed with its name

end;

end;

mixin MainClass of Object =

new Object MainMatter()

x:Point3D;

begin

x := new Point2D, Point3D[];

x.Point3D.setCoords3D(10, 11, 12); //this method comes from Point3D

x.Point2D.getX().Integer.print(); //while that one from Point2D

end;

end;

(new MainClass []).MainClass.MainMatter();

572 V. Bono, J. Kuśmierek, and M. Mulatero

Multiple Inheritance. In this section we present how Magda mixins can be com-
bined to obtain a form of multiple inheritance. The program in Figures 1 fea-
tures the declarations of five mixins. The first two mixins DisplayableObject,

// Declarations of two mixins (DisplayableObject, Point2D)

mixin DisplayableObject of Object = ...

end;

mixin Point2D of Object = ...

end;

// Two other mixins extending the Point2D mixin

mixin Point3D of Point2D = ...

end;

mixin ColorPoint of Point2D = ...

end;

// A mixin extending three independent mixins

mixin Displayable3DColorPoint of DisplayableObject, Point3D, ColorPoint = ...

end;

// Composition of independent mixins in object creation

new Point2D, Point3D, ColorPoint [...]

Fig. 1. Multiple inheritance in Magda: code snippets

Point2D do not inherit from any other mixin. Mixins Point3D, ColorPoint
extend mixin Point2D in a single-inheritance fashion. Then, there is mixin
Displayable3DColorPoint, extending three independent mixins (Figure 2 de-
picts the inheritance graph). Finally, the program contains the creation of an
object, which uses three mixins to create an object from.

Fig. 2. Multiple inheritance in Magda: mixin hierarchy

Magda: A New Language for Modularity 573

In Magda there are two features for modularizing the code and composing
components: (i) a mixin A can declare more than one base mixin, that is, it
can extend multiple mixins at once; then, in an object creation expression using
the mixin, all of its base mixins must be listed explicitly and the base mix-
ins must occur earlier than A in the expression, however their relative ordering
is arbitrary (see the example on virtual methods shown below, which presents
different results depending on ordering); (ii) the declaration of base mixins repre-
sents only the minimal set of mixins required by a given mixin A to be combined
with. Therefore, an object creation expression can combine more mixins with
the mixin A than specified in its base mixin declarations.

Virtual Methods. Methods in Magda work like virtual methods of other lan-
guages (for example, C++ [48]). Unlike in the Java language, method redefinition
has a different syntax frommethod introduction. The redefinition begins with the
override keyword instead of the new keyword used in the introduction. Addition-
ally, each method redefinition contains the name of the mixin in which the rede-
fined method was first introduced. The body of a method redefinition can use a
super(...) expression to call the previous implementation of the method. When
a super(...) expression is evaluated in a method mt of a mixin Mc belonging
to a mixin sequence

−→
M , the previous implementation of mt is the one present in

the last mixin in
−→
M preceding Mc, which contains a definition/redefinition of the

methodmt. As a result, a super(...) call expressionwithin amethod redefinition
used in different objects can call different method implementations. That is, the
actual method body called by the super(...) expression depends on the mixins
(and their order) which have been used to create the object.

An example of a program using method redefinitions in which the behavior of
super(...) call changes depending on the ordering of mixins is the following.

mixin BaseMixin of Object=

new String GetActualName()

begin

return "Base ";

end;

end;

mixin Extension1 of BaseMixin =

override String BaseMixin.GetActualName()

begin

return super().String.add("Extension1 ");

end;

end;

mixin Extension2 of BaseMixin =

override String BaseMixin.GetActualName()

begin

return super().String.add("Extension2 ");

end;

end;

574 V. Bono, J. Kuśmierek, and M. Mulatero

(new BaseMixin, Extension1, Extension2[]).BaseMixin.GetActualName().String.print();

"\n".String.print(); // this prints the "end of line" character

(new BaseMixin, Extension2, Extension1[]).BaseMixin.GetActualName().String.print();

// Program generates output of the form:

// Base Extension1 Extension2

// Base Extension2 Extension1

Because we choose explicitly which method from which mixin to redefine when
declaring a method redefinition, there are no problems when two base mixins of
a given mixin contain method definitions with the same name. Moreover, this
explicitness also ensures that accidental name clashes are avoided when a new
method is added to a mixin extended by other mixins.

Abstract Methods. A mixin declaration can also contain a declaration of a new
method identifier without the body, marked with the keyword abstract (sim-
ilarly to Java). Then, another mixin can supply its body, by marking it with
the keyword override. If a mixin containing an abstract method is used in
an object creation expression, then another mixin with the override version of
the same method is required. The following example shows some features of the
abstract methods.

mixin M1 of Object =

abstract String Met1();

end;

mixin M2 of M1 =

override String M1.Met1()

begin

return "Implementation from M2";

end;

end;

mixin M3 of M1 =

override String M1.Met1()

begin

return super().String.add(" with redefinition from M3");

end;

end;

(new M1, M2, M3 []).M1.Met1().String.print();

// OK and prints: "Implementation from M2 with redefinition from M3"

(new M1, M3, M2 []);

// does not compile, M3.Met1 not suited as first definition of M1.Met1

// (contains call to super())

(new M1 []);

// does not compile, implementation of M1.Met1 missing

Magda: A New Language for Modularity 575

Object Initialization. We developed for Magda a modular initialization protocol
approach based on small, composable pieces called initialization modules (ini
modules from now on).

Each ini module has a list of formal parameters, called input parameters, which
can be supplied at object creation. Its signature also declares whether its usage
is required or optional, meaning whether if its input parameters are required or
are optional in an object creation expression including the mixin containing that
ini module. An ini module also specifies a list of output parameters, referring by
name to input parameters declared in other modules, which will be computed
by the ini module and supplied to such other modules.

The pseudo-syntax of an ini module is as follows:

<modifier> MixinName(
−−−−−−→
in param) initializes (

−−−−−−−−−−→
out param id)−−−−−−−→

local var

I1

super[
−−−−−−−−−−−−−−−−−→
out param id := expr];

I2

end;

where: <modifier> is either required or optional; MixinName is the name
of the mixin in which the ini module is declared (we include it in order to
make ini modules look similar to constructors in Java and C
);

−−−−−−→
in param is

the (possibly empty) list of the input parameters of the ini module, declared
with their types;

−−−−−−−−−−→
out param id is the (possibly empty) list of the output pa-

rameter (hygienic) identifiers whose values are computed by the ini module;
super[

−−−−−−−−−−−−−−−−−→
out param id := expr] is an assigment to the output parameters and

a call to other ini modules, which the output parameters will be supplied to as
input parameters.

The pseudo-syntax of an object creation instruction providing initialization
parameters is as follows:

obj id := new mixin sequence[
−−−−−−−−→
id := expr];

where: mixin sequence is the sequence of mixins the object is created from;−−−−−−−−→
id := expr are the initialization parameters together with their initialization
expressions.

We describe the semantics of the object initialization procedure with an in-
formal algorithm (the complete formalization of the semantics can be found in
[35]).

Given an object creation expression new mixin sequence[
−−−−−−−−→
id := expr]:

– the −−→expr are evaluated in
−−→
val and assigned to their each respective id;

– (*) a sequence of ini modules
−−→
mod is extracted from mixin sequence, respect-

ing the order of the mixins in <mixin sequence> and, within each mixin,
respecting the syntactic order from top to bottom (i.e., a module declared
first in the mixin comes first in the sequence). An ini module is a tuple
containing: the sequence of input parameters, the sequence of output pa-
rameters, the body, the name of the mixin it comes from.

576 V. Bono, J. Kuśmierek, and M. Mulatero

Then, consider a set of assigned parameters id := val and a sequence of ini
modules

−−→
mod:

– if the set of assigned parameters and the sequence of ini modules are empty,
then the initialization process terminates;

– otherwise, if the sequence of ini modules is not empty, let mod be the last
ini module of the sequence, Ip be the set of input parameter identifiers of
mod, and the instruction super[

−−−−−−−−−−−−−−−−−→
out param id := expr] be contained in the

body of mod:

• if Ip is not equal to any subset of id and Ip = ∅, then the inizialization
process is resumed with the sequence of ini modules

−−→
mod/mod (mod is

discarded) and the same set of assigned parameters id := val;

• if Ip is a subset of id we say that mod is activated and we proced as
follows: (1) the identifiers in Ip are mapped onto their actual values
(which are among the val in id := val); (2) the sequence of instructions
I1 is executed; (3) the expressions in super[

−−−−−−−−−−−−−−−−−→
out param id := expr]

are evaluated and assigned to their respective output parameter identi-
fiers; (4) the initialization process is resumed with the sequence of ini
modules

−−→
mod/mod, and the set of assigned parameters where the ones

corresponding to the identifiers in Ip are removed and the assigned out-
put parameters of mod are added; (5) the sequence of instructions I2 is
executed.

A static check ensures that all required ini modules are activated (see [35]).
Note that ini modules with an empty sequence of input parameters are always
activated.

We say that a parameter par is not consumed if it is either supplied in an
object creation expression, or calculated as an output parameter of an already
executed ini module, but no module taking par as an input parameter has been
executed yet; consumed, otherwise.

It is important to remark that the order in which ini modules are written
in a mixin has an impact on the object creation. In particular, considering the
order in which the sequence of ini modules is built (see the step marked with
(*)) and then examined during the initialization process, if an ini module mod1

in a mixin outputs a parameter which is consumed by another module mod2

in the same mixin, then mod2 must be written above mod1. This condition is
verified by the static checker (see [35]). The need of a syntactic ordering among
ini modules in a mixin may look inconvenient, but it seems difficult to discharge
it without complicating the operational semantics of the modular initialization
protocol in a significant way. In [26], there is a version of JavaMIP [13] where
the ordering among ini modules in a mixin can be random; this version has a
simple semantics, but some restrictions on the modular protocol are present.
For example, it is not possible to split the initialization of a particular version
of a property over more than one ini module (for instance, there would be no
possibility of initializing x and y of the example in Figure 3 with two different
ini modules, one for each).

Magda: A New Language for Modularity 577

We present a program based on two mixins containing ini module declarations
in Figure 3. The corresponding executable code can be downloaded [36].

The first mixin (Point2D) contains the declaration of ini module mod1, requir-
ing parameters x and y and not computing any output parameter. That is why
the super[] instruction in mod1 does not contain any parameter assignment.

The second mixin (Point3D) contains the declarations of two ini modules.
The first one (mod2) expects one input parameter z, which is used to initialize
the field fz of the object. The second one (mod3) has one input parameter other
and three output parameters. Those output parameters refer to the input pa-
rameter of the module mod2 declared in the same mixin, and to the parameters
of the module mod1 declared in the base mixin. Its body contains a super[...]

instruction, which computes the values of the three output parameters. Finally,
the MainClass.MainMatter method contains two object creation expressions.
The first expression supplies the values of three initialization parameters: z of
mixin Point3D, and x and y of mixin Point2D. The first parameter Point3D.z
is supplied to module mod2, and that module is the first one to be executed.
When its execution reaches super[], the search begins for the next module to
be executed, which is mod1, because parameters x and y are yet to be consumed.
The last instruction of the module mod1, the super[] call, does nothing, since
all parameters have been consumed. The second object creation expression sup-
plies the value of one initialization parameter, Point3D.other, to the optional
module mod3. When this module is executed, it computes the three parameters
x,y,z. The third parameter is passed to the module mod2 and then, when the ex-
ecution reaches the super[...] call, the remaining two parameters are supplied
to module mod1. As a result, all the ini modules declared in the program are
executed during the creation of that object, in a bottom-up order: mod3, mod2,
mod1.

Notice that the super[...] instruction in an ini module is different from the
super(...) expression within overriding method bodies, because the parameters
supplied in super[...] do not have to be the parameters which will be passed to
the ini module activated by this super[...] instruction. Those parameters can
be in fact passed to other modules which will be executed later on. To understand
this better, consider again the example in Figure 3. The super[...] instruction
in the module mod3 supplies the values of three initialization parameters and
calls the module mod2. However, only one of these parameters (z) is consumed
by mod2, while the remaining parameters (x, y) will be supplied to another ini
module (mod1). Moreover, super[] instruction within mod2 does not contain
any parameters, however it calls the module mod1 which takes two parameters
which have been computed by mod3.

In the following, we will discuss how Magda’s ini modules solve the problems
of traditional constructors described in Section 2.

Optional Parameters. We can introduce an optional ini module for each set of
optional attributes as (input) parameters without increasing exponentially the
number of ini modules with respect to the number of the attributes, since each
ini module takes care only of its input parameters. Also, there is no problem

578 V. Bono, J. Kuśmierek, and M. Mulatero

mixin Point2D of Object =

fx:Integer; fy:Integer;

required Point2D(x:Integer; y:Integer) initializes () //module mod1

begin

this.Point2D.fx := x;

this.Point2D.fy := y;

super[];

end;

new Integer getX();

new Integer getY();

end;

mixin Point3D of Point2D =

fz:Integer;

required Point3D(z:Integer) initializes () //module mod2

begin

this.Point3D.fz := z;

super[];

end;

optional Point3D(other:Point3D) initializes

(Point2D.x, Point2D.y, Point3D.z) //module mod3

begin

super[Point2D.x:= other.Point2D.getX(), Point2D.y:= other.Point2D.getY(),

Point3D.z:= other.Point3D.getZ()];

end;

new Integer getZ();

end;

mixin MainClass of Object =

new Object MainMatter()

p1:Point3D; p2:Point2D;

begin

p1:= new Point2D, Point3D[Point3D.z:= 12, Point2D.x:=10, Point2D.y:=11];

p2:= new Point2D, Point3D[Point3D.other := p1];

end;

end;

(new MainClass []).MainClass.MainMatter();

Fig. 3. Object initialization in Magda

Magda: A New Language for Modularity 579

with parameter lists of the same length and compatible types, thanks to named
parameters.

Unnecessary Constructor Dependencies. Any new ini module introduced in a
mixin is independent from the ini modules already present. We see this in the
following example (continuation of the example from Figure 3):

mixin ColorPoint of Point2D =

fcr:Integer;

fcg:Integer;

fcb:Integer;

required ColorPoint(cr:Integer, cg:Integer, cb:Integer) initializes ()

begin

this.ColorPoint.fcr := cr;

this.ColorPoint.fcg := cg;

this.ColorPoint.fcb := cb;

super[];

end;

end;

new Point2D, Point3D, ColorPoint[Point2D.x := 1, Point2D.y := 2,

Point3D.z := 10, ColorPoint.cr := 255,];

The initialization module in mixin ColorPoint is independent from the ones in
mixin Point2D, in particular it does not refer to any of Point2D ini modules’
parameters. An ini module contains references to input parameters of other
ini modules only when it computes their actual values (in this case, they are
present as output parameters of the ini module); for instance, the ini module
from Figure 3 with input parameter other:Point3D refers to parameters x, y,
and z as its output parameters.

Multiple Initialization Options and Code Duplication. Each option corresponds
to a certain ini module, and each ini module deals with one option without need
of code duplication. An example is the one above that mixes color with coor-
dinates: this is a typical case that would cause code duplication when using
classical constructors.

Fragile Overloaded Constructors. In Magda, the choice of the appropriate ini
modules is done using the names of the parameters and no form of overloading
is present. As a result, there can be no ambiguities.

Unnecessary Redeclaration of Checked Exceptions. A natural way of adding
checked exceptions to Magda would be to add them to ini modules. Then, there
would be no need to repeat the declarations in the ini modules of the derived
mixins, since they work as extensions, not as replacements of the parent initial-
ization modules.

Problems with Traditional Mixins. Since within mixin-based inheritance ini-
tialization problems are amplified with respect to the ones in class-based inheri-
tance, we believe that ini modules are a natural way to enhance mixin modularity.

580 V. Bono, J. Kuśmierek, and M. Mulatero

Types and Type Expressions. Magda is a statically typed language and enjoys a
type soundness property guaranteeing absence of message-not-understood errors.
This is formally defined and proved in [35]. What distinguishes Magda from
other languages, then, is the way the type expressions are formed and the way
the subtyping is verified. Every type in a Magda program is a sequence of mixin
names. The ordering of mixin names in a type expression is insignificant. When
a variable or a field is declared of type T , it means that its value can be either
null or an object created from a sequence of mixins which contains at least
the mixins present in T (even though it can contain more), except the mixin
Object which is always used implicitly during each object creation. Similarly, if
a method parameter is of type T , it means that in each method call the actual
value must be an object created from all the mixins in T (and maybe more).

For example, consider the program in Figure 3. The type of variable p1 in
method MainClass.MainMatter is Point3D, while the type of variable p2 is
Point2D. The second declaration means that the variable p2 can hold only null

value, or a reference to an object created using a sequence of mixins containing
Point2D. However, notice that Point3D mixin has Point2D as its base mixins.
As a result, every object created from Point3D is also created from Point2D.
Therefore the type Point2D, Point3D is equivalent to the type Point3D as well as
to the type Point3D, Point2D. On the one hand, in an object creation expression
the base mixins cannot be omitted because the order in which they are present
in the object creation expression is significant (see again the example on virtual
methods). On the other hand, in types the ordering and the removal of base
mixins are insignificant.

We say that type T2 is the fully expanded form of type T1 if T2 is
the type obtained by appending to T1 all direct and indirect base mix-
ins of T1. In the example in Figures 1 the fully expanded form of type
Displayable3DColorPoint is: Object, Point2D, DisplayableObject, Point3D,
ColorPoint, Displayable3DColorPoint.

Now consider the program from Figure 1, extended with the mixin:

mixin Test of Object =

new Object SomeMethod ()

v1: Point3D;

v2: Point3D, ColorPoint;

begin

...

v1 := v2; //OK

v2 := v1; //not OK

end;

end

In the method SomeMethod there are two variables, v1 and v2. The requirements
enforced by the type of variable v2 are stricter than the ones enforced by the
type of variable v1. As a result, each value of variable v2 can be also a value of
variable v1. However, the opposite does not hold. Therefore, the first assignment
present in this method is type correct, however the second one is not. Thus this
program will not compile.

Magda: A New Language for Modularity 581

In general, we say that type T2 is a subtype of type T1 (denoted T2 - T1)
when the fully expanded form of T1 is a subset of the fully expanded form of T2.
As a consequence of this definition, we define the type of null value as the set
of all mixin names used within a program.

Properties of Magda. Our modular approach to initialization is motivated by
the fact that we want each mixin to be as composable with other mixins as
possible, in order to minimize the amount of the code to be written (or, worse,
duplicated). Magda enjoys an unusual safety property which intuitively means
that no accidental conflicts can happen.

We say that an identifier p is a transitive output parameter of an ini module
m if: (i) either p is an output parameter of m; (ii) or p is an output parameter
of an ini module n, such that at least one input parameter of n is a transitive
output parameter of m.

We say that two mixins M 1 and M 2 are exclusive if: (i) there exists a mixin
M b which is a direct or an indirect base mixin of both M 1 and M 2; (ii) and
there exists an input parameter ip b of an ini module in M b, such that both M 1

and M 2 contain a required ini module each, m 1 and m 2, and ip b is a transitive
output parameter of m 1 and m 2.

We say that a sequence of mixins
−→
M is valid if new

−→
M [−−−−−−−−→par := expr] is

typable in the type system in [35], for some −−−−−−−−→par := expr.
We can now sketch Magda’s safety property: for every two valid sequences of

mixins
−→
M1,

−→
M2 where each pair of mixins taken one from

−→
M1 and one from

−→
M2

are not exclusive, any sequence of mixins obtained by combining
−→
M1,

−→
M2, in such

a way the original reciprocal order of the mixins in each sequence is retained, is
also a valid sequence.

Intuitively, this property ensures that if there is no ambiguity in the choice
of ini modules (non-exclusivity), then any sequence of mixins can be combined
with another.

Magda enjoys another important property: as hinted before, Magda’s modu-
larity guarantees that client code of a library written in Magda will never break
as a consequence of any addition of members to the library’s mixins (modulo
exclusivity).

The property is as follows: for any set of well-typed mixins and any well-typed
client code which uses it, if it is possible to extend a mixin in the set with a new
method, or to add a new optional ini module to it, in such a way that the mixin
itself is still well typed, Magda guarantees that: (i) all the other mixins in the
set and the client code will still be well typed (i.e., they will still compile); (ii)
the result of the execution of the client code will not change.

This property does not extend to the case of method override, however this
is unavoidable, as override may change the semantics of a method. Magda’s
features are such that this is the only case in which it happens, as opposed in
other languages, where also additions of members can cause unexpected changes.

Both properties can be proved by induction on the type derivation (and on
the operational semantics execution tree), as defined in [35].

582 V. Bono, J. Kuśmierek, and M. Mulatero

4 Related Work

In this section, we compare our solution with other approaches to reusability of
components and we discuss different views to modularization of the initialization
protocol. Moreover, we discuss how encapsulation works in Magda.

4.1 Code Reuse Mechanisms

Multiple Inheritance. The most popular implementation of the multiple inher-
itance is present in C++ [48]. Other versions are present also in Dylan [21],
Python [10], and Loglan [34]. However, all of them suffers from the problems
discussed in Section 2.1. One of the features of C++ multiple inheritance is pri-
vate inheritance. This feature also influences multiple inheritance: when a class
A inherits from two classes B1 and B2, where each of those inherit privately from
a class C, then class A will in fact contain two instances of class C which are
not visible via the public interface. One of those instances will be visible by the
B1 part of A, while the other one through the B2 part of A. Private inheritance
is not directly available in Magda, however, this could be simulated via object
composition.

Traditional Mixins. It is believed that one of the main reasons why mixins
have not yet achieved a wide acceptance is the fragile class hierarchies problem
[42], which is avoided in Magda, thanks to our hygienic approach to identifiers.
Another difference between Magda and most of the other mixin-based proposals
is that in the latter the mixin is a construct which is used to transform one class
into another, and classes as well as interfaces still play a significant role in such
languages. Instead, in Magda the mixin is the only inheritance construct and it
is exploited to create objects from, to reuse code, and to define nominal types.
As a consequence, the requirements on the “parametric superclass” in Magda
(that is, the base mixin) are also specified using a sequence of mixin names.

CZ. The CZ proposal [40] addresses the diamond problem directly, without re-
stricting the expressive power of multiple inheritance, by eliminating multiple
inheritance implementation hierarchies in favour of multiple inheritance subtyp-
ing hierarchies. However, this approach forces the programmer to have almost
twice as many classes as within a traditional hierarchy, moreover it does not
solve the problems about the modularity of constructors.

4.2 Modularization of Constructors

Avoiding the Initialization Protocol. A class can be written using the approach
of avoiding explicit initialization protocols by inserting one parameterless con-
structor (or none), while the real initialization process is implemented in ordinary
methods. Unfortunately, with this approach, there is no direct way to check if
the object is properly initialized. The programmer may create an object from
the class and: (i) forget to call some of the methods responsible for the initial-
ization; (ii) call too many of them; (iii) call them in an incorrect order; without

Magda: A New Language for Modularity 583

being warned by the compiler. Dynamic checks can be added by using formal
specification languages, like JML [38] and the Design by Contract in Eiffel [41],
but the assertion can grow complicated, moreover static checks would be more
desirable.

Container Parameter. Constructors may have one parameter of a “container”
type, such as Vector or Dictionary. The container contains values of all the
initialization parameters, for instance indexed by their names. Then, the con-
structor performs a dynamic verification (a static one is impossible), that can
become complicated if there are many initialization options.

Container Classes. The idea behind the container classes design pattern is
to use a class for passing the set of parameters used to initialize a property.
Such a class must have as many constructors (with their respective parameters)
as the possible options of initialization of the given property. The use of such
an approach allows one to avoid the problems of: (i) exponential growth of
the number of constructors; (ii) unnecessary code duplication. However, it is
necessary to preview the need of the pattern even if in earlier versions of a class
there is only one option of initialization for each property. Moreover, it works
only in cases when the set of options of initialization of a class coincides with the
cartesian product of the initialization options of its properties. It cannot be used
in more complicated cases, for example when there is an option of initialization
using one value to initialize more than one property (using a container classes
each), or when there is the need to initialize a subset of fields, all packaged into
one contaneir class.

Optional Parameters. Constructors with default parameter values (present, for
example, in Delphi [2] and C++ [48]) make it possible to declare fewer con-
structors, being able to treat some parameters as optional. This mechanism
does not help, though, when it is necessary to have a mutually exclusive choice
among different parameters (of different types), because one cannot limit which
combinations of optional parameters are allowed. This solution works well used
together with referencing parameters by their names.

Referencing by Name. Another useful feature which can be found in some lan-
guages (but not in any of the main-stream ones like Java and C
) is referencing
parameters of methods and constructors by their names. Such approach, present
for example, in Flavors [43], Objective-C [33], and Ocaml [39], solves two prob-
lems: (i) it discards some ambiguities (caused by constructor overloading), be-
cause parameters with the same (or compatible) type can have different names;
(ii) it allows a wider use of default parameter values. However, this feature only
solves problems of optional parameters and discards some ambiguities, but does
not prevent an exponential number of constructors and code duplication in the
case of multiple options of initialization of orthogonal object properties.

584 V. Bono, J. Kuśmierek, and M. Mulatero

Constructor Propagation in Java Layers. The Java Layers language [18] has a
feature called constructor propagation, which can be illustrated by an example1.

class Class1

{ propagate Class1(String s) {I_1;}

propagate Class1(int i) {I_2;}

}

class Class2<T> extends T

{ propagate Class2(double j) {I_3;}

propagate Class2(boolean k) {I_4;}

}

Class Class2<Class1> has all the combinations of the “propagated construc-
tors” of both classes, which means containing the same list of constructors as
the following class.

class Class3

{ Class3 (String s, double j) {I_1; I_3;}

Class3 (int i , double j) {I_2; I_3;}

Class3 (String s, boolean k) {I_1; I_4;}

Class3 (int i , boolean k) {I_2; I_4;}

}

This approach solves the problem of the exponential number of constructors
if the sets of options of parameters are in different classes. However, this can
only produce a cartesian product of sets of constructors. In fact, if we want
to implement a subclass of a class C with the purpose of adding a new option
for initializing a property declared in C, then we cannot do this using Java
Layers. To better understand this, we consider the following example written in
Magda, which is an extension with a new palette of the example of the colored
cartesian point discussed in Section 2.2, Multiple initialization options and code
duplication.

mixin HSBColorPoint of ColorPoint =

optional HSBColorPoint(h:float, s:float, b:float)

initializes (ColorPoint.r, ColorPoint.g, ColorPoint.b)

begin

...

end;

end;

This code, in the Java Layers approach, would require copying all the combina-
tions of the propagated constructors.

Object Factories. A recent work concerning initialization protocols is [19]. It
shows how object factories can be integrated in a language like Java in such a way
that they use the same syntax as normal object creation. Using this approach,

1 This is a modified version of an example taken from the web page of the Java
Layers http://www.cs.utexas.edu/∼richcar/cardoneDefense.ppt. The syntax is
also slightly modified to look more Java-like.

Magda: A New Language for Modularity 585

it is possible to override the constructors of a class, and even to write an object
creation expression of the form new I(...), where I is an interface, thus giving
more flexibility to the initialization code. As an effect, in some situations this
reduces the amount of code which needs to be written. For example, when we
want to add one initialization option to an existing class, we just extend the
list of the constructors of that class. The benefits of this approach are: (i) the
separation of the initialization from the class itself, so that a client instantiating
an interface can even not know the implementing class; (ii) the possibility of
modifying an initialization protocol in a way in which, for instance, the object
returned by new expression is an already existing one (not a newly created one).
However, in this approach, each set of initialization parameters must correspond
to one constructor, therefore, in general, it does not avoid the problem of the
exponential growth.

4.3 Dealing with Accidental Name Clashes

The concept of method is realized by three different actions: (i) the introduc-
tion of a new method; (ii) the implementation/override of an existing method;
(iii) the method call. The bindings between (ii) and (i), as well as between (iii)
and (i) are typically made using the method name, which is not guaranteed to
be univocal. Additionally, in many popular languages (like Java, C
 and C++),
the distinction between (i) and (ii) is also based upon names. Therefore, mod-
ifications of existing classes (even conservative ones) may introduce errors.This
can occur even more frequently, and it is more difficult to predict, when the
modifications happens in a library written by third-party developers.

In the work [37] we presented three kinds of ambiguity problems (name clashes
caused by the implementation of an interface, name clashes caused by the addi-
tion of a new method, name clashes caused by mixin application), together with
an empirical analysis of the Java standard library (1.5) from the point of view
of name clashes.

There are various proposals in the literature to tackle accidental name clashes.
Notably, there are languages offering constructs and mechanisms to deal with
conflicts: Delphi [2], C
 [28], Eiffel [41], MixedJava [24], MixGen [3]2, McJava
[32,31] are some examples. An analysis of the main features of these proposals
can be found in [37].

4.4 Encapsulation in Magda

Another characteristic which makes our approach different from most of other
approaches to component reuse is encapsulation. In Magda, the set of mixins
from which an object is created is always visible, since all the references to
methods and fields need to be prefixed with the name of the mixin from which
the method or field comes. This is in contrast with the choices made in most of
the other languages, and at the first sight it may look as a drawback. However,

2 They introduced the notion of hygienic mixin.

586 V. Bono, J. Kuśmierek, and M. Mulatero

it is often the case that the internal structure of a class is not completely trans-
parent to the user, even though a form of encapsulation is enforced. In C++, for
example, in the case of multiple inheritance it is necessary to know if there are
common superclassess, in oder to choose one of the semantics of inheritance (pri-
vate, public or virtual). In the cases of MixGen [3] and MixedJava [24], a class
can have many distinct implementations of one method. Then, to call a method
declared in a specific superclass or mixin, one has to cast the type of an object
to that specific type. In the case of freezable traits [23], to unfreeze a method
in a trait or class one needs to know in which supertrait this method has been
declared. Additionally, the user needs to be aware of which methods are called in
which other methods (as described in Section 2.1), therefore the encapsulation
is also violated even at the level of methods.

5 Conclusions

Our purely mixin-based design offers: (i) a simple mechanism for reuse based
on mixin inheritance, without the problems present in other implementations
of the mixin construct (see Section 2.1); (ii) initialization protocols that can
be composed from independent ini modules coming from different mixins, thus
avoiding the drawbacks described in Section 2.2; (iii) a mechanism for identi-
fier references using fully qualified names, which guarantees that programs will
never fail to compile, or behave unexpectedly, as a result of changes causing
name clashes (this way we avoid the problems hinted in Section 4.3). The reuse
mechanism, together with the modular constructors and the hygienic identifiers,
provides modularity: it is guaranteed that the client code of a library written
in Magda will never break as a consequence of any addition of members to the
library’s mixins.

The hygienic approach to identifiers improve inter-component compatibility.
It can be argued, though, that full-path references are lengthy to write and dif-
ficult to read, and that this is one main drawback of Magda. However, this can
be solved by implementing an IDE tool for expanding short names and hiding
long ones on demand. The tool could be based upon the following rule: for each
non-hygienic method or field identifier in an expression, find the first mixin in
the type of the expression such that it contains the introduction of an identi-
fier with the same name, where introduction means the first declaration of the
identifier in the mixin hierarchy. In case of ambiguity, all possible valid hygienic
hierarchies would be shown.

Acknowledgments. The authors would like to thank the anonymous referees.

References

1. Visual Basic .NET Language Reference. Microsoft Press (2002)

2. Delphi Language Guide. Borland Software Corporation (2004)

Magda: A New Language for Modularity 587

3. Allen, E., Bannet, J., Cartwright, R.: A first-class approach to genericity. In: Proc.
OOPSLA 2003, pp. 96–114 (2003)

4. Allen, E., Chase, D., Flood, C., Luchangco, V., Maessen, J.-W., Ryu, S., Steele
Jr., G.L.: Project Fortress: A multicore language for multicore processors. Linux
Magazine, 38–43 (September 2007)

5. Allen, E., Chase, D., Hallett, J., Luchangco, V., Maessen, J.-W., Ryu, S., Steele Jr.,
G.L., Tobin-Hochstadt, S.: The Fortress language specification. Technical report,
Sun Microsystems (2008)

6. Allen, E., Hallett, J.J., Luchangco, V., Ryu, S., Steele Jr., G.L.: Modular multiple
dispatch with multiple inheritance. In: Proc. SAC 2007, pp.1117–1121. ACM (2007)

7. Ancona, D., Lagorio, G., Zucca, E.: Jam - A Smooth Extension of Java with Mix-
ins. In: Bertino, E. (ed.) ECOOP 2000. LNCS, vol. 1850, pp. 154–178. Springer,
Heidelberg (2000)

8. Ancona, D., Zucca, E.: An Algebra of Mixin Modules. In: Parisi-Presicce, F. (ed.)
WADT 1997. LNCS, vol. 1376, pp. 92–106. Springer, Heidelberg (1998)

9. Barron, D.W. (ed.): Pascal: The Language and its Implementation. John Wiley
(1981)

10. Beazley, D., Van Rossum, G.: Python. Essential Reference. New Riders Publishing,
Thousand Oaks (1999)

11. Bono, V., Damiani, F., Giachino, E.: On Traits and Types in a Java-like Setting.
In: Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) Proc. IFIP-TCS 2008.
IFIP AICT, vol. 273, pp. 367–382. Springer, Boston (2008)

12. Bono, V., Kuśmierek, J.D.M.: FJMIP: A Calculus for a Modular Object Initializa-
tion. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 100–112.
Springer, Heidelberg (2007)

13. Bono, V., Kuśmierek, J.D.M.: Modularizing constructors. Journal of Object Tech-
nology, Special Issue: TOOLS EUROPE 6(9), 297–317 (2007)

14. Bono, V., Patel, A., Shmatikov, V.: A Core Calculus of Classes and Mixins. In:
Guerraoui, R. (ed.) ECOOP 1999. LNCS, vol. 1628, pp. 43–66. Springer, Heidelberg
(1999)

15. Bracha, G.: The Programming Language Jigsaw: Mixins, Modularity and Multiple
Inheritance. PhD thesis, The University of Utah (1992)

16. Bracha, G., Ahe, P., Bykov, V., Kashai, Y., Mirand, E.: The Newspeak program-
ming platform. Technical report, Cadence Design Systems (2008)

17. Bracha, G., Cook, W.: Mixin-based Inheritance. In: Proc. OOPSLA 1990, pp. 303–
311. ACM Press (1990)

18. Cardone, R.J.: Language and Compiler Support for Mixin Programming. PhD
thesis, The University of Texas at Austin (2002)

19. Cohen, T., Gil, J.: Better construction with factories. Journal of Object Technol-
ogy 6(6), 109–129 (2007)

20. Cook, S.: OOPSLA 1987 panel P2 varietes on inheritance. In: OOPSLA 1987 Ad-
dendum to Proc., pp. 35–40. ACM Press (1987)

21. Craig, I.D.: Programming in Dylan. Springer-Verlag New York, Inc., NJ (1996)
22. Ducasse, S., Nierstrasz, O., Schärli, N., Wuyts, R., Black, A.: Traits: A mechanism

for fine-grained reuse. TOPLAS 28(2), 331–388 (2006)
23. Ducasse, S., Wuyts, R., Bergel, A., Nierstrasz, O.: User-changeable visibility: re-

solving unanticipated name clashes in traits. In: Proc. OOPSLA 2007, pp. 171–190.
ACM (2007)

24. Flatt, M., Krishnamurthi, S., Felleisen, M.: Classes and Mixins. In: Proc. POPL
1998, pp. 171–183. ACM (1998)

588 V. Bono, J. Kuśmierek, and M. Mulatero

25. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional (1995)

26. Gialluca, M.: Modular initialization protocol: a new implementation of the
JavaMIP language. Tesi di Laurea Trieannale, Torino University, Dipartimento
di Informatica (2010)

27. Gosling, J., Joy, B., Steele, G., Bracha, G.: The JavaTM Language Specification.
Addison-Wesley, Sun Microsystems (2005)

28. Hejlsberg, A., Golde, P., Wiltamuth, S.: C� Language Specification. Addison-
Wesley (2003)

29. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: A minimal core calculus
for Java and GJ. TOPLAS 23(3), 396–450 (2001)

30. Kamina, T., Tamai, T.: McJava – A Design and Implementation of Java with
Mixin-Types. In: Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 398–414.
Springer, Heidelberg (2004)

31. Kamina, T., Tamai, T.: Flexible method combination based on mixin subtyping.
Journal of Object Technology 4(10), 95–115 (2005)

32. Kamina, T., Tamai, T.: Selective method combination in mixin-based composition.
In: Proc. SAC 2005, pp. 1269–1273 (2005)

33. Kochan, S.: Programming in Objective-C. Sams (2004)
34. Kreczmar, A., Salwicki, A., Warpechowski, M.: LOGLAN 1988—report on the

programming language. Springer (1990)
35. Kuśmierek, J.: A Mixin Based Object-Oriented Calculus: True Modularity in

Object-Oriented Programming. PhD thesis, Warsaw University, Departement of
Informatics (2010), http://www.mimuw.edu.pl/~jdk/mixiny.pdf

36. Kuśmierek, J., Mulatero, M.: The Magda language implementation,
http://sourceforge.net/projects/magdalanguage

37. Kuśmierek, J.D.M., Bono, V.: Hygienic methods, Introducing HygJava. Journal of
Object Technology, Special Issue: TOOLS EUROPE 6(9), 209–229 (2007)

38. Leavens, G., Cheon, Y.: Design by Contract with JML (2003)
39. Leroy, X.: The Objective Caml System Release 3.09. Institut National de Recherche

en Informatique et en Automatique (2005)
40. Malayeri, D., Aldrich, J.: CZ: multiple inheritance without diamonds. In: Proc.

OOPSLA 2009, pp. 21–40 (2009)
41. Meyer, B.: An Eiffel Tutorial. Technical Report TR-EI-66/TU, ISE (2001)
42. Mikhajlov, L., Sekerinski, E.: A Study of the Fragile Base Class Problem. In: Jul,

E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 355–382. Springer, Heidelberg (1998)
43. Moon, D.A.: Object-oriented programming with Flavors. In: Proc. OOPSLA 1986,

pp. 1–8. ACM Press (1986)
44. Nierstrasz, O., Ducasse, S., Reichhart, S., Schärli, N.: Adding Traits to (Statically

Typed) Languages. Technical Report IAM-05-006, Institut für Informatik, Univer-
sity of Bern, Switzerland (2005)

45. Odersky, M., Altherr, P., Creme, V., Emir, B., Micheloud, S., Mihaylov, N., Schinz,
M., Stenman, E., Zenger, M.: The Scala Language Specification, version 1.0. Tech-
nical report, Programming Methods Laboratory, EPFL (2006)

46. Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.P.: Traits: Composable Units of
Behaviour. In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 248–274.
Springer, Heidelberg (2003)

47. Smith, C., Drossopoulou, S.: Chai: Traits for Java-Like Languages. In: Gao, X.-X.
(ed.) ECOOP 2005. LNCS, vol. 3586, pp. 453–478. Springer, Heidelberg (2005)

48. Stroustrup, B.: The C++ programming language, 3rd edn. AT&T (1997)

http://www.mimuw.edu.pl/~jdk/mixiny.pdf
http://sourceforge.net/projects/magdalanguage

Marco: Safe, Expressive Macros

for Any Language�

Byeongcheol Lee1, Robert Grimm2,
Martin Hirzel3, and Kathryn S. McKinley4,5

1 Gwangju Institute of Science and Technology
2 New York University

3 IBM Watson Research Center
4 Microsoft Research

5 The University of Texas at Austin

Abstract. Macros improve expressiveness, concision, abstraction, and
language interoperability without changing the programming language
itself. They are indispensable for building increasingly prevalent
multilingual applications. Unfortunately, existing macro systems are well-
encapsulated but unsafe (e.g., the C preprocessor) or are safe but tightly-
integrated with the language implementation (e.g., Scheme macros). This
paper introduces Marco, the first macro system that seeks both encap-
sulation and safety. Marco is based on the observation that the macro
system need not know all the syntactic and semantic rules of the tar-
get language but must only directly enforce some rules, such as variable
name binding. Using this observation, Marco off-loads most rule checking
to unmodified target-language compilers and interpreters and thus be-
comes language-scalable. We describe the Marco language, its language-
independent safety analysis, and how it uses two example target-language
analysis plug-ins, one for C++ and one for SQL. This approach opens
the door to safe and expressive macros for any language.

1 Introduction

Macros enhance programming languages without changing them. Programmers
use macros to add missing language features, to improve concision and abstrac-
tion, and to interoperate between different languages and with systems. With
macros, programmers use concrete syntax instead of tediously futzing with ab-
stract syntax trees or, worse, creating untyped and unchecked strings. For in-
stance, Scheme relies heavily on macros to provide a fully featured language
while keeping its core simple and elegant. Programmers use the C preprocessor
to derive variations from the same code base (e.g., with conditional compila-
tion) and abstract over the local execution environment (e.g., defining types and
variables in system-wide header files). Web programmers use macros in PHP
and similar languages to generate HTML code. Programmers also use macros

� This research was supported by the Samsung Foundation of Culture, and NSF grants
CCF-1018271, CCF-1017849, and SHF-0910818.

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 589–613, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

590 B. Lee et al.

to generate strings containing SQL queries that interoperate with databases. As
illustrated by they last two examples, macros do not only improve individual
languages, but are also indispensable for building increasingly prevalent multi-
lingual applications.

Programmers typically write macros in a macro language and the macro sys-
tem generates code in a target language. Programmers embed macros in a host
language. The host and target languages may differ. Macros are resolved be-
fore the target-language code is compiled or interpreted. Macro systems fall into
two main categories. (1) Some macro systems are well encapsulated from the
compiler or interpreter but are unsafe, e.g., the C preprocessor executes before
the target-language compiler, but may generate erroneous code. (2) Some macro
systems are safe but are tightly integrated with the target languages, e.g., the
Scheme interpreter hygienically implements the core language together with its
macro system [13,5].

Neither option is particularly attractive. Well encapsulated but unsafe macro
systems lead to buggy target code. Notably, the C preprocessor operates on to-
kens, is not guaranteed to produce correct code, and C programs with macros
consequently contain numerous errors [6]. Safe but tightly-integrated macro sys-
tems are limited to a prescribed combination of host and target languages and
cannot be shared across languages. Developers must learn macro programming
for every host and target language combination. Likewise, language designers
need to design and implement macros for every combination. For example, while
JSE [2] adapts Dylan’s macros [20] to Java, it requires design changes and a
fresh implementation. This burden increases the temptation to omit macros or
use an encapsulated but unsafe macro system, such as GNU M4 [15]. Given the
utility of macros and the diversity of current and future languages, expressive
safe macros that scale across host and target languages are clearly desirable.

This paper introduces the Marco macro system, which delivers encapsula-
tion and safety, making macros language scalable. Our key insight is that the
macro system does not need to implement every target-language rule for target-
language safety, but rather, it can reuse off-the-shelf target-language compilers
or interpreters to do the job. Specifically, prior work on syntactically safe macros
required the macro system to have a target-language grammar; this paper shows
how to enforce syntax safety without that. Similarly, prior work on macros with
safe naming discipline required the macro system to implement target-language
scoping rules; this paper shows how to enforce naming discipline without reim-
plementing those either. Consequently, Marco composes a language-independent
macro translator with unmodified target-language compilers and interpreters
that check for most rule violations. The only requirement on the target-language
processors is that they produce descriptive error messages that identify locations
and causes of errors.

We designed Marco to meet three criteria: expressiveness, safety, and language
scalability. For expressiveness, the Marco language has static types, condition-
als, loops, and functions, making it Turing-complete. Marco supports target-
language fragments as first-class values. As indicated by the name, fragments

Marco: Safe, Expressive Macros for Any Language 591

need not be complete target-language programs. Rather, they contain portions
of a target-language program along with blanks that other fragments fill in.
For safety, Marco uses macro-language types to check target-language syntax,
and uses dataflow analysis to check target-language naming discipline. For lan-
guage scalability, Marco relies on error messages from target-language proces-
sors, making it the first safe macro system that is independent of the target
language. We demonstrate Marco for two target languages. For depth, we chose
C++, which is relatively complex due to its rich syntax, types, and many other
features. For breadth, we chose SQL, which differs substantially from C-like
languages and is of critical importance to many web applications. Marco cur-
rently checks for syntactic well-formedness and naming discipline; we leave type
checking target-language code for future work. Furthermore,Marco programs are
currently stand-alone; we leave host-language integration for future work, e.g.,
by using compositional techniques from Jeannie for C and Java [10].

In summary, this paper’s contributions are: (1) The design of a safe and
expressive macro language that is scalable over target languages. (2) A macro
safety verification mechanism that uses unmodified target-language compilers
and interpreters. (3) An open-source implementation1 of the target-language
independent macro processor and plug-ins for C++ and SQL.

2 Marco Overview

M
a

rc
o

 s
y
s
te

m

External Inputs

Error Report Target Program

Static Checker Dynamic Interpreter

Oracles

Unmodified Target

Language Processors

Information
Fragment

Information
Fragment

Compilation
unit

Error
messages

Marco Program

Fig. 1. The Marco architecture

Fig. 1 illustrates the Marco ar-
chitecture. It shows the Marco
static checker taking a Marco
program as input and verifying
that target-language fragments
are correct at macro definition
time. Because Marco supports
code generation based on external
inputs, including additional
target-language fragments, some
syntax and/or name errors may
survive static checking unde-
tected. Consequently, the Marco
dynamic interpreter verifies frag-
ments again at macro instantia-
tion time, after Marco fills in all
blanks. This double checking is
critical for developing macro libraries, where one group of programmers writes
the macros and another group instantiates them with application-specific inputs.
Both the static checker and dynamic interpreter rely on common oracles to verify
target-language code syntax and naming discipline and detect any errors. The or-
acles abstract over the different target languages. They query a target-language

1 Available at http://cs.nyu.edu/xtc/

http://cs.nyu.edu/xtc/

592 B. Lee et al.

processor (currently, gcc for C++ macros and SQLite for SQL macros) by
submitting specially crafted small compilation units.

Marco achieves language scalability by composing off-the-shelf target-language
compilers and interpreters with a common translation engine. To add a new
target language, developers implement a simple lexical analysis module that
recognizes target-language identifiers and the end of target-language fragments.
They also implement a plug-in with three oracles that (1) check for syntactic
well-formedness, (2) determine a fragment’s free names, and (3) test whether a
fragment captures a given name. Everything else is target-language independent.
In particular, Marco includes a reusable dataflow analysis, which propagates free
and captured identifiers and reports accidental name capture.

3 The Marco Language

This section describes the Marco language, using examples, grammar rules, and
type rules. The Marco language is a statically typed, procedural language. It
supports macros using three constructs: code types, fragments, and blanks.

1 code<cpp,stmt> # code type
2 synch(code<cpp,id> mux,
3 code<cpp,stmt> body) {
4 return
5 ‘cpp(stmt)[{ # C++ fragment
6 acquireLock($mux);
7 $body # blank
8 releaseLock($mux);
9 }];

10 }

Fig. 2. Marco code to generate C++

The example synch C++
macro in Fig. 2 ensures
that lock acquire and re-
lease operations are properly
paired (modulo exceptions),
which C++ does not ensure.
Lines 1–3 contain the signa-
ture of the Marco function
synch, which takes two pa-
rameters, a C++ identifier
and a C++ statement, and re-
turns a C++ statement. The code type is parameterized by the target language
and a nonterminal. Line 5 uses the back-tick operator (‘) to begin a fragment,
which is a quoted piece of target-language code. Line 6 uses the dollar opera-
tor ($) to begin a blank, which is an escaped piece of Marco code embedded in
a fragment. The evaluation rule for a fragment first evaluates embedded blanks,
then splices their results into the fragment’s target-language code:

∀i ∈ 1 . . . n : Env � ei −→ βi

Env � ‘lang(nonT)[α0$e1α1 . . .$enαn] −→ ‘lang(nonT)[α0β1α1 . . . βnαn]
(E-Fragment)

Each αi is a sequence of target-language tokens, each $ei is a blank, and each βi

is the result of evaluating a blank to a sequence of target-language tokens. The
result is the concatenation of all αi and βi.

Fig. 3 presents the Marco grammar. The interesting grammar rules are frag-
ment and its helpers. A fragment, such as ‘cpp(stmt)[. . .$x. . .$y. . .], consists
of a head and a sequence of fragment elements. The head specifies the target
language, a nonterminal, and an optional list of captured identifiers. We use this
list when checking the target code’s naming discipline (see Section 7).

Marco: Safe, Expressive Macros for Any Language 593

program ::= functionDef +

functionDef ::= type ID ‘(’ (formal (, formal)*)? ‘)’ ‘{’ stmt* ‘}’
formal ::= type ID
stmt ::= ‘{’ stmt* ‘}’ # block

| type ID ‘=’ expr ‘;’ # variable declaration

| ‘if’ ‘(’ expr ‘)’ stmt (‘else’ stmt)? # conditional
| ‘for’ ‘(’ ID ‘in’ expr ‘)’ stmt # loop
| ‘return’ expr ‘;’ # function return
| expr ‘;’ # expression statement

expr ::= fragment # fragment
| ‘(’ expr ‘)’ # parentheses
| ID # variable use
| expr INFIX OP expr # infix operation

| ID ‘(’ (expr (, expr)*)? ‘)’ # function call
| expr ‘.’ ID # record attribute
| expr ‘[’ expr ‘]’ # list subscript

| ‘[’ (expr (, expr)*)? ‘]’ # list literal
| ‘{’ ID ‘=’ expr (, ID ‘=’ expr)* ‘}’ # record literal
| ‘true’ | ‘false’ | INT | STRING # primitive literal

type ::= ‘code’ ‘<’ language ‘,’ nonTerm ‘>’ # fragment type
| ‘list’ ‘<’ type ‘>’ # list type
| ‘record’ ‘<’ formal (, formal)* ‘>’ # record type
| ‘boolean’ | ‘int’ | ‘string’ # primitive type

fragment ::= fragmentHead ‘[’ fragmentElem* ‘]’
fragmentHead ::= ‘‘’ language ‘(’ nonTerm (‘,’ capture)? ‘)’
language ::= ID
nonTerm ::= ID
capture ::= ‘capture’ ‘=’ ‘[’ ID (, ID)* ‘]’
fragmentElem ::= TARGET TOKEN | blank
blank ::= ‘$’ baseExpr

Fig. 3. Marco grammar

There are two kinds of fragment elements in Marco: target-language to-
kens and blanks. Since Marco identifies fragment elements with square brack-
ets, the Marco parser must count matching square brackets in the fragment
itself to find the end, e.g., in ‘cpp(expr)[arr[idx]]. It should, however, ig-
nore square brackets that appear in target-language strings or comments, e.g., in
‘cpp(expr)[printf("[")]. To enforce the naming discipline, the Marco parser
must find the fragment’s identifiers. It should not treat a target language’s key-
words or numerical suffixes as identifiers, e.g., in 3.1e4 or 1llu. Since different
languages have different keywords, literals, and comments, Marco must be con-
figured with target-language specific lexers. To select lexers based on the syntac-
tic target-language context identified by the fragment’s head, we use the Rats! [8]
scannerless andmodular parser generator.The corresponding target-language lex-
ers are very simple and recognize only the target-language tokens listed above.

The static type system includes the primitive types boolean, int, and string;
list parameterized by element type; record parameterized by attribute names
and types; and code parameterized by target language and nonterminal.

594 B. Lee et al.

1 code<sql,query>
2 genTitleQueryInSQL(code<sql,expr> pred){
3 return ‘sql(query)[select title
4 from moz_bookmarks where $pred
5];
6 }

Fig. 4. Marco code to generate SQL

The latter is key to
target language scalabil-
ity. For example, Fig. 4
shows a Marco macro
generating SQL. Com-
pared to Fig. 2, the
Marco syntax and se-
mantics remain the same,
but the target language and therefore the code type parameters differ. TheMarco
engine uses code types to invoke the appropriate target-language oracles, which
determine syntactic well-formedness as well as free and captured identifiers. It
tracks code types to check syntax when filling in blanks in fragments. And it
tracks names during its dataflow analysis, which ensures that identifiers from
multiple macros generate consistent bindings. In other words, the strongly typed
quote and unquote mechanism lets us maximize Marco’s target-language inde-
pendent functionality while delegating checking to the target-language specific
oracles.

The type rule for a Marco fragment first checks the types for each of the em-
bedded blanks, which must result in code belonging to the same target language
(lang). It then uses the language lang, the nonterminal nonT of the fragment,
the nonterminals nonT i of each of the blanks, and the contents of the fragment
as inputs to a syntax oracle. As far as the Marco type system is concerned, the
syntax oracle is a black-box that either succeeds or fails. If the oracle succeeds,
the type of the fragment is code<lang,nonT>.

∀i ∈ 1 . . . n : Γ � ei : code<lang,nonTi>
syntaxOracle(lang)(nonT, [nonT1, . . . ,nonTn], α0$1α1 . . .$nαn)

Γ � ‘lang(nonT)[α0$e1α1 . . .$enαn] : code<lang,nonT>
(T-Fragment)

4 The Marco Analysis Framework

At its core, theMarco system provides a static checker and a dynamic interpreter.
The static checker verifies correctness at macro development time. The dynamic
interpreter generates target-language code and verifies correctness at macro in-
stantiation time. The two components share target-specific oracles, which check
syntactic well-formedness and naming discipline in target-language fragments.

Each oracle mediates between the target-language independent Marco engine
and an off-the-shelf target-language processor, i.e., compiler or interpreter. The
oracle converts fragments into compilation units, passes the compilation units to
the target-language processor, and then parses any error messages in the output.
The only target-language specific parts newly developed for Marco are the target-
specific lexers (see Section 3) and oracles, which reuse existing target-language
processors. A key advantage of Marco over other safe macro systems is that it
does not require new or even modified target-language processors.

In more detail, each target-language plug-in provides three oracles: syntax,
free-names, and captured-name. Marco itself is implemented in Java, and each

Marco: Safe, Expressive Macros for Any Language 595

target-language plug-in implements the same three Java interfaces. Since Java
already integrates database access through JDBC, the SQL plug-in uses this
API. In contrast, the C++ plug-in interacts with gcc through the file sys-
tem. Either way, all target-language interactions share two characteristics. First,
target-language processors receive programs as sequences of characters: strings
for JDBC and files for gcc. In other words, we lower the tokenized fragments
into character strings. Second, the processor outputs are strings that indicate
syntactic or semantic errors, which are then parsed by the plug-in. At the same
time, the concrete error reporting mechanism depends on the target language,
e.g., Java exceptions for JDBC and standard error output for gcc.

To check target-language syntax, the system first parses a Marco program
and tokenizes the target-language fragments. It then ensures that the target-
language fragments are consistent with their declared code type parameters.
For example, consider ‘cpp(expr)[x = 1;]. The Marco type checker applies
rule T-Fragment from Section 3, which triggers a call to the C++ syntax or-
acle: syntaxOracle(cpp)(expr, [], ‘x = 1;’). The C++ syntax oracle then gen-
erates the following compilation unit for the unmodified C++ compiler, i.e.,
gcc: int check_expr(){return (x = 1;);} For this input, gcc reports an er-
ror complaining about the spurious semicolon after x = 1. Based on this error
message, the oracle deduces that the fragment was syntactically ill-formed for
nonterminal expr. Since the oracle fails, Marco type-checking fails, and the sys-
tem reports an error. This example ignores idiosyncrasies of blanks and C++,
which Sections 5 and 6 explore.

For naming disciplines, consider a fragment f1 that fills a blank in frag-
ment f2. Fragment f1 is ‘sql(expr)[birthYear >= 1991], and fragment f2
is ‘sql(query)[select name from Patrons where $pred]. Using the SQL
free-names oracle,Marco discovers that f1 contains the free identifier birthYear.
It uses dataflow analysis to discover that f1 flows into the blank in f2. Finally,
Marco uses the SQL captured-name oracle to check if identifier birthYear is
captured by blank $pred. Programmers use annotations to tell Marco when
a capture is intentional; otherwise, Marco reports an accidental-capture error.
Subsequent sections describe how the oracles turn errors from target-language
processors into information for Marco’s static checker and dynamic interpreter.

5 Checking Syntactic Well-Formedness

This section describes how Marco checks target-language syntax. The syntax
oracle is the interface between the target-language agnostic Marco system and
the black-box target-language processors. The signature of the syntax oracle, as
embodied in type rule T-Fragment from Section 3, is:

syntaxOracle : lang→ (nonT,list<nonT>, α0$1α1 . . .$nαn)→ list<error>

For example, consider the following invocation of the syntax oracle:

syntaxOracle (sql) (query, [expr], ‘select a from B where $1’)

596 B. Lee et al.

Table 1. Helper fragments for syntax oracles. Place-holder fragments fill in blanks.
Completion fragments turn a fragment into a self-contained compilation unit.Marco fills
in $fresh blanks with fresh identifiers, and $orig blanks with the original fragment.

Marco type Place-holder fragment Completion fragment
code<sql,expr> 0 select $fresh1 from $fresh2 where ($orig)

code<sql,query> select * $orig

code<sql,qlist> /*empty*/ $orig

code<cpp,expr> 0 int $fresh() { return ($orig); }

code<cpp,stmt> ; void $fresh() { if(1) $orig else; }

code<cpp,id> $fresh int $fresh() { return ($orig); }

code<cpp,type_sp> int $orig $fresh;

code<cpp,type_id> int int $fresh() { return sizeof($orig); }

code<cpp,fdef> void $fresh(){} $orig

code<cpp,mdecl> int $fresh; class $fresh { $orig };

code<cpp,decl> int $fresh; $orig

code<cpp,cunit> /*empty*/ $orig

In this example, the target language is SQL, the nonterminal of the fragment is
query, and there is one blank, whose nonterminal is expr. The fragment contents
have the form α0$1α1, where α0 is the token sequence before the blank, $1 marks
the location of the blank, and α1 is the token sequence after the blank. In the
example, α0 is ‘select a from B where’ and α1 is empty. The remainder
of this section describes the syntax oracle algorithm for producing compilation
units, interpreting the results, and iterating when necessary.

5.1 Syntax Oracle Algorithm

The syntax oracle algorithm has four steps. The key challenge is to fill in each
blank in the target-language fragment.

Step 1: Fill in blanks. The syntax oracle starts by filling in each blank with
a place-holder fragment. The middle column of Table 1 shows the place-holder
fragments for each code type in Marco’s SQL and C++ plug-ins. Each such
place-holder fragment is syntactically valid for a given nonterminal. In the ex-
ample above, the nonterminal for blank 1 is expr, so the syntax oracle fills
in blank 1 with the place-holder fragment for SQL expressions, which is 0.
The result is the fragment select a from B where 0. Intuitively, filling in
blanks with fixed fragments works because target languages have (more or less)
context-free grammars, and the syntax oracle can check syntactic validity even
when there are semantic errors. In the example, the place-holder fragment is of
type integer and the blank expects type boolean, but this semantic mismatch is
irrelevant to syntactic well-formedness.

Step 2: Complete the fragment. The syntax oracle completes fragments to
obtain self-contained compilation units. In the example, the fragment is already
a full query. The right column of Table 1 shows the completion fragments for each
of the code types in Marco’s SQL and C++ plug-ins. In addition to turning a
fragment into a compilation unit, Step 2 generates boiler-plate syntax. For SQL,

Marco: Safe, Expressive Macros for Any Language 597

it adds code to begin and then abort a transaction, which prevents side-effects
from sending the SQL query to a live database during analysis.

Step 3: Run the target-language processor. The syntax oracle next sends the
completed fragment to the target-language processor and collects any error mes-
sages. For SQL, Marcomakes a JDBC call and catches any exceptions. For C++,
Marco generates a file with the fragment, compiles it with gcc, and reads any
error messages from stderr.

Step 4: Determine oracle results. Finally, the syntax oracle translates errors
from the target-language processor into oracle results. It must distinguish syntax
errors from other errors, as a fragment only fails the syntactic well-formedness
test if there are syntax errors. In C++, other errors may mask syntax errors, so
the oracle may iterate to determine if the fragment also has a syntax error, as
explained in Section 6. If the syntax oracle fails, the oracle maps error message
line-numbers back to the original Marco code, and reports the error.

5.2 Syntax Oracle Example

Consider the example fragment ‘sql(expr)[type =], which is missing its
right operand. Type rule T-Fragment invokes the syntax oracle as follows:
syntaxOracle(sql)(expr, [], ‘type =’). The oracle goes through its four steps:

1. Fill in blanks. This step is a no-op, since there are no blanks.
2. Complete the fragment. The oracle consults Table 1 to find the completion

fragment for code<sql,expr>, yielding select x from T where (type =).
3. Run the target-language processor. The oracle uses JDBC to send the com-

pleted fragment to SQLite, and then catches the resulting SQLException,
which contains the error message “Syntax error near ‘=’.”.

4. Determine result. Since the error from the target-language processor was a
syntax error, the oracle reports this error back to the user.

Assume the user fixes the fragment, writing ‘sql(expr)[type = 1], and then
runs Marco again.

1. Fill in blanks. This step is still a no-op, since there are no blanks.
2. Complete the fragment yields select x from T where (type = 1).
3. Run the target-language processor. If there is no table T with an attribute

type in the database, the error message is “No attribute ‘type’ in table ‘T’.”.
4. Determine result. Since the error is not a syntax error, the oracle succeeds

and indicates that the fragment is syntactically well-formed.

5.3 Discussion

Good completion fragments (see Table 1) satisfy three properties: they are com-
plete, conservative, and accurate. A complete fragment yields a complete com-
pilation unit in the target language. A conservative fragment has a blank that
accepts all fragments conforming to the original nonterminal. An accurate frag-
ment rejects fragments that do not conform to the original nonterminal. Of
these three properties, the first two help avoid spurious error messages, i.e., false
positives, while the third helps avoid missed syntax errors, i.e., false negatives.

598 B. Lee et al.

Consider the completion fragment for a C++ expression. One complete and
conservative solution would be int $fresh(){ return $orig; }. This com-
pletion fragment is not accurate, since it accepts 0;, which is a C++ statement
and not a C++ expression. To increase accuracy,Marco adds parentheses around
the blank, as in int $fresh(){ return ($orig); }. As another example,
consider the completion fragment for a C++ statement. One complete and con-
servative solution is void $fresh(){ $orig }. However, this completion is not
accurate, since it accepts x=1;y=2;, a sequence of two statements instead of a
single C++ statement. Marco resolves this problem by inserting a conditional
statement around the blank: void $fresh(){ if(1) $orig else; }. In our
experience, enclosing fragments and blanks in delimiters or embedding them in
other target-language constructs makes completion fragments more accurate.

6 Context-Sensitive Syntax

Most programming languages, including SQL, Java, ML, and Scheme, have
context-free syntax. In this case, the syntax oracle from Section 5 works di-
rectly as described. It checks the syntactic well-formedness of a fragment in
isolation based on the declared language and nonterminal. However, our goal is
to handle any language, including languages with context-sensitive syntax such
as C++. Prior work on safe macro systems does not address this issue. This
section extends our syntax oracle to correctly deal with context sensitivity.

6.1 Context-Sensitive Syntax Examples

As a first example, consider the following C++ fragment:

‘cpp(mdecl)[void* method(typeless o) { return 0; }]

The nonterminal mdecl stands for a member declaration. The fragment is syn-
tactically well-formed for this nonterminal, since a method is a special case of a
member. However, after using the completion fragment for mdecl from Table 1,
gcc reports the following errors:

error: expected ’;’ at end of member declaration
error: expected ’)’ before ’o’

These are syntax errors, even though the root cause is a semantic problem:
identifier typeless has not been declared as a type. When gcc cannot parse
typeless as a declaration specifier, it speculates that method is a variable name.
But the downstream tokens make no sense for a variable declaration. This case
shows how a semantic problem, the missing declaration context for typeless,
induces a syntax error.

To resolve such cases, our C++ syntax oracle enumerates all identifiers in
the input fragment, and speculates one by one that they are type names (i.e.,
the opposite of gcc’s speculation). In the example, the syntax oracle finds three
identifiers: method, typeless, and o. At first, the syntax oracle speculates that

Marco: Safe, Expressive Macros for Any Language 599

method is a type, but declaring it as such does not advance the location of the
first error message. Then, the oracle speculates that typeless is a type and
issues the following query to gcc:

class typeless { }; // speculative context
class id1 { // completion fragment
void* method(typeless o) { return 0; } // input fragment

};

Since gcc reports no syntax errors for this query, the syntax oracle correctly
concludes that the input fragment is syntactically well-formed and succeeds. In
theory, a fragment with n ambiguous identifiers may require up to 2n specu-
lative queries for determining syntactic well-formedness. However, in practice,
our simple heuristic of always advancing the location of the first reported error
avoids this exponential explosion.

As a second example, consider another C++ fragment (based on [19]):

‘cpp(stmt)[A(*x)[4] = y;]

The C++ compiler can parse this in two ways: either as a variable declaration
or as an expression statement. If A is a type, then the code declares variable x as
a pointer to an array of 4 elements of type A, and initializes it to y. On the other
hand, if A is a function name, then the code calls the function with parameter *x,
accesses element [4] of the result, and assigns it y. The ambiguity between dec-
larations and statements is so prevalent in C++ that the language specification
has a disambiguation rule of preferring declarations over expression statements
[23, p. 802]. Though, C++, unlike C, does treat declarations as statements for
its syntax.

��������	�

����� ��������	
���� ����������

�������� �������

Fig. 5. Error reporting and recovery

If part of a program is not well-formed, language processors report the error
and try to recover, so that they can report more than one error per invocation.
Fig. 5 depicts how language processors scan through lexical tokens, detect a syn-
tactic or semantic problem, generate an error message, skip several tokens, and
continue analysis. For instance, ANTLR-generated parsers report syntax errors
and then recover by either inserting a token or skipping several downstream to-
kens. The hand-written parsers in gcc report both syntax and semantic errors,
and may skip all or some downstream tokens.

If the skipped tokens contain a syntax error, then the error recovery for the
first error shadows the syntax error. Therefore, the absence of syntax errors does
not imply syntactic well-formedness. The example fragment A(*x)[4] = y;
triggers the following error messages:

600 B. Lee et al.

error: ’x’ was not declared in this scope
error: ’A’ was not declared in this scope
error: ’y’ was not declared in this scope

These semantic errors may shadow downstream syntax errors, so our oracle
speculates that an identifier in a semantic error may be either a type or variable
name. In the example, making A a type name and x and y variable names
eliminates the missing declaration errors, as shown in the following oracle query:

class A {}; class {} x; class {} y; // speculative context
void query() { // completion fragment
A(*x)[4] = y; // input fragment

}

This fragment still yields a semantic error (“ cannot convert ‘<anonymous
class>’ to ‘A (*)[4]’ ”), but the error cannot shadow syntax errors. Hence,
the oracle concludes that the fragment is syntactically well-formed.

6.2 Error Classification

The syntax oracle is concerned with syntax errors, and, in an ideal world, it
would not have to deal with semantic errors. However, as demonstrated by the
above examples, semantic problems affect syntax errors in two cases: a semantic
problem can induce a syntax error, or a semantic problem can shadow a syntax
error. In the induced-error case, it appears as if the fragment is syntactically
ill-formed, but it is actually well-formed. In the shadowed-error case, it appears
as if the fragment is syntactically well-formed, but it is actually ill-formed.

We need not handle syntax errors that induce or shadow another error; the
first error suffices to conclude that the fragment is syntactically ill-formed. Nei-
ther do we need to handle the case of a semantic problem inducing or shadowing
a semantic error; as long as that error in turn does not induce or shadow a syntax
error, it does not affect the syntax oracle. Consequently, the syntax oracle must
recognize two classes of errors: (1) syntax errors and (2) semantic errors that may
shadow syntax errors. We systematically investigated all C++ errors generated
by gcc to validate that our syntax oracle handles these cases correctly. Our in-
vestigation found that there are two kinds of syntax errors: parsing errors, which
are generated while parsing, and post-parsing errors, which are generated after
parsing but still capture violations of syntactic constraints such as case labels
always appearing inside switch statements. Parsing errors are easy to recognize
(they all begin with the word “expected” and include a token or nonterminal
symbol), and there are only a few post-parsing errors.

To collect all shadowing error messages, we identified the seven error recovery
routines in gcc that update the parser state to skip tokens until a synchronization
token. For example, one such routine is skip_until_sync_token(). Next, we
enumerated all call-sites for the recovery routines. We found that code leading
up to these call-sites commonly looks as follows:

Marco: Safe, Expressive Macros for Any Language 601

bool ok = perform_semantic_check();
if (ok)

error("A");
else

error("B");
if (!ok) {

error("C");
skip_until_sync_token();

}

If ok is false, the compiler invokes skip_until_sync_token() and thus skips
tokens, which may contain syntax errors. Consequently, errors "B" and "C" may
shadow syntax errors but error "A"may not. In most cases, we only had to look at
a single routine to understand error shadowing, though in a few cases multiple
routines were involved. We found that shadowing errors are most commonly
lookup errors, which indicate that an identifier has not been declared; though a
few non-lookup errors shadow other errors.

6.3 Iterative Syntax Oracles in Marco

In summary, context sensitivity prevents a Marco oracle from concluding syntac-
tic well-formedness based solely on the absence of syntax errors. In particular for
C++, a semantic problem can either induce or shadow a syntax error. There-
fore, Marco’s syntax oracle for C++ speculatively resolves syntax errors and
shadowing semantic errors by issuing repeated queries to gcc, each with a dif-
ferent speculative context. In other words, the oracle speculates declarations for
identifiers as variables or types. If Step 4 from Section 5.1 detects semantic er-
rors, the algorithm iterates back to Step 2 and resolves them by enumerating
the possible declarations for identifiers.

7 Checking Naming Discipline

This section describes how Marco uses dataflow analysis to ensure that macro
expansion does not cause accidental name capture in the target language. Some
macro systems, notably Scheme, prevent capture by automatically renaming
variables, but that requires deep target-language specific knowledge and is there-
fore not an option for Marco, which is target-language agnostic. Accidental name
capture is a typical bug when using the C preprocessor, as illustrated in Fig. 6.

1 #define swap(v,w) {int temp=v; v=w; w=temp;}
2 int temp = thermometer();
3 if (temp<lo_temp) swap(temp, lo_temp)

Fig. 6. Example for accidental name capture bug with C preprocessor [5,6]

Line 1 declares a macro swap, which uses a local variable temp standing for
“temporary.” Line 2 declares a different variable temp standing for “tempera-
ture” that is outside the scope of the macro. Line 3 passes the name temp as an

602 B. Lee et al.

actual parameter to the formal v of swap. This use of swap captures the name
temp. Since the code outside the macro uses temp for “temperature” and not
“temporary,” the name capture is called accidental.

More generally, accidental name capture happens when a first fragment f1
contains a free name x; a second fragment f2 unintentionally captures name x
at blank b; and f1 flows into b. Marco detects capture as follows. The freeNames-
Oracle discovers all free names in fragment f1. Marco’s forward dataflow analysis
propagates free names to blanks. The capturedNameOracle discovers whether f2
captures name x at blank b. In dataflow terminology, the analysis state is a map
from meta-language variables to free target-language names. The Gen-set of a
fragment is the set of free names in the fragment. The Kill-set of a fragment at
a blank is the set of names that it captures at that blank.

Marco uses static dataflow analysis at macro definition time and dynamic
dataflow analysis in the interpreter at macro instantiation time. The oracles are
target-language specific and use the off-the-shelf target-language processor as
a black-box to generate error messages that reveal information about free and
captured names. The dataflow analysis itself is target-language independent.

7.1 Free-Names Oracle

The signature of the free-names oracle is:

freeNamesOracle : lang → (nonT,list<nonT>,α0$1α1 . . .$nαn) → list<ID>

For example, given fragment ‘cpp(expr)[100 * (1.0 / (foo))], Marco
invokes the free-names oracle as follows:

freeNamesOracle(cpp)(expr, [], ‘100 * (1.0 / (foo))’)

A target-language name is free if it is not bound inside the fragment. In the
example, foo is free, and the oracle should return the list [foo]. To obtain this
result, the free-names oracle first consults Table 1 to instantiate a completion
fragment that will be sent to gcc:

int query_expr() { return (100 * (1.0 / (foo))); }

For this query, gcc returns the error message “name ‘foo’ was not declared in this
scope.” The free-names oracle looks exactly for this kind of error message, which
indicates that a name is undefined. In the example, the oracle speculates that
foo is free. To validate this hypothesis, it executes one more query. It prepends
a declaration of the name foo to the compilation unit and sends it to gcc again.
In the example, the test becomes:

int foo;
int query_expr() { return (100 * (1.0 / (foo))); }

This modification resolves the declaration error and confirms the hypothesis as
correct. Hence, the oracle adds the name foo to the list of free names. It repeats
this process until it does not observe any more declaration errors. In summary,
Marco exploits the fact that a name in a fragment is free, as long as it can be
bound by a declaration in the enclosing scope.

Marco: Safe, Expressive Macros for Any Language 603

7.2 Captured-Name Oracle

The captured-name oracle checks if a target-language name is captured by a
blank in a fragment and thus if it is safe to fill in the blank with a fragment in
which the name is free. The signature of the captured-name oracle is:

capturedNameOracle : lang
→ (nonT,list<nonT>,

α0$1α1 . . .$nαn,int, ID)
→ boolean

We check the blank number int and the free name ID for capture. Consider
swapping two integers: ‘cpp(stmt)[{int temp=$v; $v=$w; $w=temp;}]. The
following oracle call checks whether blank 1 captures name temp:

capturedNameOracle (cpp)
(stmt, [expr, expr, expr, expr],
‘{int temp=$1; $2=$3; $4=temp;}’, 1, temp)

Since blank 1 in the fragment does in fact capture the target-language name
temp, the oracle returns true as expected. SQL’s scoping rules differ from C++
and implement semantics similar to a with-statement. For example, consider
the fragment ‘sql(query)[select name from Patrons where $pred]. The
blank in this fragment captures any names referring to column names in the
Patrons table in the database. Our capturedNameOracle algorithm handles both
target languages and their scoping rules with the same approach.

Consider invoking the capturedNameOracle to check if free name x is captured
at blank number i. Similar to the other oracles, the captured-name oracle fills in
all blanks j with i = j using the nonterminal-specific place-holders from Table 1.
However, for blank i, our analysis hypothesizes that x is captured at the blank.
To find counter-evidence, it places x in the blank, wrapping it in boiler-plate
code as necessary for syntactic well-formedness. If the target-language processor
reports an “x is unknown” error message, then the oracle concludes that x is
not captured at blank i, and returns false. Otherwise, it returns true.

7.3 Intentional Capture

The dataflow analysis propagates free target-language names through variables
referencing target-language fragments to blanks. It reports an error if a blank ac-
cidentally captures a free name. To determine whether a capture is accidental or
intentional, the analysis uses the optional capture annotation in the fragment-
Head clause of the Marco grammar (see Fig. 3). If a name is listed in the capture
annotation, the capture is intentional, otherwise the capture is accidental and
Marco reports an error.

For an example of intentional capture, consider the Marco function boundIf
in Fig. 7. The function implements an if-statement that binds the value of the
condition to it, with the express purpose of exposing it to the body, i.e., blank 2.

604 B. Lee et al.

1 code<cpp,stmt> boundIf(code<cpp,expr> cond, code<cpp,stmt> body) {
2 return ‘cpp(stmt, capture=[it])[{
3 int it = $cond; #blank 1
4 if (it) { $body } #blank 2
5 }];
6 }

Fig. 7. Example for intentional name capture when using Marco to generate C++ code

The annotation capture=[it] in line 2 indicates that any such capture is in-
tentional. This convention makes it possible to fill blank 2 with a fragment, such
as printf("%d", it);, that contains a free identifier it and have the body’s
it refer to the macro’s it, as declared on line 3. Marco’s captured-names oracle
still detects the capture of the identifier it, but the capture annotation sup-
presses the corresponding error message. As a special case, if a blank captures an
identifier provided by a previous blank in a binding position, e.g., int $index;,
Marco assums that the capture is intentional. No annotation is necessary.

7.4 Dataflow Analysis

The interesting statements for the dataflow analysis are Marco statements with
fragments and blanks. Fig. 8 shows the transfer-function for such statements.
Given a Marco statement and an input analysis state inState, the transfer func-
tion computes an output analysis state outState. The analysis state only changes
for the Marco location w assigned by the statement. The captured-name oracle
from Section 7.2 checks whether free names from inState(v1) through inState(vn)
are captured by the fragment. If they are captured and the capture is not in-
tentional (the set difference Captured − Intentional is non-empty), the analysis

w=`lang(nonT,capture=capt)[�0$v1�1…$vn�n];

Captured-

Name Oracle

Free-Names

Oracle

U �

Error Report

Captured Not captured

Intentional

Accidental Free in w
Free in
u � w

Free

Free in v1…vn

Marco Statement Input State

Output State

Fig. 8. Transfer functions for the naming-discipline analysis

Marco: Safe, Expressive Macros for Any Language 605

reports an error. If they are not captured, then they are still free in w. In addi-
tion, the free-names oracle checks for free names in the constant portions α0 thru
αn of the fragment. Those free names are also free in w. The resulting output
state outState(w) uses the free names for w as discovered by the oracles. For all
other locations u = w, the transfer function forwards the free names from the
input state outState(u) = inState(u).

One pragmatic issue is how to report high-quality error messages in the case of
accidental name captures. The analysis remembers which errors it has reported
so far and avoids duplicates. Furthermore, the analysis tracks the originating
fragment for each free name to more accurately report the source of accidental
name captures. When the analysis detects an accidental capture, it reports both
the line number of the origin and the line number of the capture.

Marco’s static checker uses static dataflow analysis to enforce the naming
discipline at macro definition time. It reports accidental name capture errors
to macro authors. However, a Marco program may receive fragments as exter-
nal inputs, and these fragments may contain free names. Consequently, Marco’s
interpreter uses dynamic dataflow analysis to enforce naming discipline again
at macro instantiation time, now reporting accidental name capture errors to
macro users. The dynamic dataflow analysis uses the same transfer function as
the static analysis and it performs the same oracle queries.

8 Experimental Evaluation

This section experimentally validates the key characteristics of Marco: expres-
siveness, safety, and language scalability. To evaluate expressiveness, we imple-
mented microbenchmarks from prior work and a code-generation template for
a high-performance stream processing module. To evaluate safety, we execute
Marco on each microbenchmark and on the stream processing code generator.
To evaluate language scalability, we report statistics on the implementation effort
for supporting different target languages.

8.1 Methodology

Tools and Environments. We use Marco r278 running on the Sun HotSpot Client
JVM 1.6.0 21-ea. For the unmodified target-language processors, we downloaded
and built gcc 4.6.1 as well as SQLiteJDBC v056 based on SQLite 3.4.14.2. We
conducted all experiments on a Core 2 Duo 1.40 GHz with 4 GB main memory.
The machine runs Ubuntu 11.10 on the Linux 3.0.0-12 kernel.

Marco Programs. We wrote 8 Marco microbenchmark programs with 22 macro
functions derived from related work [5,26] and the Aggregate code genera-
tor derived from IBM InfoSphere Streams [16]. The Aggregate code generator
produces C++ declarations, statements, and expressions that exercise classes,
namespaces, and templates. Table 2 presents the microbenchmarks. The first four
programs implement C++ macros from the MS2 paper by Weise and Crew [26].
These macros add new abstractions such as resource management (paint), dy-
namic binding (dynamic_bind), rich exception handling (exceptions), and

606 B. Lee et al.

Table 2. Oracle analysis results for the micro-benchmarks fragments

Marco Program Fragment Code Type Size Backtr. Queries Decls

paint Painting1 code<cpp,stmt> 17 5 17 7

dynamic_bind dynamic_bind1 code<cpp,stmt> 13 3 14 8

exceptions

throw1 code<cpp,stmt> 23 2 12 7
throw2 code<cpp,stmt> 28 2 16 7
catch1 code<cpp,expr> 1 1 3 3
catch2 code<cpp,stmt> 51 1 8 4
unwind_protect1 code<cpp,expr> 1 1 3 3
unwind_protect2 code<cpp,stmt> 44 2 12 6

myenum

myenum1 code<cpp,decl> 5 0 1 1
myenum2 code<cpp,stmt> 9 1 5 4
myenum3 code<cpp,decl> 15 0 1 1
myenum4 code<cpp,stmt> 14 2 8 6
myenum5 code<cpp,decl> 18 0 2 2

discriminant discriminant1 code<cpp,expr> 9 0 1 1

complain
complain1 code<cpp,stmt> 4 0 2 2
main1 code<cpp,expr> 1 1 3 3
main2 code<cpp,stmt> 13 0 2 2

swap
swap1 code<cpp,id> 1 1 3 3
swap2 code<cpp,id> 1 1 3 3
swap3 code<cpp,stmt> 28 5 31 12

SQLSyntax
good1 code<sql,expr> 3 0 1 0
good2 code<sql,stmt> 6 0 1 0

multiple declarations (myenum). The next three programs implement C++ ver-
sions of the examples from “Macros That Work” by Clinger and Rees [5]. These
macros illustrate naming issues during macro expansions. The final program gen-
erates SQL queries for extracting bookmark titles from a web browser’s database.

Data collection methodology. To collect statistical results for fragment analy-
sis, we turned on Marco’s -pstat command-line option. To count source lines, we
ran the sloccount utility. For the number of error handling rules, we manually
examined source files in the Marco system.

8.2 Expressiveness and Safety

In Table 2, Column “Fragment” names the macros using logical function names.
Column “Code Type” shows the types of the macros, which indicate the target
language and nonterminal. Column “Size” counts the number of target-language
tokens and blanks. The remaining columns present the results from running the
oracle analysis. The oracle analysis synthesizes query programs to determine
whether a fragment is syntactically correct. Column “Backtr.” counts how often
the syntax oracle needed to backtrack before finishing. Column “Queries” counts
the number of compilation units sent to the target-language processor. Column

Marco: Safe, Expressive Macros for Any Language 607

Table 3. Oracle analysis averages for the fragments in the Aggregate operator

Code type Count Size Backtracks Queries Decls

code<cpp,id> 5 1.00 0.80 3.00 3.00
code<cpp,type_spec> 8 6.88 0.00 3.75 2.75
code<cpp,type_id> 1 1.00 0.00 2.00 2.00
code<cpp,expr> 12 4.50 0.08 2.67 2.58
code<cpp,stmt> 40 13.20 1.58 10.13 6.63
code<cpp,fdef> 11 31.00 4.09 21.73 9.36
code<cpp,mdecl> 22 12.36 0.05 3.23 3.00
code<cpp,decl> 13 11.38 0.00 4.08 3.00
code<cpp,cunit> 3 7.00 0.00 2.00 2.00

“Decls” shows the number of declarations synthesized by the oracle to provide
evidence for syntactic well-formedness.

For the microbenchmark fragments, which contain 1–51 tokens or blanks, our
oracle analyzer concludes syntactic well-formedness after evaluating 1–31 queries.
The number of queries is proportional to the number of synthesized declarations
rather than the size of input fragments. This result is not surprising, because the
number of C++ parsing errors for syntactically well-formed fragments should be
proportional to the number of undefined identifiers. About 20% of queries result
in the oracle backtracking speculations.

This research was originally motivated by language interoperability and conci-
sion for IBM’s InfoSphere Streams, a stream processing system [16]. A streaming
application consists of data streams and operators. Each operator continuously
consumes data from one or more input streams, performs its computation, and
outputs one or more streams. An Aggregate operator uses sum, average, max-
imum, etc. over a sliding window and must be customized for the particular
aggregate and data types. To implement these operator variants, InfoSphere
Streams uses “code generation templates,” i.e., macros that generate custom
code for a specific operator variant. We re-implemented the code generation
template for the Aggregate operator from InfoSphere Streams in Marco.

Table 3 presents average statistics for the 115 fragments in Aggregate. The
first column classifies fragments by their code type and the second lists the
number of fragments for each type. The remaining columns average the number
of tokens and blanks (“Size”), the number of backtracks during oracle query
analysis (“Backtracks”), the number of generated C++ compilation units for
queries (“Queries”), and the number of helper declarations to disambiguate the
C++ syntax (“Decls”).

The Aggregate operator exercises more C++ specific code types than the
micro-benchmarks. For instance, the 22 fragments of type code<cpp,mdecl>,
where mdecl is the member-declaration nonterminal, generate C++ fields, meth-
ods, and constructors. No other macro system generates members of a C++ class
and checks syntactic correctness of the generated code. Due to the ambiguity
of C++ syntax, our oracle analyzer backtracked speculations 72 times over the

608 B. Lee et al.

114 fragments. Most backtracking arises form C++ fragments that contain un-
known identifiers or expressions statements. Even when an identifier is declared
in C++, the gcc parser uses backtracking, so it comes as no surprise that our
oracle also backtracks.

8.3 Language Scalability

To add target languages in a traditional safe macro system, the developer must
modify the target-language processor, which is usually large and complex. To
make matters worse, the modified target-language processor is effectively a
branch version, and keeping it up-to-date with the main branch requires ad-
ditional engineering effort. Adding a target language to Marco requires that the
developer write a small plug-in consisting of a simple lexer and three oracles.
The oracles wrap unmodified target-language processors. If these processors add
or change their error messages, Marco must adapt. We argue that the effort is
considerably lesser in the Marco approach.

C++ Plug-in. Like all target-language specific Marco plug-ins, our C++ plug-
in consists of a lexical analyzer and three oracles. For the lexical analyzer,
we define the TARGET TOKEN terminal in Fig. 3 with a few lines of regular
expressions for identifier (1), literal (5), keyword (74), and preprocessing-op-
or-punc (72) [23]. Most regular expressions are trivial and only identifier and
literal (6) require regular expression operators. Our three oracles consist of 1K+
non-blank source lines of Java. About half of the source lines implement oracle
declaration queries, and the other half handle error messages. The error handlers
contain 52 regular expressions to classify gcc error messages. In contrast, the
gcc source files for the C++ front-end (cc1plus) contain 100K+ non-blank C
source lines. The hand-written parser in parser.c has 14K+ non-blank source
lines, and it relies on the semantic analysis in 96K+ non-blank source lines to
disambiguate parsing decisions. Our C++ plug-in is much smaller and reuses,
unmodified, the sophisticated code base that has been maintained for decades.

Fig. 9 presents an abstracted, static call graph for gcc’s 1,400+ error messages.
The cc1plusmodule consists of 53 C source files, 5,400+ procedures, and 67,000+
call sites. Out of 5,400+ procedures, 2,500+ procedures are reachable from the
parser (c parse file). We use these 2,500+ procedures to over-approximate the
syntactic and semantic error messages. We exclude the preprocessing library
(libcpp) and backend library (libbackend) by treating them as terminal functions
in the call graph. Our analysis assumes that all error messages must go through
the three final error reporting functions: error, error n, and error at. We exclude
the permerror function because it reports “permissive” errors that never shadow
any downstream error messages. We label each node with a particular func-
tion name in a box or a group of functions in an oval. PARSING represents the
functions for recognizing C++ nonterminals in the top-down parser. OTHERS
represents the remaining functions. We label several edges with capital letters
from A to P because their call sites tentatively characterize the kinds of error
messages.

Marco: Safe, Expressive Macros for Any Language 609

PARSING: parser.c

OTHERS

cp_parser_
parse_and_diagnose_
invalid_type_name

G

cp_parser_
diagnose_

invalid_type_name

check_for_
invalid_

template_id

J

unqualified_
name_lookup_

error

F

cp_parser_
check_

template_
parameters

I

cp_parser_
name_lookup_

error

E

cp_parser_
require_
keyword

A

cp_parser_
require

B

cp_parser_
error

C

error_at

O

error

DK

qualified_
name_lookup_

error

L

N

P

error_n

M

cp_parser_
required_

error

c_parse_error

c_parse_file

Fig. 9. Abstract Call Graph for error reporting routines

Table 4 maps the labeled call edges to our classifications of error messages.
A and B are parsing syntax errors because they expect specific tokens including
keywords, punctuation, and operators in C++. C contains 90 syntax errors and 2
semantic errors. E-L are semantic lookups identifying undeclared or unsatisfiable
identifiers. D and M-P are mostly semantic errors. Overall, we identified 104
semantic errors that may shadow downstream error messages.

Our oracles recognize 384 critical error messages: 280 parsing error messages,
28 lookup error messages, and 76 other shadowing semantic error messages. A
large fraction of these error messages are recognized by a few dozen regular
expressions. For instance, all parsing error messages begin with expected and
end with either a terminal or nonterminal symbol. The lookup error messages
begin with undeclared.

SQL Plug-in. Our SQL plug-in consists of 40 lines for the lexical analyzer
and 400 lines for the three SQL oracles. The lexical analyzer for SQL is simpler
than the one for C++. Likewise, SQLite’s parser is simpler than gcc’s parser: it
consists of about 1K source lines in parser.y written as an LALR specification.
By using SQLite as a black-box language processor, Marco’s SQL plug-in reuses
not just the parser but also other components for checking naming discipline, all
of which have been maintained and tested widely for over a decade.

610 B. Lee et al.

Table 4. Mapping from calling contexts to error classes

Error Call Syntax Semantics
Context Sites Parsing Post-Parsing Lookup Other Shadow Non-Shadow

A 27 27
B 176 176
C 92 73 17 1 1
D 22 3 2 17
E 5 5
F 2 2
G 4 4
H 2 2
I 3 3
J 4 4
K 3 3
L 5 5
M 2 2
N 71 71
O 125 1 7 117
P 1,012 51 961

9 Related Work

Unlike previous macro systems, Marco is safe, well-encapsulated, and target-
language agnostic at the same time. In the literature, safe macro systems are
deeply coupled with the particular target language and its implementation
(Section 9.1), whereas language-agnostic macro systems fail to provide safety
guarantees (Section 9.2). Furthermore, while there is previous work that relies
on error messages from unmodified language processors, this approach has not
previously been applied to macro systems (Section 9.3).

9.1 Language-Specific Safe Macro Systems

Some macro systems check the safety of generated code by deeply coupling the
macro language with the target language. Like Marco, these systems enforce
macro safety, but, unlike Marco, they are target-language specific.

Syntax. To enforce syntactic well-formedness, previous safe macro systems usu-
ally rely on a grammar for the target language. For instance, MS2 implements a
C grammar [26], metafront implements grammars for Java and HTML [3], and
Ur implements grammars for HTML and SQL [4]. These macro systems approach
the level of complexity of extensible compiler toolkits such as ASF+SDF [25],
Polyglot [18], or xtc [8,10]. While the approach of implementing a grammar
works well enough for targeted language extensions and small domain-specific
languages, it is problematic for large, existing languages. Besides the sizable
development effort, another issue is compatibility. For example, HTML syntax
is deceptively simple, but in practice, HTML processors have so many corner-
cases that checkers resort to random testing [1]. Marco side-steps this issue by
leveraging unmodified target-language processors for any language.

Scope. In the functional-languages community, a wide-spread technique for en-
suring that macros respect scoping rules is hygiene. Kohlbecker et al. introduce

Marco: Safe, Expressive Macros for Any Language 611

hygienic expansion [13]. Clinger and Rees present an improved algorithm for re-
naming identifiers to guarantee hygiene [5]. Kim et al. formally characterize ac-
cidental and intentional capture, but do not implement intentional capture [12].
All these systems depend on the syntax and scoping rules for the chosen target
language. In contrast, Marco programmers declare intentional name capture and
rely on the system to detect scoping violations with black-box target-language
processors. Marco does not automatically rename identifiers, but rather uses
dataflow analysis to detect and report errors on accidental name capture.

Semantics. Some macro systems check whether expanded fragments will pass
type checking in the target language. Multi-stage extensions generate safe code
in, for instance, ML [17], Haskell [21], and Java [27]. C++ concepts add contracts
to templates [7]. MorphJ statically verifies some contracts so that expanded
code will not have name-resolution conflicts [11]. Quail checks types between
SQL queries and the database system [24]. However, target-language agnostic
type checking is an open problem that has not been addressed by any of these
systems, and we do not yet address it in Marco either.

9.2 Language-Agnostic Unsafe Macro Systems

The idea of macro systems that work for any target language dates back at
least to GPM [22]. GPM is credited as an ancestor of M4, a general-purpose
preprocessor widely installed on GNU platforms today [15]. Both offer target-
language independence, but neither is safe. Perhaps the most used macro system
today is the C preprocessor. Ernst et al. present an empirical study that demon-
strates numerous violations of safety rules when using the C preprocessor [6].
Furthermore, code-generation based on concrete syntax is widely used in web
applications. The PHP language is primarily a code generator for HTML and
JavaScript. Programmers often generate SQL code by manipulating strings in
general-purpose languages such as Java.

Compared to these systems, Marco adds safety checks while remaining expres-
sive and language-agnostic. Marco relies on high-quality error messages from
target-language processors. We believe that our reliance on descriptive error
messages aligns well with compiler and interpreter writers who want to provide
precise explanations for compilation and execution failures. Fragment code types
constrain both the target-language and the nonterminal, enabling syntactic well-
formedness checks in isolation.Marco is the first language-agnostic macro system
to rely on a dataflow analysis for enforcing naming discipline.

9.3 Using Messages from Black-Box Compilers

A few previous systems rely on error messages from unmodified language
processors. Notably, Seminal analyzes error messages from the OCaml and gcc
compilers and suggests changes for ill-formed programs [14]. Autoconf compiles
specially crafted C/C++ programs, analyzes any error messages, and determines
if preprocessor symbols or header files are available in the build environment.
The HelpMeOut system mines IDE logs to discover common bug fixes, and then

612 B. Lee et al.

proposes them to programmers based on currently displayed error messages [9].
Similar to Marco, these systems execute unmodified language processors, and
inspect the error messages for clues. Unlike Marco, none of these systems is a
macro system. To our knowledge, Marco is the first system that mines error
messages from black-box compilers and interpreters for safe code generation.

10 Conclusion

Macros that are expressive, safe, and language scalable at the same time have
the potential to significantly improve programmer productivity, particularly for
increasingly prevalent multilingual applications. This paper has presented the
first such macro system called Marco. Our work is based on two key ideas. First,
a plug-in facility provides target-language specific oracles implemented with off-
the-shelf compilers and interpreters. In particular, we have identified three simple
oracles: syntax, free-names, and captured-name. They are sufficient for ensuring
syntactic correctness and naming discipline of macros. Oracles are discharged by
submitting specially crafted programs to the target-language processor and then
analyzing any resulting error messages. Second, a statically typed quote/unquote
facility maximally exploits the target-language independent translation engine.
Notably, the type of a fragment specifies its target language and its nontermi-
nal, which the engine uses to invoke the appropriate language-specific oracles.
Our evaluation of the Marco prototype supporting C++ and SQL demonstrates
the viability of this approach. Future work should explore additional target lan-
guages and safety guarantees. Overall, our work demonstrates that safe code
generation through macros is orthogonal to language implementation and can
be well-encapsulated and language-scalable at the same time.

References

1. Artzi, S., Kiezun, A., Dolby, J., Tip, F., Dig, D., Paradkar, A., Ernst, M.D.: Finding
bugs in dynamic web applications. In: ACM International Symposium on Software
Testing and Analysis, ISSTA (2008)

2. Bachrach, J., Playford, K.: The Java syntactic extender (JSE). In: ACM Con-
ference on Object-Oriented Programming Systems, Languages, and Applications,
OOPSLA (2001)

3. Brabrand, C., Schwartzbach, M.I., Vanggaard, M.: The metafront system: Extensi-
ble parsing and transformation. Electronic Notes in Theoretical Computer Science
82(3) (December 2003)

4. Chlipala, A.: Ur: Statically-typed metaprogramming with type-level record com-
putation. In: ACM Conference on Programming Language Design and Implemen-
tation, PLDI (2010)

5. Clinger, W., Rees, J.: Macros that work. In: ACM Symposium on Principles of
Programming Languages, POPL (1991)

6. Ernst, M.D., Badros, G.J., Notkin, D.: An empirical analysis of C preprocessor
use. IEEE Transactions on Software Engineering (TSE) 28(12) (December 2002)

7. Gregor, D., Järvi, J., Siek, J., Stroustrup, B., Reis, G.D., Lumsdaine, A.: Concepts:
Linguistic support for generic programming inC++. In:ACMConference onObject-
Oriented Programming Systems, Languages, and Applications, OOPSLA (2006)

Marco: Safe, Expressive Macros for Any Language 613

8. Grimm, R.: Better extensibility through modular syntax. In: ACM Conference on
Programming Language Design and Implementation, PLDI (2006)

9. Hartmann, B., MacDougall, D., Brandt, J., Klemmer, S.R.: What would other
programmers do? Suggesting solutions to error messages. In: ACM Conference on
Human Factors in Computing Systems, CHI (2010)

10. Hirzel, M., Grimm, R.: Jeannie: Granting Java native interface developers their
wishes. In: ACM Conference on Object-Oriented Programming Systems, Lan-
guages, and Applications, OOPSLA (2007)

11. Huang, S.S., Smaragdakis, Y.: Expressive and safe static reflection with MorphJ.
In: ACMConference on Programming Language Design and Implementation, PLDI
(2008)

12. Kim, I.-S., Yi, K., Calcagno, C.: A polymorphic modal type system for LISP-
like multi-staged languages. In: ACM Symposium on Principles of Programming
Languages, POPL (2006)

13. Kohlbecker, E., Friedman, D.P., Felleisen, M., Duba, B.: Hygienic macro expansion.
In: ACM Conference on LISP and Functional Programming, LFP (1986)

14. Lerner, B.S., Flower, M., Grossman, D., Chambers, C.: Searching for type-error
messages. In: ACM Conference on Programming Language Design and Implemen-
tation, PLDI (2007)

15. GNU M4 macro processor,
http://www.gnu.org/software/m4/manual/m4.html

16. Mendell, M., Nasgaard, H., Bouillet, E., Hirzel, M., Gedik, B.: Extending a general-
purpose streaming system for XML. In: International Conference on Extending
Database Technology, EDBT (2012)

17. Moggi, E., Taha, W., Benaissa, Z.-E.-A., Sheard, T.: An Idealized MetaML:
Simpler, and More Expressive (Includes Proofs). In: Swierstra, S.D. (ed.) ESOP
1999. LNCS, vol. 1576, pp. 193–207. Springer, Heidelberg (1999)

18. Nystrom, N., Clarkson, M.R., Myers, A.C.: Polyglot: An Extensible Compiler
Framework for Java. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 138–152.
Springer, Heidelberg (2003)

19. Roskind, J.: Parsing C, the last word. The comp.compilers newgroup (January
1992), http://groups.google.com/group/comp.compilers/
msg/c0797b5b668605b4

20. Shalit, A.: The Dylan Reference Manual. Addison-Wesley (1996)
21. Sheard, T., Peyton Jones, S.: Template meta-programming for Haskell. ACM

SIGPLAN Notices 37(12) (December 2002)
22. Strachey, C.: A general purpose macrogenerator. The Computer Journal (1965)
23. Stroustrup, B.: The C++ Programming Language. Addison Wesley (2000)
24. Tatlock, Z., Tucker, C., Shuffelton, D., Jhala, R., Lerner, S.: Deep typechecking

and refactoring. In: ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications, OOPSLA (2008)

25. van den Brand, M.G.J., Heering, J., Klint, P., Olivier, P.A.: Compiling language
definitions: The ASF+SDF compiler. ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 24(4) (July 2002)

26. Weise, D., Crew, R.: Programmable syntax macros. In: ACM Conference on Pro-
gramming Language Design and Implementation, PLDI (1993)

27. Westbrook, E., Ricken, M., Inoue, J., Yao, Y., Abdelatif, T., Taha, W.: Mint:
Java multi-stage programming using weak separability. In: ACM Conference on
Programming Language Design and Implementation, PLDI (2010)

http://www.gnu.org/software/m4/manual/m4.html
http://groups.google.com/group/comp.compilers/msg/c0797b5b668605b4
http://groups.google.com/group/comp.compilers/msg/c0797b5b668605b4

Practical Permissions for Race-Free Parallelism

Edwin Westbrook, Jisheng Zhao, Zoran Budimlić, and Vivek Sarkar

Rice University, Houston, TX 77005, USA
{emw4,jisheng.zhao,zoran,vsarkar}@rice.edu

Abstract. Type systems that prevent data races are a powerful tool for
parallel programming, eliminating whole classes of bugs that are both
hard to find and hard to fix. Unfortunately, it is difficult to apply previ-
ous such type systems to “real” programs, as each of them are designed
around a specific synchronization primitive or parallel pattern, such as
locks or disjoint heaps; real programs often have to combine multiple syn-
chronization primitives and parallel patterns. In this work, we present
a new permissions-based type system, which we demonstrate is practi-
cal by showing that it supports multiple patterns (e.g., task parallelism,
object isolation, array-based parallelism), and by applying it to a suite
of non-trivial parallel programs. Our system also has a number of theo-
retical advances over previous work on permissions-based type systems,
including aliased write permissions and a simpler way to store permis-
sions in objects than previous approaches.

1 Introduction

As computer vendors turn towards multi-core processors for continued perfor-
mance increases, more and more programmers in the computer industry are
faced with the prospect of writing, modifying, testing, and debugging parallel
programs. However, working with parallel programs can be challenging due to
potential data races. Data races can cause programs to run in unexpected and
counter-intuitive ways, making parallel programs hard to write, debug, and rea-
son about. While the possible effects of data races have been formalized using
complex memory models [23,8], just determining whether a race could occur, let
alone what the effects of that race could be, is a significant effort. This is true
even for parallelism experts working with very small programs.

There has been much research into programming languages and type systems
that completely avoid data races [7,33,6,25,1,32,12,11,19,2]. The assumption is
that a data race is a bug, which is, in practice, true for most application software.
Unfortunately, it is difficult to apply these past approaches to real programs,
because past approaches are generally designed around specific synchronization
primitives or parallel patterns, such as locks or disjoint heaps. Real programs
often have to combine multiple synchronization primitives and parallel patterns,
both to get good performance and to match specific algorithms. Even when
previous approaches can be used, they often require a high degree of program-
mer effort, in terms of annotating the code and re-factoring existing parallel

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 614–639, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Practical Permissions for Race-Free Parallelism 615

algorithms to fit specific parallel patterns. Further, many programmers are not
trained to use the sophisticated type systems required by these approaches.

In this paper, we present a practical race-free type system that supports multi-
ple patterns (e.g., task parallelism, object isolation, array-based parallelism), and
has been applied to a suite of non-trivial parallel programs. Our system is called
Habanero Java with permissions (HJp) and is an extension of the Habanero Java
(HJ) language [14], which itself is a task-parallel extension of Java. The core idea in
HJp is that each object, at each point in time, is in one of two modes: shared read,
where any task1 is permitted to read from it but none is permitted to write to it;
or private read-write, where only one task can read from or write to the object.
We enforce this property by extending permission types [21,35,13,4,5,12], which
capture knowledge about the mode of an object at different points in the program.
We introduce two technical advances to permission types. First, our system allows
aliased write permissions, while prior work allows write permissions only to non-
aliased pointers, which is restrictive in practice.2 Second, our system introduces a
novel approach called storable permissions for expressing transitive permissions,
e.g., permissions to all elements of a linked list, that requires less technical machin-
ery than previous approaches [13].

To demonstrate the practicality of our approach, we have ported 15 bench-
marks from HJ to HJp, totaling almost 14,000 lines of code and covering a range
of parallel patterns. This only required modifications to 5% of the lines of code on
average. We compared HJp to Deterministic Parallel Java (DPJ) [7,6], another
race-free type system: for the same 5 benchmarks, HJp required modifications
to 7.3% of the lines of code on average, as opposed to the 10.5% of the code that
required annotations in DPJ. Further, HJp is a gradual [28] extension of HJ,
meaning that some or all of these annotations can be omitted, and the compiler
will insert dynamic type-casts where necessary to ensure race-freedom at run
time. A simple and effective algorithm for inserting these type-casts was covered
in prior work [34], which introduced a runtime approach for checking permis-
sions on entry to regions of code identified by the programmer. The HJp type
system presented here expands on that work by introducing programmer anno-
tations that can reduce the number of type-casts inserted, eventually leading to
a statically-verified program with no type-casts.

The remainder of this paper is organized as follows. In Sections 2, 3 and 4
we introduce and discuss the main features of the HJp type system: fractional
read/write permissions, storable permissions and gradual typing, using a core
calculus, called Core HJp, which is then formalized and proved to be race-free
in Section 5. Extensions to Core HJp to support array-based parallelism and
objects guarded by critical sections are given in Section 6. Practical experience
using HJp is then discussed in Section 7, before discussing related work and
concluding in the last two sections.

1 We use “task” instead of “thread” to distinguish potential parallelism in a program
from OS threads that may be used to implement this parallelism.

2 Bierhoff and Aldrich [5] allow aliased writes for protocol enforcement, but it is unclear
if their approach applies to race-free parallel programming.

616 E. Westbrook et al.

2 Fractional Read/Write Permissions

Fractional permissions, first introduced by Boyland [12], are a powerful idea
for fork/join parallel programming. The basic idea is that a task can start out
with some permission p, and can temporarily split p in half, yielding two 1

2p
permissions, both of which can be used in parallel. When parallel use of these
permissions are finished, the two 1

2p permissions can be re-combined into p again.
The exact fractional 1

2 is not important, just that the two pieces sum to 1. For
example, the following code uses permission p to read field f from x:

finish (async (. . . = x.f); . . . = x.f)

This code uses HJ’s async to fork a child task, which is intuitively passed a 1
2p

permission from the parent to allow it to read x.f . The parent continues to run
in parallel, using the remaining 1

2p permission to allow it to read x.f as well.
The finish construct then indicates a join on all child tasks spawned inside the
lexical block. After this join completes, the parent has p again.

The same pattern, however, cannot be allowed if p is a read/write permission
to x.f , since this could potentially allow data races. Specifically, it should not
be possible for a task to pass a fractional read/write permission to another task
while still retaining any read and/or write permissions to the same object. To
address this issue, previous permissions-based type systems only allow writes
when a task has an exclusive (or “unique”) permission, i.e., all of the permis-
sions to an object. Exclusivity is indicated by the fraction “1”. This guarantees
that no other task can read while a task is writing. Unfortunately, it effectively
means that writes are only allowed through unique references, which can be very
restrictive to the programmer, especially in an OO setting. For example, with
standard fractional permissions, calling even the simple function

f (x, y) = x.f := y.f ;

requires that either x and y are statically known to be distinct, or that they are
statically known to be aliased so that the permission for x can be re-used for
y. Such proofs require complex machinery in the type system and, further, the
number of cases grows exponentially with the number of variables.

HJp, in contrast, does allow fractional write permissions. The key idea is this:
it is perfectly fine to form fractional write permissions, as long as they cannot be
passed to other tasks. Thus, HJp has two sorts of fractional permissions: shared
read permissions that can be passed to other tasks; and private write permissions
that cannot be passed to other tasks. In this way, a program can write to an
object without having to show that the pointer is unique. This is especially
useful for gradual typing (see Section 4), as it allows code to be instrumented
with dynamic acquires and releases of permissions, without having to worry
about potential aliases.

In more detail, HJp defines permissions syntactically as follows:

w ::= 0w 1w ε φ ::= wR wW wS
π ::= x : φ F(π) Π ::= Π, π ·

Practical Permissions for Race-Free Parallelism 617

The permission words w define the “fractionalness” of a permission. Intuitively,
any fractional permission φ can be split into two pieces, 0wφ and 1wφ, which
can be thought of as the left half and the right half of φ, respectively. Again, the
actual permission word w is not important except to track the splitting and re-
combining of permissions. The object permissions φ include read permissions wR,
write permissions wW, and sharing permissions wS. We often write Υ to stand
for R, W, or S below. Read and write permissions are straightforward, while
the sharing permission wS allows any permissions wΥ with the same permission
word w, including the sharing permission itself, to be passed to another task.
Note that passing is linear, i.e., permissions cannot be duplicated.

The permissions π include: permissions x : φ, that represent permission φ
to the object pointed to by x; and future permissions of the form F(π), which
state that the current task will have permission π after the next enclosing finish
completes. The latter form captures the fact that some child task will hold
permission π when it completes. Finally, the permission sets Π include zero or
more permissions π. We write Π |l to denote the set of all permissions l : φ in Π .

Permissions are defined this way for theoretical succinctness, but can only
occur in practice in permission sets built from one of the following four “build-
ing blocks” that represent the programmer view of permissions (see Section 7).
Private read permissions x : wR allow reads x.f of fields of x. Private read-
/write permissions x : wR, x : wW also allow writes to x. Neither of these can
be shared with other tasks. Shared read permissions x : wR, x : wS allow reads
of x and can be shared with other tasks, but do not allow writes. Finally, ex-
clusive permissions x : εR, x : εW (W and S are interchangeable here, by our
permission equality rules) allow reads from and writes to x.f , and can further be
shared with other tasks. Splitting an exclusive permission, though, will disallow
either writes or sharing, depending on how it is split. We sometimes abbreviate
exclusive permissions as l : X.

Note that, in HJp, there are no shared mutable variables. Local variables
are passed by value to child tasks, and global variables are fields in static class
objects, as in Java. Thus we do not include permissions for accessing the variable
x itself, and instead all permissions x : φ refer to the object pointed to by x. This
also implies an object granularity of permissions, instead of a field granularity.
There is no inherent problem in extending HJp to include field permissions, but
we have found in practice that this is not needed. Note that HJp does support
array-based parallelism, though; see Section 6.

Permission sets are considered equal up to permutations and the rules

Π, (x : 0wΥ), (x : 1wΥ) = Π,x : wΥ Π, x : εW = Π,x : εS

The first rule allows the left half 0wΥ and the right half 1wΥ of a permission wΥ
to be combined. Looking at it the other way, the rule allows wΥ to be split into
0wΥ and 1wΥ . The second rule allows a write permission to be exchanged for a
sharing permission, or vice-versa, but only when the permission is not fractional,
i.e., when exclusive permissions are held. This means that exclusive permissions
can either be split into private write or shared read permissions, but not both.
Permission set Π1 is said to subsume, or be more permissive than, Π2, written

618 E. Westbrook et al.

Π1 ≥ Π2, iff adding more permissions to Π2 can yield Π1; i.e., this holds iff
there is some Π3 such that Π2, Π3 = Π1.

3 Storable Permissions

Storable permissions allow permissions to refer to a whole tree of objects instead
of just a single object. The idea is that both an object o2 and exclusive permis-
sions to o2 can be stored in an object field o1.f . A task with permission φ to o1
can then read o2 along with φ permissions to o2 out of o1.f , then read φ permis-
sions to an object o3 that is stored in o2, etc., transitively yielding permission φ
to a whole group of objects reachable through o1.

To use storable permissions, some of the fields of class C are designated as
exclusive fields. (See the exclusive keyword in Surface HJp in Section 7.) We
write fX for exclusive fields, and write fn for normal, non-exclusive fields. An
exclusive field assignment x.fX := y implicitly stores an exclusive permission to
y in x, meaning that the current task must hold y : εR, y : εW permissions to
execute this assignment and these permissions are not held after the assignment.3

For exclusive field reads y = x.fX, if the current task holds permission φ to x
before the read, it then “borrows” this permission from x, yielding a φ permission
to y after the field read. To specify which object permissions are being borrowed,
exclusive field reads are annotated, as x.fX(�φ), where �φ indicates a sequence of
zero or more object permissions φ. The borrowed permissions can then be given
back with a remit, written remity(�φ→ x.fX). For example, the code

let y = x.fX(wR, wW) in y.fn := 1; remity(wR, wW → x.fX)

borrows private write permission to y = x.fX to write 1 to y.fn, and then gives
back these permissions when complete.

In order to prevent duplication of permissions, the same permissions �φ may
not be borrowed a second time until either: a remit gives back the borrowed
permissions; or another object z is assigned to x.fX. To track this, we expand
the syntax of object permissions as follows:

φ ::= wR wW wS φ− fX@y

The new object permission wΥ − fX@y indicates that wΥ has been borrowed in
variable y for field fX. The construct −fX@y is called a permission subtraction,
and object permissions are considered equal modulo reordering of permission
subtractions.4 The permission subsumption relation is expanded so that x : φ ≥
x : φ − fX@y and so that x : φ ≥ x : φ′ implies x : φ − fX@y ≥ x : φ′ − fX@y.
We write root(φ) in the below to denote the root wΥ of φ = wΥ − �B.

3 We could allow shared read permissions to be stored as well, but storing private read
or write permissions could allow them to be shared, thereby hurting type soundness.

4 The permission x : wΥ − fX@y can be defined using linear implication as the per-
mission set x.¬fX : wΥ, (y : wΥ 	 x.fX : wΥ) where x.fX : wΥ and x.¬fX : wΥ (not
defined here) are permissions to just x.fX and to all x.f with f �= fX, respectively.

Practical Permissions for Race-Free Parallelism 619

search :: (this : List, ξ \ this : ξR)→ (Bool \ this : ξR)
search (this, ξ) = if P (this.data) then true

else if this.next == null then false
else let x = this.next(ξR) in let r = search (x, ξ) in

remitx(ξR→ this.next); r

Fig. 1. List Searching with Storable Permissions

As an example, Figure 1 shows how to write a list searching algorithm, search,
with storable permissions. We assume a class List that has fields data and next,
containing the data at the head of the list and the next list element, respec-
tively. The next field is exclusive, so holding a permission to the head of a list
is equivalent to holding the permission for the whole list. The type of search
specifies both types and permissions, separated with a backslash, for input and
output. The type portion states that search is a function from a List to a Bool.
The permissions portion states that, on entry to search, private read permission
ξR to the argument this is held, and that it will still be held on exit, where ξ is
a permission word variable representing an arbitrary permission word.

The search function first tests if some predicate P holds of this.data, returning
true if so. If not, then it checks this.next, returning false if this is null and
recursing on this.next otherwise. In order to recurse, search first performs an
exclusive read of this.next, borrowing permission ξR and binding the result to
x. The recursive call itself has the form search (x, ξ), which passes x for the
argument and ξ for the permission word argument of search. The result of the
recursive call is bound to variable r, and the permission ξR on x is given back
to this.next before the function returns r.

4 Gradual Permission Types in HJp

Gradual type systems [35,28] are systems which allow some or all of the type-
checking of a program to be performed dynamically, rather than statically. This
turns strongly typed programming into a gradual process, where the programmer
can iteratively add typing annotations to a program to reduce the number of dy-
namic checks, as opposed to an all-or-nothing effort of passing the type-checker.
HJp uses this idea to allow programmers to omit permission annotations where
they might not be known by the programmer, or might be hard to guarantee
statically. In fact, HJp programs can be compiled and run with absolutely no
permission annotations. This means HJp can compile HJ programs that were
written with no knowledge of the permissions and HJp still guarantees race-
freedom, though some of the dynamic checks may fail at runtime. On the other
end of the spectrum, programs with enough permission annotations to not re-
quire any dynamic checks are guaranteed not to have any checks that fail at
runtime, and, further, suffer no performance loss from dynamic checks. Grad-
ualness in HJp is thus a powerful tool for programmer productivity, making it
easy to port existing HJ programs and to write new programs with little or no

620 E. Westbrook et al.

initial concern for permissions, while at the same time giving the programmer
the ability to gradually perform more work to get more static guarantees.

In previous work [34], we gave a simple but powerful approach to inserting
dynamic permission checks. The checks were coarse enough that the runtime
overhead was relatively low for un-annotated HJ programs — the slowdown
for most benchmarks was under 2.5×, as compared to the order of magnitude
slowdown for some of the best dynamic race detectors — but also avoided false
positives, i.e., spurious failures of dynamic checks: in 11 HJ benchmarks total-
ing over 9,000 lines of code, only one modification was needed to prevent false
positives.5 This latter property is especially important for HJp, as it means that
the approach generally captures programmer intent, even in HJ code that was
not written with permissions in mind. HJp builds upon this work by providing
a type system that allows permissions to be fully statically checked. In this sec-
tion, we briefly review how dynamic permission checks are inserted, and discuss
how these checks fit into the type system of HJp.

To support gradual permission typing, Core HJp includes acquires and re-
leases. An acquire tries to dynamically acquire private read, private write, shared
read, or exclusive permissions to x. This succeeds if the requested permission
does not conflict with any other permissions held for x. Private reads conflict
with private writes in another task, shared reads conflict with any writes, and
exclusive conflicts with any other permission. A conflict causes the acquire to
fail, and a runtime exception is thrown. A release then gives a permission back
to the runtime, indicating that the current task is finished using it.

The fact that acquires throw exceptions on failure mean that HJp implements
a fail-stop semantics for data races. This is similar to other work, such as DRFx
[29,24], and means that we view data races as bugs, which is in fact the case
most of the time. While an alternate approach would be for acquires to block
(awaiting the availability of a permission) instead of throwing exceptions, this
would add the significant possibility of deadlock, especially since the compiler
inserts acquires and releases, as discussed below, that may be unknown to the
programmer. Instead, acquires and releases are meant to act as a form of dynamic
type cast, and so should change the semantics as little as possible.

As a side note, although HJp prevents data races, it does not guarantee deter-
minism. Different acquires could fail for different executions of the same program,
depending on the dynamic schedule, or some execution could report no failures
at all. If an execution contains no failures, however, then it is guaranteed to
contain no races, though it could still contain potential races.

Exclusive acquires are written acquireX(x). This construct attempts to ac-
quire exclusive permissions for x, returning ∗ on success and raising an exception
on failure. Non-exclusive acquires are written let ξ = acquire�Υ (x) in M , where

the sequence �Υ can be either R for private read, R,W for private read-write, or
R, S for shared read permissions. If successful, M is executed with, respectively,
permissions x : wR, permissions x : wR, x : wW, or permissions x : wR, x : wS.
We abbreviate these permissions as x : w�Υ below. Further, w is also substituted

5 Array-based parallel loops also had to be modified to use new syntax; see Section 6.

Practical Permissions for Race-Free Parallelism 621

for the permission word variable ξ in M . Note that programs are not allowed
to acquire specific permission words w, as this would greatly complicate the
implementation of these checks.

Releases are written release�φ(x). One caveat about releases is that we wish to
ensure that a permission can only be released if it was previously acquired. Oth-
erwise, the values of the permission words would matter, complicating the im-
plementation. To do this, we introduce a new permission form dynx(w

�Υ), called

a dynamic permission, which indicates that the sequence �Υ of object permissions
were acquired dynamically with permission word w. A release releasew�Υ (x) then

consumes both the permissions x : w�Υ and the permission dynx(w�Υ). Exclusive
permissions do not involve a permission word w, and so are a special case that
do not require a dynamic permission to be released.

In order to support gradual typing, the HJp compiler automatically inserts
acquires and releases where necessary. The basic idea, as presented in previous
work [34], is to add acquires and releases around variable scopes for the least per-
mission — private write, private read, or none — needed for the given variable.
This essentially creates regions of code that are as large as possible during which
the current task holds permissions to the given object. As we prove in Section 5,
any insertion algorithm will prevent low-level data races (as defined by the Java
Memory Model [23]). Making the regions as large as possible, however, also helps
to prevent high-level races, where an object is modified concurrently (without
a low-level race) while the programmer intends for it to remain constant. Of
course, it is impossible in general to infer programmer intent, but the HJp inser-
tion algorithm seems to seems to capture a “sweet spot” with the intuition that
programmers do not generally intend objects to be modified while they are in
scope as variables. In addition, our experiments on HJ code, which were written
without permissions in mind, also showed that in only one instance for all our
benchmarks were these regions too big.

Note that, as a special case, object constructors are implicitly considered to be
exclusive acquires, meaning that new returns exclusive permissions to an object.
Thus the HJp insertion algorithm inserts corresponding releases at the end of
an allocated object’s scope.

Figure 2 illustrates the HJp insertion algorithm, also demonstrating the use
of acquires and releases. The figure shows a simple function, foo(x, y), which
first checks if x.f is null, assigning y.f to it if so, and then returns the possibly
modified value of x.f. Figure 2(b) demonstrates how acquires and releases are
added to this code: a permission region is inserted around the body of the entire
function, since this is the scope of the variables x and y. The resulting code
starts by acquiring write permission to x and (private) read permission to y. It
then performs the original computation, binding the result to a new variable r.
Finally, the code releases permissions to x and y and returns r.

Note that a more “conservative” approach would only acquire private read
permission to x outside the if-expression, acquiring write permission to x and
private read permission to y only when x.f equals null. The HJp insertion algo-
rithm, however, captures the fact that, logically, calling foo(x, y) requires read

622 E. Westbrook et al.

foo (x, y) =
if x.f == null then
x.f := y.f

x.f

(a) Original Code

foo (x, y) =
let ξ1 = acquireR,W(x) in
let ξ2 = acquireR(y) in

let r =

(
if x.f == null then x.f := y.f
x.f

)
in

releaseξ1R,ξ1W(x); releaseξ2R(y); r

(b) After Compiler Insertion

Fig. 2. Compiler Insertion of Acquires and Releases

permission to y and write permission to x. A violation of this logic, such as a
concurrent write to (the object referenced by) y, is therefore considered to be a
data race in HJp, even if the read from y does not actually take place. The user
can override this behavior by manually inserting acquires and releases. The user
can also completely remove any acquires and releases by changing the type of
foo, to indicate that write permission to x and read permission to y are required
when foo is called. This is denoted in Surface HJp by adding keywords writing

and reading to x and y, respectively (see Section 7). We explain how this type
is written in Core HJp in Section 5. Modifying the type of foo in this way rep-
resents a gradual refinement, moving the function foo from dynamic to static
type-checking. Since the resulting function has no dynamic permission checks,
it is statically guaranteed not to have any data races, though races in callers of
foo could lead to exceptions being thrown.

As a final point here, the code inserted by the HJp compiler for acquires and
releases is actually slightly more complex than that shown in Figure 2, for two
reasons. First, the code must handle the case where an exception is thrown be-
tween an acquire and a release. This is done with a try-finally block to ensure
that releases are always performed at the end of permission regions. The second
reason that the inserted code is more complex is to handle mutable variables
in Java. A permission region for a mutable variable x causes the specified per-
mission to be re-acquired for the new value of x each time x is modified. All
of the permissions acquired for values of x are not released until the end of
the permission region, when all of the permissions are released. Both of these
points are discussed more in our previous work [34], and can be modeled in a
straightforward way in Core HJp.

5 Syntax and Semantics of Core HJp

In this section, we formalize Core HJp and prove that all executions are race-free.
Core HJp is defined using A-normal forms, similar to 3-address codes, where a
term consists of a sequence of steps, each of which returns a value that can be
let-bound in the remainder of the computation. This closely matches the Jimple
representation of the Soot optimization framework [31], which is used as a back-
end for our HJp implementation. The typing judgment associates input, output,
and exception permissions with each termM , in a manner similar to Hoare Type

Practical Permissions for Race-Free Parallelism 623

Theory [26], where the typing judgment associates pre- and post-conditions with
terms. We omit a number of high-level features present in Java, HJ and Surface
HJp, such as subtyping, constructors, final fields, methods, and conditionals;
objects in Core HJp are essentially nominally typed, mutable records. The other
features are straightforward to add, but do not significantly affect the results.

The remainder of this section is organized as follows. Section 5.1 gives the
syntax and type system for HJp. Section 5.2 then gives an operational seman-
tics for HJp, and proves the main result, that any execution of HJp is race-free.
Note that, although our operational semantics is a sequentially consistent se-
mantics, proving that all executions are race-free means that all HJp programs
are correctly synchronized. This in turn ensures that any execution under a weak,
DRF0-based memory model (such as the Java Memory Model) is equivalent to
a sequentially consistent execution as given here [23].

5.1 Static Semantics

To define the syntax of Core HJp, we first fix sets of class names and fields,
written C and f, respectively, as well as countably infinite sets of term variables,
written x, y, and z, and word variables, written ξ. We also syntactically dis-
tinguish the normal fields fn from the fields fX marked as exclusive. To denote
sequences of zero or more syntactic elements, we use an arrow over a syntactic
category. For example, �x indicates a sequence of zero or more variables, referred
to as x1 through xn. Further, we often use this notation as a shorthand in com-
pound notation; e.g., �fn : �τ denotes a sequence fn1 : τ1, . . . , f

n
n : τn, while x : �φ

denotes a sequence of permissions x : φ1, . . . , x : φn.
The syntax of Core HJp is given in Figure 3. This includes the permissions and

permission sets as defined in Section 2 along with the permission subtractions
−fX@y defined in Section 3 and the permission word variables ξ and dynamic
permissions dynx(

�φ) described in Section 4. The Core HJp types τ include the
class names C as well as the types (Γ \Πi)→ (y : τ \Πo \Πe) of functions that
take, as input, values and permission words whose types are specified by Γ . In
practice, Γ always has the form x : τx, �ξ, for functions that take one input but
quantify over zero or more permission words. The output type is given by τ .
The permission set Πi specifies the minimal (under subsumption) permissions
that must be held to call the function, while Πo and Πe specify the permissions
returned under normal and exceptional exit from the function. The variables x
and �ξ are considered bound in the remaining constructs, while the variable y,
which refers to the value of the output, is considered bound in Πo and Πe. The
latter allows Πo and Πe to refer to the output of the function.

Next in Figure 3 are the signatures, written Σ, and the type contexts, written
Γ or Δ. A signature associates each class name C in a program with a list of
fields and their associated types. We assume a fixed signature for the remainder
of this section, which we write as Σ below. A typing context Γ associates types
with term variables x, and lists word variables ξ that are considered to be in
scope; any variables listed in context Γ are considered bound in later types.
We implicitly assume that all signatures and typing contexts are well-formed,

624 E. Westbrook et al.

w ::= 0w 1w ε ξ Υ ::= R W S
φ ::= wΥ φ− fX@y π ::= x : φ F(π) dynx(φ)
Π ::= Π, π · τ ::= C (Γ \Πi)→ (y : τ ′ \Πo \Πe)

Σ ::= · Σ,C �→ {�fn : �τ, �fX : �C} Γ ::= · Γ, x : τ Γ, ξ

M ::=x let x = M in M x (y, �ξ) λ(x, �ξ).M exn null x.fn x.fn := y

x.fX(�φ) x.fX := y remitx(φ→ y.fX) new C 〈�f �→ �x〉 acquireX(x)
let ξ = acquire�Υ (x) in M release�φ(x) asyncΠ M finish M

Fig. 3. Syntax

meaning they contain only bound occurrences of variables x and ξ. In the below,
we use the notations Γ (x), Σ(C), and Σ(C)(f) to denote, respectively, the type
associated with x in Γ , the sequence of field-type pairs associated with C in Σ,
and the type in this sequence associated with f.

The terms of Core HJp are in A-normal form, in order to allow permission sets
to refer to each intermediate value as a variable. Thus field reads and writes, ac-
quires, and releases all refer only to variables as their arguments. Compound ex-
pressions can be built using let-expressions. Functions have the form λ(x, �ξ).M ,
meaning that they quantify over a value x and zero or more permission words
�ξ. Similarly, function applications have the form x (y, �w), applying variable x to
argument y and permission words �w.

The typing judgment Γ \Πi � M : y : τ \Πo \Πe for Core HJp is defined in
Figure 4. It states that M is well-typed under typing context Γ and assuming
input permissions Πi, and M returns a value of type τ and permissions given
either by Πo or Πe, depending on whether it had a normal or exceptional exit,
respectively. We sometimes omit the exceptional permission set Πe when it is
allowed to have any value, which implies that the given expression cannot throw
an exception. Note that we implicitly assume, for each rule, that the type τ
and the permission sets Πo and Πe are well-formed, meaning they contain only
variables listed in Γ and, in the case of Πo and Πe, possibly y.

The first rule, T-Sub, allows permissions to be added to the input permissions
Πi or to be removed from the output permissions Πo and Πe. It also allows the
same permissions to be added to both sides, in a manner similar to the frame
rule of separation logic. T-Var types variables x, allowing the output permis-
sions to refer to the output itself as a variable, y, instead of to the variable x;
output permissions that still refer to x can be added with T-Sub. Since variables
cannot throw exceptions, any Πe may be used. T-Let types let x = M1 in M2

by binding x in the type context for M2, and also states that the output permis-
sions for M1 must serve as input permissions to M2. Both must have the same
exception permission Πe, since an exception from the let-expression could be
thrown from either M1 or M2.

T-App types applications x (y, �w), turning the function type for x into a
typing assertion by substituting the arguments y and �w into the type for x.
Functions λ(x, �ξ).M do the opposite. Note that functions do not consume or
produce any permissions, since their bodies do not run until they are called.

Practical Permissions for Race-Free Parallelism 625

Γ \Πi � M : y : τ \Πo \Πe

Π′
i ≥ Πi

Πo ≥ Π′
o Πe ≥ Π′

e

Γ \Π′
i , Π

′ � M : y : τ \Π′
o, Π

′ \Π′
e, Π

′ T-Sub

x : τ ∈ Γ

Γ \Π � x : y : τ \ [y/x]Π
T-Var

Γ \Πi � M1 : x : τ ′ \Π′ \Πe Γ, x : τ ′ \Π′ � M2 : y : τ \Πo \Πe

Γ \Πi � let x = M1 in M2 : y : τ \Πo \Πe
T-Let

x : ((y′ : τ, �ξ) \Πi) → (z : τ ′ \Πo \Πe) ∈ Γ σ = [y/y′, �w/�ξ]

Γ \ σΠi � x (y, �w) : z : τ ′ \σΠo \σΠe

T-App

Γ, x : τ, �ξ \Πi � M : y : τ ′ \Πo \Πe

Γ \ · � λ(x, �ξ).M : (x : τ, �ξ \Πi) → (y : τ ′ \Πo \Πe) \ ·
T-Lam

Γ \ · � exn : y : τ \Πo \ · T-Exn

Γ \ · � null : y : C \ y : �φ
T-Null

x : C ∈ Γ root(φ) = wR

Γ \x : φ � x.fn :Σ(C)(fn) \x : φ \x : φ
T-Read

x : C, y : Σ(C)(fn) ∈ Γ root(�φ) = wR, wW

Γ \x : �φ � (x.fn := y) :U \x : �φ \ x : �φ
T-Write

�φ = w�Υ − �B R ∈ �Υ x : C ∈ Γ � ∃z.fX@z ∈ �B

Γ \ x : �φ � x.fX(w�Υ) : y : Σ(C)(fX) \x : �φ − fX@y, y : w�Υ \x : �φ
T-XRead

x : C ∈ Γ y : Σ(C)(fX) ∈ Γ root(�φ) = wR, wW

Γ \x : �φ, y : X � x.fX := y :U \x : �φ + fX \ x : �φ, y : X
T-XWrite

x : C ∈ Γ y : C′ ∈ Γ root(φ) = wΥ

Γ \ x : φ, y : wΥ � remity(wΥ → x.fX) : · \x : φ + fX@y
T-Remit

Σ(C) = {�fn : Γ (�x), �fX : Γ (�y)}
Γ \ �y : X � new C 〈�fn �→ �x, �fX �→ �y〉 : x : C \x : X

T-New

x : C ∈ Γ Γ, ξ \Πi, x : ξ�Υ , dynx(ξ
�Υ) � M : y : τ \Πo \Πe Πi ≥ Πe

Γ \Πi � let ξ = acquire�Υ (x) in M : y : τ \Πo \Πe

T-Acq

x : C ∈ Γ

Γ \ · � acquireX(x) :U \x : X \ · T-AcqX

x : C ∈ Γ ∀i.φi = wiΥi

Γ \x : �φ, dynx(
�φ) � release�φ

(x) :U \ ·
T-Rel

x : C ∈ Γ

Γ \x : X � releaseX(x) :U \ · T-RelX

Γ \Πi � M : τ \Πo \Πo sharable(Πi)

Γ \Πi � asyncΠi
M :U \F(Πo)

T-Async

Γ \Πi � M : y : τ \Πo \Πe � ∃F(π) ∈ Πi

Γ \Πi � finish M : y : τ \Πo − F \Πe − F
T-Finish

Fig. 4. Static Semantics

Exceptions exn can have any type and output permissions, as they will not
return, but they have the same exception permission set as input permission
set. T-Exn gives these both as empty permission sets ·, but permissions can be
added to both sides using T-Sub. Similarly, null can have any type and any
output permissions to the null value, since, intuitively, permissions to null do
not matter; this is made more formal in the operational semantics, below.

Normal field reads and writes require read and write permission, respectively,
for the object being accessed. Writes return the sole element ∗ of the singleton

626 E. Westbrook et al.

type U. Exclusive field reads x.fX(w�Υ) require at least read permission to x but
without the borrowing permission subtraction −fX@y, and append this subtrac-
tion to the permissions on x. Note that we use x : w�Υ to denote the permission
set x : wΥ1, . . . , x : wΥn. Exclusive writes x.fX := y require exclusive permission
y : X (recall that this is shorthand for y : εR, y : εW) and erase any subtractions

fX@z on permissions for x, where x : �φ+ fX indicates the removal of any fX@z
in each φi. These φi must comprise at least a write permission to x. Note that
all of these return the input permission set as the exceptional permission set, in
the case the the object being read or written is null.

The remity(wΥ → x.fX) construct erases a subtraction −fX@y, using the
notation φ + fX@y, as well as erasing a wΥ permission to y. Object allocation
requires X permissions to all objects assigned to exclusive fields and returns an
X permission to the newly allocated object.

An exclusive acquire returns an X permission to x as output permission but
returns an empty exception permission. Again, using T-Sub allows the input
permission set to be anything and requires the exception permission set to be
the same (in case the acquire throws an exception) but adds x : X to the output
permission set. A non-exclusive acquire let ξ = acquire�Υ (x) in M provides

permissions ξ�Υ to x in the body M , also indicating that these permissions are
dynamic. A release�φ(x) releases the permissions �φ for x, requiring that either

�φ equals exclusive permissions or that there is a dynamic permission dynx(
�φ) to

indicate that �φ can be dynamically released. An async ΠiM passes to M the
permissions Πi, which must satisfy sharable(Πi). The latter indicates that Πi

contains only pairs x : wR, x : wS and permissions dynx(
�φ). Any permissions

Πo returned by M are returned as future permissions to the current task, where
F(Π) maps each π in Π to F(π). Note that an async catches any exceptions
but does not throw any, so it can have any exceptional permission set, while it
requires the output and exception permissions of M to be the same. The latter
can always be achieved by T-Sub. Future permissions can be reclaimed with
finish M , which returns the same permissions as M with any future permissions
F(π) turned into π. This is written as Π −F, which also converts F(F(π)), etc.,
to π, to handle nested asyncs. Note that no future permissions from outside the
finish are passed to M , as these are only available to the next enclosing finish.

5.2 Operational Semantics

The additional syntax needed to define the operational semantics is given in Fig-
ure 5. Two important changes are that values are now allowed to occur in place
of variables in both permissions and terms, and that private read permissions
are now annotated with task ids t, where we assume a countably infinite set of
task ids. The latter change was unnecessary in the static semantics, since an
expression can only refer to permissions for the current task, but will be neces-
sary to model the permissions held globally for an object. There are now dis-
tinct private read as well as private read-write permission sets for each task id t.

Practical Permissions for Race-Free Parallelism 627

Υ ::= Rt W S M ::= . . . lC [�v/�x]M finish(M ‖ �T)

π ::= . . . l : φ dynl(φ) H ::= · H, l �→ 〈p �→ Π, �f �→ �v〉
T ::= (Π \M)t E∗ ::= � let x = E∗ in M

v ::= null lC λ(x, �ξ).M E ::= � E∗[E] finish(E ‖ �T)
res ::= v exn

Fig. 5. Operational Syntax

We write Πt for the result of adding task id t to the (un-annotated) private read
permissions in Π . These two changes yield the additional equalities:

x : wRt1 , x : wS = x : wRt2 , x : wS null : φ = ·
The first captures the fact that shared read and exclusive permissions are in-
sensitive to which task holds them, while the second captures the fact that
permissions to null can be added or removed at will.

The values v include functions, null, and heap locations l, where the latter is
annotated with its class as lC . The new term construct finish(M ‖ �T), which

is considered equal modulo permutation of �T , represents a finish waiting for
parallel tasks �T to complete. Tasks are written (Π \M)t, indicating a task that
is executing term M , holds permissions Π , and has task id t. Typing is extended
to tasks with the judgement � T : Πo, which holds for task (Π \M)t if and

only if · \Π � M :U \Πo \Πo. Typing is then extended to finish(M ‖ �T) by

requiring � Ti : Πi for each Ti, and adding �Π to the output and exceptional
permission sets returned by the construct.

The results res include exceptions and values, while the heaps H map loca-
tions l to heap forms 〈p �→ Π, �f �→ �v〉. The latter are themselves mappings from
fields to values and from the special marker p to the set of permissions Π of
permissions to l still available for dynamic acquires, where Π must contain only
permissions l : φ. (We use permission sets here to take advantage of permission
set equality.) Thus, e.g., H(l)(f) returns the value of field f at location l in H ,
while H(l)(p) returns permissions to l that are available for dynamic acquires.
As a convenience, each heap H also contains a mapping H(null)(p) = · which
(by the above) equals null : �φ for any �φ.

Finally, Figure 5 defines the evaluation contexts E, which intuitively define a
term with single a “hole” � indicating where evaluation can take place in a term.
This includes the term being bound in a let and the body of a finish. We write
E[M] for the (non-capture-avoiding) replacement of � by M . We also define
evaluation contexts E∗ out of which exceptions can be thrown. These exclude
finish, requiring child tasks to complete before an exception leaves a finish.

The operational semantics is defined in Figure 6 as a small-step relation
H \Π \M a−→ H ′ \Π ′ \M ′. This judgment states that term M with heap H ,
in a task holding permissions Π , evaluates in one step to term M ′, changing the
heap to H ′ and the permissions held by the current task to Π ′. This step is also
labeled with an action label a, which can have any of the forms given in Figure 6.
Action labels can optionally have the prefix (t;Π) : a, indicating that the action
occurred in task id t and yielded permission set Π in task t. Only the inner-most

628 E. Westbrook et al.

H \Π \M
a−→ H′ \Π′ \M ′

H \ (Π \M)t
(t;Π′):a−−−−−−→ H′ \ (Π′ \M ′)t

E-Task
H \Π \M

a−→ H′ \Π′ \M ′

H \Π \E[M]
a−→ H′ \Π′ \E[M ′]

E-Ctx

H \Π \E∗[exn] ·−→ H \Π \ exn
E-Exn

H \Π \ let x = v in M
·−→ H \Π \ [v/x]M

E-Let

H \Π \ (λ(x, �ξ).M) (v, �w)
·−→ H \Π \ [v/x, �w/�ξ]M

E-App

H \Π \ l.fn
l.fn⇀H(l)(fn)−−−−−−−−−−→ H \Π \H(l)(fn)

E-Read

H \Π \null.f
·−→ H \Π \ exn

E-NullR

H \Π \ l.fn := v
l.fn↼v−−−−−→ H[(l, fn) �→ v] \Π \ ∗

E-Write

H \Π \null.f := v
·−→ H \Π \ exn

E-NullW

�φ = w�Υ − �B l′ = H(l)(fX)

H \Π, l : �φ \ l.fX(w�Υ)
l.fX⇀l′−−−−−−→ H \Π, l : �φ − fX@l′, l′ : w�Υ \ l′

E-XRead

� ∃(l : φ) ∈ Π

H \Π, l : �φ, l′ : X \ l.fX := l′ l.fX↼l′−−−−−−→ H[(l, fX) �→ l′] \Π, l : �φ + fX \ ∗
E-XWrite

φ = wΥ − �B

H \Π, v : φ, v′ : wΥ \ remitv′ (wΥ → v.fX)
·−→ H \Π, v : φ + fX@v′ \ ·

E-Remit

l fresh

H \Π,�v : X \new C 〈 �fX �→ �v, �fn �→ �v′〉 new(l;�f �→�v)−−−−−−−−−→ H, l �→ 〈p �→ ·, �fX �→ �v, �fn �→ �v′〉 \Π, l : X \ l

E-New

H(l)(p) �= l : X

H \Π \ acquireX(l)
·−→ H \Π \ exn

E-AcqXFail

� ∃(Πl, w).Π,H(l)(p) = Π,Πl, l : w�Υ

H \Π \ let ξ = acquire�Υ (l) in M
·−→ H \Π \ exn

E-AcqFail

H(v)(p) = v : X

H \Π \ acquireX(v)
acq(v:X)−−−−−−→ H[(v,p) �→ ·] \Π, v : X \ ∗

E-AcqX

Π,H(v)(p) = Π,Πv, v : w�Υ ∃w.Πv ≥ wRt

H \Π \ let ξ = acquire�Υ (v) in M
acq(v:w�Υ)−−−−−−−→ H[(v,p) �→ Πv] \Π, v : w�Υ , dynv(w

�Υ) \ [w/ξ]M

E-Acq

if �φ = εRt, εW then Π1 = · else Π1 = dynv(
�φ)

H \Π, v : �φ,Π1 \ release�φ
(v)

rel(v:�φ)−−−−−→ H[(v,p) �→ H(v)(p), v : �φ] \Π \ ∗
E-Rel

t fresh

H \Π,Π′ \finish(E∗[asyncΠ M] ‖ �T)
async(t)−−−−−−→ H \Π′ \finish(E∗[∗] ‖ �T , (Π \M)t)

E-Async

t′ fresh

H \Π′′ \finish(M ′′ ‖ �T , (Π,Π′ \E∗[asyncΠ M])t)
(t;Π′):async(t′)−−−−−−−−−−−→ H \Π′′ \finish(M ′′ ‖ �T , (Π′ \E∗[∗])t, (Π \M)t

′
)

E-AsyncPar

H \T
a−→ H′ \T ′

H \Π \finish(M ‖ T, �T)
a−→ H′ \Π \finish(M ‖ T ′, �T)

E-Par

H \Π \finish(res ‖ (�Π \ �res)
�t)

finish(�t)−−−−−−→ H \Π, �Π \ res

E-Finish

Fig. 6. Operational Semantics

Practical Permissions for Race-Free Parallelism 629

prefix is used, so (t1;Π1) : (t2;Π2) : a is considered equal to (t2;Π2) : a. These
labels are used below to define the happens-before ordering and data races.

The E-Task rule defines evaluation on tasks, which evaluates the term and
permission set in the task and then adds the task id and resulting permission set
to a. E-Ctx allows evaluation inside evaluation contexts E, while E-Exn allows
exceptions to be thrown out of exception evaluation contexts E∗. E-Let and
E-App evaluate let-expressions and function applications using substitution.

Normal field reads of l.fn return the value H(l)(fn) associated with fn for l
in H . The action label for a field read is written l.fn ⇀ H(l)(fn). Normal field
writes l.fn := v update H(l)(fn) to point to v, written H [(l, fn) �→ v]. The action
label for a field write is l.fn ↼ v. Reads from or writes to null raise an exception.
Exclusive field reads and writes are similar, except that the permissions held by
the current task are updated to indicate a borrow and to remove any pending
borrows, respectively, as described in the typing rules above. Remits also remove
a pending borrow as described above, and have an empty action label, while new
consumes exclusive permissions to the locations assigned to the exclusive fields of

the new object, as discussed above, and is labeled with new(l; �fX �→ �v, �fn �→ �v′),
where the vi and v′i are the values assigned to fXi and fni , respectively.

Each form of acquire has two rules, one for failure and one for success. An
exclusive acquire on l succeeds if H(l)(p) = l : X, meaning that l has an ex-
clusive permission available for dynamic acquisition. Similarly, a non-exclusive
acquire of �Υ on l succeeds if permission set Π,H(l)(p) can be separated into

Π, l : w�Υ ,Πv, which combines the permissions Π held by the current task, the
requested permissions, and some leftover permissions Πv remaining in H(l)(p).
The current permission set Π is included here to allow read-write permissions to
be acquired when the current task holds all the private read permissions to an
object, while the side condition on Πv ensures that not all of the remaining per-
missions are acquired. If these conditions cannot be satisfied, then either acquire
throws an exception. Successful acquires of �φ for l are labeled with acq(l : �φ).
Note that acquires on null automatically succeed, since H(null)(p) equals any
permission set that satisfies the above.

A release of l : �φ gives these permissions back to H(l)(p), and is labeled

with rel(l : �φ). A release on null effectively does nothing. An async creates a
new task with some id t′ inside the most closely containing finish, and is labeled
with async(t′). Rules E-Async and E-AsyncPar handle an async in the main
body or in a parallel task, respectively, of a finish. Parallelism is modeled by
allowing steps in the parallel tasks of a finish, as captured by E-Par. Finally, a
finish completes when the main body and all parallel tasks are results, and all
permissions returned by the parallel tasks are collected in the parent task. This
is labeled with finish(�t) where �t are the ids of the completed tasks.

At the top level, small-step evaluation is applied to machine states H \T ,
where T is called the top-level task. If T = (Π \ res)t, then H \T is called a
final state. We write Mach for machine states, and define the set permsl(Mach)
of permissions for l held by Mach as the combination (using “,”) of

630 E. Westbrook et al.

{Π |l | ∃(M, t).(Π \M)t . Mach } ∪ H(l)(p) ∪
{ l : wΥ | l′ : wΥ − �B ∈ permsl′(Mach) ∧H(l′)(fX) = l∧ ∃(i, z).Bi = fX@z }
where . is the subterm relation. This set is well-defined iff reachability under fX

fields is acyclic, which is ensured by machine well-formedness for Mach = H \T :
1. � T : Πo for some Πo and · � H(lC)(f) : Σ(C)(f) for all l ∈ Dom(H);
2. l : X ≥ permsl(Mach);
3. Any async occurring in Mach is a subterm of a finish.

This judgment is written � Mach. The first condition ensures that the top-
level task and all field values are well-typed. The second ensures that the total
permissions in the program to any l are at most X; i.e., there are no duplicated
permissions. The final condition ensures that tasks are always spawned inside
of a finish scope; note that the HJ runtime does this implicitly. Using this
definition, we can prove Type Soundness using Preservation and Progress:

Lemma 1 (Preservation). If � Mach and Mach −→ Mach′ then � Mach′.

Lemma 2 (Progress). If �Mach then either Mach is a final state or Mach −→
Mach′ for some Mach′.

We write s : Mach1
a−→ Mach2 to denote that s is a step, or derivation of

Mach1
a−→ Mach2. A collection of such steps Mach1 −→ . . . −→ Machn is called an

execution; we write E : Mach1
·−→∗

Machn to denote that E is such an execution.
We also write ≤E for the sequence order of the steps in E . In order to prove that
any execution has no data races, we shall prove that any steps which conflict
must be ordered by the happens-before order. We define these concepts below.
To define this notion, we first define when permissions conflict, which intuitively
means that they cannot be held at the same time.

Definition 1 (Conflicting Permissions). We say that Π1 and Π2 conflict,
written Π �� Π ′, iff l : X ≥ Π1|l, Π2|l does not hold for some l. We say that

steps s1 : Mach1
(t1;Π1):a1−−−−−−→ Mach′1 and s2 : Mach2

(t2;Π2):a2−−−−−−→ Mach′2 conflict,
written s1 �� s2, iff Π1 �� Π2.

Definition 2 (Happens-Before). Step s1 :Mach1
(t1;Π1):a1−−−−−−→ Mach′1 happens-

before step s2 : Mach2
(t2;Π2):a2−−−−−−→ Mach′2, written s1 - s2, iff s1 ≤E s2 and:

– t1 = t2;
– a1 = async(t2);

– a2 = finish(�t′, t2, �t′′);
– a1 = rel(l : �φ) and a2 = acq(l : �φ′) for l : �φ �� l : �φ′; OR
– s1 - s′ - s2 for some s′.

Theorem 1 (Race-Freedom). If E : Mach
·−→∗

Mach′ for � Mach, and if
s1 �� s2 for s1 ≤E s2, then s1 - s2.

Practical Permissions for Race-Free Parallelism 631

As a final point, we prove that the implementation of acquires and releases does
not have to track the permission words that are returned by acquires, and only
needs to count the number and sorts of acquires and releases:

Lemma 3. If � · \T and E : · \T ·−→∗
H \T ′ then there is a one-to-one mapping

between releases in E and subsequent acquires of the same permissions, where
new is considered an exclusive acquire.

6 Extensions

We now show how Core HJp can be extended to support two common parallel
patterns, array-based parallel loops and objects guarded by critical sections.
These extensions modify Core HJp very little, and it is straightforward to show
that they preserve the race-freedom property proved in Section 5.

6.1 Array-Based Parallelism

For the purposes of this paper, array parallelism is the technique of dividing
an array into disjoint pieces which are then modified by parallel tasks. (Parallel
tasks that read from the same array are straightforward to support using shared
read permissions.) One technical difficulty in supporting array parallelism in
HJp is the potential aliasing inherent to standard Java arrays. Specifically, each
dimension of a standard Java array is an array of pointers to the next dimension,
and there is no guarantee that these pointers do not alias. Thus there is no easy
way to break a standard multi-dimensional Java array into disjoint pieces. To
address this problem, HJ includes a construct called an array view [27,22], which
intuitively is an array that is indexed by either one- or many-dimensional points.
Under the hood, array views are implemented as maps from points to indexes
in a one-dimensional Java array. In Core HJp, array views are modeled as maps
from points to store locations. Holding a permission φ for an array view A is
then just a shorthand for holding permission φ for all the store locations in A.

To support array parallelism, HJp allows an exclusive permission to an array
to be split into exclusive permissions to disjoint pieces of the array, which can
then be passed to child tasks for parallel modification. When all the child tasks
are done, these exclusive permissions are then combined back into an exclusive
permission for the entire array. This is written in Core HJp as follows:

foreach (x ∈ r; y1 ⊆ a1; . . . ; yn ⊆ an) body

This expression forks child tasks, as per async, to modify disjoint portions of
the array views a1 through an, and then waits for the child tasks to complete, as
per finish. One task is created for each point specified by r, a region expression,
and this task executes body with the variable x bound to the selected point in
r and with each variable yi is bound to a sub-view of ai. These sub-views are
formed by logically dividing the regions of each array view ai into rectangular
pieces, one for each point in r, and then binding yi to the sub-view of ai for the
rectangular piece given by the current value of x. For example, the code

foreach (x ∈ [1 : M, 1 : N]; sub ⊆ a) for (p ∈ sub.rgn) sub[p] := F (sub[p])

632 E. Westbrook et al.

modifies 2-dimensional array view a with M ∗ N parallel tasks, each of which
applies function F to the elements of a portion of a. The expression sub.rgn
returns the region of the array view sub, while [1 : M, 1 : N] is the rectangular
region of points whose dimensions are from 1 to M and from 1 to N , inclusive.

When a foreach begins, the parent task must hold exclusive permissions to
each array view ai. Each child task then receives exclusive permissions to the
sub-views passed to it in the variables yi, permissions that it must still hold
upon completion. Once all children have completed, the foreach then returns
the original exclusive permissions for the array views ai to the parent task.

Permissions can also be stored in and borrowed from the cells of array views
just as with normal objects. The one caveat is that only one permission may
be borrowed from a given array view at a time. Allowing multiple borrows from
the same array view would require complex typing features, such as dependent
types, to prove statically that these borrows use different points. This restriction
has not been a problem in practice.

6.2 Objects Guarded by Critical Sections

Another common parallel pattern that is supported by HJp is objects that can
only be accessed inside critical sections. Critical sections in HJ and HJp are
written with the construct isolated(�x) M , which is called an isolated region.
This indicates that program term M should be run in a way that is isolated
from, meaning not at the same time as, any other conflicting isolated region. Two
isolated regions are said to conflict if, at runtime, the values of their variables �x
overlap. Isolated regions are therefore similar to locks and to Java synchronized

statements. A key difference is that the isolated construct prevents deadlock:
if an isolated region occurs inside another isolated region, then the variables �x
of the inner isolated region must refer, at runtime, to a subset of a the objects
referred to by the outer isolated region. Otherwise, an exception is thrown. This
is similar to requiring that a task cannot grow the set of locks it holds while
already holding locks. Note that throwing an exception in a potential deadlock
situation is a conscious choice in the design of HJp. Although there are type
systems to statically prevent deadlocks without exceptions [11], we have found
that our approach is intuitive to use and does not cause problems in practice.

Isolated regions act as guards in HJp, allowing unrestricted access to the
objects referred to by the variables �x, while preventing any access to these objects
outside isolated regions that refer to them. To support this in HJp, any class
C can be designated as an isolated class, meaning that all objects o of class C
can only be accessed inside critical sections for o. Isolated classes are designated
in Surface HJp by making them subclasses of the IsolatedObject class. The
isolated(�x) M construct then requires the variables �x to each have type C for
some isolated class C. The body M is executed with write permissions wiR, wiW
for each xi, for some permission words �w.

This can be modeled in Core HJp with acquires and releases of write permis-
sions to the variables �x at the beginnings and ends of isolated regions. The only
change required to Core HJp is that, for isolated objects, acquires never throw

Practical Permissions for Race-Free Parallelism 633

exceptions, they simply wait until the acquire can succeed. This change obvi-
ously does not violate the race-freedom guarantee from Section 5, since it only
restricts the possible executions that must be considered. As per the discussion
in Section 4, however, the HJp compiler does not insert acquires and releases
for isolated objects, since this would change the synchronization behavior of a
program. Instead, if accesses are made to an isolated object outside of an isolated
region, the HJp compiler flags a compile-time error.

7 Practical Experience using HJp

Surface HJp is an extension of HJ [14], which itself is an extension of Java to
include the async, finish, and isolated constructs, along with a number of
constructs for manipulating array views [27,22]. Surface HJp adds the keywords
reading, writing, shared reading, and exclusive, which can be applied to a
method argument indicate that the corresponding permission to the argument
must be held on entry to and exit from the method. The same keywords can
also be applied to an entire method, indicating that the permission must be
held for this. A method can be annotated with exclusive_ret to indicate that
exclusive permissions are held for the return value on exit. Other keywords are
possible, but these are the common cases that were needed for our benchmarks.
Object fields and array view element types can be annotated with exclusive to
indicate storable permissions. To indicate that a class is an isolated class, it must
inherit from IsolatedObject. Acquires are written with the methods acquireR(),
acquireW(), acquireSR(), or acquireX(); similar methods exist for releases.

By design, Surface HJp allows the programmer to think only about read,
write, shared read, and exclusive permissions, without having to worry about
the complexities of permission words, word variables ξ, etc. Specifically, exclusive
field reads are not marked with the permissions that are being borrowed, there
are no remits, and acquires do not involve let-bindings for permission words.
To support this, the HJp compiler infers all of these; as discussed in Section 4,
it also inserts acquires and releases, to support gradual typing. We implement
this inference using standard dataflow analysis techniques, using a backwards
dataflow to determine where permissions must be acquired or borrowed and a
forwards dataflow to insert remits and releases. Although we leave the question
of completeness of this inference algorithm for future work, it has worked well
in practice. This is all implemented as a lightweight compiler pass on the Soot
intermediate language [31] used in the back-end of the existing HJ compiler.

In previous work [34], we examined the performance impact of dynamic per-
mission acquires and releases, which yielded an average slowdown of 1.5×. (This
work used a subset of the benchmarks we use here.) In essence, that work repre-
sented the minimum possible programmer effort in using HJp. Here, we quantify
the maximum possible programmer effort, where programs have been modified
enough to remove all acquires and releases; this is checked with the -staticperms

HJp compiler flag. More specifically, we have taken a set of HJ programs, written
without permissions in mind, and ported them to HJp by adding enough anno-
tations to statically guarantee race-freedom. With a few exceptions described

634 E. Westbrook et al.

Table 1. Programmer Effort for Statically Verifying Race-Freedom in HJp

Benchmark
Name

Code
Size

(Methods)

LoC for
array
views

LoC for
method
keywords

LoC for
storable
perms

LoC for
isolated
objects

Total

NPB.CG 1070 (61) 4 0.37% 25 2.33% 7 0.07% 0 0.00% 36 3.36%

JGF.Series 225 (15) 3 1.33% 6 2.67% 3 1.33% 0 0.00% 12 5.33%
JGF.LUFact 467 (20) 0 0.00% 16 3.40% 11 2.36% 0 0.00% 27 5.78%
JGF.SOR 175 (12) 1 0.57% 6 3.43% 4 2.28% 0 0.00% 11 6.29%
JGF.Moldyn 741 (57) 19 2.56% 9 1.20% 29 3.91% 0 0.00% 57 7.69%
JGF.RayTracer 810 (67) 1 0.12% 57 6.75% 22 2.60% 4 0.47% 84 9.94%

BOTS.NQueens 95 (3) 0 0.00% 3 3.15% 0 0.00% 1 1.00% 3 3.16%
BOTS.Fibonacci 70 (3) 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%
BOTS.FFT 4480 (46) 13 0.29% 33 0.74% 0 0.00% 0 0.00% 46 1.04%

PDFS 537 (26) 0 0.00% 10 1.80% 8 1.44% 8 1.44% 26 4.67%

DPJ.BarnesHut 682 (56) 1 0.15% 18 2.64% 10 1.47% 0 0.00% 28 4.11%
DPJ.MonteCarlo 2877 (287) 3 0.10% 151 5.25% 22 0.59% 1 0.03% 177 6.15%
DPJ.IDEA 228 (18) 1 0.43% 9 3.94% 8 3.50% 0 0.00% 18 7.89%
DPJ.CollisonTree 1032 (69) 0 0.00% 108 10.40% 24 2.32% 0 0.00% 132 12.70%
DPJ.K-Means 501 (38) 1 0.20% 25 4.99% 6 1.20% 1 0.20% 33∗ 6.59%

Total 13990 (778) 47 0.33% 476 3.40% 152 1.09% 15 0.11% 690 4.93%

below, the resulting HJp programs compile to the exact same programs as the
original HJ programs, so there is guaranteed to be no performance penalty.

We chose a number of small- to large-scale parallel benchmarks from the
NAS Parallel Benchmark suite [3] (NPB), JavaGrande benchmark suite [30]
(JGF), the BOTS benchmark suite [17], a Parallel Depth First Search application
(PDFS), and the benchmarks used for Deterministic Parallel Java [6,7] (DPJ),
another type system for statically ensuring race-freedom. The DPJ benchmarks
were originally written in Java and were ported to HJ, while the others were
originally written in HJ. We measured the number of lines of code (LoC) that
had to be modified (from the HJ version) to statically ensure race-freedom.

The results of this experiment are summarized in Table 1, which presents, for
each benchmark, the name prefixed with the suite it came from, the code size
in LoC with the number of methods in parentheses, and then the LoC modified
from the original code. The latter are divided into modifications needed for:
array parallelism, which mostly included adding the foreach construct from
Section 6.1; adding the method keywords discussed above; adding the exclusive

keyword to fields and array view elements types, to use storable permissions; and
designating classes as subclasses of IsolatedObject. On average, HJp requires
about 5% of the LoC to be annotated, with the majority of the annotations,
accounting for 3.4% of the LoC, being method keywords.

There is one additional modification that was necessary for the K-Means DPJ
benchmark, which is not reflected in Table 1; the total LoC for this benchmark is
marked with an asterisk. The issue is that the original code uses an array lock[]

Practical Permissions for Race-Free Parallelism 635

Table 2. Comparison of Programmer Effort and Runtimes between DPJ and HJp

Benchmark
Name

Code
Size

(Methods)

LoC
modified
in DPJ

LoC
modified
in HJp

Execution Time (s)
Xeon T2

DPJ HJp DPJ HJp

DPJ.BarnesHut 682 (56) 80 11.73% 28 4.11% 4.207 4.041 5.715 5.695
DPJ.MonteCarlo 2877 (287) 220∗ 7.64% 177 6.15% 3.102 3.047 6.065 5.792
DPJ.IDEA 228 (18) 24 10.52% 18 7.89% 0.725 0.731 0.737 0.705
DPJ.CollisonTree 1032 (69) 233 22.58% 132 12.70% 1.253 1.268 3.282 3.245
DPJ.K-Means 501 (38) 5∗ 1.00% 33∗ 6.59% 20.188 19.016 65.084 64.953

Total 5320 (468) 557 10.47% 388 7.29%

of locks, where each lock[i] guards accesses to the elements new_centers[i] and
globalSize[i] of two other arrays. To support this access pattern in HJp, we
had to refactor these into a single array of a new class ClusterAttr that inher-
its from IsolatedObject. This class has two fields, new_centers and globalSize,
where the first is marked as an exclusive field to allow it to be accessed during
an isolated region isolated(x) for the parent ClusterAttr object x. The sec-
ond field, globalSize, is a primitive Java integer, and so does not need to be
exclusive.

We also directly compared HJp with DPJ on the DPJ benchmarks. This
comparison is summarized in Table 2. On average, HJp required modification
to only 7.3% of the LoC, while DPJ required modification to 10.5% of the LoC.
For most benchmarks, HJp requires fewer annotations; for K-Means, however,
HJp requires annotations on 33 LoC, as opposed to the 5 LoC for DPJ. Both the
K-Means and MonteCarlo benchmarks, however, are not completely verified by
DPJ: each of these benchmarks require the user to add a commutative annotation
to one of the methods. This is an unchecked user assertion in DPJ stating that
two parallel executions of the method always commute. Thus, although the HJp
version of K-Means requires more annotations, this version is statically verified.
Further, the HJp version of the MonteCarlo benchmark is also statically verified,
and requires fewer annotations than DPJ.

The execution times of DPJ and HJp were also compared, to ensure that there
is nothing about HJp that limits performance. The results are given on the right
side of Table 2. This includes numbers for two machines: a 16-core (quad-socket,
quad-core per socket) Intel Xeon 2.4GHz system with 30GB of memory, running
Red Hat Linux (RHEL 5) and Sun JDK 1.6 (64-bit version); and a 128-thread
(dual-socket, 8 cores per socket, 8 threads per core) 1.2 GHz UltraSPARC T2
(Niagara 2) with 32 GB main memory, running Solaris 10 and Sun JDK 1.6 (64-
bit version). The size of the thread pool for DPJ was varied, and the table shows
the best numbers obtained. In most cases, DPJ and HJp performed comparably.
For K-Means, HJp performed better; we believe this is because the DPJ runtime
uses JUC locks, while HJp uses the built-in synchronized construct of Java,
which is significantly faster.

636 E. Westbrook et al.

8 Related Work

There has been much recent work on imperative parallel programming languages
that prevent data races, mostly based either on ownership or permissions. In the
former, each object has an owner, specified in its type, that mediates all accesses
to the object. Originally introduced by Clarke et al. [15] to control aliasing,
Boyapati et al. [11] showed how to use ownership to ensure race-freedom by
only allowing accesses to an object when the current task either owns an object
or holds a lock that owns an object. Static race detection [25,1,19,2] is form of
ownership, where each object is either owned by a lock or by the current task.
In the work of Vaziri et al. [33,32], object fields are owned by atomic set objects,
which ensure that all sequences of accesses to a group of related values satisfy
a strong consistency guarantee called atomic-set serializability. Deterministic
Parallel Java (DPJ) [7,6] also fits the ownership model, where each object is
owned by a memory region. DPJ ensures determinism by restricting parallelism
to disjoint regions.

Though it is a powerful notion, ownership suffers from a number of draw-
backs. First, it requires programmer annotations to specify ownership; e.g., the
comparison of HJp with DPJ in Section 7 indicates a higher annotation burden
in DPJ. Second, ownership-based systems are only designed for a single par-
allel pattern; e.g., traversal-based ownership in DPJ and lock-based ownership
in other approaches. The work of Vaziri et al. [33,32] partially addresses this
concern, since all synchronizations are automatically generated by the compiler
after the atomic sets are specified. A final issue is the static nature of ownership.
This means that the synchronization behavior of an object cannot change over
time, which again limits the algorithms that can be written using ownership.

Permission-based systems, in contrast, view the ability to access an object as
a resource, which may change over time. They are closely related to linear type
systems, which ensure that resources are not duplicated or deleted when doing
so is disallowed. A number of systems for avoiding races have been based on lin-
ear types, since only one task can have permission on a linear pointer at a time.
Haller and Odersky [20] describe one such system, Scala capabilities. A major
breakthrough was Boyland’s work on fractional permissions [12], which showed
how a linear read/write permission could be split into fractional read permis-
sions. One approach that builds on this work is typestate-oriented programming
(TSOP) [35,4,5], in which the “state” of an object may be changed only when
an exclusive, non-fractional permission is held for it. Beckman et al. [4] use this
approach to ensure that state changes do not cause data races. Although gradual
typing has been studied for TSOP [35], it is not clear that this could be directly
applied to race-freedom as in HJp. In addition, permissions have been studied
in the context of program verification using separation logic [16,10,9].

The storable permissions of HJp can be seen as a restricted form of Boyland’s
nested permissions [13]. Although storable permissions are less expressive, they
do seem to correspond to many of Boyland’s examples in a more concise way.
Specifically, storable permissions allow these examples to be expressed without

Practical Permissions for Race-Free Parallelism 637

using existentials, object equality, and disjunction at the type level, which seem
to be required to express them using nested permissions. Fahndrich and DeLine
[18] have also introduced a notion of permission guards, where permission “key”
ρ allows access to a linear permission τ . The latter can be temporarily borrowed
using the “focus” construct when permission key ρ is held, in a manner similar
to permission borrowing for exclusive fields in HJp.

9 Conclusions

In this paper, we present a new type system for race-free parallel programming,
based on Boyland’s fractional permissions. Our system, Habanero Java with
permissions (HJp), is an extension of the Habanero Java (HJ) task-parallel lan-
guage. HJp is designed to be gradual, meaning that it can compile parts of a
program that do not contain any annotations or types related to race-freedom,
by inserting dynamic checks. This allows existing programs to be compiled with
no modifications. The programmer can then gradually add permission annota-
tions to increase performance and static guarantees, eventually leading to a fully
annotated, race-free program. Further, no parallel or concurrent programming
expertise is necessary to understand these permission annotations. We demon-
strate how a number of different concurrency patterns, such as fork-join, array
partitioning, and objects guarded by critical sections, can be accommodated in
HJp. We also introduce a number of theoretical advances over previous work on
fractional permissions, including aliased write permissions and simpler way to
store permissions in objects than previous approaches. Finally, we evaluate the
annotation burden required to yield statically-verified race-free benchmarks in
HJp starting from existing HJ benchmarks, using a complete implementation
of the compiler and runtime of the HJp type system. Our results show that for
15 benchmarks we have been able to statically verify race-freedom with only a
modest number (5% of the lines of code on average) of annotations.

Acknowledgments. We would like to acknowledge the generous help of John
Boyland for his many comments and suggestions.

References

1. Abadi, M., Flanagan, C., Freund, S.N.: Types for safe locking: Static race detection
for java. ACM Trans. Program. Lang. Syst. 28, 207–255 (2006)

2. Bacon, D.F., Strom, R.E., Tarafdar, A.: Guava: a dialect of java without data
races. In: OOPSLA (2000)

3. Bailey, D.H., et al.: The NAS parallel benchmarks. Intl. Journal of Supercomputer
Applications 5(3) (1994)

4. Beckman, N.E., Bierhoff, K., Aldrich, J.: Verifying correct usage of atomic blocks
and typestate. In: OOPSLA 2008 (2008)

5. Bierhoff, K., Aldrich, J.: Modular typestate checking of aliased objects. In:
OOPSLA 2007 (2007)

638 E. Westbrook et al.

6. Bocchino, R.L., et al.: A type and effect system for deterministic parallel java. In:
OOPSLA 2009 (2009)

7. Bocchino, R.L., et al.: Safe nondeterminism in a deterministic-by-default parallel
language. In: POPL 2011 (2011)

8. Boehm, H.-J., Adve, S.V.: Foundations of the c++ concurrency memory model.
In: PLDI (2008)

9. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: POPL (2005)

10. Bornat, R., Calcagno, C., Yang, H.: Variables as resource in separation logic. Elec-
tron. Notes Theor. Comput. Sci. 155, 247–276 (2006)

11. Boyapati, C., Lee, R., Rinard, M.: Ownership types for safe programming: pre-
venting data races and deadlocks. In: OOPSLA 2002 (2002)

12. Boyland, J.: Checking Interference with Fractional Permissions. In: Cousot, R.
(ed.) SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003)

13. Boyland, J.: Semantics of fractional permissions with nesting. ACM Trans. Pro-
gram. Lang. Syst. 32 (2010)

14. Cavé, V., Zhao, J., Shirako, J., Sarkar, V.: Habanero-java: the new adventures of
old X10. In: Proceedings of the 9th International Conference on the Principles and
Practice of Programming in Java, PPPJ (2011)

15. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protection.
In: OOPSLA (1998)

16. Dodds, M., Jagannathan, S., Parkinson, M.J.: Modular reasoning for deterministic
parallelism. In: POPL 2011 (2011)

17. Duran, A., et al.: Barcelona openmp tasks suite: A set of benchmarks targeting
the exploitation of task parallelism in openmp. In: ICPP (2009)

18. Fahndrich, M., DeLine, R.: Adoption and focus: practical linear types for impera-
tive programming. In: PLDI (2002)

19. Flanagan, C., Freund, S.N.: Type-based race detection for java. In: PLDI (2000)
20. Haller, P., Odersky, M.: Capabilities for Uniqueness and Borrowing. In: D’Hondt,

T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 354–378. Springer, Heidelberg (2010)
21. Heule, S., et al.: Fractional permissions without the fractions. In: Proceedings of

the 13th Workshop on Formal Techniues for Java-Like Programs, FTfJP (2011)
22. Joyner, M.: Array Optimizations for High Productivity Programming Languages.

PhD thesis, Rice University (2008)
23. Manson, J., Pugh, W., Adve, S.V.: The java memory model. In: POPL 2005 (2005)
24. Marino, D., et al.: DRFx: a simple and efficient memory model for concurrent

programming languages. In: Proceedings of PLDI 2010 (2010)
25. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for java. In: PLDI

(2006)
26. Nanevski, A., Morrisett, G., Birkedal, L.: Hoare type theory, polymorphism and

separation. J. Funct. Program. 18, 865–911 (2008)
27. Shirako, J., Kasahara, H., Sarkar, V.: Language Extensions in Support of Com-

piler Parallelization. In: Adve, V., Garzarán, M.J., Petersen, P. (eds.) LCPC 2007.
LNCS, vol. 5234, pp. 78–94. Springer, Heidelberg (2008)

28. Siek, J.G., Taha, W.: Gradual typing for functional languages. In: Scheme and
Functional Programming Workshop (2006)

29. Singh, A., et al.: Efficient processor support for DRFx, a memory model with
exceptions. In: Proceedings of ASPLOS 2011 (2011)

30. Smith, L.A., Bull, J.M., Obdrzálek, J.: A parallel java grande benchmark suite. In:
Proceedings of the 2001 ACM/IEEE Conference on Supercomputing (2001)

Practical Permissions for Race-Free Parallelism 639

31. Vallée-Rai, R., Hendren, L., Sundaresan, V., Lam, P., Gagnon, E., Co, P.:
Soot - a java optimization framework. In: Proceedings of CASCON 1999 (1999)

32. Vaziri, M., Tip, F., Dolby, J.: Associating synchronization constraints with data in
an object-oriented language. In: POPL (2006)

33. Vaziri, M., Tip, F., Dolby, J., Hammer, C., Vitek, J.: A Type System for Data-
Centric Synchronization. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183,
pp. 304–328. Springer, Heidelberg (2010)

34. Westbrook, E., Zhao, J., Budimlić, Z., Sarkar, V.: Permission regions for race-free
parallelism. In: RV (2011)

35. Wolff, R., Garcia, R., Tanter, É., Aldrich, J.: Gradual Typestate. In: Mezini, M.
(ed.) ECOOP 2011. LNCS, vol. 6813, pp. 459–483. Springer, Heidelberg (2011)

Verification of Snapshot Isolation

in Transactional Memory Java Programs

Ricardo J. Dias1, Dino Distefano2, João Costa Seco1, and João M. Lourenço1,�

1 CITI, Universidade Nova de Lisboa, Portugal
{rjfd,joao.seco,joao.lourenco}@di.fct.unl.pt

2 Queen Mary University of London, UK
ddino@eecs.qmul.ac.uk

Abstract. This paper presents an automatic verification technique for
transactional memory Java programs executing under snapshot isolation
level. We certify which transactions in a program are safe to execute un-
der snapshot isolation without triggering the write-skew anomaly, open-
ing the way to run-time optimizations that may lead to considerable
performance enhancements.

Our work builds on a novel deep-heap analysis technique based on
separation logic to statically approximate the read- and write-sets of a
transactional memory Java program.

We implement our technique and apply our tool to a set of micro
benchmarks and also to one benchmark of the STAMP package. We
corroborate known results, certifying some of the examples for safe ex-
ecution under snapshot isolation by proving the absence of write-skew
anomalies. In other cases our analysis has identified transactions that
potentially trigger previously unknown write-skew anomalies.

1 Introduction

Full-fledged Software TransactionalMemory (STM) [18,11] usually provides strict
isolation between transactions and full serializability semantics. Alternative re-
laxed semantics approaches, based on weaker isolation levels that allow transac-
tions to interfere and to generate non-serializable execution schedules, are known
to perform considerably better in some cases. The interference among non-
serializable transactions are commonly known as serializability anomalies [2].

Snapshot Isolation (SI) [2] is a well known relaxed isolation level widely used
in databases, where each transaction executes with relation to a private copy of
the system state — a snapshot — taken at the beginning of the transaction and
stored in a local buffer. All write operations are kept pending in the local buffer
until they are committed in the global state. Reading modified items always refer

� This work was partially supported by the Euro-TM EU COST Action
IC1001, the Portuguese national research projects RepComp (PTDC/EIA-
EIA/108963/2008), Synergy-VM (PTDC/EIA-EIA/113613/2009) and StreamLine
(PTDC/EIA-CCO/104583/2008), and the research grant SFRH/BD/41765/2007.
Distefano was supported by the Royal Academy of Engineering.

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 640–664, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Verification of Snapshot Isolation in Transactional Memory Java Programs 641

to the pending values in the local buffer. In all cases, committing transactions
obey the general First-Commiter-Wins rule. This rule states that a transaction
A can only commit if no other concurrent transaction B has committed modifi-
cations to data items pending to be committed by transaction A. Hence, for any
two concurrent transactions modifying the same data item, only the first one to
commit will succeed.

Tracking memory operations introduces some overhead, and TM systems run-
ning under serializable isolation level must track both memory read and write
accesses, incurring in considerable performance penalties. Validating transac-
tions in SI only requires to check if any two concurrent transaction wrote at a
common data item. Hence the runtime system only needs to track the memory
write accesses per transaction, ignoring the read accesses, possibly boosting the
overall performance of the transactional runtime, as shown in [7].

Although appealing for performance reasons, the application of SI may lead
to non-serializable executions, resulting in a serializability anomaly called write-
skew. For instance, a write-skew, arises in the following example of two state-
ments running in concurrent transactions

x := x+ y || y := y + x

In this case, it is possible to find a trace of execution that is not serializable and
yields unexpected results. In general, this anomaly occurs when two transactions
are writing on disjoint memory locations (x and y) but are also reading data
that is being modified by the other.

In this paper we present a verification technique for STM Java programs
that statically detects if any two transactions may cause a write-skew anomaly.
The application of the proposed technique may be used to optimize program
execution, by letting memory transactions run in snapshot isolation whenever
possible, and by explicitly requiring the full serializability semantics otherwise.
Our technique performs deep-heap analysis (also called shape analysis) based
on separation logic [16,8] to compute memory locations in the read- and write-
sets for each distinguished transaction in a Java program. The analysis only
requires the specification of the state of the heap for each transaction and is
able to automatically compute loop invariants during the analysis. Our analysis
computes read and write-sets of transactions using heap paths, which capture
dereferences through field labels, choice and repetition.

For instance, a heap path of the form x .(left | right)∗.right describes the access
to a field labeled right , on a memory location reachable from variable x after a
number of dereferences through left or right fields.

We implemented a tool with the proposed techniques, called StarTM, which
allows to analyze Java Bytecode programs extended with STM annotations. To
validate our approach, we tested implementations of a transactional Linked List
and of a transactional Binary Search Tree, and also of a Java implementation
of the STAMP Intruder benchmark [5]. Our results confirm that i) it is possible
to safely execute concurrent transactions of a Linked List under snapshot iso-
lation with noticeable performance improvements, supporting the arguments of

642 R.J. Dias et al.

[17]; ii) it is possible to build a transactional insert method in a Binary Search
Tree that is safe to execute under SI; and iii) our automatic analysis of the
STAMP Intruder benchmark found a new write-skew anomaly in the existing
implementation.

We impose some limitations on the programs for which our approach is able
to guarantee the absence of write-skew anomalies. We only support acyclic data
structures, such as tree-like data structures, and only detect write-skews between
pairs of transactions.

The main contributions of this paper are:

– The first program verification technique to statically detect the write-skew
anomaly in transactional memory programs;

– The first technique able to verify transactional memory programs even in
presence of deep-heap manipulation thanks to the use of shape analysis tech-
niques;

– A model that captures fine-grained manipulation of memory locations based
on heap paths ;

– An implementation of our technique and the application of the tool to a set
of intricate examples.

The remainder of the paper describes the theory of our analysis technique and the
validation experiments. We start by describing a step-by-step example of apply-
ing StarTM to a simple example in section 2. We then present the core language,
in section 3, and the abstract domain for the analysis procedure in section 4. In
section 5, we present the symbolic execution of programs against the abstract
state representation. We finalize the paper by presenting some experimental re-
sults in Section 6 and comparing our approach with others in Section 7.

2 StarTM by Example

StarTM analyzes Java multithreaded programs that make use of memory trans-
actions. The scope of a memory transaction is defined by the scope of a Java
method annotated with @Atomic, which in our case requires a mandatory argu-
ment with an abstract description of the initial state of the heap. Other methods
called inside a transactional method do not require this initial description, as it
is automatically computed by the symbolic execution.

To describe the abstract state of the heap, we use a subset of separation logic
formulae composed of a set of predicates — among which a points-to (�→) predi-
cate — separated by the special separation conjunction (∗) typical of separation
logic. The user can define new predicates in a proper scripting language and also
define abstraction functions which, in case of infinite state spaces, allows the
analysis to converge. The abstraction function is defined by a set of abstraction
rules as in the jStar tool [9]. The user defined predicates and abstraction rules
are described in separate files and are associated with the transactions’ code by
the class annotations @Predicates and @Abstractions, which receive as argument
the corresponding file names.

Verification of Snapshot Isolation in Transactional Memory Java Programs 643

1 @Pred icates (f i l e="list_pred .sl")

2 @Abs t r ac t i on s (f i l e="list_abs .sl")

3 pub l i c c l a s s L i s t { pub l i c c l a s s Node{ . . . } . . . }

23 @Atomic(s t a t e= "| this -> [head :h’]

24 * List (h’, nil)")

25 pub l i c vo i d add (i n t v a l u e) {
26 boolean r e s u l t ;

27 Node pr e v = head ;

28 Node ne x t = pre v . ge tNext () ;

29 wh i l e (ne x t . ge tVa l ue () < v a l u e) {
30 pr e v = next ;

31 ne x t = pre v . ge tNext () ;

32 }
33 i f (ne x t . ge tVa l ue () != va l u e) {
34 Node n = new Node (va lue , ne x t) ;

35 pr e v . s e tNext (n) ;

36 }
37 }

39 @Atomic(s t a t e= "| this -> [head :h’]

40 * List (h’, nil)")

41 pub l i c vo i d remove (i n t v a l u e) {
42 boolean r e s u l t ;

43 Node pr e v = head ;

44 Node ne x t = pre v . ge tNext () ;

45 wh i l e (ne x t . ge tVa l ue () < v a l u e) {
46 pr e v = next ;

47 ne x t = pre v . ge tNext () ;

48 }
49 i f (ne x t . ge tVa l ue () == va l u e) {
50 pr e v . s e tNext (ne x t . ge tNext ()) ;

51 }
52 }

Fig. 1. Order Linked List code

// list_pred.sl file

/*** Predicate definition ***/
Node(+x,-n) <=> x -> [next:n] ;;

List(+x,-y) <=> x != y /\
(Node(x,y) \/ E z’. Node(x,z’) *

List(z’,y));;

// list_abs.sl file
/*** Abstractions definition ***/
Node(x, y’) * Node(y’,z)∼∼>List(x, z):

y’ nin context ;
y’ nin x;
y’ nin z

;;
...
List(x,y’) * Node(y’,z)∼∼>List(x, z):

y’ nin context ;
y’ nin x;
y’ nin z

;;

Fig. 2. Predicates and Abstraction rules of Linked List

We use as running example the implementation of an ordered singly linked
list, adapted from the DeuceSTM [13] samples, shown in Fig. 1. The corre-
sponding predicates and abstractions rules are defined in Fig. 2. The predicate
Node(+x,-y) defined in Fig. 2 by

Node(x, y)⇔ x �→ [next : y]

is valid if variable x points to a memory location where the corresponding next
field points to the same location as variable y, or both the next field and y point
to nil. Predicate List(+x,-y) defined by

List(x, y)⇔ x = y ∧ (Node(x, y) ∨ ∃z′.Node(x, z′) ∗ List(z′, y))
is valid if variables x and y point to distinct memory locations and there is a
chain of nodes leading from the memory location pointed by x to the memory
location pointed by y. The predicate is also valid when both y and the last node
in the chain point to nil.

644 R.J. Dias et al.

Method boolean add(int value)
Result 1:
ReadSet : { this.head.(next)[*A].next.value }
WriteSet >: { }
WriteSet <: { }

Result 2:
ReadSet : { this.head.(next)[*B].next.value }
WriteSet >: { this.head.(next)[*B].next }
WriteSet <: { this.head.(next)[*B].next }

Method boolean remove(int value)
Result 1:
ReadSet : { this.head.(next)[*C].next.value }
WriteSet >: { }
WriteSet <: { }

Result 2:
ReadSet : { this.head.(next)[*D].next.value , this.head.(next)[*D].next.next}
WriteSet >: { this.head.(next)[*D].next }
WriteSet <: { this.head.(next)[*D].next }

Fig. 3. Sample of StarTM result output for the Linked List example

The modifiers + and - of the predicate parameters indicate that the corre-
sponding parameter points to a memory location respectively inside or outside
of the memory region defined by the predicate. A more precise definition of these
modifiers is presented in Section 4.2.

In Fig. 1, we annotate the add(int) and remove(int) methods as transactions
with the initial state described by the following formula:

| this->[head:h’] * List(h’,nil)

This formula states that variable this points to a memory location that contains
an object of class List , and whose field head points to the same memory location
pointed by the existential variable1 h′, which is the entry point of a list with at
least one element.

StarTM performs an inter-procedural symbolic execution of the program. The
abstract domain used by the symbolic execution is composed by a separation
logic formula describing the abstract heap structure, and the abstract read-
and write-sets. The abstract write-set is defined by two sets: a may write-set
and a must write-set. As the naming implies one over-approximates, and the
other under-approximates the possible real write-set. The abstract read-set is an
over-approximation of the possible real read-set. The read- and write-sets are
defined as sets of heap paths. A memory location is represented by its path, in
terms of field accesses, beginning from some shared variable. We assume that the
parameters of a transactional method and the instance variable this are shared
in the context of that transaction.

1 Throughout this paper we consider primed variables as implicitly existentially quan-
tified.

Verification of Snapshot Isolation in Transactional Memory Java Programs 645

The sample of the results of our analysis, depicted in Fig. 3, includes two pos-
sible pairs of read- and write-sets for method add(int). The may write-set is de-
noted by label WriteSet> and the must write-set is denoted by label WriteSet<.
The first result has an empty write-set2, and thus corresponds to a read-only
execution of the method add(int), where the heap path in the read-set can be in-
terpreted as follows. The heap path this.head.(next)[*A].next.value asserts
that method add(int) reads the head field from the memory location pointed by
variable this and following the memory location pointed by head it reads the
next field, then for each memory location it reads the next and value fields and
hops to the next memory location through the next field. In the last memory
location accessed it only reads the value field. In general, we can interpret the
meaning of an abstract read-set as all the memory locations represented by the
heap paths present in the read-set and also by their prefixes.

The star (∗) operator has always a label attached, in case of [*A], the label
is A. This label is used to identify the subpath guarded by the star and can be
interpreted, in this case, as A = (next)∗. This label is existentially quantified in
a pair of read- and write-sets.

The second pair of read- and write-sets of method add(int) in Fig. 3 contains
the same read-set and a different write-set. In this case the may and must write-
sets are equal. The heap path this.head.(next)[*B].next asserts that the
next field, of the memory location represented by the path this .head .(next)∗B ,
was written.

It is important to notice that the interpretations of the read- and write-set
are different. In the read-set we consider that all the path prefixes of all heap
path expressions were read, while in the write-set we consider that there was a
single write operation in the last field of each heap path expression.

The may write-set may contain heap paths of the form this .head .(next)∗̄B . In
this case, the interpretation of this expression is that the field next is written in
every memory location represented by the path this .head .(next)∗B. More details
on heap path expressions are given in Section 4.2.

The analysis also originates two possible results for method remove(int). The
first result for this method is similar to the first result for method add(int). In
the second result for method remove(int), the field next is read for all memory
locations including the last memory location where field value was accessed,
since the star label is the same in the two heap path expressions in the read-set.
The write-set is the same as in the add(int) method.

We can now check for the possible occurrence of a write-skew anomaly. We
define a write-skew condition as:

Definition 1 (Abstract Write-Skew). Let T1 and T2 be two transactions,
and let Ri, W>

i and W<
i (i = 1, 2) be their corresponding abstract read-, may

write- and must write-sets. There is a write-skew anomaly if

R1 ∩W>
2 = ∅ ∧ W>

1 ∩R2 = ∅ ∧ W<
1 ∩W<

2 = ∅
2 If the context is not ambiguous we will always refer to both the may and must
write-sets.

646 R.J. Dias et al.

Method boolean remove(int value)
Result 2:
ReadSet : { this.head.(next)[*D].next.value , this.head.(next)[*D].next.next }
WriteSet >: { this.head.(next)[*D].next , this.head.(next)[*D].next.next }
WriteSet <: { this.head.(next)[*D].next , this.head.(next)[*D].next.next }

Fig. 4. Sample of StarTM result output for corrected remove(int) method

We will consider that each result (a pair of a read- and a write-set) corresponds
to a single transaction instance. From the above condition we may trivially ignore
the results with an empty write-set. Hence, only result pairs with non-empty
write-sets need to be checked.

We denote the second result of the add(int) method as Tadd, and the second
result of the remove(int) method as Trem. To detect the possible existence of a
write-skew we need to check the following pairs:

(Tadd,Tadd), (Trem,Trem), (Tadd,Trem)

Let’s examine in detail the pair (Tadd,Trem). We simplify the description of the
read-set of each transaction by ignoring the field value, since neither transac-
tions writes to that field and thus we will focus only on interactions with the field
next. We assume that the shared variable this points to the same object in both
transactions, otherwise no conflicts would ever arise. The read- and write-set for
transactions Tadd, and Trem (relative to field next) are

Radd = {this.head , this .head .B , this .head .B .next}
W>

add =W<
add = {this.head .B .next}

Rrem = {this.head , this .head .D , this .head .D .next , this .head .D .next .next}
W>

rem =W<
rem = {this.head .D .next}

Given these read- and write-sets, if an instantiation of B and D exist that
satisfies the write-skew condition then the concurrent execution of these two
transactions could possibly cause a write-skew anomaly. In this particular case,
the assertion B = D .next , which means that the memory locations represented
by B are the same as the ones represented by D .next , satisfies the write-skew
condition.

To correct the list implementation from triggering a write-skew anomaly one
can add the additional write operation next.setNext(null) between lines 50 and
51 of the code shown in Fig. 1. This write operation, although unnecessary in
terms of the list semantics, is essential to make the list implementation safe
under snapshot isolation as we shall see. Given this new implementation, the
result of the analysis by StarTM is depicted in Fig. 4. Notice that the write-set
has two heap paths describing that the transaction writes the next field of the
penultimate and last memory locations. Now, the new read- and write-set for
transactions Tadd, and Trem (relative to field next) are

Verification of Snapshot Isolation in Transactional Memory Java Programs 647

e ::= (expression)
x (variables)

| null (null value)
A ::= (assignments)

x := e (local)
| x := y.f (heap read)
| x := fun(�y) (function call)
| x.f := e (heap write)
| x := new (allocation)

b ::= (boolean exp)
e⊕b e (boolean op)

| true | false (bool values)
S ::= (statements)

S ;S (sequence)
| A (assignment)
| if b thenS elseS (conditional)
| while b doS (loop)
| return e (return)
| skip (Skip)

P ::= fun(�x) = S | P (program)

Fig. 5. Core language syntax for programs

Radd = {this.head , this .head .B , this .head .B .next}
W>

add =W<
add = {this.head .B .next}

Rrem = {this.head , this .head .D , this .head .D .next , this .head .D .next.next}
W>

rem =W<
rem = {this.head .D .next , this .head .D .next .next}

In this case, it is not possible to find an instantiation for B and D, such that the
write-skew condition is true. Hence, these transactions can execute concurrently
under SI without ever triggering the write-skew anomaly.

3 Core Language

In this section we define a core language to support our static analysis. We
include the subset of Java that captures essential features such as object creation
(new), field dereferencing (x.f), assignment (x := e), and function invocation
(fun(�x)). The syntax of the language is defined by the grammar in Fig. 5. A
program in this language is a set of function definitions. We do not explicitly
represent transactions nor an entry point in the syntax, and we assume that all
functions are transactions that can be called concurrently.

We assume a countable set of program variables Vars (ranged over by x, y, . . .),
a set of shared variables SVars ⊆ Vars, a countable disjoint set of primed variables
Vars′ (ranged over by x′, y′, . . .), a countable set of locations Locations, and a
finite set of field names Fields. The operational semantics for the language is
defined over configurations of the form 〈s, h, S〉, where s ∈ Stacks is a stack (a
mapping from variables to values), h ∈ Heaps is a (concrete) heap (a mapping
from locations to values through field labels).

648 R.J. Dias et al.

e ::= (expressions)
x, y, . . . ∈ Vars (program variables)

| x′, y′, . . . ∈ Vars′ (existential variables)
| nil (null value)

ρ ::= f1 : e, . . . , fn : e (record)

S ::= e �→ [ρ] | p(�e) (spatial predicates)
P ::= e = e (pure predicates)
Π ::= true | P ∧Π (pure part)
Σ ::= emp | S ∗Σ (spatial part)

H ::= Π |Σ (symbolic heap)

Fig. 6. Separation logic syntax

Values = Locations∪ {nil}
Stacks = (Vars∪Vars′)→ Values

Heaps = Locations ⇀fin (Fields→ Values)

The small step structural operational semantics is the standard for this kind of
imperative language defined by the reduction relation 〈s, h, S〉 =⇒ 〈s′, h′, S′〉.

4 Symbolic States

In the symbolic execution a symbolic state is of the form (H,M,R,W): where H
is a symbolic heap, defined using a fragment of separation logic formulae,M is a
map between variables and heap path expressions, and R and W are read- and
write-sets. The write-set W in our analysis is actually composed by two sets: a
may write-set, denoted by W>, which over-approximates the concrete write-set,
and a must write-set, denoted by W<, which under-approximates the concrete
write-set.

The fragment of separation logic formulae that we use to describe symbolic
heaps is defined by the grammar in Fig. 6. Satisfaction of a formula H by a stack
s and heap h is denoted s, h |= H and defined by structural induction on H in
Fig. 7. There, �p� is as usual a component of the least fixed point of a monotone
operator constructed from a inductive definition set; see [3] for details. In this
heap model a location maps to a record of values. The formula e �→ [ρ] can
mention any number of fields in ρ, and the values of the remaining fields are
implicitly existentially quantified.

4.1 Symbolic Heaps

Symbolic heaps are abstract models of the heap of the form H = Π |Σ where Π
is called the pure part and Σ is called the spatial part. We use prime variables

Verification of Snapshot Isolation in Transactional Memory Java Programs 649

s, h |= emp iff dom(h) = ∅
s, h |= x �→ [f1 : e1, , fn : en] iff h = [s(x) �→ r] where r(fi) = s(ei) for i ∈ [1, n]

s, h |= p(�e) iff (s(�e), h) ∈ �p�
s, h |= Σ0 ∗Σ1 iff ∃h0, h1. h = h0 ∗ h1 and s, h0 |= Σ0 and s, h1 |= Σ1

s, h |= e1 = e2 iff s(e1) = s(e2)

s, h |= Π1 ∧Π2 iff s, h |= Π1 and s, h |= Π2

s, h |= Π |Σ iff ∃�v′. �s(�x′ �→ �v′), h |= Π
�
and

�
s(�x′ �→ �v′), h |= Σ

�
where �x′ is the collection of existential variables

in Π |Σ

Fig. 7. Separation Logic semantics

x

Node(x, y)

y x

List(x, y)

y

...

Fig. 8. Graph representation of the Node(x, y) and List(x, y) predicates

(x′
1, . . . , x

′
n) to implicitly denote existentially quantified variables that occur in

Π |Σ. The pure part Π is a conjunction of pure predicates which states facts
about the stack variables and existential variables (e.g., x = nil). The spatial
part Σ is the ∗ conjunction of spatial predicates, i.e., related to heap facts. In
separation logic, the formula S1 ∗ S2 holds in a heap that can be split into two
disjoint parts, one of them described exclusively by S1 and the other described
exclusively by S2.

In symbolic heaps, memory locations are either pointed directly by program
variables (e.g., v) or existential variables (e.g., v′), or they are abstracted by
predicates. Predicates are abstractions for the graph-like structure of a set of
memory locations. For example, the predicate Node(x, y), in Fig. 8, abstracts
a single memory location pointed by variable x, while the predicate List(x, y)
abstracts a set of an unbound number of memory locations, where each location
is linked to another location of the set by the next field.

A predicate p(�e) has at least one parameter, from its parameter set, that is the
entry point for reaching every memory location that the predicate abstracts. We
denote this kind of parameter as entry parameters. Also, there is a subset of pa-
rameters that correspond to the exit points of the memory region abstracted by
the predicate. These parameters denote variables pointing to memory locations
that are outside the predicate but the predicate has memory locations with links
to these outsider locations. In Fig. 8 we can observe that the predicate List(x, y)

650 R.J. Dias et al.

H ::= v | v.P (heap path)
P ::= f | f.P | C∗

A.P (subpath)
C ::= f | f “|” C (choice)

S�v�s,h,l = {l′} S�v.P �s,h,l = S�P �s,h,l′ where l′ = s(v)

S�f�s,h,l = {l′} S�f.P �s,h,l = S�P �s,h,l′ where l′ = h(l, f)

S�C∗.P �s,h,l = S�f1.C∗.P �s,h,l ∪ ... ∪ S�fn.C∗.P �s,h,l ∪ S�P �s,h,l where C = f1|...|fn

Fig. 9. Heap Path syntax and semantics

has one entry parameter x and one exit parameter y. Users of StarTM are re-
quired to indicate which parameters of a predicate are entry or exit by prefixing
them with the unary operators + and -, denoting entry and exit respectively. In
the definition of our analysis we can query if a parameter a of a predicate p is of
entry or exit type with the δ+p (a) or δ

−
p (a) operators respectively. For the special

case of predicate (�→), we always consider that the variable on its left side is an
entry parameter and the variables on its right side are exit parameters.

4.2 Heap Paths

We are going to represent a memory location as a sequence of fields, starting from
a program variable. If we successively dereference the field labels that appear
in the sequence, we reach the memory location denoted by the sequence. We
call these sequences of field labels, prefixed by a variable name, a heap path. For
instance, the path x .left .right , denotes the memory location that is reachable
by dereferencing the field left of the location pointed by variable x, and by
dereferencing the field right of the location represented by x .left .

We can also represent sequences of field dereferences in a heap path by using
the Kleene star (∗) and choice (|) operators. For instance, the path x .(left | right)∗
denotes a memory location that can be reached by starting on variable x and
then dereferencing either the left or right field on each visited memory location.

The syntax of heap paths is depicted in Fig. 9 and corresponds to a very
restrictive subset of the regular expressions syntax. A heap path always starts
with a variable name (v) followed by sequences of field labels (f), repeating
subpath expressions under a Kleene operator (C∗), and choices of field labels
(C). We syntactically restrict heap paths, with respect to regular expressions,
by only allowing choices of field labels guarded by a Kleene operator, and rep-
etitions of choices of single field labels (not sequences). For instance, the path
x.(left | right∗) is not a valid heap path expression.

Each repeating subpath is always associated with a label. This is used to
identify the subpath guarded by the star and we can rewrite C∗

A.P as A.P
where A = C∗. As we shall see later, this label will be used to identify subpath
expressions that denote the same concrete path in the heap. We may also denote

Verification of Snapshot Isolation in Transactional Memory Java Programs 651

Φ(x �→ [f1 : y, . . . , fn : z], x, y) = x.f1

Φ(p(�i, �o), x, y) = hp where x ∈�i ∧ δ+p (x) ∧ y ∈ �o ∧ δ−p (y) ∧ hp = Γ (p, x, y)

Φ(S ∗ S′, x, y) = concat(Φ(S, x, z), Φ(S′, z, y))

where exists path from x to z in S and from z to y in S′

concat(x.P, z.P ′) = x.P.P ′

Fig. 10. Rules for transforming a symbolic heap into a heap path

the repetition sequence with a bar on top of the star, e.g., x .C ∗̄
A. This will be

used to distinguish between different interpretations, of heap path expressions
contained in read- and write-sets.

We now define the semantics of heap paths with relation to concrete stacks and
heaps through function S�H�s,h,l in Fig. 9. According to this definition a heap
path expression denotes the set of all memory locations that can be reachable by
following it in a concrete memory, S�H� ⊆ Locations. Abstract read- or write-sets
are sets of heap paths. We write HPaths for the set of all heap path expressions.

In the following developments we interpret read-sets, may write-sets, and must
write-sets in three different ways. For read-sets we always consider the satura-
tion of the read-set with the denotations of all prefixes of its heap-paths. For
must write-sets we consider one under-approximation where a heap-path H rep-
resents exactly one location in the set S�H�. For may write-sets we consider
the over-approximation by saturating the set with the expansion of the ∗̄ repeti-
tion annotation. For instance, a heap path expression x .C ∗̄.f in a may write-set,
denotes write operations on all fields f for all locations of the set S�x .C ∗̄�.

4.3 From Symbolic Heaps to Heap Paths

During the symbolic execution, we generate heap paths based on the information
given by the symbolic heap. Recall that the only information given by the user
to the verification tool is a description of the state at the beginning of the
transaction using a symbolic heap, everything else is inferred.

Given a memory location l pointed by some variable x, if there is a path
in the symbolic heap from some other variable s, where s ∈ SVars, to variable
x, then we can generate a heap path that represents the path from the shared
variable s to the memory location l. Moreover, the computation of a heap path
from the symbolic heap requires a transformation function that given a predicate
and its arguments returns a heap path. In this case, the separation conjunction
operator (∗) corresponds to the concatenation in the heap path. See Fig. 10 for
the whole set of transformation rules. Function concat(x.P, z.P ′) concatenates
the path described by P ′ to the heap path x.P . Note that this concatenation is
sound, given the pre-condition that x.P represents the same memory location
as variable z, which is true in the case above.

652 R.J. Dias et al.

The rule for transforming a predicate p(�i, �o) into a heap path relies on a func-
tion Γ that returns a heap path given a predicate and a pair of variables. A predi-
cate definition can be transformed into a DFA (Deterministic Finite Automaton)
where states correspond to predicates and transitions’ labels correspond to fields.
Then, we can generate a heap path expression, from the automaton, using well
know automata to regular expressions transformation techniques. Consider the
example of a heap path generated for the list segment predicate:

Example 1 (Heap Path of the List Segment Predicate).

List(x, y)⇔ x �= y ∧ �x �→ [next : y] ∨ ∃z′. x �→ [next : z′] ∗ List(z′, y)
�

Given the List predicate definition, the heap path that represents the memory location
pointed by y reachable from x is:

Γ (List(x, y), x, y) = x .next+A

We abbreviate repeating sequences with at least one field label using symbol +
(e.g. next+). The label A is fresh in the context of the symbolic state where the
heap path is computed. Notice that heap path expressions containing repetitions
and choices are only generated when transforming recursive predicates into heap
paths.

5 Symbolic Execution

Next, we define the symbolic execution for the core language presented in Sec-
tion 3 taking inspiration from [8]. In our case, the symbolic execution defines the
effect of statements on symbolic states composed by a symbolic heap, a path map,
and a read- and write-set. We represent a symbolic state as: 〈H,M,R,W〉 ∈
(SHeaps×(Vars ⇀ HPaths) × Rs×Ws) where SHeaps is the set of all symbolic
heaps, (Vars ⇀ HPaths) is the map between program variables and heap path
expressions, Rs is the set of all read-sets, and Ws is the set of pairs of all may
and must write-sets. We write SStates for denoting the set of all symbolic states.

The path map M is a map that associates variables to heap path expressions.
In each state of the symbolic execution, a variable x in this map is associated
with a heap path expression that represents the memory location pointed by x.
The purpose of this map is to keep a heap path expression less abstract than the
one that we can capture from the symbolic heap. For instance, in the map, we
may have the information that we only accessed the left field of each node of a
tree, but from the symbolic heap we get the information that we accessed the
left or right fields in each node. The symbolic execution will always maintain
the invariant Sp ⊆ Gp where Sp is the heap path in the path map and Gp is the
heap path from the symbolic heap, for a variable x. The subset relation means
that all paths described by Sp are described by Gp.

Each transactional method is annotated with the @Atomic annotation describ-
ing the initial symbolic heaps for that transaction. The symbolic execution will
analyze only transactional methods and all methods present in the invocation

Verification of Snapshot Isolation in Transactional Memory Java Programs 653

tree that occurs inside their body. In the beginning of the analysis we have the
specification of the symbolic heaps for each transactional method. An empty
path map and empty read- and write-sets are associated to each initial symbolic
heap, thus creating a set of initial symbolic states for each transactional method.
The complete information for each method is composed by:

– the initial symbolic states, which can be given by the programmer or be
computed by the analysis;

– the final symbolic states resulting from the method’s execution. These final
symbolic states are computed by the analysis and, in the special case of the
transactional methods, are the final result of the analysis.

For each method, given one initial symbolic state, the analysis may produce
more than one symbolic states. The symbolic execution is defined by function
exec that yields a set of symbolic states or an error (�), given a method body
(from Stmt) and an initial symbolic state (from SStates):

exec : Stmt× SStates→ P(SStates) ∪ {�}
To support inter-procedural analysis we also need the auxiliary function spec,
that given a method signature (fun(�x) ∈ Sig), yields a mapping from symbolic
heaps to sets of symbolic states: SHeaps→ P(SStates).

spec : Sig → (SHeaps→ P(SStates))
For non-transactional methods, called inside transactions, the initial symbolic
state is computed in the course of the symbolic execution, which is inferred from
the symbolic state of the calling context. Recursive functions are currently not
supported by our analysis technique.

5.1 Past Symbolic Heap

In our analysis we need a special kind of predicates, which we call past predicates,
and are denoted as �p(�e) or x��→ [ρ]. The past symbolic heap is composed by
predicates and past predicates. The latter ones have an important role in the
correctness for computing heap paths. Heap paths must always be computed with
respect to the initial snapshot of memory, which is shared between transactions,
and corresponds to the initial symbolic heap. Otherwise we may fail to detect
some shared memory access due to some memory privatization pattern. We
illustrate this problem by means of an example:

Example 2. Given an initial symbolic heap, where x ∈ SVars is a shared variable:

{}|List(x, y) ∗ y �→ [next : z] ∗ z �→ nil

The heap paths representing the locations pointed by each variable are:

x ≡ x y ≡ x.(next)+A z ≡ x.(next)+A. next

654 R.J. Dias et al.

If we update the location pointed by y by assigning its next field to nil we get

{}|List(x, y) ∗ y �→ [next : nil] ∗ z �→ nil

After the update, the heap paths representing the locations pointed by x and y
remain the same. However, z is no longer reachable from a shared variable, and
hence, we have lost the information that in the context of a transaction, z is still
a shared memory location subject to concurrent modifications.

This example shows that the heap path representing a memory location, that
is reachable by a shared variable in the beginning of the transaction, must not
be changed by the updates in the structure of the heap. So, in order to compute
the correct heap path we need to use a “past view” of the current symbolic heap.
To get the past view we need past predicates, which are added to the symbolic
heap whenever an update is made to the structure of the heap. In the case of
the previous example, the result of updating variable y would give the following
symbolic heap:

{}|List(x, y) ∗ y �→ [next : nil] ∗ y��→ [next : z] ∗ z �→ nil

The past predicate y��→ [next : z] denotes that there was a link between variable
y and z in the initial symbolic heap. Now, if there is a read access to a field of
the memory location pointed by variable z, we compute the heap path of this
location in the past view of the symbolic heap. We define a function that given
a symbolic heap returns the past view of such symbolic heap:

Definition 2 (Past Symbolic Heap). Let Past(H) be the set of past predicates
in H, and NPast(Π |Σ) = {S | Σ = S ∗ Σ′ ∧ ¬ hasPastΠ|Σ(S)}. Then we define
the past symbolic heap by

PSH(Π |Σ) 	 Π |
S∈NPast(Π|Σ) S ∗
�S∈Past(Π|Σ)
�S

This function makes use of the hasPast function to assert if there is already a
past predicate, in the symbolic heap, with the same entry parameters. We define
hasPast as:

Definition 3 (Has Past).

hasPastH(x �→ [ρ])⇔ H � x��→ [ρ] ∗ true
hasPastH(p(�i, �o)) ⇔ ∀i ∈�i : δ+p (i) ∧ ∃i ∈�i : H � �p(. . . , i, . . .) ∗ true

The result of the past heap function applied to the previous example is:

PSH({}|List(x, y) ∗ y �→ [next : nil] ∗ y��→ [next : z] ∗ z �→ nil)

	 {}|List(x, y) ∗ y �→ [next : z] ∗ z �→ nil

Which corresponds to the initial symbolic heap of Example 2. Thus we can
calculate correctly the heap paths of the locations pointed by x, y and z.

We also define a function PastOfH(x �→ [ρ]) that if the symbolic heap H does
not contain a past points-to predicate for a points-to predicate x �→ [ρ], it creates
a new past predicate x��→ [ρ].

Verification of Snapshot Isolation in Transactional Memory Java Programs 655

〈H,M,R,W, S〉 =⇒ 〈H′,M′,R′,W ′〉 ∨ 〈H,M,R,W, S〉 =⇒ �
I(e) ::= e.f := x | x := e.f

H � y = nil

〈H,M,R,W, I(y)〉 =⇒ � (Heap Error)

x′ is fresh

〈H,M,R,W, x := e〉 =⇒ 〈x = e[x′/x] ∧ H[x′/x],M[x �→ M(e)],R,W〉 (Assign)

p = GenP(PSH(H),M, y) M′ = uMap(M,H, y, p)[x �→ p.f]
H′ = x = z[x′/x] ∧ H[x′/x] x′ is fresh

〈H ∗ y �→ [f : z],M,R,W, x := y.f〉 =⇒ 〈H′,M′,R∪ {p.f},W〉 (Heap Read)

p = GenP(PSH(H ∗ x �→ [f : z]),M, x) M′ = uMap(M,H, x, p)
H′ = H ∗ x �→ [f : e] ∗ PastOfH(x �→ [f : z])

〈H ∗ x �→ [f : z],M,R,W, x.f := e〉 =⇒ 〈H′,M′,R,W
 {p.f}〉 (Heap Write)

x′ is fresh

〈H,M,R,W, x := new〉 =⇒ 〈H[x′/x] ∗ x �→ [],M[x �→ ε],R,W〉 (Allocation)

〈H,M,R,W, return e〉 =⇒ 〈ret = e ∧H,M[ret �→ M(e)],R,W〉 (Return)

〈H′′,M′,R′,W ′〉 ∈ spec(fun(�z))(H′) H � H′[�y/�z] ∗Q H′′′ = Q ∗ H′′[�y/�z]
R′′ = R′[�y/�z] W ′′ =W ′[�y/�z] M′′ = uAMap(R′′ ∪W ′′,M,H′′′)

r.P ′ =M′(ret) M′′′ =M′′[x �→ GenP(PSH(H′′′),M′′, r).P ′]
R′′′ = R ∪ {M′′′(v).P | v.P ∈ R′′} W ′′′ =W
 {M′′′(v).P | v.P ∈ W ′′}

〈H,M,R,W, x := fun(�y)〉 =⇒ 〈x = ret ∧H′′′,M′′′,R′′′,W ′′′〉 (FCall)

aliasH(x) � {y | H � x = y} ∪ {x}
uMap(M,H, x, p) � {v �→ s | v �→ s ∈ M∧ v /∈ aliasH(x)} ∪ {a �→ p | a ∈ aliasH(x)}
uAMap(V,M,H) � {s | v.P ∈ V ∧ p = GenP(PSH(H),M, v) ∧ s ∈ uMap(M,H, v, p)}

Fig. 11. Operational Symbolic Execution Rules

Definition 4 (Generate Past Predicate).

PastOfH(x �→ [ρ]) 	
�
emp if hasPastH(x �→ [ρ])

x��→ [ρ] otherwise

5.2 Symbolic Execution Rules

The symbolic execution is defined by the rules shown in Fig. 11.
The ruleAssign, when executed in a state 〈H,M,R,W〉 adds the information

that in the resulting state, x is equal to e. As in standard Hoare/Floyd style
assignment, all the occurrences of x, inH and e, are replaced by a fresh existential

656 R.J. Dias et al.

quantified variable x′. We also compute a new path map where we associate
variable x with the heap path of expression e. If e is null then we associate
variable x with empty ε. The read- and write-set are not changed because there
are no changes in the heap.

The Heap Read rule adds an equality, to the resulting state, between x and
the content of the field f of the location pointed by y. Every time we access
the heap, for reading or writing, we compute a new path map. In this case we
generate a heap path for variable y using the symbolic heap and the current path
map. Note that the heap path generated is computed in the past symbolic heap
as described in Section 5.1. This operation, denoted as GenP, is also responsible
for abstracting the representation of heap paths, we will describe it in detail in
Section 5.4. Given the new computed heap path p we compute a new path map
by associating path p with variable y, and all its aliases. We use function uMap
to perform these operations. Then we associate variable x with the result of the
concatenation of path p, which represents the memory location pointed by y,
with field f . Finally, we add to the read-set the memory access represented by
the heap path p and the field f .

The Heap Write rule denotes an update to the value of field f in the lo-
cation pointed by x. Variable x is associated with the generated heap path p
(uMap(M,H, x, p)) in a new path map. The symbolic heap is extended with a
past predicate representing the link between variable x and the record [f : z]
that just ceased to exist. The resulting write-set is extended with the field ac-
cess {p.f} (W � {p.f}). The operation W � {p.f}, denotes the adding of {p.f}
to both components of the write set W , to the may write-set W> and to the
must write-set W<. While adding an heap path access p.f to the must write-set
W< is straightforward, adding p.f to the may write-set W> is a bit more in-
volved. If W> already contains p.f , then we replace all repeating sequences in
p, by repeating sequences of the kind ∗̄. For instance, in the previous example,
if p.f = x . next∗A . next is already in W>, the may write-set after adding p.f
contains x . next ∗̄A . next instead.

When a new memory location is allocated, rule Allocation, and is assigned
to variable x we update the path map entry for variable x with empty (ε).

In the FCall rule, the function spec is used to get the symbolic state
〈H′′,M′,R′,W ′〉 which corresponds to one of the final states of the symbolic
execution of a function fun. The read- and write-set are composed by heap path
expressions, where each expression v.P represents a memory location where vari-
able v is the root of the path. This variable is a root variable in the context of
function fun but in the context of the function that is being analyzed where fun
was invoked, variable v might point to a memory location that is represented by
a heap path expression v′.P ′ where v′ = v. This means that a memory location
that is represented by the expression v.P in the context of fun, is represented by
the expression v′.P ′.P in the context of the calling site of fun where v′.P ′ is the
expression that represent the memory location pointed by v in the context of
the calling site. We need to update all heap path expressions of all variables that
are in the returned read- (R′) and write-set (W ′). We use the uAMap function

Verification of Snapshot Isolation in Transactional Memory Java Programs 657

to iterate over all variables and generate a new heap path expression and update
the path map accordingly. The return value of function fun is assigned to vari-
able x and therefore we update the path map entry for variable x with the heap
path expression that represents memory location pointed by the special return
variable ret in the context of the calling site. In the last step, we merge the read-
and write-sets using the updated path map M′′′ by concatenating the heap path
M′′′(v) with the remaining path returned from the read- (R′) or write-set (W ′).
The final symbolic heap H′′′ is computed in the typical way for inter-procedural
analysis using separation logic that is by combining the frame of the function
call (in this case Q)3, and the postcondition of the spec H′′ [9].

Since we are not aiming at verifying execution errors, we silently ignore the
symbolic error states (�) produced by Heap Error rule in our analysis.

5.3 Rearrangement Rules

The symbolic execution rules manipulate object’s fields. When these are hidden
inside abstract predicates both Heap Read and Heap Write rules require the
analyzer to expose the fields they are operating on. This is done by the function
rearr defined as:

Definition 5 (Rearrangement).

rearr(H, x.f) 	 {H′ ∗ x �→ [f : y] | H � H′ ∗ x �→ [f : y]}

5.4 Fixed Point Computation and Abstraction

Following the spirit of abstract interpretation [6] and the jStar work [9] to ensure
termination of symbolic execution, and to automatically compute loop invari-
ants, we apply abstraction on sets of symbolic states. Typically, in separation
logic based program analyses, abstraction is done by rewriting rules, also called
abstraction rules which implement the function abs : SHeaps→ SHeaps. For each
analyzed statement we apply abstraction after applying the execution rules. The
abstraction rules accepted by StarTM have the form:

premises

H � emp� H′ � emp
(Abstraction Rule)

This rewrite is sound if the symbolic heap H implies the symbolic heap H′. An
example of some abstraction rules, for the List(x, y) predicate, is shown in Fig. 2.

The heap path expressions that are stored in the path map (M) need also to be
abstracted because otherwise we would get expressions with infinite sequences of
fields. Since the symbolic heap is abstracted we can use it to compute an abstract
heap path expression. The abstraction procedure is done by the GenP(H,M, v)
function. This function receives a symbolic heap H, a path map M, and a

3 The frame of a call is the part of the calling heap which is not related with the
precondition of the callee.

658 R.J. Dias et al.

compress(f1.f2) = (f1)
+
A if f1 = f2 where A is fresh

compress(f1.f2) = (f1|f2)+A if f1 �= f2 where A is fresh

compress((C)+C .f1) = (C)+C if f1 ∈ C
compress((C)+C .f1) = (C|f1)+C if f1 /∈ C
compress(f1.f2.P) = compress(compress(f1.f2).P)

Fig. 12. Compress abstraction function

variable v for which will be computed the heap path representing the memory
location pointed by such variable.

The heap path stored in the path map M for variable v will be denoted as S,
and the heap path computed from the symbolic heap will be denoted as G. The
analysis will always ensure the invariant that S ⊆ G. This subset relation means
that all paths described by S are also described by G.

The result of this function is a heap path, denoted as E which satisfies the
following invariant: S ⊆ E ⊆ G. Since the symbolic heap is proven to converge
into a fixed point, the heap path E will also converge into a fixed point because
it is a subset of G.

The procedure to compute the path E is based on a pattern matching ap-
proach. Taking G as the most abstract path we generate a pattern from it that
must match in S. This pattern is generated by taking G and substituting all its
repeating sequences with wildcards. For instance, if G = x.(left | right)+A.right
then the pattern would be Pt = x .α.right where α is a wildcard. We also denote
αG as the subpath in G that is associated to the wildcard α, and in this case,
αG = (left | right)+A.

We take this pattern and try to apply it to S and check which subpath ex-
pression of S matches the wildcard. For instance, if S = x .left .left .right , then
the wildcard α of pattern Pt = x .α.right will match left .left denoted as αS .
The pattern can only be matched successfully if the wildcard in S (αS) and the
wildcard in G (αG) satisfy the following invariant: αS ⊆ αG, which is the case
in our example.

Now we apply an abstraction operation over the wildcard to generate a more
abstract subpath. We denote this operation as compress and is defined in Fig. 12.
The result of applying the abstraction function to wildcard αS is
compress(αS) = left+B. Notice that the abstracted subpath satisfies the invariant
αS ⊆ compress(αS) ⊆ αG. Finally, we substitute the wildcards in the pattern
for the computed abstract subpath expressions. In our example we get the final
expression E = x. left+B .right which is a subset of G.

5.5 Write-Skew Detection

The result of the symbolic execution is a set of symbolic states 〈H,M,R,W〉 for
each transactional method. In this section, we define the write-skew test, which

Verification of Snapshot Isolation in Transactional Memory Java Programs 659

is based on the abstract read- and write-set (R,W) and on the satisfiability of
the condition of Definition 1 (see example in Fig. 3).

Recall that the interpretation of read-sets contain all prefixes of its heap paths.
Hence, to compute the satisfiability of the write-skew condition we must compute
the set of prefixes of the heap-paths in both read-sets. We define prefix(x.P) for
a heap path expression x.P as follows:

prefix(P.f) 	 {P.f} ∪ prefix(P) prefix(P.C∗
A) 	 {P.C∗

A} ∪ prefix(P)

prefix(x.f) 	 {x.f} prefix(x.C∗
A) 	 {x.C∗

A}
and define it for sets of heap paths prefix(R) as

prefix(R) 	
�
p∈R

prefix(p).

For instance, the prefixes of the read-set R = {this .head .(next)∗A.next} are:

prefix(R) = {this .head , this .head .A, this .head .A.next}
For the sake of simplicity, we denote repeating sequences by their unique label.
Given the sets, R�

1 = prefix(R1), R�
2 = prefix(R2), W<

1 , W>
1 , W<

2 , and W>
2 , the

write-skew condition is the following:

R�
1 ∩ W>

2 = ∅ ∧ W>
1 ∩ R�

2 = ∅ ∧ W<
1 ∩ W<

2 = ∅
From this condition we generate a set of (in)equations, on the labels of repeating
sequences, necessary to reach satisfiability. For instance, given the sets:

R� = {this.head , this .head .A, this .head .A.next , this .head .A.next .next}
W> = {this.head .B .next}

The condition R� ∩W> = ∅ is satisfied if there is a possible instantiation of A
and B such that:

B .next ≤ A ∨ B = A ∨ B = A.next

In inequation B .next ≤ A, the operator ≤ denotes prefixing, in this case that
B .next is a prefix of A. After generating the (in)equation system on labels (A,
B) needed to satisfy the write-skew condition, we use an SMT solver to check
their satisfiability. The consequence of that result is that a write-skew may occur
between the two transactions being analyzed. Notice that when comparing read-
and write-sets we make the correspondence between concrete paths in the heap
through the unique labels of repeating sequences.

5.6 Soundness

Our approach is sound for the detection of the write-skew anomaly between pairs
of transactions. We argue that, by analyzing the satisfiability test described in

660 R.J. Dias et al.

section 5.5, if no write-skew anomaly is detected by our algorithm then there is
no possible execution of the program that contains a write-skew. Our analysis
computes an over-approximation of the concrete read- and write-sets (the may
write-set), and also an under-approximation of the concrete write-set (the must
write-set), for all possible executions of the program.

The question then remains whether an occurrence of a write-skew condition
at runtime is captured by our test. To see this, let’s assume that Rc

1, Wc
1 , Rc

2,
Wc

2 are concrete, exact read- and write- sets for transactions T1 and T2. Notice
that a write-skew condition occurs between T1 and T2 if

Rc
1 ∩Wc

2 = ∅ ∧ Wc
1 ∩Rc

2 = ∅ ∧ Wc
1 ∩Wc

2 = ∅

Our analysis computes abstract over-approximations of read-sets (R1 and R2),
write-sets (W>

1 andW>
2), and under-approximation of write-sets (W<

1 andW<
2)

related to the concrete read- and write-sets as follows:

Rc
1 ⊆ R1, Rc

2 ⊆ R2, Wc
1 ⊆ W>

1 , Wc
2 ⊆ W>

2 , W<
1 ⊆ Wc

1 , W<
2 ⊆ Wc

2

These set relations allow us to prove that the condition on abstract sets is implied
by the condition on concrete sets:

(Rc
1 ∩Wc

2 = ∅ ∧ Wc
1 ∩Rc

2 = ∅ ∧ Wc
1 ∩Wc

2 = ∅)⇒
(R1 ∩W>

2 = ∅ ∧ W>
1 ∩R2 = ∅ ∧ W<

1 ∩W<
2 = ∅)

Hence we can conclude that if a real write-skew exists in an execution this will
be detected by our test, and this, as consequence, makes our method sound.
The implication above also shows that our method may present false positives:
it may detect a write-skew that will never occur at runtime. This is a classical
unavoidable effect of conservative methods based on abstract interpretation.

6 Experimental Results

StarTM is a prototype implementation of our static analysis applied to Java
byte code, using the Soot toolkit [20] and the CVC3 SMT solver [1]. We applied
StarTM to three STM benchmarks: an ordered linked list, a binary search tree,
and the Intruder test program of the STAMP benchmark. In the case of the list
we tested two versions: the unsafe version called List and the safe version called
List Safe. The List Safe version has an additional update in the remove method
as discussed in Section 2.

Table 1 shows the detailed results of our verification for each transactional
method of the examples above. The results were obtained in a Intel Dual-Core
i5 650 computer, with 4GB of RAM. We show the time (in seconds) taken by
StarTM to verify each example, the number of lines of code, and the number
of states produced during the analysis. The last column in the table shows the
pairs of transactions that may actually trigger a write-skew anomaly.

Verification of Snapshot Isolation in Transactional Memory Java Programs 661

Table 1. StarTM applied to STM benchmarks

Bench. Method Time LOC States Write-Skews

List

add

5

16 2
remove 14 2 (add, remove)
contains 11 1 (remove, remove)
revert 11 4

List Safe

add
6

16 2
-remove 15 2

contains 11 1

Tree
treeAdd

11
21 3

-
treeContains 15 2

Intruder
atomicGetPacket

24
9 2

(atomicProcess,
atomicProcess 173 7
atomicGetComplete 15 2 atomicGetComplete)

The expected results for the two versions of the linked list benchmark were
confirmed by our tool. The tool detects the existence of two write-skew anoma-
lies, in the unsafe version of the linked list, resulting from the concurrent execu-
tion of the add and remove methods. The safe version is proven to be completely
safe when executing all transactions under SI.

In the case of the Tree benchmark, the treeAdd method performs a tree traver-
sal and inserts a new leaf node. StarTM proves that the concurrent execution of
all transactions of the Tree benchmark is safe.

StarTM detects a write-skew anomaly in the Intruder example, which is trig-
gered by the concurrent execution of atomicProcess and atomicGetComplete trans-
actions. This happens when transaction atomicProcess pushes an element into a
stack and transaction atomicGetComplete pops an element from the same stack,
which result on writes on different parts of the memory. However, the Intruder
example is not entirely analyzed, there is a small part of the code that is not ana-
lyzed due to the use of arrays and cyclic data-structures, which are not currently
supported by our tool.

These promising results together with the known performance advantages [7]
support the key idea of using relaxed isolation levels in transactional memory
systems.

7 Related Work

Software Transactional Memory (STM) [18,11] systems commonly implement
the full serializability of memory transactions to ensure the correct execution of
concurrent programs. To the best of our knowledge, SI-STM [17] is the only ex-
isting implementation of a STM using snapshot isolation. This work focuses on
improving the transactional processing throughput by using a snapshot isolation

662 R.J. Dias et al.

algorithm. It proposes a SI safe variant of the algorithm, where anomalies are
dynamically avoided by enforcing additional validation of read-write conflicts.
Our approach avoids this validation by using static analysis and correcting the
anomalies before executing the program.

In our work, we aim at providing the serializability semantics under snapshot
isolation for STM and Distributed STM systems. This is achieved by perform-
ing a static analysis of the program and asserting that no SI anomalies will ever
occur when executing a transactional application. This allows to avoid track-
ing read accesses in both read-only and read-write transactions, thus increasing
performance throughput.

The use of snapshot isolation in databases is a common place, and there are
some previous works on the detection of SI anomalies in this domain. Fekete
et al. [10] developed the theory of SI anomalies detection and proposed a syn-
tactic analysis to detect SI anomalies for the database setting. They assume
applications are described in some form of pseudo-code, without conditional (if-
then-else) and cyclic structures. The proposed analysis is informally described
and applied to the database benchmark TPC-C [19] proving that its execution
is safe under SI. A sequel of that work [12], describes a prototype which is able
to automatically analyze database applications. Their syntactic analysis is based
on the names of the columns accessed in the SQL statements that occur within
the transaction.

Although targeting similar results, our work deals with different problems.
The most significant one is related to the full power of general purpose lan-
guages and the use of dynamically allocated heap data structures. To tackle this
problem, we use separation logic [16,8] to model operations that manipulate heap
pointers. Separation logic has been the subject of research in the last few years
for its use in static analysis of dynamic allocation and manipulation of memory,
allowing one to reason locally about a portion of the heap. It has been proven
to scale for larger programs, such as the Linux kernel [4].

The approach described in [15] has a close connection to ours. It defines an
analysis to detect memory independences between statements in a program,
which can be used for parallelization. They extended separation logic formulae
with labels, which are used to keep track of memory regions through an execu-
tion. They can prove that two distinct program fragments use disjoint memory
regions on all executions, and hence, these program fragments can be safely
parallelized. In our work, we need a finer grain model of the accessed memory
regions. We also need to distinguish between read and write accesses to shared
and separated memory regions.

The work in [14] informally describes a similar static analysis to approximate
read- and write-sets using escape graphs to model the heap structure. Our shape
analysis is based on separation logic, and, as far as we understand, heap-paths
give a more fine-grain representation of memory locations at a possible expense
in scalability.

Some aspects of our work are inspired by jStar [9]. jStar is an automatic
verification tool for Java programs, based on separation logic, that enables the

Verification of Snapshot Isolation in Transactional Memory Java Programs 663

automatic verification of entire implementations of several design patterns. Al-
though our work has some aspect in common with jStar, the properties being
verified are completely different.

8 Concluding Remarks

We describe a novel and sound approach to automatically verify the absence of
the write-skew snapshot isolation anomaly in transactional memory programs.
Our approach is based on a general model for fine grain abstract representation
of accesses to dynamically allocated memory locations. By using this represen-
tation, we accurately approximate the concrete read- and write-sets of memory
transactions, and capture write-skew anomalies as a consequence of the satisfia-
bility of an assertion based on the output of the analysis, the abstract read- and
write-sets.

We present StarTM, a prototype implementation of our theoretical frame-
work, unveiling the potential for the safe optimization of transactional memory
Java programs by relaxing isolation between transactions. Our approach is not
without limitations. Issues that require further developments range from the
generalization of the write-skew condition for more than two transactions, the
support for richer dynamic data structures, to the support for array data types.
Together with a runtime system support for mixed isolation levels, we believe
that our approach can scale up to significantly optimize real-world transactional
memory systems.

Acknowledgments. We are grateful to the anonymous reviewers for several
insightful comments that significantly improved the paper.

References

1. Barrett, C., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, pp. 298–302. Springer, Heidelberg (2007)

2. Berenson, H., Bernstein, P., Gray, J.N., Melton, J., O’Neil, E., O’Neil, P.: A cri-
tique of ANSI SQL isolation levels. In: SIGMOD 1995: Proc. of the 1995 ACM
SIGMOD International Conference on Management of Data, pp. 1–10. ACM, New
York (1995)

3. Brotherston, J., Bornat, R., Calcagno, C.: Cyclic proofs of program termination in
separation logic. In: Proc. of the 35th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2008, pp. 101–112. ACM,
New York (2008)

4. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: Proc. of the 36th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2009, pp. 289–300.
ACM, New York (2009)

5. Cao Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford trans-
actional applications for multi-processing. In: IISWC 2008: Proc. IEEE Int. Symp.
on Workload Characterization (2008)

664 R.J. Dias et al.

6. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. of
the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL 1977, pp. 238–252. ACM, New York (1977)

7. Dias, R.J., Loureno, J.M., Preguia, N.M.: Efficient and correct transactional mem-
ory programs combining snapshot isolation and static analysis. In: 3rd USENIX
Conference on Hot Topics in Parallelism (HotPar 2011). Usenix Association (2011)

8. Distefano, D., O’Hearn, P.W., Yang, H.: A Local Shape Analysis Based on Sepa-
ration Logic. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
pp. 287–302. Springer, Heidelberg (2006)

9. Distefano, D., Parkinson, M.J.: jstar: towards practical verification for Java. In:
Proc. of the 23rd ACM SIGPLAN Conference on Object-oriented Programming
Systems Languages and Applications (OOPSLA 2008), pp. 213–226. ACM, New
York (2008)

10. Fekete, A., Liarokapis, D., O’Neil, E., O’Neil, P., Shasha, D.: Making snapshot
isolation serializable. ACM Trans. Database Syst. 30(2), 492–528 (2005)

11. Herlihy, M., Luchangco, V., Moir, M., William, N., Scherer, I.: Software transac-
tional memory for dynamic-sized data structures. In: PODC 2003: Proc. of the
Twenty-Second Annual Symposium on Principles of Distributed Computing, pp.
92–101. ACM, New York (2003)

12. Jorwekar, S., Fekete, A., Ramamritham, K., Sudarshan, S.: Automating the detec-
tion of snapshot isolation anomalies. In: VLDB 2007: Proc. of the 33rd International
Conference on Very Large Data Bases, pp. 1263–1274. VLDB Endowment, Vienna
(2007)

13. Korland, G., Shavit, N., Felber, P.: Noninvasive concurrency with Java STM. In:
MultiProg 2010: Programmability Issues for Heterogeneous Multicores (2010)

14. Prabhu, P., Ramalingam, G., Vaswani, K.: Safe programmable speculative paral-
lelism. In: Proc. of the 2010 ACM SIGPLAN Conf. on Prog. Language Design and
Implementation, PLDI 2010, pp. 50–61. ACM, New York (2010)

15. Raza, M., Calcagno, C., Gardner, P.: Automatic Parallelization with Separation
Logic. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 348–362. Springer,
Heidelberg (2009)

16. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Proc. of the 17th Annual IEEE Symposium on Logic in Computer Science, LICS
2002, pp. 55–74. IEEE Computer Society, Washington, DC (2002)

17. Riegel, T., Fetzer, C., Felber, P.: Snapshot isolation for software transactional
memory. In: TRANSACT 2006: First ACM SIGPLAN Workshop on Languages,
Compilers, and Hardware Support for Transactional Computing, Ottawa, Canada
(2006)

18. Shavit, N., Touitou, D.: Software transactional memory. In: PODC 1995: Proc. of
the 14th Annual ACM Symposium on Principles of Distributed Computing, pp.
204–213. ACM, New York (1995)

19. Transaction Processing Performance Council: TPC-C benchmark, revision 5.11
(2010)

20. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., Sundaresan, V.:
Soot - a java bytecode optimization framework. In: Proc. of the 1999 Conference
of the Centre for Advanced Studies on Collaborative Research, CASCON 1999, p.
13. IBM Press (1999)

Scalable Flow-Sensitive Pointer Analysis

for Java with Strong Updates

Arnab De and Deepak D’Souza

Department of Computer Science and Automation,
Indian Institute of Science, Bangalore, India
{arnabde,deepakd}@csa.iisc.ernet.in

Abstract. The ability to perform strong updates is the main contrib-
utor to the precision of flow-sensitive pointer analysis algorithms. Tra-
ditional flow-sensitive pointer analyses cannot strongly update pointers
residing in the heap. This is a severe restriction for Java programs. In
this paper, we propose a new flow-sensitive pointer analysis algorithm
for Java that can perform strong updates on heap-based pointers effec-
tively. Instead of points-to graphs, we represent our points-to information
as maps from access paths to sets of abstract objects. We have imple-
mented our analysis and run it on several large Java benchmarks. The
results show considerable improvement in precision over the points-to
graph based flow-insensitive and flow-sensitive analyses, with reasonable
running time.

1 Introduction

Pointer analysis is used to determine if a pointer may point to an abstract mem-
ory location, typically represented by an allocation site in languages like Java.
A precise pointer analysis has the potential to increase the precision and scala-
bility of client program analyses [29,17]. The precision of pointer analysis can be
improved along two major dimensions: flow-sensitivity and context-sensitivity.
A flow-insensitive pointer analysis [1,31] computes a single points-to information
for the entire program that over-approximates the possible points-to relations at
all states that the program may reach at run-time. A flow-sensitive analysis on
the other hand takes the control flow structure of a program into account and
produces separate points-to information at every program statement. A context-
sensitive analysis aims to distinguish among invocations of the same function
based on the calling contexts.

Traditionally researchers have focused on improving the scalability and pre-
cision of flow-insensitive [14,2,26,10] and context-sensitive analyses [25,34,33].
Flow-sensitive analyses were found to be expensive and gave little additional pay-
off in client applications like memory access optimizations in compilers [16,15,17].
However in recent years, it has been observed that several client analyses like
typestate verification [8], security analysis [5], bug detection [9], and the analysis
of multi-threaded programs [28], can benefit from a precise flow-sensitive pointer

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 665–687, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

666 A. De and D. D’Souza

analysis. As a result there has been renewed interest in the area of flow-sensitive
pointer analysis and the scalability of such analyses, particularly for C programs,
has been greatly improved [12,22,38,21,11,18].

Most of these techniques however compute the points-to information as a
points-to graph (or some variant of it), which as we explain below, can be a
severe limitation to improvements in precision for Java programs. A node in
a points-to graph can be a variable or an abstract object representing a set
of dynamically allocated heap objects. Figure 1(b) shows an example points-to
graph. Typically, allocation sites are used as abstract objects to represent all
concrete objects allocated at that site. An edge from a variable to an abstract
object denotes that the variable may point to that object. Similarly an edge from
an abstract object o1 to an abstract object o2, annotated with field f, denotes
that the f field of object o1 may point to the object o21. Precision improvements
of flow-sensitive pointer analyses come mostly from the ability to perform strong
updates [21]. If the analysis can determine that an assignment statement writes
to a single concrete memory location, it can kill the prior points-to edges of the
corresponding abstract memory location. It requires the lhs of the assignment to
represent a single abstract memory location and that abstract memory location
to represent a single concrete memory location. As abstract objects generally
represent multiple concrete objects, the analysis cannot perform a strong update
on such objects. This situation is common in Java programs, where all indirect
assignment statements (i.e. assignments whose lhs have at least one dereference)
write to the heap, and hence traditional flow-sensitive algorithms cannot perform
any strong updates for such assignments.

We illustrate this problem using the program fragment of Figure 1(a). The
points-to graph before statement L1 is shown in Figure 1(b), where variables p
and r point to the abstract heap location o1, q points to o3, and field f of object
o1 points to the object o2. If the abstract object o1 represents multiple concrete
objects, traditional flow-sensitive algorithms cannot kill the points-to informa-
tion of field f of o1 after the assignment statement at L1 – it may unsoundly
kill the points-to information of r.f. Hence the analysis concludes that t1 may
point to either o2 or o3 at the end of the program fragment (Figure 1(c)), al-
though in any execution, t1 can actually point to only o3. In general, p could
have pointed to multiple abstract memory locations, which also would have made
strong updates impossible for traditional flow-sensitive analyses.

In this paper we propose a different approach for flow-sensitive pointer anal-
ysis for Java programs that enables us to perform strong updates at indirect
assignments effectively. Instead of a points-to graph, we compute a map from
access paths to sets of abstract objects at each program statement. An access
path is a local variable or a static field followed by zero or more field accesses.
In the program fragment of Figure 1(a), the points-to set of the access path p.f

can be strongly updated at L1 regardless of whether p points to a single con-
crete memory location or not. On the other hand, the points-to set of r.f must
be weakly updated at L1 as r.f may alias to p.f at that program statement

1 All analyses considered in this paper are field-sensitive [27].

Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates 667

Fig. 1. (a) An example program fragment. (b) Points-to graph before the program
fragment. (c) Points-to graph after the program fragment. (d) Our points-to informa-
tion before the program fragment. (e) Our points-to information after the program
fragment.

(two access paths may alias if they may refer to the same memory location).
Note that we would strongly update p.f at L1 even if p pointed to multiple
abstract objects. We have observed that it is quite common to have (possibly
interprocedural) program paths like Figure 1(a) which begin with an assignment
to an access path and then subsequently read the access path, either directly or
through an alias established by intervening pointer assignments. Our analysis
targets such patterns and propagates the points-to sets from the initial assign-
ment to the final read effectively through a series of strong updates.

While there has been earlier work on pointer analysis based on access paths
for C programs [20,6], our approach differs from them in several ways. The
key challenge to the scalability of such an analysis is the proliferation of access
paths. In the presence of recursive data-structures, the number of access paths
in a program can be infinite. As is standard, we bound the length of access paths
using a user defined parameter l. The number of access paths however still grows
exponentially with l, and it can be very expensive to maintain the full map of all
access paths to their points-to sets at every program statement. One key feature
of our algorithm is that we only need to store points-to sets of access paths
that are in scope at a program statement. We also do further optimizations to
reduce the size of the maps stored at each program statement as detailed in
Section 3.3.

We bootstrap our analysis using a fast flow and context insensitive points-to
analysis [1]. This base analysis is used in various stages of our analysis: to com-
pute the set of access paths, to supply points-to sets of access paths longer than

668 A. De and D. D’Souza

the user-defined bound and to reach the fixpoint quickly by approximately pre-
computing the set of access paths modified at each program statement through
aliasing.

We have implemented our analysis in the Chord framework [24]. The core
of the analysis is written declaratively in Datalog [32]. Chord implements all
Datalog relations using binary decision diagrams (BDD) [4] which helps in re-
ducing the space required to store the points-to information. We have imple-
mented our analysis both with and without context-sensitivity. Our analysis
was run on eight moderately large Java programs with different values of l (the
bound on the access path lengths) and we compared the precision of points-to
sets and call-graphs with the traditional points-to graph based flow-insensitive
[1] and flow-sensitive [16] analyses. On these benchmarks, for l = 3, our flow-
sensitive and context-sensitive analysis shows a significant average improvement
of 22% in precision over the flow-insensitive analysis with the same level of
context-sensitivity, while terminating within reasonable time, whereas tradi-
tional flow-sensitive analysis has only less than 2% precision improvement over
the flow-insensitive analysis and is much slower.

The rest of this paper is organized as follows. We give an overview of our tech-
nique with a couple of examples in Section 2. Section 3 describes our technique
formally. We discuss an implementation of our technique and present empirical
results in Section 4. Related works are discussed in Section 5. We discuss future
directions and conclude with Section 6.

2 Overview

In this section, we informally describe the core of our algorithm using the pro-
gram fragments of Figure 1(a) and Figure 2(a).

We first explain the intraprocedural part of our analysis using Figure 1. The
intraprocedural analysis is an iterative dataflow analysis over the control flow
graph (CFG). Our dataflow facts are maps from access paths to sets of abstract
objects. We first compute a flow-insensitive points-to set for each variable. Let us
assume that the points-to graph computed by the flow-insensitive analysis is as
shown in Figure 1(c). The object o1 has only one field, f and the objects o2 and
o3 do not have any field. We also assume that the length of access paths is bound
by the constant two. Hence the set of access paths in the program is {p, q, r, s,
p.f, r.f, s.f, t1, t2}. Let us assume that the points-to information computed
by our algorithm before L1 is as shown in Figure 1(b). Figure 1(d) shows this
information in our representation. The assignment at L1 strongly updates the
points-to set of p.f to {o3}. According to the flow-insensitive analysis, r.f may
alias with p.f – hence the points-to set of r.f is updated to {o2,o3}. Although
we could use our points-to information to detect the alias between p.f and r.f

at L1, using a precomputed flow-insensitive analysis helps in reaching the fix-
point quickly. Note that this approximation may result in more weak updates,
but does not affect strong updates. On the other hand, this approximation is

Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates 669

necessary for the scalability of our technique – without this approximation, six
out of eight benchmarks did not terminate within 30 mins. Also note that s.f
is not updated as it is not live at L1. The assignment at L2 strongly updates
the points-to sets of s and s.f with the points-to sets of p and p.f respectively.
As in Java, a local variable like s cannot alias with any other access path, this
assignment does not weakly update any access path. The assignments at L3 and
L4 assigns the points-to sets of s.f and r.f to t1 and t2 respectively. The final
points-to information is shown in Figure 1(e). The points-to set of t1 in our
analysis is more precise than the one computed by a traditional flow-sensitive
analysis (Figure 1(c)).

We demonstrate the interprocedural analysis using the program fragment of
Figure 2(a) (the statement at LD is commented out). In interprocedural analysis,
at each program statement, we only store the information about access paths that
are in scope at that statement. An access path is in scope at a statement if the
access path starts with a variable local to the function containing the statement
or with a static field. For the program fragment of Figure 2(a), the access paths
of the outer function and the initial map at LB is shown in Figure 2(b). We use a
mod/ref analysis based on the flow-insensitive points-to graph to determine that
the points-to sets of p.f and r.f may be modified by the call to the function
setF. On call to the function setF, this, a, and this.f are assigned the points-
to sets of p, q, and p.f respectively. The assignment at L8 strongly updates the
points-to set of this.f. The map at L9 is shown in Figure 2(c). On return to
the outer function, as p and this must point to the same concrete object in
all executions, the access path p.f can be strongly updated with the points-to
set of this.f. On the other hand, as r.f may also be modified by the call to
setF (because it is an alias of p.f) but r is not an actual parameter to the call,
it is conservatively assigned its flow-insensitive points-to set. The map at LC is
shown in Figure 2(d). The call to getF does not modify points-to sets of any
access paths belonging to the outer function, but assigns the return variable of
getF to t1. The final map is shown in Figure 2(e). Here also, the points-to set
of t1 is more precise than traditional flow-sensitive analyses which would not be
able to do the strong update at L8.

If we include the statement at LD, the context-insensitive analysis would merge
the points-to sets coming from p.f and r.f into the points-to set of this.f
in function getF. This would make the points-to sets of both t1 and t2 to
be {o2,o3}. Adding context-sensitivity would avoid this problem as two calls
of getF would be distinguished by a context-sensitive analysis. For example,
using a length 1 call-string as context would create two maps at L3, one tagged
with call-site LC and mapping this.f to {o3} and another tagged with call-
site LD and mapping this.f to {o2,o3}. On return, only the first map is used
to assign points-to set of t1, making it {o3}. As Java programs use method
calls extensively, we use call-string based context-sensitive analysis [30] to tag
dataflow facts with fixed-length call-strings to distinguish between the calling
contexts.

670 A. De and D. D’Souza

Fig. 2. (a) An example program fragment. (b) - (e) Points-to information at program
statements LB, L9, LC and LD

3 Access Path-Based Flow-Sensitive Analysis

3.1 Background

Our input language is an intermediate code generated by the Chord framework
[24] from Java bytecode. The intermediate language has at most one derefer-
ence per statement and is converted into partial single static assignment (SSA)
form [11].

In SSA form, each variable is defined only once. If a variable is defined multiple
times in the original program, each of those definitions is converted to a new
version of that variable in SSA form. If multiple definitions of the same original
variable reach a join point in the control flow graph, a φ statement is introduced
at the join point. The φ statement merges the corresponding versions and creates
a new version of the variable. In partial SSA form of Java programs, only the
local variables are converted into SSA form. In a Java program, a local variable
cannot be pointed by any variable or object field – hence there are no indirect
assignments to these variables. Therefore, the definitions of such variables can
be identified syntactically and can be converted to SSA form easily, without any
prior pointer analysis.

Following are the different types of statements relevant to our pointer analysis
and their representative forms. The variables p, q, r and the field f are of refer-
ence (pointer) type. C is the name of a class and foo is the name of a function.
Without loss of generality, we consider function calls with only one parameter
and φ statements merging two versions of a variable.

Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates 671

Allocation: p = new C;

Null assignment: p = null;
Copy: p = q;
Phi: p = φ(q,r);
Getfield: p = q.f;
Putfield: p.f = q;
Function call: p = foo(q);
Return: return p;

We do not consider static fields in this section. As array elements cannot be
strongly updated in general, we treat array elements flow-insensitively. We as-
sume that there is a main function designated as the entry point of the program.
We also assume that all functions except the main function are virtual functions
– the exact target function of a function call is determined by the type of the
object pointed to by the first actual argument of the call. We also do not consider
exceptions in this section. Our technique can easily be extended to handle all
features of Java language and our implementation can take any Java program
as input.

Like most other pointer analyses, we use allocation sites as abstract objects
to represent all concrete objects allocated at that site. We represent the set of
abstract objects in a program by Objects . In the rest of the paper, the word
“object” means “abstract object”, unless otherwise specified.

We bootstrap out analysis with a fast flow- and context-insensitive analysis
[1]. This analysis computes the pointer information as a points-to graph G. We
assume that the points-to graph supports two types of queries: VarPts(G, v)
returns the points-to set of the variable v and ObjPts(G, o, f) returns the set of
objects pointed to by the field f of the object o. Procedure 2 (FIPts) computes
the set of objects pointed to by an access path in the points-to graph. The
function FIAlias, defined below, detects if two different access paths may alias
according to a points to graph G.

FIAliasG = λap1.λap2. if ap1 = ap2

and ap1 = ap′
1.f and ap2 = ap ′

2.f

and FIPts(G, ap ′
1) ∩ FIPts(G, ap ′

2) = ∅
then true else false.

3.2 Computing the Set of Access Paths

An access path is a local variable followed by zero or more field accesses2. More
formally, given a program P with set of variables V and set of fields F , an
access path is a member of the set V (.F)∗. The variable is called the root of
the access path. The length of an access path is one more than the number of

2 In general, an access path may start with a static field, we we do not consider static
fields in this section for sake of simplicity.

672 A. De and D. D’Souza

Algorithm 1. Algorithm for computing set of access paths in a program

Input: Set of variables V , Points-to graph G, Map from abstract objects to actual
types T , Bound on the lengths of access paths l.

Output: AP : Set of access paths in the function.
i = 1
AP ← V
newaps ← V
while i < k do

nextaps ← ∅
for all ap ∈ newaps do

objset ← FIPts(G, ap)
end for
for all obj ∈ objset do

objtype ← T (obj)
for all field f of objtype do

add ap.f to AP
add ap.f to nextaps

end for
end for
i← i+ 1
newaps ← nextaps

end while

field accesses. In the presence of recursive data-structures, the set of access paths
in a program can be infinite. We only consider access paths whose length is bound
by a user-defined parameter l.

In order to compute the set of access paths in a program, we need to know
that given an access path, which field accesses can be appended to it to generate
longer access paths. It might be tempting to use the declared types of variables
and fields to determine which field accesses are possible, but in the presence
of inheritance, this approach runs into the following problem. Suppose p is a
variable with declared type A and q is a variable with declared type B. Suppose
B is a subtype of A and the class B has a field f which is not present in A.
Suppose further that there is an assignment p = q. As there is no access p.f,
we lose the points-to information of field f of the object pointed to by p after
the assignment. Again, if there is downcast q = (B)p, we cannot determine the
points-to information of q.f after the assignment. To avoid this problem, we use
Algorithm 1 to compute the set of access paths in a program. This algorithm
uses a flow and context insensitive points-to analysis to compute a points-to
graph for the entire program. Given an access path, we traverse the points-to
graph to determine the objects pointed to by the access path (Procedure 2). We
extend the access path with all the fields of the actual types of these objects.

3.3 Intraprocedural Analysis

In this section, we assume that the input program has a single function with
no call statements in order to focus on the intraprocedural analysis. Given a

Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates 673

Procedure 2. FIPts
Input: Points-to graph G, Access path ap.
Output: objset : Set of objects pointed to by ap in G.

if ap is a variable then
objset ← VarPts(G, ap)

else if ap is of the form ap′.f then
objset ← ⋃

o∈FIPts(ap′)
ObjPts(G, o, f)

end if
return objset

program function P , our intraprocedural analysis is an instance of iterative
dataflow analysis [19] over the CFG C = (N,E) of P , where N is the set of
nodes of the CFG, representing the statements of the function and E is the set
of control flow edges. We denote the root node of the CFG by n0 and predeces-
sor of a node n by pred(n). The dataflow analysis D = (L,F) of the function
consists of a lattice L and a set of transfer functions F , defined below.

Dataflow Lattice: The dataflow lattice L = (M,-) consists of a set of dataflow
factsM and an ordering relation -. The setM is the set of all maps from access
paths to sets of abstract objects. Given two maps m1,m2 ∈ M, m1 - m2 iff
for all access paths ap in AP , m1(ap) ⊆ m2(ap). Naturally, the induced join
operation is the point-wise union of points-to sets of all access paths in AP .
Formally,

m1 *m2 = λap. (m1(ap) ∪m2(ap)).

Similarly, the greatest element ofM is defined as � = λap.Objects and the least
element as ⊥ = λap.∅. As the sets AP and Objects are both finite, the set M is
also finite.

Transfer Functions: The transfer function for a CFG node describes how
the statement at that node modifies a dataflow fact. Given a node n and an
input map min , the output map mout might map some access paths to different
points-to sets than min . Table 1 describes, for each type of statement mentioned
in Section 3.1 except for call and return statements, which access paths are
mapped differently in mout compared to min . For all other access paths ap,
mout(ap) = min(ap). For all statements not listed in Table 1, mout = min . In
the table, a is an arbitrary non-empty field access sequence of the form F (.F)∗

where F is the set of fields in the program.
If a variable p is assigned a new object o, the points-to set of p contains only

o and other access paths with p as root do not point to any object after the
assignment. If the lhs of an assignment is a variable (say p) and the rhs is an
access path (say ap), points-to sets of p and all access paths of the form p.a (a
is any non-empty field sequence) are strongly updated with the points-to sets
of ap and ap.a, respectively. For Getfield statements, as the length of access path

674 A. De and D. D’Souza

Table 1. Intraprocedural transfer functions. Column 1 lists types of statements. Col-
umn 2 lists the access path ap for which mout(ap) is different from min(ap). Column
3 defines the points-to sets of mout for such access paths. Here a is a non-empty field
access sequence of the form F (.F)∗.

Statement ap mout(ap)

//abstract object o

p = new C
p {o}
p.a ∅

p = null p ∅
p.a ∅

p = q p min (q)
p.a min (q.a)

p = φ(q, r) p min (q) ∪min(r)
p.a min (q.a) ∪min(r.a)

p = q.f p min(q.f)

p.a
if q.f.a ∈ AP then min(q.f.a)

else FIPts(G, q.f.a)

p.f = q p.f min (q)
p.f.a min (q.a)

ap′.f
if FIPts(G, ap′) ∩ FIPts(G, p) �= ∅
then min (q) ∪min(ap

′.f)
else min(ap

′.f)

ap′.f.a
if FIPts(G, ap′) ∩ FIPts(G, p) �= ∅
then min (q.a) ∪min(ap

′.f.a)
else min(ap

′.f.a)

on the lhs (say p) is shorter than the length of the access path on the rhs (say
q.f), there might exist some access path of the form p.a such that there is no
access path q.f.a, as its length might be more than the user-specified bound.
In such cases, we use the flow-insensitive analysis to supply the points-to set
for p.a. For all these statements, only access paths with p as root need to be
updated. On the other hand, for Putfield statements, the lhs and its extensions
are strongly updated, whereas the aliases of the lhs and their extensions are
weakly updated. Note that, instead of our own analysis, we use a precomputed
flow and context insensitive pointer analysis to detect these aliases. Using our
analysis to detect these aliases would cause our analysis to find new access path
assignments during the fixpoint computation. On the other hand, using a base
pointer analysis enables us to precompute the set of direct and indirect access
path assignments at all program statements. This approximation speeds up the
fixpoint computation significantly. Note that this approximation may cause our
analysis to perform more weak updates, but strong updates are not affected.

Multiple field accesses: Although the intermediate language described in Sec-
tion 3.1 has at most one field access per statement, the original Java program

Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates 675

may have multiple field accesses per statement. For example, the statement
p.f.g = q; is converted to the following sequence of statements: t1 = p.f;

t1.g = q;, where t1 is a temporary variable, defined only once. After the as-
signment to t1.g, according to the rules in Table 1, the access path p.f.g should
be weakly updated, although according to the original program, it could have
been strongly updated. As t1 is defined only once in the partial SSA form and it
is used immediately after the definition, we know that t1 must point to the same
object as p.f before the second assignment in the intermediate code. Hence we
strongly update t1.g as well as p.f.g at the second statement.

Dataflow Equations: The dataflow fact at n0 is ⊥ and the transfer function
for node n is denoted by Fn. We compute a dataflow fact at each node of the
CFG. More specifically, we compute the least solution for X for the following
set of dataflow equations:

X [n0] =⊥
∀n ∈ (N − {n0}) : X [n] =

⊔
n′∈pred(n)

Fn′ (X [n′]) (1)

Optimizations: Although the set AP is finite, it can be very large – grow-
ing exponentially with the length of the access paths. This large size of AP in
turn increases the space consumed by the elements of the set M as well as in-
creases the time to compute the transfer functions. In order to reduce the sizes
of dataflow facts, we perform two optimizations, described below.

In partial SSA form, each local variable is defined only once. Hence, in our
analysis, the points-to set of a local variable can be changed by only one state-
ment – the one defining it. Hence, instead of maintaining the map from local
variables to its points-to set at every program point, we maintain a single map
from local variables to their points-to sets in each function. The dataflow facts
at each program point are maps from access paths with length greater than one
to their points-to sets. This technique is adopted from [11].

We also observe that the points-to information of an access path is typically
useful only at the program statements where it is live. A variable is live at a
program statement if its definition reaches that statement and the variable is
used subsequently in the function. An access path is live at a program statement
if the root variable is live at that statement. At a program statement, we only
maintain the map from live access paths to their points-to sets. As there is a
global map for variables, the points-to information of variables are sound at all
program statements, irrespective of whether the variable is live at that statement
or not.

3.4 Interprocedural Analysis

The interprocedural analysis is an iterative dataflow analysis over the inter-
procedural control flow graph (ICFG), constructed by taking disjoint union of

676 A. De and D. D’Souza

individual control flow graphs of all functions and then adding call and return
edges. A call edge connects a call statement to the first statement of the called
function and a return edge connects a return statement to the statements follow-
ing the corresponding call statements. Call and return edges for virtual functions
are added on-the-fly; at a call site, if the receiver variable (the first actual pa-
rameter in our intermediate language) points to an abstract object o, the actual
function to be called is determined by the actual type of o. As new objects are
added to the points-to set of the receiver variable, new call and return edges are
added – fixpoint is reached when no new objects are added to any points-to set
and no new call/return edges are added to the ICFG. For the sake of simplicity,
in this section we assume that the call and return edges are added a priori.

Context-Insensitive Analysis: We first consider context-insensitive analysis
where dataflow facts are not distinguished by the calling contexts. The dataflow
facts are the same as the intraprocedural analysis – maps from access paths to
sets of abstract objects – but instead of maintaining the map for all access paths
at all program statements, we only maintain the map for access paths that are
in scope at that statement. An access path ap is in scope at a statement s if
the root of the access path is a variable local to the function containing s3. The
statement s may modify the points-to set of an access path ap′ not in scope
at s. As our analysis does not store the points-to information of ap′ at s, the
change in the points-to set of ap′ is not reflected immediately after s – it is
updated on return to the function where ap′ is in scope. The ability to discard
the points-to information of access paths at program statements where they are
not in scope but still soundly update them on return is the key to the scalability
of our analysis.

Call statements in the ICFG have multiple outgoing edges – one edge to
the next statement of the same function and (potentially multiple) call edges.
Similarly, the return statements may also have multiple outgoing edges – one
return edge for each calling method. The transfer functions for call and return
statements propagate different dataflow information along different edges. Note
that the first statement of a function acts as a join node in the ICFG, joining
the call edges from different call-sites. In an ICFG, the statement following a
call statement in the same function also joins the return edges from the called
functions with the CFG edge. The transfer functions for all statements described
in Section 3.3 remain unchanged, but to maintain uniformity with the call and
return statements, we add an outgoing edge as a second parameter to the transfer
function. For all statements n except for call and return, Fn(m, e) is same as
Fn(m) as defined in Section 3.3, where e is an outgoing edge of node n and m
is a dataflow fact.

Table 2 defines the transfer function for a call statement foo(q) along the
CFG edge and along a call edge to the function foo with formal parameter p (as
before, a denotes an arbitrary non-empty field sequence). Along the call edge,

3 An access path with a static field as root is in scope everywhere, but we do not
consider static fields in this section.

Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates 677

it initializes the points-to sets of access paths that have formal parameters of
the called function as roots. Along the CFG edge, it kills the points-to sets of
access paths that may be updated inside the called function. We use a mod/ref
analysis based on the flow-insensitive points-to graph to determine if an access
path may be modified by a called function. A function foo may modify a field f

of an abstract object o if one of the following is true:

1. There is a statement in foo writing to v.f such that o ∈ FIPts(G, v) (G is
the flow-insensitive points-to graph).

2. foo calls a function which may modify the field f of the object o.

An access path l.f may be modified by a call to foo if o ∈ FIPts(G, l) and foo

may modify field f of object o. If an access path ap may be modified by a call
to foo, we write MayMod (foo, ap). Note that the output map along CFG edge
only contains access paths local to the calling function, whereas the output map
along the call edge only has access paths local to the called function.

Table 2. Transfer function for call statement foo(q) along the call edge to function
foo with formal parameter p and along the CFG edge. Here a is an arbitrary non-empty
field sequence.

Edge ap mout(ap)

Call edge p min (q)
p.a min (q.a)
other ∅

CFG edge ap s.t. MayMod(foo,ap) ∅
other min (ap)

Table 3 describes the transfer function for the return statement return r

along the return edge corresponding to the call statement s = foo(q). The
formal parameter of the function foo containing the return statement is p. The
output map only contains access paths local to the calling function. The return
statement updates the points-to sets of the access paths rooted at s with the
points-to sets of the corresponding access paths rooted at r.

We use the transfer function of the return statement to soundly update the
points-to sets of access paths of the calling function that could have been mod-
ified during the execution of foo. As the input language is in partial SSA form,
the formal parameter of a function cannot be reassigned inside the function.
Hence, in every execution, the formal parameter p and the actual parameter q
must point to the same concrete object throughout the execution of foo. There-
fore, on return, the value of q.a would be same as the value of p.a at the return
statement. Hence, if q.a may be modified by foo, the transfer function of the
return statement assigns the points-to sets of access paths rooted at p to the
points-to sets of the corresponding access paths rooted at q. As the points-to
sets of access paths that may be modified by the called function are killed at the

678 A. De and D. D’Souza

call statement (Table 2), this results in strong updates of such access paths after
the join of the return edge with the CFG edge of the calling function. Any access
paths that can be modified by foo but not rooted at the actual parameter of
the call are assigned their flow-insensitive points-to set after the call statement.
Any access paths that cannot be modified by foo are assigned empty sets. As
the points-to sets of such access paths are not killed by the call statements, they
retain their points-to set prior to the call to foo after the join with the CFG
edge.

Table 3. Transfer function for return statement return r along return edge corre-
sponding to the call statement s = foo(q). The formal parameter of the function foo

containing the return statement is p. Here G is a points-to graph computed by the base
analysis and a is an arbitrary non-empty field sequence.

ap mout(ap)

s min(r)

s.a min(r.a)

q.a
if MayMod(foo, ap)
then min (p.a)
else ∅

other
if MayMod(foo, ap)
then FIPts(G, ap)
else ∅

The transfer function for return statement can be imprecise for many access
paths; but it can perform strong updates for access paths rooted at the actual
parameters. In Java programs, often such access paths are read later, either
directly or through an alias established though intervening pointer assignments.
Our technique can have the benefit of strong updates in such cases.

The interprocedural dataflow analysis computes the least solution of the fol-
lowing set of dataflow equations. Here n0 is the root node of the ICFG, i.e. the
root node of the main function and 〈n′, n〉 denotes the ICFG edge between nodes
n′ and n.

X [n0] =⊥
∀n ∈ (N − {n0}) : X [n] =

⊔
n′∈pred(n)

Fn′(X [n′], 〈n′, n〉) (2)

Context-Sensitive Analysis: For context-sensitivity, we use the standard call-
string approach [30] with finite sequence of call-sites as contexts.

We first describe the context-sensitive technique with unbounded call-strings.
Let D = (L,F) be the underlying dataflow analysis with L = (M,-). Let
C∗ = (N,E) denote the ICFG of the program. We define a call-string γ as a

Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates 679

(possibly empty) sequence of call statements. Let Γ be the set of all such call-
strings. The empty call-string is denoted by ε. The length of a call-string γ is
denoted by |γ|. The ith component of γ is denoted by γ[i] and the substring
from ith to jth component (both inclusive) is denoted by γ[i..j]. The operator
“·” denotes the string append operation.

The call-string approach defines a new dataflow analysis framework D∗ =
(L∗,F∗), where L∗ = (M∗,-∗). The domain M∗ is the space of all maps from
Γ into M. The ordering in L∗ is the point-wise ordering on L, i.e. for ξ1, ξ2 ∈
M∗, ξ1 -∗ ξ2 iff ∀γ ∈ Γ, ξ1(γ) - ξ2(γ).

In order to define the flow functions, we first define a partial binary operator
◦ : Γ × E → Γ in the following way:

γ ◦ 〈n, n′〉 =

⎧⎪⎪⎨
⎪⎪⎩

γ · n if 〈n, n′〉 is a call edge
γ[1..|γ| − 1] if 〈n, n′〉 is a return edge and γ[|γ|] is the

corresponding call statement
γ otherwise

A flow function F ∗
n ∈ F∗, where n ∈ N , is a function from M∗ × E to M∗,

defined below:

F ∗
n (ξ, e)(γ) =

{
Fn(ξ(γ

′), n) if there exists a unique γ′ such that γ = γ′ ◦ e
⊥ otherwise

The solution of the analysis is the least solution of the dataflow equations cor-
responding to the lattice and transfer functions defined above.

As the set of unbounded call-strings is infinite, we use a k length suffix of
the unbounded call-string as approximate call-string. Details of the call-string
approach can be found in [30].

4 Implementation and Experimental Results

We have implemented our analysis within the Chord framework [24]. Chord
encodes program structures such as CFG, assignment statements and type hi-
erarchies as relations and implements them using BDDs [4]. We use Chord’s
built-in flow and context insensitive pointer analysis as our base analysis. Our
frontend, written in Java, computes the set of access paths and other relevant
program information as relations implemented using BDDs. The core analysis
is written declaratively in Datalog [32] which takes the relations produced by
the frontend as input. Our implementation first converts each assignment of the
program into multiple assignments to access paths, capturing all possible strong
and weak updates of access paths by that assignment. We use the precomputed
base pointer analysis to perform the possible weak updates. The next phase
of the analysis computes the flow-sensitive points-to sets for access paths and
constructs the call-graph on-the-fly. Chord uses bddbddb [36] for fixpoint com-
putation of the Datalog analyses. We have implemented our analysis both with
and without context-sensitivity. The context-sensitive analysis is a call-string
analysis with call-string length 1.

680 A. De and D. D’Souza

Table 4. Characteristics of the benchmarks

Benchmarks Int. Code Stmts Classes Methods AP(l = 2) AP(l = 3) Contexts

polyglot 123789 1474 5933 14651 113354 24690
jlex 126661 1411 5708 21149 137578 10037
javacup 117804 1389 5498 22018 136773 11721
jtopas 120499 1432 5736 17308 137714 9068
jdom 119437 1443 5610 13704 107536 8473
jasmin 123490 1381 5174 39480 179780 11307
jjdoc 85256 1270 3701 31001 63540 9485
jjtree 93958 1376 4219 32343 58018 11155

We have run our analysis on eight moderately large Java benchmarks. We
have used a laptop with 2.3 GHz Core i5 processor with 3GB memory for our
experiments. We have used OpenJDK 1.6 as our JDK. Table 4 shows the sizes
of intermediate code, number of classes and methods, number of access paths
with bound 2 and 3 and the number of contexts for these benchmarks. As our
analysis includes the Java libraries as well, we report the number of lines in the
intermediate code within the scope of the analysis as constructed by Rapid Type
Analysis, instead of the size of source code of the application program only. Note
that the number of access paths grows rapidly with respect to l.

We compare the precision of our analysis with that of the points-to graph
based flow-insensitive [1] and flow-sensitive [16] analyses. As measurement of
precision, we use the sizes of the points-to sets of the local variables. Note that
due to the partial SSA form, our flow-sensitive analysis stores a single points-to
set for each local variable for the entire program (cf. Section 3.3). Hence, we can
directly compare the total size of the points-to sets of local variables obtained
by our analysis with that of the points-to graph based flow-insensitive and flow-
sensitive analyses. Note that the heap-based memory locations are represented
differently in our analysis than points-to graph based analyses; hence we do
not compare the sizes of such memory locations directly. Nevertheless, as our
intermediate code is single-dereference based, contents of any heap location must
be copied to a local variable before it can be dereferenced. Thus any change in
the sizes of the points-to sets of heap locations are reflected in the sizes of the
points-to sets of the local variables.

We also construct call-graphs of the input programs using the pointer infor-
mation. Nodes of a call-graph are methods of the input program. If a method
m calls a method n, the call-graph has an edge from m to n. For virtual calls,
the actual method to be called at run-time depends on the object pointed to by
the first actual parameter of the call site – hence a precise pointer analysis may
reduce the number of edges of the call-graph (henceforth we refer to the number
of edges of a call-graph as its size).

We observe that the precision improvement of our analysis over traditional
flow-insensitive analysis without context-sensitivity is very small – only 5% on
average for points-to sets of local variables and 6% on average for call-graphs.

Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates 681

This is expected for Java programs as they use method calls extensively to access
fields and without context-sensitivity, the points-to sets of access paths in those
methods are merged for all calls. Such a situation is shown in Section 2.

With a call-string length of 1, our flow- and context-sensitive analysis shows
significant precision improvement over the flow-insensitive analysis with the same
level of context-sensitivity. The flow-insensitive analysis also uses the partial SSA
form, hence it already has the benefit of flow-sensitivity for local variables [11]
– our analysis shows precision improvements on top of that. On the other hand,
the points-to graph based flow-sensitive analysis shows only less than 2% im-
provement over the flow-insensitive analysis. Hence, the precision improvement
of our analysis comes only from strong updates of heap-residing pointers. Fig-
ure 3 shows the precision improvements for points-to sets of local variables over
the flow-insensitive analysis on eight benchmarks for different bounds on the
lengths of the access paths. It also shows the result for the traditional points-to
graph based flow-sensitive analysis. On the average, our flow-sensitive analysis
reduces the sizes of points-to sets of local variables by 22% with l = 3 and by
16% with l = 2 over the flow-insensitive analysis with partial SSA form. All
analyses are context-sensitive with call-string length 1.

We also report the reduction in call-graph size over the flow-insensitive anal-
ysis in Figure 4. The average reduction in call-graph size is 30% for l = 3 and
26% for l = 2. Table 5 shows the time taken by the flow-insensitive analysis,
the points-to graph based flow-sensitive analysis and our flow-sensitive analysis
(for l = 2 and l = 3) on these benchmarks. On the other hand, the traditional
flow-sensitive analysis does not show any non-trivial reduction in the call-graph
sizes with respect to the flow-insensitive analysis – hence we omit the comparison
with such analysis in Figure 4 for the sake of clarity.

On the average, our analysis has a slowdown of 9.2X with l = 3 and of 5.8X
with l = 2 with respect to the flow-insensitive analysis, but it is much faster
than the points-to graph based flow-sensitive analysis.

Table 5. Time taken by flow-insensitive analysis (FI time), points-to graph based flow-
sensitive analysis and our our flow-sensitive analysis (with access path length 2 and 3).
All analyses are context-sensitive with call-string length 1.

Benchmarks FI time FS time (points-to graph) FS time (l = 2) FS time (l = 3)

polyglot 52 756 201 411
jlex 51 858 220 421
javacup 61 838 477 808
jtopas 47 820 306 390
jdom 49 609 297 378
jasmin 58 824 388 552
jjdoc 36 589 166 286
jjtree 44 610 228 424

Average 49.8 738.0 292.9 458.8

682 A. De and D. D’Souza

����������
��
��
��

�
�
�
� ���������� �� ���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

����

����

��
��
��
��

 0%

 5%

 10%

 15%

 20%

 25%

 30%

 35%

polyglot jlex javacup jtopas jdom jasmin jjdoc jjtree averagePr
ec

is
io

n
im

pr
ov

em
en

ts
 o

ve
r

fl
ow

−
in

se
ns

iti
ve

 a
na

ly
si

s
(%

)

Points−to graph
l = 2
l = 3

Fig. 3. Reduction in sizes of points-to sets by points-to graph based flow-sensitive
analysis and our flow-sensitive analysis (with access path lengths 2 and 3) over flow-
insensitive analysis with partial SSA form. All analyses are context-sensitive with call-
string length 1.

These empirical results show that our analysis has significant precision im-
provement over the flow-insensitive analysis due to the strong updates of heap-
based pointers which can not be achieved by traditional flow-sensitive analysis.
The time taken by our analysis is also reasonable compared to the traditional
flow-sensitive analysis.

5 Related Work

Flow-Sensitive Pointer Analysis: Pointer analysis is a fundamental static anal-
ysis with a long history. Early flow-sensitive pointer analyses [20,6] explicitly
stored the pairs of access paths that might alias with each other. These works
do not focus on dynamically allocated data-structures. The experimental results
are preliminary. Emami et al. [7] presents a flow-sensitive and context-sensitive
pointer analysis that uses points-to information between abstract stack loca-
tions as dataflow facts. They mark each points-to relation as may or must to
perform strong updates on indirect assignments. Some analyses [37,35] use an
intraprocedural flow-sensitive analysis to build procedure summaries that are
instantiated at call-sites, but none of these analyses can perform strong updates
on pointers residing in the heap. Hasti and Horwitz [13] incrementally build
an SSA representation from the aliases already discovered – a flow-insensitive
analysis on the SSA form gives the same benefit as a flow-sensitive one for the
memory location already converted into SSA form. It remains an open ques-
tion whether the fixpoint of this technique matches the result of a flow-sensitive
analysis. Hind et al. [15] express the flow-sensitive pointer analysis as an iterative

Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates 683

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

��

 0%

 5%

 10%

 15%

 20%

 25%

 30%

 35%

 40%

 45%

polyglot jlex javacup jtopas jdom jasmin jjdoc jjtree averageC
al

l−
gr

ap
h

si
ze

 r
ed

uc
tio

n
ov

er
 f

lo
w

−
in

se
ns

iti
ve

 a
na

ly
si

s
(%

)

l = 2
l = 3

Fig. 4. Reduction in call-graph sizes by our flow-sensitive analysis (with access path
lengths 2 and 3) over flow-insensitive analysis with partial SSA form. All analyses are
context-sensitive with call-string length 1.

dataflow analysis over the CFG. They use a compact representation, essentially
a form of points-to graph, as dataflow facts. In order to perform strong updates
at indirect assignments, they keep track of whether a pointer points to a single
concrete object.

More recently, researchers have focused on improving the scalability of flow-
sensitive pointer analysis for C programs. Hardekopf and Lin [11] proposed a
semi-sparse analysis which uses a partial SSA form for top-level variables and a
sparse evaluation graph to eliminate irrelevant nodes. This approach is further
extended in [12], where a flow-insensitive analysis is used to compute approx-
imate def-use pairs, which helps in speeding up the sparse analysis in a later
stage. The technique proposed by Yu et al. [38] first partitions the pointers
into different levels by a flow-insensitive analysis such that there is an unidirec-
tional flow of value from higher to lower level. Once the higher level variables
are analyzed, the result can be used to build SSA representation for the lower
level variables. Lhotak et al. [21] performs flow-sensitive analysis only on those
memory locations which can be strongly updated. Li et al. [22] reduce the flow-
sensitive pointer analysis problem to a graph reachability problem in a value flow
graph which represents dependence between pointer variables. All these analyses
do not perform strong updates for heap-residing pointers.

Zhu [39] uses BDDs to improve scalability of flow and context sensitive pointer
analysis. This technique cannot perform any strong updates as querying whether
a variable points to a single object is not efficiently supported by BDDs. As our
technique does not need such uniqueness queries to perform strong updates, we
can use BDDs efficiently.

Fink et al. [8] proposes a flow and context sensitive analysis for typestate
verification. They use access paths to determine if a concrete object is live, i.e.

684 A. De and D. D’Souza

accessible via some access paths. They use a uniqueness analysis to identify ab-
stract objects that represents a single live concrete object so that strong updates
can be applied to those objects. It is not known how many strong updates can
be done for general pointer analysis using their technique. Our analysis does not
rely on the uniqueness of an abstract object to perform strong updates.

Bootstrapping: Several pointer analysis techniques use a fast and imprecise anal-
ysis to bootstrap their own analysis. Kahlon [18] uses a fast and imprecise anal-
ysis to partition the code such that each part can be analyzed independently.
Similarly, Fink et al. [8] apply successively more precise techniques to smaller
parts of the code. As mentioned before, Yu et al. [38] uses a flow-insensitive
analysis to partition the pointers into different levels. Similarly, Hardekopf et
al. [12] uses an auxiliary flow and context insensitive analysis to compute the
approximate def-use chains.

Declarative Pointer Analysis: Whaley [33] developed bddbddb, a framework for
implementing program analyses declaratively in Datalog [32] and implemented a
context-sensitive pointer analysis using this framework. Later, Bravenboer and
Smaragdakis [3] implemented several context-sensitive analyses in Datalog. All
these algorithms are flow-insensitive.

6 Conclusion and Future Work

In this paper, we have presented a flow-sensitive pointer analysis algorithm for
Java that can perform strong updates on pointers residing in the heap. Our im-
plementation scales for moderately large benchmarks. Our flow and context sen-
sitive analysis shows significant precision improvement over the flow-insensitive
analysis with partial SSA form as well as traditional points-to graph based flow-
sensitive analysis, with same level of context-sensitivity, on those benchmarks.

In future, we would like to improve the scalability of our analysis further
by implementing it over sparse evaluation graphs [11]. We would also like to
incorporate different types of context-sensitivity in our analysis such as object-
sensitivity [23].

References

1. Andersen, L.O.: Program Analysis and Specialization for the C Programming Lan-
guage. PhD thesis, DIKU, University of Copenhagen (1994)

2. Berndl, M., Lhoták, O., Qian, F., Hendren, L., Umanee, N.: Points-to analysis
using bdds. In: PLDI 2003: Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation, pp. 103–114. ACM, New
York (2003)

3. Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of sophisticated
points-to analyses. In: Proceeding of the 24th ACM SIGPLAN Conference on Ob-
ject Oriented Programming Systems Languages and Applications, OOPSLA 2009,
pp. 243–262. ACM, New York (2009)

Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates 685

4. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Comput. 35, 677–691 (1986)

5. Chang, W., Streiff, B., Lin, C.: Efficient and extensible security enforcement us-
ing dynamic data flow analysis. In: Proceedings of the 15th ACM Conference on
Computer and Communications Security, CCS 2008, pp. 39–50. ACM, New York
(2008)

6. Choi, J.-D., Burke, M., Carini, P.: Efficient flow-sensitive interprocedural compu-
tation of pointer-induced aliases and side effects. In: Proceedings of the 20th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
1993, pp. 232–245. ACM, New York (1993)

7. Emami, M., Ghiya, R., Hendren, L.J.: Context-sensitive interprocedural points-to
analysis in the presence of function pointers. In: Proceedings of the ACM SIGPLAN
1994 Conference on Programming Language Design and Implementation, PLDI
1994, pp. 242–256. ACM, New York (1994)

8. Fink, S.J., Yahav, E., Dor, N., Ramalingam, G., Geay, E.: Effective typestate
verification in the presence of aliasing. ACM Trans. Softw. Eng. Methodol. 17,
9:1–9:34 (2008)

9. Guyer, S.Z., Lin, C.: Error checking with client-driven pointer analysis. Sci. Com-
put. Program. 58, 83–114 (2005)

10. Hardekopf, B., Lin, C.: The ant and the grasshopper: fast and accurate pointer
analysis for millions of lines of code. SIGPLAN Not. 42(6), 290–299 (2007)

11. Hardekopf, B., Lin, C.: Semi-sparse flow-sensitive pointer analysis. In:
Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL 2009, pp. 226–238. ACM, New York
(2009)

12. Hardekopf, B., Lin, C.: Flow-sensitive pointer analysis for millions of lines of code.
In: 9th Annual IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), pp. 289–298 (April 2011)

13. Hasti, R., Horwitz, S.: Using static single assignment form to improve flow-
insensitive pointer analysis. In: PLDI 1998: Proceedings of the ACM SIGPLAN
1998 Conference on Programming Language Design and Implementation, pp. 97–
105. ACM, New York (1998)

14. Heintze, N., Tardieu, O.: Ultra-fast aliasing analysis using cla: a million lines of c
code in a second. In: Proceedings of the ACM SIGPLAN 2001 Conference on Pro-
gramming Language Design and Implementation, PLDI 2001, pp. 254–263. ACM,
New York (2001)

15. Hind, M., Burke, M., Carini, P., Choi, J.-D.: Interprocedural pointer alias analysis.
ACM Trans. Program. Lang. Syst. 21, 848–894 (1999)

16. Hind, M., Pioli, A.: Assessing the Effects of Flow-Sensitivity on Pointer Alias Anal-
yses. In: Levi, G. (ed.) SAS 1998. LNCS, vol. 1503, pp. 57–81. Springer, Heidelberg
(1998)

17. Hind, M., Pioli, A.: Which pointer analysis should i use? In: ISSTA 2000:
Proceedings of the 2000 ACM SIGSOFT International Symposium on Software
Testing and Analysis, pp. 113–123. ACM, New York (2000)

18. Kahlon, V.: Bootstrapping: a technique for scalable flow and context-sensitive
pointer alias analysis. In: PLDI 2008: Proceedings of the 2008 ACM SIGPLAN
Conference on Programming Language Design and Implementation, pp. 249–259.
ACM, New York (2008)

686 A. De and D. D’Souza

19. Kildall, G.A.: A unified approach to global program optimization. In: POPL 1973:
Proceedings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles
of Programming Languages, pp. 194–206. ACM, New York (1973)

20. Landi, W., Ryder, B.G.: A safe approximate algorithm for interprocedural aliasing.
In: PLDI 1992: Proceedings of the ACM SIGPLAN 1992 Conference on Program-
ming Language Design and Implementation, pp. 235–248. ACM, New York (1992)

21. Lhoták, O., Chung, K.-C.A.: Points-to analysis with efficient strong updates. In:
Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2011, pp. 3–16. ACM, New York (2011)

22. Li, L., Cifuentes, C., Keynes, N.: Boosting the performance of flow-sensitive points-
to analysis using value flow. In: Proceedings of the 19th ACM SIGSOFT Sympo-
sium and the 13th European Conference on Foundations of Software Engineering,
SIGSOFT/FSE 2011, pp. 343–353. ACM, New York (2011)

23. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized object sensitivity for
points-to analysis for java. ACM Trans. Softw. Eng. Methodol. 14, 1–41 (2005)

24. Naik, M.: jchord: A static and dynamic program analysis platform for java,
http://code.google.com/p/jchord/

25. Nystrom, E.M., Kim, H.-S., Hwu, W.-m.W.: Bottom-Up and Top-Down Context-
Sensitive Summary-Based Pointer Analysis. In: Giacobazzi, R. (ed.) SAS 2004.
LNCS, vol. 3148, pp. 165–180. Springer, Heidelberg (2004)

26. Pearce, D.J.: Some directed graph algorithms and their application to pointer anal-
ysis. PhD thesis, University of London, Imperial College of Science, Technology and
Medicine, Department of Computing (2005)

27. Pearce, D.J., Kelly, P.H., Hankin, C.: Efficient field-sensitive pointer analysis of c.
ACM Trans. Program. Lang. Syst. 30(1) (November 2007)

28. Salcianu, A., Rinard, M.: Pointer and escape analysis for multithreaded programs.
In: PPoPP 2001: Proceedings of the Eighth ACM SIGPLAN Symposium on Prin-
ciples and Practices of Parallel Programming, pp. 12–23. ACM, New York (2001)

29. Shapiro II, M., Horwitz, S.: The Effects of the Precision of Pointer Analysis. In: Van
Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 16–34. Springer, Heidelberg
(1997)

30. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis, ch.7,
pp. 189–234. Prentice-Hall, Englewood Cliffs (1981)

31. Steensgaard, B.: Points-to analysis in almost linear time. In: POPL 1996: Proceed-
ings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 32–41. ACM, New York (1996)

32. Ullman, J.D.: Principles of Database and Knowledge-Base Systems: Volume II:
The New Technologies. W. H. Freeman & Co., New York (1990)

33. Whaley, J.: Context-Sensitive Pointer Analysis using Binary Decision Diagrams.
PhD thesis, Stanford University (March 2007)

34. Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: Proceedings of the ACM SIGPLAN 2004 Conference
on Programming Language Design and Implementation, PLDI 2004, pp. 131–144.
ACM, New York (2004)

35. Whaley, J., Rinard, M.: Compositional pointer and escape analysis for java pro-
grams. In: OOPSLA 1999: Proceedings of the 14th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications, pp. 187–
206. ACM, New York (1999)

36. Whaley, J., Unkel, C., Lam, M.S.: A bdd-based deductive database for program
analysis (2004), http://suif.stanford.edu/bddbddb

http://code.google.com/p/jchord/
http://suif.stanford.edu/bddbddb

Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates 687

37. Wilson, R.P., Lam, M.S.: Efficient context-sensitive pointer analysis for c programs.
In: Proceedings of the ACM SIGPLAN 1995 Conference on Programming Language
Design and Implementation, PLDI 1995, pp. 1–12. ACM, New York (1995)

38. Yu, H., Xue, J., Huo, W., Feng, X., Zhang, Z.: Level by level: making flow-
and context-sensitive pointer analysis scalable for millions of lines of code. In:
Proceedings of the 8th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO 2010, pp. 218–229. ACM, New York (2010)

39. Zhu, J.: Towards scalable flow and context sensitive pointer analysis. In:
Proceedings of the 42nd Annual Design Automation Conference, DAC 2005, pp.
831–836. ACM, New York (2005)

Application-Only Call Graph Construction

Karim Ali and Ondřej Lhoták

David R. Cheriton School of Computer Science, University of Waterloo

Abstract. Since call graphs are an essential starting point for all inter-
procedural analyses, many tools and frameworks have been developed to
generate the call graph of a given program. The majority of these tools
focus on generating the call graph of the whole program (i.e., both the
application and the libraries that the application depends on). A popular
compromise to the excessive cost of building a call graph for the whole
program is to ignore all the effects of the library code and any calls the
library makes back into the application. This results in potential un-
soundness in the generated call graph and therefore in any analysis that
uses it. In this paper, we present Cgc, a tool that generates a sound call
graph for the application part of a program without analyzing the code
of the library.

1 Introduction

A call graph is a necessary prerequisite for most interprocedural analyses used
in compilers, verification tools, and program understanding tools [19]. However,
constructing a sound, precise call graph for even a small object-oriented pro-
gram is difficult and expensive. For example, constructing the call graph of a
Java “Hello, World!” program using Spark [20] can take up to 30 seconds, and
produces a call graph with 5,313 reachable methods and more than 23,000 edges.
The key reason is dynamic dispatch: the target of a call depends on the run-
time type of the receiver of the call. Because the receiver could have been created
anywhere in the program, a sound algorithm must either analyze the whole pro-
gram [1,6,17,21,34], or make very conservative assumptions about the receiver
type (e.g., Class Hierarchy Analysis [9]). Additionally, due to the large sizes of
common libraries, whole-program analysis of even trivial programs is expensive
[7,27,28]. Practical programs generally have many library dependencies, and in
many cases, the whole program may not even be available for static analysis.
Our aim is to construct sound and precise call graphs for the application part of
a program without analyzing the libraries that it depends on.1

Construction of partial call graphs is an often-requested feature in static anal-
ysis frameworks for Java. On the mailing list of the Soot framework [34], which
analyzes the whole program to construct a call graph, dozens of users have re-
quested partial call graph construction [4]. One popular approach for generating

1 In the rest of this paper, we will use the singular “library” to mean all of the libraries
that a program depends on.

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 688–712, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Application-Only Call Graph Construction 689

partial call graphs, used for example in the Wala framework [17], is to define an
analysis scope of the classes to be analyzed. The analysis scope then represents
the application part of the program. The effects of code outside this scope (i.e.,
the library) are ignored. As a consequence, the generated call graph lacks edges
representing call-backs from the library to the application. Methods that should
be reachable due to those call-back edges are ignored as well. Since this approach
ignores the effects of the library code, any store or load operation in the library
that involves an application object is ignored. Therefore, the points-to sets of
the application objects will be incomplete, potentially causing even more call
graph edges to be missing.

In contrast, we aim to produce a partial call graph that soundly overapprox-
imates the set of targets of every call site in the analysis scope, and the set of
reachable methods in the analysis scope. Our call graph uses a single summary
node to represent all methods in the library. However, the analysis should be ac-
curate for the application code. The goal of our work is to make less conservative
assumptions about the library code, which is not analyzed, while still generating
a precise and sound call graph for the application.

The essential observation behind our approach is that the division between an
application and its library is not arbitrary. If the analysis scope could be any set
of classes, then the call graph would necessarily be very imprecise. In particular,
a sound analysis would have to assume that the unanalyzed code could call any
non-private method and modify any non-private field in the analysis scope.2

A realistic yet very useful assumption is that the code of the library has
been compiled without access to the code of the application. We refer to this
as the separate compilation assumption. From this, we can deduce more specific
restrictions on how the library can interact with the application, which we will
explain in detail in Section 3. In particular, the library cannot call a method,
access a field, or instantiate a class of the application if the library author does
not know the name of the method, field, or class. It is theoretically possible to
discover this information using reflection, and some special-purpose “libraries”
such as JUnit [18] actually do so. We assume that such reflective poking into the
internals of an application is rare in most general libraries.

In this paper, we evaluate the hypothesis that this assumption of separate
compilation is sufficient to construct precise call graphs. We provide a pro-
totype implementation for call graph construction, Cgc, that uses a pointer
analysis based on the separate compilation assumption. We evaluate sound-
ness by comparing against the dynamic call graphs observed at run time by *J
[11]. Since a dynamic call graph does not represent all possible paths of a pro-
gram, it does not make sense to use it to evaluate the precision of a static call
graph. Therefore, we evaluate precision by comparing against call graphs con-
structed by whole-program analysis (using both the Spark [20] andDoop [6] call
graph construction systems). We also compare the performance of our prototype

2 Some field modifications could theoretically be ruled out if an escape analysis de-
termined that some objects are not reachable through the heap from any objects
available to the unanalyzed code.

690 K. Ali and O. Lhoták

partial call graph construction system with whole-program call graph construc-
tion. However, our prototype implementation is optimized for adaptability and
for producing call graphs comparable to those of other frameworks in terms of
soundness and precision and not specifically for performance. Given the positive
research results from our prototype, an obvious next implementation step would
be to optimize and embed the analysis within popular analysis frameworks such
as Spark, Doop, and Wala.

In summary, this paper makes the following contributions:

– It identifies the separate compilation assumption as key to partial call graph
construction, and specifies the assumptions about the effects of library code
that can be derived from it.

– It presents our prototype implementation of a partial call graph construction
system, Cgc.

– It empirically shows that the separate compilation assumption is sufficient
for constructing precise and sound application-only call graphs.

2 Background

2.1 Call Graph Construction

The targets of method calls in object-oriented languages are determined through
dynamic dispatch. Therefore, a precise call graph construction technique requires
a combination of two inter-related analyses: it must determine the targets of
calls, and also determine the run-time types of referenced objects (i.e., points-to
analysis). In Figure 1, both analyses are divided further and their dependencies
are made more explicit. Determining the targets of calls is divided into two
relations: reachable methods and call edges. On the other hand, the points-to
analysis is defined by two other relations: points-to sets and points-to constraints.

The main goal of a call graph construction algorithm is to derive the call
edges relation. A call edge connects a call site, which is an instruction in some

Fig. 1. Inter-dependent relations that make up a call graph construction algorithm

Application-Only Call Graph Construction 691

method, to a method that may be invoked from that call site. Figure 1 shows
that the call edge relation depends on two relations: reachable methods and
points-to sets. First, we are only interested in call sites that may actually be
executed and are not dead code. A precise call graph construction algorithm
therefore keeps track of the set of methods that are transitively reachable from
the entry points of the program, e.g., its main() method. Second, the target of a
given call depends on the run-time type of the receiver of the call. A precise call
graph construction algorithm therefore computes the points-to sets abstracting
the objects that each variable could point to. There are two common methods of
abstraction to represent objects: either by their allocation site (from which their
run-time type can be deduced) or by their run-time type. Thus, the points-to
set of a variable at a call site indicates the run-time types of the receiver of that
call.

Points-to sets are computed by finding the least fixed-point solution of a sys-
tem of subset constraints that model all possible assignments between variables
in the program. Thus, an abstract object “flows” from its allocation site into
the points-to sets of all variables to which it could be assigned. Eventually,
the abstract object reaches all of the call sites at which its methods could be
called. The dependency of the points-to set relation on the call edges relation
is illustrated in Figure 1. The calculation of the points-to sets is subject to
the points-to constraints. The points-to constraints model intra-procedural as-
signments between variables due to explicit instructions within methods. They
also model inter-procedural assignments due to parameter passing and returns
from methods. Since only intra-procedural assignments in reachable methods
are considered, the set of points-to constraints depends on the set of reachable
methods. The set of call edges is another dependency because it determines the
inter-procedural assignments.

Finally, the set of reachable methods depends, of course, on the set of call
edges. A method is reachable if any call edge leads to it. A precise call graph
construction algorithm computes these four inter-dependent relations concur-
rently until it reaches a mutual least fixed point. This is often called on-the-fly
call graph construction.

2.2 Partial Call Graph Construction

If a sound call graph is to be constructed without analyzing the whole program,
conservative assumptions must be made for all four of the inter-dependent rela-
tions in Figure 1. A sound analysis must assume that any unanalyzed methods
could do “anything”: they could arbitrarily call other methods and assign ar-
bitrary values to fields. Due to the dependencies between the four relations,
imprecision in any one relation can quickly pollute the others.

Our call graph construction algorithm computes precise information for the
application part of the call graph, but uses summary nodes for information
about the library. It assumes that all library methods are reachable, and uses a
single summary “method” to represent them. Calls from application methods to
library methods and vice versa are represented as call edges to or from the library

692 K. Ali and O. Lhoták

public class Main {

public static void main(String[] args) {

MyHashMap<String,String> myHashMap = new MyHashMap<String,String>();

System.out.println(myHashMap);

}

}

public class MyHashMap<K,V> extends HashMap<K,V> {

public void clear() { }

public int size() { return 0; }

public String toString() { return "MyHashMap"; }

}

Fig. 2. A sample Java program that will be used for demonstration

(a) (b)

Fig. 3. Two branches from the call graph for the sample program in Figure 2 as gen-
erated by (a) Spark and (b) Cgc. The dashed line represents a call from a library
method to an application method (i.e., a library call-back).

summary node. A call edge is created for each possible call between application
methods, but no edges are created to represent calls within the library. It is
implicitly assumed that any library method could call any other library method.
Similarly, a single summary points-to set is used to represent the points-to sets of
all variables within the library. Intra-library pointer flow, however, is not tracked
precisely.

Figure 2 shows a sample Java program that we will use to demonstrate our
analysis. Figure 3 compares two branches from the call graphs generated for this
sample program by (a) Spark and (b) Cgc. We computed both branches by
following the paths from the entry point method of the call graph, Main.main(),
using the CallGraphView tool that comes with Probe [19]. In Figure 3(a), we
can see that the first branch shows all of the call edges from the method My-

HashMap.<init>() all the way up to java.lang.Object.<init>(). Moreover,

Application-Only Call Graph Construction 693

the second branch in the call graph shows the call edges between library methods,
e.g., the call edge from the method java.io.PrintStream.println(Object) to
the method java.lang.String.valueOf(Object). The target of that edge calls
back to the application method MyHashMap.toString().

On the other hand, Figure 3(b) shows how Cgc represents the same branches.
All of the edges beyond the predefined point of interest of the user (i.e., the
application classes MyHashMap and Main) are considered as part of the library
and are not explicitly represented in the graph. Therefore, all library methods
are reduced to one library node that can have edges to and from application
methods. The figure also shows that even for such a small sample program, the
graph generated by Cgc is easier to visualize and inspect. This will give the
users a more focused view of the classes they are interested in, similar to what
they would do during manual code inspection [15]. Having a more focused and
precise view of the call graph should not ignore any of the potential call edges.
Ignoring the library call-back edge in Figure 3(a), for example, will render the
generated call graph unsound. Thus, it is crucial to precisely define, based on
the separate compilation assumption, how the library summary node interacts
with the application methods in the call graph.

3 The Separate Compilation Assumption

The input to our call graph construction algorithm is a set of Java classes desig-
nated as the application classes. The application classes may have dependencies
on classes outside this set. We designate any class outside the set as a library
class. We use the terms application method and library method to refer to the
methods of application and library classes, respectively. The call graph con-
struction algorithm analyzes the bytecode instructions of only the application
classes. It does not analyze the instructions of any library class. However, the
algorithm uses structural information (i.e., method signatures and field names)
of each library class that is referenced in an application class, as well as its super-
classes and superinterfaces. This is only a small subset of the full set of library
classes. These referenced library classes are necessary to compile the application
classes, and are readily available to the developer of the application.

The soundness of our approach depends on the Separate Compilation As-
sumption: all of the library classes are developed separately from the appli-
cation classes. In particular, all of the library classes can be compiled in the
absence of the application classes.

If a call graph construction algorithm does not analyze the whole program,
it must make very conservative assumptions about the effects of the unanalyzed
code. The separate compilation assumption makes these assumptions signifi-
cantly less conservative. Without the separate compilation assumption, a sound
algorithm would have to assume the following.

1. An unanalyzed class or interface may extend or implement any class or
interface.

694 K. Ali and O. Lhoták

2. An unanalyzed method may instantiate an object of any type and call its
constructor.

3. A local variable in an unanalyzed method may point to any object of any
type consistent with its declared type.

4. A call site in an unanalyzed class may call any accessible method of any
class.

5. An unanalyzed method may read or modify any accessible field of any object.
6. An unanalyzed method may read or modify any element of any array.
7. An unanalyzed method may cause the loading and static initialization (i.e.,

execution of the <clinit> method) of any class.
8. An unanalyzed method may throw any exception of any subtype of java.-

lang.Throwable.

The separate compilation assumption enables us to relieve these conservative
assumptions in the following ways.

1. A library class cannot extend or implement an application class or interface.
If it did, then the library class could not be compiled in the absence of the
application classes.

2. An allocation site in a library method cannot instantiate an object whose
run-time type is an application class. The run-time type of the object is
specified in the allocation site, so compilation of the allocation site would
require the presence of the application class.
The only exception to this rule is reflective allocation sites in a library
class (i.e., using Class.forName() and Class.newInstance()) that could
possibly create an object of an application class. Since Java semantics do
not prevent the library from doing this, our analysis should handle these
reflective allocations without analyzing the library code. We assume that
the library can reflectively instantiate objects of an application class if the
library knows the name of this particular application class. In other words,
if a string constant corresponding to the name of an application class flows
to the library (possibly as an argument to a call to Class.forName() or
Class.newInstance()), then the library can instantiate objects of that
class.

3. Our algorithm computes a sound but non-trivial overapproximation of the
abstract objects that local variables of library methods could point to. The
library could create an object whose type is any library class. An object
whose type is an application class can be instantiated only in an application
method (except by reflection). In order for an object created in an appli-
cation method to be pointed to by a local variable of a library method, an
application class must pass the object to a library class in one of the following
ways:
(a) An application method may pass the object as an argument to a call of

a library method. This also applies to the receiver, which is passed as
the this parameter.

(b) An application method called from a library method may return the
object.

Application-Only Call Graph Construction 695

(c) The application code may store the object in a field that can be read by
the library code.

(d) If the type of the object is a subtype of java.lang.Throwable, an
application method may throw the object and a library method may
catch it.

Thus, our algorithm computes a set, LibraryPointsTo, of the abstract ob-
jects allocated in the application that a local variable of a library method
can point to. Implicitly, the library can point to objects whose type is any
library class since these can be created in the library. Only the subset of
application class objects that are passed into the library is included in Li-

braryPointsTo.

4. Two conditions are necessary in order for a call site in a library class to call
a method m in an application class c.

(a) The method m must be non-static and override a (possibly abstract)
method of some library class. Each call site in Java bytecode specifies the
class and method signature of the method to be called. Since the separate
compilation assumption states that the library has no knowledge about
the application, the specified class and method must be in the library,
not the application. The Java resolution rules [22, Section 5.4.3] could
change the specified class to one if its superclasses, but this must also be
a library class due to the previous assumption. Therefore, the only way
in which an application method could be invoked is if it is selected by
dynamic dispatch. This requires the application method to be non-static
and to override the method specified at the call site.

(b) The receiver variable of the call site must point to an object of class c
or a subclass of c such that calling m on that subtype resolves to the
implementation in c. Therefore, an object of class c or of the appropriate
subclass must be in the LibraryPointsTo set.

5. Similar conditions are necessary in order for a library method to read or
modify a field f of an object o of class c created in the application code.

(a) The field f must originally be declared in a library class (though c can
be a subclass of that class, and could therefore be an application class).
Each field access in Java bytecode specifies the class and the name of the
field. This class must be a library class due to the separate compilation
assumption. The Java resolution rules could change the specified class,
but again only to one of its superclasses, which must also be a library
class.

(b) It must be possible for the local variable whose field is accessed to point
to the object o. In other words, the LibraryPointsTo set must contain
the abstract object representing o.

(c) In the case of a field write, the object being stored into the field must also
be pointed to by a local variable in the library. Therefore, its abstraction
must be in the LibraryPointsTo set.

The library can access any static field of a library class, and any field of an
object that was instantiated in the library.

696 K. Ali and O. Lhoták

6. If the library has access to an array, it can access any element of it by its
index. This is unlike an instance field, which is only accessible if its name
is known to the library. However, the library is limited to accessing only
the elements of arrays that it has a reference to (i.e., ones that are in the
LibraryPointsTo set). In the case of a write, the object that is written into
the array element must also be in the LibraryPointsTo set.

7. Due to the separate compilation assumption, the library does not contain
any direct references to application classes. Thus the library cannot cause
a static initializer of an application class to be executed except by using
reflection. When determining which static initializers will execute, our algo-
rithm includes those classes that are referenced from application methods
reachable through the call graph, as well as classes that may be instantiated
using reflection as discussed above in point 2.

8. The library can throw an exception either if it creates the exception object
(in which case its type must be a library class) or if the exception object is
created in an application class and passed into the library (in which case its
abstraction appears in the LibraryPointsTo set). We conservatively assume
that the library can catch any thrown exception. Consequently, we add the
abstractions of all thrown exception objects to the LibraryPointsTo set.

In addition to these conditions, our algorithm strictly enforces the restrictions
imposed by declared types.

– When the library calls an application method, the arguments passed in the
call must be in the LibraryPointsTo set, and must also be compatible with
the declared types of the corresponding parameters.

– When an application method calls a library method, the returned object
must be in the LibraryPointsTo set and compatible with the declared return
type of the library method.

– When the library modifies a field, the object it may write into the field must
be compatible with the declared type of the field.

– When an application method catches an exception, only exceptions whose
type is compatible with the declared type of the exception handler are prop-
agated.

– When the LibraryPointsTo set is used to update the points-to set of an
application local variable, only objects compatible with the declared type of
the local variable are included.

4 Cgc Overview

We have implemented a prototype of the application-only call graph construc-
tion approach that we call Cgc, and have made it available at http://plg.

uwaterloo.ca/~karim/projects/cgc/. For ease of modification and experi-
mentation, Cgc is implemented in Datalog.3 Cgc uses a pointer analysis that is

3 Datalog is a logic-based language for (recursively) defining relations.

http://plg.uwaterloo.ca/~karim/projects/cgc/
http://plg.uwaterloo.ca/karim/projects/cgc/

Application-Only Call Graph Construction 697

Fig. 4. An overview of the workflow of Cgc

based on the context-insensitive pointer analysis from the Doop framework [6].
However, the analysis is independent of Datalog, and could be transcribed into
Java to be embedded into an analysis framework such as Soot or Wala. We
have also implemented summary tools that summarize the call graphs generated
by Spark and Doop. Each summary tool takes a list of application classes and
the call graph as input. The output is a call graph with the library methods
summarized into one node in the graph. Therefore, call graphs from Spark,
Doop and Cgc can be compared. Additionally, Cgc can export the generated
call graph as a GXL [16] document 4 or a directed DOT [31] graph file. The DOT
graph can be visualized using Graphviz [13] or converted by Cgc to a PNG or
a PS file that can be visualized using any document previewer.

4.1 Workflow

Figure 4 shows an overview of the work flow of Cgc. Like Doop, Cgc uses a
fact generator based on Soot to preprocess the input code and generate the
input facts to the Datalog program. The fact generator receives a collection
of input files and a specification of the set of application classes. The rest of
the classes are considered library classes. The fact generator then generates two
sets of facts. The first set is for the application classes and contains all details
about those classes: signatures for classes, methods, fields as well as facts about

4 The DTD schema can be found at http://plg.uwaterloo.ca/~karim/projects/

cgc/schemas/callgraph.xml

http://plg.uwaterloo.ca/~karim/projects/cgc/schemas/callgraph.xml
http://plg.uwaterloo.ca/~karim/projects/cgc/schemas/callgraph.xml

698 K. Ali and O. Lhoták

method bodies. The second set is dedicated to the library and contains the fol-
lowing: signatures for classes, methods, and fields in the library classes that are
referenced in the application and their (transitive) superclasses and superinter-
faces. We generate a third set of facts which holds information about reflection
code in the application. This set is generated using TamiFlex [5], a tool suite
that records actual uses of reflection during a run of a program, and summarizes
them in a format suitable as input to a static analysis. Cgc uses the output of
TamiFlex to model calls to java.lang.reflect.Method.invoke(), and appli-
cation class name string constants to model reflective class loading. We plan to
add more support for other reflective application code in the future.

The three sets of facts along with the Datalog rules that define our pointer
analysis are then used to initialize a LogicBlox [24] database. Once the database
is created and the analysis completes, Cgc queries it for information about the
call graph entry points and the various types of call graph edges: application-
to-application edges, application-to-library edges, and library-to-application call
back edges. Finally, Cgc uses those derived facts to generate the call graph for
the given input program files and to save it as a GXL document.

4.2 Implementation

We will now outline the main parts of the Cgc analysis implementation, listing
the most important relations that are generated.

Object Abstraction. For precision, Cgc uses a separate abstract object for
each allocation site in the application classes. The abstract object represents all
objects allocated at the site; it has an associated run-time type.

Cgc must use a coarser abstraction to represent objects allocated in the li-
brary.Cgc first computes the set L of all library classes and interfaces referenced
in the application and their transitive superclasses and superinterfaces. It then
creates one abstract object for each class in L.

The meaning of an abstract object in L is subtle. The abstraction must repre-
sent all objects created in the library, of any type, but L is limited to those types
referenced in the application. Therefore, each abstract object c ∈ L represents
all concrete objects created in the library such that if the actual run-time type of
the object is c′, then c is the closest supertype of c′ that is in L. In other words,
each concrete object is represented by its closest supertype that is referenced in
the application. From the point of view of analyzing the application, an object
of type c′ created in the library is treated as if its type were c. If the application
accesses a field of the object, it must be a field that was already declared in c
or one of its superclasses. Accessing a field declared only in c′ would require the
application to reference class c′. The situation is different for resolving a call to a
library method as the analysis just models all library methods as a single node.
Therefore, in the case of a call site in the application, the analysis does not need
to determine which library method of c′ or all its superclasses will be invoked.

Application-Only Call Graph Construction 699

Abstract objects allocated in the application always have a concrete class as
their run-time type. An important but subtle detail is that the analysis must
include abstract objects even for library classes that are declared abstract. This
is because the actual run-time type of the concrete object could be a subtype of
the abstract class, and not referenced by the application.

Points-to Sets. Cgc uses the relations VarPointsTo and StaticFieldPoi-

ntsTo to model the points-to sets of local variables and static fields within the
application code, respectively. Library code cannot directly read object refer-
ences from these sets. The relations InstanceFieldPointsTo and ArrayIndex-

PointsTo model the points-to sets of the fields of each abstract object and, in
the case of an array, its array elements. The analysis distinguishes individual
fields, but does not distinguish different elements of the same array.

We define a new relation, LibraryPointsTo, which models the set of abstract
objects that the library may reference. This set is initialized with all of the
abstract objects created in the library. In addition, the analysis adds abstract
objects that are passed into a library method, returned to a library method from
an application method, or stored in a static field of a library method. Finally, the
analysis adds abstract objects that the library may read out of instance fields
according to the conditions described in Section 3.

The analysis also includes rules to update InstanceFieldPointsTo and Ar-

rayIndexPointsTo in order to model the instance field and array element writes
that may occur within the library.

In addition to objects, the library can also instantiate arrays. The analysis
adds to LibraryPointsTo an abstract array of type T[]whenever the application
calls a library method whose return type is T[], or the library calls an application
method that takes T[] as a parameter.

Points-to Subset Constraints. Cgc defines a relation called Assign that
represents subset constraints between the points-to sets of local variables in
the application code. This relation models assignment statements in reachable
methods, and parameter passing and return at each method call edge. Cgc

defines two additional relations, AssignToLibrary and AssignLibraryTo, for
assignments crossing the boundary between the application and the library. This
includes parameter passing and return, as well as reading from and writing to
static library fields within the application code.

For precision, we have found that it is very important to enforce declared
types at the boundary between the application and the library. Since the in-
put to Cgc is Java bytecode, which is typed, there are few assignments (both
intra-procedural and inter-procedural) within the application where explicit type
checks are necessary (except for explicit casts in the bytecode). However, because
the LibraryPointsTo set represents all references within the library, it does not
have a declared type. Thus, at every assignment out of the library into an ap-
plication local variable, instance/static field, or array element, Cgc checks that
the abstract objects respect the declared type of the destination.

700 K. Ali and O. Lhoták

Call Graph Edges. Cgc defines the ApplicationCallGraphEdge relation to
model calls within application methods. Additionally, two special relations, Li-
braryCallGraphEdge and LibraryCallBackEdge are defined to represent calls
into and back out of the library. For call sites in the application, the points-to set
of the receiver variable is used to resolve the dynamic dispatch and determine
which methods may be called. Constructing the LibraryCallBackEdge set is
more interesting since Cgc knows nothing about the call site within the library.
Following the conditions defined in Section 3, Cgc uses the LibraryPointsTo

set as an overapproximation of the possible receiver objects. Cgc considers the
signatures of all application methods that override a library method as possible
targets for a LibraryCallBackEdge.

Cgc computes the Reachable set of all methods that are transitively reach-
able through the call edges. The set contains application methods only.

4.3 Special Handling of java.lang.Object

Every constructor calls the constructors of its transitive superclasses. Therefore,
every object ever created flows to the constructor of java.lang.Object and
would be accessible to the library. However, this particular constructor is empty;
it cannot leak a reference to other library code. The analysis therefore makes
a special exception so that objects passed to this constructor are not added to
LibraryPointsTo. The same exception is made for all other methods of java.-
lang.Object except toString(). We have determined by manual inspection
that these methods do not leak object references to the library. Since the java.-
lang.Object.clone() method returns a copy if its receiver, we model it as
follows: at any call site of the form a = b.clone(), all references pointed to by
b flow to a.

5 Experiments

We evaluate Cgc by comparing its precision and performance to that of Spark
and Doop on two benchmark suites. We analyzed both the DaCapo benchmark
programs, v.2006-10-MR2 [3], and the SPEC JVM 98 benchmark programs [29]
with JDK 1.4 (jre1.4.2.11) which is larger than JDK 1.3 used by Lhoták and
Hendren [20] and similar to JDK 1.4 used by Bravenboer and Smaragdakis [6].
We also evaluate the soundness of the call graphs generated by Cgc by compar-
ing them to the dynamic call graphs recorded at run time using the *J tool [11].
We ran all of the experiments on a machine with four dual-core AMD Opteron
2.6 GHz CPUs (runnning in 64-bit mode) and 16 GB of RAM. We exclude the
benchmarks fop and eclipse from our evaluation because they do not include all
code that they reference, so we were unable to analyze them with Spark and
Doop. We exclude the benchmark jython because it heavily uses sophisticated
forms of reflection, making any static analysis impractical.

Application-Only Call Graph Construction 701

5.1 Preliminaries and Experimental Setup

Since we are comparing the generated graph from the three different tools, Cgc,
Spark and Doop, we have to run them with similar settings so that the gen-
erated graphs are comparable. Therefore, there is a common properties file that
holds the values for the input files, list of application classes, the benchmark to
run and the name of the main class to be used across the three tools. The main
class is an application class whose main() method is considered the entry point
of the call graph.

Each experiment run is executed by a bash shell script that takes this prop-
erties file as an input. The script then runs the three tools consecutively and
collects the results. For each benchmark program, the script records some statis-
tics about the elapsed time for each tool to finish execution and the number
of the various types of call graph edges generated. The script also reads in the
dynamic call graph for the corresponding benchmark program to be used in eval-
uating the soundness of all three static analysis tools. The dynamic call graphs
are generated using *J [11], a tool which attaches to the Java VM and records
all method calls that occur in an actual run of the given benchmark program.
The bash script also produces GXL files for the generated call graphs for Cgc,
Spark, Doop, and the dynamic call graphs. The script then computes and
records the differences between them. This is done by generating four difference
graphs: Cgc-Spark, Spark-Cgc, Cgc-Doop, and Doop-Cgc. A difference
graph A-B is a graph that contains all of the edges that are in A and not in B.

The *J tool records a call from method a to method b if the method b ever ex-
ecutes on a thread during the execution of method a on the same thread. There
are several situations in which the Java VM triggers such a method execution
that are not due to method calls. We remove these edges from the *J call graph.
First, we remove edges to the methods java.lang.ClassLoader.loadClass-

Internal() and java.lang.ClassLoader.checkPackageAccess(), which are
called internally by the Java VM. We also remove edges to static initializers
(<clinit>), because Cgc treats static initializers as entry points, whereas *J
treats them as methods that are called. Nevertheless, Cgc considers static ini-
tializers as reachable methods and analyzes their effect, including any method
calls that they make.

In addition, while converting Spark’s call graphs to Cgc’s format for
comparison, we convert NewInstanceEdges to LibraryCallBackEdges. In
Spark, NewInstanceEdges represent implicit calls to constructors from the
method java.lang.Class.newInstance(). In a Spark call graph, the source of
those edges is the calling site of the method java.lang.Class.newInstance().
On the other hand, those edges are LibraryCallBackEdges in Cgc. Therefore,
this conversion allows us to do a fair comparison between Spark and Cgc by
resolving any inconsistencies in the way both model NewInstanceEdges.

In the following subsections, we evaluate and compare the soundness, preci-
sion, and size of the call graphs generated by the static tools, as well as the
performance of the tools.

702 K. Ali and O. Lhoták

Table 1. Comparing the soundness of Cgc, Doop, and Spark with respect to Appli-

cationCallGraphEdges

antlr bloat chart hsqldb luindex lusearch pmd xalan compress db jack javac jess raytrace

Dynamic 3066 3733 482 1505 565 435 1894 2543 39 36 520 2384 5 317

Dynamic-Cgc 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Dynamic-Doop 0 0 0 325 244 193 153 250 0 0 0 0 0 0

Dynamic-Spark 0 0 0 59 0 155 0 59 0 0 0 0 0 0

Table 2. Comparing the soundness of Cgc, Doop, and Spark with respect to Li-

braryCallGraphEdges

antlr bloat chart hsqldb luindex lusearch pmd xalan compress db jack javac jess raytrace

Dynamic 372 475 168 119 148 99 157 325 4 17 76 148 5 13

Dynamic-Cgc 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Dynamic-Doop 0 0 0 5 53 45 43 42 0 0 0 0 0 0

Dynamic-Spark 0 0 0 1 0 27 0 9 0 0 0 0 0 0

Table 3. Comparing the soundness of Cgc, Doop, and Spark with respect to Li-

braryCallBackEdges

antlr bloat chart hsqldb luindex lusearch pmd xalan compress db jack javac jess raytrace

Dynamic 11 49 7 3 13 5 36 85 0 1 0 6 3 0

Dynamic-Cgc 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Dynamic-Doop 3 0 0 1 6 3 29 78 0 0 0 0 0 0

Dynamic-Spark 0 0 0 1 4 3 3 28 0 0 0 0 0 0

5.2 Call Graph Soundness

The separate compilation assumption makes it easier to reason soundly about li-
brary code than whole-program approaches. Whereas a whole-program analysis
must soundly model all details of the library, Cgc needs only to soundly handle
its interface. We evaluate the soundness of Cgc, Doop, and Spark by counting
the call graph edges that are present in the dynamic call graph, but missing from
the call graphs generated by each static tool. These counts are shown in the lines
Dynamic-Cgc, Dynamic-Doop, and Dynamic-Spark in Tables 1, 2 and 3.

This comparison shows that the call graphs generated by Cgc soundly include
all of the call edges that were dynamically observed at run time by *J, except for
one single call edge from the application to the library in the lusearch benchmark
(see Table 2). The dynamic call graph for lusearch has a LibraryCallGraphEdge
from the method org.apache.lucene.index.FieldInfos.fieldName() to the
constructor of java.lang.NullPointerException.There is no statement in this
method that constructs this object, but the method tries to access the field of
a null object. As a result, the Java VM creates a java.lang.NullPointerEx-

ception and executes its constructor. The exception is caught elsewhere in the
benchmark. This type of unsoundness can be resolved by improving our analysis
to model the behavior of the Java VM by checking for when an application
attempts to dereference null. This same unsoundness is also found in both
Doop and Spark.

Application-Only Call Graph Construction 703

Table 4. Comparing the precision ofCgc with respect to ApplicationCallGraphEdges

antlr bloat chart hsqldb luindex lusearch pmd xalan compress db jack javac jess raytrace

Cgc 6276 14430 1879 9015 923 1998 4594 11628 40 47 653 8194 6 400

Doop 6293 12433 1811 6245 449 1507 3956 8911 40 47 646 8188 6 400

Spark 6299 13419 6732 7792 1412 2724 6893 13020 40 47 646 8519 6 400

Cgc-Doop 13 1997 68 2445 230 298 485 2654 0 0 7 6 0 0

Cgc-Spark 2 1829 15 1394 0 250 179 1356 0 0 7 0 0 0

Table 5. Comparing the precision of Cgc with respect to LibraryCallGraphEdges

antlr bloat chart hsqldb luindex lusearch pmd xalan compress db jack javac jess raytrace

Cgc 649 874 571 982 243 345 431 1149 13 24 107 313 7 34

Doop 649 841 529 787 152 251 348 818 13 24 98 313 6 34

Spark 661 885 1060 869 336 392 797 1055 13 23 97 317 6 34

Cgc-Doop 0 33 42 190 38 50 40 289 0 0 9 0 1 0

Cgc-Spark 0 10 1 139 0 29 3 171 0 1 10 2 1 0

Table 6. Comparing the precision of Cgc with respect to LibraryCallBackEdges

antlr bloat chart hsqldb luindex lusearch pmd xalan compress db jack javac jess raytrace

Cgc 47 190 95 663 27 48 114 696 0 2 10 25 12 1

Doop 39 84 55 24 15 26 37 61 0 2 0 23 8 0

Spark 73 223 490 69 132 146 135 464 10 12 10 41 64 10

Cgc-Doop 5 106 40 638 6 19 48 557 0 0 10 2 4 1

Cgc-Spark 0 19 8 616 1 5 25 307 0 0 10 0 1 1

5.3 Call Graph Precision

In order for a call graph to be useful, it must also be precise in addition to
being sound. We now compare the precision of call graphs generated by Cgc to
those generated by Doop and Spark. We would expect Cgc to be at least as
imprecise as Doop and Spark, since it makes conservative assumptions about
the library code instead of precisely analyzing it. Since we found some dynamic
call edges that were missing from the call graphs generated by both Doop and
Spark (and one edge from Cgc), we first correct this unsoundness by adding the
missing dynamic call edges to the static call graphs. This enables us to compare
the precision of the static call graphs by counting only spurious call edges, and
to avoid confounding due to differences in soundness. In Tables 4, 5 and 6, the
quantity Cgc-Doop represents the number of edges in the call graph generated
by Cgc that are missing in the call graph generated by Doop, and are also not
present in the dynamic call graph. The quantity Cgc-Spark is defined similarly.
We say that Cgc is precise when the call graph that it generates is identical to
that generated through whole program analysis by Doop or Spark.

Application Call Graph Edges. Table 4 shows that Cgc generates precise
call graphs with respect to ApplicationCallGraphEdges when compared to
both Doop and Spark for compress, db, jess, and raytrace. Additionally, Cgc

generates precise call graphs for luindex and javac when compared to Spark. For
all benchmark programs,Cgc generates a median of 41 extra ApplicationCall-
GraphEdges (min: 0, max: 2656, median: 40.5) when compared to Doop and a

704 K. Ali and O. Lhoták

median of 5 extra ApplicationCallGraphEdges (min: 0, max: 1829, median: 4.5)
when compared to Spark. Both medians are negligible as they represent 2.42%
and 0.13% of the median number of ApplicationCallGraphEdges generated by
Doop and Spark respectively.

Library Call Graph Edges. Table 5 shows that Cgc generates precise call
graphs with respect to LibraryCallGraphEdges when compared to Doop for
antlr, compress, db, javac, and raytrace. On the other hand, Cgc generates
precise call graphs when compared to Spark for antlr, luindex, compress, and
raytrace. Across all benchmark programs, Cgc generates a median of 21 extra
LibraryCallGraphEdges (min: 0, max: 288, median: 21) when compared to
Doop as opposed to a median of 2 extra LibraryCallGraphEdges (min: 0,
max: 171, median: 1.5) when compared to Spark.

Library Call Back Edges. Table 6 shows that Cgc generates precise call
graphs with respect to LibraryCallBackEdges when compared to Doop and
Spark for compress and db. Additionally, Cgc generates precise call graphs for
antlr and javac when compared to Spark. In general, Cgc generates a median of
8 extra LibraryCallBackEdges (min: 0, max: 638, median: 8) when compared
to Doop and a median of 3 extra LibraryCallBackEdges (min: 0, max: 616,
median: 7.5) when compared to Spark. The former represents 72.9% as opposed
to only 2.53% for the latter, of the median number of LibraryCallBackEdges
generated by Doop and Spark respectively. In other words, the majority of
LibraryCallBackEdges generated by Cgc are spurious compared to Doop.
These extra edges are the root cause of the small amounts of imprecision that
we observed in the ApplicationCallGraphEdges and LibraryCallGraphEdges.

We further investigate the specific causes of the extra LibraryCallBackEdges
in the Cgc call graph. In Tables 7 and 8, we categorize these edges by the name
of the application method that is being called from the library. In particular,
we are interested to know whether the library calls a wide variety of application
methods, or whether the imprecision is limited to a small number of well-known
methods, which could perhaps be handled more precisely on an individual basis.

Table 7 shows that the most frequent extra LibraryCallBackEdges in Cgc

when compared to Doop target the commonly overridden methods (in descend-
ing order): clone, <init>, toString, equals, remove, and hashCode. The num-
ber of extra LibraryCallBackEdges generated by Cgc compared to Spark is
smaller than that compared to Doop. Table 8 shows that the most frequent
extra LibraryCallBackEdges in Cgc compared to Spark target the methods:
<init>, finalize, run, close, write, and remove.

The constructor <init> ranks highly in hsqldb, pmd, and xalan. This is be-
cause these benchmarks use class constants. Cgc conservatively assumes that if
a class constant is created (using java.lang.Class.forName()), an object of
that type might also be instantiated and its constructor called.

The benchmark programs hsqldb and xalan have the highest frequency of im-
precise LibraryCallBackEdges. In the case of hsqldb, most of those imprecise

Application-Only Call Graph Construction 705

Table 7. Frequencies of extra LibraryCallBackEdges in Cgc when compared toDoop

(Cgc-Doop). Other methods include all methods that are encountered only in one
benchmark program.

Method antlr bloat chart hsqldb luindex lusearch pmd xalan compress db jack javac jess raytrace Total

clone 4 50 25 3 4 11 1 98

<init> 20 19 33 72

toString 2 2 7 2 2 2 17

equals 1 1 6 4 2 2 16

remove 12 2 14

hashCode 4 2 4 2 1 13

write 2 9 11

run 4 1 2 1 8

close 5 3 8

printStackTrace 5 2 7

next 4 1 5

getAttributes 1 3 4

getType 1 3 4

read 2 1 3

clearParameters 1 2 3

accept 1 1 2

previous 1 1 2

Other 0 37 8 585 0 3 16 486 0 0 10 0 4 0 1149

Total 5 106 40 638 6 19 48 557 0 0 10 2 4 1 1436

Table 8. Frequencies of extra LibraryCallBackEdges inCgc when compared to Spark
(Cgc-Spark). Other methods include all methods that are encountered only in one
benchmark program.

Method antlr bloat chart hsqldb luindex lusearch pmd xalan compress db jack javac jess raytrace Total

<init> 19 19 48 86

finalize 3 1 4 3 11

run 4 1 2 1 8

close 5 3 8

write 2 6 8

remove 5 2 7

getType 1 2 3

clearParameters 1 2 3

previous 1 1 2

Other 0 13 8 580 0 0 4 241 0 0 10 0 1 0 857

Total 0 19 8 616 1 5 25 307 0 0 10 0 1 1 993

LibraryCallBackEdges are to methods of classes in the package org.hsqldb.-
jdbc (Doop = 560, Spark = 555). In xalan, most of the imprecise Library-

CallBackEdges are to methods of classes in the packages org.apache.xalan.*
(Doop = 276, Spark = 184) and org.apache.xml.* (Doop = 263, Spark
= 112). Thus, in both of these benchmarks, the high imprecision is due to the
fact that each benchmark contains its own implementation of a large subsystem
(JDBC and XML) whose interface is defined in the library.

5.4 Call Graph Size

As we mentioned earlier, call graphs are a key prerequisite to all interproce-
dural analyses. Therefore, any change in the size of the call graph will affect
the performance of the analyses that use it as input. Since Cgc overapproxi-
mates the generated call graph, we evaluate the size of the generated call graph

706 K. Ali and O. Lhoták

Table 9. Comparing the size of the call graph generated by Cgc, Doop and Spark

for the same input program

antlr bloat chart hsqldb luindex lusearch pmd xalan compress db jack javac jess raytrace

Cgc 6,972 15,494 2,545 10,660 1,193 2,391 5,139 13,473 53 73 770 8,532 25 435

Doop 6,981 13,358 2,395 7,056 616 1,784 4,341 9,790 53 73 744 8,524 20 434

Spark 7,033 14,527 8,282 8,730 1,880 3,262 7,825 14,539 63 82 753 8,877 76 444

Cgc/Doop 0.99 1.16 1.06 1.51 1.94 1.34 1.18 1.38 1 1 1.03 1 1.25 1

Cgc/Spark 0.99 1.07 0.31 1.22 0.63 0.73 0.66 0.93 0.84 0.89 1.02 0.96 0.33 0.98

(in terms of total number of edges) compared to those of Doop and Spark.
Table 9 shows that Cgc generates call graphs of equal or smaller size to Doop

and Spark for the benchmark programs antlr, chart, compress, db, jack, javac,
and raytrace. Additionaly, Cgc generates call graphs of smaller size than Spark

for the benchmark programs bloat, luindex, lusearch, pmd, xalan, and jess.
It is counterintuitive that the call graphs generated by Cgc are smaller than

those generated by Spark, which analyzes the whole program precisely. This
result is primarily due to imprecisions in Spark. To model objects created by
the Java VM or by the Java standard library using reflection, Spark uses special
abstract objects whose type is not known (i.e., any subtype of java.lang.-

Object). Spark does not filter these objects when enforcing declared types,
so these objects pass freely through casts and pollute many points-to sets in
the program. This affects the precision of the points-to sets of the method call
receivers and leads to many imprecise call graph edges in Spark. The extent of
this imprecision spark was a surprise to the second author, who is also the author
of Spark. In response to this observation, we plan to improve the precision of
Spark by redesigning the mechanism that it uses to model these objects.

5.5 Analysis Performance

We evaluate the performance gain of not analyzing the method bodies of the
library code. There are two major aspects that can measure the performance of
an analysis: execution time, and the disk footprint of the analysis database. We
define execution time to be the time taken by the analysis to finish computing the
points-to sets and constructing the call graph for the input program. We measure
this time by using the time Linux command [23] that measures the time taken
by a given program command to finish execution. Based on the numbers shown
in Figure 5, we can deduce that Cgc is approximately 3.5x faster than Doop

(min: 0.86x, max: 18.42x, median: 3.45x), and almost 7x faster than Spark

(min:0.93x, max: 42.7x, median: 6.56x).
Figure 6 shows that Cgc achieves this performance gain in execution time

while using a database of facts approximately 7x smaller in size thanDoop (min:
2.19x, max: 31.75x, median: 6.83x). We measure the size of the database of facts
used by Cgc by calculating the disk footprint of the LogicBlox database files
after the analysis completes. We calculate the size of the database of facts for
Doop similarly and compare it against its Cgc counterpart. In all benchmarks,
Doop has a larger disk footprint as it analyzes the method bodies for all the

Application-Only Call Graph Construction 707

Fig. 5. Comparing the time taken by the analysis in each of Cgc, Doop and Spark

to generate the call graph for each program from the DaCapo and SPEC JVM bench-
marks. This only includes the time taken to compute the points-to sets as well to
construct the call graph.

Fig. 6. The size of Cgc’s facts database compared to Doop’s

library classes while Cgc only analyzes the method signatures for the classes
referenced in the application (and their transitive superclasses and superinter-
faces). It is difficult to report similar statistics for Spark as it uses a different
model to represent the facts its analysis uses to construct the call graph for an
input program.

6 Related Work

Early work on call graph construction used only simple approximations of run-
time types to model dynamic dispatch. Dean et al. [9] formulate class hierarchy
analysis (CHA), which does not propagate object types. CHA uses only the sub-
class hierarchy to determine method targets. Bacon and Sweeney [2] define rapid
type analysis (RTA), a refinement of CHA that considers as possible receivers
only classes that are instantiated in the reachable part of the program. Sundare-
san et al. [30] introduce an even more precise approach, variable type analysis
(VTA). Like points-to analysis, it generates subset constraints and propagates
points-to sets to approximate the run-time types of receivers.

Tip and Palsberg [32] provide a scalable propagation-based call graph con-
struction algorithm. Separate object sets for methods and fields are used to
approximate the run-time values of expressions. The algorithm is capable of

708 K. Ali and O. Lhoták

analyzing incomplete applications by associating a single set of objects, SE , with
the outside world (i.e., the library). The algorithm conservatively assumes that
the library calls back any application method that overrides a library method.
The set SE is then used to determine the set of methods that the external code
can invoke by the dynamic dispatch mechanism. A separate set of objects SC is
associated with an external (i.e., library) class if the objects passed to the meth-
ods in class C interact with other external classes in limited ways. An example
of this case is the class java.util.Vector. This step requires the analysis of
the external classes to model the separate propagation sets. In addition, this
technique varies based on the library dependencies of the input program.

The previous algorithm was later used by Tip et al. [33] to implement Jax, an
application extractor for Java. The external object set SE inspired the Library-
PointsTo relation in our algorithm. Expanding on the initial idea of analyzing
incomplete applications, we formulated the separate compilation assumption,
and worked out in detail the specific assumptions flowing from it. We also de-
rived a set of constraints from those assumptions. In addition, we have empiri-
cally analyzed the precision and soundness of the partial call graphs generated
compared to call graphs generated by analyzing the whole program.

Grothoff et al. [14] present Kacheck/J, a tool that is capable of identifying
accidental leaks of sensitive objects. Kacheck/J achieves that by inferring the
confinement property [35,36,38] for Java classes. A Java class is considered con-
fined when objects of its type are encapsulated in its defining package. The
analysis needs only to analyze the defining package of the given Java class to
infer its confinement property. That is similar to the way Cgc needs only to
analyze the application classes to construct its call graph. Although the set of
application classes can be thought of as one defining package, determining the
confinement property for the classes in this package is not enough to construct
the call graph. Constructing the call graph would still require the points-to set
information. As part of the confinement analysis, Kacheck/J identifies anony-
mous methods which are guaranteed not to leak a reference to their receiver. A
similar notion and analysis could be used in Cgc to identify library methods
that do not retain permanent references to their arguments, in order to improve
the precision of the LibraryPointsTo set. In addition to the analysis that infers
the confinement property, there is a large body of work on type systems that
enforce encapsulation by restricting reference aliasing [8,10,12,25].

Our work is also related to the work of Zhang and Ryder [37]. They pro-
vide a fine-tuned data reachability algorithm to resolve library call-backs, V a −
DataReachft. Their algorithm also distinguishes library code from application
code in the formulation of the constraints. The fundamental difference is that
the purpose of their algorithm is to construct a more precise call graph than a
whole-program analysis by analyzing the library more thoroughly. Each call into
the library is treated as an isolated context. In contrast, our aim is not to ana-
lyze the library at all, and generate a possibly less precise but sound call graph.
In Cgc, we make up for not analyzing the library by enforcing the restrictions
that follow from the separate compilation assumption.

Application-Only Call Graph Construction 709

Rountev et al. [26] present a general approach for adapting whole-program
class analyses to operate on program fragments. Whereas our aim is to analyze
the application without the library, they soundly analyze the library without
the application. The authors create placeholders to serve as representatives for
and simulate potential effects of unknown code. The fragment class analysis then
adds the placeholders to the input classes and treats the result as a complete
program which can be analyzed using whole-program class analyses. Although
Rountev et al. proved that their fragment class analysis is correct, the precision
of the fragment analysis is variable as it significantly depends on the underlying
whole-program analysis. Therefore, a CHA-dependent fragment analysis is less
precise than an RTA-dependent fragment analysis. In contrast, the precision of
the call graph construction in Cgc depends only on the separate compilation
assumption and its consequences.

Doop [6] implements various pointer analysis algorithms for Java programs,
all defined declaratively in Datalog. Doop constructs the call graph on-the-fly
while computing the points-to sets. However, there is no way to exclude some
classes (e.g., the library classes) from the analysis as Doop analyzes all of the
input program. The pointer analysis in Cgc is an extended version of Doop’s
context-insensitive pointer analysis. The major difference is the introduction of
the library summary relation and the necessary associated Datalog rules.

Lhoták and Hendren introduced Spark [20], a flexible framework for exper-
imenting with points-to analyses for Java programs. Spark provides a Soot

transformation that constructs the call graph of the input program on-the-fly
while calculating the points-to sets. It is possible to setup up the Soot classes so
that Spark ignores some of the input classes. However, this is usually achieved
through setting the allow phantom refs option to true which means that the
ignored class will be completely discarded. Therefore, crucial information about
the signatures of the classes, methods, and fields is lost which would render the
generated call graph unsound. Thus, Spark does not support excluding some of
the input classes (e.g., the library classes) from the process of constructing the
call graph despite the demand in the Soot community [4].

Wala [17] is a static analysis library from IBM Research designed to support
various pointer analysis configurations. Wala is capable of building a call graph
for a program by performing pointer analysis with on-the-fly call graph construc-
tion to resolve the targets of dynamic dispatch calls. Wala provides the option
of excluding some classes or packages while constructing the call graph. In fact,
Wala excludes all the user-interface related packages from the Java runtime li-
brary by default when constructing a call graph. When this option is set, Wala

limits the scope of its pointer analysis to the set of included classes. This ignores
any effects the excluded classes might have on the calculation of the points-to
sets. Therefore, the generated call graphs may be unsound and/or imprecise.
Moreover, it is impossible to exclude crucial classes (e.g., java.lang.Object)
from the analysis as this will cause an exception to be thrown. We plan to empir-
ically compare the precision, soundness, and speed of our call graph construction
algorithm with Wala in future work.

710 K. Ali and O. Lhoták

7 Conclusions and Future Work

We have proposed Cgc, a tool that generates an application-only call graph
with the library code represented as one summary node. The main contributions
are: (1) the separate compilation assumption that defines specific assumptions
about the effects that the library code could have on the various application
entities; and (2) empirically showing that the separate compilation assumption
is sufficient for constructing sound (with respect to dynamic call graphs) and
precise (with respect to call graphs generated by Doop and Spark) application-
only call graphs. Experimental results show that not analyzing the library code
does not affect the soundness of the resulting call graph. In fact, in many cases
(antlr, hsqldb, luindex, lusearch, pmd, and xalan) Cgc was found to be more
sound than Doop and Spark. In many cases, the call graphs generated by
Cgc are almost as precise as call graphs generated by Doop, and sometimes
more precise than Spark. However, when the application implements a large
subsystem whose interface is defined in the library (e.g., JDBC in hsqldb and
XML in xalan), Cgc loses precision compared to a whole-program analysis.

Remaining imprecisions are mainly due to objects that are passed into the
library, but the library does not retain permanent references to them. This could
be remedied by identifying, either manually or with an analysis, specific Java
standard library methods known not to retain permanent references. Cgc would
then not add objects passed into these methods to the LibraryPointsTo set.
This approach was also suggested by Tip and Palsberg [32].

Further improvements could be achieved by defining multiple libraries that
have dependencies between them. Each library will then have its own Library-

PointsTo set that can interact with other LibraryPointsTo sets or points-to sets
of application entities. Although this might improve the remaining imprecision in
Cgc, it requires extensive analysis for the library code to define those multiple
libraries. Moreover, it might not be practical to apply this technique for user
libraries as they vary greatly from one application to another.

To make the analysis more useful to users, we plan to create an Eclipse plugin
that wraps our analysis and the tools we created alongside. The plugin will
provide users with a suitable user interface for presenting the analysis results as
well as navigating the call graph. We are also planning to embed the analysis
into some of the widely used analysis frameworks such as Soot and Wala.

References

1. Agrawal, G., Li, J., Su, Q.: Evaluating a Demand Driven Technique for Call Graph
Construction. In: CC 2002. LNCS, vol. 2304, pp. 29–45. Springer, Heidelberg
(2002)

2. Bacon, D.F., Sweeney, P.F.: Fast static analysis of C++ virtual function calls. In:
11th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 1996, pp. 324–341 (1996)

Application-Only Call Graph Construction 711

3. Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.,
Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanović, D., VanDrunen, T.,
von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java benchmark-
ing development and analysis. In: 21st Annual ACM SIGPLAN Conference on
Object-Oriented Programing, Systems, Languages, and Applications, OOPSLA
2006, pp. 169–190 (October 2006)

4. Bodden, E.: Soot-list: Stack overflow when generating call graph (May 2011),
http://www.sable.mcgill.ca/pipermail/soot-list/2008-July/001831.html

5. Bodden, E., Sewe, A., Sinschek, J., Oueslati, H., Mezini, M.: Taming reflection:
Aiding static analysis in the presence of reflection and custom class loaders. In:
33rd International Conference on Software Engineering, ICSE 2011, pp. 241–250
(2011)

6. Bravenboer, M., Smaragdakis, Y.: Strictly declarative specification of sophisti-
cated points-to analyses. In: 24th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2009, pp. 243–
262 (2009)

7. Chatterjee, R., Ryder, B.G., Landi, W.A.: Relevant context inference. In: 26th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 1999, pp. 133–146 (1999)

8. Clarke, D.G., Potter, J.M., Noble, J.: Ownership types for flexible alias protection.
In: 13th ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages, and Applications, pp. 48–64 (1998)

9. Dean, J., Grove, D., Chambers, C.: Optimization of Object-Oriented Programs
Using Static Class Hierarchy Analysis. In: Olthoff, W. (ed.) ECOOP 1995. LNCS,
vol. 952, pp. 77–101. Springer, Heidelberg (1995)

10. Dietl, W., Müller, P.: Universes: Lightweight ownership for JML. Journal of Ob-
ject Technology 4(8), 5–32 (2005)

11. Dufour, B., Hendren, L., Verbrugge, C.: *J: a tool for dynamic analysis of Java
programs. In: Companion of the 18th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2003, pp. 306–307 (2003)

12. Genius, D., Trapp, M., Zimmermann, W.: An Approach to Improve Locality Using
Sandwich Types. In: Leroy, X., Ohori, A. (eds.) TIC 1998. LNCS, vol. 1473, pp.
194–214. Springer, Heidelberg (1998)

13. Graphviz - Graph Visualization Software (November 2011),
http://www.graphviz.org/

14. Grothoff, C., Palsberg, J., Vitek, J.: Encapsulating objects with confined types.
In: 16th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2001, pp. 241–255 (2001)

15. Holmes, R., Notkin, D.: Identifying program, test, and environmental changes
that affect behaviour. In: International Conference on Software Engineering, ICSE
2011, vol. 10 (2011)

16. Holt, R., Schürr, A., Sim, S.E., Winter, A.: Graph eXchange Language (November
2011), http://www.gupro.de/GXL/dtd/gxl-1.1.html

17. IBM: T.J. Watson Libraries for Analysis WALA (May 2011),
http://wala.sourceforge.net/

18. JUnit Home Page (December 2011), http://junit.sourceforge.net
19. Lhoták, O.: Comparing call graphs. In: 7th ACM SIGPLAN-SIGSOFTWorkshop

on Program Analysis for Software Tools and Engineering, PASTE 2007, pp. 37–42
(2007)

http://www.sable.mcgill.ca/pipermail/soot-list/2008-July/001831.html
http://www.graphviz.org/
http://www.gupro.de/GXL/dtd/gxl-1.1.html
http://wala.sourceforge.net/
http://junit.sourceforge.net

712 K. Ali and O. Lhoták

20. Lhoták, O., Hendren, L.: Scaling Java Points-to Analysis Using SPARK. In: Hedin,
G. (ed.) CC 2003. LNCS, vol. 2622, pp. 153–169. Springer, Heidelberg (2003)

21. Lhoták, O., Hendren, L.: Evaluating the benefits of context-sensitive points-to
analysis using a BDD-based implementation. ACM Trans. Softw. Eng. Methodol.
18, 3:1–3:53 (2008)

22. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification, 2nd edn.
Addison-Wesley, Reading (1999)

23. Linux User’s Manual: time(1) (October 2011),
http://www.kernel.org/doc/man-pages/online/pages/man1/time.1.html

24. LogicBlox Home Page (November 2011), http://logicblox.com/
25. Noble, J., Vitek, J., Potter, J.: Flexible Alias Protection. In: Jul, E. (ed.) ECOOP

1998. LNCS, vol. 1445, pp. 158–185. Springer, Heidelberg (1998)
26. Rountev, A., Milanova, A., Ryder, B.G.: Fragment class analysis for testing of

polymorphism in Java software. IEEE Trans. Softw. Eng. 30, 372–387 (2004)
27. Rountev, A., Ryder, B.G., Landi, W.: Data-flow analysis of program fragments.

In: 7th European Software Engineering Conference Held Jointly with the 7th
ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, ESEC/FSE-7, pp. 235–252 (1999)

28. Sreedhar, V.C., Burke, M., Choi, J.D.: A framework for interprocedural optimiza-
tion in the presence of dynamic class loading. In: ACM SIGPLAN 2000 Conference
on Programming Language Design and Implementation, PLDI 2000, pp. 196–207
(2000)

29. Standard Performance Evaluation Corporation: SPEC JVM98 Benchmarks (May
2011), http://www.spec.org/jvm98/

30. Sundaresan, V., Hendren, L., Razafimahefa, C., Vallée-Rai, R., Lam, P., Gagnon,
E., Godin, C.: Practical virtual method call resolution for Java. In: 15th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2000, pp. 264–280 (2000)

31. The DOT Language (November 2011),
http://www.graphviz.org/content/dot-language

32. Tip, F., Palsberg, J.: Scalable propagation-based call graph construction algo-
rithms. In: 15th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2000, pp. 281–293 (2000)

33. Tip, F., Sweeney, P.F., Laffra, C., Eisma, A., Streeter, D.: Practical extraction
techniques for Java. ACM Trans. Program. Lang. Syst. 24, 625–666 (2002)

34. Vallée-Rai, R., Gagnon, E., Hendren, L., Lam, P., Pominville, P., Sundaresan, V.:
Optimizing Java Bytecode Using the Soot Framework: Is It Feasible? In: Watt,
D.A. (ed.) CC 2000. LNCS, vol. 1781, pp. 18–34. Springer, Heidelberg (2000)

35. Vitek, J., Bokowski, B.: Confined types. In: 1999 ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Applications, pp. 82–96
(1999)

36. Vitek, J., Bokowski, B.: Confined types in Java. Softw., Pract. Exper. 31(6), 507–
532 (2001)

37. Zhang, W., Ryder, B.G.: Automatic construction of accurate application call
graph with library call abstraction for Java: Research Articles. J. Softw. Maint.
Evol. 19, 231–252 (2007)

38. Zhao, T., Palsberg, J., Vitek, J.: Type-based confinement. J. Funct.
Program. 16(1), 83–128 (2006)

http://www.kernel.org/doc/man-pages/online/pages/man1/time.1.html
http://logicblox.com/
http://www.spec.org/jvm98/
http://www.graphviz.org/content/dot-language

Program Sliding

Ran Ettinger

IBM Research - Haifa
rane@il.ibm.com

Abstract. As program slicing is a technique for computing a subpro-
gram that preserves a subset of the original program’s functionality, pro-
gram sliding is a new technique for computing two such subprograms,
a slice and its complement, the co-slice. A composition of the slice and
co-slice in a sequence is expected to preserve the full functionality of the
original code.

The co-slice generated by sliding is designed to reuse the slice’s results,
correctly, in order to avoid re-computation causing excessive code dupli-
cation. By isolating coherent slices of code, making them extractable and
reusable, sliding is shown to be an effective step in performing advanced
code refactorings.

A practical sliding algorithm, based on the program dependence graph
representation, is presented and evaluated through a manual sliding-
based refactoring experiment on real Java code.

Keywords: Program slicing, sliding, co-slicing, reuse, refactoring.

1 Introduction

Program slicing, the study of meaningful subprograms that capture a subset of
an existing program’s behavior, can assist in building automatic tools for refac-
toring [4]. Slice extraction is the art of collecting a slice’s set of not-necessarily
contiguous program statements into a single code fragment, and reusing that
fragment in the original code. With the goal of assisting programmers in main-
taining high quality code, a solution to the problem of slice extraction along
with its contribution to refactoring research are explored.

An advanced technique for the automation of slice extraction is introduced,
through a family of code motion transformations called sliding. A sliding algo-
rithm generates two subprograms, a slice and its complement, the co-slice, whose
composition in a sequence preserves the original program’s functionality. When
preservation of functionality cannot be guaranteed, a sliding tool would warn
the user and offer corrective measures, known in the literature as compensation,
or compensatory code.

Deviating from earlier practices of code extraction, where the input to the
transformation includes some selection of statements to be made contiguous,
sliding takes a set of variable names V as input, expecting to turn the slice
of code for computing the final value of V into a contiguous fragment; and

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 713–737, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

714 R. Ettinger

while different sets of variables V 1 and V 2 may have the exact same slice,
the co-slice computed by sliding to each set may differ. For example, in the
putInCacheIfAbsentmethod shown on Fig. 1, taken from the Java compiler in
Eclipse, the set of statements {1,2,6,8,9,11,13-19,21,22} (see top part of Fig. 2)
forms the slice of V = {index}, in the scope of that method, as well as the
slice of V + = {index,k2V,entry,cAC,cAC.*,k2V.*}, or the slice of any set
being both a subset of V + and a superset of V . (Note the use of acronym of
camel-case variable names, for brevity. This set V + will be used throughout the
paper.) After sliding for V , Fig. 3 shows the result of index from the slice is used
in the co-slice on line 23. The co-slice generated by sliding of the larger set V +,
shown in the bottom part of Fig. 2, reuses more results of the slice, such as cAC
on line 20 and entry, defined on line 14 of the slice and used on line 15 of the
co-slice. This reuse of local variables is enabled by moving their declaration to
an outer scope. One benefit of this reuse is the reduced level of code duplication:
statements 8,14,17-19,21-22 were duplicated by the sliding of V but not by that
of V +. Another advantage of the further reuse and reduced duplication is the
potential reduction in need for compensation. One disadvantage, on the other
hand, of this extra reuse, is the need to move local declarations, potentially re-
quiring the renaming of those whose original name is used for other variables in
the extended scope. A more significant disadvantage of the reuse of local results
is its impact on the ability to reuse the slice in other parts of the program. For
this to work, we need to extract that slice as a reusable method. Since Java
allows only one local value to be returned from a method, some alternative com-
pensation would be needed, making the resulting code less attractive for some
applications. Sliding provides the flexibility to choose between high levels of local
reuse of multiple slice results and a more straightforward global reuse of a single
slice result.

A sliding algorithm, along with the details of how to compute the co-slice,
is presented in Sect. 3. To demonstrate the value of this new approach to the
extraction of slices, Sect. 4 describes the application of sliding to previously
documented refactorings: Split Loop, Replace Temp with Query (RTwQ), and
Separate Query from Modifier (SQfM). Sliding is also expected to facilitate the
extraction of non-contiguous code in a general flavor of the well-known Extract
Method refactoring. Such automation is crucial for enabling iterative and in-
cremental software development [4]. It is also expected to impact on potential
automation of bigger refactorings, as ambitious as Fowler and Beck’s Separate
Domain from Presentation or Convert Procedural Design to Objects [7].

The initial work on sliding was a theoretical pursuit. The original transfor-
mation rules have been proved correct for a simple imperative programming
language restricted to assignments to primitive variables of cloneable types,
sequential composition of statements, conditionals, and loops [4]. The current
work presents a first practical sliding algorithm based on the program depen-
dence graph (PDG) [6,9]. The results of a preliminary evaluation are reported
in Sect. 5, and the relation to previous work is discussed in Sect. 6.

Program Sliding 715

/**
* @param key1 the given declaring class name
* @param key2 the given field name or method selector
* @param key3 the given signature
* @param value the new index
* @return the given index
*/
private int putInCacheIfAbsent(final char[] key1, final char[] key2,

final char[] key3, int value) {
int index;

1: HashtableOfObject key1Value = (HashtableOfObject)this.methodsAndFieldsCache.get(key1);
2: if (key1Value == null) {
3: key1Value = new HashtableOfObject();
4: this.methodsAndFieldsCache.put(key1, key1Value);
5: CachedIndexEntry cachedIndexEntry = new CachedIndexEntry(key3, value);
6: index = -value;
7: key1Value.put(key2, cachedIndexEntry);

} else {
8: Object key2Value = key1Value.get(key2);
9: if (key2Value == null) {

10: CachedIndexEntry cachedIndexEntry = new CachedIndexEntry(key3, value);
11: index = -value;
12: key1Value.put(key2, cachedIndexEntry);
13: } else if (key2Value instanceof CachedIndexEntry) {

// adding a second entry
14: CachedIndexEntry entry = (CachedIndexEntry) key2Value;
15: if (CharOperation.equals(key3, entry.signature)) {
16: index = entry.index;

} else {
17: CharArrayCache charArrayCache = new CharArrayCache();
18: charArrayCache.putIfAbsent(entry.signature, entry.index);
19: index = charArrayCache.putIfAbsent(key3, value);
20: key1Value.put(key2, charArrayCache);

}
} else {

21: CharArrayCache charArrayCache = (CharArrayCache) key2Value;
22: index = charArrayCache.putIfAbsent(key3, value);

}
}

23: return index;
}

Fig. 1. Example code, ahead of sliding, taken from the Eclipse Java compiler’s
org.eclipse.jdt.internal.compiler.codegen.ConstantPool class

The main contributions of this paper are as follows:

– Practical co-slicing and sliding algorithms suitable for the real case of (se-
quential) Java, building on traditional (backward, static, syntax preserving)
slicing and the underlying program dependence graph representation, hence
deferring the responsibility for correctness, scalability, and applicability for
more languages to the slicer and the dependence graph construction mech-
anism.

– First evidence for the applicability of sliding for solving known refactoring
techniques, including a detailed account of how developers can use sliding as
a building block for performing such refactorings.

– A preliminary evaluation, having transformed a well-tested massively-used
real-life Java code with no detected regression.

716 R. Ettinger

int index;
1: HashtableOfObject key1Value = (HashtableOfObject)this.methodsAndFieldsCache.get(key1);
2: if (key1Value == null) {
6: index = -value;

} else {
8: Object key2Value = key1Value.get(key2);
9: if (key2Value == null) {

11: index = -value;
13: } else if (key2Value instanceof CachedIndexEntry) {

// adding a second entry
14: CachedIndexEntry entry = (CachedIndexEntry) key2Value;
15: if (CharOperation.equals(key3, entry.signature)) {
16: index = entry.index;

} else {
17: CharArrayCache charArrayCache = new CharArrayCache();
18: charArrayCache.putIfAbsent(entry.signature, entry.index);
19: index = charArrayCache.putIfAbsent(key3, value);

}
} else {

21: CharArrayCache charArrayCache = (CharArrayCache) key2Value;
22: index = charArrayCache.putIfAbsent(key3, value);

}
}

1: HashtableOfObject key1Value = (HashtableOfObject)this.methodsAndFieldsCache.get(key1);
2: if (key1Value == null) {
3: key1Value = new HashtableOfObject();
4: this.methodsAndFieldsCache.put(key1, key1Value);
5: CachedIndexEntry cachedIndexEntry = new CachedIndexEntry(key3, value);
7: key1Value.put(key2, cachedIndexEntry);

} else {
9: if (key2Value == null) {

10: CachedIndexEntry cachedIndexEntry = new CachedIndexEntry(key3, value);
12: key1Value.put(key2, cachedIndexEntry);
13: } else if (key2Value instanceof CachedIndexEntry) {

// adding a second entry
15: if (CharOperation.equals(key3, entry.signature)) {

} else {
20: key1Value.put(key2, charArrayCache);

}
}

23: return index;

Fig. 2. A sliding example: the slice of V +={index, k2V, entry, cAC, cAC.∗, k2V.∗}, fol-
lowed by its complement, the co-slice

2 Preliminaries

The following background on program analysis and definitions regarding the
scope of the program designated for extraction and its relevant state, will be
needed for the precise description of a sliding algorithm.

2.1 Control Flow Graph

The control flow graph (CFG) of a code fragment is a labeled directed graph
representing the order of execution of the individual statements of the program.
The CFG of the code in Fig. 1 is shown on Fig. 4. It is common to make the
CFG compact by grouping nodes into basic blocks [2]. The granularity of indi-
vidual statement nodes, however, is convenient for construction of the program
dependence graph (PDG), as it is for slicing and sliding.

Program Sliding 717

1: HashtableOfObject key1Value = (HashtableOfObject)this.methodsAndFieldsCache.get(key1);
2: if (key1Value == null) {
3: key1Value = new HashtableOfObject();
4: this.methodsAndFieldsCache.put(key1, key1Value);
5: CachedIndexEntry cachedIndexEntry = new CachedIndexEntry(key3, value);
7: key1Value.put(key2, cachedIndexEntry);

} else {
8: Object key2Value = key1Value.get(key2);
9: if (key2Value == null) {

10: CachedIndexEntry cachedIndexEntry = new CachedIndexEntry(key3, value);
12: key1Value.put(key2, cachedIndexEntry);
13: } else if (key2Value instanceof CachedIndexEntry) {

// adding a second entry
14: CachedIndexEntry entry = (CachedIndexEntry) key2Value;
15: if (CharOperation.equals(key3, entry.signature)) {

} else {
17: CharArrayCache charArrayCache = new CharArrayCache();
18: charArrayCache.putIfAbsent(entry.signature, entry.index);
19: index = charArrayCache.putIfAbsent(key3, value);
20: key1Value.put(key2, charArrayCache);

}
} else {

21: CharArrayCache charArrayCache = (CharArrayCache) key2Value;
22: index = charArrayCache.putIfAbsent(key3, value);

}
}

23: return index;

Fig. 3. An alternative co-slice for the same slice from Fig. 2. With less reuse of local
variables, it duplicates more statements (8,14,17-19,21,22). Yet it is more appropri-
ate for some applications, as the slice can be extracted into a new method, avoiding
rejection due to “ambiguous results”.

A CFG has nodes N , typically with a single node n ∈ N for representing each
program statement and with two additional nodes, one for the entry the other
for the exit; it has directed edges E where each edge (m,n) ∈ E represents the
direct flow of control from its source m to its target n; each node is the source
of at most two edges (with switch statements represented as nested ifs): the
exit node has no successors, normal nodes have one successor with no label on
the connecting edge, and a predicate node corresponding to a conditional or a
loop statement’s condition has two successors, and each of the edges is labeled
T or F ; however, those labels are irrelevant for slicing and will be insignificant
in sliding too.

2.2 Program Scope and State

Slice extraction, in this paper, is defined to work in the scope of a given fragment
of code, say S, within the body of a program’s method, say M . A solution to
this slice-extraction problem will compute the slice of some given set of variables,
say V , with respect to S. A transformed M , resulting from the replacement of
S with the sequence of the slice of S on V and its complement, should preserve
the functionality of M .

718 R. Ettinger

entry

1

2

23

3

4

5

6

7

8

9

10

11

12

13

16

17

18

19

20

14

15

21

22

exit

Fig. 4. A control flow graph (CFG) representation of the example code from Fig. 1.
True or False labels on edges leaving predicate nodes are omitted as they are irrelevant
for slicing and sliding. The entry is made into a pseudo predicate with the exit node
as its other successor for convenience, making it the root of the control-dependence
subgraph of the PDG.

For this transformation to be possible, the subgraph of the CFG of M cor-
responding to S is expected to have a single entry node and a single exit node
[12,18]. This way, we can consider S as represented by its own CFG, and forget
about the enclosing code in M . For such a single-entry-single-exit (SESE) region
of the CFG to be extractable, a further requirement is that there is no edge from
the exit node back to any node of the region.

Considering syntax, or program structure, as slicing typically generates a sub-
program of the original program by deleting irrelevant statements, let’s refer by
the term sub-fragment to the result of deleting some internal statements from a
given code fragment.

The set of variables each CFG node n may modify is denoted by Def(n),
and the set of variables it refers to is Use(n). The returned value of a non-void
method is given a name too, <retval>, and will be included in the set of defined
variables whenever a return statement is in scope.

Program Sliding 719

2.3 Background on Program Dependence

Definition 1 (Postdominance). A node n postdominates a node m in a pro-
gram’s CFG iff every path from m to the exit includes n.

In the example, node 20 postdominates nodes 17-20 but not node 15, due to
the CFG path < 15, 16, 23, exit >. Node 23 postdominates all nodes except the
entry.

Definition 2 (Control Dependence). A CFG node n is control dependent on
a CFG node m iff n postdominates a successor of m, but n does not postdominate
m itself.

Back in the example, node 20 is control dependent on node 15 because 20 is
a postdominator of 17 but not of 15 itself. Note that node 20 is not control
dependent on node 13, as 20 does not postdominate either successor of 13. Note
also that each node that postdominates the normal successor of the entry is
control dependent on the entry node, due to the special construction of the
CFG’s entry as a pseudo-predicate with the exit node as its other successor.

In terms of value transfer through program variables and objects, a variety of
data dependence definitions exist in the literature [16,6]. Two of those, known
as flow and anti dependences, will be relevant for sliding.

Definition 3 (Flow Dependence). A CFG node n is flow dependent on a
CFG node m iff m defines a non-empty set of variables V that are used in n,
i.e. V ⊆ Def(m)∩Use(n), and for any v ∈ V there exists a path from m to n in
the CFG with no further definition of v.

Definition 4 (Anti Dependence). A CFG node n is anti dependent on a
CFG node m iff m uses a non-empty set of variables V that are defined in n
(i.e. V ⊆ Use(m) ∩ Def(n), and for any v ∈ V there exists a path from m to n
in the CFG with no other definition of v.

We will further stress that n is flow or anti dependent on m due to variables
V . This will help us decide, later on, whether to consider a dependence when
computing a co-slice.

Definition 5 (PDG). The program dependence graph (PDG) corresponding
to a given program’s CFG is a labeled directed graph with the same nodes,
N,nentry, nexit, as in the CFG, and with an edge (m,n, tag) directed from node
m to node n iff n is control or data dependent on m. The value of Kind(tag) is
one of control,flow, or anti. The set V ars(tag) denotes the variables contribut-
ing to a (flow or anti) data dependence.

A subset of the PDG of the example program, including all flow- and control-
dependence edges, is depicted on Fig. 5. PDG-based slicing, when started with
a set of nodes C, finds all nodes from which there is a directed path of flow- or
control-dependence edges to any c ∈ C [6]. A PDG-based slice starting from the

720 R. Ettinger

second definition of index at node 11, consists of the nodes {entry, 1, 2, 8, 9, 11}.
One path causing the inclusion of node 1 goes through nodes 2 and 9, using a
flow-dependence edge followed by two control-dependence edges.

Note that anti-dependence edges and the sets of variables causing data de-
pendences are not used by slicing. Also, flow-dependence edges from the entry
node are not significant, as the entry will be added to any non-empty slice due
to control dependences. The anti-dependence edges, the labels on edges, and the
flow-dependence edges from the entry node and to the exit are useful for the
correct computation of a co-slice and for correctness checking. Figure 6 shows
that portion of the PDG of the example code.

A traditional PDG does not include the exit node, as this node is not control
dependent on any other node and does not use or define any variable. For sliding,
however, it is helpful to assume Use(exit) lists all variables that may be live on
exit. This way, we get flow-dependence edges to the exit node from all final
definition nodes of all results of the fragment represented by this PDG. A node
n may define the final value of variable v if v is in Def(n) and there exists a
CFG path from n to the exit with no other definition of v. Since sliding extracts
the slice of final values of a set of variables V , it will be convenient to start
the slice from the exit node, after removing all edges to that node caused by
other variables. (Similarly, a co-slice will be computed by slicing from the exit
node after removing other edges.) For this to work, we must include all extracted
variables V in Use(exit), as well as all side effects on fields of objects that may be
used outside. In Fig. 6, the local variables and object references in the example
extracted sets V and V + are listed on the labels of flow-dependence edges to
the exit node as optional, in square brackets, as they would not occur on the
original PDG if it were not for the extraction.

A flow-dependence edge from the entry to the exit node lists all live-on-exit
and extracted variables that may be modified but may also keep their initial
value due to a CFG path from entry to exit with no definition of that variable.
In the example, it is interesting to see that index is excluded from that edge, as
its 5 definition nodes cover each potential path.

Definition 6 (Final-Use Node). Given a code fragment S and a variable v,
a node n on the CFG of S is a final-use node for v in S iff v is used in n and
each path in the CFG from n to the exit is free of definitions of v.

Equivalently, note that in terms of a PDG with nodes N and edges E, including
anti-dependence edges, a node n is a final-use node of v if and only if v ∈ Use(n)
and there exists no anti-dependence edge (n, n′, tag) ∈ E due to v, i.e. with
Kind(tag) = anti and v ∈ V ars(tag).

3 PDG-Based Sliding

3.1 Source Code Considerations

Given a code fragment S and a set of variables V , a sliding transformation
replaces S with a sequence of two sub-fragments, SV and SCoV , corresponding

Program Sliding 721

entry

1

2

23

3

4

5

6

7

8

9

10

11

12

13

16

17

18

19

20

14

15

21

22

Fig. 5. A program dependence graph (PDG) representation of the example code from
Fig. 1, with control- and data-dependence edges shown above and below the nodes,
respectively

to the slice and co-slice of S on V , respectively. Suppose the fragment S is
represented by a PDG, (N,E, nentry, nexit), as defined above. The algorithm in
Fig. 7 accepts that PDG as input, along with the set of variables for extraction,
V . It computes and returns a subset of nodes NV ⊆ N representing the slice,
and another subset NCoV ⊆ N for the co-slice.

Sub-fragments SV and SCoV of S can be generated by removing all state-
ments whose corresponding nodes are not present in NV or NCoV , respectively.
We consider the removal of statements from blocks of code, even if nested in
conditionals or loops. A more advanced sliding tool, supporting the decomposi-
tion of single statements too, would need to consider syntactic difficulties, and
is left for future work. (For example, if the two side effects on parameters in
f(y++,z++); are in the slice but the method call not, an extra semicolon would
need to be added.) Two other syntactic considerations in the construction of SV

and SCoV are related to local variable declarations and labeled blocks of state-
ments. Those two constructs are not represented in the PDG by nodes. For the
former, all declarations of vaiables not occuring in each side should be removed,

722 R. Ettinger

entry

1

2

23

3

4

5

6

7

8

9

10

11

12

13

16

17

18

19

20

14

15

21

22

exit

{this.mAFC.*}

{this.mAFC.*}

{<k1V,1>.*}

{<cAC,21>.*}

{<k1V,1>.*}

{<k1V,1>.*}

{this.mAFC.*,<k1V,1>.*,<k2V,8>.*,<cAC,21>.*}[+{mAFC,cAC,k2V,entry}]

{<retval>}
{<k2V,8>.*,<cAC,21>.*} [+{index}]

{<k1V,1>.*}

{<k1V,3>.*}

{this.mAFC.*}

{<k1V,1>.*}

[{index}]

[{index}]

[{index}]

{this.mAFC.*}

[{k2V}]

[{entry}]

[{cAC}]

[{cAC}]

{this.mAFC.*}

{<k1V,3>.*}

{<k1V,1>.*}

{<k1V,1>.*}

{<k1V,1>.*}

{k1V}

{<k1V,1>.*}

{<k1V,1>.*}

{<k2V,8>.*,<cAC,21>.*}

{<cAC,17>.*}

{<cAC,17>.*}
[+{index}]

{<cAC,17>.*}

{<cIE,5>.*}

{<cIE,10>.*}

Fig. 6. A subset of the program dependence graph (PDG) representation of the exam-
ple code from Fig. 1, showing flow-dependence edges from the entry node, to the exit
node, as well as anti-dependence (curved) edges

and if a non-nested declaration occurs on both sides, its declaration should be
removed from the co-slice, to avoid a compilation error. (An example of such
declaration removal is shown on line 1 of Fig. 3). For the latter, if a non-nested
block gets duplicated, its label should be renamed at least in one side.

When the functionality of the sequence of slice and its complement, in terms
of the relation between input and output values for all live-on-exit variables, is
guaranteed to be equivalent to that of the original code fragment, the successful
sliding is considered a compensation free transformation. Otherwise, a variety of
compensatory measures can be taken, e.g. in the form of variable localization and
renaming. For this purpose, the PDG-based sliding algorithm of Fig. 7 computes
and returns three further results, for the sets of potentially problematic variable
instances Pen1, Pen2 and Pen3. Those instances may require compensation due

Program Sliding 723

ProgramSlidingOnThePDG(N,E, nentry , nexit, V)
1 initialize the set of edges F lowToExitNonV to the empty set
2 forall (m,nexit, tag) ∈ E do
3 if V ars(tag)∩ V = ∅
4 add the edge (m,nexit, tag) to F lowToExitNonV

5 NV := ComputeSlice(N,E \ F lowToExitNonV , nexit)
6 initialize NonFinalUsesAtNode to map each n ∈ N to the empty set (of variables)
7 forall (m,n, tag) ∈ E do
8 if Kind(tag) is anti
9 add all variables in V ars(tag) to NonFinalUsesAtNode(m)
10 initialize the set of edges F lowToF inalUseV to the empty set
11 forall (m,n, tag) ∈ E do
12 if Kind(tag) is flow and V ars(tag) ⊆ (V \NonFinalUsesAtNode(n))
13 add (m,n, tag) to the set of final-use edges F lowToF inalUseV
14 NCoV := ComputeSlice(N,E \ F lowToF inalUseV , nexit)
15 (Pen1, P en2, P en3) := CollectV ariablesRequiringCompensation(N,E,V,
16 nentry , NV , NCoV , NonF inalUsesAtNode)
17 return (NV , NCoV , P en1, P en2, P en3)

Fig. 7. A PDG-based sliding algorithm, collecting all nodes in the selected fragment’s
PDG, (N,E, nentry , nexit), belonging to the slice and the co-slice of the selected set
of variables V . Three sets of variable instances potentially requiring compensation to
avoid unintended data flow are computed too.

to definition of variables from V in the co-slice, non-final use of such variables
in the co-slice, or definition in the slice of other (non-V) variables whose initial
value may be needed in the co-slice. Some approaches to overcome the potential
change in functionality are discussed in Sect. 3.4.

3.2 Computing the Slice

The proposed sliding algorithm works in three steps, for computing the slice, its
complement, and finally checking correctness. The first step, on lines 1-5 of Fig. 7,
computes the slice of final value of variables V , by starting from the exit node
after having removed all flow-dependence edges (in the set FlowToExitNonV)
coming into the exit node due to variables not in V . In the example of V =
{index}, the only remaining edges to the exit are the edges from the five defi-
nitions of index, on nodes {6,11,16,19,22}. Line 5 invokes the slicing algorithm
of Fig. 8 on the exit node and the remaining edges, such that the first element
n on line 4 of that algorithm will be the exit node, and all its remaining prede-
cessors {6,11,16,19,22} will be added to Slice on the loop of lines 5-7, causing
later addition of all nodes contributing to the final value of index. This way, the
computation of SV can be considered as having two substeps: first adding all
predecessors of the exit node due to any member of V , then repeatedly adding
all other nodes with a PDG path to those. In the example, the former substep
operates on the PDG subgraph shown on Fig. 6, whereas the latter substep
continues using the portion of the PDG shown on Fig. 5.

724 R. Ettinger

ComputeSlice(N,E, c)
1 initialize the result set of nodes Slice to the singleton set {c}
2 similarly initialize Worklist to {c}
3 while Worklist is not empty do
4 take the first element n out of the Worklist
5 forall m ∈ N such that (m,n, tag) ∈ E do
6 if Kind(tag) is flow or control and m /∈ Slice
7 add the PDG predecessor node m of n to Slice and to Worklist
8 return Slice

Fig. 8. A traditional PDG-based slicing algorithm to collect all statement nodes from
which there exists a directed path of dependence edges (flow or control, not anti) in
the PDG, (N,E), ending in a node of interest c, known as the slicing criterion

To verify that the computed slices in the first two sliding examples are iden-
tical as expected, note that when sliding for the larger set V +, compared with
the sliding for V , further edges – such as (8, exit) due to entry – survive the
removal of FlowToExitNonV . Still, since the source nodes of all those further
edges are in the slice of index, these extra edges do not make the slice of V +

larger or different. Indeed, in sliding for index, the edge (8, exit) is removed
from the PDG available for the slicing algorithm, but node 8 finds another way
into that slice too. Since the edge (11, exit) is not removed there, node 8 will
be added to that slice due to, for instance, the dependence path < 8, 9, 11 >
(see Fig.5).

3.3 Computing the Co-slice

The next step, on lines 6-14 of Fig.7, is co-slicing. It involves slicing from the exit
node again (line 14), but for variables outside the set V this time. To maximize
reuse, the removal of redundant flow-dependence edges (lines 10-13) is not re-
stricted to edges leading to the exit node. A flow-dependence edge (l,m, tag) ∈ E
can be removed if the variables causing it, V ars(tag), form a subset of V , and the
node it ends in,m is a final-use node for all those variables. Node m is guaranteed
to be a final-use node of variable v if v does not contribute to any anti-dependence
edge from m, i.e. for any (m,n, tag′) ∈ E, we get v /∈ V ars(tag′).

Since the sets of final-use variables at each node will be needed later in check-
ing for correctness (lines 15-16 and the called algorithm of Fig. 9), a separate
stage (lines 6-9) computes and stores this information for all nodes. For conve-
nience (and efficiency), it maps each node to the set of non-final uses; it first
assumes no variable is a non-final use at all nodes (line 6) and then whenever
evidence is found for a non-final use, through an anti-dependence edge from a
node m, it adds to the set of non-final uses of m (on line 9) all the variables this
edge is due to. Notably, the use of variables on the exit node is certainly a use
of their final value; this is confirmed by the lack of anti-dependence edges from
the exit.

Program Sliding 725

In the example, when preparing to compute the co-slice of V , all edges from the
definition nodes of index, being from {6, 11, 16, 19, 22} to the return statement’s
node, 23, are added to FlowToFinalUseV (on line 13) and hence removed from
the co-slice calculation. This is so because none of those definition nodes can be
reached (in terms of control flow) from the return node. Accordingly, there exists
no anti-dependence edge leaving node 23 (see Fig. 6), so we never get to line 9
of the algorithm with m being 23, hence the set NonFinalUsesAtNode(23) re-
mains empty (as initialized on line 6). More tricky are the edges from those final-
definitions of index, nodes {6, 11, 16, 19, 22}, to the exit node. The edges from
the last two, (19, exit) and (22, exit) are due to the sets {<cAC,17>.*,index}
and {<k2V,8>.*,<cAC,21>.*,index}, respectively (Fig. 6). Since those are not
subsets of the set V (i.e. the singleton {index}), line 13 of the algorithm is
not reached, and those two edges are not removed. Indeed the co-slice of V , on
Fig. 3, includes statements 19 and 22 due to their side effects on the state of the
objects on which the method putIfAbsent() is invoked. When sliding for V +,
the object fields {<cAC,17>.*,<k2V,8>.*,<cAC,21>.*} are included in the set
of extracted variables, and hence the edges (19, exit) and (22, exit) are added to
FlowToFinalUseV (on line 13) such that nodes 19 and 22 are not added to the
co-slice (see bottom part of Fig. 2).

Note that had node 19 been added to the co-slice of V +, node 18 would
have been added too. The flow-dependence edge from node 18 to 19 (due to
<cAC,17>.*which is in V +) is not added to FlowToFinalUseV (on line 13), be-
cause of the anti-dependence edge (19, 19), which is due to <cAC,17>.* (Fig. 6).
In contrast to the redundancy of self dependence edges in the context of slicing,
this example shows how self anti-dependence edges are relevant for co-slicing.
They reflect the fact that a variable is both used and defined in a single state-
ment, such that its value on exit from the statement may differ from its value
on entry.

3.4 Correctness Checking and Compensation

The final step of the proposed PDG-based sliding algorithm involves checking for
correctness of the transformation, in terms of preserving functionality. In Fig. 7,
the checking procedure is invoked on lines 15-16. This procedure, detailed on
Fig. 9, involves the collection of three sets of potentially problematic variable
instances. When all three sets are empty, the replacement of the original code
fragment with the computed slice followed by the co-slice, is guaranteed to pre-
serve the original functionality, such that for a given input state on which the
original fragment terminates, the transformed fragment would terminate too,
leaving the program in the same state as the original in all variables.

Let’s examine the variables for extraction V first. The responsibility for com-
puting the correct value for those variables lies on the slicing algorithm and the
input PDG it is computed on. Assuming the slice computes the expected value
for each v ∈ V , we need to make sure this correct value is maintained by the
co-slice. The simplest way to ensure this is to check that v is not in the set of
defined variables of any node of the co-slice, n ∈ NCoV . The set Pen1 collects

726 R. Ettinger

those problematic variable instances (lines 3-4). In the example of Fig. 2 this
set is empty. In the example of Fig. 3, in turn, we get two instances of index in
this set, for its definitions in nodes 19 and 22. These nodes are included in the
co-slice not due to modifying index, but rather due to relevant side effects on
live-on-exit object fields.

In terms of compensation in the co-slice, our choice on Fig. 3 was to remove
the impact on the offending member of V , index, by removing the assignments
to it. This was simple to do in this case but may be more challenging in others.
For example, if the undesired definition takes place in a called method, changing
its code may require the duplication of that method, in case its original version
is still called from elsewhere. The flavor of sliding proposed in this paper is
restricted to a local transformation of the selected fragment. Instead, if the value
of that variable is accessible at the beginning of the transformed code fragment,
it can be backed up in a local variable, ahead of the slice, and restored ahead of
the co-slice. (Accessibility may be problematic, for example, when the variable
is a private field of a different class.)

When the unwanted definition is performed in the selected fragment and is
tricky to eliminate, say due to syntactic difficulties (as mentioned earlier), a
preferred alternative would be to localize the effect by adding a new variable and
updating the problematic instances to refer to the new variable. To enable this
corrective measure, pairs of node and variable name are collected and returned
by the checking procedure, instead of just variable names.

Moving on to examine all the other variables relevant (i.e. live) on exit from
the original fragment, note that, by construction, the live-on-exit variables are
Use(nexit). We therefore need to consider variables in the set CoV :=
Use(nexit) \ V .

The co-slice is computed as a slice of final values of variables CoV , using final
values of V where it is guaranteed to be correct to do so. On entry to the co-slice,
we can assume to have the expected final value of each variable v ∈ V available.
For correct operation of that co-slice, we first need to ensure no other (i.e non-
final) value of a variable in V is used in any node n ∈ NCoV . Such instances
are collected in the set Pen2 (lines 5-6). In both earlier examples, all uses of
variables V and V + are final. Sliding for the local object reference key1Value,
whose slice consists of nodes 1,2, and 3, would yield a co-slice with a non-final
use of that variable on node 2 – evidenced by the anti-dependence edge (2, 3) on
Fig. 6.

In terms of compensation, the non-final use of a variable v requires the addi-
tion of a new variable, v′, and renaming of those instances of the non-final use,
in the co-slice. When the initial value of v is needed in the co-slice, it should
be backed up ahead of the slice, if possible. Again, the preparation of such a
backup might not be possible if the variable is not local and not accessible at
the head of the transformed fragment. Also, renaming might not be possible if v
is not local and used in a called method. (Note that the set of variable instances
Pen2 will specify a node n where the non-final use took place, but this may be
a node involving a method call, and v may be an object field referred to inside

Program Sliding 727

this method, when the object reference is passed explicitly as a parameter, not
the field v itself.)

In the example of sliding for key1Value, were node 2 of the co-slice would
include a non-final use of that variable, localization would work well, with no
neeed for backup of the initial value, due to the initialization of key1Value on
the statement of node 1 (see Fig. 1).

Finally, for all other initial values demanded by the co-slice, outside of the
set V , we must ensure they hold their initial value on entry to the co-slice.
We first collect all non-V variables that may require an initial value at the
co-slice, in the set InputT oCoSliceNonV (lines 7-11). Those are the non-V
variables contributing to a flow-dependence edge from the entry to any node
n ∈ NCoV . Then, the simplest way to ensure those variables hold the initial
value on entry to the co-slice is by checking that they are not defined in the slice
nodes NV . Definitions of all members of InputT oCoSliceNonV in any slice node
are recorded in the set Pen3 (lines 12-14). In the example of Fig. 3, for sliding
index, we get the input to the duplicated node 22 in the co-slice, <cAC,21>.*,
also defined in the slice on that same node (see labels on flow-dependence edges
(entry, 22) and (22, exit) on Fig. 6).

A preferred form of compensation, again, would be to localize the unwanted
effects in the slice, if possible. When the initial value is not needed there, and
the definition is explicit (i.e. not performed inside a called method), this would
be a simple addition of a local variable in the slice.

In the mentioned example, the effects on fields of the object referred to by the
local variable cAC (i.e. charArrayCache in Fig. 3), are due to implicit definitions
on node 22. The actual definitions take place in the method putIfAbsent() of
the class CharArrayCache, so simple renaming better be avoided as it would
require duplication of that method. Now, in this case the initial value of those
fields is needed for correct operation of the slice, as can be witnessed by the
edge (entry, 22) on Fig. 6. And as it turns out, it is possible to back up those
fields, since they are not private and the classes are in the same package. Still, it
is not clear that this would be an acceptable practice. Alternatively, one could
consider making a backup of the entire object referred to by charArrayCache.
This would require the object to be cloneable, and it is arguable that this kind
of compensation would be acceptable too. Note that such a backup would not be
trivial to prepare ahead of the slice, as the local object reference charArrayCache
is computed in the slice itself.

The measures of compensation taken in the experiment of Sect. 5 below involve
variable localization and local backups, but no cloning of objects.

4 Sliding-Based Refactoring

When applied to source code, sliding can be considered a refactoring by itself,
as it may improve the structure of existing code, making it more readable and
easier to maintain. Naturally, a sliding transformation can be followed up by
steps of method extraction, as the slice and its complement are made contiguous
and hence ready for extraction by the Extract Method refactoring [7].

728 R. Ettinger

CollectV ariablesRequiringCompensation(N,E, V,
nentry, NV , NCoV , NonF inalUsesAtNode)

1 initialize Pen1,Pen2, and Pen3 to empty sets
2 forall n ∈ NCoV do
3 forall v ∈ Def(n) ∩ V do
4 add the pair (n, v) to Pen1
5 forall v ∈ Use(n) ∩ V ∩NonFinalUsesAtNode(n) do
6 add the pair (n, v) to Pen2
7 initialize InputToCoSliceNonV to the empty set
8 forall n ∈ NCoV do
9 forall (nentry, n, tag) ∈ E do
10 if Kind(tag) is flow
11 add all variables in V ars(tag) \ V to InputToCoSliceNonV
12 forall n ∈ NV do
13 forall v ∈ Def(n) ∩ InputToCoSliceNonV do
14 add the pair (n, v) to Pen3
15 return (Pen1, P en2, P en3)

Fig. 9. Analysis of the slice and co-slice to identify potential unintended flow of data
if the sequence of slice and co-slice were to replace the original code

This section revisits three refactoring techniques from existing catalogs [7,1]:
Split Loop, Replace Temp with Query, and Separate Query from Modifier. A
revision of the mechanical description of how to perform the refactoring trans-
formation is proposed, with sliding being a key step in all three cases. The revised
mechanics, being more concrete and constructive than the original descriptions,
contribute to the applicability of the refactorings, making them more amenable
for future automation.

A direct application of sliding is the Split Loop refactoring [1]. Fig. 10 shows
its proposed mechanics. The user can simply follow the sliding algorithm, or use
a tool, and select the variables of interest for extraction. If the initialization of the
loop index is not in the selected code fragment, a tool based on the compensation-
free flavor of sliding, expecting empty sets in the resulting Pen1,Pen2, and Pen3
sets (see Fig. 9), would correctly reject the transformation, as the loop in the
co-slice would be skipped.

One of the more advanced versions described above would add a backup vari-
able for the initial value of that loop index. Another advanced sliding implemen-
tation would avoid some code duplication by identifying all final values of the
loop whose computation is fully included in the extracted slice. The addition of
those variables to the set of variables for extraction, V , would cause the addi-
tion of further edges to the set FlowToFinalUseV (see lines 10-13 in the sliding
algorithm of Fig. 7). Those added flow-dependence edges, directed from final-
value definition nodes to the exit, are then removed from consideration when
computing the co-slice, potentially making the co-slice (i.e. second instance of
the loop) smaller. The value of a smaller co-slice is not only in the reduced levels

Program Sliding 729

Mechanics for Split Loop
– Perform sliding on the loop fragment choosing a subset V of the loop’s results.

• Avoid unnecessary code duplication by adding to V all loop results whose ad-
dition will not increase the size of the first resulting loop.

• If sliding fails update the code to avoid the failure and repeat this step, or
choose a different loop to split.

– Compile and test.

Fig. 10. Sliding-based mechanics for Split Loop

of code duplication, but also in the potential need for less compensation, as can
be witnessed by the collection of Pen1 and Pen2 on lines 2-6 of Fig. 9.

New mechanics for the Replace Temp with Query (RTwQ) refactoring [7] are
presented on Fig. 11. This refactoring involves the extraction of the computation
of a single variable, a temporary one, into a method of its own. That method
should have no side effects and it will be invoked from all places in the original
code where the final value of the temp was used. Applying RTwQ twice, on the
variables def and pot of Fig. 12, would replace their final use in line 2009 with
calls to the new methods, on line 1995 of the resulting code, on Fig. 13. There,
the two new methods, def() and pot(), can be seen starting on lines 2001 and
2016, respectively.

Note that the loop has been eliminated from the original code, in this example.
Interestingly, one more loop in the same original method included the same
computation of def and pot. In that other loop (not shown here), the two
computations were entangled with a computation of one other value (nullS,
whose final use can be seen on line 1983 on Fig. 13. Subsequent applications
of RTwQ on that other loop, for def and pot again, would replace their final
use with calls to the previously extracted methods. Those two invocations can
be seen on line 1981 of the resulting code on Fig. 13. This is an example where
the initial RTwQ caused duplication of the loop, yet it has enabled further
refactoring steps to reduce duplication through the elimination of non-trivial
code clones.

A third refactoring that can benefit from sliding is Separate Query from Modi-
fier (SQfM) [7]. This refactoring involves the splitting of a non-void method with
side effects to two methods. Like in RTwQ, the extracted slice is of a single value,
the one returned from the original method. Note that this value will not nec-
essarily reside in a single variable since the result of some expression could be
returned, and since multiple return statements may refer to different variables.
Accordingly, an optional first step, in preparation for sliding, is dedicated to
the introduction of a local variable to hold the returned result. When the code
includes more than one return statement, each return is replaced by an assign-
ment to the added variable and a jump to the end, where a single return of that
variable is inserted. In Java, the jump can be implemented through a break from

730 R. Ettinger

Mechanics for Replace Temp with Query
– Identify the relevant fragment of code, from the temp’s declaration to the end of

its enclosing block.
– Perform sliding on that code fragment for the selected temp.

• If the sliding fails you may want to choose a different temp to replace with a
query.

• Successful sliding will bring together the code for computing the final value of
the temp, making it a contiguous fragment ready to be extracted into a method
of its own.

– Compile and test.
– Perform Extract Method on the extracted slice, giving it an appropriate name.

• If the extracted method appears to have side effects consider extracting a dif-
ferent temp, or modify the code to prevent the side effects.

• If all those side effects occur in invoked methods, consider applying Separate
Query from Modifier on those methods before re-applying this refactoring. That
way, the extracted modifiers could possibly be excluded from the query, and
cause no side effects.

– Compile and test.
– Perform Inline Temp on the selected temp at its declaration.

• This step involves the replacement of all references to the temp with the call to
the extracted method (i.e. the query), and the removal of the temp’s declaration.

• If the value of any of the query’s parameters may be different at any point of
reference, consider adding backup variables at the temp’s point of declaration,
or abandon the refactoring.

• A potential cause of failure is the need of backup for a non-cloneable parameter
object; making such backup might otherwise not be desirable due to space (i.e.
large object to clone) or other considerations.

– Compile and test.

Fig. 11. Sliding-based mechanics for Replace Temp with Query

Fig. 12. Example RTwQ, original code

a labeled block. This preparatory step should be undone before the end of the
refactoring, when the labeled block and result variable are located in designated
methods for the query and modifier, and can be replaced with return statements.

Program Sliding 731

Fig. 13. Example RTwQ, after replacement of two temporary variables with queries

After sliding the computation of this returned value away from the remaining
computations (i.e. the code with the side effects), we perform Extract Method
twice, on the slice and co-slice, followed by the optional undoing of the prepara-
tory step. In the final step, we perform Inline Method, to replace all calls to the
original method with the two invocations, of the query and modifier.

Beyond its immediate application as a refactoring, where the transformed code
is a candidate for further development and therefore might be committed at a
subsequent code change delivery, the SQfM transformation can be useful also for
temporarily updating the code in a testing, debugging, or verification scenario.
Such usage of SQfM might enable the application of tools and techniques that
assume no side effects exist in conditional expressions.

Proposed mechanics for SQfM are presented in Fig. 14. The sliding of index
on the code from Fig. 1, yielding the slice shown on the top of Fig. 2 and the

732 R. Ettinger

Mechanics for Separate Query from Modifier
– Prepare the method for sliding by ensuring it has a single return statement.

• Enclose all statements in the method body in a labeled block.
• Insert a declaration above the added block for a new temporary variable to store

the method’s result, and a statement to return its final value below that block.
• Modify all return statements in the labeled block to store the returned value

and to break to the added label (i.e. out of the method’s body through the added
return statement).

• This preparatory step may be skipped when the original method is already con-
structed with a single retrun of a single variable.

– Compile and test.
– Perform sliding on the labeled block for the temp designated in the first step above.

• If sliding fails choose a different method to separate.
– Compile and test.
– To construct the query, perform Extract Method on the slice, giving it an appro-

priate name.
• If the slice appears to have side effects consider the separation of a different

method, or modify the code to prevent the side effects.
• If all those side effects occur in invoked methods consider applying this refac-

toring on those methods before re-applying it on the present method. That way,
the extracted modifiers could possibly be excluded from the query, and cause no
side effects.

– Compile and test.
– Perform Inline Temp on the designated temp if you prefer to have the query called

after the modifier, possibly also inside the modifier if its result is used there.
– To construct the modifier, perform Extract Method on the updated co-slice, giving

it an appropriate name.
– In the query and modifier methods, undo the preparatory step by re-introducing

the original return statements, removing the added temp, break statements, and
labeled block.
• Take care when re-introducing return statements in the (now void) modifier

method, to avoid re-introducing the returned value.
– Compile and test.
– Perform Inline Method on the refactored version of the selected method

• This will replace all calls to the original method with calls to the query and
modifier. Note, however, that at each call site the query or modifier might be
redundant, if the respective results are never used.

• If the method is part of some inheritance relation (i.e. overriding a method in
a superclass, being overriden in a subclass, or implementing a method declared
in an interface), consider performing this refactoring throughout the hierarchy.
Alternatively, consider skipping this step in such cases, leaving the calls to the
extracted query and modifier in the original method.

– Compile and test.

Fig. 14. Sliding-based mechanics for Separate Query from Modifier

Program Sliding 733

co-slice shown on Fig. 3, is an example step toward SQfM. Successful completion
of SQfM, in this case, would require a preliminary SQfM step to split the method
putIfAbsent(), called on lines 19 and 22. This way, the slice would include a
call to the query, contributing to the computation of index, whereas the co-slice
would call the modifier, for effecting the fields of charArrayCache as needed.

5 Evaluation

To evaluate the potential of sliding for supporting refactorings, as presented
above, in terms of the number of successful cases, the ability to compensate
when the need arises, and the levels of code duplication, a preliminary experi-
mentation to examine 55 cases has been performed, manually, on real Java code.
The subject project has been the Java compiler in Eclipse. The comprehensive
test suite of this compiler, featuring nearly 70,000 automated tests, with over
40,000 regression test cases, may provide us with some confidence regarding the
correctness of the transformation steps.

As candidate sliding criteria, two kinds of slices were considered for extraction:
slices with at least one partial loop, and slices of the value returned from a
non-pure function. Isolation of the former exercises loop untangling through
the Replace Temp with Query refactoring, while the extraction of the latter
provides separation of commands from queries, exercising the Separate Query
from Modifier refactoring.

The candidate criteria were identified as follows. For RTwQ, the Extract
Method refactoring tool in Eclipse was employed on each loop, looking for re-
jected cases due to “ambiguous result”. Such an error message is issued by the
tool whenever more than one local variable is updated in the selected fragment
(i.e. in the loop) and is live on exit from that fragment. A selection of 8 loops was
examined. Those loops were found in 7 different methods of 6 different classes,
with 2 local results in 4 cases and 3 results in the other 4 cases. The sliding
and subsequent steps of RTwQ were performed on each local result, in sequence,
with the fragment S being the full scope of the variable’s declaration. When
performing the extraction in a different order presented an important difference
in the results, the alternative order was investigated too. In total, 23 cases of
sliding for RTwQ were recorded this way.

For SQfM, any non-void method with side effects is a potential candidate,
and 32 such cases, found in a package named
org.eclipse.jdt.internal.compiler.codegenwere examined.1 All examples
in this paper were taken from this experiment.

The resulting code, after the sliding step and the complete refactoring, in the
successful cases, was tested and passed all tests. For sanity checking, deliberate
mistakes were added to see that the code is indeed tested. Only one of the 38
succssfully refactored methods was not exercised by any test.

1 Thanks to Alex Libov for automating the identification of both RTwQ and SQfM
candidates, using Eclipse’s JDT, its refactoring API, and the side effect analysis
called ModRef in WALA.

734 R. Ettinger

In a preliminary step, the source code of many of the subject methods needed
to be updated, to remove side effects from expressions, such as assignments
within the predicates of if statements. The manual step would isolate the as-
signment into its own statement. This was not done exhaustively, but rather on
demand, when the slice involved only the result of the expression or only the
side effect. A future sliding algorithm and tool should better treat such cases
correctly, without the need for manual update. Another type of manual change
was to replace an early return statement with a break statement from a labeled
block, as explained in Sect. 4 above. The change was later undone, after extrac-
tion of the slice and co-slice into new methods. One other type of manual change
was to employ the SQfM refactoring on a called method in cases where the slice
required only the result or only the side effect. And one final type of change was
to move the declaration of a local variable, or to break two declarations in one
statement into two separate declarations. In total, for 54 cases of sliding, a total
of 77 manual changes were performed. (The total is 54, not 55 cases, due to the
success in only 31 of the 32 SQfM cases, as will be explained below, added to
the 23 RTwQ cases.)

The size of the code fragments ranged from 6 to 97 (in a method
numberOfDifferentLocals() of class StackMapFrame), with an average of 23.5
statements per case. The slice size ranged from 1 statement (a return statement,
returning a constant) to 85 (in the 97-statement method), averaging 10.4 state-
ments. The co-slice size ranged from 1 to 82 (again in the same largest method)
with an average of 20 statements, leading to an average of 6.9 duplicated state-
ments per sliding.

In terms of the need for compensation, over 44% (7 RTwQ cases and 17 cases
of SQfM) required no compensation at all. For all the remaining cases, variable
localization and the introduction of backup variables (as discussed in Sect. 3.4
above) of at most 3 locals or fields per sliding case proved sufficient.

In terms of reuse, 132 out of the 239 total uses of an extracted variable were
uses of a final value, averaging some 2.4 final uses and 1.99 non-final uses per
case. After sliding, 46 non-final uses were left in the co-slices, leaving us with
some 0.85 non-final uses per case.

The single most problematic case for SQfM, in class ConstantPool, involves
the following code:

public byte[] dumpBytes() {
System.arraycopy(this.poolContent, 0, (this.poolContent =

new byte[this.currentOffset]), 0, this.currentOffset);

return this.poolContent;

}

Sliding of the result without reuse of the allocated field array would fail, in this
case, returning a reference to a different object than the field (with equal value).
Another problem is that localization of the field array would require copying its
initial value. A different type of separation is required here, possibly to compute
the new field first, and only then return the result stored in that field.

Program Sliding 735

6 Related Work

Earlier research on extracting slices from existing systems, in the context of
software reverse engineering and reengineering, has focused mainly on how to
discover reasonable slicing criteria [3,13]. In the context of refactoring tools, it
is common to leave the choice of what to extract to the programmer.

The earliest mention of an interactive process for behavior-preserving method
extraction [15,8] considered the extraction of contiguous code only.

Maruyama [14] proposed a scenario for the extraction of the slice of a single
variable from a selected fragment, or block of statements, into a new method; a
call to that method is placed ahead of the code for the remaining computation.
The reuse of the extracted result was not of the final value only, but of any value
defined by that variable. This way, the co-slice may make a reference intended
for a non-final value, but get to use, instead, the final extracted value, making
the transformation incorrect. This incorrectness was reported by Tsantalis et
al. [17]; their more recent work constructs the complementary code in the same
way, but defines PDG-based rules to identify these problematic cases and reject
the transformation.

A number of provably correct algorithms for the extraction of a set of not-
necessarily contiguous statements have been proposed in the literature [12,11,10].

Of those, tucking [12] is most generally applicable for isolating the slice of a
code fragment. Tucking starts by adding to the statements designated for ex-
traction all other statements in their slice, limited to a fragment that encloses
those statements. If we apply this algorithm by selecting such a slice in the first
place, no other statement would be added to the extracted code. This is unfortu-
nately not the case in the algorithm of Komondoor and Horwitz [10], where each
statement that the algorithm is unable to move away from the slice, correctly, is
added to the extracted code. In the worst case, this approach extracts the whole
fragment, essentially leaving it unchanged. In particular, no assignment can be
duplicated and loop statements can either be extracted fully, or not extracted at
all. Therefore, splitting loops as in our example of def and pot, is not possible by
that algorithm. Komondoor and Horwitz had an earlier algorithm [11] in which
all permutations of the selected statements were considered, in looking for an
arrangement of statements in which all selected statements are contiguous and
where all control and data dependences are preserved. This algorithm does not
permit any duplication, not even of conditionals, and may therefore be applica-
ble for slice extraction only in cases where each predicate in the slice appears
in it along with all the statements it controls. So tucking is the only previous
solution to slice extraction that can untangle a loop that computes more than
one result, as in the RTwQ example of def and pot [5]. In tucking, however, the
complementary code is computed as the slice from all non-extracted statements,
so no reuse of the extracted results is possible. In our example of extracting the
slice of index (see Fig. 1) from the full fragment of 1-23, that complement would
include the whole fragment, as statement 23 would be included in the co-slice
and then cause all the slice to be duplicated.

736 R. Ettinger

The idea of allowing data to flow from the extracted code to the complement,
in sliding, is based on the two Komondoor and Horwitz algorithms [11,10].

7 Conclusion

To paraphrase Weiser’s seminal work [19], sliding is a new way of recomposing
programs automatically. Limited to code already written, it may prove useful
during the refactoring, testing, and maintenance portions of the software life
cycle. This paper concentrated on the basic methods for sliding programs and
their embodiment in automatic tools for refactoring. Future work on sliding-
based programming aids is necessary before the implications of this kind of
recomposition are fully known.

Acknowledgements. I wish to thank Aharon Abadi, Yishai Feldman, Michiaki
Tatsubori, and Shmuel Tyszberowicz for intriguing discussion and comments,
and the anonymous reviewers for their helpful suggestions, all directing me at
improvements to the paper.

My special thanks go to Cindy Eisner, Steve Fink, and Maayan Goldstein for
the encouragement and crucial advice at key decision points.

References

1. An online refactoring catalog, http://www.refactoring.com/catalog/
2. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools.

Addison-Wesley (1988)
3. Cimitile, A., Lucia, A.D., Munro, M.: Identifying reusable functions using specifi-

cation driven program slicing: a case study. In: ICSM, pp. 124–133 (1995)
4. Ettinger, R.: Refactoring via Program Slicing and Sliding. Ph.D. thesis, University

of Oxford, Oxford, United Kingdom (2006)
5. Ettinger, R., Verbaere, M.: Untangling: a slice extraction refactoring. In: AOSD

2004: Proceedings of the 3rd International Conference on Aspect-Oriented Software
Development, pp. 93–101. ACM Press, New York (2004)

6. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987),
http://doi.acm.org/10.1145/24039.24041

7. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison Wesley
(2000)

8. Griswold, W., Notkin, D.: Automated assistance for program restructuring. ACM
Transactions on Software Engineering 2(3), 228–269 (1993)

9. Horwitz, S., Reps, T.W., Binkley, D.: Interprocedural slicing using dependence
graphs. ACM Trans. Program. Lang. Syst. 12(1), 26–60 (1990)

10. Komondoor, R., Horwitz, S.: Effective automatic procedure extraction. In:
Proceedings of the 11th IEEE International Workshop on Program Comprehen-
sion (2003)

11. Komondoor, R., Horwitz, S.: Semantics-preserving procedure extraction. In: POPL
2000: Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pp. 155–169. ACM Press, New York (2000)

http://www.refactoring.com/catalog/
http://doi.acm.org/10.1145/24039.24041

Program Sliding 737

12. Lakhotia, A., Deprez, J.C.: Restructuring programs by tucking statements into
functions. Information and Software Technology 40(11-12), 677–690 (1998),
citeseer.nj.nec.com/lakhotia99restructuring.html

13. Lanubile, F., Visaggio, G.: Extracting reusable functions by flow graph-based pro-
gram slicing. IEEE Trans. Software Eng. 23(4), 246–259 (1997)

14. Maruyama, K.: Automated method-extraction refactoring by using block-based
slicing, pp. 31–40. ACM Press (2001)

15. Opdyke, W.F.: Refactoring Object-Oriented Frameworks. Ph.D. thesis, University
of Illinois at Urbana-Champaign, IL, USA (1992),
citeseer.nj.nec.com/opdyke92refactoring.html

16. Ottenstein, K., Ottenstein, L.: The program dependence graph in a software devel-
opment environment. In: Proc. of the ACM SIGSOFT/SIGPLAN Software Engi-
neering Symposium on Practical Software Development Environments, pp. 177–184
(1984)

17. Tsantalis, N., Chatzigeorgiou, A.: Identification of extract method refactoring op-
portunities. In: CSMR 2009: Proceedings of the 2009 European Conference on
Software Maintenance and Reengineering, pp. 119–128. IEEE Computer Society,
Washington, DC (2009)

18. Verbaere, M., Ettinger, R., de Moor, O.: JunGL: a scripting language for refactor-
ing. In: ICSE, pp. 172–181 (2006)

19. Weiser, M.: Program slicing. In: ICSE, pp. 439–449 (1981)

citeseer.nj.nec.com/lakhotia99restructuring.html
citeseer.nj.nec.com/opdyke92refactoring.html

Static Detection of Loop-Invariant Data Structures

Guoqing Xu1, Dacong Yan2, and Atanas Rountev2

1 University of California, Irvine, CA, USA
2 Ohio State University, Columbus, OH, USA

Abstract. As a culture, object-orientation encourages programmers to create
objects, both short- and long-lived, without concern for cost. Excessive object
creation and initialization can cause severe runtime bloat, which degrades signif-
icantly application performance and scalability. A frequently-occurring coding
pattern that may lead to large volumes of (temporary) objects is the creation of
objects that, while allocated per loop iteration, contain values independent of spe-
cific iterations. Finding these objects and moving them out of loops requires so-
phisticated interprocedural analysis, a task that is difficult for traditional dataflow
analyses such as loop-invariant code motion to accomplish.

Our work targets data structures that are loop-invariant, and presents a static
type and effect system to detect loop-invariant data structures. For each loop, our
analysis inspects each logical data structure in order to find those that have dis-
joint instances per loop iteration and contain loop-invariant data. Instead of auto-
matically hoisting them to improve performance (which is over-conservative), we
report hoistability measurements for each disjoint loop data structure detected by
our analysis. Eventually these data structures are ranked based on these measure-
ments and are presented to the user to help manual tuning. We have performed a
variety of studies on a set of 19 moderate/large-sized Java benchmarks. With the
help of hoistability measurements, we found optimization opportunities in most
of the programs that we inspected and achieved significant performance improve-
ments in some of them (e.g., 82.1% running time reduction).

1 Introduction

As a culture of object-orientation, Java programmers are taught to freely create objects
for whatever tasks they want to achieve, without concern for cost. They often take for
granted that the runtime system can optimize away all execution inefficiencies: the Just-
In-Time (JIT) compiler can remove whatever redundancy exists in the code, and the
Garbage Collector (GC) can quickly reclaim redundant objects created for simple tasks.
However, creating an object in Java with a new operator, in most cases, is far beyond
allocating memory space, and can be much more expensive than a programmer realizes.

For example, object creation may need to execute large volumes of code to construct
and initialize a data structure, and this process may even involve many slow I/O oper-
ations. One especially important case is when these expensive objects have data that is
invariant. Frequently constructing data structures with unchanged data may have signif-
icant effect on application running time and scalability. Large improvements can often
be seen when these data structures are reused rather than recreated.

Loops are places where such data structures can cause significant harm and thus spe-
cial attention needs to be paid to find and optimize them. We propose static analyses

J. Noble (Ed.): ECOOP 2012, LNCS 7313, pp. 738–763, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Static Detection of Loop-Invariant Data Structures 739

for(int i = 0; i < N; i++){
SimpleDateFormat sdf = new SimpleDateFormat();
try{

Date d = sdf.parse(date[i]);
...

}catch(...) {...}
}

(a)

Templates _template = factory.newTemplates(stylesheet);
while(...){

XMLFile file = getNewInputFile();
XMLTransformer transformer = _template.newTransformer();
transformer.transform(file);
...

}
(b)

Fig. 1. Real-world examples of heavy-weight creation of loop-independent data structures. (a) A
SimpleDateFormat object is created inside the loop to parse the given Date objects; (b) An
XMLTransformer object is created within the loop to transform the input XML files.

that can find data structures that are created in a loop but are independent of specific
iterations. This work is motivated by bloat patterns that are regularly seen in large-
scale applications. Figure 1 shows two examples extracted from the real-world pro-
grams that we have studied. The code pattern in part (a) has appeared a great number
of times in applications that were written by IBM’s customers and tuned by a group
from IBM Research [1]. The programmer may have never realized that creating one
SimpleDateFormat object requires to load many resource bundles to get the current
date, compile the default date pattern string, and load the time zone to create a calen-
dar. The process involves many expensive operations such as object clones, hash table
lookups, etc. Part (b) illustrates a problem detected by our tool in DaCapo/xalan. An
XMLTransformer object is created in a loop to transform the input XML file. While
the input file is updated per loop iteration, the transformer object is loop-invariant. A
great amount of effort is needed to create a transformer and significant performance
improvement can be achieved after hoisting the creation of this transformer. Details of
this example can be found in Section 5.

Technical Challenges. While loop optimizations have been extensively studied and
used in modern optimizing compilers [2], they are mostly intraprocedural and deal only
with instructions that operate on scalar variables and simple data structures (e.g., ar-
rays and linked lists). They are far from reaching our goal of finding large optimization
opportunities in programs that make extensive use of object-oriented data structures.
Techniques such as loop-invariant code motion target instructions whose input vari-
ables are not defined in the loop. Such techniques are usually ineffective at handling
instructions involving objects: for an object created in the loop, even though one of its
fields used in an instruction is not defined, it is not safe to move this instruction out
of the loop, as other fields of the object may be modified elsewhere in the loop. In an
object-oriented program, data abstractions are much more complex and data in different
locations are tightly coupled based on logical object models.

Focusing on Logical Data Structures. In this work, we focus on the data side of the
hoisting problem, that is, to find logical data structures that are loop-invariant, regardless

740 G. Xu, D. Yan, and A. Rountev

of whether or not it is possible to hoist the actual code statements that access these data
structures. If a logical data structure is loop-invariant, the programmer should modify
its creating and accessing code statements in order to move it out of the loop. There
are two important aspects in determining whether a logical data structure is hoistable.
First, it is critical to understand how this data structure is built up. For example, all
objects in a hoistable data structure have to be allocated together in one iteration of
the loop. In addition, any object in a hoistable data structure must be owned only by
this data structure, and it cannot escape to other data structures. These properties can
be verified by checking points-to relationships among objects. Second, it is important
to understand where this data structure gets its values from. For example, all values
contained in (heap locations of) a hoistable data structure must not be computed from
any loop-iteration-specific value. This aspect of the problem is naturally related to the
data dependence problem, and thus, such (value origin) properties can be verified by
checking data-dependence relationships.

These two kinds of relationships are formalized as two (points-to and dependence)
effects by a type and effect system presented in Section 3. As the identification of loop-
invariant data structures requires to reason about whether objects connected by these
relationships are always created in the same iteration of a loop, our analysis computes,
for each loop object, a loop iteration count abstraction that indicates whether or not
an instance of the object created in one iteration of the loop can be carried over to the
next iteration. A more detailed description of this abstraction can be found in Section 2.
Section 3 presents a formalism that computes such abstractions.

Manual Tuning with the Help of Hoistability Measurement. Given logical loop-
invariant data structures identified by our analysis, the second challenge lies in how
to perform the actual hoisting. While it is attractive to design a transformation tech-
nique that automatically pulls out invariant data structures, we found that there is little
hope that a completely automated approach can effectively hoist these data structures in
practice. This is first because of the over-conservative nature of any transformation tech-
nique, which may prevent the technique from hoisting many real-world loop-invariant
data structures due to their complex usage in large-scale applications. The chance of
developing an effective transformation technique becomes even smaller in the presence
of the many Java dynamic features such as dynamic class loading and reflection. Sec-
ond, effectively optimizing real-world data structures requires developer insight. For
example, a data structure with 100 fields cannot be transformed if it has even a sin-
gle non-loop-invariant field. In fact, by manually inspecting and perhaps modifying the
data model, it is highly likely that the data structure can be made hoistable (i.e., by
introducing a separate object to store that loop-dependent field).

Our work advocates a semi-automated approach that is intended to identify larger
optimization opportunities by bringing developer insight into the optimization process.
Instead of eagerly looking only for completely-hoistable logical data structures, we also
identify partially-hoistable logical data structures, by computing a hoistability measure-
ment for each logical data structure, and rank all such data structures based on these
measurements to help manual tuning. The higher measurement a data structure has, the
more likely it is that this data structure can be manually hoisted.

Static Detection of Loop-Invariant Data Structures 741

One additional advantage of manual tuning using hoistability measurements is that
these metrics can be easily modified to incorporate dynamic information obtained from
a profile. Section 4 presents one such modification that includes loop frequencies in the
metrics so that the “loop hotness” factor is taken into account when the rank of a data
structure is computed. To optimize a non-hoistable data structure, the programmer can
either split the data model (e.g., to separate the loop-invariant fields and non-invariant
fields) and/or restructure the statements that access it (e.g., to eliminate dependences
between hoistable and non-hoistable statements). In addition, highly-ranked data struc-
tures can often be indicators of other loop-related inefficiencies, such as inappropriate
implementation choices. These problems may also be revealed during the inspection of
the reported data structures.

Evaluation. We evaluated our technique using a set of 19 Java programs. With the
help of hoistability measurements, we found optimization opportunities in most of these
programs. We discuss the performance gains we have achieved for five representative
programs: ps, xalan, bloat, soot-c, and sablecc-j. For example, we found
a performance problem in DaCapo/xalan; removing it can improve the benchmark
performance by 10.1%. As another example, we found a bottleneck in the core compo-
nents of ps. After the optimization, the running time was reduced by 82.1%. Detailed
description of the empirical evaluation can be found in Section 5. These results indi-
cate that the proposed technique can be useful both in the coding phase (for finding
small performance issues before they pile up) and in the tuning phase (for identifying
performance bottlenecks).

2 Overview

Figure 2 shows a simple running example. This example contains 10 allocation sites
(including string literals), and all of them are located in loops (i.e., either directly in
a loop or in a method invoked in a loop). Our analysis inspects each object1 located
in a loop and discovers its structure (i.e., including objects that are calling-context-
sensitively reachable from it) using context-free language (CFL)- reachability. Using
new CFL-reachability algorithms, we develop novel techniques that inspect individual
objects in a loop, identify their structures while taking into account the calling contexts
of methods, and compute their hoistability, all without requiring a pre-computed whole-
program points-to solution.

Points-to Relationships. Figure 3(a) illustrates three data structures (a.1), (a.2), and
(a.3) that are rooted at objects in the two loops shown in Figure 2. Each object is given a
name oi, where i is the number of the line in the code where the object is created. Each
edge in a data structure represents a points-to relationship, and is annotated with a field
name and a pair of integers (i, j). Field elm is a special field used to represent array el-
ements. Integers in this pair are the loop iteration count abstractions (ICAs) for the two
objects connected by this edge, and they can be used to determine whether these objects
are created in the same iteration of the loop. Following the iteration abstraction [3] and
the recency abstraction [4], an ICA can be one of three (abstract) values: 0, 1, or�. Note

1 “Object” will be used in the rest of the paper to denote a static abstraction (i.e., an allocation
site), while “instance” denotes a run-time object.

742 G. Xu, D. Yan, and A. Rountev

1 class List{
2 Object[] arr; int index = 0;
3 List() { arr = new Object[1000];}
4 void add(Object o){ if(index < 1000) arr[index++] = o;}
5 Object get(i){ return arr[i]; }
6 }
7 class Pair{
8 Object f; Object g;
9 Pair(Object o1, Object o2){ this.f = o1; this.g = o2;}
10}
11
12 class Client{
13 static void main(String[] args){
14 for(int i = 0; i < 500; i++){
15 List l = new List();
16 Pair p = new Pair("hello", "world");
17 l.add(p);
18 }
19 Integer b = null;
20 for(int j = 0; j < 400; j++){
21 Integer a = new Integer(j);
22 if(j == 20) b = new Integer(10);
23 Pair q = new Pair(a, b);
24 Pair r = new Pair("good", a);
25 ... //use q and r
26 }
27 }

Fig. 2. Running example

that the use of ICA is not a contribution of this paper. The three major contributions are
(1) a novel calling-context-sensitive algorithm for computing points-to and dependence
relationships that are annotated with ICA information, (2) a new technique for detecting
loop-invariant data structures with the help of such points-to/dependence information,
and (3) the development of quantitative measurements that use these relationships to
help programmers identify hoistable data structures.

For a particular loop l, an object whose ICA is 0 with respect to l must be created
outside l. The ICA for an object being either 1 or� (with respect to l) means the object
must be created inside l. In particular, let us consider a run-time iteration p of l and a run-
time instance r created by allocation site or such that r is live during the execution of p.
If the ICA for or is 1, r is guaranteed to be created during iteration p. In other words, the
ICA for an object being 1 indicates that its instances must be ”fresh“ across iterations,
that is, in any iteration where an instance of it is live, this instance must be created in that
iteration (i.e., it must not be carried over from a previous iteration). An object that has a
� in its ICA is created in a (previous) unknown iteration. For example, the ICA for o23
is 1, as it creates a fresh object in each iteration of the loop at line 20. The ICA for o22
is �, as the instance it creates in one iteration can be carried over to the next iteration.

Hence, for a points-to edge annotated with (i, j), i = j = 1 guarantees that the two
objects connected by the edge must be created in the same iteration of the loop, while
either i or j being � indicates that the two objects may be created in different itera-
tions. A data structure is obviously not hoistable if it contains objects that are created
in different iterations.

Dependence Relationships. Figure 3(b) illustrates the dependence (def-use) chains
that start at memory locations in each data structure shown in Figure 3(a). An edge
o1.f ← o2.g indicates that a run-time value contained in a heap location abstracted by

Static Detection of Loop-Invariant Data Structures 743

o15

arr

o3

o16

elm

f g

“hello” “world”

(a.1)

o23

f g

o21 o22

g

“good” o21

o24

f

(1, 1)

(1, 1) (1, 1)

(1, 1) (1, ┬)

(1, 1) (1, 1)

(a) Points-to effects

(1, 1)
(a.2)

(a.3)

o
15
.index

(1, 1)

o
3
.elm

(1, 1)

(b.1)

o
21

.value

(1, 0)

j (0, 0)

(b) Dependence effects

(b.2) (b.3)

Fig. 3. Data structures identified for the running example and their effect annotations. (a) Points-
to effects among objects; (b) Dependence effects among memory locations.

o2.g is required in computing a value written into (a heap location abstracted by) o1.f .
Note that o21.value is a field of class Integer that stores the int value embedded
in an Integer object. A stack location is also considered in a dependence chain,
if this location (variable) has a primitive type and is in the method that contains the
loop of interest (e.g., variable j in method main). Such a variable needs to be taken
into account as it may contain iteration-specific values. Variables that are not in the
loop-containing method are abstracted away from dependence chains, as they can get
iteration-specific values only from heap locations or variables in the loop-containing
method (e.g., variable o at line 4). Reference-typed variables (e.g., a and b) do not need
to be considered as well (even though they are in the loop-containing method), because
they can get loop-specific values only from heap locations, and thus, it is necessary to
track only heap locations.

Note that each dependence edge o1.f ← o2.g is also annotated with a pair of ICAs
(for o1 and o2), which is used to determine whether o1 and o2 are always created in the
same loop iteration. If a node in a dependence edge is a stack variable, such as j, its
ICA is determined by whether or not it is declared in the loop. For example, j’s ICA
is 0, because it is declared before the loop starts. Its ICA would have been 1 if it were
declared in the loop. The ICA for a stack variable can never be �, as each variable
declared in a loop must be initialized (i.e., get a new value) per iteration.

Hoistable Logical Data Structures. As discussed earlier in Section 1, the analysis
identifies (completely or partially) hoistable logical data structures from a purely data
perspective, regardless of the actual code and control flow. This can be done by reason-
ing about these two kinds of annotated relationships. A hoistable data structure has the
following important properties.

(1) (Disjoint). Its run-time instances, created by different iterations of the loop, have
to be disjoint. No object is allowed to appear in multiple instances of one single logical
data structure. This property can be verified by checking whether all points-to edges in a
data structure are annotated with (1, 1). A data structure is not hoistable if any of its nodes
has a non-1 ICA. This guarantees that any instance of a hoistable data structure does not
have objects created outside the loop or in different iterations. For example, (a.2) is not
hoistable, as edge o23

g−→ o22 may connect objects created in different iterations.
(2) (Loop-invariant). Fields of objects in a hoistable data structure have to be loop-

invariant. No data in any run-time instance of the data structure can be dependent on
specific loop iterations. We check this property by formulating it as a data-dependence

744 G. Xu, D. Yan, and A. Rountev

problem. A sufficient condition for the statement “object o is loop-invariant” is that, for
each field of o, (2.1) no edge on a dependence chain (e.g., shown in Figure 3(b)) that
starts from the field can have � in its annotated ICA pair, and (2.2) for each memory
location node o.f (i.e., heap location) or j (i.e., stack location) on the chain, if the ICA
for o or j is 0, this node must not be involved in a dependence cycle.

(2.1) enforces that all (stack and heap) locations from which a hoistable data structure
instance (allocated in one iteration) gets its data are either created in this same iteration,
or exist before the loop starts. No data in this instance can be obtained from an object
created in a different iteration. In addition, as stated in (2.2), if one such location already
exists before the loop starts (e.g., variable j), this node must not be in a dependence
cycle. Otherwise, its value may be updated by each iteration and any data structure
that is dependent on this value is not hoistable. For example, in Figure 3(b), o21.value
depends on variable j, whose ICA is 0. Because j is in a dependence cycle, o21.value
may have iteration-specific values, and thus, any data structure that contains o21 is not
hoistable (e.g., structures (a.2) and (a.3) in Figure 3(a)). Note that field o3.elm is loop-
invariant: while it depends on field o15.index, which is involved in a cycle, o15’s ICA is
1. Hence, it is impossible for an iteration-specific value to propagate to this field.

Note that these two properties are sufficient (but not necessary) conditions for
hoistable logical data structures. For example, the first condition (i.e., disjointness) is
an over-conservative approximation of the shape of a hoistable data structure—it is
perfectly possible for a hoistable data structure to contain objects that are created out-
side the loop (i.e., their ICAs are 0) but not mutated in the loop. We choose not to
consider such objects in our hoistable data structure definition primarily for scalability
purposes—these objects (created outside the loop) may have long dependence chains
(as objects that they reference can come from arbitrary places). On the contrary, depen-
dence chains for objects that are created in the loop and do not escape the loop (i.e.,
all their ICAs are 1) are generally much shorter. Therefore, the dependence analysis is
much more scalable when considering only these chains.

Computing Hoistability Measurements. After inspecting these two conditions, it
is clear that only data structure (a.1) is a completely hoistable logical data structure.
However, there might still exist optimization opportunities with the other two (partially
hoistable) data structures. For example, if we can move object o22 out of data structure
(a.2), it may still be possible to hoist (a.2). In order to help programmers discover such
hidden optimization opportunities, hoistability measurements are proposed to quantify
the likelihood of manually hoisting data structures out of loops.

For example, for each data structures shown in Figure 3, we compute two sepa-
rate hoistability measurements based on the two orthogonal (points-to and dependence)
effects mentioned above: structure-based hoistability (SH) that considers how many
objects in the data structure must be allocated in the same loop iteration (i.e., that
comply with condition 1), and dependence-based hoistability (DH) that considers how
many fields in the data structure must contain loop-invariant data (i.e., that comply
with condition 2). Eventually, these three data structures are ranked based on the two
measurements and are then presented to the user for further inspection. Detailed de-
scription of hoistability measurements can be found in Section 4.

Static Detection of Loop-Invariant Data Structures 745

Variables a, b ∈ V
Allocation sites o ∈ O
Instance fields f ∈ F
Labels l ∈ L
Statements e ∈ E

e ::= a = b | a = new ref o | a = b.f | a.f = b | a = null |
e ; e | if (*) then e else e | whilel (*) do e

(a)

Iteration count i ::= 0 | 1 | 2 | . . . ∈ N
Iteration map ν ∈ L→ N
Loop status π ::= 〈l , i〉 l ∈ L ∪ {0}
Labeled object ô ::= oπ ∈ Φ
Heap σ ∈ Φ× F→ Φ ∪ {⊥}
Environment ρ ∈ V → Φ ∪ {⊥}
Data origin μ ∈ V → 2Φ×F

Heap points-to effect H ::= ∅ | H ∪ {ô1 �f ô2}
Heap data dep. effect Ω ::= ∅ | Ω ∪ {ô1.f ≺ ô2.g}

(b)

Fig. 4. A simple while language: (a) abstract syntax; (b) semantic domains

3 Loop-Invariant Logical Data Structures

This section formalizes the notion of loop-invariant logical data structure, and in this
context, formally defines our analysis that identifies hoistable data structures. The pre-
sentation proceeds in three steps. First, we define a simple imperative language and
present its abstract syntax and operational semantics, which we will use to formalize
our analysis algorithms. For the ease of presentation, function calls are not considered
in this language. Our implementation supports full context-sensitivity using a CFL-
reachability formulation.

Second, we present a type and effect system that abstracts concrete objects and ef-
fects. Finally, the analysis that detects hoistable data structures is described based on
the abstract heap effects generated by the type and effect system.

3.1 Language, Semantics, and Effect System

Language. The abstract syntax and the semantic domains for the simple while lan-
guage that we use are defined in Figure 4. A program in this language has a fixed set of
global variables with reference types. While primitive-typed variables are considered in
our analyses, they are excluded from this language for the simplicity of presentation.
Each allocation site is labeled with an ID o. Each loop is annotated with a natural num-
ber label l (l > 0), which will be used as the ID of the loop. * denotes a side-effect-free
boolean expression that contains only local variables and constants.

We develop a concrete operational semantics for the language in order to detect
hoistable data structures. A loop iteration count i records the number of iterations that
a loop has executed. A global loop iteration map ν maps each loop (label) to its cur-
rent iteration count. Each object instance is represented as its allocation site o annotated

746 G. Xu, D. Yan, and A. Rountev

with a pair 〈l, i〉, where l is the label of the loop in which o is located (always > 0), and
i is the count of the iteration of l that creates this instance. If an object is not located
in any loop, the loop status π for its instances is always 〈0, 0〉. Our analysis does not
consider hoisting objects out of nested loops, and in the presentation we assume that all
loops in the abstract language are not nested. While nested loops can be handled easily
in our framework (e.g., by creating and associating with each object an iteration count
map that records an iteration count for each loop in which the object is located), we
found that it is not useful in hoisting data structures for real-world Java programs: it is
extremely rare that a data structure can be hoisted out of multiple loops.

A heap σ records object reference relationships, and an environment ρ maps vari-
ables to objects in the heap. They are defined in standard ways. A data origin map μ
records, for each stack variable v, a set of heap locations such that values in these lo-
cations are required (i.e., either as a pointer for dereferencing, or being copied through
a sequence of intermediate stack locations) in order to obtain a value written to v. This
map tracks dependences between variables and their relevant heap locations, and will
be used to compute dependence effects as described shortly. For example, after the ex-
ecution of a sequence of statements c = d.f ; b = c; a = b, we have μ(a) = μ(b) =
μ(c) = {od.f} ∪μ(d), where od represents the object that d points to. μ(d) is included
here because d is required as a reference to an object from which the value is obtained.
Dependences via the intermediate stack locations (e.g., b and c) are abstracted away as
we are interested only in fields of objects that form data structures.

Note that μ records only one-hop heap location dependence—if the value in d.f is
obtained from another heap location, μ(a), μ(b) and μ(c) remain the same. Multi-hop
heap location dependences can be obtained by computing the transitive closure of μ.

As discussed earlier in Section 2, we use points-to and dependence relationships to
reason about (1) how data structures are built up and (2) where they get values from,
respectively. These relationships are modeled by the following two kinds of effects in
our system. A heap points-to effect ô1 �f ô2 ∈ H is generated if, at a certain point, ob-
ject ô2 becomes reachable from ô1 through field f . A data dependence effect tracks the
flow of data. One such effect ô1.f ≺ ô2.g ∈ Ω indicates that ô2.g is required in order
to compute a value written into ô1.f . This effect captures a transitive data dependence
relationship between two heap locations, abstracting away a possible sequence of de-
pendences via intermediate stack variables. Data dependence effects can be computed
efficiently by using the data origin map μ.

Note that in this language, it is safe for a dependence chain to not include any stack
variable (like j in Figure 3 (b)). This is because the language supports only reference-
typed variables, which can never form a dependence cycle themselves (without a heap
location involved). While we choose not to include primitive types in this language (for
the simplicity of presentation), our implementation handles both primitive and reference
types. It is also important to note that the effects shown in Figure 4 are concrete effects.
We will present an approach to project them into abstract effects, which are essentially
the annotated edges shown in Figure 1.

Concrete Instrumented Semantics. Figure 5 presents a big-step operational semantics
for our language. A judgment of the form

e, ν, σ, ρ, μ ⇓ ν′, σ′, ρ′, μ′, H , Ω

Static Detection of Loop-Invariant Data Structures 747

a = null, ν, σ, ρ, μ ⇓ ν, σ, ρ[a �→ ⊥], μ[a �→ ∅], ∅, ∅ (ASSIGN-NULL)

ρ
′
= ρ[a �→ ô] σ

′
= σ[∀f.(ô.f �→ ⊥)] ô.o = alloc ô.π = 〈l , ν(l)〉

a = new refalloc , ν, σ, ρ, μ ⇓ ν, σ′, ρ′, μ[a �→ ∅], ∅, ∅
(NEW)

a = b, ν, σ, ρ, μ ⇓ ν, σ, ρ[a �→ ρ(b)], μ[a �→ μ(b)], ∅, ∅ (ASSIGN)

ρ(b) = ô μ′ = μ[a �→ μ(b) ∪ {ô.f}]
a = b.f, ν, σ, ρ, μ ⇓ ν, σ, ρ[a �→ σ(ô.f)], μ

′
, ∅, ∅ (LOAD)

ρ(a) = ô1 ρ(b) = ô2
H = (ô2 = null ? ∅ : {ô1 �f ô2}) Ω =

⋃
{ô1.f ≺ ôi.gi | ôi.gi ∈ μ(a) ∪ μ(b)}

a.f = b, ν, σ, ρ, μ ⇓ ν, σ[ô1.f �→ ô2], ρ, μ,H,Ω
(STORE)

e1, ν, σ, ρ, μ ⇓ ν′, σ′, ρ′, μ′, H1,Ω1 e2, ν
′, σ′, ρ′, μ′ ⇓ ν′′, σ′′, ρ′′, μ′′, H2,Ω2

e1; e2, ν, σ, ρ, μ ⇓ ν′′, σ′′, ρ′′, μ′′, H1 ∪ H2,Ω1 ∪ Ω2

(COMP)

e1, ν, σ, ρ, μ ⇓ ν′, σ′, ρ′, μ′, H,Ω

if (∗) then e1 else e2, ν, σ, ρ, μ ⇓ ν
′
, σ

′
, ρ

′
, μ

′
, H,Ω

(IF-ELSE-1)

e2, ν, σ, ρ, μ ⇓ ν′, σ′, ρ′, μ′, H,Ω

if (∗) then e1 else e2, ν, σ, ρ, μ ⇓ ν′, σ′, ρ′, μ′, H,Ω
(IF-ELSE-2)

e, ν[j �→ ν(j) + 1], σ, ρ, μ ⇓ ν′, σ′, ρ′, μ′, H1,Ω1

whilej (∗) do e, ν
′
, σ

′
, ρ

′
, μ

′ ⇓ ν
′′
, σ

′′
, ρ

′′
, μ

′′
, H2,Ω2

whilej (∗) do e, ν, σ, ρ, μ ⇓ ν′′, σ′′, ρ′′, μ′′, H1 ∪ H2,Ω1 ∪ Ω2

(W)

Fig. 5. Concrete instrumented semantics

starts with a statement e, which is followed by loop iteration map ν, heap σ, environ-
ment ρ, and value origin map μ. The execution of e terminates with a final iteration map
ν′, heap σ′, environment ρ′, origin map μ′, heap points-to effect set H , and heap data
dependence effect set Ω .

Rules COMP, IF-ELSE1, IF-ELSE2, and W are defined in expected ways. In rule
ASSIGN-NULL and NEW, the data origin for a (in μ) is assigned ∅, as the value is
freshly generated and does not depend on any heap value. In rule NEW, for a labeled
object ô, ô.o and ô.π denote the allocation site and the loop status pair for ô, respectively.
In ô.π, the loop l where the allocation site o is located is determined statically, and is
associated with each instance created by o. The iteration count for l is retrieved from
the global iteration count map ν. Rule ASSIGN propagates both the object reference and
the data origin of this reference value from b to a. In rule LOAD, the data origin map μ
for variable a is updated in a way so that both ô.f and the origin of the value in b are
recorded as a’s origin. Hence, dependences via both the value copy (from b.f to a) and
the pointer dereference (i.e., dereferencing b) are captured.

To handle a store a.f = b where b’s value is written to the heap, a points-to effect
ô1 �f ô2 is first generated. The rule next generates a set of heap dependence effects
{ô1.f ≺ ôi.gi | ôi.gi ∈ μ(b) ∪ μ(a)}, by consulting the data origin map μ. Each
dependence effect states that a value read from field gi of object ôi has been used to
produce a value written to ô1.f during the execution.
 Example For illustration, consider the following example:

a = new refo1 ; e = new refo2 ; a.f = e; j = a.f ;
while1 (j) do{ b = a.f ; d = b; c = new refo3; c.g = d;}

748 G. Xu, D. Yan, and A. Rountev

Iteration count abstr. ĩ ::= 0 | 1 | � ∈ N

Loop status abstr. π̃ ::= 〈l, ĩ〉 l∈ L ∪ {0}
Type τ̃ ::= oπ̃ | � ∈ T

Type environment Γ ∈ V → T ∪ {⊥}
Data origin abstr. μ̃ ∈ V → 2T×F

P.T. effect abstr. H̃ ::= ∅ | H̃ ∪ {τ̃1 τ̃2}
Dep. effect abstr. Ω̃ ::= ∅ | Ω̃ ∪ {τ̃1.f % τ̃2.g }

Fig. 6. Syntax of types and abstract effects

At the end of the first iteration of the loop, the semantic domains contain the following
values:

ν = [1 �→ 1],
σ = [ô1.f �→ ô2, ô3.g �→ ô2],
ρ = [a �→ ô1, b �→ ô2, c �→ ô3, d �→ ô2, e �→ ô2, j �→ ô2],
μ = [a �→ ∅, b �→ {ô1.f}, c �→ ∅, d �→ {ô1.f}, e �→ ∅, j �→ {ô1.f}],
H = {ô1 �f ô2, ô3 �g ô2},
Ω = {ô3.g ≺ ô1.f}. �

Abstract Semantics. The concrete semantics uses an unbounded number of objects
and unbounded loop iteration counts. We next develop a type and effect system that
describes an abstract semantics, which conservatively approximates the concrete se-
mantics with a bounded set of objects and bounded loop iteration counts. The syntax of
types and abstract effects are illustrated in Figure 6. The abstraction of each concrete
domain (e.g., π) shown in Figure 4 is represented by its corresponding tilded symbol
(e.g, π̃). Environment ρ is abstracted by the type environment, denoted by Γ . A type τ̃
abstracts a labeled object instance ô by projecting its concrete iteration count ô.π.i to an
iteration count abstraction (ICA) τ̃ .π̃.̃i, which can have three abstract values: 0, 1, and
�. The meaning of these values was explained in Section 2. Using this type and effect
system, we can identify data structures whose objects are guaranteed to be created in
the same iteration by reasoning about object ICAs. Note that each abstract effect in H̃
and in Ω̃ corresponds to an edge in Figure 3 (a) and in Figure 3 (b), respectively.

Figure 7 shows the type rules, which are parallel with the operational semantics in
Figure 5. Auxiliary operations used in the type rules are shown in Figure 8. Some abstract
semantic domains in Figure 6 are extended with � and/or ⊥ elements, as necessary.

Since the type and effect system abstracts the concrete semantics in Figure 5, most of
the rules in Figure 7 are similar to their corresponding operational semantics rules. Here
we explain only a few of them that differ significantly from their concrete counterparts.
In rule TNEW, the ICA for a newly created object is always 1, and this value will be
changed later (by rule TW) if this object is carried over to the next iteration. (For objects
created outside of loops, the ICA is 0; for brevity, this variation of TNEW is not shown
in Figure 7.) Rule TLOAD types variable a with an unknown type �. This handling is
over-conservative for the purpose of soundness. Our implementation improves this by
consulting a points-to graph that is computed on demand.

Type environment join ($) needs to be performed in order to handle different control
flow paths of an if-else statement (in Rule TIF-ELSE). Joining two environments

Static Detection of Loop-Invariant Data Structures 749

Γ, μ̃ � a = null : Γ ′
[a �→ ⊥], μ̃[a �→ ∅], ∅, ∅ (TASSIGN-NULL)

Γ ′ = Γ [a �→ τ̃] τ̃ .o = alloc τ̃ .π̃ = 〈l , 1〉
Γ, μ̃ � a = new refalloc : Γ

′
, μ̃[a �→ ∅], ∅, ∅

(TNEW)

Γ, μ̃ � a = b : Γ [a �→ Γ (b)], μ̃[a �→ μ̃(b)], ∅, ∅ (TASSIGN)

τ̃ = Γ (b) μ̃′ = μ̃[a �→ μ̃(b) ∪ {τ̃ .f}]
Γ, μ̃ � a = b.f : Γ [a �→ �], μ̃′, ∅, ∅ (TLOAD)

τ̃1 = Γ (a) Ω̃ =
⋃

{τ̃1.f � τ̃i.gi | τ̃i.gi ∈ μ̃(b) ∪ μ̃(a)}
τ̃2 = Γ (b) H̃ = {τ̃1 �f τ̃2} if τ̃1 �= ⊥ and τ̃2 �= ⊥, ∅ otherwise

Γ, μ̃ � a.f = b : Γ, μ̃, H̃, Ω̃
(TSTORE)

Γ, μ̃ � e1 : Γ ′, μ̃′, H̃1, Ω̃1 Γ ′, μ̃′ � e2 : Γ ′′, μ̃′′, H̃2, Ω̃2

Γ, μ̃ � e1; e2 : Γ ′′, μ̃′′, H̃1 ∪ H̃2, Ω̃1 ∪ Ω̃2

(TCOMP)

Γ, μ̃ � e1 : Γ
′
, μ̃

′
, H̃1, Ω̃1 Γ, μ̃ � e2 : Γ

′′
, μ̃

′′
, H̃2, Ω̃2

Γ, μ̃ � if (∗) then e1 else e2 : Γ ′ � Γ ′′, μ̃[∀v.(v �→ μ̃′(v) ∪ μ̃′′(v))], H̃1 ∪ H̃2, Ω̃1 ∪ Ω̃2

(TIF-ELSE)

Γ [∀v.(v �→ (Γ (v).o)(Γ (v).π̃j⊕1))], μ̃ � e : Γ, μ̃, H̃ , Ω̃

Γ, μ̃ � whilej (∗) do e : Γ, μ̃, H̃ , Ω̃
(TW)

Fig. 7. Typing

(rules 1-4 in Figure 8) needs to consider both allocation sites and abstract loop iteration
counts contained in types. If two types τ̃1 and τ̃2 do not have the same allocation sites
o (rule 2), performing join on them yields �. Otherwise, their loop status abstractions
τ̃1.π̃ and τ̃2.π̃ are forced to join (rule 3). Loop labels (π̃.l) in the two status pairs have
to be the same because they are associated with the same allocation site. Joining ICAs
ĩ1 and ĩ2 is shown in rule 4: if ĩ1 = ĩ2, the result is �, meaning that nothing is known
about the iteration where the object is created. A finite-height type lattice can be defined
based on the operations in Figure 8, with� and⊥ as the maximum and minimum types
in the lattice. Types with different allocation sites are not comparable.

In the beginning of each loop iteration (shown in rule TW), the ICA of each type
(whose allocation site is under loop j) in the type environment is incremented by using
operator ⊕, which is defined in Figure 8 (rule 5). The goal of this is to “clear the loop
status” of the objects that are carried over from the last iteration, so that these (old)
objects and the fresh objects created in the current iteration can be distinguished. Note
that a fixed point is computed for the handling of loops: while each iteration of the loop
may yield a different solution, the fixed-point solution must not be smaller than this
solution.

Next, we explain how to detect data structures whose objects are guaranteed to be
allocated in the same loop iteration, using the type and effect system.

Lemma 1. (Connected objects created in the same iteration). For each heap points-to
effect τ̃1�f τ̃2 ∈ H̃ , if τ̃1.π̃.̃i = τ̃2.π̃.̃i = 1 for a particular loop j (i.e., τ̃1.π̃.l = τ̃2.π̃.l =
j), in each iteration of j where an instance of τ̃1.o and an instance of τ̃2.o are connected
by a store operation, these instances must be allocated in this same iteration.

750 G. Xu, D. Yan, and A. Rountev

[Join of Γ]

(1) Γ1 � Γ2 = Γ3, where ∀a ∈ DOM(Γ3), Γ3(a) =

⎧
⎨

⎩

Γ1(a) if a ∈ DOM(Γ1) and a /∈ DOM(Γ2)
Γ2(a) if a ∈ DOM(Γ2) and a /∈ DOM(Γ1)
Γ1(a) � Γ2(a) if a ∈ DOM(Γ1) ∩ DOM(Γ2)

(2) τ̃1 � τ̃2 =

⎧
⎪⎪⎨

⎪⎪⎩

τ̃1 if τ̃2 = ⊥
τ̃2 if τ̃1 = ⊥
(τ̃1.o)

τ̃1.π̃
τ̃2.π̃ if τ̃1.o = τ̃2.o
� otherwise

(3) π̃1 � π̃2 = 〈π̃1.l , π̃1 .̃i � π̃2 .̃i〉

(4) ĩ1 � ĩ2 =

{
ĩ1 if ĩ1 = ĩ2
� otherwise

[Operator ⊕]

(5.1) π̃j ⊕ 1 =

{
〈π̃.l , π̃.̃i ⊕ 1〉 if π̃.l = j
π̃ otherwise

(5.2) ĩ⊕ 1 =

{
1 if ĩ = 0
� otherwise

Fig. 8. Auxiliary operations

Proof sketch. Consider a specific iteration k of j. If both objects are allocated in this
iteration, their corresponding abstract iteration counts π̃1 .̃i and π̃2 .̃i are both updated to
1 upon their creation (rule TNEW). In the very beginning of the next iteration k + 1,
τ̃1.π̃.̃i and τ̃2.π̃.̃i will be incremented to � (rule TW) because these objects are carried
over from the last iteration. If in this iteration, both of their allocation sites are executed
again, the two ICAs (for the two new instances) are set back to 1 (rule TNEW). This
process (of setting the ICAs to� and then 1) is repeated if these allocations are executed
during every iteration of j until j terminates. However, if one of the allocation sites (say
o1) is not executed in iteration k + 1, its corresponding ICA τ̃1.π̃.̃i will keep the value
�. Hence, at the end of iteration k + 1, τ̃1.π̃.̃i = � and τ̃2.π̃.̃i = 1. Because the final
solution Γ is a fixed point and � is greater than any other abstract value, � will be
recorded in Γ for τ̃1.π̃.̃i even though o1 may allocate instances again later in the loop.

Note that τ̃1.π̃.̃i = τ̃2.π̃.̃i = 1 does not necessarily indicate that τ̃1.o and τ̃2.o are ex-
ecuted in every iteration of loop j. Their ICAs are 1 as long as their instances cannot
escape from the iteration where they are created to the next iteration of the loop. This fea-
ture allows the analysis to report potentially-hoistable data structures even though their
construction code (i.e., stores that connect objects in them) is guarded by conditionals.

Similarly, given a dependence effect τ̃1.f - τ̃2.g, if τ̃1.π̃.̃i = τ̃2.π̃.̃i = 1 for a loop j,
we can safely conclude that this whole dependence (i.e., computation) chain from τ̃1.f
to τ̃2.g occurs in the same iteration of j, because there are only stack variables between
the two end heap locations of the chain.

3.2 Hoistable Logical Data Structures

In this subsection, we introduce the notion of hoistable logical data structures based
on the points-to and dependence effect abstractions computed by the type and effect
system. As discussed earlier, here we address the question “what data is hoistable in
the best scenario”—that is, to find hoistable logical data structures that meet the two

Static Detection of Loop-Invariant Data Structures 751

criteria discussed in Section 2. Whether and how they can actually be hoisted will be
decided by the user upon inspection. This subsection presents mathematical properties
of hoistable data structures.

Definition 1. (Constrained closures of H̃ and Ω̃) Constrained closures of H̃ and Ω̃ are
represented by relations �∗

j,ĩ1,ĩ2
and -∗

j,ĩ1,ĩ2
, where parameters j, ĩ1, and ĩ2 denote

a loop label, a lower bound, and an upper bound of ICAs, used to compute transitive
relationships. We define order ≤ on the ICA domain ĩ as 0 ≤ 1 ≤ �.

(1) Closure �∗
j,ĩ1,ĩ2

(on H̃) selects a set of data structures (whose nodes are types),

in which each edge has the form oπ̃1
1 � oπ̃2

2 ∈ H̃ , s.t. π̃1.l = π̃2.l = j, ĩ1 ≤ π̃1 .̃i ≤ ĩ2,
ĩ1 ≤ π̃2 .̃i ≤ ĩ2.

(2) Similarly, closure -∗
j,ĩ1,ĩ2

(on Ω̃) selects a set of computation chains, in which

each edge has the form oπ̃1
1 - oπ̃2

2 ∈ Ω̃ , s.t. π̃1.l = π̃2.l = j, ĩ1 ≤ π̃1 .̃i ≤ ĩ2, ĩ1 ≤
π̃2 .̃i ≤ ĩ2.

Note that constraint ĩ1 ≤ π̃.̃i ≤ ĩ2 is used to compute these closures: τ̃1 �f τ̃2 (or
τ̃1.f - τ̃2.g) is added into the closure �∗

j,ĩ1,ĩ2
(or -∗

j,ĩ1,ĩ2
) only when the ICAs τ̃1.π̃.̃i

and τ̃2.π̃.̃i are “between” the specified parameters ĩ1 and ĩ2. For example, the general
closures�∗ and-∗ are special cases of their constrained closures when ĩ1 = 0, ĩ2 = �,
and j is an arbitrary loop label. It is also easy to see that �∗

j,0,0 selects data structures
whose objects are all created outside loops. Similarly, a data structure selected by�∗

j,0,1

is such that its objects can be created both inside and outside loop j, and the set of inside
objects in any run-time instance of the data structure are always allocated in the same
iteration. Using constrained closures, we give the following definitions.

Definition 2. (Disjoint Data Structure (DDS)) For an allocation site p located in loop
j, a data structure (denoted as δjp) rooted at p with respect to loop j is a graph whose

edge set is a subset of H̃ . Its run-time instances are guaranteed to be disjoint if, for any
edge τ̃1 �f τ̃2 of the data structure, there exists a type τ̃ for p, s.t.

τ̃ .o = p ∧ τ̃ .π̃.̃i = 1 ∧ τ̃ �∗
j,1,1 τ̃1 ∧ τ̃ �∗

j,1,1 τ̃2

A DDS contains objects that are reachable from root p and that are created in the loop.
Each run-time instance of a DDS is guaranteed not to contain any object instance
created (1) outside the loop and (2) inside the loop but in different iterations. This is
achieved by using constraint (j, 1, 1) for the closure computation.

Lemma 2. (Disjointness of DDS instances) Given two run-time instances of a DDS δlp
created by two iterations of a loop, no run-time object exists in both instances.

Proof sketch. The lemma can be proved by contradiction. Suppose there is a run-time
object that exists in both instances of the data structure. At the point it is added into the
second data structure instance (created by a later iteration), the abstract loop iteration
count for j contained in its type must be �, which is recorded in the abstract points-to
effect that represents this addition. This contradicts the fact that δlp is constructed using
closure�∗

j,1,1, which limits the abstract iteration count for each type to be 1. �

752 G. Xu, D. Yan, and A. Rountev

Definition 3. (Iteration-Dependent Field) A field of the form τ̃ .f is loop-iteration-
dependent (LID) with respect to loop j if

(a) ∃τ̃ ′.g : τ̃ .f -∗
j,0,� τ̃ ′.g ∧ (τ̃ ′ = � ∨ τ̃ ′.π̃.̃i = �)

∨ (b) ∃τ̃ ′.g : τ̃ ′.π̃.̃i = 0 ∧ τ̃ .f -∗
j,0,1 τ̃

′.g ∧ τ̃ ′.g -∗
j,0,1 τ̃

′.g

Determining whether the value of an object field depends on a specific loop iteration
requires to inspect abstract dependence effects. As discussed in (condition 2 of) Sec-
tion 2, a field can be iteration-dependent if (1) it depends on a value read from a field
of an unknown object or an object created in an unknown (different) iteration, or (2)
it depends on a field of an object created outside the loop (e.g., τ̃ ′.g), and this field is
involved in a dependence cycle (i.e., it can transitively depend on itself).

Lemma 3. (Loop-Invariant Data Structure) A data structure is loop-invariant if for
each type τ in the data structure, ∀τ̃ .f ∈ DOM(Ω̃) : τ̃ .f is not an LID field.

Proof sketch. Let us negate the two conditions in Definition 3, that is, a loop-invariant
field o.f can depend only on (1) fields of objects guaranteed to be created in the same
iteration with o, or (2) fields of objects created outside the loop and not involved in
dependence cycles. For (1), the proof can be done by induction on the chain of depen-
dence edges leading to o.f . In the base case, fields without any incoming dependence
edge must be assigned newly created objects or null, and thus must be loop-invariant.
For the inductive step, consider the n-th edge along the chain. If the source field of the
edge is loop-invariant, the target field of the edge must also be loop-invariant.

For (2), let us first consider a simplified situation where there is only one outside
object field p.q (i.e., p is created outside the loop) involved in the dependence chain.
Here are two subcases. First, field o.f (o is an object created inside the loop) depends
on p.q and p.q is never written in the loop. It is straightforward to see that p.q does not
carry any iteration-specific values and thus o.f is loop-independent.

Second, suppose field p.q is written in iteration i with a value v produced in iteration
i′. Here i must equal i′, because otherwise o.f could depend on a value computed in a
different iteration, which contradicts the statement in (1). Since value v cannot depend
on p.q (otherwise p.q would depend on itself), it must come only from objects freshly
created in this iteration. Based on the proof of case (1), we know that v must be loop-
invariant. If p.q is read later in iteration k > i to produce another value v′, v′ must
also be the same across iterations because p.q is invariant. This reasoning can be easily
generalized to handle the more complex situation where multiple outside object fields
exist in the dependence chain. �

Definition 4. (Hoistable Logical Data Structure (HDS)) If a data structure δjp is a
hoistable logical data structure if it is (1) disjoint and (2) loop-invariant.

A HDS can exhibit exactly the same behavior at run time when it is located inside the
loop and outside the loop, under the assumption that the code statements that access
this data structure can be safely hoisted. In fact, instead of reporting only completely-
hoistable data structures, our analysis identifies, for each logical data structure, its

Static Detection of Loop-Invariant Data Structures 753

hoistable part (that is both disjoint and loop-invariant). The analysis eventually ranks
all loop data structures based on their hoistability measurements, in order to quantify
the likelihood of successful manual hoisting.

3.3 Analysis Algorithm

This subsection briefly discusses our analysis algorithm, which, for the first time, uses a
context-free-language (CFL)-reachability formulation to compute the context-sensitive
dependence and ICA information. The CFL-reachability formulation enables a demand-
driven analysis that can work on each individual object in the loop and explore the
points-to and the dependence relationships only for the fields of this object without
performing a whole-program analysis. The analysis has three logical components. The
first component is a data structure analysis. In order to discover the data structure rooted
at an object, this analysis employs a variation of the CFL-reachability formulation of
points-to analysis [5], which models both context sensitivity via method entries and
exits and heap accesses via object fields read and writes. For each loop in an actual
Java program, data structure root objects are first located. To find such root objects, we
first consider objects that are created directly in the loop body. Objects that are created
in a method (e.g., used as a factory) invoked by a call site in the loop and that can be
returned to the loop-containing method are also considered.

Next, for each root object o, our analysis identifies the set of reachable objects and
their points-to relationships. In particular, the analysis looks for chains of stores of the
form a0.f0 = new X ; a1.f1 = b0; a2.f2 = b1; . . . ; an.fn = bn−1; bn = o, such that
(1) the two variables in each pair (ai, bi) for 0 ≤ i ≤ n are aliases and (2) the CFL
path for this chain contains balanced method entries and exits. If such a chain can be
found, the object represented by new X is in the data structure rooted at o, because it
could potentially be reached from o at runtime through a sequence of field dereferences
fn.fn−1 . . . f1.f0. Using this formulation, our hoisting analysis can be performed on
demand: it can work directly on each loop object, and performs only the work necessary
to detect its data structure and to check its hoistability.

The second component of the analysis is a form of data flow analysis that analyzes
each loop to perform type inference. An abstract heap (points-to and data dependence)
effect is actually the join of data flow facts on all valid paths from the loop entry to the
assignment that connects the two entities in the effect. Aliasing relationships are de-
termined by querying the CFL-reachability-based points-to analysis. The third part is a
form of data dependence analysis that detects loop-invariant object fields. This analysis
traverses backward the def-use chains from each store that writes to a field of an object
in a loop data structure, and checks whether the two conditions in Definition 3 hold for
the field. A key challenge in computing precise data dependences lies in the handling of
data flow via heap locations. Our analysis initially works on top of a context-insensitive
points-to analysis: for each load a = b.f , we find the set of all assignments c.f = d such
that c and b can alias context-insensitively. We next perform refinement on this candi-
date set using the CFL-reachability formulation of pointer-aliasing to find whether b
and c can indeed alias, and if they can, the calling context for c.f = d under which
the value flow occurs. This calling context is used to guide the future graph traversal to
follow the appropriate entry/exit edges.

754 G. Xu, D. Yan, and A. Rountev

4 Computing Hoistability Measurements

In practice, we have observed that only a small number of data structures and statements
in a large program can meet both criteria described in Section 3. This is primarily due to
their complex usage and the conservative nature of any static analysis algorithm, which
must model this complex usage soundly. While fully-automated transformations are
desirable and sometimes possible, the usefulness of the static analyses can be increased
even further by generalizing them to provide valuable support for programmer-driven
manual code transformations.

Previous studies such as [6,7] have demonstrated that, in many cases, manual tun-
ing with developers’ insight can be much more effective than fully-automated compiler
optimizations. For instance, a programmer may quickly identify that it is problematic
to create a 100-field data structure in a loop with only 1 field iteration-dependent, while
the sound transformation would give up and terminate silently. To enlist human effort,
we must present to them highly-relevant information that can quickly direct them to a
problematic area. In this section, we present two metrics that we use to measure hoista-
bility of data structures. These measurements are computed based on the two orthogonal
relationships (i.e., points-to and dependence) that are described earlier in the paper.

Dependence-Based Hoistability. (DH) The first metric we consider measures the
amount of data in a data structure that is constant during the execution of a loop (i.e.,
the part that complies with rule 2 in Section 2). This dependence hoistability metric is
simply defined as an exponential function DH = sn/s, which considers two factors:
the total number of fields s in a data structure and the number of its loop-invariant (i.e.,
non-LID, discussed in Def. 3) fields n. The larger s is, the more performance improve-
ment could potentially be achieved by hoisting it. The larger n/s is, the easier it is for
a programmer to hoist this data structure. If s is 1, the data structure contains a single
field. Even though this field is invariant (i.e., n/s is 1), hoisting it may not have a large
impact on performance. If n/s is a small number (i.e., most of its fields are not invari-
ant), the result of sn/s can be very small (i.e., close to 1) regardless of how large s is,
which also indicates it is not worth spending time as the data structure may be too dif-
ficult to hoist. In addition, we choose an exponential function instead of a polynomial
function as the metric because the exponential function “penalizes” cases where n is
small, while a polynomial function would be “fair” for all cases of n. For example, if
n=s/2 (half the fields are invariant), our exponential function will give the square root
of s, while a polynomial function may give a much larger number.

Structure-Based Hoistability. (SH) Similarly to the first metric, the second metric con-
siders, for each data structure, how many objects in it are guaranteed to be allocated
in the same iteration (i.e., the part that complies with condition 1 in Section 2). This
structural hoistability metric is defined as SH = tm/t, where t is the total number of
objects in the data structure and m is the number of such objects whose ICA is 1. The
value of t is computed by counting the number of objects that are context-sensitively
reachable from the root object of a data structure. It is clear to see that SH considers
both the size of the data structure and the size of its disjoint part. Note that when m/t
is 1, this data structure is a DDS (as discussed in Def. 2), as it is guaranteed to have
disjoint instances in all loop iterations.

Static Detection of Loop-Invariant Data Structures 755

During our studies, we found that DH is much more useful than SH in distinguishing
data structures that are easy to hoist manually from those that are not. First of all, s is
a more accurate measurement of the size of a data structure than t, as the data structure
can still be large if it contains fewer objects but each object has more fields. Second, we
found that for a large number of data structures in our benchmarks, their m/t is 1, which
means they are all DDS. It would be quite labor-intensive to inspect all of them and
check if they are hoistable. To help the programmer quickly identify truly optimizable
data structures, we focus on DDS (whose m/t is 1) and compute dependence-based
hoistability (DH) only for these data structures. Finally, only DDS are ranked (based on
their DH measurements) and presented to the user for inspection.

Incorporating Dynamic Information. For performance tuning, dynamic (frequency)
information is necessary to help programmers focus on “hot” entities (e.g., calling con-
texts, data structures, etc.). For example, it could be more beneficial to hoist a small,
but frequently-allocated data structure than a big, occasionally-occurring data structure.
Frequency information can be easily incorporated into the two hoistability metrics. For
example, for DH , its definition can be simply extended to DDH = (f ∗ s)n/s, where
f represents the allocation frequency of the root object of the data structure.

While these metrics are simple, we show that they are effective in locating data struc-
tures that are mostly hoistable and easy to optimize. In this work, we focus on demon-
strating that the static analyses are useful—even with these simple metrics, the reports
can quickly guide us to data structures that are truly optimizable.

5 Evaluation

We implemented the analysis on the Soot analysis framework [8] and evaluated it on
the 19 Java programs shown in Table 1. All experiments were conducted on a quad-
core machine with an Intel Xeon X3363 2.83GHZ processor, running Linux 2.6.18. The
setup for static analysis (similarly to [9]) used the library classes from Sun JDK 1.5.0 06
and 4GB of max heap space. Programs in the table were from theSPECjvm98,Ashes,
and DaCapo (its 2006 release and a pre-release) benchmark suites. We did not choose
the recent release of DaCapo, because it contains applications making heavy use of
class-loading/reflection, which can prevent any static analysis from producing precise
information. For SPECjvm98, we included only large programs that have loop objects.

5.1 Static Analysis and Hoisting

Table 1 reports statistics of the benchmarks, the analysis, and the dependence-based
hoistability measurements. For a GUI application muffin, we could not find an ap-
propriate test case to perform profiling, and thus, “-” is used to fill out columns that
report dynamic-information-based measurements. We could not perform profiling for
eclipse either, as different plugins use their own class loaders, making it difficult
for them to access our profiling library without modifying their customized class load-
ers. The cost of the analysis is generally proportional to the number of loop objects
processed because of its demand-driven nature. The analysis running time can also
be influenced by the size of the code base, as the analysis is context-sensitive and the

756 G. Xu, D. Yan, and A. Rountev

Table 1. Shown in the first seven columns of the table are the general statistics of the benchmarks
and the analysis: the benchmark names, the numbers of methods (in thousands) in Soot’s Spark
context-insensitive call graph (M), the numbers of loops inspected (Loops), the numbers of loop
objects considered (Obj), the running times of the analysis (Time), the total numbers of disjoint
data structures (DDS), and the total numbers of hoistable logical data structures (HDS). Columns
SF and SIF in section DH (i.e., dependence-based hoistability) show the total numbers of fields
(SF) and the numbers of loop-invariant fields (SIF), averaged among the top 10 DDS that we
chose to inspect. These data structures are ranked based on the dependence-based hoistability
measurement (DH). Columns DF and DIF report the same measurements as SF and SIF, except
that the inspected data structures are ranked using DDH that incorporates dynamic frequency
information.

Benchmark (a) Analysis statistics (b) DH
#M(K) #Loops #Obj Time (s) #DDS #HDS #SF #SIF #DF #DIF

jack 12.5 88 13 1224 5 3 797 62 797 62
javac 13.4 270 89 1745 33 8 45 31 42 28
soot-c 10.4 475 17 3043 7 3 56 36 56 36
sablecc-j 21.4 202 228 7910 82 53 429 194 221 61
jess 12.8 119 32 304 7 1 1135 51 1135 51
muffin 21.4 318 96 10766 47 8 1503 198 - -
jflex 20.2 209 17 2325 9 0 55 17 55 17
jlex 8.2 108 9 5549 4 0 36 6 36 6
java-cup 8.4 99 19 474 4 0 107 57 107 57
antlr 12.9 154 3 77 2 1 3 0 3 0
bloat 10.8 562 141 3476 36 10 1536 136 674 46
chart 17.4 482 102 12746 6 0 84 19 84 19
xalan 12.8 17 8 63 6 0 78 24 78 24
hsqldb 12.5 33 10 178 5 0 75 19 75 19
luindex 10.7 14 5 163 5 0 65 15 65 15
ps 13.5 117 21 1784 21 11 36 20 34 20
pmd 15.3 594 30 168 15 2 127 68 127 68
jython 27.5 614 48 423 24 3 77 25 190 26
eclipse 41.0 3322 93 21557 80 52 1182 180 - -

number of contexts often grows significantly when the size of the program increases.
It is clear that the analysis can scale to large applications, including the eclipse
framework, which has millions lines of code in its implementation.

Across all applications we observe large numbers of disjoint data structures (DDS)
and hoistable logical data structures (HDS). This is a strong indication of the exis-
tence of optimization opportunities that can be exploited by human experts, which mo-
tivates our proposal of computing hoistability measurements to help manual tuning.
To compare the effectiveness of DH (i.e., dependence-based hoistability measurement
proposed in Section 4) and DDH (i.e., the profile-based version of it) in finding opti-
mization opportunities, we inspected the top 10 data structures (or the total number of
data structures if it is smaller than 10) that appear in both reports. The total numbers of
fields / the numbers of loop-invariant fields for these inspected data structures are shown
in columns SF/SIF and DF/DIF, for these two kinds of reports. Profiling is implemented

Static Detection of Loop-Invariant Data Structures 757

by Soot-based bytecode instrumentation that records the execution frequency for each
loop. The goal of this comparison is to understand how much impact the dynamic in-
formation can have on the interpretation of reports. Specifically, can DDH (i.e., the
incorporation of the run-time frequency f) lower the ranks of data structures that are
highly-likely to be optimized (i.e., have larger n/s but smaller f)?

The ratio between SIF (or DIF) and SF (or DF) indicates, to a large degree, the
difficulty of hoisting data structures manually by inspecting the analysis reports. The
larger it is, the easier it may be for a performance expert to modify the data models to
hoist them. It is clear that the ratios of DIF/DF are generally close to those of SIF/SF. In
many cases, the former are even greater than the latter (e.g., bloat). This observation
indicates that DDH can expose not only hot spots (i.e., frequently-allocated objects),
but also optimizable data structures.

5.2 Case Studies

We have carefully inspected the generated analysis reports (with dynamic information
incorporated) for these 19 benchmarks and found optimizable data structures in almost
every one of them. This subsection presents five representative case studies, in which ei-
ther large performance improvement was seen, or interesting bloat patterns were found.
These applications are ps, xalan, bloat, soot-c, and sablecc-j, all with large
code base and a great number of loop objects. The performance problems we show in
this paper are new and have never been reported by any previous work. Performance
improvements are measured on Sun Hotspot 64-bit Server VM build 1.6.0 11.

Through these studies, we found that the analysis is quite useful in helping program-
mers find mostly-loop-invariant data structures and the execution inefficiencies due to
these data structures. It took us about three days to find and fix problems in these five
applications, among which we had studied only bloat before. Note that most of this
time was spent on developing fixes rather than finding data structures that can be easily
hoisted: for each benchmark, we looked at only the top 10 data structures in the reports
(due to the limited time we had), and found that most of them were indeed hoistable.
Even larger optimization opportunities could have been possible if we had inspected
more warnings generated by the tool.

It is important to note that it would not be possible to find such problems by using
any existing profiling tool: to detect loop-invariant data structures, a purely dynamic
analysis has to perform whole-program value profiling, a task that is prohibitively ex-
pensive for large-scale, long-running Java programs. This is the reason why we have
not compared our results with dynamic analysis reports.

ps. ps is a postscript interpreter. The top data structure in the list ranked by DDH
is rooted at a NameObject object created in a loop in method execute of class
makeDictOperatorDB. The loop is used to traverse a stack: for each stack element
(i.e., a NameObject object containing a key and a value), the goal is to remove the ‘/’
character in the key of the element. The way the loop is implemented is that it creates
another (backup) stack, pops the original stack, creates a new NameObject object
with most values copied directly from the original object, and pushes this new object
onto the backup stack. Eventually all the new objects in the backup stack are pushed

758 G. Xu, D. Yan, and A. Rountev

back onto the original stack. The creation of such NameObject objects directs us to
think about this implementation, and especially about the way the stack is operated. In
fact, this process can be done entirely in place so that these objects do not even need to
be created. A further inspection of code found an even more interesting problem. The
programmer seems to ignore the fact that class Stack is a subclass of List in JDK
and uses push and pop to implement everything related to stack. For example, this
same pop-push pattern is used even for element retrieval. For almost each occurrence
of this problematic stack usage pattern, there is a corresponding (mostly loop-invariant)
data structure in our report. We removed only two occurrences of such a pattern (in
makeDictOperatorDB.execute and DictStack.getValueOf), and this re-
sulted in a reduction of 82.1% in running time (from 28.3s to 5.3s) and 70.8% reduction
in the total number of objects created (from 10170142 to 2969354).

xalan. xalan is an XLST processor for XML documents. The problem we found is in
a test harness (XalanHarness) used by DaCapo to run the benchmark. This harness
class creates multiple threads to transform input XML files. In method run, there is a
while(true) loop that assigns jobs to different threads. Our report shows that a data
structure rooted at a Transformer object created in the loop is a HDS (shown in Fig-
ure 1(b)). The same Transformer object is created every time the loop iterates, and then
used by different threads for transforming the input files. It is highly unlikely to auto-
matically hoist this data structure because this object is created by using a transformer
factory object, which is obtained from a reflective call. After hoisting this allocation
site, we observed a 10% reduction in running time and 1% reduction in the number of
objects created. This problem has also been confirmed by the DaCapo maintainers [10]
and will be handled in the next release of the DaCapo benchmark set.

bloat. bloat is a program analysis tool designed for Java bytecode-level optimiza-
tions. Many loop data structures reported by our analysis are objects of inner classes
that are declared exactly at the point where their objects are needed. In bloat, most of
these objects are created to implement visitor patterns. Hence, the objects are used only
for method dispatch and do not contain any data related to the program context under
which they are created. These objects commonly exist in loops, and in many cases we
found them even located in loops with many layers of nesting. This problem exempli-
fies a typical object-oriented philosophy: the programmer should focus on patterns and
abstractions when coding, and leave the mess to the run-time system. By simply hoist-
ing the reported objects (and the declarations of their classes) out of the loops, we saw
11.1% running time reduction and 18.2% reduction in the number of created objects.

soot-c. soot-c is a part of the Soot analysis framework [8] benchmarked in the Ashes
benchmarks [11]. One top data structure reported by our analysis is rooted at a
StmtValueBoxPairobject created in a loop (in a constructor ofjimple.Simple-
LocalUse) that builds def-use relationships as follows:

while(defIt.hasNext()){
List useList = (List) stmtToUses.get(defIt.next());
useList.add(new StmtValueBoxPair(s, useBox));

}

Static Detection of Loop-Invariant Data Structures 759

For each statement s that uses a variable, the program finds a set of statements that
define the variable, creates a StmtValueBoxPair object, and adds it to the list.
These StmtValueBoxPair objects, while containing the same values, are created
for safety purposes: if one such pair is changed later, other pairs should not be affected.
After inspecting the code, we found that the use list associated with each statement
is never changed after the jimple statement chain is constructed for a program. Even
if a client analysis could change it by inserting statements, Soot always creates a new
object to represent this (newly-established) def-use relationship rather than change the
original object. This problem shows a typical example of an over-protective imple-
mentation, where several different mechanisms are used simultaneously to enforce the
same property while one (or a few) of them may be sufficient to do so. By sharing
one StmtValueBoxPair object among multiple def statements, we achieved 2.5%
running time reduction and 3.5% reduction in the number of created objects. In this
example, we can see once again the advantage of tool-assisted manual tuning: this data
structure can never be eligible for hoisting from the perspective of any fully-automated
analysis. However, the human insight did make hoisting happen as it is unnecessary to
have these instances simultaneously.

sablecc-j. sablecc-j is a version of the Sable Compiler Compiler that produces the
sablecc files (parser, lexer, etc.) for a preliminary version of the jimple grammar. Sim-
ilarly to the problems found for bloat, a large number of HDS reported are related
to inner classes: two such classes are declared in sablecc.GenParser to perform
depth-first traversal of syntax trees, and one such class is declared in sablecc.DFA
to represent an interval in a char set. Creating multiple objects for each such class is
completely unnecessary. Hoisting these class declarations and their objects resulted in
6.7% running time reduction and 2.5% reduction in the number of objects created.

Evaluation Summary. While all loop-invariant data should be hoisted out of loops, the
tight data coupling in an object-oriented program makes it impossible for us to do so (ei-
ther automatically or manually). To help programmers focus on data structures that are
(1) easy to hoist and (2) worth hoisting, we propose to compute hoistability measure-
ments. Through these case studies, we demonstrate that our measurements are effective
in pinpointing such data structures. In fact, by inspecting reported data structures, we
found many performance problems and achieved significant performance improvement.
Some invariant data structures that we have managed to hoist are due to (deeper) design
issues such as inefficient implementations of design patterns (e.g., visitors in bloat)
or over-protective implementation strategies (e.g., soot-c). Our measurements were
also helpful in revealing these issues by exposing their symptoms (i.e., mostly-invariant
data structures).

6 Related Work

The related work can be broadly classified into three categories: loop optimizations,
runtime bloat detection techniques, and related static analyses.

Loop Optimizations. In the literature on compiler optimization [2], loop optimizations
are important techniques that, for example, improve locality and make effective use

760 G. Xu, D. Yan, and A. Rountev

of parallel processing capabilities. There is a large body of work on making the exe-
cution of loops faster. This set of techniques includes, for example, loop interchange,
loop splitting, loop unrolling, loop fusion, loop-invariant code motion, etc. In high-
performance computing, loop optimizations play a key role in automated parallelization
for exploiting the parallelism capabilities of the hardware. Broader overview and more
detailed descriptions of these techniques is available from a number of sources (e.g.,
[12,13,14]).

Bloat Detection. Mitchell and Sevitsky [15] introduce a way to find data structures that
consume excessive amounts of memory. Work by Dufour et al. [16] uses a blended es-
cape analysis to characterize the excessive use of temporary objects, which can also be
used to help diagnose performance problems. JOLT [17] is a tool that makes aggres-
sive method inlining decisions based on the identification of regions where a large vol-
umes of temporary objects are observed. The approach from [18] dynamically identifies
inappropriately-used Java collections to detect bloat. Recent work proposes dynamic
analyses [6,7] that detect memory bloat by profiling copy chains and finding low-utility
data structures, and static analysis [9] that finds inefficiently-used data structures. A
detailed overview of the causes of runtime bloat can be found in [19,20].

Different from these existing techniques, our work focuses on loop-invariant data
structures, and aims to help programmers identify them using a series of sophisticated
static analyses. As discussed earlier, it may not be feasible to find such optimizable data
structures using a dynamic analysis, which requires to profile all values generated dur-
ing an execution, a task prohibitively expensive for real-world programs. Bhattacharya
et al. propose an escape-analysis-based static technique [21] that can find reusable col-
lections in a loop. Our analysis is more powerful: we can find general data structures
that have disjoint instances as well as the same shapes and data content.

Related Static Analyses. The loop iteration abstraction is first proposed in [3] for com-
puting their conditional must-not-alias properties. Our abstraction extends this approach
for the purpose of detecting hoistable data structures, by computing ICA-annotated
points-to and dependence relationships. Object inlining [22,23] is a static technique
that finds sets of objects that can be efficiently fused into larger objects, and fuses them.
While both object inlining and our analysis aim to achieve better performance and need
to find objects created in the same control flow region, our analysis targets a different
class of performance problems. In addition, our analysis can assist a programmer to do
manual tuning, a task that is difficult for object inlining to perform. Gheorghioiu et al.
propose a static analysis [24] to identify unitary allocation sites whose instances are
disjoint so that these instances can be preallocated and reused. While this is similar to
the detection of disjoint data structures in our work, we can find more opportunities
such as data structures with loop-invariant data content and shapes.

Work from [4] presents recency abstraction, a technique that distinguishes most-
recently-allocated-object (MRAO) and non-MRAO for each allocation site in order to
enable strong updates for a points-to analysis. While this is similar to our iteration
abstraction that distinguishes objects created in the current iteration and previous itera-
tions, our analysis uses such an abstraction for identifying loop-invariant data structures,
instead of improving the precision of a points-to analysis.

Static Detection of Loop-Invariant Data Structures 761

There exists a body of reachability analyses that can discover shapes of data struc-
tures. Such algorithms range from flow-sensitive approximations of heap shape (e.g.,
[25,26,27]) to decision procedures (e.g., [28,29]). While our approach can be less pre-
cise than these algorithms (especially in handling recursive data structures), its precision
may be sufficient to find hoistable data structures. In addition, our demand-driven anal-
ysis is more scalable and has been shown to run successfully on large-scale applications
including eclipse.

Ownership types [30,31,32,33,34,35] provide a way of specifying object encapsu-
lation and enabling local reasoning about program correctness in object-oriented pro-
grams. While ownership types may be sufficient to select loop data structures and check
whether they are confined, these types cannot detect loop-invariant values, which are
dependence-related properties.

7 Conclusions

This paper presents the first static technique that detects loop-invariant data structures.
We focus on data models and look for logical data structures that can be hoisted. Instead
of transforming the program and hoisting data structures automatically, we propose to
measure the hoistability of a data structure: the dependence-based hoistability metric
measures the amount of loop-invariant data in a data structure. We have implemented
the analyses and presented an evaluation on a set of 19 Java benchmarks. Our exper-
imental results demonstrate that the analysis can scale to large applications and the
measurements can be useful in finding significant optimization opportunities.

Acknowledgements. We thank the anonymous reviewers for their valuable comments.
This material is based upon work supported by the National Science Foundation under
CAREER grant CCF-0546040, grant CCF-1017204, and by an IBM Software Quality
Innovation Faculty Award. Guoqing Xu was supported in part by an IBM Ph.D. Fel-
lowship Award.

References

1. Mitchell, N.: Personal communication (2009)
2. Aho, A., Lam, M., Sethi, R., Ullman, J.: Compilers: Principles, Techniques, and Tools.

Addison-Wesley (2006)
3. Naik, M., Aiken, A.: Conditional must not aliasing for static race detection. In: POPL, pp.

327–338 (2007)
4. Balakrishnan, G., Reps, T.: Recency-Abstraction for Heap-Allocated Storage. In: Yi, K. (ed.)

SAS 2006. LNCS, vol. 4134, pp. 221–239. Springer, Heidelberg (2006)
5. Sridharan, M., Bodik, R.: Refinement-based context-sensitive points-to analysis for Java. In:

PLDI, pp. 387–400 (2006)
6. Xu, G., Arnold, M., Mitchell, N., Rountev, A., Sevitsky, G.: Go with the flow: Profiling

copies to find runtime bloat. In: PLDI, pp. 419–430 (2009)
7. Xu, G., Mitchell, N., Arnold, M., Rountev, A., Schonberg, E., Sevitsky, G.: Finding low-

utility data structures. In: PLDI, pp. 174–186 (2010)

762 G. Xu, D. Yan, and A. Rountev

8. Vallée-Rai, R., Gagnon, E., Hendren, L., Lam, P., Pominville, P., Sundaresan, V.: Optimizing
Java Bytecode Using the Soot Framework: Is It Feasible? In: Watt, D.A. (ed.) CC 2000.
LNCS, vol. 1781, pp. 18–34. Springer, Heidelberg (2000)

9. Xu, G., Rountev, A.: Detecting inefficiently-used containers to avoid bloat. In: PLDI, pp.
160–173 (2010)

10. DaCapo bug repository: Bloat report, http://sourceforge.net/tracker/
?func=detail&aid=2975679&group id=172498&atid=861957

11. Ashes Suite Collection, http://www.sable.mcgill.ca/software
12. Bacon, D.F., Graham, S.L., Sharp, O.J.: Compiler transformations for high-performance

computing. ACM Computing Surveys 26(4), 345–420 (1994)
13. Wolfe, M.: High performance compilers for parallel computing. Addison-Wesley Publishing

Companay (1996)
14. Allen, R., Kennedy, K.: Optimizing compilers for modern architectures: A dependence-based

approach. Morgan Kaufmann Publishers Inc. (2001)
15. Mitchell, N., Sevitsky, G.: The causes of bloat, the limits of health. In: OOPSLA, pp. 245–

260 (2007)
16. Dufour, B., Ryder, B.G., Sevitsky, G.: A scalable technique for characterizing the usage of

temporaries in framework-intensive Java applications. In: FSE, pp. 59–70 (2008)
17. Shankar, A., Arnold, M., Bodik, R.: JOLT: Lightweight dynamic analysis and removal of

object churn. In: OOPSLA, pp. 127–142 (2008)
18. Shacham, O., Vechev, M., Yahav, E.: Chameleon: Adaptive selection of collections. In: PLDI,

pp. 408–418 (2009)
19. Mitchell, N., Schonberg, E., Sevitsky, G.: Four trends leading to Java runtime bloat. IEEE

Software 27(1), 56–63 (2010)
20. Xu, G., Mitchell, N., Arnold, M., Rountev, A., Sevitsky, G.: Software bloat analysis: Find-

ing, removing, and preventing performance problems in modern large-scale object-oriented
applications. In: FoSER, pp. 421–426 (2010)

21. Bhattacharya, S., Nanda, M.G., Gopinath, K., Gupta, M.: Reuse, Recycle to De-bloat Soft-
ware. In: Mezini, M. (ed.) ECOOP 2011. LNCS, vol. 6813, pp. 408–432. Springer, Heidel-
berg (2011)

22. Dolby, J., Chien, A.: An automatic object inlining optimization and its evaluation. In: PLDI,
pp. 345–357 (2000)

23. Lhoták, O., Hendren, L.: Run-time evaluation of opportunities for object inlining in Java.
Concurr. Comput.: Pract. Exper. 17(5-6), 515–537 (2005)

24. Gheorghioiu, O., Salcianu, A., Rinard, M.: Interprocedural compatibility analysis for static
object preallocation. In: POPL, pp. 273–284 (2003)

25. Sagiv, M., Reps, T., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
TOPLAS 24(3), 217–298 (1999)

26. Chang, B., Rival, X.: Relational inductive shape analysis. In: POPL, pp. 247–260 (2008)
27. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis by means

of bi-abduction. In: POPL, pp. 289–300 (2009)
28. Lev-Ami, T., Immerman, N., Reps, T., Sagiv, M., Srivastava, S., Yorsh, G.: Simulating Reach-

ability Using First-Order Logic with Applications to Verification of Linked Data Structures.
In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 99–115. Springer, Hei-
delberg (2005)

29. McPeak, S., Necula, G.C.: Data Structure Specifications via Local Equality Axioms. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 476–490. Springer,
Heidelberg (2005)

30. Aldrich, J., Kostadinov, V., Chambers, C.: Alias annotations for program understanding. In:
OOPSLA, pp. 311–330 (2002)

http://sourceforge.net/tracker/?func=detail&aid=2975679&group_id=172498&atid=861957
http://sourceforge.net/tracker/?func=detail&aid=2975679&group_id=172498&atid=861957
http://www.sable.mcgill.ca/software

Static Detection of Loop-Invariant Data Structures 763

31. Grothoff, C., Palsberg, J., Vitek, J.: Encapsulating objects with confined types.
TOPLAS 29(6), 32 (2007)

32. Clarke, D., Drossopoulou, S.: Ownership, encapsulation and the disjointness of type and
effect. In: OOPSLA, pp. 292–310 (2002)

33. Boyapati, C., Liskov, B., Shrira, L.: Ownership types for object encapsulation. In: POPL, pp.
213–223 (2003)

34. Heine, D.L., Lam, M.S.: A practical flow-sensitive and context-sensitive C and C++ memory
leak detector. In: PLDI, pp. 168–181 (2003)

35. Banerjee, A., Naumann, D.A.: Ownership confinement ensures representation independence
for object-oriented programs. J. ACM 52(6), 894–960 (2005)

Author Index

Ali, Karim 688
Altidor, John 509
Amin, Nada 409
Ancona, Davide 459

Bierman, Gavin 233
Bono, Viviana 560
Budimlić, Zoran 614
Burckhardt, Sebastian 283

Chandra, Satish 435
Chen, Nicholas 79
Cook, William R. 2
Cunningham, David 207

De, Arnab 665
Dhawan, Mohan 333, 383
Dias, Ricardo J. 640
Dietl, Werner 181
Dig, Danny 79
Distefano, Dino 640
Doherty, Jesse 132
Dolby, Julian 435
D’Souza, Deepak 665
Duggan, Dominic 484

Eisenbach, Susan 308
Ernst, Michael D. 181
Ettinger, Ran 713

Fähndrich, Manuel 283

Ganapathy, Vinod 333, 383
Gil, Joseph 356
Grimm, Robert 589
Gudka, Khilan 308

Haller, Philipp 258
Harris, Tim 308
Hendren, Laurie 132
Hill, Brandon 104
Hirzel, Martin 589
Huang, Wei 181

Immerman, Neil 53

Johnson, Ralph E. 79

Karim, Rezwana 333
Kossakowski, Grzegorz 409
Kuśmierek, Jarek 560

Lee, Byeongcheol 589
Leijen, Daan 283
Lhoták, Ondřej 688
Lourenço, João M. 640

Mainland, Geoffrey 233
McKinley, Kathryn S. 589
Meijer, Erik 233
Milanova, Ana 181
Morandat, Floréal 104
Mulatero, Mauro 560

Negara, Stas 79

Odersky, Martin 1, 258, 409
Oliveira, Bruno C.d.S. 2
Östlund, Johan 156
Osvald, Leo 104

Peshansky, Igor 207

Reichenbach, Christoph 53, 509
Robbes, Romain 28
Rompf, Tiark 409
Röthlisberger, David 28
Rountev, Atanas 738
Russo, Claudio 233
Rytz, Lukas 258

Saraswat, Vijay 207
Sarkar, Vivek 614
Schäfer, Max 435
Seco, João Costa 640
Shan, Chung-chieh 333, 383
Shimron, Yuval 356
Smaragdakis, Yannis 53, 509

766 Author Index

Sridharan, Manu 435

Steimann, Friedrich 535

Tanter, Éric 28
Tip, Frank 435
Torgersen, Mads 233

Vakilian, Mohsen 79
Vitek, Jan 104

von Pilgrim, Jens 535

Westbrook, Edwin 614
Wood, Benjamin P. 283
Wrigstad, Tobias 156, 232

Xu, Guoqing 738

Yan, Dacong 738
Yao, Jianhua 484

Zhao, Jisheng 614
Zibin, Yoav 207

	Title
	Preface
	Organization
	Table of Contents
	Keynote 1
	When Compilers Are Mirrors

	Extensibility
	Extensibility for the Masses Practical Extensibility with Object Algebras
	Introduction
	Background
	The Expression Problem
	Algebraic Signatures, F-Algebras, and Church Encodings

	Object Algebras
	Retroactive Interface Implementations
	Extensibility
	Internal Visitors as Object Algebras
	Adding New Variants and Updating Operations
	Subtyping Relations

	Multiple Types and Multi-sorted Object Algebras
	Multiple Types
	Evaluation of Statements: Algebras with Local State

	Modularity and Object Algebra Combinators
	Modular Combination of Algebra Interfaces
	Modular Combination of Algebras
	Combining Operations in Parallel
	Some Final Notes on Extensibility

	Case Study
	Related Work
	Conclusion
	References

	Extensions during Software Evolution: Do Objects Meet Their Promise?
	Introduction
	Background and Related Work
	Extensibility in OOP
	Related Work

	Experimental Setup
	Data Collection
	Data Processing
	Basic Statistics in Squeaksource

	Are Extensions Prevalent?
	Frequency of Extensions in Commits
	Frequency of Extensions in Class Hierarchies and Projects
	Executive Summary

	Comparing Data and Operation Extensions
	Frequency of Both Kinds of Events
	Quantifying the Difference between Kinds of Extension
	Relationship with Size of Hierarchies
	Executive Summary

	Extensions and Evolution
	Introducing Periods
	Evolution of the Ratio of Operation Extensions
	Executive Summary

	Is the Visitor Pattern a Suitable Solution?
	Prevalence of the Visitor Pattern
	How Are Visitors and Visitees Extended?
	Executive Summary

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Conclusions
	References

	PQL: A Purely-Declarative Java Extension for Parallel Programming
	Introduction
	Language Illustration
	Language Constructs Overview
	Examples and Expressiveness
	Beyond Basics

	Implementation and Optimization
	Evaluation
	Benchmark Implementation Details
	Configuration
	Measurement Results
	Discussion

	Related Work
	Conclusions
	References

	Language Evaluation
	Is It Dangerous to Use Version Control Histories to Study Source Code Evolution?
	Introduction
	Research Methodology
	Unit of Code Change

	Research Questions
	How Much Code Evolution Data Is Not Stored in VCS?
	How Much Do Developers Intersperse Refactorings and Edits in the Same Commit?
	How Frequently Do Developers Fix Failing Tests by Changing the Test Itself?
	How Many Changes Are Committed to VCS without Being Tested?
	What Is the Temporal and Spacial Locality of Changes?

	Collecting Code Evolution Data
	AST Node Operations Inferencing Algorithm
	Threats to Validity
	Experimental Setup
	AST Node Operations Inferencing Algorithm

	Related Work
	Empirical Studies on Source Code Evolution
	Tools for Reconstructing Program Changes
	Tools for Fine-Grained Analysis of Code Evolution

	Conclusions
	References

	Evaluating the Design of the R Language
	Introduction
	An R Primer
	The Three Faces of R
	Functional
	Dynamic
	Object Oriented

	A Semantics for Core R
	Corpus Analysis
	The TraceR Framework
	A Corpus of R Code

	Evaluating the R Implementation
	Time
	Memory

	Evaluating the R Language Design
	Functional
	Dynamic
	Objects
	Experience

	Conclusions
	References

	McSAF: A Static Analysis Framework for MATLAB
	Introduction
	Overview
	Intermediate Representations and Simplifications
	High-Level AST
	Simplification Process
	Exposing Implicit Control Flow
	Simplifying Control Constructs
	Simplifying Single Statements and Expressions
	Dealing with Multiple Assignments
	Simplification Dependencies
	Simplification Frequencies

	Analysis Framework
	Traversal Mechanism
	Representations for Flow-Data
	Depth-First Analysis
	Structure-Based Analysis
	Analyses for Language Extensions

	Related Work
	Conclusions and Future Work
	References

	Ownerhsip and Initialisation
	Multiple Aggregate Entry Points for Ownership Types
	Introduction
	Ombudsmen-as-Dominators
	Clarkean Ownership Types
	Ombudsmen
	Typing Ombudsmen
	Components
	Iterators with Ombudsmen
	Staged Aggregate Construction

	Formalizing Ombudsmen
	Static Semantics
	Dynamic Semantics
	Meta Theory

	Related Work
	Discussion
	Ombudsmen and Reuse
	Ombudsmen and Ownership-Based Computational Effects

	Concluding Remarks
	References

	Inference and Checking of Object Ownership
	Introduction
	Unified Framework for Ownership Type Systems
	Framework and Unified Typing Rules
	Universe Types
	Ownership Types

	Heuristic Ranking over Typings
	Objective Function for Universe Types
	Objective Function for Ownership Types
	Maximal Typing

	Unified Type Inference
	Set-Based Solution
	Properties of the Set-Based Solution
	Inference of Universe Types
	Inference of Ownership Types

	Empirical Results
	Implementation
	Results
	Comparing Universe Types vs. Ownership Types

	Related Work
	Conclusion
	References

	Object Initialization in X10
	Introduction
	Initialization Pitfalls in Sequential Code
	The Crux of the Hardhat Design
	Initialization Pitfalls in Concurrent Code
	Initialization Pitfalls in Distributed X10 Code

	X10 Initialization Rules
	Constructors and Inheritance
	Dynamic Dispatch
	Exceptions
	Inner Classes
	Constraints and Default/Zero Values
	Properties and the Class Invariant
	Closures
	Generics and Structs
	Concurrent Programming and Initialization
	Distributed Programming and Initialization
	Read and Write of Fields

	Implementation
	Formalism: FX10
	Syntax
	Type System
	Effect System
	Reduction
	Results

	Related Work
	Conclusion
	References

	Keynote 2: Dahl-Nygaard Junior Award Winner
	Structured Aliasing

	Language Features
	Pause ’n’ Play: Formalizing Asynchronous C
	Introduction
	Background: Async C Extensions in a Nutshell
	Example

	Formalization: Featherweight C 5.0
	Operational Semantics

	Correctness Properties
	Extensions
	Extension 1: Optimized, One-Shot Semantics
	Extension 2: The Awaitable Pattern

	Related Work
	Conclusions
	References

	Lightweight Polymorphic Effects
	Introduction
	Overview
	Effect-Polymorphic Function Types
	Programming with Effect-Polymorphic Functions
	An Extensible Framework for Multiple Effect Domains

	Formalization
	A Multi-domain Effect Lattice
	Subtyping
	Static Semantics
	Examples of Concrete Effect Domains
	Dynamic Semantics
	Effect Soundness

	Lightweight Polymorphic Effects in Scala
	Effect-Polymorphic Methods
	Effect Annotations in Scala
	Practical Experience
	Implementing Concrete Effect Domains

	Related Work
	Conclusions and Future Work
	References

	Cloud Types for Eventual Consistency
	Introduction
	Overview
	Cloud Integers and Cloud Arrays
	Revision Diagrams and Cloud Types
	Execution Model and Eventual Consistency
	Entities
	Stronger Consistency

	Syntax, Types, and Local Semantics
	Client Execution

	System Model and Distribution
	Flush
	Message Protocols and Server State

	Cloud Types
	A Fork-Join Automaton for blackCInt
	A Fork-Join Automaton for blackCString
	A Fork-Join Automata for the Complete State
	Implementation of |CSet|

	Related Work
	Conclusion
	References

	Special-Purpose Analyses
	Lock Inference in the Presence of Large Libraries
	Introduction
	General Approach
	Inferring Accesses
	IDE Transformers
	Graph Representation of Transformers
	Sparsity
	Native Code, Reflection and Dynamic Loading

	Inferring Locks
	Thread-Local Objects (TLA)
	Internal Objects (ILA)
	Single-Threaded Execution
	Multi-granularity Locks
	Other Optimisations
	Deadlock

	Implementation
	Summary Computation
	Reducing Space and Time Requirements

	Evaluation
	Soundness of Halpert et al
	Hello World
	Analysis Optimisations
	GNU Classpath
	HSQLDB
	Comparison with Halpert et al

	Related Work
	Conclusion and Future Work
	References

	An Analysis of the Mozilla Jetpack Extension Framework
	Introduction
	Background and Motivation
	Static Analysis of Jetpack Modules and Addons
	Stages of the Analysis
	Capability Flow: A Concrete Example

	Implementation
	Results
	Capability Leaks
	Capability Use
	Over-PrivilegedModules

	Related Work
	Conclusions
	References

	Smaller Footprint for Java Collections
	Introduction
	Compaction Techniques
	Hash Tables of the JRE
	Fused Buckets Hashing
	Squashed Buckets Hashing
	Virtual Entries
	Time Performance of Fused and Squashed Hashing
	Compaction of Balanced Binary Tree Nodes
	Further Research
	References

	JavaScript
	Enhancing JavaScript with Transactions
	Introduction
	Overview of Transcript
	Design of Transcript
	Components of an Iblock
	Hiding Sensitive Variables

	Security Assurances
	Trusted Computing Base
	Whitelisting for Host Policies

	Implementation in Firefox
	Enhancements to SpiderMonkey
	Supporting Speculative DOM Updates
	Conflict Detection
	The <script> Tag

	Evaluation
	Case Studies on Guest Benchmarks
	Fault Injection and Recovery
	Performance
	Complexity of Policies

	Related Work
	Conclusion
	References

	JavaScript as an Embedded DSL
	Introduction
	Introduction to LMS
	Example: A DSL Program and Its Generated JavaScript Code
	Walkthrough: Defining a DSL Component

	Gradual Typing for Interfacing with Existing APIs
	Typed APIs
	Casting and Optional Runtime Type Checks
	Scala Dynamic
	From Dynamic to Static

	Sharing Code between Client and Server
	Modularity Interlude
	Reification of Objects
	Functions
	Typed Object Literals
	Classes

	CPS Transformation for Asynchronous Code Patterns
	CPS in Scala
	CPS and Staging
	CPS for Suspendable Traversals
	Defining the Ajax API
	CPS for Parallelism

	Evaluation
	Conclusion
	References

	Correlation Tracking for Points-To Analysis of JavaScript
	Introduction
	Motivation
	JavaScript Objects and Functions
	Dynamic Property Accesses

	Field-Sensitive Points-To Analysis for JavaScript
	Correlation Tracking
	Example
	Implementing Correlation Tracking

	Evaluation
	Implementation
	Experimental Setup
	Results

	Other Languages
	Related Work
	Conclusions
	References

	Hardcore Theory
	Soundness of Object-Oriented Languages with Coinductive Big-Step Semantics
	Introduction
	Definition of the Language
	Background
	A Coinductive Semantics
	Type Systems
	Proof of Soundness
	Conclusion and Related Work
	References

	Static Sessional Dataflow
	Introduction
	Actors
	Dataflow Nets
	Type System
	Semantics
	Related Work
	Conclusions
	References

	Java Wildcards Meet Definition-Site Variance
	Introduction
	Background
	Definition-Site Variance
	Use-Site Variance
	A Comparison

	Combining Definition- and Use-Site Variance
	Insights for Combining Variances
	Realistic Complications

	VarJ
	Variance of a Type
	Variance of a Position
	Subtyping
	Typing and Wildcard Capture
	Type Soundness

	Discussion
	Related Work
	Conclusion
	References

	Modularity
	Constraint-Based Refactoring with Foresight
	Introduction
	Motivation
	Examples of the Foresight Problem
	Related Work

	A Brief Recap of Constraint-Based Refactoring
	Constraint Rules
	Conditional Constraints
	Specification of Refactorings

	Constraint Rule Rewriting
	Quantified Constraints
	A Constraint-Based Solution of the Foresight Problem
	Foresight with Constraint Rule Rewriting
	Foresight with Quantified Constraints
	Further Savings
	Basic Algorithm of Constraint-Based Refactoring with Foresight

	Implementation
	Evaluation
	Specification of PULL UP FIELD with Foresight
	Variants of PULL UP FIELD
	Experimental Setup and Results

	Conclusion
	References

	Magda: A New Language for Modularity
	Introduction
	Object-Oriented Languages: Limitations
	Limitations of Composition Mechanisms
	Non-modular Initialization Protocol

	The Magda Language
	Related Work
	Code Reuse Mechanisms
	Modularization of Constructors
	Dealing with Accidental Name Clashes
	Encapsulation in Magda

	Conclusions
	References

	Marco: Safe, Expressive Macros for Any Language
	Introduction
	Marco Overview
	The Marco Language
	The Marco Analysis Framework
	Checking Syntactic Well-Formedness
	Syntax Oracle Algorithm
	Syntax Oracle Example
	Discussion

	Context-Sensitive Syntax
	Context-Sensitive Syntax Examples
	Error Classification
	Iterative Syntax Oracles in Marco

	Checking Naming Discipline
	Free-Names Oracle
	Captured-Name Oracle
	Intentional Capture
	Dataflow Analysis

	Experimental Evaluation
	Methodology
	Expressiveness and Safety
	Language Scalability

	Related Work
	Language-Specific Safe Macro Systems
	Language-Agnostic Unsafe Macro Systems
	Using Messages from Black-Box Compilers

	Conclusion
	References

	Updates and Interference
	Practical Permissions for Race-Free Parallelism
	Introduction
	Fractional Read/Write Permissions
	Storable Permissions
	Gradual Permission Types in HJp
	Syntax and Semantics of Core HJp
	Static Semantics
	Operational Semantics

	Extensions
	Array-Based Parallelism
	Objects Guarded by Critical Sections

	Practical Experience using HJp
	Related Work
	Conclusions
	References

	Verification of Snapshot Isolation in Transactional Memory Java Programs
	Introduction
	StarTM by Example
	Core Language
	Symbolic States
	Symbolic Heaps
	Heap Paths
	From Symbolic Heaps to Heap Paths

	Symbolic Execution
	Past Symbolic Heap
	Symbolic Execution Rules
	Rearrangement Rules
	Fixed Point Computation and Abstraction
	Write-Skew Detection
	Soundness

	Experimental Results
	Related Work
	Concluding Remarks
	References

	Scalable Flow-Sensitive Pointer Analysis for Java with Strong Updates
	Introduction
	Overview
	Access Path-Based Flow-Sensitive Analysis
	Background
	Computing the Set of Access Paths
	Intraprocedural Analysis
	Interprocedural Analysis

	Implementation and Experimental Results
	Related Work
	Conclusion and Future Work
	References

	General-Purpose Analyses
	Application-Only Call Graph Construction
	Introduction
	Background
	Call Graph Construction
	Partial Call Graph Construction

	The Separate Compilation Assumption
	Cgc Overview
	Workflow
	Implementation
	Special Handling of 45java.lang.Object

	Experiments
	Preliminaries and Experimental Setup
	Call Graph Soundness
	Call Graph Precision
	Call Graph Size
	Analysis Performance

	Related Work
	Conclusions and Future Work
	References

	Program Sliding
	Introduction
	Preliminaries
	Control Flow Graph
	Program Scope and State
	Background on Program Dependence

	PDG-Based Sliding
	Source Code Considerations
	Computing the Slice
	Computing the Co-slice
	Correctness Checking and Compensation

	Sliding-Based Refactoring
	Evaluation
	Related Work
	Conclusion
	References

	Static Detection of Loop-Invariant Data Structures
	Introduction
	Overview
	Loop-Invariant Logical Data Structures
	Language, Semantics, and Effect System
	Hoistable Logical Data Structures
	Analysis Algorithm

	Computing Hoistability Measurements
	Evaluation
	Static Analysis and Hoisting
	Case Studies

	Related Work
	Conclusions
	References

	Author Index

