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Chapter 2 
An Overview of Computational Intelligence 
Algorithms 

This chapter provides an overview of selected computational intelligence 
algorithms, which will be required to understand the rest of the book. It begins 
with a review of fuzzy sets and logic, and would gradually explore swarm and 
evolutionary algorithms, and neural nets. The coverage on swarm and 
evolutionary algorithms include Genetic Algorithm, Particle Swarm Optimization 
Bio-geography Based Optimization and Differential Evolution algorithm. 
Supervised, unsupervised and reinforcement learning algorithms will be outlined 
under neural nets. The chapter ends with scope of applications of computational 
intelligence algorithms in call admission. 

2.1   Introduction 

The chapter introduces the foundations of computational intelligence techniques in 
a nutshell. Computational intelligence is a vast family of knowledge comprising of 
several models and techniques, including the logic of fuzzy sets, neurocomputing, 
and swarm and evolutionary computation.  The logic of fuzzy sets provides a 
frame work for uncertainty management in complex reasoning systems. Neural 
nets offer automatic techniques of machine learning and pattern recognition. 
Evolutionary algorithms are widely being used for intelligent search, optimization 
and machine learning. Swarm algorithms are nature-inspired techniques capable of 
imitating nature by judiciously selecting their power of natural optimization in 
identifying food sources. Researchers are taking keen interest to develop newer 
bio-inspired optimization algorithms by imitating the behavior of lower level 
creatures such as ants, bees and swaps.  

The chapter begins with logic of fuzzy sets. It introduces membership functions and 
fuzzy relations with special reference to implication relations. It also reviews fuzzy 
reasoning. Principles of machine learning are introduced through artificial neural 
networks. The chapter provides the basis of learning in biological nervous system, and 
its electrical equivalent model, that too stems from its biological counterpart.  It also 
briefly overviews supervised and unsupervised learning, the basic two learning 
policies that humans normally employ in their natural learning process. The later part 
of the chapter overviews a few swarm and evolutionary algorithms, covering Particle 
Swarm Optimization (PSO), Biogeography Based Optimization (BBO) and Genetic 
Algorithm and Differential Evolution algorithm (DE). 
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2.2   A Review of Fuzzy Sets and Logic 

In a conventional set, the condition defining the set boundaries is very rigid. For 
example, consider a universal set AGE, OLD, VERY OLD, YOUNG, CHILD and 
BABY are subsets of the universal set AGE.  The conventional approach to define 
these sets is illustrated below: 

            
        
  
 
 
 
 
 
 

 
 

In the above definitions age is a variable that may presume any value in the range 
[0, 120] years. It is clear from the definition that the boundary of each set is 
distinct. Thus an age=11 months 29 days is a member of the set BABY, but once it 
is 1 year it falls in the set CHILD. Thus there is a sharp demarcation in the 
boundary definition of the sets BABY and CHILD at age=1 year. Measurements 
in a real world system being highly imprecise, such a sharp demarcation of 2 set 
boundaries may cause a wrong allocation of the members to a given set. 

Another characteristic of a conventional set includes assignment of a grade of 
membership 1 to all its members and 0 to all its non-members. The following 
connotation is used to describe that the membership of an element x in a set A is 1, 
and the membership of a non-element y in the set A is 0. 

  1)( =xAμ                                                        (2.1) 

                 1)( =yAμ                                                         (2.2) 

A fuzzy set extends the binary membership: {0,1} of a conventional set to a 
spectrum in the interval of [0, 1]. Further, unlike a conventional set, all elements 
of the universal set U are members of a given set A. Thus for each element x∈U, 

            1)(A0 ≤≤ xμ .                                       (2.3) 

It needs mention here that as all elements of a universal set U are members of a 
given fuzzy set A, therefore, 2 fuzzy sets A and B may have an overlap in the 
boundary definitions. For example, in contrast to the respective conventional sets: 
BABY, CHILD, YOUNG, OLD and VERY OLD, the corresponding fuzzy sets 
allow any age in the interval [0, 120] years as a member of each of the above sets 
but with different memberships in [0, 1]. As a specific instance, the age 22 is a 
member of all the fuzzy sets but the membership of age (=22) to belong to the sets 
BABY, CHILD, YOUNG, OLD and VERY OLD respectively are 0.001, 
0.01,1.00, 0.60 and 0.20. The above example makes sense in the line of reasoning 

            BABY= {age ∈AGE: 0 year ≤ age <1year}, 

            CHILD= {age ∈AGE: 1 year ≤ age ≤10years}, 

            YOUNG= {age ∈AGE: 19 years ≤ age ≤ 40years}, 

            OLD= {age ∈AGE: 60 years ≤ age < 80years}, 

   and   VERY OLD= {age ∈AGE: 80 years ≤ age < 120 years}. 
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that an age of 22 corresponds to a young person, so the membership of age (=22) 
to be young is high (1.00). The relative grading of the other memberships thus can 
be easily understood from the usual meaning of the terms BABY, CHILD, OLD 
and VERY OLD.  A fuzzy set thus can be formally defined as follows. 

 
Definition 2.1: A fuzzy set A is a set of ordered pairs, give 

{ }XxxxA A ∈= :)(   , μ                                          (2.4) 

where X is a universal set of objects (also called the universe of discourse) and  
μA(x) is the grade of membership of the object x in A. Usually, μA (x) lies in the 
closed interval of [0,1]. 

It may be added here that some authors [1] relax the range of membership from 
[0, 1] to [0, Rmax] where Rmax is a positive finite real number. One can easily 
convert [0, Rmax] to [0, 1] by dividing the membership values in the range [0, 
Rmax] by Rmax. 

There are other notations of fuzzy sets as well. For instance, the ordered pair (x, 
μA (x)) in the definition of fuzzy set is also written as Axx A /or    )(/ Aμμ   as well. 

Let the elements of set X be nxxx ,........., 21 . Then the fuzzy set XA ⊆  is denoted 

by any of the following nomenclature. 
 

            ( ){ })(,.....()),.......(,()),(, 2211 nAnAA xxxxxxA μμμ=  

 Or      { })(/),........(/),(/ 2211 nAnAA xxxxxxA μμμ=  

 Or      { })(/........)(/)(/ 2211 nAnAA xxxxxxA μμμ +++=     

 Or      { }nnAAA xxxxxxA /)(......../)(/)( 2211 μμμ +++=  

 Or      { }nnAAA xxxxxxA /)(,......../)(,/)( 2211 μμμ=  

 
In this book we used the last option. The details of membership function μA(x) is 
formalized below. 

2.2.1   Membership Functions 

The grade of membership )(xAμ maps the object or its attribute x to positive real 

numbers in the interval [0, 1]. Because of its mapping characteristics like a 
function, it is called membership function. A formal definition of the membership 
function is given below for the convenience of the readers. 

 
Definition 2.2: A membership function )(xAμ is characterized by the following 

mapping: 
   [ ] XxxA ∈→         ,1,0:μ                                        (2.5) 

where x is a real number describing an object or its attribute and X is the universe 
of discourse and A is a subset of X. 
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A question that naturally arises is: how to construct a membership function? 
The following examples provide a thorough insight to the selection of the 
membership functions. 

 
Example 2.1: Consider the problem of defining BABY, CHILD, YOUNG, OLD 
and VERY OLD by membership functions. The closer the age of a person to 0, the 
higher is his/her membership to be a BABY. So, if x is the age of the person, we 
can define BABY as follows: 

{ } )exp()(           )(, xxwherexxBABY BABYBABY −== μμ     (2.6) 

 
  
 
 
 
 
 
 
   
 
 
   
 
 
 

Fig. 2.1 Membership curves for the fuzzy sets: BABY, CHILD, YOUNG, OLD and VERY 
OLD. The x-axis denotes the age in years and the y-axis denotes the memberships of the given 
fuzzy sets at different ages. 

Thus as 1)(    ,0 →→ xx BABYμ . Further, as x increases, )(xBABYμ  decreases 

exponentially. The membership function )(xBABYμ  can also be designed to have a 

controlled decrease with increasing x by including a factor α to x in exp(-x). Thus, 

     0     )exp()( >−= ααμ forxxBABY                          (2.7)                     

Larger the value of α, the higher is the falling rate of )(xBABYμ over x. In a similar 

manner we can define the membership functions for CHILD, YOUNG, OLD and 
VERY OLD fuzzy sets. But before representing them mathematically let us take a 
look at them. 

The membership curves for the fuzzy sets: BABY, CHILD, YOUNG, OLD and 
VERY OLD are shown in Fig. 2.1. The curve for CHILD fuzzy set has the peak at 
some age slightly greater than 0 and has a sharp fall off around the peak. The 
logical interpretation of this directly follows from the meaning of the word child. 
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The membership curve for the fuzzy set YOUNG has a peak at age x=25 and falls 
off very slowly on both sides around the peak. 

As youth is the most charming period of the human beings, we prefer to call 
people YOUNG even if they are away from 25 on either side. If the readers' 
view is different they can allow a sharp falloff of the curve around the age x=25. 
One interesting point to note about the OLD and VERY OLD membership 
curves is that OLD curve throughout has a higher membership than the VERY 
OLD curve until both saturate at age x = 120 years. This is meaningful because 
if someone is called VERY OLD then he must be OLD, but the converse may 
not be true. 

There are many ways to represent the membership functions shown in Fig. 2.1 
by mathematical functions. One such representation is given below: 

 
  0c,b,a          ),xcbx1(ax)x( 22

CHILD  (2.8) 

         0         ],2)25x(exp[)x( 22
YOUNG (2.9) 

         0d                            )dxexp(1)x( 2
OLD  (2.10) 

         0d          ),dx(exp1)x(and VERYOLD  
(2.11) 

The parameters a, b, c and d in the above membership functions are selected 
intuitively by the experts based on their subjective judgement in the respective 
domains. Tuning of these parameters is needed to control the curvature and sharp 
changes on the curves around some selected x-values.                

2.2.2   Continuous and Discrete Membership Functions 

The universe of discourse (or simply the universe) of a fuzzy set may exist for both 
discrete and continuous spectrum. For example, the roll number of students in a 
class is a discrete universe. On the other hand the height of persons is a continuous 
universe as height may take up any values between 4' to 8'. It may be mentioned 
here that a continuous universe is sometimes sampled at regular or irregular intervals 
for using it as a discrete universe.  The membership curve of YOUNG in Fig. 2.1 
may be, for instance, discretized at age x= 18, 22, 24, 28. This is an example of non-
uniform/ irregular sampling as the intervals of sampling 18-22, 22-24, 24-28 are 
unequal. The membership curve of YOUNG may alternatively be sampled at a 
regular interval of age x=18, 20, 22, 24, say. This is an example of uniform/ regular 
sampling. Fig. 2.2(a) and (b) describe the instances of the non-uniform and uniform 
sampling of the YOUNG membership curve. 

2.2.3   Fuzzy Implication Rules 

Reasoning informally refers to generation of inferences from a given set of facts 
and rules. The subject logic is concerned with the formalization of methodology  
 



68 2   An Overview of Computational Intelligence Algorithms
 

and principles of reasoning. Production rules are synonymously called implication 
rules in traditional logic. Implication rules of traditional logic are extended with 
fuzzy linguistic variables. In this section, the implication rules in the classical 
(propositional/ predicate) logic and their extension in fuzzy domain are introduced. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.2 (a) Non-uniform and (b) uniform sampling of the YOUNG membership curve. 
 
 
Let us try to formalize the rule: IF x is a banana and x is yellow THEN x is ripe 

in predicate logic. For this formalization, we define 3 predicates Banana(x), 
Yellow(x) and Ripe(x), where each of these predicates has only 2 possible truth 
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 values: true or false. Using a IF-THEN (implication) operator, the above rule  
can be written as: 

                                       Banana(x), Yellow(x)→Ripe(x). 

where the comma in the left side of the implication sign (→) denotes logical 
conjunction (AND) of the antecedent predicates.  

In order to allow instantiation of the antecedent predicates with the contents of the 
WM, we consider 6 fuzzy sets: YELLOW, VERY-YELLOW, MORE-OR-LESS-
YELLOW, RIPE, VERY-RIPE and MORE-OR-LESS-RIPE. Fuzzy extensions of the 
last rule then may be re-stated as follows: 

   
 Rule 1: IF a banana is YELLOW  
              THEN it is RIPE. 
 Rule 2: IF a banana is VERY-YELLOW 
              THEN it is VERY-RIPE. 
 Rule 3: IF a banana is MORE-OR-LESS-YELLOW 
                   THEN it is MORE-OR-LESS-RIPE. 
         

It may be added here that unlike production systems, the logic of fuzzy sets allows 
firing of these 3 rules concurrently in presence of a data element concerning color 
of a banana in the WM. Thus conflict resolution is not employed in fuzzy logic. 

Formally, let x be a linguistic variable in a universe X, and A1, A2 and A3 are 
three fuzzy sets under the universe X. Also assume that y be another linguistic 
variable in a universe Y and B1 , B2  and B3  are 3 fuzzy sets under Y.  Then the 
implication rules between variable x and y may be described as 

 
         Rule1: IF x is A1 THEN y is B1. 
         Rule2: IF x is A2 THEN y is B2. 
         Rule 3: IF x is A3 THEN y is B3. 
 

Suppose the WM contains x is A', where A' is semantically close to A1, A2 and 
A3 respectively. In the subsequent sections, we demonstrate the evaluation 
procedure of y is B' from the known membership distributions of x is A1, y is B1, x 
is A2, y is B2, x is A3, y is B3 and x is A' 

2.2.4   Fuzzy Implication Relations 

A fuzzy implication relation [2] for a given rule: IF x is Ai THEN y is Bi is 
formally denoted by  

    { }),/(),(),( yxyxyxR
iRi μ=                                     (2.12) 

where the membership function ),( yx
iRμ  is constructed intuitively by many 

alternative ways. One typical implication relations is presented below.  
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Mamdani Implication: Mamdani proposed the following two implication 
functions [7, 12]. 

      )](),([),( yxMinyx
iii BAR μμμ =                                 (2.13) 

OR  )()((),( yxxyx
iiii BAAR μμμμ =                                  (2.14) 

Mamdani implication functions are most widely used implications in fuzzy 
systems and fuzzy control engineering. This implication relation is constructed 
based on the assumption that fuzzy IF-THEN rules are local. For example, 
consider the implication rule: IF height is TALL THEN speed is HIGH. By 
Mamdani's implication function, we do not want to mean: IF height is SHORT 
THEN speed is SLOW. The second rule is rather an example of a non-local rule. 
The knowledge engineer thus has to decide whether he prefers local or non-local 
rules. If he prefers local rules then Mamdani's implication relation should be used. 

2.2.5   Fuzzy Logic  

The logic of fuzzy sets, also called fuzzy logic, is an extension of the classical 
propositional logic from 2 perspectives. First, instead of binary valuation space 
(truth/falsehood) of the propositional logic, fuzzy logic provides a multi-valued 
truth-space in [0, 1]. Secondly, propositional logic generates inferences based on 
the complete matching of the antecedent clauses with the available data, whereas 
fuzzy logic is capable of generating inferences even when a partial matching of 
the antecedent clauses against data elements in WM exists. In this section, we 
present 3 typical propositional inference rules and describe their possible 
extensions in fuzzy logic. 

2.2.6   Typical Propositional Inference Rules  

Let p, q and r be 3 propositions. The following 3 propositional inference rules are 
commonly used for logical inferencing.  

 Modus Ponens: Given a proposition p and a propositional implication 
rule p→q, we can derive the inference q. Symbolically, 

          qqpp →∧ )(                                               (2.15) 

where  denotes a logical provability operator. This above inference rule    
is well known as modus ponens. 

 Modus Tollens: Given a proposition ¬q, and the implication rule p→q, 
we can derive the inference ¬p. symbolically, 

pqpq ¬→∧¬ )(                                         (2.16) 

The above inference rule is known as modus tollens. 
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 Hypothetical Syllogism: Given 2 implication rules p→q and q→r, then 
we can easily derive a implication p→r. Symbolically, 

    rprqqp →→∧→ )()(                              (2.17) 

The above inference rule is popularly known as hypothetical syllogism or 
chain rule. 

2.2.7   Fuzzy Extension of the Inference Rules 

The logic of fuzzy set provides a general framework for the extension of the  
above 3 propositional inference rules. Fuzzy extension of modus ponens, modus 
tollens and hypothetical syllogisms are called generalized modus ponens, 
generalized modus tollens and generalized hypothetical syllogism respectively. 

 
Generalized Modus Ponens (GMP): Consider a fuzzy production rule: IF x is A 
then y is B, and a fuzzy fact: x is A/.  The GMP inference rule then infers y is B/. 
Here A, B, A/ and B/ are fuzzy sets such that A/ is close to A, and B/ is close to B. 
The inference rule also states that the closer the A/ to A, the closer the B/ to B. 
Symbolically, the GMP can be stated as follows: 

 
      Given:      IF x is A THEN y is B. 
      Given:      x is A/ 

     Inferred:    y is B/ 

Generalized Modus Tollens (GMT):  Given a fuzzy production rule: IF x is A 
THEN y is B, and a fuzzy fact y is B/, the GMT then infers x is A/, where the more 
is the difference between B/ and B, the more is the difference between A/ and A. 
Symbolically, the GMT is stated as follows: 

 
      Given:       IF x is A THEN y is B. 
      Given:        y is B/ 

         Inferred:     x is A/. 

Generalized Hypothetical Syllogism (GHS): Given 2 fuzzy production rules: IF 
x is A THEN y is B, and IF y is B/ THEN z is C/, where A, B and C are 3 fuzzy 
sets, and B/ is close to B.  Then the GHS infers : If x is in A then z is in C'.  The 
closer the B/ to B, the closer the C/ to C. Symbolically, we can state this rule as 
follows: 

 
     Given:  IF x is A THEN y is B. 
     Given:  IF y is B/ THEN z is C 

      Inferred: If x is in A then z is in C/. 
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In the above definition of the inference rules, we just mentioned that A/ is close to 
A, B/ is close to B and the like. But we did not mention what we exactly mean  
by "close to". In fact "close to" can take any of the following forms: VERY, 
VERY-VERY, MORE-OR-LESS, NOT, ABOUT-TO, AROUND and other fuzzy 
hedges that mean a fuzzy set A/ are approximately similar to A.  

2.2.8   The Compositional Rule of Inference 

In this section we present the methodology for the evaluation of fuzzy inferences 
for GMP, GMT and GHS. This, however, calls for formalization of a fuzzy rule 
called the compositional rule of inference. The compositional rule of inference is 
usually applied to 2 fuzzy membership distribution, one of which usually have a 
smaller number of linguistic variables. The rule extends the latter membership 
distribution cylindrically, so as to increase its number of linguistic variables to  
the former distribution. The intersection of the former and the resulting 
distribution is then projected to desired axes. The whole process is referred to as 
the compositional rule of inference. How exactly the compositional rule of 
inference is applied to determine the fuzzy inferences in GMP, GMT and GHS is 
presented below. 

2.2.9   Computing Fuzzy Inferences Using GMP 

Given a fuzzy production rule: IF x is A THEN y is B, and a fact y is B/, we by 
GMT infer x is A/. In this section we present the principle of determining the 
membership distribution of x is A/, μA/(x), from the membership distribution of y 
is B/, μB

/(y), and the membership μR(x, y) of the fuzzy relation between the 
antecedent and consequent part of the given rule. The computation involves 
cylindrical extension of μB

/(y) to μB
/ CYL (x, y), then intersection of μB

/ CYL (x, y) 
with μR(x, y) and finally projection of the resulting relation ox X-axis. Thus, 
following the same steps as in the case of GMP, it can  easily be shown that 

{ }[ ]. ),(),(max)( yxytx RB
Yy

A μμμ ′
∈

′ =                              (2.18) 

When μB
/(y) and μR(x, y) are discrete relations represented by a row vector and a 

matrix respectively, we can represent the above result by the following max-min 
composition operation: 

[ ]TRBA yxyx ),()()( μμμ ′′ =                                            (2.19) 

where T denotes the transposition operator over the given relation. 
 

Example 2.2: This example illustrates the computation of GMP using max-min 
composition operator. 



2.3   Neural Nets 73
 

We take the same μR(x, y) as in Example 2.1, and the μB/(y) we obtained as the 
result in that example, and plan to determine μA/(x) by the compositional rule of 
inference. Thus, 

[ ] [ ]

[ ]7.0    9.0   8.0                                                 

5.06.07.0

9.05.06.0

5.06.08.0

9.0   6.0  8.0),()()(

=
















== ′′

T

T
RBA yxyx  μμμ  

It may be noted that μA
/(x) thus obtained is not same as that presumed in  

Example 2.2.                                                                                              

2.3   Neural Nets 

This section provides an introduction to biological neural networks and their 
mathematical models called artificial neural networks. Neural networks have 
proved them successful in pattern recognition, system identification, function 
approximation and many others. 

2.3.1   Biological Neural Networks 

The human nervous system consists of small unicellular structures called neurons. 
Neurons thus are fundamental units or building blocks of a biological nervous 
system.  A neuron comprises of 5 elements: dendrite, Dendron, cell body, synapse 
and axon (Fig. 2.3). The dendrites receive signals from other neurons, muscles or 
sensory organs and carry them to a relatively thick fiber called Dendron. The 
Dendron carry the signals to the cell body, which in turn generates a composite 
signal based on the strength of the signals received from the dendrites. The 
composite signal is transmitted to the synapse through the axon (Fig. 2.3).  

The synapse is like a potential barrier that controls the flow of signal from the 
axon of one neuron to the dendrites of other neurons. The transmission of signals 
from one neuron to another at a synapse is a complex chemical process. Generally, 
a specific chemical called neuro-transmitter is released from the transmitting end of 
the synapse. The transmitters lower or raise the potential barrier of the synapse. On 
lowering the potential barrier, the signal from the transmitting end can easily reach 
the other end of the synapse. On raising the barrier, a signal loss takes place and 
only a small component of the signal can reach the other end of the synapse. Flow 
of signal from one neuron to the others thus can be controlled by the synapse. 
When the influence of the synapse tends to activate the post-synaptic neuron, the 
synapse is called excitatory. On the other hand, when the synapse prohibits the 
passage of signal flow to the post-synaptic neuron, the synapse is called inhibitory. 
The synaptic ending of an axon thus is of excitatory or inhibitory nature. 

How the neurons participate in the learning process of the human beings 
remained a mystery till this date. However, it is evident that the process of 
learning has a correspondence with the type and amount of neuro-transmitters 
released at the pre-synaptic end of the neurons. Thus for similar sensory/control/ 
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motor actions a neuron releases the same type and amount of neuro-transmitters. 
How exactly the neurons perform the above task is an interesting topic of research 
for the biologists and medical researchers. 

   

 Dendrites 

Axon 

Synapse 

Nucleus 

Cell body 

Dendron 

 

Fig. 2.3 A Biological Neural Net comprising of two neurons, where the dendrites of the 
second neuron receive signal from the synapse of the first neuron. 

2.3.2   Artificial Neural Networks 

Artificial neural networks are electrical analogue of the biological nervous system. 
A typical artificial neuron is mathematically represented by two modules: i) a linear 
activation/ inhibition module and ii) a non-linearity that limits the signal levels 
within a finite band. Fig. 2.4 presents the typical organization of an artificial neuron. 

The summer in Fig. 2.4 takes the role of the cell body and the inputs of the 
summer may be treated like dendrites. The synapse is modeled by a non-linear 
function and the connection from the summer to the non-linear unit is like the 
axon. Here, Net is a linear combiner of the inputs x1, x2, …, xn. Mathematically, 

                             
=

=
n

i
ii xwNet

1

                                               (2.20)                                         

where some of the inputs are excitatory (positive) and the rest are inhibitory 
(negative). ‘Out’ in the present context can take different mathematical forms. 
Some of the common forms are presented below. 

)( thNetuOut −=                                  (2.21) 

)(NetSgnOut =                                                       (2.22) 
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                     [ ])exp(1/1 NetOut −+=                                       (2.23) 

     )2/tanh(NetOut =                                             (2.24) 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.4 A Typical Artificial Neuron 

The mathematical form of Out can be smooth functions like sigmoid vide 
expression (2.23) or tanh vide expression (2.24) and sharp changing functions like 
step vide expression (2.21) or signum function (vide expression (2.22)) 
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Fig. 2.5 A Feed-Forward Neural Net of 3 Layers 

The unit step function u in expression (2.21) is formally defined as follows: 
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)(                                      (2.25)  
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The signum function Sgn in expression (2.22) is formally defined as 

   




−
>+

=
otherwise

Net
NetSgn

       ,1

0          ,1
)(                              (2.26) 

The definitions of sigmoid and tanh are very standard and thus need no further 
explanation. Neurons in an artificial neural net are connected in different 
topological configurations. Two most common type of configurations are i)feed-
forward and ii) feedback topology. Usually, a feed-forward network contains a 
number of layers, each layer consisting of a number of neurons (Fig. 2.4). Signal 
propagation in such networks usually take place in the forward direction only, i.e., 
signals from the i-th layer can be propagated to any layer following the ith layer, 
for i≥1. In a recurrent neural network, there exists feedback from one or more 
neurons to others. Fig. 2.6 describes a recurrent network. 

The most important aspect of an artificial neural net is its capability of learning. 
In the next section, we introduce the concepts of learning on artificial neural nets. 

 

Fig. 2.6 A Typical Recurrent Neural Net 

2.3.3   Principles of Learning in a Neural Net 

Informally “encoding” or “learning” refers to adaptation of weights in a neural 
net. Thus until the weights converge to a steady state value, the process of 
encoding is continued. Adaptation of weights can be accomplished in a neural net 
by 4 different ways; they are supervised learning, unsupervised learning, 
reinforcement learning and competitive learning. A brief outline to the learning 
schemes is presented below.              

♦Supervised Learning: Supervised learning generally employs a trainer, who 
provides the input-output training instances of a given neural net. As an 
example, let us consider a pattern recognition problem, where we need to 
recognize an object from its feature- space. Here, the set of features such as size 
of the object and its shape described by its boundary descriptors, for instance, 
may be considered as input, while the type of the object such as books, pencils 
etc. may be treated as output of the neural net. Thus for n distinct objects, we 
require n-outputs of the neural net, each corresponding to one object. 
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When one of n-outputs has the maximum value, the object is regarded to fall 
within the particular class. Further for a large n, we can denote the output class by 
an encoded number, such as binary string. Thus for a given input feature vector, if 
a binary string 0011 appears at the output, we consider the object to belong to 
class 3.  

Fig. 2.7 describes a scheme for supervised learning. Here, given a input vector I 
and a target vector T, we need to fix the weights in the network, such that T is 
produced at the output of the network when excited with the input I. How can we 
achieve this? First, we initialize the weights randomly. Then for the given input 
vector I, suppose the network generates the vector O at its output. An error vector 
E = T – O is then generated, and a supervised learning algorithm is used to adjust 
the Network parameters based on the error vector.                               

 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
                       
 
 
 
               
 
 
 
 

Fig. 2.7 A Simple Supervised Learning Scheme. 

2.4   Swarm and Evolutionary Algorithms 

Problems which involve global optimization over continuous spaces are 
ubiquitous throughout the scientific community. In general, the task is to optimize 
certain properties of a system by pertinently choosing the system parameters.  
For convenience, a system's parameters are usually represented as a vector.  

Input vector I 

Feed-Forward Neural Net

Output Vector O

Target/ Desired Vector T

+

-

Supervised learning 
algorithm 

Adjustment of 
network 
parameters 
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The standard approach to an optimization problem begins by designing an 
objective function that can model the problem's objectives while incorporating any 
constraints. In a complex real life search problem, the search space may be a 
rough landscape, riddled with multiple local maxima/minima.  

The objective function is very often non differentiable and/or discontinuous at  
a number of points. As for example consider the following functions shown in  
Fig. 2.8. Since the derivative based methods are of no help, other methods, 
combining mathematical analysis and random search came up for them. Imagine 
you scatter small robots in a Mountainous landscape. Those robots can follow the 
steepest path they found. When a robot reaches a peak, it claims that it has found 
the optimum. This method of hill climbing is very efficient, but there's no proof 
that the optimum has been found, each robot can be blocked in a local optimum. 
This type of method only works with reduced search spaces. 

To tackle this kind of numerical optimization tasks over continuous search 
spaces, in 1995, two different algorithms were developed. First of them is the 
Particle Swarm Optimization (PSO) [3] while the second one goes by the name 
Differential Evolution (DE) [4]. Both of these algorithms do not require any 
gradient information of the function to be optimized, uses only primitive 
mathematical operators and is conceptually very simple. Unlike the conventional 
Genetic Algorithms (GA) [5] they can be implemented in any computer language 
very easily and requires minimal parameter tuning. 

 
 

 
 

Fig. 2.8 Functions with Huge Number of Local Minima and Maxima 

Their performance does not deteriorate severely with the growth of the search 
space dimensions as well. These issues perhaps have a great role in the popularity 
of the algorithms within the domain of machine intelligence and cybernetics.  
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2.4.1   Classical PSO 

The concept of function-optimization by means of a particle swarm was 
introduced by James Kennedy and Russel C. Eberhart in an IEEE neural network 
conference paper from 1995 [3]. Suppose the global optimum of an n-dimensional 
function is to be located. The function may be mathematically represented as  

)(),...,,,( 321 Xfxxxxf n


=   where X


 is called the parameter vector which 

actually represents the set of independent variables. The task is to find out such 

a X


, that the function value )(Xf


 is either a minimum or a maximum denoted by 

f* in the search range. If the components of X


 assume real values then the task is 
to locate a particular point in the n dimensional hyperspace which is a continuum 
of such points.  

 
Example 2.3 Consider the simplest two dimensional sphere function given by, 

2

2

2

121 )(),( xxXfxxf +==


 

If  x1 and x2 can assume real values only then by inspection it is pretty clear that 
the global minima of this function is at x1=0, x2=0 i.e. at the origin (0, 0) of the 
search space and the minimum value is f(0, 0) = f* = 0. No other point can be 
found in the x1-x2 plane at which value of the function is lower than f* = 0. Now 
the case of finding the optima is not so easy for functions like this one: 

1)14sin(2)24sin(1)2,1( ++−= πππ xxxxxxf ; 

  

Fig. 2.9 Surface plot of the above-mentioned function 

This function has multiple peaks and valleys and a rough fitness landscape. A 
surface plot of the function is shown in Fig. 2.9. To locate the global optima 
quickly on such a rough surface calls for parallel search techniques. Here many 
agents start from different initial locations and go on exploring the search space 
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until some (if not all) of the agents reach the global optimal position. The agents 
may communicate among themselves and share the fitness function values found 
by them. 

PSO is in principle such a multi-agent parallel search technique. Particles are 
conceptual entities which fly through the multi-dimensional search space. At any 
particular instant each particle has a position and a velocity. The position vector of 
a particle with respect to the origin of the search space represents a trial solution 
of the each problem.       

At the beginning a population of particles is initialized with random positions 

marked by vectors iX


and random velocities iV


. Initial distribution of particles on 

a two dimensional search space may be illustrated in Fig. 2.10. 

  

 
Fig. 2.10 Initial orientation of the swarm on a two dimensional fitness landscape 

The population of such particles is called a ‘swarm’ S. A neighborhood relation 
N is defined in the swarm. N determines for any two particles Pi and Pj whether 
they are neighbors or not.  Thus for any particle P, a neighborhood can be 
assigned as N(P), containing all the neighbors of that particle. Each particle P has 
two state variables:  

Velocity 
Direction of a 
Particle 
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 Its current position )(tx


 

  Its current velocity )(tv


.  

And also a small memory comprising, 

 Its previous best position )(tp


i.e. personal best experience. 

 The best )(tp


of all )(PNP ∈ : )(tg


i.e. the best position found so far in 

the neighborhood of the particle. 

The best )(tp


of all )(PNP ∈ : )(tg


i.e. the best position found so far in the 

neighborhood of the particle. The PSO scheme has the following algorithmic 
parameters: 

 maxV  or maximum velocity which restricts )(tVi


within the 

interval ],[ max masvv− . 

 An inertial weight factor ω [6]. 
 Two uniformly distributed random numbers φ1 and φ2 which respectively 

determine the influence of )(tp


and )(tg


 on the velocity update formula. 

 Two constant multiplier terms C1 and C2 known as “self confidence” and 
“swarm confidence” respectively. 

Initially the settings for )(tp


and )(tg


 are )0()0()0( xgp


==   for all particles. 

Once the particles are initialized, the iterative optimization process begins where 
the positions and velocities of all the particles are altered by the following 
recursive equations. The equations are presented for the dth dimension of the 
position and velocity of the i-th particle. 

 

  ))()(())()(()()1( 2211 tXtgCtXtPCtVtV iddiddidid −+−+=+ ϕϕω                 (2.27)  

   )1()()1( ++=+ tVtXtX ididid         

                              
The first term in the velocity updating formula represents the inertial velocity of 

the particle. The second term  )(tP


 involving represents the personal experience 

of each particle and is referred to as “cognitive part”. 
The last term of the same relation is interpreted as the “social term” which 

represents how an individual particle is influenced by the other members of its 
society.  The velocity updating scheme has been presented in Fig. 2.11, using a 
humanoid agent in place of a particle on the spherical functional surface. After 
having calculated the velocities and position for the next time step t+1, the first 
iteration of the algorithm is completed.  

Typically, this process is iterated for a certain number of time steps, or until 
some acceptable solution has been found by the algorithm or until an upper limit 
of CPU usage has been reached. Once the iterations are terminated, most of the 
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particles are expected to converge to a small radius surrounding the global optima 
of the search space. The ideal distribution of the particles after the algorithm is 
stopped has been shown in Fig. 2.12. 

 
 
 
The algorithm can be summarized in the following pseudo code: 
 
Procedure Particle_swarm_optimization 
set t = 0; 
Initialize φ1, φ2 , Vmax and define N; 
 
While (termination_condition = FALSE) 
{ 
   :Sp ∈∀ calculate )1( +tv


and )1( +tx


using equations (1);   :Sp ∈∀ update 

)1( +tp


with )1( +tx


if ))1(( +txf


is better than ))(( txf


 

     :Sp ∈∀ update )1( +tg


with the best )1( +tp


in N(p); 

} 
 

 

Vi(t) 

Current Position 

φ2.(Pgb-Xi(t))  
 

Best Position found  
By the agent so far (Plb) 

Resultant 
Velocity 
Vi(t+1) 

φ1.(Plb-Xi(t)) 

Globally Best 
Position  

Fig. 2.11 Illustrating the velocity updating scheme of basic PSO 
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Fig. 2.12 Ideal distribution of the particles on a two dimensional fitness landscape after the 
algorithm is terminated 

2.4.2   Differential Evolution 

In 1995 Storn and Price made an attempt to replace the classical crossover and 
mutation operators in GA by alternative operators [4], and found a suitable vector 
differential operator to handle the problem. They proposed a new algorithm based 
on this operator, and called it Differential Evolution (DE). DE searches for a 
global optimum in a D-dimensional hyperspace. It begins with a randomly 
initialized population of D-dimensional real-valued parameter vectors. Each 
vector, also known as a ‘genome’ or ‘chromosome’, forms a candidate solution to 
the multi- dimensional optimization problem. 

The initial population (at time t = 0) is chosen randomly and should be 
representative of as much of the search space as possible. Subsequent generations 
in DE can be represented by discrete time steps: t = 1, 2, ..., n etc. Since the 
parameter vectors are likely to be changed over different generations the following 
notation has been adopted here for representing the i-th vector of the population at 
the current generation (at time t):       

)]().....(),(),([)( ,3,2,1, txtxtxtxtX Diiiii =


 

For each parameter of the problem, there may be a certain range within which the 
value of the parameter must lie. At the beginning of a DE run, problem parameters 
or independent variables are initialized somewhere in their feasible numerical 

The best Particle  
Conquering the Peak 

Most of the 
particles land in a 
close vicinity of 
the global optima 
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range. So, if the j-th parameter of the given problem has its lower and upper bound 

as  
L
i

x and 
U
i

x respectively, then the j-th component of the i-th population 

member may be initialized as 

          )xx).(1,0(randx)0(x L
j

U
j

L
jj,i −+=                             (2.28) 

where rand(0,1) is a uniformly distributed random number lying between 0 and 1.                                 
For each individual vector Xk(t) belonging to current population, DE randomly 

samples three other individuals Xi(t), Xj(t) and Xm(t) from the same generation 
(for distinct k, i, j and m), calculates the difference of the components 
(chromosomes) of Xi(t) and Xj(t), scales it by a scalar R (є [0,1]) and creates a trial 
offspring vector by adding the result to the chromosomes of Xm(t). Thus for the n-
th component of each parameter vector, we have  
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where CR (є[0,1]) is the crossover constant. This scheme is illustrated in Fig. 2.13. 
To keep the population size constant over subsequent generations, the next step 

of the algorithm calls for ‘selection’ to determine which one between the parent 
and child will survive in the next generation (i.e. at time t+1). DE uses the 
Darwinian principle of “survival of the fittest” in its selection process which may 
be expressed as 

  

                  






>+=
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iii

iiii                         (2.30) 

 
where f(.) is the function to be minimized.  If the new offspring yields a better 
value of the fitness function, it replaces its parent in the next generation; otherwise 
the parent is retained in the population. Hence the population either gets better 
(with respect to the fitness values) or remains the same but never deteriorates.  

The DE algorithm is outlined below: 

Procedure Differential-evolution 
Begin 
     Initialize population; 
     Evaluate fitness; 
     For i=0 to max-iteration do  
     Begin  
      Create Difference-Offspring; 
      Evaluate fitness; 
       If an offspring is better than its parent  
      Then replace the parent by offspring in the next generation; 
      End If; 
    End For; 
End. 
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Fig. 2.13 Illustrating DE in 2-D parameter space 

In the above algorithm, population is at first initialized to random values and 
fitness of each vector is judged according to some predefined cost function. The 
algorithm is then continued to generate population by invoking differential 
evolution and replacing parents by more fit offspring. The algorithm terminates 
when the fitness of the best genome is greater than a predefined value or 
maximum number of iterations has been attained. 

2.4.2.1   Variants of Classical Differential Evolution 

Generally in population-based search and optimization methods, considerably 
high diversity is necessary during the early part of the search to utilize the full 
range of the search space. On the other hand during the latter part of the search, 
when the algorithm is converging to the optimal solution, fine-tuning is important 
to locate the global optimum efficiently. Considering these issues, two new 
strategies [7] were proposed to improve the performance of the DE. 

2.4.2.2   DERANDSF (DE with Random Scale Factor) 

In the original DE [2] the difference vector ))()(( 32 tXtX rr


−  is scaled by a 

constant factor ‘R’. The usual choice for this control parameter is a number 
between 0.4 and 1. We propose to vary this scale factor in a random manner in the 
range (0.5, 1) by using the relation 

  rand(0,1))(1*0.5R +=                                       (2.31) 

where rand (0, 1) is a uniformly distributed random number within the range [0, 
1]. We call this scheme DERANDSF (Differential Evolution with Random Scale 
Factor). 
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The mean value of the scale factor is 0.75. This allows for stochastic variations 
in the amplification of the difference vector and thus helps retain population 
diversity as the search progresses. Even when the tips of most of the population 
vectors point to locations clustered near a local optimum due to the randomly 
scaled difference vector, a new trial vector has fair chances of pointing at an even 
better location on the multimodal functional surface. Therefore the fitness of the 
best vector in a population is much less likely to get stagnant until a truly global 
optimum is reached.   

 

Fig. 2.14 Illustrating DETVSF scheme on two dimensional cost contours OF Ackley 
function 

2.4.2.3   DETVSF (DE with Time Varying Scale Factor) 

In most population-based optimization methods (except perhaps some hybrid 
global-local methods) it is generally believed to be a good idea to encourage the 
individuals (here, the tips of the trial vectors) to sample diverse zones of the 
search space during the early stages of the search. During the later stages it is 
important to adjust the movements of trial solutions finely so that they can explore 
the interior of a relatively small space in which the suspected global optimum lies. 
To meet this objective we reduce the value of the scale factor linearly with time 
from a (predetermined) maximum to a (predetermined) minimum value: 

MAXITiterMAXITRRR /)()( minmax −∗−=                           (2.32) 
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where Fmax and Fmin are the maximum and minimum values of scale factor F, iter 
is the current iteration number and MAXIT is the maximum number of allowable 
iterations. The locus of the tip of the best vector in the population under this 
scheme may be illustrated as in Fig. 2.14. 

2.5   Biogeography-Based Optimization (BBO) 

Biogeography is the study of the distribution of biodiversity over space and time. 
It aims to analyze where organisms live, and in what abundance. Biogeography 
theory grew out of the work of Alfred Wallace [8] and Charles Darwin [9]. This 
gives rise to an interest in the distribution of organisms. The development of 
biogeography allowed scientists to test theories about the origin and dispersal of 
populations, which spurred its application in the field of the engineering. Just as 
what has happened in the past few years with the areas of computer intelligence 
[10, 11, 12], including genetic algorithms (GAs) [13, 14, 15], ant colony 
optimization (ACO) [16, 17, 18, 19], particle swarm optimization (PSO) [20, 21, 
22], biogeography-based optimization (BBO) as a new type of evolutionary 
algorithm (EA) was recently proposed. This newest EA was introduced by Simon 
[23] in 2008 and demonstrated good optimization performance on various 
benchmark functions. In the original BBO paper, it was already proven that it is 
competitive with other famous EAs. If its highest potential is developed and 
applied to more practical problems, it could become a popular EA. 

When a habitat is highly populated, it has many species and thus is likely to 
emigrate many species to nearby habitats, while few species immigrate into it, 
simply by virtue of the lack of room for immigrating species. In the same way, 
when a habitat is sparsely populated, it has few species and thus is likely to 
receive many immigrants, while only a few species emigrate because of their 
sparse populations.  

The issue of whether or not those immigrants can survive after migration is 
another question, but the immigration of new species can raise the biological 
diversity of a habitat and thereby improve the habitat’s suitability for other 
species. At least to this point, biogeography is a positive feedback phenomenon, 
and we regard this phenomenon of biogeography as an optimization process. This 
view of the environment as an optimizing system was suggested as early as 1990s 
[24]. In particular, some people maintain the view that “biogeography based on 
optimizing environmental conditions for biotic activity seems more appropriate 
than a definition based on homeostasis” [25]. In fact, there are many examples of 
the optimality of biogeographical processes to support this view, such as the 
Amazon rainforest [25] and the Krakatoa island phenomenon [26].  

In another view, biogeography has often been considered as a process that 
enforces equilibrium in habitats. Over time, the countervailing forces of 
immigration and emigration result in an equilibrium level of species richness in a 
habitat with a large number of species. Namely, equilibrium can be seen as the 
point where the immigration and emigration curves intersect. The equilibrium 
viewpoint of biogeography was first popularized in the 1960s. Since then the 
equilibrium perspective has been increasingly questioned by scientists.  
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In a word, although the natural phenomenon of biogeographical as an 
optimization process has been challenged, adequate literature and ideas have been 
put forth to explain these challenges. It must be emphasized that optimality and 
equilibrium are only two different perspectives on the same phenomenon in 
biogeography, but this debate opens up many areas of further research for 
engineers.  

As its name implies, BBO as a novel optimization method is based on the 
science of biogeography. The details of the BBO approach will be presented in the 
next section. Just as the mathematics of biology spurred the development of other 
biology-based optimization methods, we can incorporate certain behaviors of 
biogeography into BBO to improve its optimization performance. Some of these 
behaviors include the effect of geographical proximity on migration rates, 
nonlinear migration curves to better match nature, species populations, 
predator/prey relationships, the effect of varying species mobility on migration 
rates, directional momentum during migration, the effect of habitat area and 
isolation on migration rates, and many others. 

  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.15 Species model of a single habitat 

The model of species abundance in a single habitat is shown in Fig. 2.15. The 
immigration rate λ and the emigration rate µ are functions of the number of 
species in the habitat. For the immigration curve, the maximum possible 
immigration rate to the habitat is I, which occurs when there are zero species in 
the habitat. As the number of species increases, the habitat becomes more 
crowded, fewer species are able to successfully survive immigration to the habitat, 
and the immigration rate decreases. The largest possible number of species that 
the habitat can support is Smax, at which point the immigration rate becomes zero. 
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For the emigration curve if there are no species in the habitat then the 
emigration rate must be zero. As the number of species increases, the habitat 
becomes more crowded; more species are able to leave the habitat to explore other 
possible residences, and the emigration rate increases. The maximum emigration 
rate is E, which occurs when the habitat contains the largest number of species 
that it can support. 

The equilibrium number of species is So, at which point the immigration and 
emigration rates are equal. However, there may be occasional excursions from due 
to temporal effects. Positive excursions could be due to a sudden spurt of 
immigration (caused, perhaps, by an unusually large piece of flotsam arriving 
from a neighboring habitat), or a sudden burst of speciation (like a miniature 
Cambrian explosion). Negative excursions from could be due to disease, the 
introduction of an especially ravenous predator, or some other natural catastrophe. 
It can take a long time in nature for species counts to reach equilibrium after a 
major perturbation. 

The immigration and emigration curves in shown in Fig. 2.16 as straight lines 
but, in general, they might be more complicated curves. Now, the probability Ps is 
the habitat contains exactly S species. Ps changes from time t to time ( t + Δ t ) as 
follows 

tPtPtttPttP ssssssss Δ+Δ+Δ−Δ−=Δ+ ++−−  )1( )()( 1 111 μλμλ             (2.33) 

where λs and µs are the immigration and emigration rates when there are S species 
in the habitat. This equation holds because in order to have S species at 

)( tt Δ+ time , one of the following conditions must hold: 

• There were S species at time t, and no immigration or emigration 
occurred between t and  )( tt Δ+ ; 

• There were (S - 1) species at time t, and one species immigrated; 
• There were (S + 1 ) species at time , and one species emigrated. 

 

It is assumed that Δ t is small enough so that the probability of more than one 
immigration or emigration can be ignored. 

Taking the limit of (1) as Δ t → 0 gives equation (2) shown as follows:  

( )
( )
( )












−−

++−−

++∧

=++−
−≤≤+++−

=++−
=

                                        PλP μλ
           11       PμPλsP μλ

                      0S                      PμP μλ

max1s1ssss

max1s1s1s1sss

1s1ssss

SS

SSPs       (2.34)             

Say, maxSn =  and [ ]T
nPPPPP .........210=   

Now, we can arrange the equations of equation (2) into the single matrix 
equation 

APP
o

=                                                        (2.35)  

where the matrix A is given in the following equation: 
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For the straight-line curves shown in Fig. 1, we have 
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Now for special case E= I , then 

Ekk =+ μλ                                                    (2.38) 

According to the simplified form stated in equation (6), the species model will be 
the following type. 

2.5.1   Migration 

Suppose that we have a problem and a population of candidate solutions that can 
be represented as vectors of integers. Each integer in the solution vector is 
considered to be an SIV. The assessment for the goodness of the solutions has to 
be done. The solutions that are good are considered to be habitats with a high 
Habitat Suitability Index (HIS), and those that are poor are considered to be 
habitats with a low HSI. HSI is analogous to “fitness” in other population-based 
optimization algorithms (GAs, for example). 

High HSI solutions represent habitats with many species, and low HSI 
solutions represent habitats with few species. The identical species curve (E = I ) 
is considered for simplicity but the S value represented by the solution depends on 
its HSI. S1 in Fig. 2.16 represents a low HSI solution, while S2 represents a high 
HSI solution. S1 in Fig.2.16 represents a habitat with only a few species, while S2 

represents a habitat with many species.  
The immigration rate λ1 for S1 will be higher than the immigration rate λ2 for S2. 

The emigration rate µ1 for S1 will be lower than the emigration rate µ2 for S2. 
The emigration and immigration rates of each solution probabilistically share 

information between habitats. With probability Pmod, each solution is modified 
based on other solutions. If a given solution is selected to be modified, then the 
immigration rate λ to probabilistically decide whether or not to modify each 
suitability index variable (SIV) in that solution. 
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Fig. 2.16 S1 is relatively a poor solution and S2 relatively a good solution 

If a given SIV in a given solution Si selected to be modified, then the 
emigration rates µ of the other solutions to probabilistically decide which of the 
solutions should migrate a randomly selected SIV to solution Si. 

The BBO migration strategy is similar to the global recombination approach of 
the breeder GA and evolutionary strategies in which many parents can contribute 
to a single offspring, but it differs in at least one important aspect. In evolutionary 
strategies, global recombination is used to create new solutions, while BBO 
migration is used to change existing solutions. Global recombination in 
evolutionary strategy is a reproductive process, while migration in BBO is an 
adaptive process; it is used to modify existing islands. 

To retain the best solutions in the population, some sort of elitism is 
incorporated. This prevents the best solutions from being corrupted by 
immigration. 

2.5.2   Migration Algorithm 

Habitat modification can loosely be described as follows:  
Select Hi with probability proportional to λi 
           If Hi  is selected 
               For j=1 to n 
                     Select Hj with probability proportional to µj 
                                If  Hj is selected 
                                     Randomly select an SIV from Hj 
                                     Replace a random SIV in with 
                end 
         end 
end 
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2.5.3   Mutation  

A habitat’s HSI can change suddenly due to apparently random events (unusually 
large flotsam arriving from a neighboring habitat, disease, natural catastrophes, 
etc.) The model of BBO as SIV mutation, and species count probabilities is used 
to determine mutation rates. 

The probabilities of each species count will be governed by the differential 
equation given in 2.39. By looking at the equilibrium point on the species curve of 
Fig. 2.16, it is observed that low species counts and high species counts both have 
relatively low probabilities and medium species counts have high probabilities 
because they are near the equilibrium point. 

Each population member has an associated probability, which indicates the 
likelihood that it was expected a priori to exist as a solution to the given problem. 
Very high HSI solutions and very low HSI solutions are equally improbable. 
Medium HIS solutions are relatively probable. If a given solution S has a low 
probability Ps , then it is surprising that it exists as a solution. It is, therefore, likely 
to mutate to some other solution. Conversely, a solution with a high probability is 
less likely to mutate to a different solution. The mutation rate that is inversely 
proportional to the solution probability,  
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where,  

                 mmax is a user-defined parameter,  
and            Pmax = argmax Pi , i = 1,...NP . 

          
This mutation scheme tends to increase diversity among the population. Without 
this modification, the highly probable solutions will tend to be more dominant in 
the population. This mutation approach makes low HSI solutions likely to mutate, 
which gives them a chance of improving. It also makes high HSI solutions likely 
to mutate, which gives them a chance of improving even more than they already 
have. Note that we use an elitism approach to save the features of the habitat that 
has the best solution in the BBO process, so even if mutation ruins its HSI, we 
have saved it and can revert back to it if needed. So, we use mutation (a high risk 
process) on both poor solutions and good solutions. Those solutions that are 
average are hopefully improving already, and so we avoid mutating them 
(although there is still some mutation probability, except for the most probable 
solution).  

 
Mutation Algorithm: Mutation can be described as follows:  
For j=1 to m 
      Use λi  and µi to compute the probability Pi 
             Select SIV Hi ( j ) with probability proportional to Pi 
                        If  Hi ( j )  is selected 
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                             Replace Hi ( j )  with a randomly generated SIV 
                          END 
END 

2.6   Summary 

The chapter introduced fundamental techniques of computational intelligence with 
special reference to fuzzy sets, neuro-computing and evolutionary algorithms. 
Special emphasis has been given to swarm and evolutionary algorithms, in 
particular Biogeography Based Optimization, Particle Swarm Optimization and 
Differential Evolution algorithms. A brief overview is given to neural learning, 
particularly supervised learning. It also includes an overview on fuzzy reasoning, 
starting from the first principles.  
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