
S. Ghosh and A. Konar: CAC in a Mobile Cellular Network, SCI 437, pp. 63–94.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

Chapter 2
An Overview of Computational Intelligence
Algorithms

This chapter provides an overview of selected computational intelligence
algorithms, which will be required to understand the rest of the book. It begins
with a review of fuzzy sets and logic, and would gradually explore swarm and
evolutionary algorithms, and neural nets. The coverage on swarm and
evolutionary algorithms include Genetic Algorithm, Particle Swarm Optimization
Bio-geography Based Optimization and Differential Evolution algorithm.
Supervised, unsupervised and reinforcement learning algorithms will be outlined
under neural nets. The chapter ends with scope of applications of computational
intelligence algorithms in call admission.

2.1 Introduction

The chapter introduces the foundations of computational intelligence techniques in
a nutshell. Computational intelligence is a vast family of knowledge comprising of
several models and techniques, including the logic of fuzzy sets, neurocomputing,
and swarm and evolutionary computation. The logic of fuzzy sets provides a
frame work for uncertainty management in complex reasoning systems. Neural
nets offer automatic techniques of machine learning and pattern recognition.
Evolutionary algorithms are widely being used for intelligent search, optimization
and machine learning. Swarm algorithms are nature-inspired techniques capable of
imitating nature by judiciously selecting their power of natural optimization in
identifying food sources. Researchers are taking keen interest to develop newer
bio-inspired optimization algorithms by imitating the behavior of lower level
creatures such as ants, bees and swaps.

The chapter begins with logic of fuzzy sets. It introduces membership functions and
fuzzy relations with special reference to implication relations. It also reviews fuzzy
reasoning. Principles of machine learning are introduced through artificial neural
networks. The chapter provides the basis of learning in biological nervous system, and
its electrical equivalent model, that too stems from its biological counterpart. It also
briefly overviews supervised and unsupervised learning, the basic two learning
policies that humans normally employ in their natural learning process. The later part
of the chapter overviews a few swarm and evolutionary algorithms, covering Particle
Swarm Optimization (PSO), Biogeography Based Optimization (BBO) and Genetic
Algorithm and Differential Evolution algorithm (DE).

64 2 An Overview of Computational Intelligence Algorithms

2.2 A Review of Fuzzy Sets and Logic

In a conventional set, the condition defining the set boundaries is very rigid. For
example, consider a universal set AGE, OLD, VERY OLD, YOUNG, CHILD and
BABY are subsets of the universal set AGE. The conventional approach to define
these sets is illustrated below:

In the above definitions age is a variable that may presume any value in the range
[0, 120] years. It is clear from the definition that the boundary of each set is
distinct. Thus an age=11 months 29 days is a member of the set BABY, but once it
is 1 year it falls in the set CHILD. Thus there is a sharp demarcation in the
boundary definition of the sets BABY and CHILD at age=1 year. Measurements
in a real world system being highly imprecise, such a sharp demarcation of 2 set
boundaries may cause a wrong allocation of the members to a given set.

Another characteristic of a conventional set includes assignment of a grade of
membership 1 to all its members and 0 to all its non-members. The following
connotation is used to describe that the membership of an element x in a set A is 1,
and the membership of a non-element y in the set A is 0.

 1)(=xAμ (2.1)

 1)(=yAμ (2.2)

A fuzzy set extends the binary membership: {0,1} of a conventional set to a
spectrum in the interval of [0, 1]. Further, unlike a conventional set, all elements
of the universal set U are members of a given set A. Thus for each element x∈U,

 1)(A0 ≤≤ xμ . (2.3)

It needs mention here that as all elements of a universal set U are members of a
given fuzzy set A, therefore, 2 fuzzy sets A and B may have an overlap in the
boundary definitions. For example, in contrast to the respective conventional sets:
BABY, CHILD, YOUNG, OLD and VERY OLD, the corresponding fuzzy sets
allow any age in the interval [0, 120] years as a member of each of the above sets
but with different memberships in [0, 1]. As a specific instance, the age 22 is a
member of all the fuzzy sets but the membership of age (=22) to belong to the sets
BABY, CHILD, YOUNG, OLD and VERY OLD respectively are 0.001,
0.01,1.00, 0.60 and 0.20. The above example makes sense in the line of reasoning

 BABY= {age ∈AGE: 0 year ≤ age <1year},

 CHILD= {age ∈AGE: 1 year ≤ age ≤10years},

 YOUNG= {age ∈AGE: 19 years ≤ age ≤ 40years},

 OLD= {age ∈AGE: 60 years ≤ age < 80years},

 and VERY OLD= {age ∈AGE: 80 years ≤ age < 120 years}.

2.2 A Review of Fuzzy Sets and Logic 65

that an age of 22 corresponds to a young person, so the membership of age (=22)
to be young is high (1.00). The relative grading of the other memberships thus can
be easily understood from the usual meaning of the terms BABY, CHILD, OLD
and VERY OLD. A fuzzy set thus can be formally defined as follows.

Definition 2.1: A fuzzy set A is a set of ordered pairs, give

{ }XxxxA A ∈= :)(, μ (2.4)

where X is a universal set of objects (also called the universe of discourse) and
μA(x) is the grade of membership of the object x in A. Usually, μA (x) lies in the
closed interval of [0,1].

It may be added here that some authors [1] relax the range of membership from
[0, 1] to [0, Rmax] where Rmax is a positive finite real number. One can easily
convert [0, Rmax] to [0, 1] by dividing the membership values in the range [0,
Rmax] by Rmax.

There are other notations of fuzzy sets as well. For instance, the ordered pair (x,
μA (x)) in the definition of fuzzy set is also written as Axx A /or)(/ Aμμ as well.

Let the elements of set X be nxxx ,........., 21 . Then the fuzzy set XA ⊆ is denoted

by any of the following nomenclature.

 (){ })(,.....()),.......(,()),(, 2211 nAnAA xxxxxxA μμμ=

 Or { })(/),........(/),(/ 2211 nAnAA xxxxxxA μμμ=

 Or { })(/........)(/)(/ 2211 nAnAA xxxxxxA μμμ +++=

 Or { }nnAAA xxxxxxA /)(......../)(/)(2211 μμμ +++=

 Or { }nnAAA xxxxxxA /)(,......../)(,/)(2211 μμμ=

In this book we used the last option. The details of membership function μA(x) is
formalized below.

2.2.1 Membership Functions

The grade of membership)(xAμ maps the object or its attribute x to positive real

numbers in the interval [0, 1]. Because of its mapping characteristics like a
function, it is called membership function. A formal definition of the membership
function is given below for the convenience of the readers.

Definition 2.2: A membership function)(xAμ is characterized by the following

mapping:
 [] XxxA ∈→ ,1,0:μ (2.5)

where x is a real number describing an object or its attribute and X is the universe
of discourse and A is a subset of X.

66 2 An Overview of Computational Intelligence Algorithms

A question that naturally arises is: how to construct a membership function?
The following examples provide a thorough insight to the selection of the
membership functions.

Example 2.1: Consider the problem of defining BABY, CHILD, YOUNG, OLD
and VERY OLD by membership functions. The closer the age of a person to 0, the
higher is his/her membership to be a BABY. So, if x is the age of the person, we
can define BABY as follows:

{ })exp()()(, xxwherexxBABY BABYBABY −== μμ (2.6)

Fig. 2.1 Membership curves for the fuzzy sets: BABY, CHILD, YOUNG, OLD and VERY
OLD. The x-axis denotes the age in years and the y-axis denotes the memberships of the given
fuzzy sets at different ages.

Thus as 1)(,0 →→ xx BABYμ . Further, as x increases,)(xBABYμ decreases

exponentially. The membership function)(xBABYμ can also be designed to have a

controlled decrease with increasing x by including a factor α to x in exp(-x). Thus,

 0)exp()(>−= ααμ forxxBABY (2.7)

Larger the value of α, the higher is the falling rate of)(xBABYμ over x. In a similar

manner we can define the membership functions for CHILD, YOUNG, OLD and
VERY OLD fuzzy sets. But before representing them mathematically let us take a
look at them.

The membership curves for the fuzzy sets: BABY, CHILD, YOUNG, OLD and
VERY OLD are shown in Fig. 2.1. The curve for CHILD fuzzy set has the peak at
some age slightly greater than 0 and has a sharp fall off around the peak. The
logical interpretation of this directly follows from the meaning of the word child.

0 .5

μYOUNG(x

μ VERY OLD (x)

μ BABY(x)

μOLD(x)

μCHILD (x)
 1

0 15 25 50 120

2.2 A Review of Fuzzy Sets and Logic 67

The membership curve for the fuzzy set YOUNG has a peak at age x=25 and falls
off very slowly on both sides around the peak.

As youth is the most charming period of the human beings, we prefer to call
people YOUNG even if they are away from 25 on either side. If the readers'
view is different they can allow a sharp falloff of the curve around the age x=25.
One interesting point to note about the OLD and VERY OLD membership
curves is that OLD curve throughout has a higher membership than the VERY
OLD curve until both saturate at age x = 120 years. This is meaningful because
if someone is called VERY OLD then he must be OLD, but the converse may
not be true.

There are many ways to represent the membership functions shown in Fig. 2.1
by mathematical functions. One such representation is given below:

 0c,b,a),xcbx1(ax)x(22

CHILD (2.8)

 0],2)25x(exp[)x(22
YOUNG (2.9)

 0d)dxexp(1)x(2
OLD (2.10)

 0d),dx(exp1)x(and VERYOLD
(2.11)

The parameters a, b, c and d in the above membership functions are selected
intuitively by the experts based on their subjective judgement in the respective
domains. Tuning of these parameters is needed to control the curvature and sharp
changes on the curves around some selected x-values.

2.2.2 Continuous and Discrete Membership Functions

The universe of discourse (or simply the universe) of a fuzzy set may exist for both
discrete and continuous spectrum. For example, the roll number of students in a
class is a discrete universe. On the other hand the height of persons is a continuous
universe as height may take up any values between 4' to 8'. It may be mentioned
here that a continuous universe is sometimes sampled at regular or irregular intervals
for using it as a discrete universe. The membership curve of YOUNG in Fig. 2.1
may be, for instance, discretized at age x= 18, 22, 24, 28. This is an example of non-
uniform/ irregular sampling as the intervals of sampling 18-22, 22-24, 24-28 are
unequal. The membership curve of YOUNG may alternatively be sampled at a
regular interval of age x=18, 20, 22, 24, say. This is an example of uniform/ regular
sampling. Fig. 2.2(a) and (b) describe the instances of the non-uniform and uniform
sampling of the YOUNG membership curve.

2.2.3 Fuzzy Implication Rules

Reasoning informally refers to generation of inferences from a given set of facts
and rules. The subject logic is concerned with the formalization of methodology

68 2 An Overview of Computational Intelligence Algorithms

and principles of reasoning. Production rules are synonymously called implication
rules in traditional logic. Implication rules of traditional logic are extended with
fuzzy linguistic variables. In this section, the implication rules in the classical
(propositional/ predicate) logic and their extension in fuzzy domain are introduced.

Fig. 2.2 (a) Non-uniform and (b) uniform sampling of the YOUNG membership curve.

Let us try to formalize the rule: IF x is a banana and x is yellow THEN x is ripe

in predicate logic. For this formalization, we define 3 predicates Banana(x),
Yellow(x) and Ripe(x), where each of these predicates has only 2 possible truth

 (a)

(b)

 18 22 24 28

 0.9
 0.8
 0.75
 0.7

μ Y

O
U

N
G
 (

ag
e)

 →

18 20 22 24

0.9

0.8
0.75
0.7

 μ

Y
O

U
N

G
 (

ag
e)

 →

2.2 A Review of Fuzzy Sets and Logic 69

 values: true or false. Using a IF-THEN (implication) operator, the above rule
can be written as:

 Banana(x), Yellow(x)→Ripe(x).

where the comma in the left side of the implication sign (→) denotes logical
conjunction (AND) of the antecedent predicates.

In order to allow instantiation of the antecedent predicates with the contents of the
WM, we consider 6 fuzzy sets: YELLOW, VERY-YELLOW, MORE-OR-LESS-
YELLOW, RIPE, VERY-RIPE and MORE-OR-LESS-RIPE. Fuzzy extensions of the
last rule then may be re-stated as follows:

 Rule 1: IF a banana is YELLOW
 THEN it is RIPE.
 Rule 2: IF a banana is VERY-YELLOW
 THEN it is VERY-RIPE.
 Rule 3: IF a banana is MORE-OR-LESS-YELLOW
 THEN it is MORE-OR-LESS-RIPE.

It may be added here that unlike production systems, the logic of fuzzy sets allows
firing of these 3 rules concurrently in presence of a data element concerning color
of a banana in the WM. Thus conflict resolution is not employed in fuzzy logic.

Formally, let x be a linguistic variable in a universe X, and A1, A2 and A3 are
three fuzzy sets under the universe X. Also assume that y be another linguistic
variable in a universe Y and B1 , B2 and B3 are 3 fuzzy sets under Y. Then the
implication rules between variable x and y may be described as

 Rule1: IF x is A1 THEN y is B1.
 Rule2: IF x is A2 THEN y is B2.
 Rule 3: IF x is A3 THEN y is B3.

Suppose the WM contains x is A', where A' is semantically close to A1, A2 and
A3 respectively. In the subsequent sections, we demonstrate the evaluation
procedure of y is B' from the known membership distributions of x is A1, y is B1, x
is A2, y is B2, x is A3, y is B3 and x is A'

2.2.4 Fuzzy Implication Relations

A fuzzy implication relation [2] for a given rule: IF x is Ai THEN y is Bi is
formally denoted by

 { }),/(),(),(yxyxyxR
iRi μ= (2.12)

where the membership function),(yx
iRμ is constructed intuitively by many

alternative ways. One typical implication relations is presented below.

70 2 An Overview of Computational Intelligence Algorithms

Mamdani Implication: Mamdani proposed the following two implication
functions [7, 12].

)](),([),(yxMinyx
iii BAR μμμ = (2.13)

OR)()((),(yxxyx
iiii BAAR μμμμ = (2.14)

Mamdani implication functions are most widely used implications in fuzzy
systems and fuzzy control engineering. This implication relation is constructed
based on the assumption that fuzzy IF-THEN rules are local. For example,
consider the implication rule: IF height is TALL THEN speed is HIGH. By
Mamdani's implication function, we do not want to mean: IF height is SHORT
THEN speed is SLOW. The second rule is rather an example of a non-local rule.
The knowledge engineer thus has to decide whether he prefers local or non-local
rules. If he prefers local rules then Mamdani's implication relation should be used.

2.2.5 Fuzzy Logic

The logic of fuzzy sets, also called fuzzy logic, is an extension of the classical
propositional logic from 2 perspectives. First, instead of binary valuation space
(truth/falsehood) of the propositional logic, fuzzy logic provides a multi-valued
truth-space in [0, 1]. Secondly, propositional logic generates inferences based on
the complete matching of the antecedent clauses with the available data, whereas
fuzzy logic is capable of generating inferences even when a partial matching of
the antecedent clauses against data elements in WM exists. In this section, we
present 3 typical propositional inference rules and describe their possible
extensions in fuzzy logic.

2.2.6 Typical Propositional Inference Rules

Let p, q and r be 3 propositions. The following 3 propositional inference rules are
commonly used for logical inferencing.

 Modus Ponens: Given a proposition p and a propositional implication
rule p→q, we can derive the inference q. Symbolically,

 qqpp →∧)((2.15)

where denotes a logical provability operator. This above inference rule
is well known as modus ponens.

 Modus Tollens: Given a proposition ¬q, and the implication rule p→q,
we can derive the inference ¬p. symbolically,

pqpq ¬→∧¬)((2.16)

The above inference rule is known as modus tollens.

2.2 A Review of Fuzzy Sets and Logic 71

 Hypothetical Syllogism: Given 2 implication rules p→q and q→r, then
we can easily derive a implication p→r. Symbolically,

 rprqqp →→∧→)()((2.17)

The above inference rule is popularly known as hypothetical syllogism or
chain rule.

2.2.7 Fuzzy Extension of the Inference Rules

The logic of fuzzy set provides a general framework for the extension of the
above 3 propositional inference rules. Fuzzy extension of modus ponens, modus
tollens and hypothetical syllogisms are called generalized modus ponens,
generalized modus tollens and generalized hypothetical syllogism respectively.

Generalized Modus Ponens (GMP): Consider a fuzzy production rule: IF x is A
then y is B, and a fuzzy fact: x is A/. The GMP inference rule then infers y is B/.
Here A, B, A/ and B/ are fuzzy sets such that A/ is close to A, and B/ is close to B.
The inference rule also states that the closer the A/ to A, the closer the B/ to B.
Symbolically, the GMP can be stated as follows:

 Given: IF x is A THEN y is B.
 Given: x is A/

 Inferred: y is B/

Generalized Modus Tollens (GMT): Given a fuzzy production rule: IF x is A
THEN y is B, and a fuzzy fact y is B/, the GMT then infers x is A/, where the more
is the difference between B/ and B, the more is the difference between A/ and A.
Symbolically, the GMT is stated as follows:

 Given: IF x is A THEN y is B.
 Given: y is B/

 Inferred: x is A/.

Generalized Hypothetical Syllogism (GHS): Given 2 fuzzy production rules: IF
x is A THEN y is B, and IF y is B/ THEN z is C/, where A, B and C are 3 fuzzy
sets, and B/ is close to B. Then the GHS infers : If x is in A then z is in C'. The
closer the B/ to B, the closer the C/ to C. Symbolically, we can state this rule as
follows:

 Given: IF x is A THEN y is B.
 Given: IF y is B/ THEN z is C

 Inferred: If x is in A then z is in C/.

72 2 An Overview of Computational Intelligence Algorithms

In the above definition of the inference rules, we just mentioned that A/ is close to
A, B/ is close to B and the like. But we did not mention what we exactly mean
by "close to". In fact "close to" can take any of the following forms: VERY,
VERY-VERY, MORE-OR-LESS, NOT, ABOUT-TO, AROUND and other fuzzy
hedges that mean a fuzzy set A/ are approximately similar to A.

2.2.8 The Compositional Rule of Inference

In this section we present the methodology for the evaluation of fuzzy inferences
for GMP, GMT and GHS. This, however, calls for formalization of a fuzzy rule
called the compositional rule of inference. The compositional rule of inference is
usually applied to 2 fuzzy membership distribution, one of which usually have a
smaller number of linguistic variables. The rule extends the latter membership
distribution cylindrically, so as to increase its number of linguistic variables to
the former distribution. The intersection of the former and the resulting
distribution is then projected to desired axes. The whole process is referred to as
the compositional rule of inference. How exactly the compositional rule of
inference is applied to determine the fuzzy inferences in GMP, GMT and GHS is
presented below.

2.2.9 Computing Fuzzy Inferences Using GMP

Given a fuzzy production rule: IF x is A THEN y is B, and a fact y is B/, we by
GMT infer x is A/. In this section we present the principle of determining the
membership distribution of x is A/, μA/(x), from the membership distribution of y
is B/, μB

/(y), and the membership μR(x, y) of the fuzzy relation between the
antecedent and consequent part of the given rule. The computation involves
cylindrical extension of μB

/(y) to μB
/ CYL (x, y), then intersection of μB

/ CYL (x, y)
with μR(x, y) and finally projection of the resulting relation ox X-axis. Thus,
following the same steps as in the case of GMP, it can easily be shown that

{ }[].),(),(max)(yxytx RB
Yy

A μμμ ′
∈

′ = (2.18)

When μB
/(y) and μR(x, y) are discrete relations represented by a row vector and a

matrix respectively, we can represent the above result by the following max-min
composition operation:

[]TRBA yxyx),()()(μμμ ′′ = (2.19)

where T denotes the transposition operator over the given relation.

Example 2.2: This example illustrates the computation of GMP using max-min
composition operator.

2.3 Neural Nets 73

We take the same μR(x, y) as in Example 2.1, and the μB/(y) we obtained as the
result in that example, and plan to determine μA/(x) by the compositional rule of
inference. Thus,

[] []

[]7.0 9.0 8.0

5.06.07.0

9.05.06.0

5.06.08.0

9.0 6.0 8.0),()()(

=

== ′′

T

T
RBA yxyx μμμ

It may be noted that μA
/(x) thus obtained is not same as that presumed in

Example 2.2.

2.3 Neural Nets

This section provides an introduction to biological neural networks and their
mathematical models called artificial neural networks. Neural networks have
proved them successful in pattern recognition, system identification, function
approximation and many others.

2.3.1 Biological Neural Networks

The human nervous system consists of small unicellular structures called neurons.
Neurons thus are fundamental units or building blocks of a biological nervous
system. A neuron comprises of 5 elements: dendrite, Dendron, cell body, synapse
and axon (Fig. 2.3). The dendrites receive signals from other neurons, muscles or
sensory organs and carry them to a relatively thick fiber called Dendron. The
Dendron carry the signals to the cell body, which in turn generates a composite
signal based on the strength of the signals received from the dendrites. The
composite signal is transmitted to the synapse through the axon (Fig. 2.3).

The synapse is like a potential barrier that controls the flow of signal from the
axon of one neuron to the dendrites of other neurons. The transmission of signals
from one neuron to another at a synapse is a complex chemical process. Generally,
a specific chemical called neuro-transmitter is released from the transmitting end of
the synapse. The transmitters lower or raise the potential barrier of the synapse. On
lowering the potential barrier, the signal from the transmitting end can easily reach
the other end of the synapse. On raising the barrier, a signal loss takes place and
only a small component of the signal can reach the other end of the synapse. Flow
of signal from one neuron to the others thus can be controlled by the synapse.
When the influence of the synapse tends to activate the post-synaptic neuron, the
synapse is called excitatory. On the other hand, when the synapse prohibits the
passage of signal flow to the post-synaptic neuron, the synapse is called inhibitory.
The synaptic ending of an axon thus is of excitatory or inhibitory nature.

How the neurons participate in the learning process of the human beings
remained a mystery till this date. However, it is evident that the process of
learning has a correspondence with the type and amount of neuro-transmitters
released at the pre-synaptic end of the neurons. Thus for similar sensory/control/

74 2 An Overview of Computational Intelligence Algorithms

motor actions a neuron releases the same type and amount of neuro-transmitters.
How exactly the neurons perform the above task is an interesting topic of research
for the biologists and medical researchers.

 Dendrites

Axon

Synapse

Nucleus

Cell body

Dendron

Fig. 2.3 A Biological Neural Net comprising of two neurons, where the dendrites of the
second neuron receive signal from the synapse of the first neuron.

2.3.2 Artificial Neural Networks

Artificial neural networks are electrical analogue of the biological nervous system.
A typical artificial neuron is mathematically represented by two modules: i) a linear
activation/ inhibition module and ii) a non-linearity that limits the signal levels
within a finite band. Fig. 2.4 presents the typical organization of an artificial neuron.

The summer in Fig. 2.4 takes the role of the cell body and the inputs of the
summer may be treated like dendrites. The synapse is modeled by a non-linear
function and the connection from the summer to the non-linear unit is like the
axon. Here, Net is a linear combiner of the inputs x1, x2, …, xn. Mathematically,

=

=
n

i
ii xwNet

1

 (2.20)

where some of the inputs are excitatory (positive) and the rest are inhibitory
(negative). ‘Out’ in the present context can take different mathematical forms.
Some of the common forms are presented below.

)(thNetuOut −= (2.21)

)(NetSgnOut = (2.22)

2.3 Neural Nets 75

 [])exp(1/1 NetOut −+= (2.23)

)2/tanh(NetOut = (2.24)

Fig. 2.4 A Typical Artificial Neuron

The mathematical form of Out can be smooth functions like sigmoid vide
expression (2.23) or tanh vide expression (2.24) and sharp changing functions like
step vide expression (2.21) or signum function (vide expression (2.22))

FA
a1

anah

b1
bi

bp
FB

c1 cj
cq

FC

Fig. 2.5 A Feed-Forward Neural Net of 3 Layers

The unit step function u in expression (2.21) is formally defined as follows:

 >

=−
otherwise

thNet
thnetu

 ,0

 ,1
)((2.25)

 iixw

1w

2w

3w

1x

2x

3x

Non-linearity
Out Net

76 2 An Overview of Computational Intelligence Algorithms

The signum function Sgn in expression (2.22) is formally defined as

−
>+

=
otherwise

Net
NetSgn

 ,1

0 ,1
)((2.26)

The definitions of sigmoid and tanh are very standard and thus need no further
explanation. Neurons in an artificial neural net are connected in different
topological configurations. Two most common type of configurations are i)feed-
forward and ii) feedback topology. Usually, a feed-forward network contains a
number of layers, each layer consisting of a number of neurons (Fig. 2.4). Signal
propagation in such networks usually take place in the forward direction only, i.e.,
signals from the i-th layer can be propagated to any layer following the ith layer,
for i≥1. In a recurrent neural network, there exists feedback from one or more
neurons to others. Fig. 2.6 describes a recurrent network.

The most important aspect of an artificial neural net is its capability of learning.
In the next section, we introduce the concepts of learning on artificial neural nets.

Fig. 2.6 A Typical Recurrent Neural Net

2.3.3 Principles of Learning in a Neural Net

Informally “encoding” or “learning” refers to adaptation of weights in a neural
net. Thus until the weights converge to a steady state value, the process of
encoding is continued. Adaptation of weights can be accomplished in a neural net
by 4 different ways; they are supervised learning, unsupervised learning,
reinforcement learning and competitive learning. A brief outline to the learning
schemes is presented below.

♦Supervised Learning: Supervised learning generally employs a trainer, who
provides the input-output training instances of a given neural net. As an
example, let us consider a pattern recognition problem, where we need to
recognize an object from its feature- space. Here, the set of features such as size
of the object and its shape described by its boundary descriptors, for instance,
may be considered as input, while the type of the object such as books, pencils
etc. may be treated as output of the neural net. Thus for n distinct objects, we
require n-outputs of the neural net, each corresponding to one object.

2.4 Swarm and Evolutionary Algorithms 77

When one of n-outputs has the maximum value, the object is regarded to fall
within the particular class. Further for a large n, we can denote the output class by
an encoded number, such as binary string. Thus for a given input feature vector, if
a binary string 0011 appears at the output, we consider the object to belong to
class 3.

Fig. 2.7 describes a scheme for supervised learning. Here, given a input vector I
and a target vector T, we need to fix the weights in the network, such that T is
produced at the output of the network when excited with the input I. How can we
achieve this? First, we initialize the weights randomly. Then for the given input
vector I, suppose the network generates the vector O at its output. An error vector
E = T – O is then generated, and a supervised learning algorithm is used to adjust
the Network parameters based on the error vector.

Fig. 2.7 A Simple Supervised Learning Scheme.

2.4 Swarm and Evolutionary Algorithms

Problems which involve global optimization over continuous spaces are
ubiquitous throughout the scientific community. In general, the task is to optimize
certain properties of a system by pertinently choosing the system parameters.
For convenience, a system's parameters are usually represented as a vector.

Input vector I

Feed-Forward Neural Net

Output Vector O

Target/ Desired Vector T

+

-

Supervised learning
algorithm

Adjustment of
network
parameters

78 2 An Overview of Computational Intelligence Algorithms

The standard approach to an optimization problem begins by designing an
objective function that can model the problem's objectives while incorporating any
constraints. In a complex real life search problem, the search space may be a
rough landscape, riddled with multiple local maxima/minima.

The objective function is very often non differentiable and/or discontinuous at
a number of points. As for example consider the following functions shown in
Fig. 2.8. Since the derivative based methods are of no help, other methods,
combining mathematical analysis and random search came up for them. Imagine
you scatter small robots in a Mountainous landscape. Those robots can follow the
steepest path they found. When a robot reaches a peak, it claims that it has found
the optimum. This method of hill climbing is very efficient, but there's no proof
that the optimum has been found, each robot can be blocked in a local optimum.
This type of method only works with reduced search spaces.

To tackle this kind of numerical optimization tasks over continuous search
spaces, in 1995, two different algorithms were developed. First of them is the
Particle Swarm Optimization (PSO) [3] while the second one goes by the name
Differential Evolution (DE) [4]. Both of these algorithms do not require any
gradient information of the function to be optimized, uses only primitive
mathematical operators and is conceptually very simple. Unlike the conventional
Genetic Algorithms (GA) [5] they can be implemented in any computer language
very easily and requires minimal parameter tuning.

Fig. 2.8 Functions with Huge Number of Local Minima and Maxima

Their performance does not deteriorate severely with the growth of the search
space dimensions as well. These issues perhaps have a great role in the popularity
of the algorithms within the domain of machine intelligence and cybernetics.

2.4 Swarm and Evolutionary Algorithms 79

2.4.1 Classical PSO

The concept of function-optimization by means of a particle swarm was
introduced by James Kennedy and Russel C. Eberhart in an IEEE neural network
conference paper from 1995 [3]. Suppose the global optimum of an n-dimensional
function is to be located. The function may be mathematically represented as

)(),...,,,(321 Xfxxxxf n

= where X

 is called the parameter vector which

actually represents the set of independent variables. The task is to find out such

a X

, that the function value)(Xf

 is either a minimum or a maximum denoted by

f* in the search range. If the components of X

 assume real values then the task is
to locate a particular point in the n dimensional hyperspace which is a continuum
of such points.

Example 2.3 Consider the simplest two dimensional sphere function given by,

2

2

2

121)(),(xxXfxxf +==

If x1 and x2 can assume real values only then by inspection it is pretty clear that
the global minima of this function is at x1=0, x2=0 i.e. at the origin (0, 0) of the
search space and the minimum value is f(0, 0) = f* = 0. No other point can be
found in the x1-x2 plane at which value of the function is lower than f* = 0. Now
the case of finding the optima is not so easy for functions like this one:

1)14sin(2)24sin(1)2,1(++−= πππ xxxxxxf ;

Fig. 2.9 Surface plot of the above-mentioned function

This function has multiple peaks and valleys and a rough fitness landscape. A
surface plot of the function is shown in Fig. 2.9. To locate the global optima
quickly on such a rough surface calls for parallel search techniques. Here many
agents start from different initial locations and go on exploring the search space

80 2 An Overview of Computational Intelligence Algorithms

until some (if not all) of the agents reach the global optimal position. The agents
may communicate among themselves and share the fitness function values found
by them.

PSO is in principle such a multi-agent parallel search technique. Particles are
conceptual entities which fly through the multi-dimensional search space. At any
particular instant each particle has a position and a velocity. The position vector of
a particle with respect to the origin of the search space represents a trial solution
of the each problem.

At the beginning a population of particles is initialized with random positions

marked by vectors iX

and random velocities iV

. Initial distribution of particles on

a two dimensional search space may be illustrated in Fig. 2.10.

Fig. 2.10 Initial orientation of the swarm on a two dimensional fitness landscape

The population of such particles is called a ‘swarm’ S. A neighborhood relation
N is defined in the swarm. N determines for any two particles Pi and Pj whether
they are neighbors or not. Thus for any particle P, a neighborhood can be
assigned as N(P), containing all the neighbors of that particle. Each particle P has
two state variables:

Velocity
Direction of a
Particle

2.4 Swarm and Evolutionary Algorithms 81

 Its current position)(tx

 Its current velocity)(tv

.

And also a small memory comprising,

 Its previous best position)(tp

i.e. personal best experience.

 The best)(tp

of all)(PNP ∈ :)(tg

i.e. the best position found so far in

the neighborhood of the particle.

The best)(tp

of all)(PNP ∈ :)(tg

i.e. the best position found so far in the

neighborhood of the particle. The PSO scheme has the following algorithmic
parameters:

 maxV or maximum velocity which restricts)(tVi

within the

interval],[max masvv− .

 An inertial weight factor ω [6].
 Two uniformly distributed random numbers φ1 and φ2 which respectively

determine the influence of)(tp

and)(tg

 on the velocity update formula.

 Two constant multiplier terms C1 and C2 known as “self confidence” and
“swarm confidence” respectively.

Initially the settings for)(tp

and)(tg

 are)0()0()0(xgp

== for all particles.

Once the particles are initialized, the iterative optimization process begins where
the positions and velocities of all the particles are altered by the following
recursive equations. The equations are presented for the dth dimension of the
position and velocity of the i-th particle.

))()(())()(()()1(2211 tXtgCtXtPCtVtV iddiddidid −+−+=+ ϕϕω (2.27)

)1()()1(++=+ tVtXtX ididid

The first term in the velocity updating formula represents the inertial velocity of

the particle. The second term)(tP

 involving represents the personal experience

of each particle and is referred to as “cognitive part”.
The last term of the same relation is interpreted as the “social term” which

represents how an individual particle is influenced by the other members of its
society. The velocity updating scheme has been presented in Fig. 2.11, using a
humanoid agent in place of a particle on the spherical functional surface. After
having calculated the velocities and position for the next time step t+1, the first
iteration of the algorithm is completed.

Typically, this process is iterated for a certain number of time steps, or until
some acceptable solution has been found by the algorithm or until an upper limit
of CPU usage has been reached. Once the iterations are terminated, most of the

82 2 An Overview of Computational Intelligence Algorithms

particles are expected to converge to a small radius surrounding the global optima
of the search space. The ideal distribution of the particles after the algorithm is
stopped has been shown in Fig. 2.12.

The algorithm can be summarized in the following pseudo code:

Procedure Particle_swarm_optimization
set t = 0;
Initialize φ1, φ2 , Vmax and define N;

While (termination_condition = FALSE)
{
 :Sp ∈∀ calculate)1(+tv

and)1(+tx

using equations (1); :Sp ∈∀ update

)1(+tp

with)1(+tx

if))1((+txf

is better than))((txf

 :Sp ∈∀ update)1(+tg

with the best)1(+tp

in N(p);

}

Vi(t)

Current Position

φ2.(Pgb-Xi(t))

Best Position found
By the agent so far (Plb)

Resultant
Velocity
Vi(t+1)

φ1.(Plb-Xi(t))

Globally Best
Position

Fig. 2.11 Illustrating the velocity updating scheme of basic PSO

2.4 Swarm and Evolutionary Algorithms 83

Fig. 2.12 Ideal distribution of the particles on a two dimensional fitness landscape after the
algorithm is terminated

2.4.2 Differential Evolution

In 1995 Storn and Price made an attempt to replace the classical crossover and
mutation operators in GA by alternative operators [4], and found a suitable vector
differential operator to handle the problem. They proposed a new algorithm based
on this operator, and called it Differential Evolution (DE). DE searches for a
global optimum in a D-dimensional hyperspace. It begins with a randomly
initialized population of D-dimensional real-valued parameter vectors. Each
vector, also known as a ‘genome’ or ‘chromosome’, forms a candidate solution to
the multi- dimensional optimization problem.

The initial population (at time t = 0) is chosen randomly and should be
representative of as much of the search space as possible. Subsequent generations
in DE can be represented by discrete time steps: t = 1, 2, ..., n etc. Since the
parameter vectors are likely to be changed over different generations the following
notation has been adopted here for representing the i-th vector of the population at
the current generation (at time t):

)]().....(),(),([)(,3,2,1, txtxtxtxtX Diiiii =

For each parameter of the problem, there may be a certain range within which the
value of the parameter must lie. At the beginning of a DE run, problem parameters
or independent variables are initialized somewhere in their feasible numerical

The best Particle
Conquering the Peak

Most of the
particles land in a
close vicinity of
the global optima

84 2 An Overview of Computational Intelligence Algorithms

range. So, if the j-th parameter of the given problem has its lower and upper bound

as
L
i

x and
U
i

x respectively, then the j-th component of the i-th population

member may be initialized as

)xx).(1,0(randx)0(x L
j

U
j

L
jj,i −+= (2.28)

where rand(0,1) is a uniformly distributed random number lying between 0 and 1.
For each individual vector Xk(t) belonging to current population, DE randomly

samples three other individuals Xi(t), Xj(t) and Xm(t) from the same generation
(for distinct k, i, j and m), calculates the difference of the components
(chromosomes) of Xi(t) and Xj(t), scales it by a scalar R (є [0,1]) and creates a trial
offspring vector by adding the result to the chromosomes of Xm(t). Thus for the n-
th component of each parameter vector, we have

 <−+

=+
otherwisetX

CRrandiftXtXRtX
tU

nk

nnjninm
nk)(

)1,0())()(.()(
)1(

,

,,,
, (2.29)

where CR (є[0,1]) is the crossover constant. This scheme is illustrated in Fig. 2.13.
To keep the population size constant over subsequent generations, the next step

of the algorithm calls for ‘selection’ to determine which one between the parent
and child will survive in the next generation (i.e. at time t+1). DE uses the
Darwinian principle of “survival of the fittest” in its selection process which may
be expressed as

>+=

<++=+

))(())1(()(

))(())1(()1()1(

tXftUfiftX

tXftUfiftUtX

iii

iiii (2.30)

where f(.) is the function to be minimized. If the new offspring yields a better
value of the fitness function, it replaces its parent in the next generation; otherwise
the parent is retained in the population. Hence the population either gets better
(with respect to the fitness values) or remains the same but never deteriorates.

The DE algorithm is outlined below:

Procedure Differential-evolution
Begin
 Initialize population;
 Evaluate fitness;
 For i=0 to max-iteration do
 Begin
 Create Difference-Offspring;
 Evaluate fitness;
 If an offspring is better than its parent
 Then replace the parent by offspring in the next generation;
 End If;
 End For;
End.

2.4 Swarm and Evolutionary Algorithms 85

Fig. 2.13 Illustrating DE in 2-D parameter space

In the above algorithm, population is at first initialized to random values and
fitness of each vector is judged according to some predefined cost function. The
algorithm is then continued to generate population by invoking differential
evolution and replacing parents by more fit offspring. The algorithm terminates
when the fitness of the best genome is greater than a predefined value or
maximum number of iterations has been attained.

2.4.2.1 Variants of Classical Differential Evolution

Generally in population-based search and optimization methods, considerably
high diversity is necessary during the early part of the search to utilize the full
range of the search space. On the other hand during the latter part of the search,
when the algorithm is converging to the optimal solution, fine-tuning is important
to locate the global optimum efficiently. Considering these issues, two new
strategies [7] were proposed to improve the performance of the DE.

2.4.2.2 DERANDSF (DE with Random Scale Factor)

In the original DE [2] the difference vector))()((32 tXtX rr

− is scaled by a

constant factor ‘R’. The usual choice for this control parameter is a number
between 0.4 and 1. We propose to vary this scale factor in a random manner in the
range (0.5, 1) by using the relation

 rand(0,1))(1*0.5R += (2.31)

where rand (0, 1) is a uniformly distributed random number within the range [0,
1]. We call this scheme DERANDSF (Differential Evolution with Random Scale
Factor).

86 2 An Overview of Computational Intelligence Algorithms

The mean value of the scale factor is 0.75. This allows for stochastic variations
in the amplification of the difference vector and thus helps retain population
diversity as the search progresses. Even when the tips of most of the population
vectors point to locations clustered near a local optimum due to the randomly
scaled difference vector, a new trial vector has fair chances of pointing at an even
better location on the multimodal functional surface. Therefore the fitness of the
best vector in a population is much less likely to get stagnant until a truly global
optimum is reached.

Fig. 2.14 Illustrating DETVSF scheme on two dimensional cost contours OF Ackley
function

2.4.2.3 DETVSF (DE with Time Varying Scale Factor)

In most population-based optimization methods (except perhaps some hybrid
global-local methods) it is generally believed to be a good idea to encourage the
individuals (here, the tips of the trial vectors) to sample diverse zones of the
search space during the early stages of the search. During the later stages it is
important to adjust the movements of trial solutions finely so that they can explore
the interior of a relatively small space in which the suspected global optimum lies.
To meet this objective we reduce the value of the scale factor linearly with time
from a (predetermined) maximum to a (predetermined) minimum value:

MAXITiterMAXITRRR /)()(minmax −∗−= (2.32)

2.5 Biogeography-Based Optimization (BBO) 87

where Fmax and Fmin are the maximum and minimum values of scale factor F, iter
is the current iteration number and MAXIT is the maximum number of allowable
iterations. The locus of the tip of the best vector in the population under this
scheme may be illustrated as in Fig. 2.14.

2.5 Biogeography-Based Optimization (BBO)

Biogeography is the study of the distribution of biodiversity over space and time.
It aims to analyze where organisms live, and in what abundance. Biogeography
theory grew out of the work of Alfred Wallace [8] and Charles Darwin [9]. This
gives rise to an interest in the distribution of organisms. The development of
biogeography allowed scientists to test theories about the origin and dispersal of
populations, which spurred its application in the field of the engineering. Just as
what has happened in the past few years with the areas of computer intelligence
[10, 11, 12], including genetic algorithms (GAs) [13, 14, 15], ant colony
optimization (ACO) [16, 17, 18, 19], particle swarm optimization (PSO) [20, 21,
22], biogeography-based optimization (BBO) as a new type of evolutionary
algorithm (EA) was recently proposed. This newest EA was introduced by Simon
[23] in 2008 and demonstrated good optimization performance on various
benchmark functions. In the original BBO paper, it was already proven that it is
competitive with other famous EAs. If its highest potential is developed and
applied to more practical problems, it could become a popular EA.

When a habitat is highly populated, it has many species and thus is likely to
emigrate many species to nearby habitats, while few species immigrate into it,
simply by virtue of the lack of room for immigrating species. In the same way,
when a habitat is sparsely populated, it has few species and thus is likely to
receive many immigrants, while only a few species emigrate because of their
sparse populations.

The issue of whether or not those immigrants can survive after migration is
another question, but the immigration of new species can raise the biological
diversity of a habitat and thereby improve the habitat’s suitability for other
species. At least to this point, biogeography is a positive feedback phenomenon,
and we regard this phenomenon of biogeography as an optimization process. This
view of the environment as an optimizing system was suggested as early as 1990s
[24]. In particular, some people maintain the view that “biogeography based on
optimizing environmental conditions for biotic activity seems more appropriate
than a definition based on homeostasis” [25]. In fact, there are many examples of
the optimality of biogeographical processes to support this view, such as the
Amazon rainforest [25] and the Krakatoa island phenomenon [26].

In another view, biogeography has often been considered as a process that
enforces equilibrium in habitats. Over time, the countervailing forces of
immigration and emigration result in an equilibrium level of species richness in a
habitat with a large number of species. Namely, equilibrium can be seen as the
point where the immigration and emigration curves intersect. The equilibrium
viewpoint of biogeography was first popularized in the 1960s. Since then the
equilibrium perspective has been increasingly questioned by scientists.

88 2 An Overview of Computational Intelligence Algorithms

In a word, although the natural phenomenon of biogeographical as an
optimization process has been challenged, adequate literature and ideas have been
put forth to explain these challenges. It must be emphasized that optimality and
equilibrium are only two different perspectives on the same phenomenon in
biogeography, but this debate opens up many areas of further research for
engineers.

As its name implies, BBO as a novel optimization method is based on the
science of biogeography. The details of the BBO approach will be presented in the
next section. Just as the mathematics of biology spurred the development of other
biology-based optimization methods, we can incorporate certain behaviors of
biogeography into BBO to improve its optimization performance. Some of these
behaviors include the effect of geographical proximity on migration rates,
nonlinear migration curves to better match nature, species populations,
predator/prey relationships, the effect of varying species mobility on migration
rates, directional momentum during migration, the effect of habitat area and
isolation on migration rates, and many others.

Fig. 2.15 Species model of a single habitat

The model of species abundance in a single habitat is shown in Fig. 2.15. The
immigration rate λ and the emigration rate µ are functions of the number of
species in the habitat. For the immigration curve, the maximum possible
immigration rate to the habitat is I, which occurs when there are zero species in
the habitat. As the number of species increases, the habitat becomes more
crowded, fewer species are able to successfully survive immigration to the habitat,
and the immigration rate decreases. The largest possible number of species that
the habitat can support is Smax, at which point the immigration rate becomes zero.

S0 Smax

Emigration (µ)

Imigration (λ)

E

I

Number of species

R

at
e

2.5 Biogeography-Based Optimization (BBO) 89

For the emigration curve if there are no species in the habitat then the
emigration rate must be zero. As the number of species increases, the habitat
becomes more crowded; more species are able to leave the habitat to explore other
possible residences, and the emigration rate increases. The maximum emigration
rate is E, which occurs when the habitat contains the largest number of species
that it can support.

The equilibrium number of species is So, at which point the immigration and
emigration rates are equal. However, there may be occasional excursions from due
to temporal effects. Positive excursions could be due to a sudden spurt of
immigration (caused, perhaps, by an unusually large piece of flotsam arriving
from a neighboring habitat), or a sudden burst of speciation (like a miniature
Cambrian explosion). Negative excursions from could be due to disease, the
introduction of an especially ravenous predator, or some other natural catastrophe.
It can take a long time in nature for species counts to reach equilibrium after a
major perturbation.

The immigration and emigration curves in shown in Fig. 2.16 as straight lines
but, in general, they might be more complicated curves. Now, the probability Ps is
the habitat contains exactly S species. Ps changes from time t to time (t + Δ t) as
follows

tPtPtttPttP ssssssss Δ+Δ+Δ−Δ−=Δ+ ++−−)1()()(1 111 μλμλ (2.33)

where λs and µs are the immigration and emigration rates when there are S species
in the habitat. This equation holds because in order to have S species at

)(tt Δ+ time , one of the following conditions must hold:

• There were S species at time t, and no immigration or emigration
occurred between t and)(tt Δ+ ;

• There were (S - 1) species at time t, and one species immigrated;
• There were (S + 1) species at time , and one species emigrated.

It is assumed that Δ t is small enough so that the probability of more than one
immigration or emigration can be ignored.

Taking the limit of (1) as Δ t → 0 gives equation (2) shown as follows:

()
()
()

−−

++−−

++∧

=++−
−≤≤+++−

=++−
=

 PλP μλ
 11 PμPλsP μλ

 0S PμP μλ

max1s1ssss

max1s1s1s1sss

1s1ssss

SS

SSPs (2.34)

Say, maxSn = and []T
nPPPPP210=

Now, we can arrange the equations of equation (2) into the single matrix
equation

APP
o

= (2.35)

where the matrix A is given in the following equation:

90 2 An Overview of Computational Intelligence Algorithms

()
()

()
()

+−
+−

+−
+−

=

−

−−−

nnn

nnnn

A

μλλ
μμλλ

μμλλ
μμλ

1

112

2110

100

0...0

........

.................

.......

0...0

 (2.36)

For the straight-line curves shown in Fig. 1, we have

 ()
n

k
k

n

Ek
k

I −=

=

1λ

μ
 (2.37)

Now for special case E= I , then

Ekk =+ μλ (2.38)

According to the simplified form stated in equation (6), the species model will be
the following type.

2.5.1 Migration

Suppose that we have a problem and a population of candidate solutions that can
be represented as vectors of integers. Each integer in the solution vector is
considered to be an SIV. The assessment for the goodness of the solutions has to
be done. The solutions that are good are considered to be habitats with a high
Habitat Suitability Index (HIS), and those that are poor are considered to be
habitats with a low HSI. HSI is analogous to “fitness” in other population-based
optimization algorithms (GAs, for example).

High HSI solutions represent habitats with many species, and low HSI
solutions represent habitats with few species. The identical species curve (E = I)
is considered for simplicity but the S value represented by the solution depends on
its HSI. S1 in Fig. 2.16 represents a low HSI solution, while S2 represents a high
HSI solution. S1 in Fig.2.16 represents a habitat with only a few species, while S2

represents a habitat with many species.
The immigration rate λ1 for S1 will be higher than the immigration rate λ2 for S2.

The emigration rate µ1 for S1 will be lower than the emigration rate µ2 for S2.
The emigration and immigration rates of each solution probabilistically share

information between habitats. With probability Pmod, each solution is modified
based on other solutions. If a given solution is selected to be modified, then the
immigration rate λ to probabilistically decide whether or not to modify each
suitability index variable (SIV) in that solution.

2.5 Biogeography-Based Optimization (BBO) 91

Fig. 2.16 S1 is relatively a poor solution and S2 relatively a good solution

If a given SIV in a given solution Si selected to be modified, then the
emigration rates µ of the other solutions to probabilistically decide which of the
solutions should migrate a randomly selected SIV to solution Si.

The BBO migration strategy is similar to the global recombination approach of
the breeder GA and evolutionary strategies in which many parents can contribute
to a single offspring, but it differs in at least one important aspect. In evolutionary
strategies, global recombination is used to create new solutions, while BBO
migration is used to change existing solutions. Global recombination in
evolutionary strategy is a reproductive process, while migration in BBO is an
adaptive process; it is used to modify existing islands.

To retain the best solutions in the population, some sort of elitism is
incorporated. This prevents the best solutions from being corrupted by
immigration.

2.5.2 Migration Algorithm

Habitat modification can loosely be described as follows:
Select Hi with probability proportional to λi
 If Hi is selected
 For j=1 to n
 Select Hj with probability proportional to µj
 If Hj is selected
 Randomly select an SIV from Hj
 Replace a random SIV in with
 end
 end
end

S1

 Smax

Emigration (µ)
Imigration (λ)

E = 1

Nu mb er o f sp ec i e s

R

a
te

S2

92 2 An Overview of Computational Intelligence Algorithms

2.5.3 Mutation

A habitat’s HSI can change suddenly due to apparently random events (unusually
large flotsam arriving from a neighboring habitat, disease, natural catastrophes,
etc.) The model of BBO as SIV mutation, and species count probabilities is used
to determine mutation rates.

The probabilities of each species count will be governed by the differential
equation given in 2.39. By looking at the equilibrium point on the species curve of
Fig. 2.16, it is observed that low species counts and high species counts both have
relatively low probabilities and medium species counts have high probabilities
because they are near the equilibrium point.

Each population member has an associated probability, which indicates the
likelihood that it was expected a priori to exist as a solution to the given problem.
Very high HSI solutions and very low HSI solutions are equally improbable.
Medium HIS solutions are relatively probable. If a given solution S has a low
probability Ps , then it is surprising that it exists as a solution. It is, therefore, likely
to mutate to some other solution. Conversely, a solution with a high probability is
less likely to mutate to a different solution. The mutation rate that is inversely
proportional to the solution probability,

−=

max
max 1

P

P
mm i

i (2.39)

where,

 mmax is a user-defined parameter,
and Pmax = argmax Pi , i = 1,...NP .

This mutation scheme tends to increase diversity among the population. Without
this modification, the highly probable solutions will tend to be more dominant in
the population. This mutation approach makes low HSI solutions likely to mutate,
which gives them a chance of improving. It also makes high HSI solutions likely
to mutate, which gives them a chance of improving even more than they already
have. Note that we use an elitism approach to save the features of the habitat that
has the best solution in the BBO process, so even if mutation ruins its HSI, we
have saved it and can revert back to it if needed. So, we use mutation (a high risk
process) on both poor solutions and good solutions. Those solutions that are
average are hopefully improving already, and so we avoid mutating them
(although there is still some mutation probability, except for the most probable
solution).

Mutation Algorithm: Mutation can be described as follows:
For j=1 to m
 Use λi and µi to compute the probability Pi
 Select SIV Hi (j) with probability proportional to Pi
 If Hi (j) is selected

2.6 Summary 93

 Replace Hi (j) with a randomly generated SIV
 END
END

2.6 Summary

The chapter introduced fundamental techniques of computational intelligence with
special reference to fuzzy sets, neuro-computing and evolutionary algorithms.
Special emphasis has been given to swarm and evolutionary algorithms, in
particular Biogeography Based Optimization, Particle Swarm Optimization and
Differential Evolution algorithms. A brief overview is given to neural learning,
particularly supervised learning. It also includes an overview on fuzzy reasoning,
starting from the first principles.

References

1. Zimmermann, H.J.: Fuzzy Set Theory and Its Applications. Kluwer Academic,
Dordrecht (1991)

2. Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Applications. Academic
Press, NY (1980)

3. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, pp. 1942–1948 (1995)

4. Storn, R., Price, K.: Differential evolution – A Simple and Efficient Heuristic for
Global continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)

5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley, Reading (1989)

6. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Academic Press (2001) ISBN 1-
55860-595-9

7. Das, S., Konar, A., Chakraborty, U.K.: Two Improved Differential Evolution Schemes
for Faster Global Search. In: ACM-SIGEVO Proceedings of Genetic and Evolutionary
Computation Conference (GECCO 2005), Washington DC (June 2005)

8. Wallace, A.: The Geographical Distribution of Animals (Two Volumes). Adamant
Media Corporation, Boston (2005)

9. Darwin, C.: The Origin of Species. Gramercy, New York (1995)
10. Hanski, I., Gilpin, M.: Metapopulation Biology. Academic, New York (1997)
11. Wesche, T., Goertler, G., Hubert, W.: Modified habitat suitabilityindex model for

brown trout in southeastern Wyoming. North Amer. J. Fisheries Manage. 7, 232–237
(1987)

12. Hastings, A., Higgins, K.: Persistence of transients in spatially structured models.
Science 263, 1133–1136 (1994)

13. Muhlenbein, H., Schlierkamp-Voosen, D.: Predictive models for the breeder genetic
algorithm: I. Continuous parameter optimization. Evol. Comput. 1, 25–49 (1993)

14. Back, T.: Evolutionary Algorithms in Theory and Practice. Oxford Univ. Press, Oxford
(1996)

15. Parker, K., Melcher, K.: The modular aero-propulsion systems simulation (MAPSS)
users’ guide. NASA, Tech. Memo. 2004-212968 (2004)

94 2 An Overview of Computational Intelligence Algorithms

16. Simon, D., Simon, D.L.: Kalman filter constraint switching for turbofan engine health
estimation. Eur. J. Control 12, 331–343 (2006)

17. Simon, D.: Optimal State Estimation. Wiley, New York (2006)
18. Mushini, R., Simon, D.: On optimization of sensor selection for aircraft gas turbine

engines. In: Proc. Int. Conf. Syst. Eng., Las Vegas, NV, pp. 9–14 (August 2005)
19. Chuan-Chong, C., Khee-Meng, K.: Principles and Techniques in Combinatorics.

World Scientific, Singapore (1992)
20. Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
21. Dorigo, M., Gambardella, L., Middendorf, M., Stutzle, T.: Special section on ‘ant

colony optimization’. IEEE Trans. Evol. Comput. 6(4), 317–365 (2002)
22. Blum, C.: Ant colony optimization: Introduction and recent trends. Phys. Life

Reviews 2, 353–373 (2005)
23. Onwubolu, G., Babu, B.: New Optimization Techniques in Engineering. Springer,

Berlin (2004)
24. Price, K., Storn, R.: Differential evolution. Dr. Dobb’s Journal 22, 18–20, 22, 24, 78

(1997)
25. Storn, R.: System design by constraint adaptation and differential evolution. IEEE

Trans. Evol. Comput. 3, 22–34 (1999)
26. Michalewicz, Z.: Genetic Algorithms Data Structures _ Evolution Programs. Springer,

New York (1992)
27. Rumelhart, D.E., Zipser, D.: Feature discovery by competitive learning. Cognitive

Science 9, 75–112 (1985)
28. Sejnowski, T.J.: Strong covariance with nonlinearly interacting neurons. J. Math

Biology 4, 303–321 (1977)
29. Takeuchi, A., Amari, S.-I.: Formation of topographic maps and columnar

microstructures. Biological Cybernetics 35, 63–74 (1979)
30. Yegnanarayana, B.: Artificial Neural Networks. Prentice-Hall of India, New Delhi

(1988)
31. Baird, L.C., Moore, A.W.: Gradient descent for general reinforcement learning. In:

Advances in Neural Information Processing Systems, vol. 11. The MIT Press (1999)
32. Bertsekas, D.P.: Dynamic Programming And Optimal Control, vol. 1 & 2. Athena

Scientific, Belmont (1995b)
33. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine Learning 8, 229–256 (1992)
34. Kullback, S.: Information theory and statistics. John Wiley and Sons, NY (1959)
35. Meuleau, N., Dorigo, M.: Ant colony optimization and stochastic gradient descent.

Artificial Life 8(2), 103–121 (2002)

	An Overview of Computational IntelligenceAlgorithms
	Introduction
	A Review of Fuzzy Sets and Logic
	Membership Functions
	Continuous and Discrete Membership Functions
	Fuzzy Implication Rules
	Fuzzy Implication Relations
	Fuzzy Logic
	Typical Propositional Inference Rules
	Fuzzy Extension of the Inference Rules
	The Compositional Rule of Inference
	Computing Fuzzy Inferences Using GMP

	Neural Nets
	Biological Neural Networks
	Artificial Neural Networks
	Principles of Learning in a Neural Net

	Swarm and Evolutionary Algorithms
	Classical PSO
	Differential Evolution

	Biogeography-Based Optimization (BBO)
	Migration
	Migration Algorithm
	Mutation

	Summary
	References

